






 

ABSTRACT 
 
 

With the advances in technologies, the amount of biological data such as 

DNA sequences and microarray data have been increased tremendously in the 

past decade. In order to obtain knowledge from the data, e.g., enhancing our 

understanding of the evolutionary changes and the causes of those severe 

diseases, one has to search for patterns from the databases of large size and 

high dimensionality.  Information retrieval and data mining are powerful tools 

to extract information from the databases and/or information repositories.  In 

the past several years, there have been attempts to apply these two branches of 

intelligent techniques to different bioinformatics applications.  However, the 

performance of these existing techniques has not been optimized due to the 

characteristics of and requirements from biological data, e.g. extremely long 

genomic sequences with high dimensionality, and interpretable search/mining 

results. 

In this thesis, we focus on how to improve the searching and the clustering 

performance in genomic sequence databases. A Q-gram based genomic search 

(QgramSearch) algorithm and a Q-gram based genomic sequence clustering 

(QgramClust) algorithm are proposed. Our QgramSearch can efficiently 

search the homologous database sequences to a query sequence.  It makes use 

of two novel hashing techniques to enhance the efficiency of indexing and 

retrieval. These two hashing techniques can better capture the overlapping 

characteristics in the Q-gram based index.  As demonstrated by the 

experimental results, they run faster than the existing data structures. Besides, 

we measure the similarity of sequences based on the significance of Q-gram 

instead of the expensive sequence alignment.   Thus, our search algorithm can 

run faster than the famous Blast algorithm. 

Following the idea of QgramSearch, a Q-gram based genomic sequence 

clustering (QgramClust) is proposed. In view of the challenge of expensive 
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pairwise sequence comparison for large database sequences faced by the 

existing clustering algorithms, QgramClust employs the inverted index of Q-

gram in sequence comparison so that the clustering process can be made 

efficient. Our clustering algorithm is a hybrid of partitioning method and 

hierarchical method.  It quickly clusters a group of nearest neighbors and 

finally merges the clusters. Our experimental results show that QgramClust 

runs faster than BlastClust. 
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1 Introduction 
 
Nowadays, bioinformatics has become a hot research topic. It is a multi-

discipline subject and involves the use of technologies from biology, 

chemistry, applied mathematics, statistics and computer science. The 

development of bioinformatics is growing tremendously and the developed 

methods have been widely used in many areas.  Recently, researchers have 

completed the whole human genome -- a milestone of the nature of science. 

The discovery of genome can help molecular biologists to understand the 

genetic information of organisms and the evolution history.  In addition, 

bioinformatics has also facilitated medical treatment such as cancer detection 

[54], rational drug design [60] and the identification of mutations that lead to 

genetic diseases [28]. 

 In the context of computer science, bioinformatics applications often 

require computational techniques to process data and extract information. 

For example, homology search in sequence database requires the 

information retrieval techniques.  Motif discovery involves pattern 

recognition techniques to identify motif [33].  Cancer detection applies 

classification methods to gene expression data [54],[36].  Despite of the fact 

that all these computational techniques have been well-developed or widely 

used in solving other applications, different problems have occurred when 

they are applied in the domain of bioinformatics.  One typical example is 

genomic sequence search and clustering which are crucial in many 
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biological applications.  In this thesis, we focus on this problem and try to 

solve it based on some famous computational techniques. 

 

1.1 Problems and Motivations 

In molecular biology, genomic sequences are important genetic information 

for which search and clustering are very useful in many practical 

applications.  Genomic homology search can help biologists to obtain more 

information of a poorly characterized unit in sequences while genomic 

sequence clustering can provide the identification of possible protein 

functional groups [6].  In the past decade, researchers have proposed many 

different techniques and improved their efficiency and their effectiveness. 

 Genomic homology search is to find those biologically homologous 

sequences to a query sequence from a large set of data.  Unlike the web 

documents composed of a set of words, each genomic sequence is a series of 

characters. Genomic sequences generally are much longer than text words 

found in many scientific and engineering applications. The high 

dimensionality of sequence makes it difficult to measure the similarity. In 

the earlier developments, the edit distance model [63] was proposed to 

measure the distance between pairs of sequences based on the number of edit 

operations.  On the other hand, dynamic programming was used to 

recursively compute the edit distance of pairwise sequence and to generate 

the best alignment.  However, finding the best alignment among a large set 

of genomic sequences is very expensive, thus dynamic programming is not 
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practical enough in genomic database.  Heuristic search approaches can run 

faster than dynamic programming.  For example, BLAST [31] and FASTA 

[62],[13] are two most famous heuristic search tools.  Generally, these 

approaches firstly find the highly similar regions by scanning the database 

and then align the highest scoring regions together [3],[67].  The scores of 

the matched sequences were finally measured based on the pre-defined score 

matrix and gap penalty. One disadvantage of the heuristic search approaches 

is that a full database scanning is typically required.  As new technologies 

are emerging in the past decade, the size of genomic database has been 

exponentially increasing. For example, GenBank, a repository of nucleic 

acid sequences, is doubling every 15 months and reaches 100 gigabases in 

2005 [1].  The running time of the heuristic search approaches would then 

increase with database size. 

 Index-based search approaches are attractive alternatives. They avoid 

database scanning by using inverted index, which has been proved 

successful in web search engines. FLASH [2], RAMDB [9], MAP [55], 

PatternHunter[8] and CAFE [19],[21] are index-based search tools which 

use pre-built indices on subsequences to speed up the lookup process. CAFE 

claimed that it could run eight times faster than BLAST and 50 times faster 

than FASTA.  However, these index-based search tools also face the 

common problem of expensive indexing and retrieval processes as well as 

the problem of neglecting the significance of subsequences.  Firstly, as some 

genomic database may contain millions of sequences of billion bases, the 
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index creation time would be very long and the periodic updates of the new 

changes are frequently needed.  Similarly, the query sequences are probably 

very long and some famous servers receive thousands of queries per day. 

Consequently, the servers suffer heavy loading for index retrieval [25].  

Secondly, the index-based tools measure the similarities of sequences based 

on the occurrences of the common subsequences.  But few of them consider 

the significance of subsequences [66].  In real world, a subsequence may not 

have as equal probability as another in genomic databases.  Some 

subsequences might not be as significant as they were because they occur in 

“too many” sequences.  This similarity measurement cannot reflect the real 

statistical significance of subsequences and search statistically significant 

homology sequences. 

 Genomic sequence clustering is another hot research topic.  Similarly, 

the simple genomic clustering approaches use edit distance to group the 

clusters.  However, the performance is not acceptable with respect to the 

huge amount of data in genomic databases. Some heuristic approaches have 

also been proposed.  For example, ProtoMap [18] models the problem using 

weighted directed graph, CLICK [41] is a graph-theoretic method, ClusSTr 

[32] adopted the single linkage hierarchical clustering method and CLUSEQ 

[30] makes good use of a probabilistic suffix tree.  Graph-based approaches 

require a scoring matrix and the construction of this matrix is pretty 

computationally expensive.  Single linkage hierarchical clustering method is 

also ineffective due to the all-against-all initialization.  All these methods 
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have a common disadvantage that the pairwise similarity measurement, 

involving all-against-all measurements, requires full database scanning.  
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1.2 Objectives and Scope 

The objectives of this research are to devise efficient and effective search 

and clustering algorithms for genomic sequence databases. As these 

databases are exponentially growing in size, we aim at developing new 

search and clustering algorithms that are scalable to the increasing database 

size and query rate. They are expected to be faster than the existing tools for 

large database while the quality of the search and/or clustering results should 

be maintained. 

 In view of the fact that the main obstacles of the existing searching 

tools and clustering tools are the expensive computation time on full 

database scanning and pairwise sequence matching.  In order to overcome 

these obstacles, we propose to develop the Q-gram based genomic search 

and clustering approaches.  The objectives and the scope of this work can be 

described as follows:   

 develop a technique to efficiently perform index creation and retrieval 

for a large genomic sequence collection 

 define an effective similarity measure for genomic sequences and 

develop a fast sequence comparison algorithms  

 derive an efficient genomic sequence clustering algorithm for again large 

genomic databases  
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1.3 Outline of the Thesis 

The thesis consists of five chapters.  In chapter 2, a brief overview of 

information retrieval and data mining techniques used in bioinformatics 

applications is given.  In chapter 3, a Q-gram based genomic sequence 

search algorithm is proposed and its performance is evaluated.  In chapter 4, 

a Q-gram based genomic sequence clustering algorithm is introduced and its 

performance compared with another algorithm is reported.  The final chapter 

concludes the thesis and outlines out future works. 
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2 Overview of Bioinformatics  
 

2.1 Introduction 

In this chapter, we give a brief overview of bioinformatics and its major 

applications, focusing on particularly genomic homology search and 

clustering. Bioinformatics is commonly defined as applying informatics 

techniques, including applied mathematics, computer science and statistics, 

to better organize and understand the biological information on a large scale.   

 In the early beginning, molecular biologists were capable to process 

the biological data without the help of computational techniques.  In the late 

1960s, molecular biologists started to apply computing techniques to process 

the experimental data.  With the invention of new technologies like DNA 

sequencing and microarray technologies, huge amount of data arises and 

creates opportunities and challenges.  In order to process the tremendous 

amount of data, computers become crucial for the data storage, information 

retrieval, statistical calculation and genomic analysis [39]. 

