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ABSTRACT 

A novel class of material, known as photonic crystal, has opened up new ways to guide 

the flow of light. In the early 1990s, Photonic Crystal Fibers (PCFs), an optical fiber 

using photonic crystal cladding, were developed. The pioneering experimental works on 

these fibers showed that they have inherently unprecedented properties and overcome 

many limitations of conventional optical fiber, i.e. guiding light in a hollow core, being 

endlessly single mode, having anomalous dispersion in the visible region, and 

possessing high nonlinear coefficients, etc. Among the many unique properties of PCFs, 

this thesis is most concerned with the polarization and modal properties of highly 

birefringent (Hi-Bi) PCFs with asymmetric core and different hole-sizes along the two 

orthogonal axes.  

 

The thesis starts with a short review of conventional optical fibers and then proceeds to 

a discussion on the guiding mechanisms of solid core and hollow core PCFs. The main 

properties of solid core PCFs, i.e. confinement loss, fundamental mode cutoff and 

dispersion, are reviewed. A special section is devoted to Hi-Bi PCFs and their 

corresponding properties. 

 

The basic properties of an asymmetrical core PCF are theoretically investigated by 

using the full-vector finite element method (FEM). The calculated birefringence is in 

good agreement with the measured value. The influence of fiber structural parameters 

on modal birefringence, mode field diameter (MFD), and half divergence angle are 

investigated in detail. The group velocity dispersions for the two fundamental modes 
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are also calculated and found to be significantly different for the two orthogonal 

polarizations.  

 

The full-vector FEM is also used to calculate the electrical fields and to evaluate the 

equivalent MFD of endlessly single mode PCFs. It was found that the MFD increases 

approximately linearly with pitch Λ and decreases with an increase in air-hole diameter 

to pitch ratio d/Λ. An empirical formula is proposed for estimating the MFD. The 

results calculated by using the formula deviates less than 1% from those obtained from 

FEM for 0.25 ≤ d/Λ ≤ 0.45. With the help of the MFD, the connection loss between a 

single mode fiber and a PCF can be evaluated by using the classical method based on 

the MFD.  

 

Through the analysis of a Hi-Bi PCF by FEM with anisotropic perfectly matched 

layers (PMLs), we proposed a general design methodology for an asymmetrical core 

PCF to achieve single polarization single mode (SPSM) operation at an arbitrary 

operating wavelength. Specifically we optimized the PCF structure for SPSM 

operation around 1.30μm and 1.55μm. The bandwidths of the SPSM PCFs are 

respectively 84.7nm and 103.5nm for 1.30μm and 1.55μm, within which one 

polarization state is attenuated by at least 30dB/m while the orthogonal state suffers a 

confinement loss of less than 1dB/m. The cutoff wavelengths of these fibres are further 

validated by calculating the effective mode area of each polarization, which deviates 

less than 4% from that found by the confinement loss calculation using FEM. The 

coupling losses between the proposed SPSM fibers and single mode fibers were also 
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calculated by using the overlap integral method and found to be  ~78% and ~77% at 

1.55μm and 1.30μm, respectively. 

 

A similar Hi-Bi PCF but with different parameters is found to support only the LP01 

and LP11(even) modes from 543nm to 1310nm. The LP11(odd) mode is unsupported 

within this broad range, and the supported LP11(even) mode has a stable intensity lobe 

orientation. The very broad two-mode wavelength range will allow a number of novel 

two-mode devices to be developed. The examples of these devices include 

acousto-optic frequency shifters, tunable filters, modal filters, optical switches, etc. 

With the special modal properties of the Hi-Bi PCF, we experimentally demonstrated a 

two-mode PCF interferometer based on the modal interference between the LP01 and 

LP11(even) modes propagating in the same length of PCF. The responses of the 

interferometer to axial strain and temperature were experimentally investigated over a 

wavelength range of from 600nm to 1310nm. For the strain sensor, the fiber 

elongations needed to produce 2π phase change decrease with the wavelength, 

indicating higher strain sensitivity at longer wavelengths. The strain sensitivity is also 

polarization dependent. The temperature sensitivity of the two-mode PCF sensor was 

measured and it showed a non-monotonic dependence on the operating wavelength. A 

mathematical model was developed to explain the non-monotonic temperature 

dependence, and found to agree in trends with the experimentally measured results. 

The unique wavelength dependence of the temperature/strain sensitivity would allow 

temperature insensitive strain measurement to be performed by operating the sensor at 

two selected wavelengths. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Research motivation and contributions 

A novel class of material, known as photonic crystal (PC), has opened up new ways to 

guide the flow of light. In such structures, propagation may be forbidden in any 

directions for a certain range of frequencies called photonic band gaps (PBGs). Based 

on the concepts of PBG, the microstructured photonic crystal cladding, running along 

the entire length of the fiber, can not allow light propagation in the cladding, hence 

light is trapped in the central hollow core. The hollow core photonic crystal fiber (PCF) 

using a triangular array of large air holes in the cladding was firstly demonstrated in 

1999. 

Another more common type of PCF is solid core PCF due to their relative ease of 

fabrication. For solid core PCF the guidance is attributed to modified total internal 

reflection (M-TIR), which is analogous to the TIR of conventional optical fibers. The 

effective index of the cladding is lower than that of the core, leading to a fiber structure 

similar to that of conventional step-index fiber. However, the refractive index of the 

microstructured cladding exhibits strong wavelength dependence, allowing PCF to 

possess unique properties unachievable by conventional fibers. The most striking 

among these properties is single mode operation over an infinite range of wavelength.  

The pioneering experimental work on these PCFs showed that they have 

inherently unprecedented properties and overcome many limitations of conventional 
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optical fibers. With the versatile photonic crystal fiber, people can engineer the fiber 

properties from guiding light in vacuum to unthinkable dispersion properties, from 

enhanced nonlinearities by more confinement of light to minimizing the same 

non-linear effects by using very large mode area fibers. The discovery of these 

attractive properties makes PCFs ideal for high-power transmission without 

nonlinearities, all-optical signal processing, high power lasers and amplifiers, 

dispersion compensation, polarizing and polarization maintaining devices, and novel 

optical fiber sensors. 

 

Figure 1.1  The number of papers retrieved from Science Citation Index Database. 

PCFs have become one of the most popular research topics nowadays. Researchers 

with different background around the world start detailed investigating and drawing all 

kinds of PCFs. The number of papers retrieved from Science Citation Index Database 

by using “photonic crystal fiber”, “holey fiber”, and “microstructured fiber” as the key 

words shows an exponential increase from year 1996 to year 2005 (Fig. 1.1). Among 

the broad range of the unique properties of PCF, this thesis is mainly concerned with 

the polarization and modal properties of highly birefringent (Hi-Bi) PCFs with 
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asymmetric core and different hole-sizes along the two orthogonal axes. The main 

contributions made during the author’s PhD studies are summarized as follows: 

i. The basic properties of an asymmetrical core PCF are theoretically 

investigated by using the full-vector finite element method (FEM). The 

calculated birefringence is in good agreement with the measured value. The 

influence of fiber structural parameters on modal birefringence, mode field 

diameter (MFD), and half divergence angle are investigated in detail. The 

group velocity dispersions for the two fundamental modes are also calculated 

and found to be significantly different for the two orthogonal polarizations. 

ii. The full-vector FEM is also used to calculate the electrical field and to 

evaluate the equivalent MFD of endlessly single mode (ESM) PCF. It was 

found that the MFD increases approximately linearly with pitch Λ and 

decreases with an increase in air-hole diameter to pitch ratio d/Λ. An 

empirical formula is proposed for estimating the MFD. With the help of the 

MFD, the connection loss between a single mode fiber and a PCF can be 

evaluated by using the classical method based on the MFD. 

iii. Through the analysis of a Hi-Bi PCF by FEM with anisotropic perfectly 

matched layers (PMLs), we have presented the general design methodology of 

an asymmetrical core PCF for single polarization single mode (SPSM) 

operation at an arbitrary operating wavelength. Specifically we optimized the 

PCF structure for operating at 1.30μm and 1.55μm. The cutoff wavelength is 

further validated by calculating the effective area of each polarization. The 

coupling losses between the proposed SPSM fibers and single mode fibers 
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were also calculated by using the overlap integral method. 

iv. A similar Hi-Bi PCF but with different structural parameters is found to 

support only the LP01 and LP11(even) modes from 543nm to 1310nm. The 

LP11(odd) mode is unsupported within this broad range, and the supported 

LP11(even) mode has a stable intensity lobe orientation. With the special 

modal properties of the Hi-Bi PCF, we experimentally demonstrated a 

two-mode PCF interferometer based on the modal interference between the 

LP01 and LP11(even) modes propagating in the same length of PCF. The 

responses of the interferometer to axial strain and temperature are 

experimentally investigated over a wavelength range of from 600nm to 

1310nm. The strain sensor shows higher strain sensitivity at longer 

wavelengths, and the temperature sensitivity of the two-mode PCF sensor 

shows a non-monotonic dependence on the operating wavelength. We present 

a theoretical analysis of the non-monotonic response. The theoretical 

sensitivities agree in trends with the experimentally measured results.  

The research contained herein has produced four publications in peer-reviewed 

journals and several conference papers (Appendix). 

1.2 Thesis outline 

This thesis is organized as follows: 

 Chapter 2 After a short review of the conventional optical fiber, we start 

introducing the guiding mechanism of PCF (section 2.1). The main properties of 

photonic crystal fibers and their corresponding applications are reviewed in section 2.2. 

This chapter finished with section 2.3, in this section special attention was paid to the 
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highly-birefringent PCF, with various fiber structures and their corresponding 

properties. 

 Chapter 3 This chapter starts with a general presentation of various numerical 

methods for analyzing PCFs and comparison of the advantage and disadvantage 

between them (section 3.1). Following the comparison we choose FEM as the main 

numerical method and a very general description of the FEM is described in section 

3.2. As a commercial software, FEMLAB (Finite Element Modeling Laboratory) 

software package is employed throughout the thesis, we felt it’s very important to 

validate its accuracy and the results are given in section 3.3. In the last section, we 

show an example to calculate the mode field of endlessly single mode fiber by using 

FEMLAB, which is further used to estimate the splice loss between photonic crystal 

fiber and single mode fiber SMF-28. 

 Chapter 4 This chapter presents a thorough analysis of the firstly reported Hi-Bi 

PCF. The mode properties and the single mode operation range are discussed in section 

4.1. Section 4.2 and 4.3 investigate other properties of this Hi-Bi PCF, including modal 

birefringence, MFD, divergence angle, and polarization mode dispersion.  

 Chapter 5 In this chapter we explore the single polarization single mode operation 

of the HiBi photonic crystal fiber with special efforts devoted to design practical 

polarizing photonic crystal fiber at 1.3μm and 1.55μm. Section 5.1 reviews the 

principle of polarizing fiber and available realization methods. Section 5.2 presents the 

details for designing single polarization single mode photonic crystal fiber. In section 

5.3 we validate the design methodology by calculating the polarization dependent 

confinement loss and effective mode area. Finally, we consider the practical butt 
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coupling efficiency to conventional single mode fiber and optimize the structural 

parameters of PCFs for operation at 1.3μm and 1.55μm. 

 Chapter 6 This chapter presents a general discussion of two-mode PCF and its 

basic modal properties in section 6.1. Section 6.2 discusses the possibilities of realizing 

two-mode operation by a Hi-Bi PCF. In section 6.3 we theoretically investigate a 

commercial available two-mode operation of Hi-Bi PCF in detail and describe the 

modal properties for future reference.  

 Chapter 7 This chapter starts with the principle of two-mode interferometer 

(section 7.1). Then the two-mode PCF interferometric sensor for strain and temperature 

sensing are experimentally demonstrated in section 7.2 and section 7.3, respectively. 

We also present a theoretical model for analyzing the temperature sensitivity in section 

7.3. With the experimental results from the previous two sections, we theoretically 

discuss the possibilities of using two-mode photonic crystal fiber for discriminating 

strain and temperature in section 7.4. The errors related to the recovery of strain and 

temperature is also calculated in this section. 

 Chapter 8 In this last chapter, all the research works are summarized in section 

8.1. And the promising research fields are recommended at section 8.2.  
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CHAPTER 2  

BACKGROUND REVIEW 

In this chapter, the guiding mechanisms of PCFs are described. The main properties of 

the index-guiding PCF, including loss, mode cutoff, and chromatic dispersion are 

reviewed. A special section is devoted to the Hi-Bi PCFs, in which various birefringent 

PCF structures, properties, and applications are reviewed.  

 

2.1 Guiding mechanisms 

2.1.1 Conventional optical fiber 

The first low-loss optical fiber was made by scientists from Corning Incorporated, with 

a measured attenuation of less than 20dB/km [1]. Since its invention in the early 

1970’s, optical fiber has found numerous applications in telecommunications, sensors, 

automotive, military, and industry.  

 

Figure 2.1 Schematic of a typical optical fiber. 

 The operation principle of conventional optical fiber relies on total internal 

reflection (TIR) [2]. A typical optical fiber consists of two components: core, and 

nco 

ncl 
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cladding (Fig. 2.1). The core and cladding are made from two slightly different types 

of highly pure, solid glass, resulting a different refractive index nco and ncl. With the 

help of ray approach and Snell’s law, and if nco > ncl, light propagating inside the core 

striking the core/cladding surface is totally reflected back into the core as long as the 

angle between launching light and core/cladding interface is small enough. 

In order to obtain a complete description of modes of optical fiber, Maxwell’s 

equation must be solved, and the exact solution requires six field components of great 

mathematical complexity. Fortunately the result can be considerably simplified by the 

realization that the refractive index of the core and cladding is only slightly different, 

so-called “weakly guiding fiber” [3]. The derivation of the simplified guided modes of 

the fiber comes down to solving eigenvalue β, which is called propagation constant 

associated with a specific mode of fiber. For all the guided modes the propagation 

constant should be contained in the interval of nclk < β < ncok. The guided modes have 

finite and discrete values because of the resonance condition imposed by the 

eigenvalue equations. It should be mentioned that there exists radiation modes 

propagating in the cladding [2]. For these modes, the propagation constant lies in the 

range 0 < β < nclk and has infinite and continuous values.   

2.1.2 Photonic crystal fibers 

The general term holey fiber (HF) or microstructured optical fiber (MOF) refers to any 

type of fiber with an inclusion of other materials running along the longitudinal axis of 

fiber, whereas the term photonic crystal fiber (PCF) is intended to refer to MOF with a 

periodic array of cladding [4-6].  

Like fabrication of conventional fibers, PCF fabrication starts from making PCF 
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preforms. Prefroms can be created either by stacking silica capillaries [5], or by 

drilling holes or extrusion [7, 8]. This process allows a high flexibility in design 

desirable PCF structure since solid, empty, or doped glass capillaries can be easily 

incorporated and the size or shape can be adjusted freely. After the desired preform has 

been created, it is drawn to a PCF in a conventional high temperature drawing tower. 

The success of this conventional technique is largely due to the capability to form of 

highly regular lattice of air holes and retain their arrangement during the drawing 

process, perhaps achieved by using pressure. Extrusion is an alternative technology to 

fabricate PCFs, and had already applied to other glasses [8], i.e. soft glasses and 

polymer, where the capillary tube form is not readily available. The flexible fabrication 

methods allow both solid core and hollow core PCF to be fabricated, as shown in Fig. 

2.2. The two types of PCFs are based on completely different guiding mechanisms and 

will be discussed in further detail in the proceeding sections. 

    
(a)                        (b) 

Figure 2.2 Scanning electron micrograph (SEM) of the cleaved end-face 

of PCFs with a solid core (a) and a hollow core (b). 

The large index contrast and complex index profile of PCF make it difficult to 

apply conventional optical fiber theory. The solution process is very complicated, and 

the Maxwell’s equation should be solved numerically. The computation methods will 
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be presented in detail in Chapter 3. Prior to the mathematical solution to the problem, 

the basic guiding principles of PCF will be introduced in the following sections. 

2.1.2.1 2-D photonic band gaps 

  

Figure 2.3  2-D photonic crystal with a non-zero propagation constant 

along the longitudinal axis [9].  

 

Figure 2.4  Illustration of out-of-plane PBGs for a triangular lattice cladding PCF [9]. 

