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ABSTRACT

Markerless Motion Capture (MMC) technology has been developed to eliminate the

need of attaching markers on the human body during motion capturing and analysis.

One of the clinical conditions that MMC technology can be applied is in the patients

with stroke - a population who usually requires continuous measurement on their motor

performance in pre/post rehabilitation intervention. However, there remains questions

on the reliability of the MMC technology for clinical application, and the benefits of it

in providing clinical measurement for patients with stroke. Therefore, this thesis aimed

to examine the application of MMC technology in the patients with stroke.

Our systematic review and meta-analysis on the application of MMC technology in

rehabilitation training revealed the potential for MMC systems to be used in

telerehabilitation training program. Additionally, the review on the application of MMC

systems in clinical measurement revealed that MMC system can analyze the movement

kinematics of the disease populations, which suggested that they can serve as an

alternative tool to measure the movement kinematic in these populations.

We then conducted a pilot study that investigated the validity and reliability of a

customized MMC system developed using iPad Pro with LiDAR scanner for the

capturing of movement kinematics. The performance of measuring the active range of

motion (AROM) and the angular waveform of the upper-limb-joint angles in functional
iii



tasks on healthy adults using the MMC system was examined. We found that the AROM

measurements calculated by the MMC system had consistently smaller values than

those measured by the goniometer. An MMC in iPad Pro system might not be able to

replace conventional goniometry for clinical ROM measurements, but it is still

suggested for use in telerehabilitation for intra-subject measurements because of its

good reliability and portability.

We further investigated the application of MMC system in the measurement of both

upper and lower limb kinematics in the stroke population, by examining the differences

in the upper and lower limb joint angles between patients with stroke with different

functional levels and their healthy counterparts in controlled and uncontrolled

environments. Machine-learning models were also applied for classification of the

functioning levels of the participants with stroke. We found significant differences

between the upper limbs of the hemiplegic and non-hemiplegic sides of the stroke

participants in most of the tasks. The four selected machine-learning models revealed

> (.85 sensitivity in the stroke upper limb functional level classification.

For the lower limb measurement, significant differences were found between the angle

change of the hemiplegic and non-hemiplegic lower limb of the stroke participants in

most of the selected task. Our result revealed that MMC system can be used to provide

precise data to evaluate the upper and lower limb functional recovery of the patients

iv



with stroke. Our study hence supports the feasibility of applying MMC system in

mobile device in measuring the upper and lower limb kinematics for evaluation of the

limb function of the stroke population. Future directions of research including

increasing of the usability of the MMC system using smartphone or tablets in

telerehabilitation are suggested.
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Chapter 1

Introduction

In this first chapter, we present an outline of our research studies on the application of

markerless motion capture technology in the rehabilitation of patients with stroke as

well as methods of application. This chapter consists of three sections. The first section

is a general overview of markerless motion capture technology; the second section

provides background information on stroke, a description of motor impairment in

patients with stroke, and the rationales of applying markerless motion capture

technology in the assessment and treatment of patients with stroke. The third section is

an outline of the purpose of our studies and the structure of this thesis.

1.1 BACKGROUND OF MARKERLESS MOTION CAPTURE (MMC)

TECHNOLOGY

Markerless motion capture (MMC) is a technique for human body kinematics

estimation that does not require markers or fixtures placed on the body (Miindermann

et al., 2006). It hence allows for greater freedom of movement and more natural

performance during motion capturing. It uses computer vision algorithms and machine

2



learning techniques to track and analyze human movement. Commonly used MMC

approaches include silhouette-based methods, optical flow algorithms, and pose

estimation algorithms (Salisu et al., 2023).

1.1.1 Silhouette-based methods

In silhouette-based methods, the outline of a moving person is extracted from a video.

The key algorithms involved in such methods include background subtraction, in which

the image of the human subject is separated from the background of the video;

silhouette extraction, in which the moving human subject is extracted from the

background; and pose estimation, in which the postures of the subject are estimated

(Bottino & Laurentini, 2001). By analyzing changes in a subject’s silhouette at different

times, the joint coordinates and hence the movement of the subject can be identified

(Chaaraoui et al., 2013). This technology has been applied in human action recognition

and used in fields such as sports analysis and animation productions (Correa et al.,

2005).

1.1.2 Optical flow algorithms



Optical flow algorithms analyze the pattern of pixels in consecutive video frames and

estimate the motion of a human object. Based on the presumption that there is a single

motion in each pixel, the algorithms analyze the changes in pixel intensities to infer

motion information (Ranjan et al., 2018). One of the commonly used methods for

optical flow calculation is the Lucas-Kanade method. It tracks the displacement of

small patches of pixels in an image over time and estimates the flow field (Ranjan et

al., 2018). This method requires obtaining key points for identification of pixels for the

tracking of motion. The Shi-Tomasi corner detection technique, which detects the

corner of objects, is one of the approaches for obtaining key points (Kaur et al., 2022).

It can be applied in real-time gesture recognition systems (Danafar & Gheissari, 2007).

1.1.3 The pose estimation algorithm

The pose estimation algorithm uses computer vision to identify the human pose. It

predicts and tracks a human object’s location and orientation (Dhore et al., 2022). There

are two types of pose estimation algorithm, namely 2D pose estimation algorithms and

3D pose estimation algorithms. 2D pose estimation algorithms perform the estimation



of body joints coordinates from 2D videos. The body joints’ coordinates are presented

as 2D points. Convolutional neural networks (CNN) is one of the approaches to detect

body joint points (Aloysius & Geetha, 2017). 3D pose estimation algorithms estimate

3D positions of human joints. They usually require the use of views or depth

information from multiple cameras to detect the 3D human pose (Desmarais et al.,

2021). Typically-used 3D pose estimation algorithms include graph convolutional

network (GCN), which constructs a graph structure to connect body joints (Zhang et

al., 2019). Examples of the application of pose estimation algorithms include

augmented reality applications and human activity recognition systems applications

(Guleryuz & Kaeser-Chen, 2018).

1.1.4 Application of MMC technology

With advances in technology, the development of MMC technology has overcome the

limitations on the restraint of movement caused by the attachment of body markers on

subjects and the time-consuming preparation process of traditional marker-based

motion capture systems (Wade et al., 2022). Previous studies have been done to

investigate the validity and reliability of some MMC systems, including Kinect, leap



motion controller (LMC), and video from RGB cameras (Huber et al., 2015; Ramos Jr.

et al., 2021; Smeragliuolo et al., 2016). The findings showed that MMC technology

generally appears to be equivalent to marker-based motion capture in application, but

the joint center locations and joint angles still varied among systems and the body parts

being focused on. Despite the uncertainty about the accuracy of MMC technology, its

advantage of allowing the capture of more lifelike human motion in a natural

environment has been emphasized (Wade et al., 2022). Scientists have identified the

potential of using MMC technology in capturing the kinematics of human movement

in research and clinical practice. As suggested by Miindermann et al. (2008), MMC

technology can be used in the rehabilitation field since the precise kinematic

information that it can provide might be beneficial to therapists in understanding the

motor deficits of patients. The application of MMC technology in the rehabilitation area

can be divided into two aspects: 1) for rehabilitation training and 2) for rehabilitation

measurement. The use of the MMC approach in rehabilitation training refers to its use

in providing real time feedback to patients to guide or correct their movement during

the rehabilitation exercise (Lam & Fong, 2022), while the utilization of MMC

technology in rehabilitation measurements refers to the identification and measurement

of movement kinematics in a clinical population (Lam et al., 2023). Despite the belief

that MMC technology can contribute objective and precise movement analysis during



rehabilitation, the actual application of MMC technology, such as the parameters that

it captures and the clinical population that it could be applied on, is still under

investigation. Two systematic reviews have hence been done by the authors of this

thesis, which will be further described in section 3 of this chapter.

1.2 GENERAL INTRODUCTION OF STROKE

1.2.1 Background of stroke

Stroke is a disease that is triggered when the blood supply to the brain is interrupted or

reduced, leading to an impairment of brain function (Boehme et al., 2017). It can be

classified into two main types: ischemic stroke and hemorrhagic stroke. Ischemic stroke

refers to the blockage of blood flow in the blood vessels supplying the brain, while

hemorrhagic stroke is a condition wherein the blood vessels in the brain have ruptured

or leaked, causing a bleeding in the brain area (Andersen et al., 2009; Chen et al., 2010).

Presently, one in four adults will suffer stroke in their lifetime, with this number

increasing 50% over the last 17 years (Feigin et al., 2022). The overall incidence rate

of stroke is around 2—25 per 1,000 population and it is estimated that there will be about

101 million stroke patients globally by the year 2023 (Xu et al., 2023). Stroke is one of



the leading causes of disability and one of the three most common causes of hospital

admission in Hong Kong (Woo et al., 2014). The incidence of stroke in Hong Kong is

no different from that in other developed countries (Feigin et al., 2021). In Hong Kong,

stroke was the fourth most common cause of death in 2012 (Yu et al., 2012). A survey

conducted by the Census and Statistics Department reported that the number of people

who had a stroke increased by 52% over the last 10 years from 37,800 in 2009/10 to

57,500 in 2018/19 (Feigin et al., 2021). Stroke induces physical and cognitive

disabilities, most of which are irreversible. Among them, motor impairment, including

hemiparesis, incoordination, and spasticity are the most common conditions. According

to research done by Mayo et al. (1999), 78% of patients with stroke had not reached

age-specific norms for upper extremity function and 68% of them still demonstrated

slow physical mobility after 3 months of stroke onset. Since motor impairments in both

the upper and lower extremity greatly affect the completion of activities of daily living

(ADL), seriously compromise the quality of life of patients with stroke, and impose a

large socioeconomic burden on families and society, long-term rehabilitation of motor

function has therefore become one of the major challenges in stroke recovery (O’Dell

et al., 2009).

According to Hendricks et al. (2002), the recovery of motor function is the most rapid

8



during the first month post-stroke, slowing down during subsequent months, and

plateauing by 6 months post-stroke. Another study substantiated the fact that motor

impairment, including balance and lower limb ability, strongly accounts for functional

recovery in the rehabilitation of patients with stroke staying in hospital (Fong, Chan, &

Au, 2001). However, Cauraugh & Summers (2005) also observed that patients with

stroke still experience a significant degree of motor functional improvement after

intensive training even after 6 months post-stroke. Researchers suggest that intensive

motor training in stroke patients with mild to moderate impairment facilitates motor

gains, which is associated with a shift in the laterality of activation in the sensorimotor

cortex in the brain (Richards et al., 2008). Evidence shows that there is a shift of brain

activity towards more normal functional movement in rehabilitation-induced motor

recovery in hemiparetic patients with stroke over time following intensive training

(Richards et al., 2008). It is hence suggested that comparing the movement of the

hemiplegic limbs with that of the non-hemiplegic side would be beneficial for

understanding stroke patients’ motor recovery (Kim et al., 2016). Since the motor

function of patients with stroke might change gradually across time due to the plasticity

of the nervous system (Pin-Barre & Laurin, 2015), the motor conditions of patients with

stroke might change during different stages of stroke recovery. The prescription of

rehabilitation tasks or training should also be modified or changed according to patients’



motor recovery progress (Ivey et al., 2006). As the motor regain of patients with stroke

depends on a number of factors, including type of stroke, training intensity, patients’

impairment severity, and the overall health and age of patients, it can vary greatly from

person to person (Kwakkel et al., 2004). Therefore, it is very important for therapists to

provide continuous and regular monitoring of the motor conditions of patients with

stroke so as to develop a training protocol with optimal parameters in the type of

training tasks and training regime according to the patients’ recovery progress.

1.2.2 Rationales of applying markerless motion capture (MMC) technology on

patients with stroke

The traditional monitoring of motor recovery of patients with stroke heavily depends

on eyeball assessment and manual assessments conducted by the therapists (Poole &

Whitney, 2001). Such approach requires frequent attendance by patients at the

rehabilitation setting or regular visits to the patients’ living environment by the

therapists. A persistent complaint is that neither the intensity of stroke survivors’

attendance at rehabilitation clinics nor the frequency of home visits by therapists were

10



sufficient to meet the motor rehabilitation needs of patients with stroke (Dewey et al.,

2007). This issue is caused by multiple factors, such as limited access to healthcare

services of some stroke patients, inadequate medical capacity, and geographical

constraints (Dewey et al., 2007). These problems have as yet remained unsolved, which

significantly hinders the motor recovery prognosis of patients with stroke (Assylbek et

al., 2024). Due to the outbreak of Covid-19 in 2019, many of the visits to rehabilitation

settings and home visits for rehabilitation services were suspended (Burns et al., 2022).

The problem of insufficient rehabilitation progress monitoring of patients with stroke

became more severe and hence raised concerns in society (Ostrowska et al., 2021). The

importance of remote monitoring and telerehabilitation has therefore been heavily

emphasized. MMC technology can capture movement kinematics without the

requirement of performing motion capture in the standard laboratory environment;

hence, MMC technology could be a potential approach for the remote monitoring of

stroke patients’ movement and telerehabilitation for motor regain progress tracking.

Remote or home-based training enhances stroke rehabilitation by providing precise

data for long-term progress monitoring, which enables therapists to assess the

effectiveness of home-training programs and therefore the motor recovery progress of

patients with stroke (Hellsten et al., 2021). Other than using MMC technology as a

measurement, Hellsten et al. (2021) proposed that MMC technology can also be applied

11



to training programs, since it might provide real-time feedback to patients to help them

correct their posture or movement patterns. Due to the current advantages of MMC

technology in providing objective and precise data for motor activities, Almasi et al.

(2022) suggested MMC technology has the potential to identify motor impairment and

monitor the motor recovery of patients with stroke along their rehabilitation process.

Moro et al. (2020) applied MMC technology in measuring the gait of patients with

stroke, while Evett et al. (2011) and Levin et al. (2012) combined the use of MMC

technology with virtual reality (VR) in rehabilitation training programs. Although they

all reported that the use of MMC technology is effective in measuring the movement

of patients with stroke, the application of MMC technology in stroke rehabilitation is

still in its preliminary stages due to the complexity of algorithms, challenges in

achieving individual variations, cost and accessibility constraints, and the need for

further validation and clinical evidence (Hellsten et al., 2021). Eichler et al. (2018)

found significant correlation between the movement kinematics of patients with stroke

captured by MMC systems and stroke motor assessment scores, but how the movement

data can reflect stroke motor impairment severity is still inconclusive. Further research

is warranted to explore an accurate prediction of prognostic stroke recovery that can

maximize the rehabilitation outcomes of patients and minimize their disabilities and

caregivers’ burden, as well as optimize rehabilitation efficacy. We hypothesize that the

12



kinematic data from MMC systems can reflect the motor function or motor recovery

progress of stroke populations.

1.3 PURPOSE OF THE STUDIES IN THIS THESIS AND STRUCTURE OF THE

THESIS

Since the actual application of MMC technology for rehabilitation in the disease

population is still uncertain, in this thesis we developed a home-based MMC system

and elucidate the purpose of using this MMC system in rehabilitation; we conducted

systematic reviews on the application of MMC technology in rehabilitation training and

rehabilitation measurement, respectively, to explore the current trend in the

rehabilitation field of using MMC technology. Chapter 2 of this thesis presents a

systematic review and meta-analysis of the application of MMC technology in

rehabilitation training programs. The focus is on the disease population that MMC

technology is being applied on, the MMC systems that are being used, the format of

rehabilitation with MMC technology, and the effect of using MMC systems in

rehabilitation programs (Lam & Fong, 2022). Chapter 3 contains the systematic review

of the application of MMC systems for clinical measurement in rehabilitation. In this
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chapter, we describe the clinical population, the types of MMC systems used for

measurement, and the kinematic parameters being measured (Lam et al., 2023). In our

study, a tailor-made MMC system developed using an iPad Pro with a LIDAR scanner

was used to capture movement kinematics. Chapter 4 is a description of the pilot study

that we conducted to investigate the validity and reliability of our MMC system in

capturing the upper extremity kinematics of healthy adults. The focus of the main study

was on the investigation of the application of our MMC system in kinematic

measurement for patients with stroke. The content of the main study is divided into two

chapters: Chapter 5 is the study of the measurement of the upper extremity using our

MMC system, whereas Chapter 6 is a description of the MMC measurement of the

lower extremity in patients with stroke. The aim of the main study was to investigate:

1) the kinematic differences between the hemiplegic and non-hemiplegic side of stroke

patients with different functioning levels, as well as their healthy counterparts; 2) the

relationship between movement kinematics and manual motor assessments; and 3) the

effects of using machine learning models in the classification of the motor function of

patients with stroke. Machine learning classification models were applied to train the

kinematic data to examine their effect in differentiating the functional impairment level

of patients with stroke. Chapter 7 is the summary and conclusion of this thesis.
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Chapter 2

The application of Markerless Motion Capture (MMC) technology in rehabilitation

program: A systematic review and meta-analysis

ABSTRACT

This chapter is a review that explores the effects of markerless motion capture

technology-based rehabilitation programs targeting clinical populations and identifies

the types of MMC systems used. A systematic search was conducted in the PubMed,

Medline, CINAHL, CENTRAL, EMBASE, and IEEE databases. All eligible studies—

single-group or controlled trial studies investigating the effectiveness of MMC

technology-based rehabilitation programs—were selected. Single-group studies were

qualitatively described; only controlled trial studies were included in the meta-analysis.

Effects regarding the application of MMC technology for different types of patients and

training body parts are summarized. Five single-group studies and 18 controlled trial

studies were included. All studies applied MMC technology as a form of virtual reality

training to provide rehabilitation programs. Most of the studies were conducted in

regard to upper extremity training in stroke populations. Our meta-analysis revealed

that there is no significant difference in the upper limb rehabilitation effects between
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VR training and control interventions. There is potential to apply MMC technology as
an alternative way of providing rehabilitation to increase patients’ motivation and
adherence. Future studies on the design of training programs and MMC systems in
home settings, which are affordable and accessible for patients, are warranted. (This

review is registered in PROSPERO, registration ID: CRD42022298189).

This chapter has been previously published by the author of this author as a scientific
manuscript as part of the research topic “New Trends in Immersive Healthcare” in the
journal “Virtual Reality” on September 17%, 2022. The manuscript has been slightly
formatted to fit the thesis requirements. Access to the scientific paper: Lam, W. W., &
Fong, K. N. (2022). The application of markerless motion capture (MMC) technology
in rehabilitation programs: A systematic review and meta-analysis. Virtual Reality, 1-

16. DOI: https://doi.org/10.1007/s10055-022-00696-6
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2.1 BACKGROUND

Intensive and repetitive exercise significantly improves motor function recovery in

neurological rehabilitation and after stroke. (Carr & Shepherd, 2010) In order to

increase the exercise intensity, patients should be self-motivated and actively engaged

in rehabilitation training. To promote functional recovery, there is also a significant

need for regular and continuous rehabilitation training at home after inpatient hospital

discharge.

However, patients have reported that they are hindered from engaging in home exercise
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programs due to unclear feedback about their positions, the quality and quantity of their

movements, and the level of intensity (Burridge et al., 2017). Without supervision from

therapists, patients are often doubtful about their rehabilitation progress and whether

they are moving correctly (Hughes et al., 2017). The absence of instant feedback during

repetitive movements during home exercise programs further reduces patients’

motivation of actively participating, which might in turn reduce their adherence to the

home rehabilitation exercise program (Alsinglawi et al., 2018).

Remote rehabilitation is a safe and effective alternative to typical rehabilitation

programs in clinics (Tan, 2020). Tsekleves et al. (2016) investigated the use of a remote

Nintendo Wii program that offers virtual reality-based upper-limb stroke

rehabilitation, and found that participants benefited from better wrist control and

greater functional improvement. Recent research findings suggest that remote stroke

rehabilitation programs have significant effects on limb function recovery after stroke

(Sarfo et al., 2018). However, most remote stroke rehabilitation programs require input

from therapists in terms of supervising and monitoring the quality of the patients’

movements (Paneroni et al., 2015). Patients are not able to acquire instant feedback

with which to regulate their actions and movements without monitoring from therapists

(Hughes et al., 2020).
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There are new methods that rely on the motion tracking and analysis of patients’

movements during exercise. Wearable devices with sensors are one of the proposed

ways to conduct unsupervised stroke rehabilitation (Maceira-Elvira et al., 2019).

Wearable sensors located on specific body parts allow movement tracking for the users

as well as enabling analysis of their movement quality and quantity (Lee et al., 2018).

Using wearable sensors to detect the movement of patients during rehabilitation

exercises reduces the human effort that would be required to continuously observe the

patients (Bonato, 2005). However, the use of wearable sensors usually requires setup

and multiple forms of calibration in the early stages, and so patients may not find these

sensors to be user-friendly.

With the advance of technology in the past 10 years, markerless motion capture (MMC)

technology has been used in rehabilitation programs (Miindermann et al., 2006). MMC

technology does not require the placement of any markers on a person’s body, and the

capturing and analysis of the subject’s movements are based on visual hull

reconstruction (Miindermann et al., 2006). MMC and analysis technology is becoming

common and studies have begun to investigate its application in the rehabilitation field.

Pastor et al. (Pastor et al., 2012) tried applying the MMC system Kinect in the form of
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VR training with a patient with stroke in 2012. There are also small-scale case series

(Capo etal., 2014; Ding et al., 2018; Palacios-Navarro et al., 2015; Pompeu et al., 2014;

Shiri et al., 2012) that have applied MMC and engaged patients in rehabilitation in a

VR training context. Previous research has indicated the potential of MMC technology

in rehabilitation exercises (Knippenberg et al., 2017); however, the effects of its

application have been inconsistent. Both Rodriguez-Hernandez et al. (2021) and Wang

et al. (2017) applied MMC technology and provided training programs in a VR game

format for patients with stroke. They reported a significant improvement in the upper

limb function in the VR training group compared with the conventional therapy group

(Rodriguez-Hernandez et al., 2021; Wang et al., 2017). Afsar et al. (2018) and Sin and

Lee (2013) found that patients who received the MMC technology-based rehabilitation

program showed significantly greater improvements than the groups receiving

conventional therapy. However, Saposnik et al. (2016) proposed that the use of VR

training supported by the MMC system does not generate a better effect than receiving

intensive rehabilitation in the form of recreational activities. Cannell et al. (2018)

further reflected that patients receiving VR training with Kinect did not improve more

significantly than the conventional therapy group.

The inconsistent findings from the literature generate a research gap regarding the
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uncertain effects of MMC technology-based rehabilitation programs compared to

conventional therapy. A systematic review (Knippenberg et al., 2017) of the use of the

MMC system in rehabilitation programs in 2017 concluded that MMC technology was

still not common in rehabilitation; however, most of the studies included by

Knippenberg et al. (2017) were small-scale case studies or featured single-group

designs, which made it difficult to draw conclusions. Therefore, the aims of this

systematic review are to explore the effects of MMC technology-based rehabilitation

programs targeting the clinical population, including patients’ feedback regarding the

technology, and to identify the types of MMC systems used in rehabilitation training

and the format in which they appeared.

2.2 METHODS

2.2.1 Search Strategy

A systematic computerized literature search was conducted by one of the authors (WTL)

in PubMed, Medline, CINAHL, CENTRAL, EMBASE, and IEEE. The keywords used

for the searches in each database include Markerless Motion Capture OR Motion

Capture OR Motion Capture Technology OR Markerless Motion Capture Technology

AND Rehabilitation OR Rehabilitation program OR Training Program OR Treatment.
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The author also conducted a manual search using Google Scholar with the same

keywords, and screened the reference lists of the previous systematic reviews. The

years of publication were not limited and the last search took place on 20 January 2022.

2.2.2 Inclusion Criteria

Studies were included if they: 1) are either controlled studies or single-group studies;

2) applied MMC technology in a rehabilitation program; 3) aimed to evaluate the effects

of the application of an MMC system in rehabilitation training on patients’ functional

recovery; 4) had at least one assessment outcome related to clinical effects conducted

before and after the intervention; and 5) were published in English.

2.2.3 Exclusion Criteria

Studies were excluded if they: 1) involved healthy subjects only; 2) focused on

evaluating the users’ experiences only; 3) applied MMC technology in clinical

evaluations only; 4) did not report any outcomes; 5) involved other robotic training,

such as the use of exoskeletons, robotic walkers, or haptic devices; or 6) were

systematic reviews.
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2.2.4 Data Extraction

The general characteristics and results of the studies were recorded, including the

names of the authors, the year of publication, study design, sample size, patient types,

format of the interventions, type of MMC system used, and components of the training

program. Information regarding the clinical effects and clients’ feedback were extracted.

The initial mean scores and standard deviations (SDs) of the assessment outcomes after

the rehabilitation programs were extracted from the clinical effects reported in the

controlled studies. We recorded the mean change in scores calculated from the pre- and

post-experiment outcome measures and calculated standard errors (SEs) for meta-

analysis. The researchers contacted the article authors to request extra information if

the data provided in the articles were insufficient to be used for data pooling. Meta-

analysis was only performed on the controlled studies.

2.2.5 Methodological Quality Assessment

The methodological quality of the controlled studies was assessed by independent

reviewers (WTL) using the Physiotherapy Evidence Database (PEDro) rating scale

(Moseley et al.,, 2002). Disagreements between the two reviewers during the

methodological quality assessment of the studies were reconciled via consensus or

arbitration by a third reviewer (KNKF). The PEDro scale has 11 items, including the
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risk of bias in terms of randomization, allocation concealment, baseline measurement,

blinding, dropout rate, intention to treat, and data reporting in statistical comparisons.

One mark is scored for each item if the criterion is met. The total score is calculated by

summation of the scores from the 11 items. Studies with a PEDro score of 9—-10 are

considered to be of “excellent” quality, 68 of “good” quality, 4-5 of “fair” quality, and

below 4 of “poor” quality (Teasell et al., 2003).

2.2.6 Data Synthesis

Randomized controlled studies that focused on the upper extremity rehabilitation of

patients with stroke were identified and included in a further meta-analysis to determine

the effects of the use of MMC technology in the rehabilitation of the upper limb in the

stroke population.

In this meta-analysis, we used the mean change scores (post-pre) and the standard errors

(SEs) to pool the results. The post-intervention outcomes were used. Most of the mean

change scores were calculated from the pre- and post-assessment scores provided in the

studies, while the SEs were calculated according to the suggestions in Cohen’s

handbook (Higgins, 2011).
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Among the randomized controlled studies, the most commonly used outcome
measurement for upper limb function is the Box and Block Test (BBT). One study used
the Fugl-Meyer Assessment (FMA) (Afsar et al., 2018) as the primary outcome
measure, in which they did not include the BBT as the outcome measurement. One of
the included studies used the Wolf Motor Function Test (WMFT) (Wang et al., 2017)
to measure hand motor function. One study that used Manual Muscle Testing (MMT)
(Lee, 2013) as the major outcome measurement to determine the recovery of hand
muscle strength has been excluded from this meta-analysis due to the difference in the
nature of assessments compared with the three other scales. We combined the outcomes
of the BBT, FMA, and WMFT in our meta-analysis by transforming the mean changes
and SEs into a standardized mean difference expressed as Hedges’ g, with 95%

confidence intervals (CI) as the pooled effect size. Heterogeneity across the included

studies was confirmed by checking the Higgins 12 statistic. If the 12 statistic was below

50%, a fixed-effects model was used for data pooling. If the 12 statistic was above 50%,

a random effects model was used. Publication bias was checked through a meta-
analysis or subgroup analysis including five or more studies, using Egger’s linear
regression test to quantify the asymmetry of the funnel plots generated. Procedures
related to data pooling and checking of publication bias were conducted using the
Comprehensive Meta-Analysis 3.0 software (Englewood, NJ, USA).
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We also summarized the feedback from the patients’ responses to the use of MMC

technology in rehabilitation, as reported in the included studies. Qualitative description

was applied to the single-group studies.

2.3 RESULTS

2.3.1 Literature Search and Study Characteristics

A total of 1,213 articles were identified and 67 of them were selected for full-text

reading. After excluding 44 articles according to the inclusion and exclusion criteria,

23 studies were included in the final review (Figure 2.1). Among the included studies,

18 of them are controlled studies (Afsar et al., 2018; Avcil et al., 2021; Cannell et al.,

2018; Dabholkar & Shah, 2020; Lee, 2013; Levin et al., 2012; Lloréns, Gil-Gomez, et

al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-Gheidari et

al., 2020; Rodriguez-Hernandez et al., 2021; Saposnik et al., 2016; Sin & Lee, 2013;

Tarakci et al., 2020; Walifio-Paniagua et al., 2019; Wang et al., 2017), while five of

them are single-group studies (Jonsdottir et al., 2019; Knippenberg et al., 2021; Qiu et

al., 2020; Tarakci et al., 2016; Vanbellingen et al., 2017). A total of 15 out of the 18

controlled studies applied MMC technology in upper extremity rehabilitation and used
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upper limb motor function as the outcome measurement. A total of 10 out of those 15
studies involved adults with neurological diseases. Among them, eight studies focused
on patients with stroke and two studies focused on patients with multiple sclerosis (MS)
and Parkinson’s disease (PD). These 10 studies were included in our meta-analysis. The
remaining eight controlled-trial studies focused on the training of balance with patients
with various neurological diseases or the training of hand dexterity with patients with
hand functional deficits, which could not be pooled together for effect size analysis. All

of the five single-group studies applied MMC technology in upper limb rehabilitation.
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Figure. 2.1 Flow chart of study selection

2.3.2 Single-Group Studies

The summary in Table 2.1 presents the characteristics of the five single-group studies.

37



Two of them provided training programs to the stroke population using the LMC system.

Qiu et al. (2020) reported a functional improvement in the subjects’ upper extremity by

an increase of the group’s average. The Upper Extremity Fugl-Meyer Assessment

(UEFMA) score after training, according to Vanbellingen et al. (2017), detected no

significant change in the UEFMA score but significant improvement was noticed in

hand dexterity using the Nine Hole Peg Test. Tarakci et al. (2016) claimed a significant

improvement was found in hand grip strength and range of motion (ROM) after the

MMC treatment program in patients with juvenile idiopathic arthritis (JIA). Both

Knippenberg et al. (2021) and Jonsdottir et al. (2019) used Kinect as the MMC system

and studied patients with central nervous system (CNS) diseases and patients with

multiple sclerosis (MS). The two studies used different outcome measures and both

concluded that improvements were found in the upper limb function of the patients.

38



Table 2.1 Characteristics of the single-group studies

Study Subject  Types Age Type of Format Frequency Outcome Main Results
(n) (years)? MCS Measurements
Tarakci et al. JIA(18) 12.224+3.30 LMC Video game Three sessions a ROM, GS, CHAQ, NRS, Significant statistical differences were found
(2016) week PedsQL between pre- and post-treatment in regard
(8 weeks) to all outcomes
Vanbellingen et Stroke (13) 68.24+17.5 LMC Video game Three sessions a SUS, PRPS, interview Significant improvements were found in
al. (2017) week form, NHPT, DextQ-24, hand dexterity and GS; no changes were
(3 weeks) GS, FM-UE found in FM-UE
Jonsdottir et al. MS(18) 56.1+10.5 Microsoft VR game 3-5 sessions a week  NHPT, BBT, SF12 MCS, Improvements were found in dexterity and
(2019) Kinect (12 sessions) SF-12 PCS, EQ-VAS, arm function bilaterally; only the
BDI-FS improvement in the treated arm was

statistically significant

Qiu et al. Chronic stroke 56.674+11.8 LMC Video game  25-168 mins a week UEFMA, HOR, HOA, Improvementswere foundin UEFMA and the
(2020) (15) (12 weeks) WPR, WPA, HRR, HRA  six measurements of hand kinematics
Knippenberg et CNS diseases 57.2+416.3 Microsoft  Exercise Three sessions a [IMI, SUS, CEQ, COMP, Upper limb functional ability improved
al. (2021) (17) Kinect week WMFT significantly over time on the WMFT

(6 weeks)

dData are reported as means (SD).