 According to Luscombe et al. [38], the aims of bioinformatics can be 

separated into three levels. The first one is to solve the fundamental problem 

⎯ the flood of data.  Without a well-organized storage system, the huge 

amount of biological data is useless.  Thus, the primary purpose of using 
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computational techniques is to allow researchers access the existing 

biological information effectively and also input new discovered data in the 

system.  Currently, there are many well-known public genomic databases.  

Other than the breakthroughs in the equipments, new computational 

techniques have also been developed to contribute to this aim.  For example, 

Hunt et al. proposed a suffix tree data structure in excess of RAM size for 

indexing DNA and protein strings [17].  Williams proposed a compression 

technique for nucleotide databases and the data can be accessed from 

secondary storage [20].  Researchers are finding their ways to improve 

indexing and retrieval processes and integrate the heterogeneous data 

sources. 

 The second aim of bioinformatics is to develop more intelligent tools 

to retrieve relevant biological information.  The intelligent sequence search 

tools FASTA and PSI-BLAST were designed to match homology sequences.  

They are not just a text-based search engine, but also consider the matches 

with biological significance, in which scoring matrices such as PAM [49] 

and BLOSUM [53] are used for computing the level of relatedness of a set 

of sequences.   

 With the fundamental data organization and intelligent tools, the 

third aim of bioinformatics is to analyze the data and interpret the results in a 

biologically meaningful manner.  Biological studies are not limited to 

analyze the individual experimental result.  They are also expected to 
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analyze all the available data and find the common principles that can apply 

across many systems and discover new features. 
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2.2 Biological data  

Biological data is the key of knowledge discovery in biological databases.  

Different sources of biological data contain different information, including 

DNA sequences, protein sequences, macromolecular structures and the 

results of functional genomics experiments [28].  DNA (Deoxyribonucleic 

Acid) stores the instruction required by a cell to perform its function, which 

is a normally double stranded macromolecule.  The two DNA strands form a 

helical spiral, each of which is formed from nucleotides.  A nucleotide is 

composed of three parts: backbone of the DNA strand, deoxyribose sugar 

and nucleotide base.  Nucleotide can be categorized into 4 bases: A for 

adenine, G for guanine, C for cytosine and T for thymine.  Other than 

nucleotide base, there are some wildcard characters used for substitutions in 

a sequence.  The deoxyribose sugar of the DNA backbone has 5 carbons and 

3 oxygens. The carbon atoms are numbered C1, C2, C3, C4’, and C5.  The 

hydroxyl groups on the C5 and C3 link to the phosphate groups to form the 

DNA backbone. One end of the DNA backbone is called 5’ and the other is 

3’.  

 DNA sequencing is the process of determining the nucleotide order 

or a given DNA fragment.  Raw DNA sequences are typically 1000 bases 

long while genomes are ranging from 1.6 million bases in Haemophilus 

influenzae to 3 billion in humans.  The collection size of DNA sequence in 

GenBank has exceeded 100 gigabases in August 2005. 
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 Proteins are the primary components of cellular structures and 

control the cell division process.  Proteins are amino acid chains that fold 

into unique 3-dimensional structures.  The amino acids are joined by a 

backbone: one end is N-terminus and the other is C-terminus.  There are 20 

different types of amino acids.  The 3-dimensional structure is determined by 

the linear sequence of amino acids. The structures are called primary, 

secondary, tertiary and quaternary structures.  Primary structure is the amino 

acid sequence; secondary structure is the highly patterned sub-structures 

(alpha helix and beta sheet); tertiary structure is the overall shape of a single 

protein molecule; and quaternary structure is the association of polypeptides. 

Proteins can be formed from tens to thousands of amino acids and the 

average length is 350. Amino acids are encoded by nucleotide triplets, called 

codons.  Since there are 64 possible codons and only 20 amino acids, 

different codons can correspond to the same amino acids. 

 Macromolecular structural data represents a complex form of 

information.  The 3D-structural information usually comes from three 

techniques: X-ray crystallography, NMR spectroscopy and cryo-electron 

microscopy. The Protein Data Bank, PDB, is one famous database for 

macromolecular structure data.  A PDB file for a medium-size protein 

typically contains 2000 atoms. 

 Functional genomic experiment data is obtained from laboratory 

experiments.  For example, microarray technologies enable scientists to 

simultaneously measure the transcription level of every gene within a cell.  
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Gene expression is based on the measured fluorescence intensity of red 

signal, the fluorescence intensity of green signal and the ratio of red to green 

signal.  The gene expression level is assumed to be directly proportional to 

the abundance of mRNA for each gene [26].  The advantage of using 

microarray technologies is that researchers can measure many thousands of 

genes with only a few biological samples in a single experiment.  Since the 

data is very high dimensional with little replication, it causes the problems of 

statistical analysis and normalization of multiple set of data.  

 There have been many different research areas in each biological 

data source.  For DNA sequences, the research areas include homology 

search, separating coding and non-coding region, and identification of 

introns and exons.  For protein sequences, it includes sequence comparisons, 

multiple sequence alignments, discovering functional protein families. For 

macromolecular structure, it includes secondary structure prediction. For 

functional experimental data, it is applied in cancer detection and drug 

prediction.  In our research, we focus on genomic sequences. 
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2.3 Homology Genomic Search  

In molecular biology, genomic sequences are very critical in gene prediction, 

sequence comparison, and identification of sequence repeats and functional 

regions.  Homology among sequences represents their evolutionary distance 

of two species.  Finding homologue between genomic sequences is very 

useful in many practical applications.  For example, by finding the 

homologous sequences in the database that we have better understanding, 

biologists can obtain more information on a poorly characterized protein.  

Genomic sequences are made of strings of characters.  The trivial way of 

measuring the sequence similarity is string comparison.  It has been applied 

in many areas such as web document search, speech recognition, library 

management and biological data.  There are several famous models for string 

comparison such as edit distance model, maximal match model and Q-gram 

model.    

 

2.3.1 Measuring Evolutionary Distance  
 
In the evolution process, the mutations of genomic sequences occur in the 

species.  Measuring evolutionary distance is usually a measurement of the 

number of point mutations.  It is regarded as the reconstruction of an 

evolution process that transforms one sequence into another one.  Sequences 

are homologous if their measured distance is small.  For example, Euclidian 

distance, hamming distance and block distance are used for measuring 

distance the strings of equal length.  Edit distance model is one of the most 

14 



 

famous models for comparing strings in different length. It has been widely 

used in the construction of optimal alignment of genomic sequences [37]. 

 In edit distance model, the distance of two strings is based on the 

number of edit operations.  The main idea is that two strings are similar if 

the number of required edit operations converting one string to another string 

is only a few.  An edit operation represents the transformation of a character 

in a source string into another one in target string.  There are three types of 

edit operations: deletion of a character, insertion of a character and the 

replacement of a character to another character.   

 

2.3.2  Sequence Alignment  
 
A sequence alignment can be regarded as a sequence of edit operations 

converting a source sequence into a target sequence.  Sequence alignment is 

used in natural language, financial data and genomic sequences.  There have 

been much research in both pairwise alignment and multiple alignments.  

Sequence alignment approaches can be divided into two groups: global 

alignment and local alignment [5].  Global alignment conducts the alignment 

over the entire length of strings and it is suitable when two sequences are of 

similar length.  Another one is local alignment.  It identifies the regions that 

are highly similar and then involves the stretches of subsequences.  It is 

suitable when a large set of sequences are of significantly different length.  

Figure 2-1shows three different alignments for two sequences u = GAMT 

and v = GXDTM.   
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G A M T - 

G X D T M 

 

G - A M - T 

G X - D T M

 

 

G A - M T -  

G X D - T M 

Alignment 1 Alignment 2 Alignment 3 

Figure 2-1 Three alignments of sequences u and v 
 
 
In 1970s, Needleman and Wunsch proposed a global alignment algorithm 

for two sequences [44].  The advantage of global alignment is that it can 

guarantee to find alignment with the maximum score.  An alignment is 

scored based on the total of similarity scores of aligned characters.  In Figure 

2-2, for inserting an empty character, gap penalty g is given.  The similarity 

score of alignment X = 3 + (-1) + (-2) + g + (-2) + g +8 + 5.  

 

- A C G T 

A 8 -1 -2 -3

C -1 5 -5 -2

G -2 -5 3 -1

T -3 -2 -1 6 

Similarity matrix 

 

Alignment  

G A A - T - A C 

G C G T C C A C 

Figure 2-2 A similarity scoring matrix and an alignment  
 

For any two sequences, there could be many different alignments.  Global 

alignment approaches apply the dynamic programming algorithm to the 
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optimal alignment.  Dynamic programming for pairwise sequence alignment 

requires three steps: initialization, matrix fill and traceback.   

It firstly initializes a two-dimensional score matrix C by placing the 

characters of sequence X into the first row and the characters of sequence Y 

into the first column.  The value at Ci,j stores the maximum score for 

aligning the prefix a1a2…ai of sequence X to the prefix b1b2…bj of sequence 

Y.  Secondly, it uses a divide-and-conquer strategy to find the value at Ci,j.  

The matrix C is recursively calculated by the following scheme shown in 

Figure 2-3 and Figure 2-4.  After the score matrix is filled, the traceback is 

performed to deduce the best alignment from the traceback matrix. 

 

C(i-1, j -1) C(i-1, j) 

C(i,j-1) C(i,j) 

 
Figure 2-3 Relationship between a scoring matrix cell C(i,j) and its three 

adjacent cells. 
 

