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ABSTRACT 

Markerless Motion Capture (MMC) technology has been developed to eliminate the 

need of attaching markers on the human body during motion capturing and analysis. 

One of the clinical conditions that MMC technology can be applied is in the patients 

with stroke - a population who usually requires continuous measurement on their motor 

performance in pre/post rehabilitation intervention. However, there remains questions 

on the reliability of the MMC technology for clinical application, and the benefits of it 

in providing clinical measurement for patients with stroke. Therefore, this thesis aimed 

to examine the application of MMC technology in the patients with stroke.  

Our systematic review and meta-analysis on the application of MMC technology in 

rehabilitation training revealed the potential for MMC systems to be used in 

telerehabilitation training program. Additionally, the review on the application of MMC 

systems in clinical measurement revealed that MMC system can analyze the movement 

kinematics of the disease populations, which suggested that they can serve as an 

alternative tool to measure the movement kinematic in these populations. 

We then conducted a pilot study that investigated the validity and reliability of a 

customized MMC system developed using iPad Pro with LiDAR scanner for the 

capturing of movement kinematics. The performance of measuring the active range of 

motion (AROM) and the angular waveform of the upper-limb-joint angles in functional 
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tasks on healthy adults using the MMC system was examined. We found that the AROM 

measurements calculated by the MMC system had consistently smaller values than 

those measured by the goniometer. An MMC in iPad Pro system might not be able to 

replace conventional goniometry for clinical ROM measurements, but it is still 

suggested for use in telerehabilitation for intra-subject measurements because of its 

good reliability and portability. 

We further investigated the application of MMC system in the measurement of both 

upper and lower limb kinematics in the stroke population, by examining the differences 

in the upper and lower limb joint angles between patients with stroke with different 

functional levels and their healthy counterparts in controlled and uncontrolled 

environments. Machine-learning models were also applied for classification of the 

functioning levels of the participants with stroke. We found significant differences 

between the upper limbs of the hemiplegic and non-hemiplegic sides of the stroke 

participants in most of the tasks. The four selected machine-learning models revealed 

≥ 0.85 sensitivity in the stroke upper limb functional level classification.  

For the lower limb measurement, significant differences were found between the angle 

change of the hemiplegic and non-hemiplegic lower limb of the stroke participants in 

most of the selected task. Our result revealed that MMC system can be used to provide 

precise data to evaluate the upper and lower limb functional recovery of the patients 
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with stroke. Our study hence supports the feasibility of applying MMC system in 

mobile device in measuring the upper and lower limb kinematics for evaluation of the 

limb function of the stroke population. Future directions of research including 

increasing of the usability of the MMC system using smartphone or tablets in 

telerehabilitation are suggested.  
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Chapter 1  

Introduction 

In this first chapter, we present an outline of our research studies on the application of 

markerless motion capture technology in the rehabilitation of patients with stroke as 

well as methods of application. This chapter consists of three sections. The first section 

is a general overview of markerless motion capture technology; the second section 

provides background information on stroke, a description of motor impairment in 

patients with stroke, and the rationales of applying markerless motion capture 

technology in the assessment and treatment of patients with stroke. The third section is 

an outline of the purpose of our studies and the structure of this thesis. 

 

1.1 BACKGROUND OF MARKERLESS MOTION CAPTURE (MMC) 

TECHNOLOGY 

 

Markerless motion capture (MMC) is a technique for human body kinematics 

estimation that does not require markers or fixtures placed on the body (Mündermann 

et al., 2006). It hence allows for greater freedom of movement and more natural 

performance during motion capturing. It uses computer vision algorithms and machine 
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learning techniques to track and analyze human movement. Commonly used MMC 

approaches include silhouette-based methods, optical flow algorithms, and pose 

estimation algorithms (Salisu et al., 2023). 

 

1.1.1 Silhouette-based methods 

 

In silhouette-based methods, the outline of a moving person is extracted from a video. 

The key algorithms involved in such methods include background subtraction, in which 

the image of the human subject is separated from the background of the video; 

silhouette extraction, in which the moving human subject is extracted from the 

background; and pose estimation, in which the postures of the subject are estimated 

(Bottino & Laurentini, 2001). By analyzing changes in a subject’s silhouette at different 

times, the joint coordinates and hence the movement of the subject can be identified 

(Chaaraoui et al., 2013). This technology has been applied in human action recognition 

and used in fields such as sports analysis and animation productions (Correa et al., 

2005).  

 

1.1.2 Optical flow algorithms 
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Optical flow algorithms analyze the pattern of pixels in consecutive video frames and 

estimate the motion of a human object. Based on the presumption that there is a single 

motion in each pixel, the algorithms analyze the changes in pixel intensities to infer 

motion information (Ranjan et al., 2018). One of the commonly used methods for 

optical flow calculation is the Lucas-Kanade method. It tracks the displacement of 

small patches of pixels in an image over time and estimates the flow field (Ranjan et 

al., 2018). This method requires obtaining key points for identification of pixels for the 

tracking of motion. The Shi-Tomasi corner detection technique, which detects the 

corner of objects, is one of the approaches for obtaining key points (Kaur et al., 2022). 

It can be applied in real-time gesture recognition systems (Danafar & Gheissari, 2007). 

 

1.1.3 The pose estimation algorithm 

 

The pose estimation algorithm uses computer vision to identify the human pose. It 

predicts and tracks a human object’s location and orientation (Dhore et al., 2022). There 

are two types of pose estimation algorithm, namely 2D pose estimation algorithms and 

3D pose estimation algorithms. 2D pose estimation algorithms perform the estimation 
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of body joints coordinates from 2D videos. The body joints’ coordinates are presented 

as 2D points. Convolutional neural networks (CNN) is one of the approaches to detect 

body joint points (Aloysius & Geetha, 2017). 3D pose estimation algorithms estimate 

3D positions of human joints. They usually require the use of views or depth 

information from multiple cameras to detect the 3D human pose (Desmarais et al., 

2021). Typically-used 3D pose estimation algorithms include graph convolutional 

network (GCN), which constructs a graph structure to connect body joints (Zhang et 

al., 2019). Examples of the application of pose estimation algorithms include 

augmented reality applications and human activity recognition systems applications 

(Guleryuz & Kaeser-Chen, 2018). 

 

1.1.4 Application of MMC technology 

 

With advances in technology, the development of MMC technology has overcome the 

limitations on the restraint of movement caused by the attachment of body markers on 

subjects and the time-consuming preparation process of traditional marker-based 

motion capture systems (Wade et al., 2022). Previous studies have been done to 

investigate the validity and reliability of some MMC systems, including Kinect, leap 
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motion controller (LMC), and video from RGB cameras (Huber et al., 2015; Ramos Jr. 

et al., 2021; Smeragliuolo et al., 2016). The findings showed that MMC technology 

generally appears to be equivalent to marker-based motion capture in application, but 

the joint center locations and joint angles still varied among systems and the body parts 

being focused on. Despite the uncertainty about the accuracy of MMC technology, its 

advantage of allowing the capture of more lifelike human motion in a natural 

environment has been emphasized (Wade et al., 2022). Scientists have identified the 

potential of using MMC technology in capturing the kinematics of human movement 

in research and clinical practice. As suggested by Mündermann et al. (2008), MMC 

technology can be used in the rehabilitation field since the precise kinematic 

information that it can provide might be beneficial to therapists in understanding the 

motor deficits of patients. The application of MMC technology in the rehabilitation area 

can be divided into two aspects: 1) for rehabilitation training and 2) for rehabilitation 

measurement. The use of the MMC approach in rehabilitation training refers to its use 

in providing real time feedback to patients to guide or correct their movement during 

the rehabilitation exercise (Lam & Fong, 2022), while the utilization of MMC 

technology in rehabilitation measurements refers to the identification and measurement 

of movement kinematics in a clinical population (Lam et al., 2023). Despite the belief 

that MMC technology can contribute objective and precise movement analysis during 
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rehabilitation, the actual application of MMC technology, such as the parameters that 

it captures and the clinical population that it could be applied on, is still under 

investigation. Two systematic reviews have hence been done by the authors of this 

thesis, which will be further described in section 3 of this chapter. 

 

1.2 GENERAL INTRODUCTION OF STROKE 

1.2.1 Background of stroke 

 

Stroke is a disease that is triggered when the blood supply to the brain is interrupted or 

reduced, leading to an impairment of brain function (Boehme et al., 2017). It can be 

classified into two main types: ischemic stroke and hemorrhagic stroke. Ischemic stroke 

refers to the blockage of blood flow in the blood vessels supplying the brain, while 

hemorrhagic stroke is a condition wherein the blood vessels in the brain have ruptured 

or leaked, causing a bleeding in the brain area (Andersen et al., 2009; Chen et al., 2010). 

Presently, one in four adults will suffer stroke in their lifetime, with this number 

increasing 50% over the last 17 years (Feigin et al., 2022). The overall incidence rate 

of stroke is around 2–25 per 1,000 population and it is estimated that there will be about 

101 million stroke patients globally by the year 2023 (Xu et al., 2023). Stroke is one of 
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the leading causes of disability and one of the three most common causes of hospital 

admission in Hong Kong (Woo et al., 2014). The incidence of stroke in Hong Kong is 

no different from that in other developed countries (Feigin et al., 2021). In Hong Kong, 

stroke was the fourth most common cause of death in 2012 (Yu et al., 2012). A survey 

conducted by the Census and Statistics Department reported that the number of people 

who had a stroke increased by 52% over the last 10 years from 37,800 in 2009/10 to 

57,500 in 2018/19 (Feigin et al., 2021). Stroke induces physical and cognitive 

disabilities, most of which are irreversible. Among them, motor impairment, including 

hemiparesis, incoordination, and spasticity are the most common conditions. According 

to research done by Mayo et al. (1999), 78% of patients with stroke had not reached 

age-specific norms for upper extremity function and 68% of them still demonstrated 

slow physical mobility after 3 months of stroke onset. Since motor impairments in both 

the upper and lower extremity greatly affect the completion of activities of daily living 

(ADL), seriously compromise the quality of life of patients with stroke, and impose a 

large socioeconomic burden on families and society, long-term rehabilitation of motor 

function has therefore become one of the major challenges in stroke recovery (O’Dell 

et al., 2009).  

 

According to Hendricks et al. (2002), the recovery of motor function is the most rapid 
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during the first month post-stroke, slowing down during subsequent months, and 

plateauing by 6 months post-stroke. Another study substantiated the fact that motor 

impairment, including balance and lower limb ability, strongly accounts for functional 

recovery in the rehabilitation of patients with stroke staying in hospital (Fong, Chan, & 

Au, 2001). However, Cauraugh & Summers (2005) also observed that patients with 

stroke still experience a significant degree of motor functional improvement after 

intensive training even after 6 months post-stroke. Researchers suggest that intensive 

motor training in stroke patients with mild to moderate impairment facilitates motor 

gains, which is associated with a shift in the laterality of activation in the sensorimotor 

cortex in the brain (Richards et al., 2008). Evidence shows that there is a shift of brain 

activity towards more normal functional movement in rehabilitation-induced motor 

recovery in hemiparetic patients with stroke over time following intensive training 

(Richards et al., 2008). It is hence suggested that comparing the movement of the 

hemiplegic limbs with that of the non-hemiplegic side would be beneficial for 

understanding stroke patients’ motor recovery (Kim et al., 2016). Since the motor 

function of patients with stroke might change gradually across time due to the plasticity 

of the nervous system (Pin-Barre & Laurin, 2015), the motor conditions of patients with 

stroke might change during different stages of stroke recovery. The prescription of 

rehabilitation tasks or training should also be modified or changed according to patients’ 
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motor recovery progress (Ivey et al., 2006). As the motor regain of patients with stroke 

depends on a number of factors, including type of stroke, training intensity, patients’ 

impairment severity, and the overall health and age of patients, it can vary greatly from 

person to person (Kwakkel et al., 2004). Therefore, it is very important for therapists to 

provide continuous and regular monitoring of the motor conditions of patients with 

stroke so as to develop a training protocol with optimal parameters in the type of 

training tasks and training regime according to the patients’ recovery progress. 

 

 

1.2.2 Rationales of applying markerless motion capture (MMC) technology on 

patients with stroke 

 

The traditional monitoring of motor recovery of patients with stroke heavily depends 

on eyeball assessment and manual assessments conducted by the therapists (Poole & 

Whitney, 2001). Such approach requires frequent attendance by patients at the 

rehabilitation setting or regular visits to the patients’ living environment by the 

therapists. A persistent complaint is that neither the intensity of stroke survivors’ 

attendance at rehabilitation clinics nor the frequency of home visits by therapists were 
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sufficient to meet the motor rehabilitation needs of patients with stroke (Dewey et al., 

2007). This issue is caused by multiple factors, such as limited access to healthcare 

services of some stroke patients, inadequate medical capacity, and geographical 

constraints (Dewey et al., 2007). These problems have as yet remained unsolved, which 

significantly hinders the motor recovery prognosis of patients with stroke (Assylbek et 

al., 2024). Due to the outbreak of Covid-19 in 2019, many of the visits to rehabilitation 

settings and home visits for rehabilitation services were suspended (Burns et al., 2022). 

The problem of insufficient rehabilitation progress monitoring of patients with stroke 

became more severe and hence raised concerns in society (Ostrowska et al., 2021). The 

importance of remote monitoring and telerehabilitation has therefore been heavily 

emphasized. MMC technology can capture movement kinematics without the 

requirement of performing motion capture in the standard laboratory environment; 

hence, MMC technology could be a potential approach for the remote monitoring of 

stroke patients’ movement and telerehabilitation for motor regain progress tracking. 

Remote or home-based training enhances stroke rehabilitation by providing precise 

data for long-term progress monitoring, which enables therapists to assess the 

effectiveness of home-training programs and therefore the motor recovery progress of 

patients with stroke (Hellsten et al., 2021). Other than using MMC technology as a 

measurement, Hellsten et al. (2021) proposed that MMC technology can also be applied 
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to training programs, since it might provide real-time feedback to patients to help them 

correct their posture or movement patterns. Due to the current advantages of MMC 

technology in providing objective and precise data for motor activities, Almasi et al. 

(2022) suggested MMC technology has the potential to identify motor impairment and 

monitor the motor recovery of patients with stroke along their rehabilitation process. 

Moro et al. (2020) applied MMC technology in measuring the gait of patients with 

stroke, while Evett et al. (2011) and Levin et al. (2012) combined the use of MMC 

technology with virtual reality (VR) in rehabilitation training programs. Although they 

all reported that the use of MMC technology is effective in measuring the movement 

of patients with stroke, the application of MMC technology in stroke rehabilitation is 

still in its preliminary stages due to the complexity of algorithms, challenges in 

achieving individual variations, cost and accessibility constraints, and the need for 

further validation and clinical evidence (Hellsten et al., 2021). Eichler et al. (2018) 

found significant correlation between the movement kinematics of patients with stroke 

captured by MMC systems and stroke motor assessment scores, but how the movement 

data can reflect stroke motor impairment severity is still inconclusive. Further research 

is warranted to explore an accurate prediction of prognostic stroke recovery that can 

maximize the rehabilitation outcomes of patients and minimize their disabilities and 

caregivers’ burden, as well as optimize rehabilitation efficacy. We hypothesize that the 
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kinematic data from MMC systems can reflect the motor function or motor recovery 

progress of stroke populations. 

 

1.3 PURPOSE OF THE STUDIES IN THIS THESIS AND STRUCTURE OF THE 

THESIS 

 

Since the actual application of MMC technology for rehabilitation in the disease 

population is still uncertain, in this thesis we developed a home-based MMC system 

and elucidate the purpose of using this MMC system in rehabilitation; we conducted 

systematic reviews on the application of MMC technology in rehabilitation training and 

rehabilitation measurement, respectively, to explore the current trend in the 

rehabilitation field of using MMC technology. Chapter 2 of this thesis presents a 

systematic review and meta-analysis of the application of MMC technology in 

rehabilitation training programs. The focus is on the disease population that MMC 

technology is being applied on, the MMC systems that are being used, the format of 

rehabilitation with MMC technology, and the effect of using MMC systems in 

rehabilitation programs (Lam & Fong, 2022). Chapter 3 contains the systematic review 

of the application of MMC systems for clinical measurement in rehabilitation. In this 
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chapter, we describe the clinical population, the types of MMC systems used for 

measurement, and the kinematic parameters being measured (Lam et al., 2023). In our 

study, a tailor-made MMC system developed using an iPad Pro with a LiDAR scanner 

was used to capture movement kinematics. Chapter 4 is a description of the pilot study 

that we conducted to investigate the validity and reliability of our MMC system in 

capturing the upper extremity kinematics of healthy adults. The focus of the main study 

was on the investigation of the application of our MMC system in kinematic 

measurement for patients with stroke. The content of the main study is divided into two 

chapters: Chapter 5 is the study of the measurement of the upper extremity using our 

MMC system, whereas Chapter 6 is a description of the MMC measurement of the 

lower extremity in patients with stroke. The aim of the main study was to investigate: 

1) the kinematic differences between the hemiplegic and non-hemiplegic side of stroke 

patients with different functioning levels, as well as their healthy counterparts; 2) the 

relationship between movement kinematics and manual motor assessments; and 3) the 

effects of using machine learning models in the classification of the motor function of 

patients with stroke. Machine learning classification models were applied to train the 

kinematic data to examine their effect in differentiating the functional impairment level 

of patients with stroke. Chapter 7 is the summary and conclusion of this thesis.  
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Chapter 2 

 

The application of Markerless Motion Capture (MMC) technology in rehabilitation 

program: A systematic review and meta-analysis 

 

ABSTRACT 

 

This chapter is a review that explores the effects of markerless motion capture 

technology-based rehabilitation programs targeting clinical populations and identifies 

the types of MMC systems used. A systematic search was conducted in the PubMed, 

Medline, CINAHL, CENTRAL, EMBASE, and IEEE databases. All eligible studies—

single-group or controlled trial studies investigating the effectiveness of MMC 

technology-based rehabilitation programs—were selected. Single-group studies were 

qualitatively described; only controlled trial studies were included in the meta-analysis. 

Effects regarding the application of MMC technology for different types of patients and 

training body parts are summarized. Five single-group studies and 18 controlled trial 

studies were included. All studies applied MMC technology as a form of virtual reality 

training to provide rehabilitation programs. Most of the studies were conducted in 

regard to upper extremity training in stroke populations. Our meta-analysis revealed 

that there is no significant difference in the upper limb rehabilitation effects between 
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VR training and control interventions. There is potential to apply MMC technology as 

an alternative way of providing rehabilitation to increase patients’ motivation and 

adherence. Future studies on the design of training programs and MMC systems in 

home settings, which are affordable and accessible for patients, are warranted. (This 

review is registered in PROSPERO, registration ID: CRD42022298189). 

 

This chapter has been previously published by the author of this author as a scientific 

manuscript as part of the research topic “New Trends in Immersive Healthcare” in the 

journal “Virtual Reality” on September 17th, 2022. The manuscript has been slightly 

formatted to fit the thesis requirements. Access to the scientific paper: Lam, W. W., & 

Fong, K. N. (2022). The application of markerless motion capture (MMC) technology 

in rehabilitation programs: A systematic review and meta-analysis. Virtual Reality, 1-

16. DOI: https://doi.org/10.1007/s10055-022-00696-6 
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2.1 BACKGROUND 

Intensive and repetitive exercise significantly improves motor function recovery in 

neurological rehabilitation and after stroke. (Carr & Shepherd, 2010) In order to 

increase the exercise intensity, patients should be self-motivated and actively engaged 

in rehabilitation training. To promote functional recovery, there is also a significant 

need for regular and continuous rehabilitation training at home after inpatient hospital 

discharge. 

 

However, patients have reported that they are hindered from engaging in home exercise 
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programs due to unclear feedback about their positions, the quality and quantity of their 

movements, and the level of intensity (Burridge et al., 2017). Without supervision from 

therapists, patients are often doubtful about their rehabilitation progress and whether 

they are moving correctly (Hughes et al., 2017). The absence of instant feedback during 

repetitive movements during home exercise programs further reduces patients’ 

motivation of actively participating, which might in turn reduce their adherence to the 

home rehabilitation exercise program (Alsinglawi et al., 2018).  

 

Remote rehabilitation is a safe and effective alternative to typical rehabilitation 

programs in clinics (Tan, 2020). Tsekleves et al. (2016) investigated the use of a remote 

Nintendo Wii program that offers virtual reality-based upper-limb stroke 

rehabilitation, and found that participants benefited from better wrist control and 

greater functional improvement. Recent research findings suggest that remote stroke 

rehabilitation programs have significant effects on limb function recovery after stroke 

(Sarfo et al., 2018). However, most remote stroke rehabilitation programs require input 

from therapists in terms of supervising and monitoring the quality of the patients’ 

movements (Paneroni et al., 2015). Patients are not able to acquire instant feedback 

with which to regulate their actions and movements without monitoring from therapists 

(Hughes et al., 2020). 
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There are new methods that rely on the motion tracking and analysis of patients’ 

movements during exercise. Wearable devices with sensors are one of the proposed 

ways to conduct unsupervised stroke rehabilitation (Maceira-Elvira et al., 2019). 

Wearable sensors located on specific body parts allow movement tracking for the users 

as well as enabling analysis of their movement quality and quantity (Lee et al., 2018). 

Using wearable sensors to detect the movement of patients during rehabilitation 

exercises reduces the human effort that would be required to continuously observe the 

patients (Bonato, 2005). However, the use of wearable sensors usually requires setup 

and multiple forms of calibration in the early stages, and so patients may not find these 

sensors to be user-friendly.  

 

With the advance of technology in the past 10 years, markerless motion capture (MMC) 

technology has been used in rehabilitation programs (Mündermann et al., 2006). MMC 

technology does not require the placement of any markers on a person’s body, and the 

capturing and analysis of the subject’s movements are based on visual hull 

reconstruction (Mündermann et al., 2006). MMC and analysis technology is becoming 

common and studies have begun to investigate its application in the rehabilitation field. 

Pastor et al. (Pastor et al., 2012) tried applying the MMC system Kinect in the form of 
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VR training with a patient with stroke in 2012. There are also small-scale case series 

(Capo et al., 2014; Ding et al., 2018; Palacios-Navarro et al., 2015; Pompeu et al., 2014; 

Shiri et al., 2012) that have applied MMC and engaged patients in rehabilitation in a 

VR training context. Previous research has indicated the potential of MMC technology 

in rehabilitation exercises (Knippenberg et al., 2017); however, the effects of its 

application have been inconsistent. Both Rodríguez-Hernández et al. (2021) and Wang 

et al. (2017) applied MMC technology and provided training programs in a VR game 

format for patients with stroke. They reported a significant improvement in the upper 

limb function in the VR training group compared with the conventional therapy group 

(Rodríguez-Hernández et al., 2021; Wang et al., 2017). Afsar et al. (2018) and Sin and 

Lee (2013) found that patients who received the MMC technology-based rehabilitation 

program showed significantly greater improvements than the groups receiving 

conventional therapy. However, Saposnik et al. (2016) proposed that the use of VR 

training supported by the MMC system does not generate a better effect than receiving 

intensive rehabilitation in the form of recreational activities. Cannell et al. (2018) 

further reflected that patients receiving VR training with Kinect did not improve more 

significantly than the conventional therapy group. 

 

The inconsistent findings from the literature generate a research gap regarding the 
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uncertain effects of MMC technology-based rehabilitation programs compared to 

conventional therapy. A systematic review (Knippenberg et al., 2017) of the use of the 

MMC system in rehabilitation programs in 2017 concluded that MMC technology was 

still not common in rehabilitation; however, most of the studies included by 

Knippenberg et al. (2017) were small-scale case studies or featured single-group 

designs, which made it difficult to draw conclusions. Therefore, the aims of this 

systematic review are to explore the effects of MMC technology-based rehabilitation 

programs targeting the clinical population, including patients’ feedback regarding the 

technology, and to identify the types of MMC systems used in rehabilitation training 

and the format in which they appeared. 

 

2.2 METHODS 

2.2.1 Search Strategy  

A systematic computerized literature search was conducted by one of the authors (WTL) 

in PubMed, Medline, CINAHL, CENTRAL, EMBASE, and IEEE. The keywords used 

for the searches in each database include Markerless Motion Capture OR Motion 

Capture OR Motion Capture Technology OR Markerless Motion Capture Technology 

AND Rehabilitation OR Rehabilitation program OR Training Program OR Treatment. 
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The author also conducted a manual search using Google Scholar with the same 

keywords, and screened the reference lists of the previous systematic reviews. The 

years of publication were not limited and the last search took place on 20 January 2022. 

  

2.2.2 Inclusion Criteria 

Studies were included if they: 1) are either controlled studies or single-group studies; 

2) applied MMC technology in a rehabilitation program; 3) aimed to evaluate the effects 

of the application of an MMC system in rehabilitation training on patients’ functional 

recovery; 4) had at least one assessment outcome related to clinical effects conducted 

before and after the intervention; and 5) were published in English. 

 

2.2.3 Exclusion Criteria 

Studies were excluded if they: 1) involved healthy subjects only; 2) focused on 

evaluating the users’ experiences only; 3) applied MMC technology in clinical 

evaluations only; 4) did not report any outcomes; 5) involved other robotic training, 

such as the use of exoskeletons, robotic walkers, or haptic devices; or 6) were 

systematic reviews. 
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2.2.4 Data Extraction 

The general characteristics and results of the studies were recorded, including the 

names of the authors, the year of publication, study design, sample size, patient types, 

format of the interventions, type of MMC system used, and components of the training 

program. Information regarding the clinical effects and clients’ feedback were extracted. 

The initial mean scores and standard deviations (SDs) of the assessment outcomes after 

the rehabilitation programs were extracted from the clinical effects reported in the 

controlled studies. We recorded the mean change in scores calculated from the pre- and 

post-experiment outcome measures and calculated standard errors (SEs) for meta-

analysis. The researchers contacted the article authors to request extra information if 

the data provided in the articles were insufficient to be used for data pooling. Meta-

analysis was only performed on the controlled studies. 

 

2.2.5 Methodological Quality Assessment 

The methodological quality of the controlled studies was assessed by independent 

reviewers (WTL) using the Physiotherapy Evidence Database (PEDro) rating scale 

(Moseley et al., 2002). Disagreements between the two reviewers during the 

methodological quality assessment of the studies were reconciled via consensus or 

arbitration by a third reviewer (KNKF). The PEDro scale has 11 items, including the 
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risk of bias in terms of randomization, allocation concealment, baseline measurement, 

blinding, dropout rate, intention to treat, and data reporting in statistical comparisons. 

One mark is scored for each item if the criterion is met. The total score is calculated by 

summation of the scores from the 11 items. Studies with a PEDro score of 9–10 are 

considered to be of “excellent” quality, 6–8 of “good” quality, 4–5 of “fair” quality, and 

below 4 of “poor” quality (Teasell et al., 2003). 

 

2.2.6 Data Synthesis 

Randomized controlled studies that focused on the upper extremity rehabilitation of 

patients with stroke were identified and included in a further meta-analysis to determine 

the effects of the use of MMC technology in the rehabilitation of the upper limb in the 

stroke population. 

In this meta-analysis, we used the mean change scores (post-pre) and the standard errors 

(SEs) to pool the results. The post-intervention outcomes were used. Most of the mean 

change scores were calculated from the pre- and post-assessment scores provided in the 

studies, while the SEs were calculated according to the suggestions in Cohen’s 

handbook (Higgins, 2011). 
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Among the randomized controlled studies, the most commonly used outcome 

measurement for upper limb function is the Box and Block Test (BBT). One study used 

the Fugl-Meyer Assessment (FMA) (Afsar et al., 2018) as the primary outcome 

measure, in which they did not include the BBT as the outcome measurement. One of 

the included studies used the Wolf Motor Function Test (WMFT) (Wang et al., 2017) 

to measure hand motor function. One study that used Manual Muscle Testing (MMT) 

(Lee, 2013) as the major outcome measurement to determine the recovery of hand 

muscle strength has been excluded from this meta-analysis due to the difference in the 

nature of assessments compared with the three other scales. We combined the outcomes 

of the BBT, FMA, and WMFT in our meta-analysis by transforming the mean changes 

and SEs into a standardized mean difference expressed as Hedges’ g, with 95% 

confidence intervals (CI) as the pooled effect size. Heterogeneity across the included 

studies was confirmed by checking the Higgins I2 statistic. If the I2 statistic was below 

50%, a fixed-effects model was used for data pooling. If the I2 statistic was above 50%, 

a random effects model was used. Publication bias was checked through a meta-

analysis or subgroup analysis including five or more studies, using Egger’s linear 

regression test to quantify the asymmetry of the funnel plots generated. Procedures 

related to data pooling and checking of publication bias were conducted using the 

Comprehensive Meta-Analysis 3.0 software (Englewood, NJ, USA). 
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We also summarized the feedback from the patients’ responses to the use of MMC 

technology in rehabilitation, as reported in the included studies. Qualitative description 

was applied to the single-group studies. 

 

2.3 RESULTS 

2.3.1 Literature Search and Study Characteristics 

A total of 1,213 articles were identified and 67 of them were selected for full-text 

reading. After excluding 44 articles according to the inclusion and exclusion criteria, 

23 studies were included in the final review (Figure 2.1). Among the included studies, 

18 of them are controlled studies (Afsar et al., 2018; Avcil et al., 2021; Cannell et al., 

2018; Dabholkar & Shah, 2020; Lee, 2013; Levin et al., 2012; Lloréns, Gil-Gómez, et 

al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-Gheidari et 

al., 2020; Rodríguez-Hernández et al., 2021; Saposnik et al., 2016; Sin & Lee, 2013; 

Tarakci et al., 2020; Waliño-Paniagua et al., 2019; Wang et al., 2017), while five of 

them are single-group studies (Jonsdottir et al., 2019; Knippenberg et al., 2021; Qiu et 

al., 2020; Tarakci et al., 2016; Vanbellingen et al., 2017). A total of 15 out of the 18 

controlled studies applied MMC technology in upper extremity rehabilitation and used 
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upper limb motor function as the outcome measurement. A total of 10 out of those 15 

studies involved adults with neurological diseases. Among them, eight studies focused 

on patients with stroke and two studies focused on patients with multiple sclerosis (MS) 

and Parkinson’s disease (PD). These 10 studies were included in our meta-analysis. The 

remaining eight controlled-trial studies focused on the training of balance with patients 

with various neurological diseases or the training of hand dexterity with patients with 

hand functional deficits, which could not be pooled together for effect size analysis. All 

of the five single-group studies applied MMC technology in upper limb rehabilitation. 
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Figure. 2.1 Flow chart of study selection 

 

2.3.2 Single-Group Studies 

The summary in Table 2.1 presents the characteristics of the five single-group studies. 
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Two of them provided training programs to the stroke population using the LMC system. 

Qiu et al. (2020) reported a functional improvement in the subjects’ upper extremity by 

an increase of the group’s average. The Upper Extremity Fugl-Meyer Assessment 

(UEFMA) score after training, according to Vanbellingen et al. (2017), detected no 

significant change in the UEFMA score but significant improvement was noticed in 

hand dexterity using the Nine Hole Peg Test. Tarakci et al. (2016) claimed a significant 

improvement was found in hand grip strength and range of motion (ROM) after the 

MMC treatment program in patients with juvenile idiopathic arthritis (JIA). Both 

Knippenberg et al. (2021) and Jonsdottir et al. (2019) used Kinect as the MMC system 

and studied patients with central nervous system (CNS) diseases and patients with 

multiple sclerosis (MS). The two studies used different outcome measures and both 

concluded that improvements were found in the upper limb function of the patients. 
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2.3.3 Controlled-Trial Studies 

Target Population 

There are a total of 18 studies included in this review, with a total of 675 subjects (339 

patients in experimental groups; 336 patients in control groups) (Table 2.2). A total of 

15 out of the 18 studies applied the MMC system in rehabilitation for adults with 

neurological diseases (Afsar et al., 2018; Cannell et al., 2018; Cuesta-Gómez et al., 

2020; Fernández-González et al., 2019; Lee, 2013; Levin et al., 2012; Lloréns, Gil-

Gómez, et al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-

Gheidari et al., 2020; Rodríguez-Hernández et al., 2021; Saposnik et al., 2016; Sin & 

Lee, 2013; Waliño-Paniagua et al., 2019; Wang et al., 2017), including 11 studies 

targeting the stroke population (n = 453) (Afsar et al., 2018; Cannell et al., 2018; Lee, 

2013; Levin et al., 2012; Lloréns, Gil-Gómez, et al., 2015; Lloréns, Noé, et al., 2015; 

Norouzi-Gheidari et al., 2020; Rodríguez-Hernández et al., 2021; Saposnik et al., 2016; 

Sin & Lee, 2013; Wang et al., 2017), three studies focusing on patients with MS 

(Cuesta-Gómez et al., 2020; Lozano-Quilis et al., 2014; Waliño-Paniagua et al., 2019), 

and one study focusing on patients with PD (Fernández-González et al., 2019). Two 

studies focused on children and adolescents with physical disabilities, including CP, 

juvenile idiopathic arthritis (JIA), and brachial plexus birth injury (BPBI) (Avcil et al., 
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2021; Tarakci et al., 2020). One study reported data from adults suffering from wrist 

and hand stiffness with non-specified diagnoses (Dabholkar & Shah, 2020). The 

methodological quality of the 18 controlled studies was evaluated using the PEDro 

items (Table 2.3). 
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Table 2.2 Characteristics of the controlled-trial studies 

Study Design Subject Types n (E/C) Age Type of 

MCS 

Format Experimental 

Group 

Control Group Outcome 

Measurements 

Levin et al. 

(2012)  

RCT Stroke (chronic) 12 (6/6) E: 58.1±14.6 

C: 59.8±15.1 

 

Gesture 

Xtreme  

 

VR game A total of nine 

sessions of 45 

minutes of VR 

training (3 weeks) 

A total of nine 

sessions of 45 

minutes of OT 

rehab (3 weeks) 

 

FMA-UE, CSI, RPSS, 

BBT, WMFT, MAL 

Lee et al. 

(2013)  

RCT Stroke (chronic) 14 (7/7) E: 71.71±9.14  

C: 76.43±5.80  

 

Microsoft 

Kinect 

(Xbox) 

Video game Three sessions of 

60 minutes of 

Xbox games a 

week (6 weeks)  

Three sessions 

of 30 minutes of 

OT rehab a 

week (6 weeks) 

 

MMT, MAS, FIM  

 

Sin and Lee 

(2013)  

 

RCT Stroke (chronic) 35 (18/17) E: 71.78±9.42 

C: 75.59±5.55 
Microsoft 

Kinect 

(Xbox) 

VR game Three sessions of 

30 minutes of VR 

training + 30 

minutes of OT 

rehab a week (6 

weeks) 

 

Three sessions 

of 30 minutes of 

OT rehab a 

week (6 weeks) 

 

FMA, ROM, AROM, 

BBT  

Lozano-

Quilis et al. 

(2014)  

RCT MS 11 (6/5) E: 48.33±10.82 

C: 40.60±9.24 

Microsoft 

Kinect 

VR exercise One session of 45 

minutes of PT 

rehab + 15 

minutes of VR 

training a week 

(10 weeks) 

 

One session of 

60 minutes of 

PT rehab a week 

(10 weeks) 

BBS, TBS, SLB, 

10MT, TUG, SEQ 

Lloréns, Gil-

Gómez, et al. 

(2015)  

RCT Stroke (chronic) 20 (10/10) E: 58.3±11.6  

C: 55.0±11.6  

 

Microsoft 

Kinect 

 

VR exercise Five sessions of 

30 minutes of PT 

rehab + 30 

minutes of VR 

training a week (4 
weeks) 

Five sessions of 

60 minutes of 

PT rehab a week 

(4 weeks) 

 

BBS, POMA, BBA, 

10MT, SFQ  
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Lloréns, 
Noé, et al. 

(2015)  

 

RCT Stroke (chronic) 30 (15/15) E: 55.47±9.63 

C: 55.60±7.29 

Microsoft 

Kinect 

VR exercise Three sessions of 

45 minutes of VR 

training a week in 

a home setting (20 

sessions) 

Three sessions 

of 45 minutes of 

VR training a 

week in a 

clinical setting 

(20 sessions) 

 

BBS, POMA-B, 

POMA-G, BBA, SUS, 

IMI 

Saposnik et 

al. (2016) 

RCT Stroke 

(subacute) 

141 

(71/70) 
E: 62±13 

C: 62±12 

Nintendo 

Wii gaming 

system 

(VRWii) 

VR game Ten sessions of 60 

minutes of VR 

training (2 weeks) 

Ten sessions of 

60 minutes of 

recreational 

activity (2 

weeks) 

 

WMFT, BBT, SIS, 

FIM, BI, mRS, GS, 

RPS, RPE 

 

Wang et al. 

