

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MESSAGE SUBSET INTEGRITY PROBLEM IN

THE INTERNET OF THINGS

HAOTIAN YAN

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Electrical and Electronic Engineering

Message Subset Integrity Problem in the Internet of Things

Haotian Yan

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

May 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Haotian Yan

Abstract

With the fast development of the Internet of Things (IoT) applications and tech-

nologies, many new wireless communication protocols and hardware have emerged.

However, there is one essential security objective during the message transmission in

IoT, namely, message integrity, where an adversary cannot modify the message. Clas-

sic cryptographic solutions to integrity include the message authentication code and

digital signature. In the IoT scenario, especially fog and edge computing, however,

different devices have different computation abilities: a fog or edge node may have a

strong computation ability to handle many computation tasks, while a sensor node

cannot. Therefore, a participant with limited computation ability cannot verify all

incoming messages. To solve this problem, we can segment the message into different

subsets so that the devices with varying computation abilities can select one or more

of the message subsets for verification.

The works described in this thesis are mainly divided into three parts. First, we try

to solve the subset privacy problem, which is a by-product of the subset integrity.

In some cases, a subset of the message also has privacy concerns where the message

may contain useless (in terms of integrity) but sensitive content. Unfortunately,

existing MACs or signatures only address message integrity while ignoring the privacy

problem. To address the problem, we provide a novel scheme so that only one MAC

is necessary for protecting the message integrity, even if the privacy concerns from

different clients are varied. Second, we provide a new scheme to support the subset

i

integrity verification between two entities in the fog based industrial IoT scenario.

Insides, the fog node has great computation ability. Thus, it can randomly and

optimally verify a subset of the message and leave the remaining subsets verified

by the receiver. Finally, we extend our research to a smart city scenario, where

several edge nodes are involved in subset verification. Since a message is separated

into different subsets, several edge nodes should cooperate to verify the message.

Therefore, a novel signature scheme is necessary. Moreover, how this process can be

optimized in terms of verification latency and system throughput is an open problem.

The optimization is incredibly challenging when the verification order of various edge

nodes is essential.

ii

Publications Arising from the

Thesis

1. Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, and Haotian Yan

“Beyond value perturbation: Local differential privacy in the temporal setting”,

Proc. of IEEE International Conference on Computer Communications (INFO-

COM), Virtual, May 2021.

2. Haotian Yan, Haibo Hu, Qingqing Ye, and Tang Li, “SPMAC: Scalable Prefix

Verifiable Message Authentication Code for Internet of Things” IEEE Trans-

actions on Network and Service Management (TNSM), Volume: 19, Issue: 3,

pp.3453-3464, September 2022.

3. Haotian Yan, Haibo Hu, and Qingqing Ye, “Partial message verification in fog-

based industrial Internet of things” Computers & Security, Volume 135: 103530,

December 2023.

4. Haotian Yan, Haibo Hu, and Qingqing Ye, “Time-Specific Integrity Service in

MQTT Protocol” The ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), (pp. 113-125). IEEE.

5. Haotian Yan, Haibo Hu, Qingqing Ye, and Jianliang Xu, “Multi-hop Sanitizable

Signature for Collaborative Edge Computing” Journal of Computer Security,

Preprint (2024): 1-27.

iii

Acknowledgments

First of all, I should express my great gratitude to my supervisor, Prof. Haibo Hu,

for supporting my research work from 2019. He always gives me constructive advice

on my work and is patient in answering the questions I have been confronted with

during these years. He offers me an essential opportunity to pursue a PhD degree in

computer science. Without his help, I may still be confused about my research career

in the future. Although he sometimes puts some pressure on my research, I know

that he wants to make my research work better. His critical judgment and rigorous

logic in the research area will inspire me in my future work.

Second, I am grateful to Dr. Qingqing Ye for having a discussion with me about the

research work. Her experience in research impresses me and becomes a role model

for me. Also, I want to thank the teammates in the ASTAPLE group. The senior

members, Dr. Huadi Zheng, Dr. Ziyang Han, and Dr. Tang Li, kindly helped me

when I encountered some troubles when starting the research. I will also appreciate

for the company of members for Miss. Rong Du, Miss. Yaxin Xiao and Mr. Yue

Fu. Without them, I would not have had a good learning environment in these years.

Moreover, the ASTAPLE group has grown larger over these years. I should also

thank for the assistance of them, Dr. Sen Zhang, Mr. Jiawei Duan, Miss. Li Bai, Mr.

Haoyang Li, Miss. Yulian Mao, Mr. Ronghua Li, Mr. Xun Ran, Mr. Xinwei Zhang,

and Mr. Chun Ho Kong for bringing joy to this office.

Last but not least, I should thank for the assistance from my parents. I have been

iv

studied in Hong Kong for six years. During the years, I live here without the accom-

pany of the family, and confront so many things. They gave me great power so that

I can get through that serious time.

v

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments iv

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Emerging Message Integrity Problem 2

1.2 Fog and Edge Computing . 4

1.3 Contribution and Outlines . 5

2 Literature Review and Preliminaries 9

2.1 Related Work . 9

2.1.1 Message Integrity . 9

2.1.2 Message Privacy . 10

vi

2.1.3 Computation Offloading . 11

2.2 Preliminaries . 12

2.2.1 Prefix-Verifiable Message Authentication Code 12

2.2.2 Hierarchical Secret Sharing . 16

2.2.3 Chameleon Hashing . 18

2.2.4 Sanitizable Signature . 19

3 Subset Privacy Problem in Subset Integrity 21

3.1 Problem Definition . 23

3.2 Scalable Prefix Verifiable Message Authentication Code 25

3.2.1 Syntax of Fibo-SPMAC . 26

3.2.2 Syntax of ECP-SPMAC . 30

3.3 Theoretical Analysis . 34

3.3.1 Message Subset Privacy . 35

3.3.2 Message Integrity . 36

3.4 Experiments . 38

3.4.1 Performance of Four Schemes under Different Devices 39

3.4.2 Performance of Four Schemes under Different Number of Cells 41

3.4.3 Performance of Four Schemes under Different Number of Dis-

closed Cells . 43

3.4.4 Practical Application . 44

3.5 Summary . 46

vii

4 Subset Integrity between Two Entities 48

4.1 Problem Definition and System Model 51

4.1.1 System Model . 51

4.1.2 Problem Definition . 52

4.2 Partial Verification Message Authentication Code 53

4.2.1 Secret Sharing based Message Authentication Code 54

4.2.2 Hierarchical Secret Sharing Based Message Authentication Code 56

4.2.3 The Syntax of PV-MAC . 58

4.3 Theoretical Analysis . 62

4.3.1 Time Consumption of SS-MAC and HSS-MAC 62

4.3.2 Security of PV-MAC . 63

4.4 Energy Optimization in PV-MAC . 65

4.4.1 The Level Weight Generation 67

4.5 Improvement on PV-MAC . 69

4.6 Experiment Result . 70

4.6.1 Time Consumption of PV-MAC under Different Cell Size . . . 71

4.6.2 Time Consumption of PV-MAC under The Number of Levels 72

4.6.3 Comparison between PV-SS-MAC and PV-MAC 73

4.6.4 Performance of PV-SS-MAC, PV-MAC, and CHMAC 74

4.6.5 Workload Allocation PV-SS-MAC, PV-MAC, and PV-CMAC 75

4.6.6 Performance of PV-MAC in Offline and Online Verification . . 76

4.7 Summary . 79

viii

5 Subset Integrity among Multiple Entities 81

5.1 Problem Definition and System Model 84

5.1.1 System and Threat Model . 84

5.1.2 Problem Definition . 86

5.2 Elliptic Curve based Multi-hop Sanitizable Signature 88

5.2.1 Elliptic Curve Based Chameleon Hash 89

5.2.2 Elliptic Curve Based Multi-hop Sanitizable Signature 91

5.3 Multi-hop Verification Optimization 95

5.4 Security Analysis . 97

5.4.1 Correctness . 97

5.4.2 Unforgeability . 98

5.4.3 Non-transferability . 101

5.5 Experiments . 101

5.5.1 The Time Consumption under The Number of Cells Verified by

The last vEN . 103

5.5.2 Time Consumption under The Number of Cells 104

5.5.3 Time Consumption under The Number of Sanitized Cells . . . 105

5.5.4 The Number of gEN . 106

5.5.5 The Number of vEN . 106

5.5.6 Workload Allocation under The Upper-bound Workload . . . 109

5.5.7 Workload Allocation under The Number of vEN 109

5.6 Summary . 112

ix

6 Conclusion and Future Works 113

6.1 Conclusion . 113

6.2 Future Work . 114

References 116

x

List of Figures

3.1 The Disclosed Cell Verification Model 23

3.2 The System of PMAC . 24

3.3 Concrete Example of SPMAC . 30

3.4 Concrete Example of ECP-SPMAC 34

3.5 Time Consumption among SPMAC, PMAC, and HMAC in Prefix-

Suffix Model . 41

3.6 Time Consumption between Fibo-SPMAC and ECP-SPMAC in Ran-

dom Model . 42

3.7 Time Consumption among SPMAC, PMAC, and HMAC in Prefix-

Suffix Model . 44

3.8 Time Consumption between Fibo-SPMAC and ECP-SPMAC in Ran-

dom Model . 45

3.9 Time Consumption and Communication Cost on Fibo-SPMAC and

ECP-SPMAC with or without Mapping Look-up Table 46

4.1 Static and Subset Verification . 50

4.2 System Model of Subset Verification 54

4.3 PV-MAC Generation and Verification Phase 58

xi

4.4 Concrete Example of PV-MAC . 60

4.5 Time Consumption under The Different Cell Size 72

4.6 Time Consumption under The Verified Cells from Different Levels . . 73

4.7 Time consumption of PV-SS-MAC and PV-MAC 74

4.8 Workload Allocation for Three Schemes 75

4.9 Performance of Offline Verification 77

4.10 Performance of Offline Verification 78

5.1 Example of Subset Verification . 83

5.2 System Model . 86

5.3 The Running Example of ECMSS with Two vENs and One gEN . . . 94

5.4 The Number of Verified Cells by The Last vEN 103

5.5 The Time Consumption under The Number of Cells 104

5.6 The Time Consumption under The Number of Sanitized Cells 105

5.7 Performance of ECMSS, IDSS, and T-ECDSA 107

5.8 Performance of Optimization under The Upper-bound Workload . . . 110

5.9 Performance of Optimization under The Number of vEN 111

xii

List of Tables

2.1 Variables List for PMAC . 13

3.1 Comparison among The Three Schemes 22

3.2 Variables List for Fibo-SPMAC and ECP-SPMAC 26

3.3 ECP-Mapping Look-up Table . 31

3.4 Performance of HMAC, PMAC, and SPMAC in Different Devices . . 40

4.1 Variables List for HSS-MAC and PV-MAC 58

4.2 Variables List for Optimization . 67

4.3 Time Consumption and Communication Cost of The Three Schemes . 74

4.4 The Number of Cells and The Cell Size of Incoming Message 76

5.1 Comparison of Solutions for Message Subset Integrity 84

5.2 Variables List for ECMSS . 90

5.3 Variables List for Energy Optimization 95

5.4 Variables List for Network Setting in The Experiment 102

5.5 Time Consumption of Aggregation Under The Different Number of gEN106

xiii

Chapter 1

Introduction

With the prosperity of communication technology and artificial intelligence, data

has become increasingly valuable, and so has data transmission. Consequently, the

Internet of Things (IoT) has become a hot topic. According to the research in IoT

Analytics, the annual growth rate of the IoT market has reached 19 % in 2023 [1].

Since it can connect several sensors, smart objects, and everyday items by exchanging

data, IoT has many applications in various scenarios. For instance, the industrial IoT

[17] can help gather data from the machines so that humans do not need to reach

or monitor them on-site. In the smart city scenario [76], IoT devices can support

long-range transmission to gather information such as traffic data, temperature, and

humidity. In general, cloud computing [81] improves the speed of message processing

since it has strong computation ability. However, with the number of messages and

the message size becoming enormous, the traditional cloud computing paradigm (e.g.,

Google GCP and Amazon AWS) faces the problem of long distance/high latency/large

volume between the cloud platform and the IoT devices. In recent years, fog and edge

computing have emerged to improve performance. Edge devices can communicate

real-time data to the network to decrease transmission delay. Fog devices can further

provide stronger computation ability than edge devices for complicated computation

1

Chapter 1. Introduction

tasks.

1.1 Emerging Message Integrity Problem

During transmission, messages are susceptible to modification threats [77]. For exam-

ple, once the data is changed in the IIoT scenario, the machine may conduct incorrect

operations and cause great failure in the product. The emergency situation should

be transmitted to the actor to handle in the wireless sensor and actor network [101].

The actor cannot accurately respond to the emergency if the message is falsified. A

similar situation will also happen in the smart city scenario. The attack always exists

in the network communication layer [96]. There are two solutions in cryptography:

Message Authentication Code (MAC) [11] and Digital Signature [32]. The two kinds

of schemes have different advantages. On one hand, the MAC can be built from cryp-

tographic hash only and is thus computationally efficient. On the other hand, the

digital signature supports some extra properties, such as undeniability [26]. Hence,

they can be widely applied in IoT scenarios [28] with different requests.

However, our key observation is that the current MAC or signature schemes confront

some troubles in practical IoT situations since they do not consider the computation

ability of the individual IoT node. For example, in the Industrial IoT (IIoT) scenario,

the sensor nodes are cheap, so their hardware has a limited workload. In the smart

city, the nodes that gather traffic data are deployed in a large area. As a consequence,

their hardware cannot be updated frequently. In both situations, when an individ-

ual IoT node confronts many messages, it may encounter difficulties completing the

verification tasks since the sender generates MAC or signatures based on the whole

message. To solve the problem, subset verification is necessary, which means it can

verify a subset of the message and allocate the rest subset to a trusted third party.

Currently, there are some existing solutions. The locally sensitive hashing (LSH)

2

1.1. Emerging Message Integrity Problem

[50][94] can solve the problem to some degree. A similar document will be mapped

to the same bucket with high probability. If the similarity of the message subset

is smaller than the threshold of the LSH, the hashing results of the message subset

are the same as the original message. However, the false positive and false negative

problems in the LSH cannot be ignored. The server-aided signature [23] can also

solve the computation bottleneck problem by outsourcing the computation task to a

third party. However, the third party does not check the message integrity. Once the

message has been modified by the adversary, the third party cannot figure it out until

the IoT node finishes the verification. This process still wastes the computation ability

of IoT nodes. In our assumption, a third party (e.g., fog node or edge node) should

be involved in verification rather than computation. The IoT nodes can outsource

a subset of the messages to a trusted third party for verification. If the third party

find out the subset of the messages has been modified, the rest verification process

will be terminated. Specifically, in the IIoT scenario, the distance between devices is

short. One fog node can help gather and verify the message. On the contrary, in the

smart city, the devices are mobile, and the distance between them is long. The edge

computing paradigm is suitable.

Besides subset integrity, subset privacy is also important. Generally, the MAC only

focuses on message integrity while ignoring the privacy problem [37]. That is, the

message may contain useless (in terms of integrity) but sensitive content. A naive

solution is that when a client asks for the message, he can delete the useless contents

and send the rest to the client. However, different clients consider different content

useless. For example, when a sensor node gathers temperature data from one room,

one client needs the data during working hours to check how human activities affect

temperature. The other client needs the data during the night for emergency and

anomaly detection. Deleting message contents and re-generating MAC cannot be

pre-processed in this scenario since the sensors do not know which subset the clients

need before the message transmission. Merkle Hash Tree [67] can somewhat solve the

3

Chapter 1. Introduction

subset privacy. However, the storage and the communication cost will be enormous.

To solve this situation, we consider whether we can generate the MAC before trans-

mission while packing the useless content so that the client cannot know it. In [46],

Prefix Verifiable Message Authentication Code (PMAC) is proposed to pro-

tect both message integrity and privacy in Location-based Services (LBS) [29]. LBS

provides location-aware services according to devices’ geographical location, such as

local weather services and location-based games. In these situations, the requests

for location accuracy are different. For instance, the weather services only need to

know the living city, whereas a location-based game requires a more precise location.

However, the attacker can modify the location message [72][38]. For example, a taxi

should not leave its operating area in some cities [97], while the attacker can modify

the location message so the taxi can leave its operating area. However, PMAC has

a limitation. When the message contains two or more kinds of information, and the

client randomly asks for the content inside, PMAC cannot be applied. Consequently,

subset privacy and subset integrity should be considered.

1.2 Fog and Edge Computing

Cloud computing enables individuals and corporations to access computing resources

via the Internet on demand at high prices. It affords customers enhanced flexibility

and scalability in contrast to conventional on-premises computing models. Never-

theless, a significant hurdle hindering the integration of cloud computing with IoT

applications is the considerable distance, resulting in high transmission delays and

large data volumes between the client and the cloud [59].

Therefore, fog and edge computing are proposed to solve the problem. Edge com-

puting [48] is a computational paradigm designed to relocate computation and data

storage nearer to data sources, thereby reducing transmission delays compared to

cloud computing. In other words, edge computing is required to share the pressure

4

1.3. Contribution and Outlines

of the cloud and take charge of tasks within its scope of the edge. Unlike centralized

ownership by large corporations like Google, Amazon, and Huawei, edge devices are

typically owned by individual users. Nevertheless, individual edge nodes do not have

enough computation ability [86], which leads to the computation bottleneck. There

are two solutions to address the issue. First, several edge nodes can cooperatively

solve the computation tasks. Based on that, collaborative edge computing is pro-

posed [68]. Each edge node can select a subset of the tasks to compute. Another

solution is updating the edge node by increasing its computation ability. In other

words, a device with significant computation ability and without the drawbacks of a

cloud platform should be applied. Thus, the fog computing [41] is proposed. Similar

to the cloud, fog provides data computing, storage, and application services to end

users. In fog computing, facilities that can provide resources for services at the edge

of the network are called fog nodes. Fog computing inherits the advantages of both

cloud computing and edge computing. On one hand, the cost and transmission delay

in fog computing are smaller than those in cloud computing. On the other hand, the

fog node has stronger computation ability than the edge node. In summary, fog and

edge computing can assist in solving the subset integrity problem.

1.3 Contribution and Outlines

In this paper, we want to solve the message subset integrity problem. Specifically, the

subset integrity means that the verifier can check the correction of the message sub-

set even if the corresponding MACs or signatures are generated based on the whole

message. When one verifier confronts the computation bottleneck in verification, he

can randomly select as many verification tasks as possible and offload the rest to

other participants. Primarily, we introduce the subset privacy, which emerges as a

subsidiary concern within the subset integrity paradigm in Chapter 3. When a partic-

ipant solely necessitates access to a message subset, maintaining the confidentiality of

5

Chapter 1. Introduction

the remaining subset becomes imperative. However, since a single message may be rel-

evant to multiple participants with varying privacy requirements, generating distinct

MACs for identical messages proves impractical. A scheme ensuring the immutability

of integrity proofs despite modifications to privacy requests is necessary to address

this challenge. Subsequently, we provide an empirical study on subset integrity with

the assistance of fog computing in Chapter 4. Fog nodes, endowed with substantial

computational resources, can carry large amounts of verification tasks. Consequently,

the subset verification only needs two determined entities. In the meantime, we pro-

vide an optimization solution to decrease the energy consumption of the message

receiver. Notably, the computation resources consumed increase proportionally with

the number of subsets verified by a node. Therefore, it is essential to find an optimiza-

tion solution to minimize the receiver’s computation ability consumption. Finally, we

extend the research to a general situation where multiple entities can cooperate to

verify the message in Chapter 5. Since the edge node can be widely applied in the

smart city, the number of participating edge nodes and their computation ability are

unknown. Consequently, the signature should support several edge nodes to coopera-

tively complete the verification. Moreover, we figure out an optimization solution to

minimize the energy consumption of the edge nodes.

In summary, the contributions of this thesis are listed as follows:

• Scalable Prefix Verifiable Message Authentication Code (SPMAC).

We propose the SPMAC scheme to provide message integrity and subset privacy

service. This scheme enables the sender to generate a single MAC for different

receivers with varying privacy requirements. The SPMAC scheme can not only

inherit the advantages of PMAC but also overcome its limitations.

• Partial Verification Message Authentication Code (PV-MAC). We pro-

pose PV-MAC for subset verification in a fog-based IIoT scenario. The MAC is

generated based on the whole message, and the fog node can randomly choose

6

1.3. Contribution and Outlines

cells for verification rather than being determined statically by the message

sender.

• Elliptic Curve based Multi-hop Sanitizable Signature (ECMSS). We

propose ECMSS to support subset verification among several entities in the

smart city. Additionally, the ECMSS scheme can support subset aggregation.

This capability enables edge nodes to concatenate incoming messages and ag-

gregate signatures, even when different private signing keys generate the signa-

tures. In the meantime, ECMSS permits the edge node to select a subset of the

message for random verification.

The rest of this thesis is organized as follows:

• Chapter 2. We provide a systematic review of the related literature and pre-

liminaries. Specifically, we discuss the privacy and integrity assurance schemes

in cryptography, as well as the computation offloading schemes.

• Chapter 3. We introduce the sub-problem in subset integrity, called subset

privacy. In the meantime, the message integrity should be guaranteed. To solve

the problem, we propose a Scalable Prefix Verifiable Message Authentication

Code (SPMAC). It is a novel and efficient scheme to concurrently solve message

integrity and subset privacy.

• Chapter 4. We demonstrate the subset integrity problem between two entities.

To solve the problem, we propose a Partial Verification Message Authentication

Code (PV-MAC) in a fog-based IIoT scenario. In the meantime, we provide

an optimization solution so that the fog node can carry as many verification

tasks as possible to decrease the receiver’s energy consumption. Furthermore,

a Partial Verification Chained Message Authentication Code (PV-CMAC) is

proposed to reduce communication costs.

7

Chapter 1. Introduction

• Chapter 5. In this chapter, we show a general situation, which is the subset in-

tegrity verification among multiple entities. To address the problem, we propose

an Elliptic Curve Multi-hop Sanitizable Signature (ECMSS) in the smart city

scenario. The ECMSS can support multiple edge nodes to verify the message

cooperatively. Besides supporting subset verification, the scheme can support

subset aggregation. Specifically, different signers can generate the signatures for

different signatures in the smart city scenario. The aggregator can combine the

signatures even if different keys generate them. Furthermore, an integer-based

optimization solution is proposed to minimize the energy consumption among

the edge nodes.

• Chapter 6. In this chapter, we conclude this thesis and show some possible

research directions in the future.

8

Chapter 2

Literature Review and

Preliminaries

2.1 Related Work

2.1.1 Message Integrity

To ensure the message integrity, signature and MAC are two standard solutions.

Johnson, Menezes, and Vanstone proposed [52] the ECDSA scheme, a notable solution

in IoT scenarios. Based on that, the identity-based signature [22] was introduced

so that the key can be generated according to the identities. Furthermore, Zhiwei,

Ruirui, and Shaohui provided [98] a server-aided signature for smart cards and wireless

sensors by applying the attributed-based signature. Shahid and Abid [87] proposed

Smart Digital Signatures with a novel key compression tree in the quantum era.

Some existing solutions had some extra properties. For example, the homomorphic

signature was proposed in [53]. Based on that, an identity-based homomorphic scheme

is proposed for blockchain [66], and [64] applied a homomorphic signature in an

IoT scenario, which can combine the incoming message. Camenisch, Maurer, and

9

Chapter 2. Literature Review and Preliminaries

Stadler [14] provided a Schnorr signature scheme, while [54] applied it to support

multiple message signing and key aggregation. The keyed-hashing MAC (HMAC)

was proposed for the MAC schemes in [55]. Based on that, Erroutbi, El Hanjri, and

Sekkaki [31] applied HMAC in the IoT scenario. The MAC scheme also has extra

properties. In [46], the authors proposed the Prefix-Verifiable Message Authentication

Code to protect the message integrity as well as the location privacy. In [4], the

authors introduced a stateful MAC scheme named Progressive MACs (ProMACs) in

data stream authentication so that the verification can resynchronized once the data

is missing. Broadbent and Wainewright [12] extended the MAC scheme in quantum

security.

