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Abstract 

Considering the substantial social costs of road crashes, it is important to identify the 

road safety hazards at crash-prone locations, such as transition segments where 

vehicles merge onto or exit the main highway. Therefore, effective road safety 

measures can be developed to mitigate the crash risk. Conventional highway safety 

studies rely on statistical models based on historical crash data. However, they may 

have limitations because of the rare and random nature of crash occurrences. 

Additionally, some crucial information like dynamic traffic characteristics is often not 

available in the crash dataset. Furthermore, there are shortfalls in existing statistical 

models. Therefore, this study aims to develop advanced statistical and econometric 

methods for the safety analysis of highway merging and diverging areas, which have 

relatively high crash risk among all road entities. 

 

First, effects of possible influencing factors on the crash injury severity are different 

between single-vehicle and multi-vehicle crashes. Therefore, separate crash injury 

severity models should be established for single- and multi-vehicle crashes. 

Additionally, transferability assessment of the crash injury severity models across 

different time periods should be considered. To this end, the random parameter 

multinomial logit regression model with heterogeneity in means and variances is 

adopted to measure the association between crash injury severity and possible 

influencing factors at the highway ramp areas (including acceleration and deceleration 

lanes), with which the effect of unobserved heterogeneity is accounted for. 

Furthermore, partially constrained and temporal unconstrained modeling approaches 

are adopted to account for temporally shifting parameters. Results indicate that there 

are considerable differences in the effects of aberrant driver behavior, vehicle class, 

lighting condition and crash location on injury severity between single- and multi-

vehicle crashes. Last but not least, out-of-sample prediction performance for the 
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models of single- and multi-vehicle crashes are assessed. 

 

Second, a key assumption for multiple regression model is the exogeneity of the 

independent variables. However, some influencing factors that affect crash injury 

severity may correlate with other unobserved factors. As such, there could exist an 

endogenous effect of crash type on crash injury severity. Hence, a random parameter 

recursive bivariate probit model is proposed to model the crash type (hit-object and 

rollover) and crash injury severity at ramps simultaneously and to account for any 

endogenous effect of crash type. The results indicate that the proposed model is 

capable of capturing the correlation between unobserved factors and crash type. 

Endogeneity effect of crash type is incorporated in the crash severity model using a 

correlation parameter. Furthermore, other exogenous variables including road 

environment, crash location, and driver characteristics that affect the crash type and 

crash injury severity at the highway ramp areas were also identified. 

 

Third, information on dynamic traffic characteristics is often not available in 

historical crash dataset. To resolve this problem, vehicle trajectories can be captured 

using videos and image processing techniques in real-time safety analysis. In this 

study, a modified conflict risk indicator is developed to assess the safety of diverging, 

merging, and weaving movements of traffic, with which vehicles’ dimensions (width 

and length), and longitudinal and angular movements are considered. A correlated 

grouped random parameter logit model with heterogeneity in the means is established 

to capture the unobserved heterogeneity, with additional flexibility, at road user level 

for the association between conflict risk and influencing factors. Prevalence and 

severity of both rear-end and sideswipe traffic conflicts are examined. Results indicate 

that toll collection type, vehicle location, average longitudinal speed, angular speed, 

acceleration, and vehicle class all affect the risk of traffic conflicts. 
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Overall, contribution of this study is twofold. First, advanced statistical and 

econometric methods are developed to account for several prevalent issues in safety 

analysis. Second, alternate safety indicators are adopted to proxy the crash risk at the 

highway merging and diverging areas. Findings should shed light on effective traffic 

management and control measures like variable speed limits and message signs that 

can mitigate the crash risk at the hazardous locations. 
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Chapter 1  Introduction 

1.1 Research background 

Highway safety is of paramount importance due to its direct impact on transportation 

systems, public health, economic costs, and overall societal well-being. Research has 

shown that traffic accidents on highways result in a significant number of injuries and 

fatalities, leading to immense human suffering and loss. The economic burden of 

these accidents is substantial, encompassing costs related to medical expenses, 

property damage, legal fees, and lost productivity. Considering the substantial social 

costs of road crashes, it is important to identify the road safety hazards at crash-prone 

locations. 

 

Highway merging and diverging areas, such as ramps and toll plazas, serve as 

transition segments where vehicles merge onto or exit the main highway, leading to 

potential interactions and conflicts that can increase the probability of accidents. 

Often, vehicles on the road at one level need to ascend or descend to the crossing road 

at a different level, and this is done via highway ramps. Ramp areas tend to be 

accident-prone because ramp traffic consists of a mix of vehicles based on their 

intentions: continuing to go straight, changing lanes so the vehicle can be positioned 

to be ready to exit or enter the mainline via the ramp, and so on. These different 

motives lead to a complex tapestry of vehicle movements (weaving, merging, 

diverging) and consequently a wide variation in speeds. At such locations, there exists 

challenges and difficulties in the driving tasks, navigation, and maneuvers including 

acceleration and deceleration, diverging and merging, lane changing, and gap 

acceptance. Further, traffic conflicts between vehicles of different streams are 

prevalent. For these reasons, crash risk at highway ramps tends to be high at high-

speed road corridors in several countries (Wang et al., 2009; Geedipally and Lord, 
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2010; Li et al., 2012). For example, as shown in Figure 1.1, in the United Staes, in 

recent four years, the annual average crashes at highway ramps is 271,000 resulting in 

over 68,000 injury crashes and 800 fatal crashes per year (NHTSA, 2020, 2021, 2022, 

2023). The risk of overall and severe crashes at highway ramp area is higher than that 

at other road entities. Therefore, from a safety management perspective, it can be 

beneficial to identify the factors that contribute to the high crash risk at ramp areas, 

measure the strength of their influence. 

 

 

Figure 1.1 Police-reported motor vehicle crashes at ramps in US from 2018 to 2021 

 

Toll plaza is another type of merging and diverging area for toll collection of 

controlled-access roads like expressways, bridges, and tunnels. Traffic and safety 

characteristics of toll plazas are different from that of other road entities because of 

the differences in geometric design, traffic management and control, and more 

importantly, weaving, diverging, and merging movements of traffic approaching the 

toll booths, especially vehicles slow down or stop to pay tolls when multiple toll 

collection methods (i.e., manual, and electronic) are available (Wong et al., 2006), 

posing unique safety challenges that require careful management to prevent collisions. 

1.2 Motivation and problem statement 

The safety analysis of highway merging and diverging areas is essential. The specific 
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research motivation and problem statement of this study are as follows. 

 

First, previous studies indicate that differences in the characteristics of crash 

occurrence and severity between single- and multi-vehicle crashes are considerable 

(Martensen and Dupont, 2013; Rezapour et al., 2019). The crash mechanism and 

effects of influencing factors between single- and multi-vehicle crashes are different 

(Mannering and Bhat, 2014; Intini et al., 2020). Indeed, effectiveness of road 

management strategies and measures in reducing the crash and injury risk could be 

diminished if the crash mechanisms of single-vehicle and multi-vehicle crashes are 

not differentiated (Intini et al., 2020), especially for highway merging and diverging 

areas. Therefore, it is necessary to evaluate the differences in the association measure 

of crash severity between single-vehicle and multi-vehicle crashes. 

 

Second, transferability allows for the application of models to be effectively used for 

new data from other temporal and/or spatial units, enhancing the generalizability and 

applicability of the findings. Nevertheless, the transferability remains a crucial issue 

since the effects of the same explanatory variable are likely to be temporally and/or 

spatially unstable (Mannering and Bhat, 2014; Mannering, 2018). Therefore, the 

transferability of crash injury severity models is worth studying. 

 

Third, there are unobserved and unmeasurable factors that may affect the association 

between observed variables of interest and outcome variables in safety analysis. 

Variations in traffic operations, vehicle maneuvers and driver behavior, which are 

unobservable, in the diverging, merging, and weaving process at the ramp areas 

should be considerable. Ignoring such effects may result in erroneous inferences 

(Savolainen et al., 2011; Mannering and Bhat, 2014). Therefore, the effect of 

unobserved heterogeneity should be considered. 
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Moreover, crash type was typically incorporated into the crash severity model as an 

independent input variable in previous studies. However, as is the case in any crash 

data, there could exist unobserved factors, including driver perception and behaviors, 

which may affect both the crash type and crash severity simultaneously. In other 

words, the endogenous effect of crash type on crash injury severity may lead to biased 

parameter estimates. Therefore, it is important to accommodate the endogenous effect 

in the analysis of road safety. 

 

Last but not least, previous studies are based on historical crash records to address 

heterogeneity issues, not many studies have considered the heterogeneity and 

correlation in real-time conflict risk estimation at the road user level. Also, the 

association between crash occurrence and possible risk factors can be moderated by 

collision type. Therefore, considering the conflict type and heterogeneity at the road 

user level could provide new insights for safety analysis. 

1.3 Research objectives 

This research aims to assess safety at highway merging and diverging areas using 

advanced econometric methods, with specific research objectives as follows: 

 

 Transferability of crash injury severity models for single-vehicle and multi-

vehicle crashes 

1) To investigate the differences in the association measure of injury severity at ramp 

areas between single-vehicle and multi-vehicle crashes, for which effects of 

unobserved heterogeneity are accounted for. 

2) To address the issues of transferability over time by considering temporally 

shifting parameters for the analysis of crash injury severity at ramps. 

 

 Correcting for crash type endogeneity in crash injury severity at highway ramps 
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1) To investigate the crash type and injury severity simultaneously. 

2) To examine the endogenous effect of crash type and indirect effects of exogenous 

factors on injury severity through crash types. 

 

 Addressing unobserved heterogeneity at road user level for the analysis of 

conflict risk at toll plaza 

1) To assess the safety risk at a tunnel toll plaza diverging area using a modified 

traffic conflict indicator, taking into account vehicle length and width, angular and 

longitudinal movements, and conflict type (i.e., rear-end and sideswipe). 

2) To examine the association between conflict risk at tunnel toll plaza and possible 

factors, including vehicle class, speed and acceleration of vehicle, toll collection 

type, and spatial characteristics, for which effects of unobserved heterogeneity and 

correlation among random parameters at the road user level are accounted for. 

1.4 Thesis organization 

This thesis is organized into six comprehensive chapters, each dedicated to a specific 

aspect of the study. 

 

Chapter 2 reviews the literature on highway safety analysis including safety analysis 

based on crash data, surrogate safety measures and traffic conflict technique for safety 

analysis and advanced analytic methods and critical methodological issues relating to 

highway safety analysis. 

 

Chapter 3 investigates differences in the association measure of injury severity at 

ramp areas between single-vehicle and multi-vehicle crashes. The issues of 

unobserved heterogeneity and temporal instability for the analysis of crash injury 

severity at ramp areas are addressed. In this study, random parameters multinomial 

logit regression approach, with heterogeneity in means and variances, is adopted to 
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measure the association between possible influencing factors and crash injury severity 

at ramps. 

 

Chapter 4 develops a random parameters recursive bivariate probit model to 

investigate the crash type and injury severity simultaneously, using single-vehicle 

crash data at ramps. In the proposed simultaneous model, crash type is regarded as the 

treatment variable. Additionally, the effect of unobserved heterogeneity is also 

considered using the random parameters model with heterogeneity in the means. 

 

Chapter 5 proposes a modified traffic conflict indicator, taking into account vehicle 

length and width, angular and longitudinal movements, and conflict type (i.e., rear-

end and sideswipe), is proposed to assess the safety risk at a tunnel toll plaza, based 

on high-resolution vehicle trajectory data obtained from drone video. Then, the 

correlated grouped random parameter multinomial logit approach with heterogeneity 

in the means of the random parameters is adopted to measure the association between 

conflict risk at tunnel toll plaza and possible factors, including vehicle class, speed 

and acceleration of vehicle, toll collection type, and spatial characteristics, for which 

effects of unobserved heterogeneity and correlation among random parameters at the 

road user level are accounted for. 

 

Chapter 6 concludes the study with a summary of findings, contributions, limitations 

and future research directions. 
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Chapter 2  Literature Review 

This chapter reviews the literature on highway safety analysis from several aspects. 

Section 2.1 reviews the literature on the highway safety analysis based on crash data, 

with a focus on crash injury severity analysis at merging and diverging areas. Section 

2.2 discusses the surrogate safety measures and traffic conflict technique for safety 

analysis. Section 2.3 reviews the literature with respect to analytic methods and 

critical methodological issues relating to highway safety analysis. 

2.1 Safety analysis at merging and diverging areas 

The safety analysis using highway accident data relied on the data from police crash 

reports. These reports are used to establish the frequency of crashes at specific 

locations and the associated injury-severities of vehicle occupants and others involved 

in these crashes (Mannering and Bhat, 2014). Studies have assessed the safety of 

merging and diverging areas (e.g., ramps, toll plazas) based on historical crash data. 

For example, toll plaza layout, horizontal curves, toll collection method, and traffic 

signs and road markings are found associated with the crash risk at toll plazas (Wong 

et al., 2006; Sze et al., 2008; Abuzwidah et al., 2014; Abuzwidah and Abdel-Aty, 

2015, 2018). Factors that affect the crash injury severity at ramp areas can be 

classified into categories including driver, vehicle, environmental, roadway design, 

and temporal characteristics. Table 2-1 summarizes the main findings of the factors 

that affect the crash injury severity at ramp areas.  

 

Additionally, some studies also indicated that the prediction performances of 

separated crash severity models for single- and multi-vehicle crashes are superior to 

that of combined models (Geedipally and Lord, 2010; Mannering, 2018). However, 

studies that consider the difference in the effects of influencing factors on the crash 
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injury severity between these two crash types are limited (Savolainen and 

Mannering, 2007; Yu and Abdel-Aty, 2013; Wu et al., 2014; Gong et al., 2022). 

Moreover, it is rare that the issues of unobserved heterogeneity and temporal 

instability are addressed for the crash severity analysis at ramp areas. 

 

Table 2-1 Factors that affect the crash injury severity at ramp areas 
Factor Findings 

Driver characteristics 

Gender Likelihood of severe injury of female driver is higher (Mergia et al., 2013). 

Age 
Effect of driver age on injury severity varies across models for merging and 

diverging areas (Mergia et al., 2013). 

Driving under the 

influences of alcohol 

and drug 

Likelihoods of severe injury and fatal injury are higher when driving under the 

influence of alcohol and drug (Wang et al., 2009; Li et al., 2012; Mergia et 

al., 2013; Zhang et al., 2018). 

Aberrant driver 

behavior 

Likelihood of severe injury of speeding offense is higher (Mergia et al., 2013). 

Likelihood of injury of improper lane change is higher at merging and 

merging overlap influence areas (Yang et al., 2019). 

Vehicle attributes 

Vehicle class 

Likelihood of no injury of heavy vehicle is higher (Wang et al., 2009). 

Likelihood of severe injury of semi-truck is higher at merging areas, and 

likelihood of non-incapacitating injury of semi-truck is lower at diverging areas 

(Mergia et al., 2013). Likelihood of injury of truck is lower at merge and 

weaving overlap influence areas (Yang et al., 2019). 

Environmental conditions 

Road surface condition 

Likelihood of severe injury in wet road surface condition is lower (Wang et 

al., 2009; Li et al., 2012; Zhang et al., 2018), but the likelihood of invisible 

injury is higher (Zhang et al., 2018). The likelihoods of possible injury, non-

incapacitating injury and incapacitating injury are higher in poor road 

condition, but the likelihood of fatal injury is lower (Mergia et al., 2013). 

Lighting condition 

Likelihood of injury is lower under daylight condition (Wang et al., 2009; Li et 

al., 2012; Zhang et al., 2018). Likelihood of non-incapacitating injury at 

diverging areas is higher under poor lighting condition (Mergia et al., 2013). 

Likelihood of injury at diverging and diverging overlap influence areas is higher 

under poor lighting condition (Yang et al., 2019). 

Weather 

Likelihood of severe injury is lower under clear weather condition (Wang et 

al., 2009; Li et al., 2012; Zhang et al., 2018). Effect of adverse weather 

conditions varies across estimation models (Mergia et al., 2013). Likelihood of 

injury at diverging areas is higher under adverse weather condition (Yang et 
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Factor Findings 

al., 2019). 

Land use 

Likelihoods of no injury and severe injury are higher at commercial area 

(Wang et al., 2009; Li et al., 2012; Zhang et al., 2018). Likelihood of severe 

injury is higher at rural area (Geedipally et al., 2014). 

Roadway design 

Speed limit 
Posted speed limit of mainline is positively associated with the likelihood of 

no injury (Wang et al., 2009). 

Traffic volume 

Traffic volume of mainline is positively associated with the likelihood of 

severe injury (Wang et al., 2009). Truck volume of mainline and traffic 

volume of exit ramps are positively associated with the likelihood of severe 

injury of truck-related crash (Wang et al., 2011). Traffic volume of diverging 

area is negatively associated with the likelihood of fatal injury and traffic 

volume of merging area is positively associated with the likelihood of 

incapacitating injury (Mergia et al., 2013). 

Horizontal and vertical 

alignments 

Likelihood of severe injury is higher when the road alignment is horizontal 

curve and vertical grade (Wang et al., 2009; Wang et al., 2011). 

Width of central 

median 

Likelihood of severe injury decreases when the central median is wide (Wang 

et al., 2011). 

Width of shoulder 

Wide right shoulder (left-hand drive) is negatively associated with the 

likelihood of no injury (Wang et al., 2009), but positively associated with the 

likelihood of injury (Zhang et al., 2018). The likelihood of severe injury of 

truck-related crash at wide shoulder area (left-hand drive) is lower (Wang et 

al., 2011). The impact of wide right shoulder of freeway mainline (left-hand 

drive) on injury severity varies among different methods (Li et al., 2012). 

Number of lanes 

More mainline lanes and more ramp lanes are positively associated with the 

likelihood of fatal injury at merging areas; more ramp lanes are positively 

associated with the likelihood of non-incapacitating injury at diverging areas, 

but negatively associated with the likelihood of severe injury (Mergia et al., 

2013; Geedipally et al., 2014). More mainline lanes are positively associated 

with the likelihood of injury (Wang et al., 2009; Wang et al., 2011; Li et al., 

2012; Zhang et al., 2018).  

Ramp configuration 

Likelihood of severe injury of long deceleration lane is lower (Wang et al., 

2009; Wang et al., 2011). Likelihood of severe injury of long exit ramp is 

higher (Wang et al., 2009). Effect of long exit ramp on injury severity varies 

among different methods Li et al., 2012; Zhang et al., 2018). 

Road barrier 
Likelihoods of severe injury and non-incapacitated injury decrease with the 

presence of barrier (Geedipally et al., 2014). 

Crash circumstances 

Collision type Likelihood of injury of sideswipe crash is lower (Wang et al., 2009; Li et al., 
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Factor Findings 

2012; Zhang et al., 2018). Likelihood of severe injury of rear end crash is 

lower (Li et al., 2012; Zhang et al., 2018), but likelihood of invisible injury of 

that is higher (Zhang et al., 2018). Likelihoods of no injury and possible injury 

of rear end crash or same direction sideswipe crash are higher, and 

likelihood of fatal injury of angle crash is higher (Mergia et al., 2013). 

Crash location 
Likelihood of severe injury at exit ramp area is higher (Geedipally et al., 

2014). 

Temporal characteristics 

Time of day Likelihood of severe injury at off-peak period is higher (Wang et al., 2009). 

2.2 Surrogate safety measures 

Road safety analysis based on historical crash data is often subject to the problems 

like under-reporting, misclassification, and imbalanced crash data (Tsui et al., 2009; 

Lord and Mannering, 2010; Savolainen et al., 2011; Mannering and Bhat, 2014). 

To this end, it is possible to estimate the safety risk based on real-time traffic data 

collected using video observational survey and driving simulator approaches (Sayed 

et al., 2013; Yun et al., 2017; Chen et al., 2019b; Saad et al., 2019; Arun et al., 

2021b; Wang et al., 2022; Chen et al., 2024). Surrogate safety measures like time and 

distance headway, mean and deviation of speed, acceleration rate, and traffic conflicts 

can be applied to assess the safety level of road entities. To estimate the risk of traffic 

conflicts, indicators like time-to-collision, post-encroachment time, and deceleration 

rate to avoid the crash are used (Tarko, 2018). According to the “safety pyramid”, as 

shown in Figure 2.1, traffic incidents can be classified into three categories: (i) 

normal interactions; (ii) traffic conflicts; and (iii) crashes (Hydén, 1987). As a crash is 

the extreme form of traffic conflict, modeling the latter (which requires shorter 

observation period to accrue enough sample) may provide a reliable foundation for 

better understanding of crash mechanisms (El-Basyouny and Sayed, 2013; Sayed et 

al., 2013; Zheng et al., 2021). Despite that, more work is required for accurate 

prediction of crash severity based on traffic conflict analysis (Paul and Ghosh, 2021). 
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Figure 2.1 Safety pyramid of traffic events 

 

In most of the previous studies, the risk of traffic conflicts has been estimated based 

on vehicle length, position of centroid, and longitudinal movement of conflicting 

vehicles only (Sacchi and Sayed, 2016; Wang et al., 2019; Xu et al., 2021; Yang et 

al., 2021). It may result in underestimation of traffic conflict risk and bias in 

parameter estimates when vehicle width, and motions in two dimensions of 

conflicting vehicles are not considered. This is particularly true for the interactions 

between vehicles at intersections, and diverging, merging, and weaving areas. To this 

end, it is necessary to consider vehicle width and length (Arun et al., 2021c; Arun et 

al., 2021a), two-dimensional (i.e., longitudinal and angular) movements (Ward et al., 

2015; Tarko, 2021), and point of contact (Laureshyn et al., 2010; Jiménez et al., 

2013) of conflicting vehicles in traffic conflict analysis. 

 

In recent years, it is increasingly popular to collect traffic data using unmanned aerial 

vehicles (also known as drones) for traffic and safety analysis (Stipancic et al., 2016; 
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Wang et al., 2019). Based on the aerial footage captured by the drone, it is possible to 

extract high-resolution vehicle trajectory data using automated image recognition and 

processing technique (Krajewski et al., 2018; Li et al., 2020). Although several 

studies have assessed the safety risk of toll plazas based on drone data, they do not 

explicitly account for the effects of vehicle dimensions and conflict type on risk 

estimation (Xing et al., 2019; Xing et al., 2020a; Xing et al., 2020b). For example, it 

is possible to distinguish among various conflict types, i.e., head-on, sideswipe, and 

angled conflicts using pixel-based image classification technique based on high 

resolution vehicle trajectory data (Wu et al., 2020). 

2.3 Analytical methodology and frontiers 

2.3.1 Discrete outcome model 

For the analytic methods, discrete outcome models1 are commonly used to model the 

crash injury severity since the crash injury severity levels are generally classified into 

discrete categories in the crash dataset (Savolainen et al., 2011; Mannering and Bhat, 

2014). The injury severity levels are usually either a binary discrete outcome (e.g., 

injury and non-injury) or a multiple discrete outcome (e.g., no injury, possible injury, 

evident injury, disabling injury, fatal injury). For example, a binary logit model is 

applied to examine the association between influencing factors and a dichotomous 

dependent variable (killed or severe injury against slight injury) to evaluate the 

pedestrian injury risk (Sze and Wong, 2007). Dependent variables with multiple 

discrete outcomes can be considered ordered or unordered. To model the likelihood of 

more than two crash injury outcomes, a variety of multinomial models that do not 

 
1 It should be noted that when dealing with the decision maker's choices among discrete 

alternatives, such as a traveler’s choice of mode, discrete outcome models are often referred 

to as discrete choice models. In the analysis of road safety, the more general term “discrete 

outcome model” is used for any discrete outcomes, such as crash injury severity. 
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account for the ordering of injury outcomes have been widely used, such as 

multinomial logit model (Rifaat et al., 2011; Ye and Lord, 2014; Song et al., 2024b). 

