

ABSTRACT

With the advances in technologies, the amount of biological data such as

DNA sequences and microarray data have been increased tremendously in the

past decade. In order to obtain knowledge from the data, e.g., enhancing our

understanding of the evolutionary changes and the causes of those severe

diseases, one has to search for patterns from the databases of large size and

high dimensionality. Information retrieval and data mining are powerful tools

to extract information from the databases and/or information repositories. In

the past several years, there have been attempts to apply these two branches of

intelligent techniques to different bioinformatics applications. However, the

performance of these existing techniques has not been optimized due to the

characteristics of and requirements from biological data, e.g. extremely long

genomic sequences with high dimensionality, and interpretable search/mining

results.

In this thesis, we focus on how to improve the searching and the clustering

performance in genomic sequence databases. A Q-gram based genomic search

(QgramSearch) algorithm and a Q-gram based genomic sequence clustering

(QgramClust) algorithm are proposed. Our QgramSearch can efficiently

search the homologous database sequences to a query sequence. It makes use

of two novel hashing techniques to enhance the efficiency of indexing and

retrieval. These two hashing techniques can better capture the overlapping

characteristics in the Q-gram based index. As demonstrated by the

experimental results, they run faster than the existing data structures. Besides,

we measure the similarity of sequences based on the significance of Q-gram

instead of the expensive sequence alignment. Thus, our search algorithm can

run faster than the famous Blast algorithm.

Following the idea of QgramSearch, a Q-gram based genomic sequence

clustering (QgramClust) is proposed. In view of the challenge of expensive

ii

pairwise sequence comparison for large database sequences faced by the

existing clustering algorithms, QgramClust employs the inverted index of Q-

gram in sequence comparison so that the clustering process can be made

efficient. Our clustering algorithm is a hybrid of partitioning method and

hierarchical method. It quickly clusters a group of nearest neighbors and

finally merges the clusters. Our experimental results show that QgramClust

runs faster than BlastClust.

iii

ACKNOWLEDGEMENTS

It is a great pleasure for me to acknowledge those people who give

tremendous efforts and contributions to me. Without their cooperation and

advices, it would be much more difficult to complete this thesis.

Firstly, I would like to thank my supervisor, Dr. Korris Chung, for his patient

guidance and supervision on my research during these years. Dr. Chung has

given many good advices to me and assessed my research works. His

innovative ideas trigger me to have new research insights. Every time when I

get troubles in the research, Dr. Chung patiently teaches me. I have learned a

lot under his supervision. Dr. Chung has contributed much to my research.

This thesis cannot be finished without his supervision. I deeply express my

grateful appreciation for his great efforts.

In addition, I would like to thank my co-supervisor, Dr. Robert Luk, who gave

advices and suggestions, contributed much in my research. His creative idea

of using Trie-Based hashing in genomic search is so important in my

algorithms. Dr. Luk also helps me to evaluate the performance of different

data structures. I really thank you for his great efforts on my research.

Lastly, I wish to express my gratitude to the staff in the Department of

Computing. I thank those professors for teaching me and those staff for

helping me during these years.

iv

TABLE OF CONTENT
CERTIFICATE OF ORIGINALITY..I

ABSTRACT ... II

ACKNOWLEDGEMENTS...IV

TABLE OF CONTENT.. V

LIST OF FIGURES ... VII

1 INTRODUCTION.. 1
1.1 PROBLEMS AND MOTIVATIONS ... 2
1.2 OBJECTIVES AND SCOPE.. 6
1.3 OUTLINE OF THE THESIS.. 7

2 OVERVIEW OF BIOINFORMATICS ... 8
2.1 INTRODUCTION.. 8
2.2 BIOLOGICAL DATA .. 11
2.3 HOMOLOGY GENOMIC SEARCH... 14

2.3.1 Measuring Evolutionary Distance ... 14
2.3.2 Sequence Alignment ... 15
2.3.3 Heuristic Exhaustive Search .. 19
2.3.3.1 FASTA ... 19
2.3.3.2 BLAST ... 20

2.4 SEQUENCE CLUSTERING.. 22
2.4.1 Graph-Based Approaches .. 22
2.4.2 Hierarchal Approaches .. 23
2.4.3 Partitioning Approaches .. 24

2.5 SUMMARY ... 26

3 Q-GRAM BASED GENOMIC SEQUENCE SEARCH................................... 27
3.1 INTRODUCTION.. 27
3.2 Q-GRAM BASED APPROACH .. 28
3.3 Q-GRAM SCORING ... 30
3.4 DICTIONARY STRUCTURE LOOKUP.. 32

3.4.1 Comparison of Dictionary Lookup Structures 35
3.5 PROPOSED DICTIONARY STRUCTURES FOR GENOMIC SEQUENCES.................. 38

3.5.1 Refined Perfect Hashing... 38
3.5.2 Loop-Back Trie-Based Hashing ... 39
3.5.2.1 Matching Machine.. 40
3.5.2.2 Loop-Back Path.. 41

3.6 EFFECTIVENESS OF LOOP-BACK POINTERS ... 43
3.6.1 Minimal Trie... 43
3.6.2 Perfect Trie... 44

3.7 SIMULATION RESULTS... 46
3.7.1 Effect of Word Size on Dictionary Structure Efficiency......................... 46
3.7.2 Effect of Utilization on the Trie-based Implementation......................... 48

v

3.7.3 Effect the number of sequences on Size of Inverted Index 52
3.7.4 Effect of Number of Sequences on Indexing Time.................................. 53
3.7.5 Effect of Number of Sequences on Query Time...................................... 55

3.8 SUMMARY ... 58

4 Q-GRAM BASED GENOMIC SEQUENCE CLUSTERING......................... 60
4.1 INTRODUCTION.. 60
4.2 P-SIMILAR NEIGHBORS ... 61
4.3 CLUSTER ASSIGNMENT ... 62
4.3 EFFICIENCY AND EFFECTIVENESS.. 64
4.4 SIMULATION RESULTS... 65

4.4.1 Effect of Number of Sequences on Clustering Time............................... 65
4.4.2 Effect of Similarity Threshold on Number of Clusters 68
4.4.3 Comparison of BlastClust and our proposed algorithm 70

4.5 SUMMARY ... 72

5 CONCLUSIONS .. 73

REFERENCES... 77

vi

LIST OF FIGURES

Figure 2-1 Three alignments of sequences u and v... 16
Figure 2-2 A similarity scoring matrix and an alignment ... 16
Figure 2-3 Relationship between a scoring matrix cell C(i,j) and its three

adjacent cells. .. 17
Figure 2-4 Divide-and-conquer method used in the computation of scoring matrix .. 17
Figure 3-1 Sequence comparison for two sequence using Q-gram............................. 30
Figure 3-2 The calculation steps of Refined-Perfect Hashing 39
Figure 3-3 Pattern Matching Machine .. 40
Figure 3-4 Pattern Matching Machine used with Loop Back Path 41
Figure 3-5 Plot the running time of BitWise, Perfect, Refined Perfect and Trie non-

minimal hashing indexing. .. 47
Figure 3-6 The utilization of a genomic sequence file for different size of

n=11, 12 and 13... 50

vii

LIST OF TABLES

Table 3-1 Pattern Matching Machine for Minimal Trie.. 44
Table 3-2 Pattern Matching Machine for Perfect Trie .. 45
Table 4-1 The result data of clustering time and the number of sequence under

different threshold ... 67
Table 4-2 The result data of clustering time and the number of sequences using

BlastClust .. 71

viii

1 Introduction

Nowadays, bioinformatics has become a hot research topic. It is a multi-

discipline subject and involves the use of technologies from biology,

chemistry, applied mathematics, statistics and computer science. The

development of bioinformatics is growing tremendously and the developed

methods have been widely used in many areas. Recently, researchers have

completed the whole human genome -- a milestone of the nature of science.

The discovery of genome can help molecular biologists to understand the

genetic information of organisms and the evolution history. In addition,

bioinformatics has also facilitated medical treatment such as cancer detection

[54], rational drug design [60] and the identification of mutations that lead to

genetic diseases [28].

 In the context of computer science, bioinformatics applications often

require computational techniques to process data and extract information.

For example, homology search in sequence database requires the

information retrieval techniques. Motif discovery involves pattern

recognition techniques to identify motif [33]. Cancer detection applies

classification methods to gene expression data [54],[36]. Despite of the fact

that all these computational techniques have been well-developed or widely

used in solving other applications, different problems have occurred when

they are applied in the domain of bioinformatics. One typical example is

genomic sequence search and clustering which are crucial in many

1

biological applications. In this thesis, we focus on this problem and try to

solve it based on some famous computational techniques.

1.1 Problems and Motivations

In molecular biology, genomic sequences are important genetic information

for which search and clustering are very useful in many practical

applications. Genomic homology search can help biologists to obtain more

information of a poorly characterized unit in sequences while genomic

sequence clustering can provide the identification of possible protein

functional groups [6]. In the past decade, researchers have proposed many

different techniques and improved their efficiency and their effectiveness.

 Genomic homology search is to find those biologically homologous

sequences to a query sequence from a large set of data. Unlike the web

documents composed of a set of words, each genomic sequence is a series of

characters. Genomic sequences generally are much longer than text words

found in many scientific and engineering applications. The high

dimensionality of sequence makes it difficult to measure the similarity. In

the earlier developments, the edit distance model [63] was proposed to

measure the distance between pairs of sequences based on the number of edit

operations. On the other hand, dynamic programming was used to

recursively compute the edit distance of pairwise sequence and to generate

the best alignment. However, finding the best alignment among a large set

of genomic sequences is very expensive, thus dynamic programming is not

2

practical enough in genomic database. Heuristic search approaches can run

faster than dynamic programming. For example, BLAST [31] and FASTA

[62],[13] are two most famous heuristic search tools. Generally, these

approaches firstly find the highly similar regions by scanning the database

and then align the highest scoring regions together [3],[67]. The scores of

the matched sequences were finally measured based on the pre-defined score

matrix and gap penalty. One disadvantage of the heuristic search approaches

is that a full database scanning is typically required. As new technologies

are emerging in the past decade, the size of genomic database has been

exponentially increasing. For example, GenBank, a repository of nucleic

acid sequences, is doubling every 15 months and reaches 100 gigabases in

2005 [1]. The running time of the heuristic search approaches would then

increase with database size.

 Index-based search approaches are attractive alternatives. They avoid

database scanning by using inverted index, which has been proved

successful in web search engines. FLASH [2], RAMDB [9], MAP [55],

PatternHunter[8] and CAFE [19],[21] are index-based search tools which

use pre-built indices on subsequences to speed up the lookup process. CAFE

claimed that it could run eight times faster than BLAST and 50 times faster

than FASTA. However, these index-based search tools also face the

common problem of expensive indexing and retrieval processes as well as

the problem of neglecting the significance of subsequences. Firstly, as some

genomic database may contain millions of sequences of billion bases, the

3

index creation time would be very long and the periodic updates of the new

changes are frequently needed. Similarly, the query sequences are probably

very long and some famous servers receive thousands of queries per day.

Consequently, the servers suffer heavy loading for index retrieval [25].

Secondly, the index-based tools measure the similarities of sequences based

on the occurrences of the common subsequences. But few of them consider

the significance of subsequences [66]. In real world, a subsequence may not

have as equal probability as another in genomic databases. Some

subsequences might not be as significant as they were because they occur in

“too many” sequences. This similarity measurement cannot reflect the real

statistical significance of subsequences and search statistically significant

homology sequences.