JIA: Juvenile Idiopathic Arthritis, LMC: Leap Motion Controller, ROM: Range of Motion, GS: Grip Strength, CHAQ: Childhood Health Assessment Questionnaire, NRS: Numeric Rating
Scale, PedsQL: Pediatric Quality of Life Inventory, SUS: Self-Reported System Usability, PRPS: Pittsburgh Rehabilitation Participation Scale, NHPT: Nine Hole Peg Test, DextQ-24:
Dexterity Questionnaire 24, FM-UE: Fugl-Meyer Assessment for Upper Extremity, MS: Multiple Sclerosis, VR: virtual reality, BBT: Box and Blocks Test, SF12: MCS Short-Form 12
Health Survey Mental Component Score, SF12 PCS: Short-Form 12 Health Survey Physical Component Score, EQ-VAS: EuroQol visual analogue scale, BDI-FS: Beck’s Depression
Inventory Fast screening tool, UEFMA: Upper Extremity Fugl-Meyer Assessment, HOR: Hand Opening Range, HOA: Hand Opening accuracy, WPR: Wrist Pitch Range, WPA: Wrist
Pitch Accuracy, HRR: Hand Roll Range, HRA: Hand Roll Accuracy, CNS: Central Nervous System, IMI: Intrinsic Motivation Inventory, SUS: System Usability Scale, CEQ:
Credibility/Expectancy Questionnaire, COMP: Canadian Occupational Performance Measure, WMFT: Wolf Motor Function Test.
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2.3.3 Controlled-Trial Studies

Target Population

There are a total of 18 studies included in this review, with a total of 675 subjects (339

patients in experimental groups; 336 patients in control groups) (Table 2.2). A total of

15 out of the 18 studies applied the MMC system in rehabilitation for adults with

neurological diseases (Afsar et al., 2018; Cannell et al., 2018; Cuesta-Goémez et al.,

2020; Fernandez-Gonzalez et al., 2019; Lee, 2013; Levin et al., 2012; Lloréns, Gil-

Gomez, et al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-

Gheidari et al., 2020; Rodriguez-Hernandez et al., 2021; Saposnik et al., 2016; Sin &

Lee, 2013; Walino-Paniagua et al., 2019; Wang et al., 2017), including 11 studies

targeting the stroke population (n = 453) (Afsar et al., 2018; Cannell et al., 2018; Lee,

2013; Levin et al., 2012; Lloréns, Gil-Gomez, et al., 2015; Lloréns, Noé, et al., 2015;

Norouzi-Gheidari et al., 2020; Rodriguez-Hernandez et al., 2021; Saposnik et al., 2016;

Sin & Lee, 2013; Wang et al., 2017), three studies focusing on patients with MS

(Cuesta-Gomez et al., 2020; Lozano-Quilis et al., 2014; Walifio-Paniagua et al., 2019),

and one study focusing on patients with PD (Fernandez-Gonzalez et al., 2019). Two

studies focused on children and adolescents with physical disabilities, including CP,

juvenile idiopathic arthritis (JIA), and brachial plexus birth injury (BPBI) (Avcil et al.,
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2021; Tarakci et al., 2020). One study reported data from adults suffering from wrist

and hand stiffness with non-specified diagnoses (Dabholkar & Shah, 2020). The

methodological quality of the 18 controlled studies was evaluated using the PEDro

items (Table 2.3).
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Table 2.2 Characteristics of the controlled-trial studies

Study Design Subject Types n (E/C) Age Type of Format Experimental Control Group Outcome
MCS Group Measurements
Levin et al. RCT Stroke (chronic) 12 (6/6) E: 58.1+14.6 Gesture VR game A total of nine A total of nine FMA-UE, CSI, RPSS,
(2012) C:59.8+15.1 Xtreme sessions of 45 sessions of 45 BBT, WMFT, MAL
minutes of VR minutes of OT
training (3 weeks) rehab (3 weeks)
Lee etal. RCT Stroke (chronic) 14 (7/7) E: 71.7149.14  Microsoft  Video game Three sessions of ~ Three sessions MMT, MAS, FIM
(2013) C:76.43+5.80 Kinect 60 minutes of of 30 minutes of
(Xbox) Xbox games a OT rehab a
week (6 weeks) week (6 weeks)
Sinand Lee  RCT Stroke (chronic) 35(18/17) E:71.7849.42  Microsoft VR game Three sessions of ~ Three sessions FMA, ROM, AROM,
(2013) C:75.59+5.55 Kinect 30 minutes of VR of 30 minutes of BBT
(Xbox) training + 30 OT rehab a
minutes of OT week (6 weeks)
rehab a week (6
weeks)
Lozano- RCT MS 11 (6/5) E: 48.33+10.82 Microsoft VR exercise One session of 45 One session of BBS, TBS, SLB,
Quilis et al. C:40.60+9.24  Kinect minutes of PT 60 minutes of 10MT, TUG, SEQ
(2014) rehab + 15 PT rehab a week
minutes of VR (10 weeks)
training a week
(10 weeks)
Lloréns, Gil- RCT Stroke (chronic) 20 (10/10) E:58.3+11.6 Microsoft VR exercise Five sessions of Five sessions of BBS, POMA, BBA,
Gomez, et al. C:55.0+11.6 Kinect 30 minutes of PT 60 minutes of 10MT, SFQ

(2015)

rehab + 30
minutes of VR
training a week (4
weeks)

PT rehab a week
(4 weeks)
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Lloréns,
Noé, et al.
(2015)

Saposnik et
al. (2016)

Wang et al.
(2017)

Afsar et al.
(2018)

Cannell et al.

(2018)

RCT

RCT

RCT

RCT

RCT

Stroke (chronic)

Stroke
(subacute)

Stroke (subacute)

Stroke (subacute)

Stroke (subacute)

30 (15/15)

141
(71/70)

26 (13/13)

35 (19/16)

79 (39/40)

E: 55.47+9.63
C:55.60+7.29

E: 62+13
C:62+12

E: 55.3+8.4
C:53.447.6

E: 69.4248.55
C:
63.441+15.73

E: 72.8+10.4
C:74.8%+11.9

Microsoft
Kinect

Nintendo
Wii gaming
system
(VRWii)

LMC

Microsoft
Kinect
(Xbox 360)

Microsoft
Kinect

VR exercise

VR game

VR game

VR game

Game-based
activities

Three sessions of

45 minutes of VR

training a week in
a home setting (20
sessions)

Ten sessions of 60
minutes of VR
training (2 weeks)

Five sessions of
45 minutes of PT
& OT rehab a
week + five
sessions of 45
minutes of VR
training a week (4
weeks)

Five sessions of
60 minutes of
rehab program a
week + 30
minutes of VR
training/sessions
(4 weeks)

Five sessions of
PT rehab +5
hours of iIMCR
intervention a
week (between
eight and 40
sessions)

Three sessions

of 45 minutes of

VR training a
week in a
clinical setting
(20 sessions)

Ten sessions of
60 minutes of
recreational
activity (2
weeks)

Five sessions of

45 minutes of
PT & OT rehab
a week (4
weeks)

Five sessions of

60 minutes of

rehab program a

week (4 weeks)

Five sessions of

PT rehab + 5
hours of rehab
exercise a week
(between eight

and 40 sessions)

BBS, POMA-B,
POMA-G, BBA, SUS,
IMI

WMFT, BBT, SIS,
FIM, BI, mRS, GS,
RPS, RPE

WMFT, fMRI

FMA-UE, BRS, BBT,
FIM

FRT, MMAS, BBT,
SBS, LRT, ST, TUG
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Fernandez-
Gonzalez et
al. (2019)

Walifio-
Paniagua et
al. (2019)

Cuesta-
Gomez et al.
(2020)

Dabholkar et
al. (2020)

Norouzi-
Gheidari et
al. (2020)

Tarakci et al.
(2020)

RCT

RCT

RCT

NRS

RCT

RCT

PD

MS

MS

Patients with wrist
and hand stiffness

Stroke
(subacute/chronic)

CP + JIA + BPBI

23 (12/11)

16 (8/8)

30 (16/14)

50 (25/25)

18 (9/9)

CP: 30
(15/15)

E: 65.77£7.67 LMC

C:

67.36+12.12

E: 46.7549.31  Online
C:46.1349.49  platform
E: 49.86+2.46 LMC
C:42.6613.14

E: 48.8 (SDnot LMC
provided)

C:47.9 (SD not

provided)

E:42.249.5 Microsoft
C:57.61£10.5 Kinect
E(CP): LMC
10.93+4.09

Video game

VR game

VR game

VR game

VR game

Video game

Two sessions of
30 minutes of
serious games a
week

(6 weeks)

Two sessions of
30 minutes of OT
rehab + two
sessions of 20
minutes of VR
training a week
(10 weeks)

Two sessions of
45 minutes of PT
rehab + 15-min
VR training a
week (10 weeks)

Two sessions of
15-20 minutes of
PT rehab + 10-15
minutes of VR
training a week (4
weeks)

Regular OT/PT
rehab + three
sessions of 30
minutes of VR
training a week (4
weeks)

Three sessions of
60 minutes of

Two sessions of
30 minutes of
PT rehab a week
(6 weeks)

Two sessions of
30 minutes of
OT rehab a
week (10
weeks)

Two sessions of
60 minutes of
PT rehab a week
(10 weeks)

Three sessions
of 25 minutes of
PT rehab a week
(4 weeks)

Regular OT/PT
rehab (4 weeks)

Three sessions
of 60 minutes of

BBT, PPT, CSQ-8, GS

PPT, JTHFT, GPT

GS, BBT, PPT, NHPT,
FSS, MSIS-29, CSQ-8

VAS, ROM of wrist
and hand, GS, PPT,
MHQ

FMA-UE, BBT, SIS,
MAL

DHI, JTHFT, NHPT,
CHAQ, GS, PS
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JIA: 43 C(CP): 11.06 LMCBT a week conventional
(18/25) +3.23 (8 weeks) rehab program a

week (8 weeks)
BPBI: 19 E(JIA):

(9/10) 12.224+3.29
C(IA):
13.16+3.35
E(BPBI):
8.22+2.58
C(BPBI):
8.30+2.21
Rodriguez- RCT Stroke 43 (23/20) E: 62.6+13.5 Microsoft VR Five sessions of 5 sessions of 75  FMA-UE, MAS, SIS
Hernandez et (subacute) C: 63.6+12.2 Kinect exergames 50 minutes of PT  minutes of PT
al. (2021) rehab + 50 rehab + 75
minutes of OT minutes of OT
rehab + 50 rehab/week (3
minutes of VR weeks)
training a week (3
weeks)
Awvcil et al. RCT CP 30 (15/15)  E:10.93+4.09 LMC Video game Three sessions of  Three sessions MMDT, GS, PS,
(2021)] C:11.0743.24 60 minutes of of 60 minutes of CHAQ, DHI
VGBT aweek (3 ~ NDT-based
weeks) rehab a week (3
weeks)

4Data are reported as means (SD).

RCT: Randomized Controlled Trial, VR: Virtual Reality, OT: Occupational Therapy, FMA-UE: Fugl-Meyer Assessment for Upper Extremity, CSI: Composite Spasticity Index, RPSS:

Reaching Performance Scale for Stroke, BBT: Box and Block test, WMFT: Wolf Motor Function Test, MAL: Motor Activity Log, MMT: Manual Muscle Test, MAS: Modified
Ashworth Scale, FIM: Functional Independence Measure, FMA: Fugl-Meyer Assessment, ROM: Range of Motion, AROM: Active Range of Motion, PT: Physical Therapy, BBS:
Berg Balance Scale, TBS: Tinetti Balance Scale, SLB: Single Leg Balance test, I0OMT: 10-m Walking Test, TUG: Timed Up and Go test, SEQ: Suitability Evaluation Questionnaire,
POMA: Tinetti Performance-Oriented Mobility Assessment, BBA: Brunel Balance Assessment, SFQ: Short Feedback Questionnaire, POMA-B: Performance-Oriented Mobility
Assessment Balance subscale, POMA-G: Performance-Oriented Mobility Assessment Gait subscale, SUS: System Usability Scale, IMI: Intrinsic Motivation Inventory, SIS: Stroke
Impact Scale, BI: Barthel Index, mRS: Modified Rankin Scale, GS: Grip Strength, RPS: Reaching Performance Scale, RPE: Borg Perceived Level of Exertion scale, LMC: Leap
Motion Controller, fMRI: Functional magnetic resonance imaging, BRS: Brunnstrom stage of recovery, iMCR: interactive Motion Capture-based Rehabilitation, FRT: Functional
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Reach Test, MMAS: Modified Motor Assessment Scale, SBS: Sitting Balance Scale, LRT: Lateral Reach Test, ST: The Step Test, PD: Parkinson’s Disease, PPT: Purdue Pegboard
Test, CSQ-8: Client Satisfaction Questionnaire, MS: Multiple Sclerosis, JTHFT: Jebsen-Taylor Hand Function Test, GPT: Grooved Pegboard Test, NHPT: Nine Hole Peg Test, FSS:
Fatigue Severity Scale, MSIS-29: Multiple Sclerosis Impact Scale, NRS: non-randomized controlled study, VAS: Visual Analogue Scale, MHQ: Michigan Hand Questionnaire, CP:
Cerebral Palsy, JIA: Juvenile Idiopathic Arthritis, BPBI: Brachial Plexus Birth Injury, LMCBT: Leap Motion Controller-Based Training, DHI: Duruoz Hand Index, CHAQ: Childhood
Health Assessment Questionnaire, PS: pinch strength, VGBT: video game-based therapy, NDT: neurodevelopmental therapy, MMDT: Minnesota Manual Dexterity Test.
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Table 2.3 PEDro scores of the controlled-trial studies
Authors PEDro ltems Total

N
N
w
N
(6]
(o))
-
oo
({e]
o

11

Levin et al. (2012)

Lee et al. (2013)

Sin and Lee (2013)
Lozano-Quilis et al. (2014)
Lloréns, Gil-Goémez, et al. (2015)
Lloréns, Noé, et al. et al. (2015)

Saposnik et al. (2016)

Wang et al. (2017)

Afsar et al. (2018)

Cannell et al. (2018)
Fernandez-Gonzalez et al. (2019)
Walino-Paniagua et al. (2019)
Cuesta-Gomez et al. (2020)
Dabholkar et al. (2020)
Norouzi-Gheidari et al. (2020)
Tarakci et al. (2020)
Rodriguez-Hernandez et al. (2021)
Avcil et al. (2021) 1 1 1

1 = eligibility criteria; 2 = random allocation; 3 = concealed allocation; 4 = baseline comparability; 5 = blind subjects; 6 = blind therapists; 7 = blind assessors; 8
= adequate follow-up; 9 = intention-to-treat analysis; 10 = between-group comparisons; 11 = point estimates and variability.
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2.3.4 Training Content and Format

Most of the studies (15 out of 18) conducted rehabilitation programs by training the

upper extremity (Afsar et al., 2018; Avcil et al., 2021; Cannell et al., 2018; Cuesta-

Gomez et al., 2020; Dabholkar & Shah, 2020; Fernandez-Gonzalez et al., 2019; Lee,

2013; Levin et al., 2012; Norouzi-Gheidari et al., 2020; Rodriguez-Hernandez et al.,

2021; Saposnik et al., 2016; Sin & Lee, 2013; Tarakei et al., 2020; Walifio-Paniagua et

al., 2019; Wang et al., 2017), while the remaining three studies conducted balance

training programs using the MMC system (Lloréns, Gil-Gomez, et al., 2015; Lloréns,

Noé, et al., 2015; Lozano-Quilis et al., 2014). Among the 15 studies that trained the

upper extremity, two of them mainly focused on examining the improvement in hand

dexterity (Tarakci et al., 2020; Walifio-Paniagua et al., 2019) and one used manual

muscle testing as an outcome measure to determine the effects of using an MMC system

in the training of hand muscle strength (Lee, 2013). A total of 15 studies (Afsar et al.,

2018; Avcil et al., 2021; Cannell et al., 2018; Cuesta-Goémez et al., 2020; Dabholkar &

Shah, 2020; Fernandez-Gonzalez et al., 2019; Lee, 2013; Levin et al., 2012; Norouzi-

Gheidari et al., 2020; Rodriguez-Hernandez et al., 2021; Saposnik et al., 2016; Sin &

Lee, 2013; Tarakei et al., 2020; Walifio-Paniagua et al., 2019; Wang et al., 2017) used

MMC systems in the form of a video or VR game, while three of them (Lloréns, Gil-
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Gomez, et al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014) provided

training programs using MMC systems in the form of VR exercises.

2.3.5 Type of MMC System

The most frequently used MMC system in the studies was the Kinect system developed

by Microsoft in 2010 (out of production since 2017). Nine studies applied the Kinect

system in the form of VR games or VR exercises in rehabilitation programs (Afsar et

al., 2018; Cannell et al., 2018; Lee, 2013; Lloréns, Gil-Gomez, et al., 2015; Lloréns,

Nogé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-Gheidari et al., 2020; Rodriguez-

Hernandez et al., 2021; Sin & Lee, 2013). Microsoft Kinect is a kind of MMC system

that uses depth-sensing technology to detect and capture human movement with

infrared sensors (Zhang, 2012). Instant feedback can be provided to users about their

gestures and movement patterns through the system.

The Leap Motion Controller (LMC) was adopted by six studies (Avcil et al., 2021;

Cuesta-Gomez et al., 2020; Dabholkar & Shah, 2020; Fernandez-Gonzalez et al., 2019;

Tarakci et al., 2020; Wang et al., 2017) and was the second most commonly used MMC

system. The LMC captures motion performed within a small observation area with its
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monochromatic cameras and infrared LEDs (Lu et al., 2016). It is commonly used to

track hand and finger movements when users interact with digital content.

Other MMC systems used include the Gesture Xtreme, the Nintendo Wii gaming

system (VRWii), and a free online platform, which were adopted by the remaining three

studies (Levin et al., 2012; Saposnik et al., 2016; Walifio-Paniagua et al., 2019). Gesture

Xtreme is a VR gaming system that allows users to immerse themselves in virtual

worlds and interact with virtual environments (Kizony et al., 2003). Instant feedback is

generally obtained from how the users interact with the virtual context. The motion

tracking of the VRWii depends on the recognition of positions by its 3D accelerometer,

which translates motion into gesture recognition (Lee, 2008). The free online website

adopted by Walifio-Paniagua et al. (2019) is cited as motiongamingconsole.com; it

provides online VR games.

2.3.6 Training Effects of the Application of MMC Technology in Upper Limb

Rehabilitation in Adults with Stroke

A total of 389 adults with stroke across eight studies were included in this meta-analysis

(Afsar et al., 2018; Cannell et al., 2018; Cuesta-Gomez et al., 2020; Fernandez-
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Gonzalez et al., 2019; Levin et al., 2012; Norouzi-Gheidari et al., 2020; Rodriguez-
Hernandez et al., 2021; Saposnik et al., 2016; Sin & Lee, 2013; Wang et al., 2017). The
PEDro scores for all of the controlled-trial studies ranged from 5-10, with an average
score of 7.33 + 1.33 (Table 2.3). The eight selected studies in the meta-analyses ranged
from 5-10. No serious adverse effects as a result of the MMC technology-based training
programs were noted in any of the studies. The pooled results show that applying an
MMC system in upper limb rehabilitation for patients with stroke is not significantly
more effective than a control intervention regarding upper extremity functional
improvement in adults with stroke (Hedges’ g = 0.351; 95% CI = -0.195 — 0.896; =
84.001; P = 0.208; random effects model) (Figure 2.2). A funnel plot after trim and fill
showed that the effect size shifted to the left (Figure S2.1) and Egger’s test suggested
that there is no evidence of publication bias (f = 3.918; standard error = 2.087; P =

0.110).

Meta Analysis on the effect of application of MMC system in upper limb rehabilitation for patients with stroke
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Fig. 2.2 Effects of application of MMC system and control intervention on upper

extremity rehabilitation for adults with stroke. The hedges’ g was converted by the
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mean change in scores and standard error (SE) of both MMC system group and
control groups in the 8 included studies. Results were pooled and the overall effect of
the using MMC system in rehabilitation program was computed as hedges’ g with
95% confidence interval. The results indicated that rehabilitation using MMC system
has no significant difference in effect of improving upper extremity function when
compared with control intervention (Hedges’ g =0.351; 95% CI =-0.195 — 0.895;
12=84.001; P = 0.208; random effect model) Funnel plot after trim and fill showed
that effect size shifted to the left (Figure S2.1) and Egger’s test suggested that there is

no evidence of publication bias (f = 3.918; standard error = 2.087; P =0.110)

2.3.7 Effects of Training via MMC Systems in Adults with Other Diseases

Fernandez-Gonzalez et al. (2019), Cuesta-Gomez et al. (2020), and Dabholkar et al.
(2020) conducted their studies using LMC as the MMC system in rehabilitation
programs with patients with PD, MS, and wrist and hand stiffness, respectively. All
three studies reported a significant improvement in Pegboard Test (PPT) scores
compared with the control groups. Walifio-Paniagua et al. (2019), who used a free
online website as the MMC platform, reported no significant difference in the
improvement of the hand dexterity of their subjects with MS in the VR training group

when compared with the control group.

2.3.8 Effects of Training Muscle Strength

The only study that investigated the effect of using MMC technology in regard to
training muscle strength was conducted by Lee et al. (2013). The improvements in

muscle strength among patients with stroke in the MMC system training group were
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not significantly different from those of the patients in the control group, who received

conventional occupational therapy.

2.3.9 Effects of Balance Training in Adults

Three studies applied MMC technology using the Kinect system to provide balance
rehabilitation programs (Lloréns, Gil-Gomez, et al., 2015; Lloréns, No¢, et al., 2015;
Lozano-Quilis et al., 2014). The target populations were adults with stroke and MS,
respectively. Lloréns et al. (2015) reported a significant improvement in the patients
with stroke who underwent rehabilitation using the Kinect system, measured by the
Berg Balance Scale, when compared with the control group. His team further studied
the effects of balance training via Kinect in home settings and in clinical settings
(Lloréns, Nog, et al., 2015). They found that patients who received VR training at home
and those who underwent VR training in the clinical setting did not show significant
differences in their balance ability, as measured by the BBS. Lozano-Quilis et al. (2014)
conducted a balance rehabilitation program with subjects with MS and discovered a

significant group-by-time interaction in the BBS scores of the VR group.

2.3.10 Effects of Applying MMC in Rehabilitation Programs for Children and

Adolescents

Two studies (Avcil et al., 2021; Tarakei et al., 2020) reported findings from applying
LMC in upper limb rehabilitation for children and adolescents. Avcil et al. (2021)
focused on patients with CP, while Tarakci et al. (2020) included CP, JIA, and BPBI
populations. One study reported a significant improvement in the manual dexterity of

the more affected side, compared to NDT-based treatment (Tarakci et al, 2020), while
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another study reported no significant difference in hand function and grip strength
between the experimental group and the control group, which received conventional

rehabilitation (Avcil et al., 2021).

2.3.11 Patients’ Acceptance

Both CSQ-8 scores reported by Fernandez-Gonzélez et al. (2019) and Cuesta-Gomez
etal. (2020) reflected the high degree of satisfaction in the LMC training group. Patients
were generally reported to be motivated and enjoying themselves when training with

the MMC system.

2.4 DISCUSSION

2.4.1 Effects of the Application of MMC Technology in Rehabilitation Training

Programs

Our meta-analysis revealed no significant difference in the upper limb training effects
between the use of MMC technology and the use of conventional therapy among
patients with stroke. The effects of using MMC systems in balance training with MS
and stroke populations were found to be more significant than conventional therapy.
The studies using MMC systems in rehabilitation programs for other types of
neurological diseases and for children were too limited to draw conclusions regarding

their effectiveness.

We investigated the features of MMC technology to deduce its comparable

effectiveness with conventional therapy in the stroke population. First, the MMC
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system can generate instant feedback for users through its real-time movement
detection and analysis technology. Users can correct their movements or adjust their
gestures based on real-time feedback during the training to improve the training efficacy.
Although MMC systems are able to capture and analyze patients’ real-time movements
(Liang & Miao, 2015), they do not support the detection of force exerted by the patients
in each task. Hence, the training effect of hand muscle strength using an MMC system
might not be superior to similar training using conventional therapy, as reflected by the
only study (Lee, 2013) that investigated muscle strength. Second, applying MMC
technology in training in the form of VR games allows patients to interact with virtual
contexts, which provides more dynamic training elements. This advantage appears to
be more obvious in the training of balance. As balance performance depends on
reactions toward stimuli from the environment (Hess & Woollacott, 2005), the
simulation of environmental factors that threaten stability might help to improve
balance. The VR platform enables the simulation of environmental stimuli and
obstacles, which promotes the acquisition of motor strategies for patients reacting to
the changing environmental stimuli (Cho et al., 2014). Patients could gain more
competence in maintaining stability despite threatening stimuli through training in
virtual contexts. VR might hence result in more significant improvements in balance,
as measured by Lloréns, Gil-Goémez, et al. (2015) and Lozano-Quilis et al. (2014).
Providing rehabilitation programs in the form of VR games is also a way to increase
the enjoyment that can be derived from the training, as reflected by patients’ feedback,
which might enhance their adherence to and motivation to complete the training. By
providing real-time feedback and enabling patients to be trained in a VR platform, the

use of MMC technology can be considered as a low-cost and efficient form of training.

Despite the fact that the use of MMC technology can be a low-cost and useful way of
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capturing and evaluating the performance of patients, there are several drawbacks to
the MMC technology used in rehabilitation. First, the requirement of using a specific
camera, such as an infrared camera or a depth camera, reduces the accessibility of the
large-scale use of motion capture technology in rehabilitation. The cost of the current
MMC devices was affordable for hospitals and clinics, but might not be for patients
looking to purchase one in order to conduct VR rehabilitation in home settings. A
concern raised by (Saposnik et al., 2016) is that a significant group of the stroke
population have low incomes and so likely have limited access to technologies such as
VR for rehabilitation. Their findings reveal that an MMC system should be accessible
and affordable for patients so they can benefit from VR training. Second, older
generations may have less knowledge about how to set up and calibrate MMC systems,
which constitute a new technology (Gramstad et al., 2013). They might not be
competent in participating in VR training programs at home, due to the knowledge and
skills needed to set up and calibrate the system. Further, task-specific and client-
oriented VR training programs are required to precisely analyze body parts when
MMC technology is used in rehabilitation. Current VR exercises or serious games
especially designed for patients with particular types of diseases are limited (Kharrazi
et al., 2012). The content of VR games and exercises might not provide patients with
the right challenge. Most VR exercises and games only reflect patients’ performance
through game scores (Mubin et al., 2020) and therapists might not be able to evaluate
the actual functional improvement of the patients with this alone. The motion analysis
system of MMC gaming technology cannot be adopted to extract clinical data in order

to deduce patients’ degree of recovery.

The selection of a suitable MMC system for training specific targeted body functions
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is also important. As the current meta-analysis focuses on the upper limb rehabilitation
of patients with stroke, the major outcome measurement is the BBT score. The BBT is
an assessment that measures unilateral gross manual dexterity (Desrosiers et al., 1994).
To complete the BBT, patients are required to transfer as many blocks as possible from
one compartment to another in 60 seconds. Gross manual dexterity, including being
able to accurately pick up the blocks and the ability to lift up the arm, is required
to complete the assessment. It is important to note that the LMC mainly tracks fine
hand movement and patients who have trained with the LMC should have adequate
ability to control their hand gestures, so they can engage in VR training supported
by the LMC (Lu et al., 2016). As Kinect mainly performs gross motor tracking,
hand manual dexterity might not be included as an element of the training games
that it supports (Seo et al., 2019). Patients trained with the LMC might be more
aware of their gross manual dexterity, while patients trained with the Kinect system
might be more aware of their gross movement. The different features of the LMC
and Kinect might result in different areas of recovery in regard to the upper
extremity, which cannot be fully reflected by only investigating the change in BBT
scores after treatment. Hence, it is important for therapists to select suitable types

of MMC systems according to the targeted training body functions.

2.4.2 Development Trends in MMC Technology in Rehabilitation

Being relatively low cost, easy to install, its user-friendly controlling system, and
multiple gaming contexts, Kinect is often chosen as the most frequently used MMC
system in rehabilitation programs (Mousavi Hondori & Khademi, 2014). It has been 10

years since Kinect was first adopted as an MMC system to provide rehabilitation
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programs. Kinect enables the capture of real-time whole body gross movements,
although it is less sensitive in tracking fine hand movements. Although Kinect has been
adopted as an MMC system in rehabilitation training, it has been out of production
since 2017 and was no longer supported by the Xbox Series X, as announced by
Microsoft (This Is Why Microsoft Kinect Was A Complete Failure, 2021). Future
rehabilitation programs that intend to use MMC technology might have to consider
using other kinds of MMC systems or platforms. The LMC was launched to the market
in 2012 and its real-time tracking of hand motions induced its adoption in the
rehabilitation of fine motor movements (Pereira et al., 2020). de Los Reyes-Guzman et
al. (2021) considered the LMC to be a low-cost and effective way of tracking the hand
gestures of patients. Besides the current VR games developed by the Leap Control
Company, the LMC also supports self-developed VR games; tasks for rehabilitation
programs using the LMC can be created specifically for hand training purposes.
Although the most frequently used MMC system included in this systematic review is
Kinect, the use of the LMC is becoming more frequent in studies published in the past
five years. Gesture Xtreme and the Nintendo VRWii are less frequently adopted in
rehabilitation programs. This may be due to their marketing as gaming platforms, with
games that are not designed with appropriate levels of challenge for patients with
disabilities. As MMC systems are developed mainly for healthy populations and their
commercial purposes mostly concern entertainment, the use of VR games in
rehabilitation has been confined to a small group of the population (Lee et al., 2016).
In recent years, studies have tended to develop their own platforms and training tasks,
rather than directly using built-in VR games available in the market. This trend suggests
that there is more awareness concerning the necessity of constructing client-centered

and task-oriented VR training programs with MMC technology to meet patients’
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functional levels (Knippenberg et al., 2017). Low-cost MMC devices and their software
development kits lower the threshold for the design and development of rehabilitation
exercise programs and serious games in virtual contexts for patients with different

needs and functional levels.

2.4.3 Suggestions for the Future Use and Development of MMC Technology in

Rehabilitation

This paper reveals that it might be feasible to provide MMC technology-based
rehabilitation programs such as VR training games and exercises to patients as an
alternative treatment option. The use of MMC technology-based rehabilitation
programs instead of conventional therapy can reduce the workforce required to closely
monitor and supervise patients during training. With the instant feedback provided by
the MMC system, patients can adjust and regulate their movement patterns, which
allows them to perform training exercises in a more self-oriented way. VR training can
be prescribed as a home program, enabling patients to be continuously motivated to
complete the training at home; therapists could remotely monitor their rehabilitation
progress through the analyses generated by the MMC system. Given that MMC systems
can capture and analyze gestures in real time, they could be used as a tool to measure
the range of motion (ROM) of patients. Both therapists and patients might then be able
to visualize the physical restoration of the ROM in the affected body parts during or
immediately after the VR training. As the current hardware required for MMC systems
is largely not accessible or affordable for patients, we suggest that further research and
development are needed in regard to the generalization of a MMC system that does not

require a specific camera. An MMC system using a mobile device could be a solution
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to further enhance the generalizability of MMC technology in regard to its application
in the rehabilitation field, as this would not require further purchases or the setting up
of new hardware devices by patients. Motion tracking algorithms are being developed
to enable the tracking of body movements via the Light Detecting And Ranging
(LIDAR) camera installed in certain kinds of mobile phones and tablets, which could
be further investigated as a solution to this generalizability limitation (Pusztai & Hajder,

2017).

Further research also needs to be conducted into the design and development of
different VR exercises and serious games in MMC systems that best suit the needs of
patients with different types of diseases. Interpretations of patients’ game scores or data
extracted from MMC systems should be further researched in regard to their correlation

with the functional recovery of the patients.

2.5 CONCLUSION

Most of the selected studies investigated the effects of MMC technology in the training
of the upper extremity of the stroke population. Our meta-analysis revealed that there
is no significant difference in the effects of upper limb rehabilitation between MMC
technology training groups and control intervention groups. The use of MMC systems
in rehabilitation training is, however, enjoyable, and enables patients to stay motivated
in regard to their training. There is potential to apply MMC technology in home
programs for rehabilitation, which could increase patients’ adherence to the programs
and hence the intensity of their training at home. Future studies need to consider the

design of MMC technology-based training programs and the generalization of the use
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of MMC systems in home settings, to ensure they are affordable and accessible for all

patients.
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2.7 APPENDIX

Funnel Plot of Standard Error by Hedges’ g
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White circle Papers that reported the effect of MMC training is significantly more

effective than control intervention

Black circle Papers that reported the effect of MMC training has no significant

difference with the control intervention

Figure S2.1 Funnel Plot of standard error by Hedges’ g in studies comparing the
effects of using the MMC system in upper limb rehabilitation with the effects of

conventional therapy in the stroke population; the effect size would shift to the left if

the apparent bias were to be removed
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Chapter 3

A systematic review of the application of markerless motion capture (MMC)

technology for clinical measurement in rehabilitation

ABSTRACT

This chapter is a systematic review that investigate the current utilization of Markerless

Motion Capture (MMC) as a clinical measurement tool — identification and

measurement of movement kinematics in a clinical population in rehabilitation. In this

review we put a minor focus on the method’s engineering components and sought

primarily to determine its application for clinical measurement. A systematic

computerized literature search was conducted in PubMed, Medline, CINAHL,

CENTRAL, EMBASE, and IEEE. The search keywords used in each database were

“Markerless Motion Capture OR Motion Capture OR Motion Capture Technology OR

Markerless Motion Capture Technology OR Computer Vision OR Video-based OR

Pose Estimation AND Assessment OR Clinical Assessment OR Clinical Measurement

OR Assess.” Only peer-reviewed articles that applied MMC technology for clinical

measurement were included. A total of 65 studies were included. The MMC systems

used for measurement were most frequently used to identify symptoms or to detect

differences in movement patterns between disease populations and their healthy
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counterparts. Patients with Parkinson’s disease (PD) who demonstrated obvious and
well-defined physical signs were the largest patient group to which MMC assessment
had been applied. This review revealed that MMC technology has the potential to be
used as an assessment tool as well as to assist in the detection and identification of
symptoms, which might further contribute to the use of an artificial intelligence method
for early screening for diseases. Further studies are warranted to develop and integrate
MMC system in a platform that can be user-friendly and accurately analyzed by

clinicians to extend the use of MMC technology in the disease populations.