Modeling approaches that consider the ordinal nature of injury severity levels, such as 

ordered probit/logit model, have also been applied  (Abdel-Aty, 2003; Lee and Abdel-

Aty, 2005; Mergia et al., 2013). Moreover, the severity of traffic conflicts is also 

typically classified into discrete categories such as binary categories or multiple 

categories. For example, a previous study divided traffic conflicts measured by TTC 

into two categories with a threshold of 4 seconds to evaluate the crash potential (Xing 

et al., 2019). Therefore, discrete outcome models have been applied to model the 

association between severity of conflicts and possible factors like road geometry, 

environmental condition, traffic flow, and driver characteristics (Uzondu et al., 2018; 

Xing et al., 2019; Xing et al., 2020a) 

2.3.2 Unobserved heterogeneity 

In discrete outcome models, fixed parameters restrict the effects of explanatory 

variables to be the same across all observations. However, there are unobserved and 

unmeasurable factors that may affect the association between observed variables of 

interest and outcome variables (e.g., injury severity, conflict severity). For example, 

there are significant differences in (unobserved) safety perception, attitude, and travel 

habit among the drivers who are of the same age. Hence, driver age may not be able 

to fully account for the effect of unobserved individual heterogeneity on driver 

performance and travel behavior. Thus, parameter estimates would be biased when 

unobserved heterogeneity is not considered. Ignoring such effects may result in 

erroneous inferences (Savolainen et al., 2011; Mannering and Bhat, 2014). To this 

end, various modeling approaches including random parameters, latent-class, and 

Markov switching approaches can be adopted to account for the effect of unobserved 

heterogeneity (Train, 2009; Anastasopoulos and Mannering, 2011; Morgan and 

Mannering, 2011; Ye and Lord, 2014; Hensher et al., 2015; Yasmin et al., 2015). 
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The random parameter (effect) approach has been the most widely applied to model 

the severity of crash injury and traffic conflicts For example, effects of unobserved 

heterogeneity of passenger characteristics are considered in driver injury severity 

analysis (Behnood and Mannering, 2017). Also, gender, bike type, signal type, and 

bike volume are found to be associated with unobserved heterogeneity in bicyclists’ 

red-light running behavior (Guo et al., 2018). In addition, to better track unobserved 

heterogeneity, it is necessary to capture heterogeneity in the standard deviations of 

parameter by allowing the mean of parameter to be a function of explanatory 

variables using heterogeneity in means and variances approach (Hensher et al., 2015; 

Mannering et al., 2016). This further defines the dispersion of parameter values 

across individual observations, providing additional flexibility for capturing potential 

unobserved heterogeneity (Seraneeprakarn et al., 2017). For example, a random 

parameters logit model with heterogeneity in means was developed to consider the 

effect of passengers on driver injury severities (Behnood and Mannering, 2017). 

Based on this concept, several studies have considered heterogeneity in the means and 

variances of the random parameters to capture unobserved heterogeneity with 

additional flexibility (Alnawmasi and Mannering, 2019; Islam et al., 2020; Yu et al., 

2020; Alogaili and Mannering, 2022; Song et al., 2022). Furthermore, more 

extensions based on random parameters models are considered. For example, 

correlated random parameters model is adopted to account for correlation among 

random parameters (Fountas et al., 2018b; Hou et al., 2020), and grouped random 

parameters model is applied to indicate the unobserved effects due to repeated 

observations of the same entity (Fountas et al., 2018a). Nevertheless, model 

extensions include correlated random parameters model with heterogeneity in the 

means (Ahmed et al., 2021; Fountas et al., 2021; Se et al., 2021; Pantangi et al., 

2022), correlated grouped random parameters model (Meng et al., 2021), grouped 

random parameters with heterogeneity in the means (Ahmed et al., 2020), and 

correlated grouped random parameters model with heterogeneity in the means 
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(Pantangi et al., 2020). However, the aforementioned studies were based on historical 

crash record, not many studies have considered the heterogeneity in the means of the 

random parameters and correlation among random parameters in real-time conflict 

risk estimation at the micro-level (Li et al., 2021; Zhang et al., 2021). 

2.3.3 Transferability and temporal instability  

In road safety analysis, transferability refers to the extent to which estimated 

parameters, findings, or methodologies developed in one context (e.g., a specific time 

period or region) can be applied or generalized to another context while maintaining 

relevance and accuracy (Xu et al., 2014; Essa et al., 2019; Washington et al., 2020; 

Arun et al., 2022). Nevertheless, the transferability of crash injury severity model 

across different spatial and temporal units remains a crucial issue since the effects of 

the same explanatory variable are likely to be temporally and/or spatially unstable 

(Mannering and Bhat, 2014; Mannering, 2018). For example, previous study has 

found that the effect of factors that determine injury severity in large truck crashes 

varies significantly at different times of the day and in different years (Behnood and 

Mannering, 2019). Recently, numerous studies have demonstrated that the 

contributing factors related to injury severities are subject to changes over time 

(Behnood and Mannering, 2019; Islam et al., 2020; Islam and Mannering, 2020; 

Meng et al., 2021; Yan et al., 2021; Zamani et al., 2021; Alnawmasi and Mannering, 

2022, 2023). A series of likelihood ratio tests have been used to test the models’ 

overall spatial and temporal transferability. Furthermore, it is necessary to examine 

the temporal changes in the influences of specific explanatory variables on the 

outcomes. To this end, temporal unconstrained and constrained parameters can be 

introduced into the crash injury severity model. Then, the partially temporal 

constrained parameters model, where some of the parameters are constrained and 

others are unconstrained, is considered to estimate the shifts in the effect of a specific 

variable over time (Alnawmasi and Mannering, 2023; Dzinyela et al., 2024). 
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Therefore, bias in parameter estimation could be eliminated, and understanding on the 

transferability of influencing factors over time that affect the crash severity should be 

improved. 

2.3.4 Endogeneity 

Endogeneity, which is characterized by significant correlation between an explanatory 

variable and the error term of a regression model, can be attributed to the influence of 

omitted variables, measurement errors, simultaneity, and self-selection (Mannering 

and Bhat, 2014; Guevara, 2015; Mannering et al., 2020). Endogeneity could lead to 

bias and inconsistency of parameter estimation, and ultimately, faulty inferences and 

false conclusions. For example, considering the context of seat belt use, a driver’s use 

of seat belt is typically considered as an exogenous variable in conventional crash 

severity studies. However, a driver that does not use a seat belt tends to be taking a 

risk intrinsically. It is likely that aggressive driving behavior is involved. Hence, the 

probability of more severe injury would increase. To this end, the influence of seat 

belt non-use on the crash severity would be overestimated if the endogenous effect 

were not considered (Eluru and Bhat, 2007). In other words, driver safety perception 

is an unobserved factor that could affect the likelihood of seat belt use and crash 

injury severity. This, possibly, contributes to the endogenous effect of a driver’s non-

use of a seat belt. 

 

Several methodological approaches have been established to eliminate the bias of 

parameter estimation attributed to endogeneity (Train, 2009; Guevara, 2015). For 

example, the control-function method with instrumental variables has been a direct 

way to account for endogeneity (Guevara and Ben-Akiva, 2012; Guevara and Hess, 

2019). An instrumental variable for each endogenous variable is required in the model. 

Such an instrumental variable is highly correlated with the endogenous variable while 

independent from the error term of the model. Several studies have used instrumental 
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variables to explore the relationship among multiple sources of risk (Afghari et al., 

2018), driver sleepiness and headway (Afghari et al., 2022), speed enforcement and 

safety risk (Yasmin et al., 2022), and motorcyclist behavior and injury severity (Yu et 

al., 2023). One of the major considerations for the application of the control-function 

method is to identify appropriate instrumental variables. This is important particularly 

in the context of safety analysis (Mannering and Bhat, 2014; Guevara, 2015; 

Mannering et al., 2020). However, identifying suitable instrumental variables for 

omitted attributes can be challenging in some circumstances. For example, driver 

safety perception and vehicle performance may be highly correlated with crash injury 

severity but are difficult to measure from the historical crash data. Hence, the control-

function method with instrumental variable may not be appropriate for the crash 

severity analysis (Chang et al., 2022). 

 

A simultaneous equation model (also known as simultaneous equation system or 

maximum likelihood approach, see Train (2009)), is a statistical model with two or 

more equations where an endogenous variable in one equation can be estimated by a 

function of exogenous variables in other equations in the equation system2 (Greene, 

2018; Washington et al., 2020). Simultaneous equation models capture the 

endogeneity by the cross-equation correlations and account for the indirect effects 

using a recursive structure. In past safety analysis, simultaneous equation models have 

been used in several studies to explore the endogeneity effect of possible factors in 

models of crash severity (Eluru and Bhat, 2007; Rana et al., 2010; Li et al., 2018; 

Chang et al., 2022), crash frequency (Bhat et al., 2014; Heydari et al., 2020; Heydari 

and Forrest, 2024), driving behavior (Sarwar et al., 2017), risk compensation 

(Oviedo-Trespalacios et al., 2020), seat belt use (Afghari et al., 2021), and road user 

 
2 If the dependent variable in one equation does not serve as an explanatory variable in other 

equations, it is called bivariate (or multivariate) dependent variable models (Washington et al., 

2020). 
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interactions in shared space (Kazemzadeh and Afghari, 2024). For example, a 

simultaneous equation model was adopted to account for the endogeneity effect of 

seat belt use on crash severity (Eluru and Bhat, 2007; Abay et al., 2013). Also, a two-

equation system – recursive bivariate probit model – was adopted to explore inter-

connected choices among passenger characteristics and crash circumstances (Lee and 

Abdel-Aty, 2008). In addition, a copula-based approach was proposed to address the 

endogeneity problem in injury severity models for two-vehicle crashes (Rana et al., 

2010). Furthermore, in crash studies, it is crucial to consider the effect of unobserved 

heterogeneity on parameter estimation (Li et al., 2021; Song et al., 2022)(Li et al., 

2021; Song et al., 2022). Several studies have extended the simultaneous equation 

models for identifying any random effects of exogenous variables (Eluru and Bhat, 

2007; Abay et al., 2013; Chang et al., 2022). 

2.4 Concluding remarks 

This chapter summarizes the literature review on safety analysis. The strengths and 

limitations of crash injury severity analysis, surrogate safety measures, and analytical 

frontiers are examined. There are several research gaps identified from previous 

research, which are summarized as follows. 

 

Even that the crash mechanism and effects of influencing factors between single- and 

multi-vehicle crashes are different, previous studies have rarely differentiated between 

them (Mannering and Bhat, 2014; Intini et al., 2020), especially for highway 

merging and diverging areas. Therefore, it is necessary to evaluate the differences in 

the association measure of crash severity between single-vehicle and multi-vehicle 

crashes. 

 

Variations in traffic operations, vehicle maneuvers and driver behavior, which are 

unobservable, in the diverging, merging, and weaving process at the ramp areas 
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should be considerable. The effect of unobserved heterogeneity should be considered. 

Nevertheless, the transferability remains a crucial issue since the effects of the same 

explanatory variable are likely to be temporally and/or spatially unstable (Mannering 

and Bhat, 2014; Mannering, 2018).  

 

There could exist unobserved factors, including driver perception and behaviors, 

which may affect both the crash type and crash severity simultaneously. In other 

words, the effect of crash type on crash injury severity, could be endogenous. It is rare 

that previous studies had considered the indirect effects of exogenous factors on 

injury severity. 

 

Last but not least, the association between crash occurrence and possible risk factors 

can be moderated by collision type. The heterogeneity and correlation in real-time 

conflict risk estimation at the road user level are rarely considered in previous studies. 
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Chapter 3  Temporal Transferability of Crash Injury 

Severity Models 

3.1 Introduction 

As shown in Figure 3.1, during the four-year period from 2018 to 2021, 70% of road 

crashes in the United States involved more than one vehicle, and 30% involved one 

vehicle respectively. For instance, number of single-vehicle crashes slightly reduced 

from 1,934,000 in 2018 to 1,874,000 in 2019. In contrast, the number of multi-vehicle 

crashes increased from 4,801,000 to 4,881,000 in the same period. Nevertheless, 

during the COVID-19 pandemic, there were remarkable reductions in both single-

vehicle (1,710,635) and multi-vehicle (3,540,202) crashes in 2020 (NHTSA, 2020, 

2021, 2022, 2023). Studies indicate that differences in the characteristics of crash 

occurrence and severity between single- and multi-vehicle crashes are considerable 

(Martensen and Dupont, 2013; Rezapour et al., 2019). Even that the crash 

mechanism and effects of influencing factors between single- and multi-vehicle 

crashes are different, it is rare that previous studies had differentiated between them 

(Mannering and Bhat, 2014; Intini et al., 2020). Existing studies examined the 

association between influencing factors and crash injury severity of overall crashes 

(without differentiating between single-vehicle and multi-vehicle crashes) at ramps. 

Indeed, effectiveness of road management strategies and measures in reducing the 

crash and injury risk could be diminished if the crash mechanisms of single-vehicle 

and multi-vehicle crashes are not differentiated (Intini et al., 2020), especially for 

ramp areas. Therefore, it is necessary to evaluate the differences in the association 

measure of crash severity at ramps between single-vehicle and multi-vehicle crashes. 
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Figure 3.1 Police-reported motor vehicle crashes in US from 2018 to 2021 

 

On the other hand, two modeling issues including unobserved heterogeneity and 

transferability for crash severity analysis should be addressed (Mannering et al., 2016; 

Behnood and Mannering, 2017; Seraneeprakarn et al., 2017; Xin et al., 2017; 

Mannering, 2018; Alnawmasi and Mannering, 2019; Islam et al., 2020; Yu et al., 

2020; Alogaili and Mannering, 2022; Alnawmasi and Mannering, 2023). For 

example, relationship between built environment and pedestrian injury severity is 

examined using the random parameters ordered probit model, with which the random 

effects of older pedestrians were revealed (Xin et al., 2017). In addition, it is 

necessary to consider the variations by time (i.e., time of the day, and over the years) 

of influencing factors that affect the crash severity for the optimal policy strategies 

and recommendations that can reduce the injury risk (Behnood and Mannering, 2015; 

Alogaili and Mannering, 2022). Temporal instabilities of the association between 

possible influencing factors and crash injury severity at work zone were investigated 

(Islam et al., 2020; Yu et al., 2020). Just, it is rare that the issues of unobserved 

heterogeneity and temporal instability are addressed for the analysis of crash injury 

severity at ramp areas. 
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To this end, this study aims to investigate the differences in the association measure of 

injury severity at ramp areas between single-vehicle and multi-vehicle crashes and 

address the issues of transferability over time for the analysis of crash injury severity 

at ramps. In this study, random parameters multinomial logit regression approach, 

with heterogeneity in means and variances, is adopted to measure the association 

between possible influencing factors and crash injury severity at ramps, based on the 

crash data from the State of North Carolina in 2016-2018, with which temporally 

shifting parameters are considered using partially constrained and unconstrained 

temporal models. 

 

The remainder of this chapter is structured as follows. Description of the data used, 

and analysis method are given in Section 3.2 and Section 3.3, respectively. Section 

3.4 presents the results of parameter estimation. Section 3.5 discusses the 

transferability assessment of the models. Finally, concluding remarks are given in 

Section 3.6. 

3.2 Data 

Ramp areas consist of ramp proper and speed change lanes (i.e., acceleration lanes for 

on-ramp and deceleration lanes for off-ramp) in the United States (AASHTO, 2018). 

In this study, crash data at the ramp areas (Figure 3.2) in North Carolina State in the 

period 2016 to 2018, obtained from the Highway Safety Information System (HSIS), 

is used. According to the injury definition adopted by North Carolina, crash injury 

severity is classified into five categories, namely fatal injury, suspected serious injury, 

suspected minor injury, possible injury, and no injury. To avoid the problem of 

imbalanced crash data, fatal injury and suspected serious injury are combined into one 

class as “severe injury”, and suspected minor injury and possible injury are combined 

into one class as “minor injury” respectively (Islam et al., 2020; Alogaili and 
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Mannering, 2022). Hence, three discrete crash injury severity outcomes including no 

injury, minor injury, and severe injury would be estimated. In addition, injury severity 

analysis is stratified into two for single-vehicle and multi-vehicle crashes. For a crash 

that involves more than one personal injury, crash severity would be determined based 

on the victim who suffers from the most serious injury. For each crash, information on 

driver characteristics, vehicle attributes, environmental conditions, roadway design, 

and crash circumstance is available. Table 3-1 and Table 3-2 summarize the 

descriptive statistics of the sample. Overall, there are 3,170 (19.0% of all crashes, 

including 2294 no injuries, 813 minor injuries, and 63 severe injuries) single-vehicle 

and 13,541 (81.0% of all crashes, including 10613 no injuries, 2815 minor injuries, 

113 severe injuries) multi-vehicle crashes at ramp areas from 2016 to 2018. Result of 

a chi-square test indicates that the null hypothesis that the injury severities among 

single-vehicle crashes and multi-vehicle crashes are the same can be rejected at the 1% 

level of significance (critical chi-squared value of 72.35 with 2 degree of freedom). 

 

Figure 3.2 Illustration of typical ramp areas 
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Table 3-1 Descriptive statistics of the data for single-vehicle crashes 

Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Injury severity 

No injury 703 70.80% 765 73.91% 826 72.33% 

Minor injury 272 27.39% 245 23.67% 296 25.92% 

Severe injury 18 1.81% 25 2.42% 20 1.75% 

Gender 
Male 619 62.34% 680 65.70% 707 61.91% 

Female 374 37.66% 355 34.30% 435 38.09% 

Age 

Below 25 364 36.66% 354 34.20% 367 32.14% 

25-39 326 32.83% 360 34.78% 415 36.34% 

40-59 221 22.26% 228 22.03% 273 23.91% 

Above 59 82 8.26% 93 8.99% 87 7.62% 

Alcohol or Drugs 
Not under the influence of alcohol or drugs 913 91.94% 952 91.98% 1050 91.94% 

Driving under the influence of alcohol or drugs 80 8.06% 83 8.02% 92 8.06% 

Aberrant driving 

behavior 

Speeding violation 388 39.07% 359 34.69% 401 35.11% 

Oversteer 91 9.16% 117 11.30% 107 9.37% 

Inattentiveness 81 8.16% 62 5.99% 99 8.67% 

Aggressive driving 53 5.34% 63 6.09% 61 5.34% 

Other aberrant driving behavior 380 38.27% 434 41.93% 474 41.51% 

Safety belt 
Not used 54 5.44% 73 7.05% 75 6.57% 

Used 939 94.56% 962 92.95% 1067 93.43% 

Maneuver 
Changing lanes 159 16.01% 145 14.01% 194 16.99% 

Going straight 710 71.50% 743 71.79% 797 69.79% 
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Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Making turn 81 8.16% 97 9.37% 107 9.37% 

Other maneuver action 43 4.33% 50 4.83% 44 3.85% 

Vehicle type 

Car 620 62.44% 635 61.35% 698 61.12% 

Sport utility vehicle 159 16.01% 180 17.39% 209 18.30% 

Pickup 106 10.67% 115 11.11% 133 11.65% 

Van 41 4.13% 37 3.57% 24 2.10% 

Truck 57 5.74% 59 5.70% 64 5.60% 

Other vehicle types 10 1.01% 9 0.87% 14 1.23% 

Road surface condition 

Dry 564 56.80% 617 59.61% 637 55.78% 

Wet 359 36.15% 383 37.00% 427 37.39% 

Other road surface conditions 70 7.05% 35 3.38% 78 6.83% 

Lighting condition 

Daylight 538 54.18% 583 56.33% 640 56.04% 

Dusk or dawn 39 3.93% 37 3.57% 52 4.55% 

Dark with streetlights 149 15.01% 133 12.85% 124 10.86% 

Dark without streetlights 265 26.69% 279 26.96% 321 28.11% 

Weather 
Clear 546 54.98% 562 54.30% 613 53.68% 

Cloudy, rain and other weather conditions 447 45.02% 473 45.70% 529 46.32% 

Area type 

Rural 377 37.97% 420 40.58% 505 44.22% 

Mixed 149 15.01% 138 13.33% 154 13.49% 

Urban 467 47.03% 477 46.09% 483 42.29% 

Terrain Flat 147 14.80% 128 12.37% 127 11.12% 



26 

Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Rolling and mountainous 846 85.20% 907 87.63% 1015 88.88% 

Speed limit 

<= 35 mph 135 13.60% 122 11.79% 119 10.42% 

40-60 mph 338 34.04% 364 35.17% 406 35.55% 

Above 60 mph 520 52.37% 549 53.04% 617 54.03% 

Road classification 
Interstate highway 628 63.24% 647 62.51% 718 62.87% 

US highway and State highway 365 36.76% 388 37.49% 424 37.13% 

Road configuration 

One-way mainline 453 45.62% 456 44.06% 520 45.53% 

Undivided two-way mainline 36 3.63% 40 3.86% 56 4.90% 

Divided two-way mainline with no median 

barrier 
70 7.05% 77 7.44% 77 6.74% 

Divided two-way mainline with median barrier 434 43.71% 462 44.64% 489 42.82% 

Collision type 

Run-off road 350 35.25% 331 31.98% 335 29.33% 

Overturned 68 6.85% 61 5.89% 68 5.95% 

Hit object 546 54.98% 619 59.81% 718 62.87% 

Other collision type 29 2.92% 24 2.32% 21 1.84% 

Crash location 
On traffic lanes 552 55.59% 628 60.68% 655 57.36% 

Outside traffic lanes 441 44.41% 407 39.32% 487 42.64% 

Ramp type 

Off-ramp 511 51.46% 534 51.59% 598 52.36% 

Off-ramp terminal on crossroad 31 3.12% 50 4.83% 51 4.47% 

Merging lane between on-ramp and off-ramp 30 3.02% 28 2.71% 41 3.59% 

On-ramp 375 37.76% 377 36.43% 392 34.33% 
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Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

On-ramp terminal on crossroad 46 4.63% 46 4.44% 60 5.25% 

 

Table 3-2 Descriptive statistics of the data for multi-vehicle crashes 

Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Injury severity 

No injury 3216 77.09% 3499 77.91% 3898 79.91% 

Minor injury 928 22.24% 948 21.11% 939 19.25% 

Severe injury 28 0.67% 44 0.98% 41 0.84% 

Gender 
No female driver involved 1263 30.27% 1365 30.39% 1549 31.75% 

Female driver involved 2909 69.73% 3126 69.61% 3329 68.25% 

Alcohol or drugs 
Alcohol or drugs not involved 4100 98.27% 4424 98.51% 4806 98.52% 

Alcohol or drugs involved 72 1.73% 67 1.49% 72 1.48% 

Speeding violation 
Speeding violation not involved 2172 52.06% 2243 49.94% 2499 51.23% 

Speeding violation involved 2000 47.94% 2248 50.06% 2379 48.77% 

Inattentiveness 
Driver inattentiveness not involved 3678 88.16% 4003 89.13% 4394 90.08% 

Driver inattentiveness involved 494 11.84% 488 10.87% 484 9.92% 

Maneuver 
Going straight 526 12.61% 635 14.14% 683 14.00% 

Making maneuver action 3646 87.39% 3856 85.86% 4195 86.00% 

Car 
Car not involved 848 20.33% 955 21.26% 1133 23.23% 

Car involved 3324 79.67% 3536 78.74% 3745 76.77% 
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Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Sport utility vehicle 
Sport utility vehicle not involved 2648 63.47% 2786 62.04% 2991 61.32% 