(2017)  

RCT Stroke (subacute) 26 (13/13) E: 55.3±8.4  

C: 53.4±7.6  

 

LMC VR game Five sessions of 

45 minutes of PT 

& OT rehab a 

week + five 

sessions of 45 

minutes of VR 

training a week (4 

weeks) 

 

Five sessions of 

45 minutes of 

PT & OT rehab 

a week (4 

weeks) 

WMFT, fMRI 

Afsar et al. 

(2018)  

 

RCT Stroke (subacute) 35 (19/16) E: 69.42±8.55  

C: 

63.44±15.73  
 

Microsoft 

Kinect 

(Xbox 360)  

 

VR game Five sessions of 

60 minutes of 

rehab program a 

week + 30 

minutes of VR 

training/sessions 

(4 weeks) 

 

Five sessions of 

60 minutes of 

rehab program a 

week (4 weeks) 

FMA-UE, BRS, BBT, 

FIM 

Cannell et al. 

(2018)  

 

RCT Stroke (subacute) 79 (39/40) E: 72.8±10.4 

C: 74.8±11.9  

Microsoft 

Kinect 

Game-based 

activities  

 

Five sessions of 

PT rehab + 5 

hours of iMCR 

intervention a 

week (between 

eight and 40 

sessions) 

Five sessions of 

PT rehab + 5 

hours of rehab 

exercise a week 

(between eight 

and 40 sessions) 

FRT, MMAS, BBT, 

SBS, LRT, ST, TUG 



 

 44 

 

Fernández-

González et 

al. (2019) 

RCT PD 23 (12/11) E: 65.77±7.67 

C: 

67.36±12.12  

 

LMC Video game Two sessions of 

30 minutes of 

serious games a 

week 

(6 weeks) 

 

Two sessions of 

30 minutes of 

PT rehab a week 

(6 weeks) 

 

BBT, PPT, CSQ-8, GS 

Waliño-

Paniagua et 

al. (2019)  

 

RCT MS 16 (8/8) E: 46.75±9.31 

C: 46.13±9.49  

 

Online 

platform 

VR game Two sessions of 

30 minutes of OT 

rehab + two 

sessions of 20 

minutes of VR 

training a week 

(10 weeks) 

 

Two sessions of 

30 minutes of 

OT rehab a 

week (10 

weeks) 

PPT, JTHFT, GPT 

Cuesta-

Gómez et al. 

(2020)  

 

RCT MS 30 (16/14) E: 49.86±2.46  

C: 42.66±3.14  
 

LMC VR game Two sessions of 

45 minutes of PT 

rehab + 15-min 

VR training a 

week (10 weeks) 

 

Two sessions of 

60 minutes of 

PT rehab a week 

(10 weeks) 

GS, BBT, PPT, NHPT, 

FSS, MSIS-29, CSQ-8 

Dabholkar et 

al. (2020) 

 

NRS Patients with wrist 

and hand stiffness  

 

50 (25/25) E: 48.8 (SD not 

provided) 

C: 47.9 (SD not 

provided) 

LMC VR game Two sessions of 

15–20 minutes of 

PT rehab + 10–15 

minutes of VR 

training a week (4 

weeks) 

 

Three sessions 

of 25 minutes of 

PT rehab a week 

(4 weeks) 

VAS, ROM of wrist 

and hand, GS, PPT, 

MHQ 

Norouzi-

Gheidari et 

al. (2020)  

RCT Stroke 

(subacute/chronic) 

18 (9/9) E: 42.2±9.5  

C: 57.6±10.5  

 

Microsoft 

Kinect 

VR game Regular OT/PT 

rehab + three 

sessions of 30 

minutes of VR 

training a week (4 

weeks) 

 

Regular OT/PT 

rehab (4 weeks) 
FMA-UE, BBT, SIS, 

MAL 

Tarakci et al. 

(2020)  

RCT CP + JIA + BPBI CP: 30 

(15/15) 

E(CP): 

10.93±4.09 

LMC Video game Three sessions of 

60 minutes of 

Three sessions 

of 60 minutes of 

DHI, JTHFT, NHPT, 

CHAQ, GS, PS  
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aData are reported as means (SD). 

RCT: Randomized Controlled Trial, VR: Virtual Reality, OT: Occupational Therapy, FMA-UE: Fugl-Meyer Assessment for Upper Extremity, CSI: Composite Spasticity Index, RPSS: 

Reaching Performance Scale for Stroke, BBT: Box and Block test, WMFT: Wolf Motor Function Test, MAL: Motor Activity Log, MMT: Manual Muscle Test, MAS: Modified 

Ashworth Scale, FIM: Functional Independence Measure, FMA: Fugl-Meyer Assessment, ROM: Range of Motion, AROM: Active Range of Motion, PT: Physical Therapy, BBS: 

Berg Balance Scale, TBS: Tinetti Balance Scale, SLB: Single Leg Balance test, 10MT: 10-m Walking Test, TUG: Timed Up and Go test, SEQ: Suitability Evaluation Questionnaire, 

POMA: Tinetti Performance-Oriented Mobility Assessment, BBA: Brunel Balance Assessment, SFQ: Short Feedback Questionnaire, POMA-B: Performance-Oriented Mobility 

Assessment Balance subscale, POMA-G: Performance-Oriented Mobility Assessment Gait subscale, SUS: System Usability Scale, IMI: Intrinsic Motivation Inventory, SIS: Stroke 

Impact Scale, BI: Barthel Index, mRS: Modified Rankin Scale, GS: Grip Strength, RPS: Reaching Performance Scale, RPE: Borg Perceived Level of Exertion scale, LMC: Leap 

Motion Controller, fMRI: Functional magnetic resonance imaging, BRS: Brunnstrom stage of recovery, iMCR: interactive Motion Capture-based Rehabilitation, FRT: Functional 

 JIA: 43 

(18/25) 

 

BPBI: 19 

(9/10) 

C(CP): 11.06 

±3.23 

 

E(JIA): 

12.22±3.29 

C(JIA): 

13.16±3.35 

 

E(BPBI): 

8.22±2.58 

C(BPBI): 

8.30±2.21 

 

LMCBT a week 

(8 weeks) 

conventional 

rehab program a 

week (8 weeks) 

 

 

Rodríguez-

Hernández et 

al. (2021) 

RCT Stroke 

(subacute) 

43 (23/20) E: 62.6±13.5  

C: 63.6±12.2 

 

Microsoft 

Kinect 

VR 

exergames 

Five sessions of 

50 minutes of PT 

rehab + 50 

minutes of OT 

rehab + 50 

minutes of VR 

training a week (3 

weeks) 

5 sessions of 75 

minutes of PT 

rehab + 75 

minutes of OT 

rehab/week (3 

weeks) 

 

FMA-UE, MAS, SIS 

Avcil et al. 

(2021)] 

 

RCT CP 30 (15/15) E: 10.93±4.09 

C: 11.07±3.24 

LMC Video game Three sessions of 

60 minutes of 

VGBT a week (3 

weeks) 

Three sessions 

of 60 minutes of 

NDT-based 

rehab a week (3 

weeks) 

MMDT, GS, PS, 

CHAQ, DHI 
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Reach Test, MMAS: Modified Motor Assessment Scale, SBS: Sitting Balance Scale, LRT: Lateral Reach Test, ST: The Step Test, PD: Parkinson’s Disease, PPT: Purdue Pegboard 

Test, CSQ-8: Client Satisfaction Questionnaire, MS: Multiple Sclerosis, JTHFT: Jebsen-Taylor Hand Function Test, GPT: Grooved Pegboard Test, NHPT: Nine Hole Peg Test, FSS: 

Fatigue Severity Scale, MSIS-29: Multiple Sclerosis Impact Scale, NRS: non-randomized controlled study, VAS: Visual Analogue Scale, MHQ: Michigan Hand Questionnaire, CP: 

Cerebral Palsy, JIA: Juvenile Idiopathic Arthritis, BPBI: Brachial Plexus Birth Injury, LMCBT: Leap Motion Controller-Based Training, DHI: Duruoz Hand Index, CHAQ: Childhood 

Health Assessment Questionnaire, PS: pinch strength, VGBT: video game-based therapy, NDT: neurodevelopmental therapy, MMDT: Minnesota Manual Dexterity Test.
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Table 2.3 PEDro scores of the controlled-trial studies 

Authors PEDro Items          Total 

 1 2 3 4 5 6 7 8 9 10 11  

Levin et al. (2012)  1 1  1   1 1    5 

Lee et al. (2013)  1 1 1 1     1 1 1 7 

Sin and Lee (2013)  1 1 1 1   1 1  1 1 8 

Lozano-Quilis et al. (2014)  1 1 1 1    1  1 1 7 

Lloréns, Gil-Gómez, et al. (2015)  1 1 1 1   1 1  1 1 8 

Lloréns, Noé, et al. et al. (2015)  1 1 1 1   1 1  1 1 8 

Saposnik et al. (2016)  1 1  1   1 1 1 1 1 8 

Wang et al. (2017)  1 1 1 1    1 1 1 1 8 

Afsar et al. (2018)  1 1 1 1   1 1  1 1 8 

Cannell et al. (2018)  1 1 1 1 1  1 1 1 1 1 10 

Fernández-González et al. (2019)  1 1  1    1  1 1 6 

Waliño-Paniagua et al. (2019)  1 1  1   1   1 1 6 

Cuesta-Gómez et al. (2020)  1 1 1 1   1 1  1 1 8 

Dabholkar et al. (2020)  1   1    1 1 1 1 6 

Norouzi-Gheidari et al. (2020)  1 1 1 1   1 1  1 1 8 

Tarakci et al. (2020)  1 1 1 1   1 1  1 1 8 

Rodríguez-Hernández et al. (2021)  1 1  1    1  1 1 6 

Avcil et al. (2021)  1 1 1 1    1  1 1 7 

1 = eligibility criteria; 2 = random allocation; 3 = concealed allocation; 4 = baseline comparability; 5 = blind subjects; 6 = blind therapists; 7 = blind assessors; 8 

= adequate follow-up; 9 = intention-to-treat analysis; 10 = between-group comparisons; 11 = point estimates and variability. 
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2.3.4 Training Content and Format 

Most of the studies (15 out of 18) conducted rehabilitation programs by training the 

upper extremity (Afsar et al., 2018; Avcil et al., 2021; Cannell et al., 2018; Cuesta-

Gómez et al., 2020; Dabholkar & Shah, 2020; Fernández-González et al., 2019; Lee, 

2013; Levin et al., 2012; Norouzi-Gheidari et al., 2020; Rodríguez-Hernández et al., 

2021; Saposnik et al., 2016; Sin & Lee, 2013; Tarakci et al., 2020; Waliño-Paniagua et 

al., 2019; Wang et al., 2017), while the remaining three studies conducted balance 

training programs using the MMC system (Lloréns, Gil-Gómez, et al., 2015; Lloréns, 

Noé, et al., 2015; Lozano-Quilis et al., 2014). Among the 15 studies that trained the 

upper extremity, two of them mainly focused on examining the improvement in hand 

dexterity (Tarakci et al., 2020; Waliño-Paniagua et al., 2019) and one used manual 

muscle testing as an outcome measure to determine the effects of using an MMC system 

in the training of hand muscle strength (Lee, 2013). A total of 15 studies (Afsar et al., 

2018; Avcil et al., 2021; Cannell et al., 2018; Cuesta-Gómez et al., 2020; Dabholkar & 

Shah, 2020; Fernández-González et al., 2019; Lee, 2013; Levin et al., 2012; Norouzi-

Gheidari et al., 2020; Rodríguez-Hernández et al., 2021; Saposnik et al., 2016; Sin & 

Lee, 2013; Tarakci et al., 2020; Waliño-Paniagua et al., 2019; Wang et al., 2017) used 

MMC systems in the form of a video or VR game, while three of them (Lloréns, Gil-
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Gómez, et al., 2015; Lloréns, Noé, et al., 2015; Lozano-Quilis et al., 2014) provided 

training programs using MMC systems in the form of VR exercises.  

 

2.3.5 Type of MMC System 

The most frequently used MMC system in the studies was the Kinect system developed 

by Microsoft in 2010 (out of production since 2017). Nine studies applied the Kinect 

system in the form of VR games or VR exercises in rehabilitation programs (Afsar et 

al., 2018; Cannell et al., 2018; Lee, 2013; Lloréns, Gil-Gómez, et al., 2015; Lloréns, 

Noé, et al., 2015; Lozano-Quilis et al., 2014; Norouzi-Gheidari et al., 2020; Rodríguez-

Hernández et al., 2021; Sin & Lee, 2013). Microsoft Kinect is a kind of MMC system 

that uses depth-sensing technology to detect and capture human movement with 

infrared sensors (Zhang, 2012). Instant feedback can be provided to users about their 

gestures and movement patterns through the system.  

 

The Leap Motion Controller (LMC) was adopted by six studies (Avcil et al., 2021; 

Cuesta-Gómez et al., 2020; Dabholkar & Shah, 2020; Fernández-González et al., 2019; 

Tarakci et al., 2020; Wang et al., 2017) and was the second most commonly used MMC 

system. The LMC captures motion performed within a small observation area with its 
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monochromatic cameras and infrared LEDs (Lu et al., 2016). It is commonly used to 

track hand and finger movements when users interact with digital content. 

 

Other MMC systems used include the Gesture Xtreme, the Nintendo Wii gaming 

system (VRWii), and a free online platform, which were adopted by the remaining three 

studies (Levin et al., 2012; Saposnik et al., 2016; Waliño-Paniagua et al., 2019). Gesture 

Xtreme is a VR gaming system that allows users to immerse themselves in virtual 

worlds and interact with virtual environments (Kizony et al., 2003). Instant feedback is 

generally obtained from how the users interact with the virtual context. The motion 

tracking of the VRWii depends on the recognition of positions by its 3D accelerometer, 

which translates motion into gesture recognition (Lee, 2008). The free online website 

adopted by Waliño-Paniagua et al. (2019) is cited as motiongamingconsole.com; it 

provides online VR games. 

 

2.3.6 Training Effects of the Application of MMC Technology in Upper Limb 

Rehabilitation in Adults with Stroke 

A total of 389 adults with stroke across eight studies were included in this meta-analysis 

(Afsar et al., 2018; Cannell et al., 2018; Cuesta-Gómez et al., 2020; Fernández-
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González et al., 2019; Levin et al., 2012; Norouzi-Gheidari et al., 2020; Rodríguez-

Hernández et al., 2021; Saposnik et al., 2016; Sin & Lee, 2013; Wang et al., 2017). The 

PEDro scores for all of the controlled-trial studies ranged from 5–10, with an average 

score of 7.33 ± 1.33 (Table 2.3). The eight selected studies in the meta-analyses ranged 

from 5–10. No serious adverse effects as a result of the MMC technology-based training 

programs were noted in any of the studies. The pooled results show that applying an 

MMC system in upper limb rehabilitation for patients with stroke is not significantly 

more effective than a control intervention regarding upper extremity functional 

improvement in adults with stroke (Hedges’ g = 0.351; 95% CI = -0.195 – 0.896; 𝐼2= 

84.001; P = 0.208; random effects model) (Figure 2.2). A funnel plot after trim and fill 

showed that the effect size shifted to the left (Figure S2.1) and Egger’s test suggested 

that there is no evidence of publication bias (𝛽 = 3.918; standard error = 2.087; P = 

0.110). 

 

Fig. 2.2 Effects of application of MMC system and control intervention on upper 

extremity rehabilitation for adults with stroke. The hedges’ g was converted by the 
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mean change in scores and standard error (SE) of both MMC system group and 

control groups in the 8 included studies. Results were pooled and the overall effect of 

the using MMC system in rehabilitation program was computed as hedges’ g with 

95% confidence interval. The results indicated that rehabilitation using MMC system 

has no significant difference in effect of improving upper extremity function when 

compared with control intervention (Hedges’ g = 0.351; 95% CI = -0.195 – 0.895; 

𝐼2= 84.001; P = 0.208; random effect model) Funnel plot after trim and fill showed 

that effect size shifted to the left (Figure S2.1) and Egger’s test suggested that there is 

no evidence of publication bias (𝛽 = 3.918; standard error = 2.087; P = 0.110) 

 

2.3.7 Effects of Training via MMC Systems in Adults with Other Diseases 

Fernández-González et al. (2019), Cuesta-Gómez et al. (2020), and Dabholkar et al. 

(2020) conducted their studies using LMC as the MMC system in rehabilitation 

programs with patients with PD, MS, and wrist and hand stiffness, respectively. All 

three studies reported a significant improvement in Pegboard Test (PPT) scores 

compared with the control groups. Waliño-Paniagua et al. (2019), who used a free 

online website as the MMC platform, reported no significant difference in the 

improvement of the hand dexterity of their subjects with MS in the VR training group 

when compared with the control group. 

 

2.3.8 Effects of Training Muscle Strength 

The only study that investigated the effect of using MMC technology in regard to 

training muscle strength was conducted by Lee et al. (2013). The improvements in 

muscle strength among patients with stroke in the MMC system training group were 
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not significantly different from those of the patients in the control group, who received 

conventional occupational therapy. 

 

2.3.9 Effects of Balance Training in Adults 

Three studies applied MMC technology using the Kinect system to provide balance 

rehabilitation programs (Lloréns, Gil-Gómez, et al., 2015; Lloréns, Noé, et al., 2015; 

Lozano-Quilis et al., 2014). The target populations were adults with stroke and MS, 

respectively. Lloréns et al. (2015) reported a significant improvement in the patients 

with stroke who underwent rehabilitation using the Kinect system, measured by the 

Berg Balance Scale, when compared with the control group. His team further studied 

the effects of balance training via Kinect in home settings and in clinical settings 

(Lloréns, Noé, et al., 2015). They found that patients who received VR training at home 

and those who underwent VR training in the clinical setting did not show significant 

differences in their balance ability, as measured by the BBS. Lozano-Quilis et al. (2014) 

conducted a balance rehabilitation program with subjects with MS and discovered a 

significant group-by-time interaction in the BBS scores of the VR group. 

 

2.3.10 Effects of Applying MMC in Rehabilitation Programs for Children and 

Adolescents 

Two studies (Avcil et al., 2021; Tarakci et al., 2020) reported findings from applying 

LMC in upper limb rehabilitation for children and adolescents. Avcil et al. (2021) 

focused on patients with CP, while Tarakci et al. (2020) included CP, JIA, and BPBI 

populations. One study reported a significant improvement in the manual dexterity of 

the more affected side, compared to NDT-based treatment (Tarakci et al, 2020), while 
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another study reported no significant difference in hand function and grip strength 

between the experimental group and the control group, which received conventional 

rehabilitation (Avcil et al., 2021). 

 

2.3.11 Patients’ Acceptance 

Both CSQ-8 scores reported by Fernández-González et al. (2019) and Cuesta-Gómez 

et al. (2020) reflected the high degree of satisfaction in the LMC training group. Patients 

were generally reported to be motivated and enjoying themselves when training with 

the MMC system. 

 

2.4 DISCUSSION 

2.4.1 Effects of the Application of MMC Technology in Rehabilitation Training 

Programs 

Our meta-analysis revealed no significant difference in the upper limb training effects 

between the use of MMC technology and the use of conventional therapy among 

patients with stroke. The effects of using MMC systems in balance training with MS 

and stroke populations were found to be more significant than conventional therapy. 

The studies using MMC systems in rehabilitation programs for other types of 

neurological diseases and for children were too limited to draw conclusions regarding 

their effectiveness. 

 

We investigated the features of MMC technology to deduce its comparable 

effectiveness with conventional therapy in the stroke population. First, the MMC 
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system can generate instant feedback for users through its real-time movement 

detection and analysis technology. Users can correct their movements or adjust their 

gestures based on real-time feedback during the training to improve the training efficacy. 

Although MMC systems are able to capture and analyze patients’ real-time movements 

(Liang & Miao, 2015), they do not support the detection of force exerted by the patients 

in each task. Hence, the training effect of hand muscle strength using an MMC system 

might not be superior to similar training using conventional therapy, as reflected by the 

only study (Lee, 2013) that investigated muscle strength. Second, applying MMC 

technology in training in the form of VR games allows patients to interact with virtual 

contexts, which provides more dynamic training elements. This advantage appears to 

be more obvious in the training of balance. As balance performance depends on 

reactions toward stimuli from the environment (Hess & Woollacott, 2005), the 

simulation of environmental factors that threaten stability might help to improve 

balance. The VR platform enables the simulation of environmental stimuli and 

obstacles, which promotes the acquisition of motor strategies for patients reacting to 

the changing environmental stimuli (Cho et al., 2014). Patients could gain more 

competence in maintaining stability despite threatening stimuli through training in 

virtual contexts. VR might hence result in more significant improvements in balance, 

as measured by Lloréns, Gil-Gómez, et al. (2015) and Lozano-Quilis et al. (2014). 

Providing rehabilitation programs in the form of VR games is also a way to increase 

the enjoyment that can be derived from the training, as reflected by patients’ feedback, 

which might enhance their adherence to and motivation to complete the training. By 

providing real-time feedback and enabling patients to be trained in a VR platform, the 

use of MMC technology can be considered as a low-cost and efficient form of training. 

Despite the fact that the use of MMC technology can be a low-cost and useful way of 
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capturing and evaluating the performance of patients, there are several drawbacks to 

the MMC technology used in rehabilitation. First, the requirement of using a specific 

camera, such as an infrared camera or a depth camera, reduces the accessibility of the 

large-scale use of motion capture technology in rehabilitation. The cost of the current 

MMC devices was affordable for hospitals and clinics, but might not be for patients 

looking to purchase one in order to conduct VR rehabilitation in home settings. A 

concern raised by (Saposnik et al., 2016) is that a significant group of the stroke 

population have low incomes and so likely have limited access to technologies such as 

VR for rehabilitation. Their findings reveal that an MMC system should be accessible 

and affordable for patients so they can benefit from VR training. Second, older 

generations may have less knowledge about how to set up and calibrate MMC systems, 

which constitute a new technology (Gramstad et al., 2013). They might not be 

competent in participating in VR training programs at home, due to the knowledge and 

skills needed to set up and calibrate the system. Further, task-specific and client-

oriented VR training programs are required to precisely analyze body parts when 

MMC technology is used in rehabilitation. Current VR exercises or serious games 

especially designed for patients with particular types of diseases are limited (Kharrazi 

et al., 2012). The content of VR games and exercises might not provide patients with 

the right challenge. Most VR exercises and games only reflect patients’ performance 

through game scores (Mubin et al., 2020) and therapists might not be able to evaluate 

the actual functional improvement of the patients with this alone. The motion analysis 

system of MMC gaming technology cannot be adopted to extract clinical data in order 

to deduce patients’ degree of recovery. 

 

The selection of a suitable MMC system for training specific targeted body functions 
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is also important. As the current meta-analysis focuses on the upper limb rehabilitation 

of patients with stroke, the major outcome measurement is the BBT score. The BBT is 

an assessment that measures unilateral gross manual dexterity (Desrosiers et al., 1994). 

To complete the BBT, patients are required to transfer as many blocks as possible from 

one compartment to another in 60 seconds. Gross manual dexterity, including being 

able to accurately pick up the blocks and the ability to lift up the arm, is required 

to complete the assessment. It is important to note that the LMC mainly tracks fine 

hand movement and patients who have trained with the LMC should have adequate 

ability to control their hand gestures, so they can engage in VR training supported 

by the LMC (Lu et al., 2016). As Kinect mainly performs gross motor tracking, 

hand manual dexterity might not be included as an element of the training games 

that it supports (Seo et al., 2019). Patients trained with the LMC might be more 

aware of their gross manual dexterity, while patients trained with the Kinect system 

might be more aware of their gross movement. The different features of the LMC 

and Kinect might result in different areas of recovery in regard to the upper 

extremity, which cannot be fully reflected by only investigating the change in BBT 

scores after treatment. Hence, it is important for therapists to select suitable types 

of MMC systems according to the targeted training body functions.  

 

2.4.2 Development Trends in MMC Technology in Rehabilitation 

Being relatively low cost, easy to install, its user-friendly controlling system, and 

multiple gaming contexts, Kinect is often chosen as the most frequently used MMC 

system in rehabilitation programs (Mousavi Hondori & Khademi, 2014). It has been 10 

years since Kinect was first adopted as an MMC system to provide rehabilitation 
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programs. Kinect enables the capture of real-time whole body gross movements, 

although it is less sensitive in tracking fine hand movements. Although Kinect has been 

adopted as an MMC system in rehabilitation training, it has been out of production 

since 2017 and was no longer supported by the Xbox Series X, as announced by 

Microsoft (This Is Why Microsoft Kinect Was A Complete Failure, 2021). Future 

rehabilitation programs that intend to use MMC technology might have to consider 

using other kinds of MMC systems or platforms. The LMC was launched to the market 

in 2012 and its real-time tracking of hand motions induced its adoption in the 

rehabilitation of fine motor movements (Pereira et al., 2020). de Los Reyes-Guzmán et 

al. (2021) considered the LMC to be a low-cost and effective way of tracking the hand 

gestures of patients. Besides the current VR games developed by the Leap Control 

Company, the LMC also supports self-developed VR games; tasks for rehabilitation 

programs using the LMC can be created specifically for hand training purposes. 

Although the most frequently used MMC system included in this systematic review is 

Kinect, the use of the LMC is becoming more frequent in studies published in the past 

five years. Gesture Xtreme and the Nintendo VRWii are less frequently adopted in 

rehabilitation programs. This may be due to their marketing as gaming platforms, with 

games that are not designed with appropriate levels of challenge for patients with 

disabilities. As MMC systems are developed mainly for healthy populations and their 

commercial purposes mostly concern entertainment, the use of VR games in 

rehabilitation has been confined to a small group of the population (Lee et al., 2016). 

In recent years, studies have tended to develop their own platforms and training tasks, 

rather than directly using built-in VR games available in the market. This trend suggests 

that there is more awareness concerning the necessity of constructing client-centered 

and task-oriented VR training programs with MMC technology to meet patients’ 
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functional levels (Knippenberg et al., 2017). Low-cost MMC devices and their software 

development kits lower the threshold for the design and development of rehabilitation 

exercise programs and serious games in virtual contexts for patients with different 

needs and functional levels. 

 

2.4.3 Suggestions for the Future Use and Development of MMC Technology in 

Rehabilitation 

This paper reveals that it might be feasible to provide MMC technology-based 

rehabilitation programs such as VR training games and exercises to patients as an 

alternative treatment option. The use of MMC technology-based rehabilitation 

programs instead of conventional therapy can reduce the workforce required to closely 

monitor and supervise patients during training. With the instant feedback provided by 

the MMC system, patients can adjust and regulate their movement patterns, which 

allows them to perform training exercises in a more self-oriented way. VR training can 

be prescribed as a home program, enabling patients to be continuously motivated to 

complete the training at home; therapists could remotely monitor their rehabilitation 

progress through the analyses generated by the MMC system. Given that MMC systems 

can capture and analyze gestures in real time, they could be used as a tool to measure 

the range of motion (ROM) of patients. Both therapists and patients might then be able 

to visualize the physical restoration of the ROM in the affected body parts during or 

immediately after the VR training. As the current hardware required for MMC systems 

is largely not accessible or affordable for patients, we suggest that further research and 

development are needed in regard to the generalization of a MMC system that does not 

require a specific camera. An MMC system using a mobile device could be a solution 
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to further enhance the generalizability of MMC technology in regard to its application 

in the rehabilitation field, as this would not require further purchases or the setting up 

of new hardware devices by patients. Motion tracking algorithms are being developed 

to enable the tracking of body movements via the Light Detecting And Ranging 

(LIDAR) camera installed in certain kinds of mobile phones and tablets, which could 

be further investigated as a solution to this generalizability limitation (Pusztai & Hajder, 

2017). 

 

Further research also needs to be conducted into the design and development of 

different VR exercises and serious games in MMC systems that best suit the needs of 

patients with different types of diseases. Interpretations of patients’ game scores or data 

extracted from MMC systems should be further researched in regard to their correlation 

with the functional recovery of the patients. 

 

2.5 CONCLUSION 

Most of the selected studies investigated the effects of MMC technology in the training 

of the upper extremity of the stroke population. Our meta-analysis revealed that there 

is no significant difference in the effects of upper limb rehabilitation between MMC 

technology training groups and control intervention groups. The use of MMC systems 

in rehabilitation training is, however, enjoyable, and enables patients to stay motivated 

in regard to their training. There is potential to apply MMC technology in home 

programs for rehabilitation, which could increase patients’ adherence to the programs 

and hence the intensity of their training at home. Future studies need to consider the 

design of MMC technology-based training programs and the generalization of the use 
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of MMC systems in home settings, to ensure they are affordable and accessible for all 

patients. 
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2.7 APPENDIX 

 

 

Note:  

White circle Papers that reported the effect of MMC training is significantly more 

effective than control intervention 

Black circle Papers that reported the effect of MMC training has no significant 

difference with the control intervention 

 

Figure S2.1 Funnel Plot of standard error by Hedges’ g in studies comparing the 

effects of using the MMC system in upper limb rehabilitation with the effects of 

conventional therapy in the stroke population; the effect size would shift to the left if 

the apparent bias were to be removed 
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Chapter 3 

 

A systematic review of the application of markerless motion capture (MMC) 

technology for clinical measurement in rehabilitation 

 

ABSTRACT 

 

This chapter is a systematic review that investigate the current utilization of Markerless 

Motion Capture (MMC) as a clinical measurement tool — identification and 

measurement of movement kinematics in a clinical population in rehabilitation. In this 

review we put a minor focus on the method’s engineering components and sought 

primarily to determine its application for clinical measurement. A systematic 

computerized literature search was conducted in PubMed, Medline, CINAHL, 

CENTRAL, EMBASE, and IEEE. The search keywords used in each database were 

“Markerless Motion Capture OR Motion Capture OR Motion Capture Technology OR 

Markerless Motion Capture Technology OR Computer Vision OR Video-based OR 

Pose Estimation AND Assessment OR Clinical Assessment OR Clinical Measurement 

OR Assess.” Only peer-reviewed articles that applied MMC technology for clinical 

measurement were included. A total of 65 studies were included. The MMC systems 

used for measurement were most frequently used to identify symptoms or to detect 

differences in movement patterns between disease populations and their healthy 
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counterparts. Patients with Parkinson’s disease (PD) who demonstrated obvious and 

well-defined physical signs were the largest patient group to which MMC assessment 

had been applied. This review revealed that MMC technology has the potential to be 

used as an assessment tool as well as to assist in the detection and identification of 

symptoms, which might further contribute to the use of an artificial intelligence method 

for early screening for diseases. Further studies are warranted to develop and integrate 

MMC system in a platform that can be user-friendly and accurately analyzed by 

clinicians to extend the use of MMC technology in the disease populations. 

 

This chapter has been previously published by the author of this author as a scientific 

manuscript in the journal “Journal of NeuroEngineering and Rehabilitation” on May 

02nd, 2023. The manuscript has been slightly formatted to fit the thesis requirements. 

Access to the scientific paper: Lam, W. W., Tang, Y. M., & Fong, K. N. (2023). A 

systematic review of the applications of markerless motion capture (MMC) technology 

for clinical measurement in rehabilitation. Journal of NeuroEngineering and 

Rehabilitation, 20(1), 1-26.DOI: https://doi.org/10.1186/s12984-023-01186-9 
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3.1 INTRODUCTION 

Markerless motion capture (MMC) technology has been developed to avoid the need 

for marker placement during tracking and analyzing human movement (Corazza et al., 

2010). By elimination of the time-consuming marker placement procedure, motion 

capturing experiment can be performed in a more convenient way (Rahul, 2018) . With 

the removal of constraints from body markers on movement, the development of MMC 

technology allows the capture of a more lifelike human motion in the environment, in 

a more natural way, and with the feature that it uses more portable and low-cost sensors 

compared to marker-based multi-camera systems (Scott et al., 2022), MMC in turn 

creates the potential of additional applications.  

 

Previous studies have been conducted to compare the accuracy of MMC and body-

marker-based analysis systems (Knippenberg et al., 2017). Bonnechere and colleagues 

(2014) compared the measuring accuracy of full body scanning by Microsoft Kinect 

3D scanner software versus that of a high-resolution stereophotogrammetric system, 

which is a marker-based system in the healthy population. They concluded that Kinect 

is a reliable markerless tool that is suitable for use as a fast estimator of morphology. 

Schmitz and colleagues (2013) validated the accuracy of Kinect in measuring knee joint 

angle of a jig by comparing its measurement using a digital inclinometer that acted as 
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a ground-truth, and they reported that the performance of the Kinect system was 

satisfactory in terms of knee flexion and abduction. The accuracy of using a smartphone 

as a measurement system for joint angle has been reviewed by Mourcou and colleagues 

(2015), who concluded that smartphone applications are reliable for clinical 

measurements of joint position and range of motion (ROM). 

 

Earlier in 2006, Mündermann and colleagues (2006) described several methods of 

MMC video processing modules including background separation, visual hull which is 

an object's 3D shape formed by intersecting silhouettes from multiple views, and 

iterative closest point methods, etc., and pointed out that MMC has the potential to 

achieve a level of accuracy that facilitates the biomechanics research of normal and 

pathological human movement. Together with the reliable performance of MMC 

technology in the measurement of joint angle and body movement as reflected by 

Schmitz, et al. (2013) and Mourcou, et al. (2015), it is suggested that the MMC system 

can be further applied to the rehabilitation field to measure patients’ motor function. 

However, the actual application of MMC technology for clinical measurement in 

rehabilitation is still at a preliminary stage. Most of the extant studies have focused on 

calibration of the MMC system or on validating the MMC system only on healthy 

persons. Applied research on the actual use of MMC technology in measurements in 
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patient groups has been very diverse: Vivar and the teams (2019) applied MMC 

technology in people with Parkinson’s disease (PD) to detect and classify their tremor 

level, while Gritsenko and colleagues (2015) used Kinect as the MMC system to 

measure the shoulder ROM for women breast cancer patients after surgery. Instead of 

applying MMC technology in adults, Chin and colleagues (2017) assessed the level of 

proprioceptive ability in children with cerebral palsy by using Kinect as the MMC 

system to measure the arm position of both healthy children and children with unilateral 

spastic cerebral palsy (USCP). These researchers found significant differences between 

the proprioceptive ability of the typically developing children and the children with 

USCP, as measured by Kinect, thus suggesting that MMC technology has the potential 

to be useful as a clinical measurement tool for proprioception.  

 

Despite these trials, however, studies on the applications of MMC technology in clinical 

evaluation are still preliminary and limited in number, and it remains inconclusive how 

MMC technology can benefit therapists, patients, or the healthcare system, in terms of 

measuring patients’ conditions. Review studies have been conducted on the use of 

MMC technology in rehabilitation training, but not in regard to its use in clinical 

measurement including application of MMC technology in clinical assessment and 

detection of kinematic parameters that assist in disease diagnosis (Knippenberg et al., 
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2017). Mousavi Hondori and Khademi (2014) reviewed the clinical impact of Kinect 

in rehabilitation, but their study did not cover other types of MMC technology. 

Therefore, to investigate the current uses of MMC technology as an assessment tool in 

the healthcare field, in this review we put less focus on the engineering components 

and attempted primarily to determine the current evidence for using MMC as a 

measurement tool, in order to further explore the potential benefits of MMC technology 

in rehabilitation evaluations. In this paper, we define clinical measurement as 

identification and measurement of movement kinematics in a clinical population 

(Sakkos et al., 2021), while MMC technology include systems and methods that capture 

and analysis movements without the need of marker placement, including video-based 

analysis. This systematic review further investigated: 1) the types of patients to whom 

MMC technology has been applied; 2) the contents of the MMC measurements; 3) the 

types of MMC systems used; and 4) the efficacy of these MMC systems as 

measurement tools.  

 

3.2 METHODS  

3.2.1 Search strategy  

A systematic computerized literature search was conducted by one of the authors (WTL) 
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in PubMed, Medline, CINAHL, CENTRAL, EMBASE, and IEEE. Only peer-reviewed 

articles were included. The search keywords used in each database were “Markerless 

Motion Capture OR Motion Capture OR Motion Capture Technology OR Markerless 

Motion Capture Technology OR Computer Vision OR Video-based OR Pose 

Estimation AND Assessment OR Clinical Assessment OR Clinical Measurement OR 

Assess.” A manual search was also conducted that included searching Google Scholar 

using the same keywords, and the reference lists of the previous systematic reviews 

were also screened. The published data were not limited, and the last search took place 

on March 6, 2023.  

 

3.2.2 Inclusion criteria 

Studies were included if they met certain inclusion criteria. Specifically, the studies had 

to: 1) be peer-reviewed; 2) apply MMC technology for measurement; 3) involve 

subjects with symptomatic conditions; 4) have any quantitative study design except 

systematic reviews; 5) include at least one assessment item for clinical evaluation; and 

6) be published in English. 