 Genomic sequence clustering is another hot research topic. Similarly,

the simple genomic clustering approaches use edit distance to group the

clusters. However, the performance is not acceptable with respect to the

huge amount of data in genomic databases. Some heuristic approaches have

also been proposed. For example, ProtoMap [18] models the problem using

weighted directed graph, CLICK [41] is a graph-theoretic method, ClusSTr

[32] adopted the single linkage hierarchical clustering method and CLUSEQ

[30] makes good use of a probabilistic suffix tree. Graph-based approaches

require a scoring matrix and the construction of this matrix is pretty

computationally expensive. Single linkage hierarchical clustering method is

also ineffective due to the all-against-all initialization. All these methods

4

have a common disadvantage that the pairwise similarity measurement,

involving all-against-all measurements, requires full database scanning.

5

1.2 Objectives and Scope

The objectives of this research are to devise efficient and effective search

and clustering algorithms for genomic sequence databases. As these

databases are exponentially growing in size, we aim at developing new

search and clustering algorithms that are scalable to the increasing database

size and query rate. They are expected to be faster than the existing tools for

large database while the quality of the search and/or clustering results should

be maintained.

 In view of the fact that the main obstacles of the existing searching

tools and clustering tools are the expensive computation time on full

database scanning and pairwise sequence matching. In order to overcome

these obstacles, we propose to develop the Q-gram based genomic search

and clustering approaches. The objectives and the scope of this work can be

described as follows:

 develop a technique to efficiently perform index creation and retrieval

for a large genomic sequence collection

 define an effective similarity measure for genomic sequences and

develop a fast sequence comparison algorithms

 derive an efficient genomic sequence clustering algorithm for again large

genomic databases

6

1.3 Outline of the Thesis

The thesis consists of five chapters. In chapter 2, a brief overview of

information retrieval and data mining techniques used in bioinformatics

applications is given. In chapter 3, a Q-gram based genomic sequence

search algorithm is proposed and its performance is evaluated. In chapter 4,

a Q-gram based genomic sequence clustering algorithm is introduced and its

performance compared with another algorithm is reported. The final chapter

concludes the thesis and outlines out future works.

7

2 Overview of Bioinformatics

2.1 Introduction

In this chapter, we give a brief overview of bioinformatics and its major

applications, focusing on particularly genomic homology search and

clustering. Bioinformatics is commonly defined as applying informatics

techniques, including applied mathematics, computer science and statistics,

to better organize and understand the biological information on a large scale.

 In the early beginning, molecular biologists were capable to process

the biological data without the help of computational techniques. In the late

1960s, molecular biologists started to apply computing techniques to process

the experimental data. With the invention of new technologies like DNA

sequencing and microarray technologies, huge amount of data arises and

creates opportunities and challenges. In order to process the tremendous

amount of data, computers become crucial for the data storage, information

retrieval, statistical calculation and genomic analysis [39].

 According to Luscombe et al. [38], the aims of bioinformatics can be

separated into three levels. The first one is to solve the fundamental problem

⎯ the flood of data. Without a well-organized storage system, the huge

amount of biological data is useless. Thus, the primary purpose of using

8

computational techniques is to allow researchers access the existing

biological information effectively and also input new discovered data in the

system. Currently, there are many well-known public genomic databases.

Other than the breakthroughs in the equipments, new computational

techniques have also been developed to contribute to this aim. For example,

Hunt et al. proposed a suffix tree data structure in excess of RAM size for

indexing DNA and protein strings [17]. Williams proposed a compression

technique for nucleotide databases and the data can be accessed from

secondary storage [20]. Researchers are finding their ways to improve

indexing and retrieval processes and integrate the heterogeneous data

sources.

 The second aim of bioinformatics is to develop more intelligent tools

to retrieve relevant biological information. The intelligent sequence search

tools FASTA and PSI-BLAST were designed to match homology sequences.

They are not just a text-based search engine, but also consider the matches

with biological significance, in which scoring matrices such as PAM [49]

and BLOSUM [53] are used for computing the level of relatedness of a set

of sequences.

 With the fundamental data organization and intelligent tools, the

third aim of bioinformatics is to analyze the data and interpret the results in a

biologically meaningful manner. Biological studies are not limited to

analyze the individual experimental result. They are also expected to

9

analyze all the available data and find the common principles that can apply

across many systems and discover new features.

10

2.2 Biological data

Biological data is the key of knowledge discovery in biological databases.

Different sources of biological data contain different information, including

DNA sequences, protein sequences, macromolecular structures and the

results of functional genomics experiments [28]. DNA (Deoxyribonucleic

Acid) stores the instruction required by a cell to perform its function, which

is a normally double stranded macromolecule. The two DNA strands form a

helical spiral, each of which is formed from nucleotides. A nucleotide is

composed of three parts: backbone of the DNA strand, deoxyribose sugar

and nucleotide base. Nucleotide can be categorized into 4 bases: A for

adenine, G for guanine, C for cytosine and T for thymine. Other than

nucleotide base, there are some wildcard characters used for substitutions in

a sequence. The deoxyribose sugar of the DNA backbone has 5 carbons and

3 oxygens. The carbon atoms are numbered C1, C2, C3, C4’, and C5. The

hydroxyl groups on the C5 and C3 link to the phosphate groups to form the

DNA backbone. One end of the DNA backbone is called 5’ and the other is

3’.

 DNA sequencing is the process of determining the nucleotide order

or a given DNA fragment. Raw DNA sequences are typically 1000 bases

long while genomes are ranging from 1.6 million bases in Haemophilus

influenzae to 3 billion in humans. The collection size of DNA sequence in

GenBank has exceeded 100 gigabases in August 2005.

11

 Proteins are the primary components of cellular structures and

control the cell division process. Proteins are amino acid chains that fold

into unique 3-dimensional structures. The amino acids are joined by a

backbone: one end is N-terminus and the other is C-terminus. There are 20

different types of amino acids. The 3-dimensional structure is determined by

the linear sequence of amino acids. The structures are called primary,

secondary, tertiary and quaternary structures. Primary structure is the amino

acid sequence; secondary structure is the highly patterned sub-structures

(alpha helix and beta sheet); tertiary structure is the overall shape of a single

protein molecule; and quaternary structure is the association of polypeptides.

Proteins can be formed from tens to thousands of amino acids and the

average length is 350. Amino acids are encoded by nucleotide triplets, called

codons. Since there are 64 possible codons and only 20 amino acids,

different codons can correspond to the same amino acids.

 Macromolecular structural data represents a complex form of

information. The 3D-structural information usually comes from three

techniques: X-ray crystallography, NMR spectroscopy and cryo-electron

microscopy. The Protein Data Bank, PDB, is one famous database for

macromolecular structure data. A PDB file for a medium-size protein

typically contains 2000 atoms.

 Functional genomic experiment data is obtained from laboratory

experiments. For example, microarray technologies enable scientists to

simultaneously measure the transcription level of every gene within a cell.

12

Gene expression is based on the measured fluorescence intensity of red

signal, the fluorescence intensity of green signal and the ratio of red to green

signal. The gene expression level is assumed to be directly proportional to

the abundance of mRNA for each gene [26]. The advantage of using

microarray technologies is that researchers can measure many thousands of

genes with only a few biological samples in a single experiment. Since the

data is very high dimensional with little replication, it causes the problems of

statistical analysis and normalization of multiple set of data.

 There have been many different research areas in each biological

data source. For DNA sequences, the research areas include homology

search, separating coding and non-coding region, and identification of

introns and exons. For protein sequences, it includes sequence comparisons,

multiple sequence alignments, discovering functional protein families. For

macromolecular structure, it includes secondary structure prediction. For

functional experimental data, it is applied in cancer detection and drug

prediction. In our research, we focus on genomic sequences.

13

2.3 Homology Genomic Search

In molecular biology, genomic sequences are very critical in gene prediction,

sequence comparison, and identification of sequence repeats and functional

regions. Homology among sequences represents their evolutionary distance

of two species. Finding homologue between genomic sequences is very

useful in many practical applications. For example, by finding the

homologous sequences in the database that we have better understanding,

biologists can obtain more information on a poorly characterized protein.

Genomic sequences are made of strings of characters. The trivial way of

measuring the sequence similarity is string comparison. It has been applied

in many areas such as web document search, speech recognition, library

management and biological data. There are several famous models for string

comparison such as edit distance model, maximal match model and Q-gram

model.

2.3.1 Measuring Evolutionary Distance

In the evolution process, the mutations of genomic sequences occur in the

species. Measuring evolutionary distance is usually a measurement of the

number of point mutations. It is regarded as the reconstruction of an

evolution process that transforms one sequence into another one. Sequences

are homologous if their measured distance is small. For example, Euclidian

distance, hamming distance and block distance are used for measuring

distance the strings of equal length. Edit distance model is one of the most

14

famous models for comparing strings in different length. It has been widely

used in the construction of optimal alignment of genomic sequences [37].

 In edit distance model, the distance of two strings is based on the

number of edit operations. The main idea is that two strings are similar if

the number of required edit operations converting one string to another string

is only a few. An edit operation represents the transformation of a character

in a source string into another one in target string. There are three types of

edit operations: deletion of a character, insertion of a character and the

replacement of a character to another character.

2.3.2 Sequence Alignment

A sequence alignment can be regarded as a sequence of edit operations

converting a source sequence into a target sequence. Sequence alignment is

used in natural language, financial data and genomic sequences. There have

been much research in both pairwise alignment and multiple alignments.

Sequence alignment approaches can be divided into two groups: global

alignment and local alignment [5]. Global alignment conducts the alignment

over the entire length of strings and it is suitable when two sequences are of

similar length. Another one is local alignment. It identifies the regions that

are highly similar and then involves the stretches of subsequences. It is

suitable when a large set of sequences are of significantly different length.

Figure 2-1shows three different alignments for two sequences u = GAMT

and v = GXDTM.

15

G A M T -

G X D T M

G - A M - T

G X - D T M

G A - M T -

G X D - T M

Alignment 1 Alignment 2 Alignment 3

Figure 2-1 Three alignments of sequences u and v

In 1970s, Needleman and Wunsch proposed a global alignment algorithm

for two sequences [44]. The advantage of global alignment is that it can

guarantee to find alignment with the maximum score. An alignment is

scored based on the total of similarity scores of aligned characters. In Figure

2-2, for inserting an empty character, gap penalty g is given. The similarity

score of alignment X = 3 + (-1) + (-2) + g + (-2) + g +8 + 5.

- A C G T

A 8 -1 -2 -3

C -1 5 -5 -2

G -2 -5 3 -1

T -3 -2 -1 6

Similarity matrix

Alignment

G A A - T - A C

G C G T C C A C

Figure 2-2 A similarity scoring matrix and an alignment

For any two sequences, there could be many different alignments. Global

alignment approaches apply the dynamic programming algorithm to the

16

optimal alignment. Dynamic programming for pairwise sequence alignment

requires three steps: initialization, matrix fill and traceback.

It firstly initializes a two-dimensional score matrix C by placing the

characters of sequence X into the first row and the characters of sequence Y

into the first column. The value at Ci,j stores the maximum score for

aligning the prefix a1a2…ai of sequence X to the prefix b1b2…bj of sequence

Y. Secondly, it uses a divide-and-conquer strategy to find the value at Ci,j.

The matrix C is recursively calculated by the following scheme shown in

Figure 2-3 and Figure 2-4. After the score matrix is filled, the traceback is

performed to deduce the best alignment from the traceback matrix.