Sport utility vehicle involved 1524 36.53% 1705 37.96% 1887 38.68% 

Pickup 
Pickup not involved 3293 78.93% 3586 79.85% 3844 78.80% 

Pickup involved 879 21.07% 905 20.15% 1034 21.20% 

Van 
Van not involved 3680 88.21% 3950 87.95% 4346 89.09% 

Van involved 492 11.79% 541 12.05% 532 10.91% 

Truck 
Truck not involved 3754 89.98% 4017 89.45% 4361 89.40% 

Truck involved 418 10.02% 474 10.55% 517 10.60% 

Number of vehicles 

involved 

Two vehicles 3900 93.48% 4231 94.21% 4595 94.20% 

More than two vehicles 272 6.52% 260 5.79% 283 5.80% 

Road surface 

condition 

Dry 3685 88.33% 3909 87.04% 4018 82.37% 

Wet 447 10.71% 564 12.56% 784 16.07% 

Other road surface conditions 40 0.96% 18 0.40% 76 1.56% 

Lighting condition 

Daylight 3343 80.13% 3575 79.60% 3880 79.54% 

Dusk or dawn 155 3.72% 172 3.83% 200 4.10% 

Dark with streetlights 345 8.27% 335 7.46% 373 7.65% 

Dark without streetlights 319 7.65% 395 8.80% 414 8.49% 

Weather 
Clear 3271 78.40% 3468 77.22% 3588 73.55% 

Cloudy, rain and other weather conditions 901 21.60% 1023 22.78% 1290 26.45% 

Area type 
Rural 1005 24.09% 1120 24.94% 1461 29.95% 

Mixed 597 14.31% 678 15.10% 636 13.04% 
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Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Urban 2570 61.60% 2693 59.96% 2781 57.01% 

Horizontal alignment 
Straight 3432 82.26% 3725 82.94% 4027 82.55% 

Curve 740 17.74% 766 17.06% 851 17.45% 

Terrain 
Flat 233 5.58% 254 5.66% 282 5.78% 

Rolling and mountainous 3939 94.42% 4237 94.34% 4596 94.22% 

Speed limit 

<= 35 mph 699 16.75% 725 16.14% 750 15.38% 

40-60 mph 1694 40.60% 1710 38.08% 1974 40.47% 

Above 60 mph 1779 42.64% 2056 45.78% 2154 44.16% 

Road classification 
Interstate highway 2550 61.12% 2838 63.19% 3053 62.59% 

US highway and State highway 1622 38.88% 1653 36.81% 1825 37.41% 

Road configuration 

One-way mainline 1876 44.97% 2006 44.67% 2257 46.27% 

Undivided two-way mainline 417 10.00% 449 10.00% 482 9.88% 

Divided two-way mainline with no median 

barrier 
405 9.71% 421 9.37% 427 8.75% 

Divided two-way mainline with median barrier 1474 35.33% 1615 35.96% 1712 35.10% 

Collision type 

Rear-end collision 2621 62.82% 2843 63.30% 2992 61.34% 

Sideswipe collision 902 21.62% 965 21.49% 1148 23.53% 

Angle collision 485 11.63% 490 10.91% 496 10.17% 

Other collision type 164 3.93% 193 4.30% 242 4.96% 

Crash location 
On traffic lanes 4130 98.99% 4436 98.78% 4834 99.10% 

Outside traffic lanes 42 1.01% 55 1.22% 44 0.90% 
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Variable Attribute 
2016 2017 2018 

Count Percentage Count Percentage Count Percentage 

Ramp type 

Off-ramp 1705 40.87% 1866 41.55% 2138 43.83% 

Off-ramp terminal on crossroad 989 23.71% 1072 23.87% 1044 21.40% 

Merging lane between on-ramp and off-ramp 220 5.27% 233 5.19% 261 5.35% 

On-ramp 1027 24.62% 1052 23.42% 1174 24.07% 

On-ramp terminal on crossroad 231 5.54% 268 5.97% 261 5.35% 
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3.3 Method 

Temporal transferability refers to the applicability of safety assessment model for new 

data from other temporal units. This study deals with transferability over time, where 

the models developed are used for safety assessment using the data from different 

years3. Formulations of the proposed temporal unconstrained parameters models and 

partially temporal constrained parameters models are presented in the following 

section. 

3.3.1 Modeling approach 

In this study, random parameters multinomial logit model with heterogeneity in means 

and variances is applied to measure the association between influencing factors and 

crash injury severity at ramp areas.  

 

To estimate the probability of crash injury severity level 𝑗𝑗 (no injury, minor injury, 

and severe injury) of observation 𝑛𝑛 , the injury severity function 𝑈𝑈𝑛𝑛𝑛𝑛  is given by 

(Washington et al., 2020), 

𝑈𝑈𝑛𝑛𝑛𝑛 = 𝜷𝜷𝑛𝑛
′𝒙𝒙𝑛𝑛 + 𝜀𝜀𝑛𝑛𝑛𝑛                                                                                         (3-1) 

where  𝜷𝜷𝑛𝑛 is a vector of mean coefficients for injury severity level 𝑗𝑗, 𝒙𝒙𝑛𝑛 is a vector of 

explanatory variables for observation 𝑛𝑛 , and 𝜀𝜀𝑛𝑛𝑛𝑛  is the generalized extreme value 

distributed error term. 

 

Then, the multinomial logit model can be expressed as, 

P𝑛𝑛𝑛𝑛|𝛽𝛽𝑛𝑛 = exp�𝜷𝜷𝑗𝑗
′𝒙𝒙𝑛𝑛�

∑ exp�𝜷𝜷𝑗𝑗
′𝒙𝒙𝑛𝑛�

𝐽𝐽
𝑗𝑗=1

                                                                                  (3-2) 

 
3 Given the difference in crash mechanisms between single-vehicle crashes and multi-vehicles, 

transferability between single-vehicle crashes and multi-vehicle crashes is out of the scope of 

this study. 
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where P𝑛𝑛𝑛𝑛  is the probability of injury severity for crash 𝑛𝑛. Then the unconditional 

probability is specified as, 

P𝑛𝑛𝑛𝑛 = ∫
exp�𝜷𝜷𝑗𝑗

′𝒙𝒙𝑛𝑛�

∑ exp�𝜷𝜷𝑗𝑗
′𝒙𝒙𝑛𝑛�

𝐽𝐽
𝑗𝑗=1

𝑓𝑓(𝜷𝜷|𝝋𝝋)𝑑𝑑𝜷𝜷                                                              (3-3) 

where 𝑓𝑓(𝜷𝜷|𝝋𝝋) is the probability density function for vector 𝜷𝜷, and 𝝋𝝋 is the vector of 

parameters that defines the probability density function. 

 

The random parameters with heterogeneity in means and variances can be expressed 

as, 

𝜷𝜷𝑛𝑛𝑛𝑛 = 𝜷𝜷𝑛𝑛 + 𝜣𝜣𝑛𝑛𝑛𝑛𝒛𝒛𝑛𝑛𝑛𝑛 + 𝝈𝝈𝑛𝑛𝑛𝑛exp�𝚿𝚿𝑛𝑛𝑛𝑛𝒘𝒘𝑛𝑛𝑛𝑛�𝝊𝝊𝑛𝑛𝑛𝑛                                                    (3-4) 

where 𝜷𝜷𝑛𝑛  is the vector of mean parameters of all observations defined in Eq. (3-1), 

𝜣𝜣𝑛𝑛𝑛𝑛 is a matrix of estimated parameters, 𝒛𝒛𝑛𝑛𝑛𝑛 is a vector of explanatory variables that 

capture heterogeneity in means, 𝒘𝒘𝑛𝑛𝑛𝑛 is a vector of explanatory variables that capture 

heterogeneity in the standard deviation 𝝈𝝈𝑛𝑛𝑛𝑛 with a matrix of parameters 𝚿𝚿𝑛𝑛𝑛𝑛, and 𝝊𝝊𝑛𝑛𝑛𝑛 

is a random term, which follows the standard normal distribution.  

 

The simulated maximum likelihood approach with 1,000 Halton draws is used to 

estimate the parameters (Train, 2009). Average marginal effects calculated by 

averaging the individual observations are also computed to measure the effect of one-

unit change in the explanatory variable on the probability of specific injury severity. 

3.3.2 Transferability assessment 

3.3.2.1 Temporal unconstrained parameters model 

First, separated temporal unconstrained parameter models based on the data from 

different years are developed for variable determination. The likelihood ratio tests are 

carried out to assess the overall transferability across time of crash injury severity 

models (Washington et al., 2020). A chi-square test statistic that indicates the stability 

of estimated parameters over two years can be given by, 

Χ2 = −2�𝐿𝐿𝐿𝐿�𝛽𝛽𝑡𝑡2𝑡𝑡1� − 𝐿𝐿𝐿𝐿�𝛽𝛽𝑡𝑡1��                                                                          (3-5) 
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where 𝐿𝐿𝐿𝐿�𝛽𝛽𝑡𝑡2𝑡𝑡1� is the log-likelihood at the convergence of a model using converged 

parameters from year 𝑡𝑡2 and data from year 𝑡𝑡1, and 𝐿𝐿𝐿𝐿�𝛽𝛽𝑡𝑡1� is the log-likelihood at 

the convergence of the model using data from year 𝑡𝑡1. The degree of freedom is equal 

to the number of estimated parameters in year 𝑡𝑡2. This test can be reversed using 

parameters from year 𝑡𝑡1 and data from year 𝑡𝑡2 for result comparison. When the chi-

square test statistic is significant, the null hypothesis that the model parameters of 

year 𝑡𝑡1 and 𝑡𝑡2 are the same can be rejected. 

3.3.2.2 Temporal constrained parameters model 

Then, transferability over time (e.g., temporal instability and stability) can be 

considered using temporal constrained and unconstrained modeling approaches. 

Partially temporal constrained model includes both unconstrained parameters 

(parameters of variables in separated temporal unconstrained parameter models are 

different from one year to the next) and constrained parameters (parameters are the 

same over year). It provides an efficient way to test for temporal shifting parameters 

of specific variables (Alnawmasi and Mannering, 2023; Dzinyela et al., 2024). For 

the maximum likelihood estimation, a likelihood ratio test is used to compare 

temporal unconstrained and constrained parameters for each variable as, 

Χ2 = −2[𝐿𝐿𝐿𝐿(𝛽𝛽𝐶𝐶) − 𝐿𝐿𝐿𝐿(𝛽𝛽𝑈𝑈)]                                              (3-6) 

where 𝐿𝐿𝐿𝐿(𝛽𝛽𝐶𝐶) is the log-likelihood at convergence of temporally constrained model, 

and 𝐿𝐿𝐿𝐿(𝛽𝛽𝑈𝑈) is the log-likelihood at convergence of temporally unconstrained model. 

Null hypothesis is that the constrained and unconstrained parameters are equal. If the 

null hypothesis can be rejected, the unconstrained parameters are warranted. Degree 

of freedom is equal to the difference in the number of estimated parameters.  

 

Then, another likelihood ratio test is used to compare temporally unconstrained and 

partially constrained models as, 

Χ2 = −2�𝐿𝐿𝐿𝐿(𝛽𝛽𝑃𝑃𝐶𝐶) − ∑𝐿𝐿𝐿𝐿�𝛽𝛽𝑈𝑈,𝑇𝑇��                                       (3-7) 
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where 𝐿𝐿𝐿𝐿(𝛽𝛽𝑃𝑃𝐶𝐶) is the log-likelihood at convergence of partially constrained model, 

and 𝐿𝐿𝐿𝐿�𝛽𝛽𝑈𝑈,𝑇𝑇� is the log-likelihood at convergence of unconstrained model for year 𝑇𝑇. 

Null hypothesis is that the temporal unconstrained and partially constrained 

parameters are equal, with degree of freedom equal to the difference in the number of 

estimated parameters. If the null hypothesis is not rejected, the partially constrained 

model is warranted (For more discussion about partially constrained model, see 

Alnawmasi and Mannering (2023)). 

3.3.2.3 Out-of-sample prediction 

Simulation-based approach is adopted for the out-of-sample prediction of proposed 

random parameters multinomial logit model with heterogeneity in means and 

variances. This is to resolve the problem of simplification of random parameters (Hou 

et al., 2022). For example, predicted probability of crash injury severity level 𝑗𝑗 based 

on estimated parameters is given by, 

𝑃𝑃𝑛𝑛(𝑗𝑗) =
1
𝑅𝑅
�

exp��𝜷𝜷𝑛𝑛 + 𝜣𝜣𝑛𝑛𝑛𝑛𝒛𝒛𝑛𝑛𝑛𝑛 + 𝝈𝝈𝑛𝑛𝑛𝑛exp�𝚿𝚿𝑛𝑛𝑛𝑛𝒘𝒘𝑛𝑛𝑛𝑛�𝝊𝝊𝑛𝑛𝑛𝑛,𝑟𝑟�𝒙𝒙𝑛𝑛�
∑ exp��𝜷𝜷𝑛𝑛 + 𝜣𝜣𝑛𝑛𝑛𝑛𝒛𝒛𝑛𝑛𝑛𝑛 + 𝝈𝝈𝑛𝑛𝑛𝑛exp�𝚿𝚿𝑛𝑛𝑛𝑛𝒘𝒘𝑛𝑛𝑛𝑛�𝝊𝝊𝑛𝑛𝑛𝑛,𝑟𝑟�𝒙𝒙𝑛𝑛�
𝐽𝐽
𝑛𝑛=1

𝑅𝑅

𝑟𝑟=1

                (3-8) 

where 𝑅𝑅  is number of draws from a predefined distribution. In this study, 1,000 

Halton draws are adopted to provide adequate numerical iterations for precise 

parameter estimation of the simulation-based model. Differences between the average 

out-of-sample predicted probabilities and average in-sample predicted probabilities 

are estimated to assess the transferability of the model. 

3.4 Results and discussion 

Table 3-3 and Table 3-4 present the partially constrained parameter estimation results 

of random parameters logit models with heterogeneity in means and variances for 

single- and multi-vehicle crashes 4 . Additionally, average marginal effects of 

 
4 It should be noted that the t-statistics in the model estimation results are only suggestive of 
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explanatory variables for crash injury severity are also given. The temporally 

unconstrained parameter estimation results are presented in the Appendix. The chi-

square test statistic for temporally unconstrained and partially constrained models for 

single-vehicle crashes is 5.95 with 8 degrees of freedom. There is no sufficient 

evidence to reject the null hypothesis that the temporal unconstrained and partially 

constrained models are equal. On the other hand, the chi-square test statistic for multi-

vehicle crashes is 13.51 with 15 degrees of freedom. Again, there is no sufficient 

evidence to reject the null hypothesis that the temporal unconstrained and partially 

constrained models are equal. Therefore, partially constrained models are warranted. 

Detailed discussion of similarities and differences in the results of parameter 

estimation between single- and multi-vehicle crashes will be focused on the partially 

constrained models in the remaining of this section. 

3.4.1 Driver characteristics 

For the effects of driver characteristics on single-vehicle crashes, as indicated by the 

marginal effects in Table 3-3, probabilities of minor injury and severe injury are 

higher when the driver is female in year 2017. Likelihood of severe injury in 2016 is 

also higher when a young driver (under 25 in age) or an older driver (over 59 in age) 

is involved. In addition, probabilities of minor injury and severe injury are higher in 

all three years when driving under the influence of alcohol and drug. This is 

consistent with the findings of previous studies (Wang et al., 2009; Li et al., 2012; 

Mergia et al., 2013; Zhang et al., 2018). Furthermore, aberrant driving behaviors 

including inattentiveness, oversteer and aggressive driving behavior significantly 

 
significance (Alnawmasi and Mannering, 2023; Islam et al., 2023). The correct measure is 

the improvement in the log-likelihood at convergence after the inclusion of a variable of 

interest using the χ2 distributed likelihood ratio test, with the null hypothesis that the models 

with and without the variable of interest are the same being rejected. To this end, a significant 

variable refers to that the null hypothesis is rejected with over 90% confidence. 
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affect the crash injury severity. Probabilities of minor injury and severe injury are 

higher when aberrant driving is involved. On the other hand, the likelihood of severe 

injury in all years is lower when seat belt is used. This implies the temporal stability 

for the effect of seat belt on crash injury, with a 0.0249 reduction in the probability of 

severe injury.  

 

For the effects of driver characteristics on multi-vehicle crashes, as shown in Table 

3-4, likelihood of no injury in the crash is lower when female driver is involved in 

2017 and 2018. As indicated by the marginal effects, the probabilities of minor injury 

and severe injury are higher when driving under the influence of alcohol and drug. 

This finding confirms the results of previous work on multi-vehicle crashes (Wu et al., 

2014). Additionally, likelihood of severe injury is lower in all three years when 

maneuver action is involved in multi-vehicle crash. This could be because when 

making a maneuver action, the driver must slow down. Speed reduction, even if 

marginal, is correlated to the reduction in energy dissipation in the collision, and 

therefore, likelihood of injury reduces (Wali et al., 2020). Different from single-

vehicle crash models, indicator variables of aberrant driving behavior are not 

statistically significant. Aberrant driving behaviors are prone to injury in single 

vehicle crashes only. This should imply the instability for the influences of aberrant 

driving behaviors on crash outcome across different crash types.  

3.4.2 Vehicle attributes 

For the effect of vehicle class on single-vehicle crashes, likelihood of severe injury in 

car is lower in 2016. In particular, the effect of car on crash injury severity is random, 

following a normal distribution with the mean of -4.26 and standard deviation of 2.57 

in 2016. This implies that in few crashes (4.9%), likelihood of injury in car would 

increase, resulting in a higher probability of severe injury. However, the effect of 

vehicle class is not statistically significant in all years. This implies the temporal 

instability for the influences of vehicle type on crash injury severity. 
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For multi-vehicle crashes, likelihood of severe injury is lower when two vehicles are 

involved, compared to three and more vehicles involved. This is consistent with 

previous studies (Chang and Chien, 2013; Feng et al., 2016; Tamakloe et al., 2020). 

Truck tends to increase the likelihood of severe injury in multi-vehicle crashes but is 

statistically insignificant in single-vehicle crashes. It could be that large vehicles (e.g., 

trucks) usually have heavier, higher and more rigid vehicle frames. This can protect 

the occupants in the truck to some extent, but it would increase the probability of 

injury to the occupants of other vehicles involved due to the energy dissipation and 

underride 5, particularly for small passenger cars (Mannering, 2018; Alogaili and 

Mannering, 2022). Variation in the effect of the presence of truck on crash severity 

across crash types (i.e., single- and multi-vehicle crashes) is considerable. This should 

justify the inherent difference in the crash mechanism between single-vehicle and 

multi-vehicle crashes. Nevertheless, it is worth exploring the impact of the differences 

in vehicle mass and speed between the vehicles involved on the crash severity when 

more comprehensive information is available in experimental studies. 

3.4.3 Environmental conditions 

For the effects of environmental characteristics on single-vehicle crashes, probability 

of severe injury under dry road surface condition is higher in all three years as 

indicated by the marginal effects. Moreover, effect of dry road surface is random in 

2017. There is 17% of observations that likelihood of injury is lower under dry road 

surface condition. However, for the remaining 83% of observations, more severe 

injuries are more likely to be sustained. The higher probability of severe injury may 

unveil the effect of drivers' risk compensating behavior under seemingly favorable 

road conditions (Fountas et al., 2021). The likelihood of severe injury is positively 
 

5 An underride collision occurs when the primary structural components of the colliding 

vehicles have a height mismatch, causing the vehicle with the lower height to be forcefully 

wedged beneath the structure of the other vehicle (Boggess et al., 2010). 
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associated with unlighted darkness conditions in 2018. In addition, single vehicle 

crashes in the rural areas tend to be less severe in 2017, with a 0.0004 lower 

probability of severe injury and a 0.0037 lower probability of minor injury. 

 

For multi-vehicle crashes, those crashes in poor lighting conditions, including dusk or 

dawn, dark without streetlights and dark with streetlights have a higher probability of 

resulting in more severe injuries in all three years as indicated by the marginal effects. 

Different from single-vehicle crash models, crashes in the rural areas tend to be more 

severe in 2016 and 2018. This could be attributed to the higher speed limit, fewer 

traffic control and poor road maintenance in the rural areas (Geedipally et al., 2014). 

Furthermore, there may be a lack of protective devices like shoulder and barrier and 

healthcare services in the rural areas. This may result in higher risk of severe injuries 

of road victims (Lee et al., 2018). 

3.4.4 Roadway design 

For the effects of roadway characteristics on single-vehicle crashes, probability of no 

injury is higher and probability of minor injury is lower for flat terrain, compared to 

rolling and mountainous terrain in 2017 and 2018. A possible explanation is that flat 

terrain provides a more favorable road environment for the drivers, allowing vehicles 

to be kept stable when entering or exiting the ramp areas. In rolling or mountainous 

terrains, the combined effects of curves and elevation changes can hinder the vehicle 

stability (Tulu et al., 2015). There is a negative association between interstate 

highway crash and likelihood of no injury in 2016 with a 0.0111 reduction in the 

probability of minor injury and a 0.0006 reduction in the probability of severe injury. 

 

For multi-vehicle crashes, crashes on interstate highways tend to be less severe in 

2016 only with a 0.0049 lower probability of minor injury and a 0.0001 lower 

probability of severe injury. Effect of higher speed limit (above 60 mph) is random, 

following a normal distribution with the mean of -1.32 and standard deviation of 1.53 
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for the likelihood of no injury in 2016, the mean of -1.70 and standard deviation of 

2.39 for the likelihood of no injury in 2017, and the mean of 0.72 and standard 

deviation of 1.40 for the likelihood of minor injury in 2018. In addition, crashes at 

one-way mainline have lower probabilities of minor and severe injuries in all years. 

3.4.5 Crash circumstances 

For the effects of crash circumstances on single-vehicle crashes, probabilities of 

minor injury and severe injury of overturned crash are higher in all years. This is 

consistent with the findings of previous studies (Fountas and Anastasopoulos, 2017; 

Fountas et al., 2018b; Islam et al., 2020).  For the effect of crash location, 

probabilities of minor injury and severe injury when on the traffic lanes are lower in 

2018. Furthermore, probability of minor injury of crash at off-ramp area or on-ramp 

area is lower in 2016 and 2017 compared to at merging lane areas between on-ramp 

and off-ramp.  

 

Estimation results for multi-vehicle crashes indicate that probabilities of minor injury 

and severe injury of sideswipe collision are lower, whereas angle collision tends to be 

more severe compared to rear-end collision and other crash types in all three years. 

This is consistent with the findings of previous studies (Wang et al., 2009; Li et al., 

2012; Mergia et al., 2013; Zhang et al., 2018). It may be because angle collisions 

usually involve certain degree of side impact. Considering the vehicle structure and 

safety protection devices, crumple zones on the sides of vehicle could be limited for 

energy dissipation in the side impact (O'Neill, 2009). Additionally, a side impact can 

cause the occupant’s head to strike the window or door, resulting in head, neck, or 

back injuries. Moreover, likelihood of minor injury of crash at on-ramp is higher.  

3.4.6 Heterogeneity in means and variances 

Heterogeneity in means and variances of random parameters are also considered in 

single- and multi-vehicle crash models. For the likelihood of severe injury of single-
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vehicle crashes in 2016, effect of car is positively associated with aggressive driving 

behavior. This finding suggests that the mean of random parameter for car will be 

modified by other exogenous variables. For example, although likelihood of severe 

injury of car is lower in 2016, interaction effect with aggressive driving indicates that 

the likelihood of injury of car could be positively associated with aggressive driving. 

Furthermore, mean of the random parameter of dry road surface on the likelihood of 

injury increases with merging lane between on-ramp and off-ramp in 2017. This may 

be because of risk-compensating behavior when driving under favorable conditions 

(Mannering and Bhat, 2014). For instance, on a dry road, drivers are generally more 

confident and might travel at a higher speed at the weaving area. The mean of random 

parameter of rural area increases when the safety belt is used. Regarding the 

heterogeneity in variances of random parameters of single-vehicle crashes, variance 

of random parameter of rural area increases for no injury of crash when the driver is 

female but decreases at higher speed limit area (above 60 mph) in 2018. 