 

3.2.3 Exclusion criteria 



 

 85 

Studies were excluded if they met any one of the following exclusion criteria: 1) 

studying only healthy persons; 2) focusing only on calibration of the MMC system; 3) 

applying MMC technology only in rehabilitation training; or 4) not reporting results of 

an assessment evaluation.  

 

3.2.4 Data extraction  

The information we assessed included: 1) the types of MMC systems used in the studies; 

2) the conditions of the participants that underwent the measurement, such as diagnoses 

or disabilities; and 3) the contents of the measurements conducted. The interpretations 

of the studies’ results were extracted and are presented in a summary table (Table 3.1). 

The contents of the measurement included the body functions or body parts that were 

measured, and the context in which the assessment was conducted. 
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Table 3.1 Details of the selected studies 

Study Patient types Sample size (n) MMC system  Measurement items Content of 

measurement 

Context of 

measurement 

Primary results Results interpretation 

Cho et 

al., 2009  

PD Patients with PD (7); 

healthy controls (7) 

Sony HDR-HC3 

camcorder  

 

Gait pattern Recognition of PD 

gait by algorithm 

combining PCA 

with LDA 

 

Laboratory The proposed system 

can identify healthy 

adults and patients with 

PD by their gaits with 

high reliability  

 

Video-based analysis helps in 

discriminating the gait patterns 

of PD patients and healthy adults  

 

Adde et 

al., 2010  

CP Infants with high risk 

of CP (30) 

Digital video 

camera 
Quantity of motion, 

velocity and 

acceleration of the 

centroid of motion  

 

 

Comparison of 

quantity of motion 

and centroid of 

motion in infants 

who developed into 

CP with those who 

did not develop into 

CP 

Hospital Quantity of motion 

mean, median, and 

standard deviation 

were significantly 

higher in the group of 

infants who did not 

develop CP than in the 

group who did develop 

CP 

 

Quantitative variables related to 

the variability of the center of 

infant movement and to the 

amount of motion predicted later 

CP in young infants with high 

sensitivity and specificity 

Bahat, 

Weiss, 

& 

Laufer, 

2010 

 

Chronic neck pain 

 

Patients with chronic 

neck pain (25); 

asymptomatic 

participants (42) 

 

Customized VR 

assessment 

system  

 

 

Cervical ROM 

(flexion, extension, 

rotation, and lateral 

flexion) 

Comparison of 

cervical movement 

in patients with 

chronic neck pain, 

versus in healthy 

controls  

Laboratory Significant group 

differences for 3 of the 

kinematic measures: 

Vpeak, Vmean, and 

number of velocity 

peaks  

 

“Goal-directed fast cervical 

movements performed by 

patients with chronic neck pain 

were characterized by lower 

velocity and decreased 

smoothness compared with 

asymptomatic participants” 

(Bahat, Weiss, & Laufer, 2010, 

p.1888) 

 

 

Chen et 

al., 2011  

PD Patients with PD (12); 

healthy adults (12) 

CCD video 

camera  

 

Gait parameters 

including gait cycle 

time, stride length, 

walking velocity, 

and cadence  

 

 

 

Quantification of 

gait parameters 

Structured 

environment 

KPCA-based method  

achieved a 

classification accuracy 

of 80.51% in 

identifying different 

gaits 

 

Kinematic data extracted from 

video might allow clinicians to 

obtain the quantitative gait 

parameters and assess the 

progression of PD 

 

Khan et 

al., 2013  

PD 

 

Patients diagnosed 

with advanced PD 

Video 

recordings, 

Index-finger motion 

in finger tapping, 

SVM classification 

to categorize the 

Medical facility The proposed CV-

based SVM scheme 

The ML framework offers good 

classification performance in 
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(13); healthy controls 

(6) 

 

analyzed by CV 

algorithm 

 

features including 

speed, amplitude, 

rhythm, and fatigue 

in tapping were 

computed 

 

 

patient group 

between UPDRS-

FT symptom 

severity levels, and 

to discriminate 

between PD patients 

and healthy controls 

 

discriminated between 

control and patient 

group with an average 

of 94.5% accuracy  

 

 

distinguishing symptom severity 

levels based on clinical ratings, 

as well as in identifying PD 

patients and the healthy controls 

 

Lowes 

et al., 

2013  

Dystrophinopathy Patients with 

dystrophinopathy (5); 

healthy controls (5)  

 

Kinect Upper extremity 

functional reaching 

volume, velocity, 

and rate of fatigue  

 

Validity and 

Reliability of the 

MMC system in 

capturing upper 

extremity functional 

reaching volume, 

movement velocity, 

and rate of UE 

fatigue in 

individuals with 

dystrophinopathy  

 

Laboratory Preliminary test-retest 

reliability of the MMC 

method for 2 sequential 

trials was excellent for 

functional reaching 

volume 

 

“The newly available gaming 

technology has potential to be 

used to create a low-cost, 

accessible, and functional upper 

extremity outcome measure for 

use with children and adults with 

dystrophinopathy” (Lowes et al., 

2013, p.9) 

 

O’Keefe 

et al., 

2013  

FXS 

 

Males with FXS (13); 

healthy controls (7) 

BioStageTM 

 

Motion parameters 

(frequency and total 

traveled distance) of 

body segments 

during 30 s of story 

listening while 

standing in the 

observation space 

 

Comparison 

between groups, 

MMC system 

results were 

compared with 

scores on video-

capture 

methodology and 

behavioral rating 

scales  

 

Laboratory Arm and foot travel 

distances were 

significantly greater in 

the FXS group 

compared with the 

controls  

 

“Motion parameters obtained 

from the markerless system can 

quantify increased movement in 

subjects with FXS relative to 

controls” (O’Keefe et al., 2013, 

p.830) 

 

Olesh et 

al., 2014  

Stroke Patients with stroke 

(9) 

Kinect 10 movements of 

the upper extremity 

Quantitative scores 

derived from 

motion capture were 

compared to 

qualitative clinical 

scores produced by 

trained human raters  

 

Laboratory Strong linear 

relationship was found 

between qualitative 

scores and quantitative 

scores derived from 

both standard and low-

cost motion capture 

system 

 

“The low-cost motion capture 

combined with an automated 

scoring algorithm is a feasible 

method to assess objectively 

upper-arm impairment post 

stroke” (Olesh et al., 2014, p.6)  
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Gritsenk

o et al., 

2015 

Breast cancer  

 

Women with 

mastectomy (4) or 

lumpectomy (16) for 

breast cancer  

 

 

Kinect  

 

Active and passive 

shoulder motions  

 

Regression 

coefficients for 

active movements 

were used to 

identify participants 

with clinically 

significant shoulder 

ROM limitation  

 

Laboratory Participants had good 

ROM in the shoulder 

ipsilateral to the breast 

surgery at the time of 

testing. Three 

participants showed 

clinically significant 

shoulder motion 

limitations  

Findings support the use of 

MMC approach as part of an 

automated screening tool to 

identify people who have 

shoulder motion impairment 

Lee et 

al., 2015 

AC of shoulder 

 

Healthy volunteers 

(15); patients with AC 

(12) 

 

Kinect Shoulder ROM Validity of measure 

shoulder ROM in 

AC by calculating 

the agreement of 

Kinect 

measurements with 

measurements 

obtained using a 

goniometer, and 

assessment of its 

utility for the 

diagnosis of AC  

 

Laboratory Measurements of the 

shoulder ROM using 

Kinect showed 

excellent agreement 

with those taken using 

a goniometer  

 

“Kinect can be used to measure 

shoulder ROM and to diagnose 

AC as an alternative to a 

goniometer” (Lee et al., 2015, 

p.11) 

 

Tupa et 

al., 2015  

PD 

 

Patients with PD (18); 

healthy age-matched 

individuals (18); 

students (15) 

 

Kinect  

 

Leg length, 

normalized average 

stride length, and 

gait velocity  

 

A two-layer 

sigmoidal neural 

network was used 

for the classification 

of gait features 

(stride length and 

gait velocity)  

 

Laboratory Results showed high 

classification accuracy 

for the given set of 

individuals with PD 

and the age-matched 

controls  

Kinect has potential to be used 

in the detection of gait disorders 

and the recognition of PD 

Sá et al., 

2015 

Schizophrenia 

 

Clinically stable 

outpatients with 

schizophrenia (13); 

healthy controls (16) 

BioStageTM 

 

Kinematic 

parameters and 

motor patterns 

during a functional 

task 

 

Comparison of the 

kinematic 

parameters and 

motor patterns of 

patients with 

schizophrenia and 

those of healthy 

subjects 

 

Laboratory  Patients with 

schizophrenia 

displayed a less 

developed movement 

pattern during 

performance of 

overarm throwing 

“The presence of a less mature 

movement pattern can be an 

indicator of neuro-immaturity 

and a marker for atypical 

neurological development in 

schizophrenia” (Sá et al., 2015, 

p.77) 
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Kim et 

al., 2016 

Stroke Patients with 

hemiplegic stroke 

(41) 

 

Kinect Upper extremity 

motion of 13 of 33 

items of upper 

extremity motor 

FMA  

 

Correlation of the 

prediction accuracy 

for each of the 13 

items between real 

FMA scores and 

scores using Kinect 

were analyzed  

 

Laboratory Prediction accuracies 

ranged from moderate 

to good in each item. 

Correlations were high 

for the summed score 

for the 13 items 

between real FMA 

scores and scores 

obtained using Kinect  

 

“Kinect can be a valid way to 

assess upper extremity function, 

which may be useful in the 

setting of unsupervised home-

based rehabilitation” (Kim et al., 

2016, p.1) 

 

Matsene

t al., 

2016  

Variety of 

diagnoses (cuff 

disease, 

instability, 

arthritis) 

 

Patients with a variety 

of diagnoses, 

including cuff disease, 

instability, arthritis 

(32); control healthy 

subjects (10) 

 

Kinect Shoulder active 

ROM 

Correlation of 

Kinect shoulder 

active ROM 

measurement with 

SST 

Laboratory The total SST score 

was strongly correlated 

with the range of active 

abduction. The ability 

to perform each of the 

individual SST 

functions was strongly 

correlated with active 

motion 

 

“Kinect provides a clinically 

practical method for objective 

measurement of active shoulder 

motion” (Matsenet al., 2016, 

p.221) 

Chin et 

al., 2017 

CP 

 

Children with USCP 

(31); typically 

developing children 

(21)  

 

Kinect v2 

 

Proprioception 

 

Comparison of 

proprioceptive 

ability in children 

with USCP versus 

that in typically 

developing children 

 

Laboratory Children with USCP 

showed significant 

impairments in 

proprioception 

compared with 

typically developing 

children 

The use of MMC technology can 

clearly identify differences in 

proprioceptive ability between 

typically developing children 

and children with UCSP  

 

de Bie 

et al., 

2017  

ALS Patients diagnosed 

with ALS (10)  

 

Kinect  

 

Upper extremity 

reachable 

workspace RSA  

 

Evaluation of 

longitudinal 

changes in upper 

extremity reachable 

workspace RSA 

versus the 

ALSFRS-R, 

ALSFRS-R upper 

extremity sub-scale 

and FVC 

 

Laboratory RSA measures were 

able to detect changes 

in the upper limbs 

while the ALSFRS-R 

could not. The RSA 

measures were also 

able to detect a 

declining trend similar 

to that of FVC 

 

“Kinect-measured RSA can 

detect declines in upper 

extremity ability with more 

granularity than current tools” 

(de Bie et al., 2017, p.22) 

 

Bakhti 

et al., 

2018  

Stroke Individuals with 

hemiparetic stroke 

(19)  

Kinect  

 

Movements of 25 

predefined body 

“joints” that 

Use of ICC and 

linear regression 

analysis to quantify 

Laboratory PANU scores 

determined by the 

Kinect were similar to 

“The Kinect sensor can 

accurately and reliably 

determine the PANU score in 
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approximately 

correspond to the 

center of the 

anatomical joint or 

body part  

the degree to which 

an ultrasound 3D 

motion capture 

system motion 

capture system and 

Kinect 

measurements were 

related 

 

those determined by 

the ultrasound 3D 

motion capture system   

clinical routine” (Bakhti et al., 

2018, p.1) 

Bonnec

hère et 

al., 2018  

Stroke Healthy young adults 

(40); elderly adults 

(22); and patients with 

chronic stroke (10) 

 

Kinect 

 

Parameters 

including length, 

angle, velocity, 

angular velocity, 

volume, sphere, and 

surface of upper 

limb motion  

 

The different scores 

and parameters 

were compared for 

the three groups  

 

Laboratory Highly significant 

differences were found 

for both the shoulders’ 

total angle, the velocity 

for young adults and 

elderly individuals, and 

patients with stroke  

 

Results of the evaluation could 

be useful in monitoring patients’ 

conditions during rehabilitation, 

while further studies are needed 

to select which parameters are 

the most relevant 

 

 

Butt et 

al., 2018  

PD 

 

Participants with PD 

(16); healthy people 

(12) 

 

LMC  PSUP, OPCL, 

THFF, and POST 

 

Comparison of 

parameters between 

a PD group and 

control group; 

Supervised learning 

methods SVM, LR, 

and NB for 

classification of 

patients with PD 

and healthy subjects 

 

Laboratory The best performing 

classifier was the NB. 

All the other subset 

features selected by the 

other feature selection 

methods, showed the 

worst classification 

performance in all ML 

classifiers (LR, NB, 

SVM) 

 

“LMC is not yet able to track 

motor dysfunction 

characteristics from all MDS- 

UPDRS proposed exercises” 

(Butt et al., 2018, p.19)  

 

Dranca 

et al., 

2018 

PD Patients with PD (30) Kinect Gait step, limbs 

angle, and bent 

angles related to 

Parkinson disease  

 

 

 

Classification of 

different PD stages 

by the features from 

FoG using 

classification 

algorithms 

 

Hospital The accuracy obtained 

for a particular case of 

a Bayesian Network 

classifier built from a 

set of 7 relevant 

features is 93.40%  

 

“Using Kinect is adequate to 

build an inexpensive and 

comfortable system that 

classifies PD into three different 

stages related to FoG” (Dranca 

et al., 2018, p.1) 

 

MH. Li 

et al., 

2018 

PD Patients with PD (9) Consumer grade 

video camera  

 

416 features 

including 

kinematics, 

frequency 

distribution 

Quantifying the 

severity of 

levodopa-induced 

dyskinesia by 

video-based features 

 

Laboratory Features achieved 

similar or superior 

performance to the 

UDysRS for detecting 

the onset and remission 

of dyskinesia 

“The proposed system provides 

insight into the potential of 

computer vision and deep 

learning for clinical application 

in PD” (Li et al., 2018, p.1) 
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extracted from 14 

joint angle positions 

 

 

T. Li et 

al., 2018 

PD Patients with PD after 

DBS (24) 

Ordinary 2D 

video camera  

 

TUG sub-task 

segmentation  

 

Frame classification 

algorithm to classify 

video frame in sub 

tasks of TUG test 

 

Semi-controlled 

environments  

 

Classification 

accuracies for the sub-

tasks ‘Walk,’ ‘Walk-

Back,’ and ‘Sit-Back’ 

are apparently higher 

than that of the other 

three sub-tasks 

 

The results support that clinical 

parameters for the assessment of 

PD can be automatically 

acquired from TUG videos 

 

Martine

z et al., 

2018 

PD Patients with PD (6); 

healthy subjects (6)  

 

DARI system  

 

BME of 16 different 

movements  

 

 

UPDRS-III and 

BME of 16 different 

movements in six 

controls paired by 

age and sex were 

compared with 

those in PD 

populations with 

DBS in ‘on’ and 

‘off’ states  

 

Laboratory A better performance 

in the BME was 

correlated with a lower 

UPDRS-III score. No 

statistically significant 

difference between 

patients in ‘on’ and 

‘off’ states of DBS 

regarding BME 

A potential use of the DARI 

system in PD classification 

 

Pantzar-

Castilla 

et al., 

2018 

CP Participants with CP 

(18)  

Kinect 2 for 

Xbox One 

 

Gait variables (i.e., 

Knee flexion at 

initial contact; 

Maximum knee 

flexion at loading 

response; Minimum 

knee flexion in 

stance; Maximum 

knee flexion in 

swing) 

 

Comparison of 2D 

MMC and 3D 

marker-based gait 

analysis methods 

for the selected 

variables  

 

Laboratory The reliability within 

2D Markerless and 3D 

gait analysis was 

mostly good to 

excellent 

2D MMC is a convenient tool 

that could be used to assess the 

gait in children with CP 

 

Rammer 

et al., 

2018 

Pediatric manual 

wheelchair users 

 

Pediatric manual 

wheelchair users (30)  

Kinect 2.0  

 

Upper extremity 

kinematics during 

manual wheelchair 

propulsion (i.e., 

joint range of 

motion and 

musculotendon 

excursion) 

Kinematic 

parameters were 

used to develop and 

evaluate a 

markerless 

wheelchair 

propulsion 

Laboratory Inter-trial repeatability 

of spatiotemporal 

parameters, joint range 

of motion, and 

musculotendon 

excursion were all 

found to be significant 

“A markerless wheelchair 

propulsion kinematic assessment 

system is a repeatable 

measurement tool for pediatric 

manual wheelchair users” 

(Rammer et al., 2018, p.10) 
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biomechanical 

assessment system 

Langevi

n et al., 

2019 

PD Patients with PD 

(127); healthy 

controls (127) 

Webcam  

 

Frequencies of hand 

movement in hand 

motor task 

 

Comparison of the 

differences in the 

hand motion 

between the groups 

with and without 

PD  

 

Home Setting PD group had a mean 

frequency that is lower 

than the control group 

in the hand motor tasks 

 

“Online framework that assesses 

features of PD could be 

introduced during a clinic visit 

to initially supplement the tool 

with personal support” 

(Langevin et al., 2019, p.19) 

 

Lee et 

al., 2019 

PD 

 

 

Participants with PD 

that are receiving 

benefit from DBS (8) 

 

LMC PSUP, OPCL, and 

THFF tasks during 

‘on’ and ‘off’ 

condition, 

amplitude, 

frequency, velocity, 

slope, and variance 

were extracted from 

each movement  

 

Correlation of the 

kinematic features 

with the overall 

bradykinesia 

severity score 

(average MDS-

UPDRS ratings 

across tasks)  

 

Laboratory An exhaustive 

LOSOCV assessment 

identified PSUP, 

OPCL, and THFF as 

the best task 

combination for 

predicting overall 

bradykinesia severity 

 

“Data obtained from the LMC 

can predict the overall 

bradykinesia severity in 

agreement with clinical 

observations and can provide 

reliable measurements over 

time” (Lee et al., 2019, p.6) 

 

Liu et 

al., 2019 

PD Patients with PD (60) Camera Periodic pattern of 

hand movements in 

finger tapping, hand 

clasping and hand 

pro/supination 

 

Correlation analysis 

on each feature 

parameter and 

clinical assessment 

scores; 

Classification of 

bradykinesia  

 

Semi-controlled 

environment 

Classification accuracy 

in 360 examination 

videos is 89.7% 

 

Reliable assessment results on 

Parkinsonian bradykinesia can 

be produced from video with 

minimal device requirement  

 

Sato et 

al., 2019 

PD Patients with PD (117 

in phase I and 2 in 

phase II); healthy 

controls (117) 

Home video 

camera  

 

Cadence  

, gait frequency, 

gait speed, step 

length, step width, 

foot clearance  

 

 

Estimation of 

cadence of periodic 

gait steps from the 

sequential gait 

features using the 

short-time pitch 

detection approach  

 

Structured 

environment 

Cadence estimation of 

gait in its coronal plane 

in the daily clinical 

setting was 

successfully conducted 

in normal gait movies 

using ST-ACF 

 

2D movies recorded with a 

home video camera is helpful in 

identifying an effective gait and 

calculate its cadence in normal 

and pathological gaits 

 

 

Vivar et 

al., 2019 

PD  

 

Patients with PD (20)  

 

LMC Tremor levels 

measured during 

hand extension and 

pushing the ball 

action 

Classification of 

tremor level in PD 

according to the 

MDS-UPDRS 

standard  

Laboratory The proposed method 

classified the patient 

measurements 

following MDS-

UPDRS in tremor 

“It is possible to classify the 

different levels of tremor in 

patients with PD using only two 

statistical features, such as 

homogeneity and contrast” 

(Vivar et al., 2019, p.12) 
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levels 0, 1, and 2 with 

high accuracy  

 

 

Caruso 

et al., 

2020 

ASD Infants with high risk 

of ASD (50); infants 

with low risk of ASD 

(53) 

Video recording Quantity of motion, 

centroid of motion, 

presence of 

repetitive 

movements in the 

motion of limbs 

Kinematic 

parameters related 

to upper and lower 

limb movements in 

infants with low risk 

and high risk of 

ASD 

 

Bed Early developmental 

trajectories of specific 

motor parameters were 

different in high-risk 

infants later diagnosed 

with 

neurodevelopmental 

diseases from those of 

infants developing 

typically 

 

“Computer-based analysis of 

infants’ movements may support 

and integrate the analysis of 

motor patterns of infants at risk 

of neurodevelopmental diseases 

in research settings” (Caruso et 

al., 2020, p.12) 

 

Chambe

rs et al., 

2020 

Neuromotor 

disease 

Infants at risk of 

neuromotor 

impairment (19); 

healthy infants (85) 

GoPro cameras, 

YouTube video  

 

Absolute position 

and angle, 

variability of 

posture, velocity of 

movement, 

variability of 

movement, 

complexity, left-

right symmetry of 

movement  

 

Extent of kinematic 

features from 

infants at risk 

deviate from the 

group of healthy 

infants as reflected 

by Naïve Gaussian 

Bayesian Surprise 

metric  

 

 

Childcare facility, 

hospital, natural 

environment 

Infants who are at high 

risk for impairments 

deviate considerably 

from the healthy group  

 

“Markerless tracking promises 

to improve accessibility to 

diagnostics, monitor naturalistic 

movements, and provide a 

quantitative understanding of 

infant neuromotor disorders” 

(Chambers et al., 2020, p.15) 

 

Fujii et 

al., 2020 

Patients with gait 

disturbance 

 

Patients with gait 

ataxia (6); control 

subjects (6) 

 

Kinect 2, 

migrated to 

Azure Kinect 

 

Gait parameters 

(e.g., walking speed 

and stride length)  

 

Gait comparison 

between the patient 

group and the 

healthy subject 

group 

 

Laboratory Significant differences 

were observed between 

the patient group and 

the healthy subject 

group in terms of the 

mean value and 

variation of stride 

length  

 

“A low-cost noninvasive motion 

capture device can be used for 

the objective clinical assessment 

of patients with stroke and PD 

who display manifestations of 

gait and motor deficits” (Fujii et 

al., 2020, p.213) 

 

Hu et 

al., 2020 

PD Patients with PD (45) Video Gait parameters, 

motion patterns 

Automatic FoG 

detection by fine-

grained human 

action recognition 

method  

 

 

Structured 

environment 

The experimental 

results demonstrate the 

superior performance 

of the proposed method 

over the state-of-the-art 

methods 

 

“Anatomic joint graph 

representation provides 

clinicians an intuitive 

interpretation of the detection 

results by localizing key vertices 

in a FoG video” (Hu et al., 2020, 

p.1900) 
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Krasowi

cz et al., 

2020 

CP 

 

Patients with 

diagnosed ICP (8) 

4DBODY 

system  

 

TMFPI developed 

based on movement 

sequences 

  

 

TMFPI compared 

with the assessment 

made according to 

the GMFM-88 scale  

 

Laboratory The system provided 

results agreeable with 

the clinical indicator 

GMFM-88 and with 

clinical observations of 

a PT 

 

“The conducted assessments 

indicated that the use of dynamic 

3D surface measurements is a 

promising direction of research 

and can provide valuable 

information on patient 

movement patterns” (Krasowicz 

et al., 2020, p.18) 

 

Lin et 

al., 2020 

PD Patients with PD 

(121) 

iPhone 6s Plus  

 

Motor behaviors, 

including stability, 

completeness, and 

self-similarity  

 

Quantification of 

motor behaviors in 

patients with PD 

and bradykinesia 

recognition by a 

periodic motion-

based network 

consisting of an 

autoencoder and 

fully connected 

neural network  

 

Laboratory The proposed periodic 

motion model delivers 

the F-score of 0.7778 

for bradykinesia 

recognition 

 

Using single RGB video for 

bradykinesia recognition is easy 

and convenient for patients and 

doctors 

 

Oña et 

al., 2020 

PD Patients with PD (20) LMC Manual dexterity in 

BBT  

 

Evaluation the 

validity of VR-BBT 

to reliably measure 

the manual dexterity  

 

Laboratory VR-BBT significantly 

correlated with the 

conventional 

assessment of the BBT  

 

“VR-BBT could be used as a 

reliable indicator for health 

improvements in patients with 

PD” (Oña et al., 2020, p.1) 

 

Pang et 

al., 2020 

PD Patients with PD; 

healthy controls (22) 

Logitech HD 

Pro C920 

webcams  

 

Hand motion in tap 

thumb to the finger, 

creating a fist, 

pronation and 

supination of hand 

and resting state 

 

Measurement of 

parkinsonian 

symptomology 

using automated 

analysis of hand 

gestures 

 

Structured 

environment 

Behavior of patients 

with PD and control 

subjects can be 

distinguished by 

analyzing the detailed 

motion features of their 

hands/fingers 

 

Automatic hand movement 

detection method may help 

clinicians to identify tremor and 

bradykinesia in PD 

 

Sabo et 

al., 2020 

Dementia Older adults with 

dementia (14) 

Kinect Gait parameters 

including cadence, 

average and 

minimum margin of 

stability per step, 

average step width, 

coefficient of 

Correlation and 

regression of gait 

features with 

clinical scores 

UPDRS and SAS 

Hospital Gait features extracted 

from both 2D and 3D 

videos are correlated to 

UPDRS-gait and SAS-

gait scores of 

parkinsonism severity 

in gait  

“Vision-based systems have the 

potential to be used as tools for 

longitudinal monitoring of 

parkinsonism in residential 

settings” (Sabo et al., 2020, p.1) 
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variation of step 

width and time, the 

symmetry index of 

the step times, 

number of steps in 

the walking bout  

  

 

 

Schroed

er et al., 

2020 

CP 

 

High-risk infants (29) 

 

Kinect v1  

 

Infants’ general 

movement 

 

Correlation of 

expert GMA ratings 

of standard RGB 

videos with GMA 

ratings on SMIL 

motion videos of the 

same sequence  

 

Clinical 

environment 

GMA based on 

computer-generated 

virtual 3D infant body 

models closely 

corresponded to the 

established gold 

standard based on 

conventional RGB 

videos 

 

SMIL motion video might 

capture the movement 

characteristics required for 

GMA of infants 

William

s, 

Relton 

et al., 

2020 

PD 

 

Patients with PD (20); 

control participants 

(15) 

 

Smartphone  

 

Bradykinesia 

assessed by finger 

tapping  

 

 

ML models to 

predict no/slight 

bradykinesia or 

mild/moderate/ 

severe bradykinesia, 

and presence or 

absence of 

Parkinson’s 

diagnosis  

 

Clinical setting SVM with radial basis 

function kernels 

predicted presence of 

mild/moderate/ 

severe bradykinesia 

with good accuracy. 

NB model predicted 

the presence of PD 

with moderate 

accuracy 

 

The proposed approach supports 

the detection of bradykinesia 

without purchasing extra 

hardware devices  

 

William

s, Zhao 

et al., 

2020 

PD 

 

Patients with 

idiopathic PD (39); 

healthy controls (30) 

 

Smartphone 

 

Bradykinesia 

assessed by finger 

tapping  

 

Correlation of 

machine learning 

models with clinical 

ratings of 

bradykinesia  

 

Clinical setting Computer measures 

correlated well with 

clinical ratings of 

bradykinesia  

 

“The research provides a new 

tool to quantify bradykinesia. It 

could potentially be used to 

support diagnosis and 

monitoring of PD” (Williams, 

Zhao et al., 2020, p.5)  

 

Zefinetti 

et al., 

2020 

SCI patients using 

a wheelchair 

 

Patients with SCI (60) 

 

Kinect v2  

 

Kinematic data, 

including humeral 

elevation, horizontal 

abduction of 

humerus, humeral 

Correlation between 

the movements and 

the patients’ 

assessment  

 

Laboratory The measurements 

computed by the 

proposed system 

showed a good 

reliability for analyzing 

“The proposed markerless 

solutions are useful for an 

adequate evaluation of 

wheelchair propulsion” 

(Zefinetti et al., 2020, p.18) 
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rotation, elbow 

flexion, trunk 

flexion/extension of 

wheelchair 

propulsion  

 

the movements of SCI 

patients’ wheelchair 

propulsion 

 

 

Abbas et 

al., 2021 

Schizophrenia 

 

Patients with 

Schizophrenia (18); 

healthy controls (9) 

Smartphone Head movement Comparison of head 

movement 

measurements 

between patients 

and healthy 

controls, 

relationship of head 

movement to 

schizophrenia 

symptom severity  

 

Home setting/ 

Natural 

environment 

Rate of head 

movement in 

participants with 

schizophrenia and 

those without differed 

significantly; head 

movement was a 

significant predictor of 

schizophrenia 

diagnosis 

 

“Remote, smartphone- based 

assessments were able to capture 

meaningful visual behavior for 

computer vision-based objective 

measurement of head 

movement” (Abbas et al., 2021, 

p.29) 

 

Ardalan 

et al., 

2021 

Neurodevelopmen

tal Disorders 

Children with 16p11.2 

mutation (15); TD 

children (12)  

 

A single point-

and-shoot 

camera  

 

Gait synchrony, 

balance parameters 

Comparison of gait 

synchrony and 

balance in children 

with 16p11.2 

mutation and TD 

children 

 

Natural 

environment 

Children with 16p11.2 

mutation had 

significantly less 

whole-body gait 

synchrony and poorer 

balance compared to 

TD children 

 

Remote video analysis approach 

facilitates the research in motor 

analysis in children with 

developmental disorders 

Cao et 

al., 2021 

PD Patients with PD (18); 

healthy controls (42) 

RGB camera Shuffling step Detection of 

shuffling step and 

severity assessment  

 

Hospital 3D convolution on 

videos achieves an 

average shuffling step 

detection accuracy of 

90.8%  

 

Video-based detection method 

might facilitate more frequent 

assessment of FoG in a more 

cost-effective way 

 

Hurley 

et al., 

2021 

Patients awaiting 

TKR who were 

attending POAC 

 

Patients awaiting 

unilateral primary 

TKR (23) 

 

BioStageTM 

 

LLM, VVM 

 

Comparison of 

LLM and VVM 

performed 

clinically, 

radiologically, and 

using MMA  

 

Laboratory Discrepancies existed 

in LLM and VVM 

when evaluated using 

clinical, radiological, 

and MMA modalities  

 

A MMC system alone may not 

be a suitable method to assess 

the patients for TKR 

 

Kojovic 

et al., 

2021 

ASD Children with ASD 

(169); TD children 

(68) 

2D camera  

 

Patterns of atypical 

postures and 

movements  

Differentiation 

between children 

with ASD and TD 

Clinical setting The classification 

accuracy is 80.9% with 

the prediction 

Remote machine learning-based 

ASD screening might be 

possible in the future  
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 using non‐verbal 

aspects of social 

interaction by deep 

neural network  

 

  

 

probability positively 

correlated to the 

overall level of 

symptoms of autism in 

social affect and 

repetitive and restricted 

behaviors domain 

 

Lee et 

al., 2021 

Stroke Patient with stroke 

(206) 

Smartphone Swing time 

asymmetry between 

paretic and non-

paretic lower limbs 

while walking 

 

 

Classification of 

dependence in 

ambulation by 

employing a deep 

model in 3D-CNN 

Hospital The trained 3D-CNN 

performed with 86.3% 

accuracy, 87.4% 

precision 

 

“Monitoring ambulation using 

videos may facilitate the design 

of personalized rehabilitation 

strategies for stroke patients with 

ambulatory and balance deficits 

in the community” (Lee et al., 

2021, p.9) 

 

Li et al., 

2021 

PD Patients with PD 

(157) 

Video Skeleton sequence 

from finger-tapping 

test  

 

Classification of 

finger tapping 

performance 

according to MDS-

UPDRS score 

Hospital Fine-grained 

classification net- work 

achieved an accuracy 

of 72.4% and an 

acceptable accuracy of 

98.3%  

 

Vision-based assessment method 

has potential for remote 

monitoring of PD patients in the 

future  

 

Mehdiza

deh et 

al., 2021 

Dementia 

 

Individuals admitted 

to a specialized 

dementia inpatient 

unit (54) 

 

Kinect v2 

 

Gait variables, 

including gait 

stability, step 

length, step time 

variability, step 

length variability  

 

Changes in 

quantitative gait 

measured over a 

period during a 

psychogeriatric 

admission  

 

Laboratory Results showed that 

there was deterioration 

of gait in this cohort of 

participants, with men 

exhibiting greater 

decline in gait stability 

 

“Quantitative gait monitoring in 

hospital environments may 

provide opportunities to 

intervene to prevent adverse 

events, decelerate mobility 

decline, and monitor 

rehabilitation outcomes” 

(Mehdizadeh et al., 2021, p.1) 

 

Negin et 

al., 2021 

ASD Children with or 

without ASD (108) 

YouTube video Spinning, head 

banging, hand 

action, arm flapping  

 

Recognition of ASD 

associated behaviors  

 

Natural 

environment 

HOF descriptor 

achieves the best 

results when used with 

MLP classifier  

 

“An action-recognition-based 

system can be potentially used to 

assist clinicians to provide a 

reliable, accurate, and timely 

diagnosis of ASD disorder” 

(Negin et al., 2021, p.145) 
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Nguyen-

Thai et 

al., 2021 

CP 

 

Videos of infants who 

were at 14-15 weeks 

post-term age (235) 

 

Smartphone 

 

FM 

 

Predicted the risk of 

CP by FM 

 

Natural 

environment  

 

Pose sequences were 

strong signals that 

retained motion 

information of joints 

and limbs while 

ignoring irrelevant, 

distracting visual 

artifacts 

 

A STAM model can be used to 

identify infants at risk of 

cerebral palsy via video-based 

infant movement assessment  

Rupprec

hter et 

al., 2021 

PD Patients with PD 

(729) 

Smartphone Leg ratio difference, 

vertical angle of the 

body, horizontal 

angle of the ankles 

and wrists, 

horizontal distance 

between the heels, 

speed of the ankles, 

step frequency  

 

Estimation of 

severity of gait 

impairment in 

Parkinson’s disease 

using a computer 

vision-based 

methodology  

 

Hospital and 

offices 

Step frequency point 

estimates from the 

Bayesian model were 

highly correlated with 

manually labelled step 

frequencies  

 

“Automated systems for 

quantifying Parkinsonian gait 

have great potential to be used in 

combination with, or the absence 

of, trained assessors, during 

assessments in the clinic or at 

home” (Rupprechter et al., 2021, 

p.18) 

 

Stricker 

et al., 

2021 

PD Patients with PD (24) Standard 

camera  

 

Step length Reliability of step 

length 

measurements from 

2D video in patients 

with stroke; 

comparison of the 

step lengths of 

patients 

with/without a 

recent history of 

falls  

 

Structured 

environment 

Step length 

measurements from the 

video demonstrated 

excellent intra- and 

inter-rater reliability; 

patients with PD who 

had experienced a fall 

within the previous 

year demonstrated 

shorter step lengths 

 

“Quantification of step length 

from 2D video may offer a 

feasible method for clinical use” 

(Stricker et al., 2021, p.252) 

 

Wei et 

al., 2021 

Wheelchair user Full-time wheelchair 

users (91) 

Kinect Wheelchair transfer 

motions including 

joint angles and 

positions 

 

ML algorithm for 

evaluation of the 

quality of 

independent 

wheelchair sitting 

pivot transfers  

 

Structured 

environment 

Accuracies of the ML 

classifier were over 

71%.  

