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Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in various tasks

such as node classification, link prediction, and anomaly detection. However, these

applications are vulnerable to adversarial attacks, especially poisoning attacks, where

the attacker can modify the graph’s structure and features at the model training

stage to degrade the model’s performance. Despite the existence of such attacks,

the efficient utilization of the attacker’s budget, in terms of the number and type

of modifications allowed, remains an open challenge. This thesis aims to address

this challenge by developing cost-aware poisoning attack strategies against GNNs

that maximize the degradation of the model’s performance while adhering to a con-

strained attack budget.

We begin by identifying the key factors that contribute to the effectiveness of poi-

soning attacks on GNNs, focusing on the strategic modification of graph structure.

We then propose a set of novel attack methodologies that are designed to exploit

these factors efficiently, ensuring that each modification contributes significantly

to the overall impact on the GNN’s performance. Our approaches are validated

through extensive empirical evaluations on standard benchmarks for node classifica-

tion, link prediction and anomaly detection tasks, demonstrating their superiority

over existing attack strategies in terms of cost-effectiveness and impact.

Building on our empirical findings, we formalize the problem of cost-aware ad-

versarial attacks on GNNs, deriving theoretical bounds on the minimum number of

modifications required to achieve a desired level of performance degradation. This
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formalization not only provides a theoretical foundation for our empirical strate-

gies but also offers insights into the inherent vulnerabilities of GNNs to poisoning

attacks.

In summary, this thesis contributes to the field of adversarial machine learning

by introducing a comprehensive framework for cost-aware poisoning attacks against

GNNs. Our work not only advances the understanding of GNN vulnerabilities but

also provides practical tools and theoretical insights to guide the development of

more robust GNN models in the face of poisoning threats.
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Chapter 1

Introduction

1.1 Background and Motivations

Graphs are a ubiquitous data structure employed to represent a wide array of data

from diverse real-world applications. They are highly effective in modeling both

objects and the intricate interactions between them. For instance, consider a graph

representing friendships among Facebook users: such a graph can encompass 2.9

billion nodes and over 490 billion edges.

Graph Neural Networks (GNNs) represent a novel and increasingly relevant ap-

proach to the application of machine learning on structured data. Rooted in the con-

cept of generalizing neural network methodologies to effectively handle data struc-

tured as graphs, GNNs have gained significant traction in the last decade, owing to

their unique capabilities in managing complex, irregularly structured data. In con-

sumer applications, Graph Neural Networks (GNNs) enhance personalized search

and recommendations for customers on e-commerce platforms such as Alibaba and

social media platforms like Pinterest by analyzing user-user and user-item interac-

tions. In advanced sciences, researchers utilize graphs to model complex systems,

such as physics simulations, and employ GNNs to uncover the fundamental laws

governing celestial motion. GNNs also contribute to societal well-being, with appli-

1



cations ranging from detecting fake news to discovering drugs for treating COVID-

19.

The primary characteristic of GNNs lies in their ability to leverage both node

and edge information in graphs. By applying transformational functions and aggre-

gating feature information from neighboring nodes, GNNs can generate a rich and

comprehensive representation of nodes and edges, effectively capturing the topolog-

ical intricacies inherent in graph structures. Numerous architectures and methods

have been proposed to enhance the performance of GNNs from various angles (Y.

Liu, K. Ding, et al. 2023), such as boosting their expressive capabilities (Xu et al.

2019), addressing over-smoothing problems (D. Chen et al. 2020) and deepening

their architecture (G. Li et al. 2021), among others. Nonetheless, in domains where

accuracy alone is not the sole objective, other considerations come into play. For

instance, in GNN-based anomaly detection systems, it’s vital to ensure robustness

against adversarial attacks (K. Zhao et al. 2021). Robustness refers to the ability of

systems to perform reliably under various conditions. In the context of Graph Neural

Networks (GNNs), a robust GNN maintains model accuracy even when faced with

perturbations, such as malicious modifications to the graph structure, like adding or

deleting edges. Recent studies (Ju et al. 2023) have shown that GNNs may produce

suboptimal results when the graph structure is altered. For example, attackers tar-

geting a GNN used for node classification tasks can insert or delete nodes to their

original graphs, thereby changing the classification labels output by the GNNs (B.

Wang, Pang, et al. 2023). These security risks are increasingly significant as GNNs

are applied to critical tasks. Therefore, it is crucial to study adversarial attacks to

fully understand the vulnerabilities of existing GNN systems and develop effective

defense strategies to enhance their robustness.

Adversarial attacks encompass various types, such as poisoning attacks, evasion

attacks, and backdoor attacks. In practical scenarios, an attacker may gather differ-

ent kinds of information about the target GNN model, including model parameters,
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architectures, and training or testing data. Based on the type and amount of in-

formation obtained, attacks are classified into three categories: white-box attacks,

black-box attacks, and grey-box attacks. In a white-box attack, attackers have full

access to the data and the entire target GNN, including its architecture, parameters,

and gradients. Conversely, in a black-box attack, attackers know nothing about the

target GNN model and can only send queries to it. In a grey-box attack, the attacker

has no knowledge of the classification model and its trained weights but possesses

the same knowledge about the data as the classifier.

An attackers capability is also defined within the threat model. Most exist-

ing attacks propose injecting perturbations into graph data. Specifically, there are

several types of perturbations, including altering the graph structure (adding/delet-

ing/rewiring edges), modifying node attributes, and injecting nodes.

In this thesis, we primarily focus on grey-box poisoning structure attacks for node

classification, link prediction and anomaly detection tasks on benchmark datasets.

Poisoning attacks target the training phase of GNN model development. Attackers

attempt to modify the training graphs of a target GNN, leading to the creation of

a compromised model with reduced performance. Poisoning attack against GNNs

has been one of the common considerations (Y. Sun et al. 2020; Tian et al. 2022).

Even only slight, deliberate perturbations of an instance, also known as adversarial

perturbations/examples, can lead to wrong predictions. Such negative results signif-

icantly hinder the applicability of these models, leading to unintuitive and unreliable

results, and they additionally open the door for attackers that can exploit these vul-

nerabilities. For example, in anomaly detection applications, network traffic can

be represented as graph data (i.e., network traffic graphs). GNNs have become a

popular tool for analyzing traffic behavior and identifying abnormal data. However,

an attacker can easily modify these traffic graphs, raising concerns about the GNNs

robustness in anomaly detection. Specifically, attackers can execute various types

of adversarial attacks targeting different phases of GNN development. For instance,
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poisoning attackers can manipulate the exploitation code embedded in the traffic

samples and poison the training data for the anomaly detector if their samples are

gathered and used by the detector developer.

Currently, several studies explore potential poisoning attacks on applications like

node classification (Daniel et al. 2019) and link prediction (Waniek et al. 2018). For

instance, Metattack (Daniel et al. 2019) targets graph neural networks during train-

ing for node classification by perturbing the discrete graph structure. It employs

meta-gradients to address the bilevel problem inherent in training-time attacks,

treating the graph as a hyperparameter to optimize. However, Metattack does not

account for the differences between nodes, assigning equal weights to all selected

nodes’ connected edges. This results in some modified edges failing to significantly

degrade the performance of the graph neural networks, thus only reflecting limited

vulnerabilities of current GNNs. This inefficiency, termed as the wastage of attack

budget, arises when an attacker alters an edge connecting nodes that are either

already misclassified or highly resistant to misclassification. Consequently, no addi-

tional nodes are misclassified due to the negligible impact of the edge modification

on already misclassified nodes or the robust nature of certain nodes.

While some studies have attempted to address this issue, challenges remain.

For example, Liu et al. (Zihan Liu, Luo, Lirong Wu, Zicheng Liu, et al. 2022)

demonstrated that cross-entropy loss tends to generate higher gradients for edges

connected to nodes with low ground truth confidence, indicating these nodes may

have been misclassified. They proposed the GraD method, which redesigns the

cross-entropy loss to generate low gradients for nodes with low confidence. However,

this method is only effective for cross-entropy loss, limiting its applicability if the

attack loss function changes. Wang et al. (B. Wang, Pang, et al. 2023) explored

giving different weights to nodes based on their certified robustness size, where

larger sizes indicate more robust nodes. They assigned higher weights to nodes with

smaller certified sizes, ensuring these nodes are prioritized in attacks. Although this
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method improves the attack success rate by reallocating the attack budget, it is

time-consuming to compute the certified size, making it inefficient for practical use.

IGA (J. Chen et al. 2020) is a link prediction adversarial attack that uses gradient

information to implement an iterative attack strategy. Unfortunately, this method

faces similar issues as Metattack, with some edges failing to effectively degrade

link prediction performance. To date, no studies have successfully addressed these

issues in existing link prediction attack methods. Furthermore, there has been a

lack of sufficient research investigating poisoning attacks on graph neural networks

for anomaly detection tasks. Current studies only investigate poisoning attacks on

graphs against conventional anomaly detector (Zhu, Lai, et al. 2022; Lai et al. 2023),

or focus on black-box settings (X. Zhou et al. 2022) or evasion attacks (Venturi et al.

2024). Our work is the first to design poisoning attack algorithms specifically for

graph neural network-based anomaly detection under a gray-box setting, marking a

significant advancement in this field.

Our motivation is to build a general budget-aware poisoning attack framework

for node classification, link prediction, and anomaly detection applications. This

framework should prioritize the allocation of the budget to important nodes and

edges that significantly impact the prediction accuracy of GNNs while seamlessly

integrating with existing attack algorithms and maintaining attack efficiency. How-

ever, we need to address two main challenges:

• During the attack process, the graph structure dynamically changes. This

means the importance of different nodes and edges for the graph neural net-

work’s predictions (e.g., degree) is constantly shifting. For link prediction

tasks, the significance of edges also fluctuates. Therefore, we need to dynam-

ically adjust the weights for different nodes and edges throughout the attack

process.

• The framework must be adaptable to these three applications and various

primary attack losses while preserving the effectiveness of the attack algorithm.
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Figure 1.1: The overview of the proposed Cost Aware Poisoning Attack Framework

Our ultimate goal is to develop a cost-aware framework that can be applied to

existing structure poisoning attacks. This will enable more efficient use of the attack

budget and enhance the overall performance of these poisoning attacks.

1.2 Thesis Contributions Overview

We establish our study by investigating a cost-aware poisoning framework to allo-

cate budgets for nodes and edges in node classification, link prediction, and anomaly

detection applications with different priorities. This approach ensures that the bud-

gets are effectively used to identify the vulnerabilities of GNNs. Figure 1.1 shows the

pipeline of our approach. Firstly, we design the framework for node classification.

We build upon the classical node classification poisoning attack algorithms (Daniel

et al. 2019) and integrate our framework to improve their performance. We rank the

importance of nodes for graph neural network predictions according to their distance

from the decision boundary (margins). As attackers, we first allocate the attack

budget to nodes near the decision boundary, which are easier to attack and can sig-

nificantly degrade the GNNs’ performance under a limited budget. This approach

simulates the attacker’s objectives in real scenarios. We achieve this by assigning

different weights to nodes based on their margins. To address the dynamic nature of
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the graph structure, we map the margins to weights using a designed function and

incorporate it into the attack objective. The margins of the nodes are recalculated

in each attack iteration, and the weights for different nodes are updated accordingly.

Nodes with higher weights are allocated the budget first. Our framework is effective

for various attack objectives in our experiments. Since margin computation is fast,

this framework does not affect the attack efficiency of the algorithms.

Next, we extend our cost-aware framework to the application of link predic-

tion to formulate a budget-efficient poisoning attack, named MetaLinkAttack. Met-

aLinkAttack assigns different weights to edges based on their margins and modifies

the edges that generate the largest gradient during the training stage to reduce

the link prediction accuracy of GNNs to the maximum extent, based on the IGA

algorithm (J. Chen et al. 2020). MetaLinkAttack, with the cost-aware poisoning

framework, further improves IGA’s performance.

Finally, we design a poisoning attack for graph neural networks-based anomaly

detection tasks called MetaAD. This method aims to allow anomaly nodes to bypass

detection using the least budget. Specifically, we first allocate the budget to anomaly

nodes with small margins (near the decision boundary) and then distribute the

remaining budget to the other anomaly nodes. Our method demonstrates better

attack performance compared to the Nettack framework (Zügner et al. 2018) in

anomaly detection scenarios.

By implementing our cost-aware framework, we ensure that the attack bud-

gets are allocated efficiently, enhancing the overall effectiveness of poisoning attacks

across different applications.

The key contributions of this dissertation are summarized as follows:

• We introduce a Cost-Aware Poisoning Attack Loss Framework (CA-attack) (Han

et al. 2024) to improve the allocation of the attack budget and maximize the

impact of the poisoning attack against GNNs for node classification tasks.