This chapter has been previously published by the author of this author as a scientific
manuscript in the journal “Journal of NeuroEngineering and Rehabilitation” on May
02"¢, 2023. The manuscript has been slightly formatted to fit the thesis requirements.
Access to the scientific paper: Lam, W. W., Tang, Y. M., & Fong, K. N. (2023). A
systematic review of the applications of markerless motion capture (MMC) technology
for clinical measurement in rehabilitation. Journal of NeuroEngineering and

Rehabilitation, 20(1), 1-26.DOI: https://doi.org/10.1186/s12984-023-01186-9
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A systematic review of the applications o

of markerless motion capture (MMCQ)
technology for clinical measurement
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Abstract

Background Markerless motion capture (IMMC) technology has been developed 10 svoid the need for body marker
placement during motion tracking and analysis of hurman movement. Although researchers have long proposed

the use of MMC technology in clinical measurement—identification and measurement of movement kinematics

In a clinical population, its actual application is still in its preliminary stages. The benefits of MMC technology are

also inconclusive with regard to its use In assessing patients’ conditions. In this review we put a minor focus on the
method's engineering components and sought primarily to determine the current application of MMC as a clinical
measurermnent tool in rehabilitation

Methods A systematic computerized literature search was conducted in PubMed, Medline, CINAHL, CENTRAL,
EMBASE, and IEEE The search keywords used In each database were ‘Markerless Motion Capture OR Motion Capture
OR Motlon Capture Technology OR Markerless Motion Capture Technology OR Computer Vision OR Video-based OR
Pose Estimation AND Assessment OR Clinical Assessment OR Clinical Measurement OR Assess” Only peer-reviewed
articles that applied MMC technology for clinical measurement were included, The last search took place an March 6,
2023, Details regarding the application of MMC technology for different types of patients and body parts, as well as
the assessment results, were summarzed,

Results A total of 65 studies were included. The MMC systems used for measurement were most frequently used

1o identify symptoms or to detect differences in movement patterns between disease populations and their heaithy
counterparts. Patlents with Parkinson'’s disease (PD) who demonstrated obvious and well-defined physical signs were
the largest patient group to which MMC assessment had been applied. Microsoft Kinect was the most frequently
used MMC system, although there was a recent trend of motion analysis using video captured with a smartphone
camera

Conclusions This review explored the current uses of MMC technology for clinical measurement MMC technology
has the potential to be used as an assessment tool as well as 10 assist in the detection and identification of symptoms,
which might further contribute to the use of an artificial intelligence method for early screening for diseases, Further
studies are warranted to develop and integrate MMC system in 2 platform that can be user-friendly and accurately
analyzed by clinicians to extend the use of MMC technology in the disease populations,
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3.1 INTRODUCTION

Markerless motion capture (MMC) technology has been developed to avoid the need

for marker placement during tracking and analyzing human movement (Corazza et al.,

2010). By elimination of the time-consuming marker placement procedure, motion

capturing experiment can be performed in a more convenient way (Rahul, 2018) . With

the removal of constraints from body markers on movement, the development of MMC

technology allows the capture of a more lifelike human motion in the environment, in

a more natural way, and with the feature that it uses more portable and low-cost sensors

compared to marker-based multi-camera systems (Scott et al., 2022), MMC in turn

creates the potential of additional applications.

Previous studies have been conducted to compare the accuracy of MMC and body-

marker-based analysis systems (Knippenberg et al., 2017). Bonnechere and colleagues

(2014) compared the measuring accuracy of full body scanning by Microsoft Kinect

3D scanner software versus that of a high-resolution stereophotogrammetric system,

which is a marker-based system in the healthy population. They concluded that Kinect

is a reliable markerless tool that is suitable for use as a fast estimator of morphology.

Schmitz and colleagues (2013) validated the accuracy of Kinect in measuring knee joint

angle of a jig by comparing its measurement using a digital inclinometer that acted as
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a ground-truth, and they reported that the performance of the Kinect system was

satisfactory in terms of knee flexion and abduction. The accuracy of using a smartphone

as a measurement system for joint angle has been reviewed by Mourcou and colleagues

(2015), who concluded that smartphone applications are reliable for clinical

measurements of joint position and range of motion (ROM).

Earlier in 2006, Miindermann and colleagues (2006) described several methods of

MMC video processing modules including background separation, visual hull which is

an object's 3D shape formed by intersecting silhouettes from multiple views, and

iterative closest point methods, etc., and pointed out that MMC has the potential to

achieve a level of accuracy that facilitates the biomechanics research of normal and

pathological human movement. Together with the reliable performance of MMC

technology in the measurement of joint angle and body movement as reflected by

Schmitz, et al. (2013) and Mourcou, et al. (2015), it is suggested that the MMC system

can be further applied to the rehabilitation field to measure patients’ motor function.

However, the actual application of MMC technology for clinical measurement in

rehabilitation is still at a preliminary stage. Most of the extant studies have focused on

calibration of the MMC system or on validating the MMC system only on healthy

persons. Applied research on the actual use of MMC technology in measurements in
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patient groups has been very diverse: Vivar and the teams (2019) applied MMC

technology in people with Parkinson’s disease (PD) to detect and classify their tremor

level, while Gritsenko and colleagues (2015) used Kinect as the MMC system to

measure the shoulder ROM for women breast cancer patients after surgery. Instead of

applying MMC technology in adults, Chin and colleagues (2017) assessed the level of

proprioceptive ability in children with cerebral palsy by using Kinect as the MMC

system to measure the arm position of both healthy children and children with unilateral

spastic cerebral palsy (USCP). These researchers found significant differences between

the proprioceptive ability of the typically developing children and the children with

USCP, as measured by Kinect, thus suggesting that MMC technology has the potential

to be useful as a clinical measurement tool for proprioception.

Despite these trials, however, studies on the applications of MMC technology in clinical

evaluation are still preliminary and limited in number, and it remains inconclusive how

MMC technology can benefit therapists, patients, or the healthcare system, in terms of

measuring patients’ conditions. Review studies have been conducted on the use of

MMC technology in rehabilitation training, but not in regard to its use in clinical

measurement including application of MMC technology in clinical assessment and

detection of kinematic parameters that assist in disease diagnosis (Knippenberg et al.,
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2017). Mousavi Hondori and Khademi (2014) reviewed the clinical impact of Kinect

in rehabilitation, but their study did not cover other types of MMC technology.

Therefore, to investigate the current uses of MMC technology as an assessment tool in

the healthcare field, in this review we put less focus on the engineering components

and attempted primarily to determine the current evidence for using MMC as a

measurement tool, in order to further explore the potential benefits of MMC technology

in rehabilitation evaluations. In this paper, we define clinical measurement as

identification and measurement of movement kinematics in a clinical population

(Sakkos et al., 2021), while MMC technology include systems and methods that capture

and analysis movements without the need of marker placement, including video-based

analysis. This systematic review further investigated: 1) the types of patients to whom

MMC technology has been applied; 2) the contents of the MMC measurements; 3) the

types of MMC systems used; and 4) the efficacy of these MMC systems as

measurement tools.

3.2 METHODS

3.2.1 Search strategy

A systematic computerized literature search was conducted by one of the authors (WTL)
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in PubMed, Medline, CINAHL, CENTRAL, EMBASE, and IEEE. Only peer-reviewed

articles were included. The search keywords used in each database were “Markerless

Motion Capture OR Motion Capture OR Motion Capture Technology OR Markerless

Motion Capture Technology OR Computer Vision OR Video-based OR Pose

Estimation AND Assessment OR Clinical Assessment OR Clinical Measurement OR

Assess.” A manual search was also conducted that included searching Google Scholar

using the same keywords, and the reference lists of the previous systematic reviews

were also screened. The published data were not limited, and the last search took place

on March 6, 2023.

3.2.2 Inclusion criteria

Studies were included if they met certain inclusion criteria. Specifically, the studies had

to: 1) be peer-reviewed; 2) apply MMC technology for measurement; 3) involve

subjects with symptomatic conditions; 4) have any quantitative study design except

systematic reviews; 5) include at least one assessment item for clinical evaluation; and

6) be published in English.

3.2.3 Exclusion criteria
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Studies were excluded if they met any one of the following exclusion criteria: 1)

studying only healthy persons; 2) focusing only on calibration of the MMC system; 3)

applying MMC technology only in rehabilitation training; or 4) not reporting results of

an assessment evaluation.

3.2.4 Data extraction

The information we assessed included: 1) the types of MMC systems used in the studies;

2) the conditions of the participants that underwent the measurement, such as diagnoses

or disabilities; and 3) the contents of the measurements conducted. The interpretations

of the studies’ results were extracted and are presented in a summary table (Table 3.1).

The contents of the measurement included the body functions or body parts that were

measured, and the context in which the assessment was conducted.
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Table 3.1 Details of the selected studies

Study Patient types Sample size (n) MMC system Measurement items ~ Content of Context of Primary results Results interpretation
measurement measurement
Cho et PD Patients with PD (7); ~ Sony HDR-HC3  Gait pattern Recognition of PD Laboratory The proposed system Video-based analysis helps in
al., 2009 healthy controls (7) camcorder gait by algorithm can identify healthy discriminating the gait patterns
combining PCA adults and patients with  of PD patients and healthy adults
with LDA PD by their gaits with
high reliability
Addeet CP Infants with high risk ~ Digital video Quantity of motion,  Comparison of Hospital Quantity of motion Quantitative variables related to
al., 2010 of CP (30) camera velocity and quantity of motion mean, median, and the variability of the center of
acceleration of the and centroid of standard deviation infant movement and to the
centroid of motion motion in infants were significantly amount of motion predicted later
who developed into higher in the group of CP in young infants with high
CP with those who infants who did not sensitivity and specificity
did not develop into develop CP than in the
CP group who did develop
CpP
Bahat, Chronic neck pain  Patients with chronic ~ Customized VR  Cervical ROM Comparison of Laboratory Significant group “Goal-directed fast cervical
Weiss, neck pain (25); assessment (flexion, extension,  cervical movement differences for 3 of the  movements performed by
& asymptomatic system rotation, and lateral  in patients with kinematic measures: patients with chronic neck pain
Laufer, participants (42) flexion) chronic neck pain, Vpeak, Vimean, and were characterized by lower
2010 versus in healthy number of velocity velocity and decreased
controls peaks smoothness compared with
asymptomatic participants”
(Bahat, Weiss, & Laufer, 2010,
p.1383)
Chenet PD Patients with PD (12); CCD video Gait parameters Quantification of Structured KPCA-based method Kinematic data extracted from
al., 2011 healthy adults (12) camera including gait cycle  gait parameters environment achieved a video might allow clinicians to
time, stride length, classification accuracy  obtain the quantitative gait
walking velocity, of 80.51% in parameters and assess the
and cadence identifying different progression of PD
gaits
Khanet PD Patients diagnosed Video Index-finger motion ~ SVM classification ~ Medical facility The proposed CV- The ML framework offers good
al., 2013 with advanced PD recordings, in finger tapping, to categorize the based SVM scheme classification performance in
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Lowes
etal.,
2013

O’Keefe
etal.,
2013

Olesh et
al., 2014

Dystrophinopathy

FXS

Stroke

(13); healthy controls
(6

Patients with
dystrophinopathy (5);
healthy controls (5)

Males with FXS (13);
healthy controls (7)

Patients with stroke

©

analyzed by CV
algorithm

Kinect

BioStage™

Kinect

features including
speed, amplitude,
rhythm, and fatigue
in tapping were
computed

Upper extremity
functional reaching
volume, velocity,
and rate of fatigue

Motion parameters
(frequency and total
traveled distance) of
body segments
during 30 s of story
listening while
standing in the
observation space

10 movements of
the upper extremity

patient group
between UPDRS-
FT symptom
severity levels, and
to discriminate
between PD patients
and healthy controls

Validity and
Reliability of the
MMC system in
capturing upper
extremity functional
reaching volume,
movement velocity,
and rate of UE
fatigue in
individuals with
dystrophinopathy

Laboratory

Comparison
between groups,
MMC system
results were
compared with
scores on video-
capture
methodology and
behavioral rating
scales

Laboratory

Quantitative scores
derived from
motion capture were
compared to
qualitative clinical
scores produced by
trained human raters

Laboratory

discriminated between
control and patient
group with an average
of 94.5% accuracy

Preliminary test-retest
reliability of the MMC
method for 2 sequential
trials was excellent for
functional reaching
volume

Arm and foot travel
distances were
significantly greater in
the FXS group
compared with the
controls

Strong linear
relationship was found
between qualitative
scores and quantitative
scores derived from
both standard and low-
cost motion capture
system

distinguishing symptom severity
levels based on clinical ratings,
as well as in identifying PD
patients and the healthy controls

“The newly available gaming
technology has potential to be
used to create a low-cost,
accessible, and functional upper
extremity outcome measure for
use with children and adults with
dystrophinopathy” (Lowes et al.,
2013, p.9)

“Motion parameters obtained
from the markerless system can
quantify increased movement in
subjects with FXS relative to
controls” (O’Keefe et al., 2013,
p.830)

“The low-cost motion capture
combined with an automated
scoring algorithm is a feasible
method to assess objectively
upper-arm impairment post
stroke” (Olesh et al., 2014, p.6)
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Gritsenk
oetal.,
2015

Lee et
al., 2015

Tupa et
al., 2015

Saetal.,
2015

Breast cancer

AC of shoulder

PD

Schizophrenia

Women with Kinect
mastectomy (4) or
lumpectomy (16) for

breast cancer

Healthy volunteers Kinect

(15); patients with AC
12)

Patients with PD (18);  Kinect
healthy age-matched
individuals (18);

students (15)

Clinically stable BioStage™
outpatients with
schizophrenia (13);

healthy controls (16)

Active and passive
shoulder motions

Shoulder ROM

Leg length,
normalized average
stride length, and
gait velocity

Kinematic
parameters and
motor patterns
during a functional
task

Regression
coefficients for
active movements
were used to
identify participants
with clinically
significant shoulder
ROM limitation

Laboratory

Validity of measure
shoulder ROM in
AC by calculating
the agreement of
Kinect
measurements with
measurements
obtained using a
goniometer, and
assessment of its
utility for the
diagnosis of AC

Laboratory

A two-layer
sigmoidal neural
network was used
for the classification
of gait features
(stride length and
gait velocity)

Laboratory

Comparison of the
kinematic
parameters and
motor patterns of
patients with
schizophrenia and
those of healthy
subjects

Laboratory

Participants had good
ROM in the shoulder
ipsilateral to the breast
surgery at the time of
testing. Three
participants showed
clinically significant
shoulder motion
limitations
Measurements of the
shoulder ROM using
Kinect showed
excellent agreement
with those taken using
a goniometer

Results showed high
classification accuracy
for the given set of
individuals with PD
and the age-matched
controls

Patients with
schizophrenia
displayed a less
developed movement
pattern during
performance of
overarm throwing

Findings support the use of
MMC approach as part of an
automated screening tool to
identify people who have
shoulder motion impairment

“Kinect can be used to measure
shoulder ROM and to diagnose
AC as an alternative to a
goniometer” (Lee et al., 2015,

p.11)

Kinect has potential to be used
in the detection of gait disorders
and the recognition of PD

“The presence of a less mature
movement pattern can be an
indicator of neuro-immaturity
and a marker for atypical
neurological development in
schizophrenia” (Sa et al., 2015,
p.77)
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Kim et
al., 2016

Matsene
tal.,
2016

Chin et
al., 2017

de Bie
etal.,
2017

Bakhti
etal.,
2018

Stroke

Variety of
diagnoses (cuff
disease,
instability,
arthritis)

CP

ALS

Stroke

Patients with
hemiplegic stroke
(41)

Patients with a variety
of diagnoses,
including cuff disease,
instability, arthritis
(32); control healthy
subjects (10)

Children with USCP
(31); typically
developing children

(2]

Patients diagnosed
with ALS (10)

Individuals with
hemiparetic stroke
(19)

Kinect

Kinect

Kinect v2

Kinect

Kinect

Upper extremity
motion of 13 of 33
items of upper
extremity motor
FMA

Shoulder active
ROM

Proprioception

Upper extremity
reachable
workspace RSA

Movements of 25
predefined body

“joints” that

Correlation of the
prediction accuracy
for each of the 13
items between real
FMA scores and
scores using Kinect
were analyzed

Laboratory

Correlation of
Kinect shoulder
active ROM
measurement with
SST

Laboratory

Comparison of
proprioceptive
ability in children
with USCP versus
that in typically
developing children

Laboratory

Evaluation of
longitudinal
changes in upper
extremity reachable
workspace RSA
versus the
ALSFRS-R,
ALSFRS-R upper
extremity sub-scale
and FVC

Laboratory

Use of ICC and
linear regression
analysis to quantify

Laboratory

Prediction accuracies
ranged from moderate
to good in each item.
Correlations were high
for the summed score
for the 13 items
between real FMA
scores and scores
obtained using Kinect

The total SST score
was strongly correlated
with the range of active
abduction. The ability
to perform each of the
individual SST
functions was strongly
correlated with active
motion

Children with USCP
showed significant
impairments in
proprioception
compared with
typically developing
children

RSA measures were
able to detect changes
in the upper limbs
while the ALSFRS-R
could not. The RSA
measures were also
able to detect a
declining trend similar
to that of FVC

PANU scores
determined by the
Kinect were similar to

“Kinect can be a valid way to
assess upper extremity function,
which may be useful in the
setting of unsupervised home-
based rehabilitation” (Kim et al.,
2016, p.1)

“Kinect provides a clinically
practical method for objective
measurement of active shoulder
motion” (Matsenet al., 2016,
p.221)

The use of MMC technology can
clearly identify differences in
proprioceptive ability between
typically developing children
and children with UCSP

“Kinect-measured RSA can
detect declines in upper
extremity ability with more
granularity than current tools”
(de Bie et al., 2017, p.22)

“The Kinect sensor can
accurately and reliably
determine the PANU score in
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Bonnec
hére et
al., 2018

Butt et
al., 2018

Dranca
etal.,
2018

MH. Li
etal.,
2018

Stroke

PD

PD

PD

Healthy young adults  Kinect
(40); elderly adults

(22); and patients with

chronic stroke (10)

Participants with PD LMC
(16); healthy people
(12)

Patients with PD (30)  Kinect

Patients with PD (9)
video camera

Consumer grade

approximately
correspond to the
center of the
anatomical joint or
body part

Parameters
including length,
angle, velocity,
angular velocity,
volume, sphere, and
surface of upper
limb motion

PSUP, OPCL,
THFF, and POST

Gait step, limbs
angle, and bent
angles related to
Parkinson disease

416 features
including
kinematics,
frequency
distribution

the degree to which
an ultrasound 3D
motion capture
system motion
capture system and
Kinect
measurements were
related

The different scores
and parameters
were compared for
the three groups

Laboratory

Comparison of
parameters between
a PD group and
control group;
Supervised learning
methods SVM, LR,
and NB for
classification of
patients with PD
and healthy subjects

Laboratory

Classification of
different PD stages
by the features from
FoG using
classification
algorithms

Hospital

Quantifying the
severity of
levodopa-induced
dyskinesia by
video-based features

Laboratory

those determined by
the ultrasound 3D
motion capture system

Highly significant
differences were found
for both the shoulders’
total angle, the velocity
for young adults and
elderly individuals, and
patients with stroke

The best performing
classifier was the NB.
All the other subset
features selected by the
other feature selection
methods, showed the
worst classification
performance in all ML
classifiers (LR, NB,
SVM)

The accuracy obtained
for a particular case of
a Bayesian Network
classifier built from a
set of 7 relevant
features is 93.40%

Features achieved
similar or superior
performance to the
UDysRS for detecting
the onset and remission
of dyskinesia

clinical routine” (Bakhti et al.,
2018, p.1)

Results of the evaluation could
be useful in monitoring patients’
conditions during rehabilitation,
while further studies are needed
to select which parameters are
the most relevant

“LMC is not yet able to track
motor dysfunction
characteristics from all MDS-
UPDRS proposed exercises”
(Butt et al., 2018, p.19)

“Using Kinect is adequate to
build an inexpensive and
comfortable system that
classifies PD into three different
stages related to FoG” (Dranca
etal., 2018, p.1)

“The proposed system provides
insight into the potential of
computer vision and deep
learning for clinical application
in PD” (Li et al., 2018, p.1)
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T. Liet
al., 2018

Martine
zetal.,
2018

Pantzar-
Castilla
etal.,
2018

Rammer
etal.,
2018

PD

PD

CP

Pediatric manual
wheelchair users

Patients with PD after
DBS (24)

Patients with PD (6);
healthy subjects (6)

Participants with CP
(18)

Pediatric manual
wheelchair users (30)

Ordinary 2D
video camera

DARI system

Kinect 2 for
Xbox One

Kinect 2.0

extracted from 14
joint angle positions

TUG sub-task
segmentation

BME of 16 different
movements

Gait variables (i.e.,
Knee flexion at
initial contact;
Maximum knee
flexion at loading
response; Minimum
knee flexion in
stance; Maximum
knee flexion in
swing)

Upper extremity
kinematics during
manual wheelchair
propulsion (i.e.,
joint range of
motion and
musculotendon
excursion)

Frame classification
algorithm to classify
video frame in sub
tasks of TUG test

UPDRS-III and
BME of 16 different
movements in six
controls paired by
age and sex were
compared with
those in PD
populations with
DBS in ‘on’ and
‘off” states

Comparison of 2D
MMC and 3D
marker-based gait
analysis methods
for the selected
variables

Kinematic
parameters were
used to develop and
evaluate a
markerless
wheelchair
propulsion

Semi-controlled
environments

Laboratory

Laboratory

Laboratory

Classification
accuracies for the sub-
tasks ‘Walk,” ‘Walk-
Back,” and ‘Sit-Back’
are apparently higher
than that of the other
three sub-tasks

A better performance
in the BME was
correlated with a lower
UPDRS-I1II score. No
statistically significant
difference between
patients in ‘on’ and
‘off” states of DBS
regarding BME

The reliability within
2D Markerless and 3D
gait analysis was
mostly good to
excellent

Inter-trial repeatability
of spatiotemporal
parameters, joint range
of motion, and
musculotendon
excursion were all
found to be significant

The results support that clinical
parameters for the assessment of
PD can be automatically
acquired from TUG videos

A potential use of the DARI
system in PD classification

2D MMC is a convenient tool
that could be used to assess the
gait in children with CP

“A markerless wheelchair
propulsion kinematic assessment
system is a repeatable
measurement tool for pediatric
manual wheelchair users”
(Rammer et al., 2018, p.10)
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Langevi
netal.,
2019

Lee et
al., 2019

Liu et
al., 2019

Sato et
al., 2019

Vivar et
al., 2019

PD

PD

PD

PD

PD

Patients with PD Webcam
(127); healthy

controls (127)

Participants with PD LMC
that are receiving
benefit from DBS (8)

Patients with PD (60)  Camera
Patients with PD (117  Home video
in phase [ and 2 in camera

phase II); healthy
controls (117)

Patients with PD (20) LMC

Frequencies of hand
movement in hand
motor task

PSUP, OPCL, and
THFF tasks during
‘on’ and ‘off’
condition,
amplitude,
frequency, velocity,
slope, and variance
were extracted from
each movement

Periodic pattern of
hand movements in
finger tapping, hand
clasping and hand
pro/supination

Cadence

, gait frequency,
gait speed, step
length, step width,
foot clearance

Tremor levels
measured during
hand extension and
pushing the ball
action

biomechanical
assessment system
Comparison of the
differences in the
hand motion
between the groups
with and without
PD

Correlation of the
kinematic features
with the overall
bradykinesia
severity score
(average MDS-
UPDRS ratings
across tasks)

Correlation analysis
on each feature
parameter and
clinical assessment
SCOres;
Classification of
bradykinesia

Estimation of
cadence of periodic
gait steps from the
sequential gait
features using the
short-time pitch
detection approach

Classification of
tremor level in PD
according to the
MDS-UPDRS
standard

Home Setting

Laboratory

Semi-controlled
environment

Structured
environment

Laboratory

PD group had a mean
frequency that is lower
than the control group
in the hand motor tasks

An exhaustive
LOSOCYV assessment
identified PSUP,
OPCL, and THFF as
the best task
combination for
predicting overall
bradykinesia severity

Classification accuracy
in 360 examination
videos is 89.7%

Cadence estimation of
gait in its coronal plane
in the daily clinical
setting was
successfully conducted
in normal gait movies
using ST-ACF

The proposed method
classified the patient
measurements
following MDS-
UPDRS in tremor

“Online framework that assesses
features of PD could be
introduced during a clinic visit
to initially supplement the tool
with personal support”
(Langevin et al., 2019, p.19)

“Data obtained from the LMC
can predict the overall
bradykinesia severity in
agreement with clinical
observations and can provide
reliable measurements over
time” (Lee et al., 2019, p.6)

Reliable assessment results on
Parkinsonian bradykinesia can
be produced from video with
minimal device requirement

2D movies recorded with a
home video camera is helpful in
identifying an effective gait and
calculate its cadence in normal
and pathological gaits

“It is possible to classify the
different levels of tremor in
patients with PD using only two
statistical features, such as
homogeneity and contrast”
(Vivar et al., 2019, p.12)
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Caruso
et al.,
2020

Chambe
rs et al.,
2020

Fujii et
al., 2020

Hu et
al., 2020

ASD

Neuromotor
disease

Patients with gait
disturbance

PD

Infants with high risk
of ASD (50); infants
with low risk of ASD
(53)

Infants at risk of
neuromotor
impairment (19);
healthy infants (85)

Patients with gait
ataxia (6); control
subjects (6)

Patients with PD (45)

Video recording

GoPro cameras,
YouTube video

Kinect 2,
migrated to
Azure Kinect

Video

Quantity of motion,
centroid of motion,
presence of
repetitive
movements in the
motion of limbs

Absolute position
and angle,
variability of
posture, velocity of
movement,
variability of
movement,
complexity, left-
right symmetry of
movement

Gait parameters
(e.g., walking speed
and stride length)

Gait parameters,
motion patterns

Kinematic Bed
parameters related

to upper and lower

limb movements in

infants with low risk

and high risk of

ASD

Extent of kinematic
features from
infants at risk
deviate from the
group of healthy
infants as reflected
by Naive Gaussian
Bayesian Surprise
metric

Childcare facility,
hospital, natural
environment

Gait comparison
between the patient
group and the
healthy subject

group

Laboratory

Automatic FoG
detection by fine-
grained human
action recognition
method

Structured
environment

levels 0, 1, and 2 with
high accuracy

Early developmental
trajectories of specific
motor parameters were
different in high-risk
infants later diagnosed
with
neurodevelopmental
diseases from those of
infants developing

typically

Infants who are at high
risk for impairments
deviate considerably
from the healthy group

Significant differences
were observed between
the patient group and
the healthy subject
group in terms of the
mean value and
variation of stride
length

The experimental
results demonstrate the
superior performance
of the proposed method
over the state-of-the-art
methods

“Computer-based analysis of
infants’ movements may support
and integrate the analysis of
motor patterns of infants at risk
of neurodevelopmental diseases
in research settings” (Caruso et
al., 2020, p.12)

“Markerless tracking promises
to improve accessibility to
diagnostics, monitor naturalistic
movements, and provide a
quantitative understanding of
infant neuromotor disorders”
(Chambers et al., 2020, p.15)

“A low-cost noninvasive motion
capture device can be used for
the objective clinical assessment
of patients with stroke and PD
who display manifestations of
gait and motor deficits” (Fujii et
al., 2020, p.213)

“Anatomic joint graph
representation provides
clinicians an intuitive
interpretation of the detection
results by localizing key vertices
in a FoG video” (Hu et al., 2020,
p.1900)
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Krasowi
czetal.,
2020

Lin et
al., 2020

Oria et
al., 2020

Pang et
al., 2020

Sabo et
al., 2020

CP

PD

PD

PD

Dementia

Patients with
diagnosed ICP (8)

Patients with PD
(121)

Patients with PD (20)

Patients with PD;
healthy controls (22)

Older adults with
dementia (14)

4DBODY
system

iPhone 6s Plus

LMC

Logitech HD
Pro C920
webcams

Kinect

TMFPI developed
based on movement
sequences

Motor behaviors,
including stability,
completeness, and
self-similarity

Manual dexterity in
BBT

Hand motion in tap
thumb to the finger,
creating a fist,
pronation and
supination of hand
and resting state

Gait parameters
including cadence,
average and
minimum margin of
stability per step,
average step width,
coefficient of

TMFPI compared
with the assessment
made according to
the GMFM-88 scale

Quantification of
motor behaviors in
patients with PD
and bradykinesia
recognition by a
periodic motion-
based network
consisting of an
autoencoder and
fully connected
neural network

Evaluation the
validity of VR-BBT
to reliably measure
the manual dexterity

Measurement of
parkinsonian
symptomology
using automated
analysis of hand
gestures

Correlation and
regression of gait
features with
clinical scores
UPDRS and SAS

Laboratory

Laboratory

Laboratory

Structured
environment

Hospital

The system provided
results agreeable with
the clinical indicator
GMFM-88 and with
clinical observations of
aPT

The proposed periodic
motion model delivers
the F-score of 0.7778
for bradykinesia
recognition

VR-BBT significantly
correlated with the
conventional
assessment of the BBT

Behavior of patients
with PD and control
subjects can be
distinguished by
analyzing the detailed
motion features of their
hands/fingers

Gait features extracted
from both 2D and 3D
videos are correlated to
UPDRS-gait and SAS-
gait scores of
parkinsonism severity
in gait

“The conducted assessments
indicated that the use of dynamic
3D surface measurements is a
promising direction of research
and can provide valuable
information on patient
movement patterns” (Krasowicz
etal., 2020, p.18)

Using single RGB video for
bradykinesia recognition is easy
and convenient for patients and
doctors

“VR-BBT could be used as a
reliable indicator for health
improvements in patients with
PD” (Ofia et al., 2020, p.1)

Automatic hand movement
detection method may help
clinicians to identify tremor and
bradykinesia in PD

“Vision-based systems have the
potential to be used as tools for
longitudinal monitoring of
parkinsonism in residential
settings” (Sabo et al., 2020, p.1)
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Schroed CP
eretal.,
2020

William  PD
S,

Relton

etal.,

2020

William  PD
s, Zhao

etal.,

2020

Zefinetti  SCI patients using
etal., a wheelchair

2020

High-risk infants (29)  Kinect v1

Patients with PD (20);  Smartphone
control participants
(15)

Patients with
idiopathic PD (39);
healthy controls (30)

Smartphone

Patients with SCI (60)  Kinect v2

variation of step
width and time, the
symmetry index of
the step times,
number of steps in
the walking bout

Infants’ general
movement

Bradykinesia
assessed by finger

tapping

Bradykinesia
assessed by finger

tapping

Kinematic data,
including humeral
elevation, horizontal
abduction of
humerus, humeral

Correlation of Clinical
expert GMA ratings  environment
of standard RGB

videos with GMA

ratings on SMIL

motion videos of the

same sequence

ML models to
predict no/slight
bradykinesia or
mild/moderate/
severe bradykinesia,
and presence or
absence of
Parkinson’s
diagnosis

Clinical setting

Correlation of
machine learning
models with clinical
ratings of
bradykinesia

Clinical setting

Correlation between  Laboratory
the movements and

the patients’

assessment

GMA based on
computer-generated
virtual 3D infant body
models closely
corresponded to the
established gold
standard based on
conventional RGB
videos

SVM with radial basis
function kernels
predicted presence of
mild/moderate/
severe bradykinesia
with good accuracy.
NB model predicted
the presence of PD
with moderate
accuracy

Computer measures
correlated well with
clinical ratings of
bradykinesia

The measurements
computed by the
proposed system
showed a good

reliability for analyzing

SMIL motion video might
capture the movement
characteristics required for
GMA of infants

The proposed approach supports
the detection of bradykinesia
without purchasing extra
hardware devices

“The research provides a new
tool to quantify bradykinesia. It
could potentially be used to
support diagnosis and
monitoring of PD” (Williams,
Zhao et al., 2020, p.5)

“The proposed markerless
solutions are useful for an
adequate evaluation of
wheelchair propulsion”
(Zefinetti et al., 2020, p.18)
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Abbas et
al., 2021

Ardalan
etal.,
2021

Cao et
al., 2021

Hurley
etal.,
2021

Kojovic
etal.,
2021

Schizophrenia

Neurodevelopmen

tal Disorders

PD

Patients awaiting
TKR who were
attending POAC

ASD

Patients with
Schizophrenia (18);
healthy controls (9)

Children with 16p11.2
mutation (15); TD
children (12)

Patients with PD (18);
healthy controls (42)

Patients awaiting
unilateral primary
TKR (23)

Children with ASD
(169); TD children
(68)

Smartphone

A single point-
and-shoot
camera

RGB camera

BioStage™

2D camera

rotation, elbow
flexion, trunk
flexion/extension of
wheelchair
propulsion

Head movement

Gait synchrony,
balance parameters

Shuffling step

LLM, VVM

Patterns of atypical
postures and
movements

Comparison of head

movement
measurements
between patients
and healthy
controls,

relationship of head

movement to
schizophrenia

symptom severity

Comparison of gait

synchrony and

balance in children

with 16p11.2
mutation and TD
children

Detection of

shuffling step and
severity assessment

Comparison of
LLM and VVM
performed
clinically,

radiologically, and

using MMA

Differentiation
between children

with ASD and TD

Home setting/
Natural
environment

Natural
environment

Hospital

Laboratory

Clinical setting

the movements of SCI
patients’ wheelchair
propulsion

Rate of head
movement in
participants with
schizophrenia and
those without differed
significantly; head
movement was a
significant predictor of
schizophrenia
diagnosis

Children with 16p11.2
mutation had
significantly less
whole-body gait
synchrony and poorer
balance compared to
TD children

3D convolution on
videos achieves an
average shuffling step
detection accuracy of
90.8%

Discrepancies existed
in LLM and VVM

when evaluated using
clinical, radiological,
and MMA modalities

The classification
accuracy is 80.9% with
the prediction

“Remote, smartphone- based
assessments were able to capture
meaningful visual behavior for
computer vision-based objective
measurement of head
movement” (Abbas et al., 2021,
p.29)

Remote video analysis approach
facilitates the research in motor
analysis in children with
developmental disorders

Video-based detection method
might facilitate more frequent
assessment of FoG in a more
cost-effective way

A MMC system alone may not
be a suitable method to assess
the patients for TKR

Remote machine learning-based
ASD screening might be
possible in the future
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Lee et
al., 2021

Lietal.,
2021

Mehdiza
deh et
al., 2021

Negin et
al., 2021

Stroke

PD

Dementia

ASD

Patient with stroke
(206)

Patients with PD
(157)

Individuals admitted
to a specialized
dementia inpatient
unit (54)

Children with or
without ASD (108)

Smartphone

Video

Kinect v2

YouTube video

Swing time
asymmetry between
paretic and non-
paretic lower limbs
while walking

Skeleton sequence
from finger-tapping
test

Gait variables,
including gait
stability, step
length, step time
variability, step
length variability

Spinning, head
banging, hand
action, arm flapping

using non-verbal
aspects of social
interaction by deep
neural network

Classification of
dependence in
ambulation by
employing a deep
model in 3D-CNN

Hospital

Classification of
finger tapping
performance
according to MDS-
UPDRS score

Hospital

Changes in
quantitative gait
measured over a
period during a
psychogeriatric
admission

Laboratory

Recognition of ASD  Natural
associated behaviors  environment

probability positively
correlated to the
overall level of
symptoms of autism in
social affect and
repetitive and restricted
behaviors domain

The trained 3D-CNN
performed with 86.3%
accuracy, 87.4%
precision

Fine-grained
classification net- work
achieved an accuracy
of 72.4% and an
acceptable accuracy of
98.3%

Results showed that
there was deterioration
of gait in this cohort of
participants, with men
exhibiting greater
decline in gait stability

HOF descriptor
achieves the best
results when used with
MLP classifier

“Monitoring ambulation using
videos may facilitate the design
of personalized rehabilitation
strategies for stroke patients with
ambulatory and balance deficits
in the community” (Lee et al.,
2021, p.9)

Vision-based assessment method
has potential for remote
monitoring of PD patients in the
future

“Quantitative gait monitoring in
hospital environments may
provide opportunities to
intervene to prevent adverse
events, decelerate mobility
decline, and monitor
rehabilitation outcomes”
(Mehdizadeh et al., 2021, p.1)

“An action-recognition-based
system can be potentially used to
assist clinicians to provide a
reliable, accurate, and timely
diagnosis of ASD disorder”
(Negin et al., 2021, p.145)
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Nguyen-
Thai et
al., 2021

Rupprec
hter et
al., 2021

Stricker
etal.,
2021

Wei et
al., 2021

William
setal.,
2021

CP

PD

PD

Wheelchair user

Tremor

Videos of infants who ~ Smartphone

were at 14-15 weeks

post-term age (235)

Patients with PD Smartphone

(729)

Patients with PD (24)  Standard
camera

Full-time wheelchair Kinect

users (91)

Patients with PD (9); Smartphone

patients with essential
tremor (5); patient

FM

Leg ratio difference,
vertical angle of the
body, horizontal
angle of the ankles
and wrists,
horizontal distance
between the heels,
speed of the ankles,
step frequency

Step length

Wheelchair transfer
motions including
joint angles and
positions

Hand tremor at rest
and in posture

Predicted the risk of
CP by FM

Estimation of
severity of gait
impairment in
Parkinson’s disease
using a computer
vision-based
methodology

Reliability of step
length
measurements from
2D video in patients
with stroke;
comparison of the
step lengths of
patients
with/without a
recent history of
falls

ML algorithm for
evaluation of the
quality of
independent
wheelchair sitting
pivot transfers

Measurement of
hand tremor
frequency

Natural
environment

Hospital and
offices

Structured
environment

Structured
environment

Clinical setting

Pose sequences were
strong signals that
retained motion
information of joints
and limbs while
ignoring irrelevant,
distracting visual
artifacts

Step frequency point
estimates from the
Bayesian model were
highly correlated with
manually labelled step
frequencies

Step length
measurements from the
video demonstrated
excellent intra- and
inter-rater reliability;
patients with PD who
had experienced a fall
within the previous
year demonstrated
shorter step lengths

Accuracies of the ML
classifier were over
71%.