 

“The results show promise for 

the objective assessment of the 

transfer technique using a low 

cost camera and machine 

learning classifiers” (Wei et al., 

2021, p.1) 

 

William

s et al., 

2021 

Tremor Patients with PD (9); 

patients with essential 

tremor (5); patient 

Smartphone Hand tremor at rest 

and in posture 
 

Measurement of 

hand tremor 

frequency  

 

Clinical setting There was less than 0.5 

Hz difference between 

the computer vision 

and accelerometer 

“The study suggests a potential 

new, contactless point-and-press 

measure of tremor frequency 

within standard clinical settings, 
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with functional tremor 

(1) 

frequency 

measurements in 97% 

of the videos 

 

research studies, or 

telemedicine” (Williams et al., 

2021, p.69)  

 

Wu et 

al., 2021 

PD Patients with PD (7) LMC Hand kinematic in 

finger tapping hand 

opening and 

closing, and hand 

pronation and 

supination  

 

Quantification of 

the motor 

component of 

bradykinesia  

 

Laboratory Average velocity and 

average amplitude of 

pronation/supination 

isolate the bradykinetic 

feature   

 

“The LMC achieved promising 

results in evaluating PD patients’ 

hand and finger bradykinesia” 

(Wu et al., 2021, p.1) 

         

Ferrer-

Mallol 

et al., 

2022 

DMD 

 

Patients with DMD 

(8) 

Smartphone Time, pattern of 

movement 

trajectory, 

smoothness and 

symmetry of 

movement  

 

Quantitative 

measurement of the 

motor performance 

of the patients in the 

functional tasks 

 

Home  Computer vision 

analysis allowed 

characterization of 

movement in an 

objective manner  

 

“Video technology offers the 

possibility to perform clinical 

assessments and capture how 

patients function at home, 

causing minimal disruption to 

their lives” (Ferrer-Mallol et al., 

2022, p.16) 

 

Guo et 

al., 2022  

PD Patients with PD (48); 

healthy controls (11) 

RGB camera Finger movement in 

finger tapping test 

Classification of PD 

from finger tapping 

video 

Structured 

environment 

Classification accuracy 

is of 81.2% on a newly 

established 3D PD 

hand dataset of 59 

subjects 

 

Novel computer-vision approach 

could be effective in capturing 

and evaluating the 3D hand 

movement in patients with PD 

 

Lonini 

et al., 

2022  

Stroke Patients with stroke 

(8) 

Digital RGB 

video camera  

 

Gait parameters 

including cadence, 

double support time, 

swing time, stance 

time, and walking 

speed  

 

Comparison of gait 

parameters obtained 

from clinical system 

and video-based 

method for gait 

analysis  

 

Laboratory Absolute accuracy and 

precision for swing, 

stance, and double 

support time were 

within 0.04 ± 0.11 s 

 

“Single camera videos and pose 

estimation models based on deep 

networks could be used to 

quantify clinically relevant gait 

metrics in individuals 

poststroke” (Lonini et al., 2022, 

p.9) 

 

Morinan 

et al., 

2022  

PD Videos from patients 

with PD (447) 

Smartphone Body kinematics 

including 

movement, velocity 

variation and 

smoothness  

 

Estimation of 

‘arising from chair’ 

task score in MDS-

UPDRS  

 

 

Clinical setting Compute-vision based 

method can accurately 

quantify PD patients’ 

ability to perform the 

arising from chair 

action 

  

 

Computer-vision based approach 

might be used for quality control 

and reduction of human error by 

identifying unusual clinician 

ratings 
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3D-CNN: 3D Convolutional Neural Network, AC: Adhesive Capsulitis, ALS: Amyotrophic Lateral Sclerosis, ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale, ASD: Autism Spectrum 

Disorder, BME: Body Motion Evaluation, CCD: Commercial Digital Charge-coupled Device, CD: cervical dystonia, CP: Cerebral Palsy, CV: Computer Vision, DBS: Deep Brain Stimulation, DMD: Duchenne 

muscular dystrophy, FM: Fidgety Movement, FMA: Fugl-Meyer Assessment, FoG: Freezing of Gait, FoG: Freezing of gait, SAS: Simpson- Angus Scale, FVC: Forced Vital Capacity, FXS: Fragile X Syndrome, 

GMA: General Movement Assessment, GMFM-88: Gross Motor Function Measure-88, HOF: Histogram of Optical Flow, HT: Head Tremor, ICC: Intra-Class Correlation Coefficient, ICP: Infantile Cerebral Palsy, 

KPCA: Kernel-based Principal Component Analysis, LDA: Linear Discriminant Analysis, LLM: Leg Length Measurement, LMC: Leap Motion Controller, LOSOCV: Leave-One-Subject-Out Cross-Validation, 

LR: Logistic Regression, MDS-UPDRS: Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale, ML: Machine Learning, MLP: Multi-layer Perceptron, MMA: 

Markerless Motion Analysis, MMC: Markerless Motion Capture, NB: Naïve Bayes, NN: Neural Network, OPCL: Hand Opening/Closing, PANU: Proximal Arm Non-Use, PCA: Principal Component Analysis, 

PD: Parkinson’s Disease, PFP: Patellofemoral pain, POAC: Pre-Operative Assessment Clinic, POST: Postural Tremor, PSUP: Forearm Pronation-Supination, PT: Physiotherapist, RGB: Red Green Blue, ROM: 

Range of Motion, RSA: Relative Surface Area, SCI: Spinal Cord Injured, SDK: Software Development Kit, SMIL: Skinned Multi-Infant Linear Body Model, SST: Simple Shoulder Test, ST-ACF: short-time 

autocorrelation function, STAM: Spatio-Temporal Attention-Based Model, SVM: Support Vector Machine, TD: Typically Developing, THFF: Thumb Forefinger Tapping, TKR: Total Knee Arthroplasty, TMFPI: 

Trunk Mobility in the Frontal Plane Index, UDysPS: Unified Dyskinesia Rating Scale, UPDRS: Unified Parkinson’s Disease Rating Scale, UPDRS-FT: Unified Parkinson’s Disease Rating Scale-Finger Tapping, 

USCP: Unilateral Spastic Cerebral Palsy, VR: Virtual Reality, VVM: Varus/Valgus Knee Measurements 

Vu et 

al., 2022 

CD  

 

Patients with CD (93) Video recording Peak power, 

frequency, and 

directional 

dominance of head 

movement 

 

Quantification of 

oscillatory and 

directional aspects 

of HT  

 

Structured 

environment 

Computer-vision based 

method of 

quantification of HT 

exhibits convergent 

validity with clinical 

severity ratings  

 

“Objective methods for 

quantifying HT can provide a 

reliable outcome measure for 

clinical trials” (Vu et al., 2022, 

p.7) 

 

Morinan 

et al., 

2023  

PD Patients with PD 

(628) 

Consumer-grade 

hand- held 

devices  

 

Movements during 

the bradykinesia 

examinations 

including finger 

tapping, hand 

movement, 

pronation-

supination, toe 

tapping, leg agility  

 

Quantification of 

bradykinesia 

according to 

clinician ratings  

 

Clinical setting 

and laboratory 

Classification model 

estimate of composite 

bradykinesia had high 

agreement with the 

clinician ratings  

 

 

Computer vision technology can 

be adopted in the current clinical 

workflows with smartphones or 

tablet devices 

 

Song et 

al., 2023  

ASD Children with ASD 

(29); TD child (1) 

RGB camera Head and body 

movement during 

response to name 

behavior 

Prediction of ASD 

by response to name 

behavior 

Structured 

environment 

The prediction method 

is highly consistent 

with clinical diagnosis  

 

Automatic detection method can 

help to carry out remote autism 

screening in the early 

developmental stage of children 
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3.3 RESULTS 

3.3.1 Literature search and study characteristics 

A total of 4283 articles were identified, 278 of which were selected for full-text reading 

after removal of duplicates and irrelevancies, according to their abstracts (Figure 3.1). 

After next excluding 213 articles on the basis of the inclusion and exclusion criteria, 65 

studies remained and were included in the final review (Figure 3.1). More than 40% of 

the studies applied MMC technology to assess a patient population with PD (n = 28)   

(Butt et al., 2018; Cao et al., 2021; Chen et al., 2011; Cho et al., 2009; Dranca et al., 

2018; Guo et al., 2022; Hu et al., 2020; Khan et al., 2013; Langevin et al., 2019; Lee et 

al., 2019; Li et al., 2021; M. H. Li et al., 2018; T. Li et al., 2018; Lin et al., 2020; Liu 

et al., 2019; Martinez et al., 2018; Morinan et al., 2023; Morinan et al., 2022; Oña et 

al., 2020; Pang et al., 2020; Rupprechter et al., 2021; Sato et al., 2019; Stricker et al., 

2021; Tupa et al., 2015; Vivar et al., 2019; Williams, Relton, et al., 2020; Williams, 

Zhao, et al., 2020; Wu et al., 2021) . Two other diseases that had commonly been 

measured by the MMC system were cerebral palsy (CP) (n = 6) (Adde et al., 2010; Chin 

et al., 2017; Krasowicz et al., 2020; Nguyen-Thai et al., 2021; Pantzar-Castilla et al., 

2018; Schroeder et al., 2020) and stroke (n = 6) (Bakhti et al., 2018; Bonnechère et al., 

2018; Kim et al., 2016; Lee et al., 2021; Lonini et al., 2022; Olesh et al., 2014). Four 
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other studies focused on children with autism spectrum disorder (ASD) (n = 4) (Caruso 

et al., 2020; Kojovic et al., 2021; Negin et al., 2021; Song et al., 2023) while there are 

two studies focused on patients with schizophrenia (n = 2) (Abbas et al., 2021; Sá et al., 

2015) and patients with dementia (n = 2) (Mehdizadeh et al., 2021; Sabo et al., 2020) 

respectively. The rest of the studies were conducted on various other diseases: Fragile 

X syndrome (FXS) (O’Keefe et al., 2013), chronic neck pain (Bahat et al., 2010), breast 

cancer (Gritsenko et al., 2015), spinal cord injury (SCI) (Zefinetti et al., 2020), 

amyotrophic lateral sclerosis (ALS) (de Bie et al., 2017), adhesive capsulitis of shoulder 

(AC) (Lee et al., 2015), dystrophinopathy (Lowes et al., 2013) and neuromotor diseases 

(Chambers et al., 2020) . There were also studies that had been conducted on wheelchair 

users (n = 2) (Rammer et al., 2018; Wei et al., 2021), people awaiting total knee 

arthroplasty (TKR) (Hurley et al., 2021), patients with gait disturbance (Fujii et al., 

2020), patients with neurodevelopment disorders (NDD) (Ardalan et al., 2021), patients 

with tremor (Williams et al., 2021), patients with Duchenne muscular dystrophy (DMD) 

(Ferrer-Mallol et al., 2022), patients with cervical dystonia (CD) (Vu et al., 2022) and 

patients with a variety of diagnoses (Matsen et al., 2016). Table 3.1 summarizes the 65 

selected studies. 
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Figure 3.1 Flow chart for selection of the studies for this review
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3.3.2 Body function/body part being measured 

Of the 28 studies that assessed the PD population by using MMC technology, fourteen 

measured the hand’s motor conditions to classify or to predict the severity of PD (Butt 

et al., 2018; Guo et al., 2022; Khan et al., 2013; Langevin et al., 2019; Lee et al., 2019; 

Li et al., 2021; Lin et al., 2020; Liu et al., 2019; Oña et al., 2020; Pang et al., 2020; 

Vivar et al., 2019; Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020; Wu et al., 

2021). These fourteen studies used the PD features of bradykinesia and tremor, as 

reflected during hand movements such as a finger-tapping exercise, to train machine-

learning models to serve as classifiers. Of the remaining fourteen studies, four focused 

on using whole-body motion to classify PD (M. H. Li et al., 2018; Martinez et al., 2018; 

Morinan et al., 2023; Morinan et al., 2022), and the other ten measured gait features to 

detect gait disorder in people with PD (Cao et al., 2021; Chen et al., 2011; Cho et al., 

2009; Dranca et al., 2018; Hu et al., 2020; T. Li et al., 2018; Rupprechter et al., 2021; 

Sato et al., 2019; Stricker et al., 2021; Tupa et al., 2015). The measured body function 

for the CP population by the MMC system included gait pattern, trunk mobility, general 

body movement, fidgety movements, and the level of proprioceptive ability (Adde et 

al., 2010; Chin et al., 2017; Krasowicz et al., 2020; Nguyen-Thai et al., 2021; Pantzar-

Castilla et al., 2018; Schroeder et al., 2020). The six studies on stroke survivors applied 
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MMC technology to measure their upper limb movement, including their motor 

function, movement velocity, and joint angle (Bakhti et al., 2018; Bonnechère et al., 

2018; Kim et al., 2016; Olesh et al., 2014) as well as lower limb movement gait 

parameters and walking pattern (Lee et al., 2021; Lonini et al., 2022). The studies that 

worked on the ASD population mainly focused on prediction of diagnosis of ASD by 

children’s behavioral patterns (Caruso et al., 2020; Kojovic et al., 2021; Negin et al., 

2021; Song et al., 2023). The measured areas in the studies that applied MMC 

technology in patients with other types of diseases varied, and the details are listed in 

the summary table (Table 3.1).  

 

3.3.3 Details of measurement and efficacy 

The applications of the MMC systems in measurement were classified into several 

categories. Sixteen out of the 65 selected studies used MMC technology in symptoms 

identification in disease populations (Butt et al., 2018; Dranca et al., 2018; Khan et al., 

2013; Lee et al., 2021; Lee et al., 2019; M. H. Li et al., 2018; T. Li et al., 2018; Negin 

et al., 2021; Oña et al., 2020; Rupprechter et al., 2021; Song et al., 2023; Tupa et al., 

2015; Vivar et al., 2019; Williams et al., 2021; Williams, Relton, et al., 2020; Wu et al., 

2021). Butt and colleagues attempted to distinguish patients with PD from healthy 

subjects by features of their hand movements, reporting that their Leap Motion 
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Controller (LMC) system together with the machine-learning models did not provide a 

reliable measurement for the PD symptoms (Butt et al., 2018). Fifteen studies focused 

on comparing the movement patterns of the disease populations and a healthy 

population, with all of them reporting a significant difference in at least one of the 

measured parameters including gait parameters, hand movement patterns, head 

movement patterns and general body movements (Abbas et al., 2021; Adde et al., 2010; 

Ardalan et al., 2021; Bahat et al., 2010; Bonnechère et al., 2018; Caruso et al., 2020; 

Chambers et al., 2020; Cho et al., 2009; Fujii et al., 2020; Kojovic et al., 2021; Langevin 

et al., 2019; Martinez et al., 2018; O’Keefe et al., 2013; Pang et al., 2020; Sá et al., 

2015). Fifteen studies applied MMC technology to detect and identify movement 

limitations or specific movement patterns of patients with certain diseases, and 

significant parameters that indicate movement abnormity including bradykinesia, 

shuffling gait, abnormal walking pattern, and tremor were identified (Cao et al., 2021; 

Chen et al., 2011; de Bie et al., 2017; Ferrer-Mallol et al., 2022; Gritsenko et al., 2015; 

Guo et al., 2022; Hu et al., 2020; Krasowicz et al., 2020; Lin et al., 2020; Lonini et al., 

2022; Mehdizadeh et al., 2021; Nguyen-Thai et al., 2021; Sato et al., 2019; Schroeder 

et al., 2020; Stricker et al., 2021). Two studies used the MMC system to measure range 

of motion (ROM), and they suggested MMC could be an alternative to the goniometer 

as a tool for ROM assessment (Lee et al., 2015; Matsen et al., 2016). Three studies used 
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the MMC system as a tool to analyze the wheelchair propulsion skills of wheelchair 

users (Rammer et al., 2018; Wei et al., 2021; Zefinetti et al., 2020). Ten studies 

correlated or compared the MMC measurements with clinical assessment scales 

(Bakhti et al., 2018; Kim et al., 2016; Li et al., 2021; Liu et al., 2019; Lowes et al., 2013; 

Morinan et al., 2023; Morinan et al., 2022; Olesh et al., 2014; Sabo et al., 2020; Vu et 

al., 2022). Among the other three studies, one applied MMC technology in a 

comparison with the optic marker system (Pantzar-Castilla et al., 2018), one used it to 

measure leg length (Hurley et al., 2021), and one used it as a tool to assess 

proprioception (Chin et al., 2017). Only one study reported unsatisfactory results, 

claiming that the use of the MMC system alone to measure leg length was not accurate 

(Hurley et al., 2021). The details are listed in the summary table (Table 3.1). 

 

3.3.4 Types of MMC systems 

Twenty studies used Kinect in their research, thus making Kinect the most popular 

MMC system used in the selected studies (Bakhti et al., 2018; Bonnechère et al., 

2018; Chin et al., 2017; de Bie et al., 2017; Dranca et al., 2018; Fujii et al., 2020; 

Gritsenko et al., 2015; Kim et al., 2016; Lee et al., 2015; Lowes et al., 2013; Matsen 

et al., 2016; Mehdizadeh et al., 2021; Olesh et al., 2014; Pantzar-Castilla et al., 2018; 

Rammer et al., 2018; Sabo et al., 2020; Schroeder et al., 2020; Tupa et al., 2015; Wei 
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et al., 2021; Zefinetti et al., 2020). Sixteen studies used camera including RGB 

camera, digital video camera, GoPro camera and webcam (Adde et al., 2010; Ardalan 

et al., 2021; Cao et al., 2021; Chen et al., 2011; Guo et al., 2022; Kojovic et al., 2021; 

Langevin et al., 2019; Lee et al., 2019; M. H. Li et al., 2018; T. Li et al., 2018; Liu et 

al., 2019; Lonini et al., 2022; Pang et al., 2020; Sato et al., 2019; Song et al., 2023; 

Stricker et al., 2021), while twelve studies analyzed patients’ movement by using 

smartphone or mobile tablet videos (Abbas et al., 2021; Ferrer-Mallol et al., 2022; 

Khan et al., 2013; Lee et al., 2021; Lin et al., 2020; Morinan et al., 2023; Morinan et 

al., 2022; Nguyen-Thai et al., 2021; Rupprechter et al., 2021; Williams et al., 2021; 

Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020). Six studies performed the 

motion analysis from YouTube video or video recordings that captured by nonspecific 

capturing device (Caruso et al., 2020; Chambers et al., 2020; Hu et al., 2020; Li et al., 

2021; Negin et al., 2021; Vu et al., 2022). Five studies used the leap motion controller 

(LMC), an optical hand-tracking module (Butt et al., 2018; Lee et al., 2019; Oña et 

al., 2020; Vivar et al., 2019; Wu et al., 2021). The rest of the studies applied the 

BioStageTM System (Organic Motion Inc., N.Y., USA) (n = 3) (Hurley et al., 2021; 

O’Keefe et al., 2013; Sá et al., 2015); the DARI Motion platform’s motion capture 

system (n = 1) (Martinez et al., 2018); the 4DBODY System (n = 1) (Krasowicz et al., 

2020), and a nonspecific customized motion capture system (n = 1) (Bahat et al., 
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2010). Table 3.2 describes and compares the characteristics of these seven types of 

MMC systems in terms of their mechanisms, set-up procedures, relative costs, the 

body part(s) that can be captured, and the systems’ methods of data extraction and 

analysis. 
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Table 3.2 Comparison of the MMC Systems     

MMC system Mechanisms Relative 
cost 

Assessable Body 
parts  

Portability Set-up procedure Methods of data extraction and 
analysis 

Kinect Monochrome CMOS sensor and 
infrared projector measures 
player’s body by transmitting 
invisible near-infrared light, 
data are then processed by 
algorithms 

Low Whole body 
except fine hand 
movement 

Yes Simple Data can be extracted by the 
Microsoft Kinect algorithm, and 
offline analysis can be performed 
using software such as R or 
MATLAB 

 

Camera 2D images are captured directly 
by camera 

Low Whole body Yes Simple Data is commonly analyzed by 
pose estimation algorithm, and 
kinematic features are extracted 
from the joint trajectories  

 

LMC Hand movements captured by 
two monochromatic IR cameras 
and three infrared LEDs and a 
rather “complex 
math algorithm” are used to 
process the raw data 

Low Hand and finger 
movement 

Yes Simple Data can be obtained from the 
LMC SDK 

BioStageTM 3D images captured by high-
speed color cameras and data 
are analyzed by computer vision 
software 

High Whole body No Complicated The 3D motion data can be 
analyzed using the Motion Monitor 
software  

 



 

 111 

CMOS: Complementary Metal Oxide Semiconductor, HMD: Helmet-mounted Displays, LED: Light-emitting Diode, LMC: Leap Motion Controller, SDK: Software 

Development Kit 

 

Smartphone Mobile phone camera is used to 
capture the movement directly 

No extra 
cost needed 

Whole body Yes Simple Specific algorithms are required to 
analyze the video image  

DARI Motion 
system 

Uses eight high-speed cameras 
placed around the subject and a 
state-of-the-art computer-vision 
engine to collect whole-body 
data, including the fastest 
motions 

High Whole body No Complicated Data analyzed by images captured 
by eight high-speed cameras using 
the software provided by the DARI 
Motion company 

4DBODY System Uses a single-frame structured 
light illumination method to 
allow the registration of the 
shape of body surface with a 
frequency of up to 120 Hz  

High Whole body No Complicated Data from 4D measurement 
sequences can be extracted by the 
FRAMES software package  

Customized motion 
capture system 

Two main components: an 
electromagnetic tracker and an 
HMD. The tracker sampled 
motion via two sensors at 60 Hz 
each.  

Not 
mentioned 

Particularly neck 
and trunk 
movement 

Not mentioned Not mentioned Tracking data can be analyzed by 
MATLAB software  
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3.4 DISCUSSION 

Our results revealed that most of the research applications of an MMC system for 

measurement were with patient groups with physical disabilities, and more than half of 

the studies assessed the PD and CP populations. A possible reason for this trend could 

be that both PD and CP have obvious and well-defined physical signs and symptoms 

and abnormal movements. PD is characterized by the presence of tremor, bradykinesia, 

and rigidity during movement (Poewe et al., 2017), whereas patients with cerebral palsy 

demonstrate spasticity, ataxia, rigidity in movement, and the like (Rosenbaum et al., 

2006). The characteristic types of movement in these two groups of patients might be 

especially favorable for detection and analysis by the MMC system because of the 

significant homogeneity in the patients’ movement patterns. Applications of an MMC 

system for measurement in other kinds of physical disabilities have been limited, and 

that was the case in this review, but the heterogeneous disease types that were evaluated 

in the selected studies suggest the possibility of a high variety of generalized uses of 

MMC technology in assessing different types of patients.  

 

In addition to the use of MMC systems in applications involving physical disabilities 
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that demonstrate observable physical symptoms, it was noteworthy that such systems 

were also applied in patients with mental illness and NDD, in an attempt to deduce the 

presence of movement markers for mental disorder and the behavior associated with 

NDD. Experimental use of MMC technology in patients with mental illness and NDD 

suggests an entirely new trend for the application of MMC technology in the clinical 

field. Heretofore, motion tracking has been used in targeted patients with physical 

disabilities, because the analysis of their movements can provide necessary information 

and data about their level of impairment, and that in turn can indicate their recovery 

progress. However, although clinical observations have demonstrated that there is a 

difference between the movement patterns of patients with mental illness and those of 

healthy individuals, application of motion capture systems to assess the physical ability 

of patients with mental illness is still quite limited (Walther et al., 2020). Since 

traditional marker-based systems for motion analysis are time-consuming to set up 

given that it requires calibration procedure and attachment of markers on the body, 

using the traditional motion analysis marker systems might not be cost-effective to 

study the motion dysfunctions in patients with mental illness whose cognitive functions 

are predominantly affected. In fact, previous studies on motion detection of patients 

with mental illness adopted the fuzzy movement method, and precise actions and 

movement patterns have been less emphasized (Walther et al., 2014). Therefore, the 
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development of MMC technology allows motion capture in a more cost-effective way, 

and that improvement may facilitate future scientific investigations of movement 

patterns and motor functions in patients with mental illness. Identifying the risk of NDD 

by extracting the children’s behavioral features with the help of computer-vision 

technology also proposed a new direction of early screening of NDD (de Belen et al., 

2020), in which children’s developmental conditions can be closely monitored in their 

familiar environment without the need of attachment of markers on the infants’ body . 

Similarly, the studies that have applied the MMC system to compare the motion patterns 

of a disease population and a healthy population provide evidence for the technology’s 

use to identify biomarkers for certain diseases. MMC technology may also contribute 

to the development and use of big data for future AI screening for diseases, based on 

body movements. The combination of MMC technology and a machine-learning 

algorithm in classification of CP in infants by Nguyen-Thai and colleagues (2021) is 

one of the good examples that demonstrates how MMC technology can help in the 

preliminary screening of diseases. Compared with screening methods for traditional 

diseases, which depend heavily on behavioral observations by parents or on subjective 

self-reported questionnaires (Horwitz et al., 2016), MMC technology, which identifies 

symptoms via movement detection, could be a more objective method for early 

screening for diseases, facilitating early identification of a disease and thus improving 
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the prognosis for rehabilitation, as well as providing a tool for evaluation before and 

after rehabilitation. 

 

In contrast to using MMC technology for symptoms identification or for detection of 

differences in movement patterns between disease groups and their healthy counterparts, 

other studies applied MMC technology as a direct clinical measurement tool. Although 

the use of the MMC system to measure leg length was found to be inaccurate (Hurley 

et al., 2021), the use of Kinect to measure ROM was found to be reliable (Lee et al., 

2015; Matsen et al., 2016). These findings suggest that MMC technology might have 

the potential to serve as an alternative clinical assessment tool. MMC technology also 

provides a new approach to assessing functional or cognitive abilities, such as 

objectively evaluating proprioception, which previously relied heavily on manual 

evaluations by rehabilitation therapists. However, future studies on the measurement 

accuracy and the validity of MMC technology as a clinical measurement tool are 

warranted.  

 

Microsoft Kinect, the most commonly used MMC system in the studies in this review, 

is a relatively low-cost, commercially available system that captures and analyzes 
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whole-body movement. Kinect enables the capture of real-time whole body gross 

movements, but it appears to be less sensitive in tracking fine hand movements (Galna 

et al., 2014). Although many of the studies used Kinect in their MMC measurements, 

the system has been out of production since 2017 and was no longer supported by the 

Xbox Series X, as announced by Microsoft (Weinberger, 2018). Future rehabilitation 

assessors that wish to use MMC technology may have to consider using other kinds of 

MMC systems, or the newly developed Azure Kinect. Our review also found that the 

most recent studies adopted the use of camera, smartphone, or video clips from the 

internet in conjunction with pose estimation algorithms and motion analysis algorithm, 

which has been rapidly developed in the recent years, to capture images and analyze 

motion. Human pose estimation method is a way of identifying and classifying human 

joints position using computer vision, for example, the open-source libraries OpenPose 

and PoseNet for human pose estimation are widely adopted in motion analysis (Nishani 

& Çiço, 2017). With the development of human pose estimation database containing 

various types of movement datasets, accuracy of pose estimation from video clips can 

be further enhanced by using a large set of training data. This facilitates the use 

computer vision methods for motion analysis in video clips captured by portable and 

low-cost camera rather than using specific sensors in the traditional way. The use of 

machine-learning algorithms allows meaningful information such as kinematic data to 
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be extracted directly from regular videos, thus making the use of MMC technology 

much easier in motion capturing in a natural environment without the need to buy any 

extra hardware devices. Human pose estimation technology such as Convolutional Pose 

Machines (CPM) and convolution neural network (CNN) based methods which allow 

extraction of human movement information directly from video clips have been 

repeatedly tested by researchers (Andrade-Ambriz et al., 2022; Qiang et al., 2019) while 

human pose estimation application on analyzing movement in the disease populations 

were reported to be useful by the studies in our review (Abbas et al., 2021; Adde et al., 

2010; Ardalan et al., 2021; Cao et al., 2021; Caruso et al., 2020; Chambers et al., 2020; 

Chen et al., 2011; Ferrer-Mallol et al., 2022; Guo et al., 2022; Hu et al., 2020; Khan et 

al., 2013; Kojovic et al., 2021; Langevin et al., 2019; Lee et al., 2021; Lee et al., 2019; 

Li et al., 2021; M. H. Li et al., 2018; T. Li et al., 2018; Lin et al., 2020; Liu et al., 2019; 

Lonini et al., 2022; Morinan et al., 2023; Morinan et al., 2022; Negin et al., 2021; 

Nguyen-Thai et al., 2021; Pang et al., 2020; Rupprechter et al., 2021; Sato et al., 2019; 

Song et al., 2023; Stricker et al., 2021; Vu et al., 2022; Williams et al., 2021; Williams, 

Relton, et al., 2020; Williams, Zhao, et al., 2020). Given that such trajectory extraction 

method is in rapid evaluation and is becoming more mature for promising identification 

of posture (Doosti et al., 2020; Luo et al., 2022; Wrench & Balch-Tomes, 2022), using 

hand-held camera or smartphone as the MMC system would be especially beneficial 
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for understanding the motor performance of individuals in their daily living tasks, hence 

providing valuable information on levels of impairment and on the constraints that 

patients might encounter in their activities of daily living in their real-life environment. 

It is understandable that individuals, particularly young children and older people, 

might behave differently when they are placed for motion capturing in an unfamiliar 

laboratory or a simulated environment, thus risking the possibility that the motion 

analysis might not truly reflect the individuals’ actual movement patterns (Tronick et 

al., 1979). The use of a smartphone camera combined with an algorithm for analysis 

could provide a solution to that problem and suggests the feasibility of assessing 

patients’ daily movements through an MMC combination of a smartphone and an 

advanced algorithm. Since it does not require additional hardware for motion capturing, 

such a system would further broaden MMC technology for measurement and clinical 

assessment in the field of rehabilitation. 

 

3.4.1 Limitations of the current MMC technology’s applications for clinical 

measurement 

Although the use of MMC system in motion capturing is becoming more common in 

movement measurement and helps us extend the application of MMC technology to 

clinical use, the technologies used for analyzing movement and distinguishing motor 
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patterns are not yet generalized. Extracting and processing the data from MMC devices 

video files is still complicated and time-consuming, preventing the approach from being 

user-friendly for therapists to adopt as a quick clinical measurement tool. Further 

investigation is needed in order to design and develop a platform or software that can 

accurately analyze the movement patterns from videos in a more user-friendly and 

accurately way so as to further extend its application by clinicians. Although most of 

the studies that we included reported detecting a significant difference between the 

motor parameters of healthy control groups and those of disease populations, and while 

the identification of physical symptoms by the MMC system was also reported to be 

mostly effective, the sample sizes adopted by these studies were too small. A reliable 

AI tool for disease screening and classification will need to be trained and tested from 

a large set of data, to provide better specificity and sensitivity. In order to make use of 

MMC technology-assisted AI screening and early detection of diseases, a larger 

database that records movement patterns of both the disease population and the healthy 

population must be developed. Research on the development and selection of a suitable 

machine-learning or deep-learning model for classification is also needed. Ultimately, 

a cost-effective and accurate method for early patient screening will help therapists to 

identify individuals at risk and involve them in further, in-depth assessments, so that 

subsequent interventions can be made as early as possible. Moreover, it has been 
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suggested that telerehabilitation could incorporate the use of MMC technology as a 

measurement tool for assessing and monitoring patients’ prognosis and recovery, thus 

offering an objective and precise evaluation of patients’ rehabilitation progress. 

 

3.4.2 Limitation of this review 

A limitation of this review is the potential overlap among some of the included studies. 

Several papers may report findings from the same population, which could result in 

redundancy and impact the overall conclusions. Future research should aim to clarify 

and differentiate the populations studied to enhance the robustness of the evidence. 

 

3.5 CONCLUSIONS 

This review explored the current uses of MMC technology to perform assessments in 

clinical situations. Most of the studies in the review combined MMC technology and a 

classification algorithm to perform symptoms identification for disease populations or 

to detect the differences in movement between disease groups and their healthy 

counterparts. Findings from these studies revealed a potential use of MMC technology 

for detecting and identifying disease signs and symptoms. The method might also 

contribute to early screening by using AI and big data to screen for diseases that lead to 
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physical or mental disabilities. Further studies are warranted to develop and integrate 

MMC system in a platform that can be user-friendly and accurately analyzed by 

clinicians to extend the use of MMC technology in clinical measurement. 
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Chapter 4 

 

Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless 

Motion Capture (MMC) System: A Pilot Study 

 

 

ABSTRACT 

 

A customized Markeress Motion Capture (MMC) system developed in iPad Pro with a 

LiDAR scanner was programmed using Xcode. The aim of developing such system is 

to serve as a portable and user-friendly MMC system for motion capturing which might 

further enhance the generalizability of MMC technology in the rehabilitation. To 

investigate the validity and reliability of this MMC system in measuring the kinematic 

parameters, this pilot study was conducted. In this study, the performance of measuring 

the active range of motion (AROM) and the angular waveform of the upper-limb-joint 

angles of healthy adults performing functional tasks by the MMC system was examined. 

Thirty healthy participants were asked to perform shoulder and elbow actions for the 

investigator to take AROM measurements, followed by four tasks that simulated daily 

functioning. Each participant attended two experimental sessions, which were held at 

least 2 days and at most 14 days apart. A Vicon system and two iPad Pros installed with 

our MMC system were placed at two different angles to the participants and recorded 
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their movements concurrently during each task. The AROM and the angular waveform 

of the upper-limb-joint angles. It is found that the iPad Pro MMC system 

underestimated the shoulder joint and elbow joint angles in all four simulated functional 

tasks. The MMC demonstrated good to excellent test-retest reliability for the shoulder 

joint AROM measurements in all four tasks. Our results showed that the maximal 

AROM measurements calculated by the MMC system had consistently smaller values 

than those measured by the goniometer. An MMC in iPad Pro system might not be able 

to replace conventional goniometry for clinical ROM measurements, but it is still 

suggested for use in home-based and telerehabilitation training for intra-subject 

measurements because of its good reliability, low cost, and portability. Further 

development to improve its performance in motion capture and analysis in disease 

populations is warranted. 

 

 

This chapter has been previously published by the author of this author as a scientific 

manuscript in the journal “Archives of Physical Medicine and Rehabilitation” on 

November 21st, 2023. The manuscript has been slightly formatted to fit the thesis 

requirements. Access to the scientific paper: Lam, W. W., & Fong, K. N. (2023). 

Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless 
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Motion Capture (MMC) System: A Pilot Study. Archives of Physical Medicine and 

Rehabilitation. DOI: https://doi.org/10.1016/j.apmr.2023.10.018 
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4.1 INTRODUCTION 

Due to recent advancements in motion analysis technology (Parks et al., 2019), 

markerless motion capture (MMC) system via a mobile device has recently been used 

for home-based rehabilitation and telerehabilitation (Finkbiner et al., 2017; Moral-

Munoz et al., 2021; Vincent et al., 2022). The system offers the advantage of easy setup 

for motion capturing (mocap), facilitating measurements of active range of motion 

(AROM) and motion kinematics. Compared with conventional goniometry and the 

conventional marker-based mocap technology used in the laboratory, MMC allows 

users to capture a more objective, lifelike and natural form of human motion in a user-

friendly and real-life environment. 

 

However, most of the MMC systems in mobile devices are not specifically designed 

for clinical measurements and have not undergone validity and reliability testing. For 

example, smartphone videos have been used to analyze the symptoms of patients with 

Parkinson’s Disease, but those videos were analyzed with sophisticated post-processing, 

in contrast to an MMC system that could allow motion data to be exported and analyzed 

directly (Williams, Relton, et al., 2020; Williams, Zhao, et al., 2020). The current use 

of mobile phone videos for determining patients’ physical performance still depends 

heavily on prolonged post-processing to analyze movement kinematics. 
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A recently developed system using a Light Detection And Ranging (LiDAR) scanner 

installed on an iPhone and an iPad (Apple, Inc.) enables the detection of the depth of 

the environment, which might enhance the detection of human joint positions (Dong & 

Chen, 2017). The MMC system in mobile devices with a LiDAR scanner has also 

become more user-friendly for mocap through a software development kit (SDK) 

supported by the Apple software development platform (Farewik et al., 2022). However, 

a previous study only compared the motion tracking by an iPad Pro with a LiDAR 

scanner with a marker-based motion capture system from Vicon, to evaluate the lower 

limb (Farewik et al., 2022). Only a limited number of studies using the MMC approach 

have been done for the upper limb, even though that upper limb’s accurate measurement 

is important for predicting the ability to perform activities of daily living (Gates et al., 

2016). To date, it is uncertain whether an MMC system in mobile devices with a LiDAR 

scanner is accurate for measuring upper limb AROM and kinematic movement. Since 

it is also suggested that the different viewing angles of an MMC system might affect its 

capturing accuracy – that is, the limbs might be blocked by certain body parts during 

movement (Sarafianos et al., 2016) – this study investigated the validity and test-retest 

reliability of a customized MMC system using two iPad Pros with a LiDAR scanner 

from two different viewing angles for measuring the 1) AROM and 2) angular 
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waveform of the upper limb joint angles during the performance of functional tasks by 

the healthy participants.  

 

4.2 METHODS 

 

This study adopted a criterion-based and concurrent validity, test-retest reliability 

design. A marker-based system by Vicon (Oxford Metrics Group, Oxford, UK) was 

used as the criterion measurement (Albert et al., 2020; Karunarathne et al., 2014; 

Saggio et al., 2020; Scano et al., 2020), and conventional goniometry was used for the 

manual AROM measurement of a single joint in a static position to determine 

concurrent validity.  