Specifically, we dynamically reweight the nodes according to their classifica-
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tion margins in the attack loss. This means that the weights of the nodes are

adjusted during the optimization process of the attack objective.

• We generalize our cost-aware poisoning attack loss framework to the link pre-

diction task and propose MetaLinkAttack, a budget-efficient poisoning attack

for graph neural network-based link prediction.

• We apply our cost-aware poisoning attack loss framework to anomaly detection

task and propose the MetaAD, a budget-efficient poisoning attack for graph

neural network based anomaly detection.

• Through rigorous empirical assessments on three datasets, we demonstrate

that CA-attack, MetaLinkAttack and MetaAD improve existing methods,

highlighting its potential as a plug-and-play solution for various graph poi-

soning attacks.

1.3 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 provides a comprehensive literature review of graph neural networks

and related applications of poisoning attacks against them. It covers the latest stud-

ies on poisoning attacks targeting node classification, link prediction, and anomaly

detection. We offer a detailed analysis to highlight the development of current re-

search and identify their shortcomings.

Chapter 3 introduces the Cost-Aware Poisoning Attack (CA-Attack) framework,

demonstrating its integration with existing attack strategies and its enhancement of

poisoning attack performance in node classification tasks.

Chapter 4 extends the theoretical analysis of our Cost-Aware Poisoning Attack

framework to link prediction and anomaly detection. We explore the application

of our framework to improve poisoning attack performance in these areas, showing
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that it enhances attack effectiveness for both link prediction and anomaly detection

across various attack losses.

Chapter 5 presents experimental results on the performance of our framework in

node classification, link prediction, and anomaly detection. The experiments demon-

strate that our framework can be effectively used in these applications, establishing

it as a general framework for gradient-based poisoning attacks against graph neural

networks.

Chapter 6 summarizes our contributions and the limitations of this thesis.
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Chapter 2

Literature Review

This thesis aims to investigate a budget-efficient framework for implementing cost-

aware poisoning attacks against graph neural networks. To this end, we design our

framework based on current classical gradient-based grey-box attack methods, creat-

ing a cost-aware approach by mapping nodes’ or edges’ margins to weights, thereby

assigning different priorities to various nodes and edges. This chapter presents a re-

view of the development of current graph neural network algorithms and poisoning

attack methods for node classification, link prediction, and anomaly detection.

2.1 Graph Neural Networks

Graph neural networks (GNNs) have emerged as a powerful paradigm for analyzing

data with inherent graph structures, where the examination of individual nodes is

greatly enhanced by considering the information from their neighbors (T. Kipf et al.

2016). This framework has been successfully applied across various domains, demon-

strating its versatility and effectiveness. For instance, in recommender systems (W.

Fan, Y. Ma, Q. Li, Y. He, Y. E. Zhao, et al. 2019), GNNs have significantly im-

proved the personalization of recommendations by capturing the intricate user-item

interaction networks. In computer vision (G. Li et al. 2021), they have facilitated

advancements in image recognition by interpreting contextual relationships within
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visual data. Moreover, in drug discovery (Duvenaud et al. 2015), GNNs have proven

instrumental in identifying novel therapeutic molecules by decoding complex molec-

ular structures.

Among the various GNN architectures, the Graph Attention Network (GAT) (Vel-

ickovic et al. 2017), also referred to as GAN, represents a significant advancement in

processing graph-structured data. GATs leverage masked self-attentional layers to

overcome the limitations of previous methods that relied on graph convolutions or

their approximations. By stacking these layers, GATs can implicitly assign different

weights to nodes within a neighborhood, enabling a focus on relevant local features

without the need for costly matrix operations or prior knowledge of the graph’s

structure. This capability addresses several significant limitations of spectral-based

graph neural networks and renders GATs suitable for both inductive and transduc-

tive learning tasks.

GraphSAGE (Hamilton et al. 2017) is another notable GNN framework that

exemplifies an inductive learning approach. It considers only training samples linked

to the training set’s edges during the training process. GraphSAGE operates through

two main steps: "Sampling" and "Aggregation." First, node representations are

paired with aggregated vectors and passed through a fully connected layer with a

non-linear activation function. Each network layer shares a standard aggregator

and weight matrix. Finally, a normalization step is applied to the layer’s output.

The process involves initializing eigenvectors for all nodes, sampling neighbor nodes

for each node, aggregating neighbor information, and updating embeddings through

a non-linear transformation. The development of GNNs can be traced back to

the work of Sperduti et al. (Sperduti et al. 1997) in 1997, which applied neural

networks to directed acyclic graphs and inspired subsequent research in the field.

The concept of GNNs was formally introduced by Gori et al. (Gori et al. 2005) in

2005 and further developed by Scarselli et al. (Scarselli et al. 2009) in 2009. These

early models, known as recurrent graph neural networks (RecGNNs), learned node
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representations through iterative propagation of neighbor information until reaching

a stable state. However, this approach was computationally demanding, leading to

the exploration of more efficient methods.

The success of Convolutional Neural Networks (CNNs) in computer vision in-

spired the development of convolutional graph neural networks (ConvGNNs), which

redefine the notion of convolution for graph data. ConvGNNs are categorized into

spectral-based and spatial-based approaches. Spectral-based ConvGNNs, initiated

by Bruna et al. (Bruna et al. 2014) in 2013, are based on spectral graph theory, while

spatial-based ConvGNNs, which predate their spectral counterparts, focus on graph

mutual dependencies and message passing. Despite the early start of spatial-based

ConvGNNs, their significance was not fully recognized until more recently, when a

variety of spatial-based ConvGNNs emerged.

In addition to RecGNNs and ConvGNNs, the field has seen the introduction of

other GNN frameworks, such as graph autoencoders (GAEs) (T. Kipf et al. 2016)

and spatial-temporal graph neural networks (STGNNs) (Jiabin Tang et al. 2023).

These frameworks can be built upon existing GNN architectures and are used for

tasks like network embedding and graph generation.

Graph Convolutional Networks (GCNs) (T. N. Kipf et al. 2017), developed by

Thomas Kipf and Max Welling, are a fundamental variant of GNNs that perform

convolution operations on graph data. Similar to CNNs, GCNs apply filters or ker-

nels to input neurons, but unlike CNNs, which operate on regular, ordered data,

GCNs handle irregular, non-Euclidean data structures. GCNs have been applied

to a wide range of problems, including image classification, traffic forecasting, rec-

ommendation systems, scene graph generation, and visual question answering. By

iteratively applying convolution and aggregation layers, GCNs can capture complex

patterns and dependencies within graph data.

In summary, GNNs represent a significant advancement in the analysis of graph-

structured data. They provide a flexible and powerful tool for capturing the intricate
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Figure 2.1: Node classification using GCN

relationships and patterns within graphs, making them applicable to a wide array

of tasks in various domains.

2.2 Application of Graph Neural Networks

2.2.1 Node Classification

Node classification is a fundamental research direction in graph analysis due to its

extensive application scenarios. The goal of node classification is to predict the

class of each unlabeled node in the graph based on the available graph information.

For example, in citation networks, node classification can determine the research

topic of each article. In protein-protein interaction networks, it can assign multiple

gene ontology types to each node. A fundamental approach to node classification is

the use of Graph Convolutional Networks (GCNs). GCNs encapsulate the hidden

representation of each target node by aggregating the feature information from its

first-order neighbors. This aggregation process involves summing, averaging, or

applying a more complex function to the features of neighboring nodes.

The process begins by initializing each node with its feature vector. During the

convolution operation, each node updates its representation by aggregating infor-

mation from its neighbors and combining it with its own features. This step can be

mathematically expressed as:

h(k)
v = σ(

∑
µ∈N(v)

1

cvu
W (k−1)h(k−1)

u ), (2.1)
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Here, h(k)
v represents the hidden state of node v at the kth layer, N(v) denotes the

set of neighbors of node v, cvu is a normalization constant, W (k−1) is a trainable

weight matrix, and σ is a non-linear activation function.

By stacking multiple graph convolutional layers, a deep neural network model is

constructed. This model is used to obtain the final hidden representation of each

node, which encapsulates information from its multi-hop neighbors as well. The

depth of the network allows the learned representation to integrate features from

increasingly distant nodes, thereby capturing more complex structural and feature

information.

The final step in the node classification process involves using the learned node

representations to predict the class labels. This is typically achieved by applying a

softmax function to the output of the last convolutional layer, producing a probabil-

ity distribution over the possible classes for each node. The node with the highest

probability is then assigned as the predicted class label. Figure 2.1 shows the node

classification process using GCN. Numerous research studies have focused on GNN-

based node classification tasks and have enhanced the performance of GNNs through

various methods. For instance, Huang et al. (Hang et al. 2021) address the challenge

of improving the expressiveness of Graph Neural Networks (GNNs) for node classifi-

cation tasks by incorporating Collective Inference (CI). Despite GNNs being strong

classifiers, they are often not most-expressive. The authors propose a novel frame-

work, CL+GNN, which combines collective learning with GNNs to enhance their

representation power. This framework utilizes self-supervised learning and Monte

Carlo sampling to incorporate label dependencies among neighboring nodes. Theo-

retical analysis and extensive experiments demonstrate that CL+GNN consistently

improves node classification accuracy across various state-of-the-art WL-GNNs on

partially-labeled graphs.

Chowdhury et al. (Chowdhury et al. 2023) present novel input and output in-

tervention techniques to enhance the accuracy of semi-supervised node classifica-
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tion using GNNs. Their input intervention technique increases the number of non-

contiguous training nodes by selecting nodes from the same class that are spread out

across different subgraphs. This technique leverages variations of random walks and

node embedding methods combined with clustering techniques like K-means and

KNN. The output intervention technique identifies misclassified nodes by analyzing

the confidence vector and relabeling low-confidence nodes with the labels of their

nearest high-confidence neighbors. Both techniques are modular and can be ap-

plied as pre- and post-processing steps to existing GNN methods without requiring

additional knowledge about node classes.

Duan et al. (L. Duan et al. 2024) propose a novel Graph Structure Learning

(GSL) framework for node classification that leverages structural information theory

to optimize graph structures. This framework addresses the limitations of existing

GSL methods by incorporating hierarchical community information to reduce noise

in complex real-world graphs. The core contributions include proving that an encod-

ing tree with minimal structural entropy can effectively classify nodes and eliminate

redundant noise, designing an efficient algorithm to construct such encoding trees,

and developing a fusion mechanism to generate the optimal graph structure by com-

bining community influence and prediction confidence.

These studies enhance the ability of GNNs to handle node classification tasks on

complex datasets, demonstrating the powerful representation learning capabilities

of GNNs.

2.2.2 Link Prediction

The task of link prediction is to determine the existence of an edge between two

unconnected nodes in a graph. Existing link prediction algorithms estimate the

proximity of different node pairs, where pairs with higher proximity are more likely

to interact.

A fundamental approach to link prediction involves the use of Graph Autoen-
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Figure 2.2: Link prediction using GAE

coders (GAEs). GAEs leverage the power of neural networks to learn node repre-

sentations that can be used for predicting links. The process of using GAEs for link

prediction can be summarized as follows:

• Graph Encoding: The first step involves encoding the graph structure and

node features into a latent space. This is typically done using a graph convo-

lutional network (GCN) encoder, which aggregates feature information from

a node’s local neighborhood. The encoder learns a compressed representation

(embedding) for each node.

• Latent Space Representation: The GCN encoder produces a low-dimensional

representation for each node. This latent representation captures the struc-

tural and feature information of the graph, facilitating the estimation of prox-

imity between node pairs.

• Graph Decoding: The decoder component of the GAE reconstructs the graph

from the latent space representations. This step often involves predicting the

likelihood of an edge between pairs of nodes. A common approach is to use a

simple inner product decoder, which computes the dot product of the latent

vectors of two nodes to estimate the probability of an edge between them.
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• Loss Function: The model is trained using a reconstruction loss, typically the

binary cross-entropy loss, which measures the difference between the actual

graph adjacency matrix and the predicted adjacency matrix. The objective is

to minimize this loss, thereby improving the accuracy of link predictions.

• Training: During training, the GAE optimizes the node embeddings to accu-

rately reconstruct the original graph’s adjacency matrix. This involves itera-

tively updating the model parameters through backpropagation.

• Link Prediction: Once the GAE is trained, it can be used to predict links

by evaluating the reconstructed adjacency matrix. Node pairs with higher

predicted scores are more likely to have an edge between them, indicating a

potential link. Figure 2.2 presents the GAE method for link prediction.