However, traditional integrity assurance schemes do not support subset integrity ver-

ification. To solve the problem, a sanitizable signature [7][60] allowed a delegator to

modify parts of the messages. This scheme can be applied in several scenarios, such

as the Industrial IoT [49] scenario. Furthermore, Samelin and Slamanig [83] provided

a policy-based sanitizable signature scheme for a blockchain scenario. Apart from the

sanitizable signature, some concepts were related to privacy-assurance signature. The

redactable signature scheme(RSS) [13] has properties similar to those of a sanitizable

signature. The RSS can delete a subset of the messages without knowing the private

key. Specifically, there are some applications of RSS. The Pöhls and Samelin [78]

provided an accountable RSS scheme that supports accountability. [63] proposed the

RSS for cloud storage. However, these works do not consider the multi-hop scenario,

which is common in smart city scenarios.

2.1.2 Message Privacy

Message privacy has many applications. In LBS security, users’ location and tra-

jectory are sensitive and should be kept secret. In a wireless sensor network, the

data is transmitted among several sensor nodes. Data privacy should be guaranteed

10

2.1. Related Work

so that the adversary cannot know the data during the transmission [104]. In data

publication, an attacker with solid background knowledge can obtain sensitive user

information by comparing two or more publications. In IoT, a general idea is encryp-

tion. The encryption scheme can be divided into two kinds: symmetric encryption

and asymmetric encryption. Furthermore, Gentry proposed fully homomorphic en-

cryption, which means the client can compute the ciphertext without knowing the

plaintext. Subsequently, the authors applied homomorphic encryption to the IoT sce-

nario to ensure message privacy [75]. Besides, the traditional public-key encryption

confronts a problem: significant storage of public keys in Public Key Infrastructure

(PKI), Shamir provided the identity-based encryption (IBE) [89], and Cocks provided

an IBE scheme based on quadratic residues[24]. Instead of encrypting messages by a

public key, the receiver’s identity was used to encrypt the messages. Thus, it can be

widely applied in IoT scenarios to solve privacy problems [19].

Another solution is differential privacy (DP) and local differential privacy. By adding

the noise to the data, the client cannot know the exact value of the data. For instance,

the privacy of the trajectory is protected by omitting sensitive information or adding

noise in [102] [93]. In [100], the authors combined DP with edge computing to protect

message privacy in an IoT scenario. [105] applied LDP in temporal trajectory. The

authors added the noise in the time order rather than the location data. In this

situation, the efficiency is better than that of the traditional LDP mechanism.

2.1.3 Computation Offloading

Computation offloading is applied to collaborative edge computing and fog computing.

The optimization problem attracts excellent attention. Generally, there are two kinds

of scenarios. First, only several edge nodes cooperate to finish the tasks [69]. The

other scenario is the hybrid mode, which means the network contains edge nodes, fog

nodes, and cloud platforms [44]. Generally, there are several objectives. For instance,

11

Chapter 2. Literature Review and Preliminaries

[70] used game theory to find the Nash Equilibrium so that the time consumption

declines. The authors in [92] used Multi-Armed Bandit to optimize the performance

of multi-hop offloading. In [44], the objective was to concurrently minimize the system

time and energy consumption.

Currently, most of the work concentrates on optimization problems in computation

offloading. However, the subset verification is also important. Due to the limited

computation ability, the verification process should be conducted among several third

parties. The participant should undertake the computation tasks and check the ver-

ification result. This process is complex because all the participants independently

choose the cells for computation, while there is only one signature for verification.

2.2 Preliminaries

2.2.1 Prefix-Verifiable Message Authentication Code

Prefix-verifiable message authentication code (PMAC) was proposed in [46]. The

objective is to solve the problem how the authenticator can authenticate the message

without disclosing the information that the verifier does not need to know. In this

scheme, the data source (DS) only needs to generate one MAC for the message. The

data user (DU) can then guarantee the integrity of the cells it ought to be aware of

while is unable to acquire more knowledge than he should know. Table 2.1 shows the

notations of PMAC, and Algorithm 1 shows how PMAC works.

Π is a character-wise associative, Π(x) =
∏N

i=1 π(xi, i) and π is prime mapping func-

tion, which maps each cell to a distinct prime. su(x) is the cells which are useless for

the DU. In this scheme, the useless cells will be packed into a package σ, and prevent

attackers or receivers from knowing them. In the meantime, the receiver can use σ

to reconstruct the PMAC without recomputing it.

12

2.2. Preliminaries

Table 2.1: Variables List for PMAC

Parameter Instruction

x The message

α The symmetric key for MAC generation

N The number of cells in the message

G The multiplicative cyclic group

g A random generator of the multiplicative cyclic group

p Large prime for the multiplicative cyclic group

ψk A keyed pseudorandom function

γ Random nonce

t The timestamps of message

π Prime mapping

su(x) The cells which are useless for the DU

pre(x) The cells which are necessary for the DU

However, the PMAC still confronts some troubles when the disclosed cells are ran-

domly placed. As shown in Figure 3.1(b), we generate MAC for the message. How-

ever, the useless cells are not adjacent to each other. We can separate the message

into 2 pieces, the first piece is from x1 to x8, denoted by ps1(x). The second piece

is from x9 to x16, denoted by ps2(x). Two pieces follow the prefix-suffix Verification

model so that two suffixes can be constructed. Subsequently, we can send the pro-

cessed message with the MAC to the verifier (i.e., (x1, x2, x3, σ1, x9, x10, x11, x12, σ2)).

After receiving it, the verifier can construct MAC1 and MAC2 for ps1(x) and ps2(x),

13

Chapter 2. Literature Review and Preliminaries

Algorithm 1 Framework of PMAC

Input: Symmetric key (α, k); random nonce γ; message x timestamp t

Output: PMAC

DS, DU ← α, DS ← γ

PMAC = gα(Π(x)γ+ψk(t)) mod p

Input: Suffix of the message su(x); γ;

Output: The pack σ

σ = gΠ(su(x))γ mod p

Input: (α, k); prefix of the message pre(x); timestamp t; σ;

Output: 0 or 1

PMAC’ =
(
σΠ(pre(x))gψk(t)

)α
if PMAC’ == PMAC then

return 1

else

return 0

end if

MAC1 =
(
σ

Π(pre1(x))
1 gψk(t)

)α
= gα(Π(ps1(x))γ1+ψk(t)) mod p

= gα(Π(ps1(x))γ1) · gα(ψk(t)) mod p

MAC2 =
(
σ

Π(pre2(x))
2 gψk(t)

)α
= gα(Π(ps2(x))γ2+ψk(t)) mod p

= gα(Π(ps2(x))γ2) · gα(ψk(t)) mod p

MAC = gα(Π(x)γ+ψk(t)) mod p

= gα(Π(x)γ) · gα(ψk(t)) mod p

(2.1)

Inside, γ = γ1 · γ2 and prei(x) is the prefix of psi(x).

14

2.2. Preliminaries

The verifier knows the symmetric key (α, k), however, he cannot know Π (ps1(x)γ1)

and Π (ps2(x)γ2) due to the prime mapping and multiplicative cyclic group. We

observe the difference among MAC1, MAC2, and MAC,

A = gαΠ(ps1(x))γ1 = (gα)Π(ps1(x))γ1

B = gαΠ(ps2(x))γ2 = (gα)Π(ps2(x))γ2

C = gαΠ(ps1(x))Π(ps2(x))γ = (gα)Π(ps1(x))Π(ps2(x))γ

(2.2)

We need to prove the verifier cannot compute C according to A and B. The proof

consists of two kinds,

• It is difficult to indirectly compute C by computing the index of A and B in

probabilistic polynomial time.

• It is difficult to directly compute C from A and B in probabilistic polynomial time.

Proof of difficulty in indirect computation. According to Discrete Logarithm Problem

(DLP) [108], A, B, and C are indistinguishable under the chosen plaintext attacks.

Therefore, we cannot compute the index of A and B.

Proof of difficulty of direct computation. Let us prove this by contradiction. If there

were an algorithm A for the verifier to combine A and B to compute C, we can design

an algorithm A′ for attacking the Computational Diffie-Hellman problem (CDH).

Recall the CDH problem is that, given a public base g, a large prime p, A′ = ga
′
mod p

and B′ = gb
′
mod p, to compute C ′ = ga

′b′ mod p without knowing a′ and b′. For the

problem that an attacker does not know a′ and b′, A′ simply asks A to combine A

and B to compute C with g = gα, a′ = Π (ps1(x)) γ1 and b′ = Π (ps2(x)) γ2. Then

C = C ′, which solves the CDH problem. This violates the assumption there is no

probabilistic polynomial time-bounded algorithm for the CDH problem.

In summary, the limitation of PMAC is based on the multiplicative cyclic group.

Therefore, we should replace it with other possible solutions so that the new PMAC

can be suitable for the general situation.

15

Chapter 2. Literature Review and Preliminaries

2.2.2 Hierarchical Secret Sharing

Secret sharing [88][36] is an important cryptographic primitive. One dealer can dis-

tribute one secret among several participants, each of whom can get one shadow [30]

for secret recovery.

Formally, in a (t, n) secret sharing, there are one dealer and n participants. The dealer

can generate a polynomial f(x) = s+
∑t−1

i=1 aix
i mod p. p is a large prime, while ai is

random integer, which is smaller than p. Each participant (Pj) receives his shadow

(xj, f(xj)) [84], where f(xj) is the subshare of the shadow. By applying Lagrange

Interpolation [16], at least t authenticated participants can recover the secret (s). On

the contrary, any t−1 or fewer authenticated or unauthenticated participants cannot

recover the secret according to Eq. 2.3.

1 xi1 x2

i1
· · · xt−1

i1

1 xi2 x2
i2
· · · xt−1

i2
...

...
...

...
...

1 xit x2
it · · · xt−1

it

s

a1

...

at−1

=

f(xi1)

f(xi2)
...

f(xit)

 (2.3)

According to these properties, we can derive that

Theorem 1. There is only one polynomial (e.g., f(x)) with n − 1 degree, through

which n shadows (x1, f(x1)),(x2, f(x2)). . .(xn, f(xn)) can interpolate.

Proof. Suppose there is another different n−1 degree polynomial (e.g., b(x)), through

which the same shadows can interpolate. Then we can compute c(x) = f(x)− b(x),

which has two properties,

• c(x) is at most n− 1 degree polynomial and non-zero polynomial.

• c(x) has n root.

16

2.2. Preliminaries

However, these two properties are in contradiction. Therefore, f(x) and b(x) are

equal.

In hierarchical secret sharing (HSS) [74], the dealer separates participants into differ-

ent levels. Formally, we call it (t, n) hierarchical secret sharing, where t = {ti}Li=1,

which is the threshold in each level, and L is the number of levels.

Disjunctive [18] and conjunctive HSS [107] are the two types of HSS. The main dif-

ference is the relationship between the two adjacent levels. Given that there are two

levels (L1 and L2) and the thresholds in each level are t1 and t2. The disjunctive HSS

requires at least t1 participants from L1 or at least t2 participants from L1 and L2 to

recover the secret. On the contrary, the conjunctive HSS needs at least t1 participants

from L1 and at least t2 participants from L1 and L2. According to the two kinds of

HSS, we can determine that the participants from the highest level must participate

in recovering the secret. In other words, we can consider that different participants

have different weights according to their levels. Once the sum of the weight exceeds

the threshold weight of the whole message, the participants can recover the secret.

There are two conditions to recover the master secret.

C1. In the highest level (L1), the number of participants is not less than the threshold

t1.

C2. In each participated level Li, the number of participants is not less than the

threshold ti. In the meantime, the participants belong to the previous level

(j < i), and the number of participants is equal to tj − 1

Example 1 illustrates how it works.

Example 1. There are ten participants with two different levels (L1 and L2). The first

level’s threshold and number of participants are t1 = 3 and n1 = 4. The second level’s

threshold and number of participants are t2 = 4, n2 = 6. Specifically, P1, P2, P3, P4

17

Chapter 2. Literature Review and Preliminaries

belong to first level and P5, P6, P7, P8, P9, P10 belong to second level. Inside, P5 is the

header of the second level, which means he can also participate in secret recovery in

the first level.

Then the dealer can generate two polynomials in each level (e.g., f1(x) = 1 + 2x +

3x2 mod 97 and f2(x) = 86+4x+6x2 +8x3 mod 97). 1 is the master secret. Suppose

the participants’ IDs are 1, 2, . . . , 10, then the dealer can generate shadows for the

participants according to their level and ID (e.g., P1 : (1, 6), . . . , P5 : (5, 11), P6 :

(6, 34), . . .).

When recovering the secret, either P1, P2, P3 or P1, P2, P5, P6, P7, P8 can recover

it. Specifically, P1, P2, P3 can recover the secret as traditional secret sharing, which

satisfies C1. However, when P1, P2, P5, P6, P7, P8 are selected to recover the secret,

the master secret recovery contains two steps. P5, P6, P7 and P8 first recover the

secret, which is 86 in f2(x). Then the level header P5 can obtain another subshare

(e.g., P ′5 : (5, 86)). Afterward, P1, P2, and P ′5 can recover the master secret, which

satisfies C2.

2.2.3 Chameleon Hashing

The hash function has been widely used since it has an important property called

collision resistance. In other words, it is hard for the adversary to find two different

inputs (e.g., x and x′) so that their hash value are the same (e.g., H(x) = H(x′)).

On the contrary, the Chameleon Hashing [56][51] is a trapdoor hash function, which

allows a third party to find out the collision if he has a trapdoor key. However, it is

still a collision-resistant hash function for the parties without the trapdoor key.

In [20], the authors provided a basic Chameleon Hashing scheme containing four

steps.

• System Parameter Generation: It takes the security parameter λ, and

18

2.2. Preliminaries

outputs the parameters SP .

• Key Generation: Given a security parameter λ and SP , the key generation

algorithm returns trapdoor/public key pairs (sk, pk).

• Hash Computation: It takes the public key pk, a message x and a random

integer r as input, and outputs the hashed value h = Hash(x, r).

• Collision Computation: It takes the trapdoor key sk, a collision message

x′ and the hashed value h as input, and outputs r′, which satisfying h =

Hash(x, r) = Hash(x′, r′).

There are two properties in a secure chameleon hashing.

• Collision resistance: Without the trapdoor key, there exists no efficient algo-

rithm to find out another pair (x′′, r′′) so that Hash(x, r) = Hash(x′′, r′′)

• Semantic security: For all pairs of messages x and x′, the distribution of the

hashing results Hash(x, r) and Hash(x′, r) are computationally indistinguish-

able.

The chameleon hashing can be used in several areas. One of the classic applications

is in redactable blockchain [5]. Generally, the append-only blockchain is essential

to protect the security of Bitcoin. However, an immutable ledger is not appropri-

ate for all new applications that are being envisaged for the blockchain. Therefore,

the chameleon hash can be applied to generate a redactable blockchain so that the

participants can modify the content in specific circumstances.

2.2.4 Sanitizable Signature

Digital Signature is an important cryptographic primitive that can protect message

integrity and authentication [45]. However, privacy should be considered in some

19

Chapter 2. Literature Review and Preliminaries

scenarios. For instance, according to the Freedom of Information Act, the US govern-

ment should release previously classified documents in ’sanitized’ form. A delegator

can generate a new signature for the sanitized message without knowing the key from

the original signer and ensure the message integrity. To achieve that, the sanitizable

signature [7] is proposed. Specifically, there are four steps.

• Key Generation: According to the security parameter λ, the signing and

sanitization key pair are generated

(pksign, sksign), (pksanit, sksanit)← 1λ

• Sign: It takes the message x, a private signing key sksign, a public sanitization

key pksanit and the random integer r as input, and output the signature

σ ← Sign(x, r, sksign, pksanit)

• Verify: It takes the message x, the public signing key pksign, a public saniti-

zation key pksanit, the random integer r and the received signature σ as input,

and outputs a bit b. If b = 1, the integrity of the processed message can be

guaranteed.

b← V erify(x, pksign, pksanit, r, σ)

• Sanitize: It takes the original message x, a substituted message x′, a private

sanitizing key sksanit, the public signing key pksign and the signature σ, and

outputs a new signature σ′.

σ′ ← Sanit(x, x′, pksign, sksanit, σ)

The sanitizable signature has been used in various domains. One such example is

content filtering. The language in the movie may not be suitable for the subscriber at

a young age. In such cases, the platform or the administrator should replace offensive

language with watered-down substitutes.

20

Chapter 3

Subset Privacy Problem in Subset

Integrity

In this chapter, we begin to study the sub-problem in the subset integrity, which

is called subset privacy. For instance, taxis can only work in certain areas in some

countries. On one hand, the center should ask the driver to report their location

periodically so that the driver cannot leave the area. On the other hand, the location

information may disclose the driver’s privacy (e.g., home address). A similar situation

happens in the IoT scenario. For instance, when an examiner tries to verify the

temperature data gathered by the sensors, he only needs to check a subset of the

data (e.g., the data from working time). In the meantime, the sensor nodes cannot

previously know which subset the examiner wants to check. Therefore, he should

generate the MAC for all the data. Nevertheless, PMAC has a limitation. When there

are two or more kinds of data, and the receiver randomly asks for the information

inside, PMAC cannot be applied.

To address the problem, we introduce a Scalable Prefix Verifiable Message Authen-

tication Code (SPMAC), which can support random message subset privacy. The

SPMAC can be divided into two versions based on different mapping functions: Fibo-

21

Chapter 3. Subset Privacy Problem in Subset Integrity

Table 3.1: Comparison among The Three Schemes

Mapping Function Operation

PMAC Prime Mapping Multiplication

Fibo-SPMAC Fibonacci Number Mapping Addition

ECP-SPMAC Elliptic Curve Point Mapping Addition

SPMAC and ECP-SPMAC. Table 3.1 compares the three schemes in mapping func-

tions and combination operation.

In summary, the contribution in this chapter is as follows,

1. We propose the SPMAC scheme to solve the subset privacy problem, which not

only inherits the advantages of PMAC but also overcomes the limitations of

PMAC.

2. We propose two concrete SPMAC instantiations according to different mapping

functions, and each of them can be applied in various practical situations.

3. We prove that the SPMAC scheme performs better in time consumption and

communication cost than PMAC.

The remainder of this chapter is organized as follows. Chapter 3.1 formally defines

our problem. Chapter 3.2 introduces the Scalable Prefix Verifiable Message Authen-

tication Code (SPMAC). Chapter 3.3 analyzes the security of SPMAC, and Chapter

3.4 provides the experimental results comparing SPMAC with some existing schemes.

Chapter 3.5 gives a summary of this chapter.

22

3.1. Problem Definition

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Disclosed Cells Useless Cells

(a) Prefix-suffix Verification Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Disclosed Cells Useless Cells Disclosed Cells Useless Cells

(b) Random Verification Model

Figure 3.1: The Disclosed Cell Verification Model

3.1 Problem Definition

In this chapter, we examine how a user authenticates his messages by disclosing the

minimum cells. Specifically, the message (x = (x1, x2...xn)) contains several cells (i.e.,

Figure 3.1), and only some cells, called the disclosed cell (i.e., the cells in red), are

needed by other people. The rest of the cells called the useless cell (i.e., the cells

in black), should be kept private. Moreover, the disclosed and useless cell placement

like Figure 3.1(a) is called Prefix-Suffix Verification Model. The placement in

Figure 3.1(b) is called Random Verification Model.

Given that various receivers can ask for different cells to be exposed, it would be

inefficient to generate MAC for each request on the fly, leading to considerable de-

lays and resource wastage. As a result, the sender can generate the MAC prior to

any transmission. For instance, a location-based game needs a more exact location,

whereas the local weather services merely need the user’s city. It wastes computation

resources to generate MAC for both services on the fly. In such a case, the sender

cannot change the placement of each cell or separate the message into several pieces

with a small size. Therefore, our proposed scheme should satisfy subset privacy, which

can be expressed as Eq. 3.1

MAC(x) = MAC(||si=1(prei(x), T (sui(x))))

23

Chapter 3. Subset Privacy Problem in Subset Integrity

Trusted Client Half-trusted Verifier

Step 1: MAC Generation
Step 3: Suffix Construction

Step 2: Send Disclosed Cells

Step 4: Send PMAC and Message

Step 5: MAC Verification

Figure 3.2: The System of PMAC

According to the disclosed cells, the message can be divided into s (prefix, suffix)

pairs. (prei(x), T (sui(x)) is the i-th pair. ||() is the concatenating function, which

combines the (prefix, suffix) pairs like Eq. 3.1. T means packing the suffix into an

undecryptable package.

(pre1(x), T (su1(x)), . . . , pres(x), T (sus(x))) (3.1)

There are two participants in the system, according to Figure 3.2, a trusted client

and an honest-but-curious verifier. The client sends several messages to the verifier

through a public channel. The honest-but-curious verifier is a receiver who only needs

parts of the message from the client. However, he may try to learn extra information

from the message (e.g., the value of useless cells). Specifically, the client generates the

MAC for the message. Then, according to the disclosed cells, the client constructs

the suffixes and transmits the processed message to the verifier. After receiving the

processed message, the verifier regenerates the MAC according to the prefixes and

the suffixes. Simplified speaking, there is an interaction between the client and the

verifier. The verifier tells which cells he wants, and then the verifier can return the

processed message with the MAC.

24

3.2. Scalable Prefix Verifiable Message Authentication Code

As much, the message transmission model confronts two security threats.

1. Message integrity: The attacker cannot alter the cells without changing the

MAC.

2. Message privacy: The verifier can only learn the disclosed cells.

We give the definition of the adversary model in this system as follows. During the

message transmission, the attacker may try to modify the message so that he can

counterfeit the message and deceive the verifier. In the meantime, the verifier only

needs the disclosed cells. However, he may try to learn the useless cells when he

receives the processed message.

3.2 Scalable Prefix Verifiable Message Authenti-

cation Code

In this section, we introduce the scalable PMAC schemes. Generally, SPMAC schemes

overcome the drawbacks of PMAC, which is explained in the chapter. 2.2.1. We apply

the elliptic curve cyclic group in the SPMAC scheme. The combination operation is

addition. There are two different mapping functions, which map each cell to a distinct

value. The first one is based on Fibonacci mapping (Fibo-SPMAC), and the second

one is based on elliptic curve point mapping (ECP-SPMAC).

Table 3.2 summarizes some notations in Fibo-SPMAC and ECP-SPMAC. Since both

schemes are improvements to PMAC, they follow the same properties as PMAC.

• Only the disclosed cells need to be queried without exposing the whole

message.

• Only one MAC needs to be verified when the requests for disclosed cells are

different.

25

Chapter 3. Subset Privacy Problem in Subset Integrity

Table 3.2: Variables List for Fibo-SPMAC and ECP-SPMAC

Parameter Instruction

a, b, p The parameters of elliptic curve

G An elliptic curve cyclic group

g A random generator belongs to G

k Secret key in message authentication code

Π Character-wise associative

n The number of cells in one message

γ Random nonce

Fibo() Fibonacci mapping function

ECP() Elliptic Curve Point mapping function

3.2.1 Syntax of Fibo-SPMAC

In this part, we show the syntax of SPMAC. First, we show how SPMAC works

with Algorithm 2. Then, we use a concrete example and Figure 3.3 to illustrate the

SPMAC.

In an elliptic curve cyclic group, the basic combination operation is addition and

scalar multiplication. Thus, we can map each cell to a distinct number according to

its value and placement and combine the mapping result with an addition operation

(e.g.,
n∑
i=1

(xi · g)). Even if we map each cell to a distinct prime, it is easy to find the

collision. The adversary can compute
n∑
i=1

(xi · g) = (
n∑
i=1

xi) · g. Afterward, the addition

on the elliptic curve returns to the integer addition operation.

There is a critical theorem called Zeckendorf’s theorem [43]. It means that every

positive integer can be represented uniquely as the sum of one or more distinct

Fibonacci numbers in such a way that the sum does not include any two con-

secutive Fibonacci numbers (e.g., 64 = 55 + 8 + 1). In the SPMAC scheme, our

26

3.2. Scalable Prefix Verifiable Message Authentication Code

solution is mapping each cell to a distinct and non-consecutive Fibonacci number

(Fibo-mapping).

1. Setup(1λ): The Setup algorithm is a probabilistic algorithm that takes as input

a security parameter λ. It generates the symmetric key k, and a generator (g).

2. Gen(x, k, g, γ): The MAC algorithm takes as input the message x, k, g, and a

random nonce γ. It generates the SPMAC.

3. SuffixGen(pre(x), γ, g): The SuffixGen algorithm takes prefix pre(x) and γ as

input, and outputs the suffixes Σ = (σ1, σ2, . . . , σs).

4. Verify(pre(x), k, g, Σ, SPMAC): The Verify algorithm takes pre(x), k, g, Σ

and SPMAC as input. It outputs a bit b. If b = 1, the pre(x) has not been

modified.