C(i-1, j -1) C(i-1, j)

C(i,j-1) C(i,j)

Figure 2-3 Relationship between a scoring matrix cell C(i,j) and its three

adjacent cells.

 C(i-1, j-1) + s(xi, yi) where s(xi, yj) is the substitution
score

C (i, j) =
max

C(i-1, j) + g

C(i, j-1) + g

Figure 2-4 Divide-and-conquer method used in the computation of

scoring matrix

17

Generally, local alignment approach is used rather than global alignment

because these sequences may contain short coding regions separating by

long non-coding regions. Nucleotide sequences are long and do not have

notion of “end” and so generally do not have overall similarity. Based on the

Needleman-Wunsch algorithm, Smith and Waterman proposed a local

alignment algorithm [54], which runs faster than Needleman-Wunsch one.

However, as the complexity is O(n2) in both time and space, the

performance is still not acceptable for a large set of sequences.

 Like pairwise sequence alignment, multiple sequence alignments are

used to match the highly similar regions among a set of sequences. They

have been used for characterizing protein families and inferring the

biological characteristics of new sequences given known families of

sequences. Feng and Doolittle proposed a progressive sequence alignment

that has been adopted in most multiple alignments methods [12]. Clustal W

is another famous multiple alignment methods. It uses individual weight to

each sequence in a partial alignment and changes gap penalty scheme [29].

In general, the multiple alignments can be divided into three steps:

i) Firstly, all the pairs of sequences are aligned separately and the pairwise

scores are stored in a distance matrix. The dynamic programming is

adopted in the pairwise alignment.

ii) Secondly, a tree is constructed from distance matrix to guide the multiple

alignment process using the Neighbor-Joining method. The tree is used

to derive a weight for each sequence.

18

iii) Finally, the sequences are progressively aligned into a larger group

according to the branch order of the guide tree. The process starts from

the tips towards the root.

2.3.3 Heuristic Exhaustive Search

Both local and global alignment approaches are impractical for a large

database collection. Local alignment approach takes a day of processing a

query to match a large database collection. Therefore, heuristic exhaustive

search tools were developed and they utilize heuristics in local alignment.

2.3.3.1 FASTA

Wilbur-Lipman algorithm is one of the pioneers of heuristic exhaustive

search and it uses a global comparison of sequences based on fixed length

subsequences [62]. Compared with the local alignment approach, it can

reduce much time on the alignment process. Firstly, the algorithm built a

hashing structure with all intervals of fixed length in the sequence as keys.

An interval is overlapping such that there are l-n+1 intervals for a sequence

of length l and interval length n. For example, for n=3, a query sequence

ACGTGTA is processing with the intervals ACG, CGT, GTG, TGT and

GTA. Then, all the intervals in each database sequence are processed with

hashing. If the interval can be lookup in the pre-built hashing structure,

there is a match with query sequence. The offsets are used in the matching

for guarantying the alignments without gaps. Scores are accumulated for

19

each alignment without gaps. This method is faster than going through the

query sequence for every interval in the database. There are many variations

of Wilbur-Lipman algorithms. FASTA and BLAST are the popular ones

and have been used in many public genomic databases.

 FASTA consists of four steps. The first step of FASTA and BLAST

is also using the variants of Wilbur-Lipman algorithms to preprocess the

query such that the query sequence is divided into intervals of fixed length

and the intervals in database sequence will be matched up using the hash

table. In the second step, an accumulator is used to score the matched words

between two sequences and localize the top ten regions. The third step is to

join the highly-scoring regions using acyclic graph and only those sequences

with a score higher than a threshold will go to the fourth step. The fourth

step is the remaining high-scoring sequences are further processed by

dynamic programming and the scoring of each alignment would be

computed.

2.3.3.2 BLAST

BLAST has several variant versions [61]. BLAST 1 improves the

performance of FASTA [15]. It locates ungapped similarity regions between

sequences instead of comparing each word of the query with each word.

The first step is to create a list of words of fixed length. The second step is

to identify all exact matches with database sequences. In the third step, it

extends the matched word in both directions until the obtaining score

decreases to a certain level. The extended word has score higher than a

20

threshold, called High Scoring Segment Pair (HSP). The third and the fourth

step are similar to FASTA. BLAST 1 uses a technique to speed up the

alignment by disallowing the insertion and deletion operations on residues,

but only allowing the substitution of one residue for another. The

underlying assumption is that indels are a less significant factor of

evolutionary event. This assumption has advantage in nucleotide

comparison because single deletion and insertion events cause the meaning

of codons to be completely lost. However, it has been shown that FASTA

has higher sensitivity than BLAST at detecting distant homologous

relationships.

 BLAST 2 improves both speed and accuracy of BLAST 1. BLAST 2

permits the limit use of indels in forming alignment and adopts a two-hit

HSP technique. The use of indels requires more computation to evaluate

each local alignment. In order to solve this problem, BLAST 2 introduces a

two-hit HSP technique for the selection of the diagonals. Only those

diagonals containing at least two intervals will be considered. This selection

process can reduce the number of sequence required for local alignment.

Altschul claimed that BLAST 2 has better accuracy and performance than

BLAST 1 [43].

21

2.4 Sequence Clustering

Genomic sequence clustering under a large database is another interesting

and crucial research topic. Clustering genomic sequences is to get a

biologically meaningful partitioning. According to SEQOPTICS, clustering

on protein sequences has several advantages [65]. Proteins are grouped into

families, which provide useful information of their general features and their

evolutionary process; clustering also helps to predict the biological function

of a new sequence by its similarity to some known function of a new

sequence; besides, clustering can be used to facilitate protein 3-dimenional

structure discovery. There have been many clustering algorithms developed

for genomic sequences. They can be grouped into several categories: graph-

based, hierarchal and partitioning model.

2.4.1 Graph-Based Approaches

Graph-based techniques have been proved successful in solving many

complex computational problems. They have also been used in clustering

problem. Jain and Dubes gave a brief introduction to graph-based clustering

[4]:

 Compute a complete undirected graph G where vertices are identified

with protein sequences and each edge represents a Smith-Waterman local

alignment, weighted by a similarity score. The similarity score can be

measured with Smith-Waterman score.

22

 Replace each undirected edge with two directed edges and the weighted

is changed.

 Remove all edges with score less than threshold from graph G

 Compute all strongly connected components and list all the outputs. The

strongly components are defined as maximal sets of vertices such that

directed path exists from P to Q and from Q to P for all vertices.

The traditional graph-based clustering faces a problem of inappropriate

transitive relations, especially in the multi-domain proteins [14]. This is

called false transitivity. ProClust improved the graph-based clustering

algorithm by introducing an asymmetric distance measurement [40]. The

algorithm used the significance of alignment for the filtering step and

Profile-HMM for the merging step. BAG utilized several graph properties

of biconnectedness and articulation points to improve the problem [52].

2.4.2 Hierarchal Approaches

In hierarchical clustering, a distance matrix of all pair nodes is computed and

then a cluster hierarchy is formed. Clusters can be obtained from the

subtrees of the hierarchy. There are two ways of forming the hierarchy:

agglomerative and divisive. Agglomerative hierarchical clustering starts

with clusters containing single objects and then merges them until all objects

in the same cluster. Divisive hierarchical clustering begins with only one

big cluster and then iteratively divides it into small objects [57].

23

The similarities of sequences are commonly measured by local alignment or

global alignment. Dynamic programming is time-consuming and it is not

practical for large databases. The time complexity of the algorithm using

dynamic programming is O(n2m2 + n2 log n), where n is the number of data

sequences and m is the average number of clusters.

 Another alternative is using pattern-oriented agglomerative

hierarchical clustering (POPC) [42]. The algorithm uses some well-known

or frequent patterns discovered in the early pattern discovery process to

measure the correlation of sequences. The similarities of sequences are

measured by Jaccard coefficient. Although the scoring process of POPC is

faster than dynamic programming, the time complexity of all-again-all

strategy is still quadratic to the number of sequences. An additional pattern

discovery process is also required.

2.4.3 Partitioning Approaches

In partitioning approaches, each data node is assigned to a cluster according

to the distance of that node to the corresponding cluster. K-means and K-

medoid are two common approaches in partitioning approaches. The main

difference is that K-medoid uses a data node as a centroid of a cluster while

K-means uses a feature vector of mean values among data nodes in that

cluster as a cluster centroid. Guralnik proposed a feature-based K-means

clustering, which projected each data-sequence into a new space whose

dimensions are these features [59]. The features are selected when all

24

sequential patterns whose length is within specific range and satisfy a

minimum support. The cosine similarity function is used to measure the

similarity of sequences.

 Previously, we describe three different clustering categories from the

view of cluster formation. However, from another view of scoring method,

the clustering methods could be generally divided in three groups:

proximity-based methods, features-based methods and model-based methods

[24].

 Proximity-based methods include edit distance model and dynamic

programming. Feature-based methods perform pattern projection into a new

space. Model-based methods assume an analytical model for each cluster.

CLUSEQ has adopted a probabilistic suffix tree to cluster a set of sequences

if their similarity is less than a threshold. The algorithm uses the conditional

probability distribution and assumes that sequences belonging to a cluster

may subsume to the same probability distribution of symbols. The similarity

of sequence s and cluster c is obtained by the probability of sequences

divided by the probability of a random sequence. The algorithm determines

whether a sequence should belong to a cluster by calculating the likelihood

of (re)producing the sequence under the probability distribution. Besides,

Hidden Markov Models (HMMs) is another model-based method for

clustering sequential data [6]. First, HMMs assume that the observation at

time t was generated whose state is hidden from the observer. Second, they

25

assume that the state satisfies the Markov property. Generally, HMMs are

trained for clustering the sequences having similar behavior.

2.5 Summary

In this chapter, we have given a brief overview of bioinformatics and its

practical applications. Bioinformatics is a multi-discipline subject and

involves intelligent data analysis on the biological data. The biological data

has different characteristics from other data like the web documents and has

posed some challenges, e.g. high dimensionality, to the traditional

information retrieval and data mining techniques. Genomic sequence search

and clustering are also facing the problem of handling tremendous amount of

data. We have reviewed the famous genomic sequence search and clustering

tools. In the coming chapters, we will propose some novel algorithms to

improve the performance of genomic sequence search and clustering.

26

3 Q-gram Based Genomic Sequence Search

3.1 Introduction

As the microbiology technology advances, more genomic sequences can be

discovered in the laboratory experiments. There are many public genomic

sequences databases that provide the search services to the biologists.

Thousands of queries are processed by these search engines everyday and

their loading will continue increasing as more new applications are

developed. Most of these search tools use the exhaustive search to compare

the sequences. The high growth rate of data will have a great impact on the

performance of these search tools.

 In this chapter, we introduce a novel QgramSearch (Q-gram based

genomic sequence search) to enhance the efficiency and the effectiveness.

QgramSearch has the advantage of using inverted index but greatly reduce

the computational time of index creation and retrieval by using our proposed

dictionary structures. Another enhancement is that we introduce a

probabilistic scoring method instead of counting the occurrences of shared

words. The statistical significance of words is considered in our proposed

approach.