 

In the multi-vehicle crash models, they also have statistically significant heterogeneity 

in the mean of random parameter. For instance, in 2016, the mean of random 

parameter of higher speed limit for the likelihood of no injury is higher when the 

crash is two vehicles involved, or under clear weather condition. In 2017, the mean of 

random parameter of higher speed limit for the likelihood of no injury decreases when 

truck is involved in multi-vehicle crash, but increases when the crash is two vehicles 

involved or on traffic lanes. In contrast, in the multi-vehicle model of year 2018, truck 

involved crash is positively associated with the mean of random parameter of higher 

speed limit for minor injury. With regards to the heterogeneity in variances, making 

maneuver action is negatively associated with the variance of random parameter of 

higher speed limit for the likelihood of no injury in 2017. In 2018, the variance of 

random parameter of multi-vehicle crash at higher speed limit area for the likelihood 

of minor injury is negatively associated with straight horizontal alignment but 

positively associated with rear-end collision. 
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Table 3-3 Results of partially constrained parameter estimation for single-vehicle 

crashes 

Variable Coefficient t-statistic 

Marginal effects 

No 

injury 

Minor 

injury 

Severe 

injury 

Constant [NI] [2016] 0.50 2.30    

Constant [NI] [2017] 1.43 12.18    

Constant [NI] [2018] 1.05 6.07    

Constant [SI] [2016] -2.73 -2.54    

Constant [SI] [2017] -2.31 -2.70    

Constant [SI] [2018] -1.54 -3.37    

Random parameter (normally distributed)      

Vehicle type      

Car [SI] [2016] -4.26 -1.48 -0.0008 -0.0002 0.0010 

Standard deviation 2.57 1.66    

Road surface condition      

Dry [SI] [2017] 0.80 1.66 -0.0060 -0.0024 0.0084 

Standard deviation 0.85 1.50    

Area type      

Rural [NI] [2018] -1.86 -2.00 0.0041 -0.0041 0.0001 

Standard deviation 2.00 1.99    

Heterogeneity in the mean of random parameter 

Car [SI] [2016]: Aggressive driving 3.23 2.03    

Dry [SI] [2017]: Merging lane between on-

ramp and off-ramp 
2.17 1.91    

Rural [NI] [2018]: Used safety belt 3.06 2.70    

Heterogeneity in the variance of random parameter 

Rural [NI] [2018]: Female driver 0.73 1.69    

Rural [NI] [2018]: Speed limit above 60 mph -0.60 -1.48    

Gender      

Female [NI] [2017] -0.37 -2.42 -0.0082 0.0076 0.0006 

Age      

Below 25 [SI] [2016] 1.32 1.77 -0.0016 -0.0008 0.0024 

Above 59 [SI] [2016] 1.65 1.99 -0.0010 -0.0005 0.0015 

Alcohol or drugs      

Driving under the influence of alcohol or drugs 

[NI] [2016, 2017, 2018] 
-0.74 -5.03 -0.0128 0.0116 0.0012 

Aberrant driving behavior      
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Variable Coefficient t-statistic 

Marginal effects 

No 

injury 

Minor 

injury 

Severe 

injury 

Oversteer [NI] [2016, 2017] -0.47 -2.84 -0.0065 0.0061 0.0004 

Inattentiveness [NI] [2016] -0.61 -2.45 -0.0035 0.0033 0.0002 

Aggressive driving [NI] [2017, 2018] -0.92 -4.04 -0.0074 0.0067 0.0007 

Safety belt      

Used [SI] [2016, 2017, 2018] -2.39 -6.21 0.0166 0.0083 -0.0249 

Road surface condition      

Dry [SI] [2016] 2.10 1.85 -0.0054 -0.0031 0.0085 

Dry [NI] [2018] -0.53 -3.17 -0.0182 0.0172 0.0010 

Lighting condition      

Dark without streetlights [SI] [2018] 1.38 2.80 -0.0021 -0.0021 0.0042 

Area type      

Rural [NI] [2017] 0.18 1.35 0.0041 -0.0037 -0.0004 

Terrain      

Flat [MI] [2017] -0.48 -1.88 0.0026 -0.0027 0.0001 

Flat [NI] [2018] 0.64 1.96 0.0029 -0.0027 -0.0002 

Road classification      

Interstate highway [NI] [2016] 0.32 2.16 0.0116 -0.0111 -0.0006 

Collision type      

Overturned [NI] [2016, 2017, 2018] -1.40 -8.14 -0.0187 0.0174 0.0013 

Crash location      

On traffic lanes [NI] [2018] 0.42 2.51 0.0140 -0.0133 -0.0006 

Ramp type      

Off-ramp [NI] [2016] 0.46 2.01 0.0146 -0.0139 -0.0007 

Off-ramp [SI] [2017] 1.46 2.46 -0.0052 -0.0021 0.0073 

On-ramp [NI] [2016] 0.79 3.32 0.0160 -0.0153 -0.0007 

Model statistics      

Number of observations 3170 

Degree of freedom 37 

Log-likelihood at zero (LL(0)) -3482.6010 

Log-likelihood at convergence (LL(β)) -1931.1594 

McFadden R2 0.4455 

Parameter defined for: [NI] No injury; [MI] Minor Injury; [SI] Severe Injury 
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Table 3-4 Results of partially constrained parameter estimation for multi-vehicle crashes 

Variable Coefficient t-statistic 

Marginal effects 

No 

injury 

Minor 

injury 

Severe 

injury 

Constant [NI] [2016] 1.04 10.35    

Constant [NI] [2017] 1.37 16.33    

Constant [NI] [2018] 1.46 18.15    

Constant [SI] [2016] -3.67 -9.65    

Constant [SI] [2017] -1.69 -4.29    

Constant [SI] [2018] -1.75 -4.00    

Random parameter (normally distributed)      

Lighting Condition      

Dark with streetlights [NI] [2017] -2.07 -1.71 -0.0014 0.0014 0.0000 

Standard deviation 3.47 1.84       

Speed Limit         

Above 60 mph [NI] [2016] -1.32 -4.16 -0.0030 0.0030 0.0001 

Standard deviation 1.53 2.18       

Above 60 mph [NI] [2017] -1.70 -2.54 -0.0040 0.0038 0.0002 

Standard deviation 2.39 3.27       

Above 60 mph [MI] [2018] 0.72 2.66 -0.0023 0.0024 -0.0001 

Standard deviation 1.40 1.89       

Heterogeneity in the mean of random parameter 

Dark with streetlights [NI] [2017]: Two 

vehicles 
3.61 1.72       

Above 60 mph [NI] [2016]: Involvement of 

alcohol or drugs for drivers 
-1.78 -2.77       

Above 60 mph [NI] [2016]: Two vehicles 1.93 3.78       

Above 60 mph [NI] [2016]: Clear weather 0.43 1.95       

Above 60 mph [NI] [2017]: Truck involved -0.47 -1.76       

Above 60 mph [NI] [2017]: Two vehicles 1.59 3.52       

Above 60 mph [NI] [2017]: On traffic lanes 1.12 1.77       

Above 60 mph [MI] [2018]: Truck involved 0.67 2.70       

Above 60 mph [MI] [2018]: Two vehicles -1.76 -5.11       

Heterogeneity in the variance of random parameter 

Above 60 mph [NI] [2017]: Making maneuver 

action 
-0.38 -1.78       

Above 60 mph [MI] [2018]: Straight horizontal 

alignment  
-0.68 -2.62       

Above 60 mph [MI] [2018]: Rear-end collision 0.83 1.90       
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Variable Coefficient t-statistic 

Marginal effects 

No 

injury 

Minor 

injury 

Severe 

injury 

Gender         

Female driver involved [MI] [2016] 0.16 1.75 -0.0052 0.0052 0.0001 

Female driver involved [NI] [2017, 2018] -0.42 -6.11 -0.0286 0.0278 0.0008 

Alcohol or drugs         

Involvement of alcohol or drugs for drivers 

[NI] [2017, 2018] 
-1.37 -5.87 -0.0025 0.0024 0.0001 

Maneuver         

Making maneuver action [SI] [2016, 2017, 

2018] 
-1.17 -4.27 0.0026 0.0012 -0.0038 

Truck         

Truck involved [SI] [2016, 2017, 2018] 1.74 6.56 -0.0020 -0.0010 0.0030 

Number of vehicles involved         

Two vehicles [SI] [2017, 2018] -1.53 -4.54 0.0032 0.0013 -0.0045 

Lighting condition         

Dusk or dawn [SI] [2016] 1.67 2.09 -0.0002 -0.0001 0.0002 

Dusk or dawn [NI] [2017] -0.54 -2.71 -0.0012 0.0011 0.0001 

Dark with streetlights [NI] [2016] -0.45 -3.32 -0.0021 0.0021 0.0001 

Dark without streetlights [NI] [2018] -0.28 -1.88 -0.0012 0.0012 0.0001 

Area type         

Rural [NI] [2016, 2018] -0.23 -3.27 -0.0059 0.0057 0.0002 

Road classification         

Interstate highway [NI] [2016] 0.21 2.25 0.0050 -0.0049 -0.0001 

Road configuration         

One-way mainline [NI] [2016, 2017, 2018] 0.43 7.77 0.0230 -0.0225 -0.0005 

Collision type         

Sideswipe collision [NI] [2016, 2017, 2018] 1.00 12.51 0.0193 -0.0186 -0.0007 

Angle collision [NI] [2016, 2017, 2018] -0.53 -7.58 -0.0125 0.0122 0.0003 

Ramp type         

On-ramp [MI] [2016, 2017] 0.19 2.67 -0.0042 0.0043 -0.0001 

Model statistics      

Number of observations 13541 

Degree of freedom 42 

Log-likelihood at zero (LL(0)) -14876.3090 

Log-likelihood at convergence (LL(β)) -6860.3030 

McFadden R2 0.5388 

Parameter defined for: [NI] No injury; [MI] Minor Injury; [SI] Severe Injury 
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3.5 Transferability assessment 

Table 3-5 and Table 3-6 show the results of likelihood ratio tests for temporal 

stability of single- and multi-vehicle crashes based on temporally unconstrained 

models. Additionally, Table 3-7 and Table 3-8 show the differences between out-of-

sample predicted probabilities and in-sample predicted probabilities for single- and 

multi-vehicle crashes respectively. 

3.5.1 Temporal stability 

The results of likelihood ratio tests for single-vehicle crashes are shown in Table 3-5. 

For example, null hypothesis (effects of influencing factors on crash injury severity 

are consistent across years) of the model using converged parameters of 2017 model 

and 2016 data (Χ2 =32.834 with 14 degrees of freedom) can be rejected at the 1% 

level of significance. This justifies the statistically significant variations and the 

existence of possible temporal instability. In contrast, there is no sufficient evidence to 

reject the null hypothesis of model using converged parameters of 2018 model and 

2016 data, parameters of 2016 model and 2017 data, parameters of 2018 model and 

2017 data. Similarly, for multi-vehicle crashes, as shown in Table 3-6, there is no 

sufficient evidence (24% confidence) to reject the null hypothesis of the model using 

converged parameters of 2017 model and 2018 data, parameters of 2018 model and 

2017 data, and parameters of 2017 model and 2018 data. Some likelihood ratio tests 

results exhibit significant temporal inconsistency in the effects of influencing factors 

on crash injury severity, while others do not. 

 

Table 3-5 Results of likelihood ratio tests for temporal stability of single-vehicle crash 

 𝒕𝒕𝟐𝟐 

𝒕𝒕𝟏𝟏 2016 2017 2018 

2016 - 
32.834 (14) 

[< 0.01] 

22.648 (15) 

[ 0.09] 

2017 23.417 (16) - 19.040 (15) 
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 𝒕𝒕𝟐𝟐 

𝒕𝒕𝟏𝟏 2016 2017 2018 

[0.10] [0.21] 

2018 
56.508 (16) 

[< 0.01] 

42.766 (14) 

[< 0.01] 
- 

Note: Degrees of freedom in parentheses and level of significance in brackets. 

 

Table 3-6 Results of likelihood ratio tests for temporal stability of multi-vehicle crash 

 𝒕𝒕𝟐𝟐 

𝒕𝒕𝟏𝟏 2016 2017 2018 

2016 - 
10.843 (21) 

[0.97] 

12.462 (18) 

[0.82] 

2017 
55.721 (18) 

[< 0.01] 
- 

27.959 (18) 

[0.06] 

2018 
34.194 (18) 

[0.01] 

16.162 (21) 

[0.76] 
- 

Note: Degrees of freedom in parentheses and level of significance in brackets. 

3.5.2 Out-of-sample prediction 

For single vehicle crashes, as shown in Table 3-7, differences in the average predicted 

probabilities between 2016 and 2017 (using estimated parameters of 2016 to predict 

outcome probabilities with crash data of 2017 and using estimated parameters of 2017 

to predict outcome probabilities with crash data of 2017) for no injury, minor injury, 

and severe injury are -0.0318, +0.0348, and -0.0030, respectively. This implies, for 

example, that if the parameters of 2016 did not shift in 2017, the probability of minor 

injury in 2017 would have been higher. In other words, the parameter shifts observed 

from 2016 to 2017 resulted in a lower probability of minor injury. Additionally, 

similar results are observed between 2016 and 2018, with which the differences for no 

injury, minor injury, and severe injury are -0.0182, +0.0181, and 0.0001, respectively. 

In contrast, opposite results are observed between 2017 and 2018, with which the 

differences for no injury, minor injury, and severe injury are +0.0164, -0.0222, and 
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+0.0058, respectively. This means that the aggregate effect of parameter shifts from 

2017 to 2018 has resulted in a higher probability of no injury and severe injury but a 

lower probability of minor injury. For multi-vehicle crashes, as shown in Table 3-8, 

differences in the average predicted probabilities between 2016 and 2017 for no injury, 

minor injury, and severe injury are -0.0036, +0.0068, and -0.0033, respectively. 

Additionally, differences between 2016 and 2018 for no injury, minor injury, and 

severe injury are -0.0233, +0.0255, and -0.0021, respectively. However, when 

estimated parameters of 2017 are used to predict outcome probabilities with crash 

data of 2018, differences for no injury, minor injury, and severe injury are -0.0148, 

+0.0140, and +0.0008 respectively. Reasons for these observed shifts could be 

changes in road infrastructure and vehicle safety features (Chen et al., 2017), as well 

as changes in driver behavior and traffic law enforcement (Yasmin et al., 2022). Such 

findings underscore the importance of accounting for temporal instability in the crash 

severity models (Mannering, 2018). However, it is noteworthy that these are 

transferability assessments of the overall performance of the models. Even if the 

model’s overall performance does not always exhibit temporal stability and 

transferability, the effects of some factors on the probability of injury severity remain 

stable over time. More detailed discussions will be provided in the next section. 

Table 3-7 Difference in the average predicted probabilities for single vehicle crash 

Base year 

Prediction year 

2017 2018 

No injury Minor injury Severe injury No injury Minor injury Severe injury 

2016 -0.0318 0.0348 -0.0030 -0.0182 0.0181 0.0001 

2017 - - - 0.0164 -0.0222 0.0058 

 

Table 3-8 Difference in the average predicted probabilities for multi-vehicle crash 

Base year 

Prediction year 

2017 2018 

No injury Minor injury Severe injury No injury Minor injury Severe injury 

2016 -0.0036 0.0068 -0.0033 -0.0233 0.0255 -0.0021 

2017 - - - -0.0148 0.0140 0.0008 
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3.6 Concluding remarks 

Highway ramp areas are prone to crash and severe injury. This study on temporal 

transferability assessment of crash injury severity models at ramp areas contributes to 

the field by addressing the issues regarding the accuracy and reliability of crash injury 

severity models. Several factors that affect the crash injury severity of single-vehicle 

and multi-vehicle crashes at ramp areas are considered. Random parameters 

multinomial logit regression model with heterogeneity in means and variances is 

adopted to measure the association between possible influencing factors and crash 

severity at ramp areas based on the crash data from the North Carolina State of the 

United States in 2016-2018, with which the effects of unobserved heterogeneity and 

temporal instability are considered. Factors including driver characteristics, vehicle 

attributes, environmental conditions, roadway design, and crash circumstances are 

considered. Results indicate that there are considerable differences for the effects of 

aberrant driving, vehicle type, area type and crash location on the likelihood of injury 

between single-vehicle and multi-vehicle crashes. For example, truck involvement 

tends to increase the likelihood of injury in multi-vehicle crash but is statistically 

insignificant in single-vehicle crash. Additionally, there are opposite effects for the 

crashes in rural areas on the likelihood of injury between single-vehicle and multi-

vehicle crashes. This justifies the need of developing and implementing targeted 

traffic control and management strategies that can reduce the risk of single-vehicle 

and multi-vehicle crashes separately. In particular, it is vital to implement traffic 

control measures like speed enforcement cameras and variable message signs to deter 

against the aberrant driving behavior at the ramp areas. Therefore, risk of single-

vehicle crash can be mitigated. On the other hand, it is worth exploring the 

effectiveness of advanced driver assistant system that can mitigate the risk of multi-

vehicle crashes involving trucks and other heavy vehicles at the ramp areas. 

Furthermore, partially constrained modeling approach provides an efficient way to 

test for temporally shifting parameters by combining all data and defining parameters 

for each period. Results of partially constrained model and transferability assessments 
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indicate that remarkable temporal stability and instability coexist. From the 

perspective of decision-makers, it is crucial to pay attention to both time-constant and 

time-varying variables when they significantly affect crash injury severity. Time-

constant variables provide a consistent baseline for risk assessment and control, 

ensuring that ongoing safety measures are effective. On the other hand, parameters 

that change over time are important for identifying new challenges, as they can 

indicate emerging threats or the need for changes in prevailing policy strategies. By 

exploring the temporal transferability of crash injury severity model, understanding 

the shifts in the effects of significant factors on the crash outcome could be enhanced. 
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Chapter 4  Correcting for Endogeneity of Crash Type in 

Crash Injury Severity at Highway Ramp Areas 

4.1 Introduction 

Studies have examined the association between crash injury risk at ramp areas and 

influential factors including roadway design, environmental and weather conditions, 

traffic flow characteristics, driver factors, and crash circumstances. For example, there 

is a significant association between crash type and injury severity for the crashes at 

ramps (Mergia et al., 2013; Song et al., 2024b). Regarding single-vehicle crashes at 

ramp areas, the likelihood of severe injury of rollover crashes is higher than that of 

hit-object crashes (Mergia et al., 2013). This suggests that remedial roadway design 

and traffic control measures including re-alignment, road barrier, shoulder lane, and 

warning sign could help mitigate the risk of specific crash types at ramp areas. In 

previous studies, crash type was typically incorporated into the crash severity model 

as an independent input variable. However, as is the case in any crash data, there 

could exist unobserved factors, including driver behavior and vehicle performance, 

that may affect both the crash type and crash severity simultaneously. For example, 

reckless driving behavior like speeding and making a sharp turn can increase the 

chance of loss of control, resulting in rollover crash. At the same time, such behavior 

is often associated with a higher likelihood of severe injury. Furthermore, the 

likelihood of certain crash types is often lower for the vehicles that are equipped with 

advanced safety features like electronic stability control, and anti-lock braking 

systems. Such safety features can also reduce the injury risk in a crash. Hence,  the 

effect of crash type on crash injury severity could be endogenous. 

 

Unfortunately, it was observed that the endogenous effects of potential risk factors at 

highway ramp areas are rarely considered in conventional road safety studies. This 

can result in bias of parameter estimation and misinterpretation of the effects of 
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influencing factors on the crash risk (Mannering and Bhat, 2014; Mannering et al., 

2020). To this end, it is important to adopt efficient analytic methods that can identify 

and measure such endogenous effects in the analysis of road safety. 

 

The objective of this paper is to explore the endogenous effect of crash type on injury 

severity of single-vehicle crash at ramp area by developing a random parameters 

recursive bivariate probit model that can adequately capture the endogeneity and 

quantify its effect on crash injury severity. In the proposed simultaneous model, crash 

type is regarded as the treatment variable. Additionally, the effect of unobserved 

heterogeneity is considered using random parameters specification with heterogeneity 

in the means. 

 

The remainder of this chapter is structured as follows. Section 4.2 presents the data 

used, and analysis methods are given in Section 4.3. Section 4.4 presents the results 

of parameter estimation. Finally, the concluding remarks are given in Section 4.5. 

4.2 Data 

This study focuses on the injury severity among single-vehicle crashes at ramp areas 

in the state of North Carolina in a three-year period (2016-2018)6. The source of the 

data is the Federal Highway Administration (FHWA) Highway Safety Information 

System (HSIS). In the HSIS, crash data are stratified into five classes: fatal injury, 

suspected serious injury, suspected minor injury, possible injury, and no injury. To 

avoid the problem of data imbalance (often manifest as relatively sparse records of 

 
6 It is important to consider the varying effects of exogenous variables across years. However, 

the major focus of this study is the endogeneity of crash type on injury severity. Addressing 

temporal instability and out-of-sample prediction is beyond the study scope in this chapter. 
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severe injury crashes), four injury classes were combined into one class as “injury”7. 

For each crash, the data contained information on driver characteristics, vehicle 

attributes, environmental conditions, roadway design, and crash circumstance. The 

total number of observations is 3,170 (one observation for each crash). The 

descriptive statistics of the sample data are summarized in Table 4-1. 

 

For single-vehicle crashes, common crash types are rollover and hit-object crashes 

(NHTSA, 2024). A rollover crash involves a vehicle rotating at least one quarter of a 

revolution and ending up on its side or end. A hit-object crash involves a vehicle 

hitting a fixed or non-fixed object. In this study, crash type is dichotomous: rollover or 

hit-object. As shown in Table 4-1, 6.2% of the sample are rollover crashes. The 

distribution of the sample with respect to injury severity and crash type is given in 

Table 4-2. The result of a chi-square test indicates that the null hypothesis that the 

injury severities of single-vehicle crashes among different crash types are the same 

can be rejected at the 1% level of significance (critical chi-squared value of 80.57 

with 1 degree of freedom). Also, it was found that no injury crashes (74.2%) were 

predominant among the hit-object crashes. In addition, there is possibly exists an 

endogenous effect of crash type on crash injury severity. To this end, crash type is 

considered as an explanatory variable in the crash injury severity model, and the 

outcome variable in the crash type model in the simultaneous equation system. 

Therefore, influences of crash types on crash injury severity can be estimated, and the 

possible endogenous effects can be accounted for. 
  