There was less than 0.5
Hz difference between
the computer vision
and accelerometer

A STAM maodel can be used to
identify infants at risk of
cerebral palsy via video-based
infant movement assessment

“Automated systems for
quantifying Parkinsonian gait
have great potential to be used in
combination with, or the absence
of, trained assessors, during
assessments in the clinic or at
home” (Rupprechter et al., 2021,
p.18)

“Quantification of step length
from 2D video may offer a
feasible method for clinical use”
(Stricker et al., 2021, p.252)

“The results show promise for
the objective assessment of the
transfer technique using a low
cost camera and machine
learning classifiers” (Wei et al.,
2021, p.1)

“The study suggests a potential
new, contactless point-and-press
measure of tremor frequency
within standard clinical settings,
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Wu et
al., 2021

Ferrer-
Mallol
etal.,
2022

Guo et
al., 2022

Lonini
etal.,
2022

Morinan
etal.,
2022

PD

DMD

PD

Stroke

PD

with functional tremor

@

Patients with PD (7)

Patients with DMD
(8)

Patients with PD (48);
healthy controls (11)

Patients with stroke

®)

Videos from patients
with PD (447)

LMC

Smartphone

RGB camera

Digital RGB
video camera

Smartphone

Hand kinematic in
finger tapping hand
opening and
closing, and hand
pronation and
supination

Time, pattern of
movement
trajectory,
smoothness and
symmetry of
movement

Finger movement in
finger tapping test

Gait parameters
including cadence,
double support time,
swing time, stance
time, and walking
speed

Body kinematics
including
movement, velocity
variation and
smoothness

Quantification of
the motor
component of
bradykinesia

Quantitative
measurement of the
motor performance
of the patients in the
functional tasks

Classification of PD
from finger tapping
video

Comparison of gait
parameters obtained
from clinical system
and video-based
method for gait
analysis

Estimation of
‘arising from chair’
task score in MDS-
UPDRS

Laboratory

Home

Structured
environment

Laboratory

Clinical setting

frequency
measurements in 97%
of the videos

Average velocity and
average amplitude of
pronation/supination
isolate the bradykinetic
feature

Computer vision
analysis allowed
characterization of
movement in an
objective manner

Classification accuracy
is of 81.2% on a newly
established 3D PD
hand dataset of 59
subjects

Absolute accuracy and
precision for swing,
stance, and double
support time were
within 0.04 £ 0.11 s

Compute-vision based
method can accurately
quantify PD patients’
ability to perform the
arising from chair
action

research studies, or
telemedicine” (Williams et al.,
2021, p.69)

“The LMC achieved promising
results in evaluating PD patients
hand and finger bradykinesia”
(Wuetal., 2021, p.1)

>

“Video technology offers the
possibility to perform clinical
assessments and capture how
patients function at home,
causing minimal disruption to
their lives” (Ferrer-Mallol et al.,
2022, p.16)

Novel computer-vision approach
could be effective in capturing
and evaluating the 3D hand
movement in patients with PD

“Single camera videos and pose
estimation models based on deep
networks could be used to
quantify clinically relevant gait
metrics in individuals
poststroke” (Lonini et al., 2022,

p.9)

Computer-vision based approach
might be used for quality control
and reduction of human error by
identifying unusual clinician
ratings
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Vu et CD
al., 2022

Morinan PD
etal.,
2023

Songet  ASD
al., 2023

Patients with CD (93)

Patients with PD
(628)

Children with ASD
(29); TD child (1)

Video recording

Consumer-grade
hand- held
devices

RGB camera

Peak power,
frequency, and
directional
dominance of head
movement

Movements during
the bradykinesia
examinations
including finger
tapping, hand
movement,
pronation-
supination, toe
tapping, leg agility

Head and body
movement during
response to name
behavior

Quantification of
oscillatory and
directional aspects
of HT

Quantification of
bradykinesia
according to
clinician ratings

Prediction of ASD

by response to name

behavior

Structured
environment

Clinical setting
and laboratory

Structured
environment

Computer-vision based
method of
quantification of HT
exhibits convergent
validity with clinical
severity ratings

Classification model
estimate of composite
bradykinesia had high
agreement with the
clinician ratings

The prediction method
is highly consistent
with clinical diagnosis

“Objective methods for
quantifying HT can provide a
reliable outcome measure for
clinical trials” (Vu et al., 2022,
p.7)

Computer vision technology can
be adopted in the current clinical
workflows with smartphones or

tablet devices

Automatic detection method can
help to carry out remote autism
screening in the early
developmental stage of children

3D-CNN: 3D Convolutional Neural Network, AC: Adhesive Capsulitis, ALS: Amyotrophic Lateral Sclerosis, ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, ASD: Autism Spectrum
Disorder, BME: Body Motion Evaluation, CCD: Commercial Digital Charge-coupled Device, CD: cervical dystonia, CP: Cerebral Palsy, CV: Computer Vision, DBS: Deep Brain Stimulation, DMD: Duchenne
muscular dystrophy, FM: Fidgety Movement, FMA: Fugl-Meyer Assessment, FoG: Freezing of Gait, FoG: Freezing of gait, SAS: Simpson- Angus Scale, FVC: Forced Vital Capacity, FXS: Fragile X Syndrome,
GMA: General Movement Assessment, GMFM-88: Gross Motor Function Measure-88, HOF: Histogram of Optical Flow, HT: Head Tremor, ICC: Intra-Class Correlation Coefficient, ICP: Infantile Cerebral Palsy,
KPCA: Kernel-based Principal Component Analysis, LDA: Linear Discriminant Analysis, LLM: Leg Length Measurement, LMC: Leap Motion Controller, LOSOCV: Leave-One-Subject-Out Cross-Validation,
LR: Logistic Regression, MDS-UPDRS: Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, ML: Machine Learning, MLP: Multi-layer Perceptron, MMA:
Markerless Motion Analysis, MMC: Markerless Motion Capture, NB: Naive Bayes, NN: Neural Network, OPCL: Hand Opening/Closing, PANU: Proximal Arm Non-Use, PCA: Principal Component Analysis,
PD: Parkinson’s Disease, PFP: Patellofemoral pain, POAC: Pre-Operative Assessment Clinic, POST: Postural Tremor, PSUP: Forearm Pronation-Supination, PT: Physiotherapist, RGB: Red Green Blue, ROM:
Range of Motion, RSA: Relative Surface Area, SCI: Spinal Cord Injured, SDK: Software Development Kit, SMIL: Skinned Multi-Infant Linear Body Model, SST: Simple Shoulder Test, ST-ACF: short-time
autocorrelation function, STAM: Spatio-Temporal Attention-Based Model, SVM: Support Vector Machine, TD: Typically Developing, THFF: Thumb Forefinger Tapping, TKR: Total Knee Arthroplasty, TMFPI:
Trunk Mobility in the Frontal Plane Index, UDysPS: Unified Dyskinesia Rating Scale, UPDRS: Unified Parkinson’s Disease Rating Scale, UPDRS-FT: Unified Parkinson’s Disease Rating Scale-Finger Tapping,
USCP: Unilateral Spastic Cerebral Palsy, VR: Virtual Reality, VVM: Varus/Valgus Knee Measurements
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3.3 RESULTS

3.3.1 Literature search and study characteristics

A total of 4283 articles were identified, 278 of which were selected for full-text reading

after removal of duplicates and irrelevancies, according to their abstracts (Figure 3.1).

After next excluding 213 articles on the basis of the inclusion and exclusion criteria, 65

studies remained and were included in the final review (Figure 3.1). More than 40% of

the studies applied MMC technology to assess a patient population with PD (n = 28)

(Butt et al., 2018; Cao et al., 2021; Chen et al., 2011; Cho et al., 2009; Dranca et al.,

2018; Guo et al., 2022; Hu et al., 2020; Khan et al., 2013; Langevin et al., 2019; Lee et

al., 2019; Li et al., 2021; M. H. Lietal., 2018; T. Li et al., 2018; Lin et al., 2020; Liu

et al., 2019; Martinez et al., 2018; Morinan et al., 2023; Morinan et al., 2022; Ofa et

al., 2020; Pang et al., 2020; Rupprechter et al., 2021; Sato et al., 2019; Stricker et al.,

2021; Tupa et al., 2015; Vivar et al., 2019; Williams, Relton, et al., 2020; Williams,

Zhao, et al., 2020; Wu et al., 2021) . Two other diseases that had commonly been

measured by the MMC system were cerebral palsy (CP) (n = 6) (Adde et al., 2010; Chin

et al., 2017; Krasowicz et al., 2020; Nguyen-Thai et al., 2021; Pantzar-Castilla et al.,

2018; Schroeder et al., 2020) and stroke (n = 6) (Bakhti et al., 2018; Bonnechére et al.,

2018; Kim et al., 2016; Lee et al., 2021; Lonini et al., 2022; Olesh et al., 2014). Four
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other studies focused on children with autism spectrum disorder (ASD) (n = 4) (Caruso

et al., 2020; Kojovic et al., 2021; Negin et al., 2021; Song et al., 2023) while there are

two studies focused on patients with schizophrenia (n = 2) (Abbas et al., 2021; Sa et al.,

2015) and patients with dementia (n = 2) (Mehdizadeh et al., 2021; Sabo et al., 2020)

respectively. The rest of the studies were conducted on various other diseases: Fragile

X syndrome (FXS) (O’Keefe et al., 2013), chronic neck pain (Bahat et al., 2010), breast

cancer (Gritsenko et al., 2015), spinal cord injury (SCI) (Zefinetti et al., 2020),

amyotrophic lateral sclerosis (ALS) (de Bie et al., 2017), adhesive capsulitis of shoulder

(AC) (Leeetal., 2015), dystrophinopathy (Lowes et al., 2013) and neuromotor diseases

(Chambers et al., 2020) . There were also studies that had been conducted on wheelchair

users (n = 2) (Rammer et al., 2018; Wei et al., 2021), people awaiting total knee

arthroplasty (TKR) (Hurley et al., 2021), patients with gait disturbance (Fujii et al.,

2020), patients with neurodevelopment disorders (NDD) (Ardalan et al., 2021), patients

with tremor (Williams et al., 2021), patients with Duchenne muscular dystrophy (DMD)

(Ferrer-Mallol et al., 2022), patients with cervical dystonia (CD) (Vu et al., 2022) and

patients with a variety of diagnoses (Matsen et al., 2016). Table 3.1 summarizes the 65

selected studies.
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Figure 3.1 Flow chart for selection of the studies for this review
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3.3.2 Body function/body part being measured

Of the 28 studies that assessed the PD population by using MMC technology, fourteen

measured the hand’s motor conditions to classify or to predict the severity of PD (Butt

etal., 2018; Guo et al., 2022; Khan et al., 2013; Langevin et al., 2019; Lee et al., 2019;

Li et al., 2021; Lin et al., 2020; Liu et al., 2019; Ofia et al., 2020; Pang et al., 2020;

Vivar et al., 2019; Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020; Wu et al.,

2021). These fourteen studies used the PD features of bradykinesia and tremor, as

reflected during hand movements such as a finger-tapping exercise, to train machine-

learning models to serve as classifiers. Of the remaining fourteen studies, four focused

on using whole-body motion to classify PD (M. H. Li et al., 2018; Martinez et al., 2018;

Morinan et al., 2023; Morinan et al., 2022), and the other ten measured gait features to

detect gait disorder in people with PD (Cao et al., 2021; Chen et al., 2011; Cho et al.,

2009; Dranca et al., 2018; Hu et al., 2020; T. Li et al., 2018; Rupprechter et al., 2021;

Sato et al., 2019; Stricker et al., 2021; Tupa et al., 2015). The measured body function

for the CP population by the MMC system included gait pattern, trunk mobility, general

body movement, fidgety movements, and the level of proprioceptive ability (Adde et

al., 2010; Chin et al., 2017; Krasowicz et al., 2020; Nguyen-Thai et al., 2021; Pantzar-

Castilla et al., 2018; Schroeder et al., 2020). The six studies on stroke survivors applied
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MMC technology to measure their upper limb movement, including their motor

function, movement velocity, and joint angle (Bakhti et al., 2018; Bonnechere et al.,

2018; Kim et al., 2016; Olesh et al., 2014) as well as lower limb movement gait

parameters and walking pattern (Lee et al., 2021; Lonini et al., 2022). The studies that

worked on the ASD population mainly focused on prediction of diagnosis of ASD by

children’s behavioral patterns (Caruso et al., 2020; Kojovic et al., 2021; Negin et al.,

2021; Song et al., 2023). The measured areas in the studies that applied MMC

technology in patients with other types of diseases varied, and the details are listed in

the summary table (Table 3.1).

3.3.3 Details of measurement and efficacy

The applications of the MMC systems in measurement were classified into several

categories. Sixteen out of the 65 selected studies used MMC technology in symptoms

identification in disease populations (Butt et al., 2018; Dranca et al., 2018; Khan et al.,

2013; Lee et al., 2021; Lee et al., 2019; M. H. Li et al., 2018; T. Li et al., 2018; Negin

et al., 2021; Ona et al., 2020; Rupprechter et al., 2021; Song et al., 2023; Tupa et al.,

2015; Vivar et al., 2019; Williams et al., 2021; Williams, Relton, et al., 2020; Wu et al.,

2021). Butt and colleagues attempted to distinguish patients with PD from healthy

subjects by features of their hand movements, reporting that their Leap Motion
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Controller (LMC) system together with the machine-learning models did not provide a

reliable measurement for the PD symptoms (Butt et al., 2018). Fifteen studies focused

on comparing the movement patterns of the disease populations and a healthy

population, with all of them reporting a significant difference in at least one of the

measured parameters including gait parameters, hand movement patterns, head

movement patterns and general body movements (Abbas et al., 2021; Adde et al., 2010;

Ardalan et al., 2021; Bahat et al., 2010; Bonnecheére et al., 2018; Caruso et al., 2020;

Chambers et al., 2020; Cho et al., 2009; Fujii et al., 2020; Kojovic et al., 2021; Langevin

et al., 2019; Martinez et al., 2018; O’Keefe et al., 2013; Pang et al., 2020; Sa et al.,

2015). Fifteen studies applied MMC technology to detect and identify movement

limitations or specific movement patterns of patients with certain diseases, and

significant parameters that indicate movement abnormity including bradykinesia,

shuffling gait, abnormal walking pattern, and tremor were identified (Cao et al., 2021;

Chen et al., 2011; de Bie et al., 2017; Ferrer-Mallol et al., 2022; Gritsenko et al., 2015;

Guo et al., 2022; Hu et al., 2020; Krasowicz et al., 2020; Lin et al., 2020; Lonini et al.,

2022; Mehdizadeh et al., 2021; Nguyen-Thai et al., 2021; Sato et al., 2019; Schroeder

et al., 2020; Stricker et al., 2021). Two studies used the MMC system to measure range

of motion (ROM), and they suggested MMC could be an alternative to the goniometer

as a tool for ROM assessment (Lee et al., 2015; Matsen et al., 2016). Three studies used
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the MMC system as a tool to analyze the wheelchair propulsion skills of wheelchair

users (Rammer et al., 2018; Wei et al., 2021; Zefinetti et al., 2020). Ten studies

correlated or compared the MMC measurements with clinical assessment scales

(Bakhtietal., 2018; Kim et al., 2016; Liet al., 2021; Liu et al., 2019; Lowes et al., 2013;

Morinan et al., 2023; Morinan et al., 2022; Olesh et al., 2014; Sabo et al., 2020; Vu et

al., 2022). Among the other three studies, one applied MMC technology in a

comparison with the optic marker system (Pantzar-Castilla et al., 2018), one used it to

measure leg length (Hurley et al., 2021), and one used it as a tool to assess

proprioception (Chin et al., 2017). Only one study reported unsatisfactory results,

claiming that the use of the MMC system alone to measure leg length was not accurate

(Hurley et al., 2021). The details are listed in the summary table (Table 3.1).

3.3.4 Types of MMC systems

Twenty studies used Kinect in their research, thus making Kinect the most popular

MMC system used in the selected studies (Bakhti et al., 2018; Bonnechere et al.,

2018; Chin et al., 2017; de Bie et al., 2017; Dranca et al., 2018; Fujii et al., 2020;

Gritsenko et al., 2015; Kim et al., 2016; Lee et al., 2015; Lowes et al., 2013; Matsen

et al., 2016; Mehdizadeh et al., 2021; Olesh et al., 2014; Pantzar-Castilla et al., 2018;

Rammer et al., 2018; Sabo et al., 2020; Schroeder et al., 2020; Tupa et al., 2015; Wei
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et al., 2021; Zefinetti et al., 2020). Sixteen studies used camera including RGB
camera, digital video camera, GoPro camera and webcam (Adde et al., 2010; Ardalan
et al., 2021; Cao et al., 2021; Chen et al., 2011; Guo et al., 2022; Kojovic et al., 2021;
Langevin et al., 2019; Lee et al., 2019; M. H. Liet al., 2018; T. Li et al., 2018; Liu et
al., 2019; Lonini et al., 2022; Pang et al., 2020; Sato et al., 2019; Song et al., 2023;
Stricker et al., 2021), while twelve studies analyzed patients’ movement by using
smartphone or mobile tablet videos (Abbas et al., 2021; Ferrer-Mallol et al., 2022;
Khan et al., 2013; Lee et al., 2021; Lin et al., 2020; Morinan et al., 2023; Morinan et
al., 2022; Nguyen-Thai et al., 2021; Rupprechter et al., 2021; Williams et al., 2021;
Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020). Six studies performed the
motion analysis from YouTube video or video recordings that captured by nonspecific
capturing device (Caruso et al., 2020; Chambers et al., 2020; Hu et al., 2020; Li et al.,
2021; Negin et al., 2021; Vu et al., 2022). Five studies used the leap motion controller
(LMC), an optical hand-tracking module (Butt et al., 2018; Lee et al., 2019; Ona et
al., 2020; Vivar et al., 2019; Wu et al., 2021). The rest of the studies applied the
BioStage™ System (Organic Motion Inc., N.Y., USA) (n = 3) (Hurley et al., 2021;
O’Keefe et al., 2013; Sa et al., 2015); the DARI Motion platform’s motion capture
system (n = 1) (Martinez et al., 2018); the 4DBODY System (n = 1) (Krasowicz et al.,
2020), and a nonspecific customized motion capture system (n = 1) (Bahat et al.,
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2010). Table 3.2 describes and compares the characteristics of these seven types of

MMC systems in terms of their mechanisms, set-up procedures, relative costs, the

body part(s) that can be captured, and the systems’ methods of data extraction and

analysis.
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Table 3.2 Comparison of the MMC Systems

MMC system Mechanisms Relative Assessable Body  Portability Set-up procedure Methods of data extraction and
cost parts analysis
Kinect Monochrome CMOS sensor and Low Whole body Yes Simple Data can be extracted by the
infrared projector measures except fine hand Microsoft Kinect algorithm, and
player’s body by transmitting movement offline analysis can be performed
invisible near-infrared light, using software such as R or
data are then processed by MATLAB
algorithms
Camera 2D images are captured directly Low Whole body Yes Simple Data is commonly analyzed by
by camera pose estimation algorithm, and
kinematic features are extracted
from the joint trajectories
LMC Hand movements captured by Low Hand and finger  Yes Simple Data can be obtained from the
two monochromatic IR cameras movement LMC SDK
and three infrared LEDs and a
rather “complex
math algorithm” are used to
process the raw data
BioStage™ 3D images captured by high- High Whole body No Complicated The 3D motion data can be

speed color cameras and data
are analyzed by computer vision
software

analyzed using the Motion Monitor

software
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Smartphone Mobile phone camera is used to  No extra Whole body Yes Simple Specific algorithms are required to
capture the movement directly cost needed analyze the video image
DARI Motion Uses eight high-speed cameras ~ High Whole body No Complicated Data analyzed by images captured
system placed around the subject and a by eight high-speed cameras using
state-of-the-art computer-vision the software provided by the DARI
engine to collect whole-body Motion company
data, including the fastest
motions
4DBODY System Uses a single-frame structured High Whole body No Complicated Data from 4D measurement
light illumination method to sequences can be extracted by the
allow the registration of the FRAMES software package
shape of body surface with a
frequency of up to 120 Hz
Customized motion ~ Two main components: an Not Particularly neck Not mentioned Not mentioned Tracking data can be analyzed by
capture system electromagnetic tracker and an mentioned  and trunk MATLAB software
HMD. The tracker sampled movement

motion via two sensors at 60 Hz
each.

CMOS: Complementary Metal Oxide Semiconductor, HMD: Helmet-mounted Displays, LED: Light-emitting Diode, LMC: Leap Motion Controller, SDK: Software

Development Kit
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3.4 DISCUSSION

Our results revealed that most of the research applications of an MMC system for

measurement were with patient groups with physical disabilities, and more than half of

the studies assessed the PD and CP populations. A possible reason for this trend could

be that both PD and CP have obvious and well-defined physical signs and symptoms

and abnormal movements. PD is characterized by the presence of tremor, bradykinesia,

and rigidity during movement (Poewe et al., 2017), whereas patients with cerebral palsy

demonstrate spasticity, ataxia, rigidity in movement, and the like (Rosenbaum et al.,

2006). The characteristic types of movement in these two groups of patients might be

especially favorable for detection and analysis by the MMC system because of the

significant homogeneity in the patients’ movement patterns. Applications of an MMC

system for measurement in other kinds of physical disabilities have been limited, and

that was the case in this review, but the heterogeneous disease types that were evaluated

in the selected studies suggest the possibility of a high variety of generalized uses of

MMC technology in assessing different types of patients.

In addition to the use of MMC systems in applications involving physical disabilities
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that demonstrate observable physical symptoms, it was noteworthy that such systems

were also applied in patients with mental illness and NDD, in an attempt to deduce the

presence of movement markers for mental disorder and the behavior associated with

NDD. Experimental use of MMC technology in patients with mental illness and NDD

suggests an entirely new trend for the application of MMC technology in the clinical

field. Heretofore, motion tracking has been used in targeted patients with physical

disabilities, because the analysis of their movements can provide necessary information

and data about their level of impairment, and that in turn can indicate their recovery

progress. However, although clinical observations have demonstrated that there is a

difference between the movement patterns of patients with mental illness and those of

healthy individuals, application of motion capture systems to assess the physical ability

of patients with mental illness is still quite limited (Walther et al., 2020). Since

traditional marker-based systems for motion analysis are time-consuming to set up

given that it requires calibration procedure and attachment of markers on the body,

using the traditional motion analysis marker systems might not be cost-effective to

study the motion dysfunctions in patients with mental illness whose cognitive functions

are predominantly affected. In fact, previous studies on motion detection of patients

with mental illness adopted the fuzzy movement method, and precise actions and

movement patterns have been less emphasized (Walther et al., 2014). Therefore, the

113



development of MMC technology allows motion capture in a more cost-effective way,

and that improvement may facilitate future scientific investigations of movement

patterns and motor functions in patients with mental illness. Identifying the risk of NDD

by extracting the children’s behavioral features with the help of computer-vision

technology also proposed a new direction of early screening of NDD (de Belen et al.,

2020), in which children’s developmental conditions can be closely monitored in their

familiar environment without the need of attachment of markers on the infants’ body .

Similarly, the studies that have applied the MMC system to compare the motion patterns

of a disease population and a healthy population provide evidence for the technology’s

use to identify biomarkers for certain diseases. MMC technology may also contribute

to the development and use of big data for future Al screening for diseases, based on

body movements. The combination of MMC technology and a machine-learning

algorithm in classification of CP in infants by Nguyen-Thai and colleagues (2021) is

one of the good examples that demonstrates how MMC technology can help in the

preliminary screening of diseases. Compared with screening methods for traditional

diseases, which depend heavily on behavioral observations by parents or on subjective

self-reported questionnaires (Horwitz et al., 2016), MMC technology, which identifies

symptoms via movement detection, could be a more objective method for early

screening for diseases, facilitating early identification of a disease and thus improving
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the prognosis for rehabilitation, as well as providing a tool for evaluation before and

after rehabilitation.

In contrast to using MMC technology for symptoms identification or for detection of

differences in movement patterns between disease groups and their healthy counterparts,

other studies applied MMC technology as a direct clinical measurement tool. Although

the use of the MMC system to measure leg length was found to be inaccurate (Hurley

et al., 2021), the use of Kinect to measure ROM was found to be reliable (Lee et al.,

2015; Matsen et al., 2016). These findings suggest that MMC technology might have

the potential to serve as an alternative clinical assessment tool. MMC technology also

provides a new approach to assessing functional or cognitive abilities, such as

objectively evaluating proprioception, which previously relied heavily on manual

evaluations by rehabilitation therapists. However, future studies on the measurement

accuracy and the validity of MMC technology as a clinical measurement tool are

warranted.

Microsoft Kinect, the most commonly used MMC system in the studies in this review,

is a relatively low-cost, commercially available system that captures and analyzes
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whole-body movement. Kinect enables the capture of real-time whole body gross

movements, but it appears to be less sensitive in tracking fine hand movements (Galna

et al., 2014). Although many of the studies used Kinect in their MMC measurements,

the system has been out of production since 2017 and was no longer supported by the

Xbox Series X, as announced by Microsoft (Weinberger, 2018). Future rehabilitation

assessors that wish to use MMC technology may have to consider using other kinds of

MMC systems, or the newly developed Azure Kinect. Our review also found that the

most recent studies adopted the use of camera, smartphone, or video clips from the

internet in conjunction with pose estimation algorithms and motion analysis algorithm,

which has been rapidly developed in the recent years, to capture images and analyze

motion. Human pose estimation method is a way of identifying and classifying human

joints position using computer vision, for example, the open-source libraries OpenPose

and PoseNet for human pose estimation are widely adopted in motion analysis (Nishani

& Cigo, 2017). With the development of human pose estimation database containing

various types of movement datasets, accuracy of pose estimation from video clips can

be further enhanced by using a large set of training data. This facilitates the use

computer vision methods for motion analysis in video clips captured by portable and

low-cost camera rather than using specific sensors in the traditional way. The use of

machine-learning algorithms allows meaningful information such as kinematic data to
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be extracted directly from regular videos, thus making the use of MMC technology

much easier in motion capturing in a natural environment without the need to buy any

extra hardware devices. Human pose estimation technology such as Convolutional Pose

Machines (CPM) and convolution neural network (CNN) based methods which allow

extraction of human movement information directly from video clips have been

repeatedly tested by researchers (Andrade-Ambriz et al., 2022; Qiang et al., 2019) while

human pose estimation application on analyzing movement in the disease populations

were reported to be useful by the studies in our review (Abbas et al., 2021; Adde et al.,

2010; Ardalan et al., 2021; Cao et al., 2021; Caruso et al., 2020; Chambers et al., 2020;

Chen et al., 2011; Ferrer-Mallol et al., 2022; Guo et al., 2022; Hu et al., 2020; Khan et

al., 2013; Kojovic et al., 2021; Langevin et al., 2019; Lee et al., 2021; Lee et al., 2019;

Lietal.,2021; M. H. Lietal., 2018; T. Liet al., 2018; Lin et al., 2020; Liu et al., 2019;

Lonini et al., 2022; Morinan et al., 2023; Morinan et al., 2022; Negin et al., 2021;

Nguyen-Thai et al., 2021; Pang et al., 2020; Rupprechter et al., 2021; Sato et al., 2019;

Song et al., 2023; Stricker et al., 2021; Vu et al., 2022; Williams et al., 2021; Williams,

Relton, et al., 2020; Williams, Zhao, et al., 2020). Given that such trajectory extraction

method is in rapid evaluation and is becoming more mature for promising identification

of posture (Doosti et al., 2020; Luo et al., 2022; Wrench & Balch-Tomes, 2022), using

hand-held camera or smartphone as the MMC system would be especially beneficial
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for understanding the motor performance of individuals in their daily living tasks, hence

providing valuable information on levels of impairment and on the constraints that

patients might encounter in their activities of daily living in their real-life environment.

It is understandable that individuals, particularly young children and older people,

might behave differently when they are placed for motion capturing in an unfamiliar

laboratory or a simulated environment, thus risking the possibility that the motion

analysis might not truly reflect the individuals’ actual movement patterns (Tronick et

al., 1979). The use of a smartphone camera combined with an algorithm for analysis

could provide a solution to that problem and suggests the feasibility of assessing

patients’ daily movements through an MMC combination of a smartphone and an

advanced algorithm. Since it does not require additional hardware for motion capturing,

such a system would further broaden MMC technology for measurement and clinical

assessment in the field of rehabilitation.