27

3.2 Q-gram Based Approach

Q-gram is a string of characters of fixed length q. A sequence can be broken

into a set of Q-gram. There are several ways of formation of Q-gram: non-

overlapping, consecutive overlapping and partially-overlapping. Suppose a

sequence ACTAGACG and q equal to 4. In non-overlapping method, the

sequence forms a set of Q-gram {ACTA, GACG}. In the consecutive

overlapping method, the sequence forms a set of Q-gram {ACTA, CTAG,

TAGA, GACG}. In the partially-overlapping method, consecutive Q-gram

are overlapping on only a portion of characters. For example, if the

overlapping characters are 2, the sequence forms a set of Q-gram {ACTA,

TAGA, GACG}.

 The time complexity of processing a sequence is proportional to the

number of Q-gram in the sequence. Supposed a genomic sequence of length

N is processed and Q-gram size is Q (Q<N). For non-consecutive

overlapping scheme, the time complexity is O(
Q
N). For consecutive

overlapping scheme, the time complexity is O(N-Q+1). For partially-

overlapping scheme, the time complexity is O(1+
−
−

OQ
QN), where O is the

number of overlapping characters between two consecutive Q-gram and O is

between 0 and Q.

 Q-gram can be regarded as the features of sequences. The more

features of sequences they share, the closer relationship they have. Q-gram

28

can be used for similarity measurement. Among all overlapping schemes,

the consecutive overlapping one can have better recall rate than the other

two methods because the larger overlapping regions would degrade the

sensitivity of matching process. Our proposed tools would adopt

consecutive overlapping scheme. Figure 3-1 shows the way of sequence

comparison for two sequences A and B using Q-gram with size 4. Sequence

A and sequence B share two same Q-gram.

 There are some advantages of using Q-gram. Firstly, sequence

comparison using Q-gram can run faster than the highly computational

sequence alignment and edit distance model. Measuring the similarity of

two sequences can be simply counting the number of Q-gram they share.

The running time of Q-gram approach is linearly proportional to the length

of sequences. It is scalable for the large amount of sequences. Secondly, Q-

gram facilitates the use of indexing techniques. Indexing techniques have

been successfully used in web content search. Since genomic sequences are

strings of long sequences, it is not possible to directly apply indexing on the

whole sequences. We propose to break sequences into a group of Q-gram

that can be stored in the indexing file. By using inverted index on Q-gram,

we can quickly search and cluster the genomic sequence database.

29

 1 2 3 4 5 6 7 8 9
Sequence A A C C T A C T G A
Sequence B A C C T T C T G A

Perform sequences comparison using Q-gram with 4

 Sequence’s A

Q-gram
 Sequence’s B

Q-gram
 A C C T A C C T
 C C T A C C T T
 C T A C C T T C
 T A C T T T C T
 A C T G T C T G
 C T G A C T G A

Figure 3-1 Sequence comparison for two sequence using Q-gram

3.3 Q-gram Scoring

Finding homologous sequences is generally done by calculating the pairwise

similarity score of each database sequence and query sequence. Dynamic

programming calculates the score by finding the best alignment. However, it

is not practical for a large database, thus most of the existing search tools

adopt heuristic approaches. One of the common heuristic approaches is to

define the similarity of two sequences based on the occurrence of shared Q-

gram. The more subsequences database sequence and query sequence they

share, the higher similarity score is given. This theory has an assumption that

all Q-gram occur in a random manner or have same statistical significance.

It is not often in the real life. For example, the words like “THE”, “AND”

30

have higher occurrence than the words “USA”, “DNA”, even they are in the

same length.

 We suggest that the statistical significance of Q-gram should be

considered in our scoring scheme. If all Q-gram has equal weight, some

frequent subsequences may cause bias. Therefore, in our methodology,

weighted Q-gram is introduced to compute the similarity. The weight of Q-

gram is inversely proportional to the rarity of subsequence.

 Suppose the query sequence of length Lx and the database sequence

Ly. For an alphabet of n symbols (generally, n=4 for DNA sequences and 20

for proteins), the possible number of Q-gram is nq, where q is word length.

A binary vector ws represents the absence and the presence of each of the

possible Q-gram in sequence s. wi
s = 1 means the Q-gram i exists in

sequence s while wi
s = 0 means the Q-gram i does not exist in sequence s.

A vector F represents the normalized frequency of each word. The sum of

all Fi is equal to 1. The weighted score of two sequences is measured as

following:

 Weighted Score = y
i

x
i

n

i i

WW
F

k

××∑ 1 .

However, the disadvantage of weighted score is that it tends to favor long

sequences due to the higher number of Q-gram occurrence making larger

similarity score. We normalize the weighted score by the lengths of

sequences.

 Normalized Weighted Score = y
i

x
i

n

i iyx

WW
FLL

k

××
× ∑ 11 .

31

3.4 Dictionary Structure Lookup

Heuristic exhaustive search approaches face the challenge of exponential

growth in database collection size. The interval match of a large amount of

database sequence to query sequence is quite expensive. Some tools are

implemented by storing the collection in main memory. Such approaches

will not be sustainable in the future. A pre-built dictionary structures is a

common way to speed up the search process. It has been proved the

dictionary structures can enhance the efficiency in many different

applications. Database records are firstly pre-processed and stored the

information in specially designed structures. When a query is performed,

only relatively small amount of information is fetched via the dictionary

structures. We will briefly describe some popular data structures, including

binary search trees (BST), splay trees, hash tables and tries.

 Binary search trees are composed by many nodes; each of them

represents a character or a string and contains two pointers to its child nodes.

For a balanced tree, the time for accessing a vocabulary is O(log n), where n

is the number of nodes in the tree. However, longer access time is required

for unbalanced tree which is typically bounded by O(n) [11].

 Splay trees are a variant of self-adjusting binary search tree [22].

The special feature of splay trees is the self-adjusting mechanism to change

the tree based on the access patterns. Some search operations can be

speeded up but some requires more time to run. A splay tree requires more

32

space than the binary search tree because of the additional pointers to its

parent.

 Hash table is an array of records. Each record contains a key and its

associated hash value. The hash value is calculated mathematically. During

the past decades, researchers have developed many algorithms on hashing

functions, which can be categorized into perfect or non-perfect ones. Perfect

hashing algorithms can guarantee constant-time lookup even in the worst

case. Non-perfect hashing causes more collisions than the perfect one. The

most common hashing functions are briefly explained as follows.

 Linear probing, a naive hashing algorithm, is used in many

applications. Assume a hash function h(x) associates with a key x. When

inserting a key x, we check the bucket h(x). If there is no item, we insert x.

Otherwise, we check the next bucket h(x)+1. If that bucket is also occupied,

we check h(x)+2 and so on [10]. The linear probing has a problem that

collision may always occur in dense region.

 Bitwise hashing function was proposed by Zobel. It takes use of a

non-prime number as its seed. Typically, most hashing functions require

many complex mathematical operations such as power and module. The

advantage is that the bucket size is the power of 2 so that the shift bit

operations can be used. The time of calculating a hash value becomes lesser

than other complex hashing functions. But bitwise hashing function is still

slow in indexing a large amount of sequences.

33

 Perfect hashing function assigns each unique word to a unique

hashing integer. For indexing genomic database sequence, the bucket size is

the number of all possible Q-gram (independent of database size). The

hashing integers can be assigned to the words based on the orders of its

predefined alphabetical ID. The calculation of a hashing integer can be done

by a formula. The parameters of the formula are the alphabet ID and the

position of each character. We assume that the leftmost character in a string

is the most significant while the rightmost character is the least significant.

We can calculate the hash value by an ordered function. For a string “an-1 an-2

... a 1 a0”,

 Hash value of the string = ∑ pk x Lk + p0

where pk is the alphabet ID of the k-th character in the string and L is the

number of alphabet characters.

 Trie is an abstract structure and Brandais was one of the early

researchers of such data structure. This structure generates a list of nodes

based on a set of words. There are three major representations of tries:

array-tries, list tries and ternary search tries. The advantage of using Trie is

the running time of processing a text is independent of the number of

keywords [27]. It is efficient to search in a trie because it only requires one

pointer traversal for each letter in the query string. Trie has been used in

various applications like library bibliographic search, natural language

dictionaries, database systems, compliers and trie image search. There are

34

many variants of tries proposed for searching dictionary words. Marshall and

Alan focused on tackling the problem of pattern collision by using trie [35].

Pattern collision occurs when a perfect hashing function generates the same

addresses of two different words. This algorithm has an advantage over

other perfect hashing functions because it can produce an ordered minimal

item lists. It adopts a two-dimensional array based trie: one dimension is the

alphabets from ‘a’ to ‘z’ and the other dimension is the position in a word.

Let us consider an example of searching the word “apple” in the array. First,

look at the cell in the row ‘a’ and column 1. If the cell value is positive, we

get the word and stop searching. If the cell value is negative, that means

other words also have first character ‘a’ and we have to consider the second

letter. Then, look at the cell in the row ‘p’ and column 2. If it is negative,

repeat the above steps. The most recent one is burst tries proposed in 2002

[50]. It is composed of three main components: a set of records, a set of

containers and an access trie. Using a set of containers, the burst trie requires

much less string comparisons.

3.4.1 Comparison of Dictionary Lookup Structures

The Marshall and Alan algorithm is efficient but only practical for storing a

small amount of words [35]. The maximum number of words in the index

table is L×n, where L is the number of alphabets and n is the maximum word

length. It is not suitable for the large amount of genomic database

sequences. As reported in [51], the bit-wise hashing can outperform the

35

binary search tree, splay tree and compact trie in accumulating the genomic

Q-grams with size 9 and also requires the least memory. Binary search tree

is the slowest one because it requires many string comparisons for large data.

Compact trie is more efficient than splay tree but bit-wise hashing can run

about 30% faster than compact trie. Burst trie is faster and requires less

space than compact trie. However, the performance of burst trie is still not

as good as that of bit-wise hashing. It was found that the burst trie has worst

performance in genomic data because of its equal string length and its

relatively flat probability distribution. Next, we will give a brief review on

the genomic search tools using these dictionary structures.

 The Search Search Tree (SST) was proposed to search a database of

DNA sequences for near-exact matches, in time proportional to the

logarithm of database size. It creates a tree-structured index of a fixed length

tuples in vector space, with tree-structured vector quantization (TSVQ). It

can achieve O(log n) for the search if the tree is balanced. It is claimed that

SST is 27 times faster than BLAST for searching alone [48],[16].

 The Suffix Trees based Exact Match (STEM) was proposed for

indexing all suffix elements of the database sequence and the depth-first-

traversal search is used for matching elements. There are several suffix tree

representations including Patricia tree-based, linked list and hash table

representations, suffix array and augmented suffix array, LC-trie, suffix

36

binary search tree and suffix AVL tree. STEM adopted suffix array as its

representation [23]. In the next section, we will explain how our proposed

data structures works on the genomic data and discuss the advantages.

37

3.5 Proposed Dictionary Structures for Genomic
Sequences

In our Q-gram based sequence search, we propose a novel dictionary data

structure to handle the genomic sequences. The existing dictionary data

structures often take time proportional to database size. Even the perfect

hash function has better performance than BST and splay trees, it still takes

more time to compute the perfect hash value if a word is in longer length.

A genomic search system often performs index creation periodically and

deals with thousands of queries per day, an efficient dictionary data structure

is important. Thus, we propose two different dictionary lookup approaches,

which can reduce the number of mathematical operations than the existing

ones.