 

4.2.1 Angle extractions from our MMC system 

 

The normalized coordinates of the angles were relative to the center of the pelvis and 

defined as the origin of the ARKit’s coordinate system. The adjacent 3D joint 

coordinates extractions calculated the angles of interest (AOI). Angle 𝜃  was 

calculated by the three joints – shoulder, elbow, and wrist – namely, 𝐴, 𝐵, 𝐶 ∈ 𝑅3or 
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associated vectors 𝑣1⃑⃑⃑⃑ = 𝐴 − 𝐵 𝑎𝑛𝑑 𝑣2⃑⃑⃑⃑ = 𝐶 − 𝐵, with the formula  

 

𝜃 = arccos
𝑣1 ∙ 𝑣2

||𝑣1||2||𝑣2||2
 

 

4.2.2 Sample Size Consideration 

A two-tailed comparison at a type I error rate of 0.05, with 80% power, was assumed. 

Consideration of the data discard rate and the results of a power analysis based on the 

statistical parameters using G*Power3.1.9.2 (Faul et al., 2007) yielded a recommended 

sample size of approximately 30. The effect size was calculated to be 0.71, which is 

between a medium (0.5) and large effect (0.8) (Fidler & Cumming, 2013).  

 

4.2.3 Participants 

Adults from the community were recruited through a poster advertisement. Participants 

had to be at least 18 years old and without any history of upper limb or spinal disabilities. 

Informed written consent was obtained from all participants prior to the experiment. 

Ethical approval was obtained from the Human Subjects Research Ethics Committee 

of the Hong Kong Polytechnic University (Ref No.: HSEARS20220530001). 



 

 149 

 

4.2.3.1 Inclusion criteria 

To be eligible to take part in the study, participants had to 1) be adults aged 18 years 

old or above, 2) have no history of previous neurological or orthopedic diseases and no 

congenital disorders of the upper extremities and/or spine, 3) have adequate cognitive 

ability to understand instructions, and 4) be able to engage in at least a one-hour 

experimental session. 

4.2.3.2 Exclusion criteria 

Participants were excluded from participating in the study if they 1) were medically 

unstable, 2) had previous injuries or medical conditions of their upper extremities or 

spine that affected their upper limb functions, or 3) were severely allergic to glue or 

sellotape, both of which were essential for the placement of markers on the body. 

 

4.2.4 Experimental setup  

 

A total of nine Vero cameras were used in the Vicon motion capturing (mocap) system. 

For the MMC system recording, two iPad Pros were used, each mounted on a 1.5-m 
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tripod stand and placed 1.8 m from the subject – one in front of the subject and the other 

to the person’s side. We assumed that the effect of the iPad Pro mocap would be similar 

for its position on either the left or right lateral side of the body. The left side has been 

chosen as the convenient side, so we placed the second iPad Pro on the left lateral side 

at 35 degrees to the subject.  

 

4.2.5 Equipment 

 

4.2.5.1 Vicon system 

 

The Vicon 3D mocap system with nine infrared high-speed cameras (Vicon, Oxford 

Metrics Ltd., Oxford, UK) and a sampling frequency of 120 Hz was used as the gold 

standard. The PlugInGait FullBody model for the upper arm (UPA) and forearm (FRM) 

was applied in this study, and the Vicon Nexus software (version 2.11) was used for 

data capture. A total of 23 markers were attached to the anatomical landmark positions 

on the participants’ trunk and arms, according to the UPA and FRM models in the 

system. For markers attached on the trunk, a magnet was first directly attached to the 

skin of the landmark position on the participant, and then a reflective marker with 
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magnet was attached on the clothes such that it adhered to the magnet that was stuck 

on the skin. Therefore, the marker placings on the truck did not move even if the clothes 

were moving. The marker positions are illustrated in Figure 4.1a and Figure 4.1b.  

 

 

Figure 4.1a Anatomical landmarks of marker positions (Back View) 

 

Figure S1a: Anatomical landmarks of marker positions (Back View) 
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Figure 4.1b Anatomical landmarks of marker positions (Front View) 

4.2.5.2 MMC system 

The MMC system used to perform mocap in this study was developed using Xcode on 

the basis of the ARKit6 and RealityKit framework supported by an iPad Pro with a 

LiDAR scanner. The detection of the human body and the joint positions were extracted 

and realized through computer-vision algorithms using convolutional neural networks 

(CNNs). A total of 14 3D body-joint positions including the shoulder joints, elbow 

joints, wrist joints, pelvic joints, knee joints, hip joints, ankle joints, spinal cord 

segments C7 and T12 and the timestamp of the motion detection were captured by our 

Figure S2b: Anatomical landmarks of marker positions (Front View) 
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motion-tracking platform. The capture frequency of the MMC system was set at 30 Hz. 

 

4.2.6 Procedure 

 

All participants were required to remove their jackets before the experiment. The Vicon 

system with nine infrared high-speed cameras and the MMC system installed on two 

iPad Pros that were placed at two different angles to the participant (one from the front, 

or “iPad Frontal”, and one from the lateral left side, or “iPad Lateral”) recorded each 

participant’s movements simultaneously (Figure 4.2). The experiment consisted of two 

parts: 1) measurement of the AROM of the participant’s shoulder joint and elbow joint, 

and 2) measurement of the angular waveform and the shoulder and elbow angles at the 

targeted position in simulated upper-limb functional tasks. The participants performed 

each task with their right hand followed by their left hand. 
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Figure 4.2 Environmental setup for the experiment: A total of nine Vero cameras were 

used in the motion capturing. Two iPad Pros, each placed on a 1.5-m tripod stand, were 

used in the MMC recording. One iPad Pro was placed 1.8 m in front of the subject and 

the other was placed laterally to the subject 

 

In the first part of the experiment, each individual was instructed to perform four static 

positions: shoulder flexion, shoulder abduction, elbow flexion, and elbow extension. 

When each participant reached the maximal AROM for each movement of the targeted 

joint, they were instructed to maintain the position for AROM measurement by a trained 

occupational therapist.  

 

In the second part, the participants were instructed to perform four sets of upper-limb 

daily tasks. They were instructed to maintain their positions when the target positions 

were reached. Task 1 was a hand-to-mouth task that simulated feeding; task 2 was a 

 
 

 



 

 155 

hand-to-head task that simulated grooming; task 3 was a hand-to-waist task that 

simulated the action of putting on trousers after toileting; and task 4 involved putting 

one hand to the contralateral underarm, which is a simulation of cleaning the body. 

Figure 4.3 illustrates the hand-to-head task.  

 

 

Figure 4.3 Hand-to-head task 

 

Each participant attended two sessions of the experiment for the test-retest reliability 

evaluation. The second session of the experiment repeated the same procedure that had 

been done in the first session, and the two sessions were at least 2 days apart but at most 

14 days apart. To reduce the intra-subject variability, each participant repeated each task 

Figure 2. Hand to head task 
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three times. The first trial served as a practice, and the mean values of the second and 

third trials were used for data analysis. 

 

4.2.7 Data Processing and Analysis 

 

Any mocap data that could not be exported successfully in the Comma-Separated 

Values (CSV) format from either of the systems were filtered out in the data analysis 

session. The mocap data in both the iPad MMC and the Vicon systems were filtered 

and converted to 300Hz by MATLAB R2020a. The angular waveforms between the 

two systems were synchronized using a cross-correlation-based shift-synchronization 

technique. 

 

The coefficient of multiple correlation (CMC) and the root-mean-squared error (RMSE) 

values were used to assess the validity of the angular waveforms generated by our iPad 

MMC and Vicon systems. CMC value below 0.3 indicates a weak correlation, while 

CMC value ranges 0.3 to 0.5 indicates a moderate correlation and the value of 0.5 to 

0.7 indicates a strong correlation, a CMC value of 0.7 or above indicates a very strong 

correlation (Lee, 1971). The values of the angles at maximal AROM for the shoulder 
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and elbow joints measured by the iPad (Frontal) and iPad (Lateral) were compared with 

those from the Vicon system and those from the manual goniometry, using paired t-

tests with p≤0.05. The concurrent validity of the iPad MMC in terms of maximal 

AROM measurement was further analyzed by the Pearson’s r correlation and the 

intraclass correlation coefficients (ICC) (2,k) (two-way random effects, absolute 

agreement) among the three approaches. A comparison of the angles when the target 

position was achieved for the upper limb joints in the simulated tasks was made only 

between the Vicon and the MMC systems. 

 

The CMC and RMSE values of the waveforms generated by the iPad MMC in the first 

and second sessions were compared for the evaluation of test-retest reliability. The ICC 

(two-way mixed-effects, absolute agreement) was used to evaluate the reliability of the 

MMC system in measuring the maximal AROM of the shoulder and the elbow during 

the simulated tasks. Values of ICC were referenced to indicate poor, moderate, good, 

and excellent agreement, respectively (Koo & Li, 2016). All analyses were performed 

using IBM SPSS 26, and the CMC and RMSE values were generated by MATLAB 

R2020a. 
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4.3 RESULTS 

 

Thirty-nine participants were recruited, but one dropped out after the first session. 

Participants with any data files that failed to be exported were regarded as having 

missing data and were excluded from the data analysis. After eliminating the 

participants with missing data, we had a total of 1,440 data sets from 30 participants in 

the final analysis (Figure 4.4).  

 

 

Figure 4.4 Flow chart of the study 

 

The demographics of the participants are shown in Table 4.1.  

Figure 3. Flow chart of the study 
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Table 4.1 Characteristics of the participants 

Characteristics: Study Variables Participants (n = 30) 

Age (years) 

Range  

Mean (SD) 

18 – 30 years old (%) 

31 – 50 years old (%) 

51 years old or above (%) 

 

18 - 65 

28.9 (11.8) 

76.7 

13.3 

10 

Gender (%) 

Male 

Female 

 

40 

60 

Height (cm) 

Range  

Mean (SD) 

 

152 - 178 

165.5 (7.7) 

Dominant Hand (%)  

Right 

Left 

100 

0 

 

 

The mean values of the maximum AROM measurements by the iPad (Frontal), the iPad 

(Lateral), the Vicon system, and the goniometry are shown in Tables 4.2 and 4.3. 
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Table 4.2 Validity of the AROM of the selected actions measured by iPad (Frontal) 

Action Mean AROM     

Comparison 1 (iPad and Goniometer) Comparison 2 (iPad and Vicon) 

iPad 

(Frontal) 

Goniometer Vicon Mean 

Difference 

(iPad – G) 

P (G, 

iPad) 

r ICC Mean 

Difference 

(iPad – V) 

P (V, 

iPad) 

r ICC 

Right 

Shoulder Flex 

Shoulder Abd 

Elbow Flexion 

Elbow Extend 

 

154.7 (9.0) 

162.0 (7.9) 

133.7 (5.4) 

10.7 (8.2) 

 

162.6 (9.8) 

172.7 (8.2) 

147.3 (4.4) 

-5.7 (5.6) 

 

155.4 (12.9) 

161.6 (13.4) 

144.2 (10.9) 

21.2 (9.3) 

 

-7.9 (9.0) 

-10.7 (4.3) 

-13.6 (5.7) 

16.5 (8.9) 

 

<0.01 

 

0.55* 

 

0.40* 

 

-0.7 (10.0) 

 

0.69 

0.78 

<0.01 

<0.01 

 

0.63* 

 

0.59* 

0.69* 

0.06 

0.34* 

<0.01 0.86* 0.43* 0.46 (8.8) 0.78* 

<0.01 

<0.01 

0.32 

0.20 

0.03 

0.06 

-10.5 (11.2) 

-10.5 (8.1) 

0.20 

0.58* 

     

Left 

Shoulder Flex 

Shoulder Abd 

Elbow Flex 

Elbow Extend 

 

156.8 (10.2) 

161.1 (11.8) 

131.6 (6.3) 

13.1 (9.2) 

 

151.6 (9.4) 

173.6 (8.5) 

145.3 (4.1) 

-6.6 (6.3) 

 

157.6 (12.2) 

161.5 (12.6) 

146.2 (9.2) 

22.9 (7.0) 

 

5.2 (7.9) 

-12.5 (11.3) 

-13.7 (5.7) 

19.7 (10.2) 

 

0.56 

<0.01 

<0.01 

<0.01 

 

-0.24 

0.42* 

0.47* 

0.17 

 

0.45* 

0.23* 

0.12* 

0.08* 

 

-0.8 (9.5) 

-0.3 (15.0) 

-14.6 (8.8) 

-9.8 (9.8) 

 

0.65 

0.90 

<0.01 

<0.01 

 

0.65* 

0.25 

0.41* 

0.63* 

 

0.66* 

0.33* 

0.18* 

0.28* 

Arom: Active range of motion 

Note: #pair t test, apearson's r correlation, *p<0.05 
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AROM: Active range of motion 

Note: #pair t test, apearson's r correlation, *p<0.05 

 

Table 4.3 Validity of the AROM of the selected actions measured by the iPad (Lateral) 

Action Mean AROM    

Comparison 1 (iPad and Goniometer) Comparison 2 (iPad and Vicon) 

iPad 

(Lateral 

Side) 

Goniometer Vicon Mean 

Difference 

(iPad – G) 

#P (G, 

iPad) 

a r ICC 

(2,k) 

Mean 

Difference 

(iPad – V) 

#P (V, 

iPad) 

a r ICC 

(2,k) 

Right 

Shoulder Flex 

Shoulder Abd 

Elbow Flex 

Elbow Extend 

 

152.6 (9.4) 

159.9 (8.6) 

130.9 (4.4) 

10.9 (8.3) 

 

162.6 (9.8) 

172.7 (8.2) 

147.3 (4.4) 

-5.7 (5.6) 

 

155.4 (12.9) 

161.6 (13.4) 

144.2 (10.9) 

21.2 (9.3) 

 

-10.1 (5.5) 

12.8 (5.5) 

-16.4 (4.7) 

-16.6 (10.2) 

 

<0.01 

<0.01 

<0.01 

<0.01 

 

0.83* 

0.78* 

0.45* 

-0.04 

 

0.48* 

0.33* 

0.06* 

0.01 

 

-2.9 (14.0) 

-1.6 (10.7) 

-13.3 (11.1) 

-10.3 (11.2) 

 

0.27 

0.41 

<0.01 

<0.01 

 

0.23 

 0.61* 

0.17 

0.21 

 

0.20 

0.55* 

0.04 

0.12 

Left 

Shoulder Flex 

Shoulder Abd 

Elbow Flex 

Elbow Extend 

 

154.2 (9.6) 

163.3 (7.6) 

129.7 (4.6) 

11.6 (11.6) 

 

151.6 (9.4) 

173.6 (8.5) 

145.3 (4.1) 

-6.6 (6.3) 

 

157.6 (12.2) 

161.5 (12.6) 

146.2 (9.2) 

22.9 (7.0) 

 

2.5 (5.0) 

-10.3 (4.5) 

-15.5 (3.9) 

18.2 (9.6) 

 

0.78 

<0.01 

<0.01 

<0.01 

 

-0.29 

0.85* 

0.61* 

0.37* 

 

0.52* 

0.40* 

0.11* 

0.08* 

 

-3.5 (12.2) 

1.8 (10.6) 

-16.4 (8.5) 

-11.3 (8.3) 

 

0.13 

0.36 

<0.01 

<0.01 

 

0.40* 

0.54* 

0.41* 

0.57* 

 

0.30* 

0.50* 

0.12* 

0.28* 
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Measurements by the iPad MMC on both sides were compared separately with those 

of the goniometry and the Vicon system (Table 4.2 and 4.3). For the iPad (Frontal), the 

paired t-test results suggested that there was no significant difference between the 

MMC and the Vicon measurements in terms of the measurement of maximal AROM in 

all of the shoulder actions, for both the left and right sides (the mean difference [MD] 

= –0.7° and 0.46° for right shoulder flexion and abduction, respectively; and MD = –

0.8 °  and –0.3 °  for left shoulder flexion and abduction, respectively). The 

measurements of maximal AROM for elbow flexion and extension produced by the two 

MMC systems, on both sides, were significantly different from those obtained by the 

Vicon system (Frontal: MD = –10.5° for both the right elbow flexion and the right 

elbow extension; and MD = –14.6° and –9.8° for left elbow flexion and extension, 

respectively). All of the measurements using both the iPad (Frontal) and iPad (Lateral) 

were also significantly different from the measurements obtained by the manual 

goniometer, except for left shoulder flexion (Frontal: MD = 5.2°; Lateral: MD = 2.5°). 

The ICC values suggested that there was a poor agreement between the MMC system 

and the goniometer in all of the measurements, except for the left shoulder flexion 

measured by the iPad (Lateral) (ICC = 0.52).  

 

Overall, compared with the measurements by the iPad (Lateral), the measurements by 
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the iPad (Frontal) demonstrated a higher CMC value and a lower RMSE value for both 

the shoulder and elbow joints in the four functional tasks (Table 4.4). Regarding angle 

measurements, significant differences were found in all of the joint angles at the 

targeted positions measured by both the MMC and the Vicon systems, except for the 

measurement of left shoulder abduction/adduction during the hand-to-head task 

measured by the iPad (Lateral) (MD = 4.1°). The MMC system underestimated both 

the shoulder and elbow angles during the functional tasks, while the mean difference 

between the iPad (Frontal) and the Vicon system was generally smaller (the MD ranged 

from 5.2° to –25.8°) than that between iPad (Lateral) and the Vicon system (MD ranged 

from 4.1 °  to –33.3 ° ). A poor-to-moderate agreement was found between the 

measurements obtained from the iPad (Frontal) and from the Vicon (ICC values 

between 0.14 and 0.75) systems in all four tasks (Table 4.5). 
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Table 4.4 Mean coefficient of multiple correlation (CMC) and mean of root mean square error (RMSE) of the angular waveform between 

the angular waveform of the MMC system and the Vicon system 

 

 

 

Action 

 

iPad (Frontal) 

 

iPad (Lateral) 

CMC 

(SD) 

RMSE 

(SD) 

CMC 

(SD) 

RMSE 

(SD) 

T1 Hand to mouth     

Right     

Shoulder Flex/Extend 0.69 (0.12) 15.82 (6.91) 0.58 (0.17) 21.36 (7.63) 

Shoulder Abd/Add 0.72 (0.14) 7.93 (2.70) 0.63 (0.10) 10.05 (2.91) 

Elbow Flex/Extend 0.65 (0.17) 21.68 (5.63) 0.66 (0.12) 23.40 (6.72) 

Left 

Shoulder Flex/Extend 0.62 (0.12) 17.63 (7.64) 0.65 (0.05) 26.84 (6.21) 

Shoulder Abd/Add 0.65 (0.13) 9.20 (2.92) 0.61 (0.07) 9.17 (2.88) 

Elbow Flex/Extend 0.69 (0.10) 27.84 (7.76) 0.65 (0.08) 32.20 (8.59) 

T2 Hand to head 

Right 

Shoulder Flex/Extend 0.63 (0.11) 19.25 (8.41) 0.54 (0.12) 41.72 (11.31) 

Shoulder Abd/Add 0.65 (0.09) 16.42 (6.17) 0.61 (0.06) 23.56 (6.75) 

Elbow Flex/Extend 0.48 (0.09) 36.77 (9.47) 0.39 (0.08) 49.68 (16.77) 

Left 

Shoulder Flex/Extend 0.69 (0.09) 16.34 (4.22) 0.68 (0.08) 25.92 (6.35) 

Shoulder Abd/Add 0.62 (0.10) 10.12 (5.92) 0.63 (0.11) 17.41 (5.56) 

Elbow Flex/Extend 0.52 (0.07) 39.84 (9.65) 0.51 (0.08) 38.80 (11.93) 
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T3 Hand to waist 

Right 

Shoulder Flex/Extend 0.51 (0.07) 18.23 (7.46) 0.48 (0.11) 37.43 (8.64) 

Shoulder Abd/Add 0.66 (0.07) 9.81 (3.31) 0.57 (0.10) 18.70 (4.22) 

Elbow Flex/Extend 0.50 (0.07) 28.92 (6.36) 0.51 (0.09) 30.92 (7.46) 

Left     

Shoulder Flex/Extend 0.50 (0.06) 13.70 (2.74) 0.55 (0.12) 14.28 (2. 32) 

Shoulder Abd/Add 0.63 (0.06) 12.13 (3.56) 0.62 (0.07) 16.89 (3.24) 

Elbow Flex/Extend 0.49 (0.07) 32.33 (7.82) 0.51 (0.09) 39.66 (6.79) 

T4 Hand to contralateral underarm 

Right 

Shoulder Flex/Extend 0.73 (0.10) 14.61 (3.26) 0.70 (0.13) 22.27 (2.73) 

Shoulder Abd/Add 0.74 (0.08) 17.14 (5.93) 0.76 (0.08) 15. 78 (3.30) 

Elbow Flex/Extend 0.71 (0.10) 11.52 (4.70) 0.71 (0.11) 26.56 (5.61) 

Left 

Shoulder Flex/Extend 0.68 (0.10) 16.22 (3.12) 0.66 (0.12) 32.85 (5.58) 

Shoulder Abd/Add 0.73 (0.07) 11.23 (2.69) 0.75 (0.06) 14.72 (3.45) 

Elbow Flex/Extend 0.74 (0.07) 14.77 (3.98) 0.72 (0.07) 8.97 (2.16) 
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Table 4.5 Validity of iPad (Frontal) and iPad (Lateral) compared with the Vicon system in four simulated functional tasks in terms of the 

angle at shoulder flexion, shoulder abduction, and elbow flexion 

 

 

 

Vicon  iPad Pro 

(Frontal) 

iPad Pro 

(Lateral) 

   Comparison with Vicon Comparison with Vicon 

 

Actions 

Mean 

Angle (SD) 

Mean 

Angle (SD)  

Mean 

Differenc

e (iPad – 

V) 

#P ar ICC Mean Angle 

(SD) 

Mean 

Difference 

(iPad – V) 

#P ar ICC 

Task 1. Hand to mouth 

Right 

 

Shoulder Flex/Extend 49.5 (13.0) 36.0 (14.2) -13.5 <0.01 0.77* 0.52* 32.4 (14.3) -17.1 <0.01 0.70* 0.39* 

Shoulder Abd/Add -5.6 (13.8) -0.4 (10.8) 5.2 <0.01 0.83* 0.74* 1.4 (11.8) 7.0 <0.01 0.62* 0.54* 

Elbow Flex/Extend 127.7 (7.9) 121.3 (11.5) -6.3 <0.01 0.40* 0.32* 117.0 (11.9) -10.6 <0.01 0.30 0.18 

Left            

Shoulder Flex/Extend 50.7 (10.8) 37.4 (11.8) -13.3 <0.01 0.55* 0.33* 35.7 (12.6) -15.0 <0.01 0.60* 0.33* 

Shoulder Abd/Add -10.5 (14.7) -3.7 (12.2) 6.8 <0.01 0.78* 0.69* -3.2 (11.3) 7.3 <0.01 0.80* 0.68* 

Elbow Flex/Extend 128.4 (6.6) 117.3 (6.6) -11.1 <0.01 0.57* 0.24* 117.5 (8.0) -10.9 <0.01 0.22 0.10 
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Task 2. Hand to head 

 

Right 

Shoulder Flex/Extend 48.6 (14.2) 35.6 (14.5) -13.0 <0.01 0.79* 0.56* 33.8 (13.7) -14.8 <0.01 0.75* 0.48* 

Shoulder Abd/Add 119.4 (13.3) 112.3 (12.9) -7.1 <0.01 0.83* 0.73* 108.0 (12.1) -11.5 <0.01 0.47* 0.35* 

Elbow Flex/Extend 121.4 (7.9) 95.6 (8.9) -25.8 <0.01 0.40* 0.70* 88.1 (7.5) -33.3 <0.01 0.18 0.02 

Left            

Shoulder Flex/Extend 53.1 (15.0) 39.4 (12.6) -13.7 <0.01 0.47* 0.31* 35.9 (13.6) -17.2 <0.01 0.37* 0.21* 

Shoulder Abd/Add 122.6 (14.3) 128.2 (16.4) 5.6 <0.01 0.80* 0.75* 126.7 (13.4) 4.1 0.05 0.69* 0.67* 

Elbow Flex/Extend 119.2 (7.0) 100.5 (5.4) -18.6 <0.01 0.78* 0.14* 91.5 (7.1) -27.7 <0.01 0.25 0.03 

Task 3. Hand to waist 

 

Right 

Shoulder Flex/Extend -19.7 (13.8) -5.6 (9.8) 14.1 <0.01 0.83* 0.46* -4.1 (8.1) 15.6 <0.01 0.62* 0.28* 

Shoulder Abd/Add 43.0 (9.5) 36.6 (8.7) -6.4 <0.01 0.75* 0.60* 36.3 (9.2) -6.7 <0.01 0.72* 0.58* 

Elbow Flex/Extend 96.3 (10.1) 79.6 (9.0) -16.7 <0.01 0.78* 0.31* 77.7 (7.3) -18.6 <0.01 0.70* 0.21* 

Left            

Shoulder Flex/Extend -12.9 (15.1) -3.5 (11.1) 9.4 <0.01 0.88* 0.67* -5.1 (13.0) 7.7 <0.01 0.86* 0.74* 

Shoulder Abd/Add 42.5 (8.7) 34.0 (7.5) -8.5 <0.01 0.58* 0.37* 34.5 (8.3) -8.0 <0.01 0.60* 0.42* 

Elbow Flex/Extend 99.1 (10.1) 79.8 (7.1) -19.4 <0.01 0.81* 0.22* 78.8 (5.8) -20.3 <0.01 0.59* 0.13* 

Task 4. Hand to contralateral underarm  

 

Right 
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NOTE: #pair t test, apearson's r correlation, *p<0.05 

 

 

 

  

Shoulder Flex/Extend 46.7 (13.4) 34.1 (11.0) -12.6 <0.01 0.87* 0.56* 33.2 (10.5) -13.5 <0.01 0.79* 0.47* 

Shoulder Abd/Add -17.8 (15.9) -3.0 (6.3) 14.8 <0.01 0.64* 0.26* -3.2 (5.8) 14.6 <0.01 0.72* 0.27* 

Elbow Flex/Extend 109.4 (6.6) 104.1 (8.7) -5.3 <0.01 0.67* 0.53* 100.0 (8.6) -9.4 <0.01 0.54* 0.30* 

Left            

Shoulder Flex/Extend 45.2 (11.7) 30.9 (8.9) -14.3 <0.01 0.88* 0.44* 28.7 (7.6) -16.5 <0.01 0.72* 0.28* 

Shoulder Abd/Add -18.5 (9.2) -10.6 (7.8) 7.9 <0.01 0.89* 0.62* -7.6 (6.4) 11.0 <0.01 0.67* 0.32* 

Elbow Flex/Extend 106.9 (9.3) 100.1 (9.5) -6.7 <0.01 0.93* 0.74* 101.9 (10.4) -5.0 <0.01 0.70* 0.62* 
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The CMC and RMSE values of the angular waveforms and the ICC values (two-way 

mixed-effects, absolute agreement) of the AROM at the targeted positions are shown in 

Table 4.6. 
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Table 4.6 Test-retest reliability of iPad (Frontal) and iPad (Lateral) between the two sessions in terms of the CMC, RMSE, and ICC of the joints 

at the targeted position 

 

 

Action 

 

iPad (Frontal) 

 

iPad (Lateral) 

CMC RMSE ICC CMC   RMSE ICC 

Right (AROM) 

Shoulder Flex NA NA 0.42* NA NA 0.48* 

Shoulder Abd NA NA 0.55* NA NA 0.59* 

Elbow Flex NA NA 0.02 NA NA 0.32* 

Elbow Extend NA NA 0.04 NA NA 0.11 

Left (AROM) 

Shoulder Flex NA NA 0.63* NA NA 0.80* 

Shoulder Abd NA NA 0.17 NA NA 0.50* 

Elbow Flex NA NA 0.13 NA NA 0.35* 

Elbow Extend NA NA 0.23 NA NA 0.16 

T1 Hand to mouth 

Right 

Shoulder Flex/Extend 0.87 12.12 0.95* 0.82 9.67 0.84* 

Shoulder Abd/Add 0.91 7.95 0.96* 0.87 11.33 0.87* 

Elbow Flex/Extend 0.93 10.34 0.85* 0.76 14.52 0.73* 
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Left       

Shoulder Flex/Extend 0.92 9.52 0.88* 0.90 10.41 0.81* 

Shoulder Abd/Add 0.88 7.28 0.96* 0.89 6.77 0.93* 

Elbow Flex/Extend 0.70 14.23 0.56* 0.77 11.79 0.80* 

T2 Hand to head 

Right 

Shoulder Flex/Extend 0.89 7.26 0.86* 0.81 8.63 0.86* 

Shoulder Abd/Add 0.84 13.25 0.71* 0.73 17.41 0.83* 

Elbow Flex/Extend 0.92 8.91 0.80* 0.67 16.20 0.45* 

Left 

Shoulder Flex/Extend 0.90 8.36 0.93* 0.92 7.31 0.89* 

Shoulder Abd/Add 0.71 17.48 0.78* 0.76 11.26 0.88* 

Elbow Flex/Extend 0.56 19.30 0.34* 0.32 23.84 0.45* 

T3 Hand to waist 

Right 

Shoulder Flex/Extend 0.82 9.87 0.78* 0.80 9.53 0.83* 

Shoulder Abd/Add 0.93 12.31 0.89* 0.85 11.42 0.78* 

Elbow Flex/Extend 0.64 15.66 0.80* 0.41 31.78 0.49* 

Left 

Shoulder Flex/Extend 0.88 7.83 0.87* 0.89 6.69 0.83* 

Shoulder Abd/Add 0.42 12.16 0.57* 0.65 13.23 0.78* 

Elbow Flex/Extend 0.60 10.99 0.66* 0.53 15.92 0.62* 
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T4 Hand to contralateral underarm 

Right 

Shoulder Flex/Extend 0.88 5.74 0.82* 0.88 7.41 0.87* 

Shoulder Abd/Add 0.84 5.62 0.87* 0.88 7.86 0.86* 

Elbow Flex/Extend 0.49 32.14 0.27 0.81 13.60 0.78* 

Left       

Shoulder Flex/Extend 0.80 9.43 0.71* 0.93 6.51 0.84* 

Shoulder Abd/Add 0.76 10.20 0.65* 0.64 17.85 0.51* 

Elbow Flex/Extend 0.83 9.69 0.72* 0.89 10.52 0.91* 

NOTE: *P<0.05 
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The ICC values for all of the AROM measurements were below 0.5, which indicates 

poor reliability, except for right shoulder abduction (iPad Frontal: ICC = 0.55; iPad 

Lateral: ICC = 0.59) and for left shoulder flexion, which demonstrated the highest ICC 

values in the iPad (Frontal) and the iPad (Lateral) measurements (Frontal: ICC = 0.63; 

Lateral: ICC = 0.80). Regarding the measurement of joint angles in the four simulated 

functional tasks, all of the ICC values from the iPad (Frontal) were above 0.7, which 

indicates good reliability, except for left elbow flexion/extension in tasks 1, 2, and 3 

(ICC = 0.34; 0.56; 0.66, respectively), right elbow flexion/extension in task 4 (ICC = 

0.27), and left shoulder abduction/adduction in tasks 2 and 4 (ICC = 0.57 and 0.65, 

respectively). Excellent reliability (ICC > 0.9) was found for right shoulder 

flexion/extension, right and left shoulder abduction/adduction in task 1, and left 

shoulder flexion/extension in task 2. Moderate correlation was found in all of the 

waveforms produced by the iPad (Frontal) (the CMC values ranged between 0.42 and 

0.93), except for the right elbow flexion/extension measurement in task 2 and the left 

elbow flexion/extension measurement in task 3. 

 

4.4 DISCUSSION  
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Our study shows that the iPad MMC system generally underestimated the shoulder and 

elbow joint angles. The maximal AROM measurements calculated by the MMC were 

approximately 10 to 15 degrees lower than those measured by the goniometer. The 

MMC system was found to have estimated the shoulder AROM better than the elbow 

AROM. One reason for the significant difference in the measurements of the maximal 

elbow extension range, which probably was a systematic error, could have been the 

MMC system’s inability to detect elbow joint hyperextension, which usually happened 

when the participants were instructed to extend their elbows to the maximum range. As 

elbow joint hyperextension is a minor change in joint position, it might not be 

detectable by iPad cameras spaced 1.8 m apart, whereas it might be noticed by an 

assessor who places a goniometer directly on the arm of the subject at a close distance. 

In addition, we observed that when the participants performed a shoulder flexion or 

abduction to their maximum range, their clothes were usually tilted upward on the side 

of the raising arm. The MMC system tended to incorrectly recognize the wrinkled of 

the clothes as a flexion of the trunk, and that error caused a reduction in the estimated 

shoulder joint angle because it was calculated in relation to the trunk position. Our 

results are consistent with those of another study, in which an MMC system experienced 

the problem of a clothes blockage that tended to lead to a distortion of the image and 
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hence to an inaccurate estimation of posture (Sarafianos et al., 2016).  

 

Our findings revealed that the MMC had underestimated both the shoulder and elbow 

angles in all four simulated functional tasks when compared with those measured by 

the Vicon system. The patterns of the angular waveforms between the MMC and the 

Vicon systems were moderately similar. Although there was a significant measurement 

difference between the two systems, the mean differences of the angles for the shoulder 

flexion/extension were consistently kept at 9.4 to 14.1   degrees, and those for the 

shoulder abduction/adduction held at 5.2 to 14.8 degrees. The moderate-to-strong 

correlation between the shoulder measurements produced by the MMC and the Vicon 

systems suggests that the joint-position data acquired by the MMC might have the 

potential to be further processed and normalized by an algorithm during post-

processing to enhance the accuracy of its joint-angle predictions (Desmarais et al., 

2021). We found that the tasks that involved less shoulder movement, such as task 1 

(the hand-to-mouth task) and task 4 (the hand-to-contralateral-underarm task), 

generated a greater accuracy for the elbow-joint angle. That greater accuracy might be 

explained by a relatively steady shoulder-joint position, which would cause fewer 

disturbances and thus allow a more accurate recognition of the elbow and wrist 

positions for the angle calculation. Furthermore, task 2 (the hand-to-head task) and task 
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3 (the hand-to-waist task) might have been prone to inducing a blockage of the waist 

joint if subjects accidentally put their hand behind their waist or head. A blockage of 

the waist position would cause errors in the calculation of the elbow joint angle and 

hence a poorer agreement between the elbow joint angle measurement by the MMC 

and that obtained by the Vicon in these two tasks. 

 

Placing the iPad on the lateral left side generally did not improve the accuracy of the 

measurement of the left upper-limb angle for either the AROM measurement or the 

simulated functional tasks. That inaccuracy may have arisen because our MMC system 

used the pelvis as the reference point. Capturing the human image from a side view 

may have produced an incomplete viewing angle of the right iliac crest, resulting in 

errors in the identification of the torso position and therefore incorrect calculations of 

the upper-limb-joint angle. The accuracies of the angle measurements for the right 

upper limb calculated by the iPad (Lateral) also were lower. One possible reason is that 

the shoulder and elbow joints on the right side were occasionally blocked by clothing, 

which caused a misidentification of the joint position, likely due to the MMC system 

having lost its tracking during the movement. This finding and plausible explanation 

are consistent with the results of another study, in which an iPad MMC system that was 

developed using ARKit 5 produced better motion capturing when it was placed at the 
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frontal side of the participants (Reimer et al., 2022).  

 

Our MMC system demonstrated good-to-excellent test-retest reliability in detecting the 

shoulder AROM in all four tasks. The system’s lower reliability in detecting the elbow 

AROM compared with that of the shoulder suggests that the MMC provides greater 

stability in detecting the shoulder joint position. Our reliability findings imply that the 

MMC system is able to reproduce the motion data and might be applicable in analyzing 

motion kinematics and in detecting abnormal or symptomatic movement patterns 

between healthy and disease populations (Takeda et al., 2021). 

 

4.4.1 Study Limitations 

 

First, as most of our participants were between 18 and 30 years old, the results may not 

be representative of populations of other age ranges. Furthermore, although the desired 

data-acquisition procedure required the participants to wear an identical set of tight 

clothing in the two sessions, the compliance varied. The different sets of clothes that 

some participants wore might have affected the test-retest reliability of the MMC 

because the system might have misidentified a wrinkle in the clothes as a body trunk 



 

 178 

segment. Finally, all of the maximal AROM measurements from both the MMC and 

the Vicon systems were reported as the largest values that the systems obtained during 

the actions performed in the maximal AROM measurement sessions, but those maximal 

AROM angles might not have been taken at the same point in time as those used by the 

goniometer measurements.  

