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Abstract

Urbanization has induced dramatic growth in car usage in metropolises around the
world, which results in growing traffic congestion, accidents and pollution. Efficient
utilization of existing infrastructures via appropriate traffic control schemes is crucial
to handling the fast-growing travel demand. Conventional traffic control methods
concentrate on link-level strategies. Oversaturated traffic conditions with queues
spilling back to upstream links and the huge spatial dimension would introduce
significant challenges to the local traffic signal control strategies at the link level.
Hence, under heavily saturated traffic conditions, traffic control strategies capturing
network-level congestion should be devised to alleviate network congestion.

The network-level congestion can be significantly alleviated by identifying some
critical intersections and regulating them effectively. This finding gives rise to the
concept of perimeter control by leveraging the recent advances in the macroscopic
fundamental diagrams (MFDs). The MFD intuitively describes a low-scatter rela-
tionship between the network vehicle accumulation and production, providing an
analytically simple and computationally efficient framework for aggregate model-
ing of urban traffic network dynamics. Therefore, this dissertation proposes an
MFD-based optimal control framework for traffic networks.

Perimeter control, which aims to manipulate the transfer flow at the boundaries
of the region, is a promising solution to address the spatial dimension challenge
in dealing with network-scale traffic congestion. Existing MFD-based data-driven
and feedback perimeter control strategies do not consider the heterogeneity of real-
time data measurements. Besides, traditional reinforcement learning (RL) methods
for traffic control usually converge slowly for lacking data efficiency. Moreover,
conventional optimal perimeter control schemes require exact knowledge of the
system dynamics and thus they would be fragile to endogenous uncertainties. To
handle these challenges, Study 1 proposes an integral reinforcement learning (IRL)
based approach to learning the macroscopic traffic dynamics for adaptive optimal
perimeter control. A continuous-time control is developed with discrete gain updates
to adapt to the discrete-time sensor data. Different from the conventional RL
approaches, the reinforcement interval of the proposed IRL method can be varying
with respect to the real-time resolution of data measurements. To reduce the
sampling complexity and use the available data more efficiently, the experience
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replay (ER) technique is introduced to the IRL algorithm. The proposed method
relaxes the requirement on model calibration in a model-free manner that enables
robustness against modeling uncertainty and enhances the real-time performance
via a data-driven RL algorithm. Numerical examples and simulation experiments
are presented to verify the effectiveness and efficiency of the proposed method.

Considering the time-varying nature of the travel demand pattern and the equilib-
rium of the accumulation state, Study 2 extends the set-point perimeter control (SPC)
problem investigated in Study 1 to an optimal tracking perimeter control problem.
Unlike the SPC schemes that stabilize the traffic dynamics to the desired equilibrium
point, the proposed tracking perimeter control (TPC) scheme will regulate the traffic
dynamics to a desired trajectory in a differential framework. Study 2 proposes an
adaptive dynamic programming (ADP) approach to solving the optimal TPC problem.
The convergence of the ADP based algorithms and the stability of the controlled
traffic dynamics are proven via the Lyapunov theory. Numerical experiments are
performed to demonstrate the effectiveness of the proposed ADP-based TPC. Com-
pared with the SPC scheme, the proposed TPC scheme achieves both improvements
in reducing total travel delay and increasing cumulative trip completion in our case
studies.

Coupling perimeter control and regional route guidance (PCRG) is a promising
strategy to decrease congestion heterogeneity and reduce delays in large-scale MFD-
based urban networks. For MFD-based PCRG, one needs to distinguish between
the dynamics of the plant that represents reality and is used as the simulation
tool, and the model that contains easier-to-measure states than the plant and is
used for devising controllers, i.e., the model-plant mismatch should be considered.
Traditional model-based methods require an accurate representation of the plant
dynamics as the prediction model. On the other hand, existing data-driven methods
do not consider the model-plant mismatch and the limited access to plant-generated
data. Therefore, Study 3 develops an iterative adaptive dynamic programming
(IADP) based method to address the limited data source induced by the model-plant
mismatch. An actor-critic neural network structure is developed to circumvent the
requirement of complete information on plant dynamics. Performance comparisons
with other PCRG schemes under various scenarios are carried out. The numerical
results indicate that the IADP controller trained with a limited data source can
achieve comparable performance in minimizing the total travel delay with the
benchmark model predictive control (MPC) approach using perfect measurements
from the plant. In cases of higher input errors, IADP achieves a better performance
than MPC.
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Most existing studies on optimal traffic control of MFD-based networks do not
consider the effect of expressways passing through urban regions. Ring expressways
are built in many megacities (e.g., Beijing) with on- and off-ramps to connect the
city’s periphery areas where ramp metering is usually desired to protect the freeways
from over congestion. Few studies have explored the cooperation of perimeter
control, route guidance and ramp metering strategies in improving the whole
network mobility. Study 4 proposes a cooperative adaptive dynamic programming
(CADP) approach to solve the cooperative control problem for a mixed urban-
expressway network. The network is composed of a multi-region urban network
modeled by the MFD and a ring expressway going through the periphery regions
modeled by the asymmetric cell transmission model. Different from the traditional
decentralized ADP (D-ADP) method, the proposed CADP approach trains the agents
of perimeter control, route guidance, and ramp metering to fully cooperate in
improving the whole network performance. Numerical studies demonstrate that the
CADP can significantly reduce the total travel delay compared with the model-based
decentralized strategies and the D-ADP strategy. In addition, the city center is well
protected from over-congestion by applying the CADP approach.

In conclusion, this thesis contributes to the literature on network-level optimal
perimeter control and regional route guidance, and to traffic management of mixed
urban-expressway networks.
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Introduction and objectives 1
1.1 Background and motivations

Urbanization has induced dramatic growth in car usage in metropolises around the
world, which results in growing traffic congestion, accidents and pollution. Efficient
utilization of existing infrastructures via appropriate traffic control schemes is crucial
to handling the fast-growing travel demand. Over the past decades, several traffic
control strategies have been proposed and successfully implemented in practice
(see Papageorgiou et al., 2003, for an overview). Conventional traffic control
methods such as SCOOT (Hunt et al., 1982), SCATS (Lowrie, 1982) and Traffic-
responsive Urban Control (TUC) such as ALINEA (see Figure 12 in Papageorgiou
et al., 2003), concentrate on link-level strategies. In the case of heterogeneous
networks with multiple bottlenecks and heavily directional demand flows, local
traffic-responsive metering controls such as TUC may not be optimal or might not
achieve the stabilization of the system in a reasonable time period (Kouvelas et al.,
2017). Oversaturated traffic conditions with queues spilling back to upstream links
and the huge spatial dimension would introduce significant challenges to the local
adaptive real-time traffic signal control strategies at the link level, i.e., SCOOT and
SCATS (Gayah et al., 2014; Zhong et al., 2018a; Zhong et al., 2018b). Hence, under
heavily saturated traffic conditions, traffic control strategies capturing network-level
congestion should be devised to alleviate network congestion.

The network-level congestion can be significantly alleviated by identifying some criti-
cal intersections and regulating them effectively (Kouvelas et al., 2017). This finding
gives rise to the concept of perimeter control by leveraging the recent advances in
the macroscopic fundamental diagrams (MFDs). Pioneered by Godfrey (1969), with
its existence proven by Daganzo (2007) theoretically, the MFDs have been widely
investigated (Haddad and Geroliminis, 2012; Haddad et al., 2013; Keyvan-Ekbatani
et al., 2013; Leclercq et al., 2014; Yildirimoglu and Geroliminis, 2014; Saeedmanesh
and Geroliminis, 2017). The MFD intuitively describes a low-scatter relationship
between the network vehicle accumulation and production, providing an analyt-
ically simple and computationally efficient framework for aggregate modeling of
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urban traffic network dynamics. Under the MFD framework, a heterogeneous urban
traffic network is divided into several homogeneous regions with each admits a
well-defined MFD (Ji and Geroliminis, 2012). Under certain regularity conditions,
such as stationary (or slow-varying) and evenly distributed demand, well-defined
MFDs were evidenced by both simulation-based experiments (Gartner and Wagner,
2004) and empirical investigations (Geroliminis and Daganzo, 2008). In particu-
lar, Loder et al. (2019) empirically observed the existence of the MFDs and their
critical point variations using billions of vehicle observations from more than 40
cities. Further analytical consideration and empirical evidence have been provided
by Daganzo and Geroliminis (2008), Helbing (2009), Ji et al. (2010), Gayah and
Daganzo (2011), and Daganzo et al. (2011). However, heterogeneous networks, in
essence, do not exhibit a well-defined MFD. Such a network can be modeled by a
set of differential equations governing the traffic flow conservation in conjunction
with MFDs as long as it can be partitioned into homogeneous subregions with each
admits a well-defined MFD (Ji and Geroliminis, 2012).

The adoption of MFDs to model and regulate traffic flows of large-scale urban
networks has been widely studied in the last decade. The MFD has evolved as a
promising solution for large-scale urban management and in applications like traffic
state estimation (Yildirimoglu and Geroliminis, 2014; Ambühl and Menendez, 2016;
Mariotte et al., 2020; Ma et al., 2024), perimeter control (Ampountolas et al., 2017;
Zhong et al., 2018a; Mohajerpoor et al., 2020; Haddad and Mirkin, 2020; Su et al.,
2023; Moshahedi and Kattan, 2023; Tsitsokas et al., 2023; Hu and Ma, 2024),
congestion pricing (Gu et al., 2018; Zheng and Geroliminis, 2020), route guidance
(Knoop et al., 2012; Sirmatel and Geroliminis, 2018; Hou and Lei, 2020; Jiang et al.,
2024), ridesharing (Wei et al., 2020; Ramezani and Valadkhani, 2023; Valadkhani
and Ramezani, 2023; Huang et al., 2023), demand management (Yildirimoglu and
Ramezani, 2020; Kumarage et al., 2021), departure time choice (Huang et al., 2020;
Zhong et al., 2021; Zhong et al., 2020; Ameli et al., 2022) and cruising for parking
(Cao and Menendez, 2015; Leclercq et al., 2017), etc.

The perimeter control and regional route guidance are the most significant applica-
tions of the MFD. The perimeter control aims to manipulate the transfer flow at the
boundaries of the region by identifying critical intersections and regulating them,
which is a promising solution to alleviating network-scale traffic congestion. Differ-
ent from the en-route link-level route guidance strategy, the regional route guidance
strategy advises drivers a sequence of regions with a lower cost (in terms of travel
time, fuel consumption, etc.) to assist them in reaching their destination, which
might improve the overall system performance. Most existing literature on MFD-
based perimeter control and regional route guidance has focused on model-based
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approaches such as the model predictive control (MPC) adopted by Geroliminis
et al. (2013). Model-based controllers generally assume that model parameters are
accurately calibrated and perfect knowledge of the network is available. Neverthe-
less, traffic networks are subject to various uncertainties (e.g., demand noise and
model error), making these assumptions difficult and even impossible to be met. It is
desired that traffic controllers can well adapt to the changes in traffic conditions and
achieve a satisfactory performance when the network traffic dynamics are uncertain
or even unknown.

Reinforcement learning (RL), a concept under the umbrella of artificial intelligence,
has gained recent attention due to its success in video games and Go (Mnih et
al., 2015; Silver et al., 2016). In an RL setting, an agent learns to optimize a
long-term goal-oriented reward through policy learning by interacting with the
environment and evaluating the performance of its actions based on feedback. Then
the agent seeks to improve its performance over time (Sutton and Barto, 2018).
Adaptive dynamic programming (ADP) is an RL reformulation in the economics
and management communities, which provides an approximate solution to the
optimal control problem given by the Bellman optimality principle. The ADP has
been used to design optimal traffic signal controls for large-scale networks, with
simulation results showing that low-complexity parametrization of the Hamilton-
Jacobi-Bellman (HJB) equation achieves an adequate compromise between network
efficiency and computational complexity (Baldi et al., 2019). The RL/ADP approach
can address the model error and external uncertainty in a “model-free” manner.
The RL/ADP circumvents the necessity of perfect system information by learning
with trials and errors from interactions with the environment. However, traditional
RL/ADP methods do not consider the heterogeneity in real-time data resolution and
the limited access to plant1 data that are very difficult to collect. It is desired that
the RL/ADP-based perimeter control and regional route guidance strategies can be
robust to the heterogeneous data resolution and work well in the unknown plant
environment even though they are trained with parsimonious data.

With the expansion of the city radius and the emergence of city agglomeration,
urban networks connected by arterials cannot satisfy the travel demand of citizens.
Highway and expressway are built to connect the city center and satellite city in
the suburbs. It is necessary to consider the travel demand of the highways when
designing perimeter control and route guidance strategies. However, few existing
works on MFD-based perimeter control and regional route guidance have taken
this into account. Haddad et al. (2013) and Hu and Ma (2024) have integrated

1The real system is termed ‘plant’ while the simplified dynamics used for controller design
is termed ‘model’. These concepts will be further explained in the following sections.
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perimeter control and ramp metering for mixed urban-expressway networks where
the expressway traffic is modeled by the cell transmission model (CTM) (Daganzo,
1994). Case studies in Haddad et al. (2013) are limited in region size while Hu
and Ma (2024) do not incorporate the regional route choice model in the perimeter
controller design.

Considering the previous works on MFD-based urban traffic control, three research
directions that are not well explored in the literature are identified: (i) develop-
ment of “model-free” perimeter control that incorporates the heterogeneous data
resolution, (ii) integration of adaptive data-driven perimeter control with regional
route guidance considering the model and plant dissimilarity and limited plant
data available, and (iii) coordination of various network-level traffic management
schemes in improving the operation of large-scale mixed traffic networks. This thesis
contributes to the literature on network-level adaptive optimal perimeter control
and regional route guidance, and on traffic management of mixed urban-expressway
networks.

1.2 Research objectives

This dissertation integrates theories and methods from multiple disciplines including
control theory, traffic flow modeling, and machine learning. The interconnection of
different components of this dissertation are illustrated in Figure 1.1.

The goal of this dissertation is to develop adaptive optimal control strategies for large-
scale urban traffic networks to improve travelers’ mobility and network performance.
In light of the aforementioned research background and motivations, the objectives
can be categorized into three distinct groups: (i) development of “model-free”
adaptive control methods for perimeter-controlled urban networks, (ii) design
of traffic management schemes coupling regional route guidance actuation and
perimeter control for heterogeneous networks, and (iii) cooperation of perimeter
control, route guidance, and ramp metering in large-scale mixed urban-expressway
networks. Objectives of individual chapters according to dissertation structure are
listed as follows:

“Model-free” optimal perimeter control

• The main objective of Chapter 3 (i.e., Study 1) is to devise a data-efficient
adaptive perimeter controller for the MFD framework without relying on any
knowledge on the traffic dynamics, i.e., “model-free”. Traffic networks are
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Figure 1.1 The interconnection of different components of the thesis

subject to model errors and demand uncertainties. Thus the MFD parameters
are uncertain and even unknown. We aim to circumvent the requirement of
perfect system information when designing the optimal perimeter controller.
Traditional data-driven methods such as RL lack data efficiency and do not
consider the heterogeneity in real-time data resolution. We try to enhance
the data efficiency of the RL approach and make it robust to the time-varying
data resolution.
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• The key objective of Chapter 4 (i.e., Study 2) is to develop a trajectory-
stabilizing perimeter controller that tracks a desired reference. Because of the
time-varying nature of the travel demand and supply, an inappropriate choice
of the single setpoint could degrade the perimeter control performance and
the MFD system’s stability. Instead, a trajectory reference that better fits the
demand and supply nature is desirable. We attempt to extend the stability
analysis of a single equilibrium (or its invariant set) studied in Chapter 3
to that of a Lipschitz continuous trajectory. An adaptive tracking perimeter
controller will be devised.

Iterative adaptive perimeter control and regional route guidance

• The chief objective of Chapter 5 (i.e., Study 3) is to address the hurdle induced
by model-plant mismatch in optimizing perimeter control and regional route
guidance strategies. As region size increases, regional route guidance systems
are necessary for the traffic control of multi-region MFD-based networks. One
needs to distinguish the model used for optimization from the plant that
is subject to heterogeneity and contains difficult-to-measure states. Hence,
it is desired that one can circumvent the requirement for plant-generated
data while using merely the parsimonious model data for learning the MFD
traffic dynamics. We aim to develop an optimal perimeter control and route
guidance strategy that can be directly implemented in the plant while using
only measurements from the model.

Cooperative control of mixed urban-expressway networks

• The main objective of Chapter 6 (i.e., Study 4) is to further extend the
strategies developed in Chapter 5 to handle more complicated traffic networks.
With the expansion of the city radius, freeways/expressways are built to
connect different parts of the city. Other than arterial roads, expressways
are playing an important role in the traffic management of a megacity. One
should explore the effect of these expressways and their control strategies
when devising traffic control schemes for urban networks. We attempt to
develop a cooperative control strategy for a mixed urban-expressway network.
The complexity of the model structure could render an invalid solution to the
cooperative control problem of large-scale networks. We try to address this
difficulty using data-driven approaches.
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1.3 Organization

This dissertation consists of seven chapters, and there are five main chapters (ex-
cluding Chapter 1 and Chapter 7). The presentation of the main five chapters is
organized as follows.

Chapter 2 revisits the main applications of MFDs in network-level traffic control and
management. We first review the MFD-based perimeter control. In general, there
are two main goals of regional traffic regulation exploiting perimeter control. One is
to manipulate the regional accumulation to the desired equilibrium (the so-called
set-point control), and the other is to achieve the best network mobility in terms
of maximum trip completion or minimum total travel delay. Existing methods of
feedback-based perimeter control leveraging the MFD can be categorized into two
main types, model-based and model-free. The importance of model-free perimeter
control is highlighted due to uncertain or unknown traffic dynamics, which might
make model-based methods invalid. The ADP/RL is a promising approach to solving
optimal control problems with no requirement for perfect system knowledge. We
revisit the recent applications of ADP/RL methods in perimeter control. Note that
regional route guidance can be integrated with perimeter control to enhance urban
network mobility. We then review the existing works on regional route guidance
leveraging MFDs and on cooperative traffic control of urban network dynamics.
Finally, we present the preliminary knowledge on ADP and integral reinforcement
learning (IRL). We outline how the general optimal control couples the nonlinear
system dynamics, the Bellman equation, and the neural network framework.

Chapter 3 develops an integral reinforcement learning approach to learning the
macroscopic traffic dynamics for adaptive optimal perimeter control. A continuous-
time perimeter controller that can adapt to the discrete-time heterogeneous sensor
data is devised. The experience replay technique is utilized to boost the data
efficiency of the IRL algorithm. Convergence of the algorithm and stability of the
controlled traffic dynamics are proven via the Lyapunov theory. Preliminary results
of this work are presented in:

• Can Chen, Yunping Huang, William H.K. Lam, Tianlu Pan, Shu-Chien Hsu,
Agachai Sumalee, Renxin Zhong (2021) Learning the macroscopic traffic
dynamics for adaptive optimal perimeter control with integral reinforcement
learning. 24th International Symposium on Transportation and Traffic Theory
(Beijing, China). (available: https://isttt24.buaa.edu.cn)

Chapter 3 is a stand-alone article published as:
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• Can Chen, Yunping Huang, William H.K. Lam, Tianlu Pan, Shu-Chien
Hsu, Agachai Sumalee, Renxin Zhong (2022) Data efficient reinforcement
learning and adaptive optimal perimeter control of network traffic dynam-
ics. Transportation Research Part C: Emerging technologies, 142: 103759.
(doi:10.1016/j.trc.2022.103759)

Chapter 4 extends the results of Chapter 3 in terms of the stability of a single
equilibrium (or its invariant set) to a desired trajectory. A trajectory stability concept
in the MFD framework is proposed in this chapter, which can better fit the dynamic
nature of travel demand and supply. Upon the determination of the trajectory
reference, an adaptive tracking perimeter control scheme is devised to regulate
the traffic dynamics to the desired trajectory. Preliminary results of this work are
presented in:

• Can Chen, Yunping Huang, Hongwei Zhang, Shu-Chien Hsu, Renxin Zhong
(2024) Tracking perimeter control for two-region macroscopic traffic dynam-
ics: An adaptive dynamic programming approach. The 27th IEEE International
Conference on Intelligent Transportation Systems (Edmonton, Canada).

while a journal article is under preparation.

Chapter 5 proposes an integrated strategy that couples perimeter control and regional
route guidance in the management of MFD systems. The model used for optimization
is distinguished from the plant that represents reality due to their differences in
structure and the inherent network uncertainty. An iterative adaptive dynamic
programming approach is proposed to address the limited data source induced by
the model-plant mismatch. An actor-critic neural network framework is employed
to circumvent the necessity of the plant-generated data that are very difficult to
measure. Preliminary results of this work are presented in:

• Can Chen, Nikolas Geroliminis, Renxin Zhong (2023) A robust adaptive
dynamic programming approach for MFD perimeter control. 102nd Trans-
portation Research Board (TRB) Annual Meeting (Washington D.C., U.S).

Chapter 5 is a stand-alone article published as:

• Can Chen, Nikolas Geroliminis, Renxin Zhong (2024) An iterative adaptive
dynamic programming approach for macroscopic fundamental diagram-based
perimeter control and route guidance. Transportation Science, 58 (4): 896-918.
(doi:10.1287/trsc.2023.0091)
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Ring expressways are built in many megacities (e.g., Beijing) with on- and off-ramps
connecting the city’s periphery areas where ramp metering is usually implemented.
Chapter 6 considers a mixed urban-expressway traffic network. We propose a cooper-
ative adaptive dynamic programming-based control model for a multi-region urban
network modeled by the MFD with a ring expressway modeled by the asymmetric
cell transmission model (ACTM). Due to the complexity and strong nonlinearity of
the system dynamics, solving the optimal control strategy explicitly is extremely
difficult. Hence, a multi-agent actor-critic neural network framework is developed
to approach the solution of the optimization problem. Preliminary results of this
work are presented in:

• Can Chen, Yunping Huang, Renxin Zhong, Shu-Chien Hsu (2024) Adaptive
cooperative traffic control of a multi-region urban network with a ring express-
way. 103rd Transportation Research Board (TRB) Annual Meeting (Washington
D.C., U.S).

while a journal article is under preparation.

Finally, Chapter 7 gives a summary of this thesis. Some topics for future research
are also highlighted in this chapter.
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Literature review 2
The adoption of macroscopic fundamental diagrams (MFDs) to model and regulate
traffic flows of large-scale urban networks has been widely studied in the last
decades. The MFD intuitively provides a concave relationship between the network
traffic density (or accumulation) and throughput (or trip completion rate) as shown
in Figure 2.1, which has evolved as a promising solution for large-scale urban
management and in applications like traffic state estimation (Yildirimoglu and
Geroliminis, 2014; Ambühl and Menendez, 2016; Mariotte et al., 2020), perimeter
control (Ampountolas et al., 2017; Zhong et al., 2018a; Mohajerpoor et al., 2020;
Haddad and Mirkin, 2020; Su et al., 2023; Moshahedi and Kattan, 2023; Tsitsokas
et al., 2023; Hu and Ma, 2024), congestion pricing (Gu et al., 2018; Zheng and
Geroliminis, 2020), route guidance (Knoop et al., 2012; Sirmatel and Geroliminis,
2018; Hou and Lei, 2020; Jiang et al., 2024), ridesharing (Wei et al., 2020; Ramezani
and Valadkhani, 2023; Valadkhani and Ramezani, 2023), demand management
(Yildirimoglu and Ramezani, 2020; Kumarage et al., 2021), departure time choice
(Huang et al., 2020; Zhong et al., 2021; Zhong et al., 2020; Ameli et al., 2022) and
cruising for parking (Cao and Menendez, 2015; Leclercq et al., 2017), etc. Among
the aforementioned applications, perimeter control and regional route guidance are
the most significant ones, which are promising ways to alleviate urban congestion
and improve network mobility.

Figure 2.1 The accumulation MFD

11



This chapter reviews the literature related to the applications of MFD in perimeter
control, route guidance, and cooperative mixed-network traffic management. It
begins with a review of MFD-based perimeter control in Section 2.1. This is followed
by a revisit of the perimeter control coupled with regional route guidance for MFD
traffic systems in Section 2.2. Then Section 2.3 reviews the existing works on
traffic control of mixed urban-expressway networks. Note that adaptive dynamic
programming (ADP) is the key research method in this thesis. Finally, preliminaries
of ADP and integral reinforcement learning are presented in Section 2.4.

2.1 MFD-based perimeter control

Considerable research efforts have been dedicated to devising optimal network
traffic control strategies based on MFDs. The perimeter control is believed to be
a promising solution to address the spatial dimension challenge while considering
the network-scale traffic congestion. Gating/perimeter control, usually actuated by
traffic signals installed on the boundaries between regions, is used to manipulate
the intertransfer flows between regions. Recent studies showed that feedback-based
perimeter control is efficient in mitigating congestion in the protected urban net-
works by exploiting MFDs. One goal is to manipulate the regional accumulation to
the desired equilibrium (e.g., to operate the protected regions around the critical ac-
cumulation that maximizes flow), i.e., set-point control. Aboudolas and Geroliminis
(2013) used linear-quadratic-integral (LQI) and linear-quadratic-regulator (LQR) to
operate the MFD system to approach the equilibrium points while Keyvan-Ekbatani
et al. (2012) utilized a proportional-integral (PI) controller considering system
uncertainty. Keyvan-Ekbatani et al. (2013), Keyvan-Ekbatani et al. (2015a), and
Keyvan-Ekbatani et al. (2015b) solved the set-point control problem using the PI
controller with consideration of boundary queue in MFDs, and different kinds of
uncertainty and disturbance were included in the simulations. Haddad and Mirkin
(2016) proposed a transfer function embedded with time delay to deal with the
set-point control problem.

Another goal of using perimeter control is to achieve the maximum trip completion
flow or to minimize the total travel time of the road network by properly restricting
the traffic inflow to the network. Daganzo (2007) applied the MFD framework to
devise a control rule that maximizes the network trip completion rate. Geroliminis
et al. (2013) and Ramezani et al. (2015) solved the optimal perimeter control
problem within a standard two-region MFD system by model predictive control
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(MPC) while Haddad et al. (2013) implemented MPC on a mixed network. Other
optimal perimeter controls of the MFD system using MPC were in a hierarchical
scheme (Zhou et al., 2016; Fu et al., 2017). Aalipour et al. (2018) derived an
analytical optimal control policy by solving the Hamilton-Jacobi-Bellman (HJB)
equation for maximizing the trip completion rates.

Apart from optimal control using the MFD framework, the robust perimeter control
problem of the MFD-based network traffic was also addressed in previous studies
using linear matrix inequalities, e.g., Haddad and Shraiber (2014) and Haddad
(2015). All the above methods require linearization of the MFD function except for
Zhong et al. (2018a) and Sirmatel and Geroliminis (2021). Sirmatel and Geroliminis
(2019) developed a nonlinear moving horizon estimation scheme for large-scale
urban networks subject to measurement noises in state and inflow demand. Li et al.
(2021b) proposed a sliding mode controller for two-region MFD-based networks
considering cordon queues and heterogeneous transfer flows.

Other recent efforts were put to devising resilient perimeter control under cyber-
attacks (Mercader and Haddad, 2021) and in hyper-congested networks (Gao et
al., 2022), real-time state estimation in multi-region MFD urban networks (Saeed-
manesh et al., 2021), multi-region extension for the M-model that captures the
effects of remaining travel distance dynamics (Sirmatel et al., 2021), perimeter
control for congested areas against state degradation risk (Ding et al., 2020b), opti-
mal perimeter control considering coupled/decoupled controllers (Haddad, 2017a),
aggregate boundary queue dynamics (Haddad, 2017b), and perimeter control with
dynamic boundary (Li et al., 2021a; Ding et al., 2022; Hamedmoghadam et al.,
2022).

The aforementioned studies on perimeter control can be regarded as model-based
traffic responsive control. Specifically, previous studies on the feedback-based
perimeter control were derived under one common assumption that the model
parameters can be accurately calibrated. For optimal perimeter control, in particular,
it is generally assumed that perfect knowledge of the network is available and the
parameters will not change during the planning horizon. Moreover, local lineariza-
tion around the desired equilibrium is widely performed to simplify the control
design. Apart from model-based traffic responsive control, considerable research
efforts have focused on adaptive perimeter control which adapts to a controlled
system with time-varying and/or uncertain parameters or external disturbances
such as travel demand noise. By considering the boundary queue that can have a
negative impact on upstream queue modeling, Kouvelas et al. (2017) introduced an
online adaptive parameters optimization algorithm for perimeter control. Haddad
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and Zheng (2020) designed the distributed adaptive perimeter control laws with
control gains varying with time considering state delays and interconnection delays.
Since traffic networks are subject to various uncertainties, parameters of MFDs are
uncertain and time-varying. Also, the travel demand and traffic control strategies
can significantly affect the shape of the MFD (Geroliminis and Boyacı, 2012). The
performance of these control strategies increasingly deteriorates with increasing
disturbance prediction and model errors (Zhong et al., 2014; Baldi et al., 2019).
Nevertheless, as specified in Kouvelas et al. (2017), in many cases the adopted
models are calibrated once and would not be re-calibrated regularly. This causes
a defect in their field experiments. Despite the vast literature related to modeling
and control with MFDs, the design of dynamic control policies to various exogenous
disturbances that can affect the dynamics is seldom considered. To adapt the real-
time observation and then the control to operate the traffic network optimally, it is
necessary to keep adjusting the model parameters (Kouvelas et al., 2017). However,
this process can be a heavy computational burden and difficult to be implemented in
real-time (Modares et al., 2014). For an ever-changing traffic environment subject
to various exogenous disturbances, a predefined model-based traffic responsive
policy may become suboptimal or even impractical. Yet in the literature, to the best
knowledge of the authors, few existing studies dealt with the problem of devising
the adaptive control strategies for MFD systems with (partially) unknown system
dynamics. Lei et al. (2019) and Ren et al. (2020) devised a “model-free” perimeter
controller for a multi-region MFD-based network via the iterative learning control
by assuming recurrent traffic conditions that the traffic dynamics would not admit a
significant change in a day-to-day time-scale during the learning period.

The emerging big data technology gives rise to data-driven approaches to solving
the aforementioned difficulties. Rooted in computer science, the reinforcement
learning (RL) has attracted increasing attention recently for its success in video
games (Mnih et al., 2015) and Go (Silver et al., 2016). Under the RL setting, an
agent optimizes a goal-oriented long-term reward via policy learning. At each step,
the RL agent interacts with the environment and evaluates the performance of its
action based on the feedback from the environment. The agent then tries to improve
the performance of subsequent actions (Sutton and Barto, 2018). A reformulation of
RL is called adaptive dynamic programming (ADP) in economics and management
communities. The RL and ADP bridge the gap between optimal control and adaptive
control. In an off-line manner, the RL and ADP provide an approximate solution
to the optimal control problem obtained from the Pontryagin’s minimum principle
and the dynamic programming principle (i.e., the HJB equation). Solving the HJB
equation takes the center stage in deriving optimal control strategies. However, the
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HJB equation is generally intractable to be solved by analytical approaches for strong
nonlinearity, possible discontinuities in the solution and the curse of dimensionality.
To handle the curse of dimensionality in optimal traffic signal control design for
large-scale networks, Baldi et al. (2019) parametrized the solution of the HJB
equation using an appropriate Lyapunov function. The simulation results showed
that the approximately optimal traffic signal control design via low-complexity
parametrization of the HJB equation can provide a satisfactory trade-off between
computational complexity and network performance. However, there is a lack of
analytical proof of the convergence as well as the explicit consideration of saturated
constraints on the system state and input in Baldi et al. (2019). A conventional
ADP based RL algorithm was proposed by Su et al. (2020) to provide an analytical
optimal perimeter control law for the MFD dynamics. Both convergence and stability
of the closed-loop system were achieved. However, conventional approximation
techniques for solving the HJB equations require complete or partial knowledge of
the system dynamics and are normally off-line. Thus, they cannot handle modeling
uncertainties and be deployed for real-time applications.

The RL and ADP in the data-driven control community give rise to a promising solu-
tion for optimal perimeter control problems in a “model-free” manner. Data-driven
deep reinforcement learning has been incorporated in solving traffic optimization
problems (Kheterpal et al., 2018). Zhou and Gayah (2021) proposed a deep RL
based scheme for the two-region perimeter control problems, which can achieve
comparable performances to the MPC approach. Traditional RL methods do not con-
sider the heterogeneity in data resolution and are usually trained off-line requiring
intensive data. To overcome these difficulties, Study 1 of this thesis will develop an
integral reinforcement learning (IRL) based approach for adaptive optimal perimeter
control in MFD systems. The IRL approach to be proposed enables online tuning
of the reinforcement interval to adapt to the real-time data resolution and ensures
the data richness for online training. More discussion on the contributions of Study
1 can be found in Chapter 3. Moreover, conventional feedback-based perimeter
controls aim to regulate the accumulation state to a single predefined set point. Due
to the time-varying demand pattern and supply function, a predefined set point (or
its invariant set) may not be an appropriate control objective and could degrade net-
work mobility. Study 2 of this thesis fills this gap by developing an adaptive tracking
perimeter control for the MFD framework. More discussion on the contributions of
Study 2 can be found in Chapter 4.
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2.2 Regional route guidance leveraging MFDs

Regional route guidance, which is a promising approach to alleviating urban traffic
congestion, has been incorporated into the MFD framework in the past decade.
Different from the conventional link-based route guidance strategy, the regional
route guidance system advises drivers a sequence of subregions with a lower cost
(in terms of travel time, fuel consumption, etc.) to assist them in reaching their
destination, which might improve the overall system performance.

Previous studies have utilized MFDs in devising link-level routing strategies. Knoop et
al. (2012) developed dynamic routing strategies at the link level using the aggregated
information from multiple grid subnetworks with MFDs. Leclercq and Geroliminis
(2013) further studied the influence of route choice in the MFD for a two-bin
network with parallel routes under various traveler’s behavior realism (e.g., steady-
state/dynamic user equilibrium and system optimum).

Route guidance systems were also developed for multi-region MFD-based networks.
Yildirimoglu and Geroliminis (2014) developed a regional route guidance strategy
based on dynamic user equilibrium (DUE), while Yildirimoglu et al. (2015) extended
the analysis to a route guidance system based on dynamic system optimum (DSO).
Batista et al. (2019) and Batista and Leclercq (2019) further extended the regional
dynamic traffic assignment framework for MFDs in Yildirimoglu and Geroliminis
(2014) to consider the variability of trip lengths inside the regions. Yildirimoglu
et al. (2018) proposed a hierarchical control strategy composed of an upper-level
regional route guidance scheme for minimizing the total delay and a lower-level path
assignment mechanism for actuating the output of the upper-level scheme. Huang
et al. (2020) and Zhong et al. (2020) investigated the DUE and DSO problems for
multi-region MFD systems with time-varying delays to model simultaneous route
choice and departure time choice, respectively. Zhong et al. (2021) investigated the
DUE problem of departure time choice in an isotropic urban network governed by a
trip-based model with identical travelers.