 

 C(i-1, j-1) + s(xi, yi) where s(xi, yj) is the substitution 
score 

C (i, j) = 
max 

C(i-1, j ) + g 

 

 

C(i, j-1) + g 

 
Figure 2-4 Divide-and-conquer method used in the computation of 

scoring matrix  
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Generally, local alignment approach is used rather than global alignment 

because these sequences may contain short coding regions separating by 

long non-coding regions.   Nucleotide sequences are long and do not have 

notion of “end” and so generally do not have overall similarity. Based on the 

Needleman-Wunsch algorithm, Smith and Waterman proposed a local 

alignment algorithm [54], which runs faster than Needleman-Wunsch one.  

However, as the complexity is O(n2) in both time and space,  the 

performance is still not acceptable for a large set of sequences. 

  Like pairwise sequence alignment, multiple sequence alignments are 

used to match the highly similar regions among a set of sequences. They 

have been used for characterizing protein families and inferring the 

biological characteristics of new sequences given known families of 

sequences.  Feng and Doolittle proposed a progressive sequence alignment 

that has been adopted in most multiple alignments methods [12].  Clustal W 

is another famous multiple alignment methods.  It uses individual weight to 

each sequence in a partial alignment and changes gap penalty scheme [29].  

In general, the multiple alignments can be divided into three steps: 

i) Firstly, all the pairs of sequences are aligned separately and the pairwise 

scores are stored in a distance matrix.  The dynamic programming is 

adopted in the pairwise alignment. 

ii) Secondly, a tree is constructed from distance matrix to guide the multiple 

alignment process using the Neighbor-Joining method.  The tree is used 

to derive a weight for each sequence. 
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iii) Finally, the sequences are progressively aligned into a larger group 

according to the branch order of the guide tree.  The process starts from 

the tips towards the root. 

 

2.3.3 Heuristic Exhaustive Search  
 

Both local and global alignment approaches are impractical for a large 

database collection. Local alignment approach takes a day of processing a 

query to match a large database collection.  Therefore, heuristic exhaustive 

search tools were developed and they utilize heuristics in local alignment.   

2.3.3.1 FASTA 
 
Wilbur-Lipman algorithm is one of the pioneers of heuristic exhaustive 

search and it uses a global comparison of sequences based on fixed length 

subsequences [62].  Compared with the local alignment approach, it can 

reduce much time on the alignment process.  Firstly, the algorithm built a 

hashing structure with all intervals of fixed length in the sequence as keys.  

An interval is overlapping such that there are l-n+1 intervals for a sequence 

of length l and interval length n.  For example, for n=3, a query sequence 

ACGTGTA is processing with the intervals ACG, CGT, GTG, TGT and 

GTA.  Then, all the intervals in each database sequence are processed with 

hashing.  If the interval can be lookup in the pre-built hashing structure, 

there is a match with query sequence.  The offsets are used in the matching 

for guarantying the alignments without gaps.  Scores are accumulated for 
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each alignment without gaps. This method is faster than going through the 

query sequence for every interval in the database.  There are many variations 

of Wilbur-Lipman algorithms.  FASTA and BLAST are the popular ones 

and have been used in many public genomic databases. 

 FASTA consists of four steps.  The first step of FASTA and BLAST 

is also using the variants of Wilbur-Lipman algorithms to preprocess the 

query such that the query sequence is divided into intervals of fixed length 

and the intervals in database sequence will be matched up using the hash 

table.  In the second step, an accumulator is used to score the matched words 

between two sequences and localize the top ten regions. The third step is to 

join the highly-scoring regions using acyclic graph and only those sequences 

with a score higher than a threshold will go to the fourth step.  The fourth 

step is the remaining high-scoring sequences are further processed by 

dynamic programming and the scoring of each alignment would be 

computed.  

 
2.3.3.2 BLAST 
 
BLAST has several variant versions [61].  BLAST 1 improves the 

performance of FASTA [15].  It locates ungapped similarity regions between 

sequences instead of comparing each word of the query with each word.  

The first step is to create a list of words of fixed length.  The second step is 

to identify all exact matches with database sequences.  In the third step, it 

extends the matched word in both directions until the obtaining score 

decreases to a certain level.  The extended word has score higher than a 
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threshold, called High Scoring Segment Pair (HSP).  The third and the fourth 

step are similar to FASTA.  BLAST 1 uses a technique to speed up the 

alignment by disallowing the insertion and deletion operations on residues, 

but only allowing the substitution of one residue for another.  The 

underlying assumption is that indels are a less significant factor of 

evolutionary event.  This assumption has advantage in nucleotide 

comparison because single deletion and insertion events cause the meaning 

of codons to be completely lost.  However, it has been shown that FASTA 

has higher sensitivity than BLAST at detecting distant homologous 

relationships. 

 BLAST 2 improves both speed and accuracy of BLAST 1.  BLAST 2 

permits the limit use of indels in forming alignment and adopts a two-hit 

HSP technique.  The use of indels requires more computation to evaluate 

each local alignment.  In order to solve this problem, BLAST 2 introduces a 

two-hit HSP technique for the selection of the diagonals.  Only those 

diagonals containing at least two intervals will be considered.  This selection 

process can reduce the number of sequence required for local alignment.  

Altschul claimed that BLAST 2 has better accuracy and performance than 

BLAST 1 [43]. 

 

21 



 

2.4 Sequence Clustering  

 
Genomic sequence clustering under a large database is another interesting 

and crucial research topic.  Clustering genomic sequences is to get a 

biologically meaningful partitioning.  According to SEQOPTICS, clustering 

on protein sequences has several advantages [65].  Proteins are grouped into 

families, which provide useful information of their general features and their 

evolutionary process; clustering also helps to predict the biological function 

of a new sequence by its similarity to some known function of a new 

sequence; besides, clustering can be used to facilitate protein 3-dimenional 

structure discovery. There have been many clustering algorithms developed 

for genomic sequences. They can be grouped into several categories: graph-

based, hierarchal and partitioning model.  

 

2.4.1 Graph-Based Approaches 
 

Graph-based techniques have been proved successful in solving many 

complex computational problems.  They have also been used in clustering 

problem. Jain and Dubes gave a brief introduction to graph-based clustering 

[4]: 

 Compute a complete undirected graph G where vertices are identified 

with protein sequences and each edge represents a Smith-Waterman local 

alignment, weighted by a similarity score.  The similarity score can be 

measured with Smith-Waterman score. 

22 



 

 Replace each undirected edge with two directed edges and the weighted 

is changed. 

 Remove all edges with score less than threshold from graph G  

 Compute all strongly connected components and list all the outputs.  The 

strongly components are defined as maximal sets of vertices such that 

directed path exists from P to Q and from Q to P for all vertices. 

The traditional graph-based clustering faces a problem of inappropriate 

transitive relations, especially in the multi-domain proteins [14].  This is 

called false transitivity.  ProClust improved the graph-based clustering 

algorithm by introducing an asymmetric distance measurement [40].  The 

algorithm used the significance of alignment for the filtering step and 

Profile-HMM for the merging step.  BAG utilized several graph properties 

of biconnectedness and articulation points to improve the problem [52]. 

 

2.4.2 Hierarchal Approaches 
 

In hierarchical clustering, a distance matrix of all pair nodes is computed and 

then a cluster hierarchy is formed.  Clusters can be obtained from the 

subtrees of the hierarchy.  There are two ways of forming the hierarchy: 

agglomerative and divisive.  Agglomerative hierarchical clustering starts 

with clusters containing single objects and then merges them until all objects 

in the same cluster.  Divisive hierarchical clustering begins with only one 

big cluster and then iteratively divides it into small objects [57]. 
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The similarities of sequences are commonly measured by local alignment or 

global alignment.  Dynamic programming is time-consuming and it is not 

practical for large databases.  The time complexity of the algorithm using 

dynamic programming is O(n2m2 + n2 log n), where n is the number of data 

sequences and m is the average number of clusters. 

 Another alternative is using pattern-oriented agglomerative 

hierarchical clustering (POPC) [42].  The algorithm uses some well-known 

or frequent patterns discovered in the early pattern discovery process to 

measure the correlation of sequences.  The similarities of sequences are 

measured by Jaccard coefficient. Although the scoring process of POPC is 

faster than dynamic programming, the time complexity of all-again-all 

strategy is still quadratic to the number of sequences.  An additional pattern 

discovery process is also required.  

 

2.4.3 Partitioning Approaches 
 
In partitioning approaches, each data node is assigned to a cluster according 

to the distance of that node to the corresponding cluster.  K-means and K-

medoid are two common approaches in partitioning approaches.  The main 

difference is that K-medoid uses a data node as a centroid of a cluster while 

K-means uses a feature vector of mean values among data nodes in that 

cluster as a cluster centroid.  Guralnik proposed a feature-based K-means 

clustering, which projected each data-sequence into a new space whose 

dimensions are these features [59].  The features are selected when all 
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sequential patterns whose length is within specific range and satisfy a 

minimum support.  The cosine similarity function is used to measure the 

similarity of sequences. 

 Previously, we describe three different clustering categories from the 

view of cluster formation.  However, from another view of scoring method, 

the clustering methods could be generally divided in three groups: 

proximity-based methods, features-based methods and model-based methods 

[24].   

 

 Proximity-based methods include edit distance model and dynamic 

programming.  Feature-based methods perform pattern projection into a new 

space.  Model-based methods assume an analytical model for each cluster.  