3.5.1 Refined Perfect Hashing

The overlapping word indexing technique is adopted in most successful

search tools such as BLAST, FASTA and CAFE because this can achieve

better retrieval effectiveness. We discovered that this overlapping interval

property could make hashing functions more efficient. Since any two

consecutive overlapping words contain nearly the same characters, it can

take less time to obtain the hash value of the followed word. The idea is to

calculate the hash value of a followed word based on the hash value of the

previous word. The number of operations required in the refined version can

be much reduced. For a string “an-1an-2... a 1a0”,

38

 Hash value of the string = (H - pn-1 × L
n-1

) << 2 + p0

where H is the hash value of previous word, pk is the alphabet ID of the k-th

character in the string and L is the number of alphabet characters.

For example, a new sequence ACTAAAAAAGT is indexed. The sequence

is broken down into three Q-grams with size 9: ACTAAAAAA,

CTAAAAAAG and TAAAAAAGT. The hash value of the first word is

24576, which is calculated by the perfect hashing function. For the

remaining words, the refined version is applied. Compared with the first

word, the second word misses the first character ‘A’ and adds the character

‘G’ to the end. The steps of the refined version to calculate the new hash

value are shown in Figure 3-2

1. Use the hash value of previous word

2. Minus the value of the missing
character

3. Operate a left shift operation

4. Add the value of the last character

1. Hash value of CTAAAAAAG

= (24576 – 0) <<2 +3 = 98307

2. Hash value of TAAAAAAGT

 = (98307–48) <<2 +2 = 131086

Figure 3-2 The calculation steps of Refined-Perfect Hashing

3.5.2 Loop-Back Trie-Based Hashing

The loop-back trie is based on the matching machine in Trie proposed by

Alfred [58]. By applying a matching machine in Trie, it can identify a set of

keywords in a string efficiently. The algorithm consists two parts: the first

part constructs a finite state matching machine based on the input set of

39

keywords while the second part applies the matching machine to lookup the

query keyword and give the matching signals [34],[53].

3.5.2.1 Matching Machine

The matching machine consists of a number of states, which are represented

by consecutive integers. When the characters are read from the text one by

one, the machine will move from one state to the other. That is called state

transitions. The state transitions and the matching signals are monitored by

three functions: Goto function, Failure function and Output function. The

Goto function is executed when the machine successfully matches the

processing character to the states and finally moves to a new state. The

failure function is operated when the machine fails to match the processing

character. The machine is directed to the state associated with the longest

suffix of the string. The output function gives the signal that a keyword is

found in the text string. These functions with the keywords {ann, man, men,

end} are shown in Figure 3-3.

State Output

3 ann

6 man

8 men

12 end

(b)Output function

State Failure

6 2

8 10
(c) Failure function

(a)Goto function

Figure 3-3 Pattern Matching Machine

40

3.5.2.2 Loop-Back Path

A machine state is built by pre-processing the database sequences. The pre-

calculated states are stored in the three functions. Since the consecutive

words are overlapping, we can add a guide path to the state for a next word,

which is called loop back path. Loop back path can help to reduce the

number of state transitions for going through a series of consecutive words.

For example, given a set of indexed keywords {CAG, CAC, AGC, ACA},

the functions will be shown as followings:

(a) Goto function

State Output

3 CAG

4 CAC

7 AGC

9 ACA

State Failure State if Next Character is

3 7 if N.C. is C

4 9 if N.C. is A

9 3 if N.C. is G or 4 if N.C. is C

(b) Output function (c) Failure function

Figure 3-4 Pattern Matching Machine used with Loop Back Path

In Figure 3-4, the modified failure function provides a failure state based on

the next character. By using the loop back path, the hash value of the

41

consecutive words can be obtained quickly. Only one state transition is

required in the hashing. However, if without using the loop back path, the

machine state must restart to state 0 for the hashing of every word. It spends

much time to go through the duplicated characters. The loop back paths of

Trie can skip the process of duplicated characters. For example, an input

sequence is ACAGC. The machine state starts from 0 and processes ACA. It

then goes through states 5, 8 and 9. Since the next character is ‘G’, it

follows the loop back path to state 3 and then directs to the state 7 for the

next character ‘C’. Trie hashing function can be very fast since the complex

calculation process can be avoided. When the machine state processes a

genomic sequence, it jumps one state to another according to the loop back

paths. Since the failure function table can be stored in the primary memory,

the state transition operations can be run very fast.

42

3.6 Effectiveness of Loop-Back Pointers

In this section, we focus on the effectiveness of loop-back pointers in the

Trie. Loop-back pointer is used to quickly find the hash value of

consecutive Q-gram. They are stored in a pre-built data structure. The

effectiveness of loop-back pointers can be affected by the characteristics of

genomic sequence databases. The characteristics include several factors

including the number of sequences and the ratio of the unique Q-gram in

database to the possible Q-grams. In order to enhance the effectiveness of

lookup process, we have devised two different approaches to manage the

loop-back pointers. Under the different characteristics of database, different

approach can be chosen.

3.6.1 Minimal Trie

Minimal Trie is suitable for the datasets, in which the number of unique

words in database is expected to be much smaller than the number of all

possible n-grams. The construction of the failure function is done by

dynamically allocating the memory for the unique words in database. Since

those words that do not appear in the database would not be stored, the table

size could be smaller. Table 3-1 shows Minimal Trie for nucleotide

characters, in which each row contains 4 possible loop back pointers in the

failure function.

 The goto and output functions are implemented by an array-tree. This

structure is suitable to build the machine state because the time of insertion,

43

deletion and lookup of items is constant and independent of the tree size.

The failure function uses a two-dimensional array to store all loop back

pointers. For the index construction, the algorithm is to go through all

genomic sequences in the database. The hash value of each consecutive

word is obtained from the failure function. If it does not exist, the output

function will be checked whether it has been added to the tree. If not, add

hash values for this new word in the tree. Finally, insert the corresponding

value into the loop back state of the failure function.

Table 3-1 Pattern Matching Machine for Minimal Trie

Hash Value Output

1 ACA

2 AGC

3 CAC

4 CAG

Hash
Value A C T G

1 - 3 - 4

2 - - - -

3 1 - - -

4 - 2 - -

(a) Output Function (b) Failure Function

3.6.2 Perfect Trie

Perfect Trie is easier to deploy but requires more space for the array than the

first one as shown in Table 3-2. It statically allocates memory for the hash

values of all Q-grams and the table size is Lq , where L is the number of

alphabets and q is word size. In the failure function, only one loop back

pointer for the character ‘A’ is stored since the pointers of other characters

can be calculated. For example, the hash value of GCA is 52 and so the hash

value of GCG = 52+3 =55.

44

Table 3-2 Pattern Matching Machine for Perfect Trie

Hash Value Output Hash Value A
0 AAA 0 0
3 AGC 13 52

17 CAC 17 4
63 GGG 63 60

(a) Output Function (b) Failure Function

Like the perfect hashing, the hash values are continuous and they can be

alphabetically generated. Thus, the output function would use the perfect

hashing formula and hence no extra data structure is required for the array-

tree. The failure function uses a one-dimensional array to store one loop

back value for each word. Since the hash values are contiguous, the failure

function values can be simply calculated. As it does not require any

processing genomic sequences, the construction time of the failure function

table is less than that of the first one. We believe that the construction time

of the failure table only causes little overhead to the whole indexing process.

The number of insertions in the failure table depends on the number of

unique words. Since this number is relatively small compared with the

words in a genomic database, the pre-calculation of the failure values can

enhance the whole indexing process.

45

3.7 Simulation Results

In this section, we measured the performance of the QgramSearch. We

evaluated the performance of the proposed algorithm in several aspects:

space requirement, computational time and scalability on the database size.

In these experiments, our data came from the genomic sequences in a public

famous database GenBank, in which Expressed Sequence Tag (EST) was

chosen. The program run under the Unix environment and the machine was

SunFire48000 with 4 US-III 900 MHz plus 4 GB Ram. QDBM, a widely

used library for inverted index applications, was used in our program. The

followings are the experimental results for measuring several aspects:

3.7.1 Effect of Word Size on Dictionary Structure
Efficiency

The first experiment evaluated the efficiency of several dictionary structures

on the genomic sequences. Figure 3-5 shows the running time of BitWise,

Perfect, Refined Perfect and Trie-based hashing functions to generate the

hash values of words in the genomic sequence file. Since we expect the

running time of the two trie-based implementations are nearly the same, only

the first one is shown in the experiment. Our program first broke down the

sequences into words and computed a hash value for each word. The

experiment focused on the effect of word size on the speed of hashing

46

functions, thus word sizes 3, 7 and 10 were used. The sequence file was

28.6 MB and the lengths of sequences ranged from 100 to 1000.

0

5

10

15

20

25

3 7 10

Q-gram Size

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Bitwise

Perfect

Refined Perfect

Trie-Based

Figure 3-5 Plot the running time of BitWise, Perfect, Refined Perfect
and Trie non-minimal hashing indexing.

Our results showed that the trie-based hashing function was the most

efficient one in generating hash values for genomic Q-grams. The trie-based

hashing function was about 5 times faster than the bitwise hashing function

and about 4 times faster than the perfect hashing function. The refined

perfect hashing function was also efficient but not as good as the trie-based.

The running time of our proposed hashing functions kept good performance

even when the word size increased. The result also showed that the bitwise

and the perfect hash functions were relatively slow due to their expensive

calculations. The performances of the bitwise and perfect hashing functions

decreased with the word size. Our proposed refined perfect hashing and trie-

based hashing functions outperform than the other two hashing functions.

47

3.7.2 Effect of Utilization on the Trie-based

Implementation

The space requirement is one of the main considerations of the feasibility of

an indexing scheme. The bitwise, perfect and refined perfect hashing

functions do not require any extra space to calculate the hash values of

genomic words. The trie-based hashing stores the pre-calculated loop back

values in order to enhance the speed. This section serves to evaluate the

space requirement of the Minimal Trie and Perfect Trie.

For the Perfect Trie, the size of failure table is the all possible n-grams for

the genomic sequence. The size of a Perfect Trie table is Ln × (size of a

pointer), where L is the number of alphabet characters. But, in order to

achieve higher speed, L may be set larger so that it is a power of 2. Like

Bitwise, we prefer to use the inexpensive shift operations rather the power or

the module operations. For example, the number of alphabet character in

amino acid is 20 and then we should set L to 32. It would enhance the

efficiency but requires more space.

The Minimal Trie is more suitable for sparse data because only those words

appearing in the database are stored in the failure function table. We need to

use an indicator to evaluate the dataset whether they are sparse enough or

not. The utilization is the number of unique words in a genomic database to

48

that of a perfect table. It can help to determine which implementation should

be used.

ngram possible all of No.
database genomic a ofentry index unique of No.n Utilizatio =

In this experiment, our aim was to discover the utilization of a genomic

database. We also evaluated the effects of different size of data and word

length on the utilization. For the nucleotide sequences, L set to be 4 so that

the discovered utilization could directly reflect the distribution of genomic

sequences in gbest.seq.