Recent efforts have been devoted to the integration of perimeter control and regional
route guidance (PCRG) for improving traffic efficiency in multi-region MFD-based
networks. A dynamic simple route choice model was firstly integrated into traffic
management of an MFD-based network consisting of a freeway and two homoge-
neous regions by Haddad et al. (2013). Using a Logit model, Ramezani et al. (2015)
developed a hierarchical control framework of model-based perimeter control for
region- and subregion-based MFD systems, while iterative learning control was
employed by Lei et al. (2019) for model-free perimeter control with route choice. It

16 Chapter 2 Literature review



is worth noting that these works utilized the Logit model to generate route choice
splits. They regard the mean regional path travel time as the utility and assume
a constant per origin-destination (OD) regional pair. As discussed in Batista et al.
(2019), the true trip patterns in a city network are unknown and time-varying,
making it very difficult to properly set and calibrate regional trip distances for
the application of MFD-based models. An alternative representation of the travel
time is the estimated experienced travel time (Yildirimoglu and Geroliminis, 2014),
which depends on the trip distance distribution and the spatial mean speed. Other
works are dedicated to optimizing the perimeter control and the controllable route
guidance strategies simultaneously. Sirmatel and Geroliminis (2018) proposed an
economic MPC scheme integrating perimeter control and regional route guidance to
improve mobility. Hou and Lei (2020) employed a constrained adaptive predictive
framework combined with MPC for designing the PCRG strategies. Fu et al. (2021)
developed a PCRG strategy to prevent the protected region from congestion, wherein
Colored Petri Nets were used to enhance the MFD model for capturing macroscopic
characteristics (e.g., transfer flows and travel delays) of urban traffic systems.

The differences between the “model” used for control design and the “plant” used
for simulating the real traffic system, i.e., the model-plant mismatch, have been con-
sidered in model-based PCRG strategies. To our best knowledge, no existing works
on model-free PCRG have taken the model-plant mismatch into account. To fill this
gap, Study 3 of this thesis will develop an iterative adaptive dynamic programming
approach to handling the challenges brought by the model-plant mismatch. More
discussion on the contributions of Study 3 can be found in Chapter 5.

2.3 Traffic control of mixed networks

With the expansion of the city radius and the emergence of city agglomeration,
urban networks connected by arterials cannot satisfy the travel demand of citizens.
Highway and expressway are built to connect the city center and satellite city in the
suburbs. For example, the 6th Ring Road connects seven districts in Beijing while
55% of Beijing citizens live beside the 5th Ring Road. The Inner Ring Road diverted
approximately 20% of the traffic flow of the central urban area in Guangzhou,
which connects to the Guangzhou Ring Expressway through seven radial routes.
Highways and urban streets can have varying traffic characteristics and flow-density
relationships. Generally, vehicles on highways travel at a higher speed than on urban
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streets. The expressway is not connected to the urban network directly but through
on-ramps and off-ramps.

In general, the regulation objectives for arterial roads in the urban region and the
freeways/highways are different and may conflict with each other. It is necessary
to consider the travel demand of the highways when designing perimeter control
and route guidance strategies. To the best knowledge of the authors, Haddad et al.
(2013) initially considered the cooperative control of two regions and a freeway
using perimeter control and ramp metering, wherein the urban network is modeled
using a two-region MFD system and the highway surpass is modeled with asymmetric
cell transmission model (ACTM). Ding et al. (2020a) proposed an integral control
for macroscopic traffic guidance, ramp-coordinated control, and MFD subregion
perimeter control in a road network consisting of three neighboring regions and
one freeway running through. Han et al. (2020) modeled the freeway traffic with
MFDs and proposed a hierarchical ramp metering control strategy to minimize the
total time spent in the freeway. Yocum and Gayah (2022) devised a coordinated
traffic management that combines perimeter flow control and variable speed limits
(VSL), wherein the network topology is consistent with Haddad et al. (2013). For
more realistic modeling of the urban network, Hu and Ma (2024) developed a
demonstration-guided reinforcement learning approach for perimeter control and
ramp metering of the Hong Kong network. In most literature, it is assumed that
the freeway runs through the urban network, and this network representation is
still far from realistic. Ring expressways are becoming more common and pivotal in
megacities nowadays. However, a cooperative control model integrating perimeter
control, route guidance, and ramp metering for a multi-region urban network with
ring expressways remains to be explored. Due to the increased region size, the model
complexity makes it impossible to solve the optimal cooperative control problem
explicitly. To address these gaps, Study 4 of this thesis will propose a cooperative
adaptive dynamic programming method that trains the agents of perimeter control,
route guidance, and ramp metering to cooperate in improving network performance.
More discussion on the contributions of Study 4 can be found in Chapter 6.
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2.4 Preliminaries: adaptive dynamic
programming and integral reinforcement
learning

The RL and ADP help the optimal control circumvent the requirement of complete
knowledge of the system dynamics so that uncertainties and changes in dynamics
can be incorporated into the optimal control framework. Compared with the off-line
nature of the conventional optimal control framework, the RL and ADP can find
the optimal solution online in real-time using a data-driven mechanism meanwhile
robustness and adaptiveness can be well achieved.

In this section, we outline how the HJB equation couples the performance functional,
the nonlinear system dynamics, the IRL Bellman equation, and the neural network
framework.

Consider the nonlinear system in the affine form as

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = l(x(t))
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp represent the state, the control input, and
the output of (2.1), respectively. We call f(x(t)) ∈ Rn the drift dynamics, g(x(t)) ∈
Rn×m the input dynamics, and l(x(t)) ∈ Rp the output dynamics, respectively. It is
assumed that f(0) = 0 and f(x(t)) + g(x(t))u(t) is locally Lipschitz and the system
is stabilizable.

In the optimal regulation problem, the objective is to design an optimal control
input such that the controlled state of (2.1) converges to the desired equilibrium by
minimizing a cost functional defined as

J(x(0), u) =
∫ ∞

0
L(x(t), u(t))dt ≡

∫ ∞

0
(N(x(t)) + U(u(t))))dt

where N(x) � 0 and U(u) � 0, with � denotes positive semi-definite. Generally,
we choose U(u) = uTRu, R = RT � 0 and R ∈ Rm×m for unconstrained control
case with � denotes positive definite. However, for many real applications, u is
saturated, i.e., | uξ |≤ λ, ξ = 1, . . . ,m, where λ > 0 is the performance limit of the

2.4 Preliminaries: adaptive dynamic programming and integral re-
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actuator. Abu-Khalaf et al. (2008) proposed the following generalized non-quadratic
functional to consider the effect of saturation on control input u.

U(u) = 2
∫ u

0
λ tanh−T (s/λ)Rds, λ > 0

Without loss of generality, let R = diag(γ1, . . . , γm) be a positive definite matrix of
proper dimension.

Definition 2.4.1 (Admissible Control) A control policy µ is admissible to (2.1), if
µ(x) is continuous on Ω, µ(0) = 0 and µ stabilizes the system (2.1) on Ω with the
value function (2.2) being finite for ∀x0 ∈ Ω.

The value function for an admissible control policy can be defined as

V (x, u) =
∫ ∞

t
L(x(τ), u(τ))dτ ≡

∫ ∞

t
(N(x(τ)) + U(u(τ))))dτ (2.2)

The Hamiltonian function is

H

(
x, u,

∂V

∂x

)
= L(x, u) +

(
∂V

∂x

)T

(f(x) + g(x)u)

Since the integrand of the performance functional does not depend on time explicitly
and the terminal time is fixed (or infinite time) while (2.1) is an autonomous
dynamical system, the optimality is given by H

(
x, u, ∂V

∂x

)
= 0, i.e., the Bellman

optimality equation

L(x, u?) +
(
∂V ?

∂x

)T

(f(x) + g(x)u?) = 0 (2.3)

The optimal control can be obtained as

u? = −λ tanh
( 1

2λR
−1gT (x)∂V

?

∂x

)
(2.4)

Since sensors collect data and transfer them to the controllers with prescribed
time resolutions, we cannot apply the Bellman equation (2.3) directly in practice.
Moreover, (2.3) involves the exact system dynamics f(x) and g(x). To relax this
requirement and to consider sensor data measurements, an equivalent formulation
of the the Bellman equation (2.3) that does not involve the drift dynamics can be
established

V (x(t)) =
∫ t+∆t

t
(N(x(τ))+U(u(τ)))dτ+V (x(t+ ∆t))
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for any time t ≥ 0 and time interval ∆t > 0. ∆t is termed as the reinforcement
interval, which can be adjusted in real-time according to the resolution of sensor
data and the learning rate of the RL based algorithms. This equation is called
IRL Bellman equation. By iterating on the IRL Bellman equation and updating the
control policy, we can obtain both the value function and the optimal control.

Given an admissible policy u0, for j = 0, 1, . . ., given uj , solve for the value Vj+1(x)
using the following IRL Bellman equation in iteration.

Vj+1(x(t)) =
∫ t+∆t

t

(
N(x(τ)) + U(uj(τ))

)
dτ + Vj+1(x(t+ ∆t)) (2.5)

on convergence, set Vj+1(x(t)) = Vj(x(t)). Update the control policy uj+1(x(t))
using

uj+1(x(t)) = −λ tanh
( 1

2λR
−1gT (x(t))∂Vj+1

∂x

)
(2.6)

(2.5)-(2.6) are known as an on-policy RL algorithm.

To uniformly approximate the value function in (2.5), we can use the following
neural-network-type structure.

V̂ (x) = Ŵ T
c φ1(x)

where φ1(x) : Rn → RN is the basis function vector and N is the number of basis
functions. With this value function approximation, its partial derivative ∂V̂

∂x can
be approximated accordingly. Using the above approximated value function, the
constrained optimal control in (2.4) can be generated by

û = −λ tanh
( 1

2λR
−1gT (x)Ŵ T

c

∂φ1
∂x

)
Incorporating these approximations into the IRL Bellman equation yields

e(t) = ∆φ1(x(t))T Ŵc +
∫ t

t−∆t
(N(x(τ)) + U(û(τ)))dτ

where ∆φ1(x(t)) = φ1(x(t)) − φ1(x(t− ∆t)) and e is the temporal difference (TD)
error after using current approximated critic weight Ŵc. To avoid the case that there
are insufficient real-time data for updating the weights of the learning network and
to use the data in the history stack efficiently, we consider ∆φ1(x(tj)) as evaluated
values of ∆φ1 at the recorded time tj . Then, we define the Bellman equation error

2.4 Preliminaries: adaptive dynamic programming and integral re-
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(i.e., TD error) at the recorded time tj using the current critic weight estimation Ŵc

as
e(tj) = ∆φ1(tj)T Ŵc +

∫ tj

tj−∆t
(N(x(τ)) + U(û(τ)))dτ

Recent transition samples (historical data) are stored and repeatedly presented to
the gradient-based update rule of the weights of the learning network (2.7) so as to
speed up the computation and to obtain an easy-to-check convergent condition for
the IRL algorithm. This process is known as the experience replay (ER) technique.
The weights of the learning network are updated via minimizing simultaneously the
instantaneous TD error (the first part of (2.7) from real-time measurement) and the
TD errors for the stored transition samples (the second part of (2.7)), which is given
as

˙̂
Wc = − αc

∆φ1(x(t))
(∆φ1(x(t))T ∆φ1(x(t)) + 1)2 e(t)

− αc

l∑
j=1

∆φ1(x(tj))
(∆φ1(x(tj))T ∆φ1(x(tj)) + 1)2 e(tj)

(2.7)

The optimal policy (2.6) implemented by the on-policy IRL algorithms does not
require the knowledge of f(x). However, it still relies on the input dynamics
g(x). To get rid of g(x), we may adopt an off-policy IRL algorithm that the control
implemented (nearly optimal) can be different from the optimal control (2.6).
Towards this, we rewrite the affine dynamics as

ẋ(t) = f(x(t))+g(x(t))uj(t)+g(x(t))(u(t)−uj(t)) (2.8)

where uj(t) is the policy to be updated and u(t) is the behavior policy that is
actually implemented to the system dynamics to generate the data for learning.
Differentiating the value function V (x) along the system trajectory (2.8) and using
(2.6) yields

V̇j =
(
∂Vj(x)
∂x

)
T (f + guj) +

(
∂Vj(x)
∂x

)T

g(uj+1 − uj)

= −N(x) − 2%T (uj+1)R(uj+1 − uj) − 2
∫ uj

0
%T (s)Rds
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where %(s) = λ tanh−1(s/λ). Integrating the above equation yields the off-policy
IRL Bellman equation

Vj(x(t+ ∆t)) − Vj(x(t)) =
∫ t+∆t

t

(
−N(x) − 2%T (uj+1)R(uj+1 − uj)

− 2
∫ uj

0
%T (s)Rds

)
dτ

(2.9)

For an implemented control policy u(t), the off-policy IRL Bellman equation (2.9)
can be solved for both value function Vj and updated policy uj+1 simultaneously
without requiring any knowledge about the system dynamics.

On-policy and off-policy RL algorithms are devised in the literature (see Liu et al.,
2020, for a comprehensive review). Their essential difference lies in how the target
policy and the behavior policy are implemented. The target policy is what we are
learning about, i.e., the optimal control law or the solution to the HJB equation.
The target policy can be regarded as the ideal optimal policy. The behavior policy
generates the action and behavior, which can be regarded as the policy implemented.
The target policy and the behavior policy are the same for on-policy RL algorithms
while they are different for off-policy algorithms. Generally, similar to the decision
process of human beings, the off-policy algorithms can learn the optimal policies but
implement suboptimal policies.

2.4 Preliminaries: adaptive dynamic programming and integral re-
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Learning the macroscopic traffic dynamics
for adaptive optimal perimeter control with
integral reinforcement learning

3
Existing data-driven and feedback traffic control strategies do not consider the hetero-
geneity of real-time data measurements. Besides, traditional reinforcement learning
(RL) methods for traffic control usually converge slowly for lacking data efficiency.
Moreover, conventional optimal perimeter control schemes require exact knowledge
of the system dynamics and thus they would be fragile to endogenous uncertainties.
To handle these challenges, this work will propose an integral reinforcement learning
(IRL) based approach to learning the macroscopic traffic dynamics for adaptive opti-
mal perimeter control. This work aims to make the following primary contributions
to the transportation literature: (a) A continuous-time control will be developed
with discrete gain updates to adapt to the discrete-time sensor data. Different from
the conventional RL approaches, the reinforcement interval of the proposed IRL
method can vary with respect to the real-time resolution of data measurements.
Approximate optimization methods will be carried out to address the curse of di-
mensionality of the optimal control problem with consideration on the resolution of
data measurement. (b) To reduce the sampling complexity and use the available
data more efficiently, the experience replay (ER) technique will be introduced to
the IRL algorithm. (c) The proposed method will relax the requirement on model
calibration in a “model-free” manner that enables robustness against modeling un-
certainty and enhances the real-time performance via a data-driven RL algorithm.
(d) The convergence of the IRL-based algorithms and the stability of the controlled
traffic dynamics will be proven via the Lyapunov theory. The optimal control law
will be parameterized and then approximated by neural networks (NN), which can
moderate the computational complexity. Both state and input constraints will be
considered while no model linearization will be required. Numerical examples and
simulation experiments will be presented to verify the effectiveness and efficiency of
the proposed method.
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3.1 Introduction

The growth of urbanization has led to a significant increase in car usage across
metropolitan cities worldwide, resulting in a surge in traffic congestion, accidents,
and pollution. Managing the rapidly growing travel demand requires the efficient
use of existing infrastructure through appropriate traffic control schemes. The
conventional traffic control methods, such as local traffic signal control strategies,
focus on link-level strategies, which may not be optimal or might not achieve the
stabilization of the system for heterogeneous networks with multiple bottlenecks
and heavily directional demand flows. Network-level traffic control strategies should
be developed to alleviate network congestion when confronted with conditions.

The perimeter control is one of the most significant applications of MFDs. The
perimeter control, which aims to manipulate the transfer flow at the boundaries of
the region, is a promising solution to address the spatial dimension challenge in
dealing with network-scale traffic congestion. According to the network topology
and partitioning, the urban network can be modeled as a single-region (Haddad and
Shraiber, 2014), two-region (Zhong et al., 2018b), or multi-region MFD system (Sir-
matel and Geroliminis, 2018). Apart from model-based perimeter control schemes,
recent research efforts have been dedicated to data-driven perimeter control strate-
gies, e.g., iterative learning control by Ren et al. (2020) and deep reinforcement
learning (RL) by Zhou and Gayah (2021).

Considering that traffic data are collected from sensors in a discrete-time manner,
we would like to establish a continuous-time control (MFD dynamics) with discrete
gain updates (adapting to the sensor data). Generally, the sample time interval
of the data collected by a type of sensor is fixed. Thus, sensors of various types
deployed in a traffic network would be heterogeneous with different resolutions
of data measurements. It would be much better if the reinforcement intervals
can be varying with respect to the real-time resolutions of data measurements,
i.e., the reinforcement intervals can be selected online to ensure the data-driven
RL algorithms do have rich data. Existing works utilizing RL such as Su et al.
(2020) and Zhou and Gayah (2021) do not consider such issues. Different from
the traditional online RL approaches, the reinforcement intervals of the integral
reinforcement learning (IRL) need not be identical and can be adjusted online,
which consequently is more suitable for real-world traffic data measurement and
allows adaptive online learning to guarantee real-time performance. Based on the
idea of IRL, an equivalent Bellman equation, namely the IRL Bellman equation
was developed. An online policy iteration algorithm was developed for the optimal
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control problem of continuous-time systems via solving the IRL Bellman equation in
Vrabie et al. (2009). This adaptive optimal control does not explicitly employ the
knowledge on system dynamics, i.e., “model-free".

The actor-critic (AC) structure contributes significantly to the success of RL algo-
rithms. In the AC structure, the actor deploys a control policy to the system or
environment, while the critic evaluates the cost induced by the implemented control
policy and provides reward signals to the actor. The actor-critic dual neural networks
(AC-NN) can be used to circumvent the “curse of dimensionality”. Despite the adap-
tive learning capability, traditional RL approaches usually converge slowly for lacking
data efficiency, which is a major obstacle to real-time applications. Experience replay
(ER) technique, also known as concurrent learning, provides a promising approach
to improve the efficiency of RL algorithms1. The ER technique uses historical and
current data simultaneously in a “smart” manner. It has been found that the AC
structure can be integrated with the ER technique to improve the data efficiency and
convergent speed of RL algorithms (Modares et al., 2014).

To handle the aforementioned challenges, this study makes the following primary
contributions to the transportation literature.

• Robustness to heterogeneous data resolutions. Unlike the conventional RL
algorithms, the reinforcement intervals of the proposed IRL approach can be
selected online to adapt to heterogeneous real-time data resolutions. The
introduction of the ER technique to RL algorithms can speed up their con-
vergence when limited real-time data are available due to unexpected longer
sample time intervals.

• Data efficiency. In the ER technique, a number of recent samples are stored in a
database and are presented repeatedly to the underlying RL algorithm, which
enhances their data efficiency. An easy-check rank condition is introduced to
verify the data richness requirement and reduce sampling complexity.

• Model-free against modeling uncertainties. It is desirable for the controller to
handle the modeling uncertainties. Unlike the previous studies which rely on
exact knowledge of the underlying system dynamics, a key advantage of the
proposed method is that the exact knowledge of the traffic model is no longer
needed. Also, the proposed approach does not rely on the widely used model
linearization.

1Another benefit of ER is conquering the difficulty arising in the persistently exciting
condition for nonlinear systems.
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• Incorporating real-time data-driven components for adaptiveness. It is nec-
essary to enable the controller to adapt to the real-time traffic conditions,
e.g., traffic incidents. To this end, an online adaptive data-driven perimeter
controller is devised.

• Convergence and stability guaranteed. Unlike many existing studies in the
transportation literature that use RL algorithms without proof of convergence
nor stability, this work guarantees the closed-loop stability of the overall
system by leveraging the RL with Lyapunov theory. The input and state
constraints are explicitly considered in the proposed IRL algorithms.

This chapter is organized as follows: Section 3.2 discusses the optimal perimeter
control problem formulation. Section 3.3 develops a model-free data-driven IRL
method for optimal adaptive perimeter control. Then Section 3.4 performs the
implementations of the proposed online iterative learning algorithm with NNs. Nu-
merical results are presented in Section 3.5 and a microscopic simulation experiment
is provided in Section 3.6. Finally, Section 3.7 provides concluding remarks. For
convenience, we summarize the standalone key notation used in this chapter in
Table 3.1.

For a better grasp of the logical structure of this chapter, the flow for reasoning is
depicted in Figure 3.1. Consider the MFD based system in the affine form as (3.5).
In the optimal regulation problem, the objective is to design an optimal perime-
ter control such that the accumulation state converges to the desired equilibrium
by minimizing a cost functional defined by (3.6). This optimal cost function and
perimeter control can be derived via solving an equivalent HJB equation (3.12).
Note that the solution of (3.12) may be intractable due to its strong nonlinearity.
One of the most common methods to resolve this difficulty is the policy iteration
method (3.21)-(3.22). However, because of the heterogeneity of real-time data
measurements and the lack of complete knowledge on the system dynamics, we
cannot apply the policy iteration method directly in practice. Hence, an equivalent
formulation of the policy iteration method, namely, the IRL Bellman equation given
by (3.37) is established, which can adapt to the time-varying real-time data reso-
lution and does not involve the system dynamics, i.e., “model-free”. Finally, based
on (3.37), an online iterative learning scheme with experience replay adaptation
law (3.48) are established, which can be implemented with the AC-NN framework
(3.45) to boost the computational efficiency and approximate the optimal perimeter
controller ũ∗.
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Constrained Optimal Perimeter Control Problem (COPCP): (3.6)

Hamilton-Jacobi-Bellman (HJB) equation: (3.12)

Integral reinforcement learning Bellman equation (IRL-BE): (3.37)

Theorem 3.3.1: Equivalence between IRL-BE (3.37) and policy 
iteration method (3.21)-(3.22)

Section 3.4. Implementation

AC-NN (3.45) to approximate 
the solution of (3.37)

Online learning by integrating ER 
using update law (3.48)

Theorem 3.4.1: Convergence of update law (3.48) implemented with AC-
NN (3.45)

Section 3.2. Problem formulation

Section 3.3. Methodology

Lemma 3.2.1: Necessary condition for the solution to the COPCP

Policy iteration method: (3.21)-(3.22)

Lemma 3.3.1: Convergence of the policy iteration method to the 
solution to the HJB equation (3.12)

Figure 3.1 Summary of the main results of Study 1
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3.2 Problem statement

In this section, we first recapitulate the dynamics for a traffic network modeled by
multi-region MFD systems. We then discuss the optimal perimeter control problem
formulation.

3.2.1 The multi-region MFD framework

A heterogeneous urban network decomposed into L (L > 1) homogeneous subre-
gions wherein each region admits a well-defined MFD and average within-region
trip distance is considered in line with Haddad (2015) and Zhong et al. (2018b).
Let the state vector be n(t) , [n11(t), . . . , nij(t), . . . , nLL(t)]T ∈ Rαn and the travel
demand vector be q(t) , [q11(t), . . . , qij(t), . . . , qLL(t)]T ∈ Rαq , respectively. The
control vector is u(t) , [u12(t), . . . , uij(t), . . . , uLj(t)]T ∈ Rαu , where uij(t) controls
the ratio of the transfer flow that transfer from region i to j at time t. Note that
ni(t) and uij(t) are subject to heterogeneous constraints as given by (3.2a)-(3.2b).
The dynamic flow conservation equations of the multi-region MFD system are then
formulated as follows:

dnii(t)
dt

= −nii(t)
ni(t)

Gi(ni(t)) +
∑
j∈Zi

nji(t)
nj(t) Gj(nj(t))uji(t) + qii(t) (3.1a)

dnij(t)
dt

= −nij(t)
ni(t)

Gi(ni(t))uij(t) + qij(t) (3.1b)

ni(t) = nii(t) +
∑
j∈Zi

nij(t) (3.1c)

subject to

0 ≤ ni(t) ≤ njam
i (3.2a)

0 ≤ umin
ij ≤ uij(t) ≤ umax

ij ≤ 1 (3.2b)

where i = 1, . . . , L and j 6= i. The state dynamics (3.1a)-(3.1b) can be written in
the following affine form (Su et al., 2020):

ṅ(t) = F (n(t)) + S(n(t))u(t) (3.3)

One significant traffic management purpose is to devise perimeter control u(t) to
regulate the cross-boundary flows such that the network accumulations n(t) can
converge to the desired equilibrium n∗, i.e., set-point control (Zhong et al., 2018a;
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Zhong et al., 2018b). The steady state n∗ and the corresponding control input u∗

can be solved from the steady-state equations (Haddad and Shraiber, 2014; Zhong
et al., 2018b):

dn∗
ii

dt = 0 = −n∗
ii

n̄i
Gi(n̄i) +

∑
j∈Zi

n∗
ji

n̄j
Gj(n̄j)u∗

ji + q∗
ii (3.4a)

dn∗
ij

dt = 0 = −
n∗

ij

n̄i
Gi(n̄i)u∗

ij + q∗
ij (3.4b)

n̄i = n∗
ii +

∑
j∈Zi

n∗
ij (3.4c)

subject to
0 ≤ n̄i ≤ njam

i , 0 ≤ umin
ij ≤ u∗

ij ≤ umax
ij ≤ 1

where q∗
ii and q∗

ij are nominal demand patterns.

It is a common practice to perform a coordinate transformation to reformu-
late the set-point control problem into a stabilization problem (Zhong et al.,
2018a; Zhong et al., 2018b). We define ñ(t) = [ñ1(t), . . . , ñαn(t)]T ∈ Rαn and
ũ(t) = [ũ1(t), . . . , ũαu(t)]T ∈ Rαu as the new state vector and new control vector,
respectively. ñ = n−n∗ denotes the difference between the actual accumulation and
the desired steady-state accumulation, while ũ = u− u∗ is the difference between
the actual control input and the steady-state control input. After the coordinate
transformation, the multi-region MFD system (3.1a)-(3.1c) can be expressed by the
following standard affine form:

˙̃n(t) = F(ñ(t)) + S(ñ(t))ũ(t) (3.5)

Both the state vector and the control vector of system (3.5) are restricted into some
compact sets say ñ(t) ∈ Ω ⊂ Rαn and ũ(t) ∈ U ⊂ Rαu , where Ω and U are the
universal sets of ñ and ũ, respectively. F and S are unknown Lipschitz continuous
nonlinear functions on Ω ⊂ Rαn containing the origin.

In Appendix A.1, we present the dynamics in the affine form for the two-region and
the three-region MFD systems, which are widely investigated in the literature.
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3.2.2 Optimal perimeter control of multi-region MFD
system

Set-point control and minimizing the total time spent (TTS) are two main objectives
considered in the optimal perimeter control problem of MFD systems. In this
subsection, we present the formulation of constrained optimal perimeter control
problem (COPCP) for multi-region MFD systems considering heterogeneous cross-
boundary capacities.

As a special case, Su et al. (2020) showed that the set-point control problem of the
two-region MFD system could be modeled as a constrained optimal control problem.
We will extend the formulation of set-point constrained optimal perimeter control
problem (S-COPCP) for the two-region MFD system to general multi-region MFD
systems while considering the heterogeneous cross-boundary capacities. We will
also derive the necessary condition for the S-COPCP of multi-region MFD systems.
Next, we will present the COPCP for minimizing TTS (T-COPCP) of the multi-region
MFD system and derive the optimal perimeter control law for the T-COPCP.

3.2.2.1 Set-point COPCP (S-COPCP) of the Multi-region MFD System

Consider the multi-region MFD system (3.5), find the perimeter controller ũ to
minimize the following objective function:

min
ũ
J(ñ0) =

∫ ∞

0
L(ñ(t), ũ(t))dt (3.6)

subject to (3.5)

where ñ ∈ Ω ⊂ Rαn and ũ ∈ U ⊂ Rαu .

The utility function for the S-COPCP is given by

L(ñ(t), ũ(t)) , N(ñ(t)) + U(ũ(t)) (3.7)

whereN(ñ) represents the cumulative error between the system state and the desired
equilibrium, and U(ũ) is the required control effort for unconstrained control case.
Generally, N(ñ) , ñTQñ � 0 with Q ∈ Rαn×αn and Q � 0, and U(ũ) , ũTRũ � 0
with R ∈ Rαu×αu and R � 0.

Without loss of generality, let R = diag(γ1, . . . , γαu) ∈ Rαu×αu with γku > 0, ku =
1, . . . , αu. To handle the heterogeneous cross-boundary capacities (3.2b) in the
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perimeter controller design, i.e., ũmin
ku

≤ ũku ≤ ũmax
ku

, inspired by Abu-Khalaf et al.
(2006) and Lyshevski (1998), for each ũku we define the following function:

Uku(ũku) = 2vku
γku

∫ ũku

vku

tanh−1
(
vku − vku

vku

)
dvku

where vku = ũmax
ku

+ũmin
ku

2 , vku
= ũmax

ku
−ũmin

ku
2 . Based on the features of inverse hyperbolic

tangent function, Uku(ũku) can be regarded as a penalty function which limits the
input ũku to (ũmin

ku
, ũmax

ku
). Figure 3.2 shows that the saturation actuator (blue dotted

line) developed by the proposed penalty function can well approximate the non-
smooth control constraint (green solid line) in a smooth manner. Thus, U(ũ) is
defined as

U(ũ) =
αu∑

ku=1
Uku(ũku) =

αu∑
ku=1

2vku
γku

∫ ũku

vku

tanh−1
(
vku − vku

vku

)
dvku

= 2vTR

∫ ũ

v
tanh−1

(1
v

� (v − v)
)

dv
(3.8)

where v , [v1, . . . , vαu ]T ∈ Rαu , v , [v1, . . . , vαu
]T ∈ Rαu .

-4 -2 0 2 4
-0.5

0

0.5

1

1.5

P
er

fo
rm

an
ce

 o
f s

at
ur

at
io

n 
ac

tu
at

or

smooth approximation
desired saturation [0, 1]

Figure 3.2 Performance of the proposed saturation actuator

The value function V : Rαn → R is defined as

V (ñ(t)) =
∫ ∞

t
L(ñ(τ), ũ(τ))dτ

≡
∫ ∞

t
(N(ñ(τ)) + U(ũ(τ)))dτ

=
∫ ∞

t

(
ñT (τ)Qñ(τ) + 2vTR

∫ ũ(τ)

v
tanh−1

(1
v

� (v − v)
)

dv
)

dτ

(3.9)
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Following the development in Section 2.4, we can obtain the following Bellman
equation

L(ñ(t), ũ(t)) +
(
∂V

∂ñ

)T

(F(ñ) + S(ñ)ũ) = 0 (3.10)

Now we can present the necessary condition for the solution to the S-COPCP of the
multi-region MFD system.

Lemma 3.2.1 Suppose that V ∗ is the optimal value function for the S-COPCP of the
multi-region MFD system. It follows that

1. the constrained optimal perimeter control is given by

ũ∗ = −v � tanh(D∗) + v, with D∗ = 1
2v �

(
R−1ST ∂V

∗

∂ñ

)
(3.11)

where D∗ = [D∗
1, . . . , D

∗
αu

]T ∈ Rαu is the unconstrained optimal control input;

2. the necessary condition for the solution to the S-COPCP, i.e., (V ∗, D∗) should
satisfy the following equation:

0 = ñTQñ+
(
∂V ∗

∂ñ

)T

F +
(
∂V ∗

∂ñ

)T

Sv + v2TR ln(1αu − tanh2(D∗)) (3.12)

where 1αu ∈ Rαu is a column vector with each element equal to 1.

Proof 3.2.1 1) Assume that V ∗ is the optimal value function which satisfies (3.10),
then it yields the following HJB equation

H

(
ñ, ũ,

∂V ∗

∂ñ

)
= min

ũ

[
L(ñ, ũ) +

(
∂V ∗

∂ñ

)T

(F(ñ) + S(ñ)ũ)
]

= min
ũ

[
ñTQñ+ 2vTR

∫ ũ

v
tanh−1

(1
v

� (v − v)
)

dv

+
(
∂V ∗

∂ñ

)T

(F(ñ) + S(ñ)ũ)
]

= 0

= min
ũ

[
ñTQñ+

αu∑
ku=1

2vku
γku

∫ ũku

vku

tanh−1
(
vku − vku

vku

)
dvku

+
(
∂V ∗

∂ñ

)T

F(ñ) +
αu∑

ku=1

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku ũku

]
(3.13)

where Skn,ku denotes the kn-th element of the ku-th column of S.
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The optimal constrained perimeter control ũ∗
ku

is calculated by applying the station-
ary (optimal) condition ∂H/∂ũ∗

ku
= 0, i.e.,

∂H

∂ũ∗
ku

= 2vku
γku tanh−1

(
ũ∗

ku
− vku

vku

)
+

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku = 0

Then it follows that

tanh−1
(
ũ∗

ku
− vku

vku

)
= − 1

2vku
γku

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku

⇒
ũ∗

ku
− vku

vku

= tanh

− 1
2vku

γku

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku


= − tanh

 1
2vku

γku

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku


⇒ ũ∗

ku
= −vku

tanh

 1
2vku

γku

αn∑
kn=1

∂V ∗

∂ñkn

Skn,ku

+ vku

Let D∗
ku

= 1
2vku

γku

∑αn
kn=1

∂V ∗

∂ñkn
Skn,ku be the ku-th unconstrained optimal control

input. The optimal control ũ∗
ku

is obtained as

ũ∗
ku

= −vku
tanh(D∗

ku
) + vku (3.14)

Therefore, the constrained optimal perimeter control is given by

ũ∗ = −v � tanh(D∗) + v, with D∗ = 1
2v �

(
R−1ST ∂V

∗

∂ñ

)
(3.15)

2) Let v̂ = 1
v � (v − v). Substituting (3.15) into (3.8), we have

U(ũ∗) = 2vT � vTR

∫ 1
v

�(ũ∗−v)

0
tanh−1(v̂)dv̂ = 2v2TR

∫ − tanh(D∗)

0
tanh−1(v̂)dv̂

= 2v2TR ·
(
v̂ � tanh−1(v̂) + 1

2 ln(1αu − v̂2)
) ∣∣∣− tanh(D∗)

0

= 2v2TR

(
tanh(D∗) �D∗ + 1

2 ln(1αu − tanh2(D∗))
)

= 2v2TR(D∗ � tanh(D∗)) + v2TR ln(1αu − tanh2(D∗))

= 2v2TR

( 1
2v �

(
R−1ST ∂V

∗

∂ñ

)
� tanh(D∗)

)
+ v2TR ln(1αu − tanh2(D∗))

=
(
∂V ∗

∂ñ

)T

S(ñ)(v � tanh(D∗)) + v2TR ln(1αu − tanh2(D∗))

(3.16)
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Then substituting (3.15)-(3.16) into (3.13), the HJB equation can further be ex-
pressed by

0 = ñTQñ+
(
∂V ∗

∂ñ

)T

(F + Sũ∗) +
(
∂V ∗

∂ñ

)T

S(v � tanh(D∗))

+ v2TR ln(1αu − tanh2(D∗))

= ñTQñ+
(
∂V ∗

∂ñ

)T

F +
(
∂V ∗

∂ñ

)T

Sũ∗ +
(
∂V ∗

∂ñ

)T

S · (v � tanh(D∗))

+ v2TR ln(1αu − tanh2(D∗))

= ñTQñ+
(
∂V ∗

∂ñ

)T

F +
(
∂V ∗

∂ñ

)T

S · (−v � tanh(D∗) + v)

+
(
∂V ∗

∂ñ

)T

S · (v � tanh(D∗)) + v2TR ln(1αu − tanh2(D∗))

= ñTQñ+
(
∂V ∗

∂ñ

)T

F +
(
∂V ∗

∂ñ

)T

Sv + v2TR ln(1αu − tanh2(D∗))

(3.17)

That is, if (V ∗, D∗) is the solution to the COPCP, (V ∗, D∗) should satisfy (3.17). This
completes the proof.