3.4.1 Limitations of the current MMC technology’s applications for clinical

measurement

Although the use of MMC system in motion capturing is becoming more common in

movement measurement and helps us extend the application of MMC technology to

clinical use, the technologies used for analyzing movement and distinguishing motor
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patterns are not yet generalized. Extracting and processing the data from MMC devices

video files is still complicated and time-consuming, preventing the approach from being

user-friendly for therapists to adopt as a quick clinical measurement tool. Further

investigation is needed in order to design and develop a platform or software that can

accurately analyze the movement patterns from videos in a more user-friendly and

accurately way so as to further extend its application by clinicians. Although most of

the studies that we included reported detecting a significant difference between the

motor parameters of healthy control groups and those of disease populations, and while

the identification of physical symptoms by the MMC system was also reported to be

mostly effective, the sample sizes adopted by these studies were too small. A reliable

Al tool for disease screening and classification will need to be trained and tested from

a large set of data, to provide better specificity and sensitivity. In order to make use of

MMC technology-assisted Al screening and early detection of diseases, a larger

database that records movement patterns of both the disease population and the healthy

population must be developed. Research on the development and selection of a suitable

machine-learning or deep-learning model for classification is also needed. Ultimately,

a cost-effective and accurate method for early patient screening will help therapists to

identify individuals at risk and involve them in further, in-depth assessments, so that

subsequent interventions can be made as early as possible. Moreover, it has been
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suggested that telerehabilitation could incorporate the use of MMC technology as a

measurement tool for assessing and monitoring patients’ prognosis and recovery, thus

offering an objective and precise evaluation of patients’ rehabilitation progress.

3.4.2 Limitation of this review

A limitation of this review is the potential overlap among some of the included studies.

Several papers may report findings from the same population, which could result in

redundancy and impact the overall conclusions. Future research should aim to clarify

and differentiate the populations studied to enhance the robustness of the evidence.

3.5 CONCLUSIONS

This review explored the current uses of MMC technology to perform assessments in

clinical situations. Most of the studies in the review combined MMC technology and a

classification algorithm to perform symptoms identification for disease populations or

to detect the differences in movement between disease groups and their healthy

counterparts. Findings from these studies revealed a potential use of MMC technology

for detecting and identifying disease signs and symptoms. The method might also

contribute to early screening by using Al and big data to screen for diseases that lead to
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physical or mental disabilities. Further studies are warranted to develop and integrate

MMC system in a platform that can be user-friendly and accurately analyzed by

clinicians to extend the use of MMC technology in clinical measurement.
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Chapter 4

Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless
Motion Capture (MMC) System: A Pilot Study

ABSTRACT

A customized Markeress Motion Capture (MMC) system developed in iPad Pro with a

LiDAR scanner was programmed using Xcode. The aim of developing such system is

to serve as a portable and user-friendly MMC system for motion capturing which might

further enhance the generalizability of MMC technology in the rehabilitation. To

investigate the validity and reliability of this MMC system in measuring the kinematic

parameters, this pilot study was conducted. In this study, the performance of measuring

the active range of motion (AROM) and the angular waveform of the upper-limb-joint

angles of healthy adults performing functional tasks by the MMC system was examined.

Thirty healthy participants were asked to perform shoulder and elbow actions for the

investigator to take AROM measurements, followed by four tasks that simulated daily

functioning. Each participant attended two experimental sessions, which were held at

least 2 days and at most 14 days apart. A Vicon system and two iPad Pros installed with

our MMC system were placed at two different angles to the participants and recorded
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their movements concurrently during each task. The AROM and the angular waveform

of the upper-limb-joint angles. It is found that the iPad Pro MMC system

underestimated the shoulder joint and elbow joint angles in all four simulated functional

tasks. The MMC demonstrated good to excellent test-retest reliability for the shoulder

joint AROM measurements in all four tasks. Our results showed that the maximal

AROM measurements calculated by the MMC system had consistently smaller values

than those measured by the goniometer. An MMC in iPad Pro system might not be able

to replace conventional goniometry for clinical ROM measurements, but it is still

suggested for use in home-based and telerchabilitation training for intra-subject

measurements because of its good reliability, low cost, and portability. Further

development to improve its performance in motion capture and analysis in disease

populations is warranted.

This chapter has been previously published by the author of this author as a scientific

manuscript in the journal “Archives of Physical Medicine and Rehabilitation” on

November 21%, 2023. The manuscript has been slightly formatted to fit the thesis

requirements. Access to the scientific paper: Lam, W. W., & Fong, K. N. (2023).

Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless
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4.1 INTRODUCTION

Due to recent advancements in motion analysis technology (Parks et al., 2019),

markerless motion capture (MMC) system via a mobile device has recently been used

for home-based rehabilitation and telerehabilitation (Finkbiner et al., 2017; Moral-

Munoz et al., 2021; Vincent et al., 2022). The system offers the advantage of easy setup

for motion capturing (mocap), facilitating measurements of active range of motion

(AROM) and motion kinematics. Compared with conventional goniometry and the

conventional marker-based mocap technology used in the laboratory, MMC allows

users to capture a more objective, lifelike and natural form of human motion in a user-

friendly and real-life environment.

However, most of the MMC systems in mobile devices are not specifically designed

for clinical measurements and have not undergone validity and reliability testing. For

example, smartphone videos have been used to analyze the symptoms of patients with

Parkinson’s Disease, but those videos were analyzed with sophisticated post-processing,

in contrast to an MMC system that could allow motion data to be exported and analyzed

directly (Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020). The current use

of mobile phone videos for determining patients’ physical performance still depends

heavily on prolonged post-processing to analyze movement kinematics.
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A recently developed system using a Light Detection And Ranging (LiDAR) scanner

installed on an iPhone and an iPad (Apple, Inc.) enables the detection of the depth of

the environment, which might enhance the detection of human joint positions (Dong &

Chen, 2017). The MMC system in mobile devices with a LiDAR scanner has also

become more user-friendly for mocap through a software development kit (SDK)

supported by the Apple software development platform (Farewik et al., 2022). However,

a previous study only compared the motion tracking by an iPad Pro with a LiDAR

scanner with a marker-based motion capture system from Vicon, to evaluate the lower

limb (Farewik et al., 2022). Only a limited number of studies using the MMC approach

have been done for the upper limb, even though that upper limb’s accurate measurement

is important for predicting the ability to perform activities of daily living (Gates et al.,

2016). To date, it is uncertain whether an MMC system in mobile devices with a LIDAR

scanner is accurate for measuring upper limb AROM and kinematic movement. Since

it is also suggested that the different viewing angles of an MMC system might affect its

capturing accuracy — that is, the limbs might be blocked by certain body parts during

movement (Sarafianos et al., 2016) — this study investigated the validity and test-retest

reliability of a customized MMC system using two iPad Pros with a LiDAR scanner

from two different viewing angles for measuring the 1) AROM and 2) angular
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waveform of the upper limb joint angles during the performance of functional tasks by

the healthy participants.

4.2 METHODS

This study adopted a criterion-based and concurrent validity, test-retest reliability
design. A marker-based system by Vicon (Oxford Metrics Group, Oxford, UK) was
used as the criterion measurement (Albert et al., 2020; Karunarathne et al., 2014;
Saggio et al., 2020; Scano et al., 2020), and conventional goniometry was used for the
manual AROM measurement of a single joint in a static position to determine

concurrent validity.

4.2.1 Angle extractions from our MMC system

The normalized coordinates of the angles were relative to the center of the pelvis and
defined as the origin of the ARKit’s coordinate system. The adjacent 3D joint
coordinates extractions calculated the angles of interest (AOI). Angle 6 was

calculated by the three joints — shoulder, elbow, and wrist — namely, A4,B,C € R3or
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associated vectors 7; = A — B and v, = C — B, with the formula

171 'vz

0 = arccos——
[[v1]l2]1v2]]2

4.2.2 Sample Size Consideration

A two-tailed comparison at a type I error rate of 0.05, with 80% power, was assumed.
Consideration of the data discard rate and the results of a power analysis based on the
statistical parameters using G*Power3.1.9.2 (Faul et al., 2007) yielded a recommended
sample size of approximately 30. The effect size was calculated to be 0.71, which is

between a medium (0.5) and large effect (0.8) (Fidler & Cumming, 2013).

4.2.3 Participants

Adults from the community were recruited through a poster advertisement. Participants
had to be at least 18 years old and without any history of upper limb or spinal disabilities.
Informed written consent was obtained from all participants prior to the experiment.
Ethical approval was obtained from the Human Subjects Research Ethics Committee

of the Hong Kong Polytechnic University (Ref No.: HSEARS20220530001).
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4.2.3.1 Inclusion criteria

To be eligible to take part in the study, participants had to 1) be adults aged 18 years

old or above, 2) have no history of previous neurological or orthopedic diseases and no

congenital disorders of the upper extremities and/or spine, 3) have adequate cognitive

ability to understand instructions, and 4) be able to engage in at least a one-hour

experimental session.

4.2.3.2 Exclusion criteria

Participants were excluded from participating in the study if they 1) were medically

unstable, 2) had previous injuries or medical conditions of their upper extremities or

spine that affected their upper limb functions, or 3) were severely allergic to glue or

sellotape, both of which were essential for the placement of markers on the body.

4.2.4 Experimental setup

A total of nine Vero cameras were used in the Vicon motion capturing (mocap) system.

For the MMC system recording, two iPad Pros were used, each mounted on a 1.5-m
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tripod stand and placed 1.8 m from the subject — one in front of the subject and the other

to the person’s side. We assumed that the effect of the iPad Pro mocap would be similar

for its position on either the left or right lateral side of the body. The left side has been

chosen as the convenient side, so we placed the second iPad Pro on the left lateral side

at 35 degrees to the subject.

4.2.5 Equipment

4.2.5.1 Vicon system

The Vicon 3D mocap system with nine infrared high-speed cameras (Vicon, Oxford

Metrics Ltd., Oxford, UK) and a sampling frequency of 120 Hz was used as the gold

standard. The PlugInGait FullBody model for the upper arm (UPA) and forearm (FRM)

was applied in this study, and the Vicon Nexus software (version 2.11) was used for

data capture. A total of 23 markers were attached to the anatomical landmark positions

on the participants’ trunk and arms, according to the UPA and FRM models in the

system. For markers attached on the trunk, a magnet was first directly attached to the

skin of the landmark position on the participant, and then a reflective marker with
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magnet was attached on the clothes such that it adhered to the magnet that was stuck

on the skin. Therefore, the marker placings on the truck did not move even if the clothes

were moving. The marker positions are illustrated in Figure 4.1a and Figure 4.1b.

Figure 4.1a Anatomical landmarks of marker positions (Back View)
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Figure 4.1b Anatomical landmarks of marker positions (Front View)

4.2.5.2 MMC system

The MMC system used to perform mocap in this study was developed using Xcode on

the basis of the ARKit6 and RealityKit framework supported by an iPad Pro with a

LiDAR scanner. The detection of the human body and the joint positions were extracted

and realized through computer-vision algorithms using convolutional neural networks

(CNNs). A total of 14 3D body-joint positions including the shoulder joints, elbow

joints, wrist joints, pelvic joints, knee joints, hip joints, ankle joints, spinal cord

segments C7 and T12 and the timestamp of the motion detection were captured by our
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motion-tracking platform. The capture frequency of the MMC system was set at 30 Hz.

4.2.6 Procedure

All participants were required to remove their jackets before the experiment. The Vicon

system with nine infrared high-speed cameras and the MMC system installed on two

iPad Pros that were placed at two different angles to the participant (one from the front,

or “iPad Frontal”, and one from the lateral left side, or “iPad Lateral”) recorded each

participant’s movements simultaneously (Figure 4.2). The experiment consisted of two

parts: 1) measurement of the AROM of the participant’s shoulder joint and elbow joint,

and 2) measurement of the angular waveform and the shoulder and elbow angles at the

targeted position in simulated upper-limb functional tasks. The participants performed

each task with their right hand followed by their left hand.
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Figure 4.2 Environmental setup for the experiment: A total of nine Vero cameras were
used in the motion capturing. Two iPad Pros, each placed on a 1.5-m tripod stand, were
used in the MMC recording. One iPad Pro was placed 1.8 m in front of the subject and
the other was placed laterally to the subject

In the first part of the experiment, each individual was instructed to perform four static
positions: shoulder flexion, shoulder abduction, elbow flexion, and elbow extension.
When each participant reached the maximal AROM for each movement of the targeted
joint, they were instructed to maintain the position for AROM measurement by a trained

occupational therapist.

In the second part, the participants were instructed to perform four sets of upper-limb
daily tasks. They were instructed to maintain their positions when the target positions

were reached. Task 1 was a hand-to-mouth task that simulated feeding; task 2 was a
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hand-to-head task that simulated grooming; task 3 was a hand-to-waist task that

simulated the action of putting on trousers after toileting; and task 4 involved putting

one hand to the contralateral underarm, which is a simulation of cleaning the body.

Figure 4.3 illustrates the hand-to-head task.

Figure 4.3 Hand-to-head task

Each participant attended two sessions of the experiment for the test-retest reliability

evaluation. The second session of the experiment repeated the same procedure that had

been done in the first session, and the two sessions were at least 2 days apart but at most

14 days apart. To reduce the intra-subject variability, each participant repeated each task
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three times. The first trial served as a practice, and the mean values of the second and

third trials were used for data analysis.

4.2.7 Data Processing and Analysis

Any mocap data that could not be exported successfully in the Comma-Separated

Values (CSV) format from either of the systems were filtered out in the data analysis

session. The mocap data in both the iPad MMC and the Vicon systems were filtered

and converted to 300Hz by MATLAB R2020a. The angular waveforms between the

two systems were synchronized using a cross-correlation-based shift-synchronization

technique.

The coefficient of multiple correlation (CMC) and the root-mean-squared error (RMSE)

values were used to assess the validity of the angular waveforms generated by our iPad

MMC and Vicon systems. CMC value below 0.3 indicates a weak correlation, while

CMC value ranges 0.3 to 0.5 indicates a moderate correlation and the value of 0.5 to

0.7 indicates a strong correlation, a CMC value of 0.7 or above indicates a very strong

correlation (Lee, 1971). The values of the angles at maximal AROM for the shoulder
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and elbow joints measured by the iPad (Frontal) and iPad (Lateral) were compared with

those from the Vicon system and those from the manual goniometry, using paired z-

tests with p<0.05. The concurrent validity of the iPad MMC in terms of maximal

AROM measurement was further analyzed by the Pearson’s r correlation and the

intraclass correlation coefficients (ICC) (2,k) (two-way random effects, absolute

agreement) among the three approaches. A comparison of the angles when the target

position was achieved for the upper limb joints in the simulated tasks was made only

between the Vicon and the MMC systems.

The CMC and RMSE values of the waveforms generated by the iPad MMC in the first

and second sessions were compared for the evaluation of test-retest reliability. The ICC

(two-way mixed-effects, absolute agreement) was used to evaluate the reliability of the

MMC system in measuring the maximal AROM of the shoulder and the elbow during

the simulated tasks. Values of ICC were referenced to indicate poor, moderate, good,

and excellent agreement, respectively (Koo & Li, 2016). All analyses were performed

using IBM SPSS 26, and the CMC and RMSE values were generated by MATLAB

R2020a.
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4.3 RESULTS

Thirty-nine participants were recruited, but one dropped out after the first session.

Participants with any data files that failed to be exported were regarded as having

missing data and were excluded from the data analysis. After eliminating the

participants with missing data, we had a total of 1,440 data sets from 30 participants in

the final analysis (Figure 4.4).

Subjects came for first session of xperiment
N=39)

- Subjects dropped out

N=1}

.

Subjects came for second sessian of experiment
{N = 38)

Subjects who had a1 lesst one
®  dauta file tha filed to be
exported from #Pad Pro (N = 5)

Subjects who had a full set of data files for post
processing (N = 30}

-Subjects for wham an angular
waveform faled to be
generated due to blockage of
markers in the Vicon motion
capturing (N « &}

*Note: one sudject met both

'y the above situations

Subjects that included in the statistical analysis
(N =30)

Figure 4.4 Flow chart of the study

The demographics of the participants are shown in Table 4.1.
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Table 4.1 Characteristics of the participants

Characteristics: Study Variables Participants (n = 30)
Age (years)
Range 18 - 65
Mean (SD) 28.9 (11.8)
18 — 30 years old (%) 76.7
31— 50 years old (%) 13.3
51 years old or above (%) 10
Gender (%)
Male 40
Female 60
Height (cm)
Range 152 - 178
Mean (SD) 165.5 (7.7)
Dominant Hand (%)
Right 100
Left 0

The mean values of the maximum AROM measurements by the iPad (Frontal), the iPad

(Lateral), the Vicon system, and the goniometry are shown in Tables 4.2 and 4.3.
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Table 4.2 Validity of the AROM of the selected actions measured by iPad (Frontal)

Action Mean AROM
Comparison 1 (iPad and Goniometer) Comparison 2 (iPad and Vicon)
iPad Goniometer Vicon Mean P (G, r ICC Mean P(V, r ICC
(Frontal) Difference iPad) Difference iPad)
(iPad — G) (iPad - V)
Right
Shoulder Flex 154.7 (9.0) 162.6 (9.8) 155.4 (12.9) -7.9 (9.0) <0.01 0.55* 0.40%* -0.7 (10.0) 0.69 0.63* 0.59*
Shoulder Abd 162.0 (7.9) 172.7 (8.2) 161.6 (13.4) -10.7 (4.3) <0.01 0.86% 0.43* 0.46 (8.8) 0.78 0.78* 0.69*
Elbow Flexion 133.7 (5.4) 147.3 (4.4) 144.2 (10.9) -13.6 (5.7) - <0.01 0.06
0.01 0.32 0.03 -10.5(11.2) 0.20 5
Elbow Extend 10.7 (8.2) -5.7 (5.6) 21.2(9.3) 16.5(8.9) <001 020 0.06 10,5 (8.1) <0.01 0.58% 0.34
Left
Shoulder Flex 156.8 (10.2) 151.6 (9.4) 157.6 (12.2) 5.2(7.9) 0.56 -0.24 0.45% -0.8 (9.5) 0.65 0.65* 0.66*
Shoulder Abd 161.1 (11.8) 173.6 (8.5) 161.5(12.6) | -12.5(11.3) <0.01  0.42%* 0.23* -0.3 (15.0) 0.90 0.25 0.33*
Elbow Flex 131.6 (6.3) 145.3 (4.1) 146.2 (9.2) -13.7(5.7)  <0.01 0.47* 0.12% -14.6 (8.8) <0.01 0.41* 0.18%*
Elbow Extend 13.1(9.2) -6.6 (6.3) 22.9(7.0) 19.7(10.2) <0.01  0.17 0.08* -9.8 (9.8) <0.01 0.63* 0.28%*

Arom: Active range of motion
Note: *pair t test, 2pearson’s r correlation, *p<0.05
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Table 4.3 Validity of the AROM of the selected actions measured by the iPad (Lateral)

Action Mean AROM
Comparison 1 (iPad and Goniometer) Comparison 2 (iPad and Vicon)
iPad Goniometer Vicon Mean P (G, ay ICC Mean #P(V, ar ICC
(Lateral Difference iPad) (2,k) Difference iPad) (2,k)
Side) (iPad — G) (iPad — V)
Right
Shoulder Flex 152.6 (9.4) 162.6 (9.8) 155.4 (12.9) -10.1 (5.5) <0.01  0.83* 0.48%* -2.9 (14.0) 0.27 0.23 0.20
Shoulder Abd 159.9 (8.6) 172.7 (8.2) 161.6 (13.4) 12.8 (5.5) <0.01 0.78%* 0.33* -1.6 (10.7) 0.41 0.61% 0.55*
Elbow Flex 130.9 (4.4) 147.3 (4.4) 144.2 (10.9) -16.4 (4.7) <0.01  0.45* 0.06* -13.3 (11.1) <0.01 0.17 0.04
Elbow Extend 10.9 (8.3) -5.7 (5.6) 21.2(9.3) -16.6 (10.2) <0.01 -0.04 0.01 -10.3 (11.2) <0.01 0.21 0.12
Left
Shoulder Flex 154.2 (9.6) 151.6 (9.4) 157.6 (12.2) 2.5(5.0) 0.78 -0.29 0.52%* -3.5(12.2) 0.13 0.40* 0.30*
Shoulder Abd 163.3 (7.6) 173.6 (8.5) 161.5 (12.6) -10.3 (4.5) <0.01  0.85* 0.40%* 1.8 (10.6) 0.36 0.54* 0.50*
Elbow Flex 129.7 (4.6) 145.3 (4.1) 146.2 (9.2) -15.5(3.9) <0.01  0.61* 0.11% -16.4 (8.5) <0.01 0.41%* 0.12*
Elbow Extend 11.6 (11.6) -6.6 (6.3) 22.9(7.0) 18.2 (9.6) <0.01  0.37* 0.08%* -11.3 (8.3) <0.01 0.57* 0.28*

AROM: Active range of motion

Note: *pair t test, ®pearson’s r correlation, *p<0.05
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Measurements by the iPad MMC on both sides were compared separately with those

of the goniometry and the Vicon system (Table 4.2 and 4.3). For the iPad (Frontal), the

paired #-test results suggested that there was no significant difference between the

MMC and the Vicon measurements in terms of the measurement of maximal AROM in

all of the shoulder actions, for both the left and right sides (the mean difference [MD]

=—0.7° and 0.46° for right shoulder flexion and abduction, respectively; and MD = —

0.8° and —0.3° for left shoulder flexion and abduction, respectively). The

measurements of maximal AROM for elbow flexion and extension produced by the two

MMC systems, on both sides, were significantly different from those obtained by the

Vicon system (Frontal: MD = —10.5° for both the right elbow flexion and the right

elbow extension; and MD = —14.6° and —9.8° for left elbow flexion and extension,

respectively). All of the measurements using both the iPad (Frontal) and iPad (Lateral)

were also significantly different from the measurements obtained by the manual

goniometer, except for left shoulder flexion (Frontal: MD = 5.2°; Lateral: MD = 2.5°).

The ICC values suggested that there was a poor agreement between the MMC system

and the goniometer in all of the measurements, except for the left shoulder flexion

measured by the iPad (Lateral) (ICC = 0.52).

Overall, compared with the measurements by the iPad (Lateral), the measurements by
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the iPad (Frontal) demonstrated a higher CMC value and a lower RMSE value for both

the shoulder and elbow joints in the four functional tasks (Table 4.4). Regarding angle

measurements, significant differences were found in all of the joint angles at the

targeted positions measured by both the MMC and the Vicon systems, except for the

measurement of left shoulder abduction/adduction during the hand-to-head task

measured by the iPad (Lateral) (MD = 4.1°). The MMC system underestimated both

the shoulder and elbow angles during the functional tasks, while the mean difference

between the iPad (Frontal) and the Vicon system was generally smaller (the MD ranged

from 5.2° to—25.8°) than that between iPad (Lateral) and the Vicon system (MD ranged

from 4.1° to -33.3°). A poor-to-moderate agreement was found between the

measurements obtained from the iPad (Frontal) and from the Vicon (ICC values

between 0.14 and 0.75) systems in all four tasks (Table 4.5).
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Table 4.4 Mean coefficient of multiple correlation (CMC) and mean of root mean square error (RMSE) of the angular waveform between

the angular waveform of the MMC system and the Vicon system

iPad (Frontal) iPad (Lateral)

. CMC RMSE CMC RMSE
Action (SD) (SD) (SD) (SD)
T1 Hand to mouth
Right
Shoulder Flex/Extend 0.69 (0.12) 15.82 (6.91) 0.58 (0.17) 21.36 (7.63)
Shoulder Abd/Add 0.72 (0.14) 7.93 (2.70) 0.63 (0.10) 10.05 (2.91)
Elbow Flex/Extend 0.65 (0.17) 21.68 (5.63) 0.66 (0.12) 23.40 (6.72)
Left
Shoulder Flex/Extend 0.62 (0.12) 17.63 (7.64) 0.65 (0.05) 26.84 (6.21)
Shoulder Abd/Add 0.65 (0.13) 9.20 (2.92) 0.61 (0.07) 9.17 (2.88)
Elbow Flex/Extend 0.69 (0.10) 27.84 (7.76) 0.65 (0.08) 32.20 (8.59)
T2 Hand to head
Right
Shoulder Flex/Extend 0.63 (0.11) 19.25 (8.41) 0.54 (0.12) 41.72 (11.31)
Shoulder Abd/Add 0.65 (0.09) 16.42 (6.17) 0.61 (0.06) 23.56 (6.75)
Elbow Flex/Extend 0.48 (0.09) 36.77 (9.47) 0.39 (0.08) 49.68 (16.77)
Left
Shoulder Flex/Extend 0.69 (0.09) 16.34 (4.22) 0.68 (0.08) 25.92 (6.35)
Shoulder Abd/Add 0.62 (0.10) 10.12 (5.92) 0.63 (0.11) 17.41 (5.56)
Elbow Flex/Extend 0.52 (0.07) 39.84 (9.65) 0.51 (0.08) 38.80 (11.93)
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T3 Hand to waist
Right

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
T4 Hand to contralateral underarm
Right

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend

0.51 (0.07)

0.66 (0.07)
0.50 (0.07)

0.50 (0.06)
0.63 (0.06)
0.49 (0.07)

0.73 (0.10)

0.74 (0.08)
0.71 (0.10)

0.68 (0.10)
0.73 (0.07)
0.74 (0.07)

18.23 (7.46)

9.81 (3.31)
28.92 (6.36)

13.70 (2.74)
12.13 (3.56)
32.33 (7.82)

14.61 (3.26)

17.14 (5.93)
11.52 (4.70)

16.22 (3.12)
11.23 (2.69)
14.77 (3.98)

0.48 (0.11)

0.57 (0.10)
0.51 (0.09)

0.55 (0.12)
0.62 (0.07)
0.51 (0.09)

0.70 (0.13)

0.76 (0.08)
0.71 (0.11)

0.66 (0.12)
0.75 (0.06)
0.72 (0.07)

37.43 (8.64)

18.70 (4.22)
30.92 (7.46)

14.28 (2. 32)
16.89 (3.24)
39.66 (6.79)

2227 (2.73)

15. 78 (3.30)
26.56 (5.61)

32.85 (5.58)
14.72 (3.45)
8.97 (2.16)
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Table 4.5 Validity of iPad (Frontal) and iPad (Lateral) compared with the Vicon system in four simulated functional tasks in terms of the

angle at shoulder flexion, shoulder abduction, and elbow flexion

Vicon iPad Pro iPad Pro
(Frontal) (Lateral)
Comparison with Vicon Comparison with Vicon
Mean Mean Mean p r ICC | Mean Angle Mean p r ICC
Actions Angle (SD) | Angle (SD) Differenc (SD) Difference
e (iPad — (iPad - V)
V)
Task 1. Hand to mouth
Right
Shoulder Flex/Extend 49.5(13.0) | 36.0(14.2) -13.5 <0.01  0.77%  0.52% | 32.4(14.3) -17.1 <0.01 0.70* 0.39%
Shoulder Abd/Add -5.6 (13.8) -0.4 (10.8) 5.2 <0.01 0.83* 0.74%* 1.4 (11.8) 7.0 <0.01 0.62%* 0.54%*
Elbow Flex/Extend 127.7(7.9) | 121.3(11.5) 6.3 <0.01 0.40* 032* | 117.0(11.9) -10.6 <0.01 0.30 0.18
Left
Shoulder Flex/Extend 50.7(10.8) | 37.4(11.8) -13.3 <0.01  0.55%  033* | 35.7(12.6) -15.0 <0.01 0.60* 0.33%
Shoulder Abd/Add -105(14.7) | -3.7(12.2) 6.8 <0.01  0.78*  0.69* 3.2 (11.3) 7.3 <0.01 0.80* 0.68%
Elbow Flex/Extend 128.4 (6.6) 117.3 (6.6) -11.1 <0.01 0.57* 0.24%* 117.5 (8.0) -10.9 <0.01 0.22 0.10
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Task 2. Hand to head
Right

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
Task 3. Hand to waist
Right

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add

Elbow Flex/Extend

48.6 (14.2)
119.4 (13.3)

121.4 (7.9)

53.1 (15.0)
122.6 (14.3)

119.2 (7.0)

-19.7 (13.8)
43.0 (9.5)

96.3 (10.1)

-12.9 (15.1)
42.5(8.7)

99.1 (10.1)

Task 4. Hand to contralateral underarm

Right

35.6 (14.5)
112.3 (12.9)

95.6 (8.9)

39.4 (12.6)
128.2 (16.4)

100.5 (5.4)

5.6 (9.8)
36.6 (8.7)

79.6 (9.0)

3.5(11.1)
34.0 (7.5)

79.8 (7.1)

-13.0

-7.1

-25.8

-13.7

5.6

-18.6

14.1

-16.7

9.4

-8.5

-19.4

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

0.79%*

0.83*

0.40%*

0.47*

0.80*

0.78%*

0.83*

0.75%

0.78*

0.88*

0.58*

0.81*

0.56*

0.73*

0.70%*

0.31%*

0.75%

0.14*

0.46*

0.60*

0.31%*

0.67*

0.37*

0.22%

33.8(13.7)
108.0 (12.1)

88.1(7.5)

35.9 (13.6)
126.7 (13.4)

91.5(7.1)

4.1 (8.1)
36.3(9.2)

77.7(1.3)

-5.1(13.0)
34.5 (8.3)

78.8 (5.8)

-14.8

-11.5

-33.3

-17.2

4.1

-27.7

15.6

-18.6

7.7

-8.0

-20.3

<0.01

<0.01

<0.01

<0.01

0.05

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

0.75%

0.47*

0.18

0.37*

0.69*

0.25

0.62*

0.72*

0.70*

0.86*

0.60*

0.59*
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0.21*
0.67*
0.03

0.28*
0.58*
0.21%*

0.74*
0.42*
0.13*



Shoulder Flex/Extend

Shoulder Abd/Add

Elbow Flex/Extend

Left

Shoulder Flex/Extend

Shoulder Abd/Add

Elbow Flex/Extend

46.7 (13.4)
-17.8 (15.9)

109.4 (6.6)

452 (11.7)
-18.5(9.2)

106.9 (9.3)

34.1 (11.0)
3.0 (6.3)

104.1 (8.7)

30.9 (8.9)
-10.6 (7.8)

100.1 (9.5)

-12.6

14.8

-5.3

-14.3

7.9

-6.7

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

0.87*

0.64*

0.67*

0.88%*

0.89*

0.93*

0.56*

0.26*

0.53*

0.44%

0.62*

0.74%*

33.2(10.5)
32(5.8)

100.0 (8.6)

28.7 (7.6)
-7.6 (6.4)

101.9 (10.4)

-13.5

14.6

-9.4

-16.5

11.0

-5.0

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

0.79*

0.72%*

0.54*

0.72%

0.67*

0.70%*

0.47*
0.27*
0.30*

0.28*
0.32*
0.62*

NOTE: *pair t test, ®pearson's r correlation, *p<0.05
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The CMC and RMSE values of the angular waveforms and the ICC values (two-way

mixed-effects, absolute agreement) of the AROM at the targeted positions are shown in

Table 4.6.
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Table 4.6 Test-retest reliability of iPad (Frontal) and iPad (Lateral) between the two sessions in terms of the CMC, RMSE, and ICC of the joints

at the targeted position

iPad (Frontal) iPad (Lateral)
Action CMC RMSE IcC CMC RMSE IcC
Right (AROM)
Shoulder Flex NA NA 0.42%* NA NA 0.48%*
Shoulder Abd NA NA 0.55%* NA NA 0.59*
Elbow Flex NA NA 0.02 NA NA 0.32*
Elbow Extend NA NA 0.04 NA NA 0.11
Left (AROM)
Shoulder Flex NA NA 0.63* NA NA 0.80*
Shoulder Abd NA NA 0.17 NA NA 0.50*
Elbow Flex NA NA 0.13 NA NA 0.35*
Elbow Extend NA NA 0.23 NA NA 0.16
T1 Hand to mouth
Right
Shoulder Flex/Extend 0.87 12.12 0.95* 0.82 9.67 0.84*
Shoulder Abd/Add 0.91 7.95 0.96* 0.87 11.33 0.87*
Elbow Flex/Extend 0.93 10.34 0.85* 0.76 14.52 0.73*
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Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
T2 Hand to head
Right

Shoulder Flex/Extend
Shoulder Abd/Add

Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend
T3 Hand to waist
Right

Shoulder Flex/Extend
Shoulder Abd/Add

Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend

0.92
0.88
0.70

0.89
0.84

0.92

0.90
0.71
0.56

0.82
0.93

0.64

0.88
0.42
0.60

9.52
7.28
14.23

7.26
13.25

8.91

8.36
17.48
19.30

9.87
12.31

15.66

7.83
12.16
10.99

0.88*
0.96*
0.56*

0.86*
0.71*

0.80*

0.93*
0.78*
0.34*

0.78*
0.89*

0.80*

0.87*
0.57*
0.66*

0.90
0.89
0.77

0.81
0.73

0.67

0.92
0.76
0.32

0.80
0.85

0.41

0.89
0.65
0.53

10.41
6.77
11.79

8.63
17.41

16.20

7.31
11.26
23.84

9.53
11.42

31.78

6.69
13.23
15.92

0.81*
0.93*
0.80%*

0.86*
0.83*

0.45*

0.89*
0.88*
0.45*

0.83*
0.78*

0.49*

0.83*
0.78*
0.62*
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T4 Hand to contralateral underarm
Right

Shoulder Flex/Extend

Shoulder Abd/Add

Elbow Flex/Extend
Left

Shoulder Flex/Extend
Shoulder Abd/Add
Elbow Flex/Extend

0.88
0.84

0.49

0.80
0.76
0.83

5.74
5.62

32.14

9.43
10.20
9.69

0.82*
0.87*

0.27

0.71%*
0.65%
0.72%*

0.88
0.88

0.81

0.93
0.64
0.89

7.41
7.86

13.60

6.51
17.85
10.52

0.87*
0.86*

0.78*

0.84*
0.51%*
0.91%*

NOTE: *P<0.05
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The ICC values for all of the AROM measurements were below 0.5, which indicates

poor reliability, except for right shoulder abduction (iPad Frontal: ICC = 0.55; iPad

Lateral: ICC = 0.59) and for left shoulder flexion, which demonstrated the highest ICC

values in the iPad (Frontal) and the iPad (Lateral) measurements (Frontal: ICC = 0.63;

Lateral: ICC = 0.80). Regarding the measurement of joint angles in the four simulated

functional tasks, all of the ICC values from the iPad (Frontal) were above 0.7, which

indicates good reliability, except for left elbow flexion/extension in tasks 1, 2, and 3

(ICC = 0.34; 0.56; 0.66, respectively), right elbow flexion/extension in task 4 (ICC =

0.27), and left shoulder abduction/adduction in tasks 2 and 4 (ICC = 0.57 and 0.65,

respectively). Excellent reliability (ICC > 0.9) was found for right shoulder

flexion/extension, right and left shoulder abduction/adduction in task 1, and left

shoulder flexion/extension in task 2. Moderate correlation was found in all of the

waveforms produced by the iPad (Frontal) (the CMC values ranged between 0.42 and

0.93), except for the right elbow flexion/extension measurement in task 2 and the left

elbow flexion/extension measurement in task 3.

