

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DISTRIBUTED SECURITY

ENHANCEMENT FROM A DATA

MANAGEMENT PERSPECTIVE:

THEORETICAL FOUNDATIONS AND

PRACTICAL APPLICATIONS

YUE FU

PhD

The Hong Kong Polytechnic University

2024

The Hong Kong Polytechnic University

Department of Electrical and Electronic Engineering

Distributed Security Enhancement from A Data

Management Perspective: Theoretical Foundations

and Practical Applications

Yue Fu

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

April 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yue Fu

Abstract

This thesis explores the critical need for enhanced security measures in distributed

systems, addressing vulnerabilities exposed by sophisticated cyber-attacks such as

DDoS. It delves into advanced cryptographic techniques and data management strate-

gies designed to secure data outsourcing, enable searchable encryption, and protect

data integrity against online manipulations. Motivated by imperative security goals

in the current landscape of distributed systems, this thesis develops three innovative

privacy-preserving schemes designed to enhance security measures and ensure robust

data protection. The first scheme addresses vulnerabilities in password authentication

systems, employing a novel cryptographic approach that minimizes computational

overhead and enhances resistance against brute-force attacks. This methodology se-

cures password transactions and efficiently manages large volumes of authentication

requests. The second scheme focuses on secure indexing, particularly for bi-attribute

datasets common in advanced data analytics and AI applications. It introduces an op-

timized searchable encryption technique that allows for secure and efficient querying

of encrypted databases without compromising data privacy. This scheme leverages

modified probabilistic data structures to enhance performance and reduce potential

privacy leaks through advanced inference attacks. The third scheme tackles the chal-

lenge of maintaining data integrity in the face of sophisticated online manipulation

attacks. It integrates a game-theoretical model that dynamically adapts to evolving

threats, effectively countering malicious attempts to alter data. This model uses a

combination of real-time threat analysis and strategic response mechanisms to ensure

i

that data remains accurate and reliable, thus preserving the integrity essential for

critical decision-making processes.

ii

Publications Arising from the

Thesis

1. Y. Fu, Q. Ye, R. Du, and H. Hu. “Interactive Trimming against Evasive Online

Data Manipulation Attacks: A Game-Theoretic Approach”, IEEE International

Conference on Data Engineering (ICDE), May 13-17, 2024, Utrecht.

2. Y. Fu, Q. Ye, R. Du, and H. Hu. “Collecting Multi-type and Correlation-

Constrained Streaming Sensor Data with Local Differential Privacy.”, ACM

Transactions on Sensor Networks, September 2023, https://doi.org/10.1145/3623637.

3. Y. Fu, M. H. Au, R. Du, H. Hu, and D. Li. “Cloud Password Shield: A Secure

Cloud-based Firewall against DDoS on Authentication Servers”, Proc. of 40th

IEEE International Conference on Distributed Computing Systems (ICDCS ’20)

, July 8 – 10, 2020, Singapore, pp. 1209-1210, doi: 10.1109/ICDCS47774.2020.00154.

4. Y. Fu, Q. Ye, R. Du, and H. Hu. “Unified Proof of Work: Delegating and Solv-

ing Customized Computationally Bounded Problems in A Privacy-preserving

Way”, The 6th APWeb-WAIM International Joint Conference on Web and Big

Data (APWeb-WAIM), 2022, Lecture Notes in Computer Science, vol 13423.

Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3 24.

5. Y. Fu, Q. Ye, R. Du, and H. Hu. “Secure Bi-attribute Index: Batch Membership

Tests over the Non-sensitive Attribute”, submitted to Computers & Security.

iii

6. R. Du, Q. Ye, Y. Fu, and H. Hu. “Collecting High-Dimensional and Correlation-

Constrained Data with Local Differential Privacy”, Proc. of 18th IEEE Inter-

national Conference on Sensing, Communication, and Networking (SECON),

2021, 19373-19386.

7. R. Du, Q. Ye, Y. Fu, H. Hu, J. Li, C. Fang, and J. Shi. “Differential Aggregation

against General Colluding Attackers” IEEE International Conference on Data

Engineering (ICDE), 2023.

8. R. Du, Q. Ye, Y. Fu, and H. Hu. “Distribution estimation under LDP against

arbitrarily distributed attacks”, submitted to IEEE Transactions on Knowledge

and Data Engineering.

9. R. Du, Q. Ye, Y. Fu, H. Hu and K. Huang. “Top-k Discovery under Local

Differential Privacy: An Adaptive Sampling Approach”, submitted to IEEE

Transactions on Dependable and Secure Computing.

10. R. Du, Q. Ye, Y. Fu, and H. Hu. “Leveraging Historical Perturbation for Data

Stream Publication under Local Differential Privacy”, submitted to VLDB.

iv

Acknowledgments

As I stand on the threshold of completing my doctoral journey, I am filled with

gratitude and would like to extend my deepest appreciation to several individuals

whose guidance, support, and influence have been pivotal to my achievements.

First and foremost, my heartfelt thanks go to my supervisor, Prof. Haibo Hu, and

my co-supervisor, Dr. Qingqing Ye. At a particularly challenging time in my life

before beginning my PhD, their recognition and the opportunity they provided were

instrumental in launching my academic career. I am especially grateful for their fi-

nancial support, academic guidance, and the respect they have shown for my personal

research interests and aspirations.

I am also profoundly grateful to every member of the ASTAPLE group. A special

mention goes to my wife, Rong Du, who has not only been my companion but also

an integral collaborator throughout my seven years of academic life. Each of my

papers bears the imprint of your substantial contributions. My thanks also extend

to The Hong Kong Polytechnic University, which provided invaluable resources and

opportunities that greatly enriched my studies.

I owe a debt of gratitude to my parents and all my relatives for their selfless support,

often given without full understanding, but always with unconditional love. I appre-

ciate all the reviewers who accepted my papers for enriching my publication list; I

am equally thankful to those who rejected my papers, as your insightful comments

helped enhance my work.

v

Finally, I am grateful for the abundance of knowledge available in this world that

provides us with endless learning opportunities, and for the even greater mysteries

that remain unsolved, giving us reasons to continue exploring and discovering in the

future.

vi

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments v

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Backgrounds . 1

1.2 Contributions and Thesis Organization 3

2 Literature Review and Preliminaries 5

2.1 Distributed Systems Security . 5

2.1.1 DDos Countermeasures . 5

2.1.2 Local Differential Privacy . 7

2.1.3 Data Poisoning Attacks . 9

vii

2.2 Probabilistic Structures . 11

2.2.1 Bloom Filter . 11

2.2.2 Secure Index . 12

2.2.3 Locality Sensitive Hash . 13

2.3 Variational Method . 14

2.3.1 Generalized Coordinates . 14

2.3.2 The Least Action Principle . 15

3 Cloud Password Shield 16

3.1 System model: an overview . 18

3.1.1 Bloom filter as a pre-screener 19

3.1.1.1 Why Bloom filters 19

3.1.2 Bloom filter settings . 20

3.2 KSSBF: A key-based secure solution for trusted firewall providers . . 24

3.2.1 Construction . 26

3.2.2 Security model . 28

3.2.2.1 Pseudo-random functions 28

3.2.2.2 Semantic security against chosen password attack . . 28

3.3 GSBF: a generically secure solution for non-trusted firewall providers 30

3.3.1 On false positives . 30

3.3.2 Security model . 31

3.3.3 Construction . 33

viii

3.3.3.1 Runtime of GSBF 33

3.3.3.2 Initialization . 33

3.3.3.3 Login response . 35

3.3.4 Provable security of GSBF . 35

3.4 Performance evaluation & Experiments 38

3.4.1 Performance metrics . 38

3.4.2 Performance evaluation . 39

3.4.2.1 Configurations . 39

3.4.2.2 Experimental results of elements in Table 3.3 40

3.4.3 Registration/password revision performance of KSSBF 40

3.4.4 Scalability . 40

3.5 Chapter Summary . 42

4 Secure Indexing 44

4.1 System Overview . 47

4.1.1 Problem Definition . 47

4.1.2 Baseline Solutions . 48

4.1.3 Threat Model . 49

4.2 The Matrix BF Index . 50

4.2.1 The Basic Structure . 50

4.2.2 False Positive Rate . 51

4.2.3 Partitioned Hashing Strategies 54

ix

4.2.4 Securing the index . 57

4.2.4.1 Index Initialization 57

4.3 Handling Inter-attribute Correlations 60

4.3.1 Maximum Adaptive Matrix 60

4.3.2 Minimum Storage Matrix . 62

4.4 Experiments . 64

4.4.1 False Positive Rate . 65

4.4.2 Batch Performance . 70

4.4.3 Privacy Guarantee . 72

4.5 Chapter Summary . 73

5 Interactive Trimming 74

5.1 Game-Theoretic Model Formulation 77

5.1.1 Threat Model . 77

5.1.2 Payoff Functions . 78

5.1.3 Strategy Space . 78

5.1.3.1 Single Poison Value Case 78

5.1.3.2 General Case . 80

5.1.4 Sequential Moves . 81

5.2 Infinite Collection Game . 82

5.2.1 Overview . 82

5.2.2 Analytical Model . 82

x

5.2.3 Equilibrium State . 84

5.2.4 Non-equilibrium State . 86

5.3 Non-deterministic Utility . 86

5.3.1 Tit for Tat Strategy . 87

5.3.2 Elastic Trigger Strategy . 89

5.4 Experiments . 91

5.4.1 Experimental Setup . 91

5.4.2 Stackelberg Equilibrium Results on k-Means Clustering 93

5.4.3 Stackelberg Equilibrium Results on SVM and SOM Classifier . 94

5.4.4 Non Equilibrium Results and Cost Analysis 99

5.4.5 Performance under LDP perturbations 101

5.5 Chapter Summary . 103

6 Conclusions and Future Works 105

6.1 Conclusions . 105

6.2 Future work . 106

References 107

xi

List of Figures

3.1 A Bloom filter-based firewall, alleviating workload of protected back

ends. 19

3.2 An overview of a password-hashing authentication service with KSSBF. 26

3.3 ta and tb varying with λ. f is set to 0.1, 0.5, 0.9, respectively. 34

3.4 Performance of registration/password revision of KSSBF. 42

3.5 Scalability of KSSBF and GSBF pre-screening mechanism. 43

4.1 The runtime of hashmap and multiple BFs with scale increasing. . . 49

4.2 The basic structure of a matrix BF index. 51

4.3 The framework of our study case. Timestamps are queried with LSH

in the matrix BF first and are further checked in a global BF. 56

4.4 Element insertion/query in a j-matrix. 64

4.5 Comparison of theoretical/experimental value of the optimal false pos-

itive rate in a standard/matrix BF. 66

4.6 False positive rate of maximum adaptive matrix with respect to k and

m0. 68

4.7 The false positive rate and robustness of minimum storage matrix. . . 69

xii

4.8 The disprove rate of auxiliary knowledge. 72

5.1 The definition of xL, and arbitrary poison value distributions repre-

sented by a mixed strategy point . 79

5.2 Definition of xL and xR for a single poison value 80

5.3 An overview of the infinite game . 83

5.4 K-means clustering results over Control, Vehicle, and Letter, Tth=0.9 95

5.5 K-means clustering results overControl,Vehicle, and Letter, Tth=0.97 96

5.6 The ground truth of SVM and SOM classification 97

5.7 Comparison of SVM classification . 98

5.8 Comparison of SOM classification . 100

5.9 Comparison of EMF and our proposed approaches 104

xiii

List of Tables

3.1 Table of Notations . 24

3.2 Outcome of the pre-screener. 38

3.3 Theoretic value of Table 3.2. 39

3.4 Comparison between experimental and theoretical value. 41

4.1 A web server log file. 45

4.2 Auxiliary knowledge from compressed session data. 45

4.3 Load factor & proportion of elements of different m1

m2
’s 67

4.4 Storage Comparison . 70

4.5 Times of searching and trapdoor generation. 71

5.1 The payoff matrix of the ultimatum game, P > T >> P > T > 0 . . 81

5.2 Dataset Information . 92

5.3 Non-equilibrium results and average termination rounds 102

5.4 Roundwise cost of Elastic0.1 and Elastic0.5 102

xiv

Chapter 1

Introduction

1.1 Backgrounds

In today’s digital age, the ubiquity and continuous generation of data have become a

staple of our everyday lives, especially with the advent of the Internet of Things (IoT).

This connectivity, while beneficial, also presents significant security challenges. The

proliferation of IoT devices, often with inadequate security measures, has exacerbated

the frequency and intensity of Distributed Denial of Service (DDoS) attacks, which

not only disrupt service but also exploit devices to spread malware, turning them

into bots for large-scale network assaults. Despite advancements in network defenses

like cloud and network firewalls, DDoS attacks have evolved, targeting application

layers and overwhelming services like user authentication systems with brute-force

attacks. This scenario underscores the pressing need for robust, distributed security

enhancements in data management systems. Parallel to these concerns, the field of

cryptography has seen significant advances, enabling secure, privacy-preserving data

outsourcing to untrusted third parties such as cloud servers. Searchable encryption

techniques, for example, allow for keyword searches over encrypted data without

needing decryption, addressing the dual needs of confidentiality and usability. This is

1

Chapter 1. Introduction

particularly relevant as the volume of data escalates, necessitating efficient and cost-

effective storage and processing solutions like secure indices which utilize probabilistic

data structures for managing searchable encryptions. The integrity and security of

data are paramount, given the potential for malicious entities to manipulate data

and impacting decision-making processes. The integrity of data is continuously at

risk from attacks designed to alter or fabricate data to influence outcomes. To mit-

igate these risks, data management strategies need to incorporate dynamic defense

mechanisms, such as evasion-aware strategies using game theory, to maintain data

integrity and counteract sophisticated online data manipulation attacks.

In today’s digital landscape, the proliferation of interconnected devices and systems

has highlighted significant security challenges. The primary goal of this thesis is to

develop comprehensive security solutions for distributed systems from a data manage-

ment perspective. This goal addresses the urgent need for enhanced security measures

to protect data integrity, confidentiality, and availability in the face of evolving cyber

threats. The motivation for this research stems from the increasing vulnerabilities in

distributed systems, especially with the rise of IoT devices prone to sophisticated at-

tacks such as DDoS. The rationale for breaking down the research goal into three key

tasks is to methodically tackle different aspects of security: password authentication,

secure indexing, and data integrity. These tasks are interrelated, as they collectively

contribute to a holistic approach to distributed security enhancement.

Password Authentication. This task focuses on developing a robust authentica-

tion system that minimizes vulnerabilities in password management. By employing

innovative cryptographic techniques, the system aims to resist brute-force attacks and

manage high volumes of authentication requests typical in IoT environments.

Secure Indexing. This task addresses the challenge of querying encrypted data

efficiently without compromising privacy. By optimizing searchable encryption tech-

niques, the system ensures secure and efficient access to encrypted databases, crucial

for data analytics and AI applications.

2

1.2. Contributions and Thesis Organization

Data Integrity against Online Attacks. This task aims to protect data from

online manipulation attacks. By integrating game-theoretical models, the system

dynamically adapts to threats, ensuring data accuracy and reliability for critical

decision-making processes.

1.2 Contributions and Thesis Organization

The contributions of this thesis are threefold:

• Development of a novel cryptographic approach for secure password authenti-

cation.

• Introduction of an optimized searchable encryption technique for secure index-

ing.

• Creation of a game-theoretical model for maintaining data integrity against

manipulation attacks.

Followed is a roadmap of thesis organization in each chapter:

Chapter 2: This chapter offers a thorough review of relevant literature and

studies and the basic preliminaries applied throughout the thesis, encompassing

DDoS attack countermeasures, probabilistic structures, local differential privacy

protocols, and literature pertaining to data poisoning attacks.

Chapter 3: This chapter presents a cloud-based firewall based on Bloom fil-

ters to pre-screen and reject bad requests with wrong password before they

arrive at the authentication server. The main challenge is the security of the

passwords. We consider the firewall might be compromised and the Bloom fil-

ters are retrieved by an adversary to conduct offline brute-force attacks and

3

Chapter 1. Introduction

restore (hashed) passwords. To ensure the security, we start with a trusted

firewall provider and design a key-based semantic secure Bloom filter (KSSBF)

to achieve the best efficiency. We then design a generically secure Bloom filter

(GSBF) for non-trusted firewall providers, whose security is strictly provable

and key-independent. Through theoretical and empirical analysis, we show

both of them can mitigate malicious traffics arrive at the back end while not

degrading the security of passwords.

Chapter 4: This chapter presents a secure bi-attribute indexing solution, il-

lustrated with a case study on searchable encryption for time-series data. We

introduce two variants of matrix Bloom filters tailored for different workloads

and implement a concept of bounded privacy loss via noise infusion from the

randomized response technique. The outcome adheres to locally differential

privacy principles, offering a provable privacy guarantee for sensitive attribute

items.

Chapter 5: This chapter presents an interactive game-theoretical model to de-

fend online data manipulation attacks using the trimming strategy. Our model

accommodates a complete strategy space, making it applicable to strong eva-

sive and colluding adversaries. Leveraging the principle of least action and

the Euler-Lagrange equation from theoretical physics, we derive an analytical

model for the game-theoretic process. To demonstrate its practical usage, we

present a case study in a privacy-preserving data collection system under local

differential privacy where a non-deterministic utility function is adopted. Two

strategies are devised from this analytical model, namely, Tit-for-tat and Elas-

tic. We conduct extensive experiments on real-world datasets, which showcase

the effectiveness and accuracy of these two strategies.

Chapter 6: We conclude the outcomes of this thesis and propose new directions

for future work.

4

Chapter 2

Literature Review and

Preliminaries

This chapter provides an overview of the key concepts, technologies, and related work

that form the foundation for the research presented in this thesis. We begin with a

broad introduction to distributed systems security, followed by specific background on

the main topics addressed in our work, and conclude with some preliminary knowledge

on variational methods, which is utilized in later chapters.

2.1 Distributed Systems Security

2.1.1 DDos Countermeasures

Rate limitation has long been an important methodology of DDoS defence mechanism

to provide bounded accessability for a single node. For instance, Dwork C. and Naor

M. proposed a computational technique for controlling access to a shared resource,

i.e. combating junk mail [28]. To prevent frivolous use, users are asked to compute

a moderately hard function in order to gain access to the resource. Von Ahn L. et

5

Chapter 2. Literature Review and Preliminaries

al. introduced CAPTCHA, using unsolved AI problems to distinguish computer pro-

grams from human-being [80].

DDoS defence mechanism can be employed in the network level. There exists various

IP traceback mechanisms to trace back the forged IP packets to their true sources,

rather than spoofed ones [19, 43]. Victims can identify the path of attack traffic and

distinguish them from legitimate ones [1, 19, 74]. There also exists packet marking

and filtering mechanisms, which aims to mark legitimate packets at each router along

their path to the destination, so that edge routers can filter the attack traffic. Peng

et al. proposed a history-based IP filtering mechanism, which enable victims to filter

bandwidth attack traffic according to the history that were maintained at ordinary

times. Wang et al. proposed a Hop-count filtering mechanism, which records informa-

tion about a source IP (as well as its corresponding hops) into a table for the victim’s

query. Yaar et al. proposed a Path identifier (Pi) to embed a path fingerprint in each

packet, which enables victims to identify packets by traversing the same paths. There

are also route-based packet filtering mechanisms [66, 67], malicious router detection

mechanisms [57], detecting and stopping attack traffic inside the router.

DDoS defence mechanism can also be employed in the application level. Ranjan et al.

proposed DDoS-Shield, which employs a rate limiting pre-defence mechanism using

a statistical model [70,71]. Srivatsa et al. proposed an admission control protocol to

limit the number of users connected to a network service concurrently [76]. There are

also mechanisms that try to distinguish malicious bots from legitimate users. Kandula

et al. employed a completely automated public Turing test to differenate bots from

humans [44]. Oikonomou et al. proposed defences against flash-crowd attacks, which

distinguishes bots from humans baed on three uniqueness of human behaviours [61].

To the best of the author’s knowledge, the ultimate goal of DDoS defence mechanism

is to detect malicious nodes/traffics, and filter them as soon as possible.

6

2.1. Distributed Systems Security

2.1.2 Local Differential Privacy

Differential privacy (DP) [26, 27, 54] is a mathematical foundation of quantizing pri-

vacy protection, usually by appropriately using Laplacian [27], Gaussian [52] or Ge-

ometric distribution [33] to randomise the results of statistical queries in interactive

query-response systems. Many researches have studied it from various fields, includ-

ing theory analyses [6, 24, 45], data publication [17, 90, 91, 99], machine learining [5],

and system [10]. However, DP works on the assumption of the existence of a trusted

third-party server, which is regarded impractical in the privacy-aware crowdsourced

systems. To deal with this problem, local differential privacy (LDP) [18,24,45] model

was recently proposed to provide a stringent privacy guarantee for crowd-sourced

systems where data providers trust no one but themselves.

Local differential privacy (LDP) [27] is proposed to provide a stringent privacy guar-

antee for users in a non-trusted data-collecting system. We say a perturbation mech-

anism M, a non-deterministic algorithm mapping an input to some output with a

certain probability, satisfies with ϵ-LDP (ϵ ≥ 0), if and only if for any two data records

S1, S2 and any possible output T ∈ Range(M), the following condition holds:

P [M(S1) = T]

P [M(S2) = T]
≤ eϵ (2.1)

This is a formal definition of LDP, and the set of all possible outputs is called the

value range. Since P [M(S1) = T] is very close to P [M(S2) = T], it is hard to tell

any individual’s true answer from observing the outcome. The most straightforward

perturbation algorithm to guarantee LDP is the Randomized Response (RR) [84],

which has been widely used in the “Yes or No” sensitive problem. Users will flip a

biased coin and send true answers with probability p and 1 − p for false answers. A

widely used RR for binary cases is given as follows:

b′ =

 b, w.p. p

1− b w.p. 1− p

7

Chapter 2. Literature Review and Preliminaries

The privacy guarantee LDP [24,45] employed in our paper is initially proposed for pro-

tecting data privacy in an untrusted environment, where each user perturbs her values

before sending them to the data collector. Some typical scenarios for applications of

LDP include frequency estimation [6], mean estimation [24], and high-dimensional

data collections [22]. Besides, LDP has been widely applied to real-life applications,

such as Chorme, iOS, Win 10, and Samsung.

A fundamental goal of LDP functionality is frequency estimation. RAPPOR [30],

which was proposed and well-employed into Chrome by Google, encodes users’ data

into a Bloom filter and then performs RR on each bit of Bloom filter, which enables

the decoding result more accurate. However, the false positive rate of Bloom filter

shall be restricted, thus the Bloom filter is necessary to be sparse, which renders the

communication cost unsatisfactory. Bassily and Smith [6] proposed a 1-bit protocol

for frequency estimation to optimize the communication cost. However, the data

utility is still unsatisfactory. The parameter results are further optimized in the

Optimized Unary Encoding (OUE) [30] protocol, which achieves significantly better

accuracy. This literature also designed an OLH protocol, which provides much better

accuracy, but still requires a O(logn) communication cost. Note that all of the above

methods focus on LDP on a single attribute, while some recent attempts discuss the

multi-attribute case, such as spatiotemprial data [92] and high-dimensional data [22,

23]. Another interesting problem in LDP is mean estimation over numerical data,

which have been widely studied in literature [24, 25].