Note that (3.12) is the HJB equation for the S-COPCP of the multi-region MFD system.
To find the optimal feedback control policy ũ∗ that minimizes (3.6), it is necessary to
solve the HJB equation (3.12) for the value function V ∗ and unconstrained control
D∗, and then substitute them into (3.11). However, the HJB equation (3.12) is
extremely difficult to solve due to its strong nonlinearity. In the subsequent sections,
a data-driven online algorithm will be presented to find an approximate solution to
(3.12) without requiring the system dynamics.

3.2.2.2 MinTTS COPCP (T-COPCP) of the Multi-region MFD System

Another commonly adopted perimeter control objective is to minimize the total time
spent (TTS) during the simulation period:

min
u
J̄(n0) =

∫ tf

0

(
L∑

i=1
ni(t) + λ̄‖u(t)‖

)
dt (3.18)

subject to (3.3)

where n and u are constrained by (3.2a)-(3.2b). The last term of the value function
(3.18) is to damp oscillation of the control input, where λ̄ is a positive constant to
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adjust the weight of the norm. Different from S-COPCP, the formulation of T-COPCP
does not require coordinate transformation.

The Hamiltonian function can be formulated as:

H̄

(
n, u,

∂V̄

∂n

)
=

L∑
i=1

ni(t) + λ̄‖u(t)‖ +
(
∂V̄

∂n

)T

· (F (n) + S(n)u) (3.19)

where V̄ (n(t)) =
∫ tf

t

(∑L
i=1 ni(τ) + λ̄‖u(τ)‖

)
dτ .

Similar to the deduction of Lemma 3.2.1, the corresponding constrained optimal
control law is

u∗ = −v′ � tanh(D̄∗) + v′, with D̄∗ = 1
v′ �

(
1

2λ̄
ST ∂V̄

∗

∂n

)
(3.20)

where v′ , [v′
1, . . . , v

′
αu

]T ∈ Rαu , v′ , [v′
1, . . . , v

′
αu

]T ∈ Rαu with v′
ku

=
umax

ku
+umin

ku
2 , v′

ku
= umax

ku
−umin

ku
2 .

Note that (3.3) and (3.5) are in the same affine form. The theoretical results
developed for system (3.5) (regarding S-COPCP) can be applied to system (3.3)
(regarding T-COPCP).

3.3 Data-driven IRL based adaptive optimal
perimeter control

Parallel to the development in Section 2.4, to relax the requirement of system
knowledge and consider sensor data measurements, we will establish an equivalent
formulation of the HJB equation (3.12) that does not involve the system dynamics.
Towards this, in this section a recapitulation of the policy iteration method for
solving (3.12) will be presented. Based on the policy iteration method, a data-driven
model-free adaptive optimal perimeter controller, which considers the heterogeneous
discrete-time sensor data, is developed through the lens of the integral reinforcement
learning (IRL).

Note that it is difficult to give an analytical solution to (3.12) due to the strong
nonlinearity. Policy iteration is one of the most common methods to resolve this
difficulty. The policy iteration method considering heterogeneous cross-boundary
capacities is as follows:
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1. (Policy evaluation) Given an initial admissible control policy ũ0(ñ), find V k(ñ)
successively approximated by solving the following equation with V k(0) = 0

L(ñ, ũk) +
(
∂V k+1

∂ñ

)T

(F + Sũk) = 0, k = 0, 1, . . . (3.21)

2. (Policy improvement) Update the control policy simultaneously by

ũk+1(ñ) = −v � tanh(Dk+1) + v,Dk+1 = 1
2v �

(
R−1ST ∂V

k+1

∂ñ

)
(3.22)

where k is the iterative index. The policy evaluation is implemented to update
the iterative value function that satisfies the Bellman equation (3.10). Then based
on value iteration, the policy improvement is implemented to obtain the iterative
control law sequence that minimizes the total cost in each period. From the policy
improvement, we can always find another control law sequence that is better, or at
least no worse. The following lemma demonstrates the convergence of V k and ũk

(i.e., Dk) by iterating (3.21)-(3.22) to the optimal value function V ∗ and optimal
perimeter control ũ∗ (i.e., D∗).

Lemma 3.3.1 Let V k(ñ) ∈ C1(Ω) on Ω where V k(ñ) ≥ 0, V k(0) = 0 and ũk(ñ) is
admissible to (3.5), k = 0, 1, . . .. If (V k+1(ñ), ũk(ñ)) and (V k+2(ñ), ũk+1(ñ)) both
satisfy (3.10) with the boundary condition V k+1(0) = 0, V k+2(0) = 0, then

1. the obtained control policies ũk+1(ñ) in (3.22) are admissible for (3.5) on Ω;

2. V ∗(ñ) ≤ V k+2(ñ) ≤ V k+1(ñ), ∀ñ ∈ Ω;

3. limk→∞ V k(ñ) = V ∗(ñ);

4. limk→∞ ũk(ñ) = ũ∗(ñ).

To prove this lemma, we need the following Lemma 3.3.2.

Lemma 3.3.2 For a monotonically increasing odd function %(x), we have

1. %(x) · (y − x) −
∫ y

x %(s)ds ≤ 0,∀x, y;

2. %(x) · (y − x) −
∫ y

0 %(s)ds ≤ 0,∀x, y.
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Proof 3.3.1 1) Without loss of generality, we assume that y ≥ x.

Note that %(x) is monotonically increasing and odd. Thus,

%(x)


< 0, x < 0
= 0, x = 0
> 0, x > 0

, %(−x) = −%(x)

Then we have
∫ y

x %(s)ds ≥ 0. Moreover,
∫ y

x %(s)ds = 0 if and only if y = x.

Let ϕ(y) = %(x) · (y − x) −
∫ y

x %(s)ds, then

dϕ
dy

= %(x) − %(y)


> 0, y < x

= 0, y = x

< 0, y > x

The extreme value of ϕ(y) is obtained at y = x, i.e., ϕ(x) = 0 −
∫ x

x %(s)ds ≤ 0.
ϕ(y) = 0 if and only if y = 0. Thus, we have

%(x) · (y − x) −
∫ y

x
%(s)ds ≤ 0

and %(x) · (y − x) −
∫ y

x %(s)ds = 0 if and only if y = x.

2) The left side of the second part of Lemma 3.3.2 can be written as

%(x) · (y − x) −
∫ y

0
%(s)ds = %(x) · (y − 0) −

∫ y

0
%(s)ds− %(x)x (3.23)

Based on the first part, we have %(x) · (y − 0) −
∫ y

0 %(s)ds ≤ 0. Because %(x) and x
are monotonically increasing and odd, one has %(x)x ≥ 0, i.e., −%(x)x ≤ 0. Thus,
we have

%(x) · (y − x) −
∫ y

0
%(s)ds ≤ 0

Moreover, %(x) · (y − x) −
∫ y

0 %(s)ds = 0 if and only if y = x = 0. This completes the
proof.

Now we present the proof of Lemma 3.3.1.

Proof 3.3.2 1) Taking the derivative of V k+1 along the system F + Sũk+1 trajectory,
we have

V̇ k+1 =
(
∂V k+1

∂ñ

)T

F +
(
∂V k+1

∂ñ

)T

Sũk+1 (3.24)
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Based on (3.9) and (3.21), we have

N(ñ) + 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv +
(
∂V k+1

∂ñ

)T

F +
(
∂V k+1

∂ñ

)T

Sũk = 0

⇒
(
∂V k+1

∂ñ

)T

F = −
(
∂V k+1

∂ñ

)T

Sũk −N(ñ) − 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv

(3.25)

From (3.22), one has

ũk+1 − v = −v � tanh
(

1
2v �

(
R−1ST ∂V

k+1

∂ñ

))

⇒1
v

� (ũk+1 − v) = − tanh
(

1
2v �

(
R−1ST ∂V

k+1

∂ñ

))

⇒ tanh−1
(1
v

� (ũk+1 − v)
)

= − 1
2v �

(
R−1ST ∂V

k+1

∂ñ

)

⇒ − 2v � tanh−1
(1
v

� (ũk+1 − v)
)

= R−1ST ∂V
k+1

∂ñ

⇒
(
∂V k+1

∂ñ

)T

S = −2vT � tanh−T
(1
v

� (ũk+1 − v)
)
R (3.26)

Substitute (3.25)-(3.26) into (3.24), it follows that

V̇ k+1 = −N(ñ) − 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv −
(
∂V k+1

∂ñ

)T

Sũk

− 2vT � tanh−T
(1
v

� (ũk+1 − v)
)
Rũk+1

= −N(ñ) − 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv

+ 2vT � tanh−T
(1
v

� (ũk+1 − v)
)
Rũk

− 2vT � tanh−T
(1
v

� (ũk+1 − v)
)
Rũk+1

= −N(ñ) − 2
(
vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv

− vT � tanh−T
(1
v

� (ũk+1 − v)
)
Rũk

+ vT � tanh−T
(1
v

� (ũk+1 − v)
)
Rũk+1

)
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Then we have

V̇ k+1 = −N(ñ) + 2
(
vT � tanh−T

(1
v

� (ũk+1 − v)
)
R(ũk − ũk+1)

− vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv

)

= −N(ñ) + 2
(

αu∑
ku=1

vku
γku tanh−1

(
ũk+1

ku
− vku

vku

)
(ũk

ku
− ũk+1

ku
)

−
αu∑

ku=1
vku

γku

∫ ũk
ku

vku

tanh−1
(
vku − vku

vku

)
dvku

)

= −N(ñ) + 2
αu∑

ku=1
vku

γku

(
tanh−1

(
ũk+1

ku
− vku

vku

)
(ũk

ku
− ũk+1

ku
)

−
∫ ũk

ku

vku

tanh−1
(
vku − vku

vku

)
dvku

)

(3.27)

Let %(x) , tanh−1(x/vku
) for ∀x ∈ R, sk

ku
= ũk

ku
− vku and v̂ku = vku − vku . Then

(3.27) is rewritten as follows

V̇ k+1 = −N(ñ) + 2
αu∑

ku=1
vku

γku

(
%(sk+1

ku
)(sk

ku
− sk+1

ku
) −

∫ sk
ku

0
%(v̂ku)dv̂ku

)

Since tanh−1(·) is a monotonically increasing odd function, %(x) is monotonically
increasing and odd. By Lemma 3.3.2, the following inequality holds

%(sk+1
ku

)(sk
ku

− sk+1
ku

) −
∫ sk

ku

0
%(v̂ku)dv̂ku ≤ 0

Recall that v > 0 and γ > 0, we have V̇ k+1 ≤ 0 and V k+1(ñ) is a Lyapunov function
for ũk+1 on Ω.

Because the nonlinear function S is continuous and V k+1(0) = 0, ũk+1(ñ) ∈ C1(Ω)
and ũk+1(0) = 0, i.e., the obtained control policies ũk+1(ñ) in (3.22) are admissible
as per Definition 2.4.1 for system (3.5) on Ω.

2) First, we prove that V k+2(ñ(t)) ≤ V k+1(ñ(t)).

Considering V (ñ) defined in (3.9) along the system F + Sũk+1 trajectory, we have

V k+2(ñ) − V k+1(ñ) = −
∫ ∞

t

(
∂(V k+2 − V k+1)T

∂ñ
(F + Sũk+1)

)
dτ (3.28)
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Since (V k+1(ñ), ũk(ñ)) and (V k+2(ñ), ũk+1(ñ)) both satisfy (3.10), we can obtain

(
∂V k+1

∂ñ

)T

F = −N(ñ) − 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv −
(
∂V k+1

∂ñ

)T

Sũk

(3.29a)(
∂V k+2

∂ñ

)T

F = −N(ñ) − 2vTR

∫ ũk+1

v
tanh−1

(1
v

� (v − v)
)

dv −
(
∂V k+2

∂ñ

)T

Sũk+1

(3.29b)

Substituting (3.29a)-(3.29b) into (3.28), we get

V k+2(ñ) − V k+1(ñ) = −
∫ ∞

t

((
∂V k+2

∂ñ

)T

F −
(
∂V k+1

∂ñ

)T

F

+
(
∂V k+2

∂ñ

)T

Sũk+1 −
(
∂V k+1

∂ñ

)T

Sũk+1
)

dτ

= −
∫ ∞

t

(
−N(ñ) − 2vTR

∫ ũk+1

v
tanh−1

(1
v

� (v − v)
)

dv

−
(
∂V k+2

∂ñ

)T

Sũk+1 +N(ñ)

+ 2vTR

∫ ũk

v
tanh−1

(1
v

� (v − v)
)

dv +
(
∂V k+1

∂ñ

)T

Sũk

+
(
∂V k+2

∂ñ

)T

Sũk+1 −
(
∂V k+1

∂ñ

)T

Sũk+1
)

dτ

= −
∫ ∞

t

(
2vTR

∫ ũk

ũk+1
tanh−1

(1
v

� (v − v)
)

dv

+
(
∂V k+1

∂ñ

)T

S(ũk − ũk+1)
)

dτ

(3.30)
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Substituting (3.26) into (3.30), one obtains

V k+2(ñ) − V k+1(ñ) = −
∫ ∞

t

(
2vTR

∫ ũk

ũk+1
tanh−1

(1
v

� (v − v)
)

dv

− 2vT � tanh−T
(1
v

� (ũk+1 − v)
)
R(ũk − ũk+1)

)
dτ

= 2
∫ ∞

t

(
vT � tanh−T

(1
v

� (ũk+1 − v)
)
R(ũk − ũk+1)

− vTR

∫ ũk

ũk+1
tanh−1

(1
v

� (v − v)
)

dv

)
dτ

= 2
∫ ∞

t

(
αu∑

ku=1
vku

γku tanh−1
(
ũk+1

ku
− vku

vku

)
(ũk

ku
− ũk+1

ku
)

−
αu∑

ku=1
vku

γku

∫ ũk
ku

ũk+1
ku

tanh−1
(
vku − vku

vku

)
dvku

)
dτ

= 2
αu∑

ku=1
vku

γku

∫ ∞

t

(
tanh−1

(
ũk+1

ku
− vku

vku

)
(ũk

ku
− ũk+1

ku
)

−
∫ ũk

ku

ũk+1
ku

tanh−1
(
vku − vku

vku

)
dvku

)
dτ

= 2
αu∑

ku=1
vku

γku

∫ ∞

t

(
%(sk+1

ku
)(sk

ku
− sk+1

ku
) −

∫ sk
ku

sk+1
ku

%(v̂ku)dv̂ku

)
dτ

(3.31)

By Lemma 3.3.2, the following inequality holds

%(sk+1
ku

)(sk
ku

− sk+1
ku

) −
∫ sk

ku

sk+1
ku

%(v̂ku)dv̂ku ≤ 0

Thus, the right side of (3.31) is negative semi-definite. It follows that V k+2(ñ) −
V k+1(ñ) ≤ 0, i.e., V k+2(ñ) ≤ V k+1(ñ).

Next, we prove that V ∗(ñ) ≤ V k+2(ñ).

Since (V ∗, ũ∗), which satisfies (3.10), is the optimal solution to the COPCP de-
fined by (3.5)-(3.6), for ∀ñ ∈ Ω, we have minũ V (ñ) = V ∗(ñ) and ũ∗ =
arg minũ

∫∞
t L(ñ(τ), ũ(τ))dτ = arg minũ V (ñ(t)).

Suppose ∃ k such that V k+2(ñ), which also satisfies (3.10), is smaller than V ∗(ñ),
i.e., V k+2(ñ) < V ∗(ñ). This means that V ∗(ñ) is not the optimal solution to the
COPCP. By contradiction, we can deduce that V ∗(ñ) ≤ V k+2(ñ).
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3) It follows from the second part of Lemma 3.3.1 that {V k}∞
k=0 is a monotonically

decreasing sequence with the lower bounded V ∗(ñ), then V k converges pointwise to
V ∞. Because of the uniqueness of V (ñ) with ñ ∈ Ω (Lewis et al., 2012; Lyashevskiy,
1996), we can get that V ∞ = V ∗, which means that limk→∞ V k(ñ) = V ∗(ñ).

4) Since limk→∞ V k(ñ) = V ∗(ñ), according to (3.22), it can be deduced that
limk→∞ ũk(ñ) = ũ∗(ñ). The proof is completed.

Lemma 3.3.1 indicates that using the policy iteration method, (V k, ũk) (i.e.,
(V k, Dk)) can approximate the optimal solution (V ∗, ũ∗) (i.e., (V ∗, D∗)) to the
HJB equation (3.12). However, (3.21)-(3.22) requires identification of the MFD
dynamics F and S. To enable a data-driven method without requiring calibration
of the MFD dynamics (3.5), the main idea is to get rid of the system dynamics in
the HJB equation (3.12). We can adopt an off-policy IRL algorithm that the control
implemented can be different from the optimal control (3.22). Towards this, we
rewrite the traffic dynamics (3.5) as

˙̃n = F(ñ) + S(ñ)ũk + S(ñ)(ũ− ũk) (3.32)

where ũk is the policy to be updated and ũ is the behavior policy that is actually
implemented to the system dynamics to generate the data for learning.

Remark 3.3.1 On-policy and off-policy are two important RL methods. The policy
iteration (3.21)-(3.22) can be regarded as a class of on-policy methods. When using
the on-policy methods, the learned control policy should be applied to generate
data simultaneously even before it converges. Although the on-policy methods can
provide nearly unbiased estimates of the policy gradient, they (e.g., Sarsa) are usually
data-intensive and their learning process is time-consuming. Furthermore, the data
usage of on-policy learning methods is low because the samples generated previously
would be discarded along with each policy changes. Thus, the implementation of
on-policy learning method is generally difficult. Unlike the on-policy learning,
the off-policy learning evaluates the target policy when executing other behavior
policies.

There are several practical reasons that the implemented control can differ from
the optimal control to be learned. As discussed in Zhong et al. (2018b), the traffic
managers may have difficulties in calibrating a detailed functional form and its
steady state for the time-varying travel demand and the MFD dynamics. Thus,
they may not be able to implement the model-based optimal control (that is a
‘miracle’ to the manager) in the learning process. On the other hand, the traffic
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managers definitely have a preferable network condition (or state) for management
purposes. The implemented control ũ can be arbitrary enables the traffic managers
to enforce their preference as a ‘priori’ for traffic management purposes. This can be
regarded as a superiority of the proposed off-policy IRL-based learning algorithms.
This implemented control can stimulate the network dynamics so that the learning
algorithms can observe the evolution of traffic states and the network performance
to adjust the adaptive optimal control iteratively.

Now we derive the IRL Bellman equation that does not involve the system dynamics
F and S, i.e., “model-free”. The time derivative of V k+1(ñ(t)) for the {k + 1}-th
iteration equals

dV k+1

dt
=
(
∂V k+1

∂ñ

)T

(F + Sũ) (3.33)

Subtracting (3.21) from (3.33), we have

dV k+1

dt =
(
∂V k+1

∂ñ

)T

(F + Sũ) −
(
∂V k+1

∂ñ

)T

(F + Sũk) − L(ñ, ũk)

=
(
∂V k+1

∂ñ

)T

S(ũ− ũk) − L(ñ, ũk)

(3.34)

From the second equation of (3.22), we have

2v �Dk+1 = R−1ST ∂V
k+1

∂ñ

⇒
(
∂V k+1

∂ñ

)T

SR−1 = (2v �Dk+1)T

⇒
(
∂V k+1

∂ñ

)T

S = 2(v �Dk+1)TR (3.35)

Substituting (3.35) into (3.34) yields

dV k+1

dt
= 2(v �Dk+1)TR(ũ− ũk) − L(ñ, ũk) (3.36)

Integrating both sides of (3.36) on the interval [t, t+ ∆t], we obtain

V k+1(ñ(t+ ∆t)) − V k+1(ñ(t)) =
∫ t+∆t

t
2(v �Dk+1)TR(ũ− ũk)dτ

−
∫ t+∆t

t
L(ñ, ũk)dτ
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That is

V k+1(ñ(t)) =
∫ t+∆t

t
L(ñ, ũk)dτ −

∫ t+∆t

t
2(v �Dk+1)TR(ũ− ũk)dτ

+ V k+1(ñ(t+ ∆t)) (3.37)

for any time t ≥ 0 and time interval ∆t > 0. As introduced in Section 2.4, ∆t is
termed as the reinforcement interval. There is a trade-off between the learning rate
and the reinforcement interval. It is found by Modares et al. (2014) that the larger
the reinforcement interval ∆t is, the smaller the learning rate should be chosen.

(3.37) is called IRL Bellman equation, which no longer involves the model informa-
tion of the traffic dynamics. Thus, solving (3.37) instead of the HJB equation (3.12),
we can obtain a data-driven IRL based adaptive optimal perimeter controller, which
is “model-free”.

Note that the convergence of the iteration sequence {(V k+1, Dk+1)} by using
(3.21)-(3.22) to the optimality has been checked by Lemma 3.3.1. Hence, we only
need to justify the equivalence between the policy iterative equations (3.21)-(3.22)
and the IRL Bellman equation (3.37), whereby the convergence and optimality of
the IRL approach can also be derived.

Theorem 3.3.1 The IRL Bellman equation (3.37) gives the same solution to the
value function as the Bellman equation (3.21) and the same updated control policy
as (3.22).

Proof 3.3.3 The proof of Theorem 3.3.1 is divided into two fold.

1) First, we prove that (3.21)-(3.22) ⇒ (3.37). Provided that (V k+1, Dk+1) is the
solution of the policy iterative equations (3.21)-(3.22), from the derivation of (3.37),
one can easily deduce that (V k+1, Dk+1) is the solution of (3.37).

2) Next, we prove that (3.37) ⇒ (3.21)-(3.22). Provided that (V k+1, Dk+1) is the
solution of the IRL Bellman equation (3.37) and that Dk+1 = 1

2v �
(
R−1ST ∂V k+1

∂ñ

)
.

Dividing both sides of (3.37) by ∆t and taking limit results in

lim
∆t→0

V k+1(ñ(t+ ∆t)) − V k+1(ñ(t))
∆t

= lim
∆t→0

∫ t+∆t
t 2(v �Dk+1)TR(ũ− ũk)dτ −

∫ t+∆t
t L(ñ, ũk)dτ

∆t

⇒dV k+1

dt = 2(v �Dk+1)TR(ũ− ũk) − L(ñ, ũk) (3.38)
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Substituting Dk+1 = 1
2v �

(
R−1ST ∂V k+1

∂ñ

)
into (3.38), we have

dV k+1

dt =
(
∂V k+1

∂ñ

)T

S(ũ− ũk) − L(ñ, ũk) (3.39)

Combining (3.32) and (3.39), it follows that

dV k+1

dt =
(
∂V k+1

∂ñ

)T

S(ũ− ũk) − L(ñ, ũk) +
(
∂V k+1

∂ñ

)T

F −
(
∂V k+1

∂ñ

)T

F

=
(
∂V k+1

∂ñ

)T

(F + Sũ) −
(
∂V k+1

∂ñ

)T

(F + Sũk) − L(ñ, ũk)

⇒L(ñ, ũk) +
(
∂V k+1

∂ñ

)T

(F + Sũk) =
(
∂V k+1

∂ñ

)T

(F + Sũ) − dV k+1

dt (3.40)

From (3.33) we have the right side of (3.40) equals to 0. Hence,

L(ñ, ũk) +
(
∂V k+1

∂ñ

)T

(F + Sũk) = 0 (3.41)

(3.41) is the same as (3.21). This completes the proof.

Note that we have proven the equivalence between the Bellman equation and the
IRL Bellman equation, which does not involve the traffic dynamics (model-free). By
iterating V k on the IRL Bellman equation and updating the control policy Dk (i.e.,
ũk), we can approach both the optimal value function V ∗ and the optimal perimeter
control ũ∗. In the subsequent section, we will develop an online learning approach
via the IRL Bellman equation (3.37) to approximate the optimal value function and
perimeter controller.

3.4 Online learning by integrating experience
replay

For the implementation of the conventional off-line learning based RL approach,
sufficient historical data must be collected beforehand and the collected data set
would be used repeatedly during the learning process. This implies that only
recurrent traffic conditions can be well handled by the conventional off-line learning
based RL approach. To adapt to new or unseen data samples and possible changes of
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traffic conditions, an online iterative learning approach based on the IRL is proposed
in this section. Employing off-policy methods, the proposed online learning approach
can be integrated with the ER technique to reduce the requirement on real-time data
samples and simultaneously reduce the computational burden.

The online (incorporated with ER) learning method is constructed via the actor-
critic (AC) neural network (NN) framework. The neural networks can learn the
unknown macroscopic traffic dynamics and achieve the adaptive optimal perimeter
control with the IRL. The critic (i.e., policy evaluation) NN and the actor (i.e.,
policy improvement) NN are tuned sequentially. The flow chart of the proposed
IRL algorithm is shown in Figure 3.3. The algorithm starts by evaluating the
cost of a given initial admissible control policy and then uses this information
to obtain a new and improved control policy that generates a lower associated
cost than the previous one does. These two steps of policy evaluation and policy
improvement are repeated until the actual policy remains unchanged after the policy
improvement step, whereby the convergence to the optimal controller is achieved.
The convergence and stability analysis are evidenced via the Lyapunov theory.

Accordingly, at any time t > ∆t with reinforcement interval ∆t > 0, given that ũ′

is an admissible control, the IRL Bellman equation (3.37) can thus be rewritten as
follows

V (ñ(t− ∆t)) =
∫ t

t−∆t
L(ñ(τ), ũ′(τ))dτ

−
∫ t

t−∆t
2(v �D(τ))TR(ũ− ũ′(τ))dτ + V (ñ(t))

(3.42)

We utilize an AC-NN framework to approximate the value function and the control
policy (i.e., the solution of (3.42)) simultaneously:

V (ñ) = wT
V φV (ñ) + εV (ñ), D(ñ) = wT

DφD(ñ) + εD(ñ) (3.43)

where φV : Rαn → RKV , φD : Rαn → RKD are vectors of linearly independent
activation functions, wT

V ∈ RKV , wT
D ∈ RKD×αu are the NN weights of appropriate

dimensions, εV (ñ) and εD(ñ) are the approximation errors of the critic NN and the
actor NN, respectively.
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Figure 3.3 The online iterative learning algorithm
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Using the approximations (3.43) in (3.42) and considering εV = 0, εD = 0 for the
ideal weights wV and wD, one has

εB(t) ,
∫ t

t−∆t
L(ñ(τ), ũ′(τ))dτ −

∫ t

t−∆t
2(v � wT

DφD(ñ(τ)))TR(ũ− ũ′(τ))dτ

+ wT
V (φV (ñ(t)) − φV (ñ(t− ∆t)))

(3.44)

where εB(t) is the Bellman equation error at time t. εB is assumed to be bounded
on the compact set Ω given the ideal weights wV and wD (Modares et al., 2014).
That is, there exists a bound εmax such that ‖εB‖ ≤ εmax.

Note that the ideal weights wV and wD that provide the best approximate solution
for (3.44) are unknown. Hence, the estimations of value function and control policy
are given by

V̂ (ñ) = ŵT
V φV (ñ), D̂(ñ) = ŵT

DφD(ñ) (3.45)

where ŵV ∈ RKV , ŵD ∈ RKD×αu are estimations of wV and wD, respectively. These
estimations are usually learned from training data.

Using (3.45) in (3.42), the approximation error of the IRL Bellman equation, i.e.,
the TD error, at time t is given by

e(t) = V̂ (ñ(t)) − V̂ (ñ(t− ∆t)) −
∫ t

t−∆t
2(v � D̂(τ))TR(ũ− ũ′(τ))dτ

+
∫ t

t−∆t
L(ñ(τ), ũ′(τ))dτ

= φT
V (ñ(t))ŵV − φT

V (ñ(t− ∆t))ŵV −
∫ t

t−∆t
2
(
v � (ŵT

DφD(ñ(τ)))
)T

·R
(
ũ+ v � tanh(ŵT

DφD(ñ(τ))) − v
)
dτ

+
∫ t

t−∆t

(
ñT (τ)Qñ(τ)

+ 2vTR

∫ −v�tanh(ŵT
DφD(ñ(τ)))+v

v
tanh−1

(1
v

� (v − v)
)

dv
)

dτ

(3.46)

Let Ŵ = [ŵT
V , vec

T (ŵD)]T ∈ RKV +αuKD be the estimated weight of the AC-NNs,
where vec(ŵD) ∈ RαuKD is the vectorization of matrix ŵD ∈ RKD×αu . Thus, (3.46)
can be rewritten as

e(t) = ϕT (ñ(t), ũ(t))Ŵ + χ(ñ(t)) (3.47)

3.4 Online learning by integrating experience replay 51



where

ϕ(ñ(t), ũ(t)) =
[

φV (ñ(t)) − φV (ñ(t− ∆t))∫ t
t−∆t(2v �R(ũ+ v � tanh(ŵT

DφD(ñ(τ))) − v)) ⊗ φD(ñ(τ))dτ

]

χ(ñ(t)) =
∫ t

t−∆t
L(ñ(τ), ũ′(τ))dτ

=
∫ t

t−∆t

(
ñT (τ)Qñ(τ)

+ 2vTR

∫ −v�tanh(ŵT
DφD(ñ(τ)))+v

v
tanh−1

(1
v

� (v − v)
)

dv
)

dτ

To enable online learning, we use the gradient-descent method to update the esti-
mated AC-NN weights. Both real-time data and historical data are used to estimate
the weights of the NNs to guarantee the data richness and efficiency.

As discussed in Section 2.4, the ER technique can be integrated with the IRL al-
gorithm to speed up the computation. Based on the generalized least-squares
(GLS) principle, we aim to update the estimated weight vector Ŵ to minimize
‖e(t)‖ +

∑l
d=1 ‖e(td)‖, where the first part denotes the instantaneous TD error and

the second part denotes the TD errors for the stored transition samples. In order to
ensure the existence of the solution, we need the following assumption.

Assumption 3.4.1 Define B = [ϕ(t1), . . . , ϕ(tl)] as a matrix of the stored data,
where l is the number of samples stored in the history stack. There are as many
linearly independent elements as the number of corresponding NN’s hidden neurons
for the stored data matrix B such that rank(B) = KV + αuKD.

This rank condition is to verify the richness of the stored data, i.e., whether it is
sufficient to solve the GLS problem and to guarantee the convergence to a near-
optimal control (Modares et al., 2014). Based on (3.47), for the online iterative
learning, the gradient-based adaptation law with ER is given by

˙̂
W (t) = −β

(
ϕ(t)

(1 + ϕT (t)ϕ(t))2 e(t) +
l∑

d=1

ϕ(td)
(1 + ϕT (td)ϕ(td))2 e(td)

)

= −β
(

ϕ(t)
(1 + ϕT (t)ϕ(t))2 (ϕT (t)Ŵ + χ(t))

+
l∑

d=1

ϕ(td)
(1 + ϕT (td)ϕ(td))2 (ϕT (td)Ŵ + χ(td))

)
(3.48)
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where β > 0 is the learning rate, t is the current time and the index d refers to the
d-th sample data (d = 1, . . . , l) stored in the history stack B. In (3.48), the first
term is a gradient-descent update law for minimizing ‖e(t)‖, while the second term
attempts to minimize

∑l
d=1 ‖e(td)‖.

Denote the optimal value of weight by W = [wT
V , vec

T (wD)]T and recall that the
estimated weight is defined by Ŵ = [ŵT

V , vec
T (ŵD)]T . The following theorem

demonstrates the convergence of the weight estimation error of AC-NNs, W̃ (t) =
W − Ŵ (t), using Lyapunov method.

Theorem 3.4.1 If the stored data B for AC-NNs (3.45) with the ER adaptation law
(3.48) satisfy Assumption Assumption 3.4.1,

1. for bounded εB, the weight estimation error W̃ (t) = W − Ŵ (t) converges
exponentially to the residual set Rs = {W̃ | ‖W̃ (t)‖ ≤ c · εmax}, where c > 0
is a constant;

2. the system state ñ is asymptotically stable.

Proof 3.4.1 1) Based on (3.44), (3.46), (3.47) and W̃ (t) = W − Ŵ (t), the TD
errors for he current time t and the recorded time td can be rewritten respectively as

e(t) = ϕT (t)Ŵ + χ(t) = ϕT (t)W − ϕT (t)W̃ + χ(t)

= −ϕT (t)W̃ + (χ(t) + ϕT (t)W ) = −ϕT (t)W̃ + εB(t) (3.49a)

e(td) = ϕT (td)Ŵ + χ(td) = ϕT (td)W − ϕT (td)W̃ + χ(td)

= −ϕT (td)W̃ + (χ(td) + ϕT (td)W ) = −ϕT (td)W̃ + εB(td) (3.49b)

From W̃ (t) = W − Ŵ (t), one has ˙̃W (t) = − ˙̂
W (t). Substituting (3.49a)-(3.49b) into

(3.48) and denoting ϕ̄ = ϕ/(1 + ϕTϕ) and m = 1 + ϕTϕ, we can obtain

˙̃W (t) = β

(
ϕ(t)

(1 + ϕT (t)ϕ(t))2 e(t) +
l∑

d=1

ϕ(td)
(1 + ϕT (td)ϕ(td))2 e(td)

)

= β

(
ϕ̄(t)
m(t)(−ϕT (t)W̃ + εB(t)) +

l∑
d=1

ϕ̄(td)
m(td)(−ϕT (td)W̃ + εB(td))

)

= −β
(
ϕ̄(t)
m(t)ϕ

T (t) +
l∑

d=1

ϕ̄(td)
m(td)ϕ

T (td)
)
W̃ + β

(
ϕ̄(t)
m(t)εB(t) +

l∑
d=1

ϕ̄(td)
m(td)εB(td)

)
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= −β
(
ϕ̄(t)ϕ̄T (t) +

l∑
d=1

ϕ̄(td)ϕ̄T (td)
)
W̃ + βε̄B (3.50)

where ε̄B = ϕ̄(t)
m(t)εB(t) +

∑l
d=1

ϕ̄(td)
m(td)εB(td).

Now we choose the Lyapunov function as

L = 1
2β W̃

T (t)W̃ (t) (3.51)

Differentiating (3.51) along the trajectories of (3.50), one has

L̇ = 1
β
W̃ T ˙̃W

= 1
β
W̃ T ·

(
−β

(
ϕ̄(t)ϕ̄T (t) +

l∑
d=1

ϕ̄(td)ϕ̄T (td)
)
W̃ + βε̄B

)

= −W̃ T

(
ϕ̄(t)ϕ̄T (t) +

l∑
d=1

ϕ̄(td)ϕ̄T (td)
)
W̃ + W̃ T ε̄B

(3.52)

If Assumption Assumption 3.4.1 is satisfied, then ϕ̄(t)ϕ̄T (t) +
∑l

d=1 ϕ̄(td)ϕ̄T (td) > 0.
Suppose that εB is bounded by εmax, i.e., ‖εB‖ ≤ εmax, L̇ is negative definite
provided that

‖W̃ (t)‖ > l + 1
λmin(E)εmax = c · εmax (3.53)

where c = l+1
λmin(E) > 0 and λmin(E) is the minimum eigenvalue of E with E =

ϕ̄(t)ϕ̄T (t) +
∑l

d=1 ϕ̄(td)ϕ̄T (td). Hence, the weight estimation error W̃ converges
exponentially to the residual set Rs = {W̃ | ‖W̃ (t)‖ ≤ c · εmax}.