49

0%

20%

40%

60%

80%

100%

120%

26 85 146 209 269 343 420 482 553 639 729
Base Pairs in Sequences (Million)

U
ti

li
za

ti
on

N = 11
N = 12
N = 13

Figure 3-6 The utilization of a genomic sequence file for different n=11, 12

and 13

As shown in Figure 3-6, the utilization of the genomic database steadily

increased with the sequence bases. It was expected that the utilization for

N=13 will also reach 100% when more sequences are inserted. This

experiment showed that the failure function table of the trie-based could be

fully utilized for indexing this genomic database provided that L was not

enlarged. Thus, the utilization of the index table was affected by the number

of alphabets, the size of n-gram, the genomic database size, and the

distribution of sequences. Perfect Trie should be used if it is expected the

utilization is high and vice versa. Therefore, we can decide to select the

suitable search methods according to the size of dataset and the running

environment. If the memory space is large enough to hold the failure

function table, the trie-based hashing could be used to achieve higher

50

efficiency. If there is not enough memory space for the table, the refined

perfect hashing should be chosen. Both of these two approaches are better

than the existing ones. We believe that more genomic databases will choose

to apply indexed homology search in the near future.

51

3.7.3 Effect the number of sequences on Size of Inverted

Index

QgramSearch utilizes the inverted index to speed up the search process. In

this experiment, we evaluated the inverted index size under different number

of sequences in the database. The program read an EST file and broke each

sequence into Q-grams. Then all the Q-grams were inserted into the inverted

index using QDBM. As shown in Figure 3-7, the inverted file size increased

linearly with the number of genomic sequences.

0

50000

100000

150000

200000

0 10000 20000 30000 40000 50000

No of Sequences

In
ve

rt
ed

 F
ile

 S
iz

e
(K

B
)

Figure 3-7 The inverted index size under different number of genomic
sequences.

52

3.7.4 Effect of Number of Sequences on Indexing Time

In this experiment, we evaluated the computational time of index creation

for different number of sequences in the database. In this experiment, we

measured the running time of the whole index creation process. The

computation time included reading the EST file, Q-gram generation,

dictionary structure computation and storing data in the inverted file. As

shown in Figure 3-8, the index creation time grew exponentially with the

number of sequences in database.

Figure 9. The index creation time under
different number of sequences.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10000 20000 30000 40000 50000

Total Number of Sequences

In
de

xi
ng

 T
im

e
(s

ec
o
nd

)

Figure 3-8 The inverted index time under different number of genomic
sequences.

Index maintenance strategies on invested files are mainly employed an in-

place or merge-based update scheme. For in-place scheme, the in-memory

53

posting lists are appended to the existing ones on-disk lists. It requires the re-

location of the existing on-disk list. Since relocating existing on-disk list is

time-consuming, some adopted overallocation strategy that leaves some

amount of free space after every on-disk posting list.

For merge-based strategies, a new on-disk inverted file is created by

combining an existing one with the in-memory data. In general, merge-

based strategies are better at dealing with short posting lists, while in-place

strategies are better at handing long posting lists.

It is claimed that the overall performance of the proposed hybrid strategy

could be improved so that the indexing time is linear in the size of the text

collection. However, the main shortcoming is their slightly reduced query

processing performance due to internal fragmentation in the on-disk posting

lists [47].

54

Effect of Number of Sequences on Query Time

In this experiment, we evaluated the computational time of query search

using different number of sequences in the database and using different

lengths of query sequence. We measured the searching time for a query

sequence. The experiment was to evaluate the time of a query search under

different collection sizes in the database. The number of sequences in

database increased from 50 to 40000. When the sequence collection

increased in a large proportion, the query time only rose in a relatively small

proportion. It is because the inverted index can allow access a small portion

of database sequences instead of the whole database. The inverted index

makes the search scalable for large genomic database.

Besides, we used two different lengths of query sequences: one query

sequence was of length 50 and the other was of length 200. As shown in

Figure 3-9, the query time increased with the length of query sequence.

Generally, the query length ranges from tens to hundreds bases. The longer

the query sequence is, the more number of computational operations are

performed.

55

0

20

40

60

80

100

120

140

500 1000 5000 20000 40000

No of Sequence in Database

Q
ue

ry
 T

im
e

(m
ill

is
ec

on
ds

)

Query Sequence L=50 Query Sequence L=200

Figure 3-9 The query time is taken under different number of sequences

and query length.

Furthermore, we compared QgramSearch with other exhaustive searches.

For a small database collection, we believe our proposed search has similar

performance as the programs like BLAST. In our experiment, both of the

programs could run within 1 second to reply a query. In some cases, the

query time remained unchanged even the number of database sequences

increased for same sequence length. It is because the system processes a

series of Q-gram in query and counts the number of matching Q-grams in the

database. The query time mainly depends on the query length and slightly

depends on the number of matching Q-grams since the latter operation could

run faster. Besides, since the number of database sequences in the above

experiment is a relatively small portion to the number of possible Q-gram,

the number of matching Q-grams could be more or less the same under some

cases. Thus, the query time could be the same under some cases.

56

However, according to CAFÉ’s experiment, as the data size increased, the

search times of BLAST and FASTA grew rapidly. For example, BLAST

takes about 15 seconds per query under 500 Mb data size, but the search

time rises to about 180 seconds for 700Mb data size. QgramSearch adopts

the trie-based index and thus search time is proportional to the query and the

posting lists. The running time of our proposed rises slowly compared with

the collection size.

57

3.8 Summary

In this chapter, we have proposed an efficient QgramSearch (Q-gram Based

Genomic Search). It has an advantage over the exhaustive search tools on

the process of sequence matching. We use the inverted index on Q-gram to

retrieve the homologous sequences from database instead of the expensive

full database scanning. Besides, we introduce two novel dictionary data

structures for the retrieval and the index creation processes. The Refined

Perfect Hashing and the Trie-Based Hashing utilize the overlapping

characteristics of genomic sequences in Q-gram. The experiments show that

our two proposed dictionary data structures are faster than other data

structures. Compared with the Bitwise hashing, our proposed hashing

functions run about 5 times faster. Index-based genomic search generally

face two problems: the problem of heavy workload on the servers caused by

thousands of queries per day and the problem of long index creation. Our

proposed structures can efficiently generate the hash value for the

consecutive Q-gram.

QgramSearch uses a normalized weighted score to measure the similarity of

sequences. The normalized weighted score uses the probability of the

occurrence of Q-gram. This weighted measurement is to take the

consideration of the statistical significance of Q-gram. It can help to identify

the significant features in the sequences.

58

The experiments showed the query time of QgramSearch was almost linearly

proportional to the number of database sequences. Our proposed index-based

approach is more scalable than the existing search tools like BLAST.

59

4 Q-gram Based Genomic Sequence
Clustering

4.1 Introduction

Genomic sequence clustering has been used in the identification of protein

families; the prediction of the families for a newly discovered sequences and

medical treatment. Clustering is to partition a set of data such that intra-

cluster distance is small and inter-cluster distance is large.

The traditional clustering algorithms perform the sequence comparison for

each sequence pair in database. The number of possible sequence pairs is

usually very huge. This exhaustive pairwise sequence comparison is

expensive for a large genomic sequence database containing billions of

sequence.

In this chapter, we introduce a novel (QgramClust) Q-gram based genomic

sequence clustering to improve the speed of clustering process. It has

several advantages over the existing clustering approaches. Firstly, most

existing sequence clustering approaches require exhaustive database scans

for sequence comparison. We reduce the number of database scanning by

using inverted index. Secondly, many clustering approaches adopt dynamic

60

programming to find sequence alignment, but they are so slow and take

O(n2) time. Q-gram based similarity measurement is used instead of the

expensive sequence alignment. Lastly, most of the existing hierarchical

clustering methods regard every sequence as a single data point. Since the

hierarchical clustering requires n2 comparisons and space, the performance is

not good due to the large number of database sequences. A hybrid way of

partitioning and hierarchical clustering is adopted in our algorithm such that

the scalability and the efficiency can be balanced.

4.2 P-Similar Neighbors

The concept of neighbor we use is derived from KNN (K-Nearest-

Neighbor). KNN has been applied in search and classification. It is an

efficient strategy to solve a computationally heavy task by finding the k

nearest neighbor. In KNN classification, a data is classified as the label

based on the labels of its neighbors [56]. KNN is efficient because the

number of data being processed is a small proportion of the whole database

collection. It would be good if we utilize the concept of neighbor to reduce

the number of sequence comparison. Therefore, we introduce nearest-

neighbor in our clustering algorithm

Two sequences are said to P-similar if the number of Q-gram they share is

greater than threshold P. A set of data points is the neighbors of a specific

point M if they are P-similar to that point M. We called the point M is the

61

centroid of these neighbors. The idea of QgramClust is to find the neighbors

of some regions and then merge the closest regions together.

4.3 Cluster Assignment

As mentioned in previous chapter, the hierarchical clustering takes O(n2)

complexity in time and space. It is not scalable for a large collection.

Therefore, we apply a hybrid of the partitioning clustering and the

hierarchical clustering. By this way, the number of data points is reduced in

the hierarchical clustering process. In the first step, we perform the

partitioning clustering --- the close neighbors are grouped into a number of

clusters. Figure 4-1 shows the procedure of partitioning clustering. Firstly,

the algorithm randomly selects a sequence as a centroid and finds all P-

similar neighbors by using our inverted index. Then the centroid and its

neighbors are clustered into a primary cluster. The algorithm repeats to

select centroids and formulate clusters until all database sequences are

grouped into clusters. If some sequences do not have P-similar neighbor

sequences, they are formed into primary clusters with only single sequence.

A list of primary clusters of P-similar neighbors are returned and passed to

the second step.

In the second step, we perform a hierarchical clustering on the primary

clusters. A two-dimensional scoring matrix is created and filled with the

distances between clusters. The distance of two primary clusters is based on

62

the distance of their cluster centroids. Agglomerative hierarchical clustering

is applied for merging clusters and single linkage is used for distance

measurement for clusters.

Partitioning Clustering

Given a set of database sequence S and a threshold T
Define an array of clustered status and an array of score for S

Step 1: Mark all sequences in S with status = “N”
Step 2: Set all sequences in S with score= 0
Step 3: Randomly select a sequence Si with status = “N” in S
Step 4: Create a cluster Cx and set Si with status = “Y”
Step 5: Search the posting list for Si using inverted index
Step 6: Count the number of shared Q-gram as score for each sequence
in the set S
Step 7: Mark the score for sequences with status = “N”
Step 8: Overwrite the score for sequences with status = “N” if new
score is higher than old score
Step 8: Assign those non-clustered sequences whose score >= T to C x
and set them with status = “Y”
Step 9: Re-assign clustered sequence if new score is higher than old
score
Step 10: Repeat and goto Step3 until no sequence in S with status =
“N”

Figure 4-1 The algorithm of partitioning clustering approach.

63

4.3 Efficiency and Effectiveness

In our algorithm, we use Q-gram based approach to measure the similarity of

database sequences. Comparing with those clustering algorithms requiring

pairwise alignment of each sequence pair in the database, the similarity

measurement using Q-gram is more efficient. For clustering a large

sequence database, those algorithms using the pairwise alignment is not

acceptable. Some heuristic clustering algorithms have better performance

than the alignment-based algorithms. For example, BlastClust is one of the

famous heuristic clustering algorithms, which is based on the pairwise

matches found using the BLAST algorithm and cluster sequences using the

single-linkage method. In BlastClust, two sequences are considered to

neighbor if the coverage and the Blast score are above some certain

thresholds. However, BlastClust requires to measure Blast score of each

sequence pairs and it takes O(n2) complexity in running time. In our

proposed algorithm, the similarity of between a centroid sequence and

database sequences can be obtained using the inverted index. The running

time depends on the number of selected centroids or the number of clusters.