CLUSEQ has adopted a probabilistic suffix tree to cluster a set of sequences 

if their similarity is less than a threshold.  The algorithm uses the conditional 

probability distribution and assumes that sequences belonging to a cluster 

may subsume to the same probability distribution of symbols.  The similarity 

of sequence s and cluster c is obtained by the probability of sequences 

divided by the probability of a random sequence.  The algorithm determines 

whether a sequence should belong to a cluster by calculating the likelihood 

of (re)producing the sequence under the probability distribution.  Besides, 

Hidden Markov Models (HMMs) is another model-based method for 

clustering sequential data [6].  First, HMMs assume that the observation at 

time t was generated whose state is hidden from the observer.  Second, they 
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assume that the state satisfies the Markov property.  Generally, HMMs are 

trained for clustering the sequences having similar behavior.   

 

2.5 Summary 

In this chapter, we have given a brief overview of bioinformatics and its 

practical applications.  Bioinformatics is a multi-discipline subject and 

involves intelligent data analysis on the biological data.  The biological data 

has different characteristics from other data like the web documents and has 

posed some challenges, e.g. high dimensionality, to the traditional 

information retrieval and data mining techniques.  Genomic sequence search 

and clustering are also facing the problem of handling tremendous amount of 

data.  We have reviewed the famous genomic sequence search and clustering 

tools.  In the coming chapters, we will propose some novel algorithms to 

improve the performance of genomic sequence search and clustering. 
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3 Q-gram Based Genomic Sequence Search  
 
3.1 Introduction 
 
As the microbiology technology advances, more genomic sequences can be 

discovered in the laboratory experiments.  There are many public genomic 

sequences databases that provide the search services to the biologists.  

Thousands of queries are processed by these search engines everyday and 

their loading will continue increasing as more new applications are 

developed.  Most of these search tools use the exhaustive search to compare 

the sequences.  The high growth rate of data will have a great impact on the 

performance of these search tools.  

 In this chapter, we introduce a novel QgramSearch (Q-gram based 

genomic sequence search) to enhance the efficiency and the effectiveness.  

QgramSearch has the advantage of using inverted index but greatly reduce 

the computational time of index creation and retrieval by using our proposed 

dictionary structures.  Another enhancement is that we introduce a 

probabilistic scoring method instead of counting the occurrences of shared 

words.  The statistical significance of words is considered in our proposed 

approach. 
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3.2 Q-gram Based Approach 

 
Q-gram is a string of characters of fixed length q.  A sequence can be broken 

into a set of Q-gram.  There are several ways of formation of Q-gram: non-

overlapping, consecutive overlapping and partially-overlapping.  Suppose a 

sequence ACTAGACG and q equal to 4.  In non-overlapping method, the 

sequence forms a set of Q-gram {ACTA, GACG}.  In the consecutive 

overlapping method, the sequence forms a set of Q-gram {ACTA, CTAG, 

TAGA, GACG}. In the partially-overlapping method, consecutive Q-gram 

are overlapping on only a portion of characters.  For example, if the 

overlapping characters are 2, the sequence forms a set of Q-gram {ACTA, 

TAGA, GACG}.  

 The time complexity of processing a sequence is proportional to the 

number of Q-gram in the sequence.  Supposed a genomic sequence of length 

N is processed and Q-gram size is Q (Q<N).  For non-consecutive 

overlapping scheme, the time complexity is O(
Q
N ).  For consecutive 

overlapping scheme, the time complexity is O(N-Q+1).  For partially-

overlapping scheme, the time complexity is O( 1+
−
−

OQ
QN ), where O is the 

number of overlapping characters between two consecutive Q-gram and O is 

between 0 and Q. 

 Q-gram can be regarded as the features of sequences.  The more 

features of sequences they share, the closer relationship they have.  Q-gram 
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can be used for similarity measurement.  Among all overlapping schemes, 

the consecutive overlapping one can have better recall rate than the other 

two methods because the larger overlapping regions would degrade the 

sensitivity of matching process.  Our proposed tools would adopt 

consecutive overlapping scheme.  Figure 3-1 shows the way of sequence 

comparison for two sequences A and B using Q-gram with size 4.  Sequence 

A and sequence B share two same Q-gram.   

 There are some advantages of using Q-gram.  Firstly, sequence 

comparison using Q-gram can run faster than the highly computational 

sequence alignment and edit distance model.  Measuring the similarity of 

two sequences can be simply counting the number of Q-gram they share.  

The running time of Q-gram approach is linearly proportional to the length 

of sequences.  It is scalable for the large amount of sequences.  Secondly, Q-

gram facilitates the use of indexing techniques.  Indexing techniques have 

been successfully used in web content search.  Since genomic sequences are 

strings of long sequences, it is not possible to directly apply indexing on the 

whole sequences.  We propose to break sequences into a group of Q-gram 

that can be stored in the indexing file.  By using inverted index on Q-gram, 

we can quickly search and cluster the genomic sequence database. 
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 1 2 3 4 5 6 7 8 9 
Sequence A A C C T A C T G A
Sequence B A C C T T C T G A
 
Perform sequences comparison using Q-gram with 4 
 
 Sequence’s A  

Q-gram 
 Sequence’s B 

Q-gram 
 A C C T  A C C T 
 C C T A  C C T T 
 C T A C  C T T C 
 T A C T  T T C T 
 A C T G  T C T G 
 C T  G A  C T G A 
 

 

Figure 3-1 Sequence comparison for two sequence using Q-gram  
 
 
3.3 Q-gram Scoring  

Finding homologous sequences is generally done by calculating the pairwise 

similarity score of each database sequence and query sequence.  Dynamic 

programming calculates the score by finding the best alignment.  However, it 

is not practical for a large database, thus most of the existing search tools 

adopt heuristic approaches.  One of the common heuristic approaches is to 

define the similarity of two sequences based on the occurrence of shared Q-

gram.  The more subsequences database sequence and query sequence they 

share, the higher similarity score is given. This theory has an assumption that 

all Q-gram occur in a random manner or have same statistical significance.  

It is not often in the real life.  For example, the words like “THE”, “AND” 
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have higher occurrence than the words “USA”, “DNA”, even they are in the 

same length.   

 We suggest that the statistical significance of Q-gram should be 

considered in our scoring scheme.  If all Q-gram has equal weight, some 

frequent subsequences may cause bias.  Therefore, in our methodology, 

weighted Q-gram is introduced to compute the similarity.  The weight of Q-

gram is inversely proportional to the rarity of subsequence.    

 Suppose the query sequence of length Lx and the database sequence 

Ly.  For an alphabet of n symbols (generally, n=4 for DNA sequences and 20 

for proteins), the possible number of Q-gram is nq, where q is word length.  

A binary vector ws represents the absence and the presence of each of the 

possible Q-gram in sequence s.  wi
s = 1 means the Q-gram i exists in 

sequence s while wi
s = 0 means the  Q-gram i does not exist in sequence s.    

A vector F represents the normalized frequency of each word.  The sum of 

all Fi is equal to 1.  The weighted score of two sequences is measured as 

following: 

 Weighted Score = y
i

x
i

n

i i

WW
F

k

××∑ 1 .  

However, the disadvantage of weighted score is that it tends to favor long 

sequences due to the higher number of Q-gram occurrence making larger 

similarity score.  We normalize the weighted score by the lengths of 

sequences. 

 Normalized Weighted Score = y
i

x
i

n

i iyx

WW
FLL

k

××
× ∑ 11 . 
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3.4 Dictionary Structure Lookup  
 
 
Heuristic exhaustive search approaches face the challenge of exponential 

growth in database collection size.  The interval match of a large amount of 

database sequence to query sequence is quite expensive.  Some tools are 

implemented by storing the collection in main memory.  Such approaches 

will not be sustainable in the future.  A pre-built dictionary structures is a 

common way to speed up the search process.  It has been proved the 

dictionary structures can enhance the efficiency in many different 

applications.  Database records are firstly pre-processed and stored the 

information in specially designed structures.  When a query is performed, 

only relatively small amount of information is fetched via the dictionary 

structures.  We will briefly describe some popular data structures, including 

binary search trees (BST), splay trees, hash tables and tries. 

 Binary search trees are composed by many nodes; each of them 

represents a character or a string and contains two pointers to its child nodes.  

For a balanced tree, the time for accessing a vocabulary is O(log n), where n 

is the number of nodes in the tree.  However, longer access time is required 

for unbalanced tree which is typically bounded by O(n) [11].  

 
 Splay trees are a variant of self-adjusting binary search tree [22].  

The special feature of splay trees is the self-adjusting mechanism to change 

the tree based on the access patterns.   Some search operations can be 

speeded up but some requires more time to run.  A splay tree requires more 
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space than the binary search tree because of the additional pointers to its 

parent. 

 Hash table is an array of records.  Each record contains a key and its 

associated hash value.  The hash value is calculated mathematically.  During 

the past decades, researchers have developed many algorithms on hashing 

functions, which can be categorized into perfect or non-perfect ones. Perfect 

hashing algorithms can guarantee constant-time lookup even in the worst 

case.  Non-perfect hashing causes more collisions than the perfect one.  The 

most common hashing functions are briefly explained as follows. 

 Linear probing, a naive hashing algorithm, is used in many 

applications. Assume a hash function h(x) associates with a key x.  When 

inserting a key x, we check the bucket h(x).  If there is no item, we insert x. 

Otherwise, we check the next bucket h(x)+1.  If that bucket is also occupied, 

we check h(x)+2 and so on [10].  The linear probing has a problem that 

collision may always occur in dense region. 