There are three main steps: SPMAC generation, suffix construction, and SPMAC

verification.

First, the client generates the SPMAC according to Eq. 3.2

SPMAC = k · (Π (x) + γ) · g (3.2)

Π(x) =
∑n

i=1 Fibo(xi, i), which means map each cell into a distinct Fibonacci number

according to its value and placement. Subsequently, the verifier provides the disclosed

cells and sends them to the client. When receiving the request, the client constructs

the suffixes according to Eq. 3.3 so that the verifier cannot know the cells inside.

When there are a number of verifiers who have different disclosed cells, the client only

needs to repeat the suffix construction algorithms without recomputing the MAC.

σi = (Π(sui(x)) + γi) · g (3.3)

∑s
i=1 γi = γ, and s is the number of (prefix, suffix) pairs.

27

Chapter 3. Subset Privacy Problem in Subset Integrity

Algorithm 2 Framework of Fibo-PMAC

Input: Symmetric key k; random nonce γ ∈ Zp; message x; generator g

Output: SPMAC

1: Client, verifier ← k

2: Client ← γ ∈ Zp
3: SPMAC = Gen(k,x, γ, g)

Input: Disclosed cells in the message pre(x); γ; k; g message x;

Output: Σ

4: Client ← pre(x)

5: Client separates the message into several parts, which follow the prefix-suffix

model. Then, he calculates the number of (prefix, suffix) pairs (s).

6: for i = 1; i < s; i+ + do

7: Client ← γi

8: Client ← sui(x)

9: σi = SuffixGen(k, sui(x), γi, g)

10: end for

11: Verifier ← Σ = {σ1, σ2, . . . , σs}, SPMAC

Input: pre(x); σi; k; generator

Output: SPMAC’

12: SPMAC’ = V erify(pre(x),
∑s

i=1 σi, k, g)

13: if SPMAC == SPMAC’ then

14: return 1

15: else

16: return 0

17: end if

28

3.2. Scalable Prefix Verifiable Message Authentication Code

After constructing the suffixes, the processed message follows like Eq. 3.4 if the

message follows Fig 3.1(b).

(x1, x2, x3, σ1, x9, x10, x11, x12, σ2) (3.4)

Subsequently, the client sends the processed message with the SPMAC to the veri-

fier. Once the verifier receives the SPMAC, he computes σ =
s∑
i=1

σi and then checks

whether

k · σ +

(
k

s∑
i=1

Π (prei (x))

)
g = k · (Π (x) + γ) · g (3.5)

Specifically, we use a concrete example to further explain how SPMAC works.

Example 2. Suppose an elliptic curve follows E97(1, 1) and g = (45, 56). The mes-

sage contains four cells ((3, 2, 2, 1)). The client maps each cell to a distinct and

non-adjacent Fibonacci number (i.e., Fibo(2, 2) = 8 and Fibo(2, 3) = 21). After that,

the client combines the mapping results by addition and generates SPMAC = (95, 66)

according to the elliptic curve cyclic group, a symmetric key (k = 2), and a random

nonce (γ = 2) before the verifier asks for the message. When the client knows the

disclosed cells (i.e., 3 and 2 in red) from the verifier, he can pack the useless cells

(i.e., 2 and 1 not in red) and construct two suffixes (i.e., (64, 65) and (48, 35) in blue)

according to character-wise associative and the elliptic curve cyclic group.

The verifier cannot find the cells in the suffixes according to the public-known factors

and disclosed cells so that the anonymity of useless cells can be guaranteed. After the

client sends the processed message xp (3, (64, 65), 2, (48, 35)) with the SPMAC to the

verifier, he can combine the suffixes by addition, and reconstruct the SPMAC. After

that, the verifier can check whether the message is modified so that message integrity

can be ensured.

29

Chapter 3. Subset Privacy Problem in Subset Integrity

Trusted Client Half-trusted Verifier

The topic of cells in red

SPMAC =(95, 66), xp

x=(3,2,2,1)
xp=(3, (64, 65), 2, (48, 35))
Fibo(3, 1)=55, Fibo(2, 2)=8
Fibo(2, 3)=21, Fibo(1, 4)=3

k=2

Client generates SPMAC 2× 55+8+21+3+2 × 45, 66 mod 97= 95, 66
Client constructs suffix σ1= 8+1 × 45, 66 mod 97= 64, 65

σ2= 3+1 × 45, 66 mod 97= 48, 35

Verifier checks SPMAC 2× 64, 65 + 48, 35 +2× 55+21 × 45, 66 mod 97= 95, 66

Figure 3.3: Concrete Example of SPMAC

3.2.2 Syntax of ECP-SPMAC

In this subsection, we introduce Scalable Prefix Verifiable Message Authentication

Code on Elliptic Curve Point Mapping. In this scheme, the character-wise associative

consists of elliptic curve point mapping and addition, and the security is based

on elliptic curve cyclic group.

In this scheme, we map the plaintext on the given elliptic curve. We call it Elliptic

Curve Point Mapping (ECP-mapping), which is based on Koblitz encoding [10]. Sim-

ply speaking, the point on an elliptic cyclic group is (x,
√
x3 + ax+ b mod p), which

is finding the quadratic residue of x3 + ax + b. Therefore, the Koblitz encoding can

be considered. Algorithm 3 shows the algorithm of Koblitz encoding.

ECP mapping consumes much time since both the client and the verifier need to

compute the quadratic residue. Consequently, the client can generate a mapping

look-up table like Table 3.3 for the client and verifier so that they can spend less time

on mapping. The mapping look-up table can be generated and transmitted before

SPMAC generation. Therefore, it is suitable for when the bandwidth is large.

First, we show how ECP-SPMAC works with Algorithm 4. Then, we use a concrete

30

3.2. Scalable Prefix Verifiable Message Authentication Code

Algorithm 3 Framework of Koblitz Encoding

Input: Initial key (k1, k2); Elliptic curve Ep; plaintext v

Output: (x, y)

1: i = 0

2: while Ep(k1 · v + i · k2) is not a quadratic residue do

3: i+ +

4: end while

5: x = k1 · v + i · k2, y = Ep(k1 · v + i · k2)

Table 3.3: ECP-Mapping Look-up Table

value

position
1 2 3 ...

1 (x11, y11) (x12, y12) (x13, y13) ...

2 (x21, y21) (x22, y22) (x23, y23) ...

3 (x31, y31) (x32, y32) (x33, y33) ...

...

example and Figure 3.4 to further illustrate it.

1. Setup(1λ): The Setup algorithm is a probabilistic algorithm that takes as input

a security parameter λ. It generates the symmetric key k.

2. Gen(x, k, γ): The MAC algorithm takes as input the message x, k and a random

nonce γ. It generates the SPMAC.

3. SuffixGen(pre(x), su(x), γ): The SuffixGen algorithm takes prefix pre(x and

γ as input, and outputs the suffixes Σ = (σ1, σ2, . . . , σs).

4. Verify(pre(x), k, Σ, SPMAC): The Verify algorithm takes pre(x), k, Σ, and

SPMAC as input. It outputs a bit b. If b = 1, the pre(x) has not been modified.

31

Chapter 3. Subset Privacy Problem in Subset Integrity

Algorithm 4 Framework of ECP-PMAC

Input: Symmetric key k; Initial key k1, k2; Random nonce γ ∈ Zp; message x

Output: SPMAC

1: Client, Verifier ← k

2: Client ← γ ∈ Zp
3: SPMAC = Gen(k,x, γ)

Input: Disclosed cells in the message pre(x); γ; k message x;

Output: Σ

4: Client ← pre(x)

5: Client separates the message into several parts, which follow the prefix-suffix

model. Then, he calculates the number of (prefix, suffix) pairs (s).

6: for i = 1; i < s; i+ + do

7: Client ← γi

8: Client ← sui(x)

9: σi = SuffixGen(k, prei(x), sui(x), γi)

10: end for

11: Verifier ← Σ = {σ1, σ2, . . . , σs}, SPMAC

Input: pre(x); σi; k

Output: SPMAC’

12: SPMAC’ = V erify(pre(x),
∑s

i=1 σi, k)

13: if SPMAC == SPMAC’ then

14: return 1

15: else

16: return 0

17: end if

32

3.2. Scalable Prefix Verifiable Message Authentication Code

First, the client generates the SPMAC according to Eq. 3.6.

SPMAC = k · (Π (x) · γ) (3.6)

Insides, Π(x) =
∑n

i=1 ECP(xi, i). After that, the verifier provides the disclosed cells

and sends them to the client. After receiving the request, the client constructs the

suffixes according to Eq. 3.7 so that the verifier cannot know the useless cells. When

there are a number of verifiers who have different disclosed cells, the client only needs

to repeat the suffix construction algorithms without recomputing the MAC.

σi = (Π (sui(x)) γ + Π (prei(x)) (γ − 1)) (3.7)

After the steps, the processed message is like Eq. 3.4 if the message follows Fig 3.1(b).

Once the verifier receives the SPMAC, he computes σ =
s∑
i=1

σi and then checks

whether

k · σ +

(
k ·

s∑
i=1

Π (prei (x))

)
= k · (Π (x) · γ) (3.8)

Specifically, we use a concrete example to further explain how ECP-SPMAC works.

Example 3. Suppose the elliptic curve follows E97(1, 1). The message contains four

cells (3, 2, 2, 1). The client maps each cell to a distinct elliptic curve point (i.e.,

ECP(2, 2) = (96, 22) and ECP(2, 3) = (72, 29)). After that, the client combines the

mapping results by addition and applies an elliptic curve cyclic group, a symmetric

key (k = 2), and a random nonce (γ = 2) to generate a SPMAC = (24, 50) before

the verifier asks for the message. When the client knows the disclosed cells (i.e., 3

and 2 in red) from the verifier, the client can pack the useless cells (i.e., 2 and 1 not

in red) and construct two suffixes (i.e., (70, 46) and (91, 78) in blue) according to the

elliptic curve cyclic group and character-wise associative. After that, the processed

message is constructed. The verifier cannot find the cells in the suffix according to

33

Chapter 3. Subset Privacy Problem in Subset Integrity

Trusted Client Half-trusted Verifier

The topic of cells in red

SPMAC =(24, 50), xp

x=(3,2,2,1)
xp=(3, (70, 46), 2, (91, 78))
ECP(3, 1)=(18, 15)
ECP(2, 2)=(96, 22)
ECP(2, 3)=(72, 29)
ECP(1, 4)=(92, 68)

k=2

Client generates SPMAC 2 × 18, 15 + 96, 22 + 72, 29 + 92, 68 × 2 𝑚𝑜𝑑 97 = 24, 50

Client constructs suffix 𝜎ଵ = 96, 22 × 2 + 18, 15 𝑚𝑜𝑑 97 = 70, 46

𝜎ଶ = 92, 68 × 2 + 72, 29 𝑚𝑜𝑑 97 = 91, 78

Verifier checks SPMAC 2 × 70, 46 + 91, 78 + 2 × 18, 15 + 72, 29 𝑚𝑜𝑑 97 = 24, 50

Figure 3.4: Concrete Example of ECP-SPMAC

the public-known factors and disclosed cells so that the privacy of useless cells can

be guaranteed. After the client sends the processed message xp (3, (70, 46), 2, (91, 78))

with the SPMAC to the verifier, the verifier can combine the suffixes by addition,

and regenerate the MAC. Afterward, the verifier can check whether the message is

modified to ensure message integrity.

3.3 Theoretical Analysis

In this section, we discuss the security of Fibo-SPMAC and ECP-SPMAC, as we

mentioned in Chapter 3.1, which are message privacy and message integrity. We

consider that a probabilistic polynomial time (PPT) attacker is involved. Precisely,

the attacker can execute any PPT algorithm as an attack to accomplish his objective.

Without altering the MAC, the PPT attacker attempts to falsify the message. In the

meantime, the honest-but-curious verifier may try to learn the useless cells.

34

3.3. Theoretical Analysis

3.3.1 Message Subset Privacy

We prove that honest-but-curious verifier cannot know the x according to each sui(x)

and public parameters. The privacy protection in both Fibo-SPMAC and ECP-

SPMAC follows the same rule. Recall that all points on the elliptic curve construct

a cyclic group(G).

Lemma 1. For any random r ← [0, |G|), r · g has equal probability of being any

element in G. Formally, for any ĝ ∈ G,

Pr [r · g = ĝ] = 1/|G|

Proof. We can derive that Pr [r · g = ĝ] = Pr [r = ĝ/g]. Since r is randomly selected,

the probability of r being a fixed element ĝ/g is equal to 1/|G|. However, since

division operation does not exist in an elliptic curve cyclic group, this process cannot

be computed.

The verifier can only observe the σi = (Π(sui(x)) + γi) · g in Fibo-SPMAC or σi =

Π (sui(x)) γ + Π (prei(x)) (γ − 1) in ECP-SPMAC. We can prove that the message

subset privacy can be guaranteed.

Theorem 2. The suffixes in the Fibo-SPMAC are indistinguishable according to the

public information.

Proof. According to Lemma 1, σi = (Π(sui(x)) + γi) · g have equal probability of

being any cells in G since γi is randomly selected and secret for the verifier. As a

consequence, the verifier cannot learn anything about Π(sui(x)) and sui(x).

Theorem 3. The suffixes in ECP-SPMAC are indistinguishable according to the

public information.

Proof. Although there is no generator in Eq. 3.7, we can set Π (sui(x)) and Π (prei(x))

as a generator. According to Lemma 1, Π (sui(x)) γ and Π (prei(x)) (γ−1) have equal

35

Chapter 3. Subset Privacy Problem in Subset Integrity

probability of being any cells in G. As a consequence, the verifier cannot learn any-

thing about Π(sui(x)) and sui(x).

3.3.2 Message Integrity

In this part, we prove both SPMAC schemes are unforgeable. First, we introduce the

unforgeability of Fibo-SPMAC.

Definition 1. (Unforgeability of Fibo-SPMAC). ECMSS(Setup, Sign, Verify)

is unforgeable under adaptive chosen attacks if for any efficient algorithm A that the

experiment UnforgeabilityFibo-SPMAC
A evaluates to 1 is negligible.

Experiment UnforgeabilitySPMAC
A

-(pksign, sksign)← Setup(1λ)

-SPMAC← ASign(sksign,)̇(pksign)

-for i = 1, 2, ..., q, denoted by SPMACi, the queries to the

oracle(O) Sign return 1 iff Verify(pksign, SPMAC) = 1

Specifically, A generates a random key from Setup(1λ). Then A submits MAC queries

by sending different messages (xi) and receives SPMACi from the Oracle (O). A wins

if it can modify the messages by executing a polynomial time algorithm while leaving

the MACs unchanged.

Theorem 4. The Fibo-SPMAC is unforgeable in the random oracle model.

Proof. For ease of presentation, let m = (Π(x) + γ)g, the SPMAC can be expressed

as:

SPMAC = k ·m

Let us prove this by contradiction. If there were a probabilistic polynomial time-

bounded algorithm A to forge m and SPMAC, an algorithm A′ can be designed to

36

3.3. Theoretical Analysis

solve the Zeckendorf’s theorem. Specifically, we can find two groups of Fibonacci

numbers so that

n∑
i=1

Fibo (xi) =
n∑

i=1

Fibo (ui) ∀i, j xi 6= uj

A′ simply asks A to forge m with each xi = ui. Then a faked SPMAC’ can be com-

puted and satisfy SPMAC’ = SPMAC. However, this violates Zeckendorf’s theorem,

which means each positive number can only be expressed as one group of distinct and

non-adjacent Fibonacci numbers.

Subsequently, we begin to introduce the unforgeability of ECP-SPMAC.

Definition 2. (Unforgeability of ECP-SPMAC). ECMSS(Setup, Sign, Verify)

is unforgeable under adaptive chosen attacks if for any efficient algorithm A that the

experiment UnforgeabilityFibo-SPMAC
A evaluates to 1 is negligible.

Experiment UnforgeabilitySPMAC
A

-(pksign, sksign)← Setup(1λ)

-SPMAC← ASign(sksign,)̇(pksign)

-for i = 1, 2, ..., q, denoted by SPMACi, the queries to the

oracle(O) Sign return 1 iff Verify(pksign, SPMAC) = 1

Specifically, A generates a random key from Setup(1λ). Then A submits MAC queries

by sending different messages (xi) and receives SPMACi from the Oracle (O). A wins

if it can modify the messages by executing a polynomial time algorithm while leaving

the MACs unchanged.

Theorem 5. The ECP-SPMAC is unforgeable in the random oracle model.

Proof. For ease of presentation, let m = Π (x) γ, the SPMAC can be expressed as:

SPMAC = k ·m

37

Chapter 3. Subset Privacy Problem in Subset Integrity

Let us prove this by contradiction. If there were a probabilistic polynomial time

bounded algorithm A to forge m and SPMAC, an algorithm A′ can be designed to

solve the elliptic curve discrete logarithm problem (ECDLP). Specifically, the addition

of two points on an elliptic curve yields a third point on the elliptic curve whose

location has no immediately apparent relationship to the locations of the first two,

and repeating the addition process many times over yields that may be essentially

anywhere.

A′ simply asks A to forge m by finding out two groups of elliptic curve points as

follows:

n∑
i=1

ECP (xi) =
n∑

i=1

ECP (ui) ∀i, j xi 6= uj

Then a faked SPMAC’ can be computed and satisfy SPMAC’ = SPMAC, which

solves the ECDLP. This contradicts the assumption that there is no probabilistic

polynomial time-bounded algorithm for ECDLP.

3.4 Experiments

In this section, we use experimental results to show the advantages of Fibo-SPMAC

and ECP-SPMAC as well as their applications.

There are four experiments. The first one focuses on the performance of SPMAC,

PMAC, and HMAC [55] on different IoT devices. The second experiment is about

the performances among SPMAC, PMAC, and HMAC in the prefix-suffix verifica-

tion Model. We measure the CPU time for cells mapping, MAC generation,

suffix construction, and MAC verification. Moreover, suffix construction and

MAC verification contain the mapping function. Since the number of disclosed cells

affects the length of prefixes and suffixes, the client and verifier should recompute

the mapping function. To the best of our knowledge, PMAC is a state-of-the-art

38

3.4. Experiments

work that focuses on integrity assurance and privacy preservation. Therefore, it is

essential to make a comparison with it. In the experiments, we apply HMAC for each

cell and concatenate them together. The third experiment is about the comparison

between Fibo-SPMAC and ECP-SPMAC in a random verification Model. The final

one shows the practical situation. Considering the time for mapping in ECP-PMAC

is larger than that in Fibo-PMAC, we can generate a mapping look-up table so that

the verifier does not need to repeat the mapping function.

To evaluate the performance of Fibo-SPMAC and ECP-SPMAC in a real-life setting,

we use the dataset, ’Young People Survey’, which is provided on Kaggle. The dataset

is about the preferences and habits collected by students of the Statistics class at

FSEV UK, and there are 60 cells inside.

The prime, key, generator, and nonce for PMAC are 1024 bit, and the pseudo-random

function adopts AES-256 in PMAC. The elliptic curve for the Fibo-SPMAC and ECP-

SPMAC is NIST(p192). The key and nonce for Fibo-SPMAC and ECP-SPMAC are

160 bit. Since ECDLP is harder to solve than traditional discrete logarithm problems,

the length of the key in the elliptic curve cyclic group-based algorithm is shorter than

that based on the multiplicative cyclic group [8].

The code of both the client and verifier is implemented in Python 3.7. For the first

experiment, the code is set up for several IoT devices like Android and Raspberry Pi.

The other three experiments are set up on two Raspberry Pis with 1GB RAM and 1

CPU core, which is widely used in IoT simulation [39][58].

3.4.1 Performance of Four Schemes under Different Devices

In this subsection, we evaluate the performance of Fibo-SPMAC, ECP-SPMAC,

PMAC, and HMAC in different IoT devices, which contain Android and Raspberry

Pi. The number of cells is 60, and the number of disclosed cells is 20. Table 3.4 sum-

marizes the performance. The results in red mean the best performance among the

39

Chapter 3. Subset Privacy Problem in Subset Integrity

Table 3.4: Performance of HMAC, PMAC, and SPMAC in Different Devices

Device Performance PMAC Fibo-SPMAC ECP-SPMAC HMAC

Android 1

TMG(ms) 2722.351 10.552 70.790 2633.401

TV (ms) 906.236 5.770 24.293 882.716

MAC size(byte) 82 32 32 3865

Android 2

TMG(ms) 2793.060 10.532 68.210 2716.082

TV (ms) 943.201 5.493 24.671 932.321

MAC size(byte) 82 32 32 3865

Raspberry Pi

TMG(ms) 1333.684 48.062 188.269 987.822

TV (ms) 433.207 25.832 70.173 303.230

MAC size(byte) 82 32 32 3865

three IoT devices. We compare the time for mapping and MAC generation (TMG),

the time for MAC verification (TV), and the MAC size. The RAM in Android 1 is

2GB, and the number of CPU cores is 1. The RAM in Android 2 is 512 MB, and the

number of CPU cores is 1. The RAM in Raspberry Pi 1 is 1GB, and the number of

CPU cores is 1.

Generally speaking, all three schemes can be applied to different IoT devices. The

HMAC has a significantly larger size MAC than the others, while the SPMAC is the

smallest one. In other words, Our proposed scheme has a better performance in the

IoT scenario. In PMAC and HMAC schemes, the performance of Android is much

worse than that in Raspberry Pi. When comparing the performance of Fibo-SPMAC

and ECP-SPMAC, ECP-SPMAC consumes more time on TMG and TV . Therefore,

Fibo-SPMAC performs better than ECP-SPMAC in general. The resources in IoT

devices are limited, so we use Raspberry Pi as the IoT device in the rest of the

experiments.

40

3.4. Experiments

500

1000
CP

U
Ti

m
e/

m
s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

25 30 35 40 45 50 55
Cells Number

0

1

2

3

(a) Time for Mapping

100

200

300

400

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

25 30 35 40 45 50 55
Cells Number

0

20

40

(b) Time for MAC Generation

25 30 35 40 45 50 55
Cells Number

0

200

400

600

800

1000

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

(c) Time for Suffix Construction

500

1000

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

25 30 35 40 45 50 55
Cells Number

0
50

100
150
200

(d) Time for MAC Verification

Figure 3.5: Time Consumption among SPMAC, PMAC, and HMAC in Prefix-Suffix

Model

3.4.2 Performance of Four Schemes under Different Number

of Cells

In the following experiments, we compare the performance of PMAC, Fibo-SPMAC,

ECP-SPMAC, and HMAC on one message with different numbers of cells. In this

experiment, the number of cells changes from 24 to 60, and the number of disclosed

cells is 18. According to Figure 3.5(a), we observe that the prime mapping consumes

the longest time among the four schemes, and the Fibo mapping is the least one.

Computing the quadratic residue is much more complicated than finding a group of

Fibonacci numbers. Consequently, the time for ECP mapping is long. Moreover, since

the computation resource in IoT devices is limited, mapping each cell to a distinct

prime consumes the largest amount of time. Thus, the time for mapping in PMAC

and HMAC is long. The suffix construction and MAC verification contain mapping.

41

Chapter 3. Subset Privacy Problem in Subset Integrity

25 30 35 40 45 50 55
Cells Number

0

20

40

60

80

100

120

140

CP
U

tim
e

/m
s

Fibo-SPMAC ECP-SPMAC

(a) Time for Mapping

25 30 35 40 45 50 55
Cells Number

15

20

25

30

35

40

45

CP
U

Ti
m

e/
m

s

Fibo-SPMAC ECP-SPMAC

(b) Time for MAC Generation

25 30 35 40 45 50 55
Cells Number

0

150

350

CP
U

Ti
m

e/
m

s 5

15

25

Nu
m

be
r o

f P
ai

rs

Fibo-SPMAC
ECP-SPMAC

(prefix, suffix) pairs

(c) Time for Suffix Construction

25 30 35 40 45 50 55
Cells Number

0

90

180
CP

U
Ti

m
e/

m
s 5

15

25

Nu
m

be
r o

f P
ai

rs

Fibo-SPMAC
ECP-SPMAC

(prefix, suffix) pairs

(d) Time for MAC Verification

Figure 3.6: Time Consumption between Fibo-SPMAC and ECP-SPMAC in Random

Model

Thus, the performance of HMAC and PMAC is worse than that of SPMAC.