4.4 DISCUSSION
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Our study shows that the iPad MMC system generally underestimated the shoulder and

elbow joint angles. The maximal AROM measurements calculated by the MMC were

approximately 10 to 15 degrees lower than those measured by the goniometer. The

MMC system was found to have estimated the shoulder AROM better than the elbow

AROM. One reason for the significant difference in the measurements of the maximal

elbow extension range, which probably was a systematic error, could have been the

MMC system’s inability to detect elbow joint hyperextension, which usually happened

when the participants were instructed to extend their elbows to the maximum range. As

elbow joint hyperextension is a minor change in joint position, it might not be

detectable by iPad cameras spaced 1.8 m apart, whereas it might be noticed by an

assessor who places a goniometer directly on the arm of the subject at a close distance.

In addition, we observed that when the participants performed a shoulder flexion or

abduction to their maximum range, their clothes were usually tilted upward on the side

of the raising arm. The MMC system tended to incorrectly recognize the wrinkled of

the clothes as a flexion of the trunk, and that error caused a reduction in the estimated

shoulder joint angle because it was calculated in relation to the trunk position. Our

results are consistent with those of another study, in which an MMC system experienced

the problem of a clothes blockage that tended to lead to a distortion of the image and
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hence to an inaccurate estimation of posture (Sarafianos et al., 2016).

Our findings revealed that the MMC had underestimated both the shoulder and elbow

angles in all four simulated functional tasks when compared with those measured by

the Vicon system. The patterns of the angular waveforms between the MMC and the

Vicon systems were moderately similar. Although there was a significant measurement

difference between the two systems, the mean differences of the angles for the shoulder

flexion/extension were consistently kept at 9.4 to 14.1 degrees, and those for the

shoulder abduction/adduction held at 5.2 to 14.8 degrees. The moderate-to-strong

correlation between the shoulder measurements produced by the MMC and the Vicon

systems suggests that the joint-position data acquired by the MMC might have the

potential to be further processed and normalized by an algorithm during post-

processing to enhance the accuracy of its joint-angle predictions (Desmarais et al.,

2021). We found that the tasks that involved less shoulder movement, such as task 1

(the hand-to-mouth task) and task 4 (the hand-to-contralateral-underarm task),

generated a greater accuracy for the elbow-joint angle. That greater accuracy might be

explained by a relatively steady shoulder-joint position, which would cause fewer

disturbances and thus allow a more accurate recognition of the elbow and wrist

positions for the angle calculation. Furthermore, task 2 (the hand-to-head task) and task
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3 (the hand-to-waist task) might have been prone to inducing a blockage of the waist

joint if subjects accidentally put their hand behind their waist or head. A blockage of

the waist position would cause errors in the calculation of the elbow joint angle and

hence a poorer agreement between the elbow joint angle measurement by the MMC

and that obtained by the Vicon in these two tasks.

Placing the iPad on the lateral left side generally did not improve the accuracy of the

measurement of the left upper-limb angle for either the AROM measurement or the

simulated functional tasks. That inaccuracy may have arisen because our MMC system

used the pelvis as the reference point. Capturing the human image from a side view

may have produced an incomplete viewing angle of the right iliac crest, resulting in

errors in the identification of the torso position and therefore incorrect calculations of

the upper-limb-joint angle. The accuracies of the angle measurements for the right

upper limb calculated by the iPad (Lateral) also were lower. One possible reason is that

the shoulder and elbow joints on the right side were occasionally blocked by clothing,

which caused a misidentification of the joint position, likely due to the MMC system

having lost its tracking during the movement. This finding and plausible explanation

are consistent with the results of another study, in which an iPad MMC system that was

developed using ARKit 5 produced better motion capturing when it was placed at the
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frontal side of the participants (Reimer et al., 2022).

Our MMC system demonstrated good-to-excellent test-retest reliability in detecting the

shoulder AROM 1in all four tasks. The system’s lower reliability in detecting the elbow

AROM compared with that of the shoulder suggests that the MMC provides greater

stability in detecting the shoulder joint position. Our reliability findings imply that the

MMC system is able to reproduce the motion data and might be applicable in analyzing

motion kinematics and in detecting abnormal or symptomatic movement patterns

between healthy and disease populations (Takeda et al., 2021).

4.4.1 Study Limitations

First, as most of our participants were between 18 and 30 years old, the results may not

be representative of populations of other age ranges. Furthermore, although the desired

data-acquisition procedure required the participants to wear an identical set of tight

clothing in the two sessions, the compliance varied. The different sets of clothes that

some participants wore might have affected the test-retest reliability of the MMC

because the system might have misidentified a wrinkle in the clothes as a body trunk
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segment. Finally, all of the maximal AROM measurements from both the MMC and

the Vicon systems were reported as the largest values that the systems obtained during

the actions performed in the maximal AROM measurement sessions, but those maximal

AROM angles might not have been taken at the same point in time as those used by the

goniometer measurements.

4.5 CONCLUSIONS

Our findings showed that the iPad MMC system, despite its low cost and portable

nature, generally underestimated the shoulder and elbow AROM. The angle

inconsistency between the measurements obtained by the MMC and the goniometry

suggest that the MMC system might not currently be a good replacement for

goniometry in clinical use. Nevertheless, the system has satisfactory test-retest

reliability in terms of the angular waveforms and joint angles in the simulated

functional tasks. Further research on improving the accuracy of MMC systems and

investigating their applications for disease populations is warranted.
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CHAPTER S

UPPER LIMB KINEMATIC MEASUREMENT USING
MARKERLESS MOTION CAPTURING (MMC) IN STROKE
SURVIVORS: A CROSS-SECTIONAL EXPERIMENTAL STUDY
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Chapter 5

Upper limb kinematic measurement using markerless motion capturing (MMC) in

stroke survivors: A cross-sectional experimental study

ABSTRACT

Introduction: With advances in technology, markerless motion capture (MMC)

technology has emerged as a clinical measurement tool that can be used to assess the

physical performance of patients, so as to reduce the time-consuming tasks involved in

manual measurements for therapists. This study evaluates: 1) the differences in the

upper limb joint angles between stroke survivors with different functional levels and

their healthy counterparts in controlled indoor and uncontrolled outdoor environments;

and 2) the relationship between the kinematic information obtained by MMC

technology through a customized MMC system using an iPad Pro and the scores of

manual motor assessments. Methods: A customized MMC system developed using an

iPad Pro with a LiDAR scanner was designed to capture the movements of the
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participants. The stroke survivors first underwent three upper limb assessments and

then performed seven sets of upper limb tasks with their non-hemiplegic side, followed

by their hemiplegic side. The healthy participants performed the same sets of tasks for

the motion capturing, with their dominant side followed by their non-dominant side.

All of the participants performed tasks in the laboratory first, then repeated them in

three randomly selected outdoor areas. The sensitivity and specificity of the selected

machine models were calculated in regard to the classification of upper limb motor

functional level based on the kinematic data from the MMC system on the iPad Pro.

Results: Fifty stroke survivors and 49 healthy adults were recruited. Significant

differences were found between the upper limbs of the hemiplegic and non-hemiplegic

sides of the stroke participants in most of the tasks. Significant positive correlations

were found between the results of the manual motor assessments and most of the

kinematic parameters. The results of the four selected machine learning models

revealed > 0.85 sensitivity in the stroke upper limb functional level classification.

Conclusion: The MMC system combined with a machine learning classification

algorithm can be used to provide precise data with which to evaluate the upper limb

functional recovery of stroke survivors. Further studies on the operation of the MMC

system by stroke survivors at home during remote therapy is warranted.
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5.1 INTRODUCTION

Stroke survivors often have to go through a long rehabilitation journey lasting months

or even years in order to regain motor functions (Hawkins et al., 2017). Their recovery

usually requires continuous monitoring from rehabilitation therapists so as to customize

tailored exercises that best fit their needs at different stages of motor recovery (Jung,

2017). Traditional practices undertaken by therapists, such as regular functional

assessments and the manual measurement of range of motion (ROM), require patients’

regular attendance in clinical settings (Poole & Whitney, 2001). With advances in

technology, markerless motion capture (MMC) technology has emerged as a clinical

measurement tool that can be used to assess the physical performance of patients, so as

to reduce time-consuming tasks in manual measurements conducted by therapists

(Mindermann et al., 2006). It is suggested that MMC technology can provide a precise

measurement of the movement kinematic of stroke survivors, as well as quick

screenings of motor performance (Knippenberg et al., 2017). Despite the way in which

MMC systems enable the tracking of movement kinematics, it is still unclear how

therapists can interpret kinematic data in order to translate the findings into an

understanding of the actual motor functions of patients (Lorenz et al., 2024). A previous

study has been conducted to capture the kinematic data of stroke survivors and healthy
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adults when performing tasks, through a stroke-specific performance-based impairment

index: the Fugl-Meyer Assessment (FMA). It was found that the movement data from

stroke survivors and healthy adults can be successfully classified with a rate of above

90% using machine learning classification models (Eichler et al., 2018). Therefore, the

MMC system has the potential to identify symptomatic movement patterns in stroke

survivors through artificial intelligence (Al)-assisted detection technology, in order to

monitor patients’ motor performance and activities of daily living, especially during

remote assessments as part of telerehabilitation (Fong & Kwan, 2020). Another study

also found that the correlation between the actual FMA scores and the movement data

captured by the MMC system in Kinect was high (Kim et al., 2016). Researchers have

responded positively to the utilization of MMC systems in remote assessments for

patients with stroke in regard to the high quality of kinematic data that they can provide

(Metcalf et al., 2013).

Although studies have shown a high correlation between kinematic data generated by

MMC systems and actual performance-based impairment indexes, the types of

standardized assessment used by these studies are very limited. The generalizability

involved in using MMC systems for other motor assessments among stroke survivors

is hence still uncertain. There is still inadequate evidence of how kinematic data can

help to distinguish between different stroke severity levels and reflect the actual
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functioning of patients. Moreover, most of the current research on using MMC systems

in assessments for stroke patients uses Kinect as the motion tracking device (Da Gama

etal., 2015). Kinect is a low-cost and comfortable device in regard to motion capturing

but it might not be user-friendly for patients in their home environments, given that it

requires the purchase and installation of the hardware device in the patients’ home (Lam

& Fong, 2022). Researchers have proposed the use of mobile devices as the MMC

system in remote rehabilitation assessments, which would not require the patients to

buy and calibrate extra hardware sensors for motion capturing (Aoyagi et al., 2022).

This further facilitates the accessibility of MMC technology for patients and hence their

access to telerehabilitation. However, little research has been carried out to investigate

the use of MMC systems in mobile devices for motor assessments among stroke

survivors (Lam & Fong, 2023) (Sohn et al., 2019). There is still a large research gap in

the application of MMC systems in mobile devices in terms of the evidence and whether

they can provide accurate measurements with which to evaluate the motor performance

of stroke survivors with different levels of severity. Therefore, this study evaluates: 1)

the differences in the upper limb joint angles between stroke survivors with different

motor functional levels and their healthy counterparts in both controlled indoor and

uncontrolled outdoor environments, measured by a customized MMC system on an

iPad Pro; and 2) the relationship between the kinematic information obtained by the

189



MMC system and the scores of manual motor assessments. This study also investigates

the sensitivity and specificity of the classification of upper limb motor functional level

using machine learning methods, based on the kinematic data from the MMC system

on the mobile device.

5.2 METHODS

5.2.1 Study design

This is a cross-sectional experimental study. Ethical approval was obtained from the

Human Subjects Research Ethics Committee of the Hong Kong Polytechnic University

(Reference no.: HSEARS20230214010). Prior to participation, all subjects were

informed about the objectives and procedures of the study. Subjects who met the

inclusion criteria provided informed written consent before taking part in the study. A

customized MMC system developed on an iPad Pro with an LIDAR scanner was

designed to capture the movement of the participants. The stroke survivors first

underwent three upper limb assessments conducted by a registered occupational

therapist. After the assessments, the stroke survivors were invited to perform seven sets

of upper limb tasks extracted from the stroke-specific upper limb assessments with their

non-hemiplegic side first, followed by their hemiplegic side. As the healthy participants
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would score full marks in all the assessments, they skipped the assessment sessions and

directly performed the same sets of tasks for the motion capturing with their dominant

side, followed by their non-dominant side. In order to simulate the use of the MMC

system in the home setting for telerehabilitation, participants were required to perform

the same sets of tasks in both the controlled indoor environment and again in three

randomly selected uncontrolled outdoor environments immediately after the indoor

experiment.

5.2.2 Sample size calculation

We assumed a two-tailed comparison with a type I error rate at 0.05, with 80% power.

A total of 50 stroke survivors and 50 healthy counterparts were thus required. The stroke

survivors were stratified according to the lower and higher functioning of their upper

limbs’ performance using the Functional Test for the Hemiplegic Upper Extremity

(FTHUE) (Fong et al., 2004). As a conservative estimation with a discard rate of 15%

due to bad data or outliers, according to our previous pilot study (Lam & Fong, 2023),

we presumed that 42 subjects in each group would be required for the final data analysis.

After conducting power analysis based on the statistical parameters, using the software

GPower3.1.9.2, the effect size was calculated as 0.74, which is between medium (0.5)
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and large (0.8) (Kang, 2021).

5.2.3 Participants

Stroke survivors were recruited from community self-help groups, whereas their

healthy counterparts were recruited by means of convenience sampling in the

community. To be eligible to take part in the study, participants were included if: 1)

they were adults aged 18 years old or above; 2) they had been diagnosed with a

hemiplegic stroke; 3) they did not have a history of previous neurological or orthopedic

diseases or congenital disorders of the upper or lower extremities or the spine; 4) they

possessed adequate cognitive ability to understand instructions; and 5) they were able

to engage in a one-hour experimental session. Participants in this study were invited to

participate in both the upper and lower limb motion capturing experiment. In this

chapter, we focus solely on reporting and discussing the results of the upper limb

experiment.
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Participants who met the following conditions were excluded: 1) medically unstable; 2)
previous injuries or medical conditions over the upper limbs or spine affecting their
upper limb functions (for healthy participants); 3) stroke survivors with a functional

level of two or below, as measured using the FTHUE.

5.2.4 Measurements

The Fugl-Meyer Assessment (FMA) scale is an index used to assess sensorimotor
impairment in individuals who have had a stroke (Kim et al., 2012). It is divided into
the upper extremity (FMA-UE) part and the lower extremity (FMA-LE) part, with a
maximum score of 66 and 34 points in the FMA-UE and the FMA-LE, respectively.

The upper limb sub-scores will be adopted in this study.

The Wolf Motor Function Test (WMFT) is an assessment that quantifies upper
extremity (UE) motor ability through timed and functional tasks. It consists of 21 items
and each item is rated based on a six-point scale. Patients score zero points if they do
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not attempt to perform an item with the upper extremity, while five points are given if

the movement appears to be normal (Taub et al., 2011).

5.2.5 Equipment

The MMC system

The MMC system used to perform motion analysis in this study was developed using

Xcode, with the ARKit6 and RealityKit framework supported by the iPad Pro with an

LiDAR scanner. Three iPad Pros were placed in front of, on the left side, and on the

right side of each participant, respectively, for the motion capturing process. The

detection of the human body and the joint position from the three angles were extracted,

integrated and realized through computer-vision algorithm convolutional neural

networks (CNNs). A total of 14 3D body joint positions and the timestamp of each

motion detection were captured by our motion tracking platform. The capturing

frequency of the MMC system was set at 30 Hz. A predefined humanoid model, which

is the Unity Humanoid Rig, was applied to estimate the joint position and kinematic

structure of the tracked subject (Reimer et al., 2022). The joint coordinates in 2D or 3D

for every captured frame were established and delivered by the algorithms. The

normalized coordinates were relative to the center of the pelvis and defined as the origin
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of the ARKit’s coordinate system (Reimer et al., 2022). The adjacent 3D joint
coordinate extraction calculated the angles of interest (AOI). Angle 6 was calculated

by the three joints, 4,B,C € R3, or associated vectors v, =A—Bandv, =C — B

V1V2

with the formula 8 = arccos
[lvall2]v2]l2

5.2.6 Experiment setup

Controlled indoor environment

The experiment was conducted at the assistive technology laboratory at the Hong Kong
Polytechnic University, where the floor was covered with vinyl to prevent it from being
slippery. For the motion capturing session, participants stood in front of a plain wall in
the same laboratory. One iPad Pro was placed two meters in front of the participant,
and another two iPad Pros were placed at the lateral left and right sides of the

participants, respectively.

Uncontrolled outdoor environment
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Three open areas at the Hong Kong Polytechnic University were chosen as uncontrolled

outdoor environments. A 2.5m X 2.5m area was marked. Two 1m X 1m anti-slip

mats were placed on both sides of the participants to prevent them from slipping. Three

iPad Pros placed on a tripod stand were brought to the locations. The iPad Pro

placement was the same as that in the laboratory environment.

5.2.7 Procedures

The experiment was divided into two sessions. The first session was for the upper limb

assessment. Stroke survivors who participated in the study were first assessed by the

investigator to determine their eligibility. Stroke survivors who satisfied the inclusion

criteria were further assessed using the FMA-UE and the WMFT for their upper limb

performance.

The motion capturing experiment took place in the second session. Participants were

instructed to perform seven sets of upper limb tasks, including: 1) Task 3 in the FMA-

UE, bringing the hand to the same side of the ear; 2) Task 4 in the FMA-UE, extending
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the arm to the opposite knee; 3) Task 6 in the FMA-UE, with shoulder flexion to 90

degrees with the elbow at 0 degree; 4) Task 8 in the FMA-UE, with shoulder abduction

0 degree to 90 degrees with the elbow fully extended and the forearm pronated; 5) Task

9 in the FMA-UE, with shoulder flexion beyond 90 degrees with the elbow at 0 degree

and the forearm in the mid position; 6) Task 3D in the FTHUE, holding a pouch; and 7)

Task 24 in the FMA-UE, which is a finger-to-nose test. All of the tasks in this session

were repeated five times. The stroke survivors were instructed to perform each task

with their unaffected side first, followed by their affected side. Figures 5.1a to 5.1g

illustrate the desired postures in the seven tasks.

Figure 5.1a Figure 5.1b Figure 5.1c Figure 5.1d

ﬁ
— £ A L

Figure 5.1e Figure 5.1f Figure 5.1g

Figures 5.1a to 5.1g Left to right, top to bottom, the desired postures for Task 1 to Task
7
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Healthy participants were not required to participate in the upper limb assessment. They

were instead instructed to perform the motion capturing session directly. They were

asked to perform the tasks with their dominant side first, followed by their non-

dominant side.

To simulate their performance in a natural environment, participants were invited to

repeat the motion capturing session in the unstructured environment after the capturing

session in the laboratory. Participants were randomly assigned to one of the three open

areas for the motion capturing, with an identical set of tasks, after their motion capturing

session in the laboratory.

5.2.8 Statistical analysis

Kinematic data, including completion time, the angular waveform of the movement,

and the angle of the joints when the target position was achieved, were extracted from

the MMC system. The first trial in each task served as a practice trial and was not

included in the analysis. The averages of the second to the fifth trials in each task were

obtained for statistical analysis. Comparisons of the joint angles in the target positions

(ATP) were carried out using independent t-tests between 1) the affected side and the
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unaffected side in the stroke population; and 2) the affected side in the stroke population

and the dominant side in their healthy counterparts. Comparisons of the completion

times of Task 7 and the ATP of Tasks 1 to 6 were carried out between the affected side

in the stroke population with the higher functional level (FTHUE level 5 or above)

(Fong et al., 2022), the stroke population with the lower functional level (FTHUE level

4 or below), and the dominant side of the healthy subjects, using an ANOVA with post

hoc comparison. Differences in the angular waveforms between the affected hand and

the unaffected hand in the stroke population, and the two sides of the healthy subjects

were compared using the coefficient of multiple correlation (CMC) and the root mean

square error (RMSE). Correlations between the assessment results corresponding to the

actions and the completion times for Task 7, the ATP, and the CMC values were

evaluated using Pearson’s r correlation. Logistic regression (LG), a naive Bayes (NB)

classifier, a support vector machine (SVM), and a decision tree (DT) model were used

to investigate the trajectory in the predictions of the stroke participants’ upper limb

assessment results, with kinematic information from the MMC system, including the

ATP from all tasks and the differences between the affected and unaffected sides from

all tasks. The data set was divided into training and test splits, using five-fold subject-

wise stratified cross validation, in which the training set accounted for 80%, and the

test set accounted for 20%. All of the statistical tests were performed using IBM SPSS
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26, while the CMC and RMSE values were generated by MATLAB R2020a. All of the

four machine learning models were run using the Scikit-learn package in Python. The

linear support vector machine (SVM) used a linear kernel. |2 Regularization was

implemented logistic regression model.

5.3 RESULTS

Fifty stroke survivors and 49 healthy adults were recruited. The mean age of the stroke

survivors and the healthy adults was 58.9 years (SD: 11.7) and 60.2 years (SD: 8.5),

respectively. Detailed demographic information regarding the participants is presented

in Table 5.1.

Table 5.1 Demographic information of the participants

Stroke Group Healthy Group
Mean age 58.9 (11.7) 60.2 (8.5)
Gender ratio 32:18 18:31
(male: female)
Functional level (n)
FTHUE levels 34 18 NA
FTHUE levels 5-7 32 NA
Hemiplegic side (n)
Right 22 NA
left 28 NA
Dominant hand
(Pre-onset) (n)
Right 49 48
Left 1 1

Note: FTHUE Functional Test for the Hemiplegic Upper Extremity
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The shoulder and elbow joint ATP at task completion for Tasks 1 to 6 and the

completion times for Task 7 are presented in Table 2. Significant differences were

found between the hemiplegic and non-hemiplegic sides of stroke survivors with lower

upper limb functioning in all tasks, except in regard to the shoulder angle in Task 1 and

Task 2 (MD = -3.0 and -4.1, respectively). There are significant differences between

the hemiplegic and non-hemiplegic sides of the stroke survivors with higher upper limb

functioning in all tasks except in regard to the shoulder angle in Task 3 and Task 5 (MD

= -2.2 and -5.0, respectively). No significant difference was found between the lateral

sides of the healthy participants, except in regard to the shoulder and elbow ATP in

Task 3 (MD = 11.5 and 4.2, respectively) and in regard to the elbow ATP in Task 6

(MD = 14.8). The hemiplegic sides of the higher functioning and lower functioning

stroke survivors in each task were also compared. Significant differences were observed

in the shoulder and elbow ATP in all of the tasks except for the shoulder ATP in Task

2 (p =0.11). There are significant differences between the hemiplegic side of the lower

functioning stroke survivors and the healthy counterparts in all tasks except the

shoulder ATP in Task 1 and Task 2 (p = 0.827 and p = 0.264, respectively). Significant

differences were also observed between the higher functioning stroke participants and
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the healthy participants in all tasks, except in regard to the shoulder angle in Task 2 and

Task 5 (p = 0.282 and 0.229, respectively).
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Table 5.2 Shoulder and elbow joint ATP at task completion for Task 1 to 6 and the completion time for Task 7
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Task Stroke (Lower Functioning Group) Stroke (Higher Functioning Group) Healthy Group
Hemiplegic  Non- Mean Hemiplegic  Non- Mean Dominant Non- Mean p p p
Side hemiplegic Difference Side hemiplegic Difference Side dominant Difference [Stroke Low [Stroke Low [Stroke
Side (Hemiplegic — Side (Hemiplegic — Side (Dominant — Hemi vs Hemi vs High Hemi
Non- Non- Non-dominant Stroke High Healthy vs Healthy
hemiplegic) hemiplegic) Hemi] Dominant] Dominant]
(95% CI) (95% CI) (95% CI)
Task 1
Bring hand to ear
ATP Shoulder 754 (22.1) 78.4(17.3) -3.0(29.4) 90.6 (21.7)  70.4 (20.5) 20.2 (29.0)* 76.1 (2.4) 77.6 (14.8) -1.5(15.4) 0.02* 0.827 <0.001*
(2.273 - (-7.028 - (8.323 -
28.171) 5.640) 20.734)
ATP Elbow 95.6 (16.6)  46.1(11.4) 49.5 (20.4)* 533(13.9) 37.4(10.8) 15.9 (18.9)* 474 (10.9) 43.0(7.2) 4.4 (13.6) <0.001* <0.001* 0.034*
(-51.107 - - (41.293 — (0.451 -
33.483) 55.169) 11.422)
Task 2
Hand to opposite knee
ATP Shoulder  23.0 (9.7) 27.1 (8.8) -4.1 (11.5) 27.8(10.5)  20.4 (4.0) 7.4 (11.7)* 25.6 (8.1) 28.2(9.2) -2.6 (12.0) 0.11 0.264 0.282
(-1.172 — - (-7.335 - (-1.875 -
10.942) 2.042) 6.352)
ATP Elbow 126.7(19.5) 151.4(11.9) -24.7 (21.5)* 147.0 (12.9) 153.4(12.1) -6.4(16.0)* 155.8 158.4 -2.6 (21.2) <0.001* <0.001* 0.004*
(13.5) (16.1) (11.020 - (-37.538 —- (-14.815 -
29.479) 20.675) -2.899)
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Task 3
Shoulder flexion to 90 degrees

ATP Shoulder  71.3 (11.5)  109.1 (12.4)

ATPElbow  90.0(112)  158.2(8.3)

Task 4
Shoulder flexion to 180 degrees

ATP Shoulder 94.6 (12.7)  156.8 (9.9)

ATPElbow 508 (18.1)  166.0(6.7)

Task 5
Shoulder abduction to 90 degrees

ATP Shoulder  73.7(20.3)  117.8 (14.2)

ATPElbow  79.5(12.6) 167.8(7.7)

-37.8 (15.9)*

-68.2 (14.6)*

62.2 (11.8)*

-115.2 (17.3)*

-44.1 (22.6)*

-88.3 (14.0)

107.0 (18.0)

148.6 (13.3)

137.0 (19.6)

148.2 (17.6)

1112 (11.7)

135.5 (23.5)

109.2 (9.4)

167.2 (8.1)

166.1 (9.6)

170.3 (8.2)

116.2 (10.7)

164.0 (8.1)

2.2(20.2)

-18.6 (15.6)*

294 (21.5)*

-22.0 (21.0)*

-5.0 (16.1)

-28.5 (24.9)*

117.5
(10.4)

164.2
(10.4)

168.6
(12.8)

166.1 (9.9)

115.2
(16.4)

166.7 (8.6)

106.0
(11.1)

160.0 (8.4)

165.2
(11.2)

168.7 (8.3)

120.1
(19.6)

167.1(7.7)

11.5 (14.3)*

4.2 (14.1)*

3.4(16.2)

2.6(13.8)

4.9 (25.9)

0.4 (10.7)

<0.001*
(26206 —
45.165)

<0.001*
(51.118 —
66.072)

<0.001*
(31.787 -
52.463)

<0.001*
(86.964 —
107.977)

<0.001*
(28.427 -
46.557)

<0.001*
(44.066 —
68.101)

<0.001*
(-52.075 — -
40.284)

<0.001*
(-80.021 — -
68.330)

<0.001*
(-81.078 — -
67.021)

<0.001*
(-122.221 - -
108.400)

<0.001*
(-51.185 — -
31.921)

<0.001*
(-92.626 — -
81.865)

0.001*
(-16.788 —
-4.200)

<0.001*
(-20.845 —
-10.315)

<0.001*
(-39.076 —
-24.773)

<0.001*
(-23.915 —
-11.765)

0.229
(-10.724 —
2.602)

<0.001*
(-38.468 —
-23.856)
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Task 6
Hold a pouch (for 10 seconds)

ATP Shoulder  62.6(19.3)  113.7(17.1)

ATPElbow  77.0(10.1)  147.0 (18.8)

Task 7
Finger-to-nose test

Completion 6.5(2.4) 1.1(0.2)
time

-51.2 (23.5)*

-70.0 (20.3)*

5.4(2.5)*

97.3 (13.4)

131.2 (19.0)

2.1(0.8)

109.0 (17.3)

146.6 (19.7)

1.0 (0.2)

-11.6 (22.2)*

-15.4 (23.3)*

1.1 (0.9)*

115.2
(16.3)

156.7
(12.7)

1.0 (0.3)

123.1
(17.2)

141.9
(20.2)

1.1(0.3)

-7.9 (28.0)

14.8 (23.5)*

-0.1(0.4)

<0.001*
(25.439 —
44.080)

<0.001*
(44.537 -
63.960)

<0.001*
(-5.350 - -
3.462)

<0.001*
(-62.044 — -
43.146)

<0.001*
(-86.384 — -
73.108)

<0.001*
(4.790 —
6.178)

<0.001*
(-24.726 —
-10.945)

<0.001*
(-32.496 —
-18.499)

<0.001*
(0.824 —
1.331)

Note: *P < 0.05. ATP Angles in the Target Positions
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The differences in the angular waveform between the two sides of the lower and the

higher functioning stroke groups and the healthy participants were calculated using the

CMC and the RMSE. The CMC and RMSE values are presented in Table 5.3. The

lower functioning stroke survivors generally had lower CMC values in the angular

waveform between the two sides (CMC ranging from 0.23 to 0.67) in all of the tasks.

The CMC values for the higher functioning stroke survivors ranged from 0.39 (elbow

in Task 1) to 0.86 (elbow in Task 4), while the CMC values for the healthy participants

ranged from 0.80 to 0.92 in Tasks 1 to 4.

Correlations between the kinematic data and the assessment results, including the

FTHUE, UEFMA, and WMFT, are summarized in Table 5.4. Significant correlations

were found between the results of the assessments and most of the kinematic parameters.