In normal case, the number of clusters should be comparatively small to the

number of sequences.

 For effectiveness, the sensitivity is affected by the selected word size

or Q-gram. The smaller word size means that the smaller regions are also

considered in the similarity measurement. If a large word size is used, some

shared regions are missed. BlastClust uses an input parameter to control the

64

word size for initial matches. The performance of BlastClust drops greatly if

a smaller word size is used. Under same word size, the experiment showed

our algorithm could run faster than BlastClust.

4.4 Simulation Results

We conducted some experiments to evaluate the performance of

QgramClust. Since the partitioning clustering was the core component of

our algorithm, the experiments focused on the performance of the

partitioning clustering process. We also compared the performance of

QgramClust and BlastClust with different collection size. The following

experiments were conducted in the same platform as that in the Chapter 3.

The same Genbank EST dataset was used and the size of Q-gram was 9.

4.4.1 Effect of Number of Sequences on Clustering Time

In this experiment, we evaluated the partitioning clustering time of

QgramClust using different number of sequences in the database and

different similarity threshold. We used several datasets ranging from 500 to

40000 sequences. Different similarity threshold values were also used to

control the similarity neighbors in the clusters.

65

20000

40000

500

1000

5000
10000

0

20

40

60

Number of Sequences

C
lu

st
er

in
g

T
im

e
(s

)

Threshold =3

20000
40000

10000
5000

5000

50

100

150

Number of Sequences

C
lu

st
er

in
g

T
im

e
(s

)

Threshold =6

20000

40000

100005000

5000

100

200

300

400

Number of Sequences

C
lu

st
er

in
g

T
im

e
(s

)

Threshold =9

20000

40000

10000
5000

5000

100

200

300

400

500

600

700

800

Number of Sequences

C
lu

st
er

in
g
 T

im
e(

s)

Threshold =12

20000

40000

500

5000
10000

0

200

400

600

800

1000

1200

Number of Sequences

C
lu

st
er

in
g

T
im

e
(s

)

Threshold =15

Figure 4-2. Plot the clustering time and the number of sequence under
different threshold

66

Table 4-1 The result data of clustering time and the

number of sequence under different threshold

Number of Sequences/

Threshold 500 1000 5000 10000 20000 40000

T = 3 2 2 6 10 20 39

T = 6 2 7 13 48 73 96

T = 9 4 8 32 64 127 373

T = 12 6 10 57 131 254 667

T = 15 7 15 69 169 346 989

Figure 4.2 showed the clustering time of QgramClust with different

collection size. Under the same similarity threshold values, we found that

the clustering time was almost linearly proportional to the number of

sequences in the dataset. Our proposed algorithm is scalable and the running

time would not exponentially increases with the collection size. Another

factor on the algorithm is the similarity threshold. From the above results,

we discovered that the clustering time increased with the similarity threshold.

It is because the higher similarity threshold causes fewer neighbors assigning

to each cluster and more clusters to be generated. Some of clusters were

formed with only one single data point when using large threshold values.

The following experiments showed the relationships of the number of

clusters generated and the similarity threshold.

67

4.4.2 Effect of Similarity Threshold on Number of
Clusters

This experiment was to evaluate the numbers of clusters is formed under

different similarity threshold. We evaluated six sets of data and counted the

total number of clusters. The total number of clusters formed must not be

more than the number of data in the dataset.

68

0

100

200

300

400

500

3 6 9 12 15

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 500

0

200

400

600

800

1000

3 6 9 12 15

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 1000

0

500

1000

1500
2000

2500

3000

3500

4000

80 230 520 763 830

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 5000

0

1000

2000

3000

4000

5000

6000

7000

3 6 9 12 15

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 10000

0

2000

4000

6000

8000

10000

12000

3 6 9 12 15

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 20000

0

5000

10000

15000

20000

3 6 9 12 15

Similarity Threshold

N
um

be
r

of
 c

lu
st

er
s

Dataset Size is 40000

Figure 4-3. Plot the relationship of the number of clusters and the
similarity threshold under different dataset size

69

In this experiment, we found the number of clusters formed by the algorithm

grew with similarity threshold values. In Figure 4.3, the growth rate of the

clusters formed slowed down when the number of clusters reached the

dataset size.

4.4.3 Comparison of BlastClust and our proposed
algorithm

We also evaluated the performance of BlastClust. We downloaded the

executable file of BlastClust and ran it under the same platform as the

previous experiments. Figure 4-4 showed the clustering time of our proposed

ran faster than BlastClust under 500 to 40000 sequences. The clustering

time and the number of clusters formed using BlastClust under its default

parameters (word size = 28) were shown in Table 4-2.

70

40000200001000050001000500
0

1000

2000

3000

4000

Number of Seqences

C
lu

st
er

in
g

T
im

e
(s

)
T3 T6 T9 T12 T15 BlastClust

Figure 4-4. Plot the relationship of the clustering time and the number
of sequences using BlastClust and our algorithm with several threshold

values.

Table 4-2 The result data of clustering time and the number
of sequences using BlastClust

No of Sequences Running Time (s) No of clusters generated

50 2.7 50

500 3.7 495

1000 6.2 983

5000 42.1 4849

10000 130.6 9617

20000 343 19057

40000 975.9 38016

71

4.5 Summary

In this chapter, we propose a novel QgramClust, which is a hybrid way of

partitioning clustering and hierarchical clustering. A large public genomic

database consists of millions to billions of sequences. Since a hierarchical

approach takes O (n2) in time and space, it is not feasible for such huge

amount of data. Therefore, we introduce the partitioning clustering as the

first step to generate the primary clusters and reduce the number of data

passing to the hierarchical clustering.

 The traditional clustering algorithms perform the sequence

comparisons for each pair. We introduce inverted index to speed up the

process sequence comparisons. Besides, we introduce the concept of nearest

neighbors in the clustering algorithm and define a P-similar measurement to

find the members of clusters. By doing this way, the inter-clusters are

dissimilar and the intra clusters are similar.

The experiment showed our algorithm was generally faster than a famous

genomic clustering, BlastClust. Besides, it is found that our algorithm is

able to discover more distant sequences that cannot be shown in BlastClust.

Our clustering algorithm can also facilitate the outliner discovery by finding

the clusters with a single sequence. It is an efficient and effective genomic

clustering algorithm.

72

5 Conclusions

In this research, our aim is to devise a new effective and efficient way to

mine the information from the genomic sequences. Genomic homologous

sequence search and genomic sequence clustering are two important

applications to extract knowledge from huge amount of biological data.

Since the collection size of the public genomic sequence database is growing

exponentially, the traditional genomic search and clustering techniques face

the scalability problem. To overcome these demanding challenges, it is

necessary to devise new algorithms that can run efficiently and effectively

under the increasing amount of data. Therefore, we propose an efficient and

effective QgramSearch and QgramClust. The contributions of this research

are follows:

1. This research introduces a QgramSearch. We utilize the indexing

technique on Q-gram to speed up the search process. Dictionary lookup

is a fundamental function in both index creation and retrieval processes.

We propose two novel dictionary data structures: Refined Perfect

Hashing and Trie-Based Hashing. In the experiment, our proposed data

structures run much faster than other data structures. Compared with

Bitwise hashing --one of the fastest hashing functions, our proposed

hashing function can run 5 times faster.

73

2. We introduce a normalized weighted score that uses the probability of

the occurrence of Q-gram. This takes the significance of Q-gram into

consideration. It can efficiently and effectively measure the similarity of

two sequences. We also add the factor of the length of sequences into

the score. This can reduce the dominance of long sequences in the

results.

3. QgramSearch can quickly find the similar sequences. It cannot only be

used as a stand-alone search tool but also act as a selection step for other

search tools. Since our search process is light, it is probably working a

filter to find the high-scoring matches for further processing. For

example, dynamic programming can be the final processing to rank the

results.

4. QgramClust is a novel way to cluster sequences based on the nearest

neighbors of centroid. There has been some research on KNN

classification but few researchers conduct research on nearest neighbors

clustering method. We find that the nearest neighbor clustering is well-

suited for the sequence clustering problem. Comparing with traditional

approaches requiring pairwise sequence comparison, our proposed

approach can efficiently partition similar sequences.

5. We introduce a novel idea to use indexing technique in sequence

clustering. With the inverted index, the nearest neighbors of a centroid

can be quickly found and form primary clusters. Our proposed

algorithms is more efficient than the traditional sequence clustering

74

algorithms because it does not require expensive pairwise comparsions.

Our experiment showed our clustering algorithm could run faster than

BlastClust.

6. Our proposed clustering algorithm is a hybrid approach of partitioning

clustering and hierarchical clustering. Since the partitioning clustering

step can help to reduce the number of records passing to the hierarchical

clustering step, it is scalable to handle a huge amount of data. The

similarity threshold can be used to control the size of clusters and the

number of primary clusters.

We believe several issues and works that can be done in the future.

1. Semi-supervised learning can be applied in our algorithms. The

biological data usually contains some label data and lots of unlabel data.

For example, biologists have identified some well-known protein

families. The new research is to consider how to utilize the label data to

improve the quality of data. Firstly, the future work can include an

investigation on the effect of cluster quality after using the label data as

the cluster centroids. Secondly, it can include designing a new weighted

score. If sequences of same label frequently share a set of Q-gram, the

weight can be added. Thirdly, some long and frequent pattern in the

sequence of same label can be extracted and they can be used as features

in similarity measurement.

2. In our current clustering approach, a sequence can be re-assigned to a

newly created cluster since each sequence can only belong to one cluster.

75

Therefore, a sequence could only be assigned to the closest cluster. In

the real biological applications, there might be inter-relationship between

clusters. It is worth to doing further research on membership of multiple

clusters. Each sequence can be associated with more than one cluster.

3. Compression techniques can be used to reduce the size of inverted index.

The inverted index increases with the number of database sequence. The

future work can develop a technique to compress the inverted index in

order to reduce the storage size.

76

References

[1] Genbank overview.2006, http://www.ncbi.nlm.nih.gov/Genbank/

[2] A. Califano and I. Rigoutsos. Flash: A fast look-up algorithm for string

homology. Computer Vision and Pattern Recognition, Proc. CVPR 93,

IEEE Computational Science & Engineering,NY, USA, pp. 353-359,

1993.

[3] A. Chattaraj and H. E.Willams. Variable-length Intervals in Homology

Search. Proc. Second Asia-Pacific Bioinformatics Conference

(APBC2004), Dunedin, New Zealand, vol. 59, pp. 85-91, 2004.

[4] A. K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-

Hall, Englewood Cliffs, NJ, 1998.

[5] A. L. Delcher, S. Kasif, R. D. Fleischmann and J. Peterson al et.

Alignment of whole genomes, Nucleic Acids Research, vol 27(11),

pp.2369-2376, 1999.

[6] A. Panuccio, M.Bicego and V.Murino. A Hidden Markov Model-Based

Approach to Sequential Data Clustering, Springer Berlin, vol 2396,

pp.734, 2002

[7] B. Bergeron. Bioinformatics computing, Prentice Hall PTR, 2002

[8] B. Ma, J. Tromp and M. Li. PatternHunter: faster and more sensitive

homology search. Bioinformatics, Oxford University Press, vol.18(3), pp.

440-445, 2002.

[9] C. Fondrat and P. Dessen. A rapid access motif database (RAMdb) with

a search algorithm for the retrieval patterns in nucleic acids or protein

77

http://www.ncbi.nlm.nih.gov/Genbank/

databanks. Computer Applications Biosciences, vol 11(3), pp. 273-279,

1995.