2) For system (3.5), define Lyapunov function candidate as (3.9). Take the time
derivative of V and we can obtain

V̇ = −L(ñ, ũ) = −N(ñ) − U(ũ)

Recall that N(ñ) and U(ũ) are positive definite functions. Then we have V (ñ(t)) ≥ 0,
V̇ ≤ 0 and V (ñ(t)) = 0 if and only if ñ = 0, i.e., n = n∗. That is, V (ñ) is a Lyapunov
function. The closed-loop system is thus asymptotically stable. This completes the
proof.

Theorem 3.4.1 indicates that using the gradient-based adaptation law with ER
(3.48), the AC-NN framework (3.45) can approximate the optimal value function
V ∗(ñ) and perimeter control policy ũ∗(ñ). The value function (3.9) is proven to be
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a Lyapunov function for the MFD dynamics. Hence, the initial accumulation state n0

can be asymptotically stabilized by the obtained perimeter controller at the desired
steady state n∗.

3.5 Numerical experiments

3.5.1 Settings of the test environment

To test the performance of the proposed method, two scenarios with different
purposes and settings are simulated (see Table 3.2). The network topologies used in
these numerical examples are shown in Figure 3.4. For set-point control objective,
the two-region MFD system (Haddad, 2015) with constant demand pattern is
considered in Scenario 1 for demonstration of the convergent speed and computation
efficiency of the proposed method. For min TTS control objective, a three-region MFD
system as in Zhong et al. (2018b) with time-varying travel demand is considered in
Scenario 2. The robustness and adaptiveness of the proposed method are validated
by conducting experiments under various demand patterns. The subregion MFD
functions of all the examples are assumed to be the same. The true, but unknown
MFD functions and the parameters are given in Table 3.2 to generate the I/O data for
learning the traffic dynamics only. Note that they are not involved in the controller
design. For the examples in Scenario 1, the cost functions N(ñ) = ñTQñ and U(ũ)
is defined by (3.8), where Q = 10−2 · Iαn , R = Iαu with Ix denoting the identity
matrix of dimension x. For the experiment in Scenario 2, the objective function is
defined by (3.18), where λ̄ = 1.

The stabilizing control law by Haddad (2015) embedded with a sequence of ran-
domly generated deviations is adopted to initialize the online learning algorithm.
The AC-NN framework is employed for approximating the optimal value function
and control policy in all examples. Let φV ∈ RKV and φD ∈ RKD denote the
activation functions of the online learning approach.

For Scenario 1, inspired by Abu-Khalaf and Lewis (2005), we adopt an AC-NN
framework with 84 critic NN hidden neurons and 4 actor NN hidden neurons, i.e.,
KV = 84 and KD = 4. Suppose x = [x1, x2, x3, x4]T , the activation function of critic
NN is

φpV
V (x) = xi

1x
j
2x

m
3 x

n
4 (3.54)

3.5 Numerical experiments 55



(a) The two-region MFD network topology, slightly
adapted from Geroliminis et al. (2013)

(b) The three-region MFD network topology

Figure 3.4 Network topologies

where i+ j +m+ n = 6 and pV = 1, . . . , 84, and the activation function of actor NN
is

φpD
D (x) = xpD (3.55)

where pD = 1, . . . , 4.
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For Scenario 2, we set KV = 210 and KD = 7. Suppose x =
[x1, x2, x3, x4, x5, x6, x7]T , the activation function of critic NN is

φpV
V (x) = xi

k1x
j
k2
xm

k3x
n
k4 (3.56)

where i + j + m + n = 6, pV = 1, . . . , 210 and k1, k2, k3, k4 ∈ {1, . . . , 7}, and the
activation function of actor NN is

φpD
D = xpD (3.57)

where pD = 1, . . . , 7.

The sample size and replay buffer (history data stack) size for AC-NN updates in all
the examples are 250 and 1000, respectively. The computer processor is Intel Core
i7-9850 CPU 2.60 GHz, and the simulation platform is MATLAB R2022a.

3.5.2 Set-point control

In this subsection, we apply the proposed IRL based online iterative learning ap-
proach to the two-region network with constant travel demand. A two-region
network as shown in Figure 3.4(a) is considered in this scenario. As explained, the
objective of set-point perimeter control is to regulate the network traffic state to
the desired stable equilibrium. Comparison in terms of control performance and
computational efficiency is made between the proposed IRL approach and other
existing controllers, e.g., the state-of-the-art MPC by Geroliminis et al. (2013) and
the neuro-dynamic programming (N-DP) method by Su et al. (2020). Note that MPC
is a model-based controller, and that N-DP requires partial information of the MFD
system, while the IRL does not rely on any knowledge of the traffic dynamics.
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3.5.2.1 Scenario 1-A: Comparison between the IRL and the N-DP
approaches

In Scenario 1-A, we present a comparison between the proposed off-policy learning
based IRL approach and the on-policy learning based N-DP approach by Su et al.
(2020). In line with Haddad (2015), n̄ = [3000, 3000]T (veh), which is close to the
critical accumulation, is chosen as the desired equilibrium. In addition, the demand
pattern is set to be constant as q = [1.6, 1.6, 1.6, 1.6]T (veh/s). Thus, the steady-state
accumulation for each direction and the corresponding control inputs as solved from
the steady-state equations (3.4a)-(3.4c) are n∗ = [1538.9, 1461.1, 1461.1, 1538.9]T

(veh) and u∗ = [0.5267, 0.5267]T . The initial regional accumulations are set to be
[1800, 3100]T (veh) with OD-specific initial accumulations being n11(0) = 540 (veh),
n12(0) = 1260 (veh), n21 = 2170 (veh), n22(0) = 930 (veh).

Note that N-DP requires input data with high resolution to solve the HJB equation
for the optimal controller. For a fair comparison, the first case is that the sample
time interval (and thus reinforcement interval) and the control update step are set
as 1 second for both methods. To consider more practical situations, in the second
case and third case, we set the sample time interval and the control update step to
15 seconds (Haddad, 2015) and 30 seconds, respectively. Sensitivity analysis of the
reinforcement interval for the IRL is presented in Scenario 1-B.

As shown in Figure 3.5(a), when ∆t = 1, both the IRL and the N-DP can regulate the
accumulation states to the desired equilibrium [3000, 3000]T (veh) in an asymptotic
manner. Specifically, the N-DP controller achieves a shorter settling time2 than the
IRL approach for accumulation state n1(t), while the IRL is much better than the
N-DP in the settling time for n2(t). Note that the N-DP control algorithm has been
well-trained in an off-line manner before it is applied. However, only by interacting
with the environment and learning the macroscopic traffic dynamics online, the
proposed IRL approach can achieve settling times of around 20 minutes for both n1

and n2. Besides, n2(t) has experienced an overshoot to around 2500 (veh) applying
the N-DP based controller, while the overshoot induced by the IRL approach is much
smaller. Moreover, applying the N-DP, the increase of the reinforcement interval
slows down the convergent speed of accumulation states (see Figure 3.5(b)) or even
cannot regulate them to the desired equilibria (see Figure 3.5(c)). However, the
IRL approach can stabilize the accumulations at the desired steady states in all the

2The settling time is the time required for the dynamics to reach and stay within a small
range of certain percentage (usually 5% or 2%) of the desired steady state (see Fig. 3.23
and Chapter 3.4.3 in Franklin et al., 2015). In our case, the settling time is the time
required for ñi(t) to reach and stay within 2% of the steady state n̄i.
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(a) State evolutions with ∆t = 1s
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(b) State evolutions with ∆t = 15s
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(c) State evolutions with ∆t = 30s

Figure 3.5 Simulation results of Scenario 1-A

60 Chapter 3 Learning the macroscopic traffic dynamics for adaptive op-
timal perimeter control with integral reinforcement learning



cases within around 20 minutes. These results indicate that the IRL approach can
achieve decent convergence and stability of the accumulation states under different
∆t, while the control performance of N-DP deteriorates as ∆t increases.

There are also differences in the computational complexity and data usage efficiency.
Note that 20000 samples are used for off-line training in each iteration (40 iterations
in total) for the N-DP approach, whereas only 250 samples are used in each iteration
for the IRL approach. This is the advantage of integrating the ER technique with
IRL, i.e., fast convergence of the iterative learning process can be guaranteed. Take
the first case as an example, because of the reduction of samples used for each
iteration, the total computation time of the IRL approach is less than 8 seconds while
that of the N-DP approach is more than 2 minutes. Different from the conventional
RL methods (e.g., N-DP) which are usually trained off-line and data intensive, the
improvement in data usage efficiency by integrating IRL with ER indicates the
real-time applicability of the proposed IRL based perimeter control schemes.

3.5.2.2 Scenario 1-B: Sensitivity analysis of the reinforcement
interval

In Scenario 1-B, sensitivity analysis of the reinforcement interval ∆t for the proposed
IRL method is performed using the network and settings of Scenario 1-A. We assume
that the data resolution of traffic sensors is identical to the reinforcement interval
so that one data sample is collected in a reinforcement interval. The larger ∆t
is, the lower frequency the sensors upload traffic data to the management center.
For instance, ∆t = 60s means the sensors upload data every 1 minute. Note that
the larger the reinforcement interval is, the smaller learning rate that could be
chosen to achieve the AC-NN weights convergence (Modares et al., 2014). In this
example, each learning rate β ∈ {0.01, 0.007, 0.005, 0.003, 0.0001, 0.00007} is chosen
respectively for each reinforcement interval ∆t ∈ {15s, 20s, 30s, 45s, 60s, 90s}.

Regarding the nature of perimeter control actuation approaches, e.g., traffic signal
controls which can be changed only with a new traffic signal cycle, the control
update step cannot be smaller than the sample time interval (i.e., the reinforcement
interval). Therefore, the sensitivity analysis of reinforcement interval for the IRL
algorithm is divided into the following two folds.

The first case is that the control update intervals are equal to the tested reinforcement
intervals. Figure 3.6(a) and Figure 3.6(b) present the accumulation trajectories
n1(t) and n2(t) over time under different ∆t, respectively, while the control input
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(a) State n1 evolution
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Figure 3.6 State evolution results of Scenario 1-B with reinforcement intervals equal
to control update steps
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Figure 3.7 Control input results of Scenario 1-B with reinforcement intervals equal
to control update steps
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evolutions are illustrated by Figure 3.7(a) and Figure 3.7(b). When ∆t = 15s, the
results show that both the initial states and controls converge very fast to the desired
equilibrium. As ∆t increases, the convergent speed of the perimeter control gain
decreases. This slows down the convergent speed of the accumulation states. This is
because the algorithm has to wait longer to collect new data to update the weights
of the AC-NNs, which also results in less frequent updates of the control inputs.
However, Figure 3.6(a) and Figure 3.6(b) indicate that the variation of ∆t does not
significantly influence the convergence of the accumulation states. That is to say,
the proposed online learning approach is robust to the variation of real-time data
resolution.

Next, we fix the control update steps to 60 seconds while vary the reinforcement
intervals in ∆t ∈ {15s, 20s, 30s, 60s}. Figure 3.8(a)-Figure 3.8(b) shows that the
accumulation states can converge to the desired steady states in around 30 minutes.
We can also observe that as ∆t increases, both the convergent speeds of the perime-
ter control gain and the accumulation states decrease. The IRL based perimeter
controller with ∆t = 15s still achieves the shortest settling time. In the early stage of
the training and implementation of the IRL controllers, the larger difference between
∆t and the control update step, the stronger oscillation of the accumulation state
occurs. However, with the control update steps fixed, the variation of ∆t still does
not significantly affect the convergence of the accumulation states.

These results imply the feasibility of online tuning of the reinforcement interval
to adapt to heterogeneous real-time sensor data resolution without affecting the
system stability. This is a key advantage of the proposed IRL based online learning
algorithm over the traditional RL based methods.

3.5.2.3 Scenario 1-C: Comparison between the IRL and the MPC
approaches

Scenario 1-C adopts the same settings as Scenario 1-A except the initial condition, the
set-point value and the reinforcement interval. Unlike Scenario 1-A corresponding
to a mild traffic condition where all regions are regulated in an uncongested regime
(i.e., below the critical accumulation), the initial accumulation state values are set
to far exceed the critical accumulations, i.e., [4300, 3700]T (veh) with n11(0) = 430
(veh), n12(0) = 3870 (veh), n21 = 370 (veh), n22(0) = 3330 (veh). Besides, in
Scenario 1-C, both regions are regulated around set points in the congested regimes,
e.g., n̄ = [4000, 4000]T (veh). Performance comparison is conducted between the IRL
and the state-of-the-art MPC method, where for both the controllers the sample time
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Figure 3.8 Simulation results of Scenario 1-B with fixed control update steps
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interval and the control update step are set as 60 seconds. For the MPC controller,
the prediction horizon is set to be 30 (i.e., 30 minutes simulation time).
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Figure 3.9 Simulation results of Scenario 1-C

Figure 3.9 shows that both the IRL and the MPC controllers can stabilize the accumu-
lation states at the desired equilibrium. Regulated by the IRL controller, both n1 and
n2 converge very fast to the steady states, while regulated by the MPC controller, one
can observe small overshoots of the accumulation states. The settling time and the
average CPU time per control update step3 of different control schemes are reported

3The CPU time is defined as the average computation time per control update step. They
were measured by the tic and toc functions of MATLAB R2022a. We present the average
value of 10 tests for each controller.
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in Table 3.3. Despite no model knowledge available, the IRL approach can achieve
a 20-minute settling time, which indicates that the IRL can have a decent control
performance in a congested traffic situation. The CPU times per control update
step of both methods are extremely small, which are far less than the 60-second
control update step. These results imply the real-time applicability of the proposed
model-free IRL approach.

Table 3.3 Summary of settling time and computation time for Scenario 1-C

State IRL MPC

Settling time (min)
n1 ≈ 22 ≈ 29
n2 ≈ 21 ≈ 53

CPU time per step (sec) – 6.57×10−6 1.79×10−2

3.5.3 TTS minimization

In this subsection, the objective function is related to minimizing the total time spent
(TTS) for the urban network subject to uncertainties in travel demands. We apply
the proposed IRL based perimeter controller to the three-region network shown
by Figure 3.4(b) with a time-varying demand pattern. The perimeter controller is
subject to heterogeneous cross-boundary capacities, i.e.,

0.1 ≤ u12 ≤ 0.7, 0.3 ≤ u21 ≤ 1, 0.4 ≤ u23 ≤ 1, 0.2 ≤ u32 ≤ 0.9

3.5.3.1 Scenario 2: Three-region MFD system with uncertain
time-varying travel demand

In this scenario, a time-varying demand pattern is used to mimic a scenario of peak-
hour traffic with congestion onset, stationary congestion and congestion dissolving
processes. Comparisons between the IRL approach and MPC are made under
three different travel demand patterns, i.e., 1) the nominal deterministic travel
demand pattern (Figure 3.10(a)), 2) the nominal demand pattern subject to external
disturbances (Figure 3.10(b)), and 3) the travel demand pattern subject to an
abrupt change during the stationary congestion period (Figure 3.10(c)). The initial
accumulation state is set as n(0) = [5400, 5500, 2000]T (veh). Namely, n1 and n2 are
initiated in a very congested state while n3 in an uncongested initial state. For both
the IRL and the MPC, the control update interval is set as 60 seconds.
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(b) Noisy demand
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(c) Abrupt changes of demand

Figure 3.10 Demand patterns of Scenario 2

The accumulation evolution results are given in Figure 3.11, where the evolution
of regional accumulations for the nominal, noisy, and abrupt-change demand cases
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are presented by Figure 3.11(a), Figure 3.11(b), and Figure 3.11(c), respectively.
Figure 3.12 and Figure 3.13 showcase the control input evolution and TTS evolution,
respectively. The achieved TTS and the average CPU time per control update step of
different control schemes are summarized in Table 3.4.

Figure 3.11(a), Figure 3.11(b) and Figure 3.11(c) illustrate that in all the demand
cases, Region 1 and 2 are congested at the beginning while Region 3 is uncongested,
and all the regional accumulation states experience increase during the early stage
due to the increase in inflow demands. It is noteworthy that the congestion in Region
3 regulated by the IRL starts to dissipate after 20 minutes, while the accumulation
state of Region 3 regulated by MPC continues being increasingly congested. As
observed from Figure 3.13(a), Figure 3.13(b) and Figure 3.13(c), the IRL is superior
to the MPC in minimizing TTS for the whole network. Based on Table 3.4, in the
abrupt-change demand case, the IRL achieves a 12% decrease in TTS over MPC,
while the same performance metrics are 11% and 10% respectively for the nominal
and noisy demand cases. These results demonstrate that the proposed IRL based
control strategy can well learn and adapt to the dynamic nature of the travel demand
and hence guarantee the robustness of the traffic dynamics.

To close the discussion, the numerical results indicate that the proposed IRL based
adaptive perimeter controller can not only stabilize the network accumulation states
at the desired equilibrium, but also achieve improvement in min TTS compared
to the state-of-the-art MPC scheme. These results demonstrate the effectiveness
and efficiency of IRL under a variety of data resolutions. In addition, the proposed
approach has been examined under various traffic conditions and demand patterns,
which implies a promising application of IRL for macroscopic traffic control. The
perimeter control in essence is a type of gating control actualized on the boundaries
to regulate the cross-boundary traffic flows between different regions. Such kinds of
perimeter control are deployed in many metropolises such as Guangzhou and Hong
Kong utilizing the existing infrastructure. For example, such perimeter control has
been implemented on the cross-Zhujiang-river bridges connecting two busy business
districts to manage the peak-hour traffic. Similar perimeter control strategies are
also implemented on existing infrastructures in Hong Kong, such as the Hung Hom
Cross Harbor Tunnel connecting Hong Kong Island and Kowloon area. For a detailed
discussion on the potential applications of the perimeter control, readers may refer
to Zhong et al. (2018a) and Zhong et al. (2018b).
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(a) States under nominal demand
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Figure 3.11 Accumulation state evolution of Scenario 2
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(c) Controls under abrupt-change demand

Figure 3.12 Perimeter control input evolution of Scenario 2
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(b) TTS under noisy demand
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(c) TTS under abrupt-change demand

Figure 3.13 TTS evolution over time of Scenario 2

72 Chapter 3 Learning the macroscopic traffic dynamics for adaptive op-
timal perimeter control with integral reinforcement learning



Ta
bl

e
3.

4
Su

m
m

ar
y

of
T

TS
an

d
co

m
pu

ta
ti

on
ti

m
e

fo
r

Sc
en

ar
io

2

no
m

in
al

de
m

an
d

no
is

y
de

m
an

d
ab

ru
pt

-c
ha

ng
e

de
m

an
d

IR
L

M
PC

IR
L

M
PC

IR
L

M
PC

T
TS

(×
10

7
ve

h·
se

c)
6.

35
7.

12
6.

38
7.

13
6.

44
7.

32
C

PU
ti

m
e

pe
r

st
ep

(s
ec

)
1.

07
×

10
−

5
5.

85
×

10
−

1
1.

14
×

10
−

5
5.

93
×

10
−

1
1.

24
×

10
−

5
5.

99
×

10
−

1

3.5 Numerical experiments 73



3.6 Microscopic simulation

To further demonstrate the applicability of the proposed IRL approach to perimeter
control of MFD based networks, a microscopic simulation example is presented
in this section. Both training of the proposed IRL algorithm and its performance
evaluation are conducted using SUMO as the environment (Lopez et al., 2018). The
simulation and calculation are implemented in Python 3.6 and MATLAB R2022a.

Perimeter intersection

Phase 1 Phase 2

Inflow blocked Inflow allowed

Normal intersection

Phase 1 Phase 2 Phase 3 Phase 4

Perimeter control signals
Static control signals

Perimeter intersections

Region 1

Region 2

Figure 3.14 The simulated grid network

The microscopic simulation is carried out using a grid road network as depicted in
Figure 3.14, which comprises 2 regions (regions 1 and 2 surrounded by orange lines
and blue lines, respectively), 16 signalized intersections (12 normal intersections
applying an identical static signal plan and 4 perimeter intersections applying the
IRL based signal plans for perimeter control actuation) and 76 links. All links
are 500 meters long and comprise 4 lanes. There are 4 special links connecting
the two network regions as marked alongside yellow arrows. Note that these
4 links are unidirectional and that their end nodes are signalized intersections
working as the perimeter controllers (as marked with yellow rectangles). For the
perimeter intersections, a two-phased signal with a 120-second cycle time is adopted
(see Figure 3.14). Both the sample time interval and the control update step are
equal to the perimeter control signal cycle time. Perimeter control inputs are
implemented by changing the green duration ratios of the corresponding perimeter
intersections. Let GRij(k) denotes the green duration ratio of phase 2 at the k-th
(k = 1, . . . , 90) control update step for actualizing the computed result of uij(k) and
GRij(k) = uij(k). The calculation of the green light duration Gij(k) of phase 2 is
Gij(k) = GRij(k) · CTij = uij(k) · CTij where CTij = 120 (sec) is the cycle time of
the perimeter intersections for uij . For instance, if the computed result of a control
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input is 0.6, the green light duration is set as 72 seconds for the 120-second cycle.
All the normal intersections have four phases and the same cycle time 100 seconds.
An identical static signal plan is adopted for the normal intersections. The total
simulation time is 3 hours.

The perimeter control objective in this microscopic simulation is to minimize the
TTS. Both regions are initially empty at the beginning. A time-varying travel demand
pattern associated with a 10% coefficient of variation to represent the stochasticity
is adopted, which mimics the morning-peak traffic with congestion onset and dis-
solving processes (see Figure 3.15(a)). The accumulation evolutions are depicted
in Figure 3.15(b). As observed from the results, by merely manipulating the green
duration ratios of the four perimeter intersections, the IRL scheme can regulate
the accumulation states below the critical accumulation and achieve a significant
improvement over the static scheme in avoiding congestion. Figure 3.15(c) shows
that the IRL scheme can guarantee a low TTS at around 6.81×106 (veh·sec), while
the static scheme results in a very high TTS at around 2.14×107 (veh·sec). The
flow-accumulation plots by the proposed IRL approach and the static scheme are
shown in Figure 3.16(a) and Figure 3.16(b), respectively. One can see that the IRL
scheme results in a higher maximal throughput than the static scheme, whereas
observed from the simulation process, the static scheme induces severe congestion
and even gridlocks in both regions. These microscopic simulation results validate
the effectiveness of the proposed IRL method in optimal perimeter control for MFD
based traffic networks.

3.7 Conclusions

This study developed a data-driven IRL based framework for learning macroscopic
urban traffic dynamics for adaptive constrained optimal perimeter control. An
online adaptive optimal perimeter control scheme with continuous-time control
and discrete gain updates was established to adapt to the discrete-time nature of
traffic data. To further consider the heterogeneous traffic sensors with different
resolutions of data measurements, the reinforcement interval of the proposed IRL
based perimeter control could be selected online to ensure data richness for the
data-driven RL algorithms and allow adaptive online learning to guarantee real-
time performance. An actor-critic dual neural network structure was developed to
approximate the optimal control and the objective function, respectively. The actor-
critic dual neural networks could be used to circumvent the “curse of dimensionality”
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Figure 3.15 The microscopic simulation results
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(a) Using the IRL method

(b) Using the static scheme

Figure 3.16 Flow-accumulation plots in the microscopic simulation

in solving the HJB equations involved. Integrating the experience replay technique,
the proposed online learning approach could adapt to the real-time traffic conditions
by using the historical and real-time data simultaneously in a “smart” manner. This
proposed optimal perimeter control did not explicitly employ the knowledge of
traffic network dynamics, i.e., “model-free”. The convergence of learning algorithms
and the stability of the traffic dynamics under control were proven via the Lyapunov
theory. The proposed online iterative learning approach was tested under various
traffic conditions (e.g., constant demand, time-varying demand with and without
uncertainties, unknown MFD model), where the convergence, adaptiveness and
robustness of the network traffic state were achieved. Both numerical examples
and microscopic simulation experiments were presented to validate the applicability
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of the proposed method to optimal perimeter control for MFD based networks. In
addition, the comparison results indicated that the proposed IRL approach could
achieve both good control performance and computational efficiency.

Considering the dynamic nature of travel demand and supply, future efforts can be
dedicated to investigating a novel trajectory stability concept, instead of the stability
of the desired equilibrium point, to fit such dynamic travel demand and supply. In
Chapter 4, we explore the trajectory stability of the MFD system and focus on the
design of adaptive optimal tracking perimeter control.
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Tracking perimeter control for two-region
macroscopic traffic dynamics: An adaptive
dynamic programming approach

4
The perimeter control by leveraging the concept of the macroscopic fundamental
diagram (MFD) can alleviate network-level congestion by identifying critical in-
tersections and regulating them effectively. Considering the time-varying nature
of the travel demand pattern and the equilibrium of the accumulation state, this
study attempts to reformulate the conventional set-point perimeter control (SPC)
problem for the two-region MFD system into an optimal tracking perimeter control
problem (OTPCP). Unlike the SPC schemes that stabilize the traffic dynamics to the
desired equilibrium point, the proposed tracking perimeter control (TPC) scheme
will regulate the traffic dynamics to a desired trajectory in a differential framework.
Deriving the augmented system and the tracking Hamilton-Jacobi-Bellman (HJB)
equation takes center in solving the OTPCP. Due to the inherent network uncer-
tainties, such as uncertain dynamics of heterogeneity and demand disturbance, the
system dynamics could be uncertain or even unknown. To address these issues, this
study will propose an adaptive dynamic programming (ADP) approach to solving
the tracking HJB equation, which requires no knowledge of the system dynamics.
Finally, numerical experiments will be performed to demonstrate the effectiveness of
the proposed ADP-based TPC. Compared with the SPC scheme, results will show that
the proposed TPC scheme achieves both an improvement in reducing total travel
time and an enhancement in cumulative trip completion.

4.1 Introduction

The adoption of the macroscopic fundamental diagrams (MFDs) to model and
regulate the traffic flow of large-scale urban networks has been extensively studied
in the last decade (Haddad and Geroliminis, 2012; Haddad et al., 2013; Keyvan-
Ekbatani et al., 2013; Leclercq et al., 2014; Yildirimoglu and Geroliminis, 2014).
The MFD intuitively provides an aggregate, low-scatter relationship between the
network vehicle density (veh/km) or accumulation (veh) and network outflow or
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trip completion flow rate (veh/h). Leveraging the concept of MFDs, the perimeter
control aims to manipulate the transfer flow at the boundaries of the region, which
is a promising solution to alleviating network-scale traffic congestion. Considerable
research efforts have been dedicated to devising optimal network traffic control
strategies based on MFDs. Apart from previous literature on maximizing the network
traffic throughput by leveraging perimeter control (Daganzo, 2007; Geroliminis
et al., 2013; Ramezani et al., 2015; Haddad et al., 2013; Zhou et al., 2016; Fu et al.,
2017; Aalipour et al., 2018), considerable research efforts have been devoted to
devising perimeter control strategies that regulate the network accumulation to the
desired equilibrium, i.e., set-point perimeter control (Aboudolas and Geroliminis,
2013; Keyvan-Ekbatani et al., 2012; Keyvan-Ekbatani et al., 2013; Keyvan-Ekbatani
et al., 2015a; Keyvan-Ekbatani et al., 2015b; Haddad and Mirkin, 2016). The
robust perimeter control problem of the MFD-based system was also addressed in
previous studies, e.g., Haddad and Shraiber (2014), Haddad (2015), and Zhong
et al. (2018a).

A critical assumption adopted in traffic control (including the perimeter control
and signal control) is that the steady state of the system can be achieved and the
equilibria of the system can be determined. Under this assumption, the stability of
fixed equilibrium points in the sense of Lyapunov is widely applied in traffic control.
Considering the dynamic nature of traffic demand and supply, especially for fast time-
varying cases, identification of the steady state is an extremely difficult and unclear
task in practice (Zhong et al., 2018a; Zhong et al., 2018b). Some recent studies
have attempted to optimize set-points for traffic control by updating them based on
real-time traffic state estimations/measurements (Wang et al., 2021; Mohajerpoor
et al., 2020), and others by using data-driven approaches (Kouvelas et al., 2017) or
Nash equilibrium seeking schemes (Kutadinata et al., 2016). Yu and Hou (2020)
optimized the set-point using model predictive control (MPC) with MFD and used
this set-point with an iterative learning method to design traffic signal timing plans.
They conducted the planning and control synchronously, which may cause the
curse of dimensionality in large-scale urban networks with many intersections that
are managed distributedly. However, there is a complex and unclear relationship
between network traffic performance and desired set point, with no unified or clear
definition of the best set point in an ever-changing environment.

The aforementioned studies on perimeter control can be regarded as model-based
traffic responsive control, which assumes that model parameters are accurately
calibrated and perfect knowledge of the network is available. Note that traffic
networks are subject to various uncertainties (e.g., demand noise and model er-
ror), making these assumptions difficult and even impossible to be met. Recently,
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model-free methods, such as iterative learning control (Lei et al., 2019; Ren et al.,
2020), model-free adaptive predictive control (Li and De Schutter, 2022), and deep
reinforcement learning (RL) (Zhou and Gayah, 2021), have been proposed to ad-
dress the problem of devising adaptive perimeter control strategies for MFD systems
with unknown system dynamics. A reformulation of RL is called adaptive dynamic
programming (ADP) in economics and management communities. The RL and ADP
bridge the gap between optimal control and adaptive control. In an off-line manner,
the ADP method provides an approximate solution to the optimal control problem
obtained from the Pontryagin’s minimum principle and the dynamic programming
principle (i.e., the Hamilton-Jacobi-Bellman (HJB) equation). Su et al. (2020)
proposed a conventional ADP-based perimeter controller for the two-region MFD
system, which requires partial knowledge of the system dynamics and thus cannot
handle modeling uncertainties. Recently, we developed a completely model-free
integral reinforcement learning (IRL) approach integrated with experience replay
for adaptive perimeter control of multi-region MFD systems, which enables online
tuning of the reinforcement interval to adapt to the real-time heterogeneous data
resolution. This study further extends the results of Study 1 in terms of the stability
of a single equilibrium (or its invariant set) to a desired trajectory.

In this study, we introduce a trajectory stability concept in the MFD framework
to better fit the dynamic nature of traffic demand and supply. We leverage recent
advances in control design based on the optimal tracking control theory that extends
the stability analysis to constructive feedback perimeter control design through the
concept of an augmented affine system. Unlike the conventional perimeter control
schemes that stabilize the traffic dynamics to the desired equilibrium point, the
proposed perimeter control scheme will regulate the traffic dynamics to a desired
trajectory (e.g., time-varying with respect to the demand and supply) in a differential
framework, instead of the stability of the desired equilibrium point or its invariant set.
Few existing studies have addressed the tracking perimeter control (TPC) problem
for MFD-based traffic networks except Haddad and Mirkin (2017). Based on this
work, Haddad and Zheng (2020) investigated the effect of constant time delays.
Local linearization around the desired equilibrium was performed in both works
to simplify the controller design. Different from the existing works, we explicitly
consider both state and control constraints in the solution of the TPC problem and
no model linearization is required.

In this study, first, the optimal tracking perimeter control problem (OTPCP) is
transformed into the minimization of a nonquadratic performance function subject to
an augmented system composed of the original system and the command generator
system. Then, an ADP algorithm is proposed to generate the optimal solution
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to the associated HJB equation without complete knowledge of the augmented
dynamics.

The remainder of this chapter is organized as follows: Section 4.2 proposes a novel
problem formulation of the OTPCP for the two-region MFD system. Section 4.3
develops a model-free ADP approach to solving the OTPCP. Then numerical examples
are presented in Section 4.4. Finally, Section 4.5 concludes this study.

4.2 Optimal tracking perimeter control of a
two-region MFD system

In this section, we first present a recapitulation of the feedback-based set-point
perimeter control (SPC) problem for a two-region MFD system. Considering the time-
varying nature of the travel demand pattern and the equilibrium of accumulation
state, we reformulate the conventional feedback-based SPC problem into an OTPCP.
The standard solution to OTPCP for a two-region MFD system is given. Note that the
standard solution to the OTPCP is to solve the steady-state part controller and the
feedback part controller separately, which requires perfect knowledge of the system
dynamics. To simplify the solution and to circumvent the requirement of perfect
system information, we propose a reformulation of the OTPCP for the two-region
MFD system, which converts the conventional way that solves the steady-state and
feedback parts separately to merely solving a single optimal feedback control by
deriving an augmented system and the associated tracking HJB equation.

4.2.1 The OTPCP for a two-region MFD system

𝐺𝐺1

𝑛𝑛1

𝐺𝐺2

𝑛𝑛2

𝑢𝑢12(𝑡𝑡) 𝑢𝑢21(𝑡𝑡)

R2R1
𝑞𝑞12(𝑡𝑡)

𝑞𝑞11(𝑡𝑡) 𝑞𝑞22(𝑡𝑡)
𝑞𝑞21(𝑡𝑡)

Figure 4.1 The two-region MFD system
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To begin with, we recapitulate the two-region MFD system model. An urban network
with two regions as shown in Figure 4.1 is of great significance in investigating
gating control on the periphery. Assume that the urban network is composed of two
homogeneous regions that both admit well-defined MFDs. A two-region MFD system
can be used to model the macroscopic traffic dynamics. The MFD is a function
that depicts a nonlinear relationship between the regional accumulation ni(t) (veh)
and the trip completion rate Gi(ni(t)) (veh/s) at time t, i = 1, 2. The regional
accumulation ni(t) represents the number of vehicles in region i with 0 ≤ ni ≤ njam

i

where njam
i is the jam accumulation, i.e., the maximum vehicle number in region i.

Let qij(t) (veh/s) denote the travel demand generated in region i with destination to
region j. By distinguishing whether the origin and destination of the travel demand
are in the same region or not, the travel demand can be divided into endogenous
and exogenous travel demand. Corresponding to the travel demand, four state
variables, denoted by nij(t) (veh) are identified. These state variables represent
the accumulations contributed by the travel demand from region i to region j. By
definition, we have ni(t) =

∑
j nij(t). Meanwhile, the perimeter control variables

are introduced to the system, denoted as u12(t) and u21(t) with 0 ≤ uij(t) ≤ 1, i 6= j,
which are utilized to control the transfer flow between R1 and R2 on the border.
The sending function of the transfer flow from region i with destination region j can
be calculated by nij(t)

ni(t) Gi(ni(t)), and the completed transfer flow is determined by

the perimeter control, i.e., uij(t)nij(t)
ni(t) Gi(ni(t)). On the other hand, the completed

internal flow is defined as nii(t)
ni(t) Gi(ni(t)).