Various Graph Neural Networks (GNNs) techniques for link prediction have been

proposed. Key methods include GCN (Yao et al. 2019), GAT (Velikovi et al. 2018),

SAGE (Yang et al. 2016), and GAE (T. Kipf et al. 2016), which leverage the message-

passing paradigm to assimilate multi-hop graph structures. These approaches inte-

grate connectivity patterns and node features to enhance the predictive accuracy of

potential links within graphs, showcasing the diversity and depth of GNN method-

ologies in capturing complex relational data for link prediction tasks.

2.2.3 Graph-based Anomaly Detection

Anomaly detection involves identifying patterns that significantly deviate from typ-

ical observations, a task with increasing importance and application in various do-

mains. Research in anomaly detection could date back to Grubbs et al. (Grubbs

1969), who firstly proposed the notion of anomaly. With the advancements in graph

mining, graph anomaly detection has gained considerable attention. Figure 2.3

shows some common anomalies on graphs, including structural anomalies and con-
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Figure 2.3: Anomaly Detection

textual/feature anomalies. Recently, Graph Neural Networks (GNNs) have been

adopted to detect anomalies in graphs efficiently, leveraging their expressive capa-

bility via the message-passing mechanism for learning graph representations. GNNs

facilitate the extraction of anomalous patterns from complex graph structures or

attributes, handling graphs with attributes as input data.

This review mainly focuses on GNN-based static graph anomaly detection, specif-

ically:

• Anomalous Node Detection: Detecting anomalous nodes in attributed graphs

by extracting node attribute and structural information using GNNs. Anoma-

lous nodes can be categorized as global anomalies, structural anomalies, and

community anomalies (X. Ma et al. 2023). Various GNN-based methods, often

built upon the graph autoencoder (GAE) framework, use different decoders

and anomaly scoring functions to identify abnormal nodes.

• GCN-Based GAE Framework: GAE is widely used for detecting graph anoma-

lies. Methods like DOMINANT (K. Ding et al. 2019) use GCN as the encoder

to detect global and structural anomalies. Dual-SVDAE (F. Zhang et al. 2022)

and GUIDE (H. Chen et al. 2019) enhance anomaly detection by addressing
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complex interactions and high-dimensional graphs.

• GCN Framework: Techniques like semi-GCN (Kumagai et al. 2021) and HCM

(T. Huang et al. 2023) leverage both supervised and unsupervised learning

for detecting global anomalies. Methods like ResGCN (Pei et al. 2021) and

CoLA (Y. Liu, Z. Li, et al. 2021) address issues of sparsity and over-smoothing.

• GAT-Based GAE Framework: GAT-based approaches, such as AnomalyDAE

(H. Fan et al. 2020) and GATAE (You et al. 2020), overcome the limitations of

GCN by using attention mechanisms to better capture complex interactions.

• Anomalous Edge Detection: This task focuses on identifying atypical interac-

tions between nodes. Methods like AANE (D. Duan et al. 2020) and eFraud-

Com (G. Zhang et al. 2022) use GCN-based GAE frameworks to detect anoma-

lous edges by adjusting fitting and anomaly-aware losses.

In summary, GNN-based approaches for anomaly detection in static graphs utilize

various architectures and learning strategies to identify anomalies at the node, edge,

and subgraph levels, leveraging the strengths of GNNs in handling complex graph

data.

2.3 Poisoning Attacks against Graph Neural Networks

Recent studies have highlighted that adversarial attacks on training data, known

as data poisoning attacks, can significantly compromise the training phase of graph

neural networks (Jin, Y. Li, et al. 2020). These attacks involve subtle, deliberate

modifications to nodes and edges within the graph data, aiming to undermine the

training process (B. Zhang et al. 2024). Data poisoning attacks pose a considerable

threat to the reliability of GNNs by deteriorating their performance. For example,

spammers on social networks can act as adversarial samples, disseminating fake and

sensitive content, hijacking trending topics, and misusing mention functions. These
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actions can disrupt the utility of GNNs applied to normal users due to extensive

connections within the graph, leading to less accurate predictions and threatening

model reliability.

While defensive strategies for data types like images have been extensively ex-

plored, the complexity of graph structures complicates the defense against attacks.

In graphs, perturbations targeting even a single node can impact many connected

nodes due to their interconnected nature (Zihan Liu, Luo, Lirong Wu, S. Li, et al.

2022).

Data poisoning attacks on graphs can be formulated as a bilevel optimization

problem:

Given a graph G = (A,X), let f : G → Z be a GNN model, where Z denotes

the node embeddings. The data poisoning attacks on graphs can be formulated as

max
G′∈F

Latk(G
′
, f ∗), s.t.f ∗ = argminfL(G

′
, f), (2.2)

where Latk denotes the attacker’s objective function and F denotes the feasible space

of poisoned graphs. A and X represent the adjacency matrix and attributes of G,

respectively

Poisoning attacks can be categorized based on the attacker’s knowledge into

three types: white-box, gray-box, and black-box attacks. In white-box attacks,

the attacker has complete access to the victim model and data, including model

parameters, training data, and ground truth labels, which allows them to precisely

tailor their attack strategy and generate fine-tuned perturbations that degrade the

model’s performance. The attacker’s ability to manage and modify a significant

portion of the dataset enables the introduction of highly effective poisoned data

points, making white-box attacks the most effective among the three types. Gray-

box attacks, on the other hand, provide limited knowledge, excluding access to

exact model parameters. The attacker may have some information about the model
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architecture or hyperparameters and often uses a surrogate GNN model to predict

the victim models behavior. While gray-box attacks can still be potent, they are

generally less effective than white-box attacks because the surrogate model may not

perfectly replicate the victim model’s behavior, leading to less precise perturbations

and a reduced ability to craft highly effective poisoned data. In black-box attacks,

the attacker’s knowledge is further reduced, granting them access only to input graph

data and corresponding model output. This minimal knowledge forces the attacker

to rely on trial and error or heuristic-based methods, resulting in less targeted and

more generalized perturbations. Additionally, the attacker’s limited control over the

dataset in black-box scenarios makes it more challenging to significantly degrade the

model’s performance. The effectiveness of a poisoning attack is directly influenced by

the level of knowledge the attacker has and their ability to manage and manipulate

the dataset. With more control, as seen in white-box scenarios, the attacker can

achieve a greater impact, while reduced knowledge and control in gray-box and black-

box scenarios lead to less effective attacks. We summarize the poisoning attacks

against GNNs for different applications below:

Node Classification. For node classification tasks, white-box poisoning attacks can

be framed as bilevel optimization problems, using methods like Projected Gradient

Descent (PGD) (Jorge et al. 2006). Nettack (Zügner et al. 2018), a seminal gray-

box method, uses a simpler GCN surrogate to optimize by greedily flipping edges.

Metattack (Daniel et al. 2019) employs meta-learning to approximate the meta

gradient of the loss function, while AtkSE (Zihan Liu, Luo, Lirong Wu, S. Li, et al.

2022) incorporates strategies for edge discrete sampling and momentum gradient

ensemble to mitigate optimization instability. Wang et al. (B. Wang and Gong

2019) reformulated poisoning attacks against collective classification as a constrained

optimization problem, using Lagrange multipliers with PGD. Beyond edge flipping,

attackers may introduce adversarial nodes into the graph, as seen in NIPA (Y. Sun
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et al. 2020). G-FairAttack (B. Zhang et al. 2024) presents a gray-box approach that

subtly undermines group fairness without noticeably affecting model utility.

Link Prediction. Opt-Attack (M. Sun et al. 2018) exemplifies how the quality of

unsupervised graph embeddings, such as DeepWalk (Perozzi et al. 2014), can be

compromised in link prediction tasks. When targeting knowledge graphs, attackers

may alter links or entities to disrupt embeddings, reducing link prediction accuracy.

Methods like those proposed by Bhardwaj et al. (Bhardwaj et al. 2021) use influence

functions to identify and replace the knowledge triples that most significantly impact

predictions. Some methods, like Milani Fard and Wang’s (Milani Fard et al. 2013),

use neighborhood randomization to locally disrupt link predictions, while others,

such as Yu et al.’s evolutionary graph community attack (Yu et al. 2018), focus

on defending link privacy but struggle with computational demands. Sun et al.’s

technique (M. Sun et al. 2018) leverages gradient descent to attack node embeddings,

impacting link prediction. Notably, Chen et al.’s IGA (J. Chen et al. 2020) and

Ding et al.’s VertexSerum (R. Ding et al. 2023) stand out by directly manipulating

graph structures and node attributes, respectively, showcasing diverse approaches

to undermining GNN-based link prediction systems.

Anomaly Detection. Data poisoning attacks also impact community detection and

network embedding. CD-Attack (J. Li et al. 2020) generates adversarial graphs to

obscure targeted entities, while methods like those by Bojchevski et al. (Perozzi

et al. 2014) maximize the unsupervised loss function for DeepWalk. These attacks

can extend to other graph embedding methods such as node2vec (Grover et al.

2016) and GCN. Zhou et al. (X. Zhou et al. 2022) introduce a hierarchical poisoning

attack (HAA) strategy aimed at GNN-based intrusion detection in IoT systems,

designed to operate within a limited budget. This black-box approach alters node

features through a hierarchical node selection process, which uses a random walk

with restart (RWR) to identify and prioritize the most vulnerable nodes for attack.
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Similarly, Venturi et al. (Venturi et al. 2024) describe an evasion attack targeting

intrusion detection systems by either perturbing the feature values of malicious

netflows (feature attacks) or modifying the structure of the test graph (structural

attacks).

Table 2.1: Categorization of representative attack methods

Attack Methods Attack
Knowledge

Targeted or
Non-targeted

Evasion or
Poisoning

Perturbation
Type Application Victim Model

(Jorge et al. 2006) White-box Untargeted Evasion Add/Delete
edges Node Classification GNN

(B. Wang and Gong
2019)

White-
box,

Gray-box
Targeted Poisoning Add/Delete

edges Node Classification GNN

(B. Wang and Gong
2019)

White-
box,

Gray-box
Targeted Poisoning Add/Delete

edges Node Classification GNN

(B. Wang, Pang,
et al. 2023)

White-
box,

Gray-box
Untargeted Poison-

ing/Evasion
Add/Delete

edges Node Classification GNN

(Zügner et al. 2018) Gray-box Targeted Both
Add/Delete

edges, Modify
features

Node Classification GNN

(Daniel et al. 2019) Gray-box Untargeted Poisoning Add/Delete
edges Node Classification GNN

(Y. Sun et al. 2020) Gray-box Untargeted Poisoning Inject nodes Node Classification GNN

(R. Ding et al. 2023) Black-box Untargeted Poisoning Add/Delete
edges/Features Link prediction GNN

(J. Chen et al. 2020) Gray-box Untargeted Poisoning Add/Delete
edges Link prediction GNN

(M. Sun et al. 2018) White-box Untargeted Poisoning Add/Delete
edges Link prediction Network

Embedding

(Venturi et al. 2024) Gray-box Both Evasion Add/Delete
edges/Features Intrusion Detection GNN

(Perozzi et al. 2014) Black-box Both Poisoning Add/Delete
edges

Node Classification,
Community Detection

Network
Embedding

(X. Zhou et al. 2022) Black-box Targeted Poisoning Add/Delete
features Intrusion detection GNN

(J. Li et al. 2020) Black-box Targeted Poisoning Add/Delete
edges Community Detection

Community
Detection
Algorithm

In summary, data poisoning attacks on GNN models involve sophisticated tech-

niques targeting various graph-related tasks, posing significant threats to model

reliability.
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Chapter 3

Cost Aware Untargeted Poisoning Attack

against Node Classification

Graph Neural Networks (GNNs) have become widely used in the field of graph min-

ing. However, these networks are vulnerable to structural perturbations. While

many research efforts have focused on analyzing vulnerability through poi- soning

attacks, we have identified an inefficiency in current attack losses. These losses steer

the attack strategy towards modifying edges targeting misclassified nodes or resilient

nodes, resulting in a waste of structural adversarial perturbation. To address this

issue, we propose a novel attack loss framework called the Cost Aware Poisoning

Attack (CA-attack) to improve the allocation of the attack budget by dynamically

considering the classification margins of nodes. Specifically, it prioritizes nodes with

smaller positive margins while postponing nodes with negative margins. Our ex-

periments demonstrate that the proposed CA-attack significantly enhances existing

attack strategies.
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3.1 Preliminaries

3.1.1 GNNs

We define an undirected graph as G = (V,E), where V = {v1, v2, · · · , vN} represents

the node set, and eij ∈ E is edge connecting the nodes vi and vj. Node attributes are

represented by X ∈ RN×d, where d is the dimension of the attribute. Additionally,

the graph structure can be represented by an adjacent matrix A ∈ {0, 1}N×N , with

Aij = 1 if an edge exists between two nodes, otherwise 0. Given a subset of labeled

nodes VL ⊂ V where each node v ∈ VL has a label yv ∈ C = {c1, c2, · · · , ck}, GNNs

aim to learn a function fθ to predict the remaining unlabeled nodes VU = V \ VL

into classes of C. We use fθ(G)v to denote the prediction of the model fθ for node v.