According to Figure 3.6(a), the time for Fibo mapping is shorter than that in ECP

mapping. The reason has been explained in Chapter 3.4.2. The time for MAC

generation in Fibo-SPMAC consumes more time than that in ECP-SPMAC. Recall

that Eq. 3.2 consists of scalar multiplication and addition, while Eq. 3.6 only contains

addition operation. Consequently, the time consumption of Fibo-SPMAC generation

is enormous.

According to Figure 3.6(c), the time for suffix construction increases when the number

of cells increases. With the stable number of disclosed cells, the number of cells

increasing leads to the growth of the number of useless cells. Therefore, the client

should spend more time on suffix construction. Since the number of disclosed cells is

stable, the time consumption of MAC verification does not change in Figure 3.6(d).

42

3.4. Experiments

In summary, according to Chapter 3.4.1, we can conclude that SPMAC has a better

performance in IoT scenarios than PMAC and HMAC, especially in efficiency.

3.4.3 Performance of Four Schemes under Different Number

of Disclosed Cells

In this experiment, the number of disclosed cells changes from 12 to 56, and the

number of cells is 60.

According to Figure 3.7(a) and Figure 3.7(b), we observe that the time for mapping

and MAC generation in all schemes do not change since both of them are based on the

number of cells. The time of prime mapping is about 5.68 times larger than that in

ECP-SPMAC, 1611.65 times larger than that in Fibo-SPMAC, and nearly the same

as that in HMAC.

In Figure 3.7(c) and Figure 3.7(d), with the increasing number of disclosed cells,

the time for suffix construction decreases, and that for MAC verification increases.

Moreover, the decrease rate of PMAC is faster than that of SPMAC. The time for

mapping occupies most of the time in the PMAC scheme. When the number of

disclosed cells increases, the number of useless cells decreases. Thus, the time needed

to map the useless cells drops dramatically in PMAC schemes. On the contrary, the

verifier spends more time on mapping.

Since the number of cells does not change in this scheme, the time for mapping and

time for MAC generation does not change in Figure 3.8(a) and Figure 3.8(b).

The time for MAC generation in Fibo-SPMAC is larger than that in ECP-PMAC,

which has been explained in Chapter 3.4.2. As shown in Figure 3.8(c) and 3.8(d),

when the number of disclosed cells increases, the time for MAC verification grows up,

and the time for suffix construction declines.

Moreover, the time for suffix construction remains relatively high. A similar situation

43

Chapter 3. Subset Privacy Problem in Subset Integrity

500

1000

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

10 20 30 40 50
Disclosed Cells

0

1

2

3

(a) Time for Mapping

100

200

300

400

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

10 20 30 40 50
Disclosed Cells

0

20

40

(b) Time for MAC Size

10 20 30 40 50
Disclosed Cells

0

200

400

600

800

1000

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

(c) Time for Suffix Construction

500

1000

CP
U

Ti
m

e/
m

s

PMAC
Fibo-SPMAC

ECP-SPMAC
HMAC

10 20 30 40 50
Disclosed Cells

0
50

100
150
200

(d) Time for MAC Verification

Figure 3.7: Time Consumption among SPMAC, PMAC, and HMAC in Prefix-Suffix

Model

happens in Figure 3.6(c). The reason is that the disclosed cells are randomly chosen,

which changes the number of (prefix, suffix) pairs. Once the number of (prefix, suffix)

pairs changes sharply, it reflects on the time for suffix construction. Recall the Eq. 3.3

and 3.7, the larger the number of (prefix, suffix) pairs is, the more number of suffixes

needed to be constructed. Thus, the client should spend more time on computing σi.

In the meantime, according to Eq. 3.5 and 3.8, the time for combining σi and prei(x)

changes in Figure 3.8(d).

3.4.4 Practical Application

This experiment compares Fibo-SPMAC and ECP-SPMAC in a practical situation.

One thousand messages need to be transmitted, and 50% of the cells in the message

are disclosed. The experiment compares the time for suffix construction (TC), time

44

3.4. Experiments

10 20 30 40 50
Disclosed Cells

0

25

50

75

100

125

150

175

CP
U

tim
e

/m
s

Fibo-SPMAC ECP-SPMAC

(a) Time for Mapping

10 20 30 40 50
Disclosed Cells

25

30

35

40

45

50

CP
U

Ti
m

e/
m

s

Fibo-SPMAC ECP-SPMAC

(b) Time for MAC Generation

10 20 30 40 50
Disclosed Cells

0

150

350

CP
U

Ti
m

e/
m

s 5

15

25

Nu
m

be
r o

f P
ai

rs
Fibo-SPMAC
ECP-SPMAC

(prefix, suffix) pairs

(c) Time for Suffix Construction

10 20 30 40 50
Disclosed Cells

0

90

180

CP
U

Ti
m

e/
m

s 5

15

25

Nu
m

be
r o

f P
ai

rs

Fibo-SPMAC
ECP-SPMAC

(prefix, suffix) pairs

(d) Time for MAC Verification

Figure 3.8: Time Consumption between Fibo-SPMAC and ECP-SPMAC in Random

Model

for MAC verification (TV), and extra communication costs. The extra communication

cost is computed according to the MAC size and the mapping look-up table.

Recall that ECP-mapping consumes more time than Fibo-mapping according to Fig-

ure 3.7 because ECP-mapping is a probabilistic algorithm. If the client completes the

mapping function and shares the mapping look-up table with the verifier, they can

finish the mapping function quickly. The client should transmit a mapping look-up

table through a secure channel.

According to Figure 3.9, we can find out that both TC and TV in Fibo-SPMAC do

not change. On the opposite side, TC and TV decrease a lot in ECP-SPMAC. The

reason is that the client or verifier can check the mapping look-up table directly

instead of using the mapping function to compute. The mapping process saves time

when computing quadratic residue. However, Fibo-mapping does not consume a lot

of time. Thus, the time consumption does not decrease significantly.

45

Chapter 3. Subset Privacy Problem in Subset Integrity

W/ Look-up Table
W/o Look-up Table0

100

200

CP
U

Ti
m

e/
s ECP-SPMAC

W/ Look-up Table
W/o Look-up Table0

5
M

em
or

y
Si

ze
/k

b ECP-SPMAC
W/ Look-up Table

W/o Look-up Table0

200

400

CP
U

Ti
m

e/
s Fibo-SPMAC

W/ Look-up Table
W/o Look-up Table0

2

4

M
em

or
y

Si
ze

/k
b Fibo-SPMAC

Tc Tv Communication cost

Figure 3.9: Time Consumption and Communication Cost on Fibo-SPMAC and ECP-

SPMAC with or without Mapping Look-up Table

Generating a mapping table consumes more time and memory, but the client only

needs to do this one time, which can save time for suffix construction and MAC

verification. Thus, it can be advantageous for the client as well as the verifier in

the future. Furthermore, if we apply a mapping look-up table in SPMAC schemes, a

trusted third party can help generate it for further use. Using a mapping look-up table

instead of the mapping function increases the communication cost in Fibo-SPMAC

and ECP-SPMAC since the mapping look-up table should be shared between the

client and the verifier.

3.5 Summary

In this chapter, we demonstrate the subset privacy problem and propose two new

schemes: Scalable Prefix Verifiable Message Authentication Code on Fibonacci Map-

46

3.5. Summary

ping (Fibo-SPMAC) and Scalable Prefix Verifiable Message Authentication Code on

Elliptic Curve Point Mapping (ECP-SPMAC). Both schemes can verify the message

integrity of any disclosed cells in the message and inherit the advantages of PMAC.

Furthermore, the experimental results show that the proposed schemes are suitable

for IoT scenarios and have a better efficiency performance. According to Chapter

3.4.2 and 3.4.3, the time for mapping in ECP-SPMAC is larger than the time for

suffix construction and PMAC verification. Moreover, Figure 3.9 shows that when

we apply a look-up table in ECP-SPMAC to decrease the time for mapping, the

time for suffix construction and SPMAC verification decreases. On the contrary,

the look-up table has a limited effect on the time consumption of Fibo-SPMAC. It

is fine to spend more time creating a mapping table, which is a one-time SPMAC

generation that the client needs to complete. Subsequently, the client and verifier

can complete suffix construction and MAC verification faster. Consequently, ECP-

SPMAC performs better when the client and verifier share a large bandwidth channel

or the communication cost is not essential. On the contrary, Fibo-SPMAC is suitable

when the mapping function should be done by both the client and the verifier, which

means the channel bandwidth is limited. In Chapter 3.4.4, the experiment result

proves our assumption.

47

Chapter 4

Subset Integrity between Two

Entities

In this chapter, we begin to study the subset integrity problem between two entities.

With IoT providing great convenience, message integrity in IoT becomes more critical.

In traditional message verification schemes, the verifier is supposed to have an infinite

workload and energy to verify all the incoming messages, while IoT devices have com-

putation ability and energy limitations in a practical situation. Therefore, they have

a bottleneck in verifying the integrity of all the incoming messages, especially when

the messages are large in volume and high in frequency. In this situation, a secure fog

architecture [85] is proposed to facilitate data transmission. For instance, in the man-

ufacturing industry, IoT devices can monitor the machine’s operational status and

periodically transmit the message to the manager. However, the manager does not

have enough ability to verify all the incoming messages. Hence, a fog node with great

computation ability can assist in verifying a portion of the message. Nevertheless,

the computation ability of the fog node cannot be exhausted for verification because

it should undertake some additional tasks (e.g., data analysis or data training).

Suppose the message contains several cells (e.g., xi in Figure 4.1(a)). The sender

48

generates MAC1 for the whole message and MAC2 for a subset of the message (e.g., x1

to x7). Specifically, we call it static verification due to the fog node can verify the cells,

which the sender determines. However, the static solution is not viable in practical

situations. The sender does not have prior knowledge of the computation ability

in the fog node since the fog node and the data sources belong to different owners.

Insufficient utilization of the fog node wastes the computation ability. Conversely,

excessive utilization of the fog node surpasses its computation ability. Another naive

solution is to generate and concatenate each cell’s MAC (e.g., key-hashed MAC [55]).

However, the size of the final MAC is proportional to the number of cells, which leads

to great communication overhead.

To address the problem, we consider whether the fog node can randomly verify a

subset of messages like Figure 4.1(b) according to its computation ability. The fog

node can choose random cells to verify (e.g., x1 to x5 or x9 to x14). Then it computes

F (MAC). The integrity of them can be guaranteed if F (MAC) is related to MAC

(e.g., F (MAC) ⊆ MAC) so that the fog node can verify as many cells as it can. F

is the transformation function. For instance, when the fog node selects a subset of

the message, if the number of cells reaches the determined threshold, the regenerated

MAC is the same as the MAC of the whole message.

In this chapter, we design a novel MAC scheme called ”Partial Verification Message

Authentication Code” (PV-MAC) for the IIoT scenario. In this scheme, the fog node

can randomly and optimally choose the cells it can verify according to its computation

ability. Consequently, the message receiver is only required to verify the cells that

remain unverified by the fog node.

In summary, the contributions we make in this chapter are as follows:

1. We propose PV-MAC for subset verification in a fog-based IIoT scenario. The

MAC is generated based on the whole message, and the fog node can randomly

choose cells for verification rather than being determined statically by the mes-

49

Chapter 4. Subset Integrity between Two Entities

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

MAC1 MAC2 MAC3

(a) Static Verification

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

F(MAC)

MAC

F(MAC)

(b) Subset Verification

Figure 4.1: Static and Subset Verification

sage sender.

2. We propose PV-CMAC to decrease the communication cost in the IIoT scenario.

3. We propose an optimized solution to minimize the energy consumption for the

message receiver.

4. We conduct a theoretical and empirical analysis to evaluate the performance of

PV-MAC.

The rest of the chapter is organized as follows. Chapter 4.1 defines the problems and

the network model we discuss. Chapter 4.2 introduces the syntax of PV-MAC, and

Chapter 4.4 presents the energy optimization problem in PV-MAC. Chapter 4.3 shows

the theoretical analysis of performance and security. In Chapter 4.6, the experimental

results show the performance of the proposed schemes. Chapter 4.7 summarizes this

chapter.

50

4.1. Problem Definition and System Model

4.1 Problem Definition and System Model

4.1.1 System Model

Figure 4.2 shows the system model of subset verification. There are three entities:

data sources (DS), a fog node (FN), and data users (DU). The data sources own the

messages and send them to the data user. The data users are IoT devices. They

require the message from the DS. However, they do not have enough computation

ability to confirm the accuracy of every cell in the incoming messages. The FN [3]

has strong computation ability and can be applied to offload the heavy verification

on the data user. Moreover, the FN can provide smaller service delays than cloud

computing so that one FN can provide compromising service in the system. The FN

randomly chooses the cells (e.g., the vertically shaded cells) to verify. Then, the DU

verifies the remaining cells (e.g., the horizontally shaded cells). In the IIoT scenario,

a reliable FN can be applied, which means the FN is trusted. In the meantime, the

communication channel between FN and DU is dependable [85] so that the DU can

trust the verification result from the FN. We suppose the FN verifies a subset of cells

in the incoming message, and the DU only needs to validate the rest of the cells.

The energy consumption is relevant to the number of verified cells, which has two

properties:

1. The computation energy consumption always increases as the computation

amount increases.

2. The marginal energy consumption for the fog node is increasing.

In a mathematical description, energy consumption and its growth rate are increasing

monopoly. In this chapter, the energy model follows like Eq. 4.1 [27][62]. a, b, and

e are energy parameters larger than 0. τ is the computation amount, which can be

considered as the number of verified cells.

51

Chapter 4. Subset Integrity between Two Entities

E(τ) = aτ 2 + bτ + e (4.1)

In the meantime, we apply the workload to represent the computation ability, which

means the number of cells that the FN can verify. We use the workload to measure the

computation ability of the fog node. In other words, it is relevant to the number and

size of the cells. The workload model follows like Eq. 4.2. B is the size of cells, which

has been predetermined. The workload of the FN cannot exceed its computation

ability.

W (τ) = Bτ (4.2)

Besides the system model, we define the adversary model. As security, a MAC scheme

should satisfy unforgeability. The adversary follows the Dolev–Yao (DY) Adversary

model [65], which has been widely used in formal analysis of security protocols. Specif-

ically, when DS delivers the messages and MACs to the FN, a Probabilistic Polynomial

Time (PPT) Attacker [35] attempts to falsify the messages by executing a polyno-

mial time algorithm while leaving the MACs unchanged. Since the FN is reliable

and owned by the DU, the PPT attacker can only modify the messages during the

transmission from DS to FN.

4.1.2 Problem Definition

In this subsection, we discuss how to achieve subset integrity verification in a Fog-

based IIoT scenario. Specifically, the fog node can randomly and optimally choose

cells to verify before the DU according to its computation ability and energy in IIoT

scenarios. Therefore, this problem is split into two parts: subset verification and

energy optimization problem.

Formally, we consider that the message contains several cells (e.g., x = (x1, x2, . . . , xn)).

The definition of subset verification is as follows,

52

4.2. Partial Verification Message Authentication Code

Definition 3. (Subset Verification): The fog node can randomly choose a subset

in one message for verification by himself.

∀xv ⊆ x, f(x) = F(f(xv)) (4.3)

In Eq. 4.3, x is the original message, and xv is the subset of x, which are verified by

the FN. f is the MAC generation function for the whole message. F is a translation

from the original MAC to the MAC of xv.

Based on the subset verification, the optimization problem [25] is essential. The IoT

devices have limited workloads and energy. Therefore, the FN should undertake as

many verification tasks as possible since it has a stronger computation ability than

IoT devices. However, the FN still confronts some limitations due to the hardware

(e.g., upper-bound workload). In summary, the optimization problem follows like Eq.

4.4.

min EDU

s.t. W (xv) ≤ Wmax
FN

(4.4)

Specifically, Wmax
FN is the upper-bound workload of the FN, and EDU is the energy

consumption and the objective function, which is relevant to the number of verified

cells. The details will be given in Chapter 4.4.

4.2 Partial Verification Message Authentication Code

In this section, we introduce the solution for the subset verification problem in the IoT

scenario. In this situation, the clients outsource the verification tasks to a trusted fog

node. Formally, the Partial Verification Message Authentication Code (PV-MAC)

for the fog-based IIoT scenario. PV-MAC consists of Hierarchical Secret Sharing

Based Message Authentication Code (HSS-MAC) and SPMAC [103]. The two MACs

are generated based on the whole message and are necessary to solve the subset

verification in practical situations.

53

Chapter 4. Subset Integrity between Two Entities

Messages(M1,M2,M3…)
with cells

Data Sources Fog Node Data User

M1

M2

M3

MAC1

MAC2

MAC3

Verify

… … …
Messages

MACs

Verify

Messages
MACs

Figure 4.2: System Model of Subset Verification

4.2.1 Secret Sharing based Message Authentication Code

Generally, to achieve dynamic verification, we can combine secret sharing and MAC

together, and propose secret sharing based MAC (SS-MAC) [73]. Algorithm 5 shows

how it works.

Insides, PRF is a pseudorandom function, and SSr is the secret recovery function.

In summary, the FN can select at least t cells to recover the secret. Then, he can

regenerate the MAC according to the secret, symmetric key, and the PRF. We use a

concrete example to demonstrate how it works.

Example 4. Suppose the message is (1, 2, 3, 4, 5), the secret(s) to be shared is 13,

and the prime for secret sharing is 17. The polynomial of the secret sharing is f(x) =

13 + 10x+ 2x2. Then, the shadows can be computed as

(1, 8), (2, 7), (3, 10), (4, 0), (5, 11)

Afterward, the DS can generate the SS-MAC according to secret, kSS = 2, and chosen

PRF according to Eq. 4.5. Then he sends the processed message (1, 2, 3, 4, 5, 8, 7, 10, 0, 11)

54

4.2. Partial Verification Message Authentication Code

Algorithm 5 Framework of SS-MAC

Input: Symmetric key for SS-MAC kSS; message x; the polynomial of the secret

sharing f()

Output: SS-MAC

1: DS, FN receives the symmetric key kSS

2: DS ← s,

3: for i = 1; i < N : i+ + do

4: DS ← f(xi)

5: end for

6: SS-MAC = PRF (kSS, s)

7: FN ← x, f(x), SS-MAC

Input: Symmetric key for SS-MAC kSS; verified subset message xv; corresponding

subshares f(xv)

Output: 1 or 0

8: FN recovers s according to the cells he wants to verify (xv) and their corresponding

subshares (f(xv)).

9: s′ ← SSr(xv, f(xv))

10: SS-MAC’ = PRF (kSS, s
′)

11: if SS-MAC == SS-MAC’ then

12: return 1

13: else

14: return 0

15: end if

55

Chapter 4. Subset Integrity between Two Entities

and SS-MAC to the FN.

SS-MAC = PRF (kSS, s) (4.5)

Upon receiving the message, the FN can select three or more shadows(e.g., (1, 8), (2,

7), (3, 10)) and recover the secret. Then he can regenerate the SS-MAC and check

whether it is equal to the received one.

However, if we only applied SS-MAC in the subset verification problem. it confronts

a new problem call substitution attack. The adversary can replace one of the

shadows without changing the secret. Recall the Example 4, the fog node recovers

the secret even if one of the shadows is replaced by (6, 9). Therefore, the output

of the fog node will be either negative or false positive, which makes the feedback

meaningless. Consequently, we need to find other methods to fulfill the request.

4.2.2 Hierarchical Secret Sharing Based Message Authenti-

cation Code

In this part, we introduce the syntax of HSS-MAC. Similar to the SS-MAC, HSS-MAC

is based on hierarchical secret sharing. The notations are in Table 4.1.

HSS-MAC can address the substitution attack. Compared with SS-MAC, HSS-MAC

separates the message into different levels. Moreover, the levels of each cell remain

constant and can be privately shared with the FN before transmission. Accordingly,

the attacker cannot recover the secret to a high degree, which will be proved in

Chapter 4.3.2. In addition, the SPMAC can further avoid the Substitution Attack.

Algorithm 6 shows how HSS-MAC works.

56

4.2. Partial Verification Message Authentication Code

Algorithm 6 Framework of HSS-MAC

Input: Symmetric key β; message x;

Output: HSS-MAC

1: DS, FN DS, FN receives the symmetric key β

2: DS receives s and all the fi(),

3: for i = 1; i < L : i+ + do

4: for j = 1; j < N : j + + do

5: DS computes fi(xj)

6: end for

7: end for

8: HSS-MAC = PRF (β, s)

9: FN ← x, f(x)

Input: Symmetric key β message x; subshares f(x)

Output: 1 or 0

10: FN chooses random cells in the message, which achieve secret recovery in HSS,

denoted by xv.

11: FN recovers the secret s′ according to HSS.

12: FN computes HSS-MAC’ = PRF (β, s′).

13: if HSS-MAC’ == HSS-MAC then

14: return 1

15: else

16: return 0

17: end if

57

Chapter 4. Subset Integrity between Two Entities

Table 4.1: Variables List for HSS-MAC and PV-MAC

Parameter Instruction

s The master secret

x The original message

xv, xr The cells verified by the FN and DU

fi() The polynomial function of in level i

f(x) The collection of the subshares

PRF The Pseudorandom Function for MAC generation

L The number of levels in one message

N The number of cells in one message

α, β The symmetric key for PV-MAC

HSSr The master secret recovery function

SSr The secret recovery function is secret sharing

ti The threshold in level i

4.2.3 The Syntax of PV-MAC

In this subsection, we introduce the syntax of PV-MAC. The generic PV-MAC scheme

consists of four phases: System Initialization Phase, MAC Generation Phase, Fog

Node Verification Phase, and Data User Verification Phase. Figure 4.3 shows the

process of MAC generation and verification.

Data Source Fog Node Data User

s←HSS x
HSS-MAC←HSS-MACGen β,s
PMAC←PMACGen(α,x,param)

b2←DUVeri α,x,σ,param, PMAC
If b2==1
 return Accept

s′←HSSr xv
b1←FNVeri β,s′, HSS-MAC
If b1==1
 σ←F(xv,param)

x, f x
HSS-MAC

x,σ
PMAC

Figure 4.3: PV-MAC Generation and Verification Phase

58

4.2. Partial Verification Message Authentication Code

In the System Initialization Phase, the DS, FN, and DU initialize the system by the

following steps,

1 Based on the security parameter λ, the DS gets the two symmetric MAC keys α

and β.

2 After that, the DU receives α, and FN receives β and the number of level L.

3 The DU selects a large prime number p and a generator g for a multiplicative group.

These parameters are publicly known.

In the MAC Generation Phase, when the DS sends the message to the DU, it generates

two MACs: HSS-MAC and SPMAC for the whole message.

1 DS generates a master secret s for the HSS scheme, separates the cells into different

levels, and generates the subshares for them. Specifically, the DS applies a polyno-

mial function fi() for ith level. Then the subshare of jth cell (xj) is computed as

fi(xj).

2 Subsequently, the HSS-MAC is generated according to Eq. 4.6.

HSS-MAC = PRF (β, s) (4.6)

3 Subsequently, the DS selects a random nonce γ < p and generates SPMAC accord-

ing to x, α, γ and the public parameters.

SPMAC = α(Π(x) + γ)g mod p (4.7)

In the Fog Node Verification Phase, since the DU does not have enough computation

ability to verify the message, the FN verifies a subset of the message according to

HSS-MAC. Since the FN has greater computation ability than DU, the number of

verified cells can be larger than the threshold, which satisfies the HSS recovery.

59

Chapter 4. Subset Integrity between Two Entities

Message
PMAC=(91, 19)
σ=(92, 29)

Message
HSS-MAC
PMAC=(91, 19)

α=2β=11

Data UserFog Node

Data Source

Message:(1,2,3,4,5,6,7,8)

π 1,1 =13,π 2,2 =1
π 3,3 =34, π 4,4 =5
π 5,5 =2, π 6,6 =89
π 1,1 =233,π 8,8 =610

Figure 4.4: Concrete Example of PV-MAC

1 The FN chooses the cells (xv) from different levels and recover a secret (s′).

HSSr(xv) = s′ (4.8)

2 Subsequently, the FN verifies xv based on s′ and β. If xv has not been modified, it

computes σ according to Eq. 4.9 and sends it with the message to the DU.

σ = (Π(xv) + γ)g mod p (4.9)

In the Data User Verification Phase, once the DU receives the verification result from

FN, it can verify the rest of the cells (xr) in the message.

According to xr, α, γ and the public parameters, the DU can reconstruct the SPMAC

according to Eq. 4.10.