Now we introduce the formulation of the SPC problem. Based on flow conservation,
the dynamics of the two-region MFD system can be regarded as a class of non-affine
system

ṅ(t) = K(n(t), u(t), q(t)) (4.1)

where n(t) = [n11(t), n12(t), n21(t), n22(t)]T ∈ R4
+, u(t) = [u12(t), u21(t)]T ∈ R2

+,
and q(t) = [q11(t), q12(t), q21(t), q22(t)]T ∈ R4

+ are the accumulation state of the
system, the perimeter control, and the travel demand, respectively. Here K(n, u, q)
has the following well-known form (Geroliminis et al., 2013):

K(n, u, q) ,


−n11

n1
G1(n1) + n21

n2
G2(n2)u21 + q11

−n12
n1
G1(n1)u12 + q12

−n21
n2
G2(n2)u21 + q21

−n22
n2
G2(n2) + n12

n1
G1(n1)u12 + q22

 (4.2)

subject to
0 ≤ ni(t) ≤ njam

i , 0 ≤ umin
ij ≤ uij(t) ≤ umax

ij ≤ 1
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For the SPC problem, the perimeter control is designed to manipulate the cross-
boundary flows such that the accumulation state n can track a desired steady state. It
is a common practice to perform a coordinate transformation to reformulate the SPC
problem into a stabilization problem (Zhong et al., 2018a; Haddad and Zheng, 2020).
Suppose that there exist an equilibrium n∗ = [n∗

11, n
∗
12, n

∗
21, n

∗
22]T , u∗ = [u∗

12, u
∗
21]T

and q∗ = [q∗
11, q

∗
12, q

∗
21, q

∗
22]T such that ṅ∗ = K(n∗, u∗, q∗) = 0, i.e.,

−n∗
11

n∗
1
G1(n∗

1) + n∗
21

n∗
2
G2(n∗

2)u∗
21 + q∗

11

−n∗
12

n∗
1
G1(n∗

1)u∗
12 + q∗

12

−n∗
21

n∗
2
G2(n∗

2)u∗
21 + q∗

21

−n∗
22

n∗
2
G2(n∗

2) + n∗
12

n∗
1
G1(n∗

1)u∗
12 + q∗

22

 = 0 (4.3)

Let ñ(t) = n(t) − n∗ and ũ(t) = u(t) − u∗ denote the new state vector and new
control input, respectively. Combining (4.2) and (4.3), we can rewrite the original
traffic dynamics (4.1) as:

˙̃n11 = − ñ11 + n∗
11

ñ1 + n∗
1
G1(ñ1 + n∗

1) + ñ21 + n∗
21

ñ2 + n∗
2
G2(ñ2 + n∗

2) · (ũ21 + u∗
21) + q11 (4.4a)

˙̃n12 = − ñ12 + n∗
12

ñ1 + n∗
1
G1(ñ1 + n∗

1) · (ũ12 + u∗
12) + q12 (4.4b)

˙̃n21 = − ñ21 + n∗
21

ñ2 + n∗
2
G2(ñ2 + n∗

2) · (ũ21 + u∗
21) + q21 (4.4c)

˙̃n22 = − ñ22 + n∗
22

ñ2 + n∗
2
G2(ñ2 + n∗

2) + ñ12 + n∗
12

ñ1 + n∗
1
G1(ñ1 + n∗

1) · (ũ12 + u∗
12) + q22 (4.4d)

subject to
−n∗

i ≤ ñi(t) ≤ njam
i − n∗

i

−u∗
ij ≤ umin

ij − u∗
ij ≤ ũij(t) ≤ umax

ij − u∗
ij ≤ 1 − u∗

ij

Now we present the formulation of OTPCP. We denote the reference trajectory by
ñd(t) = [ñd,11(t), ñd,12(t), ñd,21(t), ñd,22(t)]T . The trajectory ñd(t) is assumed to be
bounded and could be generated by the following Lipschitz continuous command
generator dynamics (Modares and Lewis, 2014; Zhang et al., 2017):

˙̃nd = θ(ñd(t)) (4.5)

and θ(0) = 0.
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The target of the OTPCP is to find an optimal controller ũ∗(t) to make the state ñ
can track the desired state ñd. We define ed(t) = ñ(t) − ñd(t) as the tracking error,
and the tracking error dynamics are given by

ėd = ˙̃n− ˙̃nd = K(n, u, q) − θ(ñd)

= K(ed + ñd + n∗, ũ+ u∗, q) − θ(ñd)
(4.6)

Peak period

Time

Demand pattern

Time

Desired trajectory

Off-peak period Off-peak period

Regulation claimed

No control is 
necessary due to 
low demand 

Regulation is desired Change of the control 
target is desired

Regulation claimed

Figure 4.2 Demand pattern and desired state trajectory

Remark 4.2.1 For different periods of within-day traffic (i.e., off-peak period and
peak period), the desired control targets should be different and fit the dynamics of
the demand pattern. As shown in Figure 4.2, during the first off-peak period (e.g.,
0:00–7:00), no control is necessary as the travel demand is low. Regulation is then
claimed at the onset of the congestion. During the peak period (e.g., 7:00–11:00)
with high travel demand, a steady accumulation state (target equilibrium) less than
but close to the critical accumulation of the MFD is desired because operating the
protected region around the critical accumulation maximizes its throughput (Zheng
et al., 2016; Zhong et al., 2018b). After the peak-period congestion dissolves, the
second off-peak period (e.g., 11:00–16:00) commences, during which the demand
level is medium. It is not necessary to set the target equilibrium to be close to the
critical accumulation that is larger than the steady state yielded by the demand
pattern. Hence, the change of the control target is desired for the second off-peak
period.
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It is desired to design a reference signal associated with the performance of the
network traffic flows. Moreover, a reference signal, if bounded by the desired
invariant set of the steady states, would be more desirable because that means the
control target is more achievable, controllable, and practical.

4.2.2 The Standard solution to the OTPCP

Note that the non-affine macroscopic traffic dynamics (4.4) can be expressed by
(4.7).


˙̃n11
˙̃n12
˙̃n21
˙̃n22

 =


− ñ11+n∗

11
ñ1+n∗

1
G1(ñ1 + n∗

1) + ñ21+n∗
21

ñ2+n∗
2
G2(ñ2 + n∗

2) · u∗
21 + q11

− ñ12+n∗
12

ñ1+n∗
1
G1(ñ1 + n∗

1) · u∗
12 + q12

− ñ21+n∗
21

ñ2+n∗
2
G2(ñ2 + n∗

2) · u∗
21 + q21

− ñ22+n∗
22

ñ2+n∗
2
G2(ñ2 + n∗

2) + ñ12+n∗
12

ñ1+n∗
1
G1(ñ1 + n∗

1) · u∗
12 + q22



+


0 ñ21+n∗

21
ñ2+n∗

2
G2(ñ2 + n∗

2)
− ñ12+n∗

12
ñ1+n∗

1
G1(ñ1 + n∗

1) 0
0 − ñ21+n∗

21
ñ2+n∗

2
G2(ñ2 + n∗

2)
ñ12+n∗

12
ñ1+n∗

1
G1(ñ1 + n∗

1) 0

 ·
[
ũ12

ũ21

]
(4.7)

Let f(ñ) and s(ñ) be defined by (4.8) and (4.9), respectively.

f(ñ) =


− ñ11+n∗

11
ñ1+n∗

1
G1(ñ1 + n∗

1) + ñ21+n∗
21

ñ2+n∗
2
G2(ñ2 + n∗

2) · u∗
21 + q11

− ñ12+n∗
12

ñ1+n∗
1
G1(ñ1 + n∗

1) · u∗
12 + q12

− ñ21+n∗
21

ñ2+n∗
2
G2(ñ2 + n∗

2) · u∗
21 + q21

− ñ22+n∗
22

ñ2+n∗
2
G2(ñ2 + n∗

2) + ñ12+n∗
12

ñ1+n∗
1
G1(ñ1 + n∗

1) · u∗
12 + q22

 (4.8)

s(ñ) =


0 ñ21+n∗

21
ñ2+n∗

2
G2(ñ2 + n∗

2)
− ñ12+n∗

12
ñ1+n∗

1
G1(ñ1 + n∗

1) 0
0 − ñ21+n∗

21
ñ2+n∗

2
G2(ñ2 + n∗

2)
ñ12+n∗

12
ñ1+n∗

1
G1(ñ1 + n∗

1) 0

 (4.9)

Then (4.4) can be rewritten as a standard affine form system as follows (Zhong
et al., 2018a):

˙̃n = f(ñ) + s(ñ) · ũ (4.10)
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As reported by Modares and Lewis (2014), the standard solution to the optimal
tracking control problem is composed of two parts: 1) the steady-state part of the
control input ũs(t) that guarantees perfect tracking of the reference trajectory, and 2)
the feedback part of the control input µ(t) that stabilizes the tracking error dynamics
in an optimal manner, i.e.,

ũ(t) = ũs(t) + µ(t)

First, suppose perfect information on the dynamics is available and the inverse of
the input dynamics s−1(ñd) exists, the desired reference trajectory ñd(t) can be
presented by

˙̃nd = f(ñd) + s(ñd) · ũs (4.11)

Hence, based on (4.5) and (4.11), we have

θ(ñd) = f(ñd) + s(ñd) · ũs

Then the steady-state part control input ũs(t) can be obtained by

ũs = s−1(ñd) · (θ(ñd) − f(ñd)) (4.12)

As reported by Zhang et al. (2018), if s−1(ñd) does not exist, ũs(t) can be developed
by

ũs = [s(ñd)T s(ñd)]−1s(ñd)T [θ(ñd) − f(ñd)] (4.13)

Second, the feedback part of the control µ(t) can be obtained by minimizing the
following performance function:

V (t) =
∫ ∞

t
r(ed(τ), µ(τ))dτ (4.14)

where r(ed, µ) = Qd(ed) +U(µ), Qd(ed) = eT
dQed, Q is a symmetric positive definite

matrix of proper dimension and U(µ) is a positive definite function.

4.2.3 A reformulation for OTPCP

In this subsection, an augmented system for the OTPCP is presented. First, the
OTPCP is transformed into the minimization of a nonquadratic performance function
subject to an augmented system composed of the original system and the command
generator system. Then a tracking Hamilton-Jacobi-Bellman (HJB) equation for the
augmented system is derived.
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According to the affine system (4.10) and the reference trajectory (4.5), we can
define the augmented system state N(t) = [e(t)T , ñd(t)T ]T and the augmented
system as

Ṅ(t) = F (N(t)) + S(N(t)) · µ(t) (4.15)

where

F (N) =
[
f(ñ) + s(ñ)ũs − θ(ñd)

θ(ñd)

]

S(N) =
[
s(ñ)

0

]

Considering ñ(t) = e(t) + ñd(t), we have

F (N) =
[
f(e+ ñd) + s(e+ ñd)ũs − θ(ñd)

θ(ñd)

]

S(N) =
[
s(e+ ñd)

0

]

For this augmented system, we introduce the following performance function.

V (N(t)) =
∫ ∞

t
Q̄(N(τ)) + U(µ(τ))dτ (4.16)

where

Q̄(N(t)) = N(t)T Q̂N(t)

=
[
ed

ñd

]T [
Q 0
0 0

] [
ed

ñd

]
= Qd(ed(t))

and U(µ) is a positive definite integrand function defined as

U(µ) = 2
∫ µ

0

(
λ tanh−1

(
υ

λ

))
Rdυ (4.17)

where υ ∈ R2, λ is the saturating bound for the actuators and without loss of
generality, R = diag(γ1, γ2) is a positive semidefinite symmetric matrix. This
nonquadratic performance function is used in the optimal regulation problem of
constrained-input systems to deal with the input constraints. In fact, using this
nonquadratic performance function, the following constraints are always satisfied,
i.e., |µi(t)| ≤ λ, i = 1, 2.
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By constructing the augmented system (4.15), the conventional standard solution
to the OTPCP is transformed into solving the optimal feedback part µ(N) for the
augmented system, whereas the solution to the steady-state control ũs has been
substituted in the dynamics F (N). It is worth noting that the performance functions
V (N) and µ(N) in this process are not linked to the reference trajectory.

The solution of the OTPCP of the two-region macroscopic traffic dynamics can
be converted to solving the nonlinear tracking HJB equation. To begin with, we
introduce the concept of admissible control.

Definition 4.2.1 A feedback control policy µ(N) is admissible with respect to (4.15),
if the control µ ∈ Λ(Ω), µ(0) = 0, is continuous on Ω and stabilizes the error
dynamics (4.6) with finite performance function V (N), ∀N ∈ Ω.

Differentiating the performance function (4.16) along the augmented system (4.15),
we can obtain the following tracking Bellman equation

V̇ (N(t)) = −NT Q̂N − U(µ(N)) (4.18)

Using (4.17), (4.18) can be further expressed as

0 = NT Q̂N + 2
∫ µ

0

(
λ tanh−1

(
υ

λ

))
Rdυ + ∇V T (N) · (F (N) + S(N)µ) (4.19)

where ∇V (N) denotes the partial derivative of V with respect to the state N .
Suppose V ∗ is the optimal value function. Then it satisfies the following tracking
HJB equation

H(N,µ, V ∗) = NT Q̂N+2
∫ µ

0

(
λ tanh−1

(
υ

λ

))
Rdυ+(∇V ∗(N))T ·(F (N)+S(N)µ)

Applying the stationary condition ∂H/∂µ∗ = 0, the optimal control policy is given
by

µ∗(N) = arg min
µ∈Λ(Ω)

H(N,µ, V ∗)

= −λ tanh
( 1

2λR
−1S(N)T ∇V ∗(N)

) (4.20)

Substituting (4.20) into (4.17) results in

U(µ∗) = λ∇V ∗T (N)S(N) tanh(D∗) + λ2R̄ ln(1 − tanh2(D∗)) (4.21)
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where D∗ = (1/2λ)R−1S(N)T ∇V ∗(N), 1 is a column vector with all elements being
ones and R̄ = [γ1, γ2] ∈ R1×2. Substituting (4.20) and (4.21) into (4.19) yields

H(N,µ∗,∇V ∗) = NT Q̂N + ∇V ∗T (N)F (N) + λ2R̄ ln(1 − tanh2(D∗)) = 0 (4.22)

To solve the OTPCP, one solves the tracking HJB equation (4.22) for the optimal
value V ∗. Then the optimal control is given as a feedback µ(V ∗) in terms of (4.22)
using (4.20).

4.3 Adaptive optimal tracking perimeter
controller design

In this section, we propose a model-free ADP approach to solving the OTPCP for the
two-region MFD system, i.e., solving the tracking HJB equation (4.22).

Due to the strong nonlinearity of the tracking HJB equation (4.22), it is extremely
difficult to obtain the analytical solution to (4.22). The offline policy iteration
method is one of the most common approaches to resolving this difficulty (Lewis
and Vrabie, 2009). First, we revisit the offline policy iteration method, based on
which the model-free ADP algorithm is derived, to solve the HJB equation (4.22).
The principle of the offline policy iteration method consists of the following two
iterative steps to calculate the Bellman equation and the optimal controller:

1. (Policy evaluation) Given an initial admissible control policy µ(0)(N) and
initial cost V (0) = 0, find V (k)(N) successively approximated by solving the
following equation

NT Q̂N + U(µ(k)(N)) +
(
∇V (k)(N)

)T

·
(
F (N) + S(N)µ(k)(N)

)
= 0, k = 0, 1, . . .

(4.23)

2. (Policy improvement) Update the control policy simultaneously by

µ(k+1)(N) = −λ tanh
(
D(k+1)

)
D(k+1) = 1

2λR
−1S(N)T ∇V (k)(N)

(4.24)
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where k is the iterative index. Proof of convergence of this offline policy iteration is
similar to that of Lemma 3.3.1.

Due to the inherent network uncertainties, such as uncertain dynamics of hetero-
geneity and demand disturbance, the MFD parameters could be time-varying and
uncertain, i.e., F (N) and S(N) could be uncertain and even unknown. To imple-
ment the model-free method, an improved data-driven algorithm is developed by
eliminating the dynamics in the iteration procedure. Denote µ(k) as the policy to be
updated and µ as the behavior policy that is actually implemented to generate the
data for learning. Then we can rewrite the augmented system as:

Ṅ = F (N) + S(N) · µ(k) + S(N) ·
(
µ− µ(k)

)
(4.25)

Taking the derivative of V (k+1)(N) along the system trajectory (4.25) yields

dV (k+1)(N)
dt =

(
∇V (k+1)(N)

)T (
F (N) + S(N)µ(k) + S(N)

(
µ− µ(k)

) )
=
(
∇V (k+1)(N)

)T (
F (N) + S(N)µ(k)

)
+
(
∇V (k+1)(N)

)T
S(N)

(
µ− µ(k)

)
According to (4.23)-(4.24), we have

dV (k+1)(N)
dt = −NT Q̂N − 2λ

∫ µ(k)

0

(
tanh−1(υ

λ
)
)T

Rdυ

+ 2λ
(

tanh−1
(
µ(k+1)

λ

))T

·R
(
µ(k) − µ

) (4.26)

Integrating both sides of (4.26) over the time interval [t, t+ ∆t], the ADP algorithm
is obtained, which is detailed by (4.27) in Algorithm 1.

From (4.27), we can see that the proposed ADP algorithm does not require any
information on the system dynamics. V (k+1) and µ(k+1) are solved simultaneously
using only the collected system data. By now, we have extended the results in Chen
et al. (2022) from SPC to TPC.
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Algorithm 1 ADP algorithm

Input: initial admissible control policy µ(0)(N) and initial cost V (0) = 0
Output: V (k)(N) and µ(k)(N)

According to the control policy µ(k), µ(k+1) and V (k+1) can be solved
simultaneously as follows:

V (k+1)(N(t + ∆t)) − V (k+1)(N(t)) =

−
∫ t+∆t

t

(
N(τ)T Q̂N(τ) + 2λ

∫ µ(k)(τ)

0
(tanh−1(υ/λ))T Rdυ

)
dτ

+ 2λ
∫ t+∆t

t

(
tanh−1

(
µ(k+1)(N(τ))/λ

))T
·

R
(
µ(k)(N(τ)) − µ(τ)

)
dτ

(4.27)

On convergence, set V (k+1)(N) = V (k)(N) and the optimal control is
µ∗ = µ(k+1)(N).

4.4 Numerical experiments

To show the validity of the proposed ADP algorithm for optimal tracking perimeter
control of the two-region MFD system, we provide two illustrative examples. In both
examples, the MFD functions for the two regions are assumed to be the same, which
are in line with those in Haddad (2015), i.e.,

Gi(ni) = 1.4877 · 10−7n3
i − 2.9815 · 10−3n2

i + 15.0912ni

3600 (4.28)

For both regions, based on (4.28), the jam accumulation is njam
i = 10000 (veh),

the maximum trip completion rate (i.e., the maximum throughput) is Gmax
i = 6.3

(veh/s), and the according critical accumulation state is ncr
i = 3392 (veh). The

sample time interval is 60 s.

4.4.1 Example 1: Time-varying travel demand

In Example 1, we mimic a realistic scenario of peak-hour traffic. For different periods
of peak-hour traffic (e.g., congestion onset, stationary congestion, and congestion
dissolving), the desired control targets should be different and fit the dynamic nature
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of the travel demand. For the first hour, the travel demand is at a medium level,
i.e., q(t) = [1.2, 1.6, 1.0, 1.4]T (veh/s) and the set points are [n∗

1, n
∗
2] = [2000, 2000]

(veh), i.e., around 60% of the critical accumulation states. For the next 2.5 hours
with stationary congestion, the travel demand is q(t) = [1.6, 1.6, 1.6, 1.6]T (veh/s)
and the set points are set to be [n∗

1, n
∗
2] = [3000, 3000] (veh), i.e., around 90%

of the critical accumulation states. After that, as the congestion dissolves, the
travel demand decreases to q(t) = [0.9, 0.9, 0.9, 0.9]T (veh/s), and the set points
are modified to a much lower level, i.e., [n∗

1, n
∗
2] = [1500, 1500] (veh). Based on

(4.3), the corresponding equilibrium points of the accumulation and the perimeter
control input are given in Table 4.1. The initial OD-specific initial accumulations are
n11(0) = 450 (veh), n12(0) = 1050 (veh), n21 = 1750 (veh), n22(0) = 750 (veh).

Table 4.1 The equilibrium points of Example 1

Time [n∗
11, n∗

12, n∗
21, n∗

22] [u∗
12, u∗

21]
0:00-1:00 [814.5, 1185.5, 889.3, 1110.7] [0.50, 0.42]
1:01-3:30 [1538.9, 1461.1, 1461.1, 1538.9] [0.53, 0.53]
3:31-5:00 [591.6, 908.4, 908.4, 591.6] [0.33, 0.33]

In Example 1, we compare the performance of the proposed ADP-based TPC against
that of the ADP-based SPC. The SPC aims to track a fixed set point [n∗

1, n
∗
2] =

[3000, 3000] (veh) regardless of the changes in the demand pattern. The results
of the accumulation state evolution, OD-specific state evolution, and the control
input of Example 1 are shown in Figure 4.3(a), Figure 4.3(b) and Figure 4.4,
respectively.

Figure 4.3(a) and Figure 4.3(b) indicate that the proposed ADP-based TPC scheme
can adapt to the changes of the travel demand pattern and regulate the accumulation
states (black solid lines) to the corresponding set points (blue dotted lines). Instead
of tracking the time-dependent reference trajectory, the SPC scheme succeeds in
stabilizing the accumulation states to a fixed set-point in this time-varying demand
case (red solid lines). As shown in Figure 4.4(a), for the first hour, the TPC inputs
converge very fast to the first equilibrium point. Then the TPC shows a fast chattering
behavior respectively at the beginning of the second hour and the beginning of the
last 1.5 hours. This is because the TPC scheme captures the changes in the demand
pattern and attempts to track the desired trajectory that better fits the dynamic
nature of the demand. For the SPC scheme (see Figure 4.4(b)), the chattering
behavior at the beginning of the first hour is greater but much milder hereafter.

A summary of two important performance indices: 1) minimizing the total time
spent (TTS) and 2) maximizing the cumulative trip completion (CTC), achieved by
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Figure 4.3 Accumulation state evolutions of Example 1
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Figure 4.4 Perimeter control inputs of Example 1

Table 4.2 Performance in TTS (veh·s) and CTC (veh) of Example 1

Controller TTS (×1e7 veh·s) CTC (×1e4 veh)
TPC 8.311 (-20.01%) 9.698 (+3.15%)
SPC 10.391 (-) 9.402 (-)

the two controllers is given by Table 4.2. The performance comparison is depicted
in Figure 4.5. Note that the proposed TPC scheme achieves a 20.01% reduction in
TTS compared with the SPC scheme. When performing congestion offset, the SPC
scheme restricts the transfer flows between the two regions to keep regulating the
accumulation state to the critical point, which makes the network denser and leads
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to unnecessary travel delays. On the contrary, by defining a reference signal that
is bounded by more practical control targets, the proposed TPC scheme not only
achieves a significant improvement in minimizing the TTS compared with the SPC
strategy, but also can outperform the latter in facilitating the CTC.
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Figure 4.5 Performances in minTTS and maxCTC of Example 1

4.4.2 Example 2: Time-varying accumulation reference
trajectories

Note that the accumulation reference trajectories in Example 1 are a priori given
constant accumulation points. Now in this case study, we test the proposed
ADP tracking perimeter controller for time-varying accumulation reference tra-
jectories. A sinusoidal wave with amplitude 10

√
5 (veh) and period 80

√
5π (s)

is adopted for the reference trajectory of ñij(t). A fixed travel demand pattern
is adopted, i.e., q(t) = [1.56, 1.56, 1.56, 1.56]T (veh/s). The set-point is selected
as [n∗

1, n
∗
2] = [3000, 3000] (veh). Based on (4.3), the corresponding equilibrium

points of the OD-specific accumulation state and the perimeter control input are
n∗ = [1500.5, 1499.5, 1499.5, 1500.5]T (veh) and u∗ = [0.5003, 0.5003]T , respectively.
The initial OD-specific initial accumulations are n11(0) = 540 (veh), n12(0) = 1260
(veh), n21 = 2170 (veh), n22(0) = 930 (veh).

In this case study, we compare the performance of the proposed model-free ADP-
based TPC and the tracking controller solved by the standard solution assuming
perfect system knowledge available (i.e., (4.12) for the feedforward part and (4.20)
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for the feedback part). The results of the accumulation state evolution and the
control input of Example 2 are shown in Figure 4.6 and Figure 4.7, respectively.
As observed from the accumulation state evolution, the proposed ADP-based TPC
scheme achieves a comparative performance with the standard TPC scheme. These
results demonstrate the effectiveness of the model-free proposed ADP-based TPC in
tracking the time-varying accumulation reference trajectories.
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Figure 4.6 Accumulation state evolutions of Example 2
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4.5 Conclusion

This chapter leverages the trajectory stability concept that can better fit the dynamic
nature of traffic demand to devise an adaptive tracking perimeter control (TPC)
strategy for two-region macroscopic traffic dynamics. An offline learning adaptive
dynamic programming (ADP) approach integrated with the AC-NN framework is
proposed to approximate the optimal solution to the OTPCP, which requires no
knowledge of the macroscopic traffic dynamics, i.e., model-free. Compared with the
traditional set-point perimeter control (SPC) scheme that tracks a pre-defined set
point, the proposed ADP-based TPC scheme can well adapt to the changes in the
traffic condition (e.g., time-varying travel demand) and regulate the accumulation
state to a desired reference trajectory that better fits the dynamics of the demand.
Numerical experiments demonstrate not only the effectiveness of the ADP-based TPC
in optimal tracking control of the two-region MFD system but also the improvement
in network traffic efficiency (e.g., minTTS and maxCTC) compared to the SPC
scheme.

The adaptive optimal perimeter control schemes investigated in Chapter 3 and
Chapter 4 are limited in region size. With the increase in region size, regional route
guidance systems can be integrated into network-level traffic management. Coupling
perimeter control and route guidance is believed to enhance network traffic mobility
while bringing challenges to data-driven traffic controller design. A major hurdle in
optimizing the network traffic performance is the dissimilarity between the plant
dynamics that represent the reality and the model used for optimization. Chapter 5
attempts to tackle the difficulties in devising adaptive perimeter control and regional
route guidance strategies in case of model-plant mismatch.
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An iterative adaptive dynamic programming
approach for macroscopic fundamental
diagram-based perimeter control and route
guidance

5

Macroscopic fundamental diagrams (MFDs) have been widely adopted to model
the traffic flow of large-scale urban networks. Coupling perimeter control and
regional route guidance (PCRG) is a promising strategy to decrease congestion
heterogeneity and reduce delays in large-scale MFD-based urban networks. For
MFD-based PCRG, one needs to distinguish between the dynamics of (a) the plant
that represents reality and is used as the simulation tool, and (b) the model that
contains easier-to-measure states than the plant and is used for devising controllers,
i.e., the model-plant mismatch should be considered. Traditional model-based
methods (e.g., model predictive control (MPC)) require an accurate representation
of the plant dynamics as the prediction model. However, due to the inherent network
uncertainties, such as uncertain dynamics of heterogeneity and demand disturbance,
MFD parameters could be time-varying and uncertain. On the other hand, existing
data-driven methods (e.g., reinforcement learning) do not consider the model-
plant mismatch and the limited access to plant-generated data, e.g., subregional
OD-specific accumulations. Therefore, we aim to develop an iterative adaptive
dynamic programming (IADP) based method to address the limited data source
induced by the model-plant mismatch. An actor-critic neural network structure
will be developed to circumvent the requirement of complete information on plant
dynamics. Performance comparisons with other PCRG schemes under various
scenarios will be carried out. The numerical results will indicate that the IADP
controller trained with a limited data source can achieve comparable performance
with the “benchmark” MPC approach using perfect measurements from the plant.
The results will also validate the IADP’s robustness against various uncertainties
(e.g., demand noise, MFD error, and trip distance heterogeneity) when minimizing
the total time spent in the urban network. These results can demonstrate the great
potential of the proposed scheme in improving the efficiency of multi-region MFD
systems.
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5.1 Introduction

Depending on the network topology and partitioning, the urban network can be
modeled as a single-region (Haddad and Shraiber, 2014), two-region (Zhong et al.,
2018b), or multi-region MFD system (Sirmatel and Geroliminis, 2018). As the
number of regions increases, regional route guidance is introduced in the MFD
system to assist drivers in reaching their destinations. Leclercq and Geroliminis
(2013) investigated the route choice in a two-bin MFD network with parallel routes
which advises drivers a sequence of subregions that has a lower cost (in terms of
travel time, fuel consumption, etc.) to improve the overall system performance.
Dynamic user equilibrium (DUE) and dynamic system optimum (DSO) conditions
for multi-region MFD system with regional route choice departure time choice were
investigated in Huang et al. (2020) and Zhong et al. (2020), respectively.

The integration of perimeter control and regional route guidance (PCRG) is a promis-
ing approach to improving traffic efficiency in multi-region MFD-based networks.
In the previous literature on PCRG strategies, Ramezani et al. (2015) is the first to
distinguish the model and the plant when devising PCRG schemes for MFD-based
urban networks. Following their work, we regard the region-based model (see
Figure 5.1(a)) as the model, which considers an urban network partitioned into a
small number of regions with scattered MFDs due to the link density heterogeneity.
Moreover, we consider the more detailed subregion-based model (see Figure 5.1(b))
as the plant, which further divides the above regions into smaller subregions with
low-scatter MFDs. The region-based model is essential for developing control strate-
gies as it contains aggregated states that are easier to monitor than the more detailed
plant states. The subregion-based plant with more detailed dynamics can replicate
the reality wherein the developed strategies are actually implemented. Note that
the model and the plant have different structures, which is one of the reasons for
the model-plant mismatch. Therefore, it usually requires tedious translation of the
regional control signals into the subregion ones (Ramezani et al., 2015; Yildirimoglu
et al., 2018). Moreover, the subregion-based plant can incorporate a route choice
model into the MFD framework (Yildirimoglu et al., 2015), whereas there is no
route choice modeling in the region-based model. This is done on purpose not only
to simplify the model, but also to create stronger model-plant disimilarity, which is
more challenging when solving the optimal PCRG (OPCRG) problem.

Ramezani et al. (2015) reported that there exists a mismatch between the model
and the plant induced by the link density heterogeneity. They found that ignoring
the effect of such heterogeneity when designing optimal control schemes may lead
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Figure 5.1 Network topology, reprinted (with modification) from Ramezani et al.
(2015). (a) Region- and (b) Subregion-based models.

to non-optimal results. They proposed a hierarchical perimeter control framework
to study the dynamics of heterogeneity. The heterogeneity effect is modeled using a
negative binomial distribution and incorporated in the region-based model. However,
such explicit heterogeneity modeling requires a large amount of high-resolution link-
level data. Moreover, the regional MFD models need to be re-calibrated regularly to
adapt to real-time traffic conditions, which can be a heavy computational burden.
Therefore, an ADP based model-free optimal PCRG scheme is desired, which is also
computationally efficient in implementation.

The dynamic regional trip distance is another cause of the model-plant mismatch.
Many studies assumed that the average regional trip distance stays constant during
the planning horizon (e.g., Geroliminis et al., 2013; Sirmatel and Geroliminis,
2018). In practice, the average regional trip distance changes over time. Batista et al.
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(2021) proved that the constant average regional trip distance assumption could
degrade the MPC control performance. They proposed an unscented Kalman filter
(UKF) framework that dynamically adjusts the accumulations and trip distances
to improve the prediction model of the MPC. To our best knowledge, few RL/ADP
based PCRG schemes have studied the effect of the time-varying average regional
trip distance on their control performance.

Previous studies on RL/ADP based perimeter control did not consider the limited
access to the plant data (Su et al., 2020; Zhou and Gayah, 2021; Chen et al., 2022).
Plant states such as the subregional OD-specific accumulation and travel demand are
extremely difficult to measure. The regional states are more aggregated but easier
to monitor. In this study, we investigate a scenario that has not been considered
by previous RL/ADP PCRG schemes, wherein we develop a data-driven OPCRG
scheme that can be directly applied in the subregion-based plant using merely the
aggregated region-based data.

To address the aforementioned challenges, we develop an iterative adaptive dynamic
programming (IADP) based OPCRG strategy for heterogeneous urban networks.
An actor-critic neural network (AC-NN) framework is employed to simultaneously
approximate the optimal value function associated with the HJB equation and to
parametrize the adaptive OPCRG strategy. The principle contributions are summa-
rized as follows:

• Model-free against the model-plant mismatch. Rather than eliminating the
dissimilarity between the model and the plant, the proposed IADP approach
tackles the model-plant mismatch by circumventing the necessity of perfect
information on the system dynamics.

• OPCRG strategy trained with limited data. To our best knowledge, it is the first
time for RL/ADP-based PCRG controllers to address the difficulties induced
by the model-plant mismatch. It will be good to ensure that the data used
for training are quite different than the ones used for testing. Despite being
trained without the detailed subregional state data, the IADP approach can
approximate the OPCRG scheme.

• Robustness against time-varying unknown regional trip distances. The IADP
approach can well adapt to the dynamics of the heterogeneous regional trip
distances and achieve a comparable performance with the MPC scheme with
exact measurements of the average regional trip distances.
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• Generalizability in different environments. We examine the performance of
the IADP agent trained in an environment without uncertainties in various
unseen scenarios (e.g., different levels of trip distance heterogeneity, MFD
error, and demand noise). Without extra training, the IADP approach retains
satisfactory control performances.

• Computational efficiency in MFD systems with a large region size. Sirmatel
and Geroliminis (2018) and Yildirimoglu et al. (2018) reported that the
MPC route guidance schemes cannot retain real-time feasibility when the
network (sub)region size is much more than seven. As will be shown in the
numerical experiments, the IADP approach is computationally efficient even
when implemented in a sixteen-subregion network.

The remainder of the chapter is organized as follows: Section 5.2 introduces the
MFD-based modeling of large-scale urban networks. In Section 5.3, we formulate the
OPCRG problem and derive its standard solution based on the Bellman optimality
principle. Then we propose a two-phase IADP-based approach for MFD-based
OPCRG without exact plant dynamics. Section 5.4 presents numerical examples.
Finally, Section 5.5 concludes the study.

5.2 MFD-based modeling of large-scale urban
networks

In this section, we introduce the region-based model and the subregion-based plant,
see Figure 5.1. Note that the IADP OPCRG scheme to be developed in the next
section only uses partial information that mainly comes from the region-based
model. On the other hand, the subregion-based plant is regarded as a black box and
merely used for implementing the devised PCRG schemes. Following Yildirimoglu
et al. (2015), the MFD model investigated in this study is the accumulation-based
model.

5.2.1 Region-based model

First, we consider a network as a set of r regions denoted by R = {1, 2, . . . , r}. QIJ(t)
(veh/s) denotes the travel demand originating from Region I with a destination in
Region J at time t. NIJ(t) (veh) represents the accumulation of vehicles in Region I
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that are headed towards Region J . NI(t) (veh) denotes the total accumulation of
vehicles in Region I, which is the summation of NIJ(t) over all regions in R, i.e.,
NI(t) =

∑
J∈RNIJ(t); I, J ∈ R.

Dynamics of an r-region MFDs network are given as follows (Yildirimoglu et al.,
2015):

ṄII(t) =QII(t) −M I
II(t) −

∑
H∈VI\{I}

UIH(t) ·MH
II (t)

+
∑

H∈VI\{I}
UHI(t) ·M I

HI(t) (5.1a)

ṄIJ(t) =QIJ(t) −
∑

H∈VI\{I};I 6=J

UIH(t) ·MH
IJ(t)

+
∑

H∈VI\{I};I 6=J

UHI(t) ·M I
HJ(t) (5.1b)

where VI is the set of regions that are directly reachable from Region I. UIH , 0 ≤
UIH ≤ 1, denotes the perimeter controller, which exists between every two adjacent
Regions I and H and constrains the transfer flows from I to H; H ∈ VI\{I}. MH

IJ(t)
represents the transfer flow for accumulation in Region I with a final destination
in J through the next immediate Region H, while the internal trip completion rate
for accumulation in Region I with a destination within I (without going through
another region) is represented by M I

II(t) (veh/s). Note that paths including more
than one crossing over the boundaries between the regions are permitted (e.g., the
path of transfer flow MH

II is I → H → I, see Figure 5.1(a)).