As early as 1995 Birks et al. demonstrated that full 2-D photonic band gap exists when 

the longitudinal component of wave vector is non-zero, i.e. propagation out of the 

transverse plane [9]. The proposed structure consisted of a triangular array of air rods 

with an air filling fraction of 0.45 (Fig. 2.3). For a given normalized frequency kΛ and 

normalized propagation constant βΛ, four PBGs are determined respectively, with the 

results given in Fig. 2.4, usually called propagation diagram. The spacing between 

adjacent air rods is denoted by Λ, and k = ω/c is wave number in vacuum. The bottom 
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black area, where the propagation constant is higher than that of the lowest order 

cladding mode, is the operation region by TIR. Above the black region a continuum of 

modes is allowed for propagation in the cladding. However, there exist the four 

forbidden regions, where the PBGs locate, prohibiting light propagation in the 

triangular lattice cladding, a feature due to the PBG effects. 

2.1.2.2 Index guiding photonic crystal fiber 

For index-guiding PCF, where the central capillary is replaced by a solid rod (Fig. 2.2a) 

[5], light is guided by modified total internal reflection (M-TIR). Intuitively, the 

“average refractive index” of the cladding is lower than that of the solid core, leading 

to a refractive index profile very similar to that of conventional optical fiber. In this 

case, PCF can be approximated by standard step index fiber with a high index core and 

a low index cladding. However, the low index cladding exhibits strong wavelength 

dependence, which is very different from that of the silica used for standard fiber. It is 

this special effect that allows index-guiding PCF to be designed with a whole new set 

of novel properties impossible to conventional fibers, e.g. endlessly single mode, 

where a single mode is guided over a very broad range of optical wavelength.  

 Strictly speaking, the “average refractive index” is not an average of any kind at 

all, but is associated with the maximal propagation constant supported by the 

microstructured cladding of PCF. The mode corresponding to the maximal propagation 

constant is the fundamental mode of the infinite photonic crystal cladding without the 

central defect or core, and it is called fundamental space-filling mode (FSM) [6]. 

Therefore, light with a propagation constant higher than the FSM can not propagate in 

the microstructured cladding, corresponding to the TIR operation region in Fig. 2.4. 



- 12 - Chapter 2 Background Review 

 

This is analogous to the guiding principle of the conventional optical fiber (section 

2.1.1), where light can not propagate in the cladding if nclk < β. The effective index of 

the microstructured cladding of PCF is then given by βFSM/k. For all the guided modes 

of index-guiding PCF the propagation constant should be contained in the interval of 

βFSM < β < ncok. 

2.1.2.3 Photonic band gap guiding PCF 

In contrast to the index-guiding PCF, where a high refractive index core is surrounded 

by a cladding with a low refractive index, the PBG PCF permits leakage-free 

transmission in a low-index core (Fig. 2.2b) [4]. The PBG effect exhibited by the 

photonic crystal cladding makes PCF is operated physically different from that of the 

conventional fibers, and also from the index-guiding PCFs. Light with frequencies 

within a PBG is not allowed to propagate inside the photonic crystal. Therefore, if a 

defect is introduced into the photonic crystal, light can only propagate at the defect 

region. This opens up new possibilities never dreamed before: extreme low loss 

guidance in vacuum or compatible gas, high power delivery with low nonlinear effects, 

guidance of atoms, molecules through the hollow core [10], and novel fiber sensors 

[11]. 

      

(a)                                (b) 

Figure 2.5 (a) SEM of a cleaved end-face of a PBG fiber. (b) Near field patterns 
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observed with a laser source (wavelength = 458nm) [12].  

  

 

Figure 2.6  SEM of a cleaved end-face of a PBG fiber and its field intensity pattern [5]. 

 

Figure 2.7  Intensity spectrum of the light transmitted through the hollow air core [5]. 

The first convincing demonstration of PBG PCF was based on honeycomb 

cladding structure (Fig. 2.5a) [12], which has the special properties of novel dispersion 

[13] and strong birefringence [14]. However, the guided mode is mainly distributed in 

silica (Fig. 2.5b), which is undesirable in certain circumstances. Cregan et al 

experimentally demonstrated single mode guidance in a hollow core PCF with a 

triangular-based PBG cladding (Fig. 2.6) [5]. When it was illuminated with a tungsten 
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halogen lamp, the central hollow air hole was found to be filled with a color light. 

Further examination of the transmission spectra by using a conventional multimode 

fiber showed more than one band of transmission existed, covering part of the visible 

spectrum and extending to the infrared (Fig. 2.7). The guidance loss for each of the 

transmission band is small, which can be definitely attributed to the PBG effect of the 

cladding.  

 

Figure 2.8  Variations of photonic bandgaps with the normalized propagation constant [15]. 

 The use of microstructure cladding with a PBG effects makes it possible to guide 

light in a hollow air core. However, the PBG alone is not enough to obtain air-guiding 

PBG fibers. The PBG should overlap a special case of βΛ = kΛ, corresponding to light 

propagating in a homogeneous medium with a refractive index of 1.0, e.g. air or 

vacuum. Therefore, when a central defect of air or vacuum is introduced, light can 

propagate in the defect but can’t escape this defect because of the PBG cladding. This 

was theoretically analyzed by Broeng et al [15] and the results are shown in Fig. 2.8. 

The full analysis reveals the presence of two core modes with their traces shown at the 

top left inset for a normalized propagation constant interval from βΛ = 7.8 to 9.3 and a 
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normalized frequency interval from kΛ = 8.1 to 9.9. The bottom right inset shows the 

cross-section of the air-guiding PCF. As can be seen from Fig. 2.8, there exist three 

PBGs for the interval from βΛ = 7.0 to 15, but only within a narrow interval do they 

overlap the air line. Within the PBG, both modes were found to be confined within the 

central air core, and the value of the normalized frequency range was determined to be 

0.75 approximately. Further detailed numerical results confirmed this well-confined 

fundamental mode (kΛ = 9.0) and second mode (kΛ = 8.5).  

 

2.2 Main properties of index-guiding PCFs 

2.2.1 Basic loss properties 

2.2.1.1 Optical attenuation 

A PCF has the potential to achieve lower loss than the conventional fibers in that it is 

composed of only pure silica glass and doesn’t suffer from the scattering loss 

introduced by doped ion in standard fiber. Moreover, the PBG PCF is capable to guide 

light in air, allowing ultra low loss and ultra low nonlinearity. Since its first fabrication, 

the attenuation loss of PCF has been dramatically reduced [16-20]. Early PCF had an 

attenuation loss of 0.24dB/m and the length is limited to tens of meters [16]. In the 

beginning of 2002, it was rapidly reduced to 1dB/km [17] and a record level of 

0.28dB/km in the following year [18]. The fiber length has been extended to >10km 

which make PCF a promising candidate for future transmission media. A 100-meter 

length of air core PBG fiber with a minimum loss of 13dB/km at 1550nm has been 

reported in [20]. These improvements are attributed to the high purity glass prepared 

by the vapor-phase axial deposition technique and by eliminating the OH absorption 
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[21-22]. 

 A proper designed structure, i.e. hole diameter d and hole pitch Λ, is the first step 

to realize a low loss PCF, and the confinement loss contribution should be minimized 

to a adequately low level because of the leaky nature of PCF. The ratio of hole 

diameter d to hole pitch Λ, or d/Λ, should be designed to large enough but ensuring a 

single mode operation at the same time because a large value of d/Λ potentially makes 

the PCF multi-mode. Optical confinement loss α (dB/km) of PCF with sufficiently 

reduced confinement loss can be expressed as [23] 

IROHBA ααλα +++= 4                          (2.1) 

where A, B, αOH, and αIR are Rayleigh scattering coefficient, imperfection loss, and OH 

and infrared absorption loss, respectively. Among these loss components, scattering 

loss and OH absorption loss are dominant in today’s PCFs. Both the intrinsic OH ions 

in fiber preforms and OH ions penetrating into the core region during the fabrication 

process contribute to the overall OH absorption loss. Fortunately an additional 

dehydration process can greatly reduce the OH absorption loss from 15dB/km to 

0.4dB/km at 1.38μm, and its contribution to 1.55μm is decreased from 0.15db/km to 

less than 0.01dB/km. The surface roughness can increase the Rayleigh scattering when 

the roughness is small compared with the wavelength used, which can be improved by 

reducing the interior surface roughness of holes and maintaining the longitudinal 

uniformity along the fiber. The improved fabrication process leads to a reduction of 

scattering loss from 2dB/km to 1db/km at 1.55μm. It is with the reduction of both the 

OH absorption loss and Rayleigh scattering loss that the ultra low loss PCF was 

fabricated.  
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2.2.1.2 Confinement loss 

In previous section, the confinement loss of PCF is assumed to be small enough so that 

its effect doesn’t have to be taken into considerations. This is based on the assumption 

that the cladding is infinitely extended and the material is lossless, which is just as 

most numerical method using periodic boundary conditions treated [24-25]. However, 

this does not apply to the real PCF, where only a finite numbers of air hole rings is 

made in practice. The confinement loss is due to the finite numbers of air holes 

consisting of the PCF cladding even in the absence of material absorption loss or 

scattering loss. Various numerical methods have been used to investigate the leaky 

nature of the PCFs [26-31]. It should be mentioned here that other loss mechanisms 

discussed in the previous section are not considered when investigating the leakage 

property of PCFs.  

  

(a)                               (b) 

Figure 2.9 (a) Confinement loss of a triangular lattice PCF as a function of the number of rings 

and hole diameter to pitch ratio (d/Λ). (b) Confinement loss as a function of 

wavelength for a triangular lattice PCF with a fixed hole pitch of 2.3μm [26]. 

White et al firstly reported their study on the finite cladding effect by using a full 

vector multipole method [26]. For an index-guiding PCF with a hole pitch Λ = 2.3μm, 
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the confinement loss of the fundamental mode at λ = 1.55μm as a function of different 

numbers of air-ring and different d/Λ ratio is shown in Fig. 2.9a. As can be seen from 

the figure, PCFs with small hole size and less number of rings experience a higher loss, 

and the confinement loss decreases rapidly as hole diameters and number of rings are 

increased. This can be easily understood because it is the air holes that ultimately 

provide the confinement for the light field. The wavelength dependent confinement 

loss is shown in Fig. 2.9b, where it increases smoothly with the wavelength, implying 

the light is less confined in the core region at longer wavelengths. 

2.2.1.3 Bending losses 

In conventional optical fiber the single-mode bandwidth is limited by the higher order 

mode cutoff at short wavelengths and macro-bending loss at long wavelength. 

However, the PCF exhibits a very different bending characteristic [6, 32-37]. Both the 

short- and long-wavelength bend-edge are limited by the macro-bending and the 

short-wavelength bend-edge is of practical interests since the long-wavelength 

bend-edge occurs for λ >> Λ/2 [33] and it is within the non-transparent window of 

silica for typical large mode area (LMA) PCFs. Since the refractive index of core mode 

and cladding mode is strongly wavelength dependent, this index difference counteracts 

the 1/λ dependency of V-parameter of PCF, resulting in VPCF → V0 for λ→ 0 where V0 

is a constant dependent on d/Λ [38]. This implies the refractive index difference 

decreases with the decreasing wavelength and correspondingly the field confinement 

will decrease. Therefore, macro-bending loss at short wavelength can be observed [33]. 

Generally, the bending losses increases with increasing mode areas, and PCFs and 

standard fibers will experience similar bend loss if they have similar mode areas [32]. 
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Further investigation shows PCFs are found to have a significantly larger bandwidth 

than the conventional optical fiber with an identical mode field diameters [35], which 

can be utilized to realize LMA fiber with enhanced bending resistant properties.  

 

2.2.2 Number of modes 

2.2.2.1 Definition of V-parameter 

In the case of conventional optical fiber, the V-parameter plays a central role in the 

description of the number of guided modes, the cutoff criterion, and the MFD. 

V-parameter of conventional step-index fiber (SIF) is given by [2] 

222sin clcoSIF nnaakakV −=⋅⋅== ⊥ λ
πθ               (2.2) 

where λ is the wavelength, a is the core radius, nco and ncl are the core and cladding 

index, respectively. ⊥k  is the transverse projection of the free space wave number k = 

2π/λ, and NA = sinθ is the numerical aperture. An optical fiber is said to be multimode 

if VSIF >> 1, when many bounded modes are supported to propagate within the core. 

However, when VSIF is sufficiently small so that only the two degenerate modes, or the 

fundamental mode, can propagate, the fiber is said to be single-moded. For a 

conventional SIF, it is single-moded when VSIF < 2.405. In the context of PCF, the first 

attempt to obtain an expression for the V-parameter is based on an equivalent SIF [6]. 

Up to date various definitions of V-parameter has been proposed [4, 39]. However, it 

seems that all of this attempts have faced the same problem of choosing a meaningful 

value of radius a. For example, although Ref [6] suggested some specific values, 

including the hole pitch Λ, they concluded that all of them are arbitrary choices, which 

may lead to the defined V-parameter arbitrary. Mortensen et al pointed out that the 
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problem is not a matter of defining a core radius but defining the natural length scale 

[40]. For an index-guiding PCF with a triangular lattice of air holes, the formulation of 

the V-parameter is given by [40] 

222
FSMFMPCF nnV −Λ=

λ
π                   (2.3) 

where nFM  and nFSM are the refractive index of the fundamental mode and FSM, 

respectively. Similar to the counterpart of conventional fiber, the V-parameter of PCF 

provides plenty of information about the number of guided modes [40] and mode field 

radius [41].  

2.2.2.2 Modal cutoff 

   
(a)                                    (b) 

Figure 2.10 (a) VPCF as a function of Λ/λ for varying d/Λ from 0.43, 0.44, 0.45, 0.475, 0.50, 0.55, 

0.60, 0.65, 0.70. (b) Single-mode – multimode phase diagram. Solid line shows 

solutions to equation 2.xx and circles correspond to solutions to VPCF = π [40]. 

It was argued in [40] that the second-order mode cutoff can be associated with 

VPCF = π. And this conclusion is indeed identical to the single-mode-multimode 

boundary obtained by multipole method [42]. Fig. 2.10(a) shows the VPCF as a function 

of wavelength for various values of d/Λ. With the decreasing of wavelength, the 
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V-parameter approaches a constant value, which depends on d/Λ. The horizontal dotted 

line shows VPCF = π and the black dots shows the cutoff wavelength from the empirical 

expression [42] 

( )γαλ 406.0−Λ≈Λ d                     (2.4) 

where α  = 2.80±0.12, and γ  = 0.89±0.02. As can be seen from Fig. 2.10a good 

agreement can be found between these two criteria. The phase boundary shown in Fig. 

2.11b provides more direct information about the mode cutoff and was confirmed 

experimentally in various index-guiding PCFs [43].  

In general the PCF with d/Λ < 0.43 supports a single-mode and is so-called 

endlessly single mode, and for d/Λ > 0.43 the PCF support a second-order mode at 

wavelength smaller than the cutoff wavelength. For the experimental determination of 

the cutoff wavelength the transmission intensity as a function of wavelength is 

recorded and a significant difference is expected because of the very lossy nature of 

high-order mode when approaching the cutoff wavelength. However, it seems the 

alternative cutback technique fail to predicate the cutoff wavelength because of the less 

sensitivity to bending of the higher order modes in PCF, which can be attributed to the 

high NA of these high-order modes than that of the standard fiber [43].  

2.2.3 Chromatic dispersion 

The chromatic dispersion (CD) plays an important role in both linear and nonlinear 

phenomena in conventional fibers optics [44], and it leads researcher to explore this 

property for PCFs from all aspects. Both experimental and theoretical works have been 

devoted to this interesting subject, and PCFs have shown to possess unusual dispersion 

features unavailable to conventional optical fibers. PCFs can be engineered to have a 
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zero dispersion point from 500nm to 1.3μm [45] (Fig 2.11), making them useful for 

nonlinear applications such as soliton generation [46] and super continuum generation 

[47]. This novel property is a result of the strong waveguide dispersion exhibited by 

index-guiding PCF. For the small pitch of PCF used in Ref [45], the core diameter is in 

the scale of optical wavelength and thus waveguide dispersion dominates in the overall 

dispersion. In fact, the zero dispersion wavelengths can be precisely controlled to any 

wavelength by properly adjusting the waveguide dispersion and material dispersion, 

which is the basic idea behind the design of PCFs with ultra-flattened dispersion (Fig. 

2.12) [48]. Two ultra-flattened dispersion PCFs with a dispersion of 0 ± 0.6ps/nm·km 

from 1.24μm – 1.44μm wavelength and 0 ± 1.2ps/nm·km from 1μm – 1.6μm have been 

demonstrated (Fig. 2.12).  