The elbow ATP of the hemiplegic side in Task 6 (hold a pouch task) demonstrated the

strongest positive correlation coefficient with the FTHUE-HK, UEFMA, and WMFT

(r = 0.944, 0.883, and 0.873, respectively). Kinematic data, including the ATP of the

hemiplegic side, the ATP difference between the two sides, the CMC and RMSE values
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from Task 2 (hand to opposite knee) generally show the weakest correlation coefficients

with the three assessment scores.
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Table 5.3 CMC and RMSE values of the angular waveform comparison between the two sides

Stroke (Lower Functioning Group) Stroke (Higher Functioning Healthy Group

Task Group)

CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) CMC (SD) RMSE (SD)
Task 1
Bring hand to ear
Shoulder 0.53 (0.08) 22.3(9.3) 0.68 (0.06) 26.9 (18.6) 0.89 (0.10) 8.2(5.2)
Elbow 0.31 (0.12) 38.7 (13.8) 0.39 (0.07) 15.2 (6.5) 0.88 (0.07) 10.5(3.3)
Task 2
Hand to opposite knee
Shoulder 0.67 (0.09) 12.1 (7.7) 0.65 (0.11) 16.1 (9.3) 0.92 (0.05) 5.8(2.4)
Elbow 0.38 (0.08) 37.4 (10.0) 0.53 (0.06) 13.8 (5.6) 0.89 (0.08) 9.4(5.2)
Task 3
Shoulder flexion to 90 degrees
Shoulder 0.51 (0.06) 28.9 (15.2) 0.78 (0.05) 26.3 (12.3) 0.78 (0.07) 15.7 (8.2)
Elbow 0.29 (0.05) 33.6 (18.4) 0.61 (0.10) 24.2 (15.9) 0.88 (0.11) 11.3 (6.5)
Task 4
Shoulder flexion to 180 degrees
Shoulder 0.25 (0.11) 41.2 (19.0) 0.62 (0.09) 21.2 (12.7) 0.87 (0.05) 14.4 (7.2)
Elbow 0.27 (0.07) 289 (11.4) 0.86 (0.13) 19.9 (9.3) 0.92 (0.03) 11.2 (6.8)
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Task §
Shoulder abduction to 90 degrees
Shoulder 0.56 (0.10)

Elbow 0.27 (0.08)

Task 6
Hold a pouch (for 10 seconds)

Shoulder 0.30 (0.09)
Elbow 0.46 (0.11)
Task 7

Finger-to-nose test

Shoulder 0.39 (0.10)
Elbow 0.23 (0.06)

22.7 (13.9)
35.8 (16.2)

33.6 (14.5)

28.9(9.2)

27.8 (12.7)

43.2 (22.6)

0.71 (0.11)
0.53 (0.15)

0.67 (0.10)

0.80 (0.11)

0.49 (0.13)

0.44 (0.07)

14.1 (6.8)
23.2 (10.0)

18.4 (7.9)

11.2 (5.2)

20.9 (11.4)

16.5(9.7)

0.88 (0.11)
0.91 (0.05)

0.82 (0.06)

0.83 (0.09)

0.83 (0.05)

0.80 (0.09)

15.2 (8.6)
9.1 (5.4)

10.4 (7.7)

8.6 (4.8)

10.1 (5.3)

7.8 (4.2)

Note: CMC Coefficient of Multiple Correlation; RMSE Root Mean Square Error
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Table 5.4 Correlation between the kinematic data and the assessment results of the FTHUE, UEFMA, and WMFT

Task Stroke (All)

ATP Hemiplegic ATP difference =~ CMC (Non-hemi RMSE (Non-  Completion Bilateral

side r (Non-hemi — — Hemi) hemi — Hemi)  time difference in
Hemi) completion
time
Correlation with FTHUE
Task 1
Bring hand to ear
Shoulder -0.046 -0.085 0.691* 0.322%* NA NA
Elbow -0.631* 0.496* 0.374%* -0.708* NA NA
Task 2
Hand to opposite knee
Shoulder 0.273 -0.399* -0.27 0.258 NA NA
Elbow 0.398* -0.313* 0.588* -0.742% NA NA
Task 3
Shoulder flexion to 90 degrees
Shoulder 0.721* -0.636* 0.809* -0.159 NA NA
Elbow 0.778* -0.732* 0.793* -0.091 NA NA
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Task 4
Shoulder flexion to 180 degrees

Shoulder 0.698*
Elbow 0.808*
Task 5

Shoulder abduction to 90 degrees
Shoulder 0.684*
Elbow 0.639*
Task 6

Hold a pouch (for 10 seconds)
Shoulder 0.683*
Elbow 0.944*
Task 7

Finger-to-nose test

Shoulder NA

Elbow NA

-0.582*

-0.796*

-0.666*

-0.653*

-0.556*

-0.839*

NA
NA

0.818*

0.778*

0.393*

0.578*

0.727*

0.658*

0.322%*
0.641*

-0.590

-0.358

-0.264

-0.201

-0.677*

-0.649*

-0.638*
-0.581*

NA

NA

NA

NA

NA

NA

-0.655*

NA

NA

NA

NA

NA

NA

0.647*

Correlation with the FMA-UE
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Task 1

Bring hand to ear

Shoulder -0.054

Elbow -0.603*

Task 2

Hand to opposite knee
Shoulder 0.301*

Elbow 0.364*

Task 3

Shoulder flexion to 90 degrees
Shoulder 0.668%*

Elbow 0.716*

Task 4

Shoulder flexion to 180 degrees
Shoulder 0.694*

Elbow 0.760*

Task 5

Shoulder abduction to 90 degrees
Shoulder 0.672*

Elbow 0.584*

-0.015
0.445%*

-0.415*
-0.306*

-0.593*

-0.660*

-0.607*

-0.755*

-0.663*
-0.589*

0.622*
0.231

-0.039
0.497*

0.749*

0.755%*

0.748*

0.675*

0.310*
0.515%*

0.247
-0.606*

0.261
-0.694*

0.307*

0.310*

0.092

0.339*

0.010
0.365%*

NA
NA

NA
NA

NA

NA

NA

NA

NA
NA

NA
NA

NA
NA

NA

NA

NA

NA

NA
NA
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Task 6
Hold a pouch (for 10 seconds)

Shoulder 0.618* -0.489* 0.695* 0.168 NA NA
Elbow 0.883* -0.760* 0.599* 0.124 NA NA
Task 7
Finger-to-nose test
Shoulder NA NA 0.269 -0.432*

-0.602* 0.594*
Elbow NA NA 0.599* -0.365*

Correlation with the WMFT

Task 1

Bring hand to ear

Shoulder -0.12 -0.027 0.619* 0.262 NA NA
Elbow -0.564* 0.461* 0.237 -0.601* NA NA
Task 2

Hand to opposite knee

Shoulder 0.214 -0.313* -0.48 0.266 NA NA
Elbow 0.291* -0.216 0.504* -0.730* NA NA
Task 3

Shoulder flexion to 90 degrees
Shoulder 0.643* -0.572%* 0.741* -0.091 NA NA

214



Elbow 0.716*

Task 4

Shoulder flexion to 180 degrees
Shoulder 0.688*

Elbow 0.746*

Task 5

Shoulder abduction to 90 degrees
Shoulder 0.664*

Elbow 0.562*

Task 6

Hold a pouch (for 10 seconds)
Shoulder 0.605*

Elbow 0.873*

Task 7

Finger-to-nose test

Shoulder NA

Elbow NA

-0.683*

-0.606*
-0.737*

-0.653*
-0.562*

-0.494*
-0.728*

NA

NA

0.732*

0.751*
0.644*

0.257
0.565*

0.671*
0.611*

0.239

0.605*

-0.115

-0.521*
-0.303*

-0.184
-0.108

-0.655*
-0.624*

-0.214

-0.618*

NA

NA
NA

NA
NA

NA
NA

-0.611*

NA

NA
NA

NA
NA

NA
NA

0.594*
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Note: *p < 0.05. ATP Angles in the Target Positions; CMC Coefficient of Multiple Correlation; FMA-UE Fugl-Meyer Assessment for the Upper
Extremity; FTHUE Functional Test for the Hemiplegic Upper Extremity; RMSE Root Mean Square Error; WMFT Wolf Motor Function Test
(WMFT)
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Four selected machine learning models, including LG, an SVM, an NB classifier, and

a DT model, were trained for lower and higher functioning upper limb classification

based on the kinematic information extracted from the MMC system (Table 5.5). The

models trained by the ATP of the hemiplegic side in Tasks 1 to 6 and the completion

time in Task 7 achieved a sensitivity of > 0.85, while the LG model demonstrated the

highest levels of sensitivity and specificity (0.94). The models trained by the ATP

difference between the hemiplegic and non-hemiplegic sides for task completion in

Tasks 1 to 6 and the completion time difference in Task 7 achieved a minimal level of

sensitivity of 0.89 using the DT model and a maximal level of sensitivity of 0.97 using

the SVM model. The area under the ROC curve (AUC) was > 0.86 for all the selected

models. Feature importance analysis revealed that the bilateral difference in ATP of the

shoulder and elbow in task 3, 4 and 5 as well as the bilateral ATP difference of elbow

in task 6 were the most influential factors in predicting upper limb functioning in stroke.

These results were consistent across cross-validation folds, with an average accuracy

of 86.3% and a standard deviation of 2.7%.
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Table 5.5 Classification performance of the machine learning models

ATP

Model
LG
NB
SVM
DT

Sensitivity (95% CI)
94.6% (75.7% - 98.4%)
91.2% (83.2% — 95.1%)
93.4% (71.3% - 98.1%)
85.2% (65.6% - 88.4%)

Specificity (95% CI)
94.3% (73.2% - 96.2%)
92.8% (69.3% - 93.2%)
91.0% (69.2% - 93.8%)
87.3% (66.3% - 89.4%)

AUC (95% CI)
0.94 (0.83 — 0.98)
0.91 (0.80 — 0.94)
0.91 (0.81 —0.92)
0.86 (0.73 — 0.90)

ATP difference between the two sides

Model
LG
NB
SVM
DT

Sensitivity (95% CI)
96.3% (80.1% - 98.6%)
94.1% (79.8% - 96.7%)
97.1% (84.2% - 98.6%)
89.2% (80.0% - 91.2%)

Specificity (95% CI)
96.5% (78.4% - 98.4%)
93.0% (71.4% - 94.3%)
96.5% (77.3% - 97.9%)
90.8% (67.0% - 93.4%)

0.97 (0.83 — 1.00)
0.93 (0.79 — 0.96)
0.97 (0.88 — 1.00)
0.90 (0.77 — 0.93)

Note: ATP Angles in the Target Positions; NB Naive Bayes; DT Decision Tree; LG Logistic Regression; SVM Support VVector Machine
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The kinematic data captured by the MMC system in the outdoor environment contained

a significant number of noise signals and missing data points, which hindered the

formation of a complete angular waveform. More than half of the data had to be

discarded due to noise signals. Due to the significant amount of outdoor data being

discarded, analysis of the outdoor data could not be performed. Figures 5.2a and 5.2b

depict the angular waveform extracted from two of the participants performing two

tasks in the outdoor environment, demonstrating the noise signals and missing data

points captured by the MMC system in the outdoor area. Figure 5.2c depicts the

complete angular waveform of the same participants performing the task in the indoor

area.
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5.4 DISCUSSION

In this study, we found significant differences in the joint angles at task completion

between the hemiplegic side and the non-affected side of the stroke survivors in all of

the selected tasks captured by the MMC system, except in regard to the shoulder ATP

in the ‘bring hand to the same side of the ear’ task in stroke survivors with lower upper

limb functioning. Our findings reveal that the hemiplegic side of the stroke survivors

shows a significant limitation in the shoulder and elbow ranges in task completion. This

could be a result of limited control, spasticity, or muscle weakness after the stroke.

There was no significant difference between the dominant hand and the non-dominant

hand of the healthy participants in most of the tasks, except for the shoulder ATP in the

‘shoulder abduction to 90 degrees’ task and the ‘hold a pouch for 10 seconds’ task. This

difference could be due to the muscular imbalances between the dominant and non-

dominant hand, which is common for healthy individuals (Saul et al., 2015). The CMC

and RMSE values from the angular waveforms reveal a larger difference between the

hemiplegic side and the non-hemiplegic side in stroke survivors with lower upper limb

functioning than those with higher upper limb functioning. This might be due to the

greater difficulties in moving experienced by stroke survivors with lower levels of

functioning (Luker et al., 2015). Our findings demonstrate that the MMC system in the

mobile device is sensitive in detecting the kinematic difference between the affected
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side and non-affected side of stroke survivors in most of the selected tasks. As the MMC

system is sensitive in regard to angle detection, some tasks that require the participants

to place their limbs in a specific angle, such as the ‘shoulder abduction to 90 degrees’

task, could be more prone to generating a false positive result; placing the limb at a

specific precise angle involves proprioception and joint stability, so as to allow the

individuals to consciously and precisely move as well as maintain their joint to and at

the desired angle. The bilateral muscular imbalance might induce a significant

difference between the joint angle of both sides, even in healthy adults. It is important

to be aware that this difference is not due to hemiplegia. Given that there are also

significant differences in the dominant and non-dominant hands for healthy participants

when performing some tasks, we therefore suggest that tasks are carefully selected or a

combination of different tasks are used for motion analysis of the stroke survivors when

evaluating their hemiplegic side recovery, especially when comparison with the non-

hemiplegic side is warranted.

Significant differences in shoulder and elbow angles were detected between the

affected side of the stroke survivors with lower upper limb functioning, stroke survivors

with higher functioning, and the healthy participants in the ATP in task completion in
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all of the selected tasks, except for Task 2, the ‘hand to the opposite knee’ task. The

‘hand to the opposite knee’ task involves minimal shoulder and elbow movement,

which hinders the detection of angular differences in the targeted position. Nevertheless,

the significant difference detected by the MMC system reflects the way in which the

kinematic information provided by the MMC system can differentiate between the

movements made by healthy individuals and stroke survivors with high and low upper

limb functional ability, which further suggests the potential of the MMC system in

detecting symptomatic movement based on the ROM difference.

Although only seven tasks from the standardized upper limb assessment were selected,

they are representative of the common functional tasks in standardized upper limb

assessments, such as the FTHUE, FMA-UE, and WMFT. In addition, our tracking

algorithm only included large joints, in order to test its ability to identify and analyze

participants’ gross motor abilities, and so mainly gross movements performed by the

shoulder and elbow joint angles were investigated in this study. Future studies could

consider tracking more complicated features, such as the contour of the hand, fingertips,

and palms, so as to determine the ability of the MMC system to capture and analyze the

movement of the wrist and the fine motor ability of stroke survivors.
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All of the four selected machine learning models, including LG, an SVM, an NB

classifier, and a DT model achieved a sensitivity higher than 0.84 in the stroke

functional level classification. Our classification results reveal that the MMC system

combined with machine learning methods can satisfactorily classify a stroke patient’s

upper limb impairment into higher and lower functioning levels. This finding further

supports the notion that the MMC system can be used to stratify the motor recovery of

the survivors according to their kinematic data from performing the required functional

tasks (Zamin et al., 2023). Our Al models were also trained to perform the stroke upper

limb impairment classification using the performance difference between the

hemiplegic and the non-hemiplegic upper limb. All of the models show a sensitivity

above 0.89 and a specificity of at least 0.90, which is considered to be excellent

classification performance (Abdullah & Sofyan, 2023). The functional level

classification based on the hemiplegic and non-hemiplegic side performance difference

generally yielded a higher level of sensitivity than performing the classification simply

by considering the performance of the hemiplegic side. One possible explanation for

this result is that the performance by the non-hemiplegic hand generally reflects the

usual way an individual completes an action when performing a motor task. Therefore,

comparisons of the angular differences between the hemiplegic and non-hemiplegic
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side might reflect to what extent the movement of the hemiplegic limb deviates from

the individual’s normal motor performance. The smaller the difference between the

hemiplegic and the non-hemiplegic side might suggest that the hemiplegic side has

recovered better in terms of motor function toward a non-affected state—hence the

higher functional level in the classification.

Our findings reveal that the kinematic data captured by the MMC system in the

uncontrolled outdoor environment are affected by noise signals, the background of the

image, and the condition of the light, which might hinder the demonstration of the joint

angle change over time. It was found that the MMC usually lost track of the target

participant’s joints when a pedestrian passed by in a completely uncontrolled outdoor

environment; it misidentified the pedestrian’s limbs as the limbs of the target participant.

Other than this influence by moving pedestrians, a cluttered background can also

confuse the MMC system. Misrecognition of joint position also occurred in the

background with green plants; the MMC system occasionally interpreted a tree branch

as a human limb. A background consisting of a plain wall would generate a better

complete angular waveform during motion capturing. The light in the outdoor

environment might also be a contributing factors in the MMC system’s joint position

recognition (Dubey & Dixit, 2023). The angular waveforms obtained in the evening or

with dim light during cloudy weather exhibited more sparsity, with gaps or missing
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data points at various time points. Insufficient light can make it difficult for the MMC

system to capture a clear and detailed image of the human, which leads to a blurry or

distorted image that ultimately affects the MMC system’s ability to accurately track the

participant’s motion (Zanfir et al., 2023). This is particularly important for motion

capturing during outdoor exercise in remote therapy or telerehabilitation. We suggest

that, in future, the MMC system should preferably be placed in front of a plain

background with sufficient light and without other moving objects passing by, to ensure

better data quality. To further improve the performance of the MMC system in an

unstructured environment, the feature extraction function might have to be modified so

as to ensure the correct identification and tracking of the relevant body joints. An initial

calibration step to establish a reference frame might also help to ensure the accurate

measurement and representation of the joint angles.

The overall results of our study are consistent with the previous recommendation by

Bonnechére and colleagues (2018) that an MMC system could be utilized to evaluate

the upper limb motor performance of stroke survivors. Although it might not be

appropriate for motion capturing in outdoor areas with a cluttered background and

uncontrollable light levels, the kinematic data captured in a structured indoor

environment provides a high level of sensitivity in regard to upper limb function

classification. It is imperative to note that although our study employed three iPad Pro
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devices to capture the kinematic information from multiple angles, stroke survivors

have the flexibility to utilize a single iPad Pro or their personal mobile device for motion

capturing in a home setting. The use of three iPad Pro devices was solely intended to

capture movements from diverse perspectives, while individuals can easily adjust the

capturing angle independently when employing a single mobile device. Together with

its portable nature, user-friendly setup, and inexpensive features, an MMC system on a

mobile device has the potential to be used for the remote monitoring of motor recovery

in stroke survivors during telerehabilitation in the home environment (Knippenberg et

al., 2017). Moreover, the precise information collected using the MMC system can

enable therapists to perform regular quick screening of the patients’ functional ability

and levels of motor recovery at home without requiring patients to frequently attend a

clinic. Even though current studies support the utilization of MMC technology in

telerehabilitation, researchers must close the gap between research findings and the

real-life implementation of MMC technology in order to promote its actual adoption in

remote rehabilitation programs in the future. To facilitate the use of MMC systems for

telerehabilitation in the future, designing a user-friendly interface that allows patients

to interact with the MMC system, including operating the system and transmitting the

data to therapists, is warranted. We also recommend a comprehensive training session

for both the patients and the therapists in regard to the MMC system setup and data
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interpretation, so as to enable them to use the MMC system effectively in

telerehabilitation.

5.4.1 Limitations

This study assembles data from 49 healthy adults and 50 stroke survivors. The sample

size is considered small for training and testing machine learning models. Second, the

ratio of the stroke survivors with higher and lower upper limb functioning was not

balanced. Future experiments examining the actual effect of different light levels on the

motion tracking quality in MMC systems are still warranted.

5.5 CONCLUSION

This study utilizes an MMC system on a mobile device to detect significant differences

in the hemiplegic upper limbs of stroke survivors and healthy adults. The data provided

by the MMC system reflects significant kinematic differences between the stroke

survivors with lower upper limb functioning and those with higher functioning in all of

the selected tasks. Significant correlations were also found between the upper limb

motor assessment scores and the kinematic performance of the stroke survivors. The

use of an MMC system combined with a machine learning classification algorithm has
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the potential to provide precise data with which to evaluate the upper limb functional

recovery of patients with stroke, particularly during telerehabilitation. It is

recommended that MMC system capturing is conducted in front of a plain background

with sufficient light in the future. Further studies on the actual operation of MMC

systems by patients in home settings are warranted.
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CHAPTER 6

LOWER EXTREMITY KINEMATIC MEASUREMENT USING
MARKERLESS MOTION CAPTURING (MMC) IN PERSONS
WITH A STROKE: A CROSS-SECTIONAL EXPERIMENTAL

STUDY
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Chapter 6

Lower extremity kinematic measurement using markerless motion capturing (MMC)

in persons with a stroke: A cross-sectional experimental study

ABSTRACT

Motor impairment is a deficit commonly experienced by persons with a stroke. The

motor impairment of the lower extremity generally influences the mobility of those

persons and hence their quality of life. The aim of this study was to investigate 1) the

use of a Markerless Motion Capture (MMC) system in an iPad Pro for the measurement

of movement kinematics in persons with a stroke and their healthy counterparts, when

doing assessment tasks for the lower extremity, in both a controlled and an uncontrolled

environment, and to assess 2) the sensitivity and specificity of machine-learning models

in classification of the lower extremity function in persons with stroke, using the

kinematics information provided by the MMC system. A customized MMC system

developed in an iPad Pro with a LIDAR scanner was designed to capture the movement
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of the participants. The recruited persons with a stroke were assessed by the Modified

Functional Ambulation Classification (MFAC), the Berg Balance Scale (BBS), and the

Fugl Meyer Assessment: Motor Function of the Lower Extremity (FMA-LE). For

motion capturing, each participant then performed five selected lower-extremity tasks

with their bilateral limbs. Kinematic data captured from the MMC system were

extracted and entered into a statistical analysis. Significant differences were found

between the angle change of the lower extremities of 1) the hemiplegic and non-

hemiplegic sides of the persons with stroke, in most of the selected tasks, and 2) the

hemiplegic side of the persons with stroke and the dominant side of the healthy

participants. The support vector machine model used the CMC values to classify the

lower-extremity functional performance of the persons with stroke into lower-

functioning and higher functioning, with very high sensitivity and specificity. Our study

supports application of an MMC system in mobile devices for measuring individuals’

lower extremity kinematics, to aid evaluations of the lower extremity function of

persons with stroke. Further research is warranted to investigate the application of an

MMC system in the home setting for telerehabilitation with an increased variety of

motor tasks, supported with a user-friendly operational interface.

This chapter is under submission as a scientific manuscript to a scientific journal.
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cross-sectional experimental study.
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6.1 INTRODUCTION

Motor impairment is a deficit commonly experienced by persons with a stroke. The

motor impairment of the lower extremity generally influences the mobility of persons

with a stroke and hence their quality of life (Bonita & Beaglehole, 1988). Factors such

as muscle weakness, spasticity, and changes in muscle tone may contribute to the motor

impairment of a hemiparetic lower extremity after stroke (Arene & Hidler, 2009). The

residual disabilities caused by lower extremity impairment, such as reduced balance,

walking speed, and endurance, in persons with stroke can persist even after several

years (Menezes et al., 2017). The most common outcome measure for assessing a lower

extremity orthosis-based intervention is gait speed, while the kinematics and functional

outcome are comparatively less effectively assessed (Figueiredo et al., 2021). It is

suggested that the measurement of lower extremity kinematics should receive

significant attention, because it has a high correlation with reduced mobility as well as

fall risk in persons with a stroke (Mizuta et al., 2024). The most common method for

measuring the lower extremity kinematics of patients with stroke is the use of wearable

sensors, instead of using a motion capture system, because the motion capture system

is mostly non-portable and can only be operated in a standard structured environment,

not in a daily living environment (Figueiredo et al., 2021). However, wearable sensors
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can cause discomfort in patients and may constrain the person’s movements, in which

case the data captured by the sensors might not reflect the patient’s natural movement

(Peters et al., 2021). It has hence been proposed that a markerless motion capture

(MMC) system, which eliminates the attachment of any markers or sensors on the skin

surface, could be applied in kinematic measurements for capturing a more lifelike

movement of patients. Kim and colleagues (2016) and Ozturk and colleagues (2016)

investigated the use of an MMC system, Kinect, to measure the motion kinematics of

upper limbs only, and not lower extremities, in persons with stroke. Lonini et al. (2022)

and Lee et al. (2021) used an RGB camera and smartphone, respectively, for measuring

the walking performance of persons with stroke, and both of those studies reported that

their use of the MMC system was effective when applied to the patients with stroke.

However, those researchers mostly focused on measurements of gait parameters,

including the participants’ walking speed, cadence, swing time, and stance time. Lower

extremity kinematics, which are the core factor affecting gait performance, have not

been measured. Hence, this study sought to explore the performance of an MMC system

for measuring the lower extremity kinematics in persons with stroke. A customized

MMC system in an iPad Pro with a LIDAR scanner was developed for this kinematic

measurement. Our MMC system in the iPad Pro served as a portable motion capture

device which could have the potential to obtain kinematic measurements in areas other
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than a controlled laboratory environment. The aim of this study was to investigate: 1)

the difference in lower extremity movement kinematics between persons with stroke

who had different levels of mobility, and their healthy counterparts, when they were

performing assessment tasks in both controlled and uncontrolled environments, as

measured by a customized MMC system in an iPad Pro; and 2) the relationship between

the kinematic information obtained by the MMC system and the scores from manual

motor assessments. This study also investigated the sensitivity and specificity of the

classification of lower extremity function in persons with stroke, using machine-

learning methods and the kinematic data from the MMC system.

6.2 METHODS

6.2.1 Study design

This was a cross-sectional experimental study. Ethical approval was obtained from the

Human Subjects Research Ethics Committee of the Hong Kong Polytechnic University

(Reference No.: HSEARS20230214010). Prior to inclusion, all subjects were informed

about the objectives and procedures of the study. Subjects who met the inclusion criteria
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provided informed consent before entering the study. A customized MMC system

developed in an iPad Pro with a LIDAR scanner was designed to capture the movements

of the participants. The participants with stroke were first assessed with the Modified

Functional Ambulation Classification (MFAC) (Park & An, 2016) for their walking

ability. Participants who met the inclusion criteria then underwent the Berg Balance

Scale (BBS) assessment administered by a trained therapist. After those assessments,

the participants were invited to perform five sets of lower extremity tasks that were

extracted from the BBS and Fugl Meyer Assessments: Motor Function of the Lower

Extremity (FMA-LE) with their non-hemiplegic sides first, followed by their

hemiplegic side. Assuming that the healthy participants would score full marks in all of

the assessments, the healthy participants skipped the assessment sessions and directly

performed the same sets of tasks for the motion capturing with their dominant side

followed by their nondominant side. All of the participants repeated each task five times

with each limb. To investigate the performance of the MMC system in an uncontrolled

environment, after the motion capturing session in the laboratory the participants

performed the same sets of tasks again in three randomly selected outdoor areas.

6.2.2 Participants

To be eligible to participate in the study, candidates had to: 1) be adults aged 18 years
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old or above, 2) have been diagnosed with a hemiplegic stroke, 3) have no history of
previous neurological or orthopedic diseases/congenital disorders of the upper, lower
extremities and spine, 4) have scored more than 40 points in the Berg Balance Scale
(BBS) assessment, 5) have adequate cognitive ability to understand instructions, and 6)
be able to engage in at least a one-hour experimental session. Participants in this study
were invited to participate in both the upper and lower limb motion capturing
experiments. In this chapter, we focus solely on reporting and discussing the results of

the upper limb experiment.

Participants were excluded if they met any of the following conditions: 1) they were

medically unstable, 2) they had previous injuries or medical conditions of the upper

extremities or spine affecting upper limb functions (Healthy participant group), or 3)

they had an MFAC score of category Il or below.

6.2.3 Assessment

Berg Balance Scale (BBS)
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The Berg Balance Scale is a 14-item objective measure that assesses static balance and

fall risk in adults. Each item is scored in a range of 0 to 4, with 0 indicating the lowest

level of function and 4 indicating the highest level of function (Kornetti et al., 2004). It

is believed that individuals who score lower than 40 points on the BBS may be at greater

risk of falling (Muir et al., 2008).

Fugl-Meyer Assessment (FMA)

The Fugl-Meyer Assessment (FMA) scale is an index used to assess the sensorimotor

impairment in individuals who have had a stroke (Kim et al., 2012). The FMA is divided

into an upper extremity (FMA-UE) part and a lower extremity (FMA-LE) part, with

maximum scores of 66 and 34 points in the FMA-UE and FMA-LE, respectively. The

lower extremity subscores were adopted in this study.

6.2.4 Sample size considerations

244



We assumed a two-tailed comparison with a type I error rate of 0.05, with 80% power.

The participants with stroke were stratified according to lower and higher levels of

functional ambulation, using the MFAC scale. Participants with a stroke who could

walk independently either indoors or outdoors (level 6 or above in the MFAC) were

categorized as higher functioning, while persons with a stroke who did not reach an

independence level in their ambulation (i.e., had a level 5 or below score on the MFAC)

were categorized into the lower-functioning group (Chung, 2018). As a conservative

estimation with a discard rate of 15% due to bad data or outliners, according to a

previous pilot study, and taking into account a dropout rate of 10%, a sample size of 40

persons with stroke and 40 healthy counterparts was predicted. After we had conducted

a power analysis based on statistical parameters and using the software GPower3.1.9.2,

the effect size was calculated as 0.70, which 1s between medium (0.5) and large (0.8)

(Fritz et al., 2012).

6.2.5 Equipment

MMC system
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The markerless motion capturing system that we used to perform motion analysis in
this study was developed using Xcode, on the basis of an ARKit6 and RealityKit
framework and supported by an iPad Pro with a LiDAR scanner. For the motion
capturing experiment, three iPad Pro machines were placed near each participant—one
on the frontal side, one on the lateral left side, and one on the right side of the participant.
The detection of the human body and the joint position were extracted and realized
through computer-vision algorithms of convolutional neural networks (CNNs). A total
of 14 3D body joint positions and the timestamp of the motion detection were captured
by our motion tracking platform. The capturing frequency of the MMC system was set
at 30 Hz. A predefined humanoid model was applied to estimate the joint position and
kinematics structure of the tracked subjects. The joint coordinates in 2D or 3D for every
captured frame were established and delivered by the algorithms. The normalized
coordinates were relative to the center of the pelvis and defined as the origin of the
ARKit’s coordinate system (Reimer et al., 2022). The adjacent 3D joint coordinates’
extraction calculated the angles of interest (AOIs). Angle 6 was calculated by the three

joints — A,B,C € R3or associated vectors 7; = A — B and v, = C — B, with the

V1V,

formula 6 = arccos .
[[v1llz]lv2ll2
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6.2.6 Environmental set-up

Controlled indoor environment (Laboratory)

The experiment was conducted at the assistive technology laboratory in the Hong Kong

Polytechnic University, and the laboratory floor was covered with vinyl to prevent

slipping. For the motion-capturing sessions, participants stood in front of a plain wall

in the same laboratory. One iPad Pro was placed on the frontal side of the participant at

a distance of 2 meters, and two additional iPad Pros were placed, one at the participants’

lateral left and one at their right side.

Uncontrolled outdoor environment (Campus podium)

Three outdoor spots in the university campus podium were chosen as sites to represent

the uncontrolled outdoor environment. A2.5m X 2.5m area in those spots was marked,

then two Im X Im anti-slip mats were placed on each side of the participants to

prevent slipping. Three iPad Pros were brought to those locations and were placed on

tripod stands. The positions of the iPad Pro placements were the same as those used in
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the laboratory environment.

6.2.7 Procedures

Healthy participants and stroke participants from the community were enrolled into the

study by convenience sampling. The experiment was divided into two sessions, the first

of which was the assessment session. The participants with stroke were first assessed

by the assessor using the MFAC to determine their walking ability. Patients who

satisfied the inclusion criteria for the motion capturing were then assessed by the BBS.

The second session was the motion capturing experiment. Participants were instructed

to perform five sets of tasks that involved lower extremity muscular control: Task 1 was

Task 3.1 in the FMA-LE, knee flexion from a sitting position; Task 2 was Task 4.1 in

the FMA-LE, knee flexion to 90 degrees at a standing posture; Task 3 was hip flexion

to 90 degrees at a standing posture; Task 4 was Task 8 in the BBS—reaching forward

with outstretched arm while standing, and Task 5 was Task 14 in the BBS—standing

on a single leg. All of the tasks in this session were repeated five times, and the

participants with stroke were instructed to perform each task with their unaffected side

first followed by their affected side. Figures 1a through 1e illustrate the desired postures
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of the five tasks.

Figure 1c. Task 3

Figure 1a, Task 1

Figure 1d. Task 4 Figure 1e. Task 5

Figure 6.1a to 6.1e (left to right, top down). Illustrations of task 1 through task 5

To test the performance of the MMC system in the natural environment, participants

were invited to repeat the motion capturing in the uncontrolled outdoor environment,

after they had completed the capturing session in the laboratory. Participants were

randomly assigned to one of the three outdoor sites for the motion capturing, and they

again performed the identical set of tasks they had done for their motion capturing in

the laboratory.

6.2.8 Statistical Analysis
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Kinematic data were extracted from the MMC system, including the time of task

completion, the angular waveform of the movement, and the angle of the joints when

the targeted position was achieved. The first trial of each task served as a practice trial

and was not entered into the analysis. The averages of the 2nd — 5th trials of each task

were obtained for statistical analysis. Comparisons of the changes in the joints’ angles

from the initial position to the final position during task completion were made using a

t-test between 1) the affected side and the unaffected side of the participants with stroke,

and 2) the affected side of the stroke participants and the dominant side of the healthy

counterparts. Comparisons were made of the time of completion of task 5 and of the

angle change of the targeted joint from the initial position to the final position during

completion of tasks 1 to 4 for 3) the affected side of the stroke participants with a higher

level of functioning (MFAC level 6 or above), the stroke participants with a lower level

of functioning (MFAC level 5 or below), and the dominant side of the healthy subjects,

using ANOVA with a post hoc test when a significant difference was detected.

Differences of the angular waveforms between 1) the affected lower extremity and the

unaffected limb of the stroke participants, and the bilateral side of the healthy subjects,

were compared using the coefficient of multiple correlation (CMC) and root mean

square error (RMSE). Correlations between the assessment results (MFAC, FMA-LE,

and BBS) corresponding to the actions and the time of completion for task 5, the angle
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changes in tasks 1 through 4, the CMC values, and the RMSE values were evaluated

using Pearson’s r correlations. The assessments (MFAC, FMA-LE, and BBS) that

showed a significant moderate correlation or above with the kinematic information also

then underwent a multiple linear regression analysis with the movement kinematics,

which allowed us to quantify the contribution that each kinematic type of data made in

the assessment score for the future predictions. A logistic regression (LG) model, Naive

Baye classifier (NB) model, support vector machine (SVM) model, and a Decision tree

(DT) model were used to investigate the trajectory for the prediction of clinical

assessment results for the stroke participants, using the kinematic information from the

MMC system, including the 1) angle change of the targeted joint from the joint’s initial

position to its final position during task completion in all the selected tasks, 2)

difference of the angle change between the affected and unaffected side in all selected

tasks, and 3) CMC values from all the tasks. All of the descriptive statistics, t-test,

Pearson’s r correlations, and regression analyses were performed using IBM SPSS 26

software, while the CMC and RMSE values were generated with MATLAB R2020a.

All four of the machine-learning models were performed by using the package Scikit-

learn in Python. The linear Support Vector Machine model is SVM using linear kernel.

I> Regularization was implemented to the Logistic Regression model.