Internal trip completion rates and transfer flows are calculated corresponding to the
ratio between accumulations as:

M I
II(t) = NII(t)

NI(t) · PI (NI(t), σI (NI(t)))
LII(t) (5.2a)

MH
IJ(t) = NIJ(t)

NI(t) · PI (NI(t), σI (NI(t)))
LIH(t) (5.2b)

where PI (NI(t), σI (NI(t))) (veh·m/s) denotes the MFD production for Region
I. σI(NI(t)) is the heterogeneity variance at NI(t). LII(t) (m) and LIH(t) (m)
denote the average trip lengths for trips in Region I and for trips from Region I to H,
respectively. We will further discuss σI(NI(t)) that captures the spatial heterogeneity
of Region I in Section 5.2.4.
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5.2.2 Subregion-based plant

Let us consider Region I ∈ R with spatial heterogeneity in subregional density,
which consists of subregions as seen in Figure 5.1(b). In this chapter, capital letters
and lowercase letters are used for variables related to regions and subregions,
respectively. The subregion-based plant is more detailed but shares the same form
of dynamics as the region-based model, following Ramezani et al. (2015).

Let SR be the set of all subregions in R. qij(t) (veh/s) denotes the demand from
Subregion i to j. nij(t) (veh) represents the accumulation in Subregion i with
destination in Subregion j. ni(t) (veh) is the total accumulation in Subregion i and
ni(t) =

∑
j∈SR nij(t). pi(t) (veh·m/s) defines the MFD production for Subregion i,

which is the total distance traveled by all vehicles in Subregion i and equal to the
sum of the transfer and internal flows multiplied by the average trip length li (m) in
Subregion i. uij ∈ [0, 1] is the perimeter controller that controls the transfer flows
on the border between Subregions i and j.

For ∀i ∈ SR, the mass conservation equations for the subregions are given as follows:

ṅii(t) = qii(t) −mii(t) +
∑

h∈Hi

uhi(t) · m̂i
hi(t) (5.3a)

ṅij(t) = qij(t) −
∑

h∈Hi

uih(t) · m̂h
ij(t) +

∑
h∈Hi;h6=j

uhi(t) · m̂i
hj(t), ∀ j ∈ Hi\{i}

(5.3b)

ṅir(t) = qir(t) −
∑

h∈Hi

uih(t) · m̂h
ir(t) +

∑
h∈Hi

uhi(t) · m̂i
hr(t), ∀ r ∈ SR\Hi (5.3c)

where mii(t) (veh/s) denotes the transfer flow from Subregion i with final destina-
tion Subregion i, while mh

ij(t) (veh/s) is the transfer flow for accumulation in i with
final destination j through the next immediate Subregion h, h ∈ Hi with Hi the set
of subregions that are directly reachable from Subregion i. mii(t) and mh

ij(t) are
defined respectively as follows:

mii(t) = nii(t)
ni(t)

· pi(ni(t))
li

(5.4a)

mh
ij(t) = θh

ij(t) · nij(t)
ni(t)

· pi(ni(t))
li

(5.4b)

where θh
ij(t) ∈ [0, 1] is the transfer flow ratio from Subregion i with destination in

Subregion j that goes immediately through Subregion h, and hence
∑

h∈Hi
θh

ij(t) =
1.
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Note that high accumulation in a subregion can limit the inflow from the boundary.
Therefore, the definition of capacity-restricted transfer flow from Subregion i to
j passing through h immediately, m̂h

ij(t), is introduced (Ramezani et al., 2015;
Yildirimoglu et al., 2015; Sirmatel and Geroliminis, 2018):

m̂h
ij(t) = min

[
mh

ij(t),
mh

ij(t)∑
k∈SR;k 6=im

h
ik(t)

· rih(nh(t))
]

(5.5)

where rih(·) (veh/s) is the receiving flow capacity of Subregion h ∈ Hi, from
Subregion i. We consider that the receiving capacity is a piecewise function of nh(t)
as follows:

rih(nh(t)) =

 rmax
ih , 0 ≤ nh(t) ≤ α · njam

h

− rmax
ih

(1−α)·njam
h

· nh(t) + rmax
ih

1−α , α · njam
h < nh(t) ≤ njam

h

(5.6)

5.2.3 Transferring subregion-based control variables to
region-based ones

This study aims at providing perimeter control and route guidance strategies in the
subregion-based plant by utilizing the aggregated states NIJ(t) in the region-based
model where the regional control decisions UIJ(t) are replaced with uij(t) and θh

ij(t).
This procedure requires the transfer of variables from the subregion-based plant to
the region-based model.

Note from (5.3a)-(5.3c) that perimeter controllers exist between every two neigh-
boring subregions. However, we do not intend to regulate inter-transfers between
any two subregions, but only at the boundary of the region-based model. That is,
subregions that are not attached to the boundary between the regions, will not be
controlled and the according inputs are set to be 1. Unlike Ramezani et al. (2015)
that developed a hierarchical perimeter control framework, we focus on the design
of low-level perimeter controls, uij , to control the subregional accumulation and
minimize the total time delay of the whole network. For a given boundary between
regions, thus, the high-level perimeter controls, UIJ , are automatically calculated
by

UIJ(t) =
∑

i∈SRI

∑
h∈SRJ ∩Hi

∑
j∈R\{i} uih(t) · m̂h

ij(t)∑
i∈SRI

∑
h∈SRJ ∩Hi

∑
j∈R\{i} m̂

h
ij(t)

(5.7)

where SRI is the set of subregions that belongs to Region I.
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The assumption behind estimating the average trip length for internal and external
trips, LII(t) and LIH(t), is that the region-based model and subregion-based plant
should be consistent and exhibit identical internal and external region outflows
if the information is perfect (Ramezani et al., 2015). M I

II(t) in the region-based
model is equivalent to the sum of all mii(t), i ∈ SRI , and MH

IJ(t) in the region-
based model is equivalent to the sum of all mh

ij(t), i ∈ SRI , h ∈ SRH ∩ Hi and
j ∈ SRJ . Based on (5.2a)-(5.2b), we have LII(t) = NII(t)

NI(t) · PI(NI(t),σI(NI(t)))
MI

II(t) and

LIH(t) = NIJ (t)
NI(t) · PI(NI(t),σI(NI(t)))

MH
IJ (t) . Thus, LII(t) and LIH(t) can be written in detail

as follows (Yildirimoglu et al., 2015):

LII(t) =
∑

i∈SRI

∑
j∈SRI

nij(t)∑
i∈SRI

ni(t)
·
∑

i∈SRI
pi(ni(t))∑

i∈SRI
mii(t)

(5.8a)

LIH(t) =
∑

i∈SRI

∑
j∈SRJ

nij(t)∑
i∈SRI

ni(t)
·

∑
i∈SRI

pi(ni(t))∑
i∈SRI

∑
h∈SRH∩Hi

∑
j∈SRJ

m̂h
ij(t)

(5.8b)

Note that paths including more than one crossing over the boundaries between the
subregions are prohibited (Sirmatel and Geroliminis, 2018). The route choice of
subregion-based plant meets this assumption.

5.2.4 Region-based model considering spatial
heterogeneity

In the region-based model, the heterogeneity dynamics are integrated into the
regional MFDs by considering the heterogeneous distribution of spatial density
(heterogeneous ni(t)). Inspired by Ramezani et al. (2015) and Geroliminis and Sun
(2011), the real production MFD function is defined as

PI (NI(t), σI (NI(t))) = |SRI | ·
(
dI

3

(
NI(t)
|SRI |

)3
+ dI

2

(
NI(t)
|SRI |

)2
+ dI

1
NI(t)
|SRI |

)

·
(
aI · ebI ·

(
σI(NI(t))−σh

I

)
+ (1 − aI)

)
(5.9)

where | SRI | denotes the number of subregions in Region I, σI (NI(t)) denotes
the variance that captures the spatial heterogeneity, σh

I is the standard deviation
of summation of | SRI | negative binomial distributions with mean occupancy
NI(t)/ | SRI |, dI

3, dI
2, and dI

1 are the estimated nominal MFD parameters, and
aI , bI are the estimated parameters that regulate the extent of subregional density
heterogeneity effect on the region production.
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Let φI(NI(t)) = aI ·
(
ebI ·
(

σI(NI(t))−σh
I

)
− 1

)
. Then (5.9) can be expressed by

PI (NI(t), σI (NI(t))) = P̄I (NI(t)) · (φI (NI(t)) + 1)

= φI (NI(t)) · P̄I (NI(t)) + P̄I (NI(t))
(5.10)

where P̄I(NI(t)) = |SRI |·
(
dI

3 ·
(

NI(t)
|SRI |

)3
+ dI

2 ·
(

NI(t)
|SRI |

)2
+ dI

1 · NI(t)
|SRI |

)
is the nominal

production MFD function. (5.10) means that: The production MFD in Region I

is composed of 1) the exponential term considering the heterogeneity, and 2) the
production term assuming homogeneous condition corresponding to the upper
bound (low-scatter) MFD.

Combining (5.10) and (5.2a)-(5.2b), we obtain

M̂ I
II(t) = NII(t)

NI(t) · φI (σI (NI(t))) · P̄I (NI(t)) + P̄I (NI(t))
LII(t) (5.11a)

M̂H
IJ(t) = NIJ(t)

NI(t) · φI (σI (NI(t))) · P̄I (NI(t)) + P̄I (NI(t))
LIH(t) (5.11b)

Let M̄ I
II(t) = NII(t)

NI(t) · P̄I(NI(t))
LII(t) and M̄H

IJ(t) = NIJ (t)
NI(t) · P̄I(NI(t))

LIJ (t) . Substituting M̄ I
II and

M̄H
IJ into (5.11a)-(5.11b) and then substituting M̂ I

II and M̂H
IJ into (5.1a)-(5.1b)

yield that

ṄII(t) =QII(t) − M̄ I
II(t) · (1 + φI (NI(t)))

−
∑

H∈VI\{I}
UIH(t) · M̄H

II (t) · (1 + φI (NI(t)))

+
∑

H∈VI\{I}
UHI(t) · M̄ I

HI(t) · (1 + φH (NH(t))) (5.12a)

ṄIJ(t) =QIJ(t) −
∑

H∈VI\{I};I 6=J

UIH(t) · M̄H
IJ(t) · (1 + φI (NI(t)))

+
∑

H∈VI\{I};I 6=J

UHI(t) · M̄ I
HJ(t) · (1 + φH (NH(t))) (5.12b)

5.2.5 Introducing uncertainty in MFD dynamics

Uncertainty in travel demand profiles QIJ(t), I, J ∈ R (i.e., demand disturbance) is
considered. The real demand profile is assumed to be composed of a known nominal
term and an unknown external disturbance term:

QIJ(t) = Q̄IJ(t) + εIJ(t) (5.13)
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Now, integrating the subregion accumulation heterogeneity φI (NI(t)) and the real
demand profile QIJ(t) subject to external disturbance, we can derive the dynamics
of the region-based model that considers demand uncertainties.

Substituting (5.13) into (5.12a)-(5.12b), we have

ṄII(t) =Q̄II(t) + εII(t) − M̄ I
II(t) · (1 + φI (NI(t)))

−
∑

H∈VI\{I}
UIH(t) · M̄H

II (t) · (1 + φI (NI(t)))

+
∑

H∈VI\{I}
UHI(t) · M̄ I

HI(t) · (1 + φH (NH(t))) (5.14a)

ṄIJ(t) =Q̄IJ(t) + εIJ(t) −
∑

H∈VI\{I};I 6=J

UIH(t) · M̄H
IJ(t) · (1 + φI (NI(t)))

+
∑

H∈VI\{I};I 6=J

UHI(t) · M̄ I
HJ(t) · (1 + φH (NH(t))) (5.14b)

5.3 Adaptive optimal perimeter control and
route guidance for MFD networks

In this section, the optimal perimeter control and route guidance (OPCRG) problem
with the objective to minimize the network delay or to minimize the total time
spent (TTS) is formulated. Due to the model-plant mismatch and the uncertainty
in the system dynamics, it is intractable to obtain an analytical solution to the
OPCRG problem, i.e., solving the HJB equation explicitly. A data-driven IADP
approach to solving the HJB is then developed to resolve this difficulty. An actor-
critic neural network (AC-NN) framework is employed to approximate the optimal
solution to the HJB equation, which overcomes the challenge posed by the curse
of dimensionality. An off-line iterative learning scheme based on the general least-
square (GLS) technique is devised to implement the AC-NN framework.

5.3.1 Data-driven IADP for the OPCRG of MFD systems

First, we present the OPCRG problem formulation of the MFD-based traffic dynamics
and its standard solution.
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The objective of the OPCRG for MFD systems is to minimize the TTS, defined as the
integral of the network accumulation with respect to time, as given by (5.15a), by
manipulating the perimeter controllers and route guidance system.

min
uij(t),θh

ij(t)

∫ tf

0

∑
I

∑
J

NIJ(t)dt (5.15a)

subject to: 0 ≤ NIJ(t) ≤ N jam
I (5.15b)

0 ≤
∑

J

NIJ(t) ≤ N jam
I (5.15c)

umin ≤ uij(t) ≤ umax (5.15d)

0 ≤ θh
ij(t) ≤ 1 (5.15e)∑

h∈Hi

θh
ij(t) = 1 (5.15f)

(5.7) − (5.8), (5.14).

where N jam
I is the capacity of Region I and umin, umax denote the lower and upper

bounds of the perimeter controller, respectively. Here tf > 0 denotes the planning
horizon.

Define the state vector as N(t) ∈ Rr2
containing all NIJ(t) terms and the control

vector as Λ(t) of proper dimensions containing all uij(t) (corresponding to UIJ(t)
terms) and θh

ij(t) terms. We can write the complete state-space model in a compact
form as

Ṅ(t) = f(N(t),Λ(t)) (5.16)

where f is the compact form of (5.14a)-(5.14b) combined with (5.7)-(5.8). f is
an unknown nonlinear vector-valued function that is Lipschitz continuous with
f(0, 0) = 0. Now, to obtain the optimal controller, one needs to solve Λ(t) from
(5.15a) subject to the constraint given by (5.15b)-(5.16).

Note that (5.16) serves as the training environment of the proposed IADP algorithm.
The data used for training can be simply categorized into the state data and the
action (control input) data. We assume for the state data that only the measurements
of regional accumulation NIJ(t) are available. This is a more challenging case than
the one where more detailed subregion data, e.g., the measurements of subregional
accumulation nij(t), are available. For the action data, although the plant dynamics
(5.3) is regarded as a black box to the IADP algorithm, the control strategies uij(t)
and θh

ij(t) are devised by transport managers and thus by nature they are available.
That is to say, the training data is a group of the regional states and the subregional
control input values, i.e., {NIJ(t), uij(t), θh

ij(t)}. We will prove in the following
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subsection that the well-trained IADP approach using the data {NIJ(t), uij(t), θh
ij(t)}

obtained from (5.16) can approximate the OPCRG strategy for the subregion-based
plant (5.3). Before that, we need to present the standard solution to the OPCRG
problem.

Chen et al. (2022) developed an IRL-based adaptive perimeter controller by con-
structing the HJB equation associated with the performance function and the un-
derlying plant dynamics, which can be reformulated as a dynamical system of the
input-affine form. Nevertheless, due to the unknown plant dynamics (5.3a)-(5.3c)
and strong nonlinear relationship between UIJ , LIH and uij , θh

ij as described by
(5.7) and (5.8a)-(5.8b), (5.16) cannot be rewritten as an input-affine nonlinear
dynamical system directly.

To overcome this difficulty, the core idea is to introduce the pre-compensator (Murray
et al., 2002; Lee and Sutton, 2021) for Λ that is governed by the following dynamic
equation

Λ̇ = A1 · Λ + A2 · U (5.17)

where A1 and A2 are constant matrices and A1 is a Hurwitz matrix. U ∈ Rd̄ is the
new control input vector where d̄ is a positive integer equal to the summation of
numbers of all uij and θh

ij variables.

Remark 5.3.1 The matrices A1 and A2 should be designed to guarantee the global
asymptotic stability of Λ. Generally, we can let A1 be a negative-definite matrix
while A2 be a positive-definite matrix. Without loss of generality, in this study, we
define A1 , −IΛ and A2 , IΛ where IΛ ∈ Rd̄ is an identity matrix.

There are several reasons why (5.17) that determines the implemented control
policy can be devised. On the one hand, given that the exact knowledge on system
dynamics is unavailable or the traffic managers have difficulty calibrating the model
in the learning process, the implemented control policy may not be an optimal
one, which could lead to unexpected behaviors such as poor stability or even
instability. By adding this pre-compensator, we are tailoring the phase and gain
of the open loop response and therefore changing stability margins which have
the effect of determining both rise time and overshoot of the closed-loop system
(Ogata et al., 2010). On the other hand, as discussed in Zhong et al. (2018b),
there may be a difference between the control that is actually implemented and the
optimal control that needs to be learned. The network dynamics can be stimulated
by the implemented control, and hence the evolution of traffic states and the
network performance can be captured by the learning algorithms. Then the learning

5.3 Adaptive optimal perimeter control and route guidance for MFD
networks

111



algorithm adjusts the adaptive controller iteratively to achieve the optimal network
performance (Chen et al., 2022).

Now we define the augmented state vector as X =
[
NT ,ΛT

]T
∈ Ω ⊂ Rr̄ where

r̄ is a positive integer equal to the summation of numbers of all NIJ , uij and θh
ij

variables. Then the dynamics of the augmented system in terms of X is

Ẋ = F(X) + G · U (5.18)

where

F =
[

f(N,Λ)
A1 · Λ

]
, G =

[
0

A2

]

A standard solution to the OPCRG problem is by constructing the Hamiltonian
function. First, the value function is defined as

V (X(t)) =
∫ tf

t
L(X,U) dτ (5.19)

where L denotes the cost function, which can be generally chosen as

L(X,U) =‖ X ‖ +λ ‖ U ‖

where λ > 0 is a small constant and ‖a‖ denotes the Euclidean norm of a vector a.
Minimizing the cost L means the simultaneous minimization of both the regional
accumulation and the PCRG control effort.

Taking the time derivative of both sides of (5.19) and moving the right terms to the
left, we can derive

(∇V )T ·
(

F(X) + G · U
)

+ ‖ X ‖ +λ ‖ U ‖= 0

where ∇V denotes the partial derivative of V (X) with respect to X.

The Hamiltonian function for (5.18) can be defined as

H(X,∇V,U) , (∇V )T ·
(

F(X) + G · U
)

+ ‖ X ‖ +λ ‖ U ‖ (5.20)

Note that the integrand of the value function is not explicitly time-dependent and
the terminal time is fixed, and that (5.18) is an autonomous dynamical system.
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Therefore, the optimality is obtained by letting H(X,∇V,U) = 0, i.e., the Bellman
optimality equation is derived as

(∇V ∗)T ·
(

F(X) + G · U∗
)

+ ‖ X ‖ +λ ‖ U∗ ‖= 0 (5.21)

By applying the stationary condition ∂H(X,∇V,U)/∂U = 0, the optimal control is
obtained as

U∗ = − 1
2λGT · ∇V ∗(X) (5.22)

Substituting (5.22) into (5.21), we have

(∇V ∗)T · F − 1
4λ (∇V ∗)T · G · GT · ∇V ∗+ ‖ X ‖= 0 (5.23)

To find the optimal feedback control policy for the OPCRG problem, it is necessary to
solve V ∗ from the HJB equation (5.23). However, the strong nonlinearity of (5.23)
makes it challenging to obtain an analytical solution. In such cases, policy iteration
is often employed as one of the most commonly used approaches to overcome
this difficulty. The policy iteration algorithm for the OPCRG problem starts with
an initial admissible control U0. For k = 0, 1, . . ., the policy iteration algorithm
contains the policy evaluation phase and the policy improvement phase, as described
in Algorithm 2. The convergence of the iteration sequence {(V k,Uk)} by using
(5.24)-(5.25) to the optimality (V ∗,U∗) to the HJB equation can be found in Chen
et al. (2022).

Algorithm 2 Policy iteration

Input: initial admissible control policy U0(X)
Output: V k(X)

1: Policy evaluation:
k = k + 1.
Update the value function by calculating

(
∇V k+1

)T
·
(

F(X) + G · Uk

)
+ ‖ X ‖ +λ ‖ Uk ‖= 0 (5.24)

On convergence, set V k+1(X) = V k(X).
2: Policy improvement:

Update the control policy by calculating

Uk+1 = − 1
2λ

GT · ∇V k+1(X) (5.25)
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Note that (5.24)-(5.25) require the knowledge of the drift dynamics F. A model-
free off-policy IRL Bellman equation is employed to help get rid of F while it uses
system data generated by an implemented behavior policy to solve the HJB equation.
Towards this, we rewrite the affine dynamics as

Ẋ(t) = F(X(t)) + G · Uk(t) + G · (U(t) − Uk(t)) (5.26)

where Uk(t) is the target policy to be learned and U(t) is the implemented behavior
policy for generating the data for training. Differentiating the value function V (X)
along the system trajectory (5.26) and using (5.25), we have

V k(X(t)) − V k(X(t+ ∆t)) =
∫ t+∆t

t

(
L(X,Uk) − 2λ

(
Uk+1

)T
· IU · (U − Uk)

)
dτ

(5.27)
where IU is an identity matrix of appropriate dimensions.

Without any prior knowledge of the system dynamics, the value function V k and the
updated policy Uk+1 can be simultaneously obtained from solving the off-policy IRL
Bellman equation (5.27) with an implemented control policy U(t).

5.3.2 A two-phase iterative learning scheme

We adopt an AC-NN framework to approach the solution of the OPCRG problem.
The following critic NN and the actor NN are constructed to approximate the value
function V k and the control strategy Uk, respectively.

V k+1(X) = wT
c, k+1 · Ψc(X) + εc, k+1

Uk+1(X) = wT
d, k+1 · Ψd(X) + εd, k+1

(5.28)

where Ψc ∈ RKc , Ψd ∈ RKd are vectors of linearly independent activation func-
tions, wc, k+1 ∈ RKc , wd, k+1 ∈ RKd×D are the weighting matrices of the proper
dimension of the NNs, εc, k+1 and εd, k+1 are the approximation errors of appropriate
dimensions.
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Based on (5.28), the residual error is defined as

ζk+1(X(t)) =
(

Ψc(X(t+ ∆t)) − Ψc(X(t))
)T

· wc, k+1

+
∫ t+∆t

t

(
‖ X ‖ +λΨT

d (X) · wd, k · wT
d, k · Ψd(X)

)
dτ

− 2λ
∫ t+∆t

t
ΨT

d (X) · wd, k+1 · IU ·
(
U − wT

d, k · Ψd(X)
)

dτ

(5.29)

It is assumed that the outputs of the NNs can be expressed by the estimations as
follows

V̂ k+1(X) = ŵT
c, k+1 · Ψc(X)

Ûk+1(X) = ŵT
d, k+1 · Ψd(X)

(5.30)

where ŵc, k+1 and ŵd, k+1 are estimations of wc, k+1 and wd, k+1, respectively, which
are usually learned from training data.

Define a strictly increasing time sequence {tm}b
m=0, and let b > 0 denote

the number of collected data samples for estimating
(
V k+1(X),Uk+1(X)

)
by(

V̂ k+1(X), Ûk+1(X)
)
, the residual error ek+1 =

[
ek+1

1 , . . . , ek+1
m , . . . , ek+1

b

]T
due

to the truncation is given by

ek+1
m = V̂ k+1(X(tm)) − V̂ k+1(X(tm+1)) −

∫ tm+1

tm

L(X,Uk) dτ

+
∫ tm+1

tm

2λ
(
Ûk+1

)T
· IU ·

(
U − Uk

)
dτ

= ŵT
c, k+1 ·

(
Ψc(X(tm)) − Ψc(X(tm+1))

)
−
∫ tm+1

tm

(
‖ X ‖ +λΨT

d (X) · ŵd, k · ŵT
d, k · Ψd(X)

)
dτ

+ 2λ
∫ tm+1

tm

ΨT
d (X) · ŵd, k+1 · IU ·

(
U − ŵT

d, k · Ψd(X)
)

dτ

(5.31)

Define Wk+1 =
[
wT

c, k+1, vec(wd, k+1)T
]T

∈ RK̄ , Ŵk+1 =[
ŵT

c, k+1, vec(ŵd, k+1)T
]T

∈ RK̄ the vectors of the ideal and the estimated
AC-NN weights, respectively, where K̄ = Kc + d̄ · Kd is the corresponding
dimension. Here the iterative index is k ∈ {0, 1, . . .}, and the time sequence index is
m ∈ {0, . . . , b}. vec(·) denotes the vectorization of a matrix formed by stacking all
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the columns of the matrix into a single-column vector. By Kronecker product ⊗, let
ρm(Ŵk), πm(Ŵk) be defined as

ρm(Ŵk) =

 Ψc(X(tm)) − Ψc(X(tm+1))
2λ
∫ tm+1

tm
IU ·

(
U − ŵT

d, k+1 · Ψd(X)
)

⊗ Ψd(X) dτ


πm(Ŵk) =

∫ tm+1

tm

(
‖ X ‖ +λΨT

d (X) · ŵd, k · ŵT
d, k · Ψd(X)

)
dτ

This gives a compact form of the residual error (5.31) of the approximation

ek+1
m = ρT

m(Ŵk) · Ŵk+1 − πm(Ŵk) (5.32)

Based on the GLS principle, it is desired to determine the estimated AC-NN weight
vector Ŵk+1 by solving min

Ŵk+1

‖ek+1‖. According to (5.32), the solution to this GLS

problem is
Ŵk+1 =

[
PT (Ŵk) · P(Ŵk)

]−1
· PT (Ŵk) · Π(Ŵk) (5.33)

where
P(Ŵk) =

[
ρ0(Ŵk), . . . ,ρb(Ŵk)

]T
Π(Ŵk) =

[
π0(Ŵk), . . . , πb(Ŵk)

]T
In order to guarantee the convergence of the IADP control policy to a near-optimal
control, a rank condition in the following assumption is adopted to verify the richness
of the recorded data, i.e., whether it is sufficient to solve the GLS problem (Modares
et al., 2014).

Assumption 5.3.1 The number of sampling data points b should be sufficiently
large, i.e.,

b ≥ rank(P(Ŵk)) = K̄ (5.34)

ρ(Ŵk) and π(Ŵk) can be computed with a suitable initial policies weight wd, 0

using a set of training data. The algorithm is then iterated following (5.33). Ac-
cordingly, the unknown value function V̂ k(X) and policy function Ûk+1(X) can
be approximated by (5.30) with the convergent Ŵk+1. The analytical result is
summarized by the following theorem.

Theorem 5.3.1 Suppose that the convergence of Ŵk+1 holds, for ∀ξ > 0, there
exist integer k∗ > 0, K∗

c > 0 and K∗
d > 0, such that if k > k∗, Kc > K∗

c and
Kd > K∗

d , then
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1) |V̂ k(X) − V k(X)| ≤ ξ, ‖Ûk+1 − Uk+1‖ ≤ ξ

2) |V̂ k(X) − V ∗(X)| ≤ ξ, ‖Ûk+1 − U∗‖ ≤ ξ

hold for all X ∈ Ω.

To ensure the convergence of Ŵk+1, the following persistency of excitation (PE)
assumption is given.

Assumption 5.3.2 Let ρl(Ŵk) be persistently existed, that is there exist b0 > 0 and
δ > 0 such that for all b ≤ b0, we have

1
b

b−1∑
l=0

ρl(Ŵk)ρT
l (Ŵk) ≥ δIK̄

where IK̄ is an identity matrix of appropriate dimensions.

Now we provide the proof of Theorem 5.3.1.

Proof 5.3.1 1) Define the weight estimation error vector W̃k+1 as

W̃k+1 , Ŵk+1 − Wk+1 (5.35)

Then it follows from (5.33) and (5.35) that

PT PŴk+1 = PT Π

i.e.,
PT PW̃k+1 = PT Π − PT PWk+1 (5.36)

Multiplying W̃T
k+1 on both sides of (5.36) yields

W̃T
k+1PT PW̃k+1 =

[
PW̃k+1

]T
(Π − PWk+1) (5.37)

Based on Assumption 5.3.2, the left side of (5.37) satisfies

W̃T
k+1PT PW̃k+1 ≥ bδIK̄‖W̃k+1‖ (5.38)
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Note that we have

PT (Π − PWk+1) =
b−1∑
l=0

[
ρT

l

(
(Ψc(Xl+1) − Ψc(Xl))T wc,k+1

+
∫ tl+1

tl

(
‖ X ‖ +λΨT

d (X) · wd, k · wT
d, k · Ψd(X)

)
dτ

− 2λ
∫ tl+1

tl

ΨT
d (X) · wd, k+1 · IU ·

(
U − wT

d, k · Ψd(X)
)

dτ

)]

=
b−1∑
l=0

ρT
l ζ

k+1(X(tl))

where ζk+1(X(tl)) denotes the residual error for time interval [tl, tl+1] instead of
[t, t+ ∆t] for (5.29).

Based on (5.37), we have

δb‖W̃k+1‖ ≤ ‖W̃k+1‖
b−1∑
l=0

‖ρT
l ‖ · |ζk+1(X(tl))| ≤ ‖W̃k+1‖

b−1∑
l=0

‖ρT
l ‖ζmax (5.39)

where ζmax denotes the bound of ζk+1. Note that limK̄→∞ ζk+1(X(tl)) = 0. Based
on (5.39), we have limK̄→∞ W̃k+1 = 0.

Define w̃c,k , ŵc,k − wc,k and w̃T
d,k+1 , ŵT

d,k+1 − wT
d,k+1. Since

V̂ k(X) − V k(X) = w̃T
c,kΨc(X) − εc, k

Ûk+1(X) − Uk+1(X) = w̃T
d,k+1Ψd(X) − εd, k+1

and limKc→∞ εc, k = 0, limKd→∞ εd, k+1 = 0, we can obtain

lim
Kc,k→∞

V̂ k = V k

lim
Kd,k+1→∞

Ûk+1 = Uk+1

That is to say, there exist integers k∗, K∗
c > 0 and K∗

d > 0 for ∀ X ∈ Ω, ξ > 0 such
that if k > k∗, Kc > K∗

c and Kd > K∗
d , then

|V̂ k(X) − V k(X)| ≤ ξ, ‖Ûk+1 − Uk+1‖ ≤ ξ

2) Based on the convergence property of Algorithm 2, for ∀ξ > 0, there exists integer
k∗ such that for ∀k ≥ k∗,

|V k(X) − V ∗(X)| ≤ ξ

2 (5.40)
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Based on part 1), there exists integer K∗
c > 0 such that

|V̂ k(X) − V k(X)| ≤ ξ

2 (5.41)

From (5.40) and (5.41), we have

|V̂ k(X) − V ∗(X)| ≤ |V̂ k(X) − V k(X)| + |V k(X) − V ∗(X)| ≤ ξ

2 + ξ

2 = ξ

Similarly, ‖Ûk+1 − U∗‖ ≤ ξ. The proof is completed.

Theorem 5.3.1 indicates that the optimal value function V ∗(X) and control policy
U∗(X) can be simultaneously approximated by the AC-NN framework (5.30) apply-
ing the GLS-based update law (5.33). The OPCRG strategy is then obtained by the
approximated policy function such that the network performance is optimized.

Different from Chen et al. (2022), the proposed IADP algorithm is composed of an
online measurement phase and a off-line training phase as shown in Figure 5.2. First,
without knowledge of the accurate traffic dynamics, an online measurement phase is
required to collect a sufficient amount of data under a given control input U. Then
NNs are constructed in the off-line training phase to approach the optimal solution
of the model-free iterative equation. This AC-NN is then trained using the measured
data sequence {NIJ(t), uij(t), θh

ij(t)} from the environment, i.e., the compact state-
space model (5.16). The AC-NN weights are iterated using the adaptation law given
by (5.33). For the off-line training phase, ‖Ŵk+1 − Ŵk‖ < ε with ε > 0 a small
constant is adopted as the phase termination condition. After an off-line training
phase terminates, the current trained controller will be tested in the plant dynamics
(5.3). During the implementation, only the state data {NIJ(t)} are required as input
to the IADP control agent. After the entire simulation, the control performance
index TTS will be evaluated and compared with the TTS achieved by the previously
trained controller. The training process will be terminated if the relative performance
difference between the current and previous epochs is less than 10−4. Otherwise,
we update the initial AC-NN weights, carry out the online measurement to collect
new data, and then the next off-line training phase starts.

5.4 Numerical experiments

In this section, we present two case studies to evaluate the performance of the
proposed OPCRG controller. Case 1 considers a two-region network mimicking
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Figure 5.2 Flowchart of the IADP-based control method
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the city center and periphery, wherein the periphery comprises 4 subregions, see
Figure 5.3(a). In this case, the model and the plant have different structures and
the plant model is assumed unknown to the IADP controller. First, we examine
the performance of the IADP scheme in a scenario where a limited data source
is available. Then we validate the effectiveness of the IADP scheme in cases of
heterogeneous time-varying average regional trip distances and MFD errors, respec-
tively. In addition, we examine the performance of the IADP approach in cases with
various levels of driver compliance rates. In Case 2, to validate the scalability of
the proposed IADP method, we consider a larger network consisting of a city center
with 4 subregions and its periphery with 12 subregions, see Figure 5.3(b). Case 2
also examines the IADP’s robustness against demand uncertainties. The adopted
MFD functions are depicted by Figure 5.4. Every subregion accumulation is initially
identical and uncongested in all case studies. The perimeter control input constraint
is 0.1 ≤ uij ≤ 1. The sampling interval and the control update interval are 1 minute.
Moreover, a case that considers a four-region network, wherein the model and the
plant share the same model structure, is presented in Appendix A.2.

Performance comparison is made among various strategies including:

• The proposed IADP: In this scenario, the IADP approach is trained with the
parsimonious regional state data and subregional control input data, i.e.,
{NIJ(t), uij(t), θh

ij(t)}. After the training is completed, the IADP strategy
is implemented in the subregion-based plant (5.3). Note that the IADP is
model-free.

• The IADP trained in the plant environment, IADP-PT: The difference between
this scenario and the IADP scenario is that more detailed state data {nij(t)} is
available for training the IADP-PT agent.

• The MPC with perfect knowledge of the plant, MPC-PM: Inspired by Kouvelas
et al. (2023), the MPC approach with access to perfect plant information
(accurate measurement of states nij(t), average trip distance li(t), and OD
specific demand qij(t)) is regarded as a benchmark.

• The MPC with imperfect measurements of the plant characteristics, MPC-IPM:
In this scenario, the MPC controller has no access to exact information on
average trip distances, MFD errors, and demand uncertainties.

• The MPC with the UKF to update regional accumulation NIJ and trip distance
LIJ , MPC-UKF: Different from MPC-PM, the prediction model used in this
scenario is the parsimonious region-based model (5.1) with state estimation
using a UKF method (Batista et al., 2021).
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• The proportional-integral perimeter control (Keyvan-Ekbatani et al., 2012)
with a Logit-based route guidance strategy, PIL: In this scenario, drivers are
free to choose their routes. In simulations, this is captured by calculating Logit-
based route split ratios θh

ij based on travel times of a predefined set of paths
connecting subregion i and the destination j. Such predefined set of paths is
determined using Dijkstra’s algorithm for K-shortest paths (distance-based,
K = 3 for this study). Note that the θh

ijs are updated using the Logit model at
each control time step. We do not intend to perform SUE or DUE assignments
using the Logit model. This PIL strategy is regarded as the baseline.