LDPMiner [5] is a frequency publishing method, which is targeted at heavy hitter

queries. Firstly, the data collector collects data and determines the Heavy Hitter

set, and returns it to the user. Then, the user sends data corresponding to some

of the items in the set to the data collector. Ren et al. develop the Lopub, [72]

which is focused on high-dimensional crowdsourced data publication. However, the

communication cost of this approach is very high, since the transmission of every

attribute is the size of a Bloom filter. PM and HM mechanisms [82] perturb the

8

2.1. Distributed Systems Security

input value into a probability density function to get a better result accuracy.

2.1.3 Data Poisoning Attacks

In recent years, data poisoning attacks and their countermeasures have gained con-

siderable attention, with numerous studies exploring various aspects, particularly in

machine learning. Chen et al. [16] devise a black-box attack method capable of

bypassing defenses against data poisoning, emphasizing the need for more robust

countermeasures. Biggio et al. [9] examine poisoning attacks targeting SVM and in-

troduced an effective attack strategy, highlighting the necessity for robust defenses

in SVMs. Liu et al. [53] explore the transferability of adversarial examples, which

are relevant to data poisoning attacks, and develop a black-box attack method based

on this property. Steinhardt et al. [77] introduce certification, offering guarantees on

a model’s robustness against data poisoning attacks, and present a certified train-

ing algorithm. Jagielski et al. [42] propose an optimal attack strategy for poisoning

regression models and develop effective countermeasures to minimize the attacker’s

impact. Mei and Zhu [56] employ a machine teaching approach to identify the most

damaging data poisoning attacks on machine learning models, providing insights into

both attack and defense strategies. Several other works also address data poisoning

attacks and their countermeasures [58,59,86].

Manipulation attacks are more eminent in privacy-preserving scenarios (such as LDP

[12, 40, 78]) where the perturbations can amplify the effect of poison values, as the

honest output follows a distribution, but the injected poison values may locate any-

where. Thus, for a single malicious user, the aggregated value will be larger than it

should be, and it may even exceed the upper bound of the input domain. This implies

that a small fraction of malicious users can obscure the distribution of honest user’s

inputs, and this can be extremely fatal when the privacy level is high, or the domain

is large. A recent work shows how poor the performance of an LDP protocol can be

9

Chapter 2. Literature Review and Preliminaries

under a malicious model [20]. This work proposes a general manipulation attack in

which Byzantine users can freely choose to report any poison values in the domain

without following a distribution imposed by the LDP perturbation.

A special case of the general manipulation attack is the input manipulation attack,

in which adversaries counterfeit some poison values before perturbation and strictly

follow the LDP perturbation protocol. This can be treated as a special case of gen-

eral manipulation attack with strong evasion, as it provides deniability for malicious

users. If it is not possible to question individual users, the poison values are also in-

distinguishable from honest ones. While this evasion makes the poison values harder

to detect, it also degrades the strength of the attack compared to general manipula-

tions. This issue has received much attention, and some attempts have been made

towards this problem in recent years. [12] proposes a robust defense against poisoning

attacks in federated learning systems by leveraging Byzantine-resilient aggregation

methods. The authors focus on developing a method to detect and mitigate the

impact of attackers who send poisoned model updates during the aggregation pro-

cess. [21] is an attempt to defend against general colluding attackers in LDP data

collection. By exploiting the differences in behavior between attackers and normal

users, a maximum likelihood estimation can be utilized to recover an attack distri-

bution based on the collected data. However, this approach has a limitation, as it

cannot address situations where attackers intentionally mimic the behavior of nor-

mal users. [51] investigates the problem of data poisoning attacks in the context of

graph neural networks. While they study the robustness of graph neural networks

under poisoning attacks and propose a novel defense mechanism called robust graph

convolutional networks, the evasive adversaries are seldom studied and modeled in a

comprehensive framework.

10

2.2. Probabilistic Structures

2.2 Probabilistic Structures

2.2.1 Bloom Filter

A Bloom filter is a space-efficient data structure used for single set membership test-

ing. It was first proposed by Bloom [11] in 1970 and has found applications in many

fields. It is an array of m bits indexed from 1 to m whose values are initially set to

0. For each element x mapped in, a sequence of k uniform, independent hash func-

tions are set to hash the element into an integral value between 1 and m. This value

is chosen to be the index number of the Bloom filter’s array and the corresponding

positions are set to 1. To query whether an element A is in a Bloom filter, one can

simply check if all indices are set to 1. If so, outputs “positive”, otherwise outputs

“negative”.

One-side-errors may occur in a Bloom filter, that is, consider an item A appears to

be “positive” during a query, which was actually not inserted before. When the set

of bits representing A is actually occupied by other elements respectively, the false

positive occurs. The probability of a false positive happening is described by false

positive rate f , which holds the following relationship between f , m, n and k:

f = (1− e−
nk
m)k (2.2)

Oppositely, no false negative occurs in a Bloom filter, since there is absolutely no

element indexed to bits that remain 0.

The Bloom filter has emerged as a pivotal technology in the realm of searchable

encryption, facilitating the search of sensitive data in ciphertext. The inaugural en-

deavor in this field, known as secure indexes [36], has since been followed by further

studies [7,65]. Despite their advances, these methodologies fail to distinguish between

sensitive and non-sensitive data. Moreover, they do not facilitate the search of non-

sensitive data in plaintext, whilst simultaneously offering secure solutions for sensitive

11

Chapter 2. Literature Review and Preliminaries

counterparts. There have been several pragmatic attempts to overcome these limi-

tations, with a prominent example being the hybrid cloud approach [62, 63], which

solely outsources non-sensitive data. Furthermore, the work of Mehrotra et al. probes

into partitioned data security for outsourced data, dividing attributes into sensitive

and non-sensitive groups [55]. Although these works introduce partitioned data se-

curity and explore deterministic methods, our research concentrates on establishing

an efficient probabilistic structure.

There have also been previous efforts to extend the Bloom filter into a matrix form.

Geravand et al. proposed a bit matrix to detect copy-paste content in a literature

library [35]. Wang et al. introduced a Bloom filter in matrix form, representing a

new type of Bloom filter [81]. It employs s rows of Bloom filters with k hashes and

an additional special hash to decide which row of the Bloom filter to insert into.

The multi-set problem also aligns closely with the bi-attribute membership tests we

study. Yu et al. proposed vBF [95] within the framework of BF, creating v BFs for

v sets. For a query element a, vBF performs a series of queries across all the v BFs.

If BFi reports true, a is considered to be in set i, otherwise it is not. There are other

BF-based solutions to the multi-set problem as well, such as the coded BF [14], the

Bloomier filter [15], and kBF [87].

2.2.2 Secure Index

The idea of a secure index [36] is to generate a trapdoor with pseudo-random func-

tions, which are defined later, and insert the trapdoors into a per-document Bloom

filter. When a client wants to know which document contains a value he wants, he

generates a trapdoor with the value, sends it to the third party where the document

is stored and asks it to perform the searching on the trapdoor. Such an index scheme

consists of the following four algorithms:

• Keygen(λ): Given a security parameter λ, outputs the private key Kpriv.

12

2.2. Probabilistic Structures

• Trapdoor(Kpriv, v): Given the master key Kpriv and value v, outputs the trap-

door Tv for v.

• BuildIndex(D,Kpriv): Given a document D and the private key Kpriv, outputs

the index ID.

• SearchIndex(Tv, ID): Given the trapdoor Tv for value v and the index ID for

document D, outputs 1 if v ∈ D, otherwise 0.

Pseudo-random functions. A pseudo-random function fk(·) : {0, 1}n × {0, 1}s →

{0, 1}m is said to be efficiently computable, if for any input x ∈ {0, 1}n, there exists

a key k ∈ {0, 1}s, such that:

• With knowledge of k, fk(·) has a succinct representation and shall be compu-

tationally light.

• Without knowledge of k, fk(·) shall be computationally hard.

2.2.3 Locality Sensitive Hash

The location-sensitive hashing (LSH), proposed by Indyk and Motwani, is a technol-

ogy mapping similar items into the same hash buckets with high probability [41] and

is usually used for the similarity search. Given a similarity search query request, the

query item q will be mapped to multiple buckets in the hash table, and we consider

items that appear in these buckets are similar points to q. All these similar items will

be considered as a group. Generally, the hash function of items close to each other is

mapped to the same hash bucket with a higher probability. Let S denote the domain

of input items and || ∗ || the distance metric between two items. For any items p and

q, LSH function family, i.e., H = {h : S → U} is called (R, cR, P1, P2)-sensitive for

13

Chapter 2. Literature Review and Preliminaries

distance function || ∗ || if

||p, q|| ≤ R then PrH [h(p) = h(q)] ≥ P1

||p, q|| > cR then PrH [h(p) = h(q)] ≤ P2.

We set c > 1 and P1 > P2 to better do similarity search. The gap between P1 and

P2 is usually enlarged by using multiple hash functions. Given an d-dimension input

item v, different || ∗ || denotes different LSH families which allow the hash function

ha,b R
d → Z to map v into a hash bucket number. The hash function ha,b in H can

be written as:

ha,b(v) = ⌊
av + b

w
⌋,

where a is a d-dimension vector randomly chosen from a s-stable distribution, b is a

random number chosen from domain [0, w) and w is a large constant.

2.3 Variational Method

2.3.1 Generalized Coordinates

In classical mechanics, the state of a physical system is often described by specifying

its position and velocity. However, when dealing with complex systems or those

subject to constraints, it’s beneficial to use generalized coordinates [48], which are

parameters that can describe the configuration of a system using the minimum number

of independent variables.

When we refer to a system with s degrees of freedom, we mean the system can move

in s independent ways. For example, a simple pendulum has one degree of freedom:

the angle from the vertical axis. A double pendulum, however, has two degrees of

freedom: the angle of each arm.

14

2.3. Variational Method

The use of generalized coordinates (q1, q2, ..., qs) allows us to express the system’s

configuration independently of the choice of a coordinate system. This is particularly

useful in dealing with systems where Cartesian coordinates are not convenient. The

velocities (q̇1, q̇2, ..., q̇s) are the time derivatives of the generalized coordinates and

represent how fast each coordinate is changing.

The trajectory of a system in its configuration space is a path that describes how the

generalized coordinates change over time. It is analogous to a storyline of the system’s

motion, and describes where it is and how it moves at every moment in time. The

system can be further described using the Lagrangian L(q1, q2, ..., qs, q̇1, q̇2, ..., q̇s, t).

The action, a function of L, is the integral of the trajectory, i.e., S =
∫ t2
t1
L(q, q̇, t)dt.

2.3.2 The Least Action Principle

The motion laws of a mechanical system can be expressed using the least action

principle. It states that out of all possible paths that a system can take, the actual

path is the one that minimizes the action. This requires that the first-order variation

of the action with respect to the generalized coordinates and velocities equals zero:

δS = δ

∫ t2

t1

L(q1, q2, ..., qs, q̇1, q̇2, ..., q̇s, t)dt = 0, (2.3)

where δ is the variation of S, i.e., an infinitely small incremental change to a function.

The solution to equation 2.3 yields the Euler-Lagrange equation, whose proof can be

found in any classical mechanics textbook:

Lemma 1. (Euler-Lagrange Equation). A necessary condition for δS = 0 is:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0, i = 1, 2, ...s. (2.4)

The Euler-Lagrange equation is a set of s second-order ordinary differential equations,

which govern the motion of the system. The equation describes how the system

evolves over time, given the initial conditions of the generalized coordinates and

velocities.

15

Chapter 3

Cloud Password Shield

With the coming era of IOT, more and more devices are tightly connected to the

Internet in our day-to-day life. However, the rapid growth on the number of insecure

devices also aggravates the power and scale of DDoS attacks, which stop legitimate

users from accessing certain network services. These devices are vulnerable to mal-

wares (e.g., backdoors and Trojans), which infect them and turn them into bots. The

Mirai DDoS attack on Dyn in 2016 demonstrated the scale and severity of such at-

tacks. Although network and cloud firewalls (e.g., Cloudflare) can mitigate TCP or

IP flooding, DDoS attacks can occur in the application layer, for example, by flooding

requests to the user login interfaces to DDoS the authentication service. Recently, two

Russian banks became the victim of such DDoS attacks using Medusa, a brute-force

web login toolkit.1.

The vulnerability roots from the fact that most password-based authentication ser-

vice, e.g., a RADIUS server, is powered by a relational database of users’ credentials.

Such a centralized system cannot scale well in a large system (e.g., Internet and IoT).

When coordinated attackers deliberately send incorrect login requests to server at the

1http://www.infosecisland.com/blogview/24848-Medusa-DDoS-Botnet-Slams-Russian-

Banks.html

16

same time, the database can exhaust its I/O resources to process all these queries

and thus fail to respond to legitimate login requests.

Unfortunately, existing DDoS mitigation services (e.g., Cloudflare) can only limit

the access rate of the login page at TCP/IP layer, which also affects the legitimate

users. In this chapter, we propose to install Bloom filter, a structure with O(1)

time complexity for existence query, on cloud servers (i.e., firewalls) in front of the

authentication server as a pre-screener to drop requests with wrong passwords before

they reach the latter. The main challenge is that if such server is compromised

and the Bloom filters are retrieved by an adversary, he/she might conduct offline

brute-force attacks and restore (hashed) passwords. We set out to design the pre-

screening mechanisms in two different security contexts, based on whether the firewall

provider can be trusted with a shared key from the authentication server. In both

contexts, our proposed pre-screener mechanisms mitigate malicious requests reaching

the authentication server while not degrading the security of passwords against offline

brute-force attackers.

The contributions of this chapter are listed as follows:

• Bloom filter as a pre-screener. We present a password pre-screener using

a global Bloom filter to provide DDoS resistance for password-based authen-

tication servers. The pre-screener supports all operations of an authentication

server, i.e. setup, insertion, query and deletion. Upon these fundamental set-

tings, the security issue is still to be developed, to differentiate whether the

firewall provider is trusted or not.

• KSSBF: key-based secure solution for trusted firewall providers. For

those firewall providers who can be trusted with a shared key for encryp-

tion/decryption, we design a key-based pre-screening Bloom filter which achieves

semantic security against chosen password attacks.

• GSBF: generically secure solution for non-trusted firewall providers.

17

Chapter 3. Cloud Password Shield

For those firewall providers who cannot be trusted, we design a Bloom filter that

is unprofitable to anyone, thus appears to generically secure without relying on

a private key. We show that false positives in a Bloom filter, which is commonly

believed undesirable, can be work against offline brute-force attackers who have

access to the Bloom filter after compromising the cloud server. We prove that in

the context of indistinguishability, the gain of any attacker exponentially drops

to zero with respect to the number of passwords inserted to this Bloom filter.

The rest of this chapter is organized as follows. In chapter 3.1, an overview of the

system model is given to show some fundamental settings of the Bloom filter. In

chapter 3.2 and chapter 3.3, security models of the Bloom filter are constructed,

namely KSSBF and GSBF, depending on whether the firewall provider is trusted or

not. In chapter 3.4, the performance of our firewall model is evaluated experimentally.

Finally, the conclusion is drawn in chapter 3.5.

3.1 System model: an overview

In this section, we will discuss the possibility to tolerate DDoS against authentication

services by introducing a Bloom-filter-based layer between the back end and the front

end, which behaves like a firewall for password verification, as shown in Fig. 4.2.

When dealing with login attempts, this layer is expected to effectively reduce mali-

cious traffic to the back end, essentially thwarting attempts to overload the server

with candidate passwords generated randomly. The firewall can be run by either

individuals, or an enterprise who offers cloud services to a series of password authen-

tication servers, hence is to be discussed whether it is trusted or not. Let’s take an

overview of the system model in this section, and remain the detailed discussions to

the following two sections.

18

3.1. System model: an overview

Figure 3.1: A Bloom filter-based firewall, alleviating workload of protected back ends.

3.1.1 Bloom filter as a pre-screener

3.1.1.1 Why Bloom filters

To achieve the motivations mentioned, the following properties are expected to be

hold:

• Small storage cost.

• Computationally light for insertion/query.

• Negative results should be correctly confirmed, whereas positive results are

tolerated to be falsely judged, as eligible users shall pass the filter accurately.

• Even if the new layer is exposed to an off-line attacker, the security level of the

password-hashing-based back end doesn’t degrade.

Intuitively, if both f and the Bloom filter runtime are set small enough, using a Bloom

filter can easily meet the first three conditions:

• A Bloom filter is space-efficient.

19

Chapter 3. Cloud Password Shield

• A Bloom filter index can be computationally light.

• One-side-error appears in Bloom filters, which only permits occurrence of false

positives.

As for security issues, the case is rather complicated, since the new layer should be

carefully designed, to guarantee its ability to block off most of the malicious requests,

without being exploited by off-line attackers who try to gain the password list. Let’s

remain them to the latter sections, where security models will be defined, and provable

security will be provided in detail.

3.1.2 Bloom filter settings

Informally speaking, our general idea is to record the registered passwords into a

global Bloom filter, and to query them quickly before accessing the back end. Negative

results shall be immediately rejected, whereas positive ones are to be sent to the back

end and in turn complete the full authentication process, as shown in Algorithm 1.

Algorithm 1 Login response of a server with a Bloom filter

1: Input password pw;

2: if BFpw=false

3: then Return false

4: elseif Backendpw=false

5: then Return false

6: else Return true

To quantify our demand of the Bloom filter, let’s define bad request rate λ to describe

the bad request proportion of an incoming login request flow2. Apparently, when

2Note that, even for a group of legitimate users, λ should still expected to be non-zero, for it

ought to tolerate a certain degree of bad requests, as there may be typos for regular users, or they

may desire to recall forgotten passwords by retrying.

20

3.1. System model: an overview

malicious traffics are involved, λ begins to increase, and raises an alarm for a launched

DDoS attack when rising to some certain level. Upon this definition, our goal is to

design a Bloom filter, such that:

• In the view of a server, when λ is large, the average response time of determining

an item in the back end shall be lowered, so is possible to survive the heavy

workload under a DDoS attack.

• In the view of the entirety of (server, Bloom filter), when λ is small, the overall

average time of determining an item shall acceptably increase (preferably none),

so limited overhead is involved during regular cases.

• The additional Bloom filter shall not compromise the security level of the (pass-

word hashing-based) back end.

For the convenience of discussion, let’s further define the variables that are to be used.

Denote the average time of querying an item in the Bloom filter by tBF and that in

the back end by tBE. Let ta be the overall average time of determining an item, tb be

the average time of querying an item in the back end. The time caused by an item

should be counted in, even if the item was filtered out by the Bloom filter and cause

a tBF .

Runtime in average. The runtime of query in the Bloom filter shall be much less

than that of the back end to ensure a quick response. Here, let’s derive a series of

generic details on the runtime of Bloom filters and that of the back end.

Let’s firstly determine ta. Clearly, for negative results, the cost is simply tBF . For

positive results, since they are to be checked into the back end again, the cost turns

out to be tBF + tBE. Notice that, if λ is given, in the Bloom filter, the “return true

rate” shall be 1− λ+ fλ, since it returns true for the (1− λ) who are actually true,

but there still exist a false positive rate f on the remaining λ, which results in an

additional fλ on the “return true rate”. Oppositely, the “return false rate” turns out

21

Chapter 3. Cloud Password Shield

to be 1− (1− λ+ fλ) = (1− f)λ. Then, the expectation value of ta holds:

ta =(1− f)λtBF + (1 + fλ− λ)(tBF + tBE)

=tBF + (1 + fλ− λ)tBE

(3.1)

with a clear, manifest interpretation: For each incoming request, whether it is a true

one or not, it shall be checked into a Bloom filter firstly and consume a runtime of

tBF . Then, only a part of them (return true ones) arrives at the back end, which

results in release of computation of the back end. Accordingly, the expectation value

of tb holds:

tb = (1 + fλ− λ)tBE (3.2)

which is strictly less than tBE and strictly decrease with respect to λ.

Password capacity. Then, let’s decide the relationship between the approximate

passwords capacity and the Bloom filter size. As mentioned, the Bloom filter starts

at a certain state, and is filled up as users register and input passwords. With the

Bloom filter getting full (or full enough to start giving out many false positives), the

false positive rate rises and the performance of Bloom filter tends to worsen. Assume

the initial false positive rate is f1, and the worst acceptable false positive rate is f2.

Hence, the Bloom filter is expected to work between f1 and f2. When both m and k

are pre-given, according to eq. 2.2, the following formula describing the relationship

between n and f holds:

n = −m

k
ln(1− e

lnf
k)

Then we have the capacity:

N = n2 − n1 = −
m

k
ln
1− e

lnf2
k

1− e
lnf1
k

(3.3)

Password revision/deletion. Finally, let’s discuss what happens when a user

changes his password, particularly in a scenario where an organization requires all

its users to change passwords periodically as per policy. When deleting a record

from the back end, it is straightforward to delete the corresponding record inside the

22

3.1. System model: an overview

pre-screener concurrently. However, Bloom filters do not support deletions, with the

exception of counting Bloom filters. But, even using counting Bloom filters does not

solve this problem, as false negatives may occur after deletion: If overflow happens in

some counter, the actual number of elements recorded turns out to be greater than

what the upper bound is. When deleting elements, non-zero counters may be deleted

to zero much earlier than it should happen, which results in possible invalidity of

correct passwords.

Actually, we don’t have to face such an intractable problem, because false positives

are initially tolerable in our mechanism. The password after revision can be directly

written into the Bloom filter, as if a new-comer who does a first-time registration,

which is unnecessarily to be distinguished from the former in the pre-screener layer.

The initial record inside the Bloom filter need not to be erased, if enough bits are

initially allocated for the Bloom filter. Furthermore, this could be further improved

by using adaptive sizing mechanisms or layered Bloom filters, which involves imple-

menting a system of layered Bloom filters, where each layer represents passwords

changed within a specific time frame and older layers are gradually phased out. In

the end, instead of trying to delete individual entries, the entire Bloom filter could

be regenerated periodically, perhaps aligning with the password change cycle.

In fact, in the latter section of GSBF, it can be seen that the security is guaranteed

by a moderately high false positive rate. Hence, f1 is required to be set to a certain

value by an obfuscation operation. In this process, a great deal of incorrect passwords

are to be uniformly inserted into the Bloom filter, which is also unnecessarily to be

distinguished from the “rubbishes” remained by the revised passwords. In the end of

the beginning, the notations used in this chapter is listed in Table 3.1 for the ease of

understanding.