 
 Bitwise hashing function was proposed by Zobel. It takes use of a 

non-prime number as its seed.  Typically, most hashing functions require 

many complex mathematical operations such as power and module.  The 

advantage is that the bucket size is the power of 2 so that the shift bit 

operations can be used.  The time of calculating a hash value becomes lesser 

than other complex hashing functions.  But bitwise hashing function is still 

slow in indexing a large amount of sequences. 
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 Perfect hashing function assigns each unique word to a unique 

hashing integer.  For indexing genomic database sequence, the bucket size is 

the number of all possible Q-gram (independent of database size).  The 

hashing integers can be assigned to the words based on the orders of its 

predefined alphabetical ID.  The calculation of a hashing integer can be done 

by a formula.  The parameters of the formula are the alphabet ID and the 

position of each character.  We assume that the leftmost character in a string 

is the most significant while the rightmost character is the least significant.  

We can calculate the hash value by an ordered function. For a string “an-1 an-2 

... a 1 a0”, 

 Hash value of the string = ∑ pk x Lk + p0

where pk is the alphabet ID of the k-th character in the string and L is the 

number of alphabet characters.    

 

 Trie is an abstract structure and Brandais was one of the early 

researchers of such data structure.  This structure generates a list of nodes 

based on a set of words.  There are three major representations of tries: 

array-tries, list tries and ternary search tries.  The advantage of using Trie is 

the running time of processing a text is independent of the number of 

keywords [27].  It is efficient to search in a trie because it only requires one 

pointer traversal for each letter in the query string.  Trie has been used in 

various applications like library bibliographic search, natural language 

dictionaries, database systems, compliers and trie image search. There are 
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many variants of tries proposed for searching dictionary words. Marshall and 

Alan focused on tackling the problem of pattern collision by using trie [35].  

Pattern collision occurs when a perfect hashing function generates the same 

addresses of two different words.  This algorithm has an advantage over 

other perfect hashing functions because it can produce an ordered minimal 

item lists.  It adopts a two-dimensional array based trie: one dimension is the 

alphabets from ‘a’ to ‘z’ and the other dimension is the position in a word.  

Let us consider an example of searching the word “apple” in the array.  First, 

look at the cell in the row ‘a’ and column 1.  If the cell value is positive, we 

get the word and stop searching.  If the cell value is negative, that means 

other words also have first character ‘a’ and we have to consider the second 

letter.  Then, look at the cell in the row ‘p’ and column 2.  If it is negative, 

repeat the above steps.  The most recent one is burst tries proposed in 2002 

[50].  It is composed of three main components: a set of records, a set of 

containers and an access trie. Using a set of containers, the burst trie requires 

much less string comparisons. 

 

3.4.1 Comparison of Dictionary Lookup Structures 
 
The Marshall and Alan algorithm is efficient but only practical for storing a 

small amount of words [35].  The maximum number of words in the index 

table is L×n, where L is the number of alphabets and n is the maximum word 

length.  It is not suitable for the large amount of genomic database 

sequences. As reported in [51], the bit-wise hashing can outperform the 
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binary search tree, splay tree and compact trie in accumulating the genomic 

Q-grams with size 9 and also requires the least memory.  Binary search tree 

is the slowest one because it requires many string comparisons for large data.  

Compact trie is more efficient than splay tree but bit-wise hashing can run 

about 30% faster than compact trie.  Burst trie is faster and requires less 

space than compact trie.  However, the performance of burst trie is still not 

as good as that of bit-wise hashing.  It was found that the burst trie has worst 

performance in genomic data because of its equal string length and its 

relatively flat probability distribution.  Next, we will give a brief review on 

the genomic search tools using these dictionary structures.   

 

 The Search Search Tree (SST) was proposed to search a database of 

DNA sequences for near-exact matches, in time proportional to the 

logarithm of database size. It creates a tree-structured index of a fixed length 

tuples in vector space, with tree-structured vector quantization (TSVQ).  It 

can achieve O(log n) for the search if the tree is balanced. It is claimed that 

SST is 27 times faster than BLAST for searching alone [48],[16]. 

 

 The Suffix Trees based Exact Match (STEM) was proposed for 

indexing all suffix elements of the database sequence and the depth-first-

traversal search is used for matching elements.  There are several suffix tree 

representations including Patricia tree-based, linked list and hash table 

representations, suffix array and augmented suffix array, LC-trie, suffix 

36 



 

binary search tree and suffix AVL tree.  STEM adopted suffix array as its 

representation [23]. In the next section, we will explain how our proposed 

data structures works on the genomic data and discuss the advantages.  
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3.5 Proposed Dictionary Structures for Genomic 
Sequences 

 
In our Q-gram based sequence search, we propose a novel dictionary data 

structure to handle the genomic sequences.  The existing dictionary data 

structures often take time proportional to database size. Even the perfect 

hash function has better performance than BST and splay trees, it still takes 

more time to compute the perfect hash value if a word is in longer length.     

A genomic search system often performs index creation periodically and 

deals with thousands of queries per day, an efficient dictionary data structure 

is important.  Thus, we propose two different dictionary lookup approaches, 

which can reduce the number of mathematical operations than the existing 

ones.  

 

3.5.1 Refined Perfect Hashing  
 
The overlapping word indexing technique is adopted in most successful 

search tools such as BLAST, FASTA and CAFE because this can achieve 

better retrieval effectiveness. We discovered that this overlapping interval 

property could make hashing functions more efficient. Since any two 

consecutive overlapping words contain nearly the same characters, it can 

take less time to obtain the hash value of the followed word.   The idea is to 

calculate the hash value of a followed word based on the hash value of the 

previous word.  The number of operations required in the refined version can 

be much reduced.  For a string “an-1an-2... a 1a0”, 
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                   Hash value of the string = ( H -  pn-1 × L
n-1

 ) << 2 + p0

where H is the hash value of previous word, pk is the alphabet ID of the k-th 

character in the string and L is the number of alphabet characters.    

 

For example, a new sequence ACTAAAAAAGT is indexed. The sequence 

is broken down into three Q-grams with size 9: ACTAAAAAA, 

CTAAAAAAG and TAAAAAAGT.  The hash value of the first word is 

24576, which is calculated by the perfect hashing function.  For the 

remaining words, the refined version is applied.  Compared with the first 

word, the second word misses the first character ‘A’ and adds the character 

‘G’ to the end.  The steps of the refined version to calculate the new hash 

value are shown in Figure 3-2 

 
 
 
 
 
 
 

1. Use the hash value of previous word 

2. Minus the value of the missing 
character 

3. Operate a left shift operation 

4. Add the value of the last character 

1. Hash value of CTAAAAAAG  

= (24576 – 0) <<2 +3 = 98307 

2. Hash value of TAAAAAAGT 

       = (98307–48) <<2 +2 = 131086 

Figure 3-2 The calculation steps of Refined-Perfect Hashing 
 

 

3.5.2 Loop-Back Trie-Based Hashing  
 
The loop-back trie is based on the matching machine in Trie proposed by 

Alfred [58].  By applying a matching machine in Trie, it can identify a set of 

keywords in a string efficiently.  The algorithm consists two parts:  the first 

part constructs a finite state matching machine based on the input set of 

39 



 

keywords while the second part applies the matching machine to lookup the 

query keyword and give the matching signals [34],[53]. 

 

3.5.2.1 Matching Machine 
 
The matching machine consists of a number of states, which are represented 

by consecutive integers.  When the characters are read from the text one by 

one, the machine will move from one state to the other.  That is called state 

transitions.  The state transitions and the matching signals are monitored by 

three functions: Goto function, Failure function and Output function. The 

Goto function is executed when the machine successfully matches the 

processing character to the states and finally moves to a new state.  The 

failure function is operated when the machine fails to match the processing 

character.  The machine is directed to the state associated with the longest 

suffix of the string.  The output function gives the signal that a keyword is 

found in the text string.  These functions with the keywords {ann, man, men, 

end} are shown in Figure 3-3. 

 

State Output 

3 ann 

6 man 

8 men 

12 end 

(b)Output function 

State Failure  

6 2 

8 10 
(c) Failure function 

 
(a)Goto function 

Figure 3-3 Pattern Matching Machine 
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3.5.2.2 Loop-Back Path 
 
A machine state is built by pre-processing the database sequences. The pre-

calculated states are stored in the three functions.  Since the consecutive 

words are overlapping, we can add a guide path to the state for a next word, 

which is called loop back path.  Loop back path can help to reduce the 

number of state transitions for going through a series of consecutive words.  

For example, given a set of indexed keywords {CAG, CAC, AGC, ACA}, 

the functions will be shown as followings: 

 
(a) Goto function 

 
 
 
 
 
 

 

State Output 

3 CAG 

4 CAC 

7 AGC 

9 ACA 

State Failure State if Next Character is 

3 7 if N.C. is C 

4 9 if N.C. is A 

9 3 if N.C. is G or 4 if N.C. is C 

(b) Output function                               (c) Failure function 

 
Figure 3-4 Pattern Matching Machine used with Loop Back Path 

 
 
 
In Figure 3-4, the modified failure function provides a failure state based on 

the next character.  By using the loop back path, the hash value of the 
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consecutive words can be obtained quickly.  Only one state transition is 

required in the hashing.  However, if without using the loop back path, the 

machine state must restart to state 0 for the hashing of every word. It spends 

much time to go through the duplicated characters.  The loop back paths of 

Trie can skip the process of duplicated characters.  For example, an input 

sequence is ACAGC. The machine state starts from 0 and processes ACA. It 

then goes through states 5, 8 and 9.  Since the next character is ‘G’, it 

follows the loop back path to state 3 and then directs to the state 7 for the 

next character ‘C’.  Trie hashing function can be very fast since the complex 

calculation process can be avoided.  When the machine state processes a 

genomic sequence, it jumps one state to another according to the loop back 

paths.  Since the failure function table can be stored in the primary memory, 

the state transition operations can be run very fast. 
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3.6 Effectiveness of Loop-Back Pointers 
 
In this section, we focus on the effectiveness of loop-back pointers in the 

Trie.  Loop-back pointer is used to quickly find the hash value of 

consecutive Q-gram.  They are stored in a pre-built data structure. The 

effectiveness of loop-back pointers can be affected by the characteristics of 

genomic sequence databases.  The characteristics include several factors 

including the number of sequences and the ratio of the unique Q-gram in 

database to the possible Q-grams.  In order to enhance the effectiveness of 

lookup process, we have devised two different approaches to manage the 

loop-back pointers.  Under the different characteristics of database, different 

approach can be chosen. 