Its parameters θ are optimized by minimizing a loss Ltrain over the labeled nodes,

typically using losses like negative log-likelihood loss or C&W loss (Carlini et al.

2017).

3.1.2 Poisoning Attacks against GNNs

Based on the classification task, the general form of node-level graph poisoning

attacks can be defined as a bi-level optimization process where the attacker optimizes

the selection of the edges to be attacked to maliciously modify the graph structure,

while the parameters of a surrogate model are optimized using this poisoned graph:

A′ = argminLatk

(
fθ∗

(
Ĝ
))

s.t., θ∗ = argmin
θ
Ltrain

(
fθ

(
Ĝ
))

,
(3.1)

where Latk is the attack loss and usually chosen as Latk = −Ltrain, Ĝ is the graph

modified from original G by the adversarial attack, yv denotes the labels of node v.
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Given a budget ∆, the attacker aims to ensure that perturbations are unno-

ticeable by maintaining the l0 norm difference between the original and perturbed

graph: ‖A− A′‖0 ≤ ∆. ∆ is generally no more than 10% of the number of edges

in the original graph. To avoid detection, the attacker also refrains from making

significant changes to the graph’s degree distribution or introducing isolated nodes,

as suggested in (Zügner et al. 2018).

A conventional poisoning attack process can be divided into three steps. The first

step is to retrain a surrogate model fθ∗ (G) using a linearized graph convolutional

network (GCN) which is expressed as:

fθ (G) = softmax
(
Â2XW

)
, (3.2)

where Â = D−1/2 (A+ I)D−1/2 is the normalized adjacent matrix, X are the node

features, D is the diagonal matrix of the node degrees, and θ = {W} are the set

of learnable parameters. In the second step, the attacker uses pseudo-labels yv

generated by the surrogate model fθ∗ (G) to construct the attack loss of the node v

as `
(
fθ∗

(
Ĝ
)
v
, yv

)
under the gray-box attack scenario. In the third step, the attack

loss of each node is backpropagated to produce a partial gradient matrix:

gv = ∇A`
(
fθ∗

(
Ĝ
)
v
, yv

)
, (3.3)

The overall gradient information passed to the attack strategy is the average of all

the partial gradient matrices. Thereafter, the attacker selects the edges to be per-

turbed (adding/deleting) based on the saliency of their gradients.

3.1.3 Attack Budget

For structural poisoning attacks, the attack budget refers to the number of edges

that can be added or removed by the attacker. Usually, attacks can only have a
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∆ budget, meaning that the original adjacency matrix and the modified adjacency

matrix should be limited as follows:

∑
|A− Â| ≤ ∆, (3.4)

3.1.4 Classification Margin

The classification margin of a node v is commonly defined as:

ϕ(v) = zc∗ −max
c6=c∗

zc, (3.5)

where z represents the vector of logits produced by the model towards node v, and

c∗ refers to the true label of the node v. If a node has a negative margin, it indicates

misclassification.

3.2 Limitations of Previous Attacks

Graph Neural Networks (GNNs) (Jin, Y. Ma, et al. 2020; Velikovi et al. 2018) have

emerged as an effective machine learning approach for structured data, generalizing

neural networks to manage graph-structured information. They have shown poten-

tial in various applications such as social network analysis (W. Fan, Y. Ma, Q. Li,

Y. He, E. Zhao, et al. 2019), anomaly detection (Chaudhary et al. 2019; Jianheng

Tang et al. 2022; J. Duan et al. 2023), and natural language processing (Lingfei Wu

et al. 2023), excelling in tasks like node classification and link prediction. However,

current research (Dai et al. 2018; Lai et al. 2023; Zhu, Lai, et al. 2022; Zhu, Micha-

lak, et al. 2022) indicated that they are susceptible to poisoning attacks, where the

attack easily manipulates the graph structure (i.e., adding/deleting edges) before

the training of the GNN models, and leads to incorrect predictions. Such vulnera-

bilities not only compromise the model’s reliability but also present opportunities

for malicious attacks.
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To analyze the vulnerabilities of GNNs, several studies have investigated po-

tential poisoning attacks on these models, such as Minmax (H. Chen et al. 2019),

Metattack (Daniel et al. 2019), and the Certify Robustness Inspired Attack Frame-

work (B. Wang, Pang, et al. 2023). These attacks leverage gradient-based techniques

to approximate the complex bi-level optimization problem associated with poison-

ing attacks. However, there is still room for improvement in current methodologies,

particularly regarding the allocation of the limited perturbation budget.

Poisoning attacks (Dai et al. 2018) occur during the training phase of machine

learning models and involve altering the training data by introducing perturbations.

These attacks can lead the model to produce incorrect predictions during the test-

ing phase. Various methodologies can facilitate poisoning attacks, including node

injection (Y. Sun et al. 2020), feature modification (Q. Li et al. 2023), and edge

perturbation (Daniel et al. 2019). This discussion focuses on untargeted attack

strategies that employ edge perturbation.

A notable contribution in this area was made by Zügner et al. (Daniel et al.

2019), who introduced the Meta-Self attack model. This model uses the meta-

gradient of a surrogate model to modify the graph’s structure or node features within

a gray-box context, marking the first instance of a gradient-based attack strategy.

Following this, subsequent research (H. Wu et al. 2019) has explored new tactics

and improvements, focusing on utilizing gradient data from the surrogate model to

manipulate node features and the graph’s structure. These studies typically employ

an attack objective function, often a negative cross-entropy loss (H. Wu et al. 2019;

Daniel et al. 2019), to guide the gradient’s backpropagation through the adjacent

matrix.

However, current approaches face limitations in budget allocation, largely due

to the design of the attack objective function. For example, Metattack, which uses

loss functions such as cross entropy loss and C&W loss (Carlini et al. 2017), can

suffer from budget waste. In such cases, some budget allocations do not contribute
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to decreased classification accuracy. Specifically, when employing cross entropy as

the attack objective, a node that has already been successfully misclassified tends to

attract higher meta-gradients, resulting in further budget allocation to that specific

node.

To address these issues, Wang et al. (B. Wang, Pang, et al. 2023) proposed

a novel attack loss framework called the Certify Robustness Inspired Framework

(CR-framework) to enhance attack performance. This method assigns larger meta-

gradients to nodes with smaller certify robustness sizes, as these nodes are more

vulnerable to attacks. It accomplishes this by reweighting the loss of each node ac-

cording to its certify robustness size. While this approach optimizes budget alloca-

tion for existing attack losses and further decreases the accuracy of victim models, it

faces computational inefficiencies during the assessment of certified robustness sizes.

We show this budget waste problem by the gradient of every node’s loss on adjacent

matrix. The attack strategy involves a basic edge perturbation selection method

based on the saliency of gradients, represented as follows:

Ãgrad =


Agrad

i,j if Agrad
i,j > 0 and Ai,j = 0

−Agrad
i,j if Agrad

i,j < 0 and Ai,j = 1

0 otherwise,

(3.6)

where Ãgrad filters out candidates that the gradient signs and edge states are incon-

sistent, Agrad is the average gradient information of all the partial gradient matrices

gv. Ai,j represents the edge between node i and node j. Agrad
i,j is the gradient of edge

between node i and node j. Since poisoning attack aims to minimize the attack

loss (i.e., maximize training loss) by modifying an edge with the largest gradient at

each iteration, the node connected to this edge will be attacked with higher priority

according to Equation (3.3). Figure 3.1 illustrates the priority of a node in a clean

graph to be attacked based on the l2 norm of partial gradient matric for each node
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Figure 3.1: Scatterplot of the nodes margins with l2 norm of their partial gradient
matrices of cora dataset. The terms LCE, LCRCE, and LCACE respectively represent
the cross entropy loss, the CR framework, and the CA framework and terms LCW ,
LCRCW , and LCACW respectively represent the C&W loss, the CR framework, and
the CA framework

in Metattack using different attack loss functions. We can observe that the cross

entropy loss and the CR framework result in significant gradients for nodes with

negative margins. Additionally, the cross entropy loss produces significant gradients

for nodes with large margins. In contrast, our CA framework generates significant

gradients on nodes with small positive margins. We can also observe that the C&W

loss imparts significant gradients to nodes possessing negative margins and the CR

framework exhibits difficulty concentrating on nodes with minute margins when sub-

jected to C&W loss. When applying the CA framework to the C&W loss, we only

assign weights to nodes with positive margins, while nodes with negative margins

are given a weight of zero. In Section 5.1, we will demonstrate that the CA attack

loss outperforms previous attack losses.

To address the limitations above, we introduce a Cost Aware Poisoning Attack
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Loss Framework (CA-attack) to improve the allocation of attack budget to maximize

the impact of the attack. Specifically, we dynamically reweight the nodes according

to their classification margins in the attack loss. This means that the weights of the

nodes are adjusted during the optimization process of the attack objective. Through

extensive testing on benchmark datasets, the CA-attack consistently surpasses pre-

vious attack methods in terms of effectiveness. Our research makes the following

contributions:

• To address the inefficiencies of budget allocation, we propose the CA-attack,

a budget-efficient attack loss framework.

• Through rigorous empirical assessments on three datasets, we demonstrate

that CA-attack improves existing methods, highlighting its potential as a plug-

and-play solution for various graph poisoning attacks.

3.3 Cost-Aware Attack

In this section, we demonstrate our proposed CA-attack attack loss framework that

aims to improve the approximation of this challenging bi-level optimization prob-

lem (3.6) by redesigning the Latk. Specifically, we incorporate the classification

margin of nodes as dynamic weights for the attack loss.

3.3.1 Attack Model

We present an overview of our attack model in Figure 3.2, illustrating the flow

of perturbing an edge in a graph. The first step involves retraining a surrogate

model fθ∗(Gt) with the perturbed graph Gt. This surrogate model is a linear 2-

layer graph convolutional network (GCN): fθ(G) = softmax(Â2XW ), where Â =

D−1/2(A+ I)D−1/2 is the normalized adjacency matrix, and W is a learnable weight

matrix.
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Figure 3.2: Poisoning attack model generating one perturbation

In the second step, we construct the attack loss for each node using pseudo-

labels. The pseudo-labels are derived from the surrogate model fθ∗(G) trained on

the original graph G. We ensure the surrogate model is consistent with the model

generating pseudo-labels to avoid inconsistencies. The attack loss Latk for node vi

relates to the margin ϕ(v) and pseudo-labels detailed in Section 3.3.2.

In the third step, the attack loss is backpropagated to produce partial gradient

matrices Avi
grad, representing the structural gradient from each node vi. For a GCN

aggregating h times, a node generates gradients on edges with its h-hop neighbors.

The overall gradient Agrad is the average of all partial gradients. The attack strategy

is flipping the edge with the largest gradient. The modified graph then enters the

next loop, and this process continues until the loop ends.

3.3.2 Cost Aware Loss

Intuitively, a larger margin suggests that a node is more resilient to attacks, whereas

a smaller but positive margin suggests a higher potential for a successful attack.

With this intuition in mind, we propose the introduction of a cost-aware loss

(CA-loss) that takes into account the margins of nodes. By doing so, our aim is to

assign higher priority to nodes with smaller but positive margins. While a simplistic
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strategy is to rank the nodes based on margins and perturb them sequentially,

this approach is computationally demanding and potentially suboptimal due to the

complex interplay of nodes and edges in predictions. Instead, we refine the attack

loss Latk by incorporating node margins to weight the nodes dynamically. The

resulting CA-loss is defined as follows:

LCA

(
fθ∗ , Ĝ

)
=

∑
v∈VU

w (v) · `
(
fθ∗

(
Ĝ
)
v
, yv

)
, (3.7)

where w (v) is the weight of the node v. When all nodes are assigned equal weight,

our CA-loss reduces to the conventional loss. To introduce the weight w(v), which

captures the inverse relationship between the node’s margin ϕ(v) and the weight,

we utilize the exponential function. The reasoning behind using the exponential

function is that it provides a smooth and continuous way to assign higher weights

to nodes with smaller margins, thereby prioritizing them in the loss function. The

weight w(v) is defined as follows:

w(v) = α× e−β×ϕ(v)2 , (3.8)

where α and β are tunable hyper-parameters. The weight w(v) exponentially de-

creases as the node’s margin ϕ(v) increases. This design ensures that nodes with

smaller margins (i.e., those more vulnerable to attacks) receive significantly higher

weights, thereby focusing the attack efforts on these nodes. The exponential func-

tion is particularly suitable for this purpose because it rapidly decreases, allowing

for a clear distinction in priority between nodes with small and large margins.