6.3 RESULTS
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Fifty persons with a stroke and 49 healthy counterparts were recruited. Among the

stroke participants, nine scored below 40 points on the BBS and one failed to complete

the whole experimental session due to fatigue, so those individuals were excluded from

the motion-capturing experiment. Hence, data from 40 persons with stroke and 49

healthy adults were entered into the final analysis. The mean ages of the stroke group

and the healthy adult group were 58.1 years (SD: 12.3) and 60.2 years (SD: 8.5),

respectively. Demographic data of the participants are given in Table 6.1.

Table 6.1 Demographic description of the participants

Descriptors Stroke Group Healthy Group
Mean Age (years) 57.7 (12.5) 60.2 (8.5)
Gender ratio 62.5:37.5 18:31
(males:females)

MFAC (n)

FTHUE levels 3-5 8 NA
FTHUE levels 6-7 32 NA
Hemiplegic side (n)

Right 19 NA

left 21 NA
Dominant side

(Pre-onset) (n)

Right 38 48

Left 1 1
FMA-LE Score 23.0(7.2) NA
(Mean)

BBS Score (Mean) 48.4(3.7) NA

Note: BBS: Berg Balance Scale, FMA-LE: Fugl Meyer
Assessment: Motor Function of the Lower Extremity, MFAC:

Modified Functional Ambulation Classification
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The joint angle changes from the initial positions before performing the tasks to the

final positions that the participants maintained are presented in Table 6.2. Significant

differences in the angle changes of the targeted joint were found between the

hemiplegic and non-hemiplegic side of the stroke participants with lower functioning,

in all tasks except the change in trunk flexion angle in task 4 (MD =-0.2, SD = 15.7, p

=0.97). Significant differences in the changes of joint angles were found between the

hemiplegic and non-hemiplegic side of the stroke participants with higher functioning

in all tasks except task 3 (MD =-0.8, SD = 14.4, p = 0.75) and task 4 (MD = -3.7, SD

=14.7, p=0.17). No significant difference was found in the changes of angles between

the dominant and nondominant sides of the healthy participants. Comparisons of the

joint angle changes between the hemiplegic side of the two groups of stroke participants

and the dominant side of the healthy participants were also conducted. Significant

differences were found in the angle changes of the hip and knee joints between the

stroke participants with lower functioning and the healthy adults, in all tasks (mean

difference, or MD scores ranged from 24.3 in task 4 to 43.9 in task 2, p<0.05 in all

tasks). The joint angle changes between the stroke participants with higher functioning

and the healthy participants were also significantly different in all tasks except in task

3 (MD =5.0, SD = 12.3, p = 0.36). The joint angle changes on the hemiplegic side of
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the stroke participants with lower functioning were also significantly different from

those of the stroke participants with higher functioning, in all tasks except in task 1

(MD = 9.8, SD = 6.7, p = 0.10).
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Table 6.2 Joint/body angle changes from the initial joint position before performing the tasks to the final joint positions that the participants maintained at task

completion

255



Changes in joint angle (Initial angle of the targeted joint — final angle of the targeted joint)

Task Stroke (Lower-functioning group) Stroke (Higher-functioning group) Healthy Group
Hemiplegic  Non- Mean Hemiplegic  Non- MD Dominant Non- MD MD MD MD
Side hemiplegic Difference Side hemiplegic (Hemiplegic —  Side dominant (Dominant — (Stroke low (Stroke low (Stroke
Side (Hemiplegic — Side Non- Side Non-dominant  Hemi vs. Hemi vs. high Hemi
Non- hemiplegic) Stroke high Healthy vs. Healthy
hemiplegic) Hemi) Dominant) Dominant)
Task 1
Knee flexion at sitting position
Change in 264 (11.7)  61.5(9.7) -35.2 (15.5)* 36.1 (18.0)  52.7(18.6) -16.5 (25.1)* 52.7(18.0) 55.6(17.0) -2.9(18.1) 9.8 (6.7) 26.4 (16.6)* 16.6 (4.1)*
knee angle
Task 2
Knee flexion to 90 degrees in standing position
Change in 48.5(13.8) 963 (7.3) -47.7 (18.4)* 794 (12.0)  99.8(9.0) -20.3 (15.9)* 92.5(10.7) 93.4(10.7) -0.9(14.2) 30.9 (4.9)* 439 (5.1)* 13.0 (9.6)*
knee angle
Task 3
Hip flexion to 90 degrees in standing position
Change inhip 38.0(14.2) 65.6(7.2) -27.6 (14.8)* 67.6 (11.0)  68.4(9.2) -0.8 (14.4) 72.6 (9.8) 70.5(10.2) 2.1 (15.6) 29.5 (4.6)* 34.5 (14.0)* 5.0(12.3)
angle
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Task 4

Reaching forward

Change in 149 (13.6) 152(11.2) -0.2 (15.7)
trunk flexion

angle

Task 5

Single leg stand

Time (s) 3.9 (1.4) 17.8 (8.5) -14.0 (9.3)*

27.4 (10.7)

15.9 (16.4)

31.0 (9.5)

27.6 (16.5)

3.7 (14.7)

117 (11.7)*

39.2 (12.1)

42.5(17.5)

35.6 (10.1)

42.2(19.4)

3.6(17.1)

0.3 (8.9)

12.4 (14.5)

12.0 (5.8)

24.3 (4.7)*

38.1 (9.6)*

11.9 (2.6)*

26.1 (3.9)*

Footnote: * P<0.05

MD: Mean Difference
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The angular waveforms of each task between the two sides of the participants were

compared using CMC and RMSE values (Table 6.3). The CMC values of the stroke

participants with lower functioning fell between 0.36 in the knee angle of task 2, and

0.57 in the trunk angle of task 4, while the CMC values of the stroke participants with

high functioning were in the range of 0.58 (knee angle in task 5) to 0.78 (knee angle in

task 2). The CMC values of the healthy participants had a minimum value of 0.61 (knee

angle in task 5) and a maximum value of 0.87 (knee angle in task 1).
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Table 6.3 CMC and RMSE values of the angular waveforms of the stroke participants in the lower functioning group, the higher functioning

group, and the healthy group

Task Stroke (Lower-functioning group) Stroke (Higher-functioning Healthy
group)
CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) CMC (SD) RMSE (SD)
Task 1
Knee flexion at sitting position
knee 0.48 (0.06) 33.3(3.00) 0.72 (0.06) 23.32(7.03) 0.87 (0.04) 10.50 (2.19)
Task 2

Knee flexion to 90 degrees at standing position

knee 0.36 (0.10) 38.1(14.22) 0.78 (0.05) 22.10 (16.7) 0.84 (0.06) 12.80 (11.95)
Task 3

Hip flexion to 90 degrees at standing position

Hip 0.54 (0.07) 24.67 (6.23) 0.76 (0.08) 18.20 (5.07) 0.81 (0.05) 12.51 (2.73)
Task 4

Reaching forward
Trunk 0.57 (0.05) 24.16 (9.50) 0.77 (0.06) 17.61 (15.7) 0.81 (0.10) 11.79 (12.73)
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Task 5

Single leg stand
Hip 0.39 (0.14) 34.63 (24.51) 0.59 (0.07) 26.33(24.43)  0.71 (0.05) 19.96 (25.37)
Knee 0.43 (0.09) 29.10 (5.11) 0.58 (0.15) 2739 (15.17)  0.61 (0.10) 23.65 (26.22)

Note: CMC: Coefficient of multiple correlations, RMS: Root mean square error
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The correlations between the kinematic information and the selected assessments are

presented in Table 6.4. The CMC values of all tasks generally show a significant, strong

correlation with the MFAC scores (ranging from 0.613 in task 3 to 0.768 in task 1),

except for the knee CMC values in task 5 (CMC = 0.302). Significant moderate

correlations were also found between the FMA-LE scores and the CMC values of all

tasks (the CMC values ranged from 0.483 in the hip angles of task 5 to 0.556 in task 4),

with the exception of the knee angle in task 5. Weak to moderate correlations were

found between the BBS scores and the CMC values of all tasks (ranging from 0.302 to

0.509), except for the knee angle in task 5. The joint angle changes in all tasks generally

demonstrated a weak to moderate correlation with the MFAC and FMA-LE scores but

not with the BBS score.
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Table 6.4 Correlations between the movement kinematics and the assessment scores

Correlations with the MFAC scores

Task Stroke (All)
Angle change  Angle CMC (Non- RMSE Duration Difference
(Hemi initial difference hemi — Hemi) (Non-hemi (Hemi) in duration
angle — Hemi  (Non-hemi — Hemi) (Non-hemi
final angle) final — Hemi — Hemi)

final)
Task 1 Knee flexion in sitting position
Knee 0.260 0.504* 0.763* -0.411* NA NA

Task 2 Knee flexion to 90 degrees in standing position
Knee 0.475% 0.594* 0.738%* -0.536* NA NA

Task 3 Hip flexion to 90 degrees in standing position

Hip 0.611* 0.426* 0.613* -0.414* NA NA
Task 4 Reaching forward
Trunk 0.161 0.006 0.714* -0.279 NA NA

Task S Single leg stand

Hip NA NA 0.723* -0.528*

0.416* -0.172
Knee NA NA 0.302 -0.009
Correlations with the FMA-LE levels
Task 1 Knee flexion in sitting position
Knee 0.355%* 0.476* 0.500* -0.406* NA NA
Task 2 Knee flexion to 90 degrees in standing position
Knee 0.465* 0.445%* 0.511* -0.281 NA NA
Task 3 Hip flexion to 90 degrees in standing position
Hip 0.361* 0.333* 0.555%* -0.251 NA NA
Task 4 Reaching forward
Trunk 0.102 0.087 0.556* -0.091 NA NA
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Task 5 Single leg stand

Hip NA NA 0.483* -0.342%*

0.363* 0.036
Knee NA NA 0.092 0.007
Correlations with the BBS scores
Task 1 Knee flexion in sitting position
Knee 0.156 0.388* 0.509* -0.162 NA NA
Task 2 Knee flexion to 90 degrees in standing position
Knee 0.253 0.290 0.370* -0.124 NA NA
Task 3 Hip flexion to 90 degrees in standing position
Hip 0.260 0.236 0.374* -0.093 NA NA
Task 4 Reaching forward
Trunk 0.117 0.050 0.302 -0.176 NA NA
Task S Single leg stand
Hip NA NA 0.397* -0.373*

0.191 0.060
Knee NA NA 0.043 0.115

Footnote: *P<0.05

BBS: Berg Balance Scale, CMC: Coefficient of multiple correlation, FMA-LE: Fugl Meyer Assessment:

Motor Function of the Lower Extremity, MFAC: Modified Functional Ambulation Classification, RMS: Root

mean square error
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A multiple linear regression analysis was conducted with the MFAC levels as the

outcome, and the joint angle changes, joint angle differences between the bilateral side,

task completion durations (task 5), and CMC and RMSE values as the independent

variables (Table 6.5). The regression model explained 80.2% of the selected variation

in the MFAC levels, thus indicating a strong relationship between the kinematics and

the functional ambulation classification. The values of the coefficients of multiple

correlations demonstrated the highest values among the covariates (the coefficients

ranged from 0.058, p = 0.974 for the CMC values in task 3, to 4.393, p = 0.016 in task

4).
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Table 6.5 Multiple linear regression analysis of the MFAC as the outcome (Adjusted R*=0.803)

Covariate

(Constant)

Angle change (Hemi initial — Hemi final)

Task 1
Task 2
Task 3

Task 4

Coefficient
(SE)

3.167 (7.069)

-0.001 (0.009)
-0.013 (0.018)
-0.20 (0.018)

0.12 (0.16)

B

-0.013
-0.200
-0.283

-0.113

Angle difference (Non-hemi final — Hemi final)

Task 1

Task 2

Task 3

Task 4

-0.009 (0.008)
0.012 (0.011)
0.014 (0.017)

-0.019 (0.018)

CMC (Non-hemi — Hemi)

Task 1
Task 2
Task 3
Task 4
Task 5 (Hip)

Task 5 (Knee)

3.043 (1.678)
-0.078 (1.370)
0.058 (1.751)
4.393 (1.685)
1.179 (1.343)

-1.153 (0.719)

RMSE (Non-hemi — Hemi)

Task 1

Task 2

Task 3

Task 4

0.029 (0.024)
-0.030 (0.028)
-0.025 (0.020)

-0.009 (0.016)

-0.129

0.207

0.188

-0.159

0.296

-0.012

0.006

0.375

0.116

-0.125

0.166

-0.217

-0.113

-0.051

0.448

0.099

-0.731

-1.107

0.716

-1.061

1.123

0.810

-1.020

1.813

-0.057

0.033

2.607

0.878

-1.603

1.195

-1.071

-1.246

-0.566

0.659

0.922
0.472
0.280

0.482

0.300

0.274

0.426

0.319

0.084

0.955

0.974

0.016*

0.390

0.123

0.245

0.296

0.226

0.577
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Task 5 (Hip) 0.018 (0.027) 0.089 0.695 0.495
Task 5 (Knee) -0.002 (0.019) -0.010 -0.118 0.907
Duration (Hemi)

Task 5 0.007 (0.009) 0.083 0.834 0.413
Time difference in duration (Non hemi — Hemi)

Task 5 0.010 (0.010) 0.086 1.053 0.304

Adjusted R*=0.803
Footnote: *P<0.05

Note: CMC: Coefficient of multiple correlation, MFAC: Modified Functional Ambulation Classification,

RMS: Root mean square error
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Data from four repetitions of five tasks from 89 subjects, making a total of 1,780 sets

of data, were entered our machine-learning analysis. The data set was divided into

training and test splits, using five-fold subject-wise stratified cross validation (Tougui

et al., 2021). Four machine-learning models were trained to perform the lower

extremity ambulation functional level classification, using the joint angle change of the

hemiplegic side, the final angle position difference between the hemiplegic and non-

hemiplegic side, and the CMC values (Table 6.6). The sensitivity of the models trained

by the angle change showed a maximum sensitivity of 0.75 by the SVM model and a

minimum sensitivity of 0.61 by the DT model. The highest sensitivity and specificity

were generated by the SVM model, using the CMC values for the classification

(sensitivity = 0.85; specificity = 0.82).

Table 6.6 Machine-learning classification for lower extremity ambulation

functioning, according to kinematics information

By angle change (Hemi initial angle — Hemi final angle)

Model Sensitivity Specificity
LG 0.64 0.61

NB 0.62 0.65

SVM 0.75 0.73

DT 0.61 0.59

By final angle position, difference between hemi and non-hemi
Model Sensitivity Specificity
LG 0.71 0.71

NB 0.69 0.68

SVM 0.78 0.75
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DT 0.69 0.66

By CMC

Model Sensitivity Specificity
LG 0.83 0.80

NB 0.72 0.70

SVM 0.85 0.82

DT 0.77 0.71

Note: CMC: Coefficient of multiple correlation, DT: Decision Tree,
LG: Logistic Regression, NB: Naive Bayes classifiers, SVM:
Support Vector Machine

A total of 41% of the data captured in the outdoor environment were discarded because

of noise signals and missing data. Statistical analyses for the outdoor data were not

performed, due to insufficient power.

6.4 DISCUSSION

We found a significant difference between the bilateral sides in the persons with stroke,

but not in the healthy participants, in terms of the joint angle changes from the initial

position to the final position for task completions. The angle change from a joint’s initial

position to its final position during each task can be interpreted as a reflection of the

joint’s active range of motion (AROM) for completing the study’s lower extremity tasks.

The knee flexion and hip flexion AROMs in the healthy adults when performing our
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selected task were 0 to 93.4 degrees and 0 to 72.6 degrees, respectively, while the

bilateral differences were no more than 3 degrees. Those findings are reflected against

a significant limitation of the active ranges of motion for the knee flexion and the hip

flexion in the hemiplegic lower extremity of the stroke participants, compared with

their AROM s for their non-hemiplegic side, and such limitations in AROMs were also

detectable by the MMC system. The limitations of the active range of motion on the

stroke participants’ hemiplegic side could be the result of stroke-induced muscle

weakness, rigidity, or spasticity (O'dwyer et al., 1996). Hence, it is apparent that the

MMC system in mobile devices is quite sensitive enough for detecting movement

limitations in persons with a stroke who have reduced motor ability due to hemiplegia.

We also found that there was a noticeable difference (the mean difference, or MD,

ranged between 5.0 degrees and 43.9 degrees) in the knee and hip AROMs between the

hemiplegic side of the stroke participants and the dominant side of the healthy adults.

This finding is consistent with the suggestions by other researchers that persons with

stroke are prone to a reduction in their active range of motion, which in turn could affect

their gait and balance (Beebe & Lang, 2009). We also found that the knee and hip

AROMs of the hemiplegic side during the tasks done in a standing position were

significantly different between the stroke participants with lower functioning and those
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with higher functioning, with a mean difference of 9.8 to 30.9 degrees in their knee

flexion and 29.5 degrees in their hip flexion angle in our selected tasks. In contrast, no

significant AROM difference was detected between the unaffected side of the stroke

participants with the two different functioning levels and the corresponding side of the

healthy counterparts. This finding suggests that the non-hemiplegic lower extremity of

the persons with stroke might not exhibit a significant functional difference compared

with the lower extremity of healthy adults. Our results therefore might imply that the

AROM data obtained through the MMC system could effectively reflect the disparity

in functioning of the hemiplegic lower extremity between the stroke participants with

lower levels of functionality and those with higher levels of functionality. Our results

provide evidence that an MMC system in mobile devices is sensitive enough to detect

the reduction in active range of motion experienced by persons with stroke. Thus, the

MMC system might be able to serve as an effective alternative for quick AROM

assessment in such patients.

Our comparisons of the angular waveforms for performing the tasks by the left and

right sides of the participants were represented by the CMC and RMSE values. The

stroke participants with lower functioning demonstrated the lowest CMC values and

the greatest RMSE values. In addition to the limitations in their active range of motion
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for task completion, which is a common deficit after stroke, persons with stroke may

tend to use compensatory movements to perform required actions (Chen et al., 2003),

such as using hip abduction or hip rotation actions instead of hip flexion in task 3.

Clinical observations by therapists are typically employed to identify those

compensatory movements, which are challenging to quantify objectively (Duncan et

al., 1994). However, our study has revealed that an MMC system can effectively

capture these compensatory movements, and the movements are reflected in the angular

waveforms. It may be that the stroke participants with higher functioning had

comparatively less motor deficit, so they adopted fewer compensatory movements and

consequently, there was a higher degree of similarity in terms of the angular waveforms

between the hemiplegic and non-hemiplegic sides in the higher functioning group. We

also observed that although the healthy adults demonstrated high CMC values in most

of the tasks, the CMC values of the knee in task 5 were lower than those in the other

tasks. Task 5 was a single-leg stand task, while the CMC values here represented the

comparison of angular waveforms of the raised leg. Healthy individuals might also

experience leg shaking or leg dropping of their raised leg during task 5. Due to a muscle

imbalance between the bilateral sides, which is common in healthy adults (Hill et al.,

2023), and the disequilibrium that increases with age (Hobeika, 1999), healthy

individuals might also generate a rather different angular waveform between their
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bilateral legs during the single-leg stand task. In that light, comparisons of the bilateral

differences of only a single task, and particularly of the single-leg stand task, which

commonly produces bilateral difference even in healthy adults, might not adequately

reflect the lower extremity function of an individual. Therefore, we suggest that the

angular waveform generated by the MMC system should be carefully interpreted, and

an evaluation of the kinematics from a combination of motion capture tasks might be

necessary for an accurate determination of the lower extremity movements of persons

with stroke.

The strongest correlation was found between the MFAC levels and the CMC values of

our selected tasks, while a moderate correlation was found between the FMA-LE scores

and the CMC values. Instead of the joint angle changes, which reflect active range of

motion, the CMC values, which reflect the comparison of the overall difference in the

movement pattern between the hemiplegic limb and the non-hemiplegic limb, showed

a better correlation with the assessment scores. In our multiple regression analyses, the

CMC values, instead of the AROM, showed a greater magnitude of the effect to the

MFAC scale. Despite the limitations in range of motion, the lower extremity deficits in

the persons with stroke might also be represented in the form of resistance in movement,

action tremor, or an increase in compensatory movement (Handley et al., 2009). These
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forms of lower extremity deficits can be demonstrated by the comparison of the overall

angular patterns of movement captured by the MMC, but they cannot be judged only

by the form of the AROM. The MFAC is an index of disability, and it reflects the

person’s overall ambulation independence (Lim et al., 2019), while the FMA-LE scores

reflect the person’s overall lower extremity performance. Thus, both measures show a

significant correlation with the movement pattern differences between the bilateral

sides, as captured by the MMC system. The MMC technology therefore demonstrates

the advantage of being able to reflect and analyze the individual’s movement patterns,

in contrast to the traditional manual measurement of range of motion, which can only

measure the joint angle at one particular point in time. Although the BBS is a scale that

measures the person’s ability to balance, which involves a combination of elements

such as muscle coordination, the vestibular system, and psychological factors (Tyson

et al., 2006), it might not show a strong correlation with solely the lower extremity tasks

that we selected.

Our four machine-learning models showed the best performance in classification of the

lower extremity ambulation functioning by using the CMC values, which may offer

greater sensitivity in the classification of lower extremity functional performance

compared with AROM values. Because a comparison of joint angle changes reflects
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only the difference in the AROM between the bilateral sides, a comparison of the

overall movement patterns of the hemiplegic and the non-hemiplegic sides provides

more comprehensive information for classifying the subjects’ lower extremity

ambulation function. The SVM model demonstrated the best performance for

classification, with a sensitivity of 0.85 or greater. Our results therefore support the

notion that an MMC, in combination with machine-learning methods, can be adopted

for lower extremity functional evaluation and can achieve a very satisfactory sensitivity

(Moro et al., 2020). This result recommends the future adoption of using the kinematic

data captured by an MMC system during a few sets of motion-capturing tasks for

classification or quick prediction of lower extremity function in persons with stroke.

Such a system might therefore facilitate lower extremity motor recovery screening in

persons with stroke, which could allow therapists to understand more precisely the

motor conditions of those patients while they are undergoing a rehabilitation program,

especially during remote rehabilitation, in which progress in motoring is not sufficient

to meet their rehabilitation needs. Because the traditional manual assessment for

evaluating lower extremity functioning in persons with stroke involved a large set of

assessment tasks for determining their functioning abilities, the MMC system may offer

a viable alternative for assessing lower extremity motor function because of its

convenient ability to provide kinematic data. Indeed, particularly the CMC values can
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be used as a predictive marker with high sensitivity for categorizing a stroke patient’s

functional level as higher or lower, with patients only needing to perform a limited set

of tasks.

The quality of data captured by the MMC system in the outdoor environment was

comparatively lower than that in the indoor environment. A possible explanation is that

the outdoor environments comprised a clustered background with pedestrians passing

by, and the MMC system tended to misidentify the moving limbs of the pedestrians and

the tree branches as the limbs of the targeted subjects. The MMC system also lost its

tracking when the light intensity in the outdoor environment was low, because it failed

to recognize the body segment of the subjects from a dim image. Knowing that the

MMC system might capture a significant amount of noise signals in a completely

unstructured environment, which in turn would affect further motion analysis, we

conclude that the utilization of the MMC system in the outdoor setting is not preferred.

We recommend that the MMC be used indoors, in front of a plain wall background, and

with sufficient light intensity. In addition, a pre-assessment training session for users of

the MMC system may be essential, to familiarize them with the appropriate MMC data

capturing procedures, such as the environmental setting and system operations.
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Our study supports the notion that an MMC system can be used for measuring patients’

lower extremity kinematics to evaluate the lower extremity function of persons with

stroke, in the indoor environment, and its utilization for clinical measurement may even

be further generalizable to other disease populations. To facilitate transferring to

healthcare professionals the technology that uses portable MMC systems for remote

clinical measurements and for telerehabilitation, the development of a user-friendly

interface design for such a system, including an algorithm for the interpretation of the

kinematic data, is warranted.

6.4.1 Limitations

This study had certain limitations. First, the study’s sample size was small for training

and testing the effects of using MMC kinematic data for lower extremity function

classification in machine-learning models. Second, the lower extremity functional level

of the stroke participants was not in a balanced ratio—the stroke participants with

higher functioning and those with lower functioning were not in equal proportion. In

addition, only five tasks were selected, in order to conduct a preliminary investigation

of the kinematic measurements by using the MMC system in mobile devices. In the
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future, studies may wish to include a greater variety of motor tasks for kinematic

analyses.

6.5 CONCLUSIONS

This study examined the use of a customized markerless motion-capturing system for

measuring and evaluating lower extremity kinematics. We found significant differences

in the joint angle changes between the hemiplegic and non-hemiplegic sides of stroke

participants performing specific tasks, as well as between stroke participants and

healthy participants. The stroke participants also demonstrated lower CMC values in

terms of angular waveform comparisons between bilateral limbs. Our SVM model used

CMC values to classify the lower extremity functional performance of the stroke

participants into lower-level functioning and higher-level functioning individuals, and

in that regard it achieved very high sensitivity and specificity. Our study’s findings

support use of an MMC system in mobile devices to assess lower extremity function in

persons with stroke. Further research is now warranted to explore such a system’s

application in home-based telerehabilitation, with a user-friendly interface and a wider

range of motor tasks.
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Chapter 7

Conclusion

ABSTRACT

This chapter concludes the studies that we have conducted in this thesis, “The

application of markerless motion capture (MMC) in patients with stroke,” and we

propose future directions for the application of MMC in rehabilitation.
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In this chapter, we summarize and highlight the key findings of the research studies in

this thesis. Implications for clinical use of MMC technology, limitations of the thesis,

and recommendations for future research are discussed.

This thesis revealed that the development and application of markerless motion capture

(MMC) technology using a mobile device is useful in terms of sensitivity in measuring

the upper and lower limb kinematics of patients with stroke (Chapter 5 and Chapter 6).

The findings reveal that the functioning ability of patients with stroke can be classified

by machine learning models with satisfactory accuracy in terms of sensitivity and

specificity using the kinematic data captured by our MMC system using an iPad Pro.

Our systematic review shows that MMC technology can reliably measure the kinematic

movement of patients with stroke (Chapter 2). It is suggested that MMC technology is

reliable, accurate, and valid for clinical measurement, and hence has potential to be

utilized in telerehabilitation. Besides the investigation on the reliability and validity of

the MMC system we used, in this thesis we suggest that in future, researchers should

work further on exploring the potential and enhancing the generalizability of MMC

technology for telerehabilitation in the home setting.
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One of the factors that affects the generalizability of MMC technology in

telerehabilitation its usability. The current application of MMC technology for clinical

measurement in patients with stroke was mostly conducted in structured laboratory or

clinical settings, and the operation of the MMC system was mostly handled by

researchers. While the concept of telerehabilitation emphasizes independence in

conducting rehabilitation programs in the home setting, the MMC system should allow

patient interaction in order to enable them to capture their performance, receive

feedback from the system, and transmit the captured data to healthcare professionals

for further interpretation. To facilitate the self-operation of an MMC system by patients,

we suggest the design of a user-friendly interface. The interface should be clear and

easy to understand, which would make it intuitive to interact with. As patients with

stroke might suffer from different degrees of motor or cognitive deficits, the user

interface of the MMC system should be customized to minimize the cognitive load on

the users and ensure that they can access and use the system effectively. Future study

on the user interface design for telerehabilitation MMC systems is warranted to

facilitate convenient use. To facilitate interoperability in telerehabilitation, future

development should be focused on ensuring the MMC system can be integrated with

wearables and smart home health technologies in the home.
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Another gap to be addressed is the analysis and evaluation of the kinematic data. Most

of the current research relies on the use of algorithms or processors in external software

for kinematic data analysis. The data post-processing and analysis generally requires a

long processing time that does not favor MMC’s adoption in telerehabilitation. If an

MMC system cannot generate an immediate motion analysis result report, users might

lose motivation to use it continuously at home since the system cannot provide them

with immediate feedback for exercise performance evaluation. Over and above, it being

an accurate tracking system, future development of an MMC system that enables quick

processing and analysis of kinematic data would be valuable for the adoption of the

MMC system in telerehabilitation programs, allowing therapists to customize and adapt

training according to users’ impairments.

As our study revealed that the use of MMC systems in an unstructured outdoor

environment frequently leads to poor kinematic data quality, we suggest that

instructions on the preparation of the environment—such as removal of unnecessary

items and avoiding that others enter the capturing areas—have to be given to users

before they utilize the MMC system for motion capture. Enhancement of image

extraction and segmentation of data is also necessary to filter and remove unwanted
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artifacts in order to enhance the reliability and accuracy of the data and hence facilitate

the use of the MMC system in different environments.

The current application of the MMC system in our study primarily focused on capturing

the movement of the upper and lower limbs independently. Since daily activities often

involve the use of both upper and lower limbs, we recommend that future task selection

for motion capture should emphasize tasks that require the combination of both limbs.

This approach would provide a more accurate reflection and analysis of motor

performance in diseases populations during their functional activities in daily life.

Last but not least, the systematic reviews and meta-analysis done in this thesis suggest

that MMC technology has the potential for application in the case of patients with stroke

as an assessment tool to assist in the monitoring of their progress in motor recovery, as

well as in telerehabilitation programs to continuously record and evaluate their home

training exercise performance.

In conclusion, our study revealed that our customized MMC system using an iPad Pro

is innovative and original, and can be used in home-based treatment and
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telerehabilitation for intra-subject measurements because of its good reliability, low

cost, and portability. Our application of the customized MMC system using an iPad Pro

also revealed that MMC technology is sensitive in detecting the bilateral difference in

both upper and lower extremity measurement. We found that the background in an

unstructured outdoor environment could lead to a significant amount of noise and

missing data. Nevertheless, machine learning models are able to classify the

functioning level of patients with stroke into higher and lower functioning groups using

the kinematic data captured by the MMC system. We therefore suggest that the MMC

system using smartphone or tablets combined with a machine learning algorithm has

the potential to be used in future for motor performance measurement of patients with

stroke, particularly for telerehabilitation. Further development is warranted to improve

its capturing quality in unstructured environments as well as to facilitate its efficiency

in data post-processing and analysis. Further study might shed light on the design of a

user-friendly MMC system interface in order to increase its generalizability and

interoperability for rehabilitation in future.
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Appendix 1. Chinese Consent form for the pilot study on the Validity and
Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion

Capture (MMC) System
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Appendix 2. Chinese Consent form for the study on the upper and lower
extremity kinematic measurement using markerless motion capturing (MMC) in

persons with a stroke: A cross-sectional experimental study
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Appendix 4. Journal permission for reusing published article in Chapter 3
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Appendix 6. Ethical approval memo for the pilot study on the Validity and

Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion

Capture (MMC) System

To Fong Nai Kuen (Department of Rehabilitation Sciences)

From Pang Marco Yiu Chung, Chair. PolyU Institutional Review Board

Email MArCo, pang @ Drate 11-Jul-2022

Application for Ethical Review for Teaching/Research Involving Human Subjects

I write 1o inform you that approval has been given to your application for human subjects ethics review
of the following project for a period from 13-Jun-2022 to 13-5ep-2022:

Project Title: Validity and reliability of upper limb kinematic assessment
using Markerless Motion Capture [MMC) system: A pilot
study

Department: Department of Rehabilitation Sciences

Principal Investigator: Fong Mai Kuen

Project Start Date: 13-Jun-2022

Project type: Human subjects (clinical)

Review type: Expedited Review

Reference Number: HSEARSZ0220330001

You will be held responsible for the ethical spproval granted for the project and the ethical conduct of
the personnel involved in the project. In case the Co-PL of any, has also obtained ethical approval for
the project, the Co-PI will also assume the responsibility in respect of the ethica! approval (in relation to
the areas of expertise of respective Co-Fl in accordance with the stipulations given by the approving
authority).

You are responsible for informing the Polyll Institutional Review Board in advance of any changes in
the proposal or procedures which may affect the validity of this ethical approval.

Pang Marco Yiu Chung

Chair
Polyll Institutional Review Board
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Appendix 7. Ethical approval memo for the study on the upper and lower

extremity kinematic measurement using markerless motion capturing (MMC) in

persons with a stroke: A cross-sectional experimental study

To Fong MNai Kuen (Department of Rehabilitation Sciences)

From Pang Marco Yiu Chung, Chair, Palyll Institutional Review Board

Email MEArCo, pang @ Drate 27-Apr-2023

Application for Ethical Review for TeachingResearch Involving Human Subjects

I write to inform you that approval has been given to your application for human subjects ethics review
of the following project for a period from 13-Mar-2023 1o 31-Dec-2023:

Project Title: Markerless Motion Capture (MMC) technology for
movement measurement on patients with stroke

Deparimeni: Department of Rehabilitation Sciences

Principal Investigator: Fong Nui Kuen

Project Start Date: | 3-Mar-2023

Project type: Human subjects (clinical)

Review type: Expedited Review

Reference Number: HSEARS202302 14010

You will be held responsible for the ethical approval granted for the project and the ethical conduct of
the personnel involved in the project. Im case the Co-PI, if any, has also obtained ethical approval for
the project, the Co-Pl will also assume the responsibility in respect of the ethical approval (in relation o
the areas of expertise of respective Co-PlI in accordance with the stipulations given by the approving
anthority ),

You are responsible for informing the PolyU Institutional Review Board in advance of any changes in
the proposal or procedures which may affect the validity of this ethical approval.

Pang Marco Yin Chung

Chair
PolyU Institubonal Review Board
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