(1)

(2) (3)

(5) (4)

𝑢𝑢21

𝑢𝑢12
𝑢𝑢31 𝑢𝑢13

𝑢𝑢41

𝑢𝑢14

𝑢𝑢51𝑢𝑢15

(a)

21 3 4

65 7 8

A9 B C

ED F G

(b)

Figure 5.3 The tested networks. (a) Two-region network consisting of five subre-
gions (Region 1 in gray, Region 2 in white) for Case 1, and (b) Two-region
network consisting of sixteen subregions (Region 1 in white, Region 2 in
terrestrial yellow) for Case 2.

For the MPC implementation, the state-of-the-art CasADi toolbox with the IPOPT
solver is employed. All computations are performed within MATLAB R2022a on
a personal computer equipped with Intel Core i7-9850 CPU 2.65 GHz. In all the
examples, the prediction horizon of the MPC controller is 15 min.
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Figure 5.4 The MFD functions. MFD of subregions within (a) the city center, and
(b) the periphery.

5.4.1 Case 1: Two-region network consisting of five
subregions

5.4.1.1 Example 1: No uncertainties and heterogeneity

In Case 1-Example 1, the city center Region 1 is also denoted as Subregion 1, and
the periphery Region 2 consists of four subregions, see Figure 5.3(a). The periphery
subregions share an identical MFD as presented in Figure 5.4(b), while the city
center is governed by an MFD with a higher capacity and throughput than the
periphery as shown in Figure 5.4(a). The subregional MFD function is given by
Gi(ni(t)) = pi(ni(t))/li (veh/s), i = 1, . . . , 5. To be specific, ncr

1 = 6784 (veh),
njam

1 = 13568 (veh), and Ḡmax
1 = 9.45 (veh/s), while ncr

i = 3392 (veh), njam
i =

10000 (veh), and Ḡmax
i = 6.3 (veh/s) for i = 2, . . . , 5. The average subregional

trip length for vehicles in the periphery is li = 3600 (m), i = 2, 3, 4, 5; and we set
l1 = 1.5 l2. The travel demand pattern (see Figure 5.5(a)) mimics a peak period
with one peak hour followed by one off-peak hour for congestion dissolving. As the
CBD, Subregion 1 attracts more trips than the periphery subregions. Figure 5.5(b)
depicts the OD-specific demand regarding Subregion 2 over time. The OD-specific
demand profiles regarding Subregions 3, 4, and 5 follow a similar trend as Subregion
2 but are associated with a 10% coefficient of variation to represent the underlying
stochasticity.

Five PCRG strategies are performed: (1) IADP, (2) IADP-PT, (3) MPC-PM as the
benchmark, (4) MPC-UKF, and (5) PIL as the baseline. The key information on the
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Figure 5.5 Demand pattern of Case 1. (a) Demand with destination to subregions,
and (b) OD-specific demand.

training and implementation of the IADP and the IADP-PT schemes in this case is
given by Table 5.1. As expected, with more detailed data and a larger total epoch
number, the IADP-PT approach has both a longer average CPU time per iteration and
a longer total training time than the IADP approach. Figure 5.6(a) and Figure 5.6(b)
show the training processes of the IADP and the IADP-PT schemes, respectively. For
the IADP and the IADP-PT, the accumulative reward converges after around 10 and
around 30 training epochs, respectively.

(a) IADP (b) IADP-PT

Figure 5.6 The IADP training process of Case 1-Example 1.
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(a) IADP

(b) IADP-PT

(c) MPC-PM

(d) MPC-UKF

(e) PIL

Figure 5.7 Subregional accumulation evolution of Case 1-Example 1. (a) IADP, (b)
IADP-PT, (c) MPC-PM, (d) MPC-UKF, and (e) PIL.

It is desired by the traffic managers that not only the PCRG strategies can minimize
the total network delay, but also they can regulate the cross-boundary flows to avoid
going through the CBD if possible. Figure 5.7 presents a series of snapshots over
time that depict the subregional accumulation state evolution of Case 1-Example
1. As observed in Figure 5.7(e), central congestion cannot be avoided by applying
the PIL scheme. Figure 5.7(c) and Figure 5.7(d) show that in the MPC scenarios,
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Figure 5.8 Route guidance signals of Case 1-Example 1. (a) IADP, and (b) MPC-PM.
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the accumulation in the central region escalates to values very close to the critical
point during the congestion period. From Figure 5.7(a) and Figure 5.7(b), we
observe that both the IADP and IADP-PT schemes significantly decrease the average
congestion level in the city center compared to the MPC schemes. Figure 5.8(a)
and Figure 5.8(b) present the evolutions of route guidance schemes devised by
IADP and MPC-PM, respectively. Applying both strategies, more inter-transfer flows
between neighbor subregions in the periphery are assigned to traverse directly to
the destination than those suggested to detour through the city center (see the
top-left figures entitled ‘O-D: 2-3’ for example). For transfer flows between diagonal
subregions (see e.g. in subfigures entitled ‘O-D: 2-4’), more travelers are suggested
by the IADP scheme to avoid the city center, while the MPC-PM scheme assigns more
travelers to traverse through the city center. This indicates that the IADP scheme is
able to assign as less traffic loads as possible to the CBD and hence improves the
central region network efficiency, while the MPC scheme does not take this into
account. More results of the accumulation, perimeter control, and route split ratio
evolution are presented in Appendix A.3.

Table 5.2 summarizes the performance of the five PCRG strategies. The percentage
numbers embraced by the parentheses in the second to the fifth columns represent
the decrease of TTS compared with the baseline PIL strategy. The MPC-PM scheme
achieves a significant improvement in minimizing TTS over the baseline PIL strategy.
The MPC-PM scheme performs slightly better than the MPC-UKF scheme because
the former uses the exact measurements from the plant. Despite being trained
with limited data, the IADP achieves a comparable performance to the MPC-PM.
This demonstrates the effectiveness of the proposed IADP method in learning the
unknown traffic dynamics without using the detailed plant data and minimizing the
total network delay. Moreover, trained with detailed plant-generated data, the IADP-
PT approach outperforms the IADP and the MPC-based strategies. This validates the
efficiency of the IADP approach in data usage. In addition, the IADP scheme can
regulate the cross-boundary flows to avoid passing through the city center without
affecting the overall system performance.
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5.4.1.2 Example 2: MFD system subject to regional trip distance
heterogeneity

In this example, we examine the performance of the pre-trained IADP scheme in Sec-
tion 5.4.1.1 in cases of regional trip distance heterogeneity. Different from Example 1,
the average regional trip distances for this example are time-varying. Let l̄i (m) and
li(t) = (1+ ς(t)) · l̄i (m), i = 1, . . . , 5, denote the static and time-varying average sub-
regional trip distances, respectively. The time-varying coefficient ς(t) represents the
heterogeneity level. We set three heterogeneity levels: ς(t) ∈ {±5%,±10%,±20%}.
Note that the scenario of this example is an unseen environment to the IADP. In
such a case, we compare the IADP against the benchmark MPC controller with the
exact values of the time-varying average trip distance (MPC-PM). The MPC-IPM
scheme is adopted as the baseline. For each investigated controller, we carry out
fifty Monte-Carlo simulations per heterogeneity level.

Figure 5.9 presents the TTS results and the associated variances delivered by the
three schemes over different heterogeneity levels. Figure 5.9(c) implies that the
assumption of static average regional trip distances significantly degrades the perfor-
mance of the MPC-IPM scheme as the heterogeneity level increases, which is in line
with the finding of Batista et al. (2021). In contrast, given the exact values of the
dynamic trip lengths, the MPC-PM exhibits a stable performance and outperforms
the MPC-IPM. The performance difference between MPC-PM and MPC-IPM be-
comes more evident as the heterogeneity level increases. The IADP-based controller
achieves a comparable performance to the MPC-PM controller, see Figure 5.9(a).
This indicates that the IADP approach can well adapt to the changes in the average
regional trip distances. Recall that the IADP agent trained in Example 1 is directly
employed without extra training. Thus, these results also demonstrate the gener-
alizability of the proposed IADP approach, which is one of the advantages of our
method over the perfectly model-based methods.

5.4.1.3 Example 3: MFD system subject to MFD errors

In this example, we study the effect of MFD calibration errors on the performance
of the IADP scheme. A uniformly distributed term %I ∼ U(−α NI

3600 , α
NI

3600) (veh/s)
is added to the basic MFD to represent the actual one that considers the errors
caused by the heterogeneous congestion distribution. We set three levels of MFD
error: α ∈ {0.05, 0.1, 0.2}. The other settings in this example are identical to those
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Figure 5.9 Box plot of TTS results of Example 2. Performances of (a) IADP, (b)
MPC-PM, and (c) MPC-IPM under various levels of regional trip distance
heterogeneity.
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in Example 1. The proposed IADP scheme is compared against the MPC-PM and
MPC-IPM schemes.

Figure 5.10 shows the control performances over Monte-Carlo runs applying the con-
sidered schemes over different MFD error levels. We can observe from Figure 5.10(c)
that the performance of the MPC-IPM degrades as the MFD error level increases.
With perfect state measurements, the MPC-PM scheme significantly reduces the
impact of MFD errors on the control performance compared to the MPC-IPM scheme,
see Figure 5.10(b). Although the IADP endures a slight performance variation as the
MFD error level increases, it still achieves a comparable performance to the MPC-PM
scheme and outperforms MPC-IPM, see Figure 5.10(a). This indicates that the IADP
scheme is robust to the MFD calibration errors.

5.4.1.4 Example 4: Driver compliance analysis for IADP

We consider the driver compliance rate in route guidance actuation in this case study.
The driver compliance rate (CR) γ indicates the percentage of drivers following the
route guidance recommendations of the traffic control scheme. Following Sirmatel
and Geroliminis (2018), the realized route guidance command θh

ij at time t in the
simulation is obtained as:

θh
ij(t) = γθ̂h

ij(t) + (1 − γ)θ̄h
ij(t)

where θ̂h
ij(t) and θ̄h

ij(t) are the outputs of the IADP and the Logit model, respec-
tively.

Simulations with seven different values of γ are conducted, which are summarized
in Figure 5.11. Figure 5.11(c) shows that the whole network efficiency is not signifi-
cantly influenced by the CR. A maximal 4% decrease in whole network efficiency
is observed when γ drops from 1.0 to 0.4, which validates the robustness of the
proposed approach against various levels of CRs. We can observe that an increase
in the driver compliance rate results in a decrease in the congestion level of the
city center, see Figure 5.11(a). With 100% compliance rate, the IADP significantly
improves the mobility of the city center. When the CR is high (between 0.6 and 0.9),
there is no significant difference in the performance of the IADP approach in allevi-
ating central congestion. However, a low CR (equal to 0.5 or lower) still degrades
the performance of the IADP in alleviating central congestion. This implies that
CR=0.5 could be the inflection point when applying the IADP in central congestion
alleviation.
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Figure 5.10 Box plot of TTS results of Example 3. Performances of (a) IADP, (b)
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Figure 5.11 Performance comparison under different route guidance compliance
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5.4.2 Case 2: Two-region network consisting of sixteen
subregions

In Case 2, we examine the scalability and robustness against demand disturbance
of the proposed IADP scheme. The urban network is composed of the city cen-
ter (Region 2) and its periphery (Region 1), each further partitioned into 4 and
12 subregions, respectively (see Figure 5.3(b)). In this case, the model-plant dis-
similarity is much stronger than in Case 1. In addition, different subregions are
governed by different subregional MFDs. The actual subregional MFDs are given by
Gi(ni(t)) = ηi · Ḡi(ni(t)) (veh/s), where Ḡi(ni(t)) , pi(ni(t))/li (veh/s) is the basic
subregional MFD function, and ηi ∼ U(0.9, 1.2) denotes the stochastic scale factor.
The unit subregional MFDs for Region 1 and Region 2 are shown in Figure 5.4(b) and
Figure 5.4(a), respectively. As the city center, subregions in Region 2 have a higher
capacity and throughput than subregions in Region 1. The average subregional
trip distance li is associated with a 10% coefficient of variation to represent the
underlying heterogeneity. A base time-varying demand pattern (see Figure 5.12(a))
is adopted, mimicking the morning peak hour and the following two hours of low
demand to fully clear the network. Region 1 generates most of the demand towards
Region 2 that as the central business district attracts trips. We carry out the experi-
ments in three scenarios with different levels of demand uncertainty. The nominal
demand pattern is subject to external disturbance (e.g., measurement noise), as
shown by Figure 5.12(b) (small) and Figure 5.12(c) (medium).

The IADP scheme is compared against the MPC+IADP scheme, which employs
MPC-IPM as the perimeter controller and IADP as the route guidance strategy.
Note that the MPC+IADP scheme has imperfect knowledge of the system (e.g.,
unknown demand noise and stochastic scale factor that determines the subregional
MFDs). The reason why we do not implement MPC for both perimeter control
and route guidance is that doing so could lead to real-time intractability. Sirmatel
and Geroliminis (2018) and Yildirimoglu et al. (2018) reported that the MPC route
guidance schemes cannot retain real-time feasibility when the region size of the
network is much more than 7. The PIL strategy is employed as the baseline.

The accumulation evolution results are depicted in Figure 5.13. As can be observed
from the results, applying the IADP strategy or the PIL scheme, the regional state
evolution behaves similarly in all three cases. Applying the MPC+IADP scheme, the
medium disturbance in travel demand induces higher maximal regional accumula-
tion states of both regions than the small disturbance in travel demand. In addition,
as depicted in Figure 5.13(b), Figure 5.13(d) and Figure 5.13(f), the IADP scheme
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Figure 5.13 Performance of control strategies in Case 2. Evolution of (a) N1(t) and
(b) N2(t) in the case of no disturbance; Evolution of (c) N1(t) and (d)
N2(t) in the case of small disturbance; Evolution of (e) N1(t) and (f)
N2(t) in the case of medium disturbance.

5.4 Numerical experiments 137



achieves the minimal total delay in Region 2 in both cases, which implies that the
IADP scheme can regulate the cross-boundary flows to avoid going through the city
center. The performance comparison is summarized in Table 5.3. Note that the
MPC+IADP scheme has imperfect knowledge of the dynamics. Hence, when the
demand noise level increases, the performance of the MPC+IADP scheme deterio-
rates. The IADP achieves over 7% improvement in minimizing the TTS in all three
cases compared to the other schemes. The effect of increasing the demand noise
level on the IADP performance is negligible. These results indicate the robustness
of the proposed IADP approach against the demand uncertainty. It is worth noting
that the average CPU time per calculation of the IADP is the minimum among the
three schemes and is negligible compared to the control input update interval. This
implies the real-time feasibility of the proposed OPCRG scheme in urban networks
with a large region size.

Table 5.3 Comparison among different strategies in minimizing TTS (× 1e8 veh·s)
of Case 2

IADP MPC+IADP PIL
No demand noise 2.693284

(-7.24%)
2.884275
(-0.66%)

2.903544
(-)

Small demand noise 2.703573
(-7.50%)

2.899021
(-0.81%)

2.922776
(-)

Medium demand noise 2.745938
(-7.15%)

2.955109
(-0.07%)

2.957374
(-)

Avg. CPU time/step (s) 2.3527e-2 3.8858 0.1244

5.5 Conclusions

This study proposed an iterative adaptive dynamic programming (IADP) approach
to solving the optimal perimeter control and route guidance (OPCRG) problem
for large-scale MFD-based urban networks. Different from the existing model-free
methods, to the best of our knowledge, it is the first time that the model-plant
mismatch is considered in devising the IADP framework for the PCRG of MFD-based
urban networks. Compared with the model-based MPC approach that requires
complete knowledge on the system dynamics, the IADP approach does not rely on
any information on the plant dynamics but only the regional accumulation data and
the subregional control input data. This is one of the prominent advantages of the
IADP-based control strategy over the existing model-based controllers. Numerical
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examples conducted in various scenarios demonstrated the effectiveness and superi-
ority of the proposed IADP approach in the performance improvement of large-scale
MFD-based urban networks by coupling perimeter control schemes and regional
route guidance strategies.

There are three main types of MFD frameworks in the literature, as studied and
compared in Huang et al. (2024). For future works, utilizing an MFD model
(e.g., the trip-based model) for training while using another MFD model (e.g.,
accumulation-based model) for implementation would be an interesting research
direction (Yildirimoglu and Ramezani, 2020).

The urban network considered in Chapter 5 is still far from realistic. Nowadays
in megacities, ring expressways have been built to connect different parts of the
city. It is desired that various traffic control strategies can cooperate in optimizing
the whole network’s traffic efficiency. Chapter 6 explores the cooperative control
for a multi-region urban network with a ring expressway. With the MFD modeling
the urban network and the asymmetric cell transmission model (ACTM) modeling
the ring expressway, the next chapter couples three strategies: perimeter control,
regional route guidance, and ramp metering.

5.5 Conclusions 139





Adaptive cooperative traffic control of a
multi-region urban network with a ring
expressway

6
Macroscopic fundamental diagrams (MFDs) have been widely adopted to model the
traffic flow of large-scale urban networks. While coupling perimeter control with
regional route guidance is an effective strategy to reduce congestion and network
delays in large-scale urban networks, most studies overlook the role of expressways
passing through urban areas. Ring expressways with on- and off-ramps are built
in many megacities (e.g., Beijing) to connect the city’s periphery areas. However,
few studies have explored the cooperation of perimeter control, route guidance,
and ramp metering strategies to improve network mobility. This paper aims to
develop a cooperative adaptive dynamic programming (CADP) approach to solve
the cooperative control problem for a mixed urban-expressway network. The net-
work is composed of a multi-region urban network modeled by the MFD and a ring
expressway going through the periphery regions modeled by the asymmetric cell
transmission model. The proposed CADP approach trains the agents of perimeter
control, route guidance, and ramp metering to cooperate fully to improve overall
network performance. Numerical studies will demonstrate that the CADP outper-
forms the model-based uncoordinated strategy (i.e., proportional-integral perimeter
control and ALINEA ramp metering scheme coupled with a Logit-based route choice
modeling) in minimizing the total travel delay. In addition, the CADP-based strategy
will effectively utilize the capacity of ring expressways, helping to achieve a better
balance of traffic loads for the mixed urban-expressway system.

6.1 Introduction

In most literature (Haddad et al., 2013; Ding et al., 2020a; Yocum and Gayah,
2022), it is assumed that the freeway runs through the urban network, and this
network representation is still far from realistic. Ring expressways are becoming
more common and pivotal in megacities nowadays. However, a cooperative control
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model integrating perimeter control, route guidance, and ramp metering for a multi-
region urban network with ring expressways remains to be explored. In this study,
we propose a cooperative control model for a multi-region urban network with a
ring expressway. The urban network is modeled as a multi-region MFD system, with
a ring expressway connecting these regions as shown in Figure 6.1. The expressway
is modeled by the ACTM following Haddad et al. (2013) and Gomes and Horowitz
(2006). The expressway and the urban network are connected by on-ramps and
off-ramps, which are controlled by ramp metering. The perimeter control is used
to control the transfer flow between regions. The route guidance is used to guide
the vehicles through a sequence of regions/cells at a lower cost. The perimeter
control, route guidance, and ramp metering are coordinated to improve the network
performance.

Reinforcement learning (RL), a concept under the umbrella of artificial intelligence,
has gained recent attention due to its success in video games and Go (Mnih et
al., 2015; Silver et al., 2016). Adaptive dynamic programming (ADP) is an RL
reformulation in the economics and management communities, which provides
an approximate solution to the optimal control problem based on the Bellman
optimality principle. Model-free methods such as RL and ADP enable optimal
control to bypass the necessity of full knowledge of the model, thus allowing for the
integration of uncertainties and dynamics changes into the optimal control. It was
shown that the aforementioned RL and ADP-based control approaches can handle
different levels of error in MFDs and noise in travel demand (Zhou and Gayah,
2021; Chen et al., 2022). However, most existing studies on RL/ADP based MFD
traffic control are limited in network scale and control variable dimensionality. In
practice, the traffic management of a mixed urban-expressway network requires the
cooperation of various traffic control policies. To address this challenge, we propose
a cooperative ADP (CADP) approach to solve the optimal cooperative control of a
mixed urban-expressway system.

The remainder of the chapter is organized as follows: Section 6.2 introduces mixed
network traffic modeling, including the MFD modeling of the urban road traffic and
the ACTM modeling of the ring expressway. Section 6.3 presents the cooperative
control problem (CCP) formulation and derives its standard solution based on Bell-
man’s optimality principle, then a CADP-based approach is proposed to approximate
the optimal solution to the CCP. Numerical results are presented in Section 6.4.
Finally, Section 6.5 concludes the chapter.
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(a)

(b) (c)

Figure 6.1 The network topology. (a) Mixed urban-expressway network, (b) Inside
lanes and (c) Outside lanes of the ring expressway
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6.2 Modeling traffic dynamics of the mixed
network

This section introduces the modeling of the MFD-based urban traffic and the ACTM-
based ring expressway traffic, respectively. To our best knowledge, Haddad et al.
(2013) is the first to develop the traffic dynamics that integrate the MFD model
and the ACTM model. Following their work, we extend their macroscopic traffic
dynamics of a two-region-one-freeway network to a multi-region urban network
with a bidirectional ring expressway (see Figure 6.1(a)). The urban network is
partitioned into five homogeneous regions1 with well-defined MFDs, denoted by
{R1,. . .,R5}, where R1 is regarded as the city center while the rest are the periphery
regions. In addition, there is a bidirectional ring expressway that passes through all
the periphery regions. The bidirectional ring expressway is composed of the inside
lanes in a clockwise driving direction (see Figure 6.1(b)) and the outside lanes in
a counterclockwise driving direction (see Figure 6.1(c)). The inside ring has only
one on-ramp and one off-ramp within a periphery region. This setting also applies
to the outside ring. Different from Haddad et al. (2013), the expressway does not
carry travel demand and it is neither an origin nor a destination. Hence, a 5 × 5
origin-destination (O-D) matrix with the corresponding route choices presented
by Table 6.1 is associated with the network demand. Let qij(t) (veh/s) denote
the demand from Region i to j at time t with i, j = 1, . . . , 5. θh

ij(t) ∈ [0, 1] is the
route split ratio for the transfer flow in Region i with final destination j through
the next immediate Region h, while θin

ij (t), θout
ij (t) ∈ [0, 1] denote the transfer flow

from i to j through the inside and outside ring expressway, respectively. Note that∑
h∈Hi

θh
ij(t) + θin

ij (t) + θout
ij (t) = 1, where Hi is the set of regions that are directly

reachable from Region i.

1For simplicity, we consider such a five-region partition. However, the network partition
can be general and does not affect the application of the proposed method.
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6.2.1 MFD-based urban traffic modeling

Let R be the set of all regions in the urban network and |R| = 5. nij(t) (veh)
represents the accumulation in Region i with final region destination j. ni(t) (veh) is
the total accumulation in Region i and ni(t) =

∑
j∈R nij(t). pi(t) (veh·m/s) defines

the MFD production for Region i, which is the total distance traveled by all vehicles
in Region i and equal to the sum of the transfer and internal flows multiplied by the
average trip length li(t) (m) in Region i. uij ∈ [0, 1] is the perimeter controller that
controls the transfer flows on the border between Regions i and j.

For ∀i ∈ R, denote ∆t as the sample time interval, then the mass conservation
equations in a discrete-time form for the urban regions are given as follows:

nii(t+ 1) =nii(t) + ∆nii(t) · ∆t, i ∈ R (6.1a)

nij(t+ 1) =nij(t) + ∆nij(t) · ∆t, i ∈ R, j ∈ Hi\{i} (6.1b)

nir(t+ 1) =nir(t) + ∆nir(t) · ∆t, i ∈ R, r ∈ R\Hi (6.1c)

where ∆nii(t), ∆nij(t), ∆nir(t) are defined as

∆nii(t) =
{
qii(t) −mii(t) +

∑
h∈Hi

uhi(t) · m̂i
hi(t), i = 1

qii(t) −mii(t) +
∑

h∈Hi
uhi(t) · m̂i

hi(t) +moff
i (t), i 6= 1

(6.2a)

∆nij(t) =


qij(t) −

∑
h∈Hi

uih(t) · m̂h
ij(t) +

∑
h∈Hi;h6=j uhi(t) · m̂i

hj(t),
∀ j ∈ Hi\{i}, i = 1

qij(t) −
∑

h∈Hi
uih(t) · m̂h

ij(t) +
∑

h∈Hi;h6=j uhi(t) · m̂i
hj(t) −mon

ij (t),
∀ j ∈ Hi\{i}, i 6= 1

(6.2b)

∆nir(t) =


qir(t) −

∑
h∈Hi

uih(t) · m̂h
ir(t) +

∑
h∈Hi

uhi(t) · m̂i
hr(t),

∀ r ∈ R\Hi, i = 1
qir(t) −

∑
h∈Hi

uih(t) · m̂h
ir(t) +

∑
h∈Hi

uhi(t) · m̂i
hr(t) −mon

ir (t),
∀ r ∈ R\Hi, i 6= 1

(6.2c)

where mii(t) (veh/s) denotes the transfer flow from Region i with final destination
Region i, while mh

ij(t) (veh/s) is the transfer flow for accumulation in i with final
destination j through the next immediate Region h, h ∈ Hi. mii(t) and mh

ij(t) are
defined respectively as follows:

mii(t) = nii(t)
ni(t)

· pi(ni(t))
li(t)
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mh
ij(t) = θh

ij(t) · nij(t)
ni(t)

· pi(ni(t))
li(t)

Note that high accumulation in an urban region can limit the inflow reception from
the boundary. Therefore, the definition of capacity-restricted transfer flow from
Region i to j passing through h immediately, m̂h

ij(t), is introduced (Ramezani et al.,
2015; Yildirimoglu et al., 2015; Sirmatel and Geroliminis, 2018):

m̂h
ij(t) = min

[
mh

ij(t),
mh

ij(t)∑
k∈R;k 6=im

h
ik(t)

· rih(nh(t))
]

where rih(·) (veh/s) is the receiving flow capacity of Region h ∈ Hi, from Region i.
We consider that the receiving capacity is a piecewise function of nh(t) as follows:

rih(nh(t)) =

 rmax
ih , 0 ≤ nh(t) ≤ α · njam

h

− rmax
ih

(1−α)·njam
h

· nh(t) + rmax
ih

1−α , α · njam
h < nh(t) ≤ njam

h

moff
i (t) (veh/s) denotes the inflow from the off-ramp into Region i. mon

ij (t) =

min
[
θy

ij · nij

ni
· pi(ni)

li
,

nmax
on,i−non,i

∆t

]
(veh/s) is the transfer flow from the urban network

to enter the on-ramp in Region i, where non,i (veh) is the queue length of the
on-ramp in Region i at time step t, nmax

on,i (veh) is the maximum queue length of the
on-ramp in Region i, and y ∈ {in, out} is the indicator that indicates which ring
expressway (inside ring or outside ring) the cross-boundary flow is using.

6.2.2 ACTM-based ring expressway traffic modeling

Following Haddad et al. (2013), we adopt the ACTM in Gomes and Horowitz (2006)
to model the ring expressway traffic dynamics.

In the ACTM, both the inside and outside rings of the expressway are divided into L
cells, where each cell l of the expressway contains at most one on- or one off-ramp.
The number of vehicles in cell l at time t is denoted by xl(t) (veh), while fl(t) (veh)
is the number of vehicles moving from cell l to l + 1 during time t. Each cell l
has a triangular fundamental diagram with the following parameters: wl ∈ [0, 1]
is the normalized congestion wave speed, vl ∈ [0, 1] is the normalized free-flow
speed, xmax

l (veh/lane) is the jam accumulation, and f̄l (veh/h/lane) is the mainline
capacity.
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The on-ramp is fed from mon
ij (t) (veh/s), i.e., the maximum output that can flow

from the periphery Region i at time t computed by the MFD. The unmetered on-ramp
flow fon,l(t) (veh) is the number of vehicles that can enter cell l from its on-ramp
during time step t, which is calculated as follows:

fon,l(t) = min
[
non,i(t)+

∑
j∈R\{i};h∈Hi

mon
ij (t) ·∆t, ξl ·(xmax

l −xl(t)), son,i ·∆t
]

(6.3)

where i is the region that the on-ramp belongs to, son,i (veh/s) is the maximum
number of vehicles that can enter the expressway from the on-ramp belonging to
Region i, and ξ ∈ [0, 1] is the on-ramp flow allocation parameter. The on-ramp
metering control inputs, denoted by uon,i(t) (-) are introduced at the entrance of
the expressway to control the flow entering from Region i to the expressway. The
queue dynamic for the on-ramp belonging to Region i with uon,i(t), considering the
on-ramp maximum queue length, is as follows:

non,i(t+1) = min
[
non,i(t)+

∑
j∈R\{i};h∈Hi

mon
ij (t) ·∆t−uon,i(t) ·fon,l(t), nmax

on,i

]
(6.4)

The mainline flow in the expressway is calculated as follows:

fl(t) = min
[
(1 − βl(t))vl · (xl(t) + γuon,i(t)fon,l(t)), Fl(t),

wl+1 · (xmax
l+1 − xl+1(t) − γuon,i(t)fon,l+1(t))

] (6.5)

where βl(t) (-) is the split ratio for the off-ramp (if exists) in cell l, γ (-) ∈ [0, 1] is the
on-ramp (if exists) flow blending coefficient, and Fl(t) = min[f̄l, (1 − βl(t))/βl(t) ·
f̄off,l], where f̄off,l (veh) is the off-ramp capacity. The exit flow of the off-ramp in
cell l, foff,l(t) (veh), is determined as follows:

foff,l(t) = βl(t)
1 − βl(t)

fl(t) (6.6)

In our case study, we do not intend to regulate the off-ramp meterings. Then moff
i (t)

is the summation of all foff,l(t)s if these off-ramps belong to Region i.

Finally, the mainline mass conservation is

xl(t+ 1) = xl(t) + fl−1(t) + uon,i(t)fon,l(t) − fl(t) − foff,l(t) (6.7)

where fon,l(t) = 0 and/or foff,l(t) = 0 if cell l does not contain an on-ramp and/or
an off-ramp, respectively.
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6.3 Adaptive cooperative traffic controller
design

In this section, we propose the cooperative adaptive dynamic programming (CADP)
approach to solving the cooperative control problem (CCP) of the mixed urban-
expressway system. First, we present the problem formulation of the CCP. The
standard solution to the CCP, namely the associated Hamilton-Jacobi-Bellman (HJB)
equation, is then presented. Due to the strong nonlinearity of the HJB, it is intractable
to obtain the optimal solution to the CCP. Hence, we finally propose the CADP
method to approximate the optimal solution to the CCP.

6.3.1 Formulation of cooperative control problem

In the mixed network control problem, there are three types of controllers to
minimize the network total delay: the perimeter controllers for the urban regions, the
on-ramp meterings for the ring expressway, and the route guidance system for both
networks. The aim of cooperative control for the mixed urban-expressway system
is to minimize the total time spent (TTS) of the whole network. Let u(t), uon(t)
and θ(t) be the vectors of control variables uij(t), uon,i(t) and (θh

ij(t), θin
ij (t), θout

ij (t)),
respectively. The CCP formulation is given as follows:

J = min
u(t),uon(t),θ(t)

T∑
t=0

∆t ·

∑
i

∑
j

nij(t) +
∑

l

xl(t) +
∑

i

non,i(t)

 (6.8)

subject to

0 ≤
∑

j

nij(t) ≤ njam
i

0 ≤ xl(t) ≤ xmax
l

0 ≤ non,i(t) ≤ nmax
on,i

umin ≤ uij(t) ≤ umax

uon
min ≤ uon,i(t) ≤ uon

max

0 ≤ θh
ij(t), θout

ij (t), θin
ij (t) ≤ 1∑

h∈Hi

θh
ij(t) + θin

ij (t) + θout
ij (t) = 1

(6.1) − (6.7).
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where umin, umax denote the lower and upper bounds of the perimeter controller;
uon

min, uon
max are the lower and upper bounds of the ramp metering control; njam

i ,
xmax

l and nmax
on,i are the capacities of the urban network accumulation, expressway

cell accumulation and on-ramp queue length, respectively.

6.3.2 A policy iteration method to solve the CCP

The mixed urban-expressway traffic dynamics of the CCP can be considered as the
following three-player game system

x(t+ 1) = f(x(t), u(t), uon(t), θ(t)) (6.9)

where x(t) ∈ Ω ⊂ Rr̄ is the state vector containing all (nij(t), xl(t), non,i(t)) terms
with r̄ a positive integer equal to the summation of numbers of all state variables.
u(t) ∈ RD1 , uon(t) ∈ RD2 and θ(t) ∈ RD3 are now regarded as fully-cooperative
players of the game system (6.9), taking actions together as a team. f(·, ·, ·, ·) is
Lipschitz continuous on the compact set Ω containing the origin and f(0, 0, 0, 0) = 0.
(6.9) is the compact vector form of the state-space model given by (6.1)-(6.7).

Remark 6.3.1 The MFD traffic dynamics can be written as a continuous-time dy-
namical system as in Haddad (2015). The MFD traffic dynamics can be further
rewritten in a control-affine form (Zhong et al., 2018a; Zhong et al., 2018b; Su et al.,
2020; Chen et al., 2022). Incorporating the regional route choice model, Ramezani
et al. (2015) firstly distinguished the parsimonious regional model for optimization
from the more detailed subregional plant that replicates the reality and is used only
for simulation. Previous works have been dedicated to addressing model-plant mis-
match when designing perimeter control and route guidance strategies (Yildirimoglu
et al., 2018; Batista et al., 2019; Batista et al., 2021). Such model-plant mismatch
makes it extremely difficult to rewrite the original MFD traffic dynamics into an
input-affine form. Hence, the existing ADP approaches designed for affine systems
are no longer valid. Recently, Chen et al. (2024) introduced a pre-compensator for
the input variable and defined an augmented state variable that contains both the
original state and input variables. By doing this, the original MFD traffic dynamics
are then expressed by an affine system.

Different from the aforementioned studies, this study investigates the cooperative
traffic control of a mixed urban-expressway network. Unlike the continuous-time
MFD model utilized in the previous chapters, the ACTM model used for modeling the
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ring expressway is generally expressed in the discrete-time form. Thus, we rewrite
the mixed urban-expressway traffic dynamics into the discrete-time nonaffine system
(6.9).

For optimal control of the fully cooperative game, the cost function associated with
the primary objective function (6.8) is given by

C(x0, u, uon, θ) =
T∑

t=0
U(x(t), u(t), uon(t), θ(t))

where x0 is the initial state value, and U is the utility function (also known as the
cost-to-go function, see Section 1.1 in Bertsekas and Tsitsiklis, 1996) for the game
system generally defined as

U(x, u, uon, θ) = xTQx+ uTR1u+ uT
onR2uon + θTR3θ (6.10)

Here without loss of generality, Q, R1, R2 and R3 are positive-definite diagonal
matrices of proper dimension.