23

Chapter 3. Cloud Password Shield

Notation Description

f False positive rate of the Bloom filter

tBF Average time of querying an item in the Bloom filter

tBE Average time of querying an item in the back end

ta Overall average time of determining an item

tb Average time of querying an item in the back end (considering the Bloom filter)

N Password capacity in the Bloom filter

λ Bad request rate, describing the proportion of bad requests

Kpriv Administrative private key

pw Password input by the user

BFhashi
Hash function used in the Bloom filter

trapdoor Encrypted representation of a password in the Bloom filter

s Security seed used for generating the private key

f1 Initial false positive rate

f2 Maximum acceptable false positive rate

m Size of the Bloom filter in bits

k Number of hash functions used in the Bloom filter

bi A specific bit position in the Bloom filter

Table 3.1: Table of Notations

3.2 KSSBF: A key-based secure solution for trusted

firewall providers

In this part, we assume the firewall provider is deemed trusted. This trust is crucial

because it allows the firewall to securely manage private keys necessary for encryp-

tion and decryption operations. Typically, the firewall provider and the protected

server belong to the same organization or trusted partnership, ensuring that sensi-

24

3.2. KSSBF: A key-based secure solution for trusted firewall providers

tive data handling remains secure. This enables the implementation of a key-based

pre-screening Bloom filter without compromising security.

As mentioned, to defend against a DDoS attack, the pre-screener is required to be

computationally light in the view of the server. However, to defend against an off-

line attacker who breaks in the server and gains everything from the screener, it is

required to be computationally hard in the view of any attacker. To achieve this goal,

a straightforward consideration is to encrypt the password plaintexts into trapdoors

that are indistinguishable to those without knowledge of the private key. The Bloom

filter insertions/queries are processed on the trapdoors, to ensure the two-sided com-

putational hardness.

Upon encryption, we are able to fight against an attacker who holds unbounded abil-

ity to access the Bloom filter, that is, he is able to insert/query anything he wants

unlimitedly from the publicly given algorithms (To describe it formally, we need to

define a semantic security against chosen password attack in this scene, which is to

be discussed in details later in this section). Note that, in this design, the Bloom

filter reveals nothing without knowledge of a private key, hence can be distributed

to a non-trusted environment (say, a plug-in attached to the front end) and to be

updated timely3.

In this section, we will discuss the case when the firewall provider is deemed trusted,

so is permitted to preserve the private key. In practical use, it can be true when

the firewall provider and the protected server are of the same party, e.g. assume the

server-side owns two servers, one of which is regarded absolutely secure and deemed

appropriate to safeguard the private key. Indeed, in this model, the firewall layer

plays a role of trapdoor generator, as calculation of trapdoors always invoke the pri-

vate key. Here, the runtime of en/decryption is assumed to be negligible, though a

delay of respondence, approximately equals to tBE, shall be employed to avoid abuse

3It leads to synchronization of the front end and the back end, but is tolerable if the registra-

tions/password revisions are not frequent.

25

Chapter 3. Cloud Password Shield

of this mechanism. An overall framework of the system architecture is shown in Fig.

3.2, which is to be described in details in this section.

Figure 3.2: An overview of a password-hashing authentication service with KSSBF.

3.2.1 Construction

KSSBF can be constructed from the following four algorithms:

• Keygen(s): Given a security seed s, output the administrative private key Kpriv

with respect to s.

• BFinsertion: Given an item, hash it into the corresponding bits and set them to

1.

• Trapdoor(Kpriv, password): Choose a pseudo-random function fK(·). Given an

initialized Bloom filter, a valid password, and the administrative private key

Kpriv, output the trapdoor as T = fK(password,Kpriv).

• BFquery: Given an item, hash it into the corresponding bits. Return positive if

all of them are 1, otherwise return negative.

26

3.2. KSSBF: A key-based secure solution for trusted firewall providers

Algorithm 2 KSSBF registration

1: User inputs password pw and send it to Server 1

2: Server 1 generates a security seed s

3: Kpriv ← Keygen(s)

4: trapdoor ← Trapdoor(Kpriv, pw)

5: Server 1 sends trapdoor to Front end

6: for i=1 to k

7: BFhashi
(trapdoor)← 1

8: end

At ordinary times, when users register their passwords into the back end, the KSSBF

shall also update. Concurrently, the pre-screener also outputs a trapdoor, and records

it into the Bloom filter, following Algorithm 6. When a login request comes, users

send their passwords to Server 1. Server 1 also outputs a trapdoor according to the

password and its private key, delay a tBE, then send it back to the Bloom filter at

the front end. The Bloom filter queries the trapdoor, if true, returns the password to

Server 2, otherwise rejects it immediately. This process is described by Algorithm 7.

Algorithm 3 Login response of a server with KSSBF

1: User inputs password pw and send it to Server 1

2: Server 1 generates a seed s

3: Kpriv ← Keygen(s)

4: trapdoor ← Trapdoor(Kpriv, pw)

5: Delay tBE

6: Server 1 sends trapdoor to Front end

7: if BFquery(trapdoor)=false

8: then Return false

9: else Send pw to Server 2

This simple but powerful solution can be made highly ideal, by choosing a tBF (and

a corresponding f) as small as possible. If both of them are negligible, according to

27

Chapter 3. Cloud Password Shield

eq.3.1 and eq.3.2, both ta and tb turns out to be approximately (1 − λ)tBE, which

implies:

• Almost no overhead in regular cases: If λ ≈ 0, ta ≈ tBE.

• Highly resistant against DDoS attacks: If λ ≈ 1, tb ≈ 0.

3.2.2 Security model

3.2.2.1 Pseudo-random functions

Loosely speaking, a pseudo-random function, mapping n bit inputs to n bit outputs,

is one that can not be computationally distinguished from a truly random function.

More precisely, a function ensemble Fn is said to be pseudo-random, if for every prob-

abilistic polynomial-time oracle machine D, every polynomial p(·) and all sufficiently

large n’s, the following formula is always satisfied:

|Pr[DFn

(1n) = 1]| − |Pr[DHn

(1n) = 1]| < 1

p(n)

where Hn denotes truly random function.

A pseudo-random function fk(·) : {0, 1}n×{0, 1}s → {0, 1}m is said to be efficiently

computable, if for any input x ∈ {0, 1}n, there exists a key k ∈ {0, 1}s, such that:

• With knowledge of k, fk(·) has a succinct representation and shall be compu-

tationally light.

• Without knowledge of k, fk(·) shall be computationally hard.

3.2.2.2 Semantic security against chosen password attack

In this security model, we consider the chosen password attack as security threats as

it addresses scenarios where adversaries attempt to exploit the system by submitting

28

3.2. KSSBF: A key-based secure solution for trusted firewall providers

specific passwords and analyzing the responses. By designing the system to withstand

such attacks, we ensure that attackers gain no meaningful advantage, even when they

can choose passwords to test. This enhances the robustness of the Bloom filter pre-

screener, providing additional security to the authentication process.

Intuitively, our goal is to illustrate and describe the concept that an adversary A can

not deduce a registered (user-name, password) pair from the Bloom filter (which has

a lower runtime than that of the back end), even if some of the historical results are

given. Loosely speaking, suppose the adversaryA gives the challenger C two randomly

picked passwords, say, (b1, b2). C chooses one from b1 and b2 in equal-probability, say,

b′, then encode b′ into a initialized Bloom filter according to some public insertion

algorithms, and send the result to A. A’s challenge is to guess whether b′ = b1

or b′ = b2. If the mission of determining the Bloom filter inserting b1 and b2 is

computationally hard, the Bloom filter reveals nothing about the inserted contents,

hence is unprofitable in the view of an off-line attacker. In this case whereA is not able

to determine which Bloom filter holds b1 or b2, the probability of b′ = b1 and b′ = b2

shall be non-negligibly from 1
2
, hence they are computationally indistinguishable in

the view of A.

More precisely, we use the following game between an adversary A and a challenger

C to define semantic security against a chosen password attack:

• Setup. The challenger C builds an initialized Bloom filter, then chooses a set

of valid passwords and give them to the adversary A. A chooses 2 of them, say,

b1 and b2, and return them to C. C choose one from them in equal-probability,

insert it into the Bloom filter, and return the Bloom filter to A.

• Challenge. A is permitted to make any insertion, query inside the Bloom

filter, according to a pre-given, public insertion/query algorithm.

• Response. A eventually outputs a result b′, representing its guess for b. The

advantage of A winning this game is defined as AdvA = |Pr[b = b′]− 1
2
|.

29

Chapter 3. Cloud Password Shield

If AdvA < ϵ is satisfied for any possible adversary, where ϵ is almost negligible in

polynomial time, we say the Bloom filter is semantically secure against chosen

password attack. Upon usage of pseudo-random function with key, the semantic

security can be achieved. The proof is trivial, and is omitted here.

3.3 GSBF: a generically secure solution for non-

trusted firewall providers

Although the performance of KSSBF is regarded highly satisfactory, it relies on a

trusted firewall provider to keep privacy of the key. Once a trusted environment to

preserve the key no longer exists, or revealed to be insecure, the Bloom filter turns

out to be exploitable to attackers and in turn breaks the security of this scenario.

In this section, we will discuss the case when firewall providers are deemed untrusted,

i.e. run by a third-party enterprise. Apparently, it’s not applicable to authorize the

key (or the password list) to a non-trusted third-party. Our solution is to design a

Bloom filter that is regarded unprofitable unconditionally, so is able to undertake the

heavy workloads for the protected servers in an untrusted environment.

3.3.1 On false positives

In traditional applications of a Bloom filter, false positives, regarded as a negative

factor, are deemed to be “the smaller, the better”, likewise to the runtime tBF . Indeed,

in KSSBF, they are assumed to be small and omitted.

Here, let’s start from a counterintuitive question: With a tolerable overhead, can large

false positives (as well as a large tBF) be helpful in the aspect of security? Note that,

even if someone manage to find a password that is inside the Bloom filter, it could

be a false positive. Roughly speaking, in the view of off-line attackers, the larger f

is, the less profit they gain from this Bloom filter, as they have to pick out the true

30

3.3. GSBF: a generically secure solution for non-trusted firewall providers

positive ones in the back end. Once tBF is also large enough, ta can be even worse

than directly checking in the back end.

It is reasonable to deduce, if tBF and f are set large enough, it is possible to render any

potentially existing attackers gain nothing from the Bloom filter. However, without a

key, the computation is no longer two-sided, which also comes to be true in the view of

the entirety of (pre-screener, server). In this case, the pre-screener no longer alleviates

the overall workload. It blocks majority of malicious traffics and alleviates workload

of those protected back ends, at the expense of a greater overall computation, most

of which is undertaken by the firewall. Hence, tBF can’t be any large, or it will

cause a large overhead that the system could hardly bear. Here, a trade-off between

security, DDoS resistance, and the overhead during regular cases should be carefully

considered.

3.3.2 Security model

Semantic security is strong enough to defend against attackers who try to benefit from

the Bloom filter. However, it is regarded somewhat overqualified in the context of

our pre-screener, since the Bloom filter is only required to “not degrade the security

level of the back end”, but not “more secure than it”. Roughly speaking, in the view

of any outside attacker, if the overall average runtime of testing an element with the

additional Bloom filter is greater than not, he is not motivated to do so. Hence, it

is reasonable to believe that the Bloom filter brings no extra security concerns, as if

it doesn’t exist. For the convenience of discussion, we strictly define the notion of

nothing-to-gain as follow:

Definition 1. Nothing-to-gain. For attackers who successfully break in the server

and try to achieve the password plaintexts from organizing a brute-force attack, if it

costs less time for them to use data or mechanisms from the back end directly, that

is, in the view of an arbitrary attacker, the overall computation resource (measured

31

Chapter 3. Cloud Password Shield

by the runtime of the algorithm) consumed in the former is greater than that in the

latter, we say it is nothing-to-gain from the Bloom-filter.

Obviously, if a Bloom filter is semantically secure in the view of an attacker, it also

appears to be nothing-to-gain for him.

Upon the definition of nothing-to-gain, let’s derive the boundary condition, where

the Bloom filter can reject false request more quickly (possibly cause overhead during

regular cases), but does not degrade the security against off-line attackers:

Theorem 1. A Bloom-filter as a pre-screener appears to be nothing-to-gain for any

potential off-line attacker, if the following condition is met: tBF ≥ (1− f)tBE

Proof. Obviously, for the original scheme without a Bloom filter, the average time of

determining an item is tBE. If this choice costs less time for potential attackers, they

are not motivated trying to gain the Bloom filter. In this situation, the following

condition must be satisfied:

ta ≥ tBE (3.4)

In the view of attackers who try to gain information from the Bloom filter by brute-

force, that is, traversing all possible inputs by querying them into the Bloom filter,

let’s calculate ta and compare it with tBE. Since most of them are incorrect ones,

this is in fact equivalent to testing it by a flow with λ ≈ 1. In this case, we have the

expectation value of ta by substituting λ = 1 into eq.3.1:

ta = (1− f)tBF + f(tBF + tBE) = tBF + ftBE (3.5)

Substitute by eq.3.4, we have:

tBF ≥ (1− f)tBE

32

3.3. GSBF: a generically secure solution for non-trusted firewall providers

As discussed, increase on tBF also enhance the overhead. To achieve the best overall

performance, let

tBF = (1− f)tBE (3.6)

3.3.3 Construction

3.3.3.1 Runtime of GSBF

Let’s look back and decide ta and tb. Substitute eq.3.6 into eq.3.1 and eq.3.2, we have:

ta = [(2− f) + (f − 1)λ]tBE

tb = [(1 + (f − 1)λ]tBE

Notice that ta and tb are linearly related to λ, given f = 0.1, 0.5, 0.9, respectively,

we show their tendency varying with respect to λ in Fig.3.3, where ta is represented

by full lines and tb is represented by dotted lines. The vertical axis denotes the

times of tBE, in the scope of (0, 2). As shown in the picture, both security and

DDoS resistance could be achieved, if a overhead (equals to ta − tBE) on the overall

performance could be tolerated. Apart from that, the greater f is, the less DDoS

resistant it is, accordingly the less overhead it bears.

3.3.3.2 Initialization

Each GSBF shall be initialized before using. In this process, an additional algorithm

Obfuscation is needed. As mentioned in the context, apparently, if a moderately

33

Chapter 3. Cloud Password Shield

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.3: ta and tb varying with λ. f is set to 0.1, 0.5, 0.9, respectively.

high false positive rate f1 is required at the beginning, the Bloom filter does not start

out empty. To achieve an initial f1, we choose a naive method, that is, obfuscating it

by uniformly setting some of its bits to 1, until the overall false positive rate arrives

at the requiring f1, which is equivalent to insert a series of random passwords into

the Bloom filter, but without any additional calculations. The initialization phase is

described as Algorithm 4:

To illustrate the feasibility of this strategy, as a rough estimation, let f1 be ln1.44 ≈

0.36, f2 be ln1.96 ≈ 0.67, k = 2 and m = 1MB = 8, 388, 608bits. Substitute them

into eq.4.2.4.1, we have:

N = n2 − n1 = −
m

2
ln
1− 1.2

1− 1.4
= −m

2
ln0.5 ≈ 2, 900, 000

which implies a rather small space is enough to support millions of password revi-

sions/new registrations.

34

3.3. GSBF: a generically secure solution for non-trusted firewall providers

Algorithm 4 Initialization of GSBF

1: Input average time of decision in the back end tBE

2: password capacity N

3: initial false positive rate f1

4: maximum false positive rate f2

5: Set tBF according to eq. 3.6

6: Set m according to eq. 4.2.4.1

7: while f < f1

8: Select a random bit bi in GSBF, bi ← 1

9: end

3.3.3.3 Login response

It can be seen from Fig. 3.4, both the overhead and tb strictly decrease with respect

to λ, which implies it costs less time to use this mechanism when λ is large. To

achieve the best profit, as described in Algorithm 5, it is wise to pre-determine an

alarm threshold λ0, such that the back end is able to work when λ < λ0, and run it

in an adaptive patten:

• When λ < λ0, the workload of the back end is acceptable, inactivate the pre-

screener and directly send the incoming login requests to the back end to avoid

the heavy overhead

• When λ > λ0, the workload of the back end starts to be heavy, activate the

pre-screener to reduce the pressure of the back end.

3.3.4 Provable security of GSBF

In this subsection, we will provide provable security of GSBF in the sense of indis-

tinguishability. Intuitively, a large f contributes to this kind of security: Consider a

35

Chapter 3. Cloud Password Shield

Algorithm 5 Login response of a server with GSBF

1: Input password pw, DDoS alarm bound λ0

2: if λ < λ0 then

3: Send pw to back end

4: Return 0

5: else

6: Send pw to GSBF

7: if BFquery(pw)=false

8: then Return false

9: else Send pw to back end

computationally unbounded challenger C in decoding a password from a Bloom filter,

such that tBF is always ignorable in the view of C. Even if this is true, to finally

decide which one is correct, he still has to compare the two results computed from

the Bloom filter. However, as there exists false positives, if both of them appears

to be positive, they are still indistinguishable in the view of C. The higher f is, the

less information the Bloom filter could offer, which is easy to be understood by an

extreme case: Consider a Bloom filter that is entirely set to 1 and returns positive

to everything, hence it provides no information, as if doesn’t exist. Indeed, in the

context of indistinguishability, this feature behaves like a background noise, which is

relevant to nothing but f . To make it precise, we have the following definition and

theorem:

Definition 2. Adversary’s advantage. Let 1
2
+ ϵ′ be the probability of an adversary’s

ability to judge b′ from b according to any auxiliary knowledge he holds, where ϵ′ is

defined as the adversary’s advantage.

Theorem 2. f 2-background noise on indistinguishability. Consider an ini-

tialized Bloom filter with false positive rate f . The semantic security requires that

even if an adversary A holds a non-negligible advantage ϵ′ from his ability of effi-

ciently decoding the Bloom filter, the actual advantage shall be lowered to at least

36

3.3. GSBF: a generically secure solution for non-trusted firewall providers

(1− f 2)ϵ′.

Proof. Let’s look back to the game where semantic security was defined. Consider

an adversary A who holds a non-negligible advantage ϵ′ to judge b′ from b, that is, in

probability 1
2
+ ϵ′, it is computationally light for A to decode b1 and b2 in that Bloom

filter and judge which one has been inserted in.

However, even if he is computationally able to do so, the result could be a false

positive, and it is still indistinguishable for A if both of the results return positive

(one or more of them appears to be false positive). The corresponding probability

turns out to be f 2, which results in an actual appearance of advantage (1− f 2)ϵ′

Upon this theorem, we claim that the semantic security of KSSBF is in fact double-

guaranteed by existing false positive rate f : Even if the pseudo-randomness of func-

tion f(·) is weakened by some prior knowledge, or the privacy of the private key Kpriv

is broken, the background noise still exists, rendering the security level “not that

bad”.

Here, we also prove a simple deduction from theorem 2 and eq.2.2, which illustrates

the strong security of GSBF’s working patten:

Theorem 3. Due to the existence of f 2 background noise, for any adversary A who

holds an non-zero advantage ϵ′, ϵ′ drops to 0 exponentially, with respect to n.

Proof. Consider an initialized Bloom filter, where both m and k are given. With the

Bloom filter getting full, f varies with respect to n. Substitute eq.2.2 into (1 − f 2),

we have:

(1− f 2) = 1− (1− e−
nk
m)2k

When n becomes large, e−
nk
m is close to 0, hence, (1 − e−

nk
m)2k ≈ 1 − 2ke−

nk
m . Then,

we have:

37

Chapter 3. Cloud Password Shield

(1− f 2) = 1− (1− e−
k
m
n)2k ≈ 2ke−

k
m
n

which drops exponentially with respect to n, if m and k are pre-given.

3.4 Performance evaluation & Experiments

3.4.1 Performance metrics

As shown in Table 3.2, there are four possible outcomes from the pre-screener, do-

nating to true negative, false negative, false positive, true positive, respectively.

Table 3.2: Outcome of the pre-screener.

DDoS defense

decision

Desirable

decision
Negative Positive

Negative A B

Positive C D

Theoretically, according to the definition of λ, in our model, the desirable decision of

positive and negative shall be (1 − λ) and λ. However, due to the false positive of

Bloom filters, there exists a fλ of false positives among the λ negative ones, hence,

C = fλ. Accordingly, A = λ − fλ. Obviously, B = 0, as no false negatives occurs

in a Bloom filter. Then, we have D = 1 − λ. For the convenience of discussion, the

results are listed in Table 3.3.

Six metrics constituted from elements in Table 3.2, which have been previously in-

troduced in literature [96], can be employed to evaluate DDoS defence mechanisms

quantitatively. Let’s simply quote the existing results and substitute elements in

Table 3.3 to them:

38

3.4. Performance evaluation & Experiments

Table 3.3: Theoretic value of Table 3.2.

DDoS defense

decision

Desirable

decision
Negative Positive

Negative λ− fλ 0

Positive fλ 1− λ

• Accuracy: (A+D)/(A+B + C +D) = 1− fλ

• Sensitivity: D/(B +D) = 1

• Specificity: A/A+ C = 1− f

• Precision: D/C +D = (1− λ)/(1− λ+ fλ)

• Reliability: C/C +D = fλ/(1− λ+ fλ)

• False negative rate: B/(A+B) = 0

3.4.2 Performance evaluation

Note that, the six metrics are constituted from elements of Table 3.3. Hence, the

performance evaluation is essentially verification of elements in Table 3.3. We just

run the experiment on a PC, and compare the results with Table 3.3.

3.4.2.1 Configurations

The CPU is Intel(R) Core(TM) i5-7500 @ 3.40 GHz, and the memory is 16.0 GB. Set

the overall size m of the Bloom filter to m = 1MB = 8388608bits. Three commonly

used uniform string hashes (BKDR, EK, PJW) are employed in the Bloom filter,

hence, k = 3.

39

Chapter 3. Cloud Password Shield

3.4.2.2 Experimental results of elements in Table 3.3

As shown in Table 3.4, the theoretical value vs. experimental value of elements in

Table 3.3 are listed to make comparison. The case when f = 0.005 corresponds to

the KSSBF, and the remaining three correspond to GSBF with different false positive

rates. Since B = 0, D = 1 − λ are constants that are irrelevant to the Bloom filter,

they are not necessary to be tested. Hence, only results of A and C are shown in this

Table.

3.4.3 Registration/password revision performance of KSSBF

In the system model section, we claimed that the Bloom filter works in the scope

of false positive rate f1 and f2, and give out a study case in the GSBF section to

illustrate the feasibility. In this section, we will verify the registration/password

revision performance of KSSBF experimentally.

In this experiment, the Bloom size still remains 1MB. To keep the false positive rate in

a relatively small area, let the number of passwords recorded into KSSBF be 100000,

200000, 300000, 400000, 500000, respectively, and evaluate if their performances are

steady. We can see from Fig. 3.4, in the scope of a negligible false positive rate, the

performance of KSSBF still holds, even if the number of the recorded passwords rise

to 500000.

3.4.4 Scalability

A scalable DDoS defence mechanism shall effectively handle its duty, even if the

amount of malicious traffic increases. In this part, we will verify the scalability of

both KSSBF and GSBF to test their stress tolerance.

Assume the maximum possible workload of the back end is 500000 requests per sec-

ond. With initialized Bloom filters who holds determined false positive rates (f=0.001

40

3.4. Performance evaluation & Experiments

Table 3.4: Comparison between experimental and theoretical value.