[10] C. Silverstein. A practical perfect hashing algorithm. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, vol. 59, pp.

23-47, 2002.

[11] D. D. Sleator and R.E. Tarjan. Self-adjusting binary search trees, Journal

of the ACM, vol. 32, pp. 652-686, 1985.

[12] D. F. Feng, and R.F. Doolittle. Progressive sequence alignment as a

prerequisite to correct phylogenetic trees, Journal of Molecular Evolution.

vol 25(4), pp. 351-360, 1987.

[13] D. J. Lipman and W.R. Pearson, Rapid and sensitive protein similarity

searches, Science, vol 227, pp. 1435-1441,1985

[14] E. Bolten, A. Schliep, S. Schneckener, D. Schomburg and R. Schrader.

Clustering protein sequences-structure prediction by transitive homology.

Bioinformatics, vol. 10, pp. 935–942, 2001.

[15] E. G. Shpaer, M. Robinson, D. Yee, J.D. Candlin and T. Hunkapiller.

Sensitivity and selectivity in protein similarity searches: a comparison of

Smith-Waterman in hardware to BLAST and FASTA, Genomics. vol.

38(2), pp. 179-191, 1996

[16] E. Giladi, M.G. Walker, J.Z. Wang and W.Volkmuth. SST: an algorithm

for finding near-exact sequence matches in time proportional to the

logarithm of the database size, Bioinformatics, vol 18(6), 873-879, 2002.

78

[17] E. Hunt, M.P. Atkinson, R.W. Irving. Database indexing for large DNA

and protein sequence collections, The VLDB Journal, The International

Journal on Very Large Data Bases, vol 11(3), pp. 256-271, 2002.

[18] G. Yona, N. Linial. and M. Linial. ProtoMap: automatic classification of

protein sequences and hierarchy of protein families. Nucleic Acids

Research, vol 28(10), pp. 49-55, 2000

[19] H. E. Williams and J. Zobel. Indexing and retrieval for genomic

databases. IEEE Trans. on Knowledge and Data Engineering, vol 14(1),

pp. 63-78, 2002.

[20] H. E. Williams and J. Zobel. Compression of nucleotide databases for

fast searching, Bioinformatics, vol 13(5), pp. 549-554, 1997.

[21] H. E. Williams and J. Zobel. Indexing nucleotide databases for fast query

evaluation. Proc. of the 5th International Conference on Extending

Database Technology: Advances in Database Technology (EDBT),

pp.275-288, 1996.

[22] H. E. Williams, J.Zobel and S.Heinz. Self-adjusting trees in practice for

large text collections, Software Practice and Experience, vol. 31(10),

pp.925-939, 2001.

[23] H. Mihail, S. Nematollaah and T. Anand. Exact match search in

sequence data using suffix trees, Proc. of the 14th ACM international

conference on Information and knowledge management, Bremen,

Germany, pp. 123-130, 2005.

79

[24] H. Wang, W. Wang, J. Yang and P.S. Yu. Clustering by pattern

similarity in large data sets, International Conference on Management of

Data, Proc of the 2002 ACM SIGMOD international conference on

Management of data, Madison, Wisconsin, pp. 394-405, 2002.

[25] H. Williams. Genomic information retrieval. Proc. of the 14th

Australasian Database Conference, Australia, pp. 27-35, 2003

[26] I. S. Kohane, A. Kho and A.J. Butte. Microarrays for an Integrative

Genomics, The MIT Press, 2005.

[27] J. Aoe, K. Morimoto, M.Shishibori and K.H.Park. A Trie compaction

algorithm for a large set of keys, IEEE Trans on Knowledge and Data

Engineering, vol 8(3), pp. 476-491, 1996

[28] J.C. Setubal and J.Meidnis. Introduction to computational molecular

biology, PWS publishing company, 1997.

[29] J. D. Thompson, D.G. Higgins and T.J. Gibson. Clustal W: improving

the sensitivity of progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties and weight matrix

choice. Nucleic Acids Res., vol 22, pp. 4673–4680, 1994.

[30] J. Yang and W. Wang. CLUSEQ: efficient and effective sequence

clustering. Proceedings of the 19th IEEE International Conference on

Data Engineering (ICDE), pp. 101-112, 2003.

[31] K. Ian, Y. Mark and B. Joseph. BLAST. O’Reilly and Associates,

Dunedin, 2003.

80

[32] Kriventseva, E. V., Fleischmann, W., Zdobnov, E. M., Apweiler, R.

CluSTr: a database of clusters of SWISS-PROT+TrEMBL proteins.

Nucleic Acids Res, vold 29, pp. 33-36, 2001

[33] L. J. Wong and J. Li. Identifying good diagnostic gene groups from gene

expression profiles using the concept of emerging patterns,

Bioinformatics, vol 18: pp. 725-734, May 2002.

[34] L. Shang and T.H. Merretal. Trie for approximate for string matching,

IEEE Trans. on Knowledge and data engineering, vol 8(4), pp. 540-547,

1996.

[35] M. Brain and A. Tharp. Using Tries to eliminate pattern collisions in

perfect hashing, IEEE Trans on Knowledge and Data Engineering, vol

6(2), pp. 239-247, 1994

[36] M. B. Eisen, P.T. Speman and P.O. Brown al et. Cluster analysis and

display of genome-wide expression patterns, Proc. of Natl. Acad. Sci,

USA, vol 95(02), pp. 14863-14868, 1998

[37] N. C. Jones and P. A. Pevzner. An introduction to bioinformatics

algorithms, The MIT Press, 2004

[38] N. M. Luscombe, D.Greenbaum and M.Gerstein. What is

Bioinformatics? A proposed definition and overview of the field, Method

Inform Med. , 40(4), 346-358, Apr 2001.

[39] P. Baldi and S. Brunk. Bioinformatics, The Machine Learning Approach,

The MIT Press, 2001

81

[40] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth al etc.

ProClust: improved clustering of protein sequences with an extended

graph-based approach, Bioinformatics, vol. 18, pp. 182-191, 2002.

[41] R. Sharan and R. Shamir. CLICK: a clustering algorithm with

applications to gene expression analysis. Proc. International Conference

on Intelligence Systems for Molecular, vol. 8, pp. 307-316, 2000.

[42] R. Xu and D. Wunsch. Survey of clustering algorithms. Proc. of Neural

Networks, IEEE Trans, vol 16(3), pp. 645-678, May 2005

[43] S. Altschul, T. Madden, A. Zhang and J. Zhang al et. Grapped BLAST

and PSI-BLAST: a new generation of protein database search programs.

Oxford University Press, Nucleic Acids Research, vol. 25(17), pp. 3389-

3402, 1997

[44] S. B. Needleman and C.D. Wunsch. A general method applicable to the

search for similarities in the amino acid sequence of two proteins,

Journal of Molecular Biology, vol. 48, pp. 443-453, 1970.

[45] S. Basu, A.Banerjee and R. J. Mooney. Semi-Supervised Clustering By

Seeding. Proc. of 19th International Conference on Machine

Learning(ICML), Australia, pp. 19-22, 2002.

[46] S. Basu, M. Bilenko and R. J. Mooney. A probabilistic framework for

semi-supervised clustering, Proc. of the 10th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp.

59-68, 2004.

82

[47] S. Buttcher, C.L.A Clarke and B. Lushman. Hybrid index maintenance

for growing text collections. Proceedings of the 29th annual international

ACM Conference on Research and Development in Information

Retrieval (SIGIR 2006), Seattle, pp. 356-363, August 2006.

[48] S. F. Althschul, W. Gish, W. Miller, E.W. Meyers, and D.J. Lipman.

Basic local alignment search tool. Journal of Molecular Biology, vol 215,

pp. 403-410, 1990.

[49] S. Heinikoff and J.G Heinikoff. Amino acid substitution matrices from

protein blocks, Proc. of the National Academy of Sciences of the United

States of America vol. 89, pp. 10915-10919, 1992.

[50] S. Heinz, J. Zobel and H.E. Williams. Burst tries: a fast, efficient data

structure for string keys, ACM Trans. on Information Systems, vol. 20

(2), pp. 192-223, Apr 2002.

[51] S. Heinz and J. Zobel. Performance of data structures for small sets of

strings, Proc. of the 25th Australasian Conference on Computer Science,

Australia, vol 4, 87-94 , 2002.

[52] S. Kim and A. Gopu. BAG: A Graph Theoretic Sequence Clustering

Algorithm, International Journal of Data Mining and Bioinformatics,

1(2), pp. 178-200, 2006.

[53] S. Ranjan and Z. Justin. Efficient Trie-based sorting of large sets of

strings, Australasian computer science conference, Adelaide, Australia,

pp. 11-18, 2003

83

[54] T. H. Larry, F.L. Chung and C.F. Stephen and Simon M.C. Yuen. Using

emerging pattern based projected clustering and gene expression data for

cancer detection, Proc. of the second conference on Asia-Pacific, pp. 75-

84,2004

[55] T. Kahveci and K. Tamper. Map: searching large genome databases,

The Pacific Symposium on Biocomputing Conference, Hawaii, pp. 11-

18, 2003

[56] T. Liu, A.W. Moore and A.Gray. Efficient exact k-NN and

nonparametric classification in high dimensions, Proc. of Neural

Information Processing Systems, vol. 15, 2003

[57] T. Morzy, M. Wojciechowski and M. Zakrzewicz. Scalable Hierarchical

Clustering Method for Sequences of Categorical Values, Proc. of the 5th

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.

282-293, 2001.

[58] V. Alfred and J. Margaret. Efficient string matching an aid to

bibliographic search, Bell Laboratories, vol. 18(6), pp. 333-340, 1975

[59] V. Guralnik. and G. Karypis. A scalable algorithm for clustering

sequential data, Proc. of the 2001 IEEE International Conference on Data

Mining, IEEE Computer Society, pp. 179-186, 2001.

[60] V. Lertnatte and T. Theeramunkong. Multidimensional text

classification for drug information, IEEE Trans. on Information

technology in biomedicine, vol 8 (3), Sept 2004.

84

[61] W. J. Kent. BLAT: The BLAST-like alignment tool. Genome Research,

12 (4), pp. 656-664, 2002.

[62] W. J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid

and protein data banks. Proceedings of the National Academy of

Sciences of the USA 80, pp. 726-730, 1983.

[63] W. R. Pearson and D.J. Lipman. Improved tools for biological sequence

comparison. Proc Natl Acad Sci USA, 85, pp. 2444-2448, 1988

[64] W. R. Pearson and W. Miller. Dynamic programming algorithms for

biological sequence comparison, Method in Enzymology, vol 210, pp.

575-601,1992.

[65] Y. Chen, K.D. Reilly, A. P. Sprague and Z. Guan. SEQOPTICS: a

protein sequence clustering system, Bioinformatics, vol. 7(4), suppl 4,

2006.

[66] Y. K. Yu. Statistical Significance of Probabilistic Sequence Alignment

and Related Local Hidden Markov Models, Journal of Computational

Biology, vol. 8(3), pp. 249-282, 2001.

[67] Z. Ning, A.J. Cox and J.C. Mullikin. SSAHA: a fast search method for

large DNA databases. Genome Research, vol 11, pp. 1725-1729, 2001.

85

	theses_copyright_undertaking
	b21657580