By dynamically weighting the nodes based on their margins, our CA-loss function

effectively balances the computational complexity and the attack efficacy, ensuring

that the most vulnerable nodes are targeted more aggressively without the need for

exhaustive ranking and sequential perturbation. Figure 3.3 (a) is a visualization of

w(v).
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Figure 3.3: (a) Comparative illustration of node weights in Cora dataset. (b) Node
distribution of different margin ranges with a 5% perturbation ratio in Cora dataset.

3.3.3 Theoretical Analysis of Budget Allocation

In this section, we analyze the effectiveness of CA-loss from a theoretical perspective.

Margin-based prioritization is a key advantage of the CA-loss (Cost-Aware Loss)

approach over traditional loss functions such as the Cross Entropy Loss(CE loss)

and C&W loss. Traditional loss functions do not consider the specific vulnerability

of each node, treating all misclassifications or margin violations equally. In contrast,

CA-loss introduces a weighting mechanism based on node margins, assigning higher

weights to nodes with smaller margins. This ensures that the most vulnerable nodes

are targeted more aggressively. The theoretical advantage of this approach can be

understood through the concept of gradient magnitude. For a node v, the margin

ϕ indicates its vulnerability. CA-loss assigns higher weights w(v) to nodes with

smaller margins, effectively increasing their contribution to the overall loss gradient.

The weighted gradient for node v is given by

∇ALCA(v) = w(v) · ∇AL(fθ∗(v), yv), (3.9)

where L represents the underlying loss function. For CE loss,

LCE = −
∑

yv logP (yv|fθ∗(v)), (3.10)

34



and for C&W,

LC&W = max(0, fθ∗(v)c∗ − fθ∗(v)c + κ), (3.11)

CE loss measures the difference between the predicted probability distribution

and the true distribution. For a given input v, the model fθ∗(v) predicts a proba-

bility distribution logP (yv|fθ∗(v)) over possible classes. The CE loss calculates the

negative log-likelihood of the true class under this predicted distribution. If the

confidence of a node’s true class is small (less than 0.5), meaning the margin of

this node is negative, the loss value of CE is large on this node, resulting in a large

gradient impact on the adjacency matrix. That means CE loss leads to more budget

allocation to nodes with negative margins, resulting in budget wastage. The C&W

loss compares the model’s output for the true class c and a target class c∗. The goal

is to make the output for the target class c∗ larger than the output for the true class

c by at least a margin κ. The difference of a node’s loss impact on budget allocation

is due to the confidence difference between the true label and the target label, thus

it will not allocate much budget to nodes with negative margins because the loss is

0 for these nodes. According to the loss formulation, C&W loss theoretically has

less wastage than CE loss.

Integrated with the CA loss framework, nodes with smaller positive margins

have larger weights w(v), thus their gradients are magnified, guiding the attack

optimization process more strongly towards these vulnerable nodes. By focusing on

nodes with smaller positive margins in a dynamic poisoning attack setting, meaning

that the weight for every node will be adjusted according to their changing margins

during the attack process, CA-loss reduces the attack budget spent on nodes that

are already misclassified and extremely resilient to attacks. This ensures a more

effective attack by concentrating efforts on the most vulnerable nodes.

35



Furthermore, the exponential weighting mechanism in CA-loss provides another

layer of advantage. Traditional loss functions do not differentiate between nodes

based on their margin sizes, potentially leading to suboptimal attack strategies.

CA-loss uses the exponential weighting mechanism stated in function 4.12, ensuring

that even small differences in margins are magnified, providing clear prioritization

of nodes. This smooth and continuous priority avoids abrupt changes that might

destabilize the optimization process. For small positive values of ϕ, the weight w(v)

is large, ensuring high priority. The rapid decrease in weight as ϕ increases ensures

that nodes with larger margins do not dominate the loss function. This is expressed

as

w(v) = α · e−β×ϕ2

where
∂w(v)

∂ϕ
= −2β · ϕ · w(v), (3.12)

This rapid decrease ensures the focus remains on the most vulnerable nodes.

By incorporating the margin-based prioritization and exponential weighting mech-

anism, CA-loss provides a theoretically superior approach to traditional loss func-

tions.

3.3.4 Cost Aware Poisoning Attack Algorithm

In our approach to conducting a poisoning attack, we operate under the assumption

that the attacker lacks access to the target classifier’s internal parameters, its output,

or any explicit knowledge of its architectural design. To navigate this limitation,

the attacker employs a surrogate model as a stand-in to facilitate the poisoning

attacks. The manipulated data resulting from this attack is then utilized to train

deep learning models, such as a Graph Convolutional Network (GCN), with the aim

of assessing the extent of performance degradation inflicted by the attack.

By integrating the cost-aware attack loss function, which we previously discussed

in Section 3.3.2, with the optimization goal delineated in (3.6), we present Algorithm
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1. This algorithm outlines the procedural steps required to tackle this optimization

challenge effectively.

Algorithm 1 Cost-aware Poisoning Attack on Graph Neural Networks
1: Input: Graph G = (A,X), modification budget ∆, number of training iterations

T , training class labels CL, node classification margin ϕ(v)

2: Output: Modified graph Ĝ = (Â,X)
3: θ∗ ← train surrogate model on G using CL
4: ĈU ← predict labels of unlabeled nodes using θ∗

5: Â← A
6: while ‖Â− A‖0 < 2∆ do
7: Randomly initialize θ0 of surrogate model
8: for t = 0 to T − 1 do
9: θt+1 ← step(θt,∇θtLtrain(fθt(Â,X), CL))

10: end for
11: Calculate ϕ(v) for each node v to form the margin matrix Φ(V )

12: ∇Â← ∇ÂLCA(fθT (Â,X), ĈU ,Φ(V ))

13: Â← modify by adding or deleting the edge with the most significant
14: gradient influence
15: end while
16: Ĝ← (Â,X)

17: return Ĝ
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Chapter 4

Applicability to Other Graph Learning

Tasks

4.1 Cost Aware Poisoning Attack against Graph Neural Net-

works for Link Prediction

Graph Neural Networks (GNNs) have revolutionized the processing of graph struc-

tured data, finding widespread applications from social network analysis to fraud

detection. However, the use of sensitive graph connections such as social ties and

transaction records poses significant security risks. Current link inference attacks,

while effective, often suffer from inefficient budget allocation, leading to diminished

attack impact due to wasted resources.

In the realm of link prediction attacks, various strategies target different aspects

of GNNs to compromise their predictive capabilities. Some methods, like Milani

Fard and Wang’s (Milani Fard et al. 2013), employ neighborhood randomization

to disrupt link predictions locally, while others, such as Yu et al.’s evolutionary

graph community attack (Yu et al. 2018), aim to defend link privacy but face prac-

ticality issues due to computational demands. Techniques like Sun et al.’s leverage

gradient descent for attacking node embeddings with downstream effects on link
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prediction (M. Sun et al. 2018). Notably, Chen et al.’s IGA (J. Chen et al. 2020)

and Ding et al.’s VertexSerum (R. Ding et al. 2023) stand out by directly manipu-

lating graph structures and node attributes, respectively, demonstrating the diverse

approaches to undermining GNN-based link prediction systems. Nonetheless, the

current approaches face limitations in budget allocation, largely attributable to the

design of the attack objective function. In our work, we propose a refined attack

objective function that prioritizes edges based on their vulnerability to attacks. Rec-

ognizing that not all edges possess the same level of robustness, we advocate for a

strategic allocation of the attack budget, targeting edges that are less resilient to

ensure a more effective utilization of resources. To counter these challenges, we

present MetaLinkAttack, a novel graph poisoning approach crafted to maximize the

strategic use of the graph structure budget. Distinctively, MetaLinkAttack assigns

varying weights to edges based on their prediction probability margins, aiming to

degrade the inferential accuracy of GNNs more effectively. Leveraging meta-gradient

techniques, MetaLinkAttack intricately solves the bilevel optimization problem by

considering the graph structure as an optimizable hyperparameter. Our comprehen-

sive evaluations across several benchmark datasets indicate that MetaLinkAttack

outperforms existing state-of-the-art link inference attacks by judiciously allocating

the attack budget to significantly lower the Area Under the Curve (AUC) scores,

thereby demonstrating its superior efficiency and effectiveness in disrupting GNN

performance.

4.1.1 Limitations of Previous Attacks

Graph Neural Networks (GNNs) have become integral to analyzing complex data

structures across multiple fields, including finance (D. Wang et al. 2019), social

sciences (J. Sun et al. 2022), and healthcare (Choi et al. 2017), due to their ability to

capture high-dimensional attributes and intricate network relationships (J. Zhou et

al. 2020). The growing application of GNNs in these sensitive areas raises significant
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security concerns, especially where graph data encapsulate confidential relationships.

Recent research has unveiled vulnerabilities in Graph Neural Networks (GNNs),

especially through poisoning attacks that degrade link prediction performance. Chen

et al.’s Iterative Gradient Attack (IGA) (J. Chen et al. 2020) employs gradient in-

formation from a graph autoencoder model’s loss function, targeting graph edges

to maximize training loss, effectively compromising the structure. Meanwhile, Ding

et al.’s VertexSerum (R. Ding et al. 2023) introduces a novel approach, aiming to

intensify private link information leakage by altering node attributes. This diver-

sity in methods enriches the spectrum of strategies against GNNs, each exploiting

different aspects of graph data for potential breaches.

A notable limitation in existing link inference attacks by adding or deleting

edges is their inefficiency selecting edges to attack. We have found that current

attack framework with negative log likelihood loss has budget waste problem that

some budgets do not contribute to decrease the link prediction accuracy. For exam-

ple, when employing the commonly used negative log likelihood loss as the attack

objective, a link that has already been successfully misclassified tends to attract

higher meta-gradients, resulting in a further allocation of the attack budget to that

specific edge.

This paper presents MetaLinkAttack, which introduces an innovative data poi-

soning strategy for GNNs, optimizing attack budget utilization for heightened effi-

cacy. The attack dynamically adjusts edge weights based on prediction probability

margins, refining the attack’s focus during optimization. Comprehensive evaluations

on standard datasets demonstrate MetaLinkAttack’s superior performance over ex-

isting methods. This research contributes a novel edge reweighting mechanism in at-

tack strategies, enhancing the understanding and development of robust GNNs.Our

research makes the following contributions:

• To address the inefficiencies in budget allocation, we propose MetaLinkAttack,

a budget-efficient attack framework specifically applied to the class imbalance
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task of link prediction, where negative links far outnumber positive links.

• Through rigorous empirical assessments on three datasets, we demonstrate

that MetaLinkAttack improves existing methods, highlighting its potential as

a plug-and-play solution for various graph poisoning attacks.

4.1.2 Method

In this section, we define and formulate the link prediction attack problem and then

introduce how a poisoned graph is generated by MetaLinkAttack.

4.1.2.1 Problem Definition

Definition 1 (Link Prediction): For a graph G = (V,E), with V as nodes and E as

links, E is divided into observable links Eo and predicted links Eu, with Eo∩Eu = ∅

and Eo ∪ Eu = E. Link prediction aims to predict Eu using V and Eo.

Definition 2 (Poisoned Graph): For a graph G = (V,E), a poisoned graph Ĝ =

(V, Ê) introduces perturbations Eα to E, forming Ê = E + Eα.

Definition 3 (Link Prediction Poisoning Attack): Given G and target link Et, the

goal is to generate an poisoned graph Ĝ to impede accurate prediction of Et. The

attack can be formulated to maximize the inconsistency between the link prediction

method’s outputs on the original graph G and the poisoned graph Ĝ for a target

link Et:

max
Ĝ

I(fθ(G,Et) 6= fθ(Ĝ, Et)) s.t. |Eα| ≤ ∆, (4.1)

where I represents the indicator function, fθ is the graph neural network (GNN)

model parameterized by θ, and ∆ imposes a limit on the magnitude of perturba-

tions Eα. This setup aims to maximize the difference in the GNN model’s predictions

between the original and perturbed graphs, within the bounds of allowed perturba-

tions.
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Figure 4.1: Poisoning attack model against link prediction generating one pertur-
bation

Definition 4 (Classification Margin): The classification margin of an edge Et is

commonly defined as:

ϕ(Et) = zc∗ −max
c 6=c∗

zc, (4.2)

where z represents the vector of logits produced by the model towards edge Et,

and c∗ refers to the true label of the edge Et. If an edge has a negative margin, it

indicates misclassification.