Attribute

λ
0.01 0.1 0.5 0.9

f=0.005

Atheo 0.001 0.01 0.05 0.09

Aexp 0.0013 0.0136 0.0677 0.122

Ctheo 0.009 0.09 0.45 0.81

Cexp 0.00863 0.0863 0.432 0.777

f=0.1

Atheo 0.009 0.09 0.45 0.81

Aexp 0.00987 0.0985 0.492 0.886

Ctheo 0.001 0.01 0.05 0.09

Cexp 0.000126 0.00148 0.00737 0.0132

f=0.5

Atheo 0.005 0.05 0.25 0.45

Aexp 0.00503 0.0504 0.252 0.454

Ctheo 0.005 0.05 0.25 0.45

Cexp 0.00496 0.0496 0.247 0.445

f=0.9

Athro 0.001 0.01 0.05 0.09

Aexp 0.00137 0.01368 0.06779 0.122

Cthro 0.009 0.09 0.45 0.81

Cexp 0.00863 0.0863 0.432 0.777

41

Chapter 3. Cloud Password Shield

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10
7

0

1

2

3

4

5

6

7
10
-3

Figure 3.4: Performance of registration/password revision of KSSBF.

for KSSBF, others for GSBF of different f), we increase the number of bad request

and show their performance in Fig. 4.4. From this picture, we can see the number of

requests arrive at the back end increase linearly, with different slopes according to dif-

ferent f , even if the maximum possible workload is exceeded. This verifies scalability

of the defence mechanism.

3.5 Chapter Summary

In this chapter, we design a firewall architecture using a Bloom filter as a pre-screener

to protect password-based authentication servers from DDoS attacks. To differentiate

whether the firewall is trusted (same-party) or untrusted (third-party), we design

KSSBF and GSBF, both of which provide the two-folded provable security against

DDoS attacks and off-line brute-force attacks.

42

3.5. Chapter Summary

1 2 3 4 5 6 7 8 9 10

10
5

0

1

2

3

4

5

6

7

8

9
10
5

Figure 3.5: Scalability of KSSBF and GSBF pre-screening mechanism.

43

Chapter 4

Secure Indexing

Thanks to the booming cryptographic techniques [29, 34] in recent years, sensitive

data can be outsourced to an untrusted third party (e.g., a cloud server) in a privacy-

preserving way. However, robust security guarantees pose a challenge to the efficient

retrieval of data, given the impracticality of decrypting all ciphertexts for a search

operation. To overcome this obstacle, searchable encryption has emerged as a solu-

tion, enabling keyword search over encrypted data. However, the expanding volume

of data, especially in large-scale networks [94], necessitates cost-effective storage and

processing solutions. Probabilistic data structures for the approximate processing

of searchable encryptions have gained popularity in this context, most notably the

secure index [36]. It allows users to generate a “trapdoor” from a secret key for a

keyword to test its presence in a Bloom filter (BF) [11]. Traditional approaches cater

primarily to univariate data processing, while a vast range of AI and data mining

applications require bi-attribute data handling, such as key-value pairs or spatiotem-

poral data. For instance, a log file in operating systems and web servers frequently

record a timestamp alongside the log event, rendering each entry as a bi-attribute

record (IP, timestamp). The repetition of the same IP necessitates numerous queries

over the timestamp, creating an efficiency bottleneck.

44

Table 4.1: A web server log file.

Ground truth With false positives

Time IP trapdoors Time IP trapdoors

19:22:00

19:22:15

3f3c17b5cfb73e22

ced40518c3e32660

19:22:00

19:22:15

3f3c17b5cfb73e22

ced40518c3e32660

... ...

19:23:19 e6c5d3422583e8e5
19:23:19

19:23:24

e6c5d3422583e8e5

ced40518c3e32660

... ...

19:25:55 e6c5d3422583e8e5
19:25:55

19:25:58

e6c5d3422583e8e5

ced40518c3e32660

Table 4.2: Auxiliary knowledge from compressed session data.

Time slot IP

19:21:55-19:22:05 158.132.150.83, 141.211.29.122

19:22:15-19:22:25 158.132.50.12, 70.108.10.124

19:22:40-19:22:50 124.197.24.255

19:23:15-19:23:25 158.132.150.83, 167.136.142.43

19:25:50-19:26:00 59.160.0.12, 167.136.142.43

Fortunately, in practice not all attributes are sensitive. Non-sensitive attributes in

plaintext enable batch operations, such as prefix queries, within a single trapdoor gen-

eration. For instance, in a web server log file (Table 4.1), the IP address is sensitive,

while the timestamp is not. Notice that the trapdoor ‘e6c5d3422583e8e5’ repeats

twice and is likely to surface elsewhere in the log file. For a range query over the

timestamp, for instance, an administrator may want to verify if a specific IP accessed

the server between 19:00-20:00, a single trapdoor generation suffices. While this ap-

proach alleviates the cost of trapdoor generation, it is vulnerable to inference attacks

where an adversary could exploit the plaintext outcome to deduce the sensitive at-

45

Chapter 4. Secure Indexing

tribute using auxiliary knowledge. Adversaries with auxiliary knowledge, such as

session data, can compromise privacy by correlating non-sensitive and sensitive at-

tributes, as demonstrated in Table 4.2. For example, by comparing the plaintext of

trapdoor ‘e6c5d3422583e8e5’ with the encrypted log file, it is highly possible that the

IP address is ‘167.136.142.43’, which is essentially a known plaintext attack. This

demonstrates the outcome of the non-sensitive attribute can lead to privacy loss [50]

for the sensitive attribute when the two are correlated. While the BF structure of-

fers minimal privacy protection due to its probabilistic nature and tendency for false

positives [8] (for instance, a false positive in red in Table 4.1 contradicts the auxiliary

knowledge), its protection level is not equivalent to a cryptographic guarantee for

every item.

Secure hybrid cloud solutions [62, 97] that safely outsource non-sensitive data have

been developed, combining public cloud advantages with strong security. However,

these solutions demand potentially unlimited local storage and may induce significant

inter-cloud communication overhead [55]. This chapter aims to simultaneously ad-

dress batch processing over non-sensitive attributes and inter-attribute privacy and

create a lightweight, secure bi-attribute index deployable on public cloud platforms.

We utilize the randomized response [84] to inject noise into the index, ensuring the

outcomes align with local differential privacy [27]. This chapter’s contributions are

twofold:

Efficient Query Processing: We propose a matrix BF-based index, a 2-dimensional

extension of the secure index supports batch operations over one attribute (e.g., IP)

and customizable queries over two attributes (e.g., IP and timestamp). We illustrate

this framework with a case study, enabling searchable encryptions and range queries

over non-sensitive attributes within a single trapdoor generation. Moreover, we in-

troduce two variants of the matrix BF, optimizing insertion and membership test

efficiency for different workload patterns.

Bounded Privacy Loss: Given the correlation between the two attributes, achiev-

46

4.1. System Overview

ing full utility of the non-sensitive attribute and zero privacy loss of the sensitive

one concurrently is unattainable. We formally define the privacy loss bounded by a

security parameter, ensured by adding noise through the Randomized Response tech-

nique [84]. We propose an initialization approach for the index, ensuring a controlled

level of privacy loss in data processing, and theoretically derive the false positive rate

of the matrix BF index and its maximal capability.

The rest of the chapter is structured as follows. Chapter 4.1 formalizes the problem,

discusses baseline solutions, and delineates the threat model. Chapter 4.2 details our

proposed approach, including a theoretical analysis and a case study. Chapter 4.3

introduces two matrix BF variants. Chapter 4.4 presents experimental setup and

results. Chapter 4.5 concludes this chapter.

4.1 System Overview

4.1.1 Problem Definition

Generally, a bi-attribute index serves as an efficient strategy for executing queries

over two attributes of a single data piece in a partitioned manner. This is refined into

a membership test on the co-existence of both attributes.

Definition 3. Bi-Attribute Membership Test. Given a set of bi-attribute data,

where (x, y) symbolizes a piece of data from that universe, a bi-attribute membership

test over (x, y) is a bivariate function Q(x, y) = 1 or 0. This returns true or false for

the co-existence of (x, y) in the given set.

This type of membership test must support prefix queries over one attribute. Con-

sequently, when the suffix attribute is readily visible in plaintext, an efficient batch

operation becomes feasible, leading to the concept of a bi-attribute batch membership

test.

47

Chapter 4. Secure Indexing

Definition 4. Bi-Attribute Batch Membership Test.

Given a constant value x1 of variable x (or y1 of y), a bi-attribute membership test

Q(x, y) is deemed batchable if there exists a univariate membership test Qy(x1, y) = 1

or 0 (or Qx(x, y1)) for y, returning true or false for the co-existence of (x, y).

4.1.2 Baseline Solutions

This section discusses existing solutions and their efficacy for bi-attribute batch mem-

bership tests.

Single BF Naive Approach. One method uses a secure index to process bi-

attribute data. However, it fails to support bi-attribute batch membership tests

as it requires unique trapdoor generations for each query.

Hashmaps Utilization. Hashmaps, storing key-value pairs, can be space-consuming.

Collision handling involves chaining, making large-scale searches costly. We demon-

strate this in Fig. 4.1 (a), where we initialize hashmap lengths to 10 and 15 times

the number of elements and reduce them to 1 and 1.5 times respectively at scale=10.

Despite O(1) complexity for key search, it doesn’t apply to values.

Use of Multiple BFs. Another approach employs multiple BFs, like the multi-

dimensional BF (MDBF) for l-dimensional elements [38], or the combinational BF for

multiple group membership queries [39]. However, these require many hash functions

and memory accesses, and suffer high misclassification probabilities. Furthermore,

multiple BFs function as separate entities, failing to establish member relationships

within the set. This necessitates knowing where an attribute is stored, leading to a

single attribute linear search, and then member searching from the corresponding BF.

Bi-attribute batch membership tests require this to be an O(1) complexity process,

regardless of the number of BFs used, as validated in Fig. 4.1 (b). Here, BF search

runtime increases with the scale of BF sets, though each lookup in the corresponding

BF has O(1) time complexity.

48

4.1. System Overview

1 2 3 4 5 6 7 8 9 10
Scale

103

104

105

R
u

n
ti

m
e

\ m
s

Hashmap_10
Hashmap_15

(a) Hashmap.

5k 10k 20k 30k 40k
Number of BFs

0.004

0.006

0.008

0.01

0.012
0.014
0.016
0.018

R
u

n
ti

m
e

\ m
s

(b) Multiple BFs.

Figure 4.1: The runtime of hashmap and multiple BFs with scale increasing.

4.1.3 Threat Model

In our setup, the sensitive attribute is encrypted, and the non-sensitive attribute

is visible in plaintext. We assume an honest-but-curious adversary with extensive

auxiliary knowledge (e.g., one in Table 4.2) of the inter-attribute correlation, who

will attempt to infer the sensitive attribute by eavesdropping on the outcome of the

non-sensitive one. An ideal but unattainable method would offer full utility of the non-

sensitive attribute with zero privacy loss of the sensitive attribute simultaneously [50].

However, to make it practical, we only require that any published set of outcomes of

the non-sensitive attribute results in a bounded privacy loss of the sensitive one:

Definition 5. Security Definition. A bi-attribute batch membership test Qy(x1, y)

(over the non-sensitive attribute y) has a bounded privacy loss if and only if there

exists a parameter λ that can converge to 0, such that the following formula holds for

any trapdoor Tj and any pair of plaintexts Pi1, Pi2 of attribute x:

|Pr(Tj ← Trap(Pi1)|Ak,Y, y1)−

Pr(Tj ← Trap(Pi2)|Ak,Y)| ≤ λ
(4.1)

where Ak represents the auxiliary knowledge of inter-attribute correlations, Y is any

49

Chapter 4. Secure Indexing

set of known outputs of y that the adversary is aware of, y1 is any potential output of

Qy(x1, y) over y, and Pr(Tj ← Trap(Pi)) is the probability that the adversary could

ascertain that a trapdoor Tj is generated from plaintext Pi.

The parameter λ is only a logical concept employed to regulate the privacy loss

within the security model. In the following section, we will elucidate how the LDP

technique [27] endeavors to assure a bounded privacy loss, managed by the parameter

ϵ. Notably, ϵ parallels the role of λ as it characterizes the capability to protect

privacy.

4.2 The Matrix BF Index

The Bloom Filter (BF), a space-efficient probabilistic data structure, is an array of

m bits using k hash functions for item insertion and querying [11]. It may produce

false positives, indicating an item’s presence incorrectly. The Matrix BF extends

this concept to two dimensions, treating rows and columns as separate BFs with

parameters (m1, n1, k1) and (m2, n2, k2) respectively, enabling advanced querying [83].

This work utilizes the Matrix BF for bi-attribute membership tests.

4.2.1 The Basic Structure

The bi-attribute membership test in a matrix BF is described in Algorithm 6. To in-

sert a piece of data (x, y) into the matrix BF, each attribute is hashed separately. The

first attribute, x, is hashed using k1 different hash functions, each generating a row

index. Similarly, the second attribute, y, is hashed using k2 different hash functions,

each yielding a column index. The intersection of these hashed rows and columns

identifies the positions in the matrix that are set to 1. When querying whether a

piece of bi-attribute data (x, y) exists in the set, we follow a similar process. We hash

x and y to obtain k1 and k2 indices, respectively. We then check the corresponding

50

4.2. The Matrix BF Index

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0 0 0

11

1 1

row-
ℎ𝑎𝑎𝑎𝑎ℎ1

row-
ℎ𝑎𝑎𝑎𝑎ℎ2

column-
ℎ𝑎𝑎𝑎𝑎ℎ2column-

ℎ𝑎𝑎𝑎𝑎ℎ1

item

Attribute y

Attribute x

Figure 4.2: The basic structure of a matrix BF index.

k1 × k2 positions in the matrix. If all of these positions are set to 1, we infer that

the queried data (x, y) is likely in the set and return “true”. If any of these positions

is not set to 1, we conclude that the queried data (x, y) is definitely not in the set

and return “false”. In this way, the matrix BF performs membership tests on two at-

tributes in a partitioned manner. Different sets of hash functions are applied to each

attribute, allowing the structure to maintain the co-existence of the two attributes

within each data pair.

4.2.2 False Positive Rate

A false positive occurs when the matrix BF indicates that a queried item is part of

the set when it is, in fact, not. We can calculate the probability of this happening,

denoted as f :

Theorem 4. The probability of a false positive in a matrix BF is given by (1 −

51

Chapter 4. Secure Indexing

Algorithm 6 Bi-attribute membership test in a matrix BF

Input: Item (x, y), matrix BF M

1: ItemInsertion

2: for i = 1 to k1 do

3: row array[i]← rowhashi(x);

4: for j = 1 to k2 do

5: column array[j]← columnhashj(y);

6: M(row array[i], column array[j])← 1;

7: end for

8: end for

9: ItemLookup

10: for i = 1 to k1 do

11: row array[i]← rowhashi(x);

12: for j = 1 to k2 do

13: column array[j]← columnhashj(y);

14: if M(row array[i], column array[j]) == 0 then return false

15: end if

16: end for

17: end for

18: return true

52

4.2. The Matrix BF Index

e
−nk1k2
m1m2)k1k2.

Proof. Suppose the hashes choose the positions equiprobably. Given an item that is

not in the membership set,1 for any bit the probability that it is not set to 1 in a

single hash insertion turns out to be:

p1 = 1− 1

m1m2

(4.2)

After all the k1k2 executions the probability that the bit is not set to 1 is p2 =

(1 − 1
m1m2

)k1k2 . When n items are inserted, the probability that the bit is still 0

is p3 = (1 − 1
m1m2

)nk1k2 . Hence, the probability that the bit is set to 1 is p4 =

1 − (1 − 1
m1m2

)nk1k2 . The false positive result occurs when all the queried k1k2 bits

are set to 1:

f = (1− (1− 1

m1m2

)nk1k2)k1k2 ≈ (1− e
−nk1k2
m1m2)k1k2

Next, let us decide the optimal number of hash functions and the lowest false positive

rate of a matrix BF:

Theorem 5. The optimal condition of a matrix BF can be gained from substituting

k = k1k2 and m = m1m2 into the formula k = m
n
ln2, which is the theoretical optimal

condition of a standard BF.

Proof. Recall that

f = ek1k2ln(1−e
−nk1k2
m1m2)

1If we randomly choose an element from the entire space, and when the domain is large enough,

the probability that it falls into a predefined membership set tends to be zero.

53

Chapter 4. Secure Indexing

Let p = e
−nk1k2
m1m2 , g = k1k2ln(1−e

−nk1k2
m1m2) = −m1m2

n
lnpln(1−p). Clearly, f arrives at its

minimum when g reaches its minimum. Due to the symmetry of lnp and ln(1 − p),

the following restriction holds:

p = e
−nk1k2
m1m2 =

1

2
(4.3)

It implies f arrives at its minimum when overall 50% bits are occupied with 1. Hence,

we have the boundary condition:

k1k2 =
m1m2

n
ln2

As well as the minimal value of f :

pmin = (
1

2
)k1k2 (4.4)

Compare with the corresponding results of the standard BF:

p =
1

2
, k =

m

n
ln2, pmin = (

1

2
)k (4.5)

Replace k and m in equation 4.5 by k1k2 and m1m2, then complete the proof.

4.2.3 Partitioned Hashing Strategies

The structure of the matrix BF allows us to apply different hashing functions over

different attributes. Specifically, we can use general hash functions for the trapdoor

insertion/query for normal requests, while employing customized hash functions on

the non-sensitive attribute to meet specific requirements. We illustrate this by us-

ing our index approach to partition the two attributes and then applying existing

54

4.2. The Matrix BF Index

Algorithm 7 Range searching with LSH

Input: Timestamp ts, matrix BF index M , global BF B;

1: FindBlock : (ts,M,B)

2: for j = 1; j < k2; j ++ do

3: column array[j]← columnhashj(y)

4: for t = 1; t in TimeBlock detect set; t++ do

5: for i = 1; i < k1; i++ do

6: row array[i]← rowhashi(t)

7: if M(row array[i], column array[j]) = 0 then break

8: end if

9: end for

10: Goto GlobalBF : (t, y, B)

11: end for

12: end for

13: GlobalBF : (t, y, B)

14: for s = 1; s < k3; s++ do

15: location [j]← columnhashs(t+ y)

16: if B(location [j]) == 1 then return false

17: end if

18: end for

19: return true

55

Chapter 4. Secure Indexing

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0 0 0

11

1 1

LSH2

Tr
ap

do
or

 (E
ve

nt
) Event

1 0

2 0

3 0

4 1

…. …

9 1

10 0

11 0

Time Block1

Time Block2

LSH1

LSH2

Time2
1

Time2
2

Time2
3

Time2
4

+ = Item1

Event+ = Item2

Event+ = Item3

OUTPUT：
Time2

3

𝑯𝑯𝟏𝟏

𝑯𝑯𝟏𝟏

𝑯𝑯𝟏𝟏

𝑯𝑯𝟐𝟐

𝑯𝑯𝟐𝟐

𝑯𝑯𝟐𝟐

Matrix Bloom filter
Global

Bloom filter

LSH1

INPUT：
Event

Figure 4.3: The framework of our study case. Timestamps are queried with LSH in

the matrix BF first and are further checked in a global BF.

efficient hashing technologies (e.g., LSH [41]) to improve performance. We demon-

strate this with a real-world application by answering the timestamped membership

query (tmt-query) problem posed by Peng et al. [68]: “Given an element in the

form of (event, timestamp), can we determine whether any event occurred within a

time range (t1, t2)?” In our setup, the index supports searchable encryption over the

sensitive “event” attribute and range searching over the non-sensitive “timestamp”

attribute. Thus, trapdoors are generated only for events, while timestamps remain

in plaintext.

Even though we now need only one trapdoor generation for multiple timestamps,

traversing the entire history would still require a brute-force linear search. This is still

expensive as the scale increases. However, we can further improve this by using LSH,

as introduced in the preliminaries section, for searching over the timestamps. Figure

4.3 illustrates the framework of the case study. Our basic idea is to use a matrix BF

index as a preprocessing step to reduce the search range over timestamps by utilizing

the locality provided by LSH. Specifically, we set some probing points uniformly on the

time domain, corresponding to a series of time blocks that completely cover the entire

domain. The size of the time blocks is related to the locality of LSH. Therefore, any

item membership test (on each probing point) is essentially a neighbourhood search to

identify the time block that the timestamp should belong to. For example, in Figure

56

4.2. The Matrix BF Index

4.3, the query on time block 1 will return false, which means the timestamp does

not fall into this time block. We then move to the next probing point, corresponding

to time block 2, which returns true and should contain the objective timestamp.

Finally, to improve the accuracy, we use a global BF that records the element (event,

timestamp) as a whole to pinpoint the objective timestamp within the time block.

The entire process is described in Algorithm 7.

4.2.4 Securing the index

4.2.4.1 Index Initialization

In light of Definition 4.1, the security requirement is that the release of any set of

outcomes related to the non-sensitive attribute should contribute only a bounded pri-

vacy loss of the sensitive one. This essentially relates to the distributional similarity

of items over the non-sensitive attribute. One extreme case would be if every pair of

sensitive items had the same distribution of co-occurring non-sensitive values, mean-

ing that the outcome of any non-sensitive value set contains no information about

the sensitive item, even though they may be correlated.

In the context of the matrix BF, for any specified sensitive item, the set of co-existing

non-sensitive items has a BF representation, which includes all the matrix BF columns

that the sensitive item is hashed to. If the universe of all possible BF representations

can be ensured by equation 2.1, satisfying the definition of LDP, this implies that

any possible membership test subset also maintains the same level of privacy. Con-

sequently, we can assert the following:

Corollary 1. If the set of BF representations B1,B2, ...,Bi for all non-sensitive items

complies with LDP, then any bi-attribute batch membership test over the non-sensitive

attribute will have a privacy loss that is bounded (controlled by ϵ).

As p approaches 0.5, it implies that ϵ approaches 0, leading to an infinite perturbation

57

Chapter 4. Secure Indexing

that makes any inputs indistinguishable. In this scenario, the BF representation re-

turns “yes” with a probability of 50% for any item and hence contains no information

about the set of inserted values (and thereby the sensitive attribute).

The initialization of a matrix BF index is described in Algorithm 8. Each item from

the membership set I into the matrix M (line 2), and the algorithm starts two nested

loops. The outer loop iterates over all the indices i where the sum of the ith row in

the array is not zero. The inner loop iterates over all the indices j (lines 3-4). For

each pair of indices (i, j), the algorithm stores the value of the cell at the ith row

and jth column of the matrix M in a temporary variable Temp (line 5). Finally, the

algorithm generates a random number between 0 and 1. If this number is less than

the perturbation parameter p, the value of the cell at the ith row and jth column of

the matrix M remains the same. Otherwise, the value of this cell is switched to its

complement, i.e., 1 becomes 0 and vice versa (line 6-9).