 

4.5 CONCLUSIONS 

 

Our findings showed that the iPad MMC system, despite its low cost and portable 

nature, generally underestimated the shoulder and elbow AROM. The angle 

inconsistency between the measurements obtained by the MMC and the goniometry 

suggest that the MMC system might not currently be a good replacement for 

goniometry in clinical use. Nevertheless, the system has satisfactory test-retest 

reliability in terms of the angular waveforms and joint angles in the simulated 

functional tasks. Further research on improving the accuracy of MMC systems and 

investigating their applications for disease populations is warranted. 
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Chapter 5 

 

Upper limb kinematic measurement using markerless motion capturing (MMC) in 

stroke survivors: A cross-sectional experimental study 

 

 

 

ABSTRACT 

Introduction: With advances in technology, markerless motion capture (MMC) 

technology has emerged as a clinical measurement tool that can be used to assess the 

physical performance of patients, so as to reduce the time-consuming tasks involved in 

manual measurements for therapists. This study evaluates: 1) the differences in the 

upper limb joint angles between stroke survivors with different functional levels and 

their healthy counterparts in controlled indoor and uncontrolled outdoor environments; 

and 2) the relationship between the kinematic information obtained by MMC 

technology through a customized MMC system using an iPad Pro and the scores of 

manual motor assessments. Methods: A customized MMC system developed using an 

iPad Pro with a LiDAR scanner was designed to capture the movements of the 
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participants. The stroke survivors first underwent three upper limb assessments and 

then performed seven sets of upper limb tasks with their non-hemiplegic side, followed 

by their hemiplegic side. The healthy participants performed the same sets of tasks for 

the motion capturing, with their dominant side followed by their non-dominant side. 

All of the participants performed tasks in the laboratory first, then repeated them in 

three randomly selected outdoor areas. The sensitivity and specificity of the selected 

machine models were calculated in regard to the classification of upper limb motor 

functional level based on the kinematic data from the MMC system on the iPad Pro. 

Results: Fifty stroke survivors and 49 healthy adults were recruited. Significant 

differences were found between the upper limbs of the hemiplegic and non-hemiplegic 

sides of the stroke participants in most of the tasks. Significant positive correlations 

were found between the results of the manual motor assessments and most of the 

kinematic parameters. The results of the four selected machine learning models 

revealed ≥  0.85 sensitivity in the stroke upper limb functional level classification. 

Conclusion: The MMC system combined with a machine learning classification 

algorithm can be used to provide precise data with which to evaluate the upper limb 

functional recovery of stroke survivors. Further studies on the operation of the MMC 

system by stroke survivors at home during remote therapy is warranted. 
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5.1 INTRODUCTION 

Stroke survivors often have to go through a long rehabilitation journey lasting months 

or even years in order to regain motor functions (Hawkins et al., 2017). Their recovery 

usually requires continuous monitoring from rehabilitation therapists so as to customize 

tailored exercises that best fit their needs at different stages of motor recovery (Jung, 

2017). Traditional practices undertaken by therapists, such as regular functional 

assessments and the manual measurement of range of motion (ROM), require patients’ 

regular attendance in clinical settings (Poole & Whitney, 2001). With advances in 

technology, markerless motion capture (MMC) technology has emerged as a clinical 

measurement tool that can be used to assess the physical performance of patients, so as 

to reduce time-consuming tasks in manual measurements conducted by therapists 

(Mündermann et al., 2006). It is suggested that MMC technology can provide a precise 

measurement of the movement kinematic of stroke survivors, as well as quick 

screenings of motor performance (Knippenberg et al., 2017). Despite the way in which 

MMC systems enable the tracking of movement kinematics, it is still unclear how 

therapists can interpret kinematic data in order to translate the findings into an 

understanding of the actual motor functions of patients (Lorenz et al., 2024). A previous 

study has been conducted to capture the kinematic data of stroke survivors and healthy 
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adults when performing tasks, through a stroke-specific performance-based impairment 

index: the Fugl-Meyer Assessment (FMA). It was found that the movement data from 

stroke survivors and healthy adults can be successfully classified with a rate of above 

90% using machine learning classification models (Eichler et al., 2018). Therefore, the 

MMC system has the potential to identify symptomatic movement patterns in stroke 

survivors through artificial intelligence (AI)-assisted detection technology, in order to 

monitor patients’ motor performance and activities of daily living, especially during 

remote assessments as part of telerehabilitation (Fong & Kwan, 2020). Another study 

also found that the correlation between the actual FMA scores and the movement data 

captured by the MMC system in Kinect was high (Kim et al., 2016). Researchers have 

responded positively to the utilization of MMC systems in remote assessments for 

patients with stroke in regard to the high quality of kinematic data that they can provide 

(Metcalf et al., 2013). 

Although studies have shown a high correlation between kinematic data generated by 

MMC systems and actual performance-based impairment indexes, the types of 

standardized assessment used by these studies are very limited. The generalizability 

involved in using MMC systems for other motor assessments among stroke survivors 

is hence still uncertain. There is still inadequate evidence of how kinematic data can 

help to distinguish between different stroke severity levels and reflect the actual 
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functioning of patients. Moreover, most of the current research on using MMC systems 

in assessments for stroke patients uses Kinect as the motion tracking device (Da Gama 

et al., 2015). Kinect is a low-cost and comfortable device in regard to motion capturing 

but it might not be user-friendly for patients in their home environments, given that it 

requires the purchase and installation of the hardware device in the patients’ home (Lam 

& Fong, 2022). Researchers have proposed the use of mobile devices as the MMC 

system in remote rehabilitation assessments, which would not require the patients to 

buy and calibrate extra hardware sensors for motion capturing (Aoyagi et al., 2022). 

This further facilitates the accessibility of MMC technology for patients and hence their 

access to telerehabilitation. However, little research has been carried out to investigate 

the use of MMC systems in mobile devices for motor assessments among stroke 

survivors (Lam & Fong, 2023) (Sohn et al., 2019). There is still a large research gap in 

the application of MMC systems in mobile devices in terms of the evidence and whether 

they can provide accurate measurements with which to evaluate the motor performance 

of stroke survivors with different levels of severity. Therefore, this study evaluates: 1) 

the differences in the upper limb joint angles between stroke survivors with different 

motor functional levels and their healthy counterparts in both controlled indoor and 

uncontrolled outdoor environments, measured by a customized MMC system on an 

iPad Pro; and 2) the relationship between the kinematic information obtained by the 
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MMC system and the scores of manual motor assessments. This study also investigates 

the sensitivity and specificity of the classification of upper limb motor functional level 

using machine learning methods, based on the kinematic data from the MMC system 

on the mobile device. 

 

5.2 METHODS 

5.2.1 Study design 

This is a cross-sectional experimental study. Ethical approval was obtained from the 

Human Subjects Research Ethics Committee of the Hong Kong Polytechnic University 

(Reference no.: HSEARS20230214010). Prior to participation, all subjects were 

informed about the objectives and procedures of the study. Subjects who met the 

inclusion criteria provided informed written consent before taking part in the study. A 

customized MMC system developed on an iPad Pro with an LiDAR scanner was 

designed to capture the movement of the participants. The stroke survivors first 

underwent three upper limb assessments conducted by a registered occupational 

therapist. After the assessments, the stroke survivors were invited to perform seven sets 

of upper limb tasks extracted from the stroke-specific upper limb assessments with their 

non-hemiplegic side first, followed by their hemiplegic side. As the healthy participants 
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would score full marks in all the assessments, they skipped the assessment sessions and 

directly performed the same sets of tasks for the motion capturing with their dominant 

side, followed by their non-dominant side. In order to simulate the use of the MMC 

system in the home setting for telerehabilitation, participants were required to perform 

the same sets of tasks in both the controlled indoor environment and again in three 

randomly selected uncontrolled outdoor environments immediately after the indoor 

experiment.  

 

5.2.2 Sample size calculation 

We assumed a two-tailed comparison with a type I error rate at 0.05, with 80% power. 

A total of 50 stroke survivors and 50 healthy counterparts were thus required. The stroke 

survivors were stratified according to the lower and higher functioning of their upper 

limbs’ performance using the Functional Test for the Hemiplegic Upper Extremity 

(FTHUE) (Fong et al., 2004). As a conservative estimation with a discard rate of 15% 

due to bad data or outliers, according to our previous pilot study (Lam & Fong, 2023), 

we presumed that 42 subjects in each group would be required for the final data analysis. 

After conducting power analysis based on the statistical parameters, using the software 

GPower3.1.9.2, the effect size was calculated as 0.74, which is between medium (0.5) 
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and large (0.8) (Kang, 2021). 

 

5.2.3 Participants 

 

Stroke survivors were recruited from community self-help groups, whereas their 

healthy counterparts were recruited by means of convenience sampling in the 

community. To be eligible to take part in the study, participants were included if: 1) 

they were adults aged 18 years old or above; 2) they had been diagnosed with a 

hemiplegic stroke; 3) they did not have a history of previous neurological or orthopedic 

diseases or congenital disorders of the upper or lower extremities or the spine; 4) they 

possessed adequate cognitive ability to understand instructions; and 5) they were able 

to engage in a one-hour experimental session. Participants in this study were invited to 

participate in both the upper and lower limb motion capturing experiment. In this 

chapter, we focus solely on reporting and discussing the results of the upper limb 

experiment.  

 



 

 193 

Participants who met the following conditions were excluded: 1) medically unstable; 2) 

previous injuries or medical conditions over the upper limbs or spine affecting their 

upper limb functions (for healthy participants); 3) stroke survivors with a functional 

level of two or below, as measured using the FTHUE. 

 

5.2.4 Measurements  

 

The Fugl-Meyer Assessment (FMA) scale is an index used to assess sensorimotor 

impairment in individuals who have had a stroke (Kim et al., 2012). It is divided into 

the upper extremity (FMA-UE) part and the lower extremity (FMA-LE) part, with a 

maximum score of 66 and 34 points in the FMA-UE and the FMA-LE, respectively. 

The upper limb sub-scores will be adopted in this study. 

 

 

The Wolf Motor Function Test (WMFT) is an assessment that quantifies upper 

extremity (UE) motor ability through timed and functional tasks. It consists of 21 items 

and each item is rated based on a six-point scale. Patients score zero points if they do 
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not attempt to perform an item with the upper extremity, while five points are given if 

the movement appears to be normal (Taub et al., 2011). 

 

5.2.5 Equipment 

The MMC system 

The MMC system used to perform motion analysis in this study was developed using 

Xcode, with the ARKit6 and RealityKit framework supported by the iPad Pro with an 

LiDAR scanner. Three iPad Pros were placed in front of, on the left side, and on the 

right side of each participant, respectively, for the motion capturing process. The 

detection of the human body and the joint position from the three angles were extracted, 

integrated and realized through computer-vision algorithm convolutional neural 

networks (CNNs). A total of 14 3D body joint positions and the timestamp of each 

motion detection were captured by our motion tracking platform. The capturing 

frequency of the MMC system was set at 30 Hz. A predefined humanoid model, which 

is the Unity Humanoid Rig, was applied to estimate the joint position and kinematic 

structure of the tracked subject (Reimer et al., 2022). The joint coordinates in 2D or 3D 

for every captured frame were established and delivered by the algorithms. The 

normalized coordinates were relative to the center of the pelvis and defined as the origin 
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of the ARKit’s coordinate system (Reimer et al., 2022). The adjacent 3D joint 

coordinate extraction calculated the angles of interest (AOI). Angle θ was calculated 

by the three joints, 𝐴, 𝐵, 𝐶 ∈ 𝑅3, or associated vectors 𝑣1⃑⃑⃑⃑ = 𝐴 − 𝐵 𝑎𝑛𝑑 𝑣2⃑⃑⃑⃑ = 𝐶 − 𝐵 

with the formula 𝜃 = arccos
𝑣1∙𝑣2

||𝑣1||2||𝑣2||2
 

 

5.2.6 Experiment setup 

Controlled indoor environment  

 

The experiment was conducted at the assistive technology laboratory at the Hong Kong 

Polytechnic University, where the floor was covered with vinyl to prevent it from being 

slippery. For the motion capturing session, participants stood in front of a plain wall in 

the same laboratory. One iPad Pro was placed two meters in front of the participant, 

and another two iPad Pros were placed at the lateral left and right sides of the 

participants, respectively.  

 

Uncontrolled outdoor environment 
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Three open areas at the Hong Kong Polytechnic University were chosen as uncontrolled 

outdoor environments. A 2.5m ×  2.5m area was marked. Two 1m ×  1m anti-slip 

mats were placed on both sides of the participants to prevent them from slipping. Three 

iPad Pros placed on a tripod stand were brought to the locations. The iPad Pro 

placement was the same as that in the laboratory environment. 

 

5.2.7 Procedures 

 

The experiment was divided into two sessions. The first session was for the upper limb 

assessment. Stroke survivors who participated in the study were first assessed by the 

investigator to determine their eligibility. Stroke survivors who satisfied the inclusion 

criteria were further assessed using the FMA-UE and the WMFT for their upper limb 

performance.  

 

The motion capturing experiment took place in the second session. Participants were 

instructed to perform seven sets of upper limb tasks, including: 1) Task 3 in the FMA-

UE, bringing the hand to the same side of the ear; 2) Task 4 in the FMA-UE, extending 
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the arm to the opposite knee; 3) Task 6 in the FMA-UE, with shoulder flexion to 90 

degrees with the elbow at 0 degree; 4) Task 8 in the FMA-UE, with shoulder abduction 

0 degree to 90 degrees with the elbow fully extended and the forearm pronated; 5) Task 

9 in the FMA-UE, with shoulder flexion beyond 90 degrees with the elbow at 0 degree 

and the forearm in the mid position; 6) Task 3D in the FTHUE, holding a pouch; and 7) 

Task 24 in the FMA-UE, which is a finger-to-nose test. All of the tasks in this session 

were repeated five times. The stroke survivors were instructed to perform each task 

with their unaffected side first, followed by their affected side. Figures 5.1a to 5.1g 

illustrate the desired postures in the seven tasks. 

 

 

Figures 5.1a to 5.1g Left to right, top to bottom, the desired postures for Task 1 to Task 

7 
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Healthy participants were not required to participate in the upper limb assessment. They 

were instead instructed to perform the motion capturing session directly. They were 

asked to perform the tasks with their dominant side first, followed by their non-

dominant side. 

 

To simulate their performance in a natural environment, participants were invited to 

repeat the motion capturing session in the unstructured environment after the capturing 

session in the laboratory. Participants were randomly assigned to one of the three open 

areas for the motion capturing, with an identical set of tasks, after their motion capturing 

session in the laboratory. 

 

5.2.8 Statistical analysis 

Kinematic data, including completion time, the angular waveform of the movement, 

and the angle of the joints when the target position was achieved, were extracted from 

the MMC system. The first trial in each task served as a practice trial and was not 

included in the analysis. The averages of the second to the fifth trials in each task were 

obtained for statistical analysis. Comparisons of the joint angles in the target positions 

(ATP) were carried out using independent t-tests between 1) the affected side and the 
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unaffected side in the stroke population; and 2) the affected side in the stroke population 

and the dominant side in their healthy counterparts. Comparisons of the completion 

times of Task 7 and the ATP of Tasks 1 to 6 were carried out between the affected side 

in the stroke population with the higher functional level (FTHUE level 5 or above) 

(Fong et al., 2022), the stroke population with the lower functional level (FTHUE level 

4 or below), and the dominant side of the healthy subjects, using an ANOVA with post 

hoc comparison. Differences in the angular waveforms between the affected hand and 

the unaffected hand in the stroke population, and the two sides of the healthy subjects 

were compared using the coefficient of multiple correlation (CMC) and the root mean 

square error (RMSE). Correlations between the assessment results corresponding to the 

actions and the completion times for Task 7, the ATP, and the CMC values were 

evaluated using Pearson’s r correlation. Logistic regression (LG), a naive Bayes (NB) 

classifier, a support vector machine (SVM), and a decision tree (DT) model were used 

to investigate the trajectory in the predictions of the stroke participants’ upper limb 

assessment results, with kinematic information from the MMC system, including the 

ATP from all tasks and the differences between the affected and unaffected sides from 

all tasks. The data set was divided into training and test splits, using five-fold subject-

wise stratified cross validation, in which the training set accounted for 80%, and the 

test set accounted for 20%. All of the statistical tests were performed using IBM SPSS 
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26, while the CMC and RMSE values were generated by MATLAB R2020a. All of the 

four machine learning models were run using the Scikit-learn package in Python. The 

linear support vector machine (SVM) used a linear kernel. l2 Regularization was 

implemented logistic regression model. 

5.3 RESULTS 

Fifty stroke survivors and 49 healthy adults were recruited. The mean age of the stroke 

survivors and the healthy adults was 58.9 years (SD: 11.7) and 60.2 years (SD: 8.5), 

respectively. Detailed demographic information regarding the participants is presented 

in Table 5.1. 

Table 5.1 Demographic information of the participants 

 Stroke Group Healthy Group 

Mean age 58.9 (11.7) 60.2 (8.5) 

Gender ratio 

(male: female) 

32:18 18:31 

Functional level (n)   

FTHUE levels 3–4 18 NA 

FTHUE levels 5–7 32 NA 

Hemiplegic side (n)   

Right 22 NA 

left 28 NA 

Dominant hand 

(Pre-onset) (n) 

  

Right 49 48 

Left 1 1 

Note: FTHUE Functional Test for the Hemiplegic Upper Extremity 
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The shoulder and elbow joint ATP at task completion for Tasks 1 to 6 and the 

completion times for Task 7 are presented in Table 2. Significant differences were 

found between the hemiplegic and non-hemiplegic sides of stroke survivors with lower 

upper limb functioning in all tasks, except in regard to the shoulder angle in Task 1 and 

Task 2 (MD = -3.0 and -4.1, respectively). There are significant differences between 

the hemiplegic and non-hemiplegic sides of the stroke survivors with higher upper limb 

functioning in all tasks except in regard to the shoulder angle in Task 3 and Task 5 (MD 

= -2.2 and -5.0, respectively). No significant difference was found between the lateral 

sides of the healthy participants, except in regard to the shoulder and elbow ATP in 

Task 3 (MD = 11.5 and 4.2, respectively) and in regard to the elbow ATP in Task 6 

(MD = 14.8). The hemiplegic sides of the higher functioning and lower functioning 

stroke survivors in each task were also compared. Significant differences were observed 

in the shoulder and elbow ATP in all of the tasks except for the shoulder ATP in Task 

2 (p = 0.11). There are significant differences between the hemiplegic side of the lower 

functioning stroke survivors and the healthy counterparts in all tasks except the 

shoulder ATP in Task 1 and Task 2 (p = 0.827 and p = 0.264, respectively). Significant 

differences were also observed between the higher functioning stroke participants and 
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the healthy participants in all tasks, except in regard to the shoulder angle in Task 2 and 

Task 5 (p = 0.282 and 0.229, respectively).
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Table 5.2 Shoulder and elbow joint ATP at task completion for Task 1 to 6 and the completion time for Task 7 
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Task Stroke (Lower Functioning Group) Stroke (Higher Functioning Group) Healthy Group    

Hemiplegic 

Side 

Non-

hemiplegic 

Side 

Mean 

Difference 

(Hemiplegic – 

Non-

hemiplegic) 

Hemiplegic 

Side 

Non-

hemiplegic 

Side 

Mean 

Difference 

(Hemiplegic – 

Non-

hemiplegic) 

Dominant 

Side 

Non-

dominant 

Side 

Mean 

Difference 

(Dominant – 

Non-dominant 

p 

[Stroke Low 

Hemi vs 

Stroke High 

Hemi] 

(95% CI) 

p 

[Stroke Low 

Hemi vs 

Healthy 

Dominant] 

(95% CI) 

p 

[Stroke 

High Hemi 

vs Healthy 

Dominant] 

(95% CI) 

Task 1  

Bring hand to ear 

 

ATP Shoulder 75.4 (22.1) 78.4 (17.3) -3.0 (29.4) 90.6 (21.7) 70.4 (20.5) 20.2 (29.0)* 76.1 (2.4) 77.6 (14.8) -1.5 (15.4) 0.02*  

(2.273 – 

28.171) 

0.827  

(-7.028 –

5.640) 

< 0.001* 

(8.323 – 

20.734) 

ATP Elbow 95.6 (16.6) 46.1 (11.4) 49.5 (20.4)* 53.3 (13.9) 37.4 (10.8) 15.9 (18.9)* 47.4 (10.9) 43.0 (7.2) 4.4 (13.6) < 0.001*  

(-51.107 – -

33.483) 

< 0.001* 

(41.293 – 

55.169) 

0.034* 

(0.451 – 

11.422) 

Task 2  

Hand to opposite knee 

 

ATP Shoulder 23.0 (9.7) 27.1 (8.8) -4.1 (11.5) 27.8 (10.5) 20.4 (4.0) 7.4 (11.7)* 25.6 (8.1) 28.2 (9.2) -2.6 (12.0) 0.11  

(-1.172 – -

10.942) 

0.264  

(-7.335 – 

2.042) 

0.282  

(-1.875 – 

6.352) 

ATP Elbow 126.7 (19.5) 151.4 (11.9) -24.7 (21.5)* 147.0 (12.9) 153.4 (12.1) -6.4 (16.0)* 155.8 

(13.5) 

158.4 

(16.1) 

-2.6 (21.2) < 0.001* 

(11.020 – 

29.479) 

< 0.001*  

(-37.538 – -

20.675) 

0.004*  

(-14.815 – 

-2.899) 
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Task 3 

Shoulder flexion to 90 degrees 

 

ATP Shoulder 71.3 (11.5) 109.1 (12.4) -37.8 (15.9)* 107.0 (18.0) 109.2 (9.4) -2.2 (20.2) 117.5 

(10.4) 

106.0 

(11.1) 

11.5 (14.3)* < 0.001* 

(26.206 – 

45.165) 

< 0.001*  

(-52.075 – -

40.284) 

0.001*  

(-16.788 – 

-4.200) 

ATP Elbow 90.0 (11.2) 158.2 (8.3) -68.2 (14.6)* 148.6 (13.3) 167.2 (8.1) -18.6 (15.6)* 164.2 

(10.4) 

160.0 (8.4) 4.2 (14.1)* < 0.001* 

(51.118 – 

66.072) 

< 0.001*  

(-80.021 – -

68.330) 

< 0.001*  

(-20.845 – 

-10.315) 

Task 4 

Shoulder flexion to 180 degrees 

 

ATP Shoulder 94.6 (12.7) 156.8 (9.9) -62.2 (11.8)* 137.0 (19.6) 166.1 (9.6) -29.4 (21.5)* 168.6 

(12.8) 

165.2 

(11.2) 

3.4 (16.2) < 0.001* 

(31.787 – 

52.463) 

< 0.001*  

(-81.078 – -

67.021) 

< 0.001*  

(-39.076 – 

-24.773) 

ATP Elbow 50.8 (18.1) 166.0 (6.7) -115.2 (17.3)* 148.2 (17.6) 170.3 (8.2) -22.0 (21.0)* 166.1 (9.9) 168.7 (8.3) -2.6 (13.8) < 0.001* 

(86.964 – 

107.977) 

< 0.001*  

(-122.221 – -

108.400) 

< 0.001*  

(-23.915 – 

-11.765) 

Task 5 

Shoulder abduction to 90 degrees 

 

ATP Shoulder 73.7 (20.3) 117.8 (14.2) -44.1 (22.6)* 111.2 (11.7) 116.2 (10.7) -5.0 (16.1) 115.2 

(16.4) 

120.1 

(19.6) 

-4.9 (25.9) < 0.001* 

(28.427 – 

46.557) 

< 0.001*  

(-51.185 – -

31.921) 

0.229  

(-10.724 – 

2.602) 

ATP Elbow 79.5 (12.6) 167.8 (7.7) -88.3 (14.0) 135.5 (23.5) 164.0 (8.1) -28.5 (24.9)* 166.7 (8.6) 167.1 (7.7) -0.4 (10.7) < 0.001* 

(44.066 – 

68.101) 

< 0.001*  

(-92.626 – -

81.865) 

< 0.001*  

(-38.468 – 

-23.856) 
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Note: *P < 0.05. ATP Angles in the Target Positions 

 

Task 6 

Hold a pouch (for 10 seconds) 

 

ATP Shoulder 62.6 (19.3) 113.7 (17.1) -51.2 (23.5)* 97.3 (13.4) 109.0 (17.3) -11.6 (22.2)* 115.2 

(16.3) 

123.1 

(17.2) 

-7.9 (28.0) < 0.001* 

(25.439 – 

44.080) 

< 0.001* 

(-62.044 – -

43.146) 

< 0.001*  

(-24.726 – 

-10.945) 

ATP Elbow 77.0 (10.1) 147.0 (18.8) -70.0 (20.3)* 131.2 (19.0) 146.6 (19.7) -15.4 (23.3)* 156.7 

(12.7) 

141.9 

(20.2) 

14.8 (23.5)* < 0.001* 

(44.537 – 

63.960) 

< 0.001* 

(-86.384 – -

73.108) 

< 0.001*  

(-32.496 – 

-18.499) 

Task 7 

Finger-to-nose test 

 

Completion 

time 

6.5 (2.4) 1.1 (0.2) 5.4 (2.5)* 2.1 (0.8) 1.0 (0.2) 1.1 (0.9)* 1.0 (0.3) 1.1 (0.3) -0.1 (0.4) < 0.001*  

(-5.350 – -

3.462) 

< 0.001* 

(4.790 – 

6.178) 

< 0.001* 

(0.824 – 

1.331) 
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The differences in the angular waveform between the two sides of the lower and the 

higher functioning stroke groups and the healthy participants were calculated using the 

CMC and the RMSE. The CMC and RMSE values are presented in Table 5.3. The 

lower functioning stroke survivors generally had lower CMC values in the angular 

waveform between the two sides (CMC ranging from 0.23 to 0.67) in all of the tasks. 

The CMC values for the higher functioning stroke survivors ranged from 0.39 (elbow 

in Task 1) to 0.86 (elbow in Task 4), while the CMC values for the healthy participants 

ranged from 0.80 to 0.92 in Tasks 1 to 4. 

 

Correlations between the kinematic data and the assessment results, including the 

FTHUE, UEFMA, and WMFT, are summarized in Table 5.4. Significant correlations 

were found between the results of the assessments and most of the kinematic parameters. 

The elbow ATP of the hemiplegic side in Task 6 (hold a pouch task) demonstrated the 

strongest positive correlation coefficient with the FTHUE-HK, UEFMA, and WMFT 

(r = 0.944, 0.883, and 0.873, respectively). Kinematic data, including the ATP of the 

hemiplegic side, the ATP difference between the two sides, the CMC and RMSE values 
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from Task 2 (hand to opposite knee) generally show the weakest correlation coefficients 

with the three assessment scores.
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Table 5.3 CMC and RMSE values of the angular waveform comparison between the two sides 

 

Task 

Stroke (Lower Functioning Group) Stroke (Higher Functioning 

Group) 

Healthy Group 

CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) 

Task 1 

Bring hand to ear 

Shoulder 0.53 (0.08) 22.3 (9.3) 0.68 (0.06) 26.9 (18.6) 0.89 (0.10) 8.2 (5.2) 

Elbow 0.31 (0.12) 38.7 (13.8) 0.39 (0.07) 15.2 (6.5) 0.88 (0.07) 10.5 (3.3) 

Task 2 

Hand to opposite knee 

Shoulder 0.67 (0.09) 12.1 (7.7) 0.65 (0.11) 16.1 (9.3) 0.92 (0.05) 5.8 (2.4) 

Elbow 0.38 (0.08) 37.4 (10.0) 0.53 (0.06) 13.8 (5.6) 0.89 (0.08) 9.4 (5.2) 

Task 3 

Shoulder flexion to 90 degrees 

Shoulder 0.51 (0.06) 28.9 (15.2) 0.78 (0.05) 26.3 (12.3) 0.78 (0.07) 15.7 (8.2) 

Elbow 0.29 (0.05) 33.6 (18.4) 0.61 (0.10) 24.2 (15.9) 0.88 (0.11) 11.3 (6.5) 

Task 4 

Shoulder flexion to 180 degrees 

Shoulder 0.25 (0.11) 41.2 (19.0) 0.62 (0.09) 21.2 (12.7) 0.87 (0.05) 14.4 (7.2) 

Elbow 0.27 (0.07) 28.9 (11.4) 0.86 (0.13) 19.9 (9.3) 0.92 (0.03) 11.2 (6.8) 
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Task 5 

Shoulder abduction to 90 degrees 

Shoulder 0.56 (0.10) 22.7 (13.9) 0.71 (0.11) 14.1 (6.8) 0.88 (0.11) 15.2 (8.6) 

Elbow 0.27 (0.08) 35.8 (16.2) 0.53 (0.15) 23.2 (10.0) 0.91 (0.05) 9.1 (5.4) 

Task 6 

Hold a pouch (for 10 seconds) 

Shoulder 0.30 (0.09) 33.6 (14.5) 0.67 (0.10) 18.4 (7.9) 0.82 (0.06) 10.4 (7.7) 

Elbow 0.46 (0.11) 28.9 (9.2) 0.80 (0.11) 11.2 (5.2) 0.83 (0.09) 8.6 (4.8) 

Task 7 

Finger-to-nose test 

Shoulder 0.39 (0.10) 27.8 (12.7) 0.49 (0.13) 20.9 (11.4) 0.83 (0.05) 10.1 (5.3) 

Elbow 0.23 (0.06) 43.2 (22.6) 0.44 (0.07) 16.5 (9.7) 0.80 (0.09) 7.8 (4.2) 

Note: CMC Coefficient of Multiple Correlation; RMSE Root Mean Square Error
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Table 5.4 Correlation between the kinematic data and the assessment results of the FTHUE, UEFMA, and WMFT 

Task Stroke (All)   

ATP Hemiplegic 

side r 

ATP difference 

(Non-hemi – 

Hemi) 

CMC (Non-hemi 

– Hemi) 

RMSE (Non-

hemi – Hemi) 

Completion 

time 

Bilateral 

difference in 

completion 

time 

Correlation with FTHUE 

Task 1 

Bring hand to ear 

  

Shoulder  -0.046 -0.085 0.691* 0.322* NA NA 

Elbow -0.631* 0.496* 0.374* -0.708* NA NA 

Task 2 

Hand to opposite knee 

  

Shoulder  0.273 -0.399* -0.27 0.258 NA NA 

Elbow 0.398* -0.313* 0.588* -0.742* NA NA 

Task 3 

Shoulder flexion to 90 degrees 

  

Shoulder  0.721* -0.636* 0.809* -0.159 NA NA 

Elbow 0.778* -0.732* 0.793* -0.091 NA NA 
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Task 4 

Shoulder flexion to 180 degrees 

  

Shoulder  0.698* -0.582* 0.818* -0.590 NA NA 

Elbow 0.808* -0.796* 0.778* -0.358 NA NA 

Task 5 

Shoulder abduction to 90 degrees 

  

Shoulder  0.684* -0.666* 0.393* -0.264 NA NA 

Elbow 0.639* -0.653* 0.578* -0.201 NA NA 

Task 6 

Hold a pouch (for 10 seconds) 

  

Shoulder  0.683* -0.556* 0.727* -0.677* NA NA 

Elbow 0.944* -0.839* 0.658* -0.649* NA NA 

Task 7 

Finger-to-nose test 

  

Shoulder NA NA 0.322* -0.638*  

-0.655* 

 

0.647* 
Elbow NA NA 0.641* -0.581* 

Correlation with the FMA-UE   
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Task 1 

Bring hand to ear 

  

Shoulder  -0.054 -0.015 0.622* 0.247 NA NA 

Elbow -0.603* 0.445* 0.231 -0.606* NA NA 

Task 2 

Hand to opposite knee 

  

Shoulder  0.301* -0.415* -0.039 0.261 NA NA 

Elbow 0.364* -0.306* 0.497* -0.694* NA NA 

Task 3 

Shoulder flexion to 90 degrees 

  

Shoulder  0.668* -0.593* 0.749* 0.307* NA NA 

Elbow 0.716* -0.660* 0.755* 0.310* NA NA 

Task 4 

Shoulder flexion to 180 degrees 

  

Shoulder  0.694* -0.607* 0.748* 0.092 NA NA 

Elbow 0.760* -0.755* 0.675* 0.339* NA NA 

Task 5 

Shoulder abduction to 90 degrees 

  

Shoulder  0.672* -0.663* 0.310* 0.010 NA NA 

Elbow 0.584* -0.589* 0.515* 0.365* NA NA 
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Task 6 

Hold a pouch (for 10 seconds) 

  

Shoulder  0.618* -0.489* 0.695* 0.168 NA NA 

Elbow 0.883* -0.760* 0.599* 0.124 NA NA 

Task 7 

Finger-to-nose test 

  

Shoulder NA NA 0.269 -0.432*  

-0.602* 

 

0.594* 
Elbow NA NA 0.599* -0.365* 

Correlation with the WMFT   

Task 1 

Bring hand to ear 

  

Shoulder  -0.12 -0.027 0.619* 0.262 NA NA 

Elbow -0.564* 0.461* 0.237 -0.601* NA NA 

Task 2 

Hand to opposite knee 

  

Shoulder  0.214 -0.313* -0.48 0.266 NA NA 

Elbow 0.291* -0.216 0.504* -0.730* NA NA 

Task 3 

Shoulder flexion to 90 degrees 

  

Shoulder  0.643* -0.572* 0.741* -0.091 NA NA 
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Elbow 0.716* -0.683* 0.732* -0.115 NA NA 

Task 4 

Shoulder flexion to 180 degrees 

  

Shoulder  0.688* -0.606* 0.751* -0.521* NA NA 

Elbow 0.746* -0.737* 0.644* -0.303* NA NA 

Task 5 

Shoulder abduction to 90 degrees 

  

Shoulder  0.664* -0.653* 0.257 -0.184 NA NA 

Elbow 0.562* -0.562* 0.565* -0.108 NA NA 

Task 6 

Hold a pouch (for 10 seconds) 

  

Shoulder  0.605* -0.494* 0.671* -0.655* NA NA 

Elbow 0.873* -0.728* 0.611* -0.624* NA NA 

Task 7 

Finger-to-nose test 

  

Shoulder NA NA 0.239 -0.214  

-0.611* 

 

0.594* 

Elbow NA NA 0.605* -0.618* 
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Note: *p < 0.05. ATP Angles in the Target Positions; CMC Coefficient of Multiple Correlation; FMA-UE Fugl-Meyer Assessment for the Upper 

Extremity; FTHUE Functional Test for the Hemiplegic Upper Extremity; RMSE Root Mean Square Error; WMFT Wolf Motor Function Test 

(WMFT)
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Four selected machine learning models, including LG, an SVM, an NB classifier, and 

a DT model, were trained for lower and higher functioning upper limb classification 

based on the kinematic information extracted from the MMC system (Table 5.5). The 

models trained by the ATP of the hemiplegic side in Tasks 1 to 6 and the completion 

time in Task 7 achieved a sensitivity of ≥ 0.85, while the LG model demonstrated the 

highest levels of sensitivity and specificity (0.94). The models trained by the ATP 

difference between the hemiplegic and non-hemiplegic sides for task completion in 

Tasks 1 to 6 and the completion time difference in Task 7 achieved a minimal level of 

sensitivity of 0.89 using the DT model and a maximal level of sensitivity of 0.97 using 

the SVM model. The area under the ROC curve (AUC) was ≥ 0.86 for all the selected 

models. Feature importance analysis revealed that the bilateral difference in ATP of the 

shoulder and elbow in task 3, 4 and 5 as well as the bilateral ATP difference of elbow 

in task 6 were the most influential factors in predicting upper limb functioning in stroke. 