 
7 In line with previous injury severity analyses of single-vehicle crashes (Behnood and 

Mannering, 2019; Fountas et al., 2020; Song et al., 2024b), the injury severity outcome 

of a crash would be determined based on the victim(s) who suffers from the most severe 

injury. 
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Table 4-1 Descriptive statistics of the data 
Variable Attribute Count Percentage 

Dependent Variables 

Injury severity 
No injury 2294 70.80% 

Injury 876 27.39% 

Crash type 
Hit-object crash 2973 93.79% 

Rollover crash 197 6.21% 

Driver Characteristics 

Gender 
Male 2006 63.28% 

Female 1164 36.72% 

Age 

Below 25 1085 34.23% 

25-39 1101 34.73% 

40-59 722 22.78% 

60 or above 262 8.26% 

Alcohol or Drugs 
Not under the influence of alcohol or drugs 2915 91.96% 

Driving under the influence of alcohol or drugs 255 8.04% 

Aberrant driving 

behavior 

Speeding violation 1148 36.21% 

Oversteer 315 9.94% 

Inattentiveness 242 7.63% 

Aggressive driving 177 5.58% 

Other aberrant driving behavior 843 26.59% 

No violation driving behavior 445 14.04% 

Safety belt 
Not used 202 6.37% 

Used 2968 93.63% 

Maneuver 

Changing lanes 498 15.71% 

Going straight 2250 70.98% 

Making turn 285 8.99% 

Other maneuver action 137 4.32% 

Vehicle Attributes 

Vehicle type 

Car 1953 61.61% 

Sport utility vehicle 548 17.29% 

Pickup 354 11.17% 

Van 102 3.22% 

Truck 180 5.68% 

Other vehicle types 33 1.04% 

Environmental Conditions 

Road surface condition 
Dry 1818 57.35% 

Wet 1169 36.88% 
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Variable Attribute Count Percentage 

Other road surface conditions 183 5.77% 

Lighting condition 

Daylight 1761 55.55% 

Dusk or dawn 128 4.04% 

Dark with streetlights 406 12.81% 

Dark without streetlights 875 27.60% 

Weather 
Clear 1721 54.29% 

Cloudy, rain and other weather conditions 1449 45.71% 

Area type 

Rural 1302 41.07% 

Mixed 441 13.91% 

Urban 1427 45.02% 

Roadway Design 

Horizontal alignment 
Straight 1599 50.44% 

Curve 1571 49.56% 

Speed limit 

<= 35 mph 376 11.86% 

40-60 mph 1108 34.95% 

Above 60 mph 1686 53.19% 

Road classification 
Interstate highway 1993 62.87% 

US highway and State highway 1177 37.13% 

Road configuration 

One-way mainline 1429 45.08% 

Undivided two-way mainline 132 4.16% 

Divided two-way mainline with no median 

barrier 
224 7.07% 

Divided two-way mainline with median barrier 1385 43.69% 

Crash Circumstances 

Crash location 
On traffic lanes 1835 57.89% 

Outside traffic lanes (on road shoulder) 1335 42.11% 

Ramp type 

Off-ramp 1775 55.99% 

Merging lane between on-ramp and off-ramp 99 3.12% 

On-ramp 1296 40.88% 

 

Table 4-2 Cross tabulation of injury severity and crash type 

Injury severity 
Crash type 

Total 
Rollover crash Hit-object crash 

No injury 88 (44.67%) 2206 (74.20%) 2294 (72.37%) 

Injury 109 (55.33%) 767 (25.80%) 876 (27.63%) 

Overall 197 (100.00%) 2973 (100.00%) 3170 (100.00%) 

Note: The numbers in the parentheses represent column percentages. 
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4.3 Method 

In this study, the outcome variables are dichotomous in both crash type and injury 

severity models. To measure the association between influencing factors and crash 

injury severity considering the endogeneity of crash type, a random parameters 

recursive bivariate probit model with heterogeneity in the means and variances is 

proposed. Let 𝑖𝑖 (𝑖𝑖 = 1, 2, . . ., I) be an index that represents a crash observation. The 

general specification of a recursive simultaneous equations system for the joint crash 

type and injury severity model is given by (Hensher et al., 2015; Greene, 2018; 

Washington et al., 2020), 

𝑟𝑟𝑖𝑖∗ = 𝜷𝜷1
′𝒛𝒛𝑖𝑖 + 𝜀𝜀𝑖𝑖,1 

𝑟𝑟𝑖𝑖 =  1, if 𝑟𝑟𝑖𝑖∗ > 0, 𝑟𝑟𝑖𝑖 =  0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 

𝑦𝑦𝑖𝑖∗ = 𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖 + 𝜀𝜀𝑖𝑖,2 

𝑦𝑦𝑖𝑖 = 1, if 𝑦𝑦𝑖𝑖∗ >  0,𝑦𝑦𝑖𝑖 =  0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒                                 (1) 

where 𝑟𝑟𝑖𝑖 is a binary indicator of crash type, 𝑦𝑦𝑖𝑖 is a binary indicator of injury severity, 

𝒛𝒛𝑖𝑖  and 𝒙𝒙𝑖𝑖  are column vectors of explanatory variables, 𝜷𝜷1
′  and 𝜷𝜷2

′  are the 

corresponding row vectors of estimated parameters, 𝜀𝜀𝑖𝑖,1 and 𝜀𝜀𝑖𝑖,2 are the error terms, 

respectively. 

 

Given the explanatory variables, the joint probability for 𝑦𝑦𝑖𝑖 = 1, 𝑟𝑟𝑖𝑖 = 1 is written as: 

Prob(𝑦𝑦𝑖𝑖 = 1, 𝑟𝑟𝑖𝑖 = 1|𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖 ) = Prob(𝑦𝑦𝑖𝑖∗ > 0, 𝑟𝑟𝑖𝑖∗ > 0)             (2) 

 

When 𝜀𝜀𝑖𝑖,1 and 𝜀𝜀𝑖𝑖,2 are distributed as bivariate standard normal with correlation 𝜌𝜌8 as, 

 
8 Note that the interpretation of the sign of the correlation parameter 𝜌𝜌 in recursive bivariate 

probit model is not the same as that for the bivariate probit model. Herein, the significant 𝜌𝜌 

just indicates that the binary dependent variable in one equation is an endogenous 

independent variable in the other equation. When the effect of the endogenous variable is 

taken into account, the correlation between the errors terms is not necessarily of the same sign 
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�
𝜀𝜀𝑖𝑖,1
𝜀𝜀𝑖𝑖,2�~𝑁𝑁 ��0

0� , �1 𝜌𝜌
𝜌𝜌 1��                        (3) 

 

The joint probability density function of recursive bivariate probit model for 𝑦𝑦𝑖𝑖 =

1, 𝑟𝑟𝑖𝑖 = 1 can be expressed as, 

Prob(𝑦𝑦𝑖𝑖 = 1, 𝑟𝑟𝑖𝑖 = 1|𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖 ) = 𝚽𝚽2(𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖,𝜷𝜷1

′𝒛𝒛𝑖𝑖,𝜌𝜌).            (4) 

 

There are four cases for this bivariate probit model, with the other three joint 

probabilities given by, 

Prob(𝑦𝑦𝑖𝑖 = 1, 𝑟𝑟𝑖𝑖 = 0|𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖 ) = 𝚽𝚽2(𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖,−𝜷𝜷1

′𝒛𝒛𝑖𝑖,−𝜌𝜌), 

Prob(𝑦𝑦𝑖𝑖 = 0, 𝑟𝑟𝑖𝑖 = 1|𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖 ) = 𝚽𝚽2[−(𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖),𝜷𝜷1

′𝒛𝒛𝑖𝑖,−𝜌𝜌], 

Prob(𝑦𝑦𝑖𝑖 = 0, 𝑟𝑟𝑖𝑖 = 0|𝒙𝒙𝑖𝑖, 𝒛𝒛𝑖𝑖 ) = 𝚽𝚽2[−(𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖),−𝜷𝜷1

′𝒛𝒛𝑖𝑖,𝜌𝜌].              (5) 

 

Hence, the log-likelihood function for the proposed model is, 

ln 𝐿𝐿 = ∑ ln𝚽𝚽2�𝑞𝑞𝑦𝑦,𝑖𝑖(𝜷𝜷2
′𝒙𝒙𝑖𝑖 + 𝛾𝛾𝑟𝑟𝑖𝑖), 𝑞𝑞𝑟𝑟,𝑖𝑖(𝜷𝜷1

′𝒛𝒛𝑖𝑖),𝑞𝑞𝑦𝑦,𝑖𝑖𝑞𝑞𝑟𝑟,𝑖𝑖𝜌𝜌�𝑛𝑛
𝑖𝑖=1           (6) 

where 𝑞𝑞𝑦𝑦,𝑖𝑖 = 2𝑦𝑦𝑖𝑖 − 1 and 𝑞𝑞𝑟𝑟,𝑖𝑖 = 2𝑟𝑟𝑖𝑖 − 1, 𝚽𝚽2(. ) denotes the bivariate standard normal 

cumulative distribution function. 

 

Furthermore, accounting for unobserved heterogeneity, the random parameters model 

with heterogeneity in mean and variance is expressed as (Greene et al., 2006; 

Washington et al., 2020), 

𝜷𝜷𝑖𝑖 = 𝜷𝜷 + 𝜣𝜣𝒛𝒛𝑖𝑖 + 𝚺𝚺𝒊𝒊
𝟏𝟏 𝟐𝟐⁄ 𝝊𝝊𝑖𝑖                                           (7) 

 

 
as the endogenous relationship. That is, the correlation parameter in recursive model merely 

indicates the presence of endogeneity, rather than interpreting the correlation between 

outcome variables. For more discussion about the different interpretation of the correlation 

parameters in the bivariate probit model and the recursive bivariate probit model, see 

Filippini et al. (2018). 
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Let 𝚺𝚺𝒊𝒊
𝟏𝟏 𝟐𝟐⁄ = Diag[𝜎𝜎𝑖𝑖1,𝜎𝜎𝑖𝑖2, …𝜎𝜎𝑖𝑖𝑛𝑛], then 

𝜎𝜎𝑖𝑖𝑛𝑛 = 𝜎𝜎𝑛𝑛 × exp(𝛙𝛙𝒌𝒌
′ 𝒘𝒘𝑖𝑖)                                         (8) 

where 𝜷𝜷 is the vector of mean coefficients for all observations defined in Eq. (1), 𝜣𝜣 is 

a matrix of estimated parameters, 𝒛𝒛𝑖𝑖 is a vector of explanatory variables that capture 

heterogeneity in the means of random parameters, the scale factor 𝜎𝜎𝑖𝑖𝑛𝑛 which provides 

the standard deviation of the 𝑘𝑘th random parameter is then arrayed on the diagonal of 

the diagonal matrix 𝚺𝚺𝒊𝒊
𝟏𝟏 𝟐𝟐⁄ , 𝒘𝒘𝑖𝑖  is a vector of explanatory variables that capture 

heterogeneity in the variances9, 𝛙𝛙𝒌𝒌
′  is the 𝑘𝑘th row elements of the matrix of estimated 

parameters 𝚿𝚿, and 𝝊𝝊𝑖𝑖 is a primitive random vector, which follows the standard normal 

distribution. 

 

The simulated maximum likelihood approach with 1,000 Halton draws is used to 

estimate the parameters. Lastly, to estimate the change in probability of the injury 

severity because of the change in 𝒙𝒙 and/or 𝒛𝒛, the marginal effects10 can be estimated 

by (Greene, 1998, 2018), 

𝑀𝑀𝑀𝑀 = 𝑀𝑀[𝑦𝑦|𝒙𝒙, 𝒛𝒛,𝑋𝑋 = 1] − 𝑀𝑀[𝑦𝑦|𝒙𝒙,𝒛𝒛,𝑋𝑋 = 0]

= Prob(𝑦𝑦 = 1, 𝑟𝑟 = 1|𝒙𝒙, 𝒛𝒛 ) + Prob(𝑦𝑦 = 1, 𝑟𝑟 = 0|𝒙𝒙,𝒛𝒛 )

− Prob(𝑦𝑦 = 0, 𝑟𝑟 = 1|𝒙𝒙,𝒛𝒛 ) − Prob(𝑦𝑦 = 0, 𝑟𝑟 = 0|𝒙𝒙, 𝒛𝒛 )

= 𝚽𝚽2(𝜷𝜷2
′𝒙𝒙 + 𝛾𝛾𝑟𝑟,𝜷𝜷1

′𝒛𝒛,𝜌𝜌|𝑋𝑋 = 1) + 𝚽𝚽2(𝜷𝜷2
′𝒙𝒙 + 𝛾𝛾𝑟𝑟,−𝜷𝜷1

′𝒛𝒛,−𝜌𝜌|𝑋𝑋 = 1)

−𝚽𝚽2[−(𝜷𝜷2
′𝒙𝒙 + 𝛾𝛾𝑟𝑟),𝜷𝜷1

′𝒛𝒛,−𝜌𝜌|𝑋𝑋 = 0]

−𝚽𝚽2[−(𝜷𝜷2
′𝒙𝒙 + 𝛾𝛾𝑟𝑟),−𝜷𝜷1

′𝒛𝒛,𝜌𝜌|𝑋𝑋 = 0] 

(9) 

 

It is noted that the effect for the variable that appears only in 𝒙𝒙 is interpreted as having 

 
9 Despite extensive testing in the model, the heterogeneity in the variance was not statistically 

significant. 
10 It is easier to interpret the marginal effects (compared to elasticities) for indicator variables 

(Washington et al., 2020). 
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a direct effect while the variable that appear only in 𝒛𝒛 is interpreted as having an 

indirect effect on 𝑦𝑦 that is transmitted through 𝑟𝑟. For the variable that appear in both 𝒙𝒙 

and 𝒛𝒛, the total effect is combined and does not need to be treated as direct or indirect 

(Greene, 2018). 

4.4 Results and discussion 

In this study, separate probit models, the recursive bivariate probit model, and the 

random parameters recursive bivariate probit model with heterogeneity in the means 

are estimated. Table 4-3 presents the results of the parameter estimation. The results 

indicate that the random parameters recursive bivariate probit model with 

heterogeneity in the means is superior in terms of Akaike information criterion (AIC). 

A detailed discussion of the results of parameter estimation among the models is 

provided in the sections that follow.  

4.4.1 Effect of endogeneity 

In this study, it was hypothesized that when modeling the relationship between crash 

type and injury severity, the endogeneity effect of crash type can be captured through 

the correlation coefficient in the recursive simultaneous model. As shown in Table 

4-3, the significant correlation coefficients in all bivariate models provide statistical 

evidence for the correlation between the two structural disturbances. In other words, 

crash type may also be influenced by other factors that could affect the injury severity. 

The endogenous effect of crash type on injury severity is prevalent. However, the 

relationship between crash type and injury severity is complex and multifaceted. A 

possible explanation for the endogeneity of crash type is that unobserved factors 

including driver behavior and vehicle performance may affect both the crash type and 

injury outcome (Mannering and Bhat, 2014; Mannering et al., 2020). 

 

On the other hand, differences in the estimated parameters among independent probit 

models, recursive bivariate probit model and random parameter recursive bivariate 
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probit model with heterogeneity in the means also justify the existence of endogeneity. 

For example, the likelihood of injury for a rollover crash would be underestimated if 

endogeneity were not considered (parameter estimate of 1.57 in the random 

parameters recursive bivariate model and 1.45 in the recursive bivariate model, 

compared with 0.85 in the independent model). 

4.4.2 Influencing factors of crash type 

Table 4-3 presents the results of parameter estimation for crash type (rollover crash). 

The likelihood of rollover crash is lower for cars. This is consistent with the finding of 

previous study that elevation of vehicles’ center of gravity is positively associated 

with the probability of overturn (Alrejjal et al., 2021). Regarding the effects of 

environmental conditions, likelihood of rollover crashes is higher under dry road 

surface conditions (relative to wet and other road surface conditions) and daylight 

conditions (relative to dusk or dawn, and dark conditions). This may be because under 

favorable road and lighting conditions, drivers may drive faster and smugly (Eluru 

and Bhat, 2007). Regarding speed, studies have indicated that the speed of a vehicle 

plays a significant role in rollover intensity, as its kinetic energy affects the potential 

for vehicle rollover. Higher speeds are associated with an increased likelihood of 

rollover crashes (Azimi et al., 2020). Also, there is a tendency for drivers to adapt 

their speeds based on the posted speed limits, with higher speed limits often leading to 

increased driving speeds, a phenomenon known as speed generalization (Elvik, 2015). 

Hence, it is not surprising to observe that the likelihood of rollover crashes is higher 

for the ramp areas with higher speed limits (above 60 mph). Regarding the area type, 

the likelihood of rollover crashes is higher for ramps in rural areas. This could be due 

to the prevalence of hazards like hillslope and pavement edge drop-off at rural 

locations (Islam and Pande, 2020). With regard to horizontal alignment, the effect of 

straight ramp is random with a negative mean for rollover crash. As shown in Figure 

4.1(a), the normal distribution with the mean of -0.22 and the standard deviation of 

0.33 indicates that likelihood of rollover crash is lower for 74.8% of observations. The 



60 

negative parameters of female drivers and old drivers for straight ramp (-0.44 and -

0.85, respectively) indicate that these two variables reduce the mean effect of straight 

ramp on rollover crash. This implies that female and old drivers are less likely 

involved in rollover crashes at straight ramps. Furthermore, from a vehicle dynamics 

standpoint, the likelihood of rollover crashes is smaller at straight ramps compared to 

curved ramps. This is due to the former’s clear and predictable path, good visibility, 

and roadside hazard anticipation. Rollover crashes are often attributed to loss of 

vehicle control, reduced stability and over steering in emergency (Martensen and 

Dupont, 2013; Alrejjal et al., 2021). Similarly, for interstate highways, the likelihood 

of rollover crashes is lower compared to non-interstate highways (US highway and 

State highway). Specifically, interstate highways are designed to accommodate higher 

volumes of traffic at relatively higher speeds, and generally provide efficient and safe 

transportation for long-distance travel and freight movement. Therefore, the higher 

standards for interstate highways, including lanes widths, access points frequency, and 

maintenance, contribute to a higher level of service compared to other highway 

classes (AASHTO, 2010, 2018). Thus, these characteristics may play a role in 

reducing the probability of rollover crashes at ramp areas of interstate road compared 

to those of non-interstates. Lastly, compared to road shoulders, the likelihood of 

rollover crashes is higher on traffic lanes. High-speed maneuvers of vehicles in traffic 

lanes, such as sudden lane changes, swerving, or avoiding obstacles, generally pose 

higher risk of rollover at those elements of the highway cross-section. 

4.4.3 Influencing factors of injury severity 

Table 4-3 presents the results of parameter estimation for injury severity. The 

following discussion focuses on the random parameters recursive bivariate probit 

model with heterogeneity in the means. Table 4-4 presents the marginal effects of the 

exogenous variables for injury severity. 

4.4.3.1 Driver characteristics 
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First, the probability of injury in the crash is higher when the driver is driving under 

the influence of alcohol and drugs. This is consistent with the findings of previous 

studies (Wang et al., 2009; Li et al., 2012; Mergia et al., 2013; Song et al., 2024b). 

Second, dangerous driving behaviors including oversteering and aggressive driving 

behavior significantly increase the probability of injury, with the direct marginal 

effects of 0.0765 and 0.1533, respectively. Previous studies also indicated that 

aberrant driving behavior could increase the likelihood of more severe injury (Paleti 

et al., 2010; Song et al., 2024b). To this end, he study result could help justify the 

need for driver education, training, and in-vehicle assistance system in enhancing the 

driver awareness, improving the defensive driving skills, and mitigating the crash 

injury risk at ramps (Mallia et al., 2015). Lastly, non-use of seat belt produces a 

random parameter with positive mean for injury severity. As shown in Figure 4.1(b), 

the random parameter is normally distributed with the mean of 1.12 and standard 

deviation of 1.45. This implies that the likelihood of injury is higher for the non-use 

of seat belts for the majority of crashes (78.0%). In contrast, the negative parameter of 

female drivers (-0.50) indicates that the mean effect of non-use of seat belt on injury 

severity would decrease for female. While it may seem counterintuitive, this justifies 

the collective impact on the injury severity for the interference among factors 

including seat belt use and personal characteristics. For example, the level of 

emergency medical service (both quantity and quality) could mitigate the crash 

outcome. It is worth exploring the effects of response time and clearance time on the 

crash outcome when comprehensive traffic, crash, and trauma datasets are available 

(Wong et al., 2007; Tsui et al., 2009; Castro et al., 2013; Peura et al., 2015). 

4.4.3.2 Environmental conditions 

As aforementioned, the results suggest that ramp area crashes under dry road surface 

and daylight conditions are more likely to be rollovers compared to wet and nighttime 

(including dusk and dawn) conditions. Hence, there is an indirect effect of road 

surface and lighting conditions on the injury severity mediated through crash type. As 
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shown in Table 4-4, the probability of injury increases by 0.0256 for the crashes in 

dry road surface conditions and 0.0123 for crashes in daylight conditions. While 

favorable driving environment may provide a driver the better sense of safety and 

confidence, higher level of perceived safety would often result in complacency and 

more risky driving behaviors. There are compensatory effects of favorable road 

environment on the risk of rollover crashes and more severe injuries (Kim et al., 2010; 

Fountas et al., 2020; Shaon and Qin, 2020). Lastly, the effect of rural area is random 

with a negative mean. As shown in Figure 4.1(c), the random parameter is normally 

distributed with the mean of -0.55 and standard deviation of 0.91. This implies that 

72.7% of observations have a lower likelihood of injury. Despite the higher rollover 

crash likelihood for the crashes at rural road ramp areas, the probability of injury is 

reduced with the total marginal effect of -0.0411 could be explained by several 

reasons. First, rural areas typically have wider clear zones11 in the US, offering more 

recovery space and buffer zones for vehicles in rollover incidents, potentially 

lessening injury severity. In addition, studies have demonstrated that the 

implementation of safety measures and infrastructure improvements on rural roads 

could play a role in reducing the likelihood of injury in crashes. For example, 

installing centerline rumble strips on rural roads can significantly decrease injury 

crashes (Persaud et al., 2004). These safety enhancements have the potential to 

mitigate crash severity and decrease the chances of sustaining injuries. 

4.4.3.3 Roadway design 

As the exogenous variables of horizontal alignment and speed limit are not significant 

in the equation of injury severity component, there exist indirect effects on the injury 

severity of crashes through the recursive structure. For example, the probability of 

injury for crashes at the straight ramp areas decreases by 0.0126, compared to that at 

 
11 A clear zone is an unobstructed and traversable roadside area for errant vehicles in the US 

(AASHTO, 2011). 
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the curved sections. In contrast, the probability of injury for crashes at the ramp areas 

with higher speed limit (above 60 mph) increases by 0.0097, compared to that with 

lower speed limits. Therefore, lowering the vehicle speed can reduce the probability 

of rollover crash and further reduce the possibility of injury due to crash. It is worth 

exploring the effectiveness of remedial measures (e.g., warning signs and variable 

speed limit) and Advanced Driver Assistance Systems (e.g., lane departure warning, 

curve warning and collision warning systems) in mitigating the risk of rollover 

crashes and enhancing safety of ramp areas (Li et al., 2014; Harper et al., 2016; Wu 

et al., 2016; Fleming et al., 2019). Furthermore, the probability of injury for crashes 

on interstate highways decreases, with the total effect of 0.0442, compared to other 

road types. This is consistent with the findings of previous studies (Chen et al., 2016; 

Song et al., 2024b). 