The user determines the privacy budget ϵ to choose (which corresponds to the pertur-

bation parameter p), and the initialized matrix BF will have the lowest false positive

rate f1 as the privacy bound. The user also determines the highest acceptable false

positive rate f2 as the utility bound. Thus, the index starts at a specific state and is

filled up as the user inserts new items. As the BF becomes full (or full enough to start

producing many false positives), the false positive rate increases and the utility of the

BF tends to worsen. Therefore, the BF is expected to operate effectively between f1

and f2. The user should reconstruct a new index when the false positive rate exceeds

f2.

Index Update. Conventional BFs do not support deletions, with Counting Bloom

Filters [31] as an exception. However, they can still lead to false negatives post

deletion [37]. In our framework, we treat deletions as if they were part of the initial

perturbation, inserting fake items. So, we don’t need to delete an item from the index.

Revisions, which involve deleting an old item and inserting a new one, are simplified

to just an item insertion.

58

4.2. The Matrix BF Index

Algorithm 8 Index initialization with RR

Input: Membership item set I, Perturbation parameter p, matrix BF M ;

1: Insert(item ∈ I)→M

2: for All i when
∑

row array[i]! = 0 do

3: for All j do

4: Temp = M(row array[i], column array[j])

5: if rand(1) < p then

6: M(row array[i], column array[j]) = Temp

7: else

8: M(row array[i], column array[j]) = 1− Temp

9: end if

10: end for

11: end for

Capability. We can now derive the capacity of an initialized index, i.e., the number

of items that can be added. Once the values of m and k for the Bloom filter are fixed,

the following formula relating n (the number of items in the filter) and f (the false

positive rate) holds:

n = −m

k
ln(1− e

ln f
k)

We can then determine the number of items that can be added upon initialization as

follows:

N = n2 − n1 = −
m

k
ln

1− e
ln f2
k

1− e
ln f1
k

where n2 and n1 are the numbers of items in the BF when the false positive rates are

f2 and f1.

59

Chapter 4. Secure Indexing

4.3 Handling Inter-attribute Correlations

We have discussed the matrix BF assuming independent attributes, which contradicts

our problem scenario involving inter-attribute correlations. Practically, the matrix’s

size and shape should correspond to pre-known dataset characteristics. This sec-

tion proposes two matrix BF variants leveraging prior knowledge. The maximum

adaptive approach is universally applicable, while minimum storage approach utilizes

precise repetition information of each key, requiring prior knowledge. Most real-world

situations lie somewhere between these extremes, which will be illustrated later.

4.3.1 Maximum Adaptive Matrix

The number of items on the two attributes and their combination patterns co-determine

the shape and size of the matrix BF. We should consider the worst case when having

no prior knowledge about the dataset, or the index should be frequently renewed and

updated by adding unknown items. That is, for any given n1, n2, we pre-allocate large

enough spaces for any given S with parameters n1, n2, where the maximum possible

combinations is n1n2. To be adaptive to the most general case, given m1 and m2,

treat the rows and columns as dedicated standard BFs, both of which hold the lowest

possible false positive rate. Hence, we have

k1 =
m1

n1

ln2, k2 =
m2

n2

ln2

Load factor. The maximum adaptive matrix is relatively empty. About 50% of

rows/columns is set to 0, hence the load factor is approximately 25%. In the worst

case where n = n1n2, since the queries in row and columns satisfy equation 4.3, the

load factor turns out to be approximately 50% × 50% = 25%. In general cases, n is

in fact less than n1n2, thus the load factor is always less than 25%.

False positive rate. When queries in both rows and columns turn out to be false

60

4.3. Handling Inter-attribute Correlations

positive, the overall false positive result occurs. Hence,

fprmam = f1 × f2 = (
1

2
)k1+k2

Storage overhead. As mentioned, the maximum adaptive matrix is relatively

empty. It achieves a better performance of adaptive batch queries at the expense

of storage overhead. Let us derive the maximum possible storage cost of the maxi-

mum adaptive matrix, and compare it with a standard BF.

Assume a standard BF is allocated to insert the same set of n1n2 elements, where the

same false positive rate fprmam = (1
2
)k1+k2 is achieved. Let the size of the standard

BF be m0, hence, the corresponding number of hash functions in the standard BF

turns out to be k0 =
m0

n1n2
ln2. Let k0 = k1 + k2, we have:

(
m1

n1

+
m2

n2

)ln2 = (
n2m1 + n1m2

n1n2

)ln2 = (
m0

n1n2

)ln2

That is,

n1m2 + n2m1 = m0

Due to the mean value inequality, we have:

2
√
n1n2 ·

√
m1m2 ≤ m0

Hence,

m = m1m2 ≤
(m0)

2

4n1n2

(4.6)

Complexity. For each membership test, there are overall k1k2 hashing/comparisons,

therefore the complexity is simply O(k1k2). Since

k1k2 = (
m1m2

n1n2

)ln22

Substitute by equation 4.6, we have:

k1k2 = (
m1m2

n1n2

)ln22 ≤ (m0)
2

4(n1n2)2
ln22 =

k2
0

4

61

Chapter 4. Secure Indexing

However, in the case of batch membership tests, the complexity can be further re-

duced. Consider the best case of key-value pairs, where a series of varying values

correspond to the same key. For this special dataset, the key is to be hashed only

once, while the values are to be hashed at most max(k1, k2) times. Therefore, the

best complexity can be lowered to O(max(k1, k2)).

4.3.2 Minimum Storage Matrix

While the maximum adaptive matrix is adaptive to the most general case without

prior knowledge, it bears an extensive overhead on the storage cost and hashing

numbers. However, in practice, we may be aware of some statistical features of the

dataset, with which we can construct a lower storage matrix applying in read-only (or

not frequently updated) scenarios, e.g., a dictionary. In this part, we will discuss some

typical datasets with strong background knowledge and construct the corresponding

matrices according to our theory.

Case A. Let us start at a special case where there exists a bijection between S1

and S2, i.e., for any two different elements, there is no repeat on both of the two

components. This is typical for a time-series data, e.g., a non-overlapped trajectory

of the movement of a point. Clearly, in this case n1 = n2 = n, which means the two

sets of different components contain the same number of elements. In this special case,

the answer is simple. In this case, positions of (k1,m1) and (k2,m2) are symmetric,

since both (k1, k2) and (m1,m2) are commutable. Naturally, we employ a square

matrix for insertion of the n elements, where k1 = k2 = k,m1 = m2 = m.

Case B. In this case, let us consider a more general situation where elements in S

can be represented as a weak combination from S1 and S2. For the convenience of

discussion, let n1 > n2. In this case, each element in S2 combines with elements in S1

at most j times. Elements in S1 are not allowed to repeat. Hence, n1 = jn2. This is

typical for any lexicographical ordered data set where j = 26.

62

4.3. Handling Inter-attribute Correlations

Element insertion/query. Let us start at a special case where n1 = 2n2. We adopt

a special hash to classify components in S1 into 2 types, each belonging to either S11

or S12. In each set, there are n2 = n1

2
elements. For each set, we employ a square

matrix as described in the context of Case A.

For any element to insert, we first employ the special hash to find out which square

matrix it belongs to. Then, in the determined square matrix, find out the correspond-

ing rows for components in S1 as well as columns for components in S2.

For the two square matrices, components in S2 are always mapped into the same

columns. Hence, it equals merging the two matrices from left to right to get a 2m2×m2

matrix. For the general case, when n1 = jn2, similarly, the special hash should choose

which of the j sets an element belongs to. Then for each set, a square matrix is

adopted, and the j square matrices are stuck together to build a jm ×m j-matrix.

See Fig. 4.4 as an example. When any elements are queried, similar rules are executed

to find out if the k1k2 bits are 1.

False positive rate. Let us discuss the special case where n1 = 2n2 first. Suppose

overall 2m2 bits are employed to build this matrix. Now let us prove the false positive

rate in this scenario equals using a standard BF, where the same number of bits (2m2)

is allocated to insert the n1 elements.

Obviously, the false positive rate of that standard BF is (1
2
)
2m2

n1
ln2

. In the matrix,

since the two square matrices share the same false positive rate, only one of them

needs to be calculated. The false positive rate turns out to be:

fpr2−matrix = (
1

2
)
m2

n2
ln2

= (
1

2
)
2m2

n1
ln2

Extending to the j-matrix case, we have the following theorem:

Theorem 6. When jm2 bits are adopted to build a general jm ×m j-matrix case,

the false positive rate equals that of a standard BF where the same number of bits

(jm2) is used for insertion of the same number of elements. (Say, n1 = jn2)

63

Chapter 4. Secure Indexing

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

1 2 3 4

1 0 0 0 0

2 0 1 0 1

3 0 0 0 0

4 0 1 0 1

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

… …

insert Special hash

1

),(21 xx

i n

),(21 xxA

Figure 4.4: Element insertion/query in a j-matrix.

Proof. The false positive rate of that standard BF is (1
2
)
jm2

n1
ln2

. Since the j square

matrices share the same false positive rate, just one of them needs to be considered.

The false positive rate turns out to be:

fprj−matrix = (
1

2
)
m2

n2
ln2

= (
1

2
)
jm2

n1
ln2

4.4 Experiments

The experiments are conducted using MATLAB R2021a on a PC equipped with an

Intel i7-10700K RTX 3090 eight-core processor, 128GB RAM, and Windows 10 OS.

To implement the BFs, we opt for universal hash functions [13] to map elements into

BFs. For any item X represented as X =< x1, x2, ..., xb > in b-bits, the ith hash

64

4.4. Experiments

function over X hi(x) is calculated as hi(x) = (di1× x1)⊕ (di2× x2)⊕ ...⊕ (di3× x3),

where × signifies the bitwise AND operator and ⊕ represents the bitwise XOR

operator.

4.4.1 False Positive Rate

We use two real-world datasets from the Bag of Words database, which consists of

five text collections. We chose KOS (with 353160 key-value pairs from 3430 keys

and 5851 values) and NIPS (with 746316 key-value pairs from 1500 keys and 12375

values). Moreover, we create a synthetic bi-attribute dataset, SYN FD, which is

fully-duplicated. This dataset is formed from the Euclidean cross product of two

scalar datasets where elements are random numbers, which gives the bi-attribute

data a duplication feature on both attributes. Both scalar datasets are fixed with

1000 numbers, resulting in a total of 1000000 bi-attribute data in the dataset.

Verification of Theorem 4. We use SYN FD for this part. For the standard BF,

we insert a piece of bi-attribute data as a whole. Let k be different integers, and

allocate an appropriate value of m using the formula k = m
n
ln2. For the matrix BF,

we allocate the same number of bits and items where k = k1k2, as a comparison to

the standard BF. The insertion rules of a single row/column for the matrix BF are

the same as for a standard BF.

The left-hand part of Fig.4.5 shows the tendency of false positive rates of the standard

BF varying with respect to k, and the right-hand part is that of the matrix BF.

Notably, the points in the matrix BF are more concentrated because m1 and m2 are

commutable, which results in a square matrix BF. However, since k = k1k2, if both k1

and k2 are required to be strict integers, there are fewer choices for k. Therefore, we

approximate some points near k = 8 and k = 16 where the number of hash functions

is fixed to integers, while the corresponding m1 and m2 are calculated from the non-

integer values of k. As seen from Fig.4.5, the experimental results align well with the

65

Chapter 4. Secure Indexing

3 4 5 6 7 8 9 10 11 12 13 14 15 16

k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

F
al

se
 P

o
si

ti
ve

 R
at

e

Theoretic
Simulation

(a) Standard BF.

4 6 8 10 12 14 16

k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

F
al

se
 P

o
si

ti
ve

 R
at

e

Matrix BF(Theoretic)
Matrix BF(Simulation)

(b) Matrix BF.

Figure 4.5: Comparison of theoretical/experimental value of the optimal false positive

rate in a standard/matrix BF.

theoretical values. Thus, Theorem 4 is verified, which implies the performance of our

matrix BF is equivalent to the standard BF.

On maximum adaptive matrix. The performance of the maximum adaptive

matrix is evaluated under various parameter settings on the aforementioned three

datasets. We allow k = k1+k2 to take on different integer values. The parameters mi

are adjusted to appropriate values using the formula ki =
mi

ni
ln2, i = 1, 2, respectively.

The results are illustrated in Figs. 4.6 (a) (c) (e), which indicate that the evaluated

false positive rate (fpr) aligns with the theoretical value when the matrix is fully

populated, as evaluated on SYN FD. However, as the two real-world datasets are

not as duplicated as the synthetic one, the matrices are less loaded, leading to a lower

false positive rate.

Figs. 4.6 (b) (d) (f) assess the false positives of different proportions of m1

m2
as m0

varies. Similarly, the evaluated values are well-aligned with the theoretical ones when

the matrix is fully populated, i.e., as evaluated on SYN FD, and are considerably

lower for real-world datasets. This suggests that the maximum adaptive matrix re-

66

4.4. Experiments

quires a significant amount of storage for typical cases, a trade-off for the generality

it offers.

In our final set of experiments, we examine the load factor of our matrix with respect

to the proportion of inserted elements. The parameters selected for this are identi-

cal to those in previous experiments. Table 4.3 illustrates that the load factors for

different values of m1

m2
are nearly identical when the same proportion of elements is

inserted. In particular, when the matrix is fully loaded, the load factor is very close

to the predicted 25%.

Table 4.3: Load factor & proportion of elements of different m1

m2
’s

Proportion

Load factor m1
m2

1
4

1
2 1

20% 0.063681451 0.065117817 0.065625635

40% 0.121001445 0.120029788 0.122250358

60% 0.170028163 0.167312289 0.175074846

80% 0.213055668 0.210467359 0.217504935

100% 0.249106352 0.24721041 0.256099335

On minimum storage matrix. This part evaluates the robustness and storage

efficiency of the minimum storage matrix. We set k = k1
j
= k2 and n1 = jn2 with

n2 = 144, and allow k to take different integer values. The value of m2 is adjusted

accordingly, based on the formula k2 =
m2

2

n2
ln2.

We plot the false positive rates versus k2 for j = 2, 10, 40, 100 on the left part of Fig.

4.7. To make an approximation, we take some points nearby non-integer k2 values

while fixing the number of hash functions to integers. The corresponding number of

bits is then calculated from the non-integer values of k. Our results indicate that

all four j-matrices perform similarly and remain almost unchanged regardless of the

67

Chapter 4. Secure Indexing

2 4 6 8 10 12
k

0

0.05

0.1

0.15

0.2

0.25

0.3

F
al

se
 P

o
si

ti
ve

 R
at

e

1 2 3 4 5 6
k

0

0.02

0.04

0.06
F

al
se

 P
o

si
ti

ve
 R

at
e

2 4 6 8 10 12
k

0

0.05

0.1

0.15

0.2

0.25

0.3

F
al

se
 P

o
si

ti
ve

 R
at

e

(a) SYN FD.

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
al

se
 P

o
si

ti
ve

 R
at

e

(b) SYN FD.

2 4 6 8 10 12
k

0

0.05

0.1

0.15

0.2

0.25

F
al

se
 P

o
si

ti
ve

 R
at

e

(c) NIPS.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

F
al

se
 P

o
si

ti
ve

 R
at

e

(d) NIPS.

2 4 6 8 10 12
k

0

0.05

0.1

0.15

0.2

0.25

F
al

se
 P

o
si

ti
ve

 R
at

e

(e) KOS.

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
al

se
 P

o
si

ti
ve

 R
at

e

(f) KOS.

Figure 4.6: False positive rate of maximum adaptive matrix with respect to k and

m0. 68

4.4. Experiments

4 6 8 10 12 14 16 18

k2

0

1

2

3

4

5

6

7

F
al

se
 P

o
si

ti
ve

 R
at

e

10-3

j=2
j=10
j=40
j=100

(a) fpr with respect to k2.

20 40 60 80 100
Actual elements inserted

0

1

2

3

4

5

6

7

8

F
al

se
 P

o
si

ti
ve

 R
at

e

10-3

(b) Robustness.

Figure 4.7: The false positive rate and robustness of minimum storage matrix.

value of j.

Next, we fix k2 at 4, 9, 16 and plot the false positive rates with respect to j. As

illustrated in the right-hand part of Fig. 4.7, the false positive rate remains stable as

j increases, indicating the high robustness of our proposed structure.

Finally, we compare the storage cost for initializing a minimum storage matrix and

a maximum adaptive matrix at the same theoretical false positive rate, as shown

in Table 4.4. The results demonstrate that when the dataset duplication level is

low, the storage can be reduced by several orders of magnitude if we have sufficient

prior knowledge about the datasets. This highlights the potential for significant

storage efficiency gains with the minimum storage matrix, particularly in read-only

or infrequently updated scenarios where dataset characteristics can be accurately

predicted.

69

Chapter 4. Secure Indexing

Table 4.4: Storage Comparison

Method Key Value fpr k1 k2 m0(MB)

Maximum

adaptive matrix

104 106

1
2

4
2 2 2.9× 104

1
2

12
6 6 8.9× 104

Minimum

storage

matrix

j=50 1
2

4
2 2 34.4

j=50 1
2

12
4 4 103.19

j=100 1
2

4
2 2 68.79

4.4.2 Batch Performance

In this part, we assess the search time performance of our proposed structure. We

utilize the following datasets:

Solar: Extracted from the Solar Power Data for Integration Studies, this dataset con-

sists of 1-year worth of solar power data and hourly day-ahead forecasts for around

6000 simulated PV plants in Alabama. We use a subset of this data for our ex-

periment, treating solar power as events and time as values. The dataset consists

of 62 events and 287 values (in the form of hour and minute), resulting in 105120

combinations, many of which are duplicated.

Electricity: This dataset contains electricity consumption data from 321 clients,

recorded every 15 minutes from 2012 to 2014. Here, electricity consumption is treated

as the event, and the time is considered the value. The dataset has 32 events and

95 values (in the form of hour and minute), leading to 105120 combinations with

numerous duplications.

SYN ND: This is a synthetic, non-duplicated dataset generated from 20 events and

3599 values. Each pair from the two scalar sets is unique, resulting in 71980 non-

duplicated pairs. The form of the value is (minute, second).

We evaluate the performance by comparing the total hashing generation times con-

cerning different w values, the locality of the Locality-Sensitive Hashing (LSH) used,

70

4.4. Experiments

T
ab

le
4.
5:

T
im

es
of

se
ar
ch
in
g
an

d
tr
ap

d
o
or

ge
n
er
at
io
n
.

D
at
a
-S
et

C
o
m
p
a
rs
io
n

m
et
h
o
d
s

C
om

p
ar
si
on

ti
m
es

w
=
1

w
=
2

w
=
3

w
=
4

w
=
5

w
=
6

w
=
7

w
=
8

w
=
9

w
=
10

S
o
la
r

B
ru
te

fo
rc
e

14
9.
67

L
S
H

14
9
.6
7

12
7.
82

11
9.
71

11
1.
31

10
6.
27

99
.5
9

92
.0
3

84
.5
0

82
.2
0

75
.0
5

E
le
ct
ri
ci
ty

B
ru
te

fo
rc
e

52
.5
0

L
S
H

5
2
.5
0

45
.3
2

43
.0
7

41
.1
1

38
.7
1

37
.9
9

35
.1
2

32
.9
9

31
.3
1

27
.5
6

S
Y
N

B
ru
te

fo
rc
e

18
60

.5

L
S
H

18
6
0.
5

83
8.
17

61
5.
10

47
4.
73

34
2.
2

29
9.
5

23
7.
85

20
5.
25

19
0.
85

18
1.
57

T
ra
p
d
o
o
r

0
1

1.
5

2
2.
5

3
3.
5

4
4.
5

5

71

Chapter 4. Secure Indexing

0.6 0.8 1
0.2

0.4

0.6

0.8

1

(a) Number of sensitive attributes.

0.6 0.8 1
0.2

0.4

0.6

0.8

1

(b) Number of hashes.

Figure 4.8: The disprove rate of auxiliary knowledge.

and the trapdoor generation times. The results are listed in Table 4.5. From these

results, it is evident that LSH substantially reduces the hashing time for timestamp

searching, with a reasonable cost of trapdoor generation.

The LSH comparison time decreases as w increases for two reasons. First, LSH allows

nearby data to be checked only once, thus reducing redundant operations. Second,

as the locality w increases, each time block contains more data, reducing the overall

time required for comparisons.

Our synthetic data yields better results in terms of reducing search times because

it is non-duplicated. Real datasets contain some non-existing and duplicated values,

which slightly degrade the performance. However, the results are still significantly

better than using a brute force approach. In summary, an LSH-based index can

effectively decrease the hashing times during brute force searches over timestamps.

4.4.3 Privacy Guarantee

This part evaluates the privacy guarantees provided by the initialized matrix BF

index. We configure the matrix size to 5000×5000 and insert some bi-attribute data,

including a piece of target data for which we possess auxiliary knowledge to infer. We

72

4.5. Chapter Summary

then perturb the matrix BF using RR for all non-zero rows. If more than one data

record is discovered within the time range valid for the auxiliary knowledge, we deem

the perturbation to have successfully disproves the auxiliary knowledge.

Fig. 4.8 presents the disprove rates. When p = 1, no perturbation is applied. Ns in

the left-hand part denotes the number of inserted sensitive attributes, with the hash

number fixed at 4. The disprove rate for p = 1 originates from the inherent false

positives of the BF, which is referred to as the ”better than nothing” privacy. This

rate increases with the number of inserted items. Regardless of the initial state, all

rates quickly rise and converge to 1 in relation to 1− p, taking advantage of the RR

perturbation mechanism.

The right-hand part of the figure keeps the number of items constant while varying the

hash numbers, which influences the slopes of the curves. A higher hash number yields

more privacy for the same p value. This demonstrates the ability of our approach

to provide privacy guarantees, validating its effectiveness in preserving the privacy of

sensitive attributes.

4.5 Chapter Summary

This chapter presents a secure bi-attribute index, enabling batch operations over

one attribute. Efficiency-wise, the proposed matrix BF structure partitions query

processing over two attributes, one of which can be non-sensitive and processed in

plaintext. The structure keeps the attribute co-existence and supports any existing ef-

ficient hashing technique to further enhance the performance under certain scenarios.

Privacy-wise, the proposed initiation approach with RR protects the BF representa-

tion of the plaintext outcome and achieves a bound privacy loss.

73

Chapter 5

Interactive Trimming

In the era of big data and AI, the sheer volume and ubiquity of data have profound

impact on our daily life and the world at large. As such, the integrity of data stands

as a cornerstone for high-quality data analysis and decision making. Unfortunately,

data integrity is under perpetual threat — malicious entities frequently engage in

data manipulation, fabricating falsified values to skew outcomes in their favor.

The issue of online data manipulation has been a focal point in the data management

community. For example, an e-commerce platform uses a collaborative filtering algo-

rithm to recommend products to users. A malicious vendor aims to artificially boost

the visibility of their products. They create multiple fake accounts and manipulate

their interaction data (e.g., ratings, purchase history) in real-time to influence the

recommender system. These also apply to the field of knowledge graph [4, 91, 100],

federated recommendation systems [73,75,85], and countermeasures [88,89,93]. Data

manipulation attacks also pose immediate threats to the training process of machine

learning systems. Given these high stakes, it is imperative for data collectors to take

safeguard measures to detect and neutralize data poisoning attacks, while retaining

good quality of the rest (benign) data.