 

Figure 2.11 Chromatic dispersion curve (solid line) for PCF with d = 0.62μm 

and Λ = 1μm. Two polarization states of the fundamental mode 

can be clearly observed for this PCF. The broken line shows the 

computed results by modeling the PCF as a silica strand 

surrounded by air. The dotted line indicates the CD of pure bulk 

silica. [45] 
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Figure 2.12  Measured dispersion for ultra flattened dispersion PCF with 11 

rings of air holes [48]. 

 In order to achieve ultra-flattened dispersion in PCFs, the influence of pitch Λ, 

hole diameter d, and number of hole rings Nr should be taken into consideration 

systematically [49-50]. Therefore, early theoretical predictions for dispersion of PCF 

by using silica strand approximation or full-vector method with a periodic boundary 

condition is inherently error-leading.  

For a fixed hole diameter of 0.8μm the dispersion as a function of wavelength and 

different pitch is shown in Fig. 2.13 (a), where a small pitch value generates large 

oscillations in the dispersion curve and more than one zero dispersion wavelength can 

be found. With the increase of pitch Λ, equivalently increasing the core size of PCF, 

the dispersion becomes flattened and more close to the material dispersion, which is an 

indication of the reduced waveguide dispersion. This can also explain the oscillation 

dispersion behavior of PCF with a fixed pitch of 1.55μm but different air hole 

diameter.  

For practical fabrication of PCF, three rings of holes will introduce huge 

confinement loss [26]. One can reduce the loss efficiently by increasing the number of 

d = 0.58μm
Λ = 2.59μm

d = 0.57μm
Λ = 2.47μm





Chapter 2 Background Review - 25 - 

 

  
                     (a)                                       (b) 

Figure 2.14 (a) Dispersion as a function of wavelength and number of rings Nr. (b) Dispersion 

for three discrete wavelength as a function of the number of rings for PCF with d = 

0.5μm and Λ = 2.0μm [50]. 

2.3 Hi-Bi PCF 

Due to the highly flexibility during the fabrication process of PCFs, large birefringence 

can be introduced straightforwardly. With the general six- or four-fold symmetries the 

fundamental modes of PCFs are found to be doubly degenerate [51-53], as in 

conventional optical fibers. However, if the symmetry is broken into two-fold 

symmetry, e.g. by introducing different air-holes along the two principle axis [54-55] 

or by local elongation of core region [56-57], the degeneracy is lift and PCF becomes 

Hi-Bi. Further more, if the PCF is designed such that one of the polarization modes is 

suppressed, a single-polarization single-mode (SPSM) PCF can be realized [58-59]. 

   

         (a)                      (b)                      (c) 
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            (d)                     (e)                    (f) 

Figure 2.15  SEM of various Hi-Bi PCFs 

2.3.1 Hi-Bi PCF with asymmetrical hole size in the cladding 

The first Hi-Bi PCF was reported by Ortigosa-Blance et al in 2000 [54]. Anisotropy 

was intentionally introduced by careful positioning of capillaries with same outer 

diameter but different wall thickness, leading to a two-fold symmetry (Fig. 2.15a). The 

beat length at 1.55μm was measured to be 0.42mm, corresponding to a modal 

birefringence of 3.7×10-3, which is an order of magnitude higher than that of typical 

conventional Hi-Bi fibers. We have conducted detailed investigation for Hi-Bi PCF 

with a similar structure, and the results will be discussed in Chapter 4. 

Suzuki et al at NTT Corporation reported for the first time an ultra-low loss Hi-Bi 

PCF with 1.3dB/km transmission loss and crosstalk less than -22dB at 1.55μm [55]. 

Two opposite air holes near the core region are enlarged so that the effective index of 

the orthogonal axis becomes non-degenerate (Fig. 2.15b). The ratio (d1/d2) between the 

diameters of two big air-holes (d1) and that of the cladding air-holes (d2) determines the 

magnitude of birefringence. A birefringence of 1.4×10-3 at 1.55μm was measured when 

the ratio is set to 0.40 [55]. When the ratio is further increased to the extent that the 

effective index of one of the polarization states is lower than that of the cladding, or 

FSM, the mode becomes leaky and thus unguided [59]. Fig. 2.17 shows the spectral 
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loss profile for both of the polarization modes for the SPSM PCF. A polarization 

dependent loss (PDL) of 196dB/km and 19dB/km was obtained for 1.55μm and 

1.30μm, respectively. We conducted detailed investigation on this type of PCF, 

including the design of SPSM PCF, two-mode PCF and applications. The results will 

be presented in Chapter 5 - 7.  

 

Figure 2.17 spectral loss profiles for the two orthogonal modes in 2-meter SPSM PCF [59]. 

2.3.2 Hi-Bi PCF with asymmetrical core  

The anisotropy can also be introduced by using elliptical air-holes to form the cladding 

[56], but this makes the fabrication process hard to control. Through asymmetric core 

design, i.e. two neighboring air holes in the central are replaced by silica rods (Fig. 

2.15c – Fig. 2.15d), Hi-Bi PCF can be conveniently realized [57, 60]. Both of these 

PCFs yield a birefringence of ~10-3 for the fundamental mode at 1.55μm. However, 

this type of PCF is prone to be multi-mode although a high birefringence can be 

obtained.  

2.3.3 Hi-Bi large mode area PCF 

Instead of changing the geometrical structure of PCF, Folkenberg et al demonstrated a 

Hi-Bi PCF by using stress-applying rods (Fig. 2.15e) [61-62]. The rods have a different 
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thermal expansion coefficient than that of the silica, resulting in a built-in stress in the 

fiber when it is cooled down below the softening temperature of silica. Because of the 

elasto-optic effect arising from the stress field, birefringence is introduced. The core 

and cladding region of this Hi-Bi PCF resembles those of the LMA PCF, where the air 

hole diameter d and pitch Λ are chosen to support single-mode operation in a wide 

optical wavelength. This PM PCF has a relatively lower birefringence in the order of 

1.5×10-4 independent of wavelength, which is attributed to the screening of the strain 

field by the air holes. However, the Hi-Bi PCF inherits the endlessly-single-mode 

property and provides large mode field diameters. Further experimental study shows 

the relative temperature sensitivities of the phase and group delay for a small core 

Hi-Bi PCF is 100 times smaller than that of a standard PANDA fiber [62]. Therefore, 

this Hi-Bi PCF is a valuable candidate for polarization-maintaining applications 

demanding high temperature stability.  

 Through proper stress applying parts design, this Hi-Bi PCF can also be made to 

support only one of the orthogonal polarization states (Fig. 2.18). For wavelength above 

850nm, the PCF act as a Hi-Bi PCF discussed previously with attenuation lower than 

5dB/km. Within the 220nm (620nm to 840nm) single polarization bandwidth, which is 

defined as the wavelength range corresponding to 100dB/km attenuation, the PCF is 

SPSM and has a core size as large as 19.7μm, allowing Ti:Sapphire and IR light 

delivery without nonlinear effects or material damage.  
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Figure 2.18 Spectral loss profile for the two orthogonal modes [63]. 

 

2.4 Summary 

We have briefly reviewed the guiding mechanisms of conventional optical fibers, 

index-guiding and PBG-guiding PCFs. The main properties of index-guiding PCF, 

including loss mechanisms, mode cut-off, and dispersion, are outlined. The final 

section is devoted to a variety of Hi-Bi PCFs, which are the main topic of this PhD 

thesis and will be treated in detail in the following chapters.  
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CHAPTER 3 

MODELING OF PHOTONIC CRYSTAL FIBER 

 

In this chapter a general presentation of various numerical methods for modeling 

photonic crystal fibers is described. The basic theory of FEM, the main numerical 

method used for modeling PCF throughout this thesis, is then introduced. FEMLAB, 

which is a commercial FEM software package from COMSOL Inc., is used to simulate 

different types of waveguides. The modeling results are compared to the published data 

and good agreements are found. At the end of this chapter, I present the calculated 

mode field of endlessly single mode PCF and proposed a simple formula to evaluate 

the MFD. The formula is further used for estimating the splice loss between photonic 
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crystal fiber and single mode fiber. 

 

3.1 Numerical methods for PCF modeling 

3.1.1 Effective index method 

Effective Index Method is one of the firstly developed methods for modeling PCF [1], 

but it is indeed an approximate approach to the problem. The basic idea behind this 

approximation is to regard the microstructured cladding as a uniform material with a 

properly chosen effective index (the index of fundamental space-filling mode) and PCF 

can be regarded as a conventional step index optical fiber. With such a simplified fiber 

structure, conventional well-established fiber theory can be applied to analyze the 

modal property of PCF. However, one difficulty arising from this effective index 

approach is the correct definition of the equivalent core radius.  

3.1.2 Plane wave expansion method & super cell method 

The plane wave expansion method was intensively used for accurate analysis of 

photonic crystals [2-3]. The basic principle is to express the electromagnetic (EM) field 

as a finite sum of plane wave basis. In order to find the solutions, it is advantageous to 

operate in the reciprocal space since the periodic functions can be expressed as 

Fourier-series expansion in terms of the reciprocal lattice vectors. This method seems 

straightforward but it demands intensive computation to accurately model the PCF 

since a large number of plane waves are required.  

The super cell method [4-5] is closely related to plane wave method in that the EM 

field is also expanded as the sum of basis functions, i.e. Hermite-Gaussian basis 

functions. In a periodic structure the solutions maybe computed as Fourier series, just 
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like plane wave expansion method. But when a defect is introduced the structure is no 

longer periodic. Super cell method converts this non-periodic structure to an artificial 

periodic one by infinitely repeating the PCF structure with a central defect. The newly 

constructed periodic structure is then regarded as a combination of two separate 

periodic structures with different periods, which are easy to solve mathematically by 

taking advantage of the periodicity. However, one can’t estimate the loss of modes by 

using super cell method because the finite confining structure is replaced with an 

infinite one.   

3.1.3 Finite difference time domain method 

Finite difference time domain method (FDTD) is one of the most powerful methods for 

modeling EM wave propagation. It utilizes the finite differences computed on a small 

space/time interval to replace the derivatives of functions in differential operators. The 

main drawback comes from the great difficulties when accurate representation of a 

complex geometry is required, where a fine grid or mesh not only takes more memory 

but also consumes long computation time. The other problem is that it is a time domain 

method, we need a frequency conversion to get the mode information. Therefore, 

FDTD is not a good numerical tool for modeling PCFs, and it was only reported in a 

few papers for analyzing PCFs [6].  

3.1.4 Multipole method 

Multipole method has been widely used to study PCFs and a detailed formulation and 

implementation of this powerful method was presented in Ref [7-8]. This method is a 

general extension of the multipole method previously developed for multicore 

conventional fibers [9-10]. Similar to plane wave expansion method, multipole method 
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is also finding solutions of the Helmholtz equations, but it chooses a different basis 

functions, i.e. Fourier Bessel series, a natural basis for harmonic functions in 

cylindrical coordinates. The basis functions of multipole method differentiate that of 

plane wave expansion method in that multipole series are localized and require a small 

number of terms to achieve a reasonable accuracy.   

The multipole method is well suited for analyzing finite size PCF, with a solid core 

or an air core, which is attributed to the advantages it bears. Firstly, the method is of 

high accuracy and converging rapidly even when a larger number of inclusions are 

contained, which is an inherited advantage because this method was originally 

developed for analyzing the convectional fibers with inclusions. Secondly, the 

symmetry properties of optical waveguide, when taken into consideration, can greatly 

increase computation efficiency. The last but not the least advantage of this method is 

that it reveals both the real and the imaginary parts of the propagation constant, the 

latter one gives the confinement loss associated with the finite numbers of rings of air 

holes.  

A key aspect of the multipole method is that it makes use of the circularity of the 

inclusions. It is therefore of high accuracy, converging sufficiently rapidly to be able to 

treat precisely systems that contain quite large numbers of inclusions. The finite 

element method, which we will discuss later in this chapter, is extremely flexible from 

both the geometric and material point of view, since it allows not only an easy 

treatment of inclusions of any shape but also anisotropic, inhomogeneous materials to 

be fully incorporated.  

The above overview only provides a brief description of the various methods that 
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have been developed for PCF modeling and analysis. In the next sections I will present 

in relative detail of the FEM, which is used throughout this thesis for analyzing PCFs.  

 

3.2 Finite Element Method 

FEM has proved to be very successful in solving a large range of scientific problems 

although it was initially developed as a computer aid simulation software tool for 

analysis of aerospace structures. Its success quickly attracted attentions in 1970s and 

found its way continually in different fields, e.g. civil and mechanical engineering, and 

non-structural problems in fluids, thermomechanics, and electromagnetics. FEM is 

probably the most generally applicable and most versatile method for waveguide 

analysis at microwave, millimeter-wave, and optical frequencies [11-14]. In this 

section, the general outline of finite element method is given in the simplest form to 

illustrate the basic ideas behind this powerful method.  

 Considering an inhomogeneous waveguide filled with dielectric of the relative 

permeability rμ  and permittivity rε , we assume that the electromagnetic field has a 

z-dependence as zjkzeyxEzyxE −= ),(),,( . From the Maxwell’s equations the 

following vectorial wave equation is derived: 
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where 0k  is the wave number in free space. Applying the variational formulation and 

the functional for Eq. (3.1) is given by  
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where Ω  denotes the cross section of the structure to be analyzed. We discretize the 
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domain Ω  by using the edge element, as shown in Fig. 3.1. The edges 1 to 3 are for 

the transverse components te  and nodes 1 to 3 are for the longitudinal components 

ze . Within each element we expand the electric field as 
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Figure 3.1 First order triangular edge element. 

where { }N  and { }L  are the edge basis function and node basis function for the linear 

triangular element. { }L  is defined as 
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where eA  is the area of the element, and ka , kb , and kc  are given by 
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where kx  and ky  (k = 1, 2, 3) are coordinates of nodes 1 to 3 of the triangular 

element and subscripts k, l, m always progress modulo 3. { }N  can be defined as 
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where lk is the length of each edge. The transverse electric field on each edge is further 
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decomposed into x and y components, and te  can be written as 
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substituting Eq. (3.4) into Eq. (3.6), we obtained the edge basis function 
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where ka~ , kb~ , and kc~  are given by 
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Discretizing the functional in Eq. (3.2) and applying the variational procedure, we 

obtain the following eigenvalue equation 
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where the matrices are assembled from their corresponding elemental matrices given 

by 
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Eliminating the longitudinal components { }ze  from Eq. 3.10, the following 

eigenvalue equation for the transverse components is obtained 

[ ]{ } [ ][ ] [ ] [ ]( ){ }tttztzztzzttt eBBBBkeA −= −12              (3.12) 

The propagation constant kz and the corresponding field components et can be obtained 
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directly by solving Eq. (3.12).  

 

3.3 FEMLAB software 

3.3.1 Introduction 

FEMLAB is a FEM modeling software package for the simulation of any physical 

process you can describe with partial differential equations (PDEs). FEMLAB is 

commercial software from COMSOL, Inc. It features state-of-the-art solvers that 

address complex problems quickly and accurately. FEMLAB consists of several 

different modules which enable researcher to concentrate on specific applications or a 

combination of multi-physics. The electromagnetics module specializes in virtually all 

electromagnetic field simulation from statics and quasistatics to microwaves and 

photonics. The static, transient and frequency domain analyses allow for material 

properties that are complex-valued, i.e., anisotropic, frequency or time-dependent. 

We’re most interested in the capabilities of the electromagnetics module for mode 

analysis of optical waveguide with or without anisotropic media with loss. In the 

following sections, I’ll rigorously evaluate the performance FEMLAB software by 

comparing the results to that of well-established theory or other numerical methods.  

3.3.2 Assessment of FEMLAB for semiconductor rib waveguide analysis 

In this section semiconductor rib waveguide will be analyzed by using FEMLAB, and 

it is demonstrated that FEMLAB can predict accurate simulation results. First, we 

consider a semiconductor rib waveguide (Fig. 3.2a) having a rib width W = 3μm and 

substrate depth t + h = 1μm, where h is the etch depth. The outer slab depth t varies 

from 0μm to 0.9μm. Fig. 3.2b shows a typical element division profile, where only 
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one-half of the cross-section is taken into consideration by taking use of the symmetry 

nature of the rib waveguide.  

 

 

 

 

 

 

 

(a)                            (b) 

Fig. 3.2 (a) Rib waveguide structure, (b) Element division profile. 