4.4.3.4 Crash circumstances 

Crash location on traffic lanes (compared to the road shoulder) has an opposite effect 

on the probabilities of rollover crashes and injury severities: the location on traffic 

lanes increases the likelihood of rollover crash by 0.42 but reduces that of injury by 

0.12. Overall, as shown in Table 4-4, the total marginal effect of crash location is -

0.0232. In addition, the effect of on-ramp on the probability of injury is random 

(normally distributed with the mean of -0.59 and standard deviation of 1.09), as 

shown in Figure 4.1(d). This implies that there is a negative association between on-

ramp and injury severity for the majority of crashes (70.6%). In contrast, the positive 

parameter of female driver (0.33) indicates that the mean effect of on-ramp on injury 

severity would increase for female. This justifies the heterogeneity in driver behavior 

among different genders at the highway ramp areas and their impacts on the 

association between crash location and injury severity (Mannering et al., 2016). 
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Table 4-3 Results of parameter estimation 

Variable 

Separate probit models Recursive bivariate probit model 

Random parameters recursive bivariate 

probit model with heterogeneity in 

means 

Rollover Injury Rollover Injury Rollover Injury 

Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) 

Constant -2.48 (-18.8) -0.60 (-9.13) -2.00 (-12.85) -0.62 (-9.34) -2.37 (-13.25) -0.56 (-8.22) 

Driver gender 

Female driver  0.16 (3.07)  0.17 (3.32)   

Alcohol or drugs 

Driving under the 

influence of alcohol or 

drugs 

 0.39 (4.52)  0.39 (4.53)  0.50 (5.10) 

Aberrant driving behavior 

Oversteer  0.24 (2.94)  0.23 (2.84)  0.29 (3.23) 

Aggressive driving  0.46 (4.52)  0.45 (4.35)  0.62 (5.16) 

Safety belt 

Not used  0.72 (7.53)  0.70 (7.38)  1.12 (7.76) 

Standard deviation      1.45 (9.68) 

Vehicle type 

Car   -0.86 (-10.06)  -4.70 (-7.84)  

Standard deviation     2.78 (8.69)  

Road surface condition 
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Variable 

Separate probit models Recursive bivariate probit model 

Random parameters recursive bivariate 

probit model with heterogeneity in 

means 

Rollover Injury Rollover Injury Rollover Injury 

Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) 

Dry 0.63 (7.15)  0.63 (6.48)  0.88 (7.20)  

Lighting condition 

Daylight 0.34 (4.34)  0.28 (3.37)  0.39 (3.98)  

Area type 

Rural 0.37 (4.49) -0.16 (-3.01) 0.34 (3.63) -0.19 (-3.50) 0.37 (3.53) -0.55 (-7.11) 

Standard deviation      0.91 (15.84) 

Horizontal alignment 

Straight -0.25 (-3.37)  -0.28 (-3.43)  -0.22 (-2.05)  

Standard deviation     0.33 (4.54)  

Speed limit 

Above 60 mph 0.25 (2.96)  0.22 (2.29)  0.33 (2.99)  

Road classification 

Interstate highway -0.17 (-2.11) -0.12 (-2.32) -0.16 (-1.83) -0.11 (-2.19) -0.20 (-1.89) -0.15 (-2.71) 

Crash location 

On traffic lanes 0.34 (4.15) -0.10 (-1.94) 0.32 (3.42) -0.13 (-2.34) 0.42 (3.98) -0.12 (-2.05) 

Ramp type 

On-ramp  -0.14 (-2.84)  -0.14 (-2.80)  -0.59 (-7.49) 

Standard deviation      1.09 (17.01) 
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Variable 

Separate probit models Recursive bivariate probit model 

Random parameters recursive bivariate 

probit model with heterogeneity in 

means 

Rollover Injury Rollover Injury Rollover Injury 

Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) 

Crash type (endogenous variable) 

Rollover crash  0.85 (8.85)  1.45 (5.11)  1.57 (7.47) 

Heterogeneity in the mean of random parameter 

Female driver for the 

mean of non-use of seat 

belt 

     -0.50 (-1.95) 

Female driver for the 

mean of rural area 
     0.31 (3.02) 

Female driver for the 

mean of on-ramp 
     0.33 (3.11) 

Female driver for the 

mean of straight 

alignment 

    -0.44 (-2.63)  

Older driver (age 60 or 

above) for the mean of 

straight alignment 

    -0.85 (-2.47)  

Correlation ρ  -0.34 (-2.14) -0.31 (-2.21) 

Model performance 
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Variable 

Separate probit models Recursive bivariate probit model 

Random parameters recursive bivariate 

probit model with heterogeneity in 

means 

Rollover Injury Rollover Injury Rollover Injury 

Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) Coefficient (t-stat) 

Number of observations 3170 3170 3170 3170 

Degree of freedom 8 11 21 30 

Log-likelihood at 

convergence (LL(β)) 
-669.3459 -1756.0455 -2362.0346 -2341.5626 

AIC 1354.7 3534.1 4766.1 4743.1 
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Figure 4.1 Distribution of random parameters 

 

Table 4-4 Marginal effects for injury 
Variable Indirect effect Direct effect Total effect 

Alcohol or drugs    

Driving under the influence of alcohol or 

drugs 
- 0.1273 0.1273 

Aberrant driving behavior    

Oversteer - 0.0765 0.0765 

Aggressive driving - 0.1533 0.1533 

Safety belt    

Not used - 0.2530 0.2530 

Vehicle type    

Car -0.0413 - -0.0413 

Road surface condition    

Dry 0.0256 - 0.0256 

Lighting condition    

Daylight 0.0123 - 0.0123 

Area Type    

Rural - - -0.0411 

Horizontal alignment    
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Variable Indirect effect Direct effect Total effect 

Straight -0.0126 - -0.0126 

Speed limit    

Above 60 mph 0.0097 - 0.0097 

Road classification    

Interstate highway - - -0.0442 

Crash location    

On traffic lanes - - -0.0232 

Ramp type    

On-ramp - -0.0442 -0.0442 

 

4.5 Concluding remarks 

Crash type is an important influencing factor that affects crash injury severity. In the 

conventional crash severity models, crash type is typically incorporated as an 

exogenous variable. However, an endogeneity effect (i.e., correlation between crash 

type and error term of the probability function of crash injury severity) is prevalent. 

To explore the endogeneity effect in a crash severity model, this study developed a 

random parameter recursive bivariate probit model with heterogeneity in the means 

for modeling crash injury severity of single-vehicle crashes at highway ramp areas. 

That way, the indirect effects of exogenous factors on injury severity through crash 

types can be accounted for. Furthermore, the effects of individual heterogeneity of the 

explanatory variables are considered in the simultaneous equation system. 

 

The results indicate that the correlation of error terms in the simultaneous model is 

significant. This suggests the existence of endogenous effects of crash type on crash 

injury severity at ramp areas. The factors including driver characteristics, vehicle 

attributes, environmental conditions, roadway design, and crash circumstances that 

affect crash type and injury severity at ramp areas, are identified. For example,  there  

exist significant effects for driving impairment and risky driving behavior, seat belt 

use, and road alignment on the likelihood of crash type and injury severity. These 
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findings are expected to shed light on the development and implementation of 

effective remedial measures like driver training and education, variable speed limits, 

and warning signs to mitigate risk at hazardous ramp areas. Furthermore, the 

prevalence of endogeneity may be suggestive of the multifaceted nature of some road 

safety problems. Particularly, some exogenous variables that are significant only for 

the crash type are expected to have indirect effects on the crash severity (e.g., dry road 

surface conditions, daylight conditions) while some exogenous variables that are 

significant for both independent variables will exhibit opposite effects (e.g., rural area, 

crash on traffic lanes). This suggests that even where there exists endogenous effects 

for crash type on injury severity, certain interventions including guardrails and rumble 

strips installation could have direct effects on the probabilities of both rollover and 

injury crashes. Moreover, female drivers and old drivers are found to be statistically 

significant in the means of random parameters. 
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Chapter 5  Addressing Unobserved Heterogeneity at Road 

User Level for the Analysis of Conflict Risk at Toll Plaza 

5.1 Introduction 

Traffic and safety characteristics of toll plazas are different from that of other road 

entities because of the differences in geometric design, traffic management and 

control, and more importantly, weaving, diverging, and merging movements of traffic 

approaching the toll booths, especially vehicles slow down or stop to pay tolls when 

multiple toll collection methods (i.e., manual, and electronic) are available. Manual 

toll payment vehicles need to decelerate when approaching the toll booths, while 

electronic toll payment vehicles can continue to travel through the toll plaza at a 

relatively high speed. Derivation of the speed of mixed traffic can increase the crash 

risk of toll plaza (Abdelwahab and Abdel-Aty, 2002). It is crucial to identify the 

factors that affect the safety of toll plaza, hence effective countermeasures can be 

developed. Studies have assessed the safety of toll plaza, merging, and diverging areas, 

based on historical crash data. For example, toll plaza layout, horizontal curves, toll 

collection method, and traffic signs and road markings are found associated with the 

crash risk at toll plazas (Wong et al., 2006; Sze et al., 2008; Abuzwidah et al., 2014; 

Abuzwidah and Abdel-Aty, 2015, 2018). In addition, lighting condition is associated 

with the occurrence and severity level of crash at diverging areas (Mergia et al., 

2013). Furthermore, geometric design characteristics including number of lanes, road 

alignment, and length of deceleration lane are associated with the crash occurrence at 

off-ramp areas (Chen et al., 2009; Chen et al., 2011; Calvi et al., 2012). Last but not 

least, association between crash occurrence and possible risk factors can be moderated 

by collision type (i.e., rear-end, sideswipe, and angle collisions) (Guo et al., 2019). 

 

In this study, modified traffic conflict indicator, taking into account vehicle length and 
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width, angular and longitudinal movements, and conflict type (i.e., rear-end and 

sideswipe), is proposed to assess the safety risk at a tunnel toll plaza, based on high-

resolution vehicle trajectory data obtained from drone video. Then, the correlated 

grouped random parameter multinomial logit approach with heterogeneity in the 

means of the random parameters is adopted to measure the association between 

conflict risk at tunnel toll plaza and possible factors, including vehicle class, speed 

and acceleration of vehicle, toll collection type, and spatial characteristics, for which 

effects of unobserved heterogeneity and correlation among random parameters at the 

road user level are accounted for. 

 

The remainder of this paper is organized as follows. Data collection, model 

formulation, and analysis method are described in Section 5.2. Then, Section 5.3 

summarizes the data used. Furthermore, estimation results and interpretations are 

presented in Section 5.4. Finally, concluding remarks would be given in Section 5.5. 

5.2 Method 

5.2.1 Traffic conflict 

Time-to-collision refers to the time required for two conflicting vehicles to collide if 

their speed and path remain unchanged (Hayward, 1972). For the rear-end collision of 

two vehicles travelling in the same direction, time-to-collision (TTC) can be 

calculated as, 

𝑇𝑇𝑇𝑇𝑇𝑇 = �
𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑓𝑓 − 𝐿𝐿𝑙𝑙
𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑙𝑙

, 𝑖𝑖𝑓𝑓 𝑣𝑣𝑓𝑓 > 𝑣𝑣𝑙𝑙

           ∞,          𝑖𝑖𝑓𝑓 𝑣𝑣𝑓𝑓 > 𝑣𝑣𝑙𝑙
                                                   (1) 

where 𝑥𝑥𝑙𝑙  is the displacement of front bumper of leading vehicle, 𝑥𝑥𝑓𝑓  is that of 

following vehicle, 𝑣𝑣𝑙𝑙 is the speed of leading vehicle, 𝑣𝑣𝑓𝑓 is that of following vehicle, 

and 𝐿𝐿𝑙𝑙 is the length of leading vehicle.  

 

However, Equation (1) may not be capable of modeling the risk of angle and 
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sideswipe collisions for diverging, merging, and weaving traffic. To this end, 

dimensions and angular movement of conflicting vehicles should be considered. 

Figure 5.1 illustrates the typical interaction between two conflicting vehicles at the 

toll plaza, and diverging and merging areas. As shown in Figure 5.1, paths of Vehicle 

1 and Vehicle 2 are intersecting at angle 𝛼𝛼. In addition, rectangle 1A1B1C1D and 

2A2B2C2D denote the areas covered by Vehicle 1 and Vehicle 2, respectively. Shaped 

area covered by parallelogram abcd represents the overlapping area of trajectories of 

Vehicle 1 and 2 if their paths remain unchanged.  

 

 
Figure 5.1 Illustration of interaction between two conflicting vehicles 

 

Lengths, widths, and movement directions of Vehicles 1 and 2 can affect the location, 

shape, and size of the overlapping area. Point of contact for potential collision can be 

predicted, based on the assumption that Vehicles 1 and 2 would collide if their path 

and speed remain unchanged. Let tpq denote the time at which the corner (p) of a 

vehicle reaches that (q) of the shaped area, where p is 1A, 1B, 1C, …, and 2D, and q is 

a, b, c, and d, respectively. There may be a collision when the front of one vehicle 

reaches the overlapping area before another vehicle completely leaves the area. For 

example, when t1Ba< t2Aa and t1Ca > t2Aa, the front left corner (2A) of Vehicle 2 will hit 

the right side (1B1C) of Vehicle 1 at a (Interested reader is referred to Figure A1 in 

the Appendix for all possible collision scenarios). Hence, time-to-collision can be 

estimated based on the difference in arrival time at the overlapping area between the 
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conflicting vehicles, with which the two-dimensional vehicle motion is considered. 

One should note that a leading vehicle refers to the vehicle that arrives at the 

overlapping area first, based on the instantaneous motion of conflicting vehicles at the 

time of observation, in the subsequent analysis. Time step interval for the analysis 

depends on the frame rate of video (Laureshyn et al., 2010; Gu et al., 2019). 

 

In general, collision can be classified into four categories: (i) head-on collision, (ii) 

angle collision, (iii) sideswipe collision, and (iv) rear-end collision, based on the point 

of contact and intersecting angle of conflicting vehicles (Wu et al., 2020). In this 

study, maximum intersecting angle of the sample is less than nine degrees. Hence, 

only the sideswipe and rear-end conflicts are considered.   

 

Figure 5.2 illustrates some possible conflict scenarios in this study. For example, rear-

end conflict refers to that when the front of a vehicle hit the rear of another vehicle, 

and sideswipe conflict refers to that when the corner of a vehicle hit the side of 

another vehicle. 

 

 
Figure 5.2 Illustration of possible conflict scenarios 
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In conventional traffic conflict analyses, minimum time-to-collision (Johnsson et al., 

2021) and instantaneous time-to-collision (Gu et al., 2019; Xing et al., 2020a) are 

commonly used to predict the occurrence of a traffic conflict. In this study, 

instantaneous time-to-collision is adopted as the conflict indicator, accounting for 

possible endogeneity of speed-related variables. When the value of instantaneous 

time-to-collision is lower than a pre-determined threshold, a traffic conflict will exist. 

In general, threshold of time-to-collision ranges from one to three seconds (Madsen 

and Lahrmann, 2017; Essa and Sayed, 2019; Essa et al., 2019; Wang et al., 2021), 

and more than one stratification points can be established to distinguish among 

conflicts of different severity levels (Essa et al., 2019). In this study, two commonly 

used thresholds of time-to-collision are adopted: (i) 3 seconds for the occurrence of 

slight conflicts; and (ii) 1.5 seconds for the occurrence of severe conflicts. It should be 

noted that “conflict severity” refers to how close it is a collision may occur. It does 

not necessary imply the occurrence of severe crash. Therefore, it is more likely for a 

severe conflict to become a crash, compared to slight conflict (Hydén, 1987). 

Furthermore, a “traffic conflict” will be defined only when there is no traffic 

congestion (Johnsson et al., 2021) and the overlapping area is located within the pre-

defined study area. 

 

5.2.2 Model formulation 

In this study, risk of traffic conflict at the toll plaza is modeled as discrete outcomes, 

namely (i) no conflict (i.e., normal interaction), (ii) slight conflict, and (iii) severe 

conflict. Hence, multinomial logit regression approach is adopted to measure the 

association between conflict risk and possible influencing factors, with “no conflict” 

defined as the baseline. For instance, probability of interaction 𝑖𝑖 that has outcome 

𝑗𝑗 (𝑗𝑗 ∈ 𝐽𝐽) is given by: 

𝑃𝑃𝑖𝑖𝑛𝑛 = 𝑃𝑃�𝑈𝑈𝑖𝑖𝑛𝑛 > 𝑈𝑈𝑖𝑖𝑛𝑛�, ∀𝑘𝑘 ≠ 𝑗𝑗                                                     (2) 

where 𝑈𝑈𝑖𝑖𝑛𝑛 is the function that determines the probability of outcome 𝑗𝑗 for interaction 𝑖𝑖 
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that is given by: 

𝑈𝑈𝑖𝑖𝑛𝑛 = 𝜷𝜷𝑛𝑛
′𝒙𝒙𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑛𝑛, 𝑖𝑖 = 1, … … ,𝑛𝑛                                                      (3) 

where 𝒙𝒙𝑖𝑖 is a vector of explanatory variables for interaction 𝑖𝑖, 𝜷𝜷𝑛𝑛 is a vector of mean 

coefficients for outcome 𝑗𝑗, 𝜀𝜀𝑖𝑖𝑛𝑛 is the error term which is assumed to be independent 

and identically distributed (IID) with Type 1 extreme value (Gumbel) distribution, and 

𝑛𝑛 is the total number of observations.  

 

Then, the probability that outcome j will occur for interaction i can be expressed as: 

P𝑖𝑖𝑛𝑛|𝛽𝛽𝑛𝑛 =
exp�𝜷𝜷𝑛𝑛

′𝒙𝒙𝑖𝑖�
∑ exp�𝜷𝜷𝑛𝑛

′𝒙𝒙𝑖𝑖�
𝐽𝐽
𝑛𝑛=1

                                                               (4) 

 

And, the unconditional probability can be computed as: 

P𝑖𝑖𝑛𝑛 = �
𝑒𝑒𝑥𝑥𝑒𝑒�𝜷𝜷𝑛𝑛

′𝒙𝒙𝑖𝑖�
∑ 𝑒𝑒𝑥𝑥𝑒𝑒�𝜷𝜷𝑛𝑛

′𝒙𝒙𝑖𝑖�
𝐽𝐽
𝑛𝑛=1

𝑓𝑓(𝜷𝜷|𝝋𝝋)𝑑𝑑𝜷𝜷                                                 (5) 

where 𝑓𝑓(𝜷𝜷|𝝋𝝋) is the density function for vector 𝜷𝜷, and 𝝋𝝋 is the vector of parameters 

that defines the density function. 

 

In addition, the correlated random parameters approach with heterogeneity in the 

means is applied, accounting for the effect of unobserved heterogeneity. To account 

for the repeated observations from the same entity (i.e., vehicle interactions), grouped 

parameters approach is adopted. Parameters are allowed to vary across groups of 

observations. Hence, the coefficients would be modified as: 

𝜷𝜷𝑛𝑛𝑟𝑟 = 𝜷𝜷𝑛𝑛 + 𝚯𝚯𝑛𝑛𝒛𝒛𝑛𝑛 + 𝚪𝚪𝝎𝝎𝑛𝑛                                                                     (6) 

where 𝜷𝜷𝑛𝑛𝑟𝑟 is a vector of random parameters, 𝚯𝚯𝑛𝑛 is a matrix of estimated parameters, 𝑧𝑧𝑛𝑛 

is a vector of explanatory variables that capture heterogeneity in the means, 𝝎𝝎𝑛𝑛  is 

normally distributed with 𝑁𝑁(0,𝜎𝜎𝑛𝑛2), and 𝚪𝚪 is the Cholesky matrix based on Cholesky 

decomposition.  
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𝚪𝚪 matrix is a lower triangular matrix given as: 

𝚪𝚪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝛾𝛾1,1 ⬚ ⬚ ⬚ ⬚

𝛾𝛾2,1 𝛾𝛾2,2 ⬚ ⬚ ⬚

⋮ ⋮ ⋱ ⬚ ⬚

𝛾𝛾𝑛𝑛−1,1𝛾𝛾𝑛𝑛−1,2⋯𝛾𝛾𝑛𝑛−1,𝑛𝑛−1 ⬚

𝛾𝛾𝑛𝑛,1 𝛾𝛾𝑛𝑛,2 ⋯ 𝛾𝛾𝑛𝑛,𝑛𝑛−1 𝛾𝛾𝑛𝑛,𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                                          (7) 

The off-diagonal elements of 𝚪𝚪 are usually set to be zero in conventional random 

parameter models. Thus, no correlation among random parameters is implied. To 

capture the possible correlations among random parameters, the off-diagonal elements 

should be non-zeros. One should note that the Cholesky matrix can be constrained 

(partially set to zero) (Hensher et al., 2015). The variance-covariance matrix can be 

written as: 

𝑪𝑪 = 𝚪𝚪𝚪𝚪𝑇𝑇                                                                          (8) 

which the diagonal elements are the standard deviations of random parameters, and 

off-diagonal elements are the covariance between random parameters, respectively. 

Standard deviation of the correlated random parameters can be expressed as: 

𝜎𝜎𝑛𝑛 = �𝛾𝛾𝑛𝑛,1
2 + 𝛾𝛾𝑛𝑛,2

2 + ⋯+ 𝛾𝛾𝑛𝑛,𝑛𝑛−1
2 + 𝛾𝛾𝑛𝑛,𝑛𝑛

2                                          (9) 

 

t-statistics is used to assess the statistical significance of standard deviations of the 

correlated grouped random parameters. Standard error of the standard deviation is 

given by: 

𝑆𝑆𝑀𝑀 =
𝑆𝑆
√𝑁𝑁

                                                                      (10) 

𝑡𝑡 =
𝜎𝜎𝑛𝑛
𝑆𝑆𝑀𝑀

                                                                     (11) 

where 𝑆𝑆 is the standard deviation, and 𝑁𝑁 is the number of observations. 

 

The correlation coefficient between two random parameters is computed as, 
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𝑇𝑇𝑜𝑜𝑟𝑟�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑞𝑞� =
𝑐𝑐𝑜𝑜𝑣𝑣�𝑥𝑥𝑝𝑝,𝑥𝑥𝑞𝑞�

𝜎𝜎𝑝𝑝𝜎𝜎𝑞𝑞
                                                  (12) 

where 𝑐𝑐𝑜𝑜𝑣𝑣�𝑥𝑥𝑝𝑝, 𝑥𝑥𝑞𝑞� is the covariance between the random parameters of variable 𝑥𝑥𝑝𝑝 

and 𝑥𝑥𝑞𝑞, and 𝜎𝜎𝑝𝑝 and 𝜎𝜎𝑞𝑞 are the standard deviations of the random parameters. 

 

Likelihood-ratio test is used to assess the goodness-of-fit of two competing models 

with the chi-square test statistics given by, 

Χ2 = −2[𝐿𝐿𝐿𝐿(𝛽𝛽1) − 𝐿𝐿𝐿𝐿(𝛽𝛽2)]                                                      (13) 

where 𝐿𝐿𝐿𝐿(𝛽𝛽1) and 𝐿𝐿𝐿𝐿(𝛽𝛽2) are the log-likelihood functions at convergence of Model 1 

and Model 2, respectively, and degree of freedom is equal to the differences in 

number of parameters between competing models. 

 

Parameters can be estimated by simulated maximum likelihood method. Previous 

studies indicate that 1,000 Halton draws is sufficient for the convergence of parameter 

estimation (Meng et al., 2021). Furthermore, marginal effects are also estimated to 

indicate the effects of explanatory variables on  the outcome probabilities 

(Washington et al., 2020). 

5.3 Data 

Toll plaza (Kowloon bound) of Cross-Harbour Tunnel in Hong Kong (left hand 

driving rule applies) is selected as the study site. Cross-Harbour Tunnel, which was 

opened in 1972, is the busiest among the three underwater crossings connecting 

Kowloon and Hong Kong Island. In 2019, annual average daily traffic of Cross-

Harbour Tunnel was 106,679 (Hong Kong Transport Department, 2020). As shown 

in Figure 5.3, number of lanes increase from three (near the tunnel portal) to eight 

(near the toll booths) when travelling along the toll plaza. Of the eight toll booths, 

three are allocated for electronic toll collection [i.e., Lane 1 (bus-only lane), Lane 2, 

and Lane 8], and five are for manual toll collection. Speed limit going through the 
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electronic toll booths is 50 kph. As the driver behaviors and associated safety risks 

may change when drivers are approaching the toll booths from different distances, the 

study area is stratified into three (i.e., Zone 1, Zone 2, and Zone 3). In Zone 2, the 

number of lanes starts to increase, lane changing activities are frequent. In Zone 3, 

lane changing activities are partially restrained, particularly for electronic toll 

collection lanes. 

 

To capture the aerial video, drone (DJI Mavic Air 2) is used in this study. Height of 

the drone is 100 meters above ground, and the field of view is 84 degrees. 

Observation survey was conducted during the daytime on 8 weekdays in October of 

2020. Weather was fine (i.e., sunny and no wind) in the observation period. Also, 

there was no traffic jam. Overall, 120-minute video was captured. Resolution of the 

video was 1080p and frame rate was 30 fps. Vehicle trajectories were extracted from 

the video using the Automated Roadway Conflicts Identify System (ARCIS) of the 

University of Central Florida’s Smart and Safe Transportation Lab (Zheng et al., 

2019). For example, information on vehicle position (i.e., coordinates of centroid), 

dimensions (length and width), orientation, average speed, and acceleration rate can 

be obtained. For the calculation of TTC, readers may refer to the formulations given 

in Figure A1 in the Appendix. 