 

3.6.1 Minimal Trie  
 
Minimal Trie is suitable for the datasets, in which the number of unique 

words in database is expected to be much smaller than the number of all 

possible n-grams.  The construction of the failure function is done by 

dynamically allocating the memory for the unique words in database.  Since 

those words that do not appear in the database would not be stored, the table 

size could be smaller.  Table 3-1 shows Minimal Trie for nucleotide 

characters, in which each row contains 4 possible loop back pointers in the 

failure function. 

 The goto and output functions are implemented by an array-tree. This 

structure is suitable to build the machine state because the time of insertion, 
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deletion and lookup of items is constant and independent of the tree size.  

The failure function uses a two-dimensional array to store all loop back 

pointers.  For the index construction, the algorithm is to go through all 

genomic sequences in the database.  The hash value of each consecutive 

word is obtained from the failure function.  If it does not exist, the output 

function will be checked whether it has been added to the tree.  If not, add 

hash values for this new word in the tree.  Finally, insert the corresponding 

value into the loop back state of the failure function. 

 

Table 3-1 Pattern Matching Machine for Minimal Trie 
 

 
Hash Value Output 

1 ACA 

2 AGC 

3 CAC 

4 CAG 

Hash 
Value A C T G 

1 - 3 - 4 

2 - - - - 

3 1 - - - 

4 - 2 - - 

 
 
 
 
 
 
 
 

(a) Output Function                                                                  (b) Failure Function 
 

 

 
3.6.2 Perfect Trie 
 
Perfect Trie is easier to deploy but requires more space for the array than the 

first one as shown in Table 3-2. It statically allocates memory for the hash 

values of all Q-grams and the table size is Lq , where L is the number of 

alphabets and q is word size.  In the failure function, only one loop back 

pointer for the character ‘A’ is stored since the pointers of other characters 

can be calculated.  For example, the hash value of GCA is 52 and so the hash 

value of GCG = 52+3 =55. 
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Table 3-2 Pattern Matching Machine for Perfect Trie 
 

Hash Value Output  Hash Value A 
0 AAA  0 0 
3 AGC  13 52 

17 CAC  17 4 
63 GGG  63 60 

(a) Output Function  (b) Failure Function 
 
 
 

Like the perfect hashing, the hash values are continuous and they can be 

alphabetically generated.  Thus, the output function would use the perfect 

hashing formula and hence no extra data structure is required for the array-

tree.  The failure function uses a one-dimensional array to store one loop 

back value for each word.  Since the hash values are contiguous, the failure 

function values can be simply calculated.  As it does not require any 

processing genomic sequences, the construction time of the failure function 

table is less than that of the first one.  We believe that the construction time 

of the failure table only causes little overhead to the whole indexing process.  

The number of insertions in the failure table depends on the number of 

unique words.   Since this number is relatively small compared with the 

words in a genomic database, the pre-calculation of the failure values can 

enhance the whole indexing process.    
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3.7 Simulation Results 
 
In this section, we measured the performance of the QgramSearch.  We 

evaluated the performance of the proposed algorithm in several aspects: 

space requirement, computational time and scalability on the database size.  

In these experiments, our data came from the genomic sequences in a public 

famous database GenBank, in which Expressed Sequence Tag (EST) was 

chosen.  The program run under the Unix environment and the machine was 

SunFire48000 with 4 US-III 900 MHz plus 4 GB Ram.  QDBM, a widely 

used library for inverted index applications, was used in our program.  The 

followings are the experimental results for measuring several aspects: 

 

3.7.1 Effect of Word Size on Dictionary Structure 
Efficiency  

 
The first experiment evaluated the efficiency of several dictionary structures 

on the genomic sequences.  Figure 3-5 shows the running time of BitWise, 

Perfect, Refined Perfect and Trie-based hashing functions to generate the 

hash values of words in the genomic sequence file.  Since we expect the 

running time of the two trie-based implementations are nearly the same, only 

the first one is shown in the experiment.  Our program first broke down the 

sequences into words and computed a hash value for each word.  The 

experiment focused on the effect of word size on the speed of hashing 
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functions, thus word sizes 3, 7 and 10 were used.  The sequence file was 

28.6 MB and the lengths of sequences ranged from 100 to 1000. 
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Figure 3-5 Plot the running time of BitWise, Perfect, Refined Perfect 
and Trie non-minimal hashing indexing. 

 

Our results showed that the trie-based hashing function was the most 

efficient one in generating hash values for genomic Q-grams.  The trie-based 

hashing function was about 5 times faster than the bitwise hashing function 

and about 4 times faster than the perfect hashing function.  The refined 

perfect hashing function was also efficient but not as good as the trie-based.  

The running time of our proposed hashing functions kept good performance 

even when the word size increased.  The result also showed that the bitwise 

and the perfect hash functions were relatively slow due to their expensive 

calculations.  The performances of the bitwise and perfect hashing functions 

decreased with the word size.  Our proposed refined perfect hashing and trie-

based hashing functions outperform than the other two hashing functions. 
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3.7.2 Effect of Utilization on the Trie-based 

Implementation  
 
The space requirement is one of the main considerations of the feasibility of 

an indexing scheme.  The bitwise, perfect and refined perfect hashing 

functions do not require any extra space to calculate the hash values of 

genomic words.  The trie-based hashing stores the pre-calculated loop back 

values in order to enhance the speed.  This section serves to evaluate the 

space requirement of the Minimal Trie and Perfect Trie. 

 

For the Perfect Trie, the size of failure table is the all possible n-grams for 

the genomic sequence.  The size of a Perfect Trie table is Ln ×  (size of a 

pointer), where L is the number of alphabet characters.  But, in order to 

achieve higher speed, L may be set larger so that it is a power of 2.  Like 

Bitwise, we prefer to use the inexpensive shift operations rather the power or 

the module operations.  For example, the number of alphabet character in 

amino acid is 20 and then we should set L to 32.  It would enhance the 

efficiency but requires more space. 

 

The Minimal Trie is more suitable for sparse data because only those words 

appearing in the database are stored in the failure function table.  We need to 

use an indicator to evaluate the dataset whether they are sparse enough or 

not. The utilization is the number of unique words in a genomic database to 
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that of a perfect table. It can help to determine which implementation should 

be used. 

ngram possible all of No.
database genomic a ofentry index  unique of No.n    Utilizatio =  

 
In this experiment, our aim was to discover the utilization of a genomic 

database.  We also evaluated the effects of different size of data and word 

length on the utilization.  For the nucleotide sequences, L set to be 4 so that 

the discovered utilization could directly reflect the distribution of genomic 

sequences in gbest.seq. 
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Figure 3-6 The utilization of a genomic sequence file for different n=11, 12 

and 13 
 

As shown in Figure 3-6, the utilization of the genomic database steadily 

increased with the sequence bases.  It was expected that the utilization for 

N=13 will also reach 100% when more sequences are inserted.  This 

experiment showed that the failure function table of the trie-based could be 

fully utilized for indexing this genomic database provided that L was not 

enlarged.  Thus, the utilization of the index table was affected by the number 

of alphabets, the size of n-gram, the genomic database size, and the 

distribution of sequences.  Perfect Trie should be used if it is expected the 

utilization is high and vice versa.  Therefore, we can decide to select the 

suitable search methods according to the size of dataset and the running 

environment.  If the memory space is large enough to hold the failure 

function table, the trie-based hashing could be used to achieve higher 
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efficiency.  If there is not enough memory space for the table, the refined 

perfect hashing should be chosen.  Both of these two approaches are better 

than the existing ones.  We believe that more genomic databases will choose 

to apply indexed homology search in the near future. 
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3.7.3 Effect the number of sequences on Size of Inverted 

Index   
 
QgramSearch utilizes the inverted index to speed up the search process.  In 

this experiment, we evaluated the inverted index size under different number 

of sequences in the database.  The program read an EST file and broke each 

sequence into Q-grams.  Then all the Q-grams were inserted into the inverted 

index using QDBM.  As shown in Figure 3-7, the inverted file size increased 

linearly with the number of genomic sequences.   
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Figure 3-7 The inverted index size under different number of genomic 
sequences. 
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3.7.4 Effect of Number of Sequences on Indexing Time 
 
In this experiment, we evaluated the computational time of index creation 

for different number of sequences in the database.  In this experiment, we 

measured the running time of the whole index creation process.  The 

computation time included reading the EST file, Q-gram generation, 

dictionary structure computation and storing data in the inverted file.  As 

shown in Figure 3-8, the index creation time grew exponentially with the 

number of sequences in database. 