To reduce the impact of data manipulation attacks, one approach is to sanitize the in-

74

put dataset. A classic method is distance-based sanitization, also known as trimming,

where the defender calculates the distance di for each data point i and removes any

point with di > θd, a threshold chosen by the defender [46]. Popular distance-based

defenses against data manipulation attacks include [47, 49], by optimizing a desig-

nated objective function. However, such strategies are static and neglect the evasive

nature of adversaries, that is, they always manage to circumvent these defensive

measures [64]. Therefore, an evasion-aware defense strategy must consider potential

evasion strategies employed by these adversaries. Game theory is a common tool

to find a dynamic balance between evasive attackers and defenders, known as Nash

equilibrium. Recently, a few game-theoretical models [64,98] have been proposed for

static data poisoning attacks, where data are collected in a single round. However,

in many real-life data collection systems, data are frequently updated or streaming,

and the collection process is continual or in multi-round. As such, a static defensive

strategy is insufficient, as adversaries can adapt their strategies in each round. Due

to the immense complexity of potential strategies a dynamic attacker might deploy,

it has rarely been explored in the field of online data manipulation attacks.

In this chapter, our objective is to derive a feasible Stackelberg equilibrium within a

complete trimming strategy space to defend against data manipulation attacks,

specifically in the context of online data poisoning. Our game-theoretic model is

anchored in the simplicity of the trimming strategy and is shown to achieve a genuine

equilibrium within its complete strategy space. The findings are validated using

real-world machine learning data across widely-used algorithms, including k-means,

SVM, and SOM classification. We illustrate how the threshold and poison values are

determined and elucidate the impact of each scheme on the system’s final outcome.

Additionally, through empirical studies, we illustrate that attackers who behave

irrationally and diverge from rational strategies will merely gain less utility

from poison values. The key contributions of this chapter can be encapsulated as

follows:

75

Chapter 5. Interactive Trimming

· We propose an interactive game-theoretic model for online data poisoning attacks

and defenses using the trimming mechanism. This model streamlines the formulation

process, accommodates a complete strategy spectrum, and simplifies the derivation of

Stackelberg equilibrium, even against evasive and colluding attackers with diversified

poisoning strategies.

·We utilize the principle of least action and the Euler-Lagrange equation in theoretical

physics to build an analytical model for the game-theoretic process. The model is

in the form of the Lagrangian that governs the system in both equilibrium and non-

equilibrium states.

· We present a case study in a privacy-preserving data collection system under local

differential privacy (LDP) [24, 32, 92] where a non-deterministic utility function is

adopted. Two strategies are devised from this analytical model, namely, Tit-for-tat

and Elastic, based on which we apply the Euler-Lagrange equation to derive the

system’s steady-state solution.

· We conduct extensive experiments across varied scenarios using diverse real-world

datasets to validate the effectiveness and accuracy of our proposed method.

The rest of this chapter is organized as follows. Chapter 5.1 presents the game-

theoretical model of the data collection game. Chapter 5.2 constructs the analytical

model of the infinite collection game. Chapter 5.3 discusses the scenario where the

system has a non-deterministic utility function. Chapter 5.4 shows the experimental

results. Finally, we conclude this chapter in chapter 5.5.

76

5.1. Game-Theoretic Model Formulation

5.1 Game-Theoretic Model Formulation

5.1.1 Threat Model

Attack Model. We assume that the attacker possesses an equivalent level of infor-

mation as the data collector. This implies that the attacker has full knowledge of the

strategy employed by the data collector in the previous round, for example, the data

collector’s trimming positions. The attacker is also in agreement with the data qual-

ity standards set by the data collector, and they are acutely aware of how the poison

values they send are treated. In other words, we adopt a white-box attack as our

attack model, which corresponds to a game with complete information. Conversely,

should the attacker lack the capability to ascertain the data collector’s strategy and

data quality standards from the previous round, it would result in an asymmetric

information scenario between the attacker and the data collector. This scenario is

aligned with a black-box attack model and a game of incomplete information, which

is beyond the scope of this paper.

Defensive Goal. Our game-theoretic model aims to counteract a general malicious

threat model where attackers are colluding, opportunistic, and evasive. The term

“colluding” refers to Sybil attacks, in which attackers can coordinate and share strate-

gies to orchestrate their poison values. This situation is plausible, as these attackers

may originate from a single botnet launched by one adversary. “Opportunistic” de-

scribes attackers whose goal is to maximize the deviation of estimated statistics from

the ground truth, manipulating poison values to their advantage. “Evasive” per-

tains to attackers who are consistently rational, knowledgeable, and skilled enough to

evade existing countermeasures by manipulating the poison value distribution [20].

We believe this threat model is more comprehensive (and thus more realistic) than

all existing models that commonly restrict their attacking strategies or assume that

the collector has any apriori knowledge of these strategies.

77

Chapter 5. Interactive Trimming

5.1.2 Payoff Functions

Assuming a publicly recognized data quality standard denoted byQuality Evaluation(),

we establish payoff functions for both parties within the context of data manipula-

tion attacks. Equipped with this standard, the collector can assess the intensity of

poison values based on the data provided by the adversary and further determine

the subsequent strategy. The existence of this metric is necessary for building up a

game-theoretic model. Using this standard, let P denote the payoffs for poisoning

and T for trimming. The game between the collector and the adversary is a zero-sum

game where any gain for the adversary implies a loss for the collector and vice versa,

i.e., Pcollector = −Padversary. However, the collector also incurs loss of accuracy due

to incorrectly trimming honest values, denoted by −T . Hence, the collector’s payoff

function is (−P − T).

5.1.3 Strategy Space

5.1.3.1 Single Poison Value Case

This subsection discusses the strategy space for both parties. In the single value case,

where the adversary injects only one poison value, their strategy is denoted by the

injection point. Similarly, the collector’s strategy is determined by a trimming point

in the input domain. Thus, the strategy space is represented by a pair of values

(xadversary, xcollector) in the input domain.

Rational players do not randomly choose strategy points from the entire space. Trim-

ming incurs loss of utility by removing benign values, while the loss from poison val-

ues increases with more malicious data injected. However, the trimming overhead

decreases as more data points are removed, making the collector more cautious when

trimming.

As shown in Fig. 5.1 (a), there exists a tradeoff between the loss caused by poison

78

5.1. Game-Theoretic Model Formulation

0 𝒙𝒙𝑳𝑳

Trimming
overhead

Loss from
poison values

x

utility

(a) xL at the balance point

A mixed strategy point

Poison value

𝒙𝒙𝑹𝑹𝒙𝒙𝑳𝑳

𝑃𝑃𝑃𝑃𝑃𝑃

𝑥𝑥

(b) a mixed strategy point

Figure 5.1: The definition of xL, and arbitrary poison value distributions represented

by a mixed strategy point

values and the overhead caused by trimming. A balance point, denoted by xL, is

present, such that P (xL) = T (xL). This balance point is where the payoff for the

collector and the adversary is equal, and below which the collector is not motivated

to trim the data any further. In other words, a rational collector would only trim the

data up to a certain point where the benefits of trimming outweigh the costs, and

below that point, she would accept the risk of data poisoning to retain the accuracy.

In contrast, the collector evaluates the largest acceptable value, beyond which she

will definitely remove any values so that any rational adversary will not inject poison

values outside of that point. As shown in Fig. 5.2, let xR denote the maximum value

that, according to the collector’s belief, the adversary is willing to inject. Therefore,

we have:

Definition 6. Let [xL, xR] be the domain of poison values. We say the adversary

plays soft if he injects poison values near xL and gains P , and he plays hard if he

injects poison values near xR and gains P . Conversely, the collector plays soft if she

trims near xR and gains −T , and she plays hard if she trims near xL and gains −T .

Let the (xc, xa) pair denote the strategies chosen by both parties, where xc denotes

79

Chapter 5. Interactive Trimming

Poison value

𝒙𝒙𝑹𝑹
𝑥𝑥

𝑃𝑃𝑃𝑃𝑃𝑃

𝒙𝒙𝑳𝑳

Poison value

𝑃𝑃𝑃𝑃𝑃𝑃

𝑥𝑥

Figure 5.2: Definition of xL and xR for a single poison value

the trimming point, and xa denotes the point at which the adversary decides to inject

poison values, and both xc and xa fall in the domain [xL, xR]. It is important to note

that the strategy space is complete for both the collector and the adversary, i.e., any

strategy in the domain can be chosen by both parties.

5.1.3.2 General Case

Now we discuss the general case where any poison value distribution can be deployed.

Without loss of generality, any point xp in the domain [xL, xR] can be represented as

a linear combination of xL and xR, i.e., there exists pL and pR such that xp = pLxL+

pRxR. This can also be viewed as a mixed strategy in the sense of game theory,

that is, the player chooses to play xL with probability pL, and xR with probability

pR. As such, any single poison value injection strategy over [xL, xR] can be reduced

to a mixed strategy represented by pLxL + pRxR.

Since all factors in this linear combination of xL and xR are additive, any poison value

can be reduced to a single point in the strategy space. As illustrated in Fig. 5.1 (b),

we assert that any poison value distribution defined on [xL, xR] can be reduced to

a mixed strategy of a single poison value. As such, the strategy space for both the

collector and the adversary is complete in this general case.

80

5.1. Game-Theoretic Model Formulation

Table 5.1: The payoff matrix of the ultimatum game, P > T >> P > T > 0

Adversary

Collector

Soft Hard

Soft (−P − T , P) (P − T),−P

Hard (−T , 0) (−T , 0)

5.1.4 Sequential Moves

In a scenario where the data collection process consists of a single round, it embodies

a strategic game. Here, both the attacker and the defender simultaneously select

their strategies, resulting in a straightforward and uncomplicated Nash equilibrium.

As depicted in Table 5.1, this situation mirrors the prisoner’s dilemma, culminating

in a unique equilibrium wherein both the adversary and the player opt for a tough

stance, despite a gentler approach being mutually beneficial.

However, in real-world applications, data collection tends to be a continuous, multi-

round process. This can be represented as a Stackelberg game, characterized by

sequential moves where one participant’s actions follow those of the other. This

structure fosters cooperation, given that players can retaliate against defection, par-

ticularly when the number of rounds is indefinite or unknown. By opting for a gentler

approach rather than a tough one, players can achieve a globally optimal state. The

intricacies of this infinite game will be examined and modeled in detail in the following

section.

81

Chapter 5. Interactive Trimming

5.2 Infinite Collection Game

5.2.1 Overview

In the previous section, we emphasized the utmost importance of transforming the

collection process into an infinite, roundwise repeated game to foster cooperation

between the collector and the adversaries. When dealing with a limited-round sce-

nario, wherein the game is confined to a specific number of rounds, denoted as N ,

adversaries may be tempted to defect in the final round, triggering a domino effect

of defections from the second-to-last round backwards. To address this critical issue,

the game must be ingeniously designed to encompass an infinite number of rounds,

thereby ensuring continuous data collection.

Fig. 5.3 overviews such infinite game, wherein a data collector gathers data from the

data stream (step 3○), and an adversary attempts to inject poison values into the

collected data along with normal users (step 2○). A public board, accessible to the

adversary, enables the collector to record the untrimmed data (step 1○, 6○). In each

round, the collector collects and trims the same amount of data (step 4○), and then

determines the trimming threshold in the next round 5○.

Under this framework, each round becomes an invaluable opportunity to build trust,

foster cooperation, learn from past experiences, and adapt strategies accordingly. The

infinite nature of this repeated game actively promotes cooperation among game-

theoretically rational players, paving the way for the emergence of trust and culmi-

nating in mutually beneficial outcomes in the long run.

5.2.2 Analytical Model

To formalize the infinite collection game, we employ the principle of least action from

analytical mechanics. As the game involves an infinite number of samples collected

82

5.2. Infinite Collection Game

Data
Stream

Adversaries

Data Collector

Determine
trimming threshold
for round 𝑟 using

Quanlity_Evaluation()
from round 𝑟 − 1.

Public Board

Record all
data retained

by the
collector

Access and verify trimming threshold for round 𝑟 −1

Collect data from

Upload
trimmed data

Users

①
②

②

③

④

⑤

⑥

Figure 5.3: An overview of the infinite game

in an infinite number of rounds, it can be viewed as a streaming process with a fixed

number of samples gathered in each round. Consequently, the parameter r can be

regarded as a continuum, functioning as a timer within our system, analogous to the

role of time t in classical mechanics.

The utility functions of the adversary and the collector, ua and uc, respectively, are

natural coordinates that uniquely determine the state of the system. These func-

tions are cumulative effects over r and can be treated as continuous and differentiable

functions of r. With this setting, the evolution of the system shares the same spa-

tiotemporal structure as classical mechanics, where the general coordinate is replaced

by the utility functions of both parties, and time t is replaced by round r. We then

have the fundamental principle of the infinite collection game:

Axiom 1. The state of the infinite collection game is determined by the least action

principle, which is similar to equation 2.3:

δS = δ

∫ r2

r1

L(ua(r), uc(r), u̇a(r), u̇c(r), r)dr = 0, (5.1)

where u̇a =
dua

dr
and u̇c =

duc

dr
are generalized velocities, and L is the Lagrangian.

And we have:

83

Chapter 5. Interactive Trimming

Lemma 2. The Euler-Lagrange equation of equation 5.1 is given by:

∂L
∂ua

− d

dr

(
∂L
∂u̇a

)
= 0,

∂L
∂uc

− d

dr

(
∂L
∂u̇c

)
= 0 (5.2)

5.2.3 Equilibrium State

From equation 5.2, we can derive some immediate results regarding the Stackelberg

equilibrium and the behavior of the collector and the adversary in the infinite col-

lection game. When we reach a Stackelberg equilibrium, it is already a convergence

state that occurs after infinite iterations of responding to each other’s actions. As

such, if such a convergence exists, there is no interaction between the collector and

the adversary, as if they are evolving independently. Therefore, we have:

Lemma 3. The Lagrangian of the system is additive to that of ua and uc, that is,

L = L(ua) + L(uc).

Since the Lagrangian should keep the form unvaried with respect to translation of r

and u, that is, we should arrive at the same Stackelberg equilibrium for any outset

we choose for r and u. From this, we have:

Theorem 7. L = L(u̇2) and u̇ = constant for any Stackelberg equilibrium state.

Proof. As L is only a function of the magnitude of u̇ and is independent of the

direction of u̇, we have L = L(u̇2). Since the Lagrangian is uniform with respect to

both r and u, it can only be an explicit function of u̇, i.e., L = L(u̇). Substitute this

into equation 5.2, we have ∂L
∂ui

= 0. The Euler-Lagrange function can then be written

as d
dr

(
∂L
∂u̇i

)
= 0. As ∂L

∂u̇i
is only a function of u, we have u̇ = constant. This completes

the proof.

Finally, we attain the form of the Lagrangian for the Stackelberg equilibrium state:

84

5.2. Infinite Collection Game

Theorem 8. The Lagrangian of any Stackelberg equilibrium state can be written as

L = mau̇a
2 + mcu̇c

2, where ma and mc are two factors regarding the adversary and

the collector.

Proof. Consider an infinitesimal increment δu̇ of u̇ in the Lagrangian L. According

to Theorem 7, it corresponds to a Lagrangian of the form

L′ = L((u̇+ δu̇)2). (5.3)

Expanding it as a power series in terms of δu̇ and neglecting higher order terms,

considering Lemma 3, we have:

L((u̇+ δu̇)2) = L(u̇2) + 2
∂L
∂u̇2

u̇δu̇. (5.4)

According to Theorem 7, at the Stackelberg equilibrium state, u̇ is constant. Choosing

different values of u̇ as the origin yields Euler-Lagrange equations with the same

form. This means that the difference in their Lagrangians, 2 ∂L
∂u̇2 u̇δu̇, must be a total

derivative with respect to r. Therefore, when substituted into equation 5.1, d
dr
2 ∂L
∂u̇2 u̇δu̇

can be eliminated in δS = 0, resulting in the same Euler-Lagrange equation. Hence,

2 ∂L
∂u̇2 u̇δu̇ and u̇ are linearly dependent. It follows that ∂L

∂u̇2 is independent of velocity,

therefore we have:

L = mu̇2/2, (5.5)

where m is a proportionality constant related to the intrinsic properties of the sys-

tem. Since there are two parties, according to Lemma 3, we can express the overall

Lagrangian as:

L = mau̇a
2/2 +mcu̇c

2/2. (5.6)

This completes the proof.

Referring to the intrinsic factors associated with the attributes of both parties, it

is important to acknowledge that ma and mc serve merely as two logical concepts

employed to depict the system’s converged state. Remarkably, they are not necessary

85

Chapter 5. Interactive Trimming

for the determination of our strategy, specifically the trimming threshold, as will be

evident in the forthcoming derivations.

5.2.4 Non-equilibrium State

A system is in a non-equilibrium state if there is a permanent non-zero interaction

between the collector and the adversary, where they continuously respond to each

other’s last response. To mathematically describe this interaction, a term U(ua, uc)

is added to the Lagrangian, which is a function of the positions ua and uc of the

collector and the adversary, respectively. Therefore, where interaction exists between

the collector and the adversary, the Lagrangian can be written as:

L = mau̇a
2 +mcu̇c

2 + U(ua, uc) (5.7)

The interaction term U(ua, uc) objectively reflects the response strength of a partic-

ular strategy in relation to deviations in data quality within the practical context.

It quantifies the interaction effect between the user’s action and the counteraction,

depending on the scenario in which it is applied. In the upcoming section, we will

derive the differential equation of the infinite game according to a given form of U .

5.3 Non-deterministic Utility

The Tit-for-tat strategy in game theory mirrors an opponent’s previous action in

repeated games, fostering cooperation by rewarding cooperation and punishing de-

fection. In Section 5.1, we assume a commonly acknowledged data quality norm for

both parties. However, in some practical scenarios, the utility function of a data

collection system may be non-deterministic, meaning the system’s outcome cannot

be predicted with certainty even with known inputs.1 Directly applying Tit-for-tat

1This often occurs in privacy-preserving systems using LDP for data collection, where participants

add random noise to their data before sharing. While protecting sensitive information, the noise

86

5.3. Non-deterministic Utility

to data collection could inadvertently trigger early termination of data exchange due

to the probabilistic nature of data quality assessment. This vulnerability is inher-

ent when using Tit-for-tat in its pure form. To avoid early termination, we propose

the Elastic strategy as a variant of Tit-for-tat tailored for systems with uncertain

outcomes.

It should be noted that numerous variants of Tit-for-tat exist, such as Tits-for-two-

tats [3] and Generous Tit-for-tat [60]. They can also be adapted through Elastic

strategies for repeated games with uncertainty. For simplicity, this paper focuses the

discussion on the original Tit-for-tat. The insights can be readily extended to other

variants of Tit-for-tat.

5.3.1 Tit for Tat Strategy

The data collector selects the following parameters: Tth, the trimming threshold;

Quality Evaluation(), which measures the quality of the data Xi received in the i-

th round; Round no, which represents the number of data collection rounds; Qual-

ity Evaluation(X0), the triggering condition; and Red, a redundancy to ensure that

the termination round is not too small. The procedure of Titfortat is given in Algo-

rithm 9.

It is easy to apply when utility is deterministic. As a trigger strategy requiring

permanent termination of cooperation upon betrayal, we have the interaction term

U(ua, uc) for the Tit-for-tat strategy becomes U(ua, uc) = 0, if ua = uc and otherwise

U(ua, uc) = ∞. In non-deterministic utility scenarios, cooperation termination may

be triggered by normal jitter even if both parties are cooperative. Intuitively, the col-

lector should compromise their roundwise gain to preserve redundancy and maximize

long-run benefit.

In the Stackelberg equilibrium, we assume that both the collector and the adversary

renders the system outcome probabilistic.

87

Chapter 5. Interactive Trimming

Algorithm 9 Titfortat Strategy

1: Input: Quality Evaluation(), X0, Red, T , T , Round no

2: Output: Round terminate

3: Tth← T

4: Round terminate← Round no

5: for i← 1 to Round no do

6: if Quality Evaluation(Xi) < Quality Evaluation(X0) + Red then

7: Tth← T

8: Round terminate← i

9: break

10: end if

11: end for

12: return Round terminate

have a symmetric setting. This means that if ua and uc are symmetric, the solution

should also be symmetric. Let gc = T −P − T and ga = P be the roundwise gain for

both parties during cooperation (which is the payoff of compliance minus betrayal),

and gac = ga+gc
2

due to the symmetry axiom. The collector now expects a gain of

g0 = gac − δ, where δ is a compromise in data utility. If the adversary complies, the

collector can observe compliance deterministically since the probability of the data

utility being less than g0 in the outcome is negligible. However, if the adversary

defects at gac, the collector judges compliance with probability p and defects with

probability 1− p due to the perturbation’s probabilistic nature. With these settings,

we derive the following theorem concerning the Stackelberg equilibrium for the Tit-

for-tat strategy:

Theorem 9. The condition for the adversary choosing to comply in the Tit-for-tat

game is δ < d−dp
1−dp

gac, where d denotes the roundwise discount rate of data utility

acknowledged by both parties.

88

5.3. Non-deterministic Utility

Proof. From the adversary’s perspective, their current-round gain expectation when

choosing to comply is

gcom = g0 + dgcom, or gcom =
g0

1− d
. (5.8)

However, if the adversary opts to defect, they will be assessed in the subsequent round

as complying with probability p and defecting with probability 1 − p. As a result,

their current-round gain expectation becomes

gdef = gac + dpgdef , or gdef =
gac

1− dp
. (5.9)

The adversary will decide to comply if and only if gcom > gdef , which is equivalent to

g0 >
1−d
1−dp

gac, or δ < d−dp
1−dp

gac. This completes the proof.

Should p = 1, implying that the adversary is never identified as defecting, they would

always opt to defect given the lack of consequences. In contrast, as p→ 0, signifying

an increased likelihood of the adversary being flagged as defecting, a substantial

adjustment must be made to δ to cultivate trust. This analysis underscores the

complexities and trade-offs inherent in managing non-deterministic utility situations

within data collection systems. The delicate balance between cooperation, trust, and

data utility is crucial to the system’s sustained success. Hence, given T , T , P , P , p, d,

one can ascertain the Tth of Tit-for-tat by selecting a δ according to their preference.

5.3.2 Elastic Trigger Strategy

So far, we have discussed the equilibrium of the Tit-for-tat strategy, which is essen-

tially a rigid trigger strategy. Unfortunately, while preserving redundancy effectively

extends the period of cooperation, we should note that the game cannot achieve in-

finite rounds, as the probability of termination keeps increasing and will ultimately

converge to 1 in the long run. A simple way to tackle this is to allow the trigger

strategy to be elastic with forgiveness, namely, applying a penalty in the next round

89

Chapter 5. Interactive Trimming

when a defection is detected instead of terminating the cooperation directly. This is

shown in Algorithm 10.