Fig. 3.3 shows the normalized propagation constant b as a function of t for the two 

non-degenerated fundamental modes, where b is defined as  
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where β is the propagation constant and k0 is the free space wave number. The results 

of vector finite element method (VFEM) with higher order mixed-interpolation type 

elements [15] and scalar finite difference method (SFDM) [16] are also given in Fig. 

3.3. It is confirmed that the results obtained with FEMLAB are in good agreement with 

VFEM and SFDM. 
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Figure 3.3 Normalized propagation constants of the rib waveguide. 

 

3.3.3 Assessment of FEMLAB for PCF simulation 

3.3.3.1 A multi-mode PCF example 

In this section, I’ll apply the full-vector FEM for analyzing the modal properties of 

PCFs. The cross section of a typical PCF is schematically shown in Fig. 3.4, where d is 

the hole diameter and Λ is the hole pitch. We consider a PCF with structural parameters 

Λ = 2.3μm, d/Λ = 0.8, and a background index of silica n = 1.457 [17]. At a 

wavelength of 633nm, it allows higher order modes to exist since the d/Λ is beyond the 

value (0.43) for endlessly single mode operation. Taking use of the symmetry nature of 

the cross section, only a quarter of the cross section was used during the simulation and 

a perfect electric or perfect magnetic conductor (PEC or PMC) is applied along the 

symmetric plane Γ1 and Γ2. PEC or PMC makes the electric field perpendicular or 

parallel to the boundaries, respectively. The polarization of a considered mode over a 

quarter of the cross-section is preserved subject to the proper choice of PEC and PMC 

combinations [18]. The boundary conditions for calculating the corresponding guided 
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modes are summarized in Table 3.1, referring to the boundaries Γ1 and Γ2 appearing in 

Fig. 3.4.  

 

Figure 3.4 Schematic of the cross section of a PCF.  

 Table 3.1 Boundary conditions for calculating neff 

Mode Label Γ1 Γ2 

1
11HE , 2

11EH , 312EH , 2
12HE  PMC PEC 

2
11HE , 1

11EH , 311EH ,  1
12HE  PEC PMC 

01TE , 2
21HE , 1

21EH  PEC PEC 

01TM , 1
21HE , 2

21EH  PMC PMC 

 

Fig. 3.5 shows mode indices of the first 14 modes supported by this PCF. We also 

show the results calculated by using supercell lattice method (SLM) [17] in Fig. 3.5. 

For detailed comparison the results of both methods are summarized in Table 3.2, and 

excellent agreement was found between these two numerical methods. For an ideal 

PCF, the mode index of the two fundamental modes should be the same theoretically 

[19]. Therefore, the modal birefringence |Δn|, which corresponds to the difference 

Γ1 

Γ4 

Γ3

x 
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Λ d 
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between the modal indexes of the fundamental modes, results from the error 

introduced by the numerical methods. It can be used to evaluate the accuracy of the 

algorithm: the less |Δn| is, the more accurate the numerical method [4]. The modal 

birefringence |Δn| = 7.5×10-7 indicates that FEMLAB can yield very accurate results.  

Table 3.2 Mode index of the first 14 modes. 

Ordinal of 
mode 

FEMLAB SLM [17] Label 

1 1.44884671 1.44882484 

2 1.44884596 1.44882443 
HE11 

3 1.43680859 1.43674688 TE01 

4 1.43645021 1.43637588 

5 1.43644586 1.43635241 
HE21 

6 1.43624155 1.43622158 TM01 

7 1.42212080 1.42177752 HE311 

8 1.42113562 1.42112856 

9 1.42113364 1.42108459 
EH11 

10 1.41945180 1.41946985 HE312 

11 1.41554257 1.41542537 

12 1.41554168 1.41542357 
HE12 

13 1.40886545 1.40865377 

14 1.40884648 1.40863244 
EH21 
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Figure 3.5 Mode index of the first 14 modes in PCF with structural 

parameters Λ = 2.3μm, d/Λ = 0.8, at 633nm. 

3.3.3.2 Fundamental space-filling mode of PCF 

In index-guiding PCF the effective index of core is higher than that of cladding, 

leading to the M-TIR. In other words, the effective index of the propagation mode 

should satisfy the following equation: 

coFSM n
k

n <<
β                        (3.14) 

where nFSM is the effective cladding index of the FSM of the infinite photonic crystal 

cladding without the central defect or core, β is the propagation constant of the 

propagating modes supported by the PCF, and nco is the refractive index of the core. 

The equivalent refractive index of the cladding, nSFM, can be determined by applying 

the full-vector FEM to the elementary piece of the cladding which act like an infinite 

propagation medium as shown in Fig. 3.6 [20]. The calculation of effective index of 

the cladding can also be categorized as x- and y-polarization with a proper setting of 

the boundary conditions (Table 3.3). The simulation results indicated that the two 

polarizations of the FSM are also degenerate.  
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 As an example, we calculate the refractive index of the FSM of a PCF with Λ = 

2.3μm, d/Λ = 0.8 at 633nm. The effective indexes of the x- and y-polarization of FSM 

are 1.40383994762110 and 1.40383980709472, respectively. The difference between this 

two polarization, | y
FSM

x
FSM nn − | = 1.4×10-7, indicates that the two polarizations of FSM 

are degenerate.  

 

Figure 3.6 The elementary piece of the cladding used to 

calculate the fundamental space filling mode. 

Table 3.3 Boundary conditions for calculating nSFM 

Polarization Γ1 and Γ2 Γ3 and Γ4 

x PMC PEC 

y PEC PMC 

 

3.3.3.3 Guided modes of PCF 

To find the supported propagation modes of the PCF and validate the full-vector FEM 

of FEMLAB, the propagation constants of all propagating modes and that of the 

cladding should be determined first. Fig. 3.7 shows the effective index neff ( = β/k) as a 

function of Λ/λ for a PCF with hole pitch Λ = 2.3μm and hole diameter d = 1.4μm.The 

effective index of cladding is also shown in the same figure. In the calculations the 

Elementary 
piece 

Γ1

Γ2

Γ3
Γ4
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background refractive index of silica is assumed to be a fixed value of 1.46 for the 

entire wavelength range. This PCF is multi-mode and has two multiplets. The first one 

is a polarization doublet (Fig. 3.8 a to b), while the second one consists of four nearly 

degenerate higher-order modes (Fig. 3.8 c to f). Therefore, the total number of guided 

mode is 6.  

 

Figure 3.7 Modal dispersion properties of a multi-mode PCF with Λ = 

2.3μm and d = 1.4μm.  

 All the results presented in this section are in good agreement with those obtained 

by a full-vector multipole method [21] and full-vector finite element method [22]. We 

thus convinced that FEMLAB is a reliable and accurate numerical tool for full-vector 

analysis of PCFs.  
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Figure 3.8 Vector transverse electric field distribution of (a) xHE11  mode, (b) yHE11  

mode, (c) 01TE  mode, (d) 01TM  mode, (e) and (f) 21HE  modes at λ = 

632.8nm. Structural parameters: Λ = 2.3μm, d = 1.4μm. 

(a) (b) 

(c) (d) 

(e) (f) 
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3.4 Simple splice estimation between ESM PCF and SMF 

The PCF/SMF splice loss has been studied by calculating the transmitted and reflected 

fields using a FDTD [23], and by evaluating the overlap integral of mode field 

distribution obtained from FEM [24]. However, for both techniques, numerical 

calculations are tedious and intense computation efforts are required. In this section, I 

present an empirical formula for estimating the MFD of ESM PCF. The formula is 

based on the extensive simulation results obtained by FEMLAB and is subsequently 

used to estimate the splice loss between PCF and SMF.  

3.4.1 Mode field diameter 

One of the most important properties of the PCF is the fact that it can be designed to be 

ESM, referring to the fact that no higher order modes are supported regardless of 

wavelength. As is well known, PCFs with a structural parameter of d/Λ < 0.45 are 

endlessly single mode. 

 

Figure 3.9 Electrical field distribution of a PCF with d/Λ = 0.458, Λ = 

6μm at λ = 1550nm. 

 To evaluate the MFD of PCF, the transverse electrical field components were 
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firstly calculated by using FEM (Fig. 3.9). The MFD was then obtained by numerical 

integration of electrical field components according to the definition of MFD as given 

in [25] 

( )
( )drrI

drrrI
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∞

∫
∫

=
0

3
02

22ω                     (3.15) 

where I(r) is the transverse modal intensity. Fig. 3.10 shows the calculated MFD 

( PCFω2 ) as function of Λ  for Λ/d from 0.25 – 0.45 at wavelength 1.55μm. The 

MFD increases approximately linearly with pitch Λ and decreases with an increase in 

d/Λ. The latter is expected because the light confinement is better for relative larger 

air-hole diameters. Based on the simulation results shown in Fig. 3.10, we apply a 

linear curve fitting for a specific value of d/Λ, which has the general form of  

ba
constdPCF +Λ⋅=

=
Λ

|ω                         (3.16) 

where a and b is the coefficient of linear curve fitting. The curve fitting results of the 

corresponding coefficients for different values of d/Λ are listed in Table 3.4.  

 

Figure 3.10 MFD ( PCFω2 ) as function of pitch for d/Λ from 0.25 to 0.45 in 

steps of 0.05. 
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Table 3.4 Curve fitting results of corresponding coefficients. 

d/Λ a b 

0.25 1.433 1.730 

0.30 1.388 1.036 

0.35 1.330 0.7292 

0.40 1.272 0.5799 

0.45 1.217 0.5008 

Fig 3.11 shows the value of coefficients a and b as a function of d/Λ, where a second 

curve fitting (dotted line) is applied for the respective values of a and b, and 

coefficients of a and b can be further expressed in terms of d/Λ by the following 

equations 
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substituting Eq. (3.17) into Eq. (3.16), the mode field radius PCFω  can be related to Λ 

and d/Λ by the following equation 
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Figure 3.11 The value of coefficients (a and b) as a function of d/Λ. 

The maximum deviation of PCFω  between the above formula and the data shown 

in Fig. 3.10 is within 1% for 0.25≤d/Λ≤0.45. It should be mentioned that Eq. (3.18) 

can also be applied for other operating wavelengths by applying the scaling property of 

the Maxwell Equation [26]. In fact, Eq. (3.18) may be generalized to calculate the 

normalized mode field radius ( Λ/PCFω ) as function of d/Λ and normalized frequency 

λ/Λ by dividing both sides of Eq. (3.18) with Λ.  
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The deviation of above formula from the numerical results obtained by using FEM is 

less than 1% for 0.155 ≤ λ/Λ ≤ 0.31 and 0.25 ≤ d/Λ ≤ 0.45. 

3.4.2 Splice loss evaluations 

Once the MFD of PCF is obtained, the splice loss (α ) between the PCF and the SMF 

can be estimated by [25] 
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where u is a transverse offset, and SMω2  is the MFD of the SMF that can be easily 

calculated if the V-number of the fiber is known. It should be mentioned that the MFD 

of PCF could also be evaluated in terms of V-number [27]. However, intensive 

computation is needed to calculate the V-number of the PCF because it involved the 

calculation of the effective index of the space-filling mode of the photonic crystal 

cladding. 

 Fig. 3.12 shows the estimated splice loss between the PCF and the Corning 

SMF-28 as functions of pitch Λ for d/Λ varying from 0.25 to 0.45 at a wavelength of 
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1.55μm. The calculation is based on Eq. (3.18) and Eq. (3.20) with offset set to zero. 

The upper value (d/Λ = 0.45) corresponds to the upper limit of the endlessly single 

mode operation of PCF. The results for smaller d/Λ are not included because the 

confinement loss would become significant for d/Λ ≤ 0.25 even if the number of 

air-hole rings were reasonable large [28]. For comparison, the accurate splice loss 

computed by the overlap integral of the field distributions obtained from the vector 

FEM is also shown in Fig. 3.12. The maximum deviation is less than 0.2dB.   

 

Figure 3.12 Splice loss as a function of pitch Λ for various d/Λ. Dash-dot 

line: results computed using Eq. 3.18 and Eq. 3.20; Solid line: 

Results obtained from overlap integral of vector field 

distributions 

The results of overlap integral method indicate that zero coupling loss between 

PCF and single mode fiber is impossible and the minimum value is around 0.1dB. 

However, it is possible to achieve nearly zero coupling loss from the results of the Eq. 

3.20, which can be attributed to the assumption of a Gaussian intensity profile for PCF.  

The corresponding value of MFD and pitch at the minimum coupling loss for different 
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d/Λ are summarized in Table 3.5. As the MFD is proportional to the core diameter 

(2Λ-d) of PCF, with the increase of d/Λ the pitch value should be increased to optimize 

the match of the MFD of the PCF and the SMF.  

Table 3.5 MFD and pitch value at minimum coupling loss 

d/Λ Λ (μm) MFD (μm) 

0.25 5.6 9.85 

0.30 6.3 9.81 

0.35 6.8 9.78 

0.40 7.3 9.84 

0.45 7.7 9.80 

Splice losses as function of offset were computed at both 1.31μm and 1.55μm for a 

particular LMA PCF (LMA10 from Crystal Fiber A/S Demark. d/Λ = 0.458, Λ = 

6μm)/SMF-28 splice. The results are shown in Fig. 3.13. Comparison between the 

estimated splice loss and the more accurate overlap integral method based on FEM 

indicates that, at both operating wavelength, the splice loss deviations are less than 

0.1dB and 0.25dB for zero and 3μm offsets respectively. 

 

Figure 3.13 LMA10 PCF (d/Λ = 0.458, Λ = 6μm)/SMF-28 splice loss as 
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function of offset u for wavelength 1310nm and 1550nm. 

The splice losses between SMF-28 fiber and two LMA PCFs (LMA10 and LMA5 

with d/Λ = 0.53, Λ = 3.125μm) were experimentally measured at 1.55μm to be 0.47dB 

and 3.62dB, which agree well with the estimated values of 0.27dB and 3.2dB 

respectively. 

 

3.5 Summary 

In this chapter, we have reviewed a variety of numerical methods for modeling PCFs. 

The basic principles of FEM are introduced. The accuracy of a commercial software, 

FEMLAB, for analyzing PCFs was examined by comparing the simulation results with 

those obtained by supercell lattice method, multipole method and another FEM. At the 

end of this chapter, we calculate the vectorial field components and evaluate the MFD 

of ESM PCF. Based on the simulation results, an empirical formula is proposed for 

estimating the MFD. The results calculated by using the formula deviates less than 1% 

from those obtained from FEM for 0.25 ≤ d/Λ ≤ 0.45. With the help of the MFD, the 

connection loss between a single mode fiber and a PCF can be evaluated by using the 

classical method based on the mode field radius. 
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positioning of capillaries with the same external diameter but different wall thickness, 

leading to different air-hole sizes in the cladding and two-fold rotational symmetry. 

The fiber has a pitch Λ = 1.96μm and a hole diameter of d1 = 0.40μm and d2 = 1.16μm 

for the small and large air-holes. The cross-section of the PCF is then modeled by an 

idealized structure with all the holes assumed to be circular and their sizes matched to 

that of the SEM of the fiber (Fig. 4.1b).  

Our calculation confirms that two non-degenerate fundamental modes are well 

confined to the core region. By analogy to the conventional HB fibers, we call these 

two approximately linearly polarized modes as xHE11  and yHE11  mode, respectively. 

Fig. 4.2 shows the electric field vectors of the x- and y-polarized fundamental mode. 

The effective indexes corresponding to the two polarization modes are denoted as nx 

and ny, respectively. The modal birefringence B = |nx-ny| of such a fiber as a function of 

wavelength is shown in Fig. 4.3 (the line with crosses). At wavelength 1540nm, the 

birefringence is 4×10-3, corresponding to a beat length LB = λ/B = 0.385mm. This value 

is in good agreement with the measurement data (LB = 0.42mm) reported in [1]. 

       

Figure 4.2 Electric field vectors of the (a) x- and (b) y-polarized fundamental mode. 

It is possible to adjust the modal birefringence of the Hi-Bi PCF by the diameter of 

the air-holes. The influence of hole-size on the modal birefringence is thus important 
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from a practical design point of view. The computer simulation results of the modal 

birefringence for the PCFs with various hole-sizes are presented in Fig. 4.3. As 

expected, the birefringence increases with a decrease in the size of the small holes (d1) 

(Fig. 4.3a) and an increase in the ratio of the size of the big holes over the pitch d2/Λ 

(Fig. 4.3b). However, increasing birefringence through reducing the size of the small 

holes may not be practical because light confinement property of the fiber is affected 

when the hole-size becomes small, leading to high confinement loss. In our simulation 

we found a large portion of light field extends beyond the first small holes for d1 = 

0.2μm although a relative high birefringence can be obtained (the dotted line in Fig. 