 

After the manual inspection and verification by experienced surveyors, trajectories of 

2,217 vehicles were extracted. Table 5-1 summaries the distribution of the sample, 

with respect to vehicle class and toll payment type. In particular, vehicles are 

classified into five categories: (i) private car, (ii) taxi, (iii) goods vehicle12, (iv) bus, 

and (v) motorcycle. In addition, about half of the sample are using electronic toll 

payment (Count: 1,132; Proportion: 51.1%). Figure 5.4 and Figure 5.5 illustrate the 

 
12 In this study, goods vehicle refers to light goods vehicle (excluding van-type vehicle), 

medium goods vehicle, and heavy goods vehicle. 
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vehicle trajectories for different toll payment types and vehicle classes, respectively.  

 

 

Figure 5.3 Layout of study site 

 

Table 5-1 Distributions of the sample by toll payment type and vehicle class 

Vehicle class 
Toll payment type 

Overall 
Manual Electronic 

Private car 709 (32.0%) 835 (37.6%) 1544 (69.6%) 
Taxi 175 (7.9%) 20 (0.9%) 195 (8.8%) 

Goods vehicle 109 (4.9%) 101 (4.6%) 210 (9.5%) 
Bus 5 (0.2%) 164 (7.4%) 169 (7.6%) 

Motorcycle 87 (3.9%) 12 (0.5%) 99 (4.5%) 
Total 1085 (48.9%) 1132 (51.1%) 2217 (100.0%) 
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It should be noted that the endogeneity issue is often overlooked in conflict analysis 

(Yuan et al., 2022). There has been trade-off between prediction and casusality for the 

inclusion of an endogenous variable in model estimation (Mannering et al., 2020). To 

capture as many explanatory variables that are recognized to affect safety (Mannering 

and Bhat, 2014), it is crucial to use speed-related variables in conflict analysis. Hence, 

optimal traffic management and control measures can be implemented to mitigate the 

real-time crash risk (Formosa et al., 2020; Mohammadian et al., 2021; Fu and 

Sayed, 2022). To address the endogeneity issue, while the instantaneous speed of 

leading and following vehicles are used to calculate time-to-collision, average speed 

in preceding one second (i.e., 30 frames) of conflict vehicles are used as explanatory 

variables in the model. Table 5-2 shows the descriptive statistics of variables 

considered. Angular speed refers to the rate of change in vehicle direction (degree per 

second), where clockwise is considered as positive. 

 

 
Figure 5.4 Vehicle trajectories for different toll payment types 
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Figure 5.5 Vehicle trajectories for different vehicle classes 
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Table 5-2 Descriptive statistics of variables considered 

Factor 
Rear-end interaction and conflict Sideswipe interaction and conflict 
Mean S.D. Min. Max. Mean S.D. Min. Max. 

At least one vehicle uses electronic 
toll payment = 1; Otherwise = 0 0.28 0.45 0 1 0.44 0.50 0 1 

Zone 1 0.39 0.49 0 1 0.37 0.48 0 1 
Zone 2 0.33 0.47 0 1 0.40 0.49 0 1 
Zone 3 0.28 0.45 0 1 0.23 0.42 0 1 

Leading 
vehicle 

Average speed 
(meter/second) 8.56 3.17 0.59 21.6 11.01 2.79 2.46 19.54 

Acceleration 
(meter/second2) -0.82 1.04 -15.96 3.69 -0.44 2.01 -19.95 24.93 

Angular speed 
(degree/second) 4.46 2.55 0 34.18 4.75 3.07 0.0 28.36 

Private car (1 if yes, 0 
otherwise) 0.66 0.47 0 1 0.68 0.47 0 1 

Taxi (1 if yes, 0 
otherwise) 0.09 0.29 0 1 0.08 0.27 0 1 

Goods vehicle (1 if 
yes, 0 otherwise) 0.19 0.39 0 1 0.13 0.34 0 1 

Bus (1 if yes, 0 
otherwise) 0.03 0.17 0 1 0.05 0.22 0 1 

Motorcycle (1 if yes, 
0 otherwise) 0.03 0.17 0 1 0.06 0.23 0 1 

Following 
vehicle 

Average speed 
(meter/second) 12.41 2.60 2.53 20.86 11.81 2.75 1.41 24.47 

Acceleration 
(meter/second2) -0.26 3.10 -19.55 48.12 -0.24 3.88 -87.75 37.15 

Angular speed 
(degree/second) 4.32 2.96 0 28.82 5.04 3.61 0.0 28.27 

Private car (1 if yes, 0 
otherwise) 0.63 0.48 0 1 0.66 0.48 0 1 

Taxi (1 if yes, 0 
otherwise) 0.13 0.34 0 1 0.08 0.27 0 1 

Goods vehicle (1 if 
yes, 0 otherwise) 0.09 0.29 0 1 0.09 0.28 0 1 

Bus (1 if yes, 0 
otherwise) 0.02 0.13 0 1 0.02 0.14 0 1 

Motorcycle (1 if yes, 
0 otherwise) 0.13 0.33 0 1 0.16 0.36 0 1 

Number of 
observations 

No conflict 2726 (77.1%) 347 (24.5%) 
Slight conflicts 698 (19.7%) 692 (48.8%) 
Severe conflicts 111 (3.1%) 378 (26.7%) 
Total observations 3535 1417 

5.4 Results and discussion 

Correlated grouped random parameter models with heterogeneity in the means are 

established for rear-end and sideswipe conflicts respectively. Table 5-3 shows the 

results of goodness-of-fit of correlated and uncorrelated grouped random parameter 
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multinomial logit models with heterogeneity in the means for rear-end and sideswipe 

conflicts. Results of likelihood ratio test indicate that correlated grouped random 

parameter multinomial logit models (Chi-square test statistic is 21.58 for rear-end 

conflict and 10.76 for sideswipe conflict) are superior, compared to the uncorrelated 

models, both at the 0.01 level of significance. Results of parameter estimation, 

Cholesky matrix, and marginal effects are given in Table 5-4 to Table 5-10. 

 

Table 5-3 Model performance metrics between uncorrelated and correlated models 

Metric 
Rear-end conflicts model Sideswipe conflicts model 

Uncorrelated model Correlated model Uncorrelated model Correlated model 
McFadden R2 0.591 0.594 0.253 0.257 
Degrees of freedom 27 28 21 22 
Log likelihood at convergence -1588.24 -1577.45 -1162.69 -1157.31 
AIC 3230.5 3210.9 2367.4 2358.6 
Chi-square test statistic 21.58* 10.76* 

Note: * Statistical significance at the 0.01 level 

5.4.1 Toll payment types 

As shown in Table 5-4, likelihoods of rear-end conflicts (slight conflict: 𝛽𝛽 = 2.98, 

severe conflict: 𝛽𝛽 = 1.89) significantly increase when at least one electronic toll 

payment vehicle is involved. This could be because users of electronic toll payment 

tend to be more determined for the lane choice, and they may drive aggressively (they 

do not have to stop at the toll booths). As also shown in Figure 5.3, electronic toll 

collection lanes are located at the two sides of toll plaza (i.e., Lane 1, Lane 2, and 

Lane 8). Frequent lane changes may be required for the users of electronic toll 

payment (to reach the toll booths). On the other hand, users of manual toll payment 

may drive cautiously as they must keep checking the queue length of different toll 

booths, looking for that with the shortest queue (Hong Kong Transport Department, 

2020). In addition, subscription fee is required for electronic toll payment in Hong 

Kong. Drivers using electronic toll payment are also frequent users of the tunnel. 

Hence, they should be more familiar with the route and traffic environment, compared 
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to users of manual toll payment. Previous studies indicate that driver attention would 

decrease when route familiarity increases. Also, risk-taking behavior would be 

prevalent (Martens and Fox, 2007; Charlton and Starkey, 2013; Weng et al., 2014; 

Intini et al., 2018).  

5.4.2 Vehicle speed 

For the effects of vehicle dynamics, likelihood of rear-end conflict (slight conflict: 

𝛽𝛽 = −0.40; severe conflict: 𝛽𝛽 = −0.67) significantly decreases when the average 

speed of leading vehicle increases. In contrast, average speed of following vehicle is 

positively associated with the likelihood of rear-end conflict (slight conflict: 𝛽𝛽 = 0.22; 

severe conflict: 𝛽𝛽 = 0.42). This should align with the failure mechanism of traffic 

conflicts and crashes (Xing et al., 2020a; Zheng et al., 2021). Just, it is important to 

recognize the potential endogeneity issue in real-time conflict analysis. In particular, 

one should be cautious about the model interpretation when speed-related variables, 

which were often used to calculate time-to-collision, are included as the explanatory 

variables in the model (Mannering and Bhat, 2014; Mannering et al., 2020). In 

addition, effects of average speed on conflict risk are normally distributed. For 

example, as shown in Table 5-5, there is a 26.6% chance that likelihood of severe 

sideswipe conflict would increase when the average speed of leading vehicle 

increases. This is because vehicles involving in sideswipe conflicts are not necessarily 

travelling on the same traffic lane (Jiménez et al., 2013).  

5.4.3 Vehicle acceleration rate 

Furthermore, effects of acceleration rates on the likelihood of rear-end conflicts are 

captured. For instance, the likelihood of slight rear-end conflict is negatively 

associated with the acceleration rate of leading vehicle, while the risk of severe rear-

end conflict would increase when the acceleration rate of following vehicle increases. 

This could be attributed to the geometric design and traffic characteristics of toll plaza 
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area. As the toll plaza is close to the portal of underwater tunnel portal, and the road 

segment (a diverging area with frequent lane changing and weaving activities) 

connecting tunnel portal and toll booths is a moderate crest curve, sight distance can 

be constrained. Therefore, positive association between accelerate rate of following 

vehicle and conflict risk is prevalent. Such finding is indicative to the implementation 

of remedial measures like advanced warning signs, pavement markings, and rumble 

strips that can increase the awareness of driver and overall safety (Wong et al., 2006; 

Wong et al., 2012). Effects of angular speeds on the likelihood of rear-end conflicts 

also show unobserved heterogeneity. For example, there is a 20.9% chance that the 

risk of severe rear-end conflict would increase when the angular speed of following 

vehicle increases. This could be attributed to the compensatory strategy adopted by 

the driver when one perceives that the lateral and steering controls are unstable (Chen 

et al., 2021), especially for the driver of following vehicle. 

5.4.4 Vehicle class 

For the effect of vehicle class, likelihood of rear-end conflict increases when the 

following vehicle is a goods vehicle. Also, likelihood of sideswipe conflict increases 

when the following vehicle is a good vehicle. This could be attributed to the 

prevalence of blind spots and reduced vision for the drivers of heavy goods vehicles. 

It is difficult for the drivers to observe surrounding traffic, especially for weaving and 

lane-changing. Therefore, awareness and attentiveness of drivers could be impaired 

(Cook et al., 2011; Marshall et al., 2020). Such finding is indicative to vehicle design 

and innovations like advanced driver assistance system that could mitigate the risk 

attributed to reduced vision and inattentiveness (Summerskill et al., 2016). In addition, 

likelihood of sideswipe conflict of taxi is lower. This could be because of the 

compensatory behaviors adopted by the professional drivers who usually have better 

hazard perception skills (Borowsky and Oron-Gilad, 2013). Furthermore, risk of rear-

end and sideswipe conflicts of motorcycle is higher. It could be because motorcyclists 
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are more aggressive and risk-taking in general. As revealed in the crash statistics, 

crash involvement rates of motorcycle have been the highest among all vehicle classes 

in Hong Kong (Hong Kong Transport Department, 2020). Effective enforcement and 

educational strategies targeting to vulnerable driver groups, like commercial vehicle 

drivers and repeated conviction of traffic rules, can be implemented by the transport 

operators and government authorities. Therefore, safe driving can be promoted, and 

crash risk can be mitigated in the long run (Chen et al., 2020). 

5.4.5 Spatial location 

For the effect of vehicle’s spatial location, likelihoods of rear-end and sideswipe 

conflicts at Zone 1 and Zone 2 are significantly lower, compared to Zone 3, at which 

lane changing activities are constrained. This may be contradictory to the findings of 

previous studies that crash risk is positively associated with lane changing and 

weaving activities at the merging areas (Arbis and Dixit, 2019; Gu et al., 2019), 

diverging areas (Xing et al., 2020b), and road work zones (Park et al., 2018; Weng et 

al., 2018). It could be because of the interactions between the vehicles stopped at 

Zone 3 to wait for the toll payment and those approaching from the tunnel portal. 

Speeds of the latter are usually higher. Also, driver capability to maintain lateral and 

steering stability could be impaired when the pavement markings are erased (Chang 

et al., 2019). Nevertheless, it is worth exploring on the association between geometric 

design, lane-changing activities, driver capability, and potential crash risk when 

information on visual perception and visual motor skills is available in naturalistic 

driving study and driving simulator experiment (Chen et al., 2021) 

5.4.6 Unobserved heterogeneity 

Furthermore, heterogeneity in the means of the random parameters is also considered. 

Factors that affect the means of the random parameters are identified. For example, 

for the likelihood of severe rear-end conflict, mean of the random parameter of 
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angular speed is lower when an interaction is at Zone 1. For the likelihood of slight 

rear-end conflict, even that the mean coefficient of “following vehicle being a goods 

vehicle” is not significant (𝜷𝜷𝑛𝑛 being zero), heterogeneity in the mean 𝜣𝜣𝑛𝑛 is statistically 

significant (Alnawmasi and Mannering, 2019). Mean of the random parameter of 

“following vehicle being a goods vehicle” increases when an interaction is at Zone 1. 

For the likelihood of slight and severe sideswipe conflict, means of the random 

parameter of “average speed of following vehicle” increase when an interaction is at 

Zone 2. Heterogeneity in the mean estimation indicate the possible correlation 

between random parameter and exogeneous variables (Mannering et al., 2016). In 

this study, intervention effect by spatial location on the association between random 

parameter of vehicle dynamics and likelihood of conflict is revealed. Results are 

indicative to the real-time estimation of traffic conflict risk (Alsaleh and Sayed, 2021). 

 

Correlations between random parameters are also considered. Table 5-6 to Table 5-9 

present the estimates of Cholesky matrix and correlation coefficient matrix. For the 

rear-end conflicts, as shown in Table 5-6, there is no significant correlation between 

the random parameters for slight rear-end conflict (“average speed of leading vehicle” 

and “following vehicle being a goods vehicle”), off-diagonal elements for slight rear-

end conflict are constrained to zero. As shown in Table 5-7, for the likelihood of 

severe rear-end conflict, random parameter of average speed of leading vehicle is 

negatively correlated to that of the angular speed of following vehicle (𝛾𝛾 = −0.672, 

𝑇𝑇𝑜𝑜𝑟𝑟 = −0.96). This implies the diminishing effects for the unobserved heterogeneity 

of average speed of leading vehicle on that of the angular speed of following vehicle. 

For the sideswipe conflicts, as shown in Table 5-8, off-diagonal elements of Cholesky 

matrix are not constrained. As shown in Table 5-9, for the likelihood of severe 

sideswipe conflict, there is negative correlation between the random parameters of 

average speeds of leading and following vehicles (𝛾𝛾 = −0.305, 𝑇𝑇𝑜𝑜𝑟𝑟 = −0.77). Again, 

effects of unobserved heterogeneity of these two factors on severe sideswipe conflict 
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are offsetting. Such findings may be attributed to the compensatory strategies adopted 

by the drivers under emergency, especially for experienced drivers (Chen et al., 2021). 

Yet, it is worth exploring the effectiveness of advanced driver assistance system in 

improving the driver performance and mitigating the safety risk, especially for lane 

changing and weaving activities in diverging area, when comprehensive data on 

driver visual perception, and perception-motor skills are available from naturalistic 

driving study and driving simulator experiment (Chen et al., 2019b; Chen et al., 

2019a; Mohammadian et al., 2021). 

 

Table 5-4 Results of parameter estimation of correlated model with heterogeneity in the 

means for rear-end conflicts 

Variable 
Slight conflict Severe conflict 

Coefficient t-stat Coefficient t-stat 
Constant -1.73 -2.92 -7.19 -5.30 
At least one electronic toll payment vehicle 
involved 2.98 6.73 1.89 2.19 

Zone 1 -3.91 -10.22 -4.92 -4.39 
Zone 2 -1.44 -6.07 -3.31 -4.57 
Characteristics of leading vehicle 
Average speed -0.40 -5.79 -0.94 -3.38 

Standard deviation 0.45 11.45 0.78 4.37 
Acceleration -0.30 -3.82 - - 
Angular speed -0.09 -2.76 - - 
Motorcycle - - 4.57 4.55 
Characteristics of following vehicle 
Average speed 0.22 3.63 0.42 2.64 
Acceleration - - 0.11 2.64 
Angular speed - - -0.57 -1.77 

Standard deviation - - 0.70 2.78 
Goods vehicle 0.18 0.41 2.11 2.22 

Standard deviation 3.13 8.25 - - 
Motorcycle 1.74 5.50 3.19 4.84 
Heterogeneity in the means of the random parameter 
Following vehicle being a goods vehicle: Zone 1 2.94 3.27 - - 
Angular speed of following vehicle: Zone 1 - - -0.59 -3.68 
Model statistics 
McFadden R2 0.594 
Number of observations 3535 (605 groups) 
Degree of freedom 28 
Log-likelihood at zero (LL(0)) -3883.59 
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Variable 
Slight conflict Severe conflict 

Coefficient t-stat Coefficient t-stat 
Log-likelihood at convergence (LL(β)) -1577.45 
Distributional effect of the random parameters across observations 
 Below zero Above zero Below zero Above zero 
Average speed of leading vehicle 81.3% 18.7% 88.6% 11.4% 
Angular speed of following vehicle - - 79.1% 20.9% 
Goods vehicle 47.7% 52.3% - - 

 

Table 5-5 Results of parameter estimation of correlated model with heterogeneity in the 

means for sideswipe conflicts 

 

  

Variable 
Slight conflict Severe conflict 

Coefficient t-stat Coefficient t-stat 
Zone 1 -1.91 -5.15 -3.94 -6.74 
Zone 2 -2.77 -2.82 -4.10 -2.62 
Characteristics of leading vehicle 
Average speed - - -0.25 -2.86 

Standard deviation - - 0.40 4.42 
Bus - - 3.23 3.78 
Motorcycle 1.69 3.06 2.18 2.84 
Characteristics of following vehicle 
Average speed 0.17 2.76 0.30 2.11 

Standard deviation 0.13 8.53 0.40 4.95 
Taxi - - -1.92 -2.59 
Goods vehicle 1.10 2.60 1.36 1.87 
Motorcycle 0.90 1.93 - - 
Heterogeneity in the means of the random parameter 
Average speed of following vehicle: Zone 2 0.20 2.17 0.25 1.93 
Model statistics 
McFadden R2 0.257 
Number of observations 1417 (356 groups) 
Degree of freedom 22 
Log-likelihood at zero (LL(0)) -1556.73 
Log-likelihood at convergence (LL(β)) -1157.31 
Distributional effect of the random parameters across observations 
 Below zero Above zero Below zero Above zero 
Average speed of leading vehicle - - 73.4% 26.6% 
Average speed of following vehicle 9.5% 90.5% 22.7% 77.3% 
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Table 5-6 Cholesky matrix of random parameters for rear-end conflict (t-statistic in 

parentheses) 

Variable 
Severe conflict 

Average speed of 
leading vehicle 

Angular speed of 
following vehicle 

Severe 
conflict 

Average speed of 
leading vehicle 0.783 (4.37) 0 

Angular speed of 
following vehicle -0.672 (-2.58) 0.207 (4.50) 

 

Table 5-7 Correlation coefficient matrix of random parameters for rear-end conflict 

Variable 
Severe conflict 

Average speed of 
leading vehicle 

Angular speed of 
following vehicle 

Severe 
conflict 

Average speed of 
leading vehicle 1.00 -0.96 

Angular speed of 
following vehicle -0.96 1.00 

 

Table 5-8 Cholesky matrix of random parameter for sideswipe conflict (t-statistic in 

parentheses) 

Variable 
Severe conflict 

Average speed of 
leading vehicle 

Average speed of 
following vehicle 

Severe 
conflict 

Average speed of 
leading vehicle 0.397 (4.42) 0 

Average speed of 
following vehicle -0.305 (-3.57) 0.254 (6.12) 

 

Table 5-9 Correlation coefficient matrix of random parameters for sideswipe conflict 

Variable 
Severe conflict 

Average speed of 
leading vehicle 

Average speed of 
following vehicle 

Severe 
conflict 

Average speed of 
leading vehicle 1.00 -0.77 

Average speed of 
following vehicle -0.77 1.00 

 

Table 5-10 Marginal effects on the probabilities of rear-end conflicts and sideswipe 

conflicts 

Variable 
Rear-end conflict Sideswipe conflict 

No 
conflict 

Slight 
conflict 

Severe 
conflict 

No 
conflict 

Slight 
conflict 

Severe 
conflict 

At least one electronic toll 
payment vehicle involved 
[SL] 

-0.0548 0.0578 -0.0029 - - - 

At least one electronic toll 
payment vehicle involved -0.0042 -0.0019 0.0060 - - - 
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Variable 
Rear-end conflict Sideswipe conflict 

No 
conflict 

Slight 
conflict 

Severe 
conflict 

No 
conflict 

Slight 
conflict 

Severe 
conflict 

[SE] 
Zone 1 [SL] 0.0673 -0.0687 0.0014 0.0930 -0.1095 0.0165 
Zone 1 [SE] 0.0126 0.0018 -0.0143 0.0406 0.0340 -0.0747 
Zone 2 [SL] 0.0323 -0.0335 0.0011 0.1020 -0.1586 0.0566 
Zone 2 [SE] 0.0100 0.0026 -0.0127 0.0405 0.0836 -0.1241 
Characteristics of leading vehicle 
Average speed [SL] 0.0649 -0.0661 0.0012 - - - 
Average speed [SE] -0.0144 -0.0042 0.0186 0.0438 0.0816 -0.1255 
Acceleration [SL] -0.0171 0.0179 -0.0008 - - - 
Angular speed [SL] 0.0241 -0.0252 0.0011 - - - 
Bus [SE] - - - -0.0047 -0.0110 0.0157 
Motorcycle [SL] - - - -0.0066 0.0120 -0.0055 
Motorcycle [SE] -0.0021 -0.0005 0.0026 -0.0018 -0.0071 0.0089 
Characteristics of following vehicle 
Average speed [SL] -0.1719 0.1795 -0.0076 -0.2599 0.4106 -0.1507 
Average speed [SE] -0.0461 -0.0144 0.0605 -0.1412 -0.2733 0.4145 
Acceleration [SE] 0.0001 0.0002 -0.0003 - - - 
Angular speed [SE] -0.0105 -0.0047 0.0153 - - - 
Taxi [SE] - - - 0.0029 0.0043 -0.0072 
Goods vehicle [SL] -0.0097 0.0106 -0.0009 -0.0087 0.0145 -0.0058 
Goods vehicle [SE] -0.0023 -0.0010 0.0033 -0.0026 -0.0072 0.0098 
Motorcycle [SL] -0.0156 0.0168 -0.0012 -0.0120 0.0199 -0.0079 
Motorcycle [SE] -0.0040 -0.0022 0.0062 - - - 
Note: “SL” denotes slight conflict; “SE” denotes severe conflict; bold values indicate direct average 
marginal effects. 