4.1.2.2 Attack Model of MetaLinkAttack

Building upon IGA’s framework for link prediction poisoning in graphs, the crux of

poisoning attacks lies in crafting high-quality poisoned graphs, typically by targeting

a well-established GNN model. Figure 4.1 presents the process of generating a

poisoned graph in link prediction tasks.
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Surrogate Model for Link Prediction. Graph Auto-Encoders (GAEs), leveraging

Graph Convolutional Networks (GCNs), effectively encode node structural and fea-

ture information. Their encode-decode architecture, akin to CNNs in computer

vision, allows for efficient extraction of hidden relational data between nodes, po-

sitioning them as nearly state-of-the-art for link prediction tasks. Therefore, we

choose GAE as our surrogate model to perform MetaLinkAttack.

Given a graph with adjacency matrix A, the GAE model computes the node

embedding matrix Z ∈ RN×F as:

Z(A) = Āσ
(
ĀINW

(0)
)
W (1), (4.3)

where Ā = D̃− 1
2 (A + IN)D̃

− 1
2 is the normalized adjacency matrix, D̃ii =

∑
j(A +

IN)ij, and W (0) ∈ RN×H ,W (1) ∈ RH×F are weight matrices for the GCN layers.

Node pair similarity is calculated as:

Ã = s(ZZT ), (4.4)

with s being the sigmoid function. Links with scores above a threshold (set to 0.5)

are predicted to exist.

Gradient Extraction and Poisoned Graph Generation. The poisoned graph is crafted

by perturbing the original graph based on gradients from the GAE model. For a

target link Et, the loss function is defined as:

Latk

(
fθ∗ , Ĝ

)
=

∑
Et∈E

w(Et) · `
(
fθ∗

(
Ĝ
)
Et

, Yt

)
, (4.5)

w(Et) = α× e−β×ϕ(Et)2 , (4.6)

where Yt denotes the true label for the link, and θ∗ represents the parameters trained

on a graph that has been altered for poisoning purposes. The term α and β are
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adjustable hyperparameters influencing the weight w(Et), which decreases exponen-

tially as the edge’s margin ϕ(Et) increases. This weighting approach, alongside the

gradient of the loss with respect to the adjacency matrix, is utilized to guide modi-

fications in the graph’s structure, aiming to increase the loss and thereby reduce the

predictive accuracy of the model on targeted links.

The gradient with respect to the adjacent matrix of a target link Et connecting

node i and node j is given by:

gij =
∂Latk

∂A
, (4.7)

To generate the poisoned graph, the approach accounts for the discrete nature of

graph data, allowing only for the addition or removal of links based on the gradient’s

magnitude, considering the constraints of undirected graphs.

4.1.2.3 MetaLinkAttack Algorithm

In this section, we present the MetaLinkAttack algorithm to demonstrate the attack

process on link prediction tasks. The goal of the MetaLinkAttack algorithm is to

generate a poisoned graph that impedes the accurate prediction of a target link. This

is achieved by strategically perturbing the original graph structure to maximize the

difference in the graph neural network’s (GNN) predictions between the original

and poisoned graphs. The algorithm proceeds as follows: Start by initializing the

poisoned graph Ĝ as the original graph G. Compute the initial node embeddings

Z using the Graph Auto-Encoder (GAE) model on the original graph G. For each

target link Et, compute its classification margin ϕ(Et) and the corresponding weight

w(Et), which captures the inverse relationship between the node’s margin and the

perturbation impact. While the perturbation budget |Eα| is within the allowed

limit ∆, compute the gradients for each link in the graph, select the link with the

maximum gradient magnitude to perturb the graph, update the poisoned graph Ĝ

by adding or removing the selected link, and recompute the node embeddings using

the GAE model on the updated graph. Finally, return the final poisoned graph Ĝ.
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Algorithm 2 Link Prediction Poisoning Attack (MetaLinkAttack)
Require: Graph G = (V,E), Target link Et, Perturbation budget ∆

Ensure: Poisoned graph Ĝ = (V, Ê)

1: Initialize Ĝ = G
2: Compute initial node embeddings Z using the GAE model on G with loss func-

tion `(Z,A)
3: while |Eα| ≤ ∆ do
4: for each target link Et in E do
5: Compute classification margin φ(Et) using Eq. (4.2)
6: Calculate weight w(Et) using Eq. (4.6)
7: end for
8: for each link (i, j) in G do
9: Compute gradient gij = ∂Latk

∂A′ using Eq. (4.7)
10: end for
11: Select link (i, j) with maximum gradient magnitude
12: Perturb Ĝ by adding/removing selected link (i, j)

13: Recompute node embeddings Z using the GAE model on Ĝ with loss function
14: `(Z,A′)
15: end while
16: return poisoned graph Ĝ

In the MetaLinkAttack algorithm, the key component is the strategic perturba-

tion of the graph based on the gradients derived from the GAE model. By focusing

on the links with the highest gradient magnitudes, the algorithm ensures that the

perturbations are both effective and efficient, thereby degrading the performance of

the link prediction model.

4.2 Cost Aware Poisoning Attack against Anomaly Detec-

tion

Graph neural networks (GNNs) play a fundamental role in anomaly detection, ex-

celling at identifying node anomalies by aggregating information from neighboring

nodes. Nonetheless, they are vulnerable to attacks, where even minor alterations

in the graph structure or node attributes can significantly degrade performance.

Although there are some studies investigating attacks for community detection or

anomaly detection, there is a lack of focus on GNN-based anomaly detection meth-

ods.
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GNNs are crucial for anomaly detection, but their vulnerabilities in this context

need further exploration. In our study, we first adapt the Nettack framework for

GNNs and then apply our cost-aware poisoning attack framework, MetaAD, to

demonstrate its impact on anomaly detection.

Our empirical findings, derived from extensive experiments conducted on bench-

mark anomaly detection datasets, show that our attack can degrade the performance

of GNNs and reveal their vulnerabilities.

4.2.1 Anomaly Detection on Graphs

The purpose of anomaly detection is to distinguish between abnormal and normal

items in datasets, which can be framed as a binary classification problem. However,

obtaining sufficient labeled data is arduously expensive and sometimes infeasible.

Therefore, we formulate anomaly detection on a partially labeled graph G as follows:

For a given graph G = {V,E,X,A, Y L}, where Y L is the set of partial labels on

nodes and each yi ∈ Y Lis a binary value taking the value 1 if the corresponding

node vi is abnormal and 0 otherwise. The objective of the anomaly detection model

is to learn a predictive function defined as:

fθ := Exi∼Glogp(yi|xi, yi ∈ Y L), yi ∈ {0, 1} , (4.8)

We obtain the final node representation using a GNN encoder fθ and employ a

classifier (such as an MLP) to distinguish between normal and abnormal nodes,

where θ represents the parameters to be learned.

4.2.2 Limitations of Previous Attacks

Anomaly detection, essential for identifying deviations from expected patterns within

datasets (S. Zhou, X. Huang, N. Liu, H. Zhou, et al. 2023; S. Zhou, X. Huang, N.

Liu, Tan, et al. 2022; S. Zhou, Tan, et al. 2021) plays a crucial role in areas such as
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credit card fraud detection, spam filtering, and hacker intrusion detection (Akoglu

et al. 2014; X. Ma et al. 2023). This task is challenging due to data sparsity and the

implicit features that characterize anomalies (Zheng et al. 2023). For instance, on

e-commerce platforms, while most users genuinely review products, a few malicious

users may manipulate ratings for personal gain. These malicious users blend in with

the majority, making it difficult for classifiers to distinguish them from ordinary

users due to the subtlety of their features.

Recently, advancements in graph neural networks (GNNs) have led to the de-

velopment of GNN-based anomaly detection methodologies. These techniques con-

struct a graph connecting various objects and use GNNs’ capabilities to differentiate

anomalies from normal instances. GNN-based detectors benefit from end-to-end and

semi-supervised training, reducing the need for extensive feature engineering and

costly data annotation (Jianheng Tang et al. 2022). Unlike conventional models,

GNN-based detectors generate high-quality node embeddings by iteratively aggre-

gating information from neighboring nodes, capturing the essential characteristics

of anomalous data.

Despite their success, existing GNN-based anomaly detectors are highly suscep-

tible to disruptions from attacks on the graph structure and node features, which

can significantly affect their performance. Figure 4.2 illustrates an attacked financial

transaction network, highlighting this vulnerability in GNN-based fraud detection

systems.

Currently, some research investigates adversarial attacks similar to anomaly de-

tection. Zhou et al. (X. Zhou et al. 2022) propose a hierarchical poisoning attack

(HAA) generation method against graph neural network (GNN)-based intrusion de-

tection in IoT systems with a limited budget. This is a black-box attack that mod-

ifies node features using a hierarchical node selection algorithm based on random

walk with restart (RWR) to select a set of more vulnerable nodes with high attack

priority. Venturi et al. (Venturi et al. 2024) propose an evasion attack against intru-
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Figure 4.2: The illustration presents a financial transaction network under attack.
In this network, normal users are represented by white nodes, and fraudsters are
represented by black nodes. The attacker destroys the graph structure by deleting
edge (cross) and adding edge (dotted line) to reduce the fraudsters detectability.
For example, the fraudster camouflages himself by connecting to multiple normal
users.

sion detection systems by perturbing the feature values of their malicious netflows

(feature attacks) or by altering the test graph itself (structural attacks).

Although there are some studies about adversarial attacks for anomaly detection,

there are not enough. According to our knowledge, there are no studies investigat-

ing the vulnerability of GNN-based anomaly detectors in a gray-box scenario and

realizing poisoning attacks through structural attacks. To address this gap, in this

section, we first show the application of Nettack (Zügner et al. 2018) for the anomaly

detection task. Then we demonstrate the inefficient budget allocation in Nettack for

anomaly detection. To improve the performance of Nettack, we propose MetaAD,

which combines our cost-aware framework with the Nettack approach against GNN-

based anomaly detection. Our research makes the following contributions:

• To address the current gap in poisoning attacks against anomaly detection, we

48



propose MetaAD, a budget-efficient targeted attack framework that leverages

the CA framework to enhance the effectiveness of targeted attacks.

• Through rigorous empirical assessments on benchmark datasets, we demon-

strate that MetaAD improves upon existing methods, highlighting its poten-

tial as a plug-and-play solution for various graph poisoning attacks against

anomaly detection.

4.2.3 Cost Aware Framework for anomaly detection

Our methodology comprises two distinct components. The first component is an

adaptation of Nettack for anomaly detection, specialized in structure attacks by

modifying the edges according to the gradient saliency map to protect abnormal

nodes from detection. The second component, our designed MetaAD, modifies the

attack objective based on the Nettack algorithm. MetaAD assigns different weights

to abnormal nodes according to their margins to prioritize nodes differently and

incorporates the weight function into the objective function of Nettack, thereby

allocating budgets more reasonably and enhancing the performance of Nettack.

4.2.3.1 Attack Model against Anomaly Detection

Under the Nettack setting, our goal is to attack abnormal nodes Va i.e., we aim to

change Va’s detection status, from abnormal to normal. To ensure that the attacker

cannot modify the graph completely, we further limit the number of allowed changes

by a budget ∆: ∑
|A− A′| ≤ ∆, (4.9)

where A is the clean adjacent matrix and A′ is the poisoned one.

Given this basic setup, our problem is defined as:

Given a graph G(0) = (A(0), X(0)) and a set of target nodes Va. Let cold denote

the anomaly status label "1" for v0 based on the graph G(0) (predicted or using some
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ground truth). Determine:

argmax(A′,X)∈P
G(0),∆,A

max
c 6=cold

(
lnZ∗

v0,c
− lnZ∗

v0,cold

)
subject to Z∗ = fθ∗(A

′, X) with θ∗ = argmin
θ

L(θ;A′, X),

(4.10)

The objective is to find a perturbed graph G′ that misclassifies the target node

v0 as a new class cnew. Specifically, the inner maximization aims to find the class

c (different from cold that maximizes the difference in the log-probabilities). Essen-

tially, it seeks the class that v0 is most likely to be misclassified as, compared to

its original class cold. The outer maximization seeks the optimal perturbations A′

within the allowed perturbation budget PG0,∆,A to achieve the objective of the inner

maximization. It finds the best possible graph and feature perturbations to max-

imize the misclassification likelihood. Since we assume that the attacker does not

have access to the target classifiers parameters, outputs, or even knowledge about its

architecture in the gray-box setting, the attacker uses a surrogate model to perform

the poisoning attacks. We use Graph Isomorphism Network (GIN)(Xu et al. 2019)

as the surrogate model. The objective remains to degrade the performance of the

anomaly detection system by introducing strategic perturbations.