4.3a). It is therefore more practical to achieve a higher birefringence through the 

increase in d2/Λ. However, an increase in the value of d2/Λ would result in multi-mode 

operation at the working wavelength.  

 In order to understand the mode behavior of this Hi-Bi PCF, we have conducted 

extensive search on the possible modes that can be supported by the PCF. It should be 

noticed here that the fundamental space-filling mode can’t be applied directly to 

predict the mode property because the cladding does not consist of an evenly 

distributed air-holes. In order to obtain birefringence as high as possible, d1/Λ is 

chosen to be small enough, i.e. d1/Λ < 0.4, which is smaller than the value required for 

ESM operation for a PCF with uniform hole size in the cladding. Therefore, we may 

intuitively regard that the higher order mode cutoff is mainly determined by the value 

of d2/Λ. Fig. 4.4 shows the effective index of a Hi-Bi PCF with d1 = 0.43μm, d2 = 

1.3μm, Λ = 1.8μm, and with 4 rings of air holes. It seems this Hi-Bi PCF is multi-mode 

for normalized frequency range from Λ/λ = 1.0 to 5.0. It is important to notice that the 
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mode confinement of higher order mode becomes so worse at normalized frequency 

lower than Λ/λ = 1.0 that it should be considered cutoff for a real PCF.  

 
(a) 

 
(b) 

Figure 4.3 Dependence of modal birefringence on the size of the holes. (a) 

The size of the small holes are increased from d1 = 0.2μm to 

1.0μm in steps of 0.2μm with d2/Λ = 0.6; (b) the size to pitch 

ratio for the big holes is increased from d2/Λ = 0.5 to 0.8 in 

steps of 0.1 with d1 = 0.4μm. (The lines with crosses in them 
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are the simulated results for the fiber presented in [1] with d1 = 

0.43μm, d2 = 1.3μm and Λ = 1.8μm). 

 It has been shown that mode cutoff property of PCF can be studied from the 

corresponding effective mode area Aeff [3]. Further calculations of Aeff were conducted 

to investigate the second order mode cutoff of this Hi-Bi PCF, and the results are 

shown in Fig. 4.5. The cutoff wavelength for the second order mode is estimated to be 

1.42μm. 

 

Figure 4.4 Modal dispersion properties of the Hi-Bi PCF with d1 = 

0.43μm, d2 = 1.3μm, and Λ = 1.8μm. 
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Figure 4.5  Effective area of the second order mode for the Hi-Bi PCF with 

d1 = 0.43μm, d2 = 1.3μm, and Λ = 1.8μm. 

4.2 Mode field diameter 

MFD w and half divergence angle θ are important parameters for the study fiber to 

fiber and fiber to waveguide joints, bending induced loss and non-linear fiber optics. 

For a Gaussian field, the MFD w is that at which power is reduced to 1/e2 of the 

maximum power and the corresponding half divergence angle θ can be expressed as 

wπλθ 1tan −≅  [4]. Since the light intensity distribution of the highly birefringent 

PCF is not circularly symmetric, the MFD (wx and wy) and the half divergence angles 

(θx and θy) along the x and y directions are different. Numerical calculation shows that 

the intensity distributions along the two orthogonal directions can be approximated by 

proper Gaussian functions (Fig.4.6), and the root mean square error (RMSE) of the x- 

and y- direction intensity fitting is 0.012 and 0.065 for the y-polarized mode. Applying 

Gaussian fitting to the normalized intensity, the mode field widths and the half 

divergence angles can be calculated.  



- 68 - Chapter 4 Properties of a Highly Birefringent PCF 

 

 

Figure 4.6 Normalized intensity of y-polarized fundamental mode 

(λ=1540nm, x direction: solid line, y direction: dashed line) and 

the corresponding Gaussian fit (dotted line). 

 
(a) 
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(b) 

Figure 4.7 (a) The mode field diameter (wx: the solid lines; wy: the dashed 

lines) of the y-polarized mode. (b) The half divergence angles 

(θx: the solid lines; θy: the dashed lines) of the y-polarized 

mode. 

Fig. 4.7 shows the MFD and the half divergence angles for the two directions of 

the y-polarized modes as functions of wavelength for various d2/Λ ratios. As expected 

the mode becomes more confined for increased d2/Λ ratio and hence displays a 

relatively smaller MFD. On the contrary, the half divergence angle increases as the 

d2/Λ ratio is increased. The effects of varying d2/Λ on the MFD along the x-direction 

are significantly bigger than that along the y-direction. This can be attributed to the 

associated changes in both the core size and effective index difference between the 

core and cladding along the x-direction.  

The MFD and half divergence angle of the x-polarized mode are shown in Fig. 4.8. 
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Figure 4.8 (a) The mode field diameter (wx: the solid lines; wy: the dashed 

lines) of the x-polarized mode. (b) The half divergence angles 

(θx: the solid lines; θy: the dashed lines) of the x-polarized 

mode. 

4.3 Polarization mode dispersion 

The non-degeneracy of the two polarizations verified by the computed values of 

effective indexes can lead to different group velocity. Different group velocities caused 

by the small departures from perfect hexagonal symmetry have been experimentally 

(a) 

(b) 
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observed [5]. The group velocity dispersion (GVD), which is an important parameter 

for high bit-rate transmission systems that uses polarization maintaining fibers [6], was 

theoretically calculated by the following equation 

2

2

λ
λ

∂

∂
⋅−= effn

c
D  

where neff is the effective index, λ is the optical wavelength, and c is the light speed in 

vacuum. The dependence of dispersion on d2/Λ is shown in Fig. 4.9, where the 

increased separation between the two polarizations is an indication of stronger 

anisotropy introduced by a higher value of d2/Λ.  

 

Figure 4.9 Calculated GVD for the two fundamental polarization modes of 

the fiber. (d1 = 0.40μm, Λ= 1.80μm, x-polarized mode: solid line, 

y-polarized mode: dotted line).  
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Figure 4.10 Calculated GVD for the two fundamental polarization modes of 

the fiber. (d2/Λ= 0.6, Λ= 1.80μm, x-polarized mode: solid line, 

y-polarized mode: dotted line).  

 The dependence of dispersion on d1 is shown in Fig. 4.10, where a slight 

separation between the two polarization modes is observed with the variation of d1. A 

comparison between Fig. 4.9 and Fig. 4.10 indicates that dependence of the group 

velocity dispersion on d2/Λ is stronger than on d1.  

 

4.4 Summary 

A Hi-Bi PCF is successfully modeled and analyzed by using a full-vector FEM. The 

calculated birefringence is in good agreement with the measurements reported 

previously in the literature. The birefringence may be further enhanced by increasing 

the size to pitch ratio for the bigger holes. The mode field distribution has 

approximately an elliptical shape with the width of the major axis significant bigger 

than that of the minor axis. The dependence of MFD, divergence angle, and group 

velocity dispersion on the structural parameters of the PCF is also investigated.  
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CHAPTER 5 

SINGLE POLARIZATION SINGLE MODE PCF 

 

In this chapter, single-polarization single-mode (SPSM) operation of a Hi-Bi PCF is 

investigated in detail by using a full-vector finite element method with anisotropic 

perfectly matched layers (PMLs). We designed the cut-off wavelengths of the two 

linearly polarized principal eigen-modes of the SPSM PCF by varying the structure 

parameters of the fiber. The polarization dependent confinement loss and effective 

mode area are also evaluated to validate the design methodology. At the end of this 

chapter, splice losses to standard single-mode fiber (SMF) for particular SPSM PCFs 

are evaluated and appropriate structural parameters are recommended for operating at 

1.30μm and 1.55μm. 

 

5.1 Concept of SPSM PCF 

Single-polarization single-mode fibers, in which only one linearly polarized mode is 

guided while the mode with orthogonal polarization is suppressed, are particularly 

desirable for use as in-line fiber polarizer and sensing elements. There has been 

considerable effort devoted to the design and fabrication of SPSM fibers based on 

various Hi-Bi fiber structures. Conventional schemes for accomplishing this include 

tunneling in W-profile fibers [1-2], utilizing differential bending loss of the orthogonal 

polarization modes [3], and attenuation induced by an absorptive cladding layer [4]. 

We have shown in previous chapters that the large index contrast and the 

stack-and-draw fabrication process permit high birefringence to be easily realized on 
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PCFs. Recently, it has been shown that Hi-Bi PCFs have the potential to realize better 

SPSM fibers [5-6]. In [5], a low-loss SPSM PCF with a confinement loss less than 

0.1dB/km from 1.48 to 1.6μm was proposed and analyzed. A PCF-based single 

polarization fiber with a polarization dependent loss of 196dB/km and a transmission 

loss of 28dB/km at 1550nm was reported in [6]. 

 Although some preliminary conclusions have been drawn in [6], the reported PCF 

is not optimized for particular applications such as fiber polarizing devices. For 

example, to make a fiber polarizer with an extinction ratio (ER) of 30dB at 1550nm, it 

requires ~150m of such a fiber. Also, no explicit design criteria have been reported for 

the design of SPSM PCF.  

 

5.2 Design of SPSM PCF 

 

Figure 5.1 Schematic cross-section of a Hi-Bi PCF. 

The structure of the Hi-Bi PCF to achieve single-polarization operation is shown in Fig. 

5.1. This PCF is Hi-Bi because of different air hole diameters along the orthogonal axis 

Γ2 

x 

y 

Λ d1 

Γ1

d2 

Elementary 
piece 



- 76 - Chapter 5 Single Polarization Single Mode PCF 

 

[7-8]. The objective of this section is to find the proper PCF parameters that support 

only a single linearly polarized mode. Although it has been suggested that the 

condition for single polarization is d2/d1>2 [6], we found that this is not always the 

condition to achieve single-polarization operation. 

The full-vector FEM [9-10] is firstly applied to calculate the dispersion curve of 

the Hi-Bi PCF. Because of the symmetric nature of the PCF, only a quarter of the 

cross-section was used during the calculation and a perfect electric or perfect magnetic 

conductor (PEC or PMC) is applied along the symmetric plane Γ1 and Γ2. The 

definition of the boundary conditions and proper choice of them for calculating the 

corresponding guided modes have been described in detail in Chapter 3. The 

computational window is chosen beforehand so that the influence of artificial outer 

boundaries can be neglected. The background refractive index was obtained from the 

Sellmeier equation for silica [11]. 

 

Figure 5.2 Dispersion curves as a function of wavelength for PCF with 

Λ=2.2μm, d1/Λ=0.40, and d2/Λ=0.95. 

Fig. 5.2 shows the effective index of the x- and y-polarization mode as a function 

SPSM range
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of wavelength for a particular PCF with Λ=2.2μm, d1/Λ=0.40, and d2/Λ=0.95. Also 

shown in Fig. 5.2 is the effective cladding index of the fundamental space-filling mode 

(FSM) [12], which is evaluated by applying FEM to the elementary piece as shown in 

Fig. 5.1. Polarization cutoff occurs when the effective index of the polarization states 

falls below that of the FSM. The cutoff wavelengths of x- and y-polarized modes are 

estimated to be ~1.37μm and ~1.62μm, respectively, corresponding to the intersection 

points of their dispersion curves with that of the cladding as shown in Fig. 5.2. The 

single-polarization wavelength range where only y-polarized mode is guided and 

x-polarized mode is leaky is therefore estimated to be 250nm. Fig. 5.3 shows the 

intensity distribution of the y-polarized mode for the PCF at 1.55μm. The mode is 

well-confined and elongated in the y-direction.  

 

Figure 5.3 Contour plot of intensity distribution of the PCF with Λ=2.2μm, 

d1/Λ=0.40, and d2/Λ=0.95 at 1.55μm. 

We found that it’s possible to tune the wavelength range for single polarization 

operation by varying the fiber structural parameters: d1/Λ, d2/Λ, and Λ. Therefore, it’s 

worthwhile to examine the dispersion properties under the influence of these 



- 78 - Chapter 5 Single Polarization Single Mode PCF 

 

parameters. First, we fix d1/Λ at 0.4 and Λ at 2μm and change d2/Λ from 0.95 to 0.75 

(Fig. 5.4). The cutoff wavelength for x- and y-polarization shifts from 1.26μm and 

1.48μm to 1.78μm and 1.915μm, respectively. Tuning the cutoff wavelengths by 

changing the d2/Λ ratio is possible but at the cost of the reduction of single-polarization 

wavelength range, from 220nm to 135nm for d2/Λ=0.95 to 0.75. The single 

polarization wavelength range reduction can be attributed to the reduced birefringence 

induced by decreasing diameter of the two big air holes. When the dispersion curves of 

x- and y-polarization are intercepted by that of the cladding mode, a smaller 

single-polarization wavelength range appears for d2/Λ=0.75. Therefore, the d2/Λ 

should be set as high as possible to attain a wider single-polarization wavelength range. 

The d2/Λ=0.95 is a reasonable parameter for practical PCFs [13], and is the value used 

for all the following simulations. 

 

Figure 5.4 The dispersion curves for SPSM PCF with different pitches 

d2/Λ. The ratio d1/Λ and pitch Λ are fixed at 0.40 and 2μm. 

The hole pitch Λ is then varied from 1.6μm to 2.4μm in steps of 0.4μm where d1/Λ 

and d2/Λ are fixed at 0.40 and 0.95, respectively. The dispersion curves are shown in 
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Fig. 5.5. The cutoff wavelength for x- and y-polarization shifts to longer wavelength 

with the increase of pitches, and the single-polarization wavelength range also 

increases slightly. It is also possible to tune the cutoff wavelength by varying the ratio 

d1/Λ. However, the pitch Λ should be varied accordingly in order for the fiber to be a 

single polarization fiber over a useful wavelength range.  

 

Figure 5.5 The dispersion curves for SPSM PCF with different pitches Λ. 

The ratio d1/Λ and d2/Λ are fixed at 0.40 and 0.95, 

respectively. 

Fig. 5.6 shows dispersion curves for two set of parameters of d1/Λ=0.5 and 

Λ=1.25μm, and d1/Λ=0.4 and Λ=2μm. A smaller ratio of d1/Λ requires a larger pitch Λ 

to support a single-polarization within a particular wavelength range. Further 

simulation shows that a PCF with a pitch as large as 8μm and d1/Λ=0.30 has cutoff 

wavelengths of 1.12μm and 1.8μm for x- and y-polarization. If the pitch Λ were kept 

constant, further reduction of d1/Λ to small values would lead to the dispersion curves 

of both polarizations become parallel to that of cladding, i.e., no crossing between the 

dispersion curves in the desired wavelength range. The fiber hence would not be a 
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single polarization fiber any more. In Fig. 5.6 the upper set of curves shows that the 

effective indices of the x- and y-polarization, and FSM are relatively close, as 

compared to that of the lower set of curves. Hence it is expected that the PCF 

corresponding to the upper set of curves is more leaky than the lower one because the 

light confinement is largely dependent on the relative refractive indices difference 

between the core and cladding modes. A bigger refractive index difference results in 

smaller percentage of power distributed in the cladding and hence the PCF experiences 

lesser attenuation.  

 

Figure 5.6 The dispersion curves for SPSM PCF with different ratio d1/Λ 

and pitches Λ. The ratio d2/Λ is fixed at 0.95. 

In order to find suitable parameters of d1/Λ and Λ for SPSM operation, a series of 

numerical simulations have been performed. The cutoff wavelength as a function of Λ 

for different d1/Λ is shown in Fig. 5.7. For smaller values of d1/Λ, larger values of Λ 

can be chosen to obtain a wider single-polarization range. The wider 

single-polarization wavelength range is easy to understand because the modal 

birefringence increases with a decrease of d1/Λ resulting in a wider intersection section 
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between the dispersion curves of the guided modes and that of the cladding mode. As 

shown in Fig. 5.7d, a d1/Λ of 0.5, corresponding to d2/d1 of less than 2, still supports a 

single-polarization operation although the single polarization range becomes narrower.  

From Fig. 5.7, we note that the cutoff wavelength shows linear dependence on Λ, 

which is useful for SPSM PCF design. The fiber structural parameters for a desirable 

SPSM PCF operating at a special wavelength range can be easily obtained from Fig. 

5.7. 
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Figure 5.7 The cutoff wavelength as a function of pitch Λ for different 

ratios of d1/Λ. Circle: x-polarization, dot: y-polarization.  