  

 
 
 
 
 
 
 
 
 

Figure 9. The index creation time under 
different number of sequences. 
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Figure 3-8  The inverted index time under different number of genomic 
sequences. 

 
 
 
Index maintenance strategies on invested files are mainly employed an in-

place or merge-based update scheme.  For in-place scheme, the in-memory 
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posting lists are appended to the existing ones on-disk lists. It requires the re-

location of the existing on-disk list.  Since relocating existing on-disk list is 

time-consuming, some adopted overallocation strategy that leaves some 

amount of free space after every on-disk posting list.   

For merge-based strategies, a new on-disk inverted file is created by 

combining an existing one with the in-memory data.  In general, merge-

based strategies are better at dealing with short posting lists, while in-place 

strategies are better at handing long posting lists. 

It is claimed that the overall performance of the proposed hybrid strategy 

could be improved so that the indexing time is linear in the size of the text 

collection.  However, the main shortcoming is their slightly reduced query 

processing performance due to internal fragmentation in the on-disk posting 

lists [47]. 
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Effect of Number of Sequences on Query Time 
 
In this experiment, we evaluated the computational time of query search 

using different number of sequences in the database and using different 

lengths of query sequence. We measured the searching time for a query 

sequence.  The experiment was to evaluate the time of a query search under 

different collection sizes in the database.  The number of sequences in 

database increased from 50 to 40000.  When the sequence collection 

increased in a large proportion, the query time only rose in a relatively small 

proportion.  It is because the inverted index can allow access a small portion 

of database sequences instead of the whole database.  The inverted index 

makes the search scalable for large genomic database.  

Besides, we used two different lengths of query sequences: one query 

sequence was of length 50 and the other was of length 200.  As shown in 

Figure 3-9, the query time increased with the length of query sequence.  

Generally, the query length ranges from tens to hundreds bases.  The longer 

the query sequence is, the more number of computational operations are 

performed.  
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Figure 3-9  The query time is taken under different number of sequences 

and query length. 
 
 
Furthermore, we compared QgramSearch with other exhaustive searches.  

For a small database collection, we believe our proposed search has similar 

performance as the programs like BLAST.  In our experiment, both of the 

programs could run within 1 second to reply a query.  In some cases, the 

query time remained unchanged even the number of database sequences 

increased for same sequence length.  It is because the system processes a 

series of Q-gram in query and counts the number of matching Q-grams in the 

database.  The query time mainly depends on the query length and slightly 

depends on the number of matching Q-grams since the latter operation could 

run faster.  Besides, since the number of database sequences in the above 

experiment is a relatively small portion to the number of possible Q-gram, 

the number of matching Q-grams could be more or less the same under some 

cases.  Thus, the query time could be the same under some cases. 
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However, according to CAFÉ’s experiment, as the data size increased, the 

search times of BLAST and FASTA grew rapidly.  For example, BLAST 

takes about 15 seconds per query under 500 Mb data size, but the search 

time rises to about 180 seconds for 700Mb data size.   QgramSearch adopts 

the trie-based index and thus search time is proportional to the query and the 

posting lists.  The running time of our proposed rises slowly compared with 

the collection size. 
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3.8 Summary 
 
In this chapter, we have proposed an efficient QgramSearch (Q-gram Based 

Genomic Search).  It has an advantage over the exhaustive search tools on 

the process of sequence matching.  We use the inverted index on Q-gram to 

retrieve the homologous sequences from database instead of the expensive 

full database scanning.  Besides, we introduce two novel dictionary data 

structures for the retrieval and the index creation processes.  The Refined 

Perfect Hashing and the Trie-Based Hashing utilize the overlapping 

characteristics of genomic sequences in Q-gram.  The experiments show that 

our two proposed dictionary data structures are faster than other data 

structures.  Compared with the Bitwise hashing, our proposed hashing 

functions run about 5 times faster.  Index-based genomic search generally 

face two problems: the problem of heavy workload on the servers caused by 

thousands of queries per day and the problem of long index creation.  Our 

proposed structures can efficiently generate the hash value for the 

consecutive Q-gram. 

QgramSearch uses a normalized weighted score to measure the similarity of 

sequences.  The normalized weighted score uses the probability of the 

occurrence of Q-gram.  This weighted measurement is to take the 

consideration of the statistical significance of Q-gram.  It can help to identify 

the significant features in the sequences.   
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The experiments showed the query time of QgramSearch was almost linearly 

proportional to the number of database sequences. Our proposed index-based 

approach is more scalable than the existing search tools like BLAST.  
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4 Q-gram Based Genomic Sequence 
Clustering  

 
 
4.1 Introduction 
 
Genomic sequence clustering has been used in the identification of protein 

families; the prediction of the families for a newly discovered sequences and 

medical treatment.  Clustering is to partition a set of data such that intra-

cluster distance is small  and inter-cluster distance is large.   

The traditional clustering algorithms perform the sequence comparison for 

each sequence pair in database.  The number of possible sequence pairs is 

usually very huge.  This exhaustive pairwise sequence comparison is 

expensive for a large genomic sequence database containing billions of 

sequence.  

 
In this chapter, we introduce a novel (QgramClust) Q-gram based genomic 

sequence clustering to improve the speed of clustering process.  It has 

several advantages over the existing clustering approaches.  Firstly, most 

existing sequence clustering approaches require exhaustive database scans 

for sequence comparison.  We reduce the number of database scanning by 

using inverted index.  Secondly, many clustering approaches adopt dynamic 
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programming to find sequence alignment, but they are so slow and take 

O(n2) time.  Q-gram based similarity measurement is used instead of the 

expensive sequence alignment.  Lastly, most of the existing hierarchical 

clustering methods regard every sequence as a single data point.  Since the 

hierarchical clustering requires n2 comparisons and space, the performance is 

not good due to the large number of database sequences.  A hybrid way of 

partitioning and hierarchical clustering is adopted in our algorithm such that 

the scalability and the efficiency can be balanced.  

 

4.2 P-Similar Neighbors  
 
 
The concept of neighbor we use is derived from KNN (K-Nearest-

Neighbor).  KNN has been applied in search and classification.  It is an 

efficient strategy to solve a computationally heavy task by finding the k 

nearest neighbor.  In KNN classification, a data is classified as the label 

based on the labels of its neighbors [56].  KNN is efficient because the 

number of data being processed is a small proportion of the whole database 

collection.  It would be good if we utilize the concept of neighbor to reduce 

the number of sequence comparison. Therefore, we introduce nearest-

neighbor in our clustering algorithm 

 

Two sequences are said to P-similar if the number of Q-gram they share is 

greater than threshold P.  A set of data points is the neighbors of a specific 

point M if they are P-similar to that point M.  We called the point M is the 
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centroid of these neighbors.  The idea of QgramClust is to find the neighbors 

of some regions and then merge the closest regions together. 

 

4.3 Cluster Assignment 
 
As mentioned in previous chapter, the hierarchical clustering takes O(n2) 

complexity in time and space.  It is not scalable for a large collection.  

Therefore, we apply a hybrid of the partitioning clustering and the 

hierarchical clustering.  By this way, the number of data points is reduced in 

the hierarchical clustering process.  In the first step, we perform the 

partitioning clustering --- the close neighbors are grouped into a number of 

clusters.  Figure 4-1 shows the procedure of partitioning clustering.  Firstly, 

the algorithm randomly selects a sequence as a centroid and finds all P-

similar neighbors by using our inverted index.  Then the centroid and its 

neighbors are clustered into a primary cluster.  The algorithm repeats to 

select centroids and formulate clusters until all database sequences are 

grouped into clusters.  If some sequences do not have P-similar neighbor 

sequences, they are formed into primary clusters with only single sequence.  

A list of primary clusters of P-similar neighbors are returned and passed to 

the second step. 

 

In the second step, we perform a hierarchical clustering on the primary 

clusters.  A two-dimensional scoring matrix is created and filled with the 

distances between clusters. The distance of two primary clusters is based on 
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the distance of their cluster centroids.  Agglomerative hierarchical clustering 

is applied for merging clusters and single linkage is used for distance 

measurement for clusters.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Partitioning Clustering 
 
Given a set of database sequence S and a threshold T 
Define an array of clustered status and an array of score for S 
 
Step 1: Mark all sequences in S with status = “N”  
Step 2: Set all sequences in S with score= 0  
Step 3: Randomly select a sequence Si with status = “N” in S  
Step 4: Create a cluster Cx and set Si with status = “Y” 
Step 5:  Search the posting list for Si using inverted index 
Step 6:  Count the number of shared Q-gram as score for each sequence 
in the set S  
Step 7:  Mark the score for sequences with status = “N” 
Step 8:  Overwrite the score for sequences with status = “N” if new 
score is higher than old score 
Step 8:  Assign those non-clustered sequences whose score >= T to C x 
and set them with status = “Y” 
Step 9:  Re-assign clustered sequence if new score is higher than old 
score 
Step 10: Repeat and goto Step3 until no sequence in S with status = 
“N” 
   

 
Figure 4-1  The algorithm of partitioning clustering approach. 
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4.3 Efficiency and Effectiveness 
 
In our algorithm, we use Q-gram based approach to measure the similarity of 

database sequences.  Comparing with those clustering algorithms requiring 

pairwise alignment of each sequence pair in the database, the similarity 

measurement using Q-gram is more efficient.    For clustering a large 

sequence database, those algorithms using the pairwise alignment is not 

acceptable.  Some heuristic clustering algorithms have better performance 

than the alignment-based algorithms.  For example, BlastClust is one of the 

famous heuristic clustering algorithms, which is based on the pairwise 

matches found using the BLAST algorithm and cluster sequences using the 

single-linkage method.  In BlastClust, two sequences are considered to 

neighbor if the coverage and the Blast score are above some certain 

thresholds.   However, BlastClust requires to measure Blast score of each 

sequence pairs and it takes O(n2) complexity in running time.  In our 

proposed algorithm, the similarity of between a centroid sequence and 

database sequences can be obtained using the inverted index.  The running 

time depends on the number of selected centroids or the number of clusters.  