Algorithm 10 Elastic Trigger Strategy

1: Input: Quality Evaluation(), T , T , Round no, k

2: Output: Tthi

3: Tth1 ← T

4: QEi =
Quality Evaluation(Xi)

max(Quality Evaluation(·))

5: for i← 2 to Round no do

6: Tthi = (1− k ×QEi)× T + k ×QEi × T

7: end for

8: return Tthi

That implies an interaction between the adversary and the collector exists, and an

equilibrium position exists such that the interaction pulls the relative utility |ua−uc|

back to the equilibrium position by a force equal to − ∂U
∂ua

or − ∂U
∂uc

. We expand this

interaction into a power series about (ua− uc). When the deviation between the two

is small, ua − uc is also small, so only the first non-zero item is reserved. This is

a quadratic term, and we introduce a proportionality constant k that describes the

strength of the interaction. Therefore, we have:

Definition 7. The interaction term U(ua, uc) for the elastic trigger strategy is

U(ua, uc) = k(ua − uc)
2/2. (5.10)

According to this, we have the following theorem:

Theorem 10. The utility functions of the adversary and the collector periodically

oscillate with respect to r in the setting of the elastic strategy.

Proof. The Lagrangian of this system is given by

L = mau̇a
2 +mcu̇c

2 + k(ua − uc)
2/2 (5.11)

90

5.4. Experiments

by plugging equation 5.10 into equation 5.7. Applying equation 5.2 to this, we have

maüa + k(ua − uc) = 0,mcüc + k(ua − uc) = 0 (5.12)

These two equations have the same form of ordinary differential equations concern-

ing that of a double harmonic oscillator system, where two masses ma and mc are

connected by a spring with spring constant k. The solution will also be the same, in

the form of

u(r) = A cos(ωr + ϕ). (5.13)

This completes the proof.

5.4 Experiments

In this section, the performance of the proposed approach is evaluated through its ap-

plication to real-world datasets. Experiments are implemented in MATLAB R2021b

on a desktop computer with Intel i7-10700K RTX 3090 eight-core CPU, 128GB RAM,

and Windows 10 OS.

5.4.1 Experimental Setup

Datasets. In our experiments, we use 5 real-world numerical datasets. Control,

Vehicle, and Letter [79] are standard UCI datasets, frequently used in machine

learning research. Taxi [69], extracted from the January 2018 New York Taxi data,

records the pick-up times during a day and includes 1,048,575 integers from 0 to

86,340, normalized to the range [−1, 1]. Creditcard [2] comprises numerical results

of PCA transactions, which are sanitized to preserve confidentiality. A summary of

all dataset information is shown in Table 5.2.

Parameter Settings. In order to standardize the description of our approach across

different datasets, we describe the positions of poison value injection and trimming

91

Chapter 5. Interactive Trimming

Table 5.2: Dataset Information

Dataset Instances Features Clusters

CONTROL 600 60 6

VEHICLE 752 18 4

LETTER 20000 16 26

TAXI 1048575 1 1

CREDITCARD 284807 31 4

in terms of data percentiles. The position for each trimming round is determined by

the parameter Tth.

We implement several benchmark schemes. Groundtruth represents the result ob-

tained by running the original dataset without any poison value injection. Ostrich

assumes no defensive measures are taken, i.e., accepting all poison values. Since the

adversary is also aware of this, the poison value is injected at the 99th percentile in

each round. We also implement two baseline defence schemes where the data collec-

tor sets static thresholds. In the Baseline0.9 scheme, the adversary randomly injects

poison values in the percentile range of [0.9, 1], while in the Baselinestatic scheme, the

adversary injects poison values at the percentile (Tth − 1%). The latter is the ideal

attack, which assumes that the adversary has the ability to accurately determine the

data collector’s Tth for each round and always adds poison values at the location that

benefits itself the most.

We implement our three proposed schemes, namely Titfortat, Elastic0.1, and Elastic0.5.

These schemes employ different strategies for setting the trimming and injection posi-

tions for poison values, with varying levels of adaptability based on previous adversary

actions. In the Titfortat scheme, the untriggered trim position is set at the (Tth+1%)

percentile, but once the adversary triggers the judgement, the subsequent rounds will

always be trimmed at the (Tth − 3%) percentile. In the Elastic schemes, the initial

trim position is set at the (Tth − 3%) percentile, and the initial injection position

92

5.4. Experiments

for poison value is set at the (Tth + 1%) percentile. In the subsequent rounds, the

data collector dynamically adjusts the trimming position for the next round based on

the previous round’s adversary’s poison injection position A(i), according to the rule

T (i+1) = Tth+k(A(i)−Tth−1%), while the adversary adjusts the poison injection

position for the next round A(i + 1) based on the previous round’s data collector’s

trimming position T (i), according to the rule A(i+ 1) = Tth− 3% + k(T (i)− Tth).

Elastic0.1 and Elastic0.5 represent the parameter k taking the values 0.1 and 0.5,

respectively.

5.4.2 Stackelberg Equilibrium Results on k-Means Cluster-

ing

This subsection presents the clustering results from k-means applied to Control,

Vehicle, and Letter. We compare the performance when both the data collector

and the adversary follow Stackelberg equilibrium strategies. For each experiment, we

consider 20 rounds of games, with results averaged over 100 repetitions. Titfortat

is assumed not to experience early terminations. Three attack ratio intervals are [0,

0.01], [0.05, 0.15], and [0.2, 0.5], corresponding to the situations where there are few,

moderate, and many poison values, respectively. Results under different attack ratios

are named after the dataset name and the corresponding attack ratio interval, for

example, Control[0,0.01].

Fig. 5.4 illustrates the results when the Tth is set to 0.9. The y-axis in this chart de-

picts two distinct measurements: the Sum of Squares Errors (SSE) and Distance. SSE

is defined by the equation SSE =
∑n

i=1(yi − ŷi)
2, where yi represents the observed

values and ŷi stands for the predicted values. On the other hand, ‘Distance’ illus-

trates the discrepancy between the actual centroid of the clustering and the ground

truth, as measured by the Euclidean distance. We observe that during intervals of

low attack ratios, the volume of poison values is minimal. As such, Ostrich performs

93

Chapter 5. Interactive Trimming

optimally and manifests the smallest offset. In such situations, all schemes implement-

ing trimming end up with additional overhead costs. As the attack ratio escalates,

pushing into a grey area where the impact of trimming to eliminate poison values is

counterbalanced by false positives, the performance of the Ostrich scheme gradually

deteriorates. In contrast, when the attack ratio falls within a large interval, where

poison values become dominant, our proposed schemes significantly outperform both

baseline schemes. Also, it is evident that Ostrich has the highest SSE. Moreover,

in almost all the cases presented, our proposed solutions outperform both baseline

approaches, with Elastic0.5 demonstrating the best performance.

The results when the Tth is adjusted to 97% are depicted in Fig. 5.5, from which sim-

ilar conclusions can be drawn. Here, the trimming method adopted is more conserva-

tive, thus diminishing the overhead at lower attack ratios. However, the effectiveness

of this approach becomes less distinct at higher attack ratios.

5.4.3 Stackelberg Equilibrium Results on SVM and SOM

Classifier

This subsection validates the on labelled datasets with regard to Support Vector Ma-

chine (SVM) and Self-Organizing Map (SOM) classifiers, respectively. SVM and SOM

are both classifiers included within MATLAB. We process various datasets and use

them as inputs, directly showcasing the classification results. Specifically, we set the

number of neurons in SOM to 20× 20 = 400. The color depth between adjacent neu-

rons represents their distance, with darker colors signifying greater distances between

neurons. All elements classified into the same class have relatively small distances

between them.

The SVM experiment is carried out exclusively on Control (with labels). The

parameters are fixed at Tth=0.95 and attack ratio=0.4. Fig. 5.6 (a) illustrates the

ground truth of SVM classification, while Fig. 5.7 provides a comparison of SVM clas-

94

5.4. Experiments

Ostrich Baseline
0.9

Baseline
static Titfortat Elastic

0.1
Elastic

0.5

Ostrich Baseline
0.9

Baseline
static Titfortat Elastic

0.1
Elastic

0.5

0 0.002 0.004 0.006 0.008 0.01
attackratio

0

2

4

6

0 0.002 0.004 0.006 0.008 0.01
attackratio

2.4

2.6

2.8
105

D
is

tr
ib

ut
io

n

SS

E

(a) Control[0,0.1]

0 0.002 0.004 0.006 0.008 0.01
attackratio

0

50

100

0 0.002 0.004 0.006 0.008 0.01
attackratio

2
2.2
2.4
2.6

105

D
is

tr
ib

ut
io

n

SS

E

(b) Vehicle[0,0.1]

0 0.002 0.004 0.006 0.008 0.01
attackratio

0
0.2
0.4
0.6

0 0.002 0.004 0.006 0.008 0.01
attackratio

1.4

1.5

1.6

1.7 105

D
is

tr
ib

ut
io

n

SS

E

(c) Letter[0,0.1]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0

2

4

6

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

2.4

2.6

2.8

3 105

D
is

tr
ib

ut
io

n

SS

E

(d) Control[0.05,0.15]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0

50

100

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

2

3

4
105

D
is

tr
ib

ut
io

n

SS

E

(e) Vehicle[0.05,0.15]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0

0.5

1

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

1.4

1.6

1.8
105

D
is

tr
ib

ut
io

n

SS

E

(f) Letter[0.05,0.15]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

5

10

15

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

2.6

2.8

3

105

D
is

tr
ib

ut
io

n

SS

E

(g) Control[0.2,0.5]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

50

100

150

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

2

4

6 105

D
is

tr
ib

ut
io

n

SS

E

(h) Vehicle[0.2,0.5]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

1

2

3

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

1.4

1.6

1.8

2 105

D
is

tr
ib

ut
io

n

SS

E

(i) Letter[0.2,0.5]

Figure 5.4: K-means clustering results over Control, Vehicle, and Letter, Tth=0.9

95

Chapter 5. Interactive Trimming

Ostrich Baseline
0.9

Baseline
static Titfortat Elastic

0.1
Elastic

0.5

Ostrich Baseline
0.9

Baseline
static Titfortat Elastic

0.1
Elastic

0.5

0 0.002 0.004 0.006 0.008 0.01
attackratio

0

2

4

0 0.002 0.004 0.006 0.008 0.01
attackratio

2.6

2.7

2.8
105

D
is

tr
ib

ut
io

n

SS

E

(a) Control[0,0.1]

0 0.002 0.004 0.006 0.008 0.01
attackratio

0
20
40
60

0 0.002 0.004 0.006 0.008 0.01
attackratio

2
2.2
2.4
2.6

105

D
is

tr
ib

ut
io

n

SS

E

(b) Vehicle[0,0.1]

0 0.002 0.004 0.006 0.008 0.01
attackratio

0

0.1

0.2

0.3

0 0.002 0.004 0.006 0.008 0.01
attackratio

1.55

1.6

1.65

1.7
105

D
is

tr
ib

ut
io

n

SS

E

(c) Letter[0,0.1]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0

2

4

6

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

2.7

2.8

2.9

3 105

D
is

tr
ib

ut
io

n

SS

E

(d) Control[0.05,0.15]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0
20
40
60

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

3

3.5

4
105

D
is

tr
ib

ut
io

n

SS

E

(e) Vehicle[0.05,0.15]

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

0

0.5

1

0.05 0.07 0.09 0.11 0.13 0.15
attackratio

1.6

1.7

1.8
105

D
is

tr
ib

ut
io

n

SS

E

(f) Letter[0.05,0.15]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

5

10

15

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

2.8

3

3.2 105

D
is

tr
ib

ut
io

n

SS

E

(g) Control[0.2,0.5]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

50

100

150

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

3

4

5
105

D
is

tr
ib

ut
io

n

SS

E

(h) Vehicle[0.2,0.5]

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

0

1

2

3

0.2 0.26 0.32 0.38 0.44 0.5
attackratio

1.6

1.7

1.8

1.9 105

D
is

tr
ib

ut
io

n

SS

E

(i) Letter[0.2,0.5]

Figure 5.5: K-means clustering results overControl, Vehicle, and Letter, Tth=0.97

96

5.4. Experiments

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss

Groundtruth

0.9%
5.5%
2.7% 1.1%

2.1%
5.9%

90.9%
100.0%

100.0%
98.9%

97.9%
94.1%

9.1% 1.1% 2.1% 5.9%
90.9% 100.0% 100.0% 98.9% 97.9% 94.1%PPV

FDR

(a) Ground truth of SVM

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Groundtruth

(b) Ground truth of SOM

Figure 5.6: The ground truth of SVM and SOM classification

sification methods. The results are quite clear: the ground truth achieves an average

accuracy of 96.8%, while the various approaches under comparison yield respective

accuracies of 95.5%, 95.1%, 94.9%, 96.1%, 95.6%, and 95.7%. The first three strate-

gies comprise Ostrich and two Baselines. It is evident that Baselinestatic exhibits the

poorest performance, even falling behind Ostrich. Baseline0.9 also underperforms

compared to Ostrich, a consequence of trimming excessive amounts of useful data.

Our three approaches outperform others in terms of accuracy.

We carry out SOM classification onCreditcard, which contains credit card consump-

tion data. The ground truth classification of this dataset, divided into four classes,

is depicted in Fig. 5.6 (b). The classification results exhibit significant skewness and

can be interpreted as follows:

The vast majority of data points belong to the same class, signifying the general

public. The two isolated points, colored red and blue, are notably distant from other

classes, representing fraudulent and premium users, respectively. The figure also

includes five green points that symbolize a distinct category. These points are distant

from both fraudulent and premium users, so they exhibit behaviors different from the

97

Chapter 5. Interactive Trimming

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss

Ostrich

1.7%
1.7%
1.7%
5.2%
3.4% 1.1%

3.1%
6.9%

86.2%
100.0%

100.0%
98.9%

96.9%
93.1%

13.8% 1.1% 3.1% 6.9%
86.2% 100.0% 100.0% 98.9% 96.9% 93.1%PPV

FDR

(a) Ostrich

0 1 4 52 3

0
1
2
3
4
5

A
ct

ua
l C

la
ss

1.7%
1.7%
6.0%
4.3%

1.3%

4.4%
7.0%

86.2%
100.0%

98.7%
100.0%

95.6%
93.0%

13.8% 1.3% 4.4% 7.0%
86.2% 100.0% 98.7% 100.0% 95.6% 93.0%PPV

FDR

Baseline0.9

Predicted Class

(b) Baseline0.9

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss

Baselinestatic

1.7%

7.8%
4.3%

4.5%
8.8%

86.2%
100.0%

100.0%
100.0%

95.5%
91.2%

13.8% 4.5% 8.8%
86.2% 100.0% 100.0% 100.0% 95.5% 91.2%PPV

FDR

(c) Baselinestatic

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss

Titfortat

0.9%
0.9%
5.5%
1.8%

2.2%
9.3%

90.9%
100.0%

100.0%
100.0%

97.8%
90.7%

9.1% 2.2% 9.3%
90.9% 100.0% 100.0% 100.0% 97.8% 90.7%PPV

FDR

(d) Titfortat

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss

Elastic0.1

1.7%
5.2%
6.1%

2.3%
8.0%

87.0%
100.0%

100.0%
100.0%

97.7%
92.0%

13.0% 2.3% 8.0%
87.0% 100.0% 100.0% 100.0% 97.7% 92.0%PPV

FDR

(e) Elastic0.1

0 1 4 52 3
Predicted Class

0
1
2
3
4
5

A
ct

ua
l C

la
ss 2.7%

5.3%
3.5% 1.1%

2.3%
8.0%

88.5%
100.0%

100.0%
98.9%

97.7%
92.0%

11.5% 1.1% 2.3% 8.0%
88.5% 100.0% 100.0% 98.9% 97.7% 92.0%PPV

FDR

Elastic0.5

(f) Elastic0.5

Figure 5.7: Comparison of SVM classification

98

5.4. Experiments

general public. We can reasonably infer that these data points represent a segment

of the general public with potential to evolve into high-value customers over time.

Fig. 5.8 presents a comparison of SOM classification results. We observe that Ostrich

entirely disregards the large class corresponding to the green points. Baseline0.9 per-

forms worse than Ostrich, as it not only failed to differentiate the class corresponding

to the green points but also lost the unique characteristics of the two isolated smaller

classes. Though Baselinestatic successfully divides the data into four classes, it only

includes a single isolated point, and the other three classes are overrepresented. Tit-

fortat omits one isolated point and expands the area of the original green class.

Elastic0.1 and Elastic0.5 each drop one isolated point but effectively represent the

unique characteristics of the original class corresponding to the green points.

5.4.4 Non Equilibrium Results and Cost Analysis

This subsection evaluates the utility under conditions where the adversary opts not to

follow Stackelberg equilibrium strategies. The experiment is conducted on Control

with attack ratio 0.2, involving 20 rounds of games. Given that all strategies can be

represented as mixed strategies comprised of two linear combinations, we establish

the 99th and 90th percentiles as the bases for these combinations, manipulated by

parameter p. Poison values are injected at the 99th percentile with a probability of p

and at the 90th percentile with a probability of 1− p.

In order to examine the early termination of Titfortat, we allow a redundancy of 5%.

This means that the stopping trigger condition is set to the initial observation where

the ratio of poison values in a round exceeds 1 − p + 0.05. Once this condition is

triggered, the trimming position of Titfortat in subsequent rounds is permanently

shifted to the 90th percentile. When p = 1, it corresponds to an adversary who con-

sistently adheres to the Stackelberg equilibrium strategy, while p = 0 corresponds to

an adversary who is both greedy and shortsighted. The effectiveness of any evasion

99

Chapter 5. Interactive Trimming

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Ostrich

(a) Ostrich

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Baseline0.9

(b) Baseline0.9

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Baselinestatic

(c) Baselinestatic

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Titfortat

(d) Titfortat

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Elastic0.1

(e) Elastic0.1

0 5 10 15 2
0

0

2

4

6

8

10

12

14

16

Elastic0.5

(f) Elastic0.5

Figure 5.8: Comparison of SOM classification

100

5.4. Experiments

strategy falls between these two extremes, controlled by parameter p. The experimen-

tal results are summarized in Table 5.3. The figures under the Titfortat and Elastic

columns represent the proportion of untrimmed poison values in the remaining data,

while the Average Termination Rounds denote the mean number of rounds the Tit-

fortat strategy underwent before termination. The results suggest that an adversary

following the Stackelberg equilibrium strategy realizes higher utility than one who

does not.

We also conduct a cost analysis for the Elastic scheme, and the experimental results

are presented in Table 5.4. In the Elastic scheme, the handling of poison values in-

volves imposing a penalty to the trimming threshold of the subsequent round based

on a specified intensity and thus more rounds are required to achieve an equilibrium

state. We define the cost of the Elastic scheme as the difference between the per-

centile of the data collector’s soft trim and the actual percentile of the injected poison

value before reaching equilibrium. The results displayed in the table represent the

roundwise cost, which is the average cost over all rounds. As expected, the cost is

higher in the initial rounds. However, as the Elastic strategy progressively adjusts

the trimming threshold, the attacker’s poison placement gradually approaches the

equilibrium point, and the cost per round decreases accordingly. Hence, the round-

wise cost diminishes with an increasing number of rounds, denoted by Round no.

Additionally, because the response intensity at k = 0.5 is greater than at k = 0.1, the

former achieves equilibrium more rapidly, resulting in a lower roundwise cost.

5.4.5 Performance under LDP perturbations

This subsection evaluates the effectiveness of our proposed approach in privacy pro-

tection scenarios where data are perturbed by LDP techniques. For comparison, we

use the Expectation-Maximization Filter (EMF) [21] as a baseline. It serves as a

filtering mechanism designed to mitigate the effect of poison values under LDP data

101

Chapter 5. Interactive Trimming

Table 5.3: Non-equilibrium results and average termination rounds

p Average termination rounds Titfortat Elastic

0 25 0.22727 0.22727

0.1 24.24 0.19157 0.22309

0.2 21.56 0.19645 0.21844

0.3 23.44 0.19264 0.21232

0.4 19.44 0.18381 0.20924

0.5 20.6 0.17904 0.20483

0.6 17.52 0.17363 0.19017

0.7 14.44 0.16874 0.17114

0.8 16.52 0.17011 0.15952

0.9 14.28 0.17041 0.15036

1 13 0.18182 0.14449

Table 5.4: Roundwise cost of Elastic0.1 and Elastic0.5

Round no k=0.5 (%) k=0.1 (%)

5 0.608% 0.8%

10 0.30404% 0.43281%

15 0.20269% 0.28887%

20 0.15202% 0.21667%

25 0.12162% 0.17333%

30 0.10135% 0.14444%

35 0.086869% 0.12381%

40 0.07601% 0.10833%

45 0.067565% 0.096296%

50 0.060808% 0.086667%

102

5.5. Chapter Summary

collection. The experiment is conducted on Taxi, the same dataset used in [21]. For

the adversary of EMF, we employ the input manipulation attack [20], which is iden-

tified as a potent evasion strategy against detection mechanisms within LDP-driven

data collection scenarios.

Fig. 5.9 shows the results, where the x-axis represents the privacy budget ϵ, and

the y-axis indicates the Mean Square Error (MSE). As evidenced by the graph, in

all parameter settings, the EMF consistently falls short of our scheme’s performance.

Notably, when ϵ is small, corresponding to a high perturbation intensity, the trimming

scheme must accommodate increasing overhead due to false positives. This produces

a notable inflection point around ϵ = 1.5 in the figure, an effect that becomes eminent

when the attack ratio is small.

5.5 Chapter Summary

This chapter presents a comprehensive game-theoretic model to counter online data

poisoning attacks by establishing a viable Stackelberg equilibrium. We utilize the

trimming strategy for defense, apply theoretical physics principles to construct an

analytical model, and extend the adaptability in privacy-preserving systems with

non-deterministic utility functions. Our experimental results, derived from various

real-world datasets, validate the effectiveness of our approach.

103

Chapter 5. Interactive Trimming

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(a) Attack ratio=0.05

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(b) Attack ratio=0.1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(c) Attack ratio=0.15

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.02

0.04

0.06

0.08

0.1

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(d) Attack ratio=0.2

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(e) Attack ratio=0.25

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.05

0.1

0.15

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(f) Attack ratio=0.3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.05

0.1

0.15

0.2

0.25

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(g) Attack ratio=0.35

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.1

0.2

0.3

0.4

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(h) Attack ratio=0.4

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
Sq

ua
re

 E
rro

r

Titfortat
Elastic0.1
Elastic0.5
EMF

(i) Attack ratio=0.45

Figure 5.9: Comparison of EMF and our proposed approaches

104

Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis successfully addresses the research goal of enhancing distributed system

security from a data management perspective. By advancing techniques in pass-

word authentication, secure indexing, and data integrity, it significantly contributes

to mitigating vulnerabilities in distributed environments. The proposed solutions

demonstrate strong theoretical foundations and practical applications, providing a

robust framework for data protection.