These results were consistent across cross-validation folds, with an average accuracy 

of 86.3% and a standard deviation of 2.7%. 
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Table 5.5 Classification performance of the machine learning models 

ATP  

Model Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) 

LG 94.6% (75.7% - 98.4%) 94.3% (73.2% - 96.2%) 0.94 (0.83 – 0.98) 

NB  91.2% (83.2% – 95.1%) 92.8% (69.3% - 93.2%) 0.91 (0.80 – 0.94) 

SVM 93.4% (71.3% - 98.1%) 91.0% (69.2% - 93.8%) 0.91 (0.81 – 0.92) 

DT 85.2% (65.6% - 88.4%) 87.3% (66.3% - 89.4%) 0.86 (0.73 – 0.90) 

ATP difference between the two sides  

Model Sensitivity (95% CI) Specificity (95% CI)  

LG 96.3% (80.1% - 98.6%) 96.5% (78.4% - 98.4%) 0.97 (0.83 – 1.00) 

NB 94.1% (79.8% - 96.7%) 93.0% (71.4% - 94.3%) 0.93 (0.79 – 0.96) 

SVM 97.1% (84.2% - 98.6%) 96.5% (77.3% - 97.9%) 0.97 (0.88 – 1.00) 

DT 89.2% (80.0% - 91.2%) 90.8% (67.0% - 93.4%) 0.90 (0.77 – 0.93) 

Note: ATP Angles in the Target Positions; NB Naive Bayes; DT Decision Tree; LG Logistic Regression; SVM Support Vector Machine  
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The kinematic data captured by the MMC system in the outdoor environment contained 

a significant number of noise signals and missing data points, which hindered the 

formation of a complete angular waveform. More than half of the data had to be 

discarded due to noise signals. Due to the significant amount of outdoor data being 

discarded, analysis of the outdoor data could not be performed. Figures 5.2a and 5.2b 

depict the angular waveform extracted from two of the participants performing two 

tasks in the outdoor environment, demonstrating the noise signals and missing data 

points captured by the MMC system in the outdoor area. Figure 5.2c depicts the 

complete angular waveform of the same participants performing the task in the indoor 

area. 
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Figures 5.2a, 5.2b Angular waveform extracted from two of the participants 

performing two tasks in the outdoor environment 

Figure 5.2c Angular waveform of the same participants performing the task in the 

indoor area 
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5.4 DISCUSSION 

In this study, we found significant differences in the joint angles at task completion 

between the hemiplegic side and the non-affected side of the stroke survivors in all of 

the selected tasks captured by the MMC system, except in regard to the shoulder ATP 

in the ‘bring hand to the same side of the ear’ task in stroke survivors with lower upper 

limb functioning. Our findings reveal that the hemiplegic side of the stroke survivors 

shows a significant limitation in the shoulder and elbow ranges in task completion. This 

could be a result of limited control, spasticity, or muscle weakness after the stroke. 

There was no significant difference between the dominant hand and the non-dominant 

hand of the healthy participants in most of the tasks, except for the shoulder ATP in the 

‘shoulder abduction to 90 degrees’ task and the ‘hold a pouch for 10 seconds’ task. This 

difference could be due to the muscular imbalances between the dominant and non-

dominant hand, which is common for healthy individuals (Saul et al., 2015). The CMC 

and RMSE values from the angular waveforms reveal a larger difference between the 

hemiplegic side and the non-hemiplegic side in stroke survivors with lower upper limb 

functioning than those with higher upper limb functioning. This might be due to the 

greater difficulties in moving experienced by stroke survivors with lower levels of 

functioning (Luker et al., 2015). Our findings demonstrate that the MMC system in the 

mobile device is sensitive in detecting the kinematic difference between the affected 
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side and non-affected side of stroke survivors in most of the selected tasks. As the MMC 

system is sensitive in regard to angle detection, some tasks that require the participants 

to place their limbs in a specific angle, such as the ‘shoulder abduction to 90 degrees’ 

task, could be more prone to generating a false positive result; placing the limb at a 

specific precise angle involves proprioception and joint stability, so as to allow the 

individuals to consciously and precisely move as well as maintain their joint to and at 

the desired angle. The bilateral muscular imbalance might induce a significant 

difference between the joint angle of both sides, even in healthy adults. It is important 

to be aware that this difference is not due to hemiplegia. Given that there are also 

significant differences in the dominant and non-dominant hands for healthy participants 

when performing some tasks, we therefore suggest that tasks are carefully selected or a 

combination of different tasks are used for motion analysis of the stroke survivors when 

evaluating their hemiplegic side recovery, especially when comparison with the non-

hemiplegic side is warranted.  

 

Significant differences in shoulder and elbow angles were detected between the 

affected side of the stroke survivors with lower upper limb functioning, stroke survivors 

with higher functioning, and the healthy participants in the ATP in task completion in 
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all of the selected tasks, except for Task 2, the ‘hand to the opposite knee’ task. The 

‘hand to the opposite knee’ task involves minimal shoulder and elbow movement, 

which hinders the detection of angular differences in the targeted position. Nevertheless, 

the significant difference detected by the MMC system reflects the way in which the 

kinematic information provided by the MMC system can differentiate between the 

movements made by healthy individuals and stroke survivors with high and low upper 

limb functional ability, which further suggests the potential of the MMC system in 

detecting symptomatic movement based on the ROM difference. 

 

Although only seven tasks from the standardized upper limb assessment were selected, 

they are representative of the common functional tasks in standardized upper limb 

assessments, such as the FTHUE, FMA-UE, and WMFT. In addition, our tracking 

algorithm only included large joints, in order to test its ability to identify and analyze 

participants’ gross motor abilities, and so mainly gross movements performed by the 

shoulder and elbow joint angles were investigated in this study. Future studies could 

consider tracking more complicated features, such as the contour of the hand, fingertips, 

and palms, so as to determine the ability of the MMC system to capture and analyze the 

movement of the wrist and the fine motor ability of stroke survivors. 
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All of the four selected machine learning models, including LG, an SVM, an NB 

classifier, and a DT model achieved a sensitivity higher than 0.84 in the stroke 

functional level classification. Our classification results reveal that the MMC system 

combined with machine learning methods can satisfactorily classify a stroke patient’s 

upper limb impairment into higher and lower functioning levels. This finding further 

supports the notion that the MMC system can be used to stratify the motor recovery of 

the survivors according to their kinematic data from performing the required functional 

tasks (Zamin et al., 2023). Our AI models were also trained to perform the stroke upper 

limb impairment classification using the performance difference between the 

hemiplegic and the non-hemiplegic upper limb. All of the models show a sensitivity 

above 0.89 and a specificity of at least 0.90, which is considered to be excellent 

classification performance (Abdullah & Sofyan, 2023). The functional level 

classification based on the hemiplegic and non-hemiplegic side performance difference 

generally yielded a higher level of sensitivity than performing the classification simply 

by considering the performance of the hemiplegic side. One possible explanation for 

this result is that the performance by the non-hemiplegic hand generally reflects the 

usual way an individual completes an action when performing a motor task. Therefore, 

comparisons of the angular differences between the hemiplegic and non-hemiplegic 
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side might reflect to what extent the movement of the hemiplegic limb deviates from 

the individual’s normal motor performance. The smaller the difference between the 

hemiplegic and the non-hemiplegic side might suggest that the hemiplegic side has 

recovered better in terms of motor function toward a non-affected state—hence the 

higher functional level in the classification. 

Our findings reveal that the kinematic data captured by the MMC system in the 

uncontrolled outdoor environment are affected by noise signals, the background of the 

image, and the condition of the light, which might hinder the demonstration of the joint 

angle change over time. It was found that the MMC usually lost track of the target 

participant’s joints when a pedestrian passed by in a completely uncontrolled outdoor 

environment; it misidentified the pedestrian’s limbs as the limbs of the target participant. 

Other than this influence by moving pedestrians, a cluttered background can also 

confuse the MMC system. Misrecognition of joint position also occurred in the 

background with green plants; the MMC system occasionally interpreted a tree branch 

as a human limb. A background consisting of a plain wall would generate a better 

complete angular waveform during motion capturing. The light in the outdoor 

environment might also be a contributing factors in the MMC system’s joint position 

recognition (Dubey & Dixit, 2023). The angular waveforms obtained in the evening or 

with dim light during cloudy weather exhibited more sparsity, with gaps or missing 
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data points at various time points. Insufficient light can make it difficult for the MMC 

system to capture a clear and detailed image of the human, which leads to a blurry or 

distorted image that ultimately affects the MMC system’s ability to accurately track the 

participant’s motion (Zanfir et al., 2023). This is particularly important for motion 

capturing during outdoor exercise in remote therapy or telerehabilitation. We suggest 

that, in future, the MMC system should preferably be placed in front of a plain 

background with sufficient light and without other moving objects passing by, to ensure 

better data quality. To further improve the performance of the MMC system in an 

unstructured environment, the feature extraction function might have to be modified so 

as to ensure the correct identification and tracking of the relevant body joints. An initial 

calibration step to establish a reference frame might also help to ensure the accurate 

measurement and representation of the joint angles. 

The overall results of our study are consistent with the previous recommendation by 

Bonnechère and colleagues (2018) that an MMC system could be utilized to evaluate 

the upper limb motor performance of stroke survivors. Although it might not be 

appropriate for motion capturing in outdoor areas with a cluttered background and 

uncontrollable light levels, the kinematic data captured in a structured indoor 

environment provides a high level of sensitivity in regard to upper limb function 

classification. It is imperative to note that although our study employed three iPad Pro 
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devices to capture the kinematic information from multiple angles, stroke survivors 

have the flexibility to utilize a single iPad Pro or their personal mobile device for motion 

capturing in a home setting. The use of three iPad Pro devices was solely intended to 

capture movements from diverse perspectives, while individuals can easily adjust the 

capturing angle independently when employing a single mobile device. Together with 

its portable nature, user-friendly setup, and inexpensive features, an MMC system on a 

mobile device has the potential to be used for the remote monitoring of motor recovery 

in stroke survivors during telerehabilitation in the home environment (Knippenberg et 

al., 2017). Moreover, the precise information collected using the MMC system can 

enable therapists to perform regular quick screening of the patients’ functional ability 

and levels of motor recovery at home without requiring patients to frequently attend a 

clinic. Even though current studies support the utilization of MMC technology in 

telerehabilitation, researchers must close the gap between research findings and the 

real-life implementation of MMC technology in order to promote its actual adoption in 

remote rehabilitation programs in the future. To facilitate the use of MMC systems for 

telerehabilitation in the future, designing a user-friendly interface that allows patients 

to interact with the MMC system, including operating the system and transmitting the 

data to therapists, is warranted. We also recommend a comprehensive training session 

for both the patients and the therapists in regard to the MMC system setup and data 
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interpretation, so as to enable them to use the MMC system effectively in 

telerehabilitation. 

5.4.1 Limitations 

This study assembles data from 49 healthy adults and 50 stroke survivors. The sample 

size is considered small for training and testing machine learning models. Second, the 

ratio of the stroke survivors with higher and lower upper limb functioning was not 

balanced. Future experiments examining the actual effect of different light levels on the 

motion tracking quality in MMC systems are still warranted. 

 

5.5 CONCLUSION 

This study utilizes an MMC system on a mobile device to detect significant differences 

in the hemiplegic upper limbs of stroke survivors and healthy adults. The data provided 

by the MMC system reflects significant kinematic differences between the stroke 

survivors with lower upper limb functioning and those with higher functioning in all of 

the selected tasks. Significant correlations were also found between the upper limb 

motor assessment scores and the kinematic performance of the stroke survivors. The 

use of an MMC system combined with a machine learning classification algorithm has 
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the potential to provide precise data with which to evaluate the upper limb functional 

recovery of patients with stroke, particularly during telerehabilitation. It is 

recommended that MMC system capturing is conducted in front of a plain background 

with sufficient light in the future. Further studies on the actual operation of MMC 

systems by patients in home settings are warranted. 
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Chapter 6 

 

Lower extremity kinematic measurement using markerless motion capturing (MMC) 

in persons with a stroke: A cross-sectional experimental study 

 

 

ABSTRACT 

 

Motor impairment is a deficit commonly experienced by persons with a stroke. The 

motor impairment of the lower extremity generally influences the mobility of those 

persons and hence their quality of life. The aim of this study was to investigate 1) the 

use of a Markerless Motion Capture (MMC) system in an iPad Pro for the measurement 

of movement kinematics in persons with a stroke and their healthy counterparts, when 

doing assessment tasks for the lower extremity, in both a controlled and an uncontrolled 

environment, and to assess 2) the sensitivity and specificity of machine-learning models 

in classification of the lower extremity function in persons with stroke, using the 

kinematics information provided by the MMC system. A customized MMC system 

developed in an iPad Pro with a LiDAR scanner was designed to capture the movement 
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of the participants. The recruited persons with a stroke were assessed by the Modified 

Functional Ambulation Classification (MFAC), the Berg Balance Scale (BBS), and the 

Fugl Meyer Assessment: Motor Function of the Lower Extremity (FMA-LE). For 

motion capturing, each participant then performed five selected lower-extremity tasks 

with their bilateral limbs. Kinematic data captured from the MMC system were 

extracted and entered into a statistical analysis. Significant differences were found 

between the angle change of the lower extremities of 1) the hemiplegic and non-

hemiplegic sides of the persons with stroke, in most of the selected tasks, and 2) the 

hemiplegic side of the persons with stroke and the dominant side of the healthy 

participants. The support vector machine model used the CMC values to classify the 

lower-extremity functional performance of the persons with stroke into lower-

functioning and higher functioning, with very high sensitivity and specificity. Our study 

supports application of an MMC system in mobile devices for measuring individuals’ 

lower extremity kinematics, to aid evaluations of the lower extremity function of 

persons with stroke. Further research is warranted to investigate the application of an 

MMC system in the home setting for telerehabilitation with an increased variety of 

motor tasks, supported with a user-friendly operational interface.  

 

This chapter is under submission as a scientific manuscript to a scientific journal. 
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Lam, W. W., & Fong, K. N. (under submission). Lower extremity kinematic 

measurement using markerless motion capturing (MMC) in persons with a stroke: A 

cross-sectional experimental study.  
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6.1 INTRODUCTION 

Motor impairment is a deficit commonly experienced by persons with a stroke. The 

motor impairment of the lower extremity generally influences the mobility of persons 

with a stroke and hence their quality of life (Bonita & Beaglehole, 1988). Factors such 

as muscle weakness, spasticity, and changes in muscle tone may contribute to the motor 

impairment of a hemiparetic lower extremity after stroke (Arene & Hidler, 2009). The 

residual disabilities caused by lower extremity impairment, such as reduced balance, 

walking speed, and endurance, in persons with stroke can persist even after several 

years (Menezes et al., 2017). The most common outcome measure for assessing a lower 

extremity orthosis-based intervention is gait speed, while the kinematics and functional 

outcome are comparatively less effectively assessed (Figueiredo et al., 2021). It is 

suggested that the measurement of lower extremity kinematics should receive 

significant attention, because it has a high correlation with reduced mobility as well as 

fall risk in persons with a stroke (Mizuta et al., 2024). The most common method for 

measuring the lower extremity kinematics of patients with stroke is the use of wearable 

sensors, instead of using a motion capture system, because the motion capture system 

is mostly non-portable and can only be operated in a standard structured environment, 

not in a daily living environment (Figueiredo et al., 2021). However, wearable sensors 
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can cause discomfort in patients and may constrain the person’s movements, in which 

case the data captured by the sensors might not reflect the patient’s natural movement 

(Peters et al., 2021). It has hence been proposed that a markerless motion capture 

(MMC) system, which eliminates the attachment of any markers or sensors on the skin 

surface, could be applied in kinematic measurements for capturing a more lifelike 

movement of patients. Kim and colleagues (2016) and Ozturk and colleagues (2016) 

investigated the use of an MMC system, Kinect, to measure the motion kinematics of 

upper limbs only, and not lower extremities, in persons with stroke. Lonini et al. (2022) 

and Lee et al. (2021) used an RGB camera and smartphone, respectively, for measuring 

the walking performance of persons with stroke, and both of those studies reported that 

their use of the MMC system was effective when applied to the patients with stroke. 

However, those researchers mostly focused on measurements of gait parameters, 

including the participants’ walking speed, cadence, swing time, and stance time. Lower 

extremity kinematics, which are the core factor affecting gait performance, have not 

been measured. Hence, this study sought to explore the performance of an MMC system 

for measuring the lower extremity kinematics in persons with stroke. A customized 

MMC system in an iPad Pro with a LiDAR scanner was developed for this kinematic 

measurement. Our MMC system in the iPad Pro served as a portable motion capture 

device which could have the potential to obtain kinematic measurements in areas other 
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than a controlled laboratory environment. The aim of this study was to investigate: 1) 

the difference in lower extremity movement kinematics between persons with stroke 

who had different levels of mobility, and their healthy counterparts, when they were 

performing assessment tasks in both controlled and uncontrolled environments, as 

measured by a customized MMC system in an iPad Pro; and 2) the relationship between 

the kinematic information obtained by the MMC system and the scores from manual 

motor assessments. This study also investigated the sensitivity and specificity of the 

classification of lower extremity function in persons with stroke, using machine-

learning methods and the kinematic data from the MMC system.  

 

6.2 METHODS 

 

6.2.1 Study design 

 

This was a cross-sectional experimental study. Ethical approval was obtained from the 

Human Subjects Research Ethics Committee of the Hong Kong Polytechnic University 

(Reference No.: HSEARS20230214010). Prior to inclusion, all subjects were informed 

about the objectives and procedures of the study. Subjects who met the inclusion criteria 
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provided informed consent before entering the study. A customized MMC system 

developed in an iPad Pro with a LiDAR scanner was designed to capture the movements 

of the participants. The participants with stroke were first assessed with the Modified 

Functional Ambulation Classification (MFAC) (Park & An, 2016) for their walking 

ability. Participants who met the inclusion criteria then underwent the Berg Balance 

Scale (BBS) assessment administered by a trained therapist. After those assessments, 

the participants were invited to perform five sets of lower extremity tasks that were 

extracted from the BBS and Fugl Meyer Assessments: Motor Function of the Lower 

Extremity (FMA-LE) with their non-hemiplegic sides first, followed by their 

hemiplegic side. Assuming that the healthy participants would score full marks in all of 

the assessments, the healthy participants skipped the assessment sessions and directly 

performed the same sets of tasks for the motion capturing with their dominant side 

followed by their nondominant side. All of the participants repeated each task five times 

with each limb. To investigate the performance of the MMC system in an uncontrolled 

environment, after the motion capturing session in the laboratory the participants 

performed the same sets of tasks again in three randomly selected outdoor areas.  

 

6.2.2 Participants 

To be eligible to participate in the study, candidates had to: 1) be adults aged 18 years 
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old or above, 2) have been diagnosed with a hemiplegic stroke, 3) have no history of 

previous neurological or orthopedic diseases/congenital disorders of the upper, lower 

extremities and spine, 4) have scored more than 40 points in the Berg Balance Scale 

(BBS) assessment, 5) have adequate cognitive ability to understand instructions, and 6) 

be able to engage in at least a one-hour experimental session. Participants in this study 

were invited to participate in both the upper and lower limb motion capturing 

experiments. In this chapter, we focus solely on reporting and discussing the results of 

the upper limb experiment. 

 

Participants were excluded if they met any of the following conditions: 1) they were 

medically unstable, 2) they had previous injuries or medical conditions of the upper 

extremities or spine affecting upper limb functions (Healthy participant group), or 3) 

they had an MFAC score of category II or below. 

 

6.2.3 Assessment 

 

Berg Balance Scale (BBS) 
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The Berg Balance Scale is a 14-item objective measure that assesses static balance and 

fall risk in adults. Each item is scored in a range of 0 to 4, with 0 indicating the lowest 

level of function and 4 indicating the highest level of function (Kornetti et al., 2004). It 

is believed that individuals who score lower than 40 points on the BBS may be at greater 

risk of falling (Muir et al., 2008). 

 

Fugl-Meyer Assessment (FMA) 

 

The Fugl-Meyer Assessment (FMA) scale is an index used to assess the sensorimotor 

impairment in individuals who have had a stroke (Kim et al., 2012). The FMA is divided 

into an upper extremity (FMA-UE) part and a lower extremity (FMA-LE) part, with 

maximum scores of 66 and 34 points in the FMA-UE and FMA-LE, respectively. The 

lower extremity subscores were adopted in this study. 

 

6.2.4 Sample size considerations 
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We assumed a two-tailed comparison with a type I error rate of 0.05, with 80% power. 

The participants with stroke were stratified according to lower and higher levels of 

functional ambulation, using the MFAC scale. Participants with a stroke who could 

walk independently either indoors or outdoors (level 6 or above in the MFAC) were 

categorized as higher functioning, while persons with a stroke who did not reach an 

independence level in their ambulation (i.e., had a level 5 or below score on the MFAC) 

were categorized into the lower-functioning group (Chung, 2018). As a conservative 

estimation with a discard rate of 15% due to bad data or outliners, according to a 

previous pilot study, and taking into account a dropout rate of 10%, a sample size of 40 

persons with stroke and 40 healthy counterparts was predicted. After we had conducted 

a power analysis based on statistical parameters and using the software GPower3.1.9.2, 

the effect size was calculated as 0.70, which is between medium (0.5) and large (0.8) 

(Fritz et al., 2012).  

 

6.2.5 Equipment 

 

MMC system 
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The markerless motion capturing system that we used to perform motion analysis in 

this study was developed using Xcode, on the basis of an ARKit6 and RealityKit 

framework and supported by an iPad Pro with a LiDAR scanner. For the motion 

capturing experiment, three iPad Pro machines were placed near each participant––one 

on the frontal side, one on the lateral left side, and one on the right side of the participant. 

The detection of the human body and the joint position were extracted and realized 

through computer-vision algorithms of convolutional neural networks (CNNs). A total 

of 14 3D body joint positions and the timestamp of the motion detection were captured 

by our motion tracking platform. The capturing frequency of the MMC system was set 

at 30 Hz. A predefined humanoid model was applied to estimate the joint position and 

kinematics structure of the tracked subjects. The joint coordinates in 2D or 3D for every 

captured frame were established and delivered by the algorithms. The normalized 

coordinates were relative to the center of the pelvis and defined as the origin of the 

ARKit’s coordinate system (Reimer et al., 2022). The adjacent 3D joint coordinates’ 

extraction calculated the angles of interest (AOIs). Angle θ was calculated by the three 

joints –– 𝐴, 𝐵, 𝐶 ∈ 𝑅3 or associated vectors 𝑣1⃑⃑⃑⃑ = 𝐴 − 𝐵 𝑎𝑛𝑑 𝑣2⃑⃑⃑⃑ = 𝐶 − 𝐵 , with the 

formula 𝜃 = arccos
𝑣1∙𝑣2

||𝑣1||2||𝑣2||2
 . 
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6.2.6 Environmental set-up 

Controlled indoor environment (Laboratory)  

 

The experiment was conducted at the assistive technology laboratory in the Hong Kong 

Polytechnic University, and the laboratory floor was covered with vinyl to prevent 

slipping. For the motion-capturing sessions, participants stood in front of a plain wall 

in the same laboratory. One iPad Pro was placed on the frontal side of the participant at 

a distance of 2 meters, and two additional iPad Pros were placed, one at the participants’ 

lateral left and one at their right side.  

 

Uncontrolled outdoor environment (Campus podium) 

 

Three outdoor spots in the university campus podium were chosen as sites to represent 

the uncontrolled outdoor environment. A 2.5m × 2.5m area in those spots was marked, 

then two 1m ×  1m anti-slip mats were placed on each side of the participants to 

prevent slipping. Three iPad Pros were brought to those locations and were placed on 

tripod stands. The positions of the iPad Pro placements were the same as those used in 
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the laboratory environment. 

 

6.2.7 Procedures 

Healthy participants and stroke participants from the community were enrolled into the 

study by convenience sampling. The experiment was divided into two sessions, the first 

of which was the assessment session. The participants with stroke were first assessed 

by the assessor using the MFAC to determine their walking ability. Patients who 

satisfied the inclusion criteria for the motion capturing were then assessed by the BBS.  

 

The second session was the motion capturing experiment. Participants were instructed 

to perform five sets of tasks that involved lower extremity muscular control: Task 1 was 

Task 3.1 in the FMA-LE, knee flexion from a sitting position; Task 2 was Task 4.1 in 

the FMA-LE, knee flexion to 90 degrees at a standing posture; Task 3 was hip flexion 

to 90 degrees at a standing posture; Task 4 was Task 8 in the BBS––reaching forward 

with outstretched arm while standing, and Task 5 was Task 14 in the BBS––standing 

on a single leg. All of the tasks in this session were repeated five times, and the 

participants with stroke were instructed to perform each task with their unaffected side 

first followed by their affected side. Figures 1a through 1e illustrate the desired postures 
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of the five tasks. 

 

Figure 6.1a to 6.1e (left to right, top down). Illustrations of task 1 through task 5 

 

To test the performance of the MMC system in the natural environment, participants 

were invited to repeat the motion capturing in the uncontrolled outdoor environment, 

after they had completed the capturing session in the laboratory. Participants were 

randomly assigned to one of the three outdoor sites for the motion capturing, and they 

again performed the identical set of tasks they had done for their motion capturing in 

the laboratory. 

 

6.2.8 Statistical Analysis 
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Kinematic data were extracted from the MMC system, including the time of task 

completion, the angular waveform of the movement, and the angle of the joints when 

the targeted position was achieved. The first trial of each task served as a practice trial 

and was not entered into the analysis. The averages of the 2nd – 5th trials of each task 

were obtained for statistical analysis. Comparisons of the changes in the joints’ angles 

from the initial position to the final position during task completion were made using a 

t-test between 1) the affected side and the unaffected side of the participants with stroke, 

and 2) the affected side of the stroke participants and the dominant side of the healthy 

counterparts. Comparisons were made of the time of completion of task 5 and of the 

angle change of the targeted joint from the initial position to the final position during 

completion of tasks 1 to 4 for 3) the affected side of the stroke participants with a higher 

level of functioning (MFAC level 6 or above), the stroke participants with a lower level 

of functioning (MFAC level 5 or below), and the dominant side of the healthy subjects, 

using ANOVA with a post hoc test when a significant difference was detected. 

Differences of the angular waveforms between 1) the affected lower extremity and the 

unaffected limb of the stroke participants, and the bilateral side of the healthy subjects, 

were compared using the coefficient of multiple correlation (CMC) and root mean 

square error (RMSE). Correlations between the assessment results (MFAC, FMA-LE, 

and BBS) corresponding to the actions and the time of completion for task 5, the angle 
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changes in tasks 1 through 4, the CMC values, and the RMSE values were evaluated 

using Pearson’s r correlations. The assessments (MFAC, FMA-LE, and BBS) that 

showed a significant moderate correlation or above with the kinematic information also 

then underwent a multiple linear regression analysis with the movement kinematics, 

which allowed us to quantify the contribution that each kinematic type of data made in 

the assessment score for the future predictions. A logistic regression (LG) model, Naive 

Baye classifier (NB) model, support vector machine (SVM) model, and a Decision tree 

(DT) model were used to investigate the trajectory for the prediction of clinical 

assessment results for the stroke participants, using the kinematic information from the 

MMC system, including the 1) angle change of the targeted joint from the joint’s initial 

position to its final position during task completion in all the selected tasks, 2) 

difference of the angle change between the affected and unaffected side in all selected 

tasks, and 3) CMC values from all the tasks. All of the descriptive statistics, t-test, 

Pearson’s r correlations, and regression analyses were performed using IBM SPSS 26 

software, while the CMC and RMSE values were generated with MATLAB R2020a. 

All four of the machine-learning models were performed by using the package Scikit-

learn in Python. The linear Support Vector Machine model is SVM using linear kernel. 

l2 Regularization was implemented to the Logistic Regression model. 

6.3 RESULTS 
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Fifty persons with a stroke and 49 healthy counterparts were recruited. Among the 

stroke participants, nine scored below 40 points on the BBS and one failed to complete 

the whole experimental session due to fatigue, so those individuals were excluded from 

the motion-capturing experiment. Hence, data from 40 persons with stroke and 49 

healthy adults were entered into the final analysis. The mean ages of the stroke group 

and the healthy adult group were 58.1 years (SD: 12.3) and 60.2 years (SD: 8.5), 

respectively. Demographic data of the participants are given in Table 6.1. 

Table 6.1 Demographic description of the participants 

Descriptors Stroke Group Healthy Group 

Mean Age (years) 57.7 (12.5) 60.2 (8.5) 

Gender ratio  

(males:females) 

62.5:37.5 18:31 

MFAC (n)   

FTHUE levels 3-5 8 NA 

FTHUE levels 6-7 32 NA 

Hemiplegic side (n)   

Right  19 NA 

left 21 NA 

Dominant side 

(Pre-onset) (n) 

  

Right 38 48 

Left 1 1 

FMA-LE Score 

(Mean) 

23.0 (7.2) NA 

BBS Score (Mean) 48.4 (3.7) NA 

Note: BBS: Berg Balance Scale, FMA-LE: Fugl Meyer 

Assessment: Motor Function of the Lower Extremity, MFAC: 

Modified Functional Ambulation Classification 
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The joint angle changes from the initial positions before performing the tasks to the 

final positions that the participants maintained are presented in Table 6.2. Significant 

differences in the angle changes of the targeted joint were found between the 

hemiplegic and non-hemiplegic side of the stroke participants with lower functioning, 

in all tasks except the change in trunk flexion angle in task 4 (MD = -0.2, SD = 15.7, p 

= 0.97). Significant differences in the changes of joint angles were found between the 

hemiplegic and non-hemiplegic side of the stroke participants with higher functioning 

in all tasks except task 3 (MD = -0.8, SD = 14.4, p = 0.75) and task 4 (MD = -3.7, SD 

= 14.7, p = 0.17). No significant difference was found in the changes of angles between 

the dominant and nondominant sides of the healthy participants. Comparisons of the 

joint angle changes between the hemiplegic side of the two groups of stroke participants 

and the dominant side of the healthy participants were also conducted. Significant 

differences were found in the angle changes of the hip and knee joints between the 

stroke participants with lower functioning and the healthy adults, in all tasks (mean 

difference, or MD scores ranged from 24.3 in task 4 to 43.9 in task 2, p<0.05 in all 

tasks). The joint angle changes between the stroke participants with higher functioning 

and the healthy participants were also significantly different in all tasks except in task 

3 (MD = 5.0, SD = 12.3, p = 0.36). The joint angle changes on the hemiplegic side of 
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the stroke participants with lower functioning were also significantly different from 

those of the stroke participants with higher functioning, in all tasks except in task 1 

(MD = 9.8, SD = 6.7, p = 0.10). 
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Table 6.2 Joint/body angle changes from the initial joint position before performing the tasks to the final joint positions that the participants maintained at task 

completion 
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Changes in joint angle (Initial angle of the targeted joint – final angle of the targeted joint) 

Task Stroke (Lower-functioning group) 

 

Stroke (Higher-functioning group) Healthy Group    

Hemiplegic 

Side 

Non-

hemiplegic 

Side 

Mean 

Difference 

(Hemiplegic – 

Non-

hemiplegic) 

Hemiplegic 

Side 

Non-

hemiplegic 

Side 

MD 

(Hemiplegic – 

Non-

hemiplegic) 

Dominant 

Side 

Non-

dominant 

Side 

MD 

(Dominant – 

Non-dominant 

MD 

(Stroke low 

Hemi vs. 

Stroke high 

Hemi) 

MD 

(Stroke low 

Hemi vs. 

Healthy 

Dominant) 

MD 

(Stroke 

high Hemi 

vs. Healthy 

Dominant) 

Task 1  

Knee flexion at sitting position 

 

Change in 

knee angle 

26.4 (11.7) 61.5 (9.7) -35.2 (15.5)* 36.1 (18.0) 52.7 (18.6) -16.5 (25.1)* 52.7 (18.0) 55.6 (17.0) -2.9 (18.1) 9.8 (6.7) 26.4 (16.6)* 16.6 (4.1)* 

Task 2  

Knee flexion to 90 degrees in standing position 

 

Change in 

knee angle 

48.5 (13.8) 96.3 (7.3) -47.7 (18.4)* 79.4 (12.0) 99.8 (9.0) -20.3 (15.9)* 92.5 (10.7) 93.4 (10.7) -0.9 (14.2) 30.9 (4.9)* 43.9 (5.1)* 13.0 (9.6)* 

Task 3 

Hip flexion to 90 degrees in standing position 

 

Change in hip 

angle 

38.0 (14.2) 65.6 (7.2) -27.6 (14.8)* 67.6 (11.0) 68.4 (9.2) -0.8 (14.4) 72.6 (9.8) 70.5 (10.2) 2.1 (15.6) 29.5 (4.6)* 34.5 (14.0)* 5.0 (12.3) 
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Footnote: * P<0.05 

MD: Mean Difference 

 

 

 

Task 4 

Reaching forward 

 

Change in 

trunk flexion 

angle 

14.9 (13.6) 15.2 (11.2) -0.2 (15.7) 27.4 (10.7) 31.0 (9.5) -3.7 (14.7) 39.2 (12.1) 35.6 (10.1) 3.6 (17.1) 12.4 (14.5)* 24.3 (4.7)* 11.9 (2.6)* 

Task 5 

Single leg stand 

 

Time (s) 3.9 (1.4) 17.8 (8.5) -14.0 (9.3)* 15.9 (16.4) 27.6 (16.5) -11.7 (11.7)* 42.5 (17.5) 42.2 (19.4) 0.3 (8.9) 12.0 (5.8) 38.1 (9.6)* 26.1 (3.9)* 
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The angular waveforms of each task between the two sides of the participants were 

compared using CMC and RMSE values (Table 6.3). The CMC values of the stroke 

participants with lower functioning fell between 0.36 in the knee angle of task 2, and 

0.57 in the trunk angle of task 4, while the CMC values of the stroke participants with 

high functioning were in the range of 0.58 (knee angle in task 5) to 0.78 (knee angle in 

task 2). The CMC values of the healthy participants had a minimum value of 0.61 (knee 

angle in task 5) and a maximum value of 0.87 (knee angle in task 1).  