4.2.3.2 Our MetaAD

Based on the discussion in Section 4.2.3.1, MetaAD combines our cost-aware frame-

work in the attack objective as follows:

Latk = argmax(A′,X)∈P
G(0),∆,A

∑
v∈Va

w(v) · max
c 6=cold

(
lnZ∗

v,c − lnZ∗
v,cold

)
subject to Z∗ = fθ∗(A

′, X) with θ∗ = argmin
θ

L(θ;A′, X),

(4.11)

where w(v) is the weight of node v. To introduce the weight w(v), which captures

the inverse relationship between the node’s margin ϕ(v) and the weight, we utilize
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the exponential function. The weight w(v) is defined as follows:

w(v) = α× e−β×ϕ(v)2 , (4.12)

where α and β are adjustable hyperparameters that control the influence of the

margin on the weight. This framework ensures that the attack is cost-effective by

focusing on perturbations that are likely to have the greatest impact on the anomaly

detection system. By weighting the nodes based on their margins, MetaAD priori-

tizes changes that are more likely to cause misclassification, thereby maximizing the

efficiency of the attack within the given budget constraints.

4.2.3.3 MetaAD Algorithms

In this section, we present the MetaAD algorithm to show the attack process on

anomaly detection tasks. The goal of the MetaAD algorithm is to generate a poi-

soned graph that degrades the performance of the anomaly detection system by

strategically perturbing the graph structure. The process begins by initializing the

poisoned graph Ĝ as the original graph G. Next, the classification margin ϕ(v)

is computed along with the corresponding weight w(v), which captures the inverse

relationship between the node’s margin and the perturbation impact. The algo-

rithm then enters a perturbation loop where, as long as the perturbation budget

|
∑

(A−A′)| remains within the allowed limit ∆, it computes the gradients for each

edge in the adjacency matrix A, selects the edge with the maximum gradient mag-

nitude, perturbs the graph Ĝ by adding or removing the selected edge. Finally,

the process concludes by returning the final poisoned graph Ĝ. This comprehensive

explanation and pseudocode in algorithm 3 provide a clear understanding of the

MetaAD algorithm and its steps.
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Algorithm 3 MetaAD: Cost-Aware Poisoning Attack for Anomaly Detection
1: Input: Graph G = (A,X), modification budget ∆, Target nodes Va, number of

training iterations T , training data labels CL
2: Output: Modified graph Ĝ = (A′, X)
3: A′ ← A
4: while |

∑
(A− A′)| ≤ ∆ do

5: Randomly initialize θ0 of surrogate model
6: for t = 0 to T − 1 do
7: θt+1 ← step(θt,∇θtLtrain(fθt(A

′, X), CL))
8: end for
9: for each node v ∈ Va do

10: Calculate ϕ(v) for each node v to form the margin matrix Φ(V ) (Eq. 4.2)
11: end for
12: ∇A′ ← ∇A′Latk(fθT (A

′, X), Va,Φ(V ))
13: A′ ← modify by adding or deleting the edge with the most significant
14: gradient influence
15: end while
16: Ĝ← (A′, X)

17: return poisoned graph Ĝ
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Chapter 5

Evaluation

In this section, we provide the evaluation of our proposed cost-aware poisoning attack

framework on node classification, link prediction, and anomaly detection tasks.

5.1 Evaluation of CA-Attack

In this section, We present the experimental results by answering the following

questions:

• RQ1: Can our CA attack loss framework enhance the efficacy of current poi-

soning attacks?

• RQ2: Can our CA attack loss framework serve as a universal framework for

conventional poisoning attack losses?

• RQ3: Is our framework more computationally efficient compared to baselines?

• RQ4: How does our framework perform in terms of transfer learning?

5.1.1 Set Up

Datasets and GNN models. We evaluate our attacks on three benchmark graph

datasets. They are Cora (McCallum et al. 2000), Citeseer (Sen et al. 2008) and
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Table 5.1: Dataset statistics. Following (Jin, Y. Ma, et al. 2020), we only consider
the largest connected component (LCC).

Dataset Nodes Edges Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 /

Table 5.2: Hyperparameters of
CA combined with CE loss.

Dataset α1 α2 β1 β2

Cora 4.5 1.0 1.0 1.0
Citeseer 4.5 1.0 1.0 1.0
Polblogs 1.0 1.0 0.5 0.1

Table 5.3: Hyperparameters of
CA combined with CW loss.

Dataset α1 α2 β1 β2

Cora 4.5 0.0 1.0 1.0
Citeseer 4.5 0.0 1.0 1.0
Polblogs 1.0 0.0 0.5 0.1

Polblogs (Adamic 2005). Table 5.1 shows the basic statistics of these datasets. The

datasets are partitioned into 10% labeled nodes and 90% unlabeled nodes. The true

labels of the unlabeled nodes are hidden from both the attacker and the surrogate,

serving only as a benchmark for assessing the effectiveness of the adversarial attacks.

We employ the Graph Convolutional Network (GCN) as our target GNN model.

Baseline Attacks. We choose DICE (Waniek et al. 2018)1, MetaSelf (Daniel et al.

2019)2 and Certify robustness(CR) inspired attack framework (B. Wang, Pang, et al.

2023) as the base attack methods. Specifically, DICE (Delete Internally, Connect

Externally) is an innovative approach designed to manipulate social networks by

selectively removing internal edges within a community while adding external con-

nections. This method aims to disrupt the typical structure of a community, making

it less detectable by common network analysis tools, thus preserving the privacy of

its members without significantly impacting their influence or connectivity within

the larger network. MetaSelf employs a sophisticated adversarial framework that

strategically alters the topology of the graph through the insertion or deletion of
1https://github.com/DSE-MSU/DeepRobust
2https://github.com/DSE-MSU/DeepRobust
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Table 5.4: Experimental results of attacks for GCNs.

Dataset Cora Citeseer Polblogs
Pert Rate(%) 5% 10% 5% 10% 5% 10%
Clean 84.61±0.28 73.95±0.28 95.34±0.19
DICE 82.79±0.17 81.92±0.22 72.32±0.24 71.59±0.28 86.54±0.42 80.71±0.29
CE-MetaSelf 76.56±0.27 66.96±0.55 71.49±0.39 66.20±0.30 77.22±0.34 69.73±0.44
CR-CE-MetaSelf 75.79±0.34 68.50±0.29 65.28±0.43 56.93±0.33 78.68±0.32 70.43±0.85
CA-CE-MetaSelf 66.98±0.56 56.30±0.42 62.58±0.28 53.22±0.30 76.58 ±0.46 69.43±0.22
CW-MetaSelf 72.75±0.50 61.85±1.18 64.37±1.07 52.17±0.25 83.71±0.66 79.45±0.47
CR-CW-MetaSelf 71.40±0.61 60.84±0.45 64.76±0.88 54.98±1.29 83.09±0.92 79.87±1.02
CA-CW-MetaSelf 69.69±0.64 58.50±0.73 60.79±0.51 53.28±0.62 83.24±0.45 76.99±0.46

Table 5.5: Comparison of computational efficiency.

Methods Cora Citeseer Polblogs
DICE 0.04s 0.01s 0.06s
CE-MetaSelf 107.46s 97.90s 114.07s
CW-MetaSelf 158.39s 129.12s 236.52s
CR-CE-MetaSelf 84533.67s 53089.36s 42780.71s
CR-CW-MetaSelf 87566.54s 56345.78s 53390.56s
CA-CW-MetaSelf 153.58s 122.74s 200.68s
CA-CE-MetaSelf 104.39s 107.88s 112.37s

edges. By leveraging meta-learning techniques, this method iteratively adjusts the

graph structure to maximize the misclassification rate of the target graph neural

network (GNN) model. The Certify Robustness (CR) inspired attack framework

adopts certified robustness principles to craft more potent attacks against GNN

vulnerabilities. It commences by pinpointing nodes’ certified perturbation thresh-

olds through randomized smoothing, earmarking those with minimal thresholds as

particularly susceptible due to their diminished graph perturbation resilience. This

pivotal understanding begets the creation of a loss function inspired by certified

robustness which bolsters existing attack strategies’ impact. For clarity in presen-

tation, we denote the variant of MetaSelf utilizing the cross entropy loss as CE-

MetaSelf. When employing the CW loss (Carlini et al. 2017), it is referred to as

CW-MetaSelf. When integrating the CR-inspired attack framework with MetaSelf

using the cross entropy loss, we term it CR-CE-MetaSelf. Similarly, its adaptation

with the CW loss is named CR-CW-MetaSelf.
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Table 5.6: Experimental results of transfer learning on GAT and GraphSage with
5% perturbation rate.

Dataset Cora Citeseer Polblogs
Victim Model GAT GraphSage GAT GraphSage GAT GraphSage
Clean 83.54±1.41 83.21±1.54 74.11±1.69 73.28±1.02 94.19±1.77 93.73±1.98
DICE 82.62±2.0 81.51±1.33 73.75±2.25 72.61±1.58 87.63±3.01 83.81±2.98
CEMetaSelf 80.24±3.58 77.93±1.53 72.80±2.57 71.31±1.41 87.26±2.26 83.26±3.36
CR-CEMetaSelf 79.62±4.50 76.59±1.33 69.43±3.57 66.41±1.39 88.34±2.24 84.72±2.55
CA-CEMetaSelf 76.65±2.66 72.55±2.88 68.75±3.24 65.23±2.95 86.48±1.77 82.11±3.31
CWMetaSelf 78.06±5.77 74.20±1.82 68.89±3.24 65.40±1.64 89.82±3.10 86.96±3.73
CR-CWMetaSelf 78.44±3.21 74.95±1.54 69.16±3.52 66.00±1.73 90.34±3.52 87.71±3.48
CA-CWMetaSelf 76.38±3.56 71.69±2.17 66.72±4.58 62.14±1.84 90.88±3.35 87.45±2.54

Implementation Details All attacks are implemented in PyTorch and run on a

Linux server with 16 core 1.0 GHz CPU, 24 GB RAM, and 10 Nvidia-RTX 3090Ti

GPUs. Each experiment is repeated for ten times under different initial random

seeds, and the uncertainties are presented by 95% confidence intervals around the

mean in our tables. We separately set the perturbation budget ∆ as 5% and 10% of

the total number of edges in a graph. The specific parameters associated with our

cost aware loss were selected by grid search to achieve optimal attack performance

and details are in Table 5.2 and Table 5.3. For ϕ(v) > 0, we use α1 and β1.

Conversely, for ϕ(v) < 0, we employ α2 and β2. For the baseline CR inspired attack

framework, we adopted the parameter settings as outlined in their original paper and

computed the certify robustness size at every 20th iteration during the generation

of the poisoned graph.

5.1.2 Results and Analysis

Performance Comparison (RQ1) Table 5.4 presents a comparison of our attack

performance against other methods. We can observe that our CA attack loss frame-

work combined with negative log-likelihood loss can enhance the CE-MetaSelf per-

formance in all datasets. For instance, when attacking GCN with a 5% pertur-

bation ratio, our CA-CE-MetaSelf demonstrates a gain of 9.58% and 9.74% over

CE-MetaSelf on Cora and Citeseer, respectively. Figure 3.3 (b) shows the CA-CE-
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MetaSelf method’s effectiveness in minimizing budget wastage on attacked nodes,

with fewer nodes in the −1 to −0.8 margin compared to the CE-MetaSelf method.

These findings indicate that our framework enhances poisoning attack more effec-

tively within the same budget constraints.

Universality Analysis (RQ2) Table 5.4 highlights the effectiveness of our weight

assignment strategy when applied to the CW loss, underscoring the versatility of

our approach. For example, when considering a 5% perturbation ratio, our proposed

approach exhibits a relative gain of 3.58% and 3.06% over the CW-MetaSelf method

for the Citeseer and Cora datasets, respectively. Additionaly, CW-CE-MetaSelf has

a gain of 1.71% and 3.97% over the CR-CW-MetaSelf for the Cora and Citeseer

datasets, respectively. Since we use the same parameters with negative log likeli-

hood loss for CW loss to reduce the time for parameter adjustments, it may not be

optimal for the CW loss which could result in suboptimal results compared to the

baselines. The results of our attack can be improved with more detailed parameter

tuning for the CW loss within the CA attack loss framework. Furthermore, the

experimental results of CE-MetaSelf and CW-MetaSelf show that the C&W loss

enhances the poisoning attack performance. Our CA framework is more suitable

for CE loss since it enhances the performance of CE-MetaSelf more compared to

CW-MetaSelf. According to the analysis in Section 3.3.3, our framework generates

a larger impact on CE loss because the CA framework reduces the attack budget

allocated to nodes with negative attack margins. Since the C&W loss already has a

better attack budget allocation compared to CE loss, the performance improvement

of our CA framework integrated with C&W loss is not as significant as with CE loss.

Computational Efficiency(RQ3) We compared the computational efficiency of our

method with the baselines, shown in Table 5.5. DICE has the highest computa-
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Table 5.7: Dataset statistics.Following (Jin, Y. Ma, et al. 2020), we only consider
the largest connected component (LCC).