 

5.3 Polarization dependent confinement loss and effective mode area 
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Because the cladding of PCF is usually made of finite numbers of rings of air holes, 

the guided modes in PCF are inherently leaky. Various numerical methods have been 

applied to investigate the leakage properties of PCF [14-15]. In this section, a 

full-vector FEM with anisotropic PMLs is used to calculate polarization dependent 

confinement loss. We will show that confinement loss simulation can provide valuable 

information for designing SPSM PCFs. It’s worth mentioning here that the 

confinement loss exists even if other optical attenuations, i.e. Rayleigh scattering, 

imperfection loss, and absorption losses, are totally neglected. Thus, in order to realize 

a low-loss PCF, appropriate structural parameters should be chosen in order that the 

confinement loss is sufficiently small. 

 

Figure 5.8 The confinement loss as a function of the number of hexagonally arranged air holes and 

d/Λ at 1.55μm. The air hole pitch is assumed to be 2.3μm. 

First, our FEM program was tested rigorously by comparing with the multi-pole 

method [14] and other FEM data [5, 15] before it is used to perform confinement loss 

calculation. Fig. 5.8 shows the calculated confinement loss of a non-birefringent PCF 

(i.e., d1 = d2 = d) as a function of the number of rings of the hexagonally arranged air 
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holes and d/Λ ratio, where d is the diameter of air-hole and Λ is the hole spacing which 

is fixed at 2.3μm [14]. These results are calculated using our FEM program and agree 

well with the published results shown in Fig. 2.9 (Chapter 2). Therefore, we conclude 

that our program is reliable for confinement loss calculation. 

We first study the PCFs aiming for single polarization operation around 1.30μm. 

The PCF parameters with cutoff wavelength of 1.30μm are listed in Table 5.1. These 

parameters were obtained by setting the cutoff wavelength of the x-polarization to 

1.30μm and calculating the corresponding pitches using Fig. 5.7 for various d1/Λ 

ratios.  

 

Fig. 5.9 shows the calculated confinement losses for x- and y-polarization with 8 

rings of air holes. The confinement losses for x- and y-polarized modes and SPSM 

bandwidth (BW) are also given in Table 5.1. The SPSM BW is defined as the 

wavelength range over which one polarization state is attenuated by at least 30dB/m 

while the orthogonal state suffers less than 1dB/m. PCF II shows the largest BW and 

PCF I is the smallest, which can be easily understood from Fig. 5.9. In Fig. 5.9 we see 

that low confinement losses can be obtained for both polarization modes at 

wavelengths far from the cutoff values (e.g. 1.0μm), whereas the confinement losses of 

Table 5.1 

SPSM PCF Parameters and Confinement Loss @1300nm 

 PCF I PCF II PCF III PCF IV 

d1/Λ 0.30 0.35 0.40 0.50 

Λ (μm) 9.03 3.22 2.07 1.21 

Confinement 
Loss (dB/m) 

x: 4.55 
y: 0.11 

x: 40.61 
y: 0.33 

x: 108.3 
y: 0.56 

x: 1692.1 
y: 7.85 

Bandwidth 
(nm) 

14.6 84.7 65.3 41.7 
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x-polarization shows an order of magnitude higher than that of y-polarization. PCF IV 

shows a sharp increase whereas PCF I reveals a gradual increase in confinement loss. 

The gradual increase can be attributed to the longer transition region between the 

cladding mode and the guided modes. Compared with other SPSM PCFs listed, PCF I 

allow the largest hole spacing Λ, resulting in a small splice loss with conventional 

optical fiber. However, the confinement loss difference between x- and y-polarization 

is the smallest for PCF I and the SPSM BW is only 14.6nm compared to 84.7nm of 

PCF II. 

 

Figure 5.9 The confinement loss for the x- and y-polarization for SPSM 

PCF designed to work at 1.30μm. Solid lines: x-polarization; 

dashed lines: y-polarization. 
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Similar confinement loss profile can be found for SPSM PCFs designed to operate 

at 1.55μm (Table 5.2 and Fig. 5.10).  

 

Figure 5.10 The confinement loss for the x- and y-polarization for SPSM 

PCF designed to work at 1.55μm. Solid lines: x-polarization; 

dashed lines: y-polarization. 

It has been shown that the MFD of single-polarization optical fiber is a useful 

indicator of the fiber’s performance [16] and mode cutoff of PCF can also be studied 

from the corresponding effective mode area Aeff [17]. The calculated Aeff of the SPSM 

PCF with d1/Λ=0.40, Λ=2.07μm (PCF III) as a function of wavelength is plotted in 

Table 5.2  

SPSM PCF Parameters and Confinement Loss @1550nm 

 PCF V PCF VI PCF VII PCF VIII 

d1/Λ 0.30 0.35 0.40 0.50 

Λ (μm) 10.797 3.854 2.479 1.457 

Confinement 
Loss (dB/m) 

x: 1.5427 
y: 0.0832 

x: 32.286 
y: 0.2665 

x: 87.897 
y: 0.4758 

x: >1000 
y: 5.1234 

Bandwidth 
(nm) 

12.4 103.5 72.9 45.6 
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solid lines in Fig. 5.11. As has been shown in Fig. 5.7c, this fiber has a cutoff 

wavelength of ~1.3μm and ~1.50μm for the x- and y- polarization states. It can be seen 

from Fig. 5.11 that the Aeff remains nearly constant below the cutoff wavelength, but 

increases dramatically above the cut-off wavelength. The cut-off wavelength may be 

defined here by the crossing of the dotted lines as shown in Fig. 5.11 with the 

horizontal axis [17], which are ~1.35μm and ~1.55μm for the x- and y- polarized states. 

The discrepancy between the cut-off wavelengths obtained this way and that from Fig. 

5.7 is less than 4%. From the practical point of view, the pitch Λ should be chosen to 

be a smaller value so that the cutoff wavelength shifts to shorter wavelength.  

 

Figure 5.11 The calculated effective area of the two polarizations of a SPSM PCF with 

d1/Λ=0.40, Λ=2.07μm (solid lines) and a modified PCF with d1/Λ=0.40, 

Λ=1.98μm (dashed lines). The crossing of the dotted lines with the horizontal 

axis indicates the cutoff wavelength for the x- and y-polarizations. 
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Figure 5.12 The calculated effective area of the two polarizations of a SPSM PCF with 

d1/Λ=0.40, Λ=2.479μm (solid lines) and a modified PCF with d1/Λ=0.40, 

Λ=2.35μm (dashed lines). 

For comparison, we have also showed the Aeff of a modified SPSM PCF with 

d1/Λ=0.40, Λ=1.98μm in dashed lines in Fig. 5.11. The Aeff of the SPSM PCFs 

operating at 1.55μm are shown in Fig. 5.12, where the solid lines and the dashed 

lines depict respectively the PCF with d1/Λ=0.40, Λ=2.479μm (PCF VII) and a 

modified PCF with d1/Λ=0.40, Λ=2.35μm. 

 

5.4 Coupling between SMF and PCF 

For practical applications of SPSM PCFs, splice loss between single-polarization fibers 

and conventional fibers or other optical waveguides should be considered. Using a 

full-vector FEM, we can accurately calculate the electrical field distribution of various 

waveguides, which can then be used for coupling loss evaluation by the overlap 

integral method. We have considered only the coupling loss between SPSM fibers and 

SMFs under ideal conditions where the two fiber axes are perfectly aligned, i.e., 
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without longitudinal, lateral or angular misalignment. 
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Figure 5.13 Pitch Λ as a function of the ratio d1/Λ for SPSM PCF with 

x-polarization cutoff wavelength of 1.3μm and 1.55μm. The 

dotted lines are curve fitting results. 

 

 Before the splice loss calculation, the relationships between pitch Λ and the ratio 

d1/Λ to achieve SPSM operation with x-polarization cutoff wavelength at 1.30μm and 

1.55μm are plotted respectively in Fig. 5.13. The pitch associated with a specific ratio 

of d1/Λ can be obtained from the curve fitting results (shown in dotted lines in Fig. 

5.13). 
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Figure 5.14 The coupling efficiency as a function of d1/Λ for 1.30μm and 1.55μm. 

The coupling efficiency between SPSM PCFs and SMF is calculated and shown in 

Fig. 5.14. In the simulations the MFD of SMF is approximated by normalized 

Gaussian modes and they are assumed to be 9.2μm at 1.30μm and 10.4μm at 1.55μm 

[18]. The mode field distribution of PCF is obtained by FEM and normalized before 

calculation. Overlap integration is then performed numerically to evaluate the coupling 

efficiency.  

Fig. 5.14 shows the coupling efficiency as a function of d1/Λ. The maximal 

coupling efficiency is estimated to be ~78% and ~77% for 1.55μm and 1.30μm, 

respectively, and the corresponding PCF structures are d1/Λ=0.32, Λ=5.1754μm for 

1.30μm and d1/Λ=0.33, Λ=5.1646μm for 1.55μm. The polarization dependent 

confinement loss is 6.51dB/m for x-polarization and 0.179dB/m for y-polarization at 

1.30μm and 6.78dB/m (x-polarization) and 0.144dB/m (y-polarization) at 1.55μm. 

Apparently, these loss data are not within the single polarization range as defined in 

Section 5.3, indicating that optimal coupling and optimal polarization extinction ratio 

may not be achieved simultaneously. We recommend the use of d1/Λ=0.35 (PCF II and 
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VI as shown in Tabel 5.1 and 5.2) for SPSM PCF as being the optimum. The coupling 

efficiency would be over 70% for both 1.30μm and 1.55μm. 

 

5.5 Summary 

In conclusion, we have described the design methodology of PCF for SPSM operation 

at a particular operating wavelength. Specifically we optimized the PCF structure for 

operating at 1.30μm and 1.55μm. The bandwidths of the SPSM PCFs operation are 

respectively 84.7nm and 103.5nm for 1.30μm and 1.55μm. The cutoff wavelength is 

further validated by calculating the effective area of each polarization for two specific 

SPSM PCFs, which deviates less than 4% from that found by the confinement loss 

calculation using FEM. The coupling losses between the proposed SPSM fibers and 

single mode fibers were also calculated by using the overlap integral method and found 

to be better than 70% for 1.30μm and 1.55μm. 
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CHAPTER 6 

TWO-MODE PHOTONIC CRYSTAL FIBER THEORY 

 

In this chapter, we discuss the two-mode operation of the index-guiding PCF and 

explore the possible structures to support only the fundamental mode and the second 

order mode over an extended wavelength range. This ultra-broadband operation 

wavelength range will greatly enhance the performance of the two-mode fiber devices. 

Then we discuss the mode properties of a two-mode Hi-Bi PCF with different 

diameters of air-hole along the orthogonal axis. At the end of this chapter, we 

theoretically investigate a commercially available Hi-Bi PCF with similar structure, 

which will be used for sensing experiments in the next chapter.  

 

6.1 Modal properties of two-mode PCF 

We have shown in previous chapters that one of the earliest known and most exciting 

properties of PCF is the remarkable endlessly single mode property, where it supports 

only the two degenerate fundamental modes within the transparent window of silica. 

There exists a clear boundary between single- and dual-mode regions that have been 

determined by different methods [1-3]. However, the operation of PCF in two-mode 

regime was not particularly addressed. Conventional circular and elliptical core 

step-index two-mode optical fiber have been investigated for a number of device 

applications such as intermodal couplers [4], selective modal filters [5], acousto-optic 

frequency shifters [6], dispersion compensators [7], optical switches [8], and strain and 



- 94 - Chapter 6 Two-Mode Photonic Crystal Fiber Theory 

 

temperature sensors [9-10]. However, the wavelength range of the two-mode operation 

for conventional fibers is typically less than 150nm [11], which limits the potential 

applications of the two-mode devices. We will investigate the possibility of achieving 

broader two-mode wavelength range by using PCFs in this section.  

 

Figure 6.1 Normalized cutoff wavelength of the fundamental mode and 

that of the second order mode as a function of d/Λ.  

 We consider the PCF structure as previously shown in Fig. 3.3, which is 

reproduced in the inset of Fig. 6.1. We calculated the cut-off frequencies of the guided 

modes by finding the cross-points between their dispersion curves and that of the 

fundamental space filling mode of the cladding. Fig. 6.1 shows the normalized cut off 

frequency of the second order mode and third order modes as functions of the d/Λ. 

Again it confirms that d/Λ ≈ 0.45 bounds the endlessly single-mode region. The 

two-mode region shown in Fig. 6.1 corresponds approximately to a d/Λ value from 

0.45 to 0.65 [12]. Within this region there exist a total number of 6 guided modes, 

include two degenerate fundamental mode and four nearly degenerate second order 

mode. The electric fields of these modes resemble those we showed in Fig. 3.8 
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(Chapter 3). Take d/Λ = 0.55 as an example, the cut-off wavelength of the second order 

mode is 1.9μm and 3.3μm for Λ = 3μm and 5μm, which is beyond the transparent 

window of silica material and hence the PCFs may be regarded as “endlessly 

two-mode”.  

 

6.2 Highly birefringent two-mode PCF 

Similar to the dual-mode circular-core fiber [4-5, 13-14], the two-mode PCF 

introduced in previous section suffers the instability in the lobe orientation of the 

second-order mode. However, it is possible to stabilize the lobe orientation by 

intentionally introducing a birefringence, as elliptical optical fiber does. Since the 

modes in an elliptical-core fiber are no longer degenerate, instability of the 

second-order mode lobe orientation can be eliminated by choosing a proper operating 

wavelength [11, 15]. Normally the two-mode operating wavelength range is limited 

around 150nm for the elliptical-core fiber [11].  

 

Figure 6.2 Schematic cross section of a highly birefringent PCF. 

 We have shown in Chapter 3 that the PCF can be desirably made highly 

birefringent by breaking its two-fold symmetry. One of the promising Hi-Bi PCF 

d2

d1

Λ
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structures [16-17] is shown in Fig. 6.2, which has been shown a very low transmission 

loss. This Hi-Bi PCF is characterized by three parameters: the pitch of the air-holes Λ, 

the diameters of the small diameters d1, and the diameters of the large hole diameter d2. 

It’s possible to introduce a high birefringence to this PCF while retaining a wide 

two-mode operation range. For example, a Hi-Bi PCF with d1/Λ = 0.54, d2/Λ = 0.98, 

and Λ = 6.0μm shows a two-mode range covering all the low-loss window of silica 

from 0.4μm to 1.8μm (Fig 6.3).  

 

Figure 6.3 Modal dispersion curve of a Hi-Bi PCF with d1/Λ = 0.54, d2/Λ 

= 0.98. Solid lines represent the non-degenerate LP01 modes 

and dash lines represent the LP11 (even) modes. 

There’re totally 4 non-degenerate linearly-polarized modes supported by this 

Hi-Bi PCF with their effective indices lies above that of the cladding. The 

corresponding vector transverse mode field patterns are shown in Fig 6.4. By analogy 

to the elliptical core fiber, these four modes are labeled as xLP01 , yLP01 , xLP11 (even) 

and yLP11 (even) mode. The superscripts x and y correspond to the x- and y-polarization 

modes. It’s interesting to notice that this Hi-Bi PCF is capable to suppress the LP11(odd) 
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modes, which mainly limit the two-mode wavelength range of the elliptical core fiber 

[11].  

  
(a)                     (b) 

  
(c)                     (d) 

Figure 6.4 Transverse electric field distribution of (a) xLP01 , (b) yLP01 , 

(c) xLP11 (even), and (d) yLP11 (even) modes at 1.3μm. 

 The confinement loss of the LP11(even) and LP11(odd) mode of this two-mode 

Hi-Bi PCF with 10 rings of air holes is shown in Fig. 6.5. As shown in Fig. 6.5, the 

confinement loss of LP11(even) mode is less than 0.025dB/m at 1.8μm, but it is larger 
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than 17dB/m for LP11(odd) mode at 0.8μm even with 10 rings of air-holes. For 

wavelength longer than 0.8μm the confinement loss is much larger than the value at 

0.8μm and is not shown in Fig. 6.5. Therefore, we’re confident the confinement loss of 

LP11(odd) is so large that it should not be considered guided by this two-mode PCF.  

 

Figure 6.5 Confinement loss of LP11(even) and LP11(odd) mode of the 

two-mode Hi-Bi PCF with 10 rings of air-holes. (d1/Λ = 0.54, 

d2/Λ = 0.98, and Λ = 6.0μm). 