 



 

 259 

Table 6.3 CMC and RMSE values of the angular waveforms of the stroke participants in the lower functioning group, the higher functioning 

group, and the healthy group 

Task Stroke (Lower-functioning group) Stroke (Higher-functioning 

group) 

Healthy 

CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) CMC (SD) RMSE (SD) 

Task 1 

Knee flexion at sitting position 

knee 0.48 (0.06) 33.3 (3.00) 0.72 (0.06) 23.32 (7.03) 0.87 (0.04) 10.50 (2.19) 

Task 2 

Knee flexion to 90 degrees at standing position 

knee 0.36 (0.10) 38.1 (14.22) 0.78 (0.05) 22.10 (16.7) 0.84 (0.06) 12.80 (11.95) 

Task 3 

Hip flexion to 90 degrees at standing position 

Hip 0.54 (0.07) 24.67 (6.23) 0.76 (0.08) 18.20 (5.07) 0.81 (0.05) 12.51 (2.73) 

Task 4 

Reaching forward 

Trunk 0.57 (0.05) 24.16 (9.50) 0.77 (0.06) 17.61 (15.7) 0.81 (0.10) 11.79 (12.73) 
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Task 5 

Single leg stand 

Hip 0.39 (0.14) 34.63 (24.51) 0.59 (0.07) 26.33 (24.43) 0.71 (0.05) 19.96 (25.37) 

Knee 0.43 (0.09) 29.10 (5.11) 0.58 (0.15) 27.39 (15.17) 0.61 (0.10) 23.65 (26.22) 

Note: CMC: Coefficient of multiple correlations, RMS: Root mean square error 

 



 

 261 

 

The correlations between the kinematic information and the selected assessments are 

presented in Table 6.4. The CMC values of all tasks generally show a significant, strong 

correlation with the MFAC scores (ranging from 0.613 in task 3 to 0.768 in task 1), 

except for the knee CMC values in task 5 (CMC = 0.302). Significant moderate 

correlations were also found between the FMA-LE scores and the CMC values of all 

tasks (the CMC values ranged from 0.483 in the hip angles of task 5 to 0.556 in task 4), 

with the exception of the knee angle in task 5. Weak to moderate correlations were 

found between the BBS scores and the CMC values of all tasks (ranging from 0.302 to 

0.509), except for the knee angle in task 5. The joint angle changes in all tasks generally 

demonstrated a weak to moderate correlation with the MFAC and FMA-LE scores but 

not with the BBS score. 
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Table 6.4 Correlations between the movement kinematics and the assessment scores 

Correlations with the MFAC scores   

Task Stroke (All)   

Angle change 

(Hemi initial 

angle – Hemi 

final angle) 

Angle 

difference 

(Non-hemi 

final – Hemi 

final) 

CMC (Non-

hemi – Hemi) 

RMSE 

(Non-hemi 

– Hemi) 

Duration 

(Hemi) 

Difference 

in duration 

(Non-hemi 

– Hemi) 

Task 1 Knee flexion in sitting position    

Knee  0.260 0.504* 0.763* -0.411* NA NA 

Task 2 Knee flexion to 90 degrees in standing position   

Knee  0.475* 0.594* 0.738* -0.536* NA NA 

Task 3 Hip flexion to 90 degrees in standing position   

Hip  0.611* 0.426* 0.613* -0.414* NA NA 

Task 4 Reaching forward   

Trunk  0.161 0.006 0.714* -0.279 NA NA 

Task 5 Single leg stand   

Hip  NA NA 0.723* -0.528*  

0.416* 

 

-0.172 
Knee NA NA 0.302 -0.009 

Correlations with the FMA-LE levels   

Task 1 Knee flexion in sitting position   

Knee  0.355* 0.476* 0.500* -0.406* NA NA 

Task 2 Knee flexion to 90 degrees in standing position   

Knee  0.465* 0.445* 0.511* -0.281 NA NA 

Task 3 Hip flexion to 90 degrees in standing position   

Hip  0.361* 0.333* 0.555* -0.251 NA NA 

Task 4 Reaching forward   

Trunk  0.102 0.087 0.556* -0.091 NA NA 
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Task 5 Single leg stand   

Hip NA NA 0.483* -0.342*  

0.363* 

 

0.036 

Knee NA NA 0.092 0.007 

Correlations with the BBS scores   

Task 1 Knee flexion in sitting position   

Knee  0.156 0.388* 0.509* -0.162 NA NA 

Task 2 Knee flexion to 90 degrees in standing position   

Knee  0.253 0.290 0.370* -0.124 NA NA 

Task 3 Hip flexion to 90 degrees in standing position   

Hip  0.260 0.236 0.374* -0.093 NA NA 

Task 4 Reaching forward   

Trunk  0.117 0.050 0.302 -0.176 NA NA 

Task 5 Single leg stand   

Hip  NA NA 0.397* -0.373*  

0.191 

 

0.060 
Knee NA NA 0.043 0.115 

Footnote: *P<0.05 

BBS: Berg Balance Scale, CMC: Coefficient of multiple correlation, FMA-LE: Fugl Meyer Assessment: 

Motor Function of the Lower Extremity, MFAC: Modified Functional Ambulation Classification, RMS: Root 

mean square error 
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A multiple linear regression analysis was conducted with the MFAC levels as the 

outcome, and the joint angle changes, joint angle differences between the bilateral side, 

task completion durations (task 5), and CMC and RMSE values as the independent 

variables (Table 6.5). The regression model explained 80.2% of the selected variation 

in the MFAC levels, thus indicating a strong relationship between the kinematics and 

the functional ambulation classification. The values of the coefficients of multiple 

correlations demonstrated the highest values among the covariates (the coefficients 

ranged from 0.058, p = 0.974 for the CMC values in task 3, to 4.393, p = 0.016 in task 

4). 
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Table 6.5 Multiple linear regression analysis of the MFAC as the outcome (Adjusted R2 = 0.803) 

Covariate 
Coefficient 

(SE) 

𝛽 

 
t p 

(Constant) 3.167 (7.069)  0.448 0.659 

Angle change (Hemi initial – Hemi final) 

Task 1 -0.001 (0.009) -0.013 0.099 0.922 

Task 2 -0.013 (0.018) -0.200 -0.731 0.472 

Task 3 -0.20 (0.018) -0.283 -1.107 0.280 

Task 4 0.12 (0.16) -0.113 0.716 0.482 

Angle difference (Non-hemi final – Hemi final) 

Task 1 -0.009 (0.008) -0.129 -1.061 0.300 

Task 2 0.012 (0.011) 0.207 1.123 0.274 

Task 3 0.014 (0.017) 0.188 0.810 0.426 

Task 4 -0.019 (0.018) -0.159 -1.020 0.319 

CMC (Non-hemi – Hemi) 

Task 1 3.043 (1.678) 0.296 1.813 0.084 

Task 2 -0.078 (1.370) -0.012 -0.057 0.955 

Task 3 0.058 (1.751) 0.006 0.033 0.974 

Task 4 4.393 (1.685) 0.375 2.607 0.016* 

Task 5 (Hip) 1.179 (1.343) 0.116 0.878 0.390 

Task 5 (Knee) -1.153 (0.719) -0.125 -1.603 0.123 

RMSE (Non-hemi – Hemi) 

Task 1 0.029 (0.024) 0.166 1.195 0.245 

Task 2 -0.030 (0.028) -0.217 -1.071 0.296 

Task 3 -0.025 (0.020) -0.113 -1.246 0.226 

Task 4 -0.009 (0.016) -0.051 -0.566 0.577 
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Task 5 (Hip) 0.018 (0.027) 0.089 0.695 0.495 

Task 5 (Knee) -0.002 (0.019) -0.010 -0.118 0.907 

Duration (Hemi)  

Task 5 0.007 (0.009) 0.083 0.834 0.413 

Time difference in duration (Non hemi – Hemi) 

Task 5 0.010 (0.010) 0.086 1.053 0.304 

Adjusted R2 = 0.803 

Footnote: *P<0.05 

Note: CMC: Coefficient of multiple correlation, MFAC: Modified Functional Ambulation Classification, 

RMS: Root mean square error 
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Data from four repetitions of five tasks from 89 subjects, making a total of 1,780 sets 

of data, were entered our machine-learning analysis. The data set was divided into 

training and test splits, using five-fold subject-wise stratified cross validation (Tougui 

et al., 2021). Four machine-learning models were trained to perform the lower 

extremity ambulation functional level classification, using the joint angle change of the 

hemiplegic side, the final angle position difference between the hemiplegic and non-

hemiplegic side, and the CMC values (Table 6.6). The sensitivity of the models trained 

by the angle change showed a maximum sensitivity of 0.75 by the SVM model and a 

minimum sensitivity of 0.61 by the DT model. The highest sensitivity and specificity 

were generated by the SVM model, using the CMC values for the classification 

(sensitivity = 0.85; specificity = 0.82). 

 

Table 6.6 Machine-learning classification for lower extremity ambulation 

functioning, according to kinematics information 

By angle change (Hemi initial angle – Hemi final angle) 

Model Sensitivity Specificity 

LG 0.64 0.61 

NB 0.62 0.65 

SVM 0.75 0.73 

DT 0.61 0.59 

By final angle position, difference between hemi and non-hemi  

Model Sensitivity Specificity 

LG 0.71 0.71 

NB 0.69 0.68 

SVM 0.78 0.75 



 

 268 

DT 0.69 0.66 

By CMC   

Model Sensitivity Specificity 

LG 0.83 0.80 

NB 0.72 0.70 

SVM 0.85 0.82 

DT 0.77 0.71 

Note: CMC: Coefficient of multiple correlation, DT: Decision Tree, 

LG: Logistic Regression, NB: Naive Bayes classifiers, SVM: 

Support Vector Machine  

 

A total of 41% of the data captured in the outdoor environment were discarded because 

of noise signals and missing data. Statistical analyses for the outdoor data were not 

performed, due to insufficient power. 

 

6.4 DISCUSSION 

 

We found a significant difference between the bilateral sides in the persons with stroke, 

but not in the healthy participants, in terms of the joint angle changes from the initial 

position to the final position for task completions. The angle change from a joint’s initial 

position to its final position during each task can be interpreted as a reflection of the 

joint’s active range of motion (AROM) for completing the study’s lower extremity tasks. 

The knee flexion and hip flexion AROMs in the healthy adults when performing our 



 

 269 

selected task were 0 to 93.4 degrees and 0 to 72.6 degrees, respectively, while the 

bilateral differences were no more than 3 degrees. Those findings are reflected against 

a significant limitation of the active ranges of motion for the knee flexion and the hip 

flexion in the hemiplegic lower extremity of the stroke participants, compared with 

their AROMs for their non-hemiplegic side, and such limitations in AROMs were also 

detectable by the MMC system. The limitations of the active range of motion on the 

stroke participants’ hemiplegic side could be the result of stroke-induced muscle 

weakness, rigidity, or spasticity (O'dwyer et al., 1996). Hence, it is apparent that the 

MMC system in mobile devices is quite sensitive enough for detecting movement 

limitations in persons with a stroke who have reduced motor ability due to hemiplegia.  

 

We also found that there was a noticeable difference (the mean difference, or MD, 

ranged between 5.0 degrees and 43.9 degrees) in the knee and hip AROMs between the 

hemiplegic side of the stroke participants and the dominant side of the healthy adults. 

This finding is consistent with the suggestions by other researchers that persons with 

stroke are prone to a reduction in their active range of motion, which in turn could affect 

their gait and balance (Beebe & Lang, 2009). We also found that the knee and hip 

AROMs of the hemiplegic side during the tasks done in a standing position were 

significantly different between the stroke participants with lower functioning and those 
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with higher functioning, with a mean difference of 9.8 to 30.9 degrees in their knee 

flexion and 29.5 degrees in their hip flexion angle in our selected tasks. In contrast, no 

significant AROM difference was detected between the unaffected side of the stroke 

participants with the two different functioning levels and the corresponding side of the 

healthy counterparts. This finding suggests that the non-hemiplegic lower extremity of 

the persons with stroke might not exhibit a significant functional difference compared 

with the lower extremity of healthy adults. Our results therefore might imply that the 

AROM data obtained through the MMC system could effectively reflect the disparity 

in functioning of the hemiplegic lower extremity between the stroke participants with 

lower levels of functionality and those with higher levels of functionality. Our results 

provide evidence that an MMC system in mobile devices is sensitive enough to detect 

the reduction in active range of motion experienced by persons with stroke. Thus, the 

MMC system might be able to serve as an effective alternative for quick AROM 

assessment in such patients. 

 

Our comparisons of the angular waveforms for performing the tasks by the left and 

right sides of the participants were represented by the CMC and RMSE values. The 

stroke participants with lower functioning demonstrated the lowest CMC values and 

the greatest RMSE values. In addition to the limitations in their active range of motion 
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for task completion, which is a common deficit after stroke, persons with stroke may 

tend to use compensatory movements to perform required actions (Chen et al., 2003), 

such as using hip abduction or hip rotation actions instead of hip flexion in task 3. 

Clinical observations by therapists are typically employed to identify those 

compensatory movements, which are challenging to quantify objectively (Duncan et 

al., 1994). However, our study has revealed that an MMC system can effectively 

capture these compensatory movements, and the movements are reflected in the angular 

waveforms. It may be that the stroke participants with higher functioning had 

comparatively less motor deficit, so they adopted fewer compensatory movements and 

consequently, there was a higher degree of similarity in terms of the angular waveforms 

between the hemiplegic and non-hemiplegic sides in the higher functioning group. We 

also observed that although the healthy adults demonstrated high CMC values in most 

of the tasks, the CMC values of the knee in task 5 were lower than those in the other 

tasks. Task 5 was a single-leg stand task, while the CMC values here represented the 

comparison of angular waveforms of the raised leg. Healthy individuals might also 

experience leg shaking or leg dropping of their raised leg during task 5. Due to a muscle 

imbalance between the bilateral sides, which is common in healthy adults (Hill et al., 

2023), and the disequilibrium that increases with age (Hobeika, 1999), healthy 

individuals might also generate a rather different angular waveform between their 
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bilateral legs during the single-leg stand task. In that light, comparisons of the bilateral 

differences of only a single task, and particularly of the single-leg stand task, which 

commonly produces bilateral difference even in healthy adults, might not adequately 

reflect the lower extremity function of an individual. Therefore, we suggest that the 

angular waveform generated by the MMC system should be carefully interpreted, and 

an evaluation of the kinematics from a combination of motion capture tasks might be 

necessary for an accurate determination of the lower extremity movements of persons 

with stroke. 

 

The strongest correlation was found between the MFAC levels and the CMC values of 

our selected tasks, while a moderate correlation was found between the FMA-LE scores 

and the CMC values. Instead of the joint angle changes, which reflect active range of 

motion, the CMC values, which reflect the comparison of the overall difference in the 

movement pattern between the hemiplegic limb and the non-hemiplegic limb, showed 

a better correlation with the assessment scores. In our multiple regression analyses, the 

CMC values, instead of the AROM, showed a greater magnitude of the effect to the 

MFAC scale. Despite the limitations in range of motion, the lower extremity deficits in 

the persons with stroke might also be represented in the form of resistance in movement, 

action tremor, or an increase in compensatory movement (Handley et al., 2009). These 
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forms of lower extremity deficits can be demonstrated by the comparison of the overall 

angular patterns of movement captured by the MMC, but they cannot be judged only 

by the form of the AROM. The MFAC is an index of disability, and it reflects the 

person’s overall ambulation independence (Lim et al., 2019), while the FMA-LE scores 

reflect the person’s overall lower extremity performance. Thus, both measures show a 

significant correlation with the movement pattern differences between the bilateral 

sides, as captured by the MMC system. The MMC technology therefore demonstrates 

the advantage of being able to reflect and analyze the individual’s movement patterns, 

in contrast to the traditional manual measurement of range of motion, which can only 

measure the joint angle at one particular point in time. Although the BBS is a scale that 

measures the person’s ability to balance, which involves a combination of elements 

such as muscle coordination, the vestibular system, and psychological factors (Tyson 

et al., 2006), it might not show a strong correlation with solely the lower extremity tasks 

that we selected.  

 

Our four machine-learning models showed the best performance in classification of the 

lower extremity ambulation functioning by using the CMC values, which may offer 

greater sensitivity in the classification of lower extremity functional performance 

compared with AROM values. Because a comparison of joint angle changes reflects 
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only the difference in the AROM between the bilateral sides, a comparison of the 

overall movement patterns of the hemiplegic and the non-hemiplegic sides provides 

more comprehensive information for classifying the subjects’ lower extremity 

ambulation function. The SVM model demonstrated the best performance for 

classification, with a sensitivity of 0.85 or greater. Our results therefore support the 

notion that an MMC, in combination with machine-learning methods, can be adopted 

for lower extremity functional evaluation and can achieve a very satisfactory sensitivity 

(Moro et al., 2020). This result recommends the future adoption of using the kinematic 

data captured by an MMC system during a few sets of motion-capturing tasks for 

classification or quick prediction of lower extremity function in persons with stroke. 

Such a system might therefore facilitate lower extremity motor recovery screening in 

persons with stroke, which could allow therapists to understand more precisely the 

motor conditions of those patients while they are undergoing a rehabilitation program, 

especially during remote rehabilitation, in which progress in motoring is not sufficient 

to meet their rehabilitation needs. Because the traditional manual assessment for 

evaluating lower extremity functioning in persons with stroke involved a large set of 

assessment tasks for determining their functioning abilities, the MMC system may offer 

a viable alternative for assessing lower extremity motor function because of its 

convenient ability to provide kinematic data. Indeed, particularly the CMC values can 
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be used as a predictive marker with high sensitivity for categorizing a stroke patient’s 

functional level as higher or lower, with patients only needing to perform a limited set 

of tasks.  

 

The quality of data captured by the MMC system in the outdoor environment was 

comparatively lower than that in the indoor environment. A possible explanation is that 

the outdoor environments comprised a clustered background with pedestrians passing 

by, and the MMC system tended to misidentify the moving limbs of the pedestrians and 

the tree branches as the limbs of the targeted subjects. The MMC system also lost its 

tracking when the light intensity in the outdoor environment was low, because it failed 

to recognize the body segment of the subjects from a dim image. Knowing that the 

MMC system might capture a significant amount of noise signals in a completely 

unstructured environment, which in turn would affect further motion analysis, we 

conclude that the utilization of the MMC system in the outdoor setting is not preferred. 

We recommend that the MMC be used indoors, in front of a plain wall background, and 

with sufficient light intensity. In addition, a pre-assessment training session for users of 

the MMC system may be essential, to familiarize them with the appropriate MMC data 

capturing procedures, such as the environmental setting and system operations. 
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Our study supports the notion that an MMC system can be used for measuring patients’ 

lower extremity kinematics to evaluate the lower extremity function of persons with 

stroke, in the indoor environment, and its utilization for clinical measurement may even 

be further generalizable to other disease populations. To facilitate transferring to 

healthcare professionals the technology that uses portable MMC systems for remote 

clinical measurements and for telerehabilitation, the development of a user-friendly 

interface design for such a system, including an algorithm for the interpretation of the 

kinematic data, is warranted.  

 

6.4.1 Limitations 

 

This study had certain limitations. First, the study’s sample size was small for training 

and testing the effects of using MMC kinematic data for lower extremity function 

classification in machine-learning models. Second, the lower extremity functional level 

of the stroke participants was not in a balanced ratio––the stroke participants with 

higher functioning and those with lower functioning were not in equal proportion. In 

addition, only five tasks were selected, in order to conduct a preliminary investigation 

of the kinematic measurements by using the MMC system in mobile devices. In the 
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future, studies may wish to include a greater variety of motor tasks for kinematic 

analyses. 

 

6.5 CONCLUSIONS 

 

This study examined the use of a customized markerless motion-capturing system for 

measuring and evaluating lower extremity kinematics. We found significant differences 

in the joint angle changes between the hemiplegic and non-hemiplegic sides of stroke 

participants performing specific tasks, as well as between stroke participants and 

healthy participants. The stroke participants also demonstrated lower CMC values in 

terms of angular waveform comparisons between bilateral limbs. Our SVM model used 

CMC values to classify the lower extremity functional performance of the stroke 

participants into lower-level functioning and higher-level functioning individuals, and 

in that regard it achieved very high sensitivity and specificity. Our study’s findings 

support use of an MMC system in mobile devices to assess lower extremity function in 

persons with stroke. Further research is now warranted to explore such a system’s 

application in home-based telerehabilitation, with a user-friendly interface and a wider 

range of motor tasks. 
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Chapter 7  

 

Conclusion 

 

 

ABSTRACT 

 

This chapter concludes the studies that we have conducted in this thesis, “The 

application of markerless motion capture (MMC) in patients with stroke,” and we 

propose future directions for the application of MMC in rehabilitation. 
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In this chapter, we summarize and highlight the key findings of the research studies in 

this thesis. Implications for clinical use of MMC technology, limitations of the thesis, 

and recommendations for future research are discussed.  

 

This thesis revealed that the development and application of markerless motion capture 

(MMC) technology using a mobile device is useful in terms of sensitivity in measuring 

the upper and lower limb kinematics of patients with stroke (Chapter 5 and Chapter 6). 

The findings reveal that the functioning ability of patients with stroke can be classified 

by machine learning models with satisfactory accuracy in terms of sensitivity and 

specificity using the kinematic data captured by our MMC system using an iPad Pro. 

Our systematic review shows that MMC technology can reliably measure the kinematic 

movement of patients with stroke (Chapter 2). It is suggested that MMC technology is 

reliable, accurate, and valid for clinical measurement, and hence has potential to be 

utilized in telerehabilitation. Besides the investigation on the reliability and validity of 

the MMC system we used, in this thesis we suggest that in future, researchers should 

work further on exploring the potential and enhancing the generalizability of MMC 

technology for telerehabilitation in the home setting.  
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One of the factors that affects the generalizability of MMC technology in 

telerehabilitation its usability. The current application of MMC technology for clinical 

measurement in patients with stroke was mostly conducted in structured laboratory or 

clinical settings, and the operation of the MMC system was mostly handled by 

researchers. While the concept of telerehabilitation emphasizes independence in 

conducting rehabilitation programs in the home setting, the MMC system should allow 

patient interaction in order to enable them to capture their performance, receive 

feedback from the system, and transmit the captured data to healthcare professionals 

for further interpretation. To facilitate the self-operation of an MMC system by patients, 

we suggest the design of a user-friendly interface. The interface should be clear and 

easy to understand, which would make it intuitive to interact with. As patients with 

stroke might suffer from different degrees of motor or cognitive deficits, the user 

interface of the MMC system should be customized to minimize the cognitive load on 

the users and ensure that they can access and use the system effectively. Future study 

on the user interface design for telerehabilitation MMC systems is warranted to 

facilitate convenient use. To facilitate interoperability in telerehabilitation, future 

development should be focused on ensuring the MMC system can be integrated with 

wearables and smart home health technologies in the home. 



 

 287 

 

Another gap to be addressed is the analysis and evaluation of the kinematic data. Most 

of the current research relies on the use of algorithms or processors in external software 

for kinematic data analysis. The data post-processing and analysis generally requires a 

long processing time that does not favor MMC’s adoption in telerehabilitation. If an 

MMC system cannot generate an immediate motion analysis result report, users might 

lose motivation to use it continuously at home since the system cannot provide them 

with immediate feedback for exercise performance evaluation. Over and above, it being 

an accurate tracking system, future development of an MMC system that enables quick 

processing and analysis of kinematic data would be valuable for the adoption of the 

MMC system in telerehabilitation programs, allowing therapists to customize and adapt 

training according to users’ impairments.  

 

As our study revealed that the use of MMC systems in an unstructured outdoor 

environment frequently leads to poor kinematic data quality, we suggest that 

instructions on the preparation of the environment—such as removal of unnecessary 

items and avoiding that others enter the capturing areas—have to be given to users 

before they utilize the MMC system for motion capture. Enhancement of image 

extraction and segmentation of data is also necessary to filter and remove unwanted 
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artifacts in order to enhance the reliability and accuracy of the data and hence facilitate 

the use of the MMC system in different environments. 

 

The current application of the MMC system in our study primarily focused on capturing 

the movement of the upper and lower limbs independently. Since daily activities often 

involve the use of both upper and lower limbs, we recommend that future task selection 

for motion capture should emphasize tasks that require the combination of both limbs. 

This approach would provide a more accurate reflection and analysis of motor 

performance in diseases populations during their functional activities in daily life. 

 

Last but not least, the systematic reviews and meta-analysis done in this thesis suggest 

that MMC technology has the potential for application in the case of patients with stroke 

as an assessment tool to assist in the monitoring of their progress in motor recovery, as 

well as in telerehabilitation programs to continuously record and evaluate their home 

training exercise performance.  

 

In conclusion, our study revealed that our customized MMC system using an iPad Pro 

is innovative and original, and can be used in home-based treatment and 
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telerehabilitation for intra-subject measurements because of its good reliability, low 

cost, and portability. Our application of the customized MMC system using an iPad Pro 

also revealed that MMC technology is sensitive in detecting the bilateral difference in 

both upper and lower extremity measurement. We found that the background in an 

unstructured outdoor environment could lead to a significant amount of noise and 

missing data. Nevertheless, machine learning models are able to classify the 

functioning level of patients with stroke into higher and lower functioning groups using 

the kinematic data captured by the MMC system. We therefore suggest that the MMC 

system using smartphone or tablets combined with a machine learning algorithm has 

the potential to be used in future for motor performance measurement of patients with 

stroke, particularly for telerehabilitation. Further development is warranted to improve 

its capturing quality in unstructured environments as well as to facilitate its efficiency 

in data post-processing and analysis. Further study might shed light on the design of a 

user-friendly MMC system interface in order to increase its generalizability and 

interoperability for rehabilitation in future. 
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Appendix 1. Chinese Consent form for the pilot study on the Validity and 

Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion 

Capture (MMC) System 

香港理工大學康復治療科學系 

科研知情同意書 

 

 

科研題目 

基於平板電腦的無標記式動作捕捉系統於上肢關節活動幅度測量的效度及信度

研究 

 

 

科研機構 

香港理工大學康復治療科學系 

 

科研人員 
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林頴彤女士(香港理工大學康復治療科學系博士研究生) 

方乃權教授 (香港理工大學康復治療科學系教授) 

 

您現被邀請參加此研究計劃。這項研究已獲香港理工大學康復治療科學系部門科

研委員會批准。在您決定之前，重要的是您要了解為什麼要進行此研究計劃及它

將涉及的內容。請仔細閱讀以下信息，若有需要您亦可與他人討論。請您經過慎

重考慮後才決定您是否願意參加。 

 

科研目的 

無標記式動作捕捉系統能減省進行動作追蹤時的準備工序並有利於捕捉及分析

用家最自然的動態。有文獻建議無標記式動作捕捉系統可於康復治療上加以應用，

用以監測復康人士的康復進度及活動能力。基於平板電腦的無標記式動作捕捉系

統是一種新發展的動作捕捉技術，其簡易的設定程序和介面或有利於此技術於康

復訓練及評估上廣泛應用。目前關於平板電腦上的無標記式動作捕捉系統於動作

測量的準確度及可信度之研究並不常見，而其應用於復康人士上肢活動幅度測量

的研究則更為缺乏。此研究專案目的為探討基於平板電腦的無標記式動作捕捉系

統於測量健康人士及中風人士的上肢活動幅度之有效度及可信度。 
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科研程序 

本研究將有共計 15 名無病徵人士及 15 名患有腦中風的患者參與。每位參與者

會於一週內進行共兩輪實驗環節，兩個環節的間距大概為三天。兩環節的實驗內

容均為一致，此舉為驗證無標記式動作捕捉系統的再測信度。 

 

在兩個實驗環節中，研究人員會於受試者身上貼上反光標記，受試者需依照研究

人員指示擺出四個姿勢供動作捕捉系統紀錄，而研究人員會以測角儀分別量度其

肩膊及手肘的關節活動幅度量度。其後研究員會指示受試者進行四組上肢動作，

光學動作捕捉系統及基於平板電腦的無標記式動作捕捉系統會同時紀錄受試者

的每一組動作。 

 

兩節實驗所收集到的上肢活動數據將加以分析及對比。 

 

對參與人士和社會的益處 

此研究的結果將提升基於平板電腦的無標記式動作捕捉系統的程式及有助檢視

此系統於中風復康者上肢活動評估的可信性及有效性。 
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潛在危險性 

零風險 

 

資料保密 

有需要的話，每個研究參加者都有權利獲得其個人的數據以及公開報告的研究結

果。 

根據香港法律（特別是「個人資料（私隱）條例」，第 486 章），您有權對您個人

資料進行保密，如在本項研究中或與本項研究有關的個人資料的收集、保管、保

留、管理、控制、使用（分析或比較）、在香港內外轉讓、不披露、消除和/或任

何方式處理。如有任何問題，您可以諮詢個人資料私隱專員公署或致電到其辦公

室（電話號碼：2827 2827），以適當監管或監督您個人資料保護，以便您能完

全認識和瞭解確保遵守法律保護隱私資料的意義。 

同意參與該項研究，您明確作出以下授權: 

• 為了監督該項研究，授權主要研究者及其研究團隊和研究倫理委員會根據

本項研究和本知情同意書規定的方式獲得、使用並保留您的個人資料。 
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• 為了檢查和核實研究資料的完整性、評估研究協定與相關要求的一致性，

授權相關的政府機構（如香港衛生署、醫院管理局）可獲得您個人資料。  

自願参加 

您參加這項研究計劃完全是自願。您可以選擇不參加或可以在任何時候停止參與

這研究計劃，而不會對您現在及日後所接受的的醫療進行任何更改或失去。 

 

新信息 

假如出現有關這研究的任何新資訊，而這些資訊會影響您繼續參與研究的決定，

則會及時告知您。在研究期間，假如出現研究程序更改或會影響您健康或參與研

究的意願的重要結果，您將獲得通知。您可能需要簽署新的知情同意書，以表示

您已獲知會有關這研究的新資訊。 

 

科研之退出與終止 

您可自由決定是否參加本研究；研究過程中也可隨時撤銷同意，退出研究，不需

任何理由，且不會引起任何不愉快或影響日後的研究參與。研究負責人亦可能於

必要時中止該研究之進行。如果沒有提出特別要求銷毀退出前所收集的數據，我

們將會繼續使用。參加者會被給予足夠的時間去考慮是否參與這項研究。 
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費用及補償 

完成本次研究可獲一百元超市禮券作為報酬。 

科研結果 

科研結果可能會在醫學期刊上或在醫學會議上發表。可識別您身份的資料不會出

現於任何與此項研究相關的公開發表報告。 

聯絡人 

如果需要進一步資訊，您可致電聯絡此專案負責人林頴彤博士研究生(Winnie) 

9683          或香港理工大學康復治療科學系方乃權教授 27666716 。若您本人對

此研究人員有任何投訴，可以聯繫鍾小姐（香港理工大學康復治療科學系部門科

研委員會秘書），電話：27664329。 

您參與此研究課題需要您本人簽署並保管一份同意書副本。 
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科研知情同意書 

 

 

科研題目 

基於平板電腦的無標記式動作捕捉系統於上肢關節活動幅度測量及分析的效度

及信度研究 

 

1. 我確定我已細閲及明白上述科研資料書的具體情況。 

2. 我同意將此科研中收集的數據用於有關的研究。我允許將此科研中的數據

用於出版文獻。我了解，我的身份將獲得保密處理。任何共享和發布的數

據都將完全匿名，因此我不會被識別。我亦允許香港理工大學康復治療科

學系部門科研委員會及有關法定機構在合適的條例及法例容許下及在不

侵犯我的私隱情況中，直接翻查我的研究數據以核實有關的臨床研究資料。 

3. 我明白我的參與是自願的，我並可以隨時自由退出而不需任何理由，我現

在及日後所接受的醫療護理或合法權利不受到影響。 

4. 我明白參加此研究課題的潛在危險性以及本人的資料將會保密及不會洩

露給與此研究無關的人員。 

5. 我同意參與以上科研計劃。 
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6. 我明白我會獲得此同意書副本一份。 

 

 

     

參加者姓名  參加者簽署   日期 

     

見證人姓名 

（若適用） 

 見證人簽署  日期 

     

取得同意書研究員姓名  簽署    日期 
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Appendix 2. Chinese Consent form for the study on the upper and lower 

extremity kinematic measurement using markerless motion capturing (MMC) in 

persons with a stroke: A cross-sectional experimental study 

香港理工大學康復治療科學系 

科研知情同意書 

 

 

科研題目 

基於無標記式動作捕捉系統於中風康復者及健康人士的動作測量及分析 

 

科研機構 

香港理工大學康復治療科學系 

 

科研人員 

林頴彤(香港理工大學康復治療科學系博士研究生) 

方乃權教授 (香港理工大學康復治療科學系教授) 
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您現被邀請參加此研究計劃。這項研究已獲香港理工大學康復治療科學系部門科

研委員會批准。在您決定之前，重要的是您要了解為什麼要進行此研究計劃及它

將涉及的內容。請仔細閱讀以下信息，若有需要您亦可與他人討論。請您經過慎

重考慮後才決定您是否願意參加。 

 

科研目的 

無標記式動作捕捉系統能減省進行動作追蹤時的準備工序並有利於捕捉及分析

用家最自然的動態。有文獻建議無標記式動作捕捉系統可加以應用於康復治療，

用以監測復康人士的康復進度及活動能力。基於平板電腦的無標記式動作捕捉系

統是一種新發展的動作捕捉技術，其簡易的設定程序和介面或有利於此技術於康

復訓練及評估上廣泛應用。目前關於平板電腦上的無標記式動作捕捉系統於動作

測量的準確度及可信度之研究並不常見，而其應用於復康人士活動幅度測量的研

究則更為缺乏。此研究專案目的為探討無標記式動作捕捉系統於測量健康人士及

中風康復者的運動動作 ，以及其運動數據對判斷中風人士的肢體功能的有效度。 

 

 

科研程序 
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本研究將招募及篩選共計 50 名健康成年人士及 50 名中風康復者參與。每位中

風康復者會於一天內進行上下肢功能評估及兩節肢體運動捕捉實驗；而健康人士

則毋需進行肢體功能評估 ，會會參與兩節肢體運動捕捉實驗。第一節肢體運動捕

捉實驗會於理工大學實驗室內進行 ，而於第節節肢體運動捕捉實驗中，參與者將

被隨機分派到理工大學平台或理工大學 Z 座平台花園，進行第節次肢體運動量

度。兩次肢體運動捕捉實驗內容均為一致並且將於同一天內進行 ，此舉為驗證無

標記式動作捕捉系統在實驗室及開放環境下的測量表現。 

 

在肢體功能評估環節中，研究人員將以評估量表分別衡量中風康復者上下肢的功

能級別，符合資格的參與者會再進行兩套上肢功能評估及/或兩套下肢功能評估 ，

繼而再進入肢體運動捕捉實驗環節。 

 

在兩節肢體運動捕捉實驗中，參與者須依照研究人員指示作出七組上肢動作及/

或四組下肢動作 ，每組動作重複五次，放置在參與者身前及兩側的基於平板電腦

的無標記式動作捕捉系統會同步紀錄受試者的每一組動作。 

 

肢體功能評估需時大概四十五分鐘 ，而兩節肢體運動捕捉實驗則各大約耗時節十

分鐘。故中風康復者約需總共九十五分鐘完成整個實驗，而健康人士則需約四十
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分鐘完成整個實驗。以上實驗所收集到的數據將加以分析及對比。而被試者在完

成實驗後將獲得 100 元超市代金券作為交通津貼。 

 

 

對參與人士和社會的益處 

此研究的結果將有助檢視基於平板電腦的無標記式動作捕捉系統將來應用於中

風復康者肢體活動評估的有效性及可能性，亦可為日後基於平板電腦的家用遙距

復康監測系統提供研究數據支持。 

 

 

潛在危險性 

在下肢動作運動捕捉實驗中，參與者在進行單腳站立 、單腳 膝 、腿及及身體前

傾動作時或有失去平衡及跌倒的風險 。因此會有於柏格氏平衡量表中取得 45分

或以上的參與者方會被邀請進行下肢動作捕捉實驗 ，以確保參與下肢動作捕捉實

驗者不具備高失去平衡的風險。 

研究將會在鋪有乙烯基地板的實驗室以及鋪有防滑地墊的戶外空間進行 ，以防參

與者在進行下肢動作期間滑倒。研究人員會在動作捕捉實驗期間為參與者提供現
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場監察 ，中風康復者在必要時亦可以拐杖輔助平衡 ，以減參參與者在實驗期間跌

倒或受傷的風險。而研究負責人亦已為所有參與者購買保險。 

 

 

資料保密 

有需要的話，每個研究參加者都有權利獲得其個人的數據以及公開報告的研究結

果。 

根據香港法律（特別是「個人資料（私隱）條例」，第 486 章），您有權對您個人

資料進行保密，如在本項研究中或與本項研究有關的個人資料的收集、保管、保

留、管理、控制、使用（分析或比較）、在香港內外轉讓、不披露、消除和/或任

何方式處理。如有任何問題，您可以諮詢個人資料私隱專員公署或致電到其辦公

室（電話號碼：2827 2827），以適當監管或監督您個人資料保護，以便您能完

全認識和瞭解確保遵守法律保護隱私資料的意義。 

同意參與該項研究，您明確作出以下授權: 

• 為了監督該項研究，授權主要研究者及其研究團隊和研究倫理委員會根據

本項研究和本知情同意書規定的方式獲得、使用並保留您的個人資料。 
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自願参加 

您參加這項研究計劃完全是自願。您可以選擇不參加或可以在任何時候停止參與

這研究計劃，而不會對您現在及日後所接受的的醫療進行任何更改或失去。 

 

新信息 

假如出現有關這研究的任何新資訊，而這些資訊會影響您繼續參與研究的決定，

則會及時告知您。在研究期間，假如出現研究程序更改或會影響您健康或參與研

究的意願的重要結果，您將獲得通知。您可能需要簽署新的知情同意書，以表示

您已獲知會有關這研究的新資訊。 

 

科研之退出與終止 

您可自由決定是否參加本研究；研究過程中也可隨時撤銷同意，退出研究，不需

任何理由，且不會引起任何不愉快或影響日後的研究參與。研究負責人亦可能於

必要時中止該研究之進行。如果沒有提出特別要求銷毀退出前所收集的數據，我

們將會繼續使用。參加者會被給予足夠的時間去考慮是否參與這項研究。 

 

費用及補償 
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完成本次研究可獲一百元超市禮券作為報酬。 

科研結果 

科研結果可能會在醫學期刊上或在醫學會議上發表。可識別您身份的資料不會出

現於任何與此項研究相關的公開發表報告。 

聯絡人 

如果需要進一步資訊，您可致電聯絡此專案負責人林頴彤博士研究生(Winnie) 

9683          或香港理工大學康復治療科學系方乃權教授 27666716 。若您本人對

此研究人員有任何投訴，可以聯繫鍾小姐（香港理工大學康復治療科學系部門科

研委員會秘書），電話：27664329。 

您參與此研究課題需要您本人簽署並保管一份同意書副本。 
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科研知情同意書 

 

 

科研題目 

基於無標記式動作捕捉系統於中風康復者及健康人士的動作測量及分析 

 

7. 我確定我已細閲及明白上述科研資料書的具體情況。 

8. 我同意將此科研中收集的數據用於有關的研究。我允許將此科研中的數據

用於出版文獻。我了解，我的身份將獲得保密處理。任何共享和發布的數

據都將完全匿名，因此我不會被識別。我亦允許香港理工大學康復治療科

學系部門科研委員會及有關法定機構在合適的條例及法例容許下及在不

侵犯我的私隱情況中，直接翻查我的研究數據以核實有關的臨床研究資料。 

9. 我明白我的參與是自願的，我並可以隨時自由退出而不需任何理由，我現

在及日後所接受的醫療護理或合法權利不受到影響。 

10. 我明白參加此研究課題的潛在危險性以及本人的資料將會保密及不會洩

露給與此研究無關的人員。 

11. 我同意參與以上科研計劃。 

12. 我明白我會獲得此同意書副本一份。 
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參加者姓名  參加者簽署   日期 

     

見證人姓名 

（若適用） 

 見證人簽署  日期 

     

取得同意書研究員姓名  簽署    日期 



308 

Appendix 3. Journal permission for reusing published article in Chapter 2 
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Appendix 4. Journal permission for reusing published article in Chapter 3 
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Appendix 5. Journal permission for reusing published article in Chapter 4 
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Appendix 6. Ethical approval memo for the pilot study on the Validity and 

Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion 

Capture (MMC) System 
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Appendix 7. Ethical approval memo for the study on the upper and lower 

extremity kinematic measurement using markerless motion capturing (MMC) in 

persons with a stroke: A cross-sectional experimental study 