Based on (6.10), the associated value function is given as

V (x(t)) =
T∑

τ=t

U(x(τ), u(τ), uon(τ), θ(τ)) = U(x(t), u(t), uon(t), θ(t)) + V (x(t+ 1))

Based on Bellman’s optimality principle, the optimal value function satisfies the
following discrete-time HJB equation

V ∗(x(t)) = min
u(t),uon(t),θ(t)

{U(x(t), u(t), uon(t), θ(t)) + V (x(t+ 1))} (6.11)

The optimal perimeter control u∗(·), ramp metering u∗
on(·), and route guidance θ∗(·)

should satisfy

{u∗(t), u∗
on(t), θ∗(t)} ={u∗(x(t)), u∗

on(x(t)), θ∗(x(t))}

= arg min
u(t),uon(t),θ(t)

{U(x(t), u(t), uon(t), θ(t)) + V ∗(x(t+ 1))}

Then the optimal value function can be written as

V ∗(x(t)) = U(x(t), u∗(t), u∗
on(t), θ∗(t)) + V ∗((x(t), u∗(t), u∗

on(t), θ∗(t)))

Due to the strong nonlinearity and nonanalyticity, solving this discrete-time HJB
(6.11) explicitly is extremely difficult. The policy iteration (PI) method can be used
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to overcome this difficulty. The PI method contains the policy evaluation and policy
improvement steps that are updated through iterations between

V k(x(t)) = U(x(t), uk(t), uk
on(t), θk(t)) + V k((x(t), uk(t), uk

on(t), θk(t))) (6.12)

and

{uk+1(x(t)), uk+1
on (x(t)), θk+1(x(t))}

= arg min
u(t),uon(t),θ(t)

{U(x(t), u(t), uon(t), θ(t)) + V k(x(t+ 1))} (6.13)

where k is the iteration step. V k(x(t)) and {uk+1(x(t)), uk+1
on (x(t)), θk+1(x(t))} ap-

proximate the optimal value and policy functions, respectively.

6.3.3 An off-line iterative learning scheme

To implement the CADP approach based on the PI algorithm, a multi-agent actor-
critic neural network (MACNN) framework is constructed to simultaneously approx-
imate the optimal value function and policy functions.

The critic neural network (NN) is adopted to approximate the value function V k(x)
with the ideal NN representation defined as follows

V k+1(x) = wT
c, k+1 · ψ(x) + εc

k+1 (6.14)

where wc, k+1 ∈ RKc is the ideal weight vector to be learned from data, ψ ∈ RKc is
the activation function of the critic NN, Kc is the number of the hidden neurons,
and εc

k+1 ∈ R1 is the approximation error.

The estimation of the ideal value function is defined as follows

V̂ k+1(x) = ŵT
c, k+1 · ψ(x) (6.15)

where ŵc, k+1 ∈ RKc is the estimated weight vector to be learned from data.

The following actor NNs are used to approximate the ideal policy functions:

uk+1(x) =wT
d, k+1 · φ(x) + εd

k+1 (6.16a)

uk+1
on (x) =wT

r, k+1 · χ(x) + εr
k+1 (6.16b)

θk+1(x) =wT
p, k+1 · ϕ(x) + εp

k+1 (6.16c)
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where φ(x) ∈ RKd , χ(x) ∈ RKr , and ϕ(x) ∈ RKp are vectors of activation functions
of the actor NNs. Kd, Kr, and Kp are the numbers of the hidden neurons. wd, k+1 ∈
RKd×D1 , wr, k+1 ∈ RKr×D2 , and wp, k+1 ∈ RKp×D3 are the ideal actor NN weight
matrices, εd

k+1, εr
k+1, and εp

k+1 are approximation errors of proper dimensions.

The outputs of the actor NNs are expressed by the estimations as follows

ûk+1(x) =ŵT
d, k+1 · φ(x) (6.17a)

ûk+1
on (x) =ŵT

r, k+1 · χ(x) (6.17b)

θ̂k+1(x) =ŵT
p, k+1 · ϕ(x) (6.17c)

where ŵd, k+1 ∈ RKd×D1 , ŵr, k+1 ∈ RKr×D2 , and ŵp, k+1 ∈ RKp×D3 are the weight
matrices of the proper dimension of the actor NNs to be learned.

Following Chen et al. (2022), the monotone polynomial function is employed as the
activation function for value function approximation. The general least-square (GLS)
method is used to update the critic NN weight vector. Define the set of sampled
data for training the MACNN as {xm, um, uon, m, θm}. m = 1, 2, . . . , b is the sample
index, where b > 0 denotes the number of data samples used for one iteration. The
approximated value function should satisfy

V̂ k(xm) = U(xm, û
k
m, û

k
on,m, θ̂

k
m) + V̂ k(f(xm, û

k
m, û

k
on,m, θ̂

k
m)) (6.18)

Then ŵc, k+1 is updated by

ŵc, k+1 =
[
ΨT

k · Ψk

]−1
· ΨT

k · Πk (6.19)

where

Ψk =


ψ(x1) − ψ(f(x1, u

k
1, u

k
on,1, θ

k
1))

ψ(x2) − ψ(f(x2, u
k
2, u

k
on,2, θ

k
2))

· · ·
ψ(xb) − ψ(f(xb, u

k
b , u

k
on,b, θ

k
b ))


Πk =

[
U(x1, û

k
1, û

k
on,1, θ̂

k
1), U(x2, û

k
2, û

k
on,2, θ̂

k
2), . . . , U(xb, û

k
b , û

k
on,b, θ̂

k
b )
]T

The target control policies are obtained by

{uk(xm), uk
on(xm), θk(xm)} = arg min

um,uon,m,θm

{U(xm, um, uon,m, θm) + V̂ k(xm+1)}
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Hence, based on the GLS method, the weight vectors of the actor NNs are updated
as

ŵd, k+1 =
[
ΦT · Φ

]−1
· ΦT · Υk+1 (6.20a)

ŵr, k+1 =
[
ΞT · Ξ

]−1
· ΞT · Γk+1 (6.20b)

ŵp, k+1 =
[
ΘT · Θ

]−1
· ΘT · Λk+1 (6.20c)

where Φ = [φ(x1), φ(x2), . . . , φ(xb)]T , Ξ = [χ(x1), χ(x2), . . . , χ(xb)]T ,
Θ = [ϕ(x1), ϕ(x2), . . . , ϕ(xb)]T , Υk+1 = [ûk+1(x1), ûk+1(x2), . . . , ûk+1(xb)]T ,
Γk+1 = [ûk+1

on (x1), ûk+1
on (x2), . . . , ûk+1

on (xb)]T , and Λk+1 =
[θ̂k+1(x1), θ̂k+1(x2), . . . , θ̂k+1(xb)]T .

We now investigate the convergence of the MACNN framework. The convergence
of the value function V̂ k(x) given by (6.15) and policy functions ûk+1(x), ûk+1

on (x),
θ̂k+1(x) given by (6.17) is summarized as follows.

Proposition 6.3.1 Suppose that the convergence of ŵc, k+1, ŵd, k+1, ŵr, k+1, ŵp, k+1

holds, for ∀ξ > 0, there exist integer k∗ > 0, K∗
c > 0, K∗

d > 0, K∗
r > 0, and K∗

p > 0
such that if k > k∗, Kc > K∗

c , Kd > K∗
d , Kr > K∗

r , and Kp > K∗
p , then

1) |V̂ k(x) − V k(x)| ≤ ξ,

2) ‖ûk+1(x) − uk+1(x)‖ ≤ ξ, ‖ûk+1
on (x) − uk+1

on (x)‖ ≤ ξ, ‖θ̂k+1(x) − θk+1(x)‖ ≤ ξ,

3) |V̂ k(x)−V ∗(x)| ≤ ξ, ‖ûk+1(x)−u∗(x)‖ ≤ ξ, ‖ûk+1
on (x)−u∗

on(x)‖ ≤ ξ, ‖θ̂k+1(x)−
θ∗(x)‖ ≤ ξ

hold for all x ∈ Ω.

Proof 6.3.1 Proposition 6.3.1 can be easily proved by extending Proof 5.3.1.

Proposition 6.3.1 indicates that the proposed CADP approach implemented with the
MACNN framework can approximate the optimal value function V ∗(x) and control
policy {u∗(x), u∗

on(x), θ∗(x)}, which aims to minimize the TTS of the whole mixed
urban-freeway network.

Remark 6.3.2 It should be noted that the implementation of the critic and actor
NNs requires that the vectors Ψ, Φ, Ξ, and Θ in (6.19) and (6.20) must satisfy
rank(Ψ) = Kc, rank(Φ) = D1 · Kd, rank(Ξ) = D2 · Kr, and rank(Θ) = D3 · Kp.
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These rank conditions are equivalent to the conditions for persistence of excitation.
Under such circumstances, the GLS-based methods can be applied to approximate
the iterative value functions and the iterative control policies.

6.4 Numerical experiments

Simulation experiments are conducted on an urban network connected by a ring
expressway, see Figure 6.1(a). The urban network is partitioned into five ho-
mogeneous regions with each region admitting a well-defined MFD of the form
Gi(ni) = (1.4877×10−7 ×n3

i −2.9815×10−3 ×n2
i +15.0912×ni)/3600. The critical

accumulation state is ncr = 3400 veh and the jam state is njam = 10000 veh, as
shown in Figure 6.2(b). The ring expressway (both inside and outside rings) is
divided into 24 cells, and the length of each cell is 500 m. All the cells in the
ACTM model share the same fundamental diagram (FD) as shown in Figure 6.2(c)
(Muralidharan et al., 2009). The sampling time interval is ∆t = 10 s.

Figure 6.2(a) plots the O-D travel demand in a peak period with one peak hour
followed by one off-peak hour for congestion dissolving. As the central business
district, R1 attracts more trips than the periphery regions. While for periphery
regions, take R2 as an example, most of the travel demand of R2 goes to the city
center R1, followed by travel demand to its opposite region R4 and its neighbors
R3 and R5. Demand patterns of R3, R4, and R5 follow a similar trend as R2.
The demand is also associated with a 10% coefficient of variation to represent the
underlying stochasticity.

The performance of the proposed CADP approach is compared with the PIAL strategy.
The PIAL strategy is a decentralized strategy where ‘PI’ stands for Proportional-
Integral perimeter control (Keyvan-Ekbatani et al., 2012), ‘A’ stands for ALINEA
ramp metering (Ramezani et al., 2015), and ‘L’ stands for Logit-based route choice
modeling (Ramezani et al., 2015).

The CADP policy is trained in the environment of a fully-cooperative game. Figure 6.3
shows the training process of the CADP algorithm. The objective function converges
after around 70 iterations, which indicates that the training algorithm performs
well in solving the CCP. Table 6.2 summarizes the performance delivered by the
two control strategies. The percentage numbers in columns two to four present
the decreases in TTS achieved by the CADP approach compared with the baseline
PIAL. Under the PIAL strategy, the total travel time (TTS) for the entire network is
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Figure 6.2 Simulation environment: (a) Travel demand profile, (b) MFD function,
and (c) FD for ACTM model.
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Figure 6.3 Train process of the CADP algorithm
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Figure 6.4 Urban accumulation state evolution
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(a) CADP

(b) PIAL

Figure 6.5 Snapshots of the urban accumulation state evolution
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Figure 6.6 Ring expressway state evolution
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11.570 × 107(veh · s), with the urban network contributing to the majority of this
value. The proposed CADP strategy reduces the TTS to 6.980 × 107(veh · s), a 39.7%
improvement compared with the PIAL strategy.

Table 6.2 Performance comparison in TTS (×107 veh·s)

Urban network Ring expressway Whole network
CADP 6.660 (-39.8%) 0.384 (-24.9%) 6.980 (-39.7%)
PIAL 11.059 (-) 0.511 (-) 11.570 (-)

Figure 6.4 shows the accumulation state evolution of the urban road network and
Figure 6.5 presents some snapshots of the simulation process. After the peak hour,
the travel demand decreases and the congestion dissolves. However, the congestion
of the city center R1 and the periphery regions cannot be fully dissipated under PIAL.
The central state even starts to recover nearly one hour after the peak. In contrast,
the moderate congestion under CADP is soon dissipated to the initial empty state,
for both R1 and the periphery regions. The PIAL results in much more severe traffic
congestion in the periphery regions than the CADP. By the end of the simulation,
congestion in periphery regions is dissipated under CADP but not under PIAL.

Figure 6.7 details the perimeter control evolution. At the first hour, full access is
allowed for cross-boundary flows for most of the time under both CADP and PIAL
control schemes. However, the PIAL strategy starts to limit the cross-boundary flow
from the central to periphery regions but no limit for the transfer flow from outside
to the central after the first hour. The proportional-integral perimeter controller
attempts to maintain the accumulation state around the critical point of the MFD
so that the maximal throughput can be achieved. This explains why using the PIAL
policy, the traffic dissipation in the central area is slower than in the periphery
regions. On the other hand, there are a few limitations for the cross-boundary flows
under the CADP-based perimeter control scheme. This implies that the CADP policy
can have a better balance of traffic loads for each urban region.
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Figure 6.8 and Figure 6.9 depict the route guidance strategy under PIAL and CADP,
respectively. The route guidance strategy is represented by the O-D demand split
ratio using different paths. For O-D demand between neighboring regions, i.e., q23

and q25, the PIAL policy reflects that drivers intend to use the arterial roads rather
than the ring expressway. On the other hand, the CADP approach splits the flows
more equally. This leaves space for the expressway to accommodate the demand
from opposite regions. For O-D demand between opposite regions, i.e., q24 and
q35, PIAL outputs the even distribution strategy, see Figure 6.8. CADP intends to
guide transfer flows to cross the periphery regions and take advantage of the ring
expressway, see Figure 6.9. This keeps the cross-border traffic from going through
the city center R1. In fact, this is the main purpose of building the ring expressway
in reality. The ring expressway not only reduces the congestion in the city center but
also saves travel time for travelers since they can travel at a higher speed. When
the ring expressway is congested, using periphery regions as a detour is a good
alternative. However, directing too much traffic to the ring expressway might lead
to congestion in the expressway. As shown in Figure 6.6, both CADP and PIAL
strategies can keep the ring expressway in a moderate congestion state.
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Figure 6.8 PIAL route guidance strategy

Figure 6.10 depicts the ramp metering control sequences. For the PIAL strategy, as
an uncoordinated control, each control system aims to maximize its own benefit.
PIAL prohibits travelers from entering the ring expressway from urban regions right
after the ring expressway shows signs of congestion. There is no limitation on the
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Figure 6.9 CADP route guidance strategy

off-ramp from the expressway to urban regions. Since the ring expressway is in a
moderate congestion state, as a cooperative strategy, CADP can always guarantee
the access of travelers to use the ring expressway. This achieves a full utilization of
the capacity of the ring expressway, leading to a 24.9% reduction in the expressway
total travel time compared with the PIAL. This demonstrates that a cooperative
control strategy can achieve better performance not only for the whole network but
also for the competing agents.

6.5 Conclusions

This study contributes to the field of traffic control in large-scale mixed urban-
expressway networks by proposing a cooperative control model for a multi-region
urban network with a ring expressway. The integration of perimeter control, route
guidance, and ramp metering allows for improved network performance, reduced
congestion, and minimized travel times.

A cooperative adaptive dynamic programming (CADP) approach was proposed to
optimize the cooperative control of the mixed urban-expressway system, taking into
account the interactions and dynamics between different agents. The numerical
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Figure 6.10 Ramp metering control sequences

studies demonstrated the effectiveness of the proposed cooperative control strategy.
It was observed that the coordinated CADP approach led to a significant reduction
in total travel time and better protection against over-saturation when compared to
uncoordinated strategies. The cooperation among the different control mechanisms
enabled a more efficient utilization of the network and expressway capacity and
improved traffic flow.

The findings of this study highlight the potential benefits of employing cooperative
control strategies in large-scale urban networks with expressways. It also explains
the phenomenon in reality that cross-region travelers prefer expressways over local
roads in the city center since they can travel faster. And when the expressway is
congested, it is beneficial to use periphery regions as a detour. Future efforts will be
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dedicated to extending the proposed CADP cooperative control strategy to a traffic
environment mixed with human-driven vehicles and autonomous vehicles.
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Summary of the thesis and future research
topics 7

7.1 Summary of thesis

This dissertation was to study adaptive traffic control of large-scale heterogeneous
urban networks based on the macroscopic fundamental diagram (MFD) framework.
We thoroughly explored three key research themes: data-efficient “model-free”
perimeter control (Chapter 3 and Chapter 4), adaptive perimeter control inte-
grated with regional route guidance (Chapter 5), and cooperative control of mixed
urban-expressway networks (Chapter 6). This section briefly summarizes the main
contributions and findings of the thesis.

“Model-free” optimal perimeter control

Existing data-driven perimeter control strategies do not consider the effect of het-
erogeneous real-time data resolution. Besides, perfect information on the system
dynamics is the prerequisite for traditional (model-based) optimal perimeter con-
trollers, making them fragile to model calibration errors and external disturbances.
To overcome these challenges, Chapter 3 proposed an integral reinforcement learn-
ing (IRL) method to learn the MFD system dynamics and devise an adaptive optimal
perimeter controller. This study mainly contributes in the following aspects:

• A continuous-time control with time-varying reinforcement interval to adapt
to the heterogeneous real-time resolution of data measurements

• An experience replay technique to reduce the sampling complexity and en-
hance the efficiency of available data

• A “model-free” integral reinforcement learning (IRL) method to relax the
requirement of exact knowledge on system dynamics

• The Lyapunov theory to guarantee convergence of the IRL-based algorithms
and the stability of the controlled traffic dynamics
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The set-point control problem of perimeter-controlled MFD systems was investigated
in Chapter 3. Note that both travel demand and supply generally vary with time.
Traffic networks are usually subject to various uncertainties such as model errors and
demand measurement noises. Thus, defining a proper set point as the control target
might not be a trivial task. Considering the time-varying nature of the travel demand
pattern and supply function, Chapter 4 proposed a novel trajectory stability concept
in the MFD framework. This study mainly contributes in the following aspects:

• Reformulation of the conventional set-point perimeter control problem into
an optimal tracking perimeter control problem

• Trajectory stability under the proposed tracking perimeter control guaranteed
by Lyapunov theory

• Improvement in reducing total travel time and enhancement in cumulative
trip completion by applying the tracking perimeter control

In Chapter 3 and Chapter 4, approximate optimization methods were carried out
to address the curse of dimensionality of the optimal control problem. The op-
timal perimeter controller was parameterized and then approximated by neural
networks (NN), which moderates the computational complexity. Both state and
input constraints are considered while no model linearization is required. The major
finding of these two studies was an easy-to-check rank condition used to verify the
data richness, i.e., whether the sampled data are sufficient to ensure that the NNs
are well-trained. Combined with the Lyapunov theory, this finding revealed that if
the rank condition was satisfied, the approximated perimeter controller using the
NNs could stabilize the accumulation state at the desired equilibrium and achieve
satisfactory performance in minimizing the total network delay.

Iterative adaptive perimeter control and regional route guidance

Coupling perimeter control and regional route guidance (PCRG) is a promising
strategy to decrease congestion heterogeneity and reduce delays in large-scale MFD-
based urban networks. With the increase in urban region size, previous studies
found that one needs to distinguish the model used for optimization and the plant
that replicates the real traffic system. The differences in traffic network structures
and input data between the model and the plant are known as the so-called model-
plant mismatch. The heterogeneous congestion distribution and uncertain MFD
parameters make the plant dynamics unavailable for optimal control design. Existing
data-driven methods (e.g., reinforcement learning) do not consider the model-plant
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mismatch and the limited access to plant-generated data, e.g., subregional OD-
specific accumulations. To fill the research gap, Chapter 5 developed an iterative
adaptive dynamic programming (IADP) based method to address the limited data
source induced by the model-plant mismatch and approximate the optimal PCRG
strategy without knowing the system dynamics. This study mainly contributes in the
following aspects:

• An actor-critic neural network structure developed to circumvent the require-
ment of complete information on plant dynamics

• Efficiency in data use despite limited access to available plant-generated data

• Robustness against various uncertainties (demand noise, MFD error, trip
distance heterogeneity) when minimizing the total time spent in the urban
network

• Outperforming the “benchmark” model predictive control (MPC) approach in
improving network mobility and computational efficiency

Performance comparisons with other PCRG schemes under various scenarios indi-
cated that the IADP controller trained with a limited data source achieved compa-
rable performance with the MPC approach using perfect measurements from the
plant. When more detailed plant data were available, the IADP approach could
even outperform the MPC controller. This is the major finding of the study, which
demonstrates the great potential of the proposed scheme in improving the efficiency
of multi-region MFD systems.

Cooperative control of mixed urban-expressway networks

Traffic control and management of large-scale urban networks involves not only the
regulation of traffic flows on arterial roads, but also those on highways/expressways
that connect different parts of the city. Ring expressways built in many megacities
(e.g., Beijing) are playing an important role in the traffic management of urban
networks. With on- and off-ramps to connect the city’s periphery areas, ramp
metering is usually desired to protect the expressways from over-congestion. Few
studies have explored the cooperation of perimeter control, route guidance, and
ramp metering strategies in improving the whole network mobility. To fill this gap,
Chapter 6 proposed a cooperative adaptive dynamic programming (CADP) approach
to solve the cooperative control problem for a mixed urban-expressway network.
This study mainly features the following aspects:
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• A mixed traffic network composed of a multi-region urban network modeled
by the MFD and a ring expressway going through the periphery regions
modeled by the asymmetric cell transmission model (ACTM)

• A multi-agent actor-critic neural network (MACNN) framework to train the
agents of perimeter control, route guidance, and ramp metering to fully
cooperate

• Achievement in both central urban congestion alleviation and whole network
mobility improvement

Numerical studies demonstrated that the CADP could reduce the total travel delay
by 48.1% compared with the model-based decentralized strategies and by 39.0%
compared with the D-ADP strategy. In addition, the city center was well protected
from over-congestion by applying the CADP approach. This finding of the study
sheds light on the potential benefits of employing cooperative control strategies in
large-scale urban networks with expressways. It also explains why travelers driving
from one region to another prioritize expressways with longer distances over shorter
arterial roads in the city center, i.e., they can travel faster and do not have to suffer
from traffic congestion. When the expressway is congested, it might be beneficial to
use arterial roads in periphery regions as a detour.

7.2 Future works

Based on the findings of this dissertation, this section elaborates on the potential
field applications and outlines the directions for future research. Here are some
research topics that are worth future efforts:

1. Learning the traffic dynamics in a controlled environment:

Conventional machine learning methods for learning traffic dynamics are
regression-oriented and prioritize fitting input-output data via supervised
learning with powerful function approximators. The dynamics are learned us-
ing the data collected before the controller is devised and deployed. However,
the deployment of controllers may change the characteristics of the traffic
system conversely. For instance, a new traffic signal control (actuating the
perimeter control) scheme can not only change the network capacity (the
MFD shape) but also induce a demand pattern variation. Learning the traffic
dynamics in a controlled urban network deserves further exploration.
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2. Event-triggered control of large-scale urban networks:

An urban traffic network in a megacity can be regarded as a system of systems
(SoS). In such an SoS system, various traffic control and management systems
are deployed, e.g., perimeter control, regional route guidance, ramp metering,
and variable speed limit. In operating this SoS system, coordinating all these
control systems to work as a team to improve the network performance
requires considerable computational effort in addressing the communications
between these systems and calculating their optimal outputs. Event-triggered
control is a promising way to resolve this difficulty. Event-triggered control
is reactive and generates sensor sampling and control actuation when a
triggering condition is violated, e.g., the plant state deviates more than a
certain threshold from a desired value. Doing so can significantly reduce the
computational burden without degrading the control performance. How to
devise an efficient event-triggered control mechanism for large-scale urban
networks is an unanswered question.

3. Fault tolerance in MFD-based regional route guidance systems:

Most existing works on MFD-based regional route guidance assume that
travelers will always obey the guidance of the optimal strategy output by
the system. However, such an assumption usually cannot be met in the real
world. Besides, it is very difficult to estimate the driver compliance rate in
real time when the route guidance system is in operation. That is, a failure
of the devised optimal strategy to reach its 100% control performance is
inevitable. Therefore, it is necessary to improve the ability of a controlled
MFD system to maintain control objectives in spite of the occurrence of a fault.
This appeals to introducing a fault-tolerant mechanism in the regional route
guidance system of the MFD framework. Note that the “fault-tolerant control”
is different from the “robust control”. Fault tolerance can be obtained through
fault accommodation, which requires changes in controller parameters and
even structure to avoid the consequences of a fault.

Other potential applications of MFDs in traffic control and management, including
but not limited to ride-sourcing (Ramezani and Nourinejad, 2018; Nourinejad and
Ramezani, 2020; Beojone and Geroliminis, 2023; Huang et al., 2023), static demand
management integrated with dynamic supply control (Yildirimoglu and Ramezani,
2020; Kumarage et al., 2021), urban air mobility operation (Haddad et al., 2021;
Safadi et al., 2023b; Safadi et al., 2023a), are yet to be further explored.
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A.1 Flow conservation of the two- and
three-region MFD systems

This appendix presents the conservation equations and dynamics in the affine form of
two cases investigated in the literature, i.e., the two-region and the three-region MFD
systems, as shown in Figure 3.4(a) and Figure 3.4(b), respectively. To begin with, let
Mii(t) = nii(t)

ni(t) Gi(ni(t)) and Mij(t) = nij(t)
ni(t) Gi(ni(t)) denote the within-region flow

and cross-boundary flow at time t, respectively.

Case 1: The two-region MFD system

Let L = 2 (i.e., the two-region MFD dynamics as shown by Figure 3.4(a) defined
in Geroliminis et al., 2013), n = [n11, n12, n21, n22]T ∈ R4 and u = [u12, u21]T ∈ R2.
The flow conservation equations are given as

dn11(t)
dt

= −M11(t) +M21(t)u21(t) + q11(t)

dn12(t)
dt

= −M12(t)u12(t) + q12(t)

dn21(t)
dt

= −M21(t)u21(t) + q21(t)

dn22(t)
dt

= −M22(t) +M12(t)u12(t) + q22(t)

For this case, the new state and control are ñ = [ñ1, ñ2, ñ3, ñ4]T ∈ R4 and ũ =
[ũ1, ũ2]T ∈ R2, respectively. The drift dynamics F ∈ R4 and input dynamics S ∈ R4×2

of their affine-form traffic dynamics are

F(ñ) ,


−M11 +M21u

∗
21 + q11

−M12u
∗
12 + q12

−M21u
∗
21 + q21

−M22 +M12u
∗
12 + q22

 , S(ñ) ,


0 M21

−M12 0
0 −M21

M12 0



171



Case 2: The three-region MFD system

Let L = 3 (i.e., three-region MFD dynamics as shown by Figure 3.4(b), see ex-
ample in Zhong et al., 2018b), n = [n11, n12, n21, n22, n23, n32, n33]T ∈ R7 and
u = [u12, u21, u23, u32]T ∈ R4. The flow conservation equations are given as

dn11(t)
dt

= −M11(t) +M21(t)u21(t) + q11(t)

dn12(t)
dt

= −M12(t)u12(t) + q12(t)

dn21(t)
dt

= −M21(t)u21(t) + q21(t)

dn22(t)
dt

= −M22(t) +M12(t)u12(t) +M32(t)u32(t) + q22(t)

dn23(t)
dt

= −M23(t)u23(t) + q23(t)

dn32(t)
dt

= −M32(t)u32(t) + q32(t)

dn33(t)
dt

= −M33(t) +M23(t)u23(t) + q33(t)

For this case, ñ = [ñ1, . . . , ñ7]T ∈ R7 and ũ = [ũ1, . . . , ũ4]T ∈ R4. F ∈ R7 and
S ∈ R7×4 of their affine-form traffic dynamics are

F(ñ) ,



−M11 +M21u
∗
21 + q11

−M12u
∗
12 + q12

−M21u
∗
21 + q21

−M22 +M12u
∗
12 +M32u

∗
32 + q22

−M23u
∗
23 + q23

−M32u
∗
32 + q32

−M33 +M23u
∗
23 + q33


, S(ñ) ,



0 M21 0 0
−M12 0 0 0

0 −M21 0 0
M12 0 0 M32

0 0 −M23 0
0 0 0 −M32

0 0 M23 0



A.2 A four-region case with no model-plant
mismatch in Study 3

This case considers a network of four regions, see Figure A2.1, wherein the model
and the plant share the identical model structure. The proposed IADP approach
is first compared to several existing schemes in a case of no model error and trip
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1
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3
4

Figure A2.1 The four-region network

distance heterogeneity. Apart from the methods mentioned in Section 4, the online
learning-based IRL approach proposed by Chen et al. (2022) is investigated. The IRL
approach is also model-free. Different from the IADP scenario, {nij(t), uij(t), θh

ij(t)}
are available for training the IRL algorithm. Besides, the IRL approach is trained in
an online manner, i.e., the parameters of the implemented controller (i.e., the actor
NN weights) are updated at any time step with new data fed from the environment
during the simulation.

In this numerical example, all regions share the same MFD given by GI(NI(t)) ,

PI(NI(t))/LI(t) = (1.4877−7N3
I (t) − 2.9815−3N2

I (t) + 15.0912NI(t))/3600 (veh/s)
where LI = 3600 (m), I = 1, . . . , 4. Figure A2.2(a) and Figure A2.2(b) depict the
regional and OD-specific travel demand, respectively. Performance comparison is
made among IADP, MPC-PM, IRL, and PIL.

Figure A2.3(a)-Figure A2.3(d) depict the evolution of accumulation states NI . The
accumulation states under IADP and MPC-PM follow a similar trend and manage to
dissolve the congestion in all regions. This indicates that the well-trained IADP can
achieve comparable performance with the MPC-PM approach. Specifically, vehicles
traveling from Region 1 to Region 4 (or vice versa) have to pass through either
Region 2 or Region 3. Therefore, Region 2 and Region 3 experience more severe
congestion while IADP and MPC-PM can protect Region 1 and Region 4 from over-
saturation. In contrast, the PIL and IRL fail to clear the network by the end of the
simulation.

Table A2.1 Performance comparison among various PCRG schemes of the four-
region case

IADP MPC-PM IRL PIL
TTS (× 1e7 veh·s) 3.861

(-54.2%)
3.823
(-54.6%)

6.259
(-25.7%)

8.424 (-)

Avg. CPU time/step (s) 5.188e-4 9.471e-1 3.276 5.655e-3
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Figure A2.2 Demand profile for the four-region case.

Table A2.1 summarizes the performance comparison among various PCRG schemes
of the four-region case. The MPC-PM approach significantly improves the TTS
minimization over the baseline PIL strategy and exhibits the best performance
when there are not any uncertainties. Despite not having complete knowledge
of the system dynamics, IADP demonstrates comparable performance to the MPC-
PM. In contrast to the online learning-based IRL, the off-line iterative learning-
based IADP is capable of effectively learning network dynamics using extensive
collected data before implementing the control law to regulate network traffic. As a
result, the IADP can well operate the network transportation under recurrent traffic
conditions once it is trained with sufficient historical data. In addition, the IADP
achieves this performance at less computational time than the MPC approach for
implementation.
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Figure A2.3 Accumulation state evolution of the four-region case. (a) N1, (b) N2,
(c) N3, and (d) N4.

Figure A2.4(a), Figure A2.4(b) and Figure A2.4(c) show the perimeter control inputs
UIJ over time devised by IADP, MPC-PM and IRL, respectively. By comparing Figure
A2.4(a) and Figure A2.4(b), the IADP and MPC-PM strategies have a similar control
pattern despite that the IADP depicts a smoother control. Under IRL, Figure A2.4(c)
restricts the cross-boundary flow from Region 1 and Region 4 to Region 3, protecting
Region 3 from saturation, however, at the price of the highest congestion in Region
1 and 4.

Figure A2.5(a), Figure A2.5(b) and Figure A2.5(c) present the evolutions of route
guidance schemes devised by IADP, MPC-PM and IRL, respectively. Generally, more
travelers in adjacent regions take direct paths between the neighboring areas instead
of detouring through third-party regions under all schemes. For non-adjacent OD
demand q14, q41, more travelers are suggested to pass through Region 3 instead of
Region 2. This is because Region 2 attracts more travel demand than Region 3. This
helps to balance the traffic load in the network. Only when the perimeter control
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between Region 4 and Region 2 is activated and to protect Region 3 under IRL,
travelers change their route preference.

A.3 Supplementary results of Case 1-Example
1 in Study 3

A.3.1 Accumulation state and PCRG evolution of Case
1-Example 1

Figure A3.6 and Figure A3.7 show the subregional and regional accumulation state
evolution of Case 1-Example 1, respectively. As observed, the PIL scheme maintains
Region 1’s accumulation state close to the critical point during the stationary con-
gestion period (during the 40th-70th min). The MPC-UKF and MPC-PM schemes
both achieve a lower average congestion level in both regions than the PIL. The
control performance of the MPC-PM is slightly better than the MPC-UKF because
the former uses the exact measurements from the plant. It is interesting to note that
the IADP-PT scheme significantly decreases the average congestion level in Region
1 compared to the two MPC schemes. In contrast, the IADP-PT scheme results in
a higher congestion level in Region 2 than the MPC schemes. The proposed IADP
approach achieves the lowest average congestion level in the city center at the cost
of the highest congestion level in the periphery.

Figure A3.8(a), Figure A3.9(a), Figure A3.10(a), Figure A3.11(a), and Figure
A3.12(a) show the perimeter control inputs uij over time devised by IADP, IADP-PT,
MPC-PM, MPC-UKF and PIL, respectively. Nearly no restrictions are enforced for
cross-boundary flows by IADP, especially for the flows from the city center to the
periphery, see Figure A3.8(a). When the accumulation state of Region 1 exceeds the
critical point during the 40th-70th min, the PIL restricts the inflow for the benefit of
individual regions, which obstructs the cross-boundary flows, see Figure A3.12(a).
MPC-PM and MPC-UKF only occasionally restrict the flows from the central to the
periphery to balance the traffic load, see Figure A3.10(a) and Figure A3.11(a).

Figure A3.8(b), Figure A3.9(b), Figure A3.10(b), Figure A3.11(b), and Figure
A3.12(b) present the evolutions of route guidance schemes devised by IADP, IADP-
PT, MPC-PM, MPC-UKF and PIL, respectively. Generally, more travelers in adjacent
regions take direct paths between the neighboring areas instead of detouring through
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Figure A2.4 Perimeter control inputs of the four-region case. (a) IADP, (b) MPC-PM,
and (c) IRL.
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Figure A2.5 Route guidance input evolution of the four-region case. (a) IADP, (b)
MPC-PM, and (c) IRL.
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Figure A3.6 Subregional accumulation evolution of Case 1-Example 1.

third-party regions under all schemes. Nevertheless, PIL has a higher probability of
detouring via the central region compared with the other schemes. For non-adjacent
OD demand q24, q35, travelers can choose to circle the periphery region or pass
through the central region. More travelers are suggested to use the periphery under
IADP, see Figure A3.8(b) and to go through the city center under MPC-PM and MPC-
UKF, see Figure A3.10(b) and Figure A3.11(b). This explains why IADP achieves the
lowest accumulation state in the central region, see Figure A3.6.

A.3.2 MPC controller tuning

Figure A3.13 shows the control performances and computational efforts of MPC-
PM controllers with different prediction horizons. Figure A3.13(c) presents the
TTS performance and the average CPU times. The results indicate that: (a) TTS
performance would be fairly insensitive to the choice of the prediction horizon
when it is greater than 15 min, and (b) average CPU times increase with the
increase in prediction horizons. Therefore, considering the tradeoff between control
performance and computational effort, we set the prediction horizon to 15 min for
the MPC-based controllers in our case studies.
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Figure A3.7 Regional accumulation evolution of Case 1-Example 1.
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Figure A3.8 IADP PCRG of Case 1-Example 1. (a) PC, and (b) RG.
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Figure A3.9 IADP-PT PCRG of Case 1-Example 1. (a) PC, and (b) RG.
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