 

6.3 A commercially available two-mode Hi-Bi PCF 

For a commercially available Hi-Bi PCF with d1/Λ = 0.536, d2/Λ = 0.974, and Λ = 

4.179μm (Fig. 6.6), which is designed for highly birefringent single-mode operation at 

1550nm, its two-mode operation wavelength range extends to over 650nm [18]. Fig. 

6.7 shows the dispersion curve of the first four guided modes and that of the 

fundamental space-filling mode. As shown in Fig. 6.7, the Hi-Bi PCF supports only 

four non-degenerate eigenmodes with transverse mode field pattern similar to those 



Chapter 6 Two-Mode Photonic Crystal Fiber Theory - 99 - 

 

shown in Fig. 6.4. It is worthy noting that there does not exist the 11LP (odd) mode at 

shorter wavelengths, which is remarkable different from that of the conventional 

elliptical core fiber. The cutoff wavelengths of xLP11 (even) and yLP11 (even) modes are 

estimated to be ~1.32μm and ~1.48μm, respectively, corresponding to the intersecting 

points of their dispersion curves with that of the cladding dispersion as shown in Fig. 

6.7.  

 

Figure 6.6 SEM photo of a Hi-Bi PCF with d1/Λ = 0.536, d2/Λ = 0.974, 

and Λ = 4.179μm. 

 

Figure 6.7 Dispersion curve of the first two guided modes (dash-dot line: 
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x-polarization, solid line: y-polarization) and cladding space-filling 

mode (dotted line). The background refractive index of silica is 

obtained from Sellmeier equation [19].  

 The confinement loss of LP11(even) and LP11(odd) mode of this commercially 

available Hi-Bi PCF with 6 rings of air-holes is shown in Fig. 6.8. LP11(odd) mode 

shows an extraordinarily higher confinement loss than that of the LP11(even) mode at a 

shorter wavelength, and can not be guided by this PCF. The measured loss at 1.3μm for 

the LP11(even) mode are 0.55dB/m and 0.11dB/m for the x- and y-polarization, 

respectively. The discrepancy between the calculated confinement loss and measured 

loss is attributed to the idealized modeling of the Hi-Bi PCF.  

 

Figure 6.8 Confinement loss of LP11(even) and LP11(odd) mode of the 

two-mode Hi-Bi PCF with 10 rings of air-holes. (d1/Λ = 0.54, 

d2/Λ = 0.97, and Λ = 4.18μm) 

The beat length between the LP01 and LP11(even) mode is of particular importance 

for a lot of two-mode fiber-optic components and devices. The calculated beat length 

between the LP01 and LP11(even) mode is shown in Fig. 6.9, indicating a shorter beat 
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length at long wavelength. For a perfectly two-fold symmetrical structure of this Hi-Bi 

PCF, the beat length in theory is the same for the x- and y-polarization except at 

wavelength ~1.4μm, where the LP11(even) mode approaches the cutoff wavelength.  

 

Figure 6.9 LP01 and LP11(even) mode beat length as a function of wavelength.  

 

6.4 Summary 

In summary, we have explored possible structures of the index-guiding PCF for 

two-mode operation. Simulations showed that a PCF with d/Λ value from 0.45 to 0.65 

supports only the fundamental mode and the first higher order modes with a broad 

wavelength range covering the transparent window of silica. However, the instable 

lobe orientation of the second-order mode makes it impractical for sensing applications. 

We proposed a Hi-Bi PCF for two-mode applications, and found that it’s capable to 

support the LP11(even) mode while suppress the LP11(odd) mode. This has greatly 

expanded the two-mode operation to an unthinkable wavelength range from 

400nm-2000nm, which was further confirmed by the confinement loss calculation for 
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this Hi-Bi PCF. For a similar PCF structure designed as a highly birefringent PCF with 

d1/Λ = 0.536, d2/Λ = 0.974, and Λ = 4.179μm, we have theoretically calculated its 

dispersion curve and found that it has a two-mode wavelength range over 1000nm 

(400nm-1400nm). We’ll experimentally confirm this valuable modal property and 

demonstrate a two-mode interferometer in Chapter 7.  

 

 

References for Chapter 6 

 

1. B. Kuhlmey, R. McPhedran, and C. Martijn de Sterke, “Modal cutoff in 

microstructured optical fibers,” Opt. Lett., vol. 27, pp. 1684-1686, 2002. 

2. N. Mortensen, J. Folkenberg, M. Nielsen, and K. Hansen, “Modal cutoff and the V 

parameter in photonic crystal fibers,” Opt. Lett., vol. 28, pp. 1879-1881, 2003. 

3. J. Folkenberg, N. Mortensen, K. Hansen, T. Hansen, H. Simonsen, and C. Jakobsen, 

“Experimental investigation of cutoff phenomena in nonlinear photonic crystal 

fibers,” Opt. Lett., vol. 28, pp. 1882-1884, 2003. 

4. J.N. Blake, B.Y. Kim, and H.J. Shaw, “Fiber-optic modal coupler using periodic 

microbending,” Opt. Lett., vol. 11, pp. 177-179, Mar. 1986. 

5. W.V. Sorin, B.Y. Kim, and H.J. Shaw, “Highly selective evanescent modal filter 

for two-mode optical fibers,” Opt. Lett., vol. 11, pp. 581-583, Sept. 1986. 

6. B.Y. Kim, J.N. Blake, H.E. Engan, and H.J. Shaw, “All-fiber acousto-optic 

frequency shifter,” Opt. Lett., vol. 11, pp. 389-391, 1986. 

7. C. Poole, J. Wiesenfeld, A. McCormick, and K. Nelson, "Broadband dispersion 



Chapter 6 Two-Mode Photonic Crystal Fiber Theory - 103 - 

 

compensation by using the higher-order spatial mode in a two-mode fiber," Opt. 

Lett., vol. 17, pp. 985-, 1992. 

8. Park HS, Song KY, Yun SH, et al. “All-fiber wavelength-tunable acoustooptic 

switches based on intermodal coupling in fibers,” J. of Lightwave Technol., vol. 20, 

pp. 1864-1868, Oct. 2002. 

9.  K.A. Murphy, M.S. Miller, A.M. Vengsarkar, and R.O. Claus, “Elliptical-core 

two-mode optical-fiber sensor implementation methods,” J. of Lightwave Technol., 

vol. 8, pp. 1688-1696, Nov. 1990. 

10. A.M. Vengsarkar, W.C. Michie, L. Jankovic, B. Culshaw, and R.O. Claus, 

“Fiber-optic dual-technique sensor for simultaneous measurement of strain and 

temperature,” J. of Lightwave Technol., vol. 12, pp. 170-177, Jan. 1994. 

11. B.Y. Kim, J.N. Blake, S.Y. Huang, and H.J. Shaw, “Use of highly elliptical core 

fibers for two-mode fiber devices,” Opt. Lett., vol. 12, pp. 729-731, Sept. 1987. 

12. W. Jin, Z. Wang, and J. Ju, “Two-mode photonic crystal fibers,” Opt. Express, vol. 

13, pp. 2082-2088, 2005. 

13. M. Layton and J. Bucaro, “Optical fiber acoustic sensor utilizing mode-mode 

interference,” Appl. Opt., vol. 18, pp. 666-, 1979. 

14. D. Kreit, R. Youngquist, and D. Davies, “Two-mode fiber interferometer 

/amplitude modulator,” Appl. Opt., vol. 25, pp. 4433-, 1986. 

15. J. Blake, S. Huang, B. Kim, and H. Shaw, “Strain effects on highly elliptical core 

two-mode fibers,” Opt. Lett., vol. 12, pp. 732-, 1987. 

16. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties 

of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express, vol. 9, 



- 104 - Chapter 6 Two-Mode Photonic Crystal Fiber Theory 

 

pp. 676-680, 2001. 

17. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely 

single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett., vol.16, pp. 

182-184, Jan. 2004. 

18. J. Ju, W. Jin, and M.S. Demokan, “Two-mode operation in highly birefringent 

photonic crystal fiber,” IEEE Photonics Technol. Lett., vol. 16, pp. 2472-2474, Nov. 

2004. 

19. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





- 106 - Chapter 7 Sensing Applications of Two-Mode Hi-Bi PCF 

 

modes needs to be lift and a highly elliptical core fiber can remedy this situation [2-4]. 

As has been shown in Chapter 6, we found a properly designed Hi-Bi PCF shows 

similar properties with that of the elliptical core fiber but with a much wider two-mode 

wavelength range, over which only the LP01 and LP11(even) modes propagate with a 

stable intensity distribution along the length of the fiber [5].    

 

Figure 7.1 Evolution of the far-field patterns as a function of phase 

difference between LP01 and LP11(even) modes.  

Fig. 7.1 shows the schematic plots of the far field patterns as a result of phase 

difference change between the LP01 and LP11(even) modes. When the LP01 and 

LP11(even) modes are excited equally in the Hi-Bi PCF, the far-field output radiation 

pattern will be a superposition of the contribution from the two modes and will be a 
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function of the relative phase difference between them. The evolution of the far-field 

radiation for different phase difference φ results in variation in the two-lobed intensity 

patterns, as shown in Fig. 7.1. For a change in φ of 2π there will be one complete 

oscillation of the intensity pattern. 

 
(a) 

 
(b) 

Figure 7.2  Theoretical output intensity pattern for linearly polarized light 

launched into the two-mode PCF. Polarizer angle: (a) π/2, (b) 

π/4.  
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 An external disturbance, e.g. strain or temperature, applied on the PCF leads to a 

differential phase shift between these two modes, resulting in an oscillation of the 

two-lobe pattern. A spatial demodulator monitoring one of the two-lobe patterns at the 

far-field converts this oscillation into an intensity variation. When only the x- or 

y-polarization of LP01 and LP11 modes were excited at the entrance, a quasi-sinusoidal 

intensity waveform is obtained after the spatial demodulator (Fig. 7.2a). However, if 

both the x- and y-polarization are excited, two set of interference signals corresponding 

to the orthogonal polarization states are superimposed, resulting in an 

amplitude-modulated waveform (Fig. 7.2b).  

The two-mode Hi-Bi PCF (pitch Λ = 4.179μm, diameters of small holes d1 = 

2.239μm, and diameters of larger holes d2 = 4.069μm.) used in the present work is 

manufactured by Blaze Photonic [5] and the modal properties were analyzed in detail 

in Chapter 6. In the following sections, I present the results of our experimental 

investigation on the strain and temperature sensitivity of the two-mode sensor and 

discuss the possibility of using it for simultaneous measurement of strain and 

temperature.  

 

7.2 Strain sensing 

A schematic of the experimental setup is shown in Fig. 7.3. Light from a laser was 

coupled into a piece of Hi-Bi PCF with an alignment system consisting of a pair of 

lenses, a polarizer, a fiber holder and a 5-dimensional translation stage. The PCF has a 

total length of ~1 meter and is epoxy-bounded to a fixed stage and a translation stage. 

The 50cm PCF in between the two stages can be axially strained through a computer 
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controlled translation stage. An infrared TV camera with lens removed is placed near 

the output of the fiber to monitor one of two-lobe patterns at the far-field intensity, as 

indicated in the rectangular region in the right panel of Fig. 7.3. Alternatively, it is 

possible to use a lead-out fiber which is offset from the two-mode PCF to pick up the 

maximum contrast ratio in the intensity of the two-lobe output.  

 

Figure 7.3 Experimental setup for strain measurement and far-field intensity.  

Experiments were conducted at wavelength of 650nm, 780nm, 850nm, 980nm, 

1300nm and 1550nm by using semiconductor lasers. At each wavelength, before 

applying axial strain to the PCF, the far field pattern at the fiber output was observed 

with the launching conditions varied. It confirmed that at wavelengths from 650nm to 

1300nm, the fiber support only fundamental LP01 mode and LP11(even) mode, and no 

higher mode was observed. The intensity-lobe orientation of the LP11(even) mode was 

found stable even when the launching condition is changed. At 1550nm, only the LP01 

mode can be observed, and no second order mode was observed. These observations 

agree with the theoretical prediction in the Chapter 6. 

The strain sensitivity of the two-mode sensor for the five wavelengths from 650nm 

to 1300nm was then measured. Before each test, the launching condition was adjusted 

so that the two modes are launched with approximately equal intensity. This can be 

achieved by adjusting the offset of the focused incident beam with respective to the 

axis of the PCF. Taking the operation at 1.3µm as an example, the focused beam has a 
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diameter of ~3.7μm, giving a calculated maximum launching efficiency of 70% for the 

fundamental LP01 mode at zero offset and 23% for the LP11(even) mode at 3.9µm 

offset. The intensities of the two modes are equalized at 3.4µm offset with launching 

efficiency of ~22%. The two modes interfere at the fiber output, resulting in a far field 

intensity distribution that varied with the phase difference between the two modes. In 

Fig. 7.4 the evolution of far-field intensity distribution at λ=1.3μm for phase 

differences of 0, π/2 and π are shown. For a change of 2π phase difference there will be 

one complete evolution. 

 

Figure 7.4 Measured far-field two-lobe pattern in two-mode Hi-Bi PCF 

for different phase shift (λ = 1300nm). 

(a) φ = 0 

(b) φ = π/2 

(c) φ = π 
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Fig.7.5 shows the measured intensity variation at one of the lobes when the PCF 

was elongated from 0 to 2mm. The curves from top to bottom correspond to 

respectively polarizer set to 0o, 90o, and 45o, in respect to the x-axis as shown in Fig. 

7.1. At 0o and 90o, the intensity variation is due to the interference of LP01 and 

LP11(even) modes for the x- and y-polarization, respectively. They are approximately 

sinusoidal and the elongation δL2π, which is defined as the elongation required for the 

intensity oscillation to undergo a complete 2π phase shift, is 124.4μm and 144.9μm, 

respectively. At a launch angle of 45o respective to the principle axis of PCF, the two 

sets of interference patterns, corresponding to two orthogonal polarizations, are 

superimposed, resulting in an amplitude-modulated wave as shown in the lower graph 

of Fig. 7.5. 

 

Figure 7.5 Experimental results for different launch angles of 0o, 90o, and 

45o (from top to bottom). 

The values of δL2π for various wavelengths for both polarizations are shown in Fig. 

7.6. Also included in the figure are the calculated beat lengths between the LP01 and 

the LP11(even) modes when the PCF is unstrained (solid line). Contrary to elliptical 
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core two-mode fibers [3, 6], both the modal beat lengths and the elongation needed to 

produce 2π phase change decrease with the optical wavelength, indicating higher strain 

sensitivity at longer wavelengths. The values of strain sensitivity, which is defined as 

the rate of change of the phase difference between the two modes with respect to strain, 

are listed in Table 7.1 and shown in Fig. 7.7. The strain sensitivity shows a linear 

relationship with respect to the optical wavelength.  

 
Table 7.1  Strain sensitivity (rad/με) 

 λ = 650nm λ = 780nm λ = 850nm λ = 980nm λ = 1310nm

x-polarization: 0.029 0.033 0.035 0.040 0.05 

y-polarization: 0.024 0.028 0.029 0.034 0.043 

 

Figure 7.6 Measured δL2π as a function of operating wavelength for two 

polarization states (circle: x-polarization, triangle: 

y-polarization).  
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Figure 7.7 Strain sensitivity as a function of wavelength. 

7.3 Temperature sensing 

The experimental setup used for measuring the temperature sensitivity is shown in Fig. 

7.8. A polarizer is placed at the input, which allows the launching of a linear 

polarization to one of the principal axes of the PCF. An infrared camera with lens 

removed is placed at the output to monitor the far-field intensity distribution. The two 

modes were excited approximately equally by an offset introduced at the input. A 

section of PCF (~1.8 meters) was heated by putting it inside an oven. 

 

Figure 7.8 Experimental setup for temperature measurement. 

Measurements were performed for both the x- and y-polarization. Fig. 7.9 shows 

an example of the output intensity of the two-mode interferometer at 1300nm as a 

function of oven temperature when the input polarization is aligned to the x-axis. One 
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complete cycle in the intensity variation corresponds to a 2π change in the phase 

difference between the LP01 and LP11(even) modes. We noticed that the period of the 

intensity oscillation is not constant during the temperature range from 20oC to 120oC, 

and the period is obviously larger at lower temperatures, indicating that the 

interferometer shows a non-linear response to the temperature changes. The 

temperature sensitivity η, defined as the rate of change of phase difference φΔ  

between the two modes with respect to temperature T per unit length of sensing fiber, 

is given by 

TL Δ
Δ

⋅=
φη 1                                 (7.1) 

where L is the fiber length placed inside the oven. The measured average temperature 

sensitivities within the temperature range from 20oC to 120oC are listed in Table 7.2 

and shown in Fig. 7.10. As can be seen from Table 7.2, the temperature sensitivity of 

TM PCF is slightly different for the x- and y-polarization. And the values are in general 

smaller than that of the conventional elliptical core two-mode fibers [6].  