• Enhanced Cryptographic Password Authentication. This contribution

revolves around the development of a cryptographic solution that significantly

reduces the computational burden associated with handling large volumes of

authentication requests. This solution not only strengthens defenses against

brute-force attacks but also ensures efficient transaction processing, which is

crucial in IoT-heavy environments. By optimizing both security and efficiency,

this approach addresses critical needs in modern digital infrastructures.

• Optimized Secure Indexing for Bi-attribute Datasets. The second con-

105

Chapter 6. Conclusions and Future Works

tribution introduces a secure indexing scheme specifically designed for bi-attribute

datasets, which are prevalent in AI and data analytics. This scheme effectively

balances query performance with stringent data privacy requirements, utilizing

advanced probabilistic data structures to minimize privacy risks from inference

attacks. It enables efficient and secure data retrieval, maintaining both the

usability and confidentiality of sensitive information in database systems.

• Dynamic Game-Theoretical Model for Data Integrity. The final contri-

bution integrates a game-theoretical model that dynamically protects data in-

tegrity against sophisticated online manipulation. This model adapts to evolv-

ing threat landscapes in real-time, employing strategic responses to counter

malicious data alteration attempts. It ensures the accuracy and reliability of

data, which is vital for critical decision-making processes, thereby preventing

the influence of malicious actors on system outcomes.

6.2 Future work

While making substantial progress, this thesis does not fully close the technical gap

in the context of the scalability of the solutions in extremely large-scale environments

and potential corner cases in highly dynamic threat landscapes. In future work, it is

planed to address the limitations by improving the scalability of the authentication

and indexing systems, developing adaptive models to better handle dynamic and

unforeseen cyber threats and exploring additional cryptographic techniques to further

strengthen data protection. It is also aimed to construct theoretical frameworks for

games with incomplete information pertinent to black-box models and to provide

corresponding experimental results.

106

References

[1] Basheer Al-Duwairi and Manimaran Govindarasu. Novel hybrid schemes em-

ploying packet marking and logging for ip traceback. IEEE Transactions on

Parallel and Distributed Systems, 17(5):403–418, 2006.

[2] Reid A. Johnson Andrea Dal Pozzolo, Olivier Caelen and Gianluca Bontempi.

Openml datasets. https://www.openml.org/search?type=data&sort=runs&

id=1597&status=active, 2015.

[3] Robert Axelrod andWilliam D Hamilton. The evolution of cooperation. science,

211(4489):1390–1396, 1981.

[4] Prithu Banerjee, Lingyang Chu, Yong Zhang, Laks VS Lakshmanan, and Lan-

jun Wang. Stealthy targeted data poisoning attack on knowledge graphs. In

2021 IEEE 37th International Conference on Data Engineering (ICDE), pages

2069–2074. IEEE, 2021.

[5] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta.

Practical locally private heavy hitters. In Advances in Neural Information Pro-

cessing Systems, pages 2288–2296, 2017.

[6] Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct

histograms. In Proceedings of the forty-seventh annual ACM symposium on

Theory of computing, pages 127–135, 2015.

107

https://www.openml.org/search?type=data&sort=runs&id=1597&status=active
https://www.openml.org/search?type=data&sort=runs&id=1597&status=active

References

[7] Steven Michael Bellovin and William R Cheswick. Privacy-enhanced searches

using encrypted bloom filters. 2007.

[8] Giuseppe Bianchi, Lorenzo Bracciale, and Pierpaolo Loreti. ” better than noth-

ing” privacy with bloom filters: To what extent? In International Conference

on Privacy in Statistical Databases, pages 348–363. Springer, 2012.

[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against

support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[10] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bern-

hard Seefeld. Prochlo: Strong privacy for analytics in the crowd. In Proceedings

of the 26th Symposium on Operating Systems Principles, pages 441–459, 2017.

[11] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[12] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Data poisoning attacks

to local differential privacy protocols. In 30th USENIX Security Symposium

(USENIX Security 21), pages 947–964, 2021.

[13] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions.

Journal of computer and system sciences, 18(2):143–154, 1979.

[14] Francis Chang, Wu-chang Feng, and Kang Li. Approximate caches for packet

classification. In IEEE INFOCOM 2004, volume 4, pages 2196–2207. IEEE,

2004.

[15] Denis Charles and Kumar Chellapilla. Bloomier filters: A second look. In

European Symposium on Algorithms, pages 259–270. Springer, 2008.

[16] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo:

Zeroth order optimization based black-box attacks to deep neural networks

108

References

without training substitute models. In Proceedings of the 10th ACM workshop

on artificial intelligence and security, pages 15–26, 2017.

[17] Rui Chen, Benjamin CM Fung, S Yu Philip, and Bipin C Desai. Correlated net-

work data publication via differential privacy. The VLDB Journal, 23(4):653–

676, 2014.

[18] Rui Chen, Haoran Li, A Kai Qin, Shiva Prasad Kasiviswanathan, and Hongxia

Jin. Private spatial data aggregation in the local setting. In 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), pages 289–300. IEEE,

2016.

[19] Ruiliang Chen, Jung-Min Park, and Randolph Marchany. Nisp1-05: Rim:

Router interface marking for ip traceback. In IEEE Globecom 2006, pages

1–5. IEEE, 2006.

[20] Albert Cheu, Adam Smith, and Jonathan Ullman. Manipulation attacks in

local differential privacy. In 2021 IEEE Symposium on Security and Privacy

(SP), pages 883–900. IEEE, 2021.

[21] R. Du, Q. Ye, Y. Fu, H. Hu, J. Li, C. Fang, and J. Shi. Differential aggregation

against general colluding attackers. In 2023 IEEE 39th International Conference

on Data Engineering (ICDE), pages 2180–2193, Los Alamitos, CA, USA, apr

2023. IEEE Computer Society.

[22] Rong Du, Qingqing Ye, Yue Fu, and Haibo Hu. Collecting high-dimensional and

correlation-constrained data with local differential privacy. In 2021 18th Annual

IEEE International Conference on Sensing, Communication, and Networking

(SECON), pages 1–9. IEEE, 2021.

[23] Jiawei Duan, Qingqing Ye, and Haibo Hu. Utility analysis and enhancement of

ldp mechanisms in high-dimensional space. arXiv preprint arXiv:2201.07469,

2022.

109

References

[24] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and

statistical minimax rates. In 2013 IEEE 54th Annual Symposium on Founda-

tions of Computer Science, pages 429–438. IEEE, 2013.

[25] John C Duchi, Michael I Jordan, and Martin J Wainwright. Privacy aware

learning. Journal of the ACM (JACM), 61(6):1–57, 2014.

[26] Cynthia Dwork. Differential privacy: A survey of results. In International

conference on theory and applications of models of computation, pages 1–19.

Springer, 2008.

[27] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating

noise to sensitivity in private data analysis. In Theory of cryptography confer-

ence, pages 265–284. Springer, 2006.

[28] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.

In Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages

139–147, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[29] Fatih Emekci, Ahmed Methwally, Divyakant Agrawal, and Amr El Abbadi.

Dividing secrets to secure data outsourcing. Information Sciences, 263:198–

210, 2014.

[30] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized

aggregatable privacy-preserving ordinal response. In Proceedings of the 2014

ACM SIGSAC conference on computer and communications security, pages

1054–1067, 2014.

[31] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a

scalable wide-area web cache sharing protocol. IEEE/ACM transactions on

networking, 8(3):281–293, 2000.

110

References

[32] Yue Fu, Qingqing Ye, Rong Du, and Haibo Hu. Collecting multi-type and

correlation-constrained streaming sensor data with local differential privacy.

ACM Transactions on Sensor Networks, 2023.

[33] Quan Geng, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The staircase

mechanism in differential privacy. IEEE Journal of Selected Topics in Signal

Processing, 9(7):1176–1184, 2015.

[34] Craig Gentry. A fully homomorphic encryption scheme. Stanford university,

2009.

[35] Shahabeddin Geravand and Mahmood Ahmadi. A novel adjustable matrix

bloom filter-based copy detection system for digital libraries. In 2011 IEEE

11th International Conference on Computer and Information Technology, pages

518–525. IEEE, 2011.

[36] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, 2003.

[37] Deke Guo, Yunhao Liu, Xiangyang Li, and Panlong Yang. False negative prob-

lem of counting bloom filter. IEEE transactions on knowledge and data engi-

neering, 22(5):651–664, 2010.

[38] Deke Guo, Jie Wu, Honghui Chen, and Xueshan Luo. Theory and network

applications of dynamic bloom filters. In Proceedings IEEE INFOCOM 2006.

25TH IEEE International Conference on Computer Communications, pages 1–

12. IEEE, 2006.

[39] Fang Hao, Murali Kodialam, TV Lakshman, and Haoyu Song. Fast multiset

membership testing using combinatorial bloom filters. In IEEE INFOCOM

2009, pages 513–521. IEEE, 2009.

[40] Kai Huang, Gaoya Ouyang, Qingqing Ye, Haibo Hu, Bolong Zheng, Xi Zhao,

Ruiyuan Zhang, and Xiaofang Zhou. Ldpguard: Defenses against data poi-

111

References

soning attacks to local differential privacy protocols. IEEE Transactions on

Knowledge and Data Engineering, 2024.

[41] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual

ACM symposium on Theory of computing, pages 604–613, 1998.

[42] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-

Rotaru, and Bo Li. Manipulating machine learning: Poisoning attacks and

countermeasures for regression learning. In 2018 IEEE symposium on security

and privacy (SP), pages 19–35. IEEE, 2018.

[43] A John and T Sivakumar. Ddos: Survey of traceback methods. International

Journal of Recent Trends in Engineering, 1(2):241, 2009.

[44] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger. Botz-

4-sale: Surviving organized ddos attacks that mimic flash crowds. In Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 287–300, 2005.

[45] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. What can we learn privately? SIAM Journal on

Computing, 40(3):793–826, 2011.

[46] Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly

detection. The Journal of Machine Learning Research, 13(1):3681–3724, 2012.

[47] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning

attacks break data sanitization defenses. Machine Learning, pages 1–47, 2022.

[48] Joseph Louis Lagrange. Mécanique analytique, volume 1. Mallet-Bachelier,

1853.

112

References

[49] Ricky Laishram and Vir Virander Phoha. Curie: A method for protecting svm

classifier from poisoning attack. arXiv preprint arXiv:1606.01584, 2016.

[50] Tiancheng Li and Ninghui Li. On the tradeoff between privacy and utility

in data publishing. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 517–526, 2009.

[51] Xiaoguang Li, Neil Zhenqiang Gong, Ninghui Li, Wenhai Sun, and Hui Li. Fine-

grained poisoning attacks to local differential privacy protocols for mean and

variance estimation. arXiv preprint arXiv:2205.11782, 2022.

[52] Fang Liu. Generalized gaussian mechanism for differential privacy. IEEE Trans-

actions on Knowledge and Data Engineering, 31(4):747–756, 2018.

[53] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable

adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770,

2016.

[54] Frank McSherry and Kunal Talwar. Mechanism design via differential pri-

vacy. In 48th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’07), pages 94–103. IEEE, 2007.

[55] Sharad Mehrotra, Shantanu Sharma, Jeffrey Ullman, and Anurag Mishra. Par-

titioned data security on outsourced sensitive and non-sensitive data. In 2019

IEEE 35th International Conference on Data Engineering (ICDE), pages 650–

661. IEEE, 2019.

[56] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-

set attacks on machine learners. In Proceedings of the aaai conference on arti-

ficial intelligence, volume 29, 2015.

[57] Alper T Mizrak, Stefan Savage, and Keith Marzullo. Detecting compromised

routers via packet forwarding behavior. IEEE network, 22(2):34–39, 2008.

113

References

[58] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,

Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep

learning algorithms with back-gradient optimization. In Proceedings of the 10th

ACM workshop on artificial intelligence and security, pages 27–38, 2017.

[59] Andrew Newell, Rahul Potharaju, Luojie Xiang, and Cristina Nita-Rotaru. On

the practicality of integrity attacks on document-level sentiment analysis. In

Proceedings of the 2014 Workshop on Artificial Intelligent and Security Work-

shop, pages 83–93, 2014.

[60] Martin A Nowak and Karl Sigmund. Tit for tat in heterogeneous populations.

Nature, 355(6357):250–253, 1992.

[61] Georgios Oikonomou and Jelena Mirkovic. Modeling human behavior for de-

fense against flash-crowd attacks. In 2009 IEEE International Conference on

Communications, pages 1–6. IEEE, 2009.

[62] Kerim Yasin Oktay, Murat Kantarcioglu, and Sharad Mehrotra. Secure and

efficient query processing over hybrid clouds. In 2017 IEEE 33rd International

Conference on Data Engineering (ICDE), pages 733–744. IEEE, 2017.

[63] Kerim Yasin Oktay, Sharad Mehrotra, Vaibhav Khadilkar, and Murat Kantar-

cioglu. Semrod: secure and efficient mapreduce over hybrid clouds. In Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management of

Data, pages 153–166, 2015.

[64] Yifan Ou and Reza Samavi. Mixed strategy game model against data poi-

soning attacks. In 2019 49th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops (DSN-W), pages 39–43. IEEE,

2019.

[65] Saibal K Pal, Puneet Sardana, and Ankita Sardana. Efficient search on en-

crypted data using bloom filter. In 2014 International Conference on Comput-

114

References

ing for Sustainable Global Development (INDIACom), pages 412–416. IEEE,

2014.

[66] Kihong Park and Heejo Lee. On the effectiveness of probabilistic packet mark-

ing for ip traceback under denial of service attack. In Proceedings IEEE IN-

FOCOM 2001. Conference on Computer Communications. Twentieth Annual

Joint Conference of the IEEE Computer and Communications Society (Cat.

No. 01CH37213), volume 1, pages 338–347. IEEE, 2001.

[67] Kihong Park and Heejo Lee. On the effectiveness of route-based packet filtering

for distributed dos attack prevention in power-law internets. ACM SIGCOMM

computer communication review, 31(4):15–26, 2001.

[68] Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou. Persis-

tent bloom filter: Membership testing for the entire history. In Proceedings of

the 2018 International Conference on Management of Data, pages 1037–1052,

2018.

[69] The pick-up time in a day extracted from 2018 January New York

Taxi data. Taxi dataset. https://www.kaggle.com/code/wti200/

exploratory-analysis-nyc-taxi-trip, 2018.

[70] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, and Edward W

Knightly. Ddos-resilient scheduling to counter application layer attacks under

imperfect detection. In INFOCOM, pages 1–14. Citeseer, 2006.

[71] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio Nucci, and

Edward Knightly. Ddos-shield: Ddos-resilient scheduling to counter application

layer attacks. IEEE/ACM Transactions on networking, 17(1):26–39, 2008.

[72] Xuebin Ren, Chia-Mu Yu, Weiren Yu, Shusen Yang, Xinyu Yang, Julie A Mc-

Cann, and S Yu Philip. Lopub: high-dimensional crowdsourced data publication

115

https://www.kaggle.com/code/wti200/exploratory-analysis-nyc-taxi-trip
https://www.kaggle.com/code/wti200/exploratory-analysis-nyc-taxi-trip

References

with local differential privacy. IEEE Transactions on Information Forensics and

Security, 13(9):2151–2166, 2018.

[73] Dazhong Rong, Shuai Ye, Ruoyan Zhao, Hon Ning Yuen, Jianhai Chen, and

Qinming He. Fedrecattack: model poisoning attack to federated recommenda-

tion. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),

pages 2643–2655. IEEE, 2022.

[74] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. Practical

network support for ip traceback. In Proceedings of the conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communication,

pages 295–306, 2000.

[75] Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and

Jun Gao. Poisonrec: an adaptive data poisoning framework for attacking black-

box recommender systems. In 2020 IEEE 36th International Conference on

Data Engineering (ICDE), pages 157–168. IEEE, 2020.

[76] Mudhakar Srivatsa, Arun Iyengar, Jian Yin, and Ling Liu. Mitigating

application-level denial of service attacks on web servers: A client-transparent

approach. ACM Transactions on the Web (TWEB), 2(3):1–49, 2008.

[77] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for

data poisoning attacks. Advances in neural information processing systems, 30,

2017.

[78] Xinyue Sun, Qingqing Ye, Haibo Hu, Jiawei Duan, Tianyu Wo, Jie Xu, and

Renyu Yang. Ldprecover: Recovering frequencies from poisoning attacks against

local differential privacy, 2024.

[79] UCI. Uci datasets. http://archive.ics.uci.edu/datasets, 2023.

[80] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha:

Using hard ai problems for security. In Advances in Cryptology—EUROCRYPT

116

http://archive.ics.uci.edu/datasets

References

2003: International Conference on the Theory and Applications of Crypto-

graphic Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings 22, pages

294–311. Springer, 2003.

[81] Jiacong Wang, Mingzhong Xiao, and Yafei Dai. Mbf: A real matrix bloom filter

representation method on dynamic set. In 2007 IFIP International Conference

on Network and Parallel Computing Workshops (NPC 2007), pages 733–736.

IEEE, 2007.

[82] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. Collecting and analyzing multidimensional data with

local differential privacy. In 2019 IEEE 35th International Conference on Data

Engineering (ICDE), pages 638–649. IEEE, 2019.

[83] Zhu Wang, Tiejian Luo, Guandong Xu, and Xiang Wang. A new indexing

technique for supporting by-attribute membership query of multidimensional

data. In International Conference on Web-Age Information Management, pages

266–277. Springer, 2013.

[84] Stanley L Warner. Randomized response: A survey technique for eliminat-

ing evasive answer bias. Journal of the American Statistical Association,

60(309):63–69, 1965.

[85] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. Fedattack:

Effective and covert poisoning attack on federated recommendation via hard

sampling. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pages 4164–4172, 2022.

[86] Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack on

support vector machines. In ECAI 2012, pages 870–875. IOS Press, 2012.

[87] Sisi Xiong, Yanjun Yao, Qing Cao, and Tian He. kbf: a bloom filter for key-value

storage with an application on approximate state machines. In IEEE INFOCOM

117

References

2014-IEEE Conference on Computer Communications, pages 1150–1158. IEEE,

2014.

[88] Cheng Xu, Qian Chen, Haibo Hu, Jianliang Xu, and Xiaojun Hei. Authenti-

cating aggregate queries over set-valued data with confidentiality. IEEE Trans-

actions on Knowledge and Data Engineering, 30(4):630–644, 2017.

[89] Cheng Xu, Jianliang Xu, Haibo Hu, and Man Ho Au. When query authenti-

cation meets fine-grained access control: A zero-knowledge approach. In Pro-

ceedings of the 2018 International Conference on Management of Data, pages

147–162, 2018.

[90] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. Lf-

gdpr: A framework for estimating graph metrics with local differential privacy.

IEEE Transactions on Knowledge and Data Engineering, 34(10):4905–4920,

2020.

[91] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. To-

wards locally differentially private generic graph metric estimation. In 2020

IEEE 36th International Conference on Data Engineering (ICDE), pages 1922–

1925. IEEE, 2020.

[92] Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, and Hao-

tian Yan. Beyond value perturbation: Local differential privacy in the temporal

setting. In IEEE INFOCOM 2021-IEEE Conference on Computer Communi-

cations, pages 1–10. IEEE, 2021.

[93] Chin-Yuan Yeh, Hsi-Wen Chen, De-Nian Yang, Wang-Chien Lee, S Yu Philip,

and Ming-Syan Chen. Planning data poisoning attacks on heterogeneous rec-

ommender systems in a multiplayer setting. In 2023 IEEE 39th International

Conference on Data Engineering (ICDE), pages 2510–2523. IEEE, 2023.

118

References

[94] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor net-

work survey. Computer networks, 52(12):2292–2330, 2008.

[95] Minlan Yu, Alex Fabrikant, and Jennifer Rexford. Buffalo: Bloom filter for-

warding architecture for large organizations. In Proceedings of the 5th interna-

tional conference on Emerging networking experiments and technologies, pages

313–324, 2009.

[96] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense

mechanisms against distributed denial of service (ddos) flooding attacks. IEEE

communications surveys & tutorials, 15(4):2046–2069, 2013.

[97] Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen, XiaoFeng Wang, and Yaoping

Ruan. Sedic: privacy-aware data intensive computing on hybrid clouds. In

Proceedings of the 18th ACM conference on Computer and communications

security, pages 515–526, 2011.

[98] Rui Zhang and Quanyan Zhu. A game-theoretic defense against data poisoning

attacks in distributed support vector machines. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 4582–4587. IEEE, 2017.

[99] Xiaojian Zhang and Xiaofeng Meng. Differential privacy in data publication

and analysis. Chinese journal of computers, 37(4):927–949, 2014.

[100] Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jian Ren,

and Kai Zhou. Binarizedattack: Structural poisoning attacks to graph-based

anomaly detection. In 2022 IEEE 38th International Conference on Data En-

gineering (ICDE), pages 14–26. IEEE, 2022.

119

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Backgrounds
	Contributions and Thesis Organization

	Literature Review and Preliminaries
	Distributed Systems Security
	DDos Countermeasures
	Local Differential Privacy
	Data Poisoning Attacks

	Probabilistic Structures
	Bloom Filter
	Secure Index
	Locality Sensitive Hash

	Variational Method
	Generalized Coordinates
	The Least Action Principle

	Cloud Password Shield
	System model: an overview
	Bloom filter as a pre-screener
	Why Bloom filters

	Bloom filter settings

	KSSBF: A key-based secure solution for trusted firewall providers
	Construction
	Security model
	Pseudo-random functions
	Semantic security against chosen password attack

	GSBF: a generically secure solution for non-trusted firewall providers
	On false positives
	Security model
	Construction
	Runtime of GSBF
	Initialization
	Login response

	Provable security of GSBF

	Performance evaluation & Experiments
	Performance metrics
	Performance evaluation
	Configurations
	Experimental results of elements in Table 3.3

	Registration/password revision performance of KSSBF
	Scalability

	Chapter Summary

	Secure Indexing
	System Overview
	Problem Definition
	Baseline Solutions
	Threat Model

	The Matrix BF Index
	The Basic Structure
	False Positive Rate
	Partitioned Hashing Strategies
	Securing the index
	Index Initialization

	Handling Inter-attribute Correlations
	Maximum Adaptive Matrix
	Minimum Storage Matrix

	Experiments
	False Positive Rate
	Batch Performance
	Privacy Guarantee

	Chapter Summary

	Interactive Trimming
	Game-Theoretic Model Formulation
	Threat Model
	Payoff Functions
	Strategy Space
	Single Poison Value Case
	General Case

	Sequential Moves

	Infinite Collection Game
	Overview
	Analytical Model
	Equilibrium State
	Non-equilibrium State

	Non-deterministic Utility
	Tit for Tat Strategy
	Elastic Trigger Strategy

	Experiments
	Experimental Setup
	Stackelberg Equilibrium Results on k-Means Clustering
	Stackelberg Equilibrium Results on SVM and SOM Classifier
	Non Equilibrium Results and Cost Analysis
	Performance under LDP perturbations

	Chapter Summary

	Conclusions and Future Works
	Conclusions
	Future work

	References