Dataset Nodes Edges Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
CoraML 2,810 7,981 7 2,879

tional efficiency since it depends on randomness without gradient derivation. The

computational efficiency of CR-CE-MetaSelf and CR-CW-MetaSelf are the lowest

because they need much time to compute certify robustness size for every node.

CA-CE-MetaSelf and CA-CW-MetaSelf have similar computational efficiency with

CE-MetaSelf and CW-MetaSelf. Therefore, the computational efficiency of CA at-

tack loss framework is satisfactory while the performance is competitive.

Transfer Learning Performance Comparison(RQ4) Table 5.6 shows the experimen-

tal results for the case where the structures of the victim model and the surrogate

model are different. Both CA-CE-MetaSelf and CA-CW-MetaSelf have competi-

tive transfer performance compared to other baselines. In evaluations using GATs

on Cora, our CA-CE-MetaSelf outperformed CR-CE-MetaSelf by 2.97%. Similarly,

with GraphSAGE on Citeseer, CA-CW-MetaSelf surpassed CR-CW-MetaSelf by

3.09%.

5.2 Evaluation of MetaLinkAttack

In this section, We present the experimental results
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Table 5.8: Hyperparameters of MetaLinkAttack.

Dataset α1 α2 β1 β2

Cora 3.6 1.0 1.0 1.1
Citeseer 3.6 1.0 1.0 1.1
CoraML 3.6 1.0 1.0 1.1

Table 5.9: ROC-AUC value of the attacks against GAE.

Dataset Cora Citeseer CoraML
Pert Rate(%) 5% 10% 5% 10% 5% 10%
Clean 91.20±0.23 88.32±0.45 89.44±0.25
IGA 85.88±0.11 79.97±0.2 83.69±0.37 77.20±0.13 83.34±0.28 78.75±0.15
MetaLinkAttack 79.45±0.23 69.30±0.25 74.55±0.23 71.56±0.25 76.58 ±0.35 68.66±0.24

5.2.1 Set Up

Datasets and GNN models. We evaluate our attacks on three benchmark graph

datasets.They are Cora (McCallum et al. 2000), Citeseer (Sen et al. 2008) and

CoraML (McCallum et al. 2000). Table 5.7 shows the basic statistics of these

datasets. The datasets are citation networks where nodes represent publications,

and links indicate citations among them. We employ the Graph Autoencoder Model

(GAE) (T. Kipf et al. 2016) as our target GNN model. We assume the model is

trained on 70% of the nodes and evaluated on the remaining in the graph. To train

the target model, we collect all linked node pairs and randomly sample the same

number of unlinked node pairs. We split this dataset into 70% for training and 30%

for validation.

Metric. ROC-AUC is a key metric for assessing binary classification tasks, includ-

ing link prediction (X. He et al. 2021). It evaluates a model’s skill in differentiating

between connected and non-connected node pairs, with higher AUC values indicat-

ing better discrimination ability.

Baseline Attacks. We choose IGA as the base attack method. Specifically, IGA

employs a sophisticated adversarial framework that strategically alters the topology
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of the graph through the insertion or deletion of edges. This method iteratively

adjusts the graph structure to maximize the misclassification rate of the target

graph neural network (GNN) model.

Implementation Details. All attacks are implemented in PyTorch and run on a

Linux server with 16 core 1.0 GHz CPU, 24 GB RAM, and 10 Nvidia-RTX 3090Ti

GPUs. Each experiment is repeated for ten times under different initial random

seeds, and the uncertainties are presented by 95% confidence intervals around the

mean in our tables. We separately set the perturbation budget ∆ as 5% and 10% of

the total number of edges in a graph. The specific parameters associated with our

cost aware loss were selected by grid search to achieve optimal attack performance

and details are in Table 5.8. For ϕ(v) > 0, we use α1 and β1. Conversely, for

ϕ(v) < 0, we employ α2 and β2.

5.2.2 Results and Analysis

Table 5.9 presents a comparison of our attack performance against other methods.

We can observe that our MetaLinkAttack combined with negative log-likelihood

loss can enhance the IGA performance in all datasets. For instance, when attack-

ing GAE with a 5% perturbation ratio, our MetaLinkAttack demonstrates a gain

of 6.43% and 9.14% over IGA on Cora and Citeseer, respectively. These findings

indicate that our framework enhances poisoning attack more effectively within the

same budget constraints.

5.3 Evaluation of MetaAD

In this section, We evaluate the performance of our proposed MetaAD.
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Table 5.10: Dataset statistics.

Dataset Nodes Edges Features Anomaly%

Cora 2,708 5,429 1,433 5%
Citeseer 3,312 4,732 3,703 5%
DBLP 5,484 8,117 6,775 5%

Table 5.11: Hyperparameters of MetaAD.

Dataset α1 α2 β1 β2

Cora 3.8 1.0 1.0 1.0
Citeseer 3.6 1.0 1.0 1.0
DBLP 2.7 1.0 1.0 1.0

5.3.1 Set Up

Datasets and GNN models. We conduct experiments on three datasets introduced

in Table 5.10. Cora is a citation network dataset including 2, 708 nodes, with 5, 429

edges indicating citation relationships. Each node represents a scientific publica-

tion described by a binary feature vector. DBLP (Yuan et al. 2021) is a citation

network dataset composed of 5, 484 scientific publications collected from the DBLP

Computer Science Bibliography. The 8, 117 edges represent citation relationships

among different papers, and node attributes are extracted from the article titles.

Citeseer is a citation network dataset that includes 3, 312 scientific publications. It

contains 4, 732 edges indicating citation relationships between publications. Each

node in the Citeseer dataset is characterized by a sparse bag-of-words feature vector,

representing the words present in the paper.

We use the GIN as our target GNN model. To generate structural outliers

according to the method described by (K. Ding et al. 2019), we randomly select

m nodes from the input graph and then make those nodes fully connected. All m

nodes in the clique are regarded as outliers. This process is iteratively repeated

until n cliques are generated, resulting in a total of m × n structural outliers. In

our experiments, the size of m is set to 15. Since we control the structural anomaly
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rate to be 5% in each dataset, The number n is fine-tuned according to different

datasets.

We split the dataset into a training set and a test set. The training set contains

50% of the normal nodes and 50% of the anomalous nodes, while the test set includes

the remaining normal nodes and anomalous nodes.

Evaluation Metric. We evaluate our attack performance by assessing the number

of anomaly nodes that have evaded detection and by determining the amount of

budget resources utilized for the attack. Therefore, we compute the recall score

within the top-k predictions (Rec@K) at different attack budget levels for the node

anomaly detection task. A lower Rec@K indicates better poisoning attack perfor-

mance. Recall measures how many of the actual anomaly data points are correctly

identified. The formula is as follows:

Rec@K =
Number of actual anomalies in top-k predictions
Total number of actual anomalies in the test set

(5.1)

Baseline Attacks. We adopt Nettack (Daniel et al. 2019)3 as our baseline attack

method. Nettack, originally developed for node classification tasks via graph con-

volutional networks, is a targeted attack aiming to misclassify specific nodes by

manipulating their features and the graph structure. By exploiting the relational

nature of graph data, Nettack introduces direct and influencer attacks. These at-

tacks are designed to be imperceptible by preserving the graphs degree distribution

and feature co-occurrences, ensuring that changes remain unnoticed even in a dis-

crete, relational domain. Our implementation of Nettack leverages this approach

to efficiently perturb the graph, maintaining its overall structural properties while

achieving effective adversarial manipulation.

In this study, we employ the Nettack algorithm for anomaly detection tasks.

Specifically, we target the structure of the graphs to prevent the detection of anoma-
3https://github.com/DSE-MSU/DeepRobust
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lous nodes by detectors. This adaptation of Nettack to anomaly detection involves

strategically altering the graph to hide anomalies from being correctly identified by

the detection algorithms.

Implementation Details. All attacks are implemented in PyTorch and run on a

Linux server with 16 core 1.0 GHz CPU, 24 GB RAM, and 10 Nvidia-RTX 3090Ti

GPUs. Each experiment is repeated for ten times under different initial random

seeds. The specific parameters associated with our cost aware framework were se-

lected by grid search to achieve optimal attack performance and details are in Ta-

ble 5.11. For ϕ(v) > 0, we use α1 and β1. Conversely, for ϕ(v) < 0, we employ α2

and β2.

5.3.2 Results and Analysis
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Figure 5.1: Comparison of attack performance between Nettack and MetaAD on
targeted GIN detector

Figure 5.1 presents a comparison of the performance of our MetaAD method and

Nettack on the anomaly detection task. We observe that MetaAD enhances the per-

formance of Nettack across all datasets. For instance, when attacking GIN under

the same budget, the Rec@K scores of MetaAD on three datasets are lower than

those of Nettack, indicating that MetaAD performs better. Additionally, to cause

all anomaly nodes to evade detection (Rec@K score equals 0), the budgets used

by MetaAD are lower than those required by Nettack. For example, on the Cora

dataset, MetaAD uses 88 budgets to achieve an Rec@K score of 0, while Nettack
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uses 97. On the Citeseer dataset, MetaAD uses 111 budgets compared to Nettack’s

120. On the DBLP dataset, MetaAD uses 170 budgets, whereas Nettack requires

178. These results indicate that our cost-aware framework significantly reduces the

budget compared to Nettack and effectively develops a poisoning attack on anomaly

detection tasks.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we delve into the realm of graph poisoning attacks on graph neural

networks (GNNs), based on the finding that current attack methods have a budget

waste problem which impairs the attack performance for identifying vulnerabilities

of graph neural networks. We study this problem across different graph neural

network applications.

First, we address the budget waste issue in node classification tasks. We present

an innovative Cost Aware Poisoning Attack Loss Framework (CA-attack) utilizing

the concept of classification margin. Our research begins by examining the bud-

get inefficiencies present in previous attack methods. Subsequently, we develop a

cost-aware loss framework that assigns dynamic weights to victim nodes based on

their margins. Through evaluations conducted on various datasets, we demonstrate

that our attack loss can considerably decrease the budget waste and improve the

performance of existing attacks.

Continuing our study, we investigate the budget waste problem in link prediction

and anomaly detection tasks. First, we propose a cost-aware link prediction poison-

ing attack called MetaLinkAttack, which also utilizes the concept of classification
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margin. Similarly, we identify the budget inefficiencies in previous attack methods

and develop a cost-aware poisoning attack that assigns dynamic weights to edges

based on their margins. Through evaluations conducted on various datasets, we

demonstrate that our attack method can considerably decrease budget waste and

enhance the performance of existing attacks.

Second, we introduce MetaAD, integrated with our cost-aware poisoning at-

tack framework, which aims to attack graph neural network-based anomaly detec-

tion. Experiments show that our MetaAD uses fewer budgets to ensure all anomaly

nodes evade anomaly detection compared to the baseline method. This indicates

that MetaAD utilizes attack budgets more efficiently and exhibits superior attack

performance.

Our research has identified the issue of budget waste and developed a new at-

tack framework to optimize budget allocation. Evaluations demonstrate that our

cost-aware framework can be effectively combined with various attack objectives,

enhancing attack performance across key graph neural network applications, includ-

ing node classification, link prediction, and anomaly detection. Our investigation

offers a significant improvement for current poisoning attacks and can help uncover

more vulnerabilities in graph neural networks across their applications.

6.2 Limitations

Despite the promising results, our study has certain limitations. Firstly, our cost-

aware framework is specifically adapted to gradient-based poisoning attacks. If the

attacks are not based on gradients, for example, some black-box poisoning attacks

that rely on reinforcement learning or non-gradient strategies to modify the input

data, our framework may not be effective.

Secondly, although our framework can enhance the performance of existing poi-

soning attacks by integrating with attack objectives and using budgets more effi-
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ciently, the budget waste problem still persists. This is because our framework can-

not address all the budget waste in a dynamic attack process, especially in graph

datasets where nodes have connections and can be influenced by neighboring nodes,

6.3 Future Work

In the future, we plan to apply our cost-aware poisoning attack framework to poison-

ing node features and building feature attacks for different applications. Currently,

we have only investigated structural attacks by adding or deleting edges in the

graph. We will also explore attacking both structure and features simultaneously

under a limited budget to allocate resources efficiently between feature and structure

modifications.

Additionally, for anomaly detection tasks specifically, we aim to extend our

framework to various anomaly score functions to attack different kinds of anomalies

and uncover their vulnerabilities.

Furthermore, with the development of large language models (LLMs), we will

investigate whether LLMs can help solve the current budget waste problem, ensuring

that every budget allocation effectively contributes to the degradation of graph

neural network performance.
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