In normal case, the number of clusters should be comparatively small to the 

number of sequences.   

 For effectiveness, the sensitivity is affected by the selected word size 

or Q-gram.  The smaller word size means that the smaller regions are also 

considered in the similarity measurement.  If a large word size is used, some 

shared regions are missed.  BlastClust uses an input parameter to control the 
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word size for initial matches.  The performance of BlastClust drops greatly if 

a smaller word size is used.  Under same word size, the experiment showed 

our algorithm could run faster than BlastClust. 

 

4.4 Simulation Results 
 
We conducted some experiments to evaluate the performance of 

QgramClust.  Since the partitioning clustering was the core component of 

our algorithm, the experiments focused on the performance of the 

partitioning clustering process.  We also compared the performance of 

QgramClust and BlastClust with different collection size.  The following 

experiments were conducted in the same platform as that in the Chapter 3.  

The same Genbank EST dataset was used and the size of Q-gram was 9.   

 
 
4.4.1 Effect of Number of Sequences on Clustering Time  
 
In this experiment, we evaluated the partitioning clustering time of 

QgramClust using different number of sequences in the database and 

different similarity threshold.  We used several datasets ranging from 500 to 

40000 sequences.  Different similarity threshold values were also used to 

control the similarity neighbors in the clusters.  
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Figure 4-2.  Plot the clustering time and the number of sequence under 
different threshold 
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Table 4-1 The result data of clustering time and the 

number of sequence under different threshold 
 

Number of Sequences/ 

Threshold 500 1000 5000 10000 20000 40000 

T = 3 2 2 6 10 20 39 

T = 6 2 7 13 48 73 96 

T = 9 4 8 32 64 127 373 

T = 12 6 10 57 131 254 667 

T = 15 7 15 69 169 346 989 

 
 
Figure 4.2 showed the clustering time of QgramClust with different 

collection size.  Under the same similarity threshold values, we found that 

the clustering time was almost linearly proportional to the number of 

sequences in the dataset.  Our proposed algorithm is scalable and the running 

time would not exponentially increases with the collection size.  Another 

factor on the algorithm is the similarity threshold.  From the above results, 

we discovered that the clustering time increased with the similarity threshold.  

It is because the higher similarity threshold causes fewer neighbors assigning 

to each cluster and more clusters to be generated.   Some of clusters were 

formed with only one single data point when using large threshold values.  

The following experiments showed the relationships of the number of 

clusters generated and the similarity threshold. 
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4.4.2 Effect of Similarity Threshold on Number of 
Clusters  

 
This experiment was to evaluate the numbers of clusters is formed under 

different similarity threshold.  We evaluated six sets of data and counted the 

total number of clusters.   The total number of clusters formed must not be 

more than the number of data in the dataset.  
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Figure 4-3.  Plot the relationship of the number of clusters and the 
similarity threshold under different dataset size  
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In this experiment, we found the number of clusters formed by the algorithm 

grew with similarity threshold values.  In Figure 4.3, the growth rate of the 

clusters formed slowed down when the number of clusters reached the 

dataset size.    

 

4.4.3 Comparison of BlastClust and our proposed 
algorithm 

 
We also evaluated the performance of BlastClust.  We downloaded the 

executable file of BlastClust and ran it under the same platform as the 

previous experiments. Figure 4-4 showed the clustering time of our proposed 

ran faster than BlastClust under 500 to 40000 sequences.  The clustering 

time and the number of clusters formed using BlastClust under its default 

parameters (word size = 28 ) were shown in Table 4-2.  
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Figure 4-4. Plot the relationship of the clustering time and the number 
of sequences using BlastClust and our algorithm with several threshold 

values. 
 

 
 

Table 4-2 The result data of clustering time and the number 
of sequences using BlastClust  

 
No of Sequences Running Time (s)  No of clusters generated 

50 2.7 50

500 3.7 495

1000 6.2 983

5000 42.1 4849

10000 130.6 9617

20000 343 19057

40000 975.9 38016
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4.5 Summary 
 
In this chapter, we propose a novel QgramClust, which is a hybrid way of 

partitioning clustering and hierarchical clustering.  A large public genomic 

database consists of millions to billions of sequences.  Since a hierarchical 

approach takes O (n2) in time and space, it is not feasible for such huge 

amount of data.  Therefore, we introduce the partitioning clustering as the 

first step to generate the primary clusters and reduce the number of data 

passing to the hierarchical clustering. 

 The traditional clustering algorithms perform the sequence 

comparisons for each pair.  We introduce inverted index to speed up the 

process sequence comparisons.  Besides, we introduce the concept of nearest 

neighbors in the clustering algorithm and define a P-similar measurement to 

find the members of clusters.  By doing this way, the inter-clusters are 

dissimilar and the intra clusters are similar.   

The experiment showed our algorithm was generally faster than a famous 

genomic clustering, BlastClust.  Besides, it is found that our algorithm is 

able to discover more distant sequences that cannot be shown in BlastClust.  

Our clustering algorithm can also facilitate the outliner discovery by finding 

the clusters with a single sequence.  It is an efficient and effective genomic 

clustering algorithm. 
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5 Conclusions 
 
In this research, our aim is to devise a new effective and efficient way to 

mine the information from the genomic sequences.  Genomic homologous 

sequence search and genomic sequence clustering are two important 

applications to extract knowledge from huge amount of biological data.  

Since the collection size of the public genomic sequence database is growing 

exponentially, the traditional genomic search and clustering techniques face 

the scalability problem.  To overcome these demanding challenges, it is 

necessary to devise new algorithms that can run efficiently and effectively 

under the increasing amount of data.  Therefore, we propose an efficient and 

effective QgramSearch and QgramClust.  The contributions of this research 

are follows: 

 

1. This research introduces a QgramSearch.  We utilize the indexing 

technique on Q-gram to speed up the search process.  Dictionary lookup 

is a fundamental function in both index creation and retrieval processes.  

We propose two novel dictionary data structures:  Refined Perfect 

Hashing and Trie-Based Hashing.  In the experiment, our proposed data 

structures run much faster than other data structures.  Compared with 

Bitwise hashing --one of the fastest hashing functions, our proposed 

hashing function can run 5 times faster. 
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2. We introduce a normalized weighted score that uses the probability of 

the occurrence of Q-gram.  This takes the significance of Q-gram into 

consideration.  It can efficiently and effectively measure the similarity of 

two sequences.  We also add the factor of the length of sequences into 

the score.  This can reduce the dominance of long sequences in the 

results. 

3. QgramSearch can quickly find the similar sequences.  It cannot only be 

used as a stand-alone search tool but also act as a selection step for other 

search tools.  Since our search process is light, it is probably working a 

filter to find the high-scoring matches for further processing.  For 

example, dynamic programming can be the final processing to rank the 

results.  

4. QgramClust is a novel way to cluster sequences based on the nearest 

neighbors of centroid.   There has been some research on KNN 

classification but few researchers conduct research on nearest neighbors 

clustering method.  We find that the nearest neighbor clustering is well-

suited for the sequence clustering problem.  Comparing with traditional 

approaches requiring pairwise sequence comparison, our proposed 

approach can efficiently partition similar sequences. 

5. We introduce a novel idea to use indexing technique in sequence 

clustering.  With the inverted index, the nearest neighbors of a centroid 

can be quickly found and form primary clusters.  Our proposed 

algorithms is more efficient than the traditional sequence clustering 
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algorithms because it does not require expensive pairwise comparsions.  

Our experiment showed our clustering algorithm could run faster than 

BlastClust. 

6. Our proposed clustering algorithm is a hybrid approach of partitioning 

clustering and hierarchical clustering.  Since the partitioning clustering 

step can help to reduce the number of records passing to the hierarchical 

clustering step, it is scalable to handle a huge amount of data.   The 

similarity threshold can be used to control the size of clusters and the 

number of primary clusters.  

We believe several issues and works that can be done in the future. 

1. Semi-supervised learning can be applied in our algorithms.  The 

biological data usually contains some label data and lots of unlabel data.  

For example, biologists have identified some well-known protein 

families.  The new research is to consider how to utilize the label data to 

improve the quality of data.  Firstly, the future work can include an 

investigation on the effect of cluster quality after using the label data as 

the cluster centroids.  Secondly, it can include designing a new weighted 

score.  If sequences of same label frequently share a set of Q-gram, the 

weight can be added.  Thirdly, some long and frequent pattern in the 

sequence of same label can be extracted and they can be used as features 

in similarity measurement. 

2. In our current clustering approach, a sequence can be re-assigned to a 

newly created cluster since each sequence can only belong to one cluster.  
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Therefore, a sequence could only be assigned to the closest cluster.  In 

the real biological applications, there might be inter-relationship between 

clusters.  It is worth to doing further research on membership of multiple 

clusters.   Each sequence can be associated with more than one cluster. 

3. Compression techniques can be used to reduce the size of inverted index.  

The inverted index increases with the number of database sequence.  The 

future work can develop a technique to compress the inverted index in 

order to reduce the storage size. 
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