 

Figure 7.9 Experimental results showing the periodic intensity 

variation with temperature. (λ=1310nm, x-polarization). 
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Figure 7.10  Measured temperature sensitivity for x-polarization (circle) and 

y-polarization (star) as a function of optical wavelength. Solid 

and dashed lines are curve fitting results of the measured data.  

 

 
Table 7.2  Temperature sensitivity (rad/oC-m) 

 λ = 543nm λ = 975nm λ = 1310nm 

x-polarization: 0.083 0.147 0.136 

y-polarization: 0.085 0.151 0.145 

 

It can be seen from Fig. 7.10 that the temperature sensitivity has a non-monotonic 

dependence on wavelength. To understand the origin of this non-monotonic 

dependence, we conducted theoretical analysis on the temperature sensitivity. The 

temperature sensitivity, η, may be re-written as  

( ) ( )
T
L

LTT
L

LTL ∂
∂

⋅Δ+
∂
Δ∂

=
∂

⋅Δ∂
⋅=

Δ
Δ

=
111 βββφη           (7.2) 

where Δβ is the propagation constant difference between the LP01 and LP11(even) 

modes. As the PCF is a single material fiber, the thermal expansion coefficient α and 

thermo-optic coefficient κ should be the same for both the core and cladding, which are 

respectively defined as 
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T
L

L ∂
∂

⋅=
1α  and 

T
n

n ∂
∂

⋅=
1κ            (7.3)  

where n is the refractive index of PCF material, which is pure silica. For fused silica, 

the thermal expansion coefficient and thermo-optic coefficient are α = 5·10-7/oC and κ 

= 1·10-5/ oC, respectively [6]. 

 By applying a super-cell method [7], we can calculate the propagation constants of 

the two modes at different temperatures. Although the temperature induced 

cross-sectional change was intuitively regarded as small, simulation results shown in 

Fig. 7.11 illustrate that its influence over the propagation constant difference Δβ should 

be taken into consideration. However, in both cases, the differential propagation 

constant Δβ was found to vary linearly with the temperature, which can be 

conveniently used to evaluate the first part of Eq. (2) by calculating the slope of the 

curve. 
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Figure 7.11 Propagation constant difference Δβ at 1310nm as functions of 

temperature. Circle and Cross lines represent the results with 

and without considering transverse thermal expansion. 
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Figure 7.12  Calculated temperature sensitivities as functions of wavelength. 

Solid and dotted lines correspond to theoretical results for the 

x- and y-polarization. Cross and circle points correspond to 

experimental data of x- and y-polarization, and dashed lines 

correspond to curve-fitting results. 

The theoretically calculated temperature sensitivity as a function of wavelength is 

shown in Fig. 7.12. The theoretical sensitivity of TM PCF has negative values and a 

parabolic-like shape with respect to the optical wavelength. The theoretical sensitivities 

agree in trends with the experimentally measured results. We believe the difference 

between the measured and the calculated values is caused by discrepancy between the 

parameters of an idealized fiber modeling and that of the real fiber which has 

non-circular holes and non-uniform hole distribution (Fig. 6.6). 

To understand the non-monotonic dependence of temperature sensitivity on the 

optical wavelength, further theoretical investigation was conducted. First, simulation 

indicated the contribution of the thermo-optic effect to the overall temperature 

sensitivity is an order of magnitude higher than that of the fiber elongation (~3×10-3) 

and transverse cross-section expansion (~4×10-2). We thus neglect the latter two factors 
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and concentrate on the thermo-optical effect to the propagation constants. The 

sensitivity can now be re-written as  

( ) ( ) ( ) ( )
n

n
T
n

nTT
L

LTL ∂
Δ∂

⋅=
∂
∂

⋅
∂
Δ∂

=
∂
Δ∂

=
∂

⋅Δ∂
⋅=

Δ
Δ

=
βκβββφη 11'       (7.4) 

substituting ( )11012
effeff nn −=Δ

λ
πβ  to Eq. (7.4), where 01

effn  and 11
effn  are the effective 

index of the LP01 and LP11(even) mode, respectively, the temperature sensitivity can be 

written as 

( ) )(2'
1101

n
n

n
n

n
n

n effeff

∂

∂
−

∂

∂
⋅⋅=

∂
Δ∂

⋅=
λ
πκβκη             (7.5) 

where 
n

neff

∂

∂ 01

 and 
n

neff

∂

∂ 11

 is the rate of change of the effective index of the LP01 and 

LP11(even) mode with respect to the background refractive index of silica, which has 

been shown in Fig. 7.13. For the LP01 mode 
n

neff

∂

∂ 01

 shows a linear relationship with 

respect to the optical wavelength. However, 
n

neff

∂

∂ 11

 of the LP11(even) mode shows a 

parabolic-like shape with respect to the optical wavelength when the optical 

wavelength is approaching its cutoff wavelength (~1.32μm). The difference between 

n
neff

∂

∂ 01

 and 
n

neff

∂

∂ 11

 shows a non-monotonic dependence on wavelength as shown in Fig. 

7.12. 
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Figure 7.13  nneff ∂∂  as a function of wavelength for LP01, LP11(even) 

and cladding mode.   

 

7.4 Simultaneous measurement of strain and temperature 
The extremely broad two-mode wavelength range [8] and the unusual 

wavelength-dependent temperature sensitivity of the two-mode PCF sensor provide a 

useful means for strain and temperature discrimination. As has already shown in Fig. 

7.7, the strain sensitivities increase linearly with wavelength and are significantly 

different (~15%) for the two orthogonal polarizations. The temperature sensitivities 

have non-monotonic dependence on wavelength (Fig. 7.10) and are similar for both 

polarizations. 

Now consider a two-mode interferometer interrogated simultaneously at two 

wavelengths (λ1 and λ2). For a particular polarization (e.g., x-polarization), the 

measurement equations may be expressed as   

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
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⎡
Δ
Δ

εφ
φ

ε

ε T
KK
KK

T

T

22

11

2

1            (7.6) 

where 1φΔ  and 2φΔ  are the measured phase difference between the two modes at λ1 

and λ2, respectively. The units of iφΔ  (i=1,2) is radians. T
iK and ε

iK  are the 
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temperature and strain sensitivities at λi (i=1,2), and can be obtained from Fig. 7.7 and 

Fig. 7.10, respectively. The strain (ε) and temperature (T) have units of microstrain (με) 

and oC respectively and can be recovered in principle from Eq.(7.6) as long as the 

determinant of the transfer matrix, i.e., εε
12210 KKKK TT −=Δ  is not equal to zero.  

It is obvious that a temperature-independent strain measurement can be realized by 

operating the interferometer at two wavelengths where the temperature sensitivities are 

the same, i.e., TT KK 21 = , as shown in Fig. 7.10. Taken the case of λ1 = 840nm and λ2 

= 1310nm as an example, for x-polarization, the transfer matrix elements 

are 136.021 −== TT KK , 035.01 =εK and 05.02 =εK , and strain measurement can be 

performed by equation  

εεφφ εε 015.0)( 1212 =−=Δ−Δ KK              (7.7) 

In the following, we will study the errors in the recovery of strain (ε) and 

temperature (T) for the aforementioned measurement scheme (i.e., λ1 = 840nm, λ2 = 

1310nm) and two other schemes with the following pairs of operating wavelengths: λ1 

= 745nm and λ2 = 1400nm; and λ1 = 940nm, λ2 = 1205nm.  The three schemes have a 

common characteristics, i.e., the temperature sensitivities at the two wavelengths in 

each of the schemes are the same and hence temperature-insensitive strain 

measurement may be performed by a similar process as in Eq.(7.7).  

The errors in T and ε can be due to the errors in the phase measurements or errors 

in the determination of the matrix elements. A general analysis of errors transformation 

can be found in previous papers [9-10].  For the case where phase measurement error 

(i.e. iφΔ ) is dominant, the errors in strain and temperature recovery may be estimated 

by using: [9-10]  
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where δφ  is the maximum error in the determination of iφΔ  (i=1, 2), δT and δε are 

the errors in T and ε. Assuming a maximum phase measurement error of 

100/πδφ = radians for 1 meter length of fiber, the errors in the recovery of T and ε are 

given for the three aforementioned schemes are calculated and given in Table 7.3. 

 
Table 7.3  Strain and Temperature Errors 

Error λ1 = 745nm, 
λ2 = 1400nm 

λ1 = 840nm, 
λ2 = 1310nm 

λ1 = 940nm, 
λ2 = 1205nm 

T (oC) 0.97 1.29 2.1 

ε (με) 2.86 4.18 7.13 

 

If the matrix elements have errors and are dominant over the phase measurement 

error, the relative errors in recovering T and ε may be estimated by [9]:  
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         (7.9)  

where |γ| is the maximum relative (or fractional) errors for all the elements of the 

matrix and assumed to be the same. It should be mentioned that a detailed evaluation 

of errors due to matrix elements’ inaccuracy is complicated and Eq.(7.9) only gives the 

worst case results. The actual errors could be smaller than that estimated by Eq.(7.9). 

Nevertheless, Eq.(7.9) gives the limit of the maximum possible error. 

It can be seen from Eq.(7.9) that the relative temperature recovery error (|δT/T|) 

increases with  ε and reaches a maximum when the sensor operates at the strain limit 
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(εmax). |δT/T| also increases with a decrease in T and hence the measurement error δT 

increase for smaller temperature variation T. The minimum measurable temperature 

variation may be determined by setting |δT/T|max=1, i.e. the temperature measurement 

has a signal-to-noise ratio of 1. The minimum measurable strain may also be evaluated 

by setting |δε/ε|max = 1 and with T = Tmax. . As a working illustration, we assume 1% 

error in the determination of the matrix elements (|γ|=1%), a strain range of 3000με 

(εmax=3000με) and a temperature excursion of 30oC (Tmax=30oC), The recovery errors 

caused by the inaccuracies in the matrix elements are calculated using (7.9) and results 

are shown in Table 7.4.   

Table 7.4 Minimum Detectable Strain and Temperature 

 λ1 = 745nm, 
λ2 = 1400nm 

λ1 = 840nm, 
λ2 = 1310nm 

λ1 = 940nm, 
λ2 = 1205nm 

ε (με): 3.5 5.1 11 

T (oC): 40 49 94 

 

As shown in Table 7.3 and Table 7.4, the three measurement schemes are 

relatively insensitive to phase measurement error; however, they are more significantly 

affected by the errors in the matrix elements. The minimum detectable strains as shown 

in Table 7.3 are comparable to, in some cases better than, the conventional sensing 

schemes [9], indicating the PCF-based two-mode sensors are good at performing 

temperature insensitive strain measurement. However, the performance is very 

sensitive to error of transfer matrix elements and hence is not a good candidate for 

temperature measurement. The best strain measurement performance is obtained with 

the scheme of λ1 = 745nm and λ2 = 1400nm, where the wavelength spacing (λ2 - λ1) is 

the largest. 
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two-mode Hi-Bi PCF described in this chapter can be used to perform temperature 

insensitive strain measurement. At the end of this chapter, we present a theoretical 

error analysis on the performance of the two mode interferometric sensor for 

simultaneous strain and temperature measurement. The results indicated that the 

PCF-based two-mode sensors are good at performing temperature insensitive strain 

measurement. However, the performance is more sensitive to error of transfer matrix 

elements and is not a good candidate for temperature measurement. The best strain 

measurement performance is recommended with the scheme of λ1=745nm and 

λ2=1400nm, where the wavelength spacing (λ2-λ1) is the largest. 
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CHAPTER 8  

RESEARCH SUMMARY AND FUTURE WORK 

 

8.1 Research summary 

In summary, detailed investigations for a class of PCFs have been carried out. These 

include the theoretical investigation of the modal and polarization properties of Hi-Bi 

PCFs, estimation of MFD of ESM PCF and their connection loss with standard single 

mode fiber, design and analysis of SPSM and two-mode PCFs, and the applications of 

two-mode PCF for strain and temperature measurement.  

The basic properties of an asymmetrical core PCF are theoretically investigated by 

using the full-vector FEM. The influence of fiber structural parameters on modal 

birefringence, MFD, and half divergence angle are investigated in detail. The group 

velocity dispersions for the two fundamental modes are also calculated and are found 

to be significantly different for the two orthogonal polarizations. 

 The full-vector FEM is also used to calculate the electrical field and to evaluate 

the equivalent MFD of ESM PCF. It was found that the MFD increases approximately 

linearly with pitch Λ and decreases with an increase in air-hole diameter to pitch ratio 

d/Λ. An empirical formula is proposed for estimating the MFD. The results calculated 

by using the formula deviates less than 1% for 0.25 ≤ d/Λ ≤ 0.45 from those obtained 

from FEM. With the help of the MFD, the connection loss between a single mode fiber 

and a PCF can be evaluated by using the classical method based on the MFD. 

Through the analysis of a Hi-Bi PCF by FEM with anisotropic PMLs, we have 
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presented the general design methodology of an asymmetrical core PCF for SPSM 

operation at an arbitrary operating wavelength. Specifically we optimized the PCF 

structure for operating at 1.30μm and 1.55μm. The bandwidths of the SPSM PCFs 

operation are respectively 84.7nm and 103.5nm for 1.30μm and 1.55μm, within which 

one polarization state is attenuated by at least 30dB/m while the orthogonal state 

suffers a confinement loss of less than 1dB/m. The cutoff wavelength is further 

validated by calculating the effective mode area of each polarization, which deviates 

less than 4% from that found by the confinement loss calculation using FEM. The 

coupling losses between the proposed SPSM fibers and single mode fibers were also 

calculated by using the overlap integral method and found to be over 70% for 1.55μm 

and 1.30μm, respectively. 

A similar Hi-Bi PCF but with different parameters is found to support only the 

LP01 and LP11 modes from 543nm to 1310nm. The LP11(odd) mode is unsupported 

within this broad range, and the supported LP11(even) mode has a stable intensity lobe 

position. With the special modal properties of the Hi-Bi PCF, we experimentally 

demonstrated a two-mode PCF interferometer based on the modal interference between 

the LP01 and LP11(even) modes propagating in the same length of PCF. The 

interferometer responses to axial strain and temperature were experimentally 

investigated over a wavelength range of from 543nm to 1310nm. For the strain sensor, 

the fiber elongations needed to produce 2π phase change decrease with the wavelength, 

indicating higher strain sensitivity at longer wavelengths. The strain sensitivity is also 

polarization dependent. The temperature sensitivity of the two-mode PCF sensor shows 

a non-monotonic dependence on the operating wavelength, which can be used to 
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perform temperature insensitive strain measurement. We present a theoretical analysis 

of the non-monotonic response. The theoretical sensitivities agree in trends with the 

experimentally measured results. These findings will play an important role in 

developing novel two-mode PCF sensors and devices. 

 

8.2 Future work 

During the progress of research on this interesting topic, some promising research 

directions have been identified. They are listed as follows: 

The manufacturing of two-mode PCF with a broader optical wavelength range 

covering the whole low loss window of the silica will be very useful for the 

development of extremely broad band devices. However, it demands collaborations 

with other institutions with fiber manufacturing facilities. The contents of the thesis 

provide plenty of information on the design of two-mode PCFs with or without 

birefringence.  

 With the future development of two-mode PCFs with better performance and 

broader operating wavelength, novel optical fiber devices and optical fiber sensor can 

be readily implemented. Long period fiber gratings can be inscribed on the PCF by 

high-frequency CO2 laser pulse to convert the fundamental mode to the first higher 

order modes. The higher order modes can be further removed by mode stripper and a 

notch filter can be realized on two-mode PCF.  

Another potential device application is acousto-optic tunable filter, which relies on 

the interaction between the optical wave and acoustic wave co-propagating along the 

two-mode PCF. The ultra-broad two-mode wavelength range of the novel PCFs would 
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allow all fiber broad band tunable optical filters to be developed.  

 We have demonstrated the strain and temperature sensor based on the modal 

interference between the fundamental LP01 mode and LP11(even) mode. A scheme for 

simultaneous strain and temperature measurement has also been proposed and 

theoretically analyzed in this aspect. Experimental investigations are expected to verify 

the theoretical analysis. 
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