SPMAC′ = α (σ + Π(xr)g) mod p (4.10)

We exemplify how PV-MAC works according to Figure 4.4 and Example 5.

Example 5. Suppose the message is (1,2,3,4,5,6,7,8), and divided into two levels.

(1,2,3,4) belongs to the first level, and (5,6,7,8) belongs to the second level. The

60

4.2. Partial Verification Message Authentication Code

thresholds of each level are 3 and 3. The prime for HSS is 97, and the master secret

is 50.

First, the DS generates the polynomials of each level.

f1(x) = 50 + 38x+ 42x2 mod 97

f2(x) = 29 + 16x+ 65x2 mod 97

Then it computes the subshares according to the cells, and the processed message

follows,

(1, 2, 3, 4, 5, 6, 7, 8, 33, 3, 57, 1, 85, 40, 28, 49)

The first eight cells are the original message, while the rest are the subshares. Ac-

cording to the master secret and the symmetric key β = 11, the DS can compute the

HSS-MAC by PRF. Then DS generates the SPMAC according to α = 2, g = (72, 29),

p = 97, and Eq. 4.7. The result is SPMAC = (91, 19).

The FN can recover the master secret by selecting the first three cells (e.g., (1, 2, 3) in

red), and the HSS-MAC is then recomputed. Afterward, the FN computes the suffix

(σ = (92, 29)) according to Eq. 4.9 and sends the original message and suffix to the

DU.

After receiving the suffix, the DU can verify the SPMAC according to Eq. 4.10 and

check whether the remaining cells are modified.

In summary, the two components in PV-MAC are generated based on the whole

message. They have different purposes and are complementary to each other. HSS-

MAC provides subset verification for the FN. However, if we only apply HSS-MAC in

this network, the DU cannot verify the rest of the cells. According to Chapter 2.2.2,

most of the cells in the highest level have been verified by the FN since it has stronger

computation ability. Without enough number of them, the DU cannot reconstruct the

61

Chapter 4. Subset Integrity between Two Entities

HSS-MAC based on xr. In this situation, the DU verifies SPMAC without verifying

xv one more time. Simultaneously, if we only apply SPMAC in this network, the FN

only conducts the computation tasks and cannot find the unauthorized modification

on xv. Therefore, the two components are essential for this scheme. Furthermore,

there is still one constraint for the FN, which is the number of verified cells should

be larger than the threshold of HSS-MAC. Since the FN has a larger computation

ability than the DU, he can select more cells for verification. In general, the number

of verified cells is larger than the threshold.

4.3 Theoretical Analysis

In this section, we theoretically analyze the time consumption and security of the

PV-MAC.

4.3.1 Time Consumption of SS-MAC and HSS-MAC

The time consumption of secret sharing is Eq. 4.11[6] when FN chooses t cells.

TSSr = O(t log2(t)) (4.11)

Similarly, the time consumption of HSS recovery is as follows,

THSSr = O(
l∑

i=1

ti log2(ti)) (4.12)

Based on Eq. 4.11 and Eq. 4.12, we can deduce Theorem 6.

Theorem 6. If the FN chooses the same number of cells for verifying, the time

consumption of HSS-MAC is smaller than that of SS-MAC.

62

4.3. Theoretical Analysis

Proof. When the FN verifies SS-MAC and HSS-MAC, it should recover the secret

and compute the PRF. Therefore, the difference between the two schemes is the time

consumption of secret recovery. The number of cells verified by the FN in SS-MAC

is the same as that in HSS-MAC. Consequently, we can derive that,

TSSr = O((
l∑

i=1

ti) log2(t))

Since tlog2(t) is monotonically increasing and ∀i ti ≤ t, we can deduct that

∀i ∈ l, O(ti log2(ti)) ≤ O(ti log2(t))

We can prove that THSSr < TSSr

4.3.2 Security of PV-MAC

PV-MAC consists of the SPMAC and the HSS-MAC. The security of SPMAC has

been introduced in Chapter 3.3. Specifically, HSS-MAC combines PRF and HSS.

In the HSS scheme, the subshares from one level cannot be used for another level.

Consequently, we can derive Theorem 7.

Theorem 7. The probability of substitution attack in HSS is (
C

t1
n1

C
t1
n

).

Proof. Suppose an attacker can recover the secret in HSS without knowing the level.

In that case, the attacker needs at least t1 shadows from the N shadows to recover

the secret and achieve the substitution attack.

Since the number of cells is N and the number of cells in the highest level is n1, the

probability of the attack is (
C

t1
N1

C
t1
N

).

In addition, we should prove the unforgeability, which is defined as follows,

63

Chapter 4. Subset Integrity between Two Entities

Definition 4. (Unforgeability). HSS-MAC (Setup, Sign, Verify) is unforgeable

under adaptive chosen attacks if for any efficient algorithm A that the experiment

UnforgeabilityHSS-MAC
A evaluates to 1 is negligible.

Experiment UnforgeabilityHSS-MAC
A

-β ← Setup(1λ)

-HSS-MAC← AGen(β,)̇(β)

-for i = 1, 2, ..., q denoted by HSS-MACi,

the queries to the oracle(O) Sign return 1

iff Verify(β,HSS −MAC) = 1

Specifically, A generates a random key from Setup(1λ). Then A submits MAC queries

by sending different messages (xi) and receives HSS-MACi from the Oracle (O). A

wins if it can modify the messages by executing a polynomial time algorithm while

leaving the MACs unchanged.

Theorem 8. Consider the HSS-MAC is generated according to a (q, T, ε)− PRF fam-

ily, and the length of MAC is L. The HSS-MAC is secure with respect to Definition.

4. In other words, for any attacker A who runs in time at most T , makes at most q

queries, the probabilities of success is upper-bounded by

Pr[A wins] ≤ ε+ Q2

2L

Proof. Assume that there is an adversary A that breaks the HSS-MACGen security.

Then, it can also break the security of PRF families. A sequence of games G0 − G3

will be used to prove it.

Game G0. The attacker can make q queries to an Oracle(O), and O responds the

HSS-MACi. The attacker wins the game if the MAC is accepted when one of the

queries is accepted.

Pr[A wins in G0] ≤ ε (4.13)

64

4.4. Energy Optimization in PV-MAC

Game G1. Compared with G0, a given determined function is chosen instead of a

random PRF. Moreover, each PRF is (q, T, ε) - pseudorandom. It holds that

Pr[A wins in G0] ≤ Pr[A wins in G1] + ε (4.14)

Game G2. Compared with G1, the difference is that the O can record the previous

input queries and output results. Once a new query is equal to the recorded pairs,

the output will be the same. Based on this,

Pr[A wins in G1] ≤ Pr[A wins in G2] (4.15)

Game G3. Compared with G2, the difference is that the O does not contain the

record function. There are q queries Y1, Y2, . . . , Yq, and each of them is distinct. In

this situation, G2 and G3 proceed identically unless F happens, which is Yi = Yj for

some i 6= j. G2 ∧ ¬F ⇐⇒ G3 ∧ ¬F . According to the difference lemma, we can

deduce

|Pr[G2]− Pr[G3]| ≤ Pr[F] (4.16)

F is an union of
(
q
2

)
events, we can prove that Pr[Yi = Yj] = 2−L, thus we can derive

that,

Pr[F] ≤ Q2

2L
(4.17)

L is the length of HSS-MAC. Therefore, we can make a conclusion that

Pr[A winsG3] ≤ ε+
Q2

2L
(4.18)

which is negligible.

4.4 Energy Optimization in PV-MAC

In this section, we discuss the optimization problem in the PV-MAC scheme in offline

verification and online verification.

65

Chapter 4. Subset Integrity between Two Entities

In both situations, multiple independent data sources transmit the messages. Con-

sequently, there are differences in both the quantity and size of cells. In offline ver-

ification, all the data sources transmit the messages at the same timeslot. The FN

only needs to store one optimized solution if its workload does not change. However,

data sources have different transmission frequencies in online verification. For exam-

ple, the data about temperature will be shared frequently, while the data about some

emergencies (e.g., fire alarms) will not be shared as frequently as that of temperature.

Therefore, the number of cells verified by the FN will be altered as the amount of

incoming messages changes.

In fog computing, the FN has great computation ability. Thus, we can partially

offload the high computation cost of verifying the message integrity to the FN. As

a consequence, the energy consumption of DU can be minimized. There are some

limitations as follows,

1. The number of verified cells in one message should be smaller than or equal to

the number of cells in the same message.

2. The number of verified cells should be large enough so that the FN can recover

the master secret in the HSS-MAC scheme.

3. The workload of the FN cannot exceed its computation ability, which is deter-

mined by the hardware.

Table 4.2 shows the notations in the optimization problem, which is formulated for-

66

4.4. Energy Optimization in PV-MAC

Table 4.2: Variables List for Optimization

Parameter Instruction

i,m Index, the number of message

Wmax
FN The upper-bound workload of the FN

L The number of levels in the message

Bi The cell size of message i

tj The threshold of HSS in level j

Ni The number of cells in message i

wj The weight of levels j

nj The number of cells in level j

τi The verified cells in the FN in message i

mally as,

min
|τi|

E(
m∑
i=1

(ni − |τi|)) (4.19a)

s.t. ∀i, |τi| ≤ Ni (4.19b)

m∑
i=1

B|τi| ≤ Wmax
FN (4.19c)

∀i,HSSr(τi) = s (4.19d)

|τi| is integer (4.19e)

4.4.1 The Level Weight Generation

Eq. 4.19d means that the FN should select enough cells to recover the master secret.

Then, the FN sets the weight (wi) for each level to reach the optimization targets.

We use T to represent the threshold weight to recover the master secret.

67

Chapter 4. Subset Integrity between Two Entities

w1t1 ≥ T

∀l ≤ L,
l−1∑
j=1

wj(tj − 1) + wltl ≥ T

∀l ≤ L,
l−1∑
j=1

wj(tj − 1) + wl(tl − 2) +
L∑

i=l+1

wjnj < T

According to the conditions above, we can derive the relationships,

∀1 ≤ l ≤ L, wl >
L∑

j=l+1

wjnj/2 (4.20)

Suppose the weight of the lowest level (wL) is 1. The FN can derive the rest level

weight and the threshold weight. Consequently, Eq. 4.19d can be represented as,

∀i, ∀l ≤ Li,
l∑

j=1

wji |τ
j
i | ≥ Ti (4.21)

Insides, Li is the number of levels in message i. wji is the weight of level j in message i,

and |τ ji | is the number of verified cells in level j in message i. Apparently,
∑l

j=1 |τ
j
i | =

|τi|. Ti is the threshold weight of message i.

In summary, since Bi, Ni, w
j
i , and Ti are stable, solving the optimization is simple.

The Eq. 4.19b, Eq. 4.19c and Eq. 4.19d are linear conditions. In the meantime,

Eq. 4.19e shows that the optimization is an integer-based optimization problem.

Consequently, we can apply Mixed-Integer Linear Programming [57] to optimize en-

ergy consumption for the DU. Chapter 4.6.6 shows the optimization results in two

situations.

68

4.5. Improvement on PV-MAC

4.5 Improvement on PV-MAC

In this subsection, we propose an improvement on PV-MAC. Recall that in both

SS-MAC and HSS-MAC, the subshares should be transmitted with the messages.

Therefore, the communication cost enlarges.

In Shamir secret sharing, the dealer not only generates subshares for every participator

but also generates the polynomial coefficients (e.g., a1 . . . at−1). In the meantime,

the Lagrange interpolation can reconstruct the polynomial. Therefore, instead of

randomly generating the coefficients in the SS-MAC scheme, we can use the t − 1

subshares of the next message to represent the coefficients.

fm+1(x) = s+ fm(xm,1)x+ . . .+ fm(xm,(t−1))x
t−1 mod p (4.22)

fm(xm,1), · · · , fm(xm,t−1) are the subshares of the message m. In this situation, the

data source only delivers n− (t−1) subshares to the FN. Moreover, if n− (t−1) < t,

the attacker will not get enough subshares to reconstruct the secret according to the

security in secret sharing. After that, the substitution attacks fail.

As much, we can apply this structure to PV-MAC. Formally, it is called the Par-

tial Verification Chained Message Authentication Code (PV-CMAC). According to

Chapter 2.2.2, only the highest level polynomial and its coefficients must be re-

covered. Suppose there are two levels with (t1, n1), (t2, n2) and the shadows are

(x1, f1(x1)), ..., (xn1 , f1(xn1)), ..., (xn2 , f2(xn2)), only the t1 − 1 shadows can be used

as the coefficient of the polynomial for the next message. Consequently, the growth

of time consumption and the decrease of communication cost is relevant to t1. We

give a concrete example to show how PV-CMAC works.

Example 6. Suppose there are two messages: one is (1, 2, 3, 4, 5, 6, 7, 8), and the

other is (8, 7, 6, 5, 4, 3, 2, 1). Each of them is divided into two levels, like Figure 4.4.

The threshold in the two levels is 3. The prime for secret sharing is 97, and the secret

for the first message is 50.

69

Chapter 4. Subset Integrity between Two Entities

For the first message, the HSS follows the same process as Figure 4.4. However, in

the HSS scheme for the second message, the coefficients of f1(x) are replaced by the

subshares

f1(x) = 50 + 33x+ 3x2 mod 97

f2(x) = 84 + 15x+ 28x2 mod 97

For the first message, the processed message is

(1, 2, 3, 4, 5, 6, 7, 8, 57, 1, 85, 40, 28, 49)

The first two subshares are hidden in the polynomials. Thanks to the perfect security in

secret sharing, the attacker cannot recover the secret or reconstruct the HSS-CMAC.

The subshares of the second message is

(19, 34, 66, 18, 10, 90, 32, 30)

The data sources can send the subshares of the final message through a secret channel

before the message transmission. The fog node verifies the messages in reverse order

from the incoming messages.

Compared with the original situations, PV-CMAC can save the communication cost.

However, storing the coefficients consumes the workload in the FN, and recovering

all the coefficients costs more time rather than only recovering the secret.

4.6 Experiment Result

In this section, we use some experimental results to demonstrate the performance

of our proposed schemes. We compare the performance of PV-MAC, PV-SS-MAC,

70

4.6. Experiment Result

PV-CMAC, and concatenating key-hashed MAC (CHMAC) in different situations.

The CHMAC means the DS generates a MAC for each cell using the HMAC scheme

and concatenates them into one final MAC. PV-SS-MAC combines the SS-MAC [73]

and the SPMAC scheme. The third experiment focuses on workload allocation in the

FN for offline and online verification.

The prime, key, generator, and nonce for SPMAC are 160 bits. The key for HSS-MAC

and SS-MAC is 1024 bits. In the CHMAC schemes, we apply SHA256 for the HMAC.

For the energy model, we consider E = τ 2 + 2.4τ + 3.5 in [62].

To evaluate the performance, we apply two datasets. The first one is the synthetic

dataset, which contains randomly generated messages with the same cell size and

length. The second one is the real-life dataset,’Room Occupancy detection data’,

which includes temperature, Humidity, Light, CO2, and Humidity Ratio [15].

The code of both FN and DU is implemented in Python3. Since the IoT devices have

a limited workload, we set up the IoT devices on a Raspberry Pi with 1 GB RAM

and 1 CPU core. The FN is set up on a Virtual Machine (VM) with 4 GB RAM and

4 CPU cores.

4.6.1 Time Consumption of PV-MAC under Different Cell

Size

In this part, we discuss how the cell size affects the performance of PV-MAC. One

message contains 400 cells with varying cell sizes ranging from 1 bit to 32 bit. A ((21,

10, 4, 34, 29, 32, 15, 32, 8, 25), 400) HSS scheme is applied in PV-MAC, and the

number of cells in each level is 40. The threshold of each level is randomly generated.

In Figure 4.5 and 4.6, the time for PV-MAC contains that for HSS-MAC.

In Figure 4.5, the time consumption of PV-MAC grows when the cell size increases.

The time consumption of HSS-MAC in PV-MAC decreases. The cell size has a

71

Chapter 4. Subset Integrity between Two Entities

1 2 4 8 16 32
Cell Size

0

2

4

6

8

10

12

14

Ti
m

e
Co

ns
um

pt
io

n/
m

s

PV-MAC HSS-MAC SPMAC

Figure 4.5: Time Consumption under The Different Cell Size

negligible effect on HSS-MAC but more on SPMAC verification.

4.6.2 Time Consumption of PV-MAC under The Number of

Levels

In this part, we look at how the verified cells coming from different levels affect the

performance of PV-MAC. There are 400 cells in the message, and we divided them into

ten levels. The FN randomly chooses 200 cells to verify. A ((80, 10, 16, 6, 19, 15, 4, 2, 10, 14), 400)

HSS scheme is applied in PV-MAC.

Based on Figure 4.6, the time consumption gradually decreases when the verified

cells come from more levels. In Chapter 4.3.1, we give the equation of the time

consumption of HSS-MAC. When the verified cells come from different levels (i.e.,

l1 < l2) and the number of verified cells does not change, O(
∑l1

i=1 ti log2(ti)) must be

larger than O(
∑l2

i=1 ti log2(ti)).

72

4.6. Experiment Result

2 4 6 8 10
Levels Number

0

5

10

15

20

25

30
Ti

m
e

Co
ns

um
pt

io
n/

m
s

PV-MAC HSS-MAC SPMAC

Figure 4.6: Time Consumption under The Verified Cells from Different Levels

4.6.3 Comparison between PV-SS-MAC and PV-MAC

In this part, we compare the time consumption of PV-SS-MAC and PV-MAC when

the number of verified cells rises from 178 to 328. A ((23, 26, 18, 18, 31, 16, 18, 5, 3, 20), 400)

HSS scheme and (178, 400)-secret sharing.

According to Figure 4.7, we can observe that the time consumption of the DU de-

creases. The reason is that the number of cells verified by DU declines in both

schemes. Furthermore, the time consumption of PV-SS-MAC is more significant than

that of PV-MAC, which proves our deduction in Chapter 4.3.1. In addition, the time

consumption of PV-SS-MAC increases faster than that of PV-MAC. Since the second

derivation of Eq. 4.11 is greater than 0, the increasing rate of time consumption of

PV-SS-MAC becomes larger.

73

Chapter 4. Subset Integrity between Two Entities

180 200 220 240 260 280 300 320
Verified Cells in FN

0

100

200

300

400

500

Ti
m

e
Co

ns
um

pt
io

n/
m

s

PV-MAC on FN
PV-MAC on DU

PV-SS-MAC on FN
PV-SS-MAC on DU

Figure 4.7: Time consumption of PV-SS-MAC and PV-MAC

Table 4.3: Time Consumption and Communication Cost of The Three Schemes

PV-SS-MAC PV-MAC CHMAC

Time for FN/ms 8592.232 2132.176 563.071

Time for DU/ms 355.102 340.896 394.134

Communication Cost/kbit 1964.597 1964.646 25500

4.6.4 Performance of PV-SS-MAC, PV-MAC, and CHMAC

In this subsection, we compare the time consumption and communication cost among

PV-SS-MAC, PV-MAC, and CHMAC. The FN verifies 234 cells.

Table 4.3 shows the three schemes’ accumulated time consumption and communica-

tion cost. Although concatenating HMAC consumes the least time among the three

schemes, the communication cost is 12.98 times larger than the other two. Therefore,

it is not suitable for our proposed scenario. Compared with PV-SS-MAC, PV-MAC

74

4.6. Experiment Result

1000 2000 3000 4000 5000 6000
Workload in FN / bit

0

10

20

30

40

50

60

70
Ve

rif
ie

d
M

es
sa

ge
 N

um
be

r i
n

FN PV-SS-MAC PV-CMAC PV-MAC

Figure 4.8: Workload Allocation for Three Schemes

consumes less time, which has been explained in Chapter 4.6.3.

4.6.5 Workload Allocation PV-SS-MAC, PV-MAC, and PV-

CMAC

In this subsection, we compare the maximized number of messages verified by the FN

at the same time when the workload changes. There are 50 cells in one message, and

it has been divided into six levels. The threshold of SS-MAC is 28, which is equal to

the sum of thresholds in each level of HSS.

According to Figure 4.8, the number of messages verified by FN in PV-SS-MAC is

the least among the three schemes. The reason is that the FN should verify at least

28 cells. However, at least the cells in the first levels should be verified in PV-MAC,

which is smaller than that in PV-SS-MAC. In PV-CMAC, the FN should save the

coefficients from the last message. Compared with the PV-MAC, the workload for

verification decreases.

75

Chapter 4. Subset Integrity between Two Entities

Table 4.4: The Number of Cells and The Cell Size of Incoming Message

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of Cells 378 371 249 288 304 346 365 324 388 322

Size of Cell/bit 20 20 40 40 60 60 80 80 100 100

4.6.6 Performance of PV-MAC in Offline and Online Verifi-

cation

In this subsection, we demonstrate the operation of PV-MAC in two real-world sce-

narios: offline and online verification. We randomly divide the practical datasets into

several pieces, and the number of cells and the size of cells are given in Table 4.4. We

compare the energy consumption of DU with two different verification models. One is

the optimized results (Eopt). The other model is that the FN first chooses the message

with large cell sizes for verification (Emax) We show how the number of verified cells

in FN varies as the upper-bound workload of FN increases. The workload increases

from 20kbit to 210kbit.

According to the energy model, the growth of the number of cells verified by DU

leads to an increase in energy. Our objective is to minimize the energy consumption

in DU. Thus, the number of cells verified by FN should be maximized. Therefore,

the message with a small cell size is entirely verified by FN if the workload is large

enough. According to Figure 4.9(a), when the workload of FN is 20kbit, the number

of cells in M1 and M2 is larger than the rest of the messages. With the increases in

the workload, the FN can verify more cells. Accordingly, the message with a small

cell size can occupy more workload of FN. When the workload of FN reaches 210kbit,

it can verify all the messages.

In Figure 4.9(b), we can find out that when the workload of FN is limited, it cannot

76

4.6. Experiment Result

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

Workload in FN /kbit

0

500

1000

1500

2000

2500

3000

3500
Ve

rif
ie

d
Ce

lls
 in

 F
N

M1
M2

M3
M4

M5
M6

M7
M8

M9
M10

(a) The Number of Verified Cells under The Upper-bound Workload of FN

20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

Workload in FN /kbit

101

102

103

104

105

106

107

En
er

gy
 C

on
su

m
pt

io
n

Eopt Emax

(b) The Semi-Plot of The Energy Consumption of DU under The Upper-bound Workload of FN

Figure 4.9: Performance of Offline Verification

verify too many cells. Thus, the energy consumption is pretty significant. The larger

the workload of FN is, the less energy the DU consumes. Moreover, the difference

77

Chapter 4. Subset Integrity between Two Entities

300 600 900
The Timeslot

0

200

400

600

800

1000

Ve
rif

ie
d

ce
lls

 in
 F

N

M1 M3 M5 M7 M9

(a) The Number of Verified Cells under The Timeslot

300 600 900
The Timeslot

101

102

103

104

105

106

En
er

gy
 C

on
su

m
pt

io
n

Eopt

Emax

(b) The Semi-Plot of The Energy Consumption of DU under The Timeslot

Figure 4.10: Performance of Offline Verification

between the two energy models is large when the workload increases from 20kbits

to 200kbits. Since in the Emax model, the FN first chooses the messages with large

cell sizes to verify. Thus, the number of verified cells in FN is small, and the DU

78

4.7. Summary

verifies more cells than that in the Eopt model. However, when the workload of FN

is 210kbits, the DU does not need to verify the message. Consequently, the energy

consumption in both models is the same.

In the context of online verification, we present how the number of cells verified by

FN changes. Formally, as the frequency of incoming messages varies, the workload

of the FN necessitates periodic adaptation. In this experiment, there are five DS,

and the messages follow like M1,M3,M5,M7,M9 in Table 4.4. Each DS transmits

one message every 2, 3, 7, 8, and 9 seconds, respectively. The workload in the FN is

40kbit. We illustrate the performance of workload allocation every 30 seconds.

Figure 4.10(a) shows that the number of cells verified by the FN is affected by time.

Since the number of incoming messages is different in different timeslots, the number

of cells verified by FN changes periodically. Furthermore, at the same timeslot, the

FN first verifies the message with a small cell size, as explained in Chapter 4.6.6.

Moreover, if the FN cannot verify all the cells in the incoming messages, the en-

ergy consumption of DU in Eopt is smaller than that in Emax in Figure 4.10(b). En-

ergy consumption also modifies systematically with the number of incoming messages

changing.

4.7 Summary

In this chapter, we focus on the subset verification problem in a fog-based IIoT sce-

nario. With IoT devices widely deployed in the Industrial scenario, they transmit a

large number of messages to the data user. The data user cannot verify all the incom-

ing messages concurrently. Consequently, leveraging a dependable fog node can assist

in alleviating the computational burden associated with verifying message integrity.

To achieve our objective, we propose the Partial Verification Message Authentication

Code (PV-MAC). The data source can generate the MAC for the whole message.

79

Chapter 4. Subset Integrity between Two Entities

Then, the fog node can randomly choose the cells in the messages and verify their

integrity. After that, the data user can verify the rest of the cells. Moreover, the

fog node can optimally choose the maximum number of cells it can verify according

to its computation ability in order to decrease the energy consumption of the data

user. Theoretical and empirical analyses validate the efficiency of our scheme, with

marginal increases observed in communication costs.

Our proposed scheme holds applicability across various domains. For instance, in

a machine learning scenario, the datasets are large, and their integrity is essential.

Additionally, the datasets are from different data sources. Thus, their size and fre-

quency of transmission are different. In this situation, a fog node can help verify a

subset of the datasets and train them according to its workload. However, it trains

the model so that it cannot exhaust the whole workload for verification. Therefore,

the data user verifies the rest of the subsets and sends them back to the fog node for

additional training.

80

Chapter 5

Subset Integrity among Multiple

Entities

In this chapter, we solve a more general problem in the IoT scenario, which is subset

integrity among multiple entities. Compared with the problem in Chapter 4, the

problem is more complicated, which happens in the collaborative edge computing

scenario, where several edge nodes cooperate to finish the verification tasks. This

process is similar to the multi-hop computation offloading. However, subset verifica-

tion is more complex than multi-hop computation offloading [44]. The participants

can only verify a subset of the message, while proof of integrity (e.g., signature) is

generated according to the whole message. Consequently, there should be a relation

between the signatures of a subset of the message and the entire message. Besides

the subset integrity problem, another problem is inside: Subset Aggregation. The

messages can be aggregated even if different private keys sign them. Generally, the

number of signatures becomes large, leading to a high communication cost. [34] pro-

posed aggregated signature by combining several signatures. It requires the utilization

of the same private key to generate all the signatures. One of the applications is the

smart city. Each IoT device with limited computation ability is deployed in the city,

81

Chapter 5. Subset Integrity among Multiple Entities

and different owners own the IoT devices within the smart city scenario. As a result,

they have distinct private keys to sign the message.

Suppose one message contains several cells (e.g., x = (x1, x2 . . .)), there are three kinds

of solutions for subset verification. First, the signer signs a subset of the message (e.g.,

PreSign). According to Figure 5.1(a), the signer gave three signatures previously,

and the verifier can check the integrity of predetermined subsets (e.g., x1 to x5).

However, the verifier cannot autonomously choose the cells for verification (e.g., x3

to x5). Second, the signer generates the signature for each cell and concatenate

them together. Therefore, the verifier can randomly pick several cells for verification.

However, the communication overhead is severe when the number of cells is enormous

since the size of the signature is proportional to the number of cells. The final solution

is based on threshold signature [79]. Before signing the message, the signer generates

a secret value. Then, according to the secret sharing scheme [33], the signer generates

the subshares for each cell and transmits them with the signature to the verifier. Upon

receiving them, the verifier selects a group of cells and their subshares to recover the

secret, whose number should be larger or equal to the threshold (e.g., x1 to x6 or x12

to x16). However, the time consumption is significant in the threshold signature. For

example, if the verifier chooses t cells to check the integrity, the time consumption is

O(t log2(t)) [6]. In the meantime, the verifier cannot guarantee their integrity if the

unverified number of cells is smaller than the threshold. In summary, Table 5.1 shows

the drawbacks of the three possible solutions. Consequently, they are inappropriate

for collaborative edge computing scenarios in smart cities.

To address the problem, we propose Elliptic Curve based Multi-hop Sanitizable Sig-

nature (ECMSS). The signer generates only one signature, and the verifiers can ran-

domly select a subset of the message for verification by themselves. ECMSS is based

on sanitizable signature [7], which allows the authenticated party (i.e., delegator) to

change parts of the cells. Consequently, the verifier can ensure the integrity of the

rest cells in the message. The property of the sanitizable signature is that it can

82

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Signature1 Signature2 Signature3

(a) PreSign

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Signature

(b) Threshold Signature

Figure 5.1: Example of Subset Verification

protect sensitive information from exposure. In other words, the edge node can verify

the subset of the message, which is not sensitive. The property can also be applied

to subset verification. The verifier can check the integrity of the subset he wants to

verify without knowing the subset he does not need to verify. The ECMSS has some

practical applications.

• Big data analysis [61]: Some participants have limited computation resources

(e.g., roadside units and robot swarms) and must finish plenty of big data analysis

work. They can assign the calculation jobs to the adjacent devices. Before the

analysis, they can ensure a subset of data integrity by verifying the signature based

on ECMSS.

• Distributed edge learning [109]: Several edge nodes can cooperate to train large

datasets. Before the training, the integrity of the datasets is essential. With the

ECMSS scheme, the edge nodes can verify and train a subset of data according to

their computation ability.

To summarize, our main contributions are as follows.

• We propose a lightweight scheme called ECMSS for subset aggregation. The edge

node can concatenate the incoming messages and aggregate the signatures even if

different private signing keys generate the signatures.

83

Chapter 5. Subset Integrity among Multiple Entities

Table 5.1: Comparison of Solutions for Message Subset Integrity
Name PreSign Concatenating Signature Threshold Signature

Subset Aggregation # ! #

Subset Verification ! ! !

Autonomous Verification # ! !

Communication Efficiency ! # #

Time Efficiency ! # #

• The ECMSS scheme can achieve subset verification, which means the edge node

can randomly select a subset of the message for verification.

• We theoretically analyze our proposed scheme to show its security. The experiments

show that our proposed scheme can reach high efficiency and low communication

overhead.

The organization of the chapter is as follows. Chapter 5.1 introduces the network

model and defines the problem we discuss. Chapter 5.2 demonstrates the ECMSS.

Chapter 5.3 provides the optimization solution, and Chapter 5.4 analyzes the security.

In Chapter 5.5, we use some experiments to show the performance of ECMSS. Chapter

5.6 summarizes this chapter.

5.1 Problem Definition and System Model

5.1.1 System and Threat Model

Edge computing aims to leverage the computation ability of the edge node to save

transmission delay. Unfortunately, the edge node confronts a bottleneck in computa-

tion ability. The cost of developing and purchasing edge nodes with more extraordi-

nary computation ability is large [9]. Therefore, the economical and efficient solution

is for several edge nodes to cooperate to finish the tasks.

Our collaborative edge computing model consists of four distinct entities. First, the

84

5.1. Problem Definition and System Model

data sources (DS) are a group of IoT devices deployed in the smart city. They gather

data on temperature, humidity, and traffic. Subsequently, utilizing their individual

private keys, they generate unique signatures. Adjacent to the DS, the Gathering

Edge Node (gEN) helps concatenate the incoming messages and aggregate the cor-

responding signatures. This node serves the purpose of streamlining communication

and data processing within the system. The data user (DU) is another IoT device

requiring messages. However, he cannot verify all the incoming messages due to his

computation ability. A collective of Verifying Edge Nodes (vEN) collaboratively as-

sists in verifying the incoming messages and sending corresponding results to the DU.

Figure 5.2 shows the communication model with one gEN and two vENs.

The communication model consists of two sides. The DS and gEN are the sender

side. The structure is Cluster-based Edge Computing [80]. Generally, clustering is a

network topology management that improves the efficiency of the network. The gEN

is the cluster head, and the DS is the cluster member according to their location.

The gEN gathers the messages and signatures from the DS. The vEN and the DU

are the verifier side. The structure is based on offloading and feedback structure

[106][42]. Once the edge node accepts the computation tasks, he can offload parts of

them to the next edge node (i.e., the offspring node). For instance, vEN1 executes

parts of the mission and transmits the rest parts to vEN2. In the feedback phase,

all the edge nodes participating in the computation give the computing results to

the user. Specifically, every vENi+1 transmits the computing result to vENi (i.e., the

ancestor node). Furthermore, the relationship between the two vENs is dynamic. For

example, vEN1 is the ancestor node of vEN2 in the first task, while the relationship

may be reversed in the second task. The advantage is that each vEN can choose

the number of tasks by himself rather than be allocated by others. Moreover, we

consider that a reliable device-to-device (D2D) communication [40] is applied among

the vENs. Furthermore, as with existing integrity assurance schemes, our scheme

does not need to assume a homogeneous network [99]. In the same way, packet loss

85

Chapter 5. Subset Integrity among Multiple Entities

Data Source
Gathering
Edge Node Data User

Verifying
Edge Node

Key Provider

sk

x,σ

pk, tkpk

xagg,σagg xagg

xremain

σagg

xverify

Figure 5.2: System Model

[2] or even timeouts may affect the performance of our scheme, as affecting other

network services. Since then, we have not addressed this issue in this chapter.

The adversary model is shown as follows. The attacker can observe the signatures for

a polynomial of numbers. He has infinite computation resources to forge the message.

Specifically, the attacker will try to modify the message from x to x′ without changing

the signature. Consequently, the DU cannot use the message.

5.1.2 Problem Definition

Based on the communication model, we discuss two problems. First, the signature

is generated by different IoT devices. As a consequence, how to aggregate all the

signatures and messages with different keys is essential. Formally, we called it sub-

set aggregation. Second, since one edge node cannot finish the verification, how

to achieve subset integrity verification in collaborative edge computing is essential.

Specifically, each edge node can randomly and optimally choose the random num-

ber of cells to verify before the DU according to its computation ability and energy.

86

5.1. Problem Definition and System Model

Furthermore, the edge node can send cells that it has not verified to the next edge

node. This problem is split into two parts: subset verification and optimization

problem.

We consider that one message contains several cells (e.g., x = (x1, x2, . . . , xn)). The

definition of subset aggregation is as follows,

Definition 5. (Subset Aggregation): The gEN can aggregate the incoming signa-

tures even if they are generated by different private signing keys.

σ1 ← F (sk1,x1) and σ2 ← F (sk2,x2),

σagg ← σ1 ⊗ σ2

x1 and x2 are the original message from DU1 and DU2, sk1 and sk2 are the different

private keys for signature generation. σ1 and σ2 are the signatures of x1 and x2. ⊗ is

the binary operation to aggregate the two signatures. F is the signature generation

function. If a verifier wants to verify the message, he should use the public keys from

DU1 and DU2.

The definition of Subset Verification is as follows:

Definition 6. (Subset Verification): The vEN can randomly choose a subset in

one message for verification by himself.

∀ xv ⊆ x, 1 = V F (pk,xv, auxv, σ)

xv is the subset of x, which is verified by vEN. pk is the public key for verification.

V F is the verifying function. Since the signature is generated based on the whole

message, the verifier cannot use a subset of the message to reconstruct the signature

directly. Therefore, some auxiliary information helps the verifier to reconstruct the

signature. Specifically, the auxv cannot contain anything about the subset that the

vEN does not need to verify.

87

Chapter 5. Subset Integrity among Multiple Entities

The subset verification is similar to the computation offloading [82]. In this context,

the optimization problem is essential. When many messages are coming, the verifica-

tion tasks will be burdensome, demanding efficient optimization strategies to handle

the increased workload. In this scheme, we want to minimize the energy consumption

in the collaborative edge computing system according to Eq. 5.1.

min Esystem = Everify + Etran

s.t. ∀i, Ei(τi) ≤ Emax
i

∀i,Wi(τi) ≤ Wmax
i

τi is integer

(5.1)

Insides, Esystem is the objective function, which is the energy consumption for both

verification (Everify) and transmission (Etran). τi is the number of cells. Ei and Wi are

the energy and workload of the i-th edge node. Emax
i and Wmax

i are the upper-bound

energy and workload of the i-th edge node. The Everify is relevant to the number

of cells for verification, while the number of transmissions is relevant to the network

properties. The details will be given in Chapter 5.3.

5.2 Elliptic Curve based Multi-hop Sanitizable Sig-

nature

Generally, the PV-MAC schemes still need the client to verify a subset of messages,

which is not suitable in the resource-constraint scenario. This section aims to present

the Elliptic Curve based Multi-hop Sanitizable Signature (ECMSS) within the con-

text of collaborative edge computing. Specifically, our objective is to address the

challenge when an individual edge node does not have enough computation ability to

verify the incoming message integrity. Without taking privacy into account, the san-

itizable signature can assist in verifying a subset of the message without knowing the

88

5.2. Elliptic Curve based Multi-hop Sanitizable Signature

remaining parts. This approach significantly enhances efficiency in the verification

process.

5.2.1 Elliptic Curve Based Chameleon Hash

In this part, we review an Elliptic Curve Based Chameleon Hash (ECCH), which is

the primary component of ECMSS. Eq. 5.2 shows the construction of ECCH.

ECCH(x) = xG+ rK0 (5.2)

Inside, G is a random generator in the elliptic cyclic group. K0 = kG, and k is the

trapdoor key. r is the random number. If the delegator wants to find out the collision,

he should find out a pair of (x′, r′) so that,

x+ kr = x′ + kr′ (5.3)

The vEN with the trapdoor key can quickly discover the collision. Conversely, it

is difficult for the third party who does not have the trapdoor key to discover the

collision due to the Elliptic Curve Discrete Logarithm Problem (ECDLP). The ECCH

has the same properties as the traditional chameleon hash. Moreover, similar to Eq.

5.3, the vENs can change the trapdoor key as Eq. 5.4 in the multi-hop verification

scenarios.

x+ kr = x′ + k′r′ (5.4)

The new trapdoor key is k′. Once a vEN does not need to be involved in the verifi-

cation, it cannot sanitize any subset of the message. In its view, the ECCH becomes

a one-way hash function, which has been introduced in Chapter 2.2.3.

89

Chapter 5. Subset Integrity among Multiple Entities

Table 5.2: Variables List for ECMSS

Parameter Instruction

i, j, h The index of the gEN, vEN, and IoT nodes

M,N The number of gEN and vEN

Ti The number of IoT belongs to the i-th gEN

xh The message from the h-th IoT nodes.

x̄j The message verified by j-th vEN.

x The final message

σh The signature from the h-th IoT node

σi The aggregated signature in the i-th gEN

σagg The aggregated signature

G The generator of the cyclic group

sh, Sh The private and public signing keys for the h-th IoT nodes

ri, r0 The random nonce of the i-th gEN and all the vEN

Rj The sanitization result of the j-th vEN

H The one-way hashing

k0, K0 The private and public sanitization keys for all gEN

kj, Kj The private and public sanitization keys for j-th vEN

rem(x̄j) The cells which are not verified by j-th vEN

att(x) The attributes of x

90

5.2. Elliptic Curve based Multi-hop Sanitizable Signature

5.2.2 Elliptic Curve Based Multi-hop Sanitizable Signature

In this part, we introduce the Elliptic Curve based Multi-hop sanitizable signature

(ECMSS). 5.2 shows the notation of ECMSS. There are five steps in the ECMSS

scheme.

• Setup(1λ): The Setup algorithm is a probabilistic algorithm that takes as input a

parameter λ. It generates two groups of keys. One is for signing (Sh, sh), and the

other is for sanitizing ((Kj, kj)).

(Sh, sh), (Kj, kj)← 1λ

• Sign: For the h-th IoT node, it takes the message xh, a private signing key sh,

a public sanitization key K0 and the random integer r as input, and outputs the

signature.

σh ← Sign(xh, rh, sh, K0)

• Aggregate: For the i-th gEN, it takes the received signatures and the public keys

as input and outputs the aggregated signature. Agg is the aggregation function

σi ← Agg(∀σh)

Si ← Agg(∀§h)

• Subset Sanitize: For the j-th vEN, it takes a subset of message x̄j, a subset

substituted message x̄′j, a private sanitizing key kj−1, the sum of all public signing

key, the new private sanitization key kj, and outputs the sanitizable result Rj.

Rj ← SubSanit(x̄j, x̄
′
j,

M∑
i=1

Si, kj, kj−1)

• Verify: It takes the message x̄j, the sum of public signing key
∑M

i=1 Si, a public

sanitization key Kj, the random integer Rj and the received signature σ as input,

91

Chapter 5. Subset Integrity among Multiple Entities

and outputs a bit b. If b = 1, the integrity of the processed message can be

guaranteed.

b← V erify(x̄j,
M∑
i=1

Si, Kj, Rj, σagg)

There are two advantages of ECMSS. First, once each vEN selects the cells, it can re-

move them from the original message and transmit the rest of the cells to its offspring.

The offspring vEN can verify the rest of the cells without knowing the cells selected

by its ancestor vEN. Second, through the re-key function, each vEN can substitute

the current sanitation key with its own sanitization key. Therefore, if a vEN is not

involved in verification, it cannot try to attend the multi-hop verification because it

does not know the current sanitization key.

Then, we give a specific introduction with a concrete example.

In the Setup Algorithm, the generation of keys entails the creation of two types:

signing and sanitization. Each IoT device has its public and private signing key

and the public sanitizing key. Additionally, each vEN has unique public and private

sanitizing keys.

The h-th IoT device generates the signature to ensure the message integrity according

to the Sign algorithm

σh = H(xh)G+ rhK0 + shr0G (5.5)

In Eq. 5.5, H(xh)G+rK0 is based on ECCH in Chapter 2.2.3, and H(xh)G+sr0G can

fulfill the signature aggregation with different signing keys according to the aggregate

algorithm. In other words, it can achieve subset aggregation.

σagg =
M∑
i=1

Ti∑
h=1

(H(xh)G+ rhK0 + shr0G) (5.6)

Following the aggregate algorithm, Eq. 5.6 shows the final aggregated signature,

which is used as the signature of all the messages from the IoT nodes. Besides, the

92

5.2. Elliptic Curve based Multi-hop Sanitizable Signature

gEN computes Hagg =
∑M

i=1

∑Ti
h=1H(xh). S is the aggregation of all the public keys.

To simplify the description, we define x as the final message, which concatenates all

the messages.

There are two phases in the multi-hop verification: the offloading phase and the

feedback phase. In other words, the vENj either selects a subset of the cells and

transmits the rest of the cells to their offspring vEN, or begins to verify the incoming

cells and start the feedback phase.

For the first situation, the vENj selects a number of cells in the message and applies

the SubSanit Algorithm. In this scheme, it sanitizes them by the attributes of the

cells it selects according to Eq. 5.7.

Rj = k−1
j (H(x̄j)− att(rem(x̄j)) + kj−1Kj−1) (5.7)

After that, the vENj transmits the rem(x̄j), Rj, att(rem(x̄j)) and Hagg −H(x̄j) to

its offspring (i.e., vENj+1). Since the vENj has selected a subset of the message, it

can separate them from the message to reduce the communication cost.

For the second situation, when vENN has enough computation ability to verify the

incoming message, it checks the x̄N integrity.

σ′agg = (H(x̄N) + aux)G+RNK0 +
N−1∑
j=1

(att(rem(x̄j)))G+ r0S (5.8)

Inside, aux = Hagg −
∑N−1

j=1 (H(x̄j)). If vENN finishes the verification tasks, it trans-

mits H(x̄N)G to its ancestor (vENN−1). Subsequently, the offloading phase stops and

the feedback phase begins.

For the rest N−1 vENs, after receiving H(x̄j+1)G, it only needs to verify x̄j according

to Eq. 5.9.

σ′agg = (H(x̄j))G+RjK0 +

j−1∑
l=1

(att(rem(x̄l)))G+ r0S (5.9)

93

Chapter 5. Subset Integrity among Multiple Entities

{2,1},
(35,43)

{5,4,3},
(53, 1)

R =(34, 87)

DS1

DS2

gEN

vEN1

vEN2

DU

Figure 5.3: The Running Example of ECMSS with Two vENs and One gEN

Then the vENj computes and sends H(x̄j)G to its ancestor.

The signature can also support one-hop verification when one vEN has enough com-

putation ability. In this situation, it does not need to sanitize any subset of the

message. Based on Eq. 5.10, the vEN can verify all the cells.

σ′agg =
M∑
i=1

Ti∑
h=1

(H(xh)G) +R0k0 + r0S (5.10)

We use a generic example to show how it works.

Example 7. Figure 5.3 demonstrates an example of ECMSS with one gEN and two

vENs. The elliptic curve is E101(1, 1), which is y2 = x3 + x + 1 mod 101. DS1 and

DS2 own the message (5, 4, 3) and (2, 1). According to their signing keys (s1 = 3 and

s2 = 2), random number (r0 = 1, r1 = 2 and r2 = 3), and public sanitization key

(K0 = (4, 66)), they generate two signatures (σ1 = (53, 1) and σ2 = (35, 43)). The

gEN concatenates the incoming message ((5, 4, 3, 2, 1)), and aggregate the signature

((97, 68)) and hash result (Hagg = 62).

On the verifier side, the first vEN can choose the first two cells for verification. It

sanitizes the subset (5, 4) according to the secret sanitization key (k0 = 10), and

94

5.3. Multi-hop Verification Optimization

Table 5.3: Variables List for Energy Optimization

Parameter Instruction Unit

i, N Index, the number of vEN n/a

|x| The number of cells in the message n/a

Emax
i The upper-bound energy of the i-th edge node J

Wmax
i The upper-bound workload of the i-th edge node bit

B The cell size of the message bit

τi The number of verified cells by the i-th edge node n/a

µ The coefficient related to the chip architecture n/a

fi The CPU frequency for the i-th edge node GHz

β Required CPU cycles to compute 1-bit of input data cycles/bit

computes r′ = 26 and aux = 42. vEN2 checks the integrity of the rest cells (i.e.,

(3, 2, 1)) according to Eq. 5.9. If their integrity is guaranteed, the vEN computes

(34, 87), which is relevant to verified cells and aux, and transmits it to vEN1. For

vEN1, when it receives the computing result, it checks the integrity of the rest cells.

The example shows that the previous N − 1 vENs participate in offloading and feed-

back phases. On the contrary, the last vEN only does the feedback phase. The more

cells it verifies, the less time the system consumes.

5.3 Multi-hop Verification Optimization

In this section, we discuss the optimization problem in the multi-hop verification.

Table 5.3 shows the notations in optimization. Since each vEN can autonomously

select the cells for verification. Optimization is critical. Our objective is to minimize

energy consumption for all the vENs. There are some limitations.

1. The number of cells verified by each vEN cannot exceed its upper-bound work-

95

Chapter 5. Subset Integrity among Multiple Entities

load.

2. The energy consumption for verifying cannot exceed its upper-bound energy.

3. The vENs can finish the verification tasks.

The energy consumption in the system contains two parts: energy for message execu-

tion (Everify) and energy for message transmission (Etran). The energy model follows

like that in [47][95].

For the i-th vEN, the energy consumption is computed according to Eq. 5.11.

Everify
i = µβf 2

i Bτi (5.11)

Concurrently, Etran is computed according to Eq. 5.12.

Etran
i =

P (|x| − τi)
TRBw

(5.12)

Inside, P is the maximum energy for transmission, Bw is the transmission bandwidth,

TR is the transmission rate of the system, which can be computed according to Eq.

5.13.

TR = log2 (1 +
PCg
σ2
n

) (5.13)

σ2
n denotes noise power and Cg is the channel gain.

Besides, the workload of each edge node is as follows,

Wi = Bτi (5.14)

96

5.4. Security Analysis

According to the limitation, we can derive that

min
N∑
i=1

Everify
i +

N∑
i=1

Etran
i (5.15a)

s.t. ∀i, 0 ≤ µβf 2
i Bτi ≤ Emax

i (5.15b)

∀i, 0 ≤ Bτi ≤ Wmax
i (5.15c)

N∑
i=1

τi = |x| (5.15d)

τi is integer (5.15e)

Since µ, fi, β, and the parameters of Etran have been determined by the hardware

of the edge node, the optimization can be easily solved. We can discover that Eq.

5.15b, Eq. 5.15c, and Eq. 5.15d are linear equations, while Eq. 5.15e shows that the

optimization is an integer-based optimization problem [90]. Consequently, we can ap-

ply mixed-integer programming, which is the mathematical framework for optimizing

energy systems.

5.4 Security Analysis

In this section, we show the theoretical security analysis, which includes correctness,

unforgeability, and non-transferability.

5.4.1 Correctness

Suppose there are M gENs and N vENs in the network. The final signature can be

generated according to Eq. 5.5 and Eq. 5.6. Globally, each gEN will generate xi, and

each vEN will verify yi. Consequently, we have

M∑
i=1

H(xi) =
N∑
j=1

H(yj) + aux (5.16)

97

Chapter 5. Subset Integrity among Multiple Entities

The ECCH can be helpful in one-hop situations as a traditional chameleon hashing

function. We should promote it to multi-hop situations.

Theorem 9. Our proposed ECMSS is correct for multi-hop verification.

Proof. According to Eq. 5.5, the sr0G will not be sanitized during the transmission.

Therefore, we define the state as the result of ECCH. Similarly, vEN2 to vENN−1,

they will choose a subset of the message and sanitize the state.

state = (
N∑
j=1

(H(yj)) + aux)G+R0K0

= (
N∑
j=2

(H(yj)) + aux)G+H(y1)G+R0K0

= (
N∑
j=2

(H(yj)) + aux)G+H(att(||Nj=2(yj)))G+R1K1

= (
N∑
j=3

(H(yj)) + aux)G+H(y2)G+H(att(||Nj=2(yj)))G+R1K1

= (
N∑
j=3

(H(yj)) + aux)G+H(att(||Nj=3(yj)))G+H(att(||Nj=2(yj)))G+R2K2

= . . .

= (H(yN)) + aux)G+
N−1∑
l=2

H(att(||Nj=l(yj))) +RNKN

5.4.2 Unforgeability

The verification is done by the vEN, and the aggregation is finished before the veri-

fication. We define the unforgeability only based on one public key as follows,

Definition 7. (Unforgeability). ECMSS(Setup, SanKeyGen, Sign, Verify, Sub-

Sanit) is unforgeable under adaptive chosen attacks if for any efficient algorithm A

that the experiment UnforgeabilityECMSS
A evaluates to 1 is negligible.

98

5.4. Security Analysis

Experiment UnforgeabilityECMSS
A

-(pksign, sksign)← Setup(1λ)

-(pksanit, sksanit)← SanKeyGen(1λ)

-σ ← ASign(sksign,)̇(pksign)

-for i = 1, 2, ..., q, denoted by σi, the queries to the

oracle(O) Sign return 1 iff Verify(pksign, pksanit, σ) = 1

Specifically, the adversary can run a probabilistic algorithm in at most t steps and

make no more than qa queries to the Sign algorithm and no more than qb queries to

the SubSanit algorithm to forge the ECMSS with the probability of success smaller

than ε on problem instances of size k. Therefore, we have the theorem that.

Theorem 10. The ECMSS is (ε, k, qa, qb, t)−unforgeable in the random oracle model.

Proof. There are two situations in which the adversary can find efficient solutions

to forge the ECMSS. First, he can easily forge signature schemes. Second, he can

discover the collision of the chameleon hash without knowing the sanitization key.

We say that ECMSS is (ε, k, qa, qb, t)− unforgeable. Specifically, the adversary can

run a probabilistic algorithm in at most t steps and make no more than qa queries to

the Sign algorithm and no more than qb queries to the SubSanit algorithm to forge

the ECMSS with the probability of success smaller than ε on problem instances of

size k.

If the A be an (ε, k, qa, qb, t)−forger, the two situations can be shown as follows,

1. There exists an (ε′, k, qa, t
′)−forger of the ECMSS scheme.

2. There exists an (ε′′, k, qb, t
′′)−forger of the ECCH.

The quantities are as follows,

99

Chapter 5. Subset Integrity among Multiple Entities

ε ≤ ε′ + ε′′ (5.18)

t ≥ t′ − qbtcollision (5.19)

t ≥ t′′ − qatsign (5.20)

Insides, tcollision and tsign are the maximum running times of collision finding and

signing forging algorithms on instances of size k.

We define S as the intermediate value so that σ = Signsksign(S). Once A succeeds in

computing a signature σ on a new message x, only two cases will happen.

Case 1 Every query to the oracle Osksign during A’s execution resulted in σ′ =

Signsksign(S ′), which will be different to σ = Signsksign(S).

Case 2 There is a query xi to theOsksign so that the response σi equals to Signsksign(S),

with xi 6= x

For the first case, suppose another adversary B can generate public and private sani-

tization keys (sksanit, pksanit). He uses sksanit to create the chameleon hash and send

pksanit to A. To answer the signature queries from A, B resorts to its signing oracle

for the underlying signature schemes. After A generates the signature, S will be

outputted and recorded.

After that, B reads σ from the record and terminates when A successfully computes

the same σ. The execution time is t′ = t + qbtcollision, where t is the number of steps

used by A. Therefore, Eq. 5.19 is achieved.

For the second case, a new adversary C is built for the chameleon hash algorithm.

In the beginning, C generates signing key pairs (sksanit, pksanit). He uses sksign with

the underlying signing algorithm sign()̇ to emulate Osksign and send pksign to A.

To answer the sanitization queries, C resorts to the collision-finding oracle for the

100

5.5. Experiments

ECCH. Once A computed σ, C retrieves S and compares it with Si that recorded in

A. Consequently, there is at least one query that differs from x but such that Si is

equal to S. Therefore, we can derive that,

state = ECCH(x, pksanit, r) = ECCH(xi, pksanit, ri)

Then C outputs state to seek collision against A. According to the x, r, C can succeed

with the execution time t′′ = t+ qatsign. Therefore, Eq. 5.20 is achieved.

5.4.3 Non-transferability

Definition 8. (Non-transferability): A signature issued to a designated recipient

cannot be validated by another party.

Theorem 11. The ECMSS has the property of non-transferability for multi-hop ver-

ification.

Proof. Based on the semantic security in Chapter 2.2.3, the traditional chameleon

hash-based signature has the property of non-transferability.

In the multi-hop scenario, suppose the undesignated party A try to verify the message

instead of vENj based on Eq. 5.9, he just reads σ, pksign and pk0
sanit. According to

Eq. 5.7, the vENj−1 has sanitized the subset of the message. In the meantime, he

changes the sanitization key. D cannot verify the message in this situation.

5.5 Experiments

In this section, we use the experiments to show the performance of ECMSS and

compare it with the threshold signature [91], Identity-based Sanitizable Signature

101

Chapter 5. Subset Integrity among Multiple Entities

Table 5.4: Variables List for Network Setting in The Experiment

Parameter Bw Cg σ2
n β µ P

Instruction 1MHz 2.585 -100 dBm 103 cycles/bit 10−27 30 dBm

(IDSS) [71] and Schnorr signature [21]. The experiments will be partitioned into three

components. First, we will show the performance of ECMSS. Second, we will compare

the performance of ECMSS, IDSS, Schnorr signature, and threshold signature (T-

ECDSA). Finally, we will show the optimization experiments of ECMSS. We make

the comparison between two cell selection strategies. The Eavg means that each vEN

will choose the same number of cells for verification. The Eopt means that each vEN

will choose the number of cells equal to the optimization result. The message is from

the practical dataset. Each message contains 30000 cells, and the cell size is 20 bits.

The network setting follows Table 5.4. The CPU frequency and the computation

ability are distributed in [1GHz, 20GHz] and [1FLOPS, 20FLOPS].

In ECMSS, IDSS, and T-ECDSA schemes, the signing key and nonce are set at a

length of 160 bits. Concurrently, the sanitization key also adheres to 160-bit length

requirement. The secp256k1 curve is selected as the designated curve. The Schnorr

Signature needs 3072 bits prime to reach the same security level. We use virtual

machines to simulate the vEN with different computation abilities. The number of

CPU is 1, and the RAM is 4GB. The code of each edge node is implemented in

Python 3.7. We adopt Floating-point operations per second (FLOPS) to measure the

computation ability of the edge node.

We use two datasets. One is the synthetic dataset. The cells in the message are

randomly generated with the same cell size. The other is the practical dataset. We

use the ”Pune Smart City Dataset” from Kaggle. It contains different kinds of smart

city data, such as temperature, sound, and light. The data is used to predict the air

quality index. The cell size is 20 bit.

102

5.5. Experiments

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
Cells Number 1e4

0

5

10

15

20

25
Ti

m
e

co
ns

um
pt

io
n/

m
s

ECMSS Sign ECMSS Sanitize ECMSS Verify

Figure 5.4: The Number of Verified Cells by The Last vEN

5.5.1 The Time Consumption under The Number of Cells

Verified by The last vEN

According to Chapter 5.2.2, the last vEN only performs verification tasks, while

the other vEN will do both sanitization and verification. We apply two vENs with

10FLOPS and 20FLOPS computation ability. Notably, the final vEN possesses more

extraordinary computational ability compared to the previous vEN. There are 30000

cells in one message. The number of cells verified by the last vEN increases from 3000

to 27000.

According to Figure 5.4, the time consumption decreases when the number of cells

verified by the last vEN increases. Based on the previous result, once the vEN

with the most incredible computation ability is deployed in the last order, the time

consumption of the whole system reduces.

103

Chapter 5. Subset Integrity among Multiple Entities

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
Cells Number 1e4

101

102

103

Ti
m

e
co

ns
um

pt
io

n/
m

s

ECMSS Sign
ECMSS Verify

IDSS Sign
IDSS Verify

Figure 5.5: The Time Consumption under The Number of Cells

5.5.2 Time Consumption under The Number of Cells

In this experiment, we demonstrate the time consumption of ECMSS and IDSS in

one vEN.

The number of cells in one message increases from 3000 to 30000, and the vEN verifies

all of them. According to Figure 5.5.2, The time consumption of ECMSS in signing

and verifying is smaller than that in IDSS. Moreover, the growth rate of IDSS is

monopoly increasing. When the number of cells is 3000, the time consumption of

signing and verifying in IDSS is about 40 and 108 times larger than those in ECMSS.

Once the number of cells is 30000, the time consumption of signing and verifying in

IDSS is about 134 and 298 times larger than those in ECMSS. The reason is that

IDSS is based on cells. The signature generation and verification should be done for

each cell. Therefore, the time consumption is significant.

104

5.5. Experiments

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
Sanitized Cells Number 1e4

100

101

102

103

Ti
m

e
co

ns
um

pt
io

n
ECMSS Sign
ECMSS Sanitize

ECMSS Verify
IDSS Sign

IDSS Sanitize
IDSS Verify

Figure 5.6: The Time Consumption under The Number of Sanitized Cells

5.5.3 Time Consumption under The Number of Sanitized

Cells

In this experiment, we compare the performance of ECMSS and IDSS when the

number of sanitized cells changes. The number of sanitized cells increases from 3000

to 27000. The participated vEN has the same computation ability.

Since both schemes support subset verification, the time for signing does not change.

According to the definition of sanitization, when the number of sanitized cells in-

creases, the number of verified cells reduces. As Figure 5.6 shows, the time for

ECMSS and IDSS sanitizing increases due to the same reason. Concurrently, the

time consumption of ECMSS and IDSS verifying decreases.

105

Chapter 5. Subset Integrity among Multiple Entities

5.5.4 The Number of gEN

In this experiment, we compare the three schemes for subset aggregation. The con-

struction of the Schnorr signature can naturally support the subset aggregation. We

assume that the gEN has the same computation ability. There are 100 IoT devices,

while each IoT devices has one message with 300 cells and the number of gEN in-

creases from 1 to 5. In IDSS scheme, each IoT device has the same key so that the

gEN can aggregate them. However, in ECMSS and Schnorr signature, the key for

signature generation is different.

Table 5.5 shows that the number of gEN has no effect on the time for aggregation

since the number of signatures for aggregation does not change. The IDSS scheme

consumes the most considerable time for aggregation because it divides the messages

into several cells and signs them separately. Therefore, the number of signatures is

more significant than that of the other two signature schemes, and its time consump-

tion is substantial. To reach the same security level, the Schnorr Signature needs a

3072 bits prime. Consequently, the time consumption becomes enormous.

Table 5.5: Time Consumption of Aggregation Under The Different Number of gEN

The Number of gEN 1 2 3 4 5

ECMSS 0.375 0.503 0.413 0.421 0.377

IDSS 7588.351 7652.625 7682.882 7716.708 7718.956

Schnorr Signature 9.937 10.987 10.333 9.931 10.331

5.5.5 The Number of vEN

In this experiment, we compare the three schemes in multi-hop verification offloading

scenarios. We assume that the computation ability of vENi is iFLOPS (e.g., the

106

5.5. Experiments

4 6 8 10 12 14 16 18 20
vEN

100

101

102

103

104

105

106

Ti
m

e
Co

ns
um

pt
io

n/
m

s

0

100

200

300

400

500

600

700

800

Ti
m

e
Co

ns
um

pt
io

n/
m

s

ECMSS Sanitize
ECMSS Verify

IDSS Sanitize
IDSS Verify

T-ECDSA Verify
ECMSS Sign

T-ECDSA Sign
IDSS Sign

(a) Semi-log Plot of The Time Consumption under The Number of vEN

4 6 8 10 12 14 16 18 20
vEN

0

100

200

300

400

500

600

Co
m

m
un

ica
tio

n
Co

st
/M

by
te

s ECMSS IDSS T-ECDSA

(b) The Communication Cost under The Number of vEN

Figure 5.7: Performance of ECMSS, IDSS, and T-ECDSA

107

Chapter 5. Subset Integrity among Multiple Entities

computation ability of vEN1 is 1FLOP). With the increasing number of vENs, those

vENs with strong computation ability will participate. For instance, when the number

of vEN is 4, only the vENs with 1, 2, 3, and 4FLOPS computation ability are involved.

When the number of vEN is 20, the vEN with 20FLOPS computation ability will

participate. We apply the practical dataset about the smart city in this experiment.

The threshold in the T-ECDSA scheme is 300, which is 1% of the number of cells. Due

to the advanced protocol in transmission (e.g., 5G and WiFi6), the time consumption

between two edge nodes can be minimized so that we ignore the time for transmission.

The vENs only sanitize and verify the message in ECMSS, and only verify the message

in T-ECDSA.

Figure 5.7(a) illustrates the time consumption of each scheme when the number of

vEN increases. Notably, the number of vENs does not impact the time consumption

of signing in three schemes since there is only one signature for each. For the verifier

side, the IDSS consumes the most significant time among the three schemes. The

reason has been explained in Chapter 5.5.2. The T-ECDSA scheme should use at

least 300 cells to recover the predetermined secret. Thus, signature verification takes

a long time. When the number of vEN increases, the sanitizing time decreases, as

shown in Chapter 5.5.1.

Figure 5.7(b) demonstrates the communication cost of ECMSS, IDSS, and T-ECDSA

among the vENs. The communication cost in IDSS and T-ECDSA is higher than that

in ECMSS. On one hand, there are n signatures in IDSS, while only one signature

is in ECMSS. On the other hand, although there is only one signature in the T-

ECDSA scheme, there are multiple shadows being transmitted with the messages.

Consequently, our proposed ECMSS scheme performs well in multi-hop verification

scenarios.

In summary, although ECMSS does not perform well on message verification on one

node, it performs better in multi-hop verification, which is suitable in collaborative

edge computing scenarios in the smart city.

108

5.5. Experiments

5.5.6 Workload Allocation under The Upper-bound Work-

load

In this experiment, we show how the workload affects the optimization. Five vENs

participate in the multi-hop verification offloading. Their CPU frequency increases

from 2GHz to 6GHz.

According to Eq. 5.11, the node with high CPU frequency will not be involved in

verification to reduce energy consumption. Furthermore, since the workload of each

vEN becomes more prominent, we can apply fewer edge nodes to achieve multi-hop

verification. Figure 5.8(b) proves that the energy consumption in Eavg is larger than

in Eopt. Therefore, energy optimization is practical.

5.5.7 Workload Allocation under The Number of vEN

In this experiment, we show how the number of vEN affects energy consumption and

how to optimize the energy consumption in the system. The number of vEN increases

from 3 to 7. The CPU frequency of each vEN increases from 2GHz to 8GHz. For

instance, when the number of vENs is 4, only the vENs with 2, 3, 4, and 5GHz

CPU frequency are involved. To ensure that all vENs participate in verification, we

consider that each vEN verifies at least 1000 cells. The upper-bound workload is

stable, which is 20000 bits.

Based on Figure 5.9(a), vEN can randomly choose the cells according to the computa-

tion ability of each vEN. Moreover, when the number of vENs is extensive, and their

workload is large enough to verify the message, the vENs with significant CPU fre-

quency decrease in order to verify the number of cells. However, since the number of

transmissions becomes large, the energy consumption for the whole system increases

according to 5.9(b). Moreover, the increase rate is low in the system with the Eopt.

109

Chapter 5. Subset Integrity among Multiple Entities

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
The Upper-Bound Workload/bit 1e5

0

5000

10000

15000

20000

25000

30000

35000

Ve
rif

ie
d

Ce
lls

 N
um

be
r

EN1 EN2 EN3 EN4 EN5

(a) The Number of cells Verified by vEN under The Upper-bound Workload

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
The Upper-Bound Workload/bit 1e5

0

20

40

60

80

100

120

En
er

gy
 C

on
su

m
pt

io
n/

J

Eopt Eavg

(b) The Energy Consumption under The Upper-bound Workload

Figure 5.8: Performance of Optimization under The Upper-bound Workload

110

5.5. Experiments

3 4 5 6 7
vEN

0

5000

10000

15000

20000

25000

30000

35000

Ve
rif

ie
d

Ce
lls

 N
um

be
r

EN1
EN2

EN3
EN4

EN5
EN6

EN7

(a) The Number of cells Verified by vEN under The Number of vEN

3 4 5 6 7
vEN

0
20
40
60
80

100
120
140
160
180

En
er

gy
 C

on
su

m
pt

io
n/

J

Eopt Eavg

(b) The Energy Consumption under The Number of vEN

Figure 5.9: Performance of Optimization under The Number of vEN

111

Chapter 5. Subset Integrity among Multiple Entities

5.6 Summary

The message integrity problem becomes essential in the edge computing scenario.

However, one edge node has a bottleneck in computation ability. Although upgrad-

ing hardware can be applied to the edge node to increase its computation ability, we

should pay more money to get more workload or computation ability, which is in-

convenient. Consequently, subset verification is necessary. In this situation, the edge

node can selectively verify a subset of messages and transmit the rest of the mes-

sages to resource-sufficient neighbours. In this chapter, we propose the Elliptic Curve

Based Multi-hop Sanitizable Signature (ECMSS), which supports subset aggregation

and verification in collaborative edge computing scenarios. The theoretical analysis

proves the correctness and unforgeability of ECMSS. Furthermore, according to the

experiments, ECMSS performs better than the ECDSA scheme in terms of both time

consumption and communication cost. According to the performance of ECMSS, it

can be applied in some real-life scenarios, such as distributed machine learning and

big data analysis. In addition, we provide an energy optimization solution for the

system.

112

Chapter 6

Conclusion and Future Works

6.1 Conclusion

Message integrity is a critical aspect in the IoT scenario. However, one of the chal-

lenges we face is the computation ability bottleneck in IoT devices. Although ad-

vanced hardware can be applied to increase its computation ability, we should pay

more money to get more workload or computation ability, which is inconvenient. This

paper aims to shed light on this issue from three different perspectives.

1. Subset privacy in subset integrity: As discussed in our proposal, subset

privacy is a by-product of the subset integrity problem. Most existing works

cannot solve the problem, especially when the sender does not know the privacy

request before the message is transmitted. The SPMAC scheme can solve the

problem even if the requested cells are randomly deployed in the message. In

other words, this scheme is suitable in high-dimension messages, which have

been widely used in machine learning scenarios. Compared with the PMAC

scheme, it can reach the same security with higher efficiency.

2. Subset integrity between two entities: The subset integrity between two

113

Chapter 6. Conclusion and Future Works

entities is a particular situation. When one of the entities has more extraordi-

nary computation ability than the other, PV-MAC can be applied in this situa-

tion. The transmission delay can be ignored thanks to fog computing, while the

computation ability can be guaranteed. Furthermore, we provide a workload

optimization solution in this scheme to minimize the energy consumption of the

data user.

3. Subset integrity among multiple entities: Throughout this study, it is

easy to find that the problem is in a general situation. The ECMSS scheme

can be used when several spare edge nodes are deployed in the network. This

solution has further application in a distributed machine-learning scenario. In

addition, we provide an energy optimization solution for the system.

To conclude, message integrity remains a pressing concern in the IoT scenario. When

IoT devices confront computation ability limitations, subset integrity becomes essen-

tial. With the improvement in fog and edge computing technology, verification tasks

can be offloaded to other entities. It is imperative to empower the cooperated entities

to selectively and optimally verify the message subset.

6.2 Future Work

In the future, we will devise a novel scheme to fulfill verification and verifiable com-

putation. Presently, most fog and edge computing are provided by a third party, so

they cannot be fully trusted. Therefore, our proposed schemes may not be universally

applicable. We will study lightweight integrity assurance schemes with a half-trusted

third party for partial verification. It is more complex than the system model pre-

sented in this report because the data user cannot rely solely on the verification result.

Specifically, the data user must verify the results obtained from the fog node without

recomputing them. In our second work, the verification works are utterly outsourced

114

6.2. Future Work

to the edge nodes. Thus, the verifiable computation is much more critical.

115

References

[1] IoT Analytics. Global iot market size to grow 19despite economic downturn.

https://iot-analytics.com/iot-market-size/, February 7, 2023.

[2] Julio Arauz and Tony Fynn-Cudjoe. Actuator quality in the internet of things.

In 2013 IEEE International Conference on Sensing, Communications and Net-

working (SECON), pages 34–42. IEEE, 2013.

[3] Muhammad Arif, Guojun Wang, and Valentina Emilia Balas. Secure vanets:

trusted communication scheme between vehicles and infrastructure based on

fog computing. Stud. Inform. Control, 27(2):235–246, 2018.

[4] Frederik Armknecht, Paul Walther, Gene Tsudik, Martin Beck, and Thorsten

Strufe. Promacs: Progressive and resynchronizing macs for continuous efficient

authentication of message streams. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, pages 211–223, 2020.

[5] Kondapally Ashritha, M Sindhu, and K. V. Lakshmy. Redactable blockchain

using enhanced chameleon hash function. In International Conference on Ad-

vanced Computing and Communication Systems, 2019.

[6] Charles Asmuth and John Bloom. A modular approach to key safeguarding.

IEEE transactions on information theory, 29(2):208–210, 1983.

116

https://iot-analytics.com/iot-market-size/

References

[7] Giuseppe Ateniese, Daniel H Chou, Breno de Medeiros, and Gene Tsudik. San-

itizable signatures. In European Symposium on Research in Computer Security,

pages 159–177. Springer, 2005.

[8] Mohsen Bafandehkar, Sharifah Md Yasin, Ramlan Mahmod, and Zurina Mohd

Hanapi. Comparison of ecc and rsa algorithm in resource constrained devices.

In 2013 International Conference on IT Convergence and Security (ICITCS),

pages 1–3. IEEE, 2013.

[9] Luiz André Barroso. The price of performance: An economic case for chip

multiprocessing. Queue, 3(7):48–53, 2005.

[10] Padma Bh, D Chandravathi, and P Prapoorna Roja. Encoding and decod-

ing of a message in the implementation of elliptic curve cryptography using

koblitz’s method. International Journal on Computer Science and Engineering,

2(5):1904–1907, 2010.

[11] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.

On the security goals of white-box cryptography. IACR transactions on cryp-

tographic hardware and embedded systems, pages 327–357, 2020.

[12] Anne Broadbent and Evelyn Wainewright. Efficient simulation for quantum

message authentication. In International Conference on Information Theoretic

Security, pages 72–91. Springer, 2016.

[13] Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin, Martin

Franz, Stefan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter,

Bertram Poettering, et al. Redactable signatures for tree-structured data: Def-

initions and constructions. In Applied Cryptography and Network Security: 8th

International Conference, ACNS 2010, Beijing, China, June 22-25, 2010. Pro-

ceedings 8, pages 87–104. Springer, 2010.

117

References

[14] Jan Camenisch, Ueli Maurer, and Markus Stadler. Digital payment sys-

tems with passive anonymity-revoking trustees. Journal of Computer Security,

5(1):69–89, 1997.

[15] Luis M Candanedo and Véronique Feldheim. Accurate occupancy detection of

an office room from light, temperature, humidity and co2 measurements using

statistical learning models. Energy and Buildings, 112:28–39, 2016.

[16] Hervé Chabanne, Houssem Maghrebi, and Emmanuel Prouff. Linear repairing

codes and side-channel attacks. IACR Transactions on Cryptographic Hardware

and Embedded Systems, pages 118–141, 2018.

[17] Zheng-Yi Chai, Ying-Jie Zhao, and Ya-Lun Li. Multi-task computation offload-

ing based on evolutionary multi-objective optimization in industrial internet of

things. IEEE Internet of Things Journal, 2024.

[18] Qi Chen, Chunming Tang, and Zhiqiang Lin. Efficient explicit constructions of

multipartite secret sharing schemes. IEEE Transactions on Information Theory,

68(1):601–631, 2021.

[19] Wang Chen. An ibe-based security scheme on internet of things. In 2012 IEEE

2nd International Conference on Cloud Computing and Intelligence Systems,

volume 3, pages 1046–1049. IEEE, 2012.

[20] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. Chameleon hashing with-

out key exposure. In International Conference on Information Security, pages

87–98. Springer, 2004.

[21] Yanbo Chen and Yunlei Zhao. Half-aggregation of schnorr signatures with tight

reductions. In Computer Security–ESORICS 2022: 27th European Symposium

on Research in Computer Security, Copenhagen, Denmark, September 26–30,

2022, Proceedings, Part II, pages 385–404. Springer, 2022.

118

References

[22] Sherman S. M. Chow. Verifiable pairing and its applications. In Information

Security Applications, International Workshop, Wisa, Jeju Island, Korea, Au-

gust, Revised Selected Papers, 2004.

[23] Sherman S. M. Chow, Man Ho Au, and Willy Susilo. Server-aided signatures

verification secure against collusion attack. Information Security Technical Re-

port, 17(3):46–57, 2013.

[24] Clifford Cocks. An identity based encryption scheme based on quadratic

residues. In IMA international conference on cryptography and coding, pages

360–363. Springer, 2001.

[25] Lizhen Cui, Jing Chen, Wei He, Hui Li, Wei Guo, and Zhiyuan Su. Achieving

approximate global optimization of truth inference for crowdsourcing micro-

tasks. Data Science and Engineering, 6(3):294–309, 2021.

[26] Pengfei Deng, Shaohua Hong, Jie Qi, Lin Wang, and Haixin Sun. A lightweight

transformer-based approach of specific emitter identification for the automatic

identification system. IEEE Transactions on Information Forensics and Secu-

rity, 2023.

[27] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H Luan, and Hao Liang.

Optimal workload allocation in fog-cloud computing toward balanced delay and

power consumption. IEEE internet of things journal, 3(6):1171–1181, 2016.

[28] Jianqi Du, Fenghao Xu, Chennan Zhang, Zidong Zhang, Xiaoyin Liu,

Pengcheng Ren, Wenrui Diao, Shanqing Guo, and Kehuan Zhang. Identify-

ing the ble misconfigurations of iot devices through companion mobile apps. In

2022 19th Annual IEEE International Conference on Sensing, Communication,

and Networking (SECON), pages 343–351. IEEE, 2022.

119

References

[29] Jing Du, Jianliang Xu, Xueyan Tang, and Haibo Hu. ipda: supporting privacy-

preserving location-based mobile services. In 2007 international conference on

mobile data management, pages 212–214. IEEE, 2007.

[30] Sabyasachi Dutta, Tamal Bhore, M Kutubuddin Sardar, Avishek Adhikari, and

Kouichi Sakurai. Visual secret sharing scheme with distributed levels of im-

portance of shadows. In Proceedings of the Fifth International Conference on

Mathematics and Computing: ICMC 2019, pages 19–32. Springer, 2020.

[31] Amine Erroutbi, Adnane El Hanjri, and Abderrahim Sekkaki. Secure and

lightweight hmac mutual authentication protocol for communication between

iot devices and fog nodes. In 2019 IEEE International Smart Cities Conference

(ISC2), pages 251–257. IEEE, 2019.

[32] Xiaoqin Feng, Jianfeng Ma, Huaxiong Wang, Yinbin Miao, Ximeng Liu, and

Zhongyuan Jiang. An accessional signature scheme with unmalleable transac-

tion implementation to securely redeem cryptocurrencies. IEEE Transactions

on Information Forensics and Security, 2023.

[33] Sarah Abdelwahab Gaballah, Christoph Coijanovic, Thorsten Strufe, and Max

Mühlhäuser. 2pps—publish/subscribe with provable privacy. In 2021 40th In-

ternational Symposium on Reliable Distributed Systems (SRDS), pages 198–209.

IEEE, 2021.

[34] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In

Public Key Cryptography-PKC 2006: 9th International Conference on Theory

and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26,

2006. Proceedings 9, pages 257–273. Springer, 2006.

[35] Oded Goldreich. On expected probabilistic polynomial-time adversaries: A

suggestion for restricted definitions and their benefits. Journal of cryptology,

23:1–36, 2010.

120

References

[36] Louis Goubin and Ange Martinelli. Protecting aes with shamir’s secret sharing

scheme. In Cryptographic Hardware and Embedded Systems–CHES 2011: 13th

International Workshop, Nara, Japan, September 28–October 1, 2011. Proceed-

ings 13, pages 79–94. Springer, 2011.

[37] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via com-

mitting authenticated encryption. In Advances in Cryptology–CRYPTO 2017:

37th Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 20–24, 2017, Proceedings, Part III 37, pages 66–97. Springer, 2017.

[38] Khizar Hameed, Saurabh Garg, Muhammad Bilal Amin, Byeong Kang, and

Abid Khan. A context-aware information-based clone node attack detection

scheme in internet of things. Journal of Network and Computer Applications,

197:103271, 2022.

[39] Mahmodul Hasan. Real-time and low-cost iot based farming using raspberry pi.

Indonesian Journal of Electrical Engineering and Computer Science, 17(1):197–

204, 2020.

[40] Michael Haus, Muhammad Waqas, Aaron Yi Ding, Yong Li, Sasu Tarkoma,

and Jörg Ott. Security and privacy in device-to-device (d2d) communication:

A review. IEEE Communications Surveys & Tutorials, 19(2):1054–1079, 2017.

[41] Abhishek Hazra, Pradeep Rana, Mainak Adhikari, and Tarachand Amgoth. Fog

computing for next-generation internet of things: fundamental, state-of-the-art

and research challenges. Computer Science Review, 48:100549, 2023.

[42] Xiaofan He, Richeng Jin, and Huaiyu Dai. Multi-hop task offloading with on-

the-fly computation for multi-uav remote edge computing. IEEE Transactions

on Communications, 70(2):1332–1344, 2021.

[43] Verner E Hoggatt Jr and Marjorie Bicknell. Generalized fibonacci polynomials

and zeckendorf’s theorem. The Fibonacci Quarterly, 11(4):399–419, 1973.

121

References

[44] Zicong Hong, Wuhui Chen, Huawei Huang, Song Guo, and Zibin Zheng. Multi-

hop cooperative computation offloading for industrial iot–edge–cloud comput-

ing environments. IEEE Transactions on Parallel and Distributed Systems,

30(12):2759–2774, 2019.

[45] Haibo Hu, Qian Chen, and Jianliang Xu. Verdict: Privacy-preserving authen-

tication of range queries in location-based services. In 2013 IEEE 29th In-

ternational Conference on Data Engineering (ICDE), pages 1312–1315. IEEE,

2013.

[46] Haibo Hu, Qian Chen, Jianliang Xu, and Byron Choi. Assuring spatio-temporal

integrity on mobile devices with minimum location disclosure. IEEE Transac-

tions on Mobile Computing, 16(11):3000–3013, 2017.

[47] Qiyu Hu, Yunlong Cai, Guanding Yu, Zhijin Qin, Minjian Zhao, and Geof-

frey Ye Li. Joint offloading and trajectory design for uav-enabled mobile edge

computing systems. IEEE Internet of Things Journal, 6(2):1879–1892, 2018.

[48] Haochen Hua, Yutong Li, Tonghe Wang, Nanqing Dong, Wei Li, and Junwei

Cao. Edge computing with artificial intelligence: A machine learning perspec-

tive. ACM Computing Surveys, 55(9):1–35, 2023.

[49] Ke Huang, Xiaosong Zhang, Yi Mu, Xiaofen Wang, Guomin Yang, Xiaojiang

Du, Fatemeh Rezaeibagha, Qi Xia, and Mohsen Guizani. Building redactable

consortium blockchain for industrial internet-of-things. IEEE Transactions on

Industrial Informatics, 15(6):3670–3679, 2019.

[50] P. Indyk. Approximate nearest neighbor: Towards removing the curse of di-

mensionality. In Proc Symposium on Theory of Computing, 1998.

[51] Meng Jia, Jing Chen, Kun He, Ruiying Du, Li Zheng, Mingxi Lai, Donghui

Wang, and Fei Liu. Redactable blockchain from decentralized chameleon hash

functions. IEEE Transactions on Information Forensics and Security, 2022.

122

References

[52] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digi-

tal signature algorithm (ecdsa). International journal of information security,

1(1):36–63, 2001.

[53] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic

signature schemes. In Cryptographers’ track at the RSA conference, pages 244–

262. Springer, 2002.

[54] Rikuhiro Kojima, Dai Yamamoto, Takeshi Shimoyama, Kouichi Yasaki, and

Kazuaki Nimura. A new schnorr multi-signatures to support both multiple mes-

sages signing and key aggregation. Journal of Information Processing, 29:525–

536, 2021.

[55] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for

message authentication, 1997.

[56] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. 1998.

[57] Satyam Kumar, Vishnu Asutosh Dasu, Anubhab Baksi, Santanu Sarkar,

Dirmanto Jap, Jakub Breier, and Shivam Bhasin. Side channel attack on stream

ciphers: A three-step approach to state/key recovery. IACR Transactions on

Cryptographic Hardware and Embedded Systems, pages 166–191, 2022.

[58] Somansh Kumar and Ashish Jasuja. Air quality monitoring system based on

iot using raspberry pi. In 2017 International Conference on Computing, Com-

munication and Automation (ICCCA), pages 1341–1346. IEEE, 2017.

[59] Asif Ali Laghari, Hui He, Muhammad Shafiq, and Asiya Khan. Assessing effect

of cloud distance on end user’s quality of experience (qoe). In 2016 2nd IEEE

international conference on computer and communications (ICCC), pages 500–

505. IEEE, 2016.

123

References

[60] Russell W. F. Lai, Tao Zhang, Sherman S. M. Chow, and Dominique Schrder.

Efficient sanitizable signatures without random oracles. Springer International

Publishing, 2016.

[61] Russell WF Lai, Raymond KH Tai, Harry WH Wong, and Sherman SM Chow.

Multi-key homomorphic signatures unforgeable under insider corruption. In

International Conference on the Theory and Application of Cryptology and In-

formation Security, pages 465–492. Springer, 2018.

[62] Guangshun Li, Jiahe Yan, Lu Chen, Junhua Wu, Qingyan Lin, and Ying Zhang.

Energy consumption optimization with a delay threshold in cloud-fog coopera-

tion computing. IEEE access, 7:159688–159697, 2019.

[63] Song Li, Jinguang Han, Deyu Tong, and Jie Cui. Redactable signature-based

public auditing scheme with sensitive data sharing for cloud storage. IEEE

Systems Journal, 2022.

[64] Tong Li, Wenbin Chen, Yi Tang, and Hongyang Yan. A homomorphic network

coding signature scheme for multiple sources and its application in iot. Security

and communication networks, 2018, 2018.

[65] Yaping Li, Hongyi Yao, Minghua Chen, Sidharth Jaggi, and Alon Rosen. Ripple

authentication for network coding. In 2010 Proceedings IEEE INFOCOM, pages

1–9. IEEE, 2010.

[66] Qun Lin, Hongyang Yan, Zhengan Huang, Wenbin Chen, Jian Shen, and

Yi Tang. An id-based linearly homomorphic signature scheme and its appli-

cation in blockchain. IEEE Access, 6:20632–20640, 2018.

[67] Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, and Jinjun

Chen. Mur-dpa: Top-down levelled multi-replica merkle hash tree based secure

public auditing for dynamic big data storage on cloud. IEEE Transactions on

Computers, 64(9):2609–2622, 2015.

124

References

[68] Jianhang Liu, Ning Liu, Lei Liu, Shibao Li, Hailong Zhu, and Peiying Zhang.

A proactive stable scheme for vehicular collaborative edge computing. IEEE

Transactions on Vehicular Technology, 2023.

[69] Lei Liu, Ming Zhao, Miao Yu, Mian Ahmad Jan, Dapeng Lan, and Amirhosein

Taherkordi. Mobility-aware multi-hop task offloading for autonomous driving

in vehicular edge computing and networks. IEEE Transactions on Intelligent

Transportation Systems, 24(2):2169–2182, 2022.

[70] Yujiong Liu, Shangguang Wang, Jie Huang, and Fangchun Yang. A compu-

tation offloading algorithm based on game theory for vehicular edge networks.

In 2018 IEEE International Conference on Communications (ICC), pages 1–6.

IEEE, 2018.

[71] Zhenpeng Liu, Lele Ren, Ruilin Li, Qiannan Liu, and Yonggang Zhao. Id-based

sanitizable signature data integrity auditing scheme with privacy-preserving.

Computers & Security, 121:102858, 2022.

[72] Chen Lyu, Amit Pande, Xinlei Wang, Jindan Zhu, Dawu Gu, and Prasant

Mohapatra. Clip: Continuous location integrity and provenance for mobile

phones. In 2015 IEEE 12th International Conference on Mobile Ad Hoc and

Sensor Systems, pages 172–180. IEEE, 2015.

[73] Keith M Martin, Josef Pieprzyk, Rei Safavi-Naini, Huaxiong Wang, and Peter R

Wild. Threshold macs. In International Conference on Information Security

and Cryptology, pages 237–252. Springer, 2002.

[74] Mehrdad Nojoumian and Douglas R Stinson. Sequential secret sharing as a new

hierarchical access structure. J. Internet Serv. Inf. Secur., 5(2):24–32, 2015.

[75] Goiuri Peralta, Raul G Cid-Fuentes, Josu Bilbao, and Pedro M Crespo. Homo-

morphic encryption and network coding in iot architectures: Advantages and

future challenges. Electronics, 8(8):827, 2019.

125

References

[76] Pericle Perazzo and Riccardo Xefraj. Smartfly: Fork-free super-light ethereum

classic clients for the internet of things. IEEE Internet of Things Journal, 2024.

[77] Thomas Peyrin. Improved differential attacks for echo and grøstl. In Advances

in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Bar-

bara, CA, USA, August 15-19, 2010. Proceedings 30, pages 370–392. Springer,

2010.

[78] Henrich C Pöhls and Kai Samelin. Accountable redactable signatures. In 2015

10th International Conference on Availability, Reliability and Security, pages

60–69. IEEE, 2015.

[79] J. Pomykala, Henryk Kuakowski, P. Sapiecha, and Baej Grela. Id-based, proxy,

threshold signature scheme. International Journal of Electronics and Telecom-

munications, 2023.

[80] Thomas Rausch, Cosmin Avasalcai, and Schahram Dustdar. Portable energy-

aware cluster-based edge computers. In 2018 IEEE/ACM Symposium on Edge

Computing (SEC), pages 260–272. IEEE, 2018.

[81] Hassan Rehan. Revolutionizing america’s cloud computing the pivotal role of

ai in driving innovation and security. Journal of Artificial Intelligence General

science (JAIGS) ISSN: 3006-4023, 2(1):189–208, 2024.

[82] Yuvraj Sahni, Jiannong Cao, Lei Yang, and Yusheng Ji. Multi-hop multi-

task partial computation offloading in collaborative edge computing. IEEE

Transactions on Parallel and Distributed Systems, 32(5):1133–1145, 2020.

[83] Kai Samelin and Daniel Slamanig. Policy-based sanitizable signatures. In Topics

in Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA Confer-

ence 2020, San Francisco, CA, USA, February 24–28, 2020, Proceedings, pages

538–563. Springer, 2020.

126

References

[84] Parsa Sarosh, Shabir A Parah, and Ghulam Mohiuddin Bhat. Utilization of

secret sharing technology for secure communication: a state-of-the-art review.

Multimedia Tools and Applications, 80(1):517–541, 2021.

[85] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. A secure fog-based ar-

chitecture for industrial internet of things and industry 4.0. IEEE Transactions

on Industrial Informatics, 17(4):2316–2324, 2020.

[86] Nima Seyedtalebi. Algorithms for provisioning edge computing resources to

minimize data transport costs. In 2019 16th Annual IEEE International Confer-

ence on Sensing, Communication, and Networking (SECON), pages 1–9. IEEE,

2019.

[87] Furqan Shahid and Abid Khan. Smart digital signatures (sds): A post-quantum

digital signature scheme for distributed ledgers. Future Generation Computer

Systems, 111:241–253, 2020.

[88] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

[89] Adi Shamir. Identity-based cryptosystems and signature schemes. In Workshop

on the theory and application of cryptographic techniques, pages 47–53. Springer,

1984.

[90] Mingqian Shao, Yifan Liul, Bin Duo, Jin Ning, Junsong Luo, Xing Zhu, Mingzhe

Liu, and Zhengqiang Wang. Joint passive beamforming and elevation angle-

dependent trajectory design for ris-aided uav-enabled wireless sensor networks.

In 2022 19th Annual IEEE International Conference on Sensing, Communica-

tion, and Networking (SECON), pages 488–496. IEEE, 2022.

[91] Maha Sliti, Mohamed Hamdi, and Noureddine Boudriga. An elliptic threshold

signature framework for k-security in wireless sensor networks. In 2008 15th

127

References

IEEE International Conference on Electronics, Circuits and Systems, pages

226–229. IEEE, 2008.

[92] Yuxuan Sun, Xueying Guo, Jinhui Song, Sheng Zhou, Zhiyuan Jiang, Xin Liu,

and Zhisheng Niu. Adaptive learning-based task offloading for vehicular edge

computing systems. IEEE Transactions on vehicular technology, 68(4):3061–

3074, 2019.

[93] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the publica-

tion of trajectories. In The Ninth International Conference on Mobile Data

Management (mdm 2008), pages 65–72. IEEE, 2008.

[94] Yao Tian, Xi Zhao, and Xiaofang Zhou. Db-lsh 2.0: Locality-sensitive hashing

with query-based dynamic bucketing. IEEE Transactions on Knowledge and

Data Engineering, 2023.

[95] Yan Kyaw Tun, Yu Min Park, Nguyen H Tran, Walid Saad, Shashi Raj Pandey,

and Choong Seon Hong. Energy-efficient resource management in uav-assisted

mobile edge computing. IEEE Communications Letters, 25(1):249–253, 2020.

[96] Tian Wang, Md Zakirul Alam Bhuiyan, Guojun Wang, Lianyong Qi, Jie Wu,

and Thaier Hayajneh. Preserving balance between privacy and data integrity in

edge-assisted internet of things. IEEE Internet of Things Journal, 7(4):2679–

2689, 2019.

[97] Yulong Wang, Kun Qin, Yixiang Chen, and Pengxiang Zhao. Detecting anoma-

lous trajectories and behavior patterns using hierarchical clustering from taxi

gps data. ISPRS International Journal of Geo-Information, 7(1):25, 2018.

[98] Zhiwei Wang, Ruirui Xie, and Shaohui Wang. Attribute-based server-aided

verification signature. IACR Cryptol. ePrint Arch., 2013:406, 2014.

[99] Xin Xie, Chentao Wu, Gen Yang, Zongxin Ye, Xubin He, Jie Li, Minyi Guo,

Guangtao Xue, Yuanyuan Dong, and Yafei Zhao. Az-recovery: an efficient

128

References

crossing-az recovery scheme for erasure coded cloud storage systems. In 2020

International Symposium on Reliable Distributed Systems (SRDS), pages 236–

245. IEEE, 2020.

[100] Chugui Xu, Ju Ren, Deyu Zhang, and Yaoxue Zhang. Distilling at the edge:

A local differential privacy obfuscation framework for iot data analytics. IEEE

Communications Magazine, 56(8):20–25, 2018.

[101] Zhezhuang Xu, Guanglun Liu, Haotian Yan, Bin Cheng, and Feilong Lin. Trail-

based search for efficient event report to mobile actors in wireless sensor and

actor networks. Sensors, 17(11):2468, 2017.

[102] Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, and Zhenghua

Xu. Destination prediction by sub-trajectory synthesis and privacy protection

against such prediction. In 2013 IEEE 29th international conference on data

engineering (ICDE), pages 254–265. IEEE, 2013.

[103] Haotian Yan, Haibo Hu, Qingqing Ye, and Li Tang. Spmac: Scalable prefix

verifiable message authentication code for internet of things. IEEE Transactions

on Network and Service Management, 2022.

[104] Haotian Yan, Zhezhuang Xu, Jianfeng He, Liquan Chen, and Hao Jiang.

Striped-flooding: Improve scalability and energy efficiency of flooding algorithm

in wireless sensor and actor networks. In 2016 IEEE 84th Vehicular Technology

Conference (VTC-Fall), pages 1–5. IEEE, 2016.

[105] Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, and Hao-

tian Yan. Beyond value perturbation: Local differential privacy in the temporal

setting. In IEEE INFOCOM 2021-IEEE Conference on Computer Communi-

cations, pages 1–10. IEEE, 2021.

129

References

[106] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim.

Energy-efficient resource allocation for mobile-edge computation offloading.

IEEE Transactions on Wireless Communications, 16(3):1397–1411, 2016.

[107] Jiangtao Yuan, Jing Yang, Chenyu Wang, Xingxing Jia, Fang-Wei Fu, and

Guoai Xu. A new efficient hierarchical multi-secret sharing scheme based on lin-

ear homogeneous recurrence relations. Information Sciences, 592:36–49, 2022.

[108] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature

scheme from bilinear pairings and its applications. In International Workshop

on Public Key Cryptography, pages 277–290. Springer, 2004.

[109] Xingzhou Zhang, Yifan Wang, Sidi Lu, Liangkai Liu, Weisong Shi, et al. Openei:

An open framework for edge intelligence. In 2019 IEEE 39th International Con-

ference on Distributed Computing Systems (ICDCS), pages 1840–1851. IEEE,

2019.

130

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Emerging Message Integrity Problem
	Fog and Edge Computing
	Contribution and Outlines

	Literature Review and Preliminaries
	Related Work
	Message Integrity
	Message Privacy
	Computation Offloading

	Preliminaries
	Prefix-Verifiable Message Authentication Code
	Hierarchical Secret Sharing
	Chameleon Hashing
	Sanitizable Signature

	Subset Privacy Problem in Subset Integrity
	Problem Definition
	Scalable Prefix Verifiable Message Authentication Code
	Syntax of Fibo-SPMAC
	Syntax of ECP-SPMAC

	Theoretical Analysis
	Message Subset Privacy
	Message Integrity

	Experiments
	Performance of Four Schemes under Different Devices
	Performance of Four Schemes under Different Number of Cells
	Performance of Four Schemes under Different Number of Disclosed Cells
	Practical Application

	Summary

	Subset Integrity between Two Entities
	Problem Definition and System Model
	System Model
	Problem Definition

	Partial Verification Message Authentication Code
	Secret Sharing based Message Authentication Code
	Hierarchical Secret Sharing Based Message Authentication Code
	The Syntax of PV-MAC

	Theoretical Analysis
	Time Consumption of SS-MAC and HSS-MAC
	Security of PV-MAC

	Energy Optimization in PV-MAC
	The Level Weight Generation

	Improvement on PV-MAC
	Experiment Result
	Time Consumption of PV-MAC under Different Cell Size
	Time Consumption of PV-MAC under The Number of Levels
	Comparison between PV-SS-MAC and PV-MAC
	Performance of PV-SS-MAC, PV-MAC, and CHMAC
	Workload Allocation PV-SS-MAC, PV-MAC, and PV-CMAC
	Performance of PV-MAC in Offline and Online Verification

	Summary

	Subset Integrity among Multiple Entities
	Problem Definition and System Model
	System and Threat Model
	Problem Definition

	Elliptic Curve based Multi-hop Sanitizable Signature
	Elliptic Curve Based Chameleon Hash
	Elliptic Curve Based Multi-hop Sanitizable Signature

	Multi-hop Verification Optimization
	Security Analysis
	Correctness
	Unforgeability
	Non-transferability

	Experiments
	The Time Consumption under The Number of Cells Verified by The last vEN
	Time Consumption under The Number of Cells
	Time Consumption under The Number of Sanitized Cells
	The Number of gEN
	The Number of vEN
	Workload Allocation under The Upper-bound Workload
	Workload Allocation under The Number of vEN

	Summary

	Conclusion and Future Works
	Conclusion
	Future Work

	References