5.5 Concluding remarks 

This study examines the safety risk of tunnel toll plaza based on the high-resolution 

trajectory data captured using drone. The correlated grouped random parameters 

multinomial logit model with heterogeneity in the means is adopted, accounting for 

the effects of repeated observations, unobserved heterogeneity, and correlation among 

random parameters at the road user level. Associations between possible influencing 

factors, occurrence and severity of traffic conflicts at the tunnel toll plaza are 

measured. In particular, modified traffic conflict indicator is proposed to account for 

the effects of dimensions (both width and length) and longitudinal and angular 

movement of interacting vehicles when estimating the conflict risk. This should 
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improve the accuracy of conflict risk estimation, compared to the conventional 

(vehicle) centroid-based approach. In addition, effect of traffic conflict type (rear-end 

and sideswipe conflicts) on the association is considered.  

 

Results indicate that when at least one electronic toll payment user is involved, 

likelihood of rear-end conflict would increase. As expected, likelihood of conflict is 

negatively associated with the average speed of leading vehicle, and positively 

associated with that of following vehicle. However, effects of average speed, 

acceleration rate, and angular speed on the conflict risks are random. These could be 

attributed to the compensatory behavior adopted by the drivers in emergency. 

Furthermore, conflict risks generally increase when goods vehicle and motorcycle are 

involved. This may be because of the reduced vision of goods vehicle drivers and 

risk-taking behaviors of motorcyclists. Nevertheless, correlated approach with 

heterogeneity in the means allows additional flexibility when capturing unobserved 

heterogeneity at the road user level. There are negative correlations between the 

random parameters of severe rear-end and sideswipe conflicts. 

 

It is recommended that vehicle design could be enhanced, and advanced driver 

assistance system could be introduced to mitigate the risk attributed to the reduced 

vision of drivers, especially for heavy vehicles including buses and heavy goods 

vehicles. Findings are also indicative to the remedial design and measures for tunnel 

toll plazas including lane markings and advanced warning signs that can guide the 

drivers to the correct toll booths, and therefore reduce the risks of conflicts attributed 

to frequent lane changing and weaving activities. 
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Chapter 6  Conclusions and Recommendations 

6.1 Conclusions 

In this study, attempts have been made to assess the safety of highway merging and 

diverging areas using advanced econometric methods.  

 

Chapter 2 has carried out a comprehensive literature review and gap analysis in the 

areas of highway safety analysis. The literature on the highway safety analysis at 

merging and diverging areas based on crash data is reviewed. Then, the surrogate 

safety measures and traffic conflict technique for safety analysis are discussed. Next, 

the literature with respect to analytic methods and critical methodological issues 

relating to highway safety analysis is reviewed. Finally, several research gaps are 

identified. 

 

In Chapter 3, several factors that affect the crash injury severity of single-vehicle and 

multi-vehicle crashes at ramp areas are considered. Random parameters multinomial 

logit regression model with heterogeneity in means and variances is adopted to 

measure the association between possible influencing factors and crash severity at 

ramp areas based on the crash data from the North Carolina State of the United States 

in 2016-2018, with which the effects of unobserved heterogeneity and temporal 

instability are considered. Factors including driver characteristics, vehicle attributes, 

environmental conditions, roadway design, and crash circumstances are considered. 

Results indicate that there are considerable differences for the effects of aberrant 

driving, vehicle type, area type and crash location on the likelihood of injury between 

single-vehicle and multi-vehicle crashes. Additionally, there are opposite effects for 

the crashes in rural areas on the likelihood of injury between single-vehicle and multi-

vehicle crashes. This justifies the need of developing and implementing targeted 
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traffic control and management strategies that can reduce the risk of single-vehicle 

and multi-vehicle crashes separately. Furthermore, partially constrained modeling 

approach provides an efficient way to test for temporally shifting parameters by 

combining all data and defining parameters for each period. Results of partially 

constrained model and transferability assessments indicate that there is remarkable 

temporal instability. Effects of influencing factors on crash severity may change over 

time. By exploring the temporal transferability of crash injury severity model, 

understanding of the shifts in the effects of significant factors on the crash outcome 

could be enhanced. 

 

In Chapter 4, the endogeneity effect in a crash severity model is explored. This study 

developed a random parameter recursive bivariate probit model with heterogeneity in 

the means and variances, for modeling crash injury severity of single-vehicle crashes 

at highway ramp areas. That way, the indirect effects of exogenous factors on injury 

severity through crash types can be accounted for. Furthermore, the effects of 

individual heterogeneity of the explanatory variables are considered in the 

simultaneous equation system. The results indicate that the correlation of error terms 

in the simultaneous model is significant. This justifies the endogenous effect of crash 

type on crash injury severity at ramp areas. The factors including driver characteristics, 

vehicle attributes, environmental conditions, roadway design, and crash circumstances 

that affect crash type and injury severity at ramp areas, are revealed. For example, 

there exist significant effects for driver gender, driving impairment and risky driving 

behavior, seat belt use, and road alignment on the likelihood of crash type and injury 

severity. This should shed light on the development and implementation of effective 

remedial measures like driver training and education, variable speed limits, and 

warning signs to mitigate the risk at hazardous locations at ramps. Furthermore, the 

prevalence of endogeneity may imply the multifaceted nature of some road safety 

problems. Even if there is endogenous effect for crash type on injury severity, some 
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interventions including guardrails and rumble strips can have direct effects on the 

probabilities of both rollover and injury crashes. 

 

In Chapter 5, the safety risk of tunnel toll plaza is examined based on the high-

resolution trajectory data captured using drone. The correlated grouped random 

parameters multinomial logit model with heterogeneity in the means is adopted, 

accounting for the effects of repeated observations, unobserved heterogeneity, and 

correlation among random parameters at the road user level. Associations between 

possible influencing factors, occurrence and severity of traffic conflicts at the tunnel 

toll plaza are measured. In particular, modified traffic conflict indicator is proposed to 

account for the effects of dimensions (both width and length) and longitudinal and 

angular movement of interacting vehicles when estimating the conflict risk. This 

should improve the accuracy of conflict risk estimation, compared to the conventional 

(vehicle) centroid-based approach. In addition, effect of traffic conflict type (rear-end 

and sideswipe conflicts) on the association is considered. Results indicate that when at 

least one electronic toll payment user is involved, likelihood of rear-end conflict 

would increase. As expected, likelihood of conflict is negatively associated with the 

average speed of leading vehicle, and positively associated with that of following 

vehicle. However, effects of average speed, acceleration rate, and angular speed on 

the conflict risks are random. These could be attributed to the compensatory behavior 

adopted by the drivers in emergency. Furthermore, conflict risks generally increase 

when goods vehicle and motorcycle are involved. This may be because of the reduced 

vision of goods vehicle drivers and risk-taking behaviors of motorcyclists. 

Nevertheless, correlated approach with heterogeneity in the means allows additional 

flexibility when capturing unobserved heterogeneity at the road user level. There are 

negative correlations between the random parameters of severe rear-end and 

sideswipe conflicts. It is recommended that vehicle design could be enhanced, and 

advanced driver assistance system could be introduced to mitigate the risk attributed 
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to the reduced vision of drivers, especially for heavy vehicles including buses and 

heavy goods vehicles. Findings are also indicative to the remedial design and 

measures for tunnel toll plazas including lane markings and advanced warning signs 

that can guide the drivers to the correct toll booths, and therefore reduce the risks of 

conflicts attributed to frequent lane changing and weaving activities. 

6.2 Findings and contributions 

This research has made significant contributions to the fields of safety analysis of 

highway merging and diverging areas through three studies. 

 

The study on transferability of crash injury severity model at ramps contributes to the 

field by addressing the issues regarding the accuracy and reliability of crash injury 

severity models. The contribution of this study is twofold. Firstly, differences in the 

association measure of injury severity at ramp areas between single-vehicle and multi-

vehicle crashes are evaluated. Results indicate that there are considerable differences 

for the effects of aberrant driving, vehicle type, area type and crash location on the 

likelihood of injury between single-vehicle and multi-vehicle crashes. Secondly, 

issues of unobserved heterogeneity and transferability for the analysis of crash injury 

severity at ramp areas are addressed. Results of partially constrained model and 

transferability assessments indicate that there is remarkable temporal instability. 

Effects of influencing factors on crash severity may change over time. 

 

The study on the endogeneity effect in a crash severity model contributes to the field 

by examining the indirect effects of exogenous factors on injury severity through 

crash types. The results indicate that the correlation of error terms in the simultaneous 

model is significant. This justifies the endogenous effect of crash type on crash injury 

severity at ramp areas. The factors including driver characteristics, vehicle attributes, 

environmental conditions, roadway design, and crash circumstances that affect crash 
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type and injury severity at ramp areas, are revealed. In addition, a random parameter 

recursive bivariate probit model with heterogeneity in the means and variances is 

developed to explore the effects of individual heterogeneity of the explanatory 

variables in the simultaneous equation system. 

 

The study on unobserved heterogeneity at the road user level contributes to the field 

by exploring associations between possible influencing factors and severity of traffic 

conflicts at the tunnel toll plaza. In particular, modified traffic conflict indicator is 

proposed to account for the effects of dimensions (both width and length) and 

longitudinal and angular movement of interacting vehicles when estimating the 

conflict risk. In addition, the effect of traffic conflict type (rear-end and sideswipe 

conflicts) on the association is considered. Furthermore, correlated approach with 

heterogeneity in the means allows additional flexibility when capturing unobserved 

heterogeneity at the road user level. 

6.3 Limitations and recommendations 

6.3.1 Limitations 

Despite the contributions to literature, the discussion of this research should take into 

account its limitations. 

 

Regarding the study of crash injury severity model, information on real-time traffic 

characteristics (e.g., traffic flow and speed) and vehicle conditions (e.g., vehicle 

motion and position) that could affect ramp-area crash type and injury severity, are 

unavailable. They are crucial for the prediction of crash circumstances, impact force 

in the collision, and thus the crash outcome. In particular, spatial transferability allows 

for the application of models developed in one geographic location to be effectively 

used in other areas, enhancing the generalizability and applicability of the findings. 
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However, due to data limitations, the heterogeneity and stability of factors influencing 

injury severity in different spatial contexts is not examined in this study. Moreover, 

problems of some zero observations and imbalanced crash data (for more severe 

injury crashes) are prevalent. 

 

With respect to the traffic conflict analysis, this study is limited to a single toll plaza 

area with specific geometry, lane, and toll booth configuration in Hong Kong. To 

generalize the findings for practical applications, it is worth investigating for the 

effects of geometric design, and configurations (i.e., lane allocation, traffic signs, 

pavement markings, and speed limit) on the risk of conflict when the trajectory data at 

other locations are available. Furthermore, information about driver characteristics 

obtained from the video is very limited. Effects of driver attention, visual perception, 

and perception-motor skill could be explored when comprehensive driving data are 

obtained from naturalistic driving study and driving simulator experiment in the 

future. Last but not least, a widespread concern in conflict-based analysis is that there 

may be endogeneity issues in statistical modeling as most of the conflict indicators are 

computed from vehicle speed and distances between vehicles. It is crucial to address 

the endogeneity issue in the model using appropriate statistical corrections (Guevara 

and Ben-Akiva, 2012; Song et al., 2024a). 

6.3.2 Recommendations for future research 

The current work can be further extended in the future, contributing to a more 

comprehensive and nuanced understanding of highway safety at merging and 

diverging areas.  

 

In future study, it is worth exploring the transferable real-time safety evaluation 

models for proactive road safety. The transferability of real-time evaluations allows 

for identification of potential safety hazards across different regions or time periods 
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before accidents. For instance, developing transferability procedures for highway 

safety models can enable the adaptation of successful safety prediction models from 

one location to another, enhancing the efficiency of safety assessments on diverse 

road networks. In addition, by providing real-time safety status analysis results based 

on current traffic conditions, authorities can take timely and effective measures to 

address safety concerns and ensure the well-being of road users. 

 

In addition, it may be worth exploring the effect of vehicle maneuvers including lane 

changing and weaving on the crash severity when comprehensive vehicle trajectory 

data are available. Furthermore, advanced data analytic approaches (e.g., generative 

models) can be adopted to throw more light towards the resolution of the problem of 

data imbalance. 
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Appendix 

Table A1 Results of temporally unconstrained parameter estimation for single-vehicle crashes 

for 2016 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 0.50 2.25    
Constant [SI] -2.79 -2.29    
Random parameter (normally distributed)      
Vehicle type      
Car [SI] -4.14 -1.48 -0.0023 -0.0007 0.0030 
Standard deviation 2.49 1.66    
Heterogeneity in the mean of random 
parameter      

Car [SI]: Aggressive driving 3.16 1.89    
Age      
Below 25 [SI] 1.29 1.94 -0.0051 -0.0025 0.0075 
Above 59 [SI] 1.63 2.13 -0.0032 -0.0017 0.0049 
Alcohol or drugs      
Driving under the influence of alcohol or drugs 
[NI]  -0.82 -3.31 -0.0154 0.0144 0.0010 

Aberrant driving behavior      
Oversteer [NI] -0.43 -1.79 -0.0086 0.0082 0.0004 
Inattentiveness [NI] -0.60 -2.42 -0.0112 0.0106 0.0005 
Safety belt      
Used [SI] -2.28 -3.28 0.0153 0.0079 -0.0232 
Road surface condition      
Dry [SI] 2.11 1.94 -0.0178 -0.0099 0.0277 
Road classification      
Interstate highway [NI] 0.33 2.19 0.0378 -0.0360 -0.0018 
Collision type      
Overturned [NI] -1.25 -4.74 -0.0201 0.0186 0.0016 
Ramp type      
Off-ramp [NI] 0.45 1.97 0.0461 -0.0439 -0.0022 
On-ramp [NI] 0.78 3.26 0.0506 -0.0484 -0.0022 
Model statistics      
Number of observations 993 
Degree of freedom 16 
Log-likelihood at zero (LL(0)) -1090.9220 
Log-likelihood at convergence (LL(β)) -618.2351 
McFadden R2 0.4333 
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Table A2 Results of temporally unconstrained parameter estimation for single-vehicle crashes 

for 2017 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 1.42 11.41    
Constant [SI] -1.94 -2.03    
Random parameter (normally distributed)      
Road surface condition      
Dry [SI] -1.73 -1.80 -0.0228 -0.0081 0.0309 
Standard deviation 3.25 1.98    
Heterogeneity in the mean of random 
parameter      

Dry [SI]: Merging lane between on-ramp and 
off-ramp 3.68 1.59    

Gender      
Female [NI] -0.38 -2.45 -0.0255 0.0243 0.0012 
Alcohol or drugs      
Driving under the influence of alcohol or drugs 
[NI]  -0.64 -2.46 -0.0109 0.0099 0.0011 

Aberrant driving behavior      
Oversteer [NI] -0.54 -2.42 -0.0127 0.0122 0.0005 
Aggressive driving [NI] -1.01 -3.51 -0.0140 0.0129 0.0010 
Safety belt      
Used [SI] -4.34 -3.16 0.0253 0.0092 -0.0345 
Area type      
Rural [NI] 0.22 1.35 0.0148 -0.0139 -0.0009 
Terrain      
Flat [MI] -0.44 -1.71 0.0076 -0.0077 0.0001 
Collision type      
Overturned [NI] -1.30 -4.55 -0.0179 0.0172 0.0008 
Ramp type      
Off-ramp [SI] 2.41 2.16 -0.0170 -0.0066 0.0236 
Model statistics      
Number of observations 1035 
Degree of freedom 14 
Log-likelihood at zero (LL(0)) -1137.0637 
Log-likelihood at convergence (LL(β)) -629.3213 
McFadden R2 0.4465 
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Table A3 Results of temporally unconstrained parameter estimation for single-vehicle crashes 

for 2018 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 1.05 5.95    
Constant [SI] -1.73 -3.29    
Random parameter (normally distributed)      
Area type      
Rural [NI] -2.03 -1.99 0.0099 -0.0097 -0.0001 
Standard deviation 2.34 2.04    
Heterogeneity in the mean of random 
parameter      

Rural [NI]: Used safety belt 3.43 2.60    
Heterogeneity in the variance of random 
parameter      

Rural [NI]: Female driver 0.66 1.69    
Rural [NI]: Speed limit above 60 mph -0.56 -1.48    
Alcohol or drugs      
Driving under the influence of alcohol or drugs 
[NI]  -0.75 -2.60 -0.0112 0.0103 0.0008 

Aberrant driving behavior      
Aggressive driving [NI] -0.74 -2.03 -0.0069 0.0065 0.0004 
Safety belt      
Used [SI] -2.05 -3.96 0.0111 0.0080 -0.0191 
Road surface condition      
Dry [NI] -0.53 -3.12 -0.0488 0.0461 0.0027 
Lighting condition      
Dark without streetlights [SI] 1.36 2.71 -0.0058 -0.0061 0.0118 
Terrain      
Flat [NI] 0.68 1.99 0.0079 -0.0075 -0.0005 
Collision type      
Overturned [NI] -1.87 -4.38 -0.0180 0.0172 0.0008 
Crash location      
On traffic lanes [NI] 0.45 2.60 0.0398 -0.0379 -0.0019 
Model statistics      
Number of observations 1142 
Degree of freedom 15 
Log-likelihood at zero (LL(0)) -1254.6152 
Log-likelihood at convergence (LL(β)) -680.6298 
McFadden R2 0.4575 
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Table A4 Results of temporally unconstrained parameter estimation for multi-vehicle 

crashes for 2016 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 1.02 9.02    
Constant [SI] -3.62 -6.58    

Random parameter (normally distributed)      
Speed Limit      

Above 60 mph [NI] -1.28 -4.40 -0.0050 0.0049 0.0001 
Standard deviation 1.22 1.67    

Heterogeneity in the mean of random 
parameter      

Above 60 mph [NI]: Involvement of alcohol or 
drugs for drivers -1.61 -2.73    

Above 60 mph [NI]: Two vehicles 1.75 3.71    
Above 60 mph [NI]: Clear weather 0.40 1.95    

Gender      
Female driver involved [MI] 0.16 1.74 -0.0172 0.0173 -0.0001 

Maneuver      
Making maneuver action [SI] -1.15 -1.89 0.0017 0.0008 -0.0025 

Truck      
Truck involved [SI] 1.52 2.49 -0.0009 -0.0005 0.0014 

Lighting condition      
Dusk or dawn [SI] 1.65 2.11 -0.0005 -0.0002 0.0008 
Dark with streetlights [NI] -0.45 -3.29 -0.0070 0.0069 0.0001 

Area type      
Rural [NI] -0.29 -2.92 -0.0110 0.0109 0.0002 

Road classification      
Interstate highway [NI] 0.23 2.27 0.0180 -0.0177 -0.0003 

Road configuration      
One-way mainline [NI] 0.47 4.98 0.0268 -0.0265 -0.0003 

Collision type      
Sideswipe collision [NI] 0.84 6.51 0.0193 -0.0190 -0.0004 
Angle collision [NI] -0.40 -3.33 -0.0106 0.0104 0.0002 

Ramp type      
On-ramp [MI] 0.16 1.72 -0.0065 0.0065 0.0000 

Model statistics      
Number of observations 4172 
Degree of freedom 18 
Log-likelihood at zero (LL(0)) -4583.4105 
Log-likelihood at convergence (LL(β)) -2154.5966 
McFadden R2 0.5299 

Parameter defined for: [NI] No injury; [MI] Minor Injury; [SI] Severe Injury 
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Table A5 Results of temporally unconstrained parameter estimation for multi-vehicle 

crashes for 2017 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 1.38 11.49    
Constant [SI] -1.63 -2.82    

Random parameter (normally distributed)      
Lighting condition      

Dark with streetlights [NI] -2.26 -1.56 -0.0041 0.0040 0.0001 
Standard deviation 4.27 1.89       

Speed limit         
Above 60 mph [NI] -1.81 -2.25 -0.0165 0.0157 0.0007 
Standard deviation 3.09 3.57       

Heterogeneity in the mean of random 
parameter         

Dark with streetlights [NI]: Two vehicles 4.26 1.68       
Above 60 mph [NI]: Truck involved -0.59 -1.81       
Above 60 mph [NI]: Two vehicles 1.92 3.44       
Above 60 mph [NI]: On traffic lanes 1.34 1.76       

Heterogeneity in the variance of random 
parameter         

Above 60 mph [NI]: Making maneuver action -0.31 -1.87       
Gender         

Female driver involved [NI] -0.51 -4.69 -0.0476 0.0464 0.0012 
Alcohol or drugs         

Involvement of alcohol or drugs for drivers [NI] -1.71 -3.93 -0.0034 0.0033 0.0001 
Maneuver         

Making maneuver action [SI] -1.11 -2.49 0.0026 0.0020 -0.0046 
Truck         

Truck involved [SI] 1.53 3.59 -0.0017 -0.0014 0.0031 
Number of vehicles involved         

Two vehicles [SI] -1.55 -3.28 0.0038 0.0028 -0.0067 
Lighting condition         

Dusk or dawn [NI] -0.58 -2.81 -0.0035 0.0034 0.0001 
Road configuration         

One-way mainline [NI] 0.56 5.29 0.0260 -0.0254 -0.0006 
Collision type         

Sideswipe collision [NI] 1.19 7.60 0.0192 -0.0185 -0.0007 
Angle collision [NI] -0.51 -3.93 -0.0108 0.0106 0.0003 

Ramp type         
On-ramp [MI] 0.21 1.93 -0.0062 0.0064 -0.0002 

Model statistics      
Number of observations 4491 
Degree of freedom 21 
Log-likelihood at zero (LL(0)) -4933.8678 
Log-likelihood at convergence (LL(β)) -2322.1116 
McFadden R2 0.5294 

Parameter defined for: [NI] No injury; [MI] Minor Injury; [SI] Severe Injury 
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Table A6 Results of temporally unconstrained parameter estimation for multi-vehicle 

crashes for 2018 

Variable Coefficient t-statistic 
Marginal effects 

No 
injury 

Minor 
injury 

Severe 
injury 

Constant [NI] 1.49 14.1    
Constant [SI] -1.78 -3.01    

Random parameter (normally distributed)      
Speed Limit      

Above 60 mph [MI] 0.77 2.85 -0.0066 0.0068 -0.0002 
Standard deviation 1.41 1.85       

Heterogeneity in the mean of random 
parameter         

Above 60 mph [MI]: Truck involved 0.69 2.79       
Above 60 mph [MI]: Two vehicles -1.74 -5.01       

Heterogeneity in the variance of random 
parameter         

Above 60 mph [MI]: Straight horizontal 
alignment  -0.70 -2.49       

Above 60 mph [MI]: Rear-end collision 0.78 1.76       
Gender         

Female driver involved [NI] -0.37 -4.01 -0.0358 0.0348 0.0010 
Alcohol or drugs         

Involvement of alcohol or drugs for drivers [NI] -1.19 -4.21 -0.0034 0.0032 0.0001 
Maneuver         

Making maneuver action [SI] -1.27 -2.97 0.0034 0.0010 -0.0043 
Truck         

Truck involved [SI] 2.09 5.12 -0.0035 -0.0010 0.0045 
Number of vehicles involved         

Two vehicles [SI] -1.54 -2.99 0.0052 0.0013 -0.0065 
Lighting condition         

Dark without streetlights [NI] -0.29 -1.98 -0.0036 0.0035 0.0001 
Area type         

Rural [NI] -0.18 -1.92 -0.0073 0.0070 0.0003 
Road configuration         

One-way mainline [NI] 0.29 3.17 0.0159 -0.0155 -0.0004 
Collision type         

Sideswipe collision [NI] 1.04 7.7 0.0190 -0.0181 -0.0009 
Angle collision [NI] -0.68 -5.7 -0.0153 0.0149 0.0004 

Model statistics      
Number of observations 4878 
Degree of freedom 18 
Log-likelihood at zero (LL(0)) -5359.0307 
Log-likelihood at convergence (LL(β)) -2376.8405 
McFadden R2 0.5565 

Parameter defined for: [NI] No injury; [MI] Minor Injury; [SI] Severe Injury 
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Figure A1 Illustration of possible conflict scenarios 
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Figure A2 Formulation for modified TTC 
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