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 I 

Abstract 

The global pursuit of carbon neutrality aims to mitigate greenhouse gas emissions and establish 

a sustainable future. Solar energy is one of the most promising approaches, as it produces 

minimal greenhouse gas emissions. Installing solar photovoltaic panels on rooftops maximizes 

solar irradiation reception while reducing energy transmission losses and costs. Given the high 

installation costs of solar photovoltaic (PV) panels, accurately estimating solar potential to 

determine optimal installation locations is crucial to ensure economic benefits exceed 

installation costs, making the investment viable. 

 

Accurate solar potential estimation faces several challenges: i) Various natural (such as clouds 

and weather) and artificial factors (building, morphological features) affect solar irradiation, 

making quantification and establishing non-linear relationships challenging. ii) Current 

algorithms struggle with the spatio-temporal characteristics of solar irradiation, which is crucial 

for effective estimation. iii) Large-scale solar potential estimation involves processing vast data, 

posing computational challenges. 

 

This study employs a hierarchical assessment framework based on machine learning to estimate 

solar potential, including physical and geographical potential. The major achievements of this 

thesis are: 

 

(1) Four machine learning models (Gradient Boosting Machine (GBM), Random Forest 

(RF), Support Vector Regression, Multilayer Perceptron) were used to estimate land 

surface solar irradiation in Australia, China, and Japan using meteorological data, 

Himawari-8 satellite cloud and aerosol products, and solar observation data. GBM 

showed the highest accuracy, suggesting its effectiveness for large regions and 

applicability globally with similar datasets. This method generated accurate and 

continuous solar maps to display solar resource distributions at large-scale regions. 

 

(2) To address geographic heterogeneity in estimating land surface solar irradiation, the 
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Dual-gate Temporal Fusion Transformer (DGTFT) was proposed. Applied to datasets 

from Australia, China, and Japan, the proposed network outperformed traditional 

machine learning methods, with a minimum Coefficient of determination (R2) increase 

of 23.88%, Mean Absolute Error (MAE) decrease of 43.18%, and Normalized Root 

Mean Square Error (nRMSE) decrease of 62.79%. These results suggest that the 

proposed network not only improves estimation performance but also provides 

interpretable results for understanding the network mechanism. 

 

(3) This study proposes a parametric-based data and model dual-driven method to estimate 

annual rooftop solar irradiation at a fine spatial resolution. Three machine learning 

methods (RF, GBM, and AdaBoost) were cross-compared based on R2, MAE, and 

computation time. In a Hong Kong case study, RF outperformed GBM and AdaBoost, 

with R2 =0.77 and MAE=22.83 kWh/m2/year. Training and prediction time for rooftop 

solar irradiation was within 13 hours, achieving a 99.32% reduction compared to the 

physical-based hemispherical viewshed algorithm, indicating the proposed method's 

accuracy and speed for large datasets. 

 

(4) The DGTFT model was employed to estimate hourly rooftop solar irradiation, 

capturing spatio-temporal distribution variations. The proposed method achieved 

highly accurate results, with R2=0.90, MAE=26.90 MJ/m2, RMSE=32.39 MJ/m2, and 

was 56 times faster than the model-driven method. These results demonstrate the high 

spatio-temporal resolution rooftop solar maps' reliability for solar potential assessment. 

 

This thesis offers promising approaches for estimating solar potential from physical to 

geographical potential at high spatio-temporal resolution, utilizing Geographic Information 

System (GIS) representation of multi-source data and exploring non-linear relationships using 

Geospatial Artificial Intelligence (GeoAI) methods. The findings provide a reliable reference 

for planning and installing solar PV systems. 
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Chapter 1 Introduction 

 1.1 Research Background 

As society and the economy continue to develop, the demand for energy has been steadily 

increasing. However, the excessive exploitation of traditional energy sources, such as oil and 

coal, has resulted in the depletion of these energy reserves on our planet. Additionally, the 

emissions of pollutants during the utilization of conventional energy sources have inflicted 

severe damage to our environment, giving rise to pressing issues like climate change and air 

pollution. In response to these challenges, a total of 195 countries entered into the "Paris 

Agreement", in 2015, which aims to limit the global average temperature increase in this 

century to below 2 degrees Celsius and strive for carbon neutrality by 2050 (Holden et al., 

2018). To achieve this target, developing and utilizing low-pollution, renewable energy sources 

have become a critical and promising solution in addressing energy shortages and 

environmental pollution, as well as ensuring the sustainability of urban development (Vaka et 

al., 2020). 

 

Solar energy stands out as one of the most widely distributed energy sources, distinguished by 

its near ubiquity. Sunlight reaches nearly every corner of the globe, thereby making solar energy 

a global energy potential. Unlike other renewable sources such as wind and hydropower, solar 

energy is not bound by geographic location. Consequently, even remote regions have the 

potential to efficiently harness solar energy resources. Furthermore, solar energy generation 

does not produce direct greenhouse gas emissions, aligning with carbon neutrality initiatives 

and assisting in mitigating the impacts of climate change. Therefore, solar energy is widely 

recognized as the future cornerstone of renewable energy. 

 

Despite the significant potential of solar energy development in reducing carbon emissions, the 

current efficiency of solar energy utilization remains a challenge. Globally, renewables 

(excluding hydroelectricity) represented 7.5% of primary energy consumption in 2022, with 

solar power alone contributing 28.9% to global renewable energy generation, as reported in the 

2023 Statistical Review of World Energy (Statistical Review of World Energy, 2023). However, 
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even in developed cities where natural conditions and economic incentives favor solar energy, 

actual adoption rates remain low. Take Hong Kong, for example, which enjoys favorable 

climatic conditions with abundant sunlight throughout much of the year and ample rooftop 

space suitable for solar photovoltaic panels. Despite these advantages, Hong Kong's utilization 

of solar power lags behind. According to the Hong Kong Energy End-Use Data 2023 (Hong 

Kong Energy End-use Data, 2023), solar power accounted for only 15.1% of the city's 

renewable energy production in 2021, and renewable energy as a whole comprised just 1% of 

Hong Kong's total energy consumption. These disparities underscore the need for more 

effective policies and incentives to enhance solar energy adoption, both globally and locally, to 

achieve substantial reductions in carbon emissions and foster sustainable energy transitions. 

 

To fully harness solar energy resources, it is imperative to conduct precise assessments of solar 

potential. Solar potential assessment entails the estimation of solar radiation in specific regions 

and the analysis of the spatial and temporal distribution of solar resources. This assessment 

provides valuable information for selecting suitable sites for solar photovoltaic (PV) installation 

and serves as the foundation for evaluating the potential of solar energy utilization. 

 

In current research, solar potential is categorized into three levels (Izquierdo et al., 2008): 

physical potential, geographic potential, and technical potential. These three levels represent a 

progressive relationship in the journey from natural resources to usable energy. The physical 

potential represents the total amount of radiation reaching the Earth's surface, primarily 

influenced by solar radiation intensity and local weather conditions. The geographical potential 

quantifies the total solar radiation that can be received by building rooftops and façades. In 

urban areas, solar panels installed on building rooftops and façades are affected by surrounding 

obstructions, reflections, and the tilt of the installation location of solar PV panels, which leads 

to a decrease in receiving solar radiation. Technical potential involves the conversion of solar 

radiation into usable electricity or heat using rooftop solar panels or solar thermal collectors. 

This level is mainly influenced by the type and performance of the equipment and the coverage 

area of the installation. Technical potential belongs to the field of semiconductor materials and 

this field is out of the boundary of the research region of this study, so this study just focuses 
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on the physical potential and geographical potential. 

 

 1.1.1 Solar physical potential 

Researchers have conducted extensive studies on solar irradiation estimation, achieving 

significant advancements in developing models over the past two decades (Zhang et al., 2017). 

Traditional methods for solar irradiation estimation can generally be categorized into three 

groups: empirical (Bailek et al., 2018; Benatiallah et al., 2019; Makade et al., 2019), physical 

(Ceballos et al., 2004; Cogliani et al., 2007; Yeom et al., 2016), and machine learning models 

(Voyant et al., 2017; Guermoui et al., 2020; Zhou et al., 2021). 

 

Several researchers have utilized empirical models to estimate solar irradiation using data from 

meteorological stations. These models include cloudiness-based, sunshine-based, temperature-

based, and models based on multiple meteorological parameters (Fariba et al., 2013). 

Specifically, meteorological parameters-based models employ multiple meteorological 

variables to estimate solar radiation, such as the Swartman and Ogunlade model (Swartman & 

Ogunlade, 1967), Sabbagh model (Sabbagh et al., 1977), Lewis model (Lewis et al., 1983), and 

Garg and Garg model (Garg & Garg, 1982). In sunshine-based models, Joes et al. (2016) 

compared the Ångström–Prescott model with ten modified versions based on sunshine duration 

to estimate daily global and monthly averaged solar irradiation in Alagoas State, Northeastern 

Brazil. While these models generally yield more accurate results, their applicability is limited 

to regions with available solar irradiation records. 

 

Considering the limitations of the previously mentioned models, temperature-based models are 

proposed as a convenient and accessible alternative. Marius et al.(2013) introduced a 

temperature-based model for global solar irradiance and applied it to estimate daily irradiation 

values. These models operate on the premise that the difference between maximum and 

minimum temperatures influences the fraction of extraterrestrial radiation reaching the ground. 

However, other factors such as cloudiness, humidity, latitude, elevation, topography, and 

proximity to large bodies of water can also affect temperature differences (Allen et al., 1997). 
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Cloud coverage, in particular, significantly impacts solar irradiation estimation (Wong et al., 

2016) and can be readily obtained from satellite or ground-based measurements. For instance, 

Nikitidou et al. (2019) developed a novel method for estimating surface irradiance under clear 

skies based on short-term cloudiness forecasting. Despite the convenience of empirical models 

for estimating solar irradiation, their applicability is often confined to small regions, making it 

challenging to adapt the same empirical model to different areas. 

 

Additionally, numerous studies have focused on physical models for estimating solar irradiation. 

These models include radiation transmission and parameterized models such as the METSTA 

model (Maxwell et al., 1998), Bird model (Richard et al., 1987), Yang model (Yang et al., 

2001), and Page model (Page et al., 1997). Some researchers have utilized data from both 

meteorological stations and satellites. For instance, Chen et al. (2014) used MODIS 

atmospheric products, including cloud fraction, cloud optical thickness (COT), precipitable 

water vapor, and aerosol optical thickness (AOT), to estimate the monthly mean global solar 

radiation over China. Zhang et al. (2015) proposed an integrated approach combining a digital 

elevation model with MODIS atmospheric water vapor and aerosol products to estimate 

shortwave solar radiation on clear-sky days. Similarly, Feng and Wang (2021) merged ground-

based sunshine duration observations with cloud fraction and aerosol optical depth to produce 

high-resolution, long-term surface solar radiation data over China. While satellite images used 

in these models provide extensive and continuous spatial distribution information, they 

generally estimate solar radiation at low temporal resolution, limiting their ability to achieve 

near real-time monitoring. 

 

Furthermore, numerous studies have focused on traditional time series methods for estimating 

solar radiation. These methods include autoregressive integrated moving average (ARIMA) 

(Shadab et al., 2020), autoregressive moving average (ARMA) (Ji and Chee, 2011), 

autoregressive moving average with exogenous variables (ARMAX) (Silva et al., 2022), and 

autoregressive fractionally integrated moving average (ARFIMA) (Ismail and Karim, 2020). 

Time series models predict solar radiation based on historical data. While these models have 

generally been successful in estimating solar radiation, they fail to account for the significant 
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impacts of meteorological and geographical changes on solar radiation. 

 

Given the versatility of machine learning in achieving accurate predictions, numerous machine 

learning methods have been developed for estimating solar irradiation in recent years (Zhou et 

al., 2021). Machine learning models can be broadly categorized into three types: ANN-based 

(Behrang et al., 2010; Wang et al., 2015; Khosravi et al., 2018), Kernel-based (Prada et al., 

2018; Rohani et al., 2018; Sun et al., 2018), and Tree-based (Sharafati et al., 2019; Wu et al., 

2019; Yagli et al., 2019). Ghimire et al. (2019) utilized a convolutional network (CNN) to 

extract features related to future solar radiation changes and incorporated these into a Long 

Short-Term Memory network for half-hourly global radiation forecasting. Their results 

indicated that this deep learning hybrid model outperformed all other models and is suitable for 

monitoring solar-powered systems. Similarly, Ravinesh et al. (2019) proposed an extreme 

learning machine (ELM) model to predict long-term solar radiation over Australia using data 

from the Moderate Resolution Imaging Spectroradiometer and geo-temporal input variables 

such as periodicity, latitude, longitude, and elevation. The ELM model demonstrated superior 

prediction accuracy compared to other artificial intelligence algorithms like Random Forest 

(RF), Piecewise Linear Functions of Regression Trees (M5 Tree), and Multivariate Adaptive 

Regression Spline. In addition, Badia and Xavier (2014) developed an ANN-based model using 

daily weather forecasts to predict daily global solar radiation, showing satisfactory accuracy. 

Compared to physical and empirical models, machine learning models offer moderate accuracy 

and broader application for solar irradiation prediction, making them a popular choice. 

Ramedani et al. (2014) compared the performance of support vector regression (SVR) and 

fuzzy linear regression for global solar radiation prediction in Iran, with the SVR using both 

polynomial (SVR_poly) and radial basis function (SVR_rbf) kernels. Their findings showed 

that the SVR_rbf model performed better than fuzzy linear regression.  Mawloud et al. (2018) 

employed the Gaussian Process Regression (GPR) algorithm with various combinations of test 

data to predict daily global solar radiation on a horizontal surface, finding that the model based 

on sunshine duration, relative humidity, and minimum air temperature outperformed other 

combinations. Lee et al. (2020) compared the prediction performance of ensemble methods 

(Boosted Trees, Bagged Trees, Random Forest, and Generalized Random Forest) with common 
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methods (Gaussian process regression and SVR) for estimating solar irradiation in the United 

States. Using hourly data on cloud cover, temperature, wet-point temperature, relative humidity, 

wind speed, and visibility, the results showed that ensemble learning models had superior 

performance. Park et al. (2020) introduced a multistep-ahead solar radiation forecasting model 

based on the light gradient boosting machine, which outperformed other tree-based and deep 

learning models. 

 

However, these traditional methods just investigate the non-linear relationship between many 

input parameters and solar radiation and ignore the time series characteristic of solar radiation, 

which may lead to suboptimal performance in solar radiation estimation. To solve this problem, 

some time series deep learning methods are proposed and show good performance in extracting 

time series features, such as Long Short-term Memory (LSTM), Temporal Convolutional 

Network (TCN), and Recurrent Neural Network (RNN). Alper et al. (Alper et al., 2023) used 

LSTM, Multilayer Perceptron (MLP), and adaptive neuro-fuzzy inference system with grid 

partition, and fuzzy c-means to predict the one-hour-ahead solar radiation in Tarsus. The results 

illustrate that the LSTM model in 1-h-ahead solar radiation forecasting yielded the highest 

accuracy performance. Similarly, Kong et al. (Kong et al., 2023) predicted solar radiation for 

space heating with a thermal storage system based on the Temporal convolutional network-

attention model. The results show that the prediction performance of this model is superior to 

other algorithms, including the RNN, LSTM, and gated recurrent unit, with Root Mean Square 

Error (RMSE) = 45.07 W/m2. However, these time series deep learning methods cannot 

consider the impact of the geographic variation in different regions on the distribution of solar 

radiation, and this geographic variation also plays a significant role in empirical methods 

(Ertekin and Yaldız, 1999). Additionally, a common limitation of both machine learning 

methods and time series deep learning is poor interpretability because of their black-box nature. 

Therefore, recent studies have focused on the interpretability of deep learning models because 

it helps to understand and trust the decisions made by these models. For example, Temporal 

Fusion Transformer (TFT) (Lim et al., 2021) is a novel attention-based deep learning method 

that shows good prediction performance using multiple time-series data with static data and can 

provide an interpretable model. The TFT method offers a robust solution for time-series 
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estimation by efficiently capturing complex temporal dependencies, combining the features of 

static data and time-varying data, and incorporating an interpretable explanation of temporal 

dynamics and high-performance forecasting over multiple horizons. 

 

 1.1.2 Solar geographic potential on building rooftop 

1.1.2.1 Impact factors on rooftop solar irradiation 

The spatio-temporal distribution of rooftop solar irradiation is influenced by various factors, 

including shading effects from buildings and mountains (Walch et al., 2020), rooftop slope and 

aspect (Mohajeri et al., 2018), and numerous urban morphological features (Sarralde et al., 

2015), such as the Sky View Factor (SVF). In urban environments, the complexity of artificial 

and natural structures increases shaded areas on rooftops, thereby reducing their solar potential. 

Previous studies (Cheng et al., 2006; Robinson, 2006; Martins et al., 2014; Chatzipoulka et al., 

2016; Mohajeri et al., 2016) have shown that these morphological features significantly affect 

the solar energy potential of buildings. For instance, Zhu et al. (2020) explored the relationship 

between solar capacity and urban morphology, demonstrating that urban morphological 

characteristics significantly influence solar capacity under varying weather conditions. 

Similarly, Poon et al. (2020) conducted a parametric study in Singapore to assess how urban 

morphological features correlate with annual average solar irradiation on rooftops and façades, 

finding that SVF is the most strongly correlated factor. Additionally, shading from nearby 

buildings and mountains directly and significantly reduces the received solar energy. 

Understanding the impact of these shades is crucial for accurately estimating and deploying 

photovoltaic (PV) arrays on rooftops. Li et al. (2015) highlighted the substantial influence of 

shading effects caused by building structures on installed power capacity and proposed a 

method for accurately computing shaded areas to estimate solar potential. Furthermore, the 

Digital Surface Model (DSM), along with rooftop slope and aspect, is crucial in calculating 

solar irradiation, as shown by Rich et al. (1994). In summary, urban morphological features, 

shading effects, DSM, and rooftop slope and aspect are key parameters in estimating rooftop 

solar irradiation. However, few studies have specifically investigated their impact on evaluating 

rooftop solar potential. Our study not only examines the correlation between these parameters 
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and rooftop solar irradiation but also develops an optimal machine learning model to explore 

their relationships with solar irradiation. 

   

1.1.2.2 Morphological Tessellation 

In urban morphology studies (Morganti et al., 2017; Yang et al., 2021; Chen et al., 2023), 

density is often defined by the ratio of footprint area to unbuilt space, with calculations typically 

based on a grid-defined boundary. Leng et al. (2020) utilized a 150m radius to examine urban 

morphological features such as building site cover, floor area ratio, building height, road 

network density, road height-width ratio, green space ratio, and total wall surface area. While 

this scale selection is grounded in the empirical evidence from previous studies (Wei et al., 

2016; Javanroodi et al., 2018; Lima et al., 2018;), it lacks robust scientific backing and may not 

be universally applicable to other complex regions. To address this issue, Yong et al. (2017) 

analyzed the impact of spatial scale on estimation accuracy at resolutions of 100, 200, 300, 400, 

500, and 600 meters. Their findings indicated that R square values improve as the spatial scale 

increases, suggesting that coarser scales yield better prediction accuracy. However, using a 

specific spatial scale to calculate density can result in average values that overlook site-specific 

and building-related morphological features. 

 

To mitigate this limitation, Fleischmann et al. (2020) introduced the morphological tessellation 

(MT) method, which derives spatial units from building footprints for urban morphometric 

analysis. Their study applied the MT method to generate morphological tessellation cells across 

four different urban tissues (organic tissue of Niederdorf, compact tissue of Langstrasse, 

detached villas of Hottingen, and mixed post-war development of Friesenberg) and visually 

inspected these cells. The results suggested that the MT method could be effectively applied to 

similar urban tissues in other regions. Additionally, Boccalatte et al. (2022) employed the MT 

method to calculate morphological features and evaluate the impact of urban morphology on 

rooftop solar radiation in Geneva. Given the MT method's ability to assess the influence of each 

building on its surroundings and accurately calculate building-related density information, our 

study adopts this approach to determine morphological features related to building density. 
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1.1.2.3 Methods for estimating rooftop solar potential 

Methods for estimating rooftop solar potential can be categorized into four types: sampling 

method, geostatistical method, physical modeling method, and machine learning method 

(Gassar et al., 2021). The sampling method involves calculating an estimate of the available 

rooftop areas for a selected region and then extrapolating this estimate to cover the entire area. 

For instance, Izquierdo et al. (2008; 2011) employed stratified statistical sampling to determine 

the technical potential for rooftop PV energy production in Spain. Their findings revealed that 

the total available rooftop area in Spain was approximately 571 km², with the potential to 

generate around 4% of the country's total electrical energy through PV systems. While sampling 

methods are useful for estimating available rooftop areas over large regions, they provide only 

rough approximations of rooftop solar potential and do not meet the requirements for highly 

accurate estimations of rooftop solar irradiation. 

 

Geostatistical methods perform spatial statistical analysis to predict solar potentials through 

techniques such as spatial interpolation and statistical clustering. Fathizad et al. (2017) 

developed an air temperature-based model to estimate solar radiation and evaluated solar 

mapping performance using eight geostatistical methods: Inverse Distance Weighted, Global 

Polynomial Interpolation, Radial Basis Function, Local Polynomial Interpolation, Ordinary 

Kriging, Simple Kriging, Universal Kriging, and Empirical Bayesian Kriging. Their results 

indicated that the Radial Basis Function method was the most effective, with an R2 of 0.904, 

Mean Absolute Error (MAE) of 3.02, and RMSE of 0.39%. Additionally, Mishra et al. (2020) 

utilized statistical clustering to determine the available rooftop areas for estimating solar 

potential in Uttarakhand, India. Their study revealed that 58% of rooftop areas receive solar 

radiation greater than 4 kWh/m²/day year-round, capable of generating 57% of the region's 

electrical energy consumption. While geostatistical methods focus on the total solar energy 

received and provide probabilistic estimations of solar potential, they, like sampling methods, 

are limited to rough evaluations and face challenges in offering accurate, high spatio-temporal 

resolution estimates for individual buildings. 

Geographic Information System (GIS)-based physical modeling methods are regarded as 
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optimal for estimating rooftop solar irradiation due to their high accuracy and potential for 

automated application across various areas. For example, Saadaoui et al. (2019) assessed the 

solar PV potential on flat roofs in BenGuerir, Morocco, using GIS and photogrammetry, finding 

that more than 345 GWh of electricity could be generated annually. Similarly, Hong et al. 

(2017) developed a method for estimating hierarchical rooftop solar PV potential—

encompassing physical, geographic, and technical aspects—using Hillshade analysis in Seoul. 

Their results showed that the Gangnam district had physical, geographic, and technical 

potentials of 9, 287, 982 MWh, 4, 964, 118 m², and 1, 130, 371 MWh, respectively. While these 

methods yield accurate results and consider multiple factors affecting rooftop solar irradiation, 

they require significant computation time for reliable estimations. For instance, Tabik et al. 

(2012) used a Gradient Ascent algorithm on a GPU-CPU heterogeneous system to compute 

maximum irradiation, taking 2.477 seconds to calculate a Digital Elevation Model (DEM) of 

500 points. Consequently, these methods are more suited for micro-scale to medium-scale 

regions. Despite their accuracy and wide applicability, the significant execution time needed 

limits their use in large-scale regions. 

 

In recent years, machine learning methods have gained popularity in studies related to solar 

potential estimation due to their advantages of fast computation, scalability, and ability to 

deliver high-accuracy and reliable results. For instance, Liao et al. (2022) proposed a method 

to estimate continuous land surface solar irradiation in Australia and China using four machine 

learning techniques: Gradient Boosting Machine (GBM), Random Forest (RF), Support Vector 

Regression, and Multilayer Perceptron (MLP). Their findings highlighted GBM as the most 

accurate model, achieving a coefficient of determination (R2 ) > 0.7, with computation times 

under 10 seconds for processing extensive datasets. Similarly, Assouline et al. (2018) integrated 

solar models in GIS with the Random Forest algorithm to estimate rooftop solar potential at a 

resolution of 200×200 m² pixels in Switzerland. They estimated the total PV electricity 

production from building rooftops to be 16.29 TWh/year, capable of meeting 25.3% of the 

country's annual demand. Wang et al. (2018) introduced a PV power prediction model based 

on Gradient Boost Decision Trees, demonstrating good model interpretability, prediction 

accuracy, and stable error performance. Additionally, Babbar et al. (2021) employed Adaboost, 
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a hybrid of linear and non-linear machine learning models, for long-term solar power generation 

prediction, achieving superior performance with a MAPE of 8.88%. Compared to traditional 

methods, machine learning approaches excel in handling large datasets swiftly while 

maintaining high prediction accuracy. Thus, machine learning methods are increasingly 

recognized as suitable alternatives for assessing and estimating rooftop solar potential. 

 

1.2 Research Gaps and Motivation 

While numerous methods have been proposed for the estimation of solar potential, there remain 

several limitations in these approaches. The research motivations for this study are as follows: 

 

1) Research gaps for estimation of solar physical potential:  

 

• Although empirical methods for estimating solar irradiation have certain merits, they 

still have a weak capability to deal with a large geographical extent, such as an 

estimation covering the whole of Australia, China, and Japan. Physical methods 

generally combine with satellite images to estimate large-scale solar irradiation, while 

these images have a relatively low temporal resolution. In this regard, these methods 

are hard to meet the high accuracy requirement on solar irradiation estimation. 

 

• Although traditional machine learning methods provide good estimation results, they 

are limited in their ability to investigate the impact of geographic variability on solar 

irradiation. GeoAI models have been proven to outperform traditional non-spatial 

machine learning models in several energy-related tasks. This is because GeoAI 

methods can overcome the limitations of geographic heterogeneity by integrating 

spatial characteristics with temporal characteristics. However, model interpretability 

remains a major challenge in GeoAI study due to its black-box nature. Additionally, 

current interpretable AI models have not adequately considered the impact of 

geographic heterogeneity on solar radiation. At present, few algorithms can 

simultaneously address the geographic heterogeneity of spatio-temporal data 

estimation and the interpretability issues in machine learning. 
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2) Research gaps for estimation of solar geographic potential:  

 

• Morphological features, shade effects, DSM, and rooftop slope and aspect are 

significant parameters for estimating rooftop solar irradiation. However, quantifying 

these parameters poses a significant challenge. Furthermore, there are limited studies 

that simultaneously consider the multiple influences of building and terrain shadows, 

urban morphological parameters, meteorological conditions, and digital elevation 

models (DEM). 

 

• Despite the physical methods used for estimating building rooftop solar irradiation 

show good performance with high accuracy, these methods have the limitations of low 

computational efficiency.  

 

• Machine learning models used for estimating rooftop solar irradiation on buildings 

offer the significant advantage of rapid computation. However, these methods 

necessitate a substantial amount of ground truth data for modeling. The measurement 

of ground truth data for rooftop solar irradiation in large-scale regions still presents 

challenges due to the high cost of installing measurement equipment and limited access 

to rooftops.  

 

• Machine learning methods used for estimating high temporal resolution rooftop solar 

irradiation also exhibit drawbacks, including limited interpretability and a reduced 

capacity to handle both static and dynamic data.  

 

1.3 Research Objectives 

This study proposes a hierarchical assessment framework for the machine learning-based 

estimation of physical solar potential and geographical solar potential. The specific research 

objectives of our study are detailed as follows: 
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1) A machine learning-based study of the estimation of land surface solar irradiation at a large-

scale level 

• To explore the optimal method among the traditional machine learning methods, which 

was used for estimating hourly/daily land surface solar irradiation in Australia, China, 

and Japan, using multi-source data, including AOT from Himawari-8 meteorological 

satellite images, COT from Himawari-8 meteorological satellite images, clear-sky solar 

irradiation (CSI), and meteorological data (i.e., air temperatures, humidity, wind, and 

atmospheric pressure). 

 

• To derive solar maps in Australia, China, and Japan at various time scales (i.e., 

maximum and minimum monthly solar maps, seasonal solar maps, and annual solar 

maps), and analyze the distribution of the solar potential in these countries. 

 

• To propose a novel deep learning method, the dual-gate Temporal Fusion Transformer 

for estimating land surface solar irradiation. This method overcomes the limitation of 

interpretability of the general machine learning methods and enables the integration of 

static geographical features with time-varying features. 

 

2) A machine learning-based study of the estimation of rooftop solar irradiation at a city level 

 

• To quantify the relevant parameters for estimating rooftop solar irradiation at a fine 

resolution, including, hourly shadow from buildings and terrain from 7 am to 5 pm, 

and 46 urban morphological parameters detailed in Appendix 1. 

 

• To develop a fast and highly accurate estimation method for rooftop solar irradiation. 

This section contains the use of machine learning methods to estimate annual rooftop 

solar irradiation and the application of the proposed dual-gate Temporal Fusion 

Transformer to estimate hourly rooftop solar irradiation in Hong Kong.  
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1.4 Thesis Outline 

This thesis employs the hierarchical framework to investigate the physical solar potential and 

geographical solar potential based on machine learning methods using multi-source data. This 

thesis was organized as follows, and the technical route map is shown in Figure 1.  

 

Chapter 1 first introduces the importance of accurately estimating solar energy potential for 

achieving carbon neutrality. It then compares and analyzes the strengths and weaknesses of 

existing methods for estimating physical and geographical solar potential, considering both 

macro and micro perspectives. From a methodological viewpoint, it thoroughly reviews the 

current state of research on solar energy potential estimation techniques. Following analysis 

and discussion, a machine learning-based approach is selected as the technical route for 

conducting the specific research. The chapter also identifies gaps in existing studies and 

outlines the research objectives.  

 

Chapter 2 proposes a simple and effective method for the estimation of land surface solar 

irradiation based on machine learning models using meteorological data, Himawari-8 satellite 

cloud and aerosol products, and solar observation data in Australia, China, and Japan. The 

estimation performance of solar irradiation based on four machine learning models, i.e., 

Gradient Boosting Machine (GBM), Random Forest (RF), Support Vector Regression, and 

Multilayer Perceptron (MLP), were compared in terms of accuracy and computational 

efficiency. The estimation of monthly, seasonal, and annual solar irradiation at nationwide 

levels was generated.  

 

Chapter 3 proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel 

interpretable deep learning network, to improve hourly land surface solar irradiation estimation. 

The ablation experiments were conducted to select the optimal network structure. Applied to 

datasets from Australia, China, and Japan, accurately estimated annual land surface solar 

irradiation maps were generated. 
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After investigating the distribution of physical solar potential at the large-scale level in Chapter 

2 and Chapter 3, Chapter 4 and Chapter 5 give insights into the rooftop solar potential at the 

city level. Given the abundant solar resources identified in Hong Kong from the findings in 

Chapters 2 and 3, this city has been selected as the study case.  

 

Chapter 4 proposes a parametric-based method to estimate annual rooftop solar irradiation at a 

fine spatial resolution. This chapter quantifies the parameters of the shadow from buildings and 

terrain and 46 urban morphological parameters, selects the significant parameters using the RF 

method for machine learning training, and uses the optimal machine learning methods among 

RF, Gradient Boost Regression Tree (GBRT), and AdaBoost to generate the annual rooftop 

solar irradiation map in Hong Kong. 

 

Furthermore, Chapter 5 continues the exploration of rooftop solar potential by using the 

proposed DGTFT method to estimate hourly rooftop solar irradiation based on the data from 

Chapter 4. 

 

 Finally, Chapter 6 concludes with the major findings of the study, limitations, and scope for 

future research in solar potential estimation. 
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Figure 1 Technical route map 
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Chapter 2 Simplified estimation modeling of land surface 

solar irradiation 

Solar irradiation maps are essential geospatial datasets utilized in various research fields. 

Accurately estimating the continuous distribution of solar irradiation over large areas is 

challenging with traditional interpolation or extrapolation methods that rely on a limited 

number of observation stations. To address this issue, the author proposed a method leveraging 

four machine learning models,Gradient Boosting Machine (GBM), Random Forest (RF), 

Support Vector Regression (SVR), and Multilayer Perceptron (MLP), to estimate spatially 

continuous land surface solar irradiation. Clear-sky solar irradiation data, determined by time 

and location, along with cloud optical thickness (COT) and aerosol optical thickness (AOT) 

retrieved from Himawari-8 meteorological satellite images, were used in conjunction with 

observation station data for training and evaluation. Additionally, air temperatures, humidity, 

wind, and atmospheric pressure were quantified and integrated into the models to account for 

weather effects on land surface solar irradiation. This comparative study collected six years of 

historical data to estimate solar distribution at a 5-km spatial resolution in Australia, China, and 

Japan. Based on metrics such as the coefficient of determination (R2), normalized Root Mean 

Square Error (nRMSE), normalized mean bias error (nMBE), and time consumption (t), the 

results indicated that GBM achieved the highest accuracy with R2 across all stations, followed 

by RF, SVR, and MLP. This suggests that the proposed method can provide accurate and 

reliable land surface solar irradiation estimates, compared to theoretical values unaffected by 

atmospheric obstacles. The annual solar distribution maps produced demonstrate that the 

proposed method is both simple and effective for large geographical regions and can be applied 

globally with similar datasets. 

 

2.1 Study area and data 

This section outlines the study areas and the datasets utilized as input and output parameters for 

the machine learning models designated for estimating solar irradiation. Leveraging the 

advantages of satellite images, such as continuity, extensive coverage, and public availability, 

this study employed the geostationary satellite Himawari-8 to gather AOT and COT data, 
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updated hourly. Given the strong correlation between meteorological data and solar irradiation 

(Rabehi et al., 2020), variables including maximum temperature, minimum temperature, 

average humidity, average wind speed, and average atmospheric pressure were incorporated as 

input parameters. To enhance estimation accuracy, solar irradiation under clear-sky conditions 

was also computed and used as an input parameter for training the machine learning models. 

Additionally, the study utilized a Digital Surface Model (DSM) with 1m resolution in Hong 

Kong and the Hong Kong polygon shapefile. 

 

2.1.1 Study area 

To comprehensively evaluate machine learning-based solar estimation, this study focused on 

three countries: Australia, China, and Japan, which span significant geographical extents in 

both the southern and northern hemispheres. These countries cover a broad range of latitudes 

and encompass diverse local climates (Table 1), providing an excellent opportunity to validate 

the robustness and generalization of the proposed method. The study utilized data from 27 

stations that collected the necessary datasets over six continuous years, from 2015 to 2020. This 

included 13 stations in Australia (Figure 2), nine stations in China (Figure 3), and five stations 

in Japan (Figure 4). Table 1 presents the range of hourly observed solar irradiation in Australia 

and Japan, as well as the range of daily observed solar irradiation in China. 

 

Table 1 Climates and ranges of observed solar irradiation of the 27 meteorological stations 

Country Station Name Station ID Climate 

Range of observed 

solar irradiation 

(kWh/m2) 

Australia 

Adelaide S1 Mediterranean 0-1.38 

Alice Springs S2 Subtropical hot 

desert 

0-1.48 

Broome S3 Hot semi-arid 0-1.44 

Cape Grim S4 Temperate 

oceanic 

0-1.31 



 

 19 

Cocos Island S5 Tropical 

rainforest 

0-1.37 

Darwin S6 Tropical 

savanna 

0-1.45 

Geraldton S7 Mediterranean 0-1.44 

Kalgoorlie-

Boulder 

S8 Semi-arid 0-1.39 

Learmonth S9 Hot semi-arid 0-1.36 

Melbourne S10 Temperate 

oceanic 

0-1.41 

Rockhampton S11 Humid 

subtropical 

0-1.51 

Townsville S12 Tropical 

savanna 

0-1.57 

Wagga S13 Humid 

subtropical 

0-1.43 

China 

Beijing S1 Humid 

continental 

0-9.66 

Guangzhou S2 Humid 

subtropical 

0.24-7.81 

Harbin S3 Humid 

continental 

0.13-12.13 

Kau Sai Chau S4 Humid 

subtropical 

0-1.09 

King’s Park S5 Humid 

subtropical 

0-1.08 

Shanghai S6 Humid 

subtropical 

0.16-8.65 

Urumqi S7 Continental cold 0-11.75 



 

 20 

semi-arid 

Wenjiang S8 Humid 

subtropical 

0.21-8.39 

Wuhan S9 Humid 

subtropical 

0.14-8.40 

Japan 

Fukuoka S1 Humid 

subtropical 

0.00-1.09 

Ishigakijima S2 Humid 

subtropical 

0.00-1.14 

Minamitorishima S3 Tropical 

savanna 

0.00-1.10 

Sapporo S4 Humid 

continental 

0.00-1.14 

Tsukuba S5 Humid 

continental 

0.00-1.12 
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Figure 2 Distribution of the 13 stations in Australia 

 

 Figure 3 Distribution of the nine stations in China 
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 Figure 4 Distribution of the five stations in Japan 

2.1.2 Data 

2.1.2.1 Himawari-8 satellite products 

Himawari-8, a geostationary weather satellite operated by the Japan Meteorological Agency 

(Japan Meteorological Agency, 2021), covers a vast geographical area from 60°S to 60°N and 

80°E to 160°W, encompassing Oceania, Southeast Asia, and the Western Pacific. The 

Advanced Himawari Imager (AHI) on board Himawari-8 provides AOT and COT data. 

Satellite images in NetCDF format are freely accessible via the JAXA Himawari Monitor P-

Tree System (Copernicus Global Land Service, 2021). This study utilized Himawari-8 level-2 

AOT and COT data, which have a temporal resolution of 10 minutes and a spatial resolution of 

5 km, spanning from 2015 to 2020. Huang et al. assessed the quality of Himawari-8 cloud 

products and reported high consistency due to active Radar-LiDAR observations (Huang et al., 

2019). Additionally, Gao et al. confirmed that Himawari-8 provides reliable aerosol products 

for environmental research (Gao et al., 2021). 

 

2.1.2.2 Calculated hourly clear-sky solar irradiation 

Hourly clear-sky solar irradiation (CSI) for the 27 stations was computed using the Python 

library Pysolar. This library employs the Masters’ algorithm (Masters, 2013) for calculating 

solar irradiation and the algorithm by Reda and Andreas (Reda and Andreas, 2004) for 
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determining solar position. These algorithms utilize parameters such as longitude, latitude, and 

specific time to compute the Sun's location in the sky, solar irradiation under clear-sky 

conditions, and the irradiation reaching both horizontal and inclined surfaces on the ground 

(Bishop et al., 1997; Gilbert et al., 2004). The resulting hourly CSI dataset included attributes 

like station name, time, and hourly clear-sky solar irradiation from 2015 to 2020 for Australia, 

China, and Japan. Given that the solar irradiation data from Chinese stations have a daily 

temporal resolution, the estimated hourly solar irradiation was aggregated daily to maintain 

consistency. 

 

2.1.2.3 Observed land surface solar irradiation 

Surface solar irradiation measured by these stations served as the reference data for evaluating 

machine learning-based solar irradiation estimation models. In Australia, solar irradiation was 

monitored at 13 meteorological stations (Figure 2 and Table 1), operated by the Australian 

Government Bureau of Meteorology (Australian Government Bureau of Meteorology, 2022). 

The original data was collected at one-minute intervals, but for consistency with other datasets, 

this study resampled the data to hourly intervals. In China, solar irradiation data were 

categorized into two types: daily updates (Figure 3 and Table 1), which represent the highest 

temporal resolution available from the China National Meteorological Information Center 

(China National Meteorological Information Center, 2021), and hourly updates from the Hong 

Kong Observatory (Hong Kong Observatory, 2021). For Japan, hourly solar irradiation data 

were obtained from five stations operated by the Japan Meteorological Agency: Sapporo 

station, Tsukuba station, Fukuoka station, Ishigakijima station, and Minamitorishima station. 

This agency provides direct solar irradiation data and diffuse solar irradiation data separately, 

without global solar irradiation data. Hence, the sum of direct solar irradiation and diffuse solar 

irradiation was used as the proxy for global solar irradiation in this study. 

 

2.1.2.4 Meteorological data 

Some researchers (Dahmani et al., 2016; Deo et al., 2016; Biazar et al., 2020; Rabehi et al., 

2020; Zang et al., 2020) suggest that meteorological data are commonly used as the input 

parameters to estimate solar irradiation. Therefore, we employed meteorological data as the 
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input parameters, including the maximum temperature (MaxT), minimum temperature (MinT), 

average humidity (H), average wind speed (WS), and average atmosphere pressure (P). The 

hourly meteorological data in Australia, China, and Japan are purchased from the OpenWeather 

website (Openweather website, 2022). 

 

2.2 Methodology 

2.2.1 Construction of the datasets 

The dataset in each station consists of meteorological data, AOT, COT, CSI, and the observed 

land surface solar irradiation from 2015 to 2020. The original AOT and COT data have a 

temporal resolution of 10 minutes, whereas solar irradiation data is updated daily in China and 

hourly in Australia and Japan. To obtain the same resolution for building the machine learning 

models, all data in each country are aggregated to the same temporal resolution, with the lowest 

resolution serving as the benchmark, i.e., daily in China and hourly in Australia and Japan. 

 

2.2.2 Data pre-processing 

Pre-processing operations have been conducted to train machine learning models. First, missing 

values and default values of all datasets have been checked and removed. In addition, due to 

the inconsistency of data sources between the two countries, solar irradiation was first 

transformed to the same unit (kWh/m2). Note that the temporal resolution of solar irradiation in 

mainland China was daily updated while the data in Australia and Japan was hourly updated. 

Finally, in this study, the datasets were divided into training datasets and validation datasets by 

using K-fold cross validation (Rodriguez et al., 2009). Specifically, the original data set was 

randomly divided into K equal-sized sub-datasets. Of the K sub-datasets, a single sub-dataset 

was employed as the validation data to test the performance of machine learning, and the 

remaining K-1 sub-datasets were used as the training data. In this study, we set K equalling ten. 

2.2.3 Constructing machine-learning based estimation models 

In order to achieve accurate solar irradiation estimations with high computational efficiency, 

this study evaluated four different machine learning models to identify the most optimal one 
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for developing a reliable estimation model. Given the variability in estimation accuracy across 

different regions, a comprehensive comparison of the models was essential. All computations 

were conducted using the Python IDE, PyCharm (Pycharm, 2022). The Sklearn package 

(Sklearn, 2022) was utilized for training the machine learning models, while the Scipy package 

(Scipy, 2022) facilitated the calculation of estimation accuracy. To determine the best 

parameter values for the models, the GridSearchCV (GridSearchCV, 2022) function from the 

Sklearn package was employed. 

 

2.2.3.1 Construction of the Support Vector Regression 

To estimate land surface solar irradiation, the SVR (Awad et al., 2015) method was employed 

for regression. Our study followed these steps in the SVR process. First, meteorological data 

along with AOT, COT, and CSI data were used as independent variables to input into the model, 

while solar irradiation data from observation stations served as the label variables for the 

model's output. The regression model was then trained using a specific training function. The 

desired results were achieved by adjusting various kernel functions, gamma values, and the C 

parameter. The dataset was structured as {(Xi, Yi), i=1,...,n}, where Xi represents the vector of 

meteorological, AOT, COT, and CSI data, Yi corresponds to the solar irradiation data from the 

stations, and n is the total number of data points. In SVR, a linear function is defined as follows: 

 

𝑓(𝑥) = 𝜔 ∙ 𝑥 + 𝑏                          (2.2.3.1.1) 

 

where 𝜔 is the weight vector and b is the constant. The coefficients 𝜔 and b are estimated by 

the minimization process: 

 

𝑦 = 𝑚𝑖𝑛
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=0                  (2.2.3.1.2) 

{

𝑦𝑖 − 𝜔 ∙ 𝑥𝑖 − 𝑏 ≤ 𝜔 + 𝜉𝑖 , 𝑖 = 1,2, … , 𝑛

𝜔 ∙ 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜔 + 𝜉𝑖
∗, 𝑖 = 1,2, … , 𝑛

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛

              (2.2.3.1.3) 

 

where 𝜉  and C are the prescribed parameters, and 𝜉𝑖  and 𝜉𝑖
∗  are positive slack variables. 
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Lagrangian multipliers and Karush-Kuhn-Tucher (KKT) optimizing conditions are applied in 

the linear regression function as presented below: 

 

𝑓(𝑥) = ∑ (𝑎𝑖 − 𝑎𝑖
∗)(𝑥𝑖, 𝑥) + 𝑏𝑖∈𝑆𝑉𝑠                   (2.2.3.1.4) 

 

where ai and 𝑎𝑖
∗ are Lagrangian multipliers. 

 

2.2.3.2 Construction of the Random Forest 

Random forest (Segal et al., 2004) is a flexible and easy ensemble learning method, which can 

usually obtain robust results for classification and regression tasks. Therefore, RF was 

employed to estimate the land surface solar irradiation. In this study, the input dataset was {Xi, 

i=1,...,m} and the output dataset was {Yi, i=1,...,m}, where Xi denotes the vector of 

meteorological data, AOT, COT and CSI data, Yi is the solar irradiation of stations, and m 

denotes the number of datasets. On this basis, this study performed the RF regression model 

with the following three steps. 

 

(1) Bootstrap sample method was employed to generate a training dataset by randomly 

drawing with replacement m samples, where m is the size of the original training 

dataset. 

 

(2) A multitude of decision trees was constructed at training time and outputting the class 

that is the mode of mean prediction of the individual trees. 

 

(3) After repeating step (2) for n times, we can obtain a number of n regression trees to 

generate the random forest. For any regression tree, the mean error of all the regression 

trees can be calculated for obtaining an unbiased estimation of the random forest. The 

calculation formula is as follows: 

 

𝑌(𝑥𝑖) =
1

𝑛
∑ 𝑇𝑛(𝑋𝑖), 𝑛 = 1,2, … , 𝑛𝑛

𝑖=1                 (2.2.3.2) 
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where Tn denotes a regression tree, and n is the number of regression trees. 

 

2.2.3.3 Construction of the Multilayer Perceptron 

Artificial Neural Networks (ANNs), inspired by biological neural networks, can learn and 

generalize data relationships to predict trends. Among the most common ANN structures, the 

Multilayer Perceptron (MLP) (Murtagh et al., 1991) includes three layers: an input layer for 

structured meteorological data, CSI, AOT, and COT; a hidden layer using the Sigmoid function 

as the activation function; and an output layer providing estimated surface solar irradiation (see 

Figure 5). This study employed an MLP with a Back Propagation (BP) algorithm for training, 

involving forward data flow calculation and backward error propagation. The input layer 

processed the solar irradiation datasets, the hidden layer adjusted network weights for the 

regression model, and the output layer held the estimated irradiation data. If the output did not 

match the ground truth, weight adjustments were made based on an error function derived from 

the backward propagation algorithm. The neural network was continuously optimized by 

adjusting the weight parameters until the error fell below a predetermined threshold. 
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Figure 5 The architecture of MLP 

 

2.2.3.4 Construction of the Gradient Boosting Machine 

In this study, Gradient Boosting Machine (GBM) (Friedman et al., 2001) was employed to 

estimate land surface solar irradiation. GBM is a type of Boosting algorithm used for creating 

regression models. It builds an additive model by introducing a new decision tree at each 

iteration, thereby minimizing the deviation in the loss function. The steps for implementing the 

GBM model were as follows: 

 

(1) Given a training dataset {(xi, yi), i=1,..., n} and the loss function L(y, F(x)), where xi 

was the vector of meteorological data, AOT, COT, and CSI data, yi is corresponding 

solar irradiation of stations, and n denotes the number of datasets. The model was 

initialized using the fixed value 𝛾: 

 

𝐹0(𝑥) = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)𝑛
𝑖=1                (2.2.3.4.1) 

 

(2) Calculation pseudo-residuals rim, the formula is as follows: 
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𝑟𝑖𝑚 = [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
] 𝐹(𝑥) = 𝐹𝑚−1(𝑥), (𝑖 = 1,2,3, … , 𝑛)          (2.2.3.4.2) 

 

(3) Calculation 𝛾𝑚 to solve the optimization problem: 

 

𝛾𝑚 = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖 + 𝛾ℎ𝑚(𝑥𝑖)))𝑛
𝑖=1                (2.2.3.4.3) 

 

where hm(x) denotes pseudo-residuals for the decision tree, the formula is as follows 

 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)                         (2.2.3.4.4) 

 

2.2.3.5 Estimation surface solar irradiation based on the optimal model 

This study employed four evaluation indicators to evaluate the estimation accuracy of each 

model, namely a coefficient of determination (R2), normalized Root Mean Square Error 

(nRMSE), normalized mean bias error (nMBE), and consumption of time (t). Specifically, 

nRMSE and nMBE were calculated as follows: 

 

𝑛𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1

                         (2.2.3.5.1) 

 

𝑛𝑀𝐵𝐸 =
1

𝑁
∑

𝑦̂𝑖−𝑦𝑖

𝑦𝑖

𝑁
𝑖=1                        (2.2.3.5.2) 

   

where n is the number of data, 𝑦𝑖̂ denotes estimation value, and yi is the actual value. 

 

2.3 Results 

The four machine learning models were used to evaluate the estimation accuracy at each station 

independently based on the four evaluation indicators. Through comprehensive comparison, 

the optimal machine learning model was selected for estimating surface solar irradiation in 

Australia, China, and Japan. 
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Figure 6 Estimation accuracy of the four machine learning models using R2, nRMSE, and 

nMBE in all stations. (a) Results in Australia. (b) Results in China. (c) Results in Japan 

 

2.3.1 Accuracy assessment of the models 

Figure 6 systematically compares the estimated accuracy based on R2, nRMSE, and nMBE in 

all 27 stations. Overall, it is found that the four models have similar estimation performance, 

and the performance in Australia and China is better than that in Japan. Specifically, all stations 

in Australia and China have R2≧ 0.7 in both countries using the GBM model, and the 

proportions of the stations are about 38% for Australia and about 22% for China when R2≧0.8. 

Besides, the nMBE values are significantly low in all stations, and the nRMSE values are 

between 0.2 and 0.4 only. The results suggest that the estimation models are reliable with high 
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estimation accuracy, which indicates that the proposed method can effectively estimate land 

surface solar irradiation over large regions. In contrast, the R2 values of all stations in Japan 

using the GBM model are about 0.5, and corresponding nMBE values and nRMSE values are 

higher than those in Australia and China. This result suggests the estimation accuracy in Japan 

is lower than that in Australia and China. From the other perspective, Figure 7 summarizes the 

computation time of the four machine learning models in each station, which presents that the 

GBM model achieves the shortest time consumption. This suggests that GBM is outperformed 

for estimation accuracy and computational efficiency, especially for extensive computation 

when there are a large number of stations confined in a small area. 
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Figure 7 Computation time of the four machine learning in all stations. (a) Results in 

Australia. (b) Results in China. (c) Results in Japan 

 

2.3.2 Feature importance analysis for the input parameters 

Furthermore, the feature importance analysis is conducted to evaluate the impacts of 

each parameter on the estimation models (Figure 8). It shows that CSI is significantly 

larger than the second most important feature of H for estimating solar irradiation in 

Australia, leaving the rest features almost ignorable. This indicates that Australia has 

stable and solar favourable meteorological conditions, which thus have weak impacts 

on solar estimation. Likely, CSI is the most important factor in Japan, following by the 

feature of H. In contrast, the top three impact features are H, CSI, and MaxT in China, 

suggesting that the land surface solar irradiation is comprehensively affected by the 

meteorological features. 
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Figure 8 Importance ratios for the input features. (a) Australia. (b) China. (c) Japan 

2.3.3 Generation of the land surface solar irradiation 

To create seasonal and annual land surface solar irradiation maps at a 5-km spatial 

resolution in the three countries in 2020, the GBM model is used because it has 

achieved the highest estimation accuracy in both countries. The meteorological, COT, 

AOT, and CSI images are well prepared and used as the input parameters of the trained 

model. In addition, a set of meteorological images are obtained by using the Kriging 

interpolation method. Since the trained GBM model based on each observation station 

has relatively high accuracy as presented in Figure 6, this study used all the trained 

models to create the solar irradiation maps over the whole territory of Australia, China, 

and Japan. 
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Figure 9 The relative errors between the estimated values and measured values in each 

station for each solar irradiation map. (a) There are 13 stations in Australia that correspond 

to a 13×13 matrix. (b) There are nine stations in China that correspond to a 9×9 matrix.(c) 

There are five stations in Japan that correspond to a 5×5 matrix 

 

To systematically evaluate the accuracy of each created solar irradiation map, this study 

investigated the relative errors between the estimated values and correspondingly 

measured values located at all the stations in each solar irradiation map. Figure 9 shows 

that the relative errors in all stations are between 0.1 and 0.2, which suggests that the 

estimation results in all stations are accurate. Therefore, the mean values of all 

estimation maps were calculated and used as the final estimated solar irradiation map 

in the three countries. To avoid extremely big data computation, the solar irradiation on 

the middle day of each month is considered as the daily mean irradiation of that month, 

so that the monthly, seasonal, and annual solar irradiation can be accumulated over the 

corresponding time interval in each country. 

 

2.3.3.1 Maximum and minimum monthly land surface solar irradiation 

Figure 10, Figure 11, and Figure 12 show the maximum and minimum horizontal 

surface global solar irradiation in Australia, China, and Japan, respectively. Overall, the 

solar distribution in January is significantly higher than that in August in Australia, 

whereas the maximum solar distribution is in August and the minimum solar 

distribution is in January in China and Japan. In Australia, solar irradiation gradually 

increases from the northwest region to the southeast region in August (Figure 10(a)), 

with monthly values ranging from 171.78 to 76.08 kWh/m2, while the irradiation in the 

central region is lower than in the other regions in January, (Figure 10(b)), with monthly 
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values ranging from 200.18 to 95.12 kWh/m2. In China, solar irradiation in the southeast 

and central regions is lower than in other regions in January (from 69.88-147.98 

kWh/m2). In contrast, the irradiation is overall high in the whole country in August, with 

only part of the central region relatively low (from 97.56-223.89 kWh/m2). In Japan, 

solar irradiation in the northeast is higher in other regions in January (from 86.98-

189.10 kWh/m2), and the irradiation is similar in the whole country in August (from 

96.38-209.19 kWh/m2). 

 

    

Figure 10 Distribution of the maximum and minimum horizontal surface global solar 

irradiation in Australia.(a) Distribution in August. (b) Distribution in January 

    

Figure 11 Distribution of the maximum and minimum horizontal surface global solar 

irradiation in China. (a) Distribution in January. (b) Distribution in August 
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Figure 12 Distribution of the maximum and minimum horizontal surface global solar 

irradiation in Japan. (a) Distribution in January. (b) Distribution in August 

 

2.3.3.2 Seasonal land surface solar irradiation 

Furthermore, seasonal land surface solar irradiation maps were created for Australia 

(Figure 13), China (Figure 14), and Japan (Figure 15). Overall, the highest solar 

irradiation values are in summer in the three countries, followed by those in spring, 

autumn, and winter. The solar irradiation values in all seasons in Australia exhibit the 

narrow distribution, whereas those in China give the wide distribution. Figure 13 shows 

that Australia has an insignificant change in solar distribution during the four seasons, 

and most areas in Australia have a large amount of solar energy nearly 632 kWh/m2. In 

China, solar irradiation in western and northeastern regions maintains a high level near 

535 kWh/m2 all year round, whereas, for southeastern regions in spring and summer, it 

is higher than that in autumn and winter. In Japan, solar irradiation in the southwest is 

higher than that in the northeast in Summer and Autumn, while the figure in the 

southwest is lower than that in the northeast in Spring and Winter. 
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Figure 13 Seasonal distribution of land horizontal surface global solar irradiation in 

Australia. (a) The irradiation in spring (September to November). (b) The irradiation in 

summer (December to February). (c) The irradiation in autumn (March to May). (d) The 

irradiation in winter (June to August) 

   

    

Figure 14 Seasonal distribution of land horizontal surface global solar irradiation in China. 

(a) The irradiation in Spring (March to May). (b) The irradiation in Summer (June to 

August). (c) The irradiation in Autumn (September to November). (d) The irradiation in 

Winter (December to February) 
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Figure 15 Seasonal distribution of land horizontal surface global solar irradiation in Japan. 

(a) The irradiation in Spring (March to May). (b) The irradiation in Summer (June to 

August). (c) The irradiation in Autumn (September to November). (d) The irradiation in 

Winter (December to February) 

2.3.3.3 Annual land surface solar irradiation 

Lastly, the annual land surface solar irradiation was estimated by accumulating four 

seasonal solar energy. Overall, the total irradiation in Australia (Figure 16 (a)) is higher 

than that in China (Figure 16 (b)), while the figure in Japan is the lowest (Figure 16 

(c)). In detail, the vast majority of areas in Australia have abundant solar resources, 

suggesting that Australia is feasible to promote solar energy in most areas. In 

comparison, the distribution of the annual irradiation in China presents a gradual 

decrease from the northeast to the southwest. This indicates that southwest China has a 

relatively thick cloud cover that hinders the receiving of solar energy, meaning that 

latitude may not be a conclusive factor for using solar energy in large regions. In 

addition, the heterogeneous distribution of solar energy is apparent in central China, 

which indicates that our model is also sensitive to depicting regional differences in solar 

distribution. Compared to the annual irradiation in Australia and China, the solar 

irradiation value in the whole of Japan is relatively low, and this suggests the solar 

resource in Japan is worse than that of Australia and China. It is found that our results 

are consistent with the published maps created by Solargis, when comparing the 

quantitative ranges and the distribution patterns of the solar irradiation maps. 
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Figure 16 Annual horizontal surface global solar irradiation in three countries. (a) 

Distribution of annual irradiation in Australia. (b) Distribution of annual irradiation in 

China. (c) Distribution of annual irradiation in Japan 

2.3.3.4 Analysis of annual land surface solar irradiation 

The distribution of solar irradiation across different regions of China is primarily determined 

by geographical and climatic factors. The degrees of solar irradiation in the northwest and 

northeast of China are higher than those in the southeast due to unique geographical and 

climatic characteristics. The northwest region, including areas such as Xinjiang and the Tibetan 

Plateau, has high altitudes, low cloud cover, and low humidity, which result in lower 

atmospheric absorption and scattering of solar irradiation, allowing more solar energy to reach 

the surface. In comparison, the southeast region of China is affected by a humid subtropical 

monsoon climate characterized by high humidity, frequent rainfall, and extensive cloud cover, 

leading to significant absorption and scattering of solar irradiation and thus a reduction in the 

amount of solar energy reaching the ground. Furthermore, according to the 2020 China Climate 

Bulletin (China Meteorological News Press, 2021), regional annual precipitation was above 

average in Northeast China, the middle-lower reaches of the Yangtze River, North China, 

Southwest China, and Northwest China, but below average in South China. While the spatial 

distribution of annual precipitation appears to align with that of land surface solar irradiation, 
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this correlation is likely due to shared climatic drivers, such as cloud cover and atmospheric 

moisture content, rather than a direct causal relationship. Precipitation is one of several factors 

that influence solar irradiation availability, with cloud cover playing a more critical role in 

reducing solar energy reaching the Earth's surface. 

 

Australia's abundant solar energy resources are largely due to its unique geographical location 

and climatic conditions. Situated in the mid-latitudes of the Southern Hemisphere, Australia 

has high solar angles throughout the year, which creates ideal conditions for strong solar 

radiation. This is particularly evident in the arid and semi-arid regions of central and western 

Australia, where extremely low humidity and minimal cloud cover allow maximum solar 

radiation to reach the surface. Furthermore, low levels of air pollution, sparse vegetation, and 

predominantly clear skies throughout much of the year enhance solar irradiance in Australia's 

interior, making it one of the world's most promising regions for solar energy exploitation. 

 

Despite being located at the same latitude as Northeast China and Shandong, Japan has 

significantly lower solar energy resources due to its geographical location and maritime 

climate. As an island nation, Japan is heavily influenced by a maritime climate, characterized 

by high cloud cover and humidity throughout the year, particularly during the rainy and typhoon 

seasons, which limits the intensity of solar radiation reaching the ground. Additionally, Japan's 

mountainous terrain contributes to cloud formation, further reducing solar exposure compared 

to the relatively flat terrain of Northeast China and Shandong. Consequently, even at the same 

latitude, Japan's solar energy potential is markedly lower than that of China. 

 

2.4 Conclusion 

This study developed a method by integrating machine learning models and remote sensing 

technologies to estimate land surface solar irradiation at fine temporal resolutions (i.e., hourly 

to daily) over large geographical areas. Even though the study areas of Australia, China, and 

Japan are three big countries that contain a variety of climate zones, the trained models based 

on only a few stations still achieved high prediction accuracy with R2>0.7 for all the stations. 

By comparing the generated maps with the published maps in terms of the spatio-temporal 
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distributions and the quantitative ranges, it is found that our results are broadly in line with the 

published maps. This suggests that the established models are accurate and reliable, and the 

proposed method can be used to estimate land surface solar irradiation in large-scale regions. 

In addition, the high availability of Himawari-8 satellite products with free licensed 

characteristics makes it possible to be widely used for an accurate estimation of solar irradiation 

over large regions, which is especially important for nations that aim to promote using solar 

energy.  

 

This study used 27 datasets to train the machine learning models independently, which thus 

created a well-trained model for each of the 27 solar observation stations. As all the trained 

models obtained high estimation accuracy, all the models were used to create solar irradiation 

maps to make full use of the currently available datasets. However, as the solar observation 

stations have sparse distribution in each country, it is difficult to validate the prediction 

accuracy of each pixel value in the finally created solar irradiation maps. Alternatively, the 

observed solar irradiation data with determined geo-locations can be used as real samples to 

systematically investigate the final prediction accuracy. 

 

The Kriging interpolation method was used to generate the spatially continuous meteorological 

images, which were used as the input parameters for estimating solar irradiation. Although the 

analysis shows that the overall interpolation accuracy is significantly high, it is hard to make 

sure that the whole areas maintain the same high accuracy. Nevertheless, the comparison of the 

published maps and the relative error matrices helps confirm that this method is feasible and 

the results are reliable. Meanwhile, this study conducted the importance analysis for the input 

parameters and it was found that the impacts of these parameters on solar estimation are 

different between the two countries. While in the same country, the impacts of the parameters 

are consistent for different models. This implies the effectiveness of the selected parameters for 

the solar estimation. It is worth mentioning that meteorological conditions can affect land 

surface solar irradiation to some extent, in which the humidity makes a great contribution. 

 

The average values of a set of the estimated solar irradiation maps in the same spatial and 
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temporal domains are used to create the final solar irradiation map because of two reasons. 

First, the estimation accuracies (R2) of all the models are basically consistent in a small range 

between 0.7 and 0.9. Second, the relative error matrices (Figure 2.3.3) between the estimated 

values and measured values are between 0.1 and 0.2 only. This demonstrates that the difference 

between each estimation solar irradiation map is rather small. Therefore, the estimated solar 

irradiation maps can make an equal contribution to creating the final solar irradiation map. 
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Chapter 3 A Dual-gate Temporal Fusion Transformer for 

estimating large-scale land surface solar irradiation 

While the traditional machine learning methods used in Chapter 2 have significantly improved 

the rapid and accurate estimation of solar irradiation, they face challenges in handling 

geographical heterogeneity and providing interpretable results. To address these challenges, 

this chapter proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel 

interpretable deep learning network, to improve hourly land surface solar irradiation estimation. 

Integrating the Temporal Fusion Transformer (TFT) with the Dual-gate Gated Residual 

Network (DGRN) and Dual-gate Multi-head Cross Attention (DGMCA), the optimal network 

achieved R2=0.93, MAE=0.022 (kWh/m2), and nRMSE=0.048 through ablation experiments. 

Applied to datasets from Australia, China, and Japan, the proposed network outperformed 

traditional machine learning methods with a minimum R2 increase of 23.88%, MAE decrease 

of 43.18%, and nRMSE decrease of 62.79%. Accurately estimating land surface solar 

irradiation, providing interpretable results, and generating continuous irradiation maps for 

large-scale areas, the proposed network aids in quantifying solar potential and offers scientific 

guidance for the photovoltaic industry's development. 

 

3.1 Methodology 

3.1.1 Research framework 

Figure 17 describes the research framework of this study. Firstly, we cleaned the collected 

multi-source data. Then, the geographical spatio-temporal dataset was constructed in GIS. Next, 

a novel interpretable deep learning network with improved structures was proposed to improve 

the estimation capability of spatio-temporal land surface solar irradiation, and the optimal 

network was determined based on a series of ablation experiments. After that, to evaluate the 

capabilities of transfer learning and the effectiveness of the proposed networks, the optimal 

network was trained using the hourly dataset in Australia, and the well-trained network was 

applied to the hourly dataset in Japan and the daily dataset in China. Additionally, the 

interpretability of the models applied in three countries was offered. Finally, the annual 



 

 44 

continuous land surface solar irradiation maps in three countries were generated using the 

proposed network.  

 

 

Figure 17 The research framework 

3.1.2 Construction of spatio-temporal dataset 

3.1.2.1 Spatio-temporal data 

The data used in this Chapter is the same as that in Chapter 2. These data can be divided into 

two categories, spatial data and temporal data. As shown in Figure 1, the temporal data consists 

of MIs, solar irradiation from stations, CSI, COT, and AOT, and the spatial data consists of 

geographical coordinates, station names, and climate categories. This study considers each 

station as a point geographic object. The spatio-temporal attributions to the geographic object 

were assigned. The process of the GIS representation is shown in Figure 18. Specifically, the 

temporal data and the spatial attribution information (i.e., climate category and station name) 

were assigned to the corresponding geographic spatial locations. 

 



 

 45 

 
Figure 18 The process of the GIS representation for constructing the spatio-temporal dataset 

3.1.2.2 GeoAI dataset 

Firstly, the MissForest method (Arriagada et al., 2021) was employed to fill in the gaps in the 

dataset, which is a machine learning-based method for the simulation of the missing data. The 

missing values accounted for 0.02%, 0.001%, and 0.01% of the datasets in Australia, China, 

and Japan, respectively. Since the TFT model offers different network layers for training static 

and time-varying inputs, extracting and integrating various feature information all data types, 

spatial and temporal input variables were labeled in the dataset, and the measured hourly land 

surface solar irradiation observed from the stations was labeled as the training target. The static 

variables include the geographic coordinates of the 13 meteorological stations, the associated 

climate categories, and the station Name ID which is used for grouping the dataset to identify 

each station. The time-varying variables include COT, AOT, CSI, and MIs. To facilitate model 

training and evaluation, the entire dataset was divided into three sub-datasets: a training dataset, 

a validation dataset, and a test dataset, constituting 80%, 10%, and 10% of the data, 

respectively. 

 

3.1.3 Temporal Fusion Transformer 

The Temporal Fusion Transformer (TFT) model (Lim et al, 2021) is a novel attention-based 

deep learning architecture specifically designed for handling multi-dimensional time series 
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data. Solar irradiation is a classic time series. Let 𝐼 represents unique entities in land surface 

solar irradiation. Each entity 𝑖 consists of static metadata 𝑠𝑖, time series inputs 𝑋𝑖,𝑡, and solar 

targets 𝑦𝑖,𝑡  at time step 𝑡 , 𝑡 ∈ [0,   𝑇𝑖]. Time series inputs 𝑋𝑖,𝑡  can be classified into two 

categories, 𝑋𝑖,𝑡 = [𝑧𝑖,𝑡
𝑇 , 𝑥𝑖,𝑡

𝑇 ]𝑇 . Past inputs 𝑧𝑖,𝑡  denote that theses variables can only be 

measured at each step and are unknown beforehand, and know future inputs 𝑥𝑖,𝑡 represent they 

can be predetermined and the value of these variables are known before time step 𝑡. The 

prediction function is defined as follows: 

 

𝑦̂𝑖(𝑡, 𝜏) = 𝑓(𝜏, 𝑦𝑖,𝑡−𝑘:𝑡, 𝑧𝑖,𝑡−𝑘:𝑡,𝑥𝑖,𝑡−𝑘:𝑡+𝜏, 𝑠𝑖 )                  (3.2.1) 

 

Where 𝑦𝑖,𝑡−𝑘:𝑡 = {𝑦𝑖,𝑡−𝑘 , … , 𝑦𝑖,𝑡} denotes targets until the time 𝑡, 𝑧𝑖,𝑡−𝑘:𝑡 = {𝑧𝑖,𝑡−𝑘 , … , 𝑧𝑖,𝑡} 

denotes past inputs, 𝑥𝑖,𝑡−𝑘:𝑡+𝜏 = {𝑥𝑖,𝑡−𝑘 , … , 𝑥𝑖,𝑡+𝜏} denotes known future inputs across the full 

range, and 𝜏 represents the prediction time point. 

 

The TFT model is designed for high forecasting performance of long-term land surface solar 

irradiation by using effective components, as shown in Figure 19. The TFT model consists of 

five major constituents, namely, gating mechanisms, variable selection networks, static 

covariate encoders, temporal processing, and prediction intervals. Each constituent is detailed 

below. 

 

 

Figure 19 Temporal Fusion Transformer architecture 

 

3.1.3.1 Gating mechanisms 

Gating mechanisms can filter out unnecessary components of the architecture and can be 
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flexibly applied to non-linear processing only where needed. To achieve this aim, Gated 

Residual Network (GRN) is used as a building block of TFT. The architecture of the GRN is 

demonstrated in Figure 20. The GRN consists of two inputs, namely, a primary 𝑎 and an 

optional context vector 𝑐. The GRN is described as follows: 

 

𝐺𝑅𝑁𝜔(𝑎, 𝑐) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎 + 𝐺𝐿𝑈𝜔(𝜂1))                    (3.2.1.1) 

 

𝜂1 = 𝑊1,𝜛𝜂2 + 𝑏1,𝜛                                   (3.2.1.2) 

 

𝜂2 = 𝐸𝐿𝑈(𝑊2,𝜔𝑎 + 𝑊3,𝜔𝑐 + 𝑏2,𝜔)                    (3.2.1.3) 

 

 𝐺𝐿𝑈𝜔(𝛾) = 𝜎(𝑊4,𝜛𝛾 + 𝑏4,𝜔)⨀(𝑊5,𝜔𝛾 + 𝑏5,𝜔)              (3.2.1.4) 

 

 

Figure 20 GRN architecture 

 

Where LayerNorm is standard layer normalization (Ba et al., 2016) 𝜂1 and 𝜂2 are intermediate 

layers, 𝜛 is an index to represent weight sharing, 𝑊(.) and 𝑏(.) denote the weights and biases, 

ELU is the Exponential Linear Unit activation function (Clevert et al., 2015), ⨀ is the element-

wise Hadamard product, and 𝜎(.)  is the sigmoid activation function. GLU enables TFT to 

regulate the degree to which the GRN contributes to the original input, potentially bypassing 

the entire layer if required. This can occur when the GLU outputs are predominantly close to 0, 

effectively suppressing the nonlinear contribution. 

 



 

 48 

3.1.3.2 Variable selection network 

The variable selection network not only assesses the importance of each variable for selecting 

relevant input variables but also enables TFT to eliminate variables that demonstrate a 

detrimental effect on the prediction performance. 

 

The static and time-series continuous variables are transformed into feature representations and 

dimensional vectors, respectively. Let 𝜉𝑡
(𝑗)

 represents the transformed 𝑗th variable at time 𝑡. 

At each time step, each 𝜉𝑡
(𝑗)

goes through its own GRN, as show in Eq. (3.2.1.2). 𝜉𝑡
(𝑗)

 is the 

corresponding processed feature vector for the 𝑗th variable. All past inputs are transformed into 

flattened vectors [𝐼]𝑡 = [𝜉𝑡
(1)𝑇

, … , 𝜉𝑡

(𝑚𝜒)
𝑇

 ]𝑇. The variable selection weights 𝑣𝜒𝑡
 are calculated 

using Eq. (3.2.1.2.2), where 𝑐𝑠  denote an external context vector. Finally, the processed 

features are weighted by their variable selection weights and combined as shown in Eq. 

(3.2.1.2.3). 

𝜉𝑡
(𝑗)

= 𝐺𝑅𝑁𝜉̃(𝑗)(𝜉𝑡
(𝑗)

)                                 (3.2.1.2.1) 

 

𝑣𝜒𝑡
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑅𝑁𝑣𝜒

([𝐼]𝑡 , 𝑐𝑠))                  (3.2.1.2.2) 

 

𝜉𝑡 = ∑ 𝑣𝜒𝑡

(𝑗)𝑚𝜒

𝑗=1
𝜉𝑡

(𝑗)
                                (3.2.1.2.3) 

 

3.1.3.3 Static covariate encoder 

In contrast to other time-series deep learning methods, the static covariate encoder is designed 

to integrate static features extracted from static metadata into the TFT network. Individual GRN 

encoders are utilized to generate four different context vectors, namely, 𝑐𝑠, 𝑐𝑒, 𝑐𝑐 , and 𝑐ℎ. 

These four context vectors are integrated with temporal features in the TFT network. 

 

3.1.3.4 Interpretable multi-head attention module 

TFT employs a self-attention mechanism that modifies from the multi-head attention 

mechanism in the standard transformer architectures proposed by Vaswani et al. (2017). This 
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modification enables TFT to capture long-term relationships across various time steps and 

enhances explainability. The Attention mechanism is described as follows: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐴(𝑄, 𝐾)𝑉                         (3.2.1.4.1) 

 

𝐴(𝑄, 𝐾) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑𝑎𝑡𝑡𝑛)                    (3.2.1.4.2) 

 

Where 𝑄 is the “query”, 𝐾 is the “key”, 𝑉 is the “value”, and 𝐴(. ) denotes a normalization 

function. 

 

In general, the multi-head attention mechanism is defined in Eq. (3.2.1.4.3), (3.2.1.4.4). 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [𝐻1, … , 𝐻𝑚𝐻]𝑊𝐻                (3.2.1.4.3) 

𝐻ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
(ℎ)

, 𝐾𝑊𝐾
(ℎ)

, 𝑉 𝑊𝑉
(ℎ)

)           (3.2.1.4.4) 

 

Where 𝑊𝑄
(ℎ)

, 𝑊𝐾
(ℎ)

, 𝑊𝑉
(ℎ)

 denote head-specific weights for queries, keys, and values, 

respectively. And 𝑊𝐻 is the combination of outputs concatenated from all heads 𝐻ℎ. 

 

The values learned in each head using multi-head attention are different, so attention weights 

would not represent the importance of specific features which enables the model to decrease 

explainability. Given this reason, the TFT model modifies multi-head attention to share values 

in each head and uses additive aggregation of all heads. The Interpretable multi-head attention 

is defined in Eq. (3.2.1.4.5), ( 3.2.1.4.6). 

 

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐻̃𝑊𝐻             (3.2.1.4.5) 

 

𝐻̃ = 𝐴̃(𝑄, 𝐾)𝑉𝑊𝑉) = 1/𝐻 ∑ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
𝑚𝐻
ℎ=1 (𝑄𝑊𝑄

(ℎ)
, 𝐾𝑊𝐾

(ℎ)
, 𝑉 𝑊𝑉

(ℎ)
)   (3.2.1.4.6) 
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3.1.3.5 Temporal fusion decoder 

The four layers are employed in the temporal fusion decoder to learn temporal relationships in 

the dataset: i) Locality enhancement with sequence-to-sequence layer uses a sequence-to-

sequence layer to capture local dependence; ii) Static enrichment layer employs GRN network 

to enhance temporal features with static data; iii) Temporal self-attention layer introduces 

interpretable multi-head attention to pick up long term dependencies and enhance explainability; 

iv) Position-wise feed-forward layer is used to process the outputs of the self-attention layer. 

 

3.1.4 Dual-gate Temporal Fusion Transformer 

In this study, a novel framework for estimating land surface solar irradiation is proposed named 

Dual-gate Temporal Fusion Transformer (DGTFT), which advances the backbone using the 

TFT (Lim et al, 2021) module. To greatly forecast time-series solar data, the author proposes: 

i) a novel Dual-gate Gated Residual Network (DGRN) that modifies from the GRN of the 

original TFT (Lim et al, 2021) for more accurate estimation performance. ii) a novel Dual-gate 

Multi-head Cross Attention (DGMCA) that integrates the interpretable Multi-head Attention 

that inherits the TFT (Lim et al, 2021) with Cross Attention (CA) (Chen et al., 2021) for 

effectively learning the spatio-temporal features from the dataset and greatly integration the 

static spatial features with the temporal features. 

 

3.1.4.1 Model Overview 

As shown in Figure 21, the proposed DGTFT is composed of a multi-data encoder and a 

temporal fusion decoder. There are three modules in the multi-data encoder, namely, a static 

encoder, a past-observed encoder, and a future-known decoder. The input data is classified into 

three categories (i.e., static metadata, past inputs, and known-future inputs) for feeding into the 

corresponding layers, and this aims to greatly distinct and extract useful static and time-varying 

features. In the static encoder, the static metadata is first embedded and fed into the variable 

selection, and then the output is transformed into four static context vectors for integrating with 

time-varying features. In the past-observed encoder and future-known decoder, the data 

processing is the same. Specifically, the inputs are also embedded and fed into the variable 
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selection, and then the LSTM module is employed for learning temporal features. The variable 

selection module and LSTM model inherit from the TFT (Lim et al, 2021), which are mentioned 

in Chapter 3.1.3. 

 

After the multi-data encoder, the outputs are fed into the temporal fusion decoder. The temporal 

fusion decoder is composed of a DGRN, a DGMCA, and a position-wise feed-forward layer. 

The static context vectors are integrated with the outputs of the past-observed encoder and 

future-known decoder using the DGRN for the static enrichment, respectively, and then the two 

outputs of the DGRN are concatenated to be fed into the DGMCA for picking up long-range 

dependencies. Finally, non-linear processing in the position-wise feed-forward layer is applied 

to the outputs of the DGMCA.  

 

Figure 21 Dual-gate Temporal Fusion Transformer architecture 

 

3.1.4.2 Dual-gate Gated Residual Network 

GRN plays a crucial role in TFT (Lim et al, 2021) to flexibly provide non-linear processing, 

which is applied in data encoding, variable selection, and enhancing the temporal features with 

static data. Although the aim of the simple design of GRN is to enable the model flexible to 

give precise insights into the non-linear relationship between inputs and targets, the excessively 

simple structure of this design may not accurately describe the non-linear relationship. 

Therefore, the author proposes a novel Dual-gate Gate Residual Network (DGRN) to improve 

the non-linear processing ability of GRN.  

 

In this section, we detailed the proposed DGRN, which is composed of two branches of non-
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linear processing. Since the DGRN is applied in different modules for processing the single 

input 𝑋  and dual-branch inputs (i.e., 𝑋  and static context 𝑐𝑠 ), the DGRN contains two 

modules to greatly process the inputs, namely, a single-input module and a dual-input module. 

In the single-input module, to greatly construct the non-linear relationship, 𝑋 is fed into two 

branches in parallel and each branch contains one Linear layer and a Tanh active function. Then, 

the outputs of the two branches are concatenated to be fed into one Linear layer and the Tanh 

active function. To avoid the degradation of the model, the residual connection is conducted, 

and the output is fed into the gate layer. In the dual-input module, the inputs contain 𝑋 and 

static context 𝑐𝑠. 𝑋 is also fed into two branches for processing one Linear layer and a Tanh 

active function. 𝑐𝑠 is also fed into two branches for integrating with the features of 𝑋. After 

that, the outputs of both branches are fed into the layers that are the same as those in the single-

input module. 

 

3.1.4.3 Dual-gate Multi-head Cross Attention 

In this section, the author details the proposed DGMCA, which is composed of a self attention 

and a cross attention. The output of a past-observed encoder and the output of a future-known 

decoder are fed into the DGMCA to learn long-term temporal dependency. To greatly learn the 

information of past time and the estimation information, we design a dual-gate structure using 

a self attention and a cross attention. Since a self attention module and a cross attention module 

are in parallel, the output of a past-observed encoder and the output of a future-known decoder 

are fed into two modules. Specifically, in the self attention module, the output of a past-

observed encoder is first concatenated with the output of a future-known decoder, and then the 

concatenated output 𝐶𝑡𝑠 are transformed into the query, the key, and the value for performing 

the self attention. In the cross attention module, only the output of a future-known decoder 

serves as the query, and the output of a past-observed encoder are transformed as the key and 

the value. After this dual-gate attention structure, the output of the self attention module is 

concatenated with the output of the cross attention module. We detail a self attention and a 

cross attention next. 

 

This module employs the Interpretable multi-head attention that is mentioned in Chapter 



 

 53 

3.2.3.4. The self attention is performed using the concatenated output 𝐶𝑡𝑠 of a past-observed 

encoder and a future-known decoder. To enhance the forecasting performance, the query is 

transformed from intercepted 𝐶𝑡𝑠 related to the known-future time-series data, and the key and 

value are transformed from 𝐶𝑡𝑠. 

 

Cross attention (𝐶𝐴) is performed between the output of a past-observed encoder 𝐸𝑝 and the 

output of a future-known decoder 𝐷𝑓. Mathematically, 𝐶𝐴 can be expressed as 

 

𝑞 = 𝐷𝑓𝑊𝑞 , 𝑘 = 𝐸𝑝𝑊𝑘 , 𝑣 = 𝐸𝑝𝑊𝑣                         (3.2.2.3.1) 

 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑘𝑇/√𝐶/ℎ)                                (3.2.2.3.2) 

 

 𝐶𝐴 = 𝐴𝑣                                                     (3.2.2.3.1) 

 

Where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣  are learnable parameters, 𝐶  and ℎ are the embedding dimension and 

number of heads, and 𝐴 denotes the attention map. It is noticed that the computation and 

memory complexity of generating 𝐴 in cross attention are linear rather than quadratic as in all-

attention because we only employ 𝐷𝑓 in the query, and it leads to enhance efficiency of the 

entire process (Chen et al., 2021). Furthermore, as in self attention, multi-head mechanism is 

also used in 𝐶𝐴. 

 

3.1.5 Implementation details 

The implementation of the TFT model involves the use of Python 3.8 along with TensorFlow 

2.12.0, PyTorch-forecasting 0.10.3, and PyTorch-lightning 1.8.6. We employed the Python 

library “TimeSeriesDataset” to split the data. Early stopping was utilized to prevent overfitting. 

The computations were executed on a high-performance computer equipped with an intel (R) 

Core (TM) i7-6800K CPU, operating at 3.40 GHz, 6.0 TB RAM, and running on the Ubuntu 

16.04 LTS system. 
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3.1.6 Evaluation metrics 

To evaluate the estimation performance of the proposed network, the most frequently used 

evaluation indicators, i.e., the coefficient of the determination (R2), the mean absolute error 

(MAE), and normalized Root Mean Square Error (nRMSE) were adopted, given as: 

 

𝑅2 = 1 −
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅)2𝑛
𝑖=1

                                (3.2.6.1) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̂ − 𝑦𝑖|𝑛

𝑖=1                                 (3.2.6.2) 

 

𝑛𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1

                                (3.2.6.3) 

 

Where 𝑦𝑖̂  and 𝑦𝑖  are estimated and measured land surface solar irradiation values, 

respectively. 𝑦𝑖̅ is the average value of measured land surface solar irradiation. 

 

3.1.7 Generation annual land surface solar irradiation maps 

After training the models using datasets in Australia, China, and Japan, these well-trained 

models were employed to generate annual land surface solar maps at a 5-km spatial resolution 

in three countries in 2020. The meteorological, COT, AOT, and CSI images are well prepared 

and used as the input parameters of the trained model. In addition, a set of meteorological 

images are obtained by using the Kriging interpolation method. 

 

3.2 Results and discussion 

3.2.1 Ablation study 

To verify the effectiveness of each component in the proposed DGTFT, we conduct ablation 

studies on the dataset in Australia. We use the TFT as the backbone, and we substitute a novel 

DGRN and DGMCA for the original GRN and interpretable multi-head attention, respectively. 

The components being evaluated contain DGRN and DGMCA. We also further conduct 

ablation studies on the Linear layers in DGRN with different action functions (i.e., null, Tanh, 
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Sigmoid, and Softmax) to explore the optimal combination of the Linear layer and the active 

function. Three indicators are employed to evaluate the performance of different combinations, 

namely, R2, MAE, and nRMSE. The results are shown in Table 2. 

 

Overall, the combination of “Baseline+DGRN+ DGMCA” shows the best prediction 

performance based on three indicators, with R2=0.9260, MAE=0.02198 (kWh/m2), and 

nRMSE=0.04845, following by the “Baseline+DGMCA”. Although the nRMSE value of this 

combination is slightly higher than that of the “Baseline+DGMCA”, it outperforms other 

combination based on the values of R2 and MAE. Therefore, “Baseline+DGRN+ DGMCA” 

shows the best performance for predicting the land surface solar irradiation based on the 

comprehensive evaluation of these three indicators. Furthermore, it outperforms the benchmark 

“Baseline” by 2%, 13%, and 7% for R2, MAE, and nRMSE. These results suggest that the 

“Baseline+DGRN+ DGMCA” effectively improves the prediction capability for land surface 

solar irradiation. 

 

3.2.1.1 Effect of DGMCA  

Compared to the benchmark, the “Baseline+DGMCA” increases by 2% for R2 and decreases 

by 12% and 8% for MAE and nRMSE. This suggests that the designed DGMCA module is able 

to learn better long-term temporal dependence and spatial features than the original TFT model.  

 

3.2.1.2 Effect of DGRN 

Compared to the benchmark, the “Baseline+DGRN” increases by 1% for R2 and decreases by 

5% and 4% for MAE and nRMSE, which indicates that the proposed DGRN module improves 

the prediction capability. Furthermore, we give insights into the effect of the combination of 

DGRN and DGMCA. The result of the “Baseline+DGRN+ DGMCA” is superior in R2 and 

MAE than the “Baseline”, “Baseline+DGRN”, and “Baseline+DGMCA”. Additionally, we 

also investigate the impact of the commonly used active functions on the prediction 

performance, including Tanh, Sigmoid, and Softmax. From the results, although the 

performance of these three combinations is better than that of the benchmark, their performance 

is worse than that of the “Baseline+DGRN+ DGMCA”. This suggests that these active 
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functions are not suitable for adding the DGRN module. 

 

Table 2 The performance of different components of our model on the test dataset of the 

Australia dataset 

Architecture R2 MAE (kWh/m2) nRMSE 

Baseline 0.9091 0.02535 0.05253 

Baseline+DGRN 0.9150 0.02411 0.05054 

Baseline+DGMCA 0.9257 0.02226 0.04828 

Baseline+DGRN+ DGMCA 0.9260 0.02198 0.04845 

Baseline+DGRN+ DGMCA+Tanh 0.9186 0.02318 0.05053 

Baseline+DGRN+ DGMCA+sigmoid 0.9166 0.02270 0.05073 

Baseline+DGRN+ DGMCA+softmax 0.9197 0.02326 0.05015 

 

3.2.2 Evaluation of the performance of DGTFT 

3.2.2.1 The performance of transfer learning 

To evaluate the capability of transfer learning of the proposed DGTFT, we employ three 

datasets in Australia, China, and Japan to calculate the estimation accuracy based on R2, MAE, 

and nRMSE. The results are shown in Table 3. Overall, the performance of the proposed 

DGTFT is all superior to other traditional machine learning methods, which suggests that the 

DGTFT can provide highly accurate and reliable prediction performance and has the excellent 

capability of transfer learning. The capability of integrating static spatial data with temporal 

data of the DGTFT may lead to highly accurate estimation performance. Tradition machine 

learning methods is difficult to use the static information to enhance the model learning ability. 

Distinct from the methods which train the individual model for each station in Chapter 2, we 

just train the one model for each dataset. Therefore, we can notice that machine learning 

methods are limited in processing spatio-temporal data, while the DGTFT shows the good 

capability to investigate this non-linear relationship integrated static spatial data with temporal 

data.  

 

Furthermore, among the three datasets, the estimation results of the dataset in Australia are 

better than those of other two datasets, which indicates that the DGTFT model is slightly more 

adaptable to the Australian dataset than the other two datasets. it is noticed that the estimation 

results using our model are far better than other traditional machine learning methods using the 
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dataset in China. It is possible that this is because the size of the dataset in China is smaller than 

the other datasets. Since the temporal resolution of the dataset in China is daily and other 

datasets are hourly, the size of the dataset in China is obviously smaller when the time span of 

the study is consistent. These results indicate that traditional machine learning methods cannot 

work well in the small-size dataset, while the DGTFT is insensitive to the size of the dataset 

indicating that it has good robustness. 

 

Table 3 The estimation performance of datasets in Australia, China, and Japan using the 

DGTFT 

Model 

Dataset in Australia  Dataset in China Dataset in Japan 

R2 

MAE 

(kWh/m

2) 

nRMSE R2 
MAE 

(kWh/m2) 
nRMSE R2 

MAE(kWh/

m2) 
nRMSE 

RF 0.74 0.12 0.39 0.45 0.88 0.75 0.67 0.15 0.43 

GBM 0.69 0.14 0.43 0.64 0.97 0.33 0.62 0.177 0.47 

AdaBoost 0.57 0.18 0.49 0.28 1.64 0.76 0.47 0.22 0.55 

MLP 0.69 0.14 0.43 0.19 1.15 0.92 0.63 0.16 0.46 

Our 

method 
0.93 0.022 0.048 0.88 0.50 0.12 0.83 0.037 0.16 

 

 

3.2.2.2 Generation annual land surface solar irradiation maps 

Figure 22- Figure 24 describe the distribution of annual land surface solar irradiation in 

Australia, China, and Japan, respectively. Overall, the land surface solar irradiance levels across 

Australia predominantly reside within higher ranges, contrasting with Japan where they mostly 

fall within lower ranges, with China positioned intermediate to the two. This underscores 

Australia's abundant solar energy resources. Specifically, in Australia, land surface solar 

irradiance levels are generally high, except for a small portion near the southern coastal areas 

where values are relatively lower. Across China, land surface solar irradiance diminishes 

gradually from the northwest to the southeast. Conversely, in Japan, solar irradiance levels 

predominantly register within lower ranges, with sporadic higher values scattered across its 

northern and central regions. 
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To evaluate the estimation accuracy of the generated maps, we calculated the annual cumulative 

absolute errors between estimated values and measured values in 27 stations in three countries. 

Figure 25 shows the result. Overall, the annual cumulative absolute error values across these 

27 stations are relatively small, with 92.86% of stations exhibiting annual cumulative error 

values below 400 (kWh/m2). Specifically, the annual cumulative error values at Australian sites 

are slightly lower compared to those in China and Japan. These findings suggest the high 

precision of our trained model in generating large-scale continuous solar irradiance distribution 

maps, thus affirming the strong generalization capability and broad applicability of the 

proposed neural network model. 

 

Figure 22 Distribution of annual land surface solar irradiation in Australia 
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Figure 23 Distribution of annual land surface solar irradiation in China 

 

 

Figure 24 Distribution of annual land surface solar irradiation in Japan 
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Figure 25 Annual absolute errors between estimated values and GroundTruth values of 27 

stations in Australia, China, and Japan 

 

3.2.3 Interpretability of DGTFT 

The DGTFT enables its network structure interpretive by quantifying the importance of 

variables in the different layers, including past-observed encoder, future-known decoder, and 

static encoder. Figures 26- Figures 28 show the importance of variables in the past-observed 

encoder, future-known decoder, and static encoder of the models trained by datasets in 

Australia, China, and Japan.  

 

In the Decoder network layer, for models trained on the Australian and Japanese datasets, CSI 

(Channel State Information) emerged as the variable contributing the most to network training, 

with importance indices of approximately 40% and 50%, respectively. Conversely, for the 

model trained on the Chinese dataset, the variables of highest importance were the maximum 

temperature and humidity, with importance indices exceeding 20%. 

 

In the Encoder network layer, for models trained on the Australian and Japanese datasets, solar 

irradiation emerged as the variable contributing the most to network training, with importance 

indices of approximately 85% and 40%, respectively. However, for the model trained on the 

Chinese dataset, CSI was the most important variable, with an importance index of 

approximately 24%. 
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In the Static network layer, for the model trained on the Australian dataset, the most important 

variable was solarscale, with an importance index of approximately 33%; for the model trained 

on the Chinese dataset, the most important variable was StationID, with an importance index of 

approximately 86%; and for the model trained on the Japanese dataset, the most important 

variables were Longitude and solarcenter, with importance indices of approximately 23%. These 

findings elucidate the varying contributions of different variables across different network 

layers during model training, thereby enhancing the interpretability of deep learning networks. 

 

 

Figure 26 The importance of variables in the past-observed encoder, future-known decoder, 

and static encoder in Australia. 
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Figure 27 The importance of variables in the past-observed encoder, future-known decoder, 

and static encoder in China. 

 

 

Figure 28 The importance of variables in the past-observed encoder, future-known decoder, 

and static encoder in Japan. 

  

3.3 Conclusion 

This Chapter proposes the state-of-the-art deep learning model DGTFT to explore the non-

linear relationship between multi-source variables and land surface solar irradiation and 

provides the interpretive and high-accuracy method for estimating hourly/daily land surface 

solar irradiation in Australia, China, and Japan. Compared to other traditional machine learning 

models, the DGTFT model is the optimal method for estimating long-term time series hourly 

land surface solar irradiation, which has super high accuracy with R2=0.92, R2=0.82, R2=0.83 

using datasets in Australia, China, and Japan.  

 

The DGTFT model shows the strong capability to use spatial and temporal characteristics from 

multi-source data. Compared to other commonly used methods, the DGTFT model not only 

can extract information from the static spatial data and integrate it with the time-varying data, 

which can significantly enhance the efficiency of the dataset. Solar irradiation has a strong 

spatial-temporal distribution, and this model can greatly consider the impact of static 
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geographic information on the estimation of the land surface solar irradiation for the issue of 

geographical heterogeneity. 

 

Also, the DGTFT model provides a relatively transparent interpretable network. Specifically, 

the selection of suitable input variables is conducted in all key layers, namely the static layer, 

the Encoder layer, and the Decoder layer. The mechanism for this selection is based on the 

magnitude of their importance. The mechanism of self-selecting variables during network 

training can significantly reduce the complexity of the network architecture, thereby improving 

computational efficiency. 

 

The DGTFT model used in this study can provide high-accuracy, interpretive, and reliable 

estimation maps for land surface solar irradiation, which can provide a reliable reference for 

the design of solar power generation systems. 
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Chapter 4 Fast and accurate estimation of solar irradiation 

on building rooftops in Hong Kong: A machine learning-

based parameterization approach 

A set of maps of monthly, seasonal, and annual land surface solar irradiation in Australia, China, 

and Japan were generated using the methods in Chapter 2 and Chapter 3, which display the 

distribution of the solar sources in these countries. To effectively harness the solar source, 

installing solar PV panels on building rooftops in regions with abundant solar potential is 

considered the most promising method. The aim of the estimation of the physical potential in 

Chapter 2 and Chapter 3 is to identify optimal regions with significant solar potential. After 

determining the optimal development regions, it is necessary to estimate more precise rooftop 

solar irradiation in the research region to provide a reliable and scientific guideline for 

developing distributed solar systems in the city. The findings from Chapters 2 and 3 indicate 

that Hong Kong has abundant solar resources, making it an ideal city for developing distributed 

rooftop solar systems. Therefore, Hong Kong is selected as the research region in this chapter 

for investigating rooftop solar potential. 

 

In this Chapter, the author proposes a parametric-based method to estimate annual rooftop solar 

irradiation at a fine spatial resolution. Specifically, seven parameters (Digital Surface Model, 

Sky View Factor, shadow from buildings, shadow from terrain, building volume to façade ratio, 

slope, and aspect) are determined that have great importance in modeling rooftop solar 

irradiation. Three machine learning methods (RF, GBRT, AdaBoost) trained by the selected 

parameters are cross-compared based on R2, MAE, and computation time. As a case study in 

Hong Kong, China, the RF outperformed GBRT and AdaBoost, with R2=0.77 and 

MAE=22.83kWh/m2/year. The time for training and prediction of rooftop solar irradiation is 

within 13 hours, achieving a 99.32% reduction in time compared to the physical-based 

hemispherical viewshed algorithm. These results suggest that the proposed method can provide 

an accurate and fast estimation of rooftop solar irradiation for large datasets. The results also 

indicate that the proposed method can provide a reliable and accurate reference for urban 

planners and the government to promote PV system installation on rooftops effectively and 
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reasonably design building rooftop structures.  

 

4.1 Study area and data 

This section includes the description of the data sources, the data structure design adaptive to 

machine learning models, the study area, and data pre-processing. 

 

4.1.1 Study area 

Hong Kong, China, is located at 22°15′ N, 114°15′ E, with a typical subtropical climate. It has 

a total land area of about 1, 110 km2 with a hilly and mountainous topography, and around 75% 

of the land in Hong Kong is a mountainous area. High population density and limited land 

resources have formed the high-density urban morphology in downtown areas of Hong Kong 

associated with densely packed high-rise buildings (Leng et al., 2020). The territory is divided 

into 18 districts, with around 323,886 buildings by 2019. Because of the high building density 

and limited land resources, the rooftop solar PV system can be suitable and feasible for Hong 

Kong's renewable energy development in the future. Figure 29 (b-g) shows the change in annual 

clear sky surface solar irradiation in six locations from 2012 to 2021 in Hong Kong, and the 

data is obtained from NASA Power (NASA Power, 2021). To calculate the annual clear sky 

irradiation, we employed the monthly clear sky irradiation from the NASA Power dataset. 

NASA Power adopted the data from the Baseline Surface Radiation Network site observations. 

The monthly clear sky irradiation demonstrated a Bias of 0.03% and an RMSE of 5.7%. The 

resolution of the data is 1 degree latitude by 1 degree longitude. It is clear that the annual clear 

sky surface solar irradiation in different locations in Hong Kong is highly consistent, so this 

study does not use clear sky irradiation as the input variable. Figure 29 (h-i) shows the amount 

of annual solar irradiation observed by the King’s Park Station and Kau Sai Chau Station (Hong 

Kong Observatory, 2023) from 2012 to 2021, which suggests that Hong Kong has a great 

potential for developing solar energy.   
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Figure 29 The change of annual solar irradiation from 2012 to 2021 in Hong Kong, China. 

(a)Locations of six sites. (b-g) Annual clear sky surface solar irradiation in six sites. (h-i) 

Annual solar irradiation from the King’s Park Station and Kau Sai Chau Station 

 

 

4.1.2 Dataset description 

This study considers six influential factors that can affect spatio-temporal solar distribution on 

rooftops (Tong et al., 2005; Ko et al., 2015; Sarralde et al., 2015; Buffat et al., 2018; Mohajeri 

et al., 2018; Nelson et al., 2020; Walch et al., 2020), namely morphological data, DSM, building 

shadow, terrain shadow, tilted rooftop slope, and tilted rooftop aspect. Among them, the DSM 

at 1m resolution and building polygons enriched with the height attribute were obtained from 

the Civil Engineering and Development Department and the Lands Department of the 

Government of Hong Kong SAR in 2019. This study intends to investigate the specific impact 

of building shade and mountain shade on rooftop solar irradiation, respectively. Therefore, this 

study calculates the building shade using the building footprint with building height and uses 

DEM to calculate the mountain shade. The rooftop solar irradiation map with 1m resolution 

used for cross-validation is obtained from the project of Hong Kong Solar Irradiation Map for 

Building Rooftops which is conducted by the Electrical and Mechanical Services Department 

(Wong et al., 2016) and Remote Sensing Lab at Hong Kong Polytechnic University, and it is 

calculated by using Remote Sensing technologies and Geographic Information Systems (Wong 

et al., 2016). 
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d e

f g

h i



 

 67 

4.1.2.1 Urban morphological data 

Previous studies have proved that urban morphology can affect the building solar energy 

potential (Martins et al., 2014; Li et al., 2015; Sarralde et al., 2015; Zhu et al., 2019; 

Chatzipoulka et al., 2016; Zhu et al., 2022). Boccalatte et al. (Boccalatte et al., 2022) evaluated 

the impact of 40 urban morphological parameters on rooftop solar radiation. Additionally, many 

studies (Lopez et al., 2016; Chatzipoulka, et al., 2018; Tanu et al., 2021) suggest that the Sky 

View Factor (SVF) has a strong correlation with rooftop solar irradiation. Therefore, a total of 

41 urban morphological parameters are calculated from building polygons in Hong Kong using 

a Python library named Momepy (Fleischmann et al., 2019). The Momepy library is based on 

several well-known Python packages for GIS-based data analysis, namely GeoPandas 

(Greenhall, 2019), PySAL (Rey, 2010), and networkX (Hagberg, 2008). These 41 morphological 

parameters can be divided into four categories, which can represent the building dimension, 

building shape, building intensity, and building spatial distribution. The list of these parameters, 

as well as the related equations and description, are displayed in Appendix 1. 

 

4.1.2.2 Building shadow 

Since skyscrapers in cities often cast shadows on each other (Ko et al., 2015), the mutual 

shadowing by buildings is considered in our study. A shadow polygon will be formed when the 

sunshine arrives at the rooftop. The direction of solar irradiation is described by the elevation 

and azimuth with a determined intensity at an instant of time.  
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Figure 30 Hourly shadow distribution in an urban area of Hong Kong on 15th August 2019. 

(a-k) Hourly shadow distribution from 7 am – 5 pm. (l) Accumulated shadow distribution 

         

 

4.1.2.3 Terrain shadow 

Hong Kong is characterized by complex topography with high mountains and dense urban 

developments (Tong et al., 2005). Therefore, the effect of terrain variation on rooftop solar 

irradiation is considered in this study.  

 

4.1.2.4 Rooftop slope and aspect 

Previous studies have suggested that tilted rooftops with various orientations significantly 

affect the site selection of solar PV arrays (Buffat et al., 2018; Mohajeri et al., 2018; Nelson et 

al., 2020; Walch et al., 2020). Thus, the rooftop characteristics, i.e., slope and aspect, are 

considered the input variables in our dataset. The Aspect and Slope toolsets in ArcMap generate 

the rooftop aspect image and slope image at 1-m resolution based on the DSM data. 
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4.1.3 Dataset pre-processing and data construction  

Urban morphological data and rooftop slope and aspect are static data, which are directly 

calculated by Python Library and ArcMap. While building shadow and terrain shadow are 

dynamic data, both data need to be performed in accumulation processing for transforming into 

annual data. The building footprints and the height information are used to generate hourly 2D 

building shadow polygons from 7 am to 5 pm on 15th August 2019. Generated 2D building 

shadow polygons are transformed into Raster images, and these shadow images are overlayed 

into one day 2D building shadow image. The overlapped shadow image is considered daily 

shadow distribution for calculating the annual total building shadow image with a 1-m 

resolution. Figures 30 (a) to (k) demonstrate hourly building shadow changes from 7 am to 5 

pm, and Figure 30 (l) presents the accumulated shadow distribution on that day. Calculation of 

terrain shadow faces a challenge because its shape is irregular, so the calculated values from 

the Hillshade toolset in ArcMap are used as hourly terrain shadow from 7 am to 5 pm on 15th 

August 2019 using the DEM data. Next, hourly shadow distributions are accumulated on a daily 

basis, and it is considered the average annual terrain shadow intensity at the resolution of 1 m. 

 
Figure 31 The specific distribution of the training and testing regions 

 

All data are transformed into the raster files having the same resolution, orientation, and 

projection system (i.e., Hong Kong 1980 Grid coordinate system), which are deemed as multi-

band images for training, validating, and testing. Our dataset contains 323,886 buildings that 

occupy 51-km2 land surface in total. The whole data is organized according to the 18 districts. 

We divided these districts into the training and prediction regions (Figure 31), which 

respectively account for 45% and 55% of the total rooftop area. This is based on two 
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considerations. First, the training region covers high-density, middle-density, and low-

density buildings, and the amount of building rooftops is well-sufficient for training and 

testing the models. Second, to evaluate the model performance, this study trains and validates 

the models and utilizes the resulting models to estimate the rooftop solar potential based on the 

testing dataset. The ratio of the training and testing datasets is 9 to 1. To improve the quality of 

the dataset, the outliers of all data values in datasets (i.e., the null value and infinite) which 

consumed 0.18% of the entire dataset are filtered out in the dataset. 

 

4.2 Methodology 

This study proposes a fast and accurate method based on the machine learning model for the 

estimation of annual rooftop solar irradiation over an urban area, with a flowchart presented in 

Figure 32. Firstly, the MT method (Fleischmann et al., 2020) is used to calculate morphological 

features. Secondly, as a preliminary analysis to investigate the relationship between solar 

irradiation and the 41 morphological features (appendix 1), Pearson correlation analysis has 

been performed to test the effectiveness of the proposed indices. To improve the training 

efficiency, Random Forest, a widely used machine learning model particularly useful for 

classification and prediction, is used to select suitable input variables. Furthermore, the 

estimation results are compared using different machine learning models to select the optimal 

model based on criteria of fast computation and the highest performance to estimate annual 

rooftop solar irradiation. Finally, this study analyzed the distribution of mean annual solar 

irradiation received by rooftops on different rooftop slopes and aspects for providing a reliable 

reference for the effective deployment of solar PV arrays. 
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Figure 32 Flow chart for estimating rooftop solar irradiation 

 

4.2.1 Calculation of morphological features 

Forty-one morphological features used in this study are divided into four categories. The 

specific classification is shown in Appendix 1. The features related to the categories of building 

dimension and building shape are directly calculated based on the building footprint. 

Additionally, this study employs morphological tessellation cells (MTC) (Fleischmann et al., 

2020) to define a reference boundary for calculating the features related to building intensity. 

The aim of spatial distribution analysis is to calculate the spatial relationship among buildings, 

so the spatial distance of 200m between a building and its adjacent buildings is employed based 

on the previous studies (Edussuriya et al., 2011; Ng et al., 2011) for calculating the features 

related to building spatial distribution. 

4.2.1.1 Morphological tessellation 

Using a boundary for calculating the building density information requires the selection of a 

specific spatial scale which is based on a grid or the administrative district for calculating 

building density (Leng et al., 2020). However, this selection of an appropriate spatial scale 

usually relies on empiricism (Wei et al., 2016; Yong et al., 2017; Javanroodi et al., 2018; Lima 

et al., 2018), and this leads to time-consuming for selecting the spatial scale and narrow scope 

of application. Compared to the above-mentioned traditional method, MTC is a geometric 

derivative of Voronoi polygons obtained from building footprints, and it represents the smallest 
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spatial unit that delineates the portion of land around each building (Boccalatte et al., 2022). 

This allows us to obtain the density information related to buildings for a better estimation of 

solar distribution. The process of generating morphological tessellation consists of five steps: 

(i) inward offset from building footprint; (ii) discretization of polygons’ boundaries into points; 

(iii) generation of Voronoi cells; (iv) dissolution of Voronoi cells; (v) clip of preliminary 

tessellation. Figure 33 shows the morphological tessellation distribution in Hong Kong. Based 

on the MTC, it is feasible to capture the influence that each building exerts on the surrounding 

space as well as the building-related density information. 

 

Figure 33 Building footprints and related tessellation cells of a specific area of Hong Kong 

      

4.2.2 Machine learning models 

4.2.2.1 Random Forest Regression  

RF (Segal, 2004) is a combined regression model that is composed of a large amount of decision 

trees ℎ(𝑋; 𝜃𝑘) (𝑘 = 1,2, … , 𝑛), where 𝜃𝑘 is an identically distributed random vector, 𝑛 is 

the number of decision trees, and 𝑋  is the input variables, namely, morphological indices, 

DSM, building shadow, terrain shadow, rooftop slope, and rooftop aspect. We set Y as the output 

variable that denotes the solar irradiation values calculated by the physical model, then (X, Y) 
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composed of the original datasets. The RF model uses the Bootstrap method (Efron and 

Tibshirani, 1985) for sampling of input datasets, and then employs the complete splitting 

method to construct the decision trees. 

 

4.2.2.2 Gradient Boost Regression Tree 

GBRT (Friedman, 2001) is an ensemble model using forward addition based on the base 

function of the classification and regression tree (CARF). The process of constructing one 

CARF consists of two parts, generation of the decision tree and decision tree pruning. In the 

process of constructing the GBRF model, the squared error is used as the learning target of the 

model (Equation 5): 

 

𝐿(𝑦𝑖 , 𝑓(𝑥)) = 𝑚𝑖𝑛 ∑ (𝑦𝑖 − 𝑓(𝑥))2𝑁
𝑖=1              (5) 

 

Where y represents the solar irradiation values calculated by the physical model as ground truth, 

x denotes seven input variables in our dataset, f(x) represents the prediction value of the model, 

and N represents the size of the sample.  

 

4.2.2.3 Adaboost Regression Tree 

The Adaboost algorithm (Duraˇciov´a and Pruˇzinec, 2022, Schapire and Singer, 2000) is one 

of the best supervised learning methods with satisfactory prediction performance. This 

algorithm can inherit many weak regression models and finally form a strong model. The 

processing of the AdaBoost algorithm is that for the same sample points, their weight will be 

continually updated for training multiple weak regression models, then the weak regression 

models with different weights are composed of a final strong regression model. 

 

4.2.3 Selection importance parameters 

The importance of each variable in RF can be estimated by the random sampling method. The 

original sample size is set as N, and variables are 𝑥1, 𝑥2, … , 𝑥𝑚 (here m=46, because we have 

46 input variables in our dataset). Each time a bootstrap method is used to randomly select a 
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sample from the total sample and randomly select n times with replacement. n bootstrap 

samples generate n regression trees. The samples that are not drawn each time are composed of 

n out-of-bag data as test samples, so that the importance order of each variable in the 

classification regression can be obtained.  

 

4.2.4 Estimation model for annual rooftop solar irradiation  

Physical modeling for solar irradiation estimation is usually performed based on physical 

principles and mathematical modeling, thus these methods are often referred to as model-driven 

methods (Kundur et al., 2004). Model-driven methods have the advantages of clear logistic and 

rigorous derivation. However, improving computing efficiency by simplifying the model would 

always lead to a decrease in the estimation accuracy (Baltas et al., 2018). Machine learning can 

extract knowledge from massive data with the advantages of high computing efficiency and 

high accuracy, thus these methods are known as data-driven methods. Nevertheless, these 

methods are dependent on a prior-knowledge and database. Since it is difficult to measure the 

ground truth of rooftop solar irradiation in large-scale regions, it faces challenges in obtaining 

ground truth for training the model. To rapidly and accurately estimate rooftop solar irradiation, 

a data and model dual-driven loosely coupled approach was proposed by the integrations of 

machine learning models and physical models. In this study, the estimation model consists of 

two modules, namely, the model-driven methods and the data-driven methods. The model-

driven method uses the method proposed by Wong et al. (Wong et al., 2016), which is based on 

the hemispherical viewshed algorithm developed by Rich et al. (Rich et al., 1994), to calculate 

hourly rooftop solar irradiation. The specific hemispherical viewshed algorithm is introduced 

in Appendix 2. The hourly solar data is accumulated into annual rooftop solar irradiation, and 

the model-driven model passes the annual data onto the data-driven model as the ground truth. 

In the data-driven model, three machine learning methods are compared to select the optimal 

one for estimating all rooftop solar potential by using three evaluating indicators, including R2, 

Mean Absolute Error (MAE), and computation time.  

 



 

 75 

4.3 Results and Discussion 

4.3.1 Correlation analysis between morphological features and rooftop 

solar irradiation 

Pearson correlation analysis is performed to investigate the relationship between annual rooftop 

solar irradiation and 41 morphological features, and the Variance Inflation Factor (VIF) (Neter, 

et al., 1996) is used to diagnose multicollinearity for these morphological features. These 

features can be divided into four categories, namely, building dimension, building shape, 

building intensity, and building spatial distribution (Boccalatte et al., 2022). Table 4 shows the 

Pearson correlation coefficients and corresponding p-values between rooftop solar irradiation 

and each morphological feature, and Table 5 shows multicollinearity among these features. The 

most explainable parameters relevant to rooftop solar irradiation are related to the building 

shape (i.e., building shape index (Shpidx), building Rectangularity (Rec), building equivalent 

rectangular index (ERI), building circular compactness (Com), building elongation (Elg), and 

building square compactness (Squcom)), with R>0.65. Furthermore, the parameters related to 

the building dimension (i.e., building fractal dimension (Fra), Tessellation longest axis length 

(LALtess), building volume to façade (VFR), and building longest axis length (LAL)) and ones 

related to the building spatial distribution, including, negative average neighborhood shading 

angle (Shdan), building adjacency (Adj), sky view factor (SVF), and mean inter-building 

distance (IBDmean). They show strong and positive correlations with R ranging between 0.65 

and 0.7. On the contrary, the parameters with strong correlation coefficients do not consist of 

those related to the building intensity. For example, CAR has moderate correlations with 

rooftop solar irradiation, with R=0.61. The results indicate that the mentioned parameters 

related to the building shape, dimension, and spatial distribution can greatly affect the amount 

of the receiving rooftop solar irradiation. Only one feature, building shape index, has p-values 

between 0.01 and 0.005, which suggests that it is statistically significant at the 0.01 level. The 

p-values of four features (i.e., positive average neighborhood shading angle, average building 

height, rugosity, and alignment) are between 0.01 and 0.05, which suggests that they are 

statistically significant at 0.05 level. In addition, the p-values of the remaining 36 features are 

less than 0.005, which suggests that they are statistically significant at the 0.005 level. The 
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small values of VIF (VIF≤10) corresponding to 11 morphological features suggest there is no 

issue with multicollinearity. In addition, the values of VIF corresponding to 16 morphological 

features are between 10 and 100, which suggests that these features have moderate 

multicollinearity, while the remaining morphological features whose values of VIF are larger 

than 100 suggest that they have strong multicollinearity. 

 

 

Table 4 Results of Pearson correlation analysis between rooftop solar irradiation and each 

morphological feature 

Name R Name R Name R 

Fra 0.70(***) CARmean 0.62(***) A 0.47(***) 

Shpidx 0.70 (**) P 0.62(***) HDp 0.47(***) 

Rec 0.69(***) CAR 0.61(***) Vmean 0.47(***) 

ERI 0.69(***) Shdap 0.61(*) TFAmean 0.46(***) 

Com 0.68(***) H 0.58(***) Squ 0.42(***) 

Adj 0.68(***) Hmean 0.57(*) SWR 0.42(***) 

Shdan 0.68(***) FARmean 0.54(***) V 0.40(***) 

SVF 0.67(***) Ort 0.53(***) Flrarea 0.39(***) 

Elg 0.67(***) Amean 0.51(***) HW 0.35(***) 

IBDmean 0.66(***) Rug 0.50(*) Habs 0.11(***) 

Squcom 0.66(***) HDn 0.49(***) Nneigh 0.019(***) 

VFR 0.65(***) FA 0.49(***) HD -0.28(***) 

LALtess 0.65(***) Atess 0.47(***) Shdmean -0.35(***) 

LAL 0.65(***) Ali 0.47(*)   

(*) p<=0.05, (**) p<=0.01, and (***) p<=0.005 

 

Table 5 Results of multicollinearity analysis among morphological features 

Group Name VIF Name VIF Name VIF Name VIF 

VIF>100 

Vmean 8110 Rug 4542 Com 1069 LAL 109 

TFAmean 7712 FA 4334 Fra 763   

Flrarea 5393 Shpidx 3463 Squcom 469   

 V 5388 ERI 1485 Rec 181   

10<VIF≤100 

P 96 FARmean 50 CAR 23 Amean 17 

Hmean 54 CARmean 38 LALtess 22 Adj 14 

Shdan 52 VFR 35 Shdap 21 Nneigh 14 

 Elg 51 H 26 SVF 17   

VIF≤10 

IBDmean 10 Atess 6 Ort 3 HW 1 

HD 8 Habs 6 A 3   

HDn 7 HDp 5 Ali 2   

 SWR 7 Shdmean 4 Squ 2   
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4.3.2 Parameters selection and importance analysis 

The RF model is often employed for calculating the parameter importance and selecting 

variables for training machine learning models in some studies (Gr¨omping et al., 2009; 

Bhanujyothi et al., 2014; Dewi et al., 2019). The results are sorted in descending order as shown 

in Table 6. It presents that DSM makes a significant contribution to our estimation model, with 

0.55 importance, followed by the rooftop slope. However, the importance of other parameters 

is close to zero. To increase the efficiency of the computation, we conducted recursive 

parameter selection for selecting useful parameters. To improve the efficiency of the selection, 

the interval of eliminating parameters was flexibly adjusted based on three indicators, i.e., R2, 

MAE, and computation time. The order for eliminating parameters is based on the values of 

importance from low values to high values. Table 7 shows R2, MAE, and computation time for 

recursively eliminating parameters from the parameter set. The RF model with 46 parameters 

showed the highest estimation accuracy, with 𝑅2=0.78. We further calculated the importance of 

these 46 parameters and arranged these parameters in descending order. The corresponding 

parameters are sequentially removed from the dataset parameter list, starting with the smallest 

value, based on their order of importance. Initially, the parameter removal interval was set at 

four. However, even with this interval, the 𝑅2 value remained consistently at 0.78. As a result, 

the interval was adjusted to ten. However, this adjustment resulted in a slight increase in MAE. 

Consequently, the interval was further refined to eight. Considering the MAE and computation 

time, when the 𝑅2 value decreased by 0.77, the interval was adjusted to one. Overall, as the 

number of parameters gradually decreases, corresponding R2 and computation time also reduce, 

and MAE slightly increases. To balance the performance regarding the three indicators, models 

built by seven parameters are considered suitable for estimating rooftop solar irradiation, 

achieving high accuracy and fast computation. This is because the R2 and MAE of the model 

with seven parameters are near that of the model with 14 parameters, and using seven 

parameters can save half the computation time than using 14 parameters. The final dataset 

consists of DSM, shadow from the surrounding buildings, shadow from natural terrain, rooftop 

aspect, rooftop slope, building volume to façade ratio, and SVF.     
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Table 6 The importance between rooftop solar irradiation and each parameter 

Name I Name I Name I Name I 

DSM 0.55 Hmean 0.0049 HW 0.0034 SWR 0.0027 

Slope 0.13 Elg 0.0047 V 0.0034 FA 0.0027 

Shadow 0.055 IBDmean 0.0045 Shdan 0.0031 Rug 0.0025 

Aspect 0.039 FARmean 0.0041 ERI 0.0031 TFAmean 0.0024 

SVF 0.026 LALtess 0.0040 HDn 0.0030 Shpidx 0.0024 

Hillshade 0.021 Rec 0.0040 Flrarea 0.0030 Vmean 0.0023 

VFR 0.016 CARmean 0.0039 HD 0.0030 Squcom 0.0023 

Atess 0.0070 CAR 0.0038 Adj 0.0029 Com 0.0023 

Ort 0.0064 HDp 0.0038 Shdmean 0.0028 Habs 0.0023 

Ali 0.0056 H 0.0038 Fra 0.0028 Nneigh 0.0021 

Squ 0.0051 Amean 0.0038 LAL 0.0027 
  

A 0.0051 Shdap 0.0037 P 0.0027 
  

 

Table 7 R2, MAE, and time for recursively selecting parameters 

No. of input 

parameters 

R2 MAE (kWh/m2/year) Time (h) 

46 0.78 20.71 20.47 

42 0.78 20.72 19.27 

38 0.78 20.73 17.10 

28 0.78 20.77 12.50 

20 0.78 20.94 8.54 

14 0.78 21.21 6.01 

7 0.77 22.83 3.00 

6 0.74 24.77 2.50 

5 0.74 24.63 2.10 

4 0.70 27.33 1.70 

3 0.67 27.74 1.30 
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4.3.3 Estimation of annual rooftop solar irradiation using machine 

learning models 

The experiments were performed on a desktop with Intel Core i7-9700K CPU and 32 GB 

memory. Five-fold cross-validation (Rodr´ıguez et al., 2009) was performed to train and test 

each model. Specifically, the original dataset was randomly divided into five equally-sized sub-

datasets. Among these five sub-datasets, one was designated as the validation data for 

evaluating the performance of machine learning models, while the remaining four sub-datasets 

were utilized as the training data. The grid search method (Baltas et al., 2018) was used to 

optimize the hyper-parameters, and the optimization of hyper-parameters can be found in Table 

8. 

 

Table 8 The hyper-parameters of the different machine learning models 

Model The used hyper-parameters 

RF46 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 200, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 ∶ 1, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∶ 

2 

RF7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 100, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 ∶ 1, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∶ 

2 

GBM7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 100, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∶ 0.1, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∶ 3, 

𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 ∶ 0.8 

AdBoost7 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 ∶ 50, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∶ 1.0, 𝑏𝑎𝑠𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ∶ 

𝑑𝑒𝑝𝑟𝑒𝑐𝑎𝑡𝑒𝑑, 𝑙𝑜𝑠𝑠 ∶ 𝑙𝑖𝑛𝑒𝑎𝑟 

 

After selecting the final dataset, this study compared the estimation performance of three 

machine learning models in the Kowloon district (Table 9). The RF model using 46 parameters 

(RF46) obtains the highest estimation accuracy with R2=0.79 and MAE=20.71 kWh/m2/year. 

However, it costs 21.16 hours to train a robust model. The value of R2 of the RF model using 

seven parameters (RF7) is close to that of the RF46 model, while the computation time of the 

RF46 model is around seven times longer. This suggests that the RF46 model is a complex 

estimation model with redundant parameters, which can lead to low computational efficiency. 
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Although the AdaBoost model utilizing seven parameters (AdBoost7) spends the least time for 

training, R2 is only 0.58. This means that this model has a low capability to accurately estimate 

rooftop solar irradiation in the study area. The performance of RF7 and GBM utilizing seven 

parameters (GBM7) is followed by that of RF46. The R2 and MAE of the RF7 datasets are higher 

than those of GBM7, while the RF7 model takes twice as long as the GBM7 model.  

 

To investigate the estimation accuracy of the models, this study also calculated the absolute 

errors. Table 10 shows the absolute error distribution in different ranges using four models in 

the Kowloon district. The percentages of the absolute errors within 20 kWh/m2/year are 94.15% 

for RF46, 93.79% for RF7, 92.67% for GBM7, and 92.53% for AdBoost7, respectively. For all 

models, the absolute errors over 500 kWh/m2/year account for less than 6%. Compared with 

the four models, AdBoost7 shows a slightly worse estimation performance, with around 8% of 

the absolute errors over 20 kWh/m2/year. Overall, these four machine learning models show 

satisfactory estimation performance. This means that the estimation accuracies of all models 

are high and these models can provide reliable estimation results. 

 

Combined with the results of Table 9 and Table 10, the performance of estimation accuracy (i.e., 

R2, MAE, and absolute error) of two RF models is better than the GBM model and AdaBoost 

model. To greatly investigate the computation efficiency of two RF models, this study 

compared calculation time for the calculation of the dataset, training model, and prediction 

using two RF models in Hong Kong. Table 11 is the result. Overall, the calculation time for 

each part using the RF7 model is obviously less than that using the RF46 model. Especially, the 

training time using RF46 is more than 26 times longer than that of using RF7. Thus, considering 

the estimation accuracy and computation time, we selected the RF model with seven parameters 

dataset for estimating the rooftop solar irradiation in the whole area of Hong Kong to obtain a 

balance between time cost and estimation accuracy. 

The annual rooftop solar irradiation map was created by using the RF7 model. Figure 34 (a) 

displays the annual rooftop solar map in Hong Kong, and Figures 34 (b) to (e) show annual 

rooftop solar maps in Hong Kong Island, Central and West, Yuen Long, and Kowloon, 

respectively. The high-density area shows smaller rooftop solar potential, while the low-density 
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area shows larger solar potential. This is because buildings in dense areas are greatly affected 

by the shadow from surrounding buildings. Therefore, the shadow effect is a significant factor 

in estimating rooftop solar irradiation in dense cities 

 

Table 9 R2, MAE and time of different models in Kowloon 

Model R2 Mean absolute error (MAE) 

(kWh/m2/year) 

Time of training 

models (h) 

RF46 0.79 20.71 21.16 

RF7 0.77 22.83 3.00 

GBM7 0.71 28.72 1.47 

AdaBoost7 0.58 42.25 0.87 

 

 

Table 10 Absolute error distribution in different models in Kowloon 

Model 
Range of the absolute error (kWh/m2/year) 

0-20 20-500 500-1000 >1000 

AdBoost7 92.53% 1.62% 5.86% 0.00% 

GBM7 92.67% 5.14% 1.87% 0.31% 

RF7 93.79% 4.39% 1.58% 0.24% 

RF46 94.15% 4.22% 1.36% 0.27% 

 

Table 11 The comparison of calculation time for calculation of the dataset, training model, 

and prediction using two RF models in Hong Kong 

Model Time for calculation of the 

dataset (h)  

Time for training 

model (h) 

Time for prediction 

(h) 

RF46 32.79 319.79 2.41 

RF7 20.84 12.13 0.85 
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Figure 34 Annual rooftop solar irradiation map in Hong Kong. (a) The whole region. (b) 

Hong Kong Island. (c) Central and West. (d) Yuen Long. (e) Kowloon. 

 

To evaluate the usability and generalization ability of our model, this study compared Mean 

Relative Error (MRE) between the training and prediction regions (Table 12 and Table 13). For 

training the model, the MRE of all the training regions is within 7%, and the time for training 

the model is approximately 12 hours. For estimating the whole of Hong Kong, the MRE varies 

from about 9% to 5%, and the computation time is about 0.85 hours. Although the MRE of the 

prediction regions is slightly higher than that in the training regions, this is a high estimation 

accuracy for the prediction regions which are not trained. The results indicate that our model 

has good generalization capability.  

 

Table 12 The prediction accuracy in training regions 

Region MRE Region MRE Region MRE Region MRE 

Central and 

Western 
6.20% 

Kwai 

Tsing 
3.88% 

Sham Shui 

Po 
4.19% 

Wong Tai 

Sin 
4.26% 
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East 4.57% 
Kwun 

Tong 
3.93% Southern 4.50% 

Yau Tsim 

Mong 
4.71% 

Kowloon 4.58% Sha Tin 4.73% Wan Chai 5.69%   

 

 

Table 13 The prediction accuracy in prediction regions 

Region MRE Region MRE Region MRE Region MRE 

Hong 

Kong 

Island 

9.11% Sai Kung 7.17% Tai Po 8.37% 
Tsuen 

Wan 
9.27% 

Tuen Mun 9.30% Yuen Long 9.59% North 5.16%   

 

4.3.4 Accuracy assessment of physical model  

The estimation of rooftop solar irradiation from the physical model was employed as the ground 

truth to cross-validate the machine learning models. To assess the accuracy of the physical 

model, field verification was conducted at five different sites, including a single-house rooftop 

in Kam Tin, a 20th-floor rooftop of private housing in Sha Tin, a sky garden at the Hong Kong 

Polytechnic University (PolyU), the lawn at the HKO King’s Park Station, and a secondary 

school rooftop in Tseung Kwan O. Measurements were taken using MS-802, CM21, and 

CMP11 pyranometers. Table 14 shows the details of field verification, including data collection 

periods, site names and locations, and the equipment used. Additionally, Table 15 presents the 

comparison between validation field data and the estimated global horizontal solar irradiation 

using the physical model. Overall, the model achieves a high accuracy of 95.99% with an MRE 

of 4.01%. These results affirm the highly accurate performance of the physical model, 

validating the reliability of estimation values derived from it as ground truth. 

 

Table 14 Details of field verification 

Site Period Location 

Name 

Coordinates Equipment 

Used 

1 22 Feb 2020−25 Feb 2020 Kam Tin (22.24, 114.07) MS-802, CM21 

2 25 Feb 2020−28 Feb 2020 Sha Tin (22.38, 114.20) MS-802, CM21 

3 29 Apr 2020−6 May 2020 PolyU (22.31, 114.18) MS-802, CM21 

4 27 Aug 2020−7 Sep 2020 King’s Park 

Station 

(22.31, 114.17) MS-802, 

CM21, CMP11 
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5 30 Dec 2020-6 Jan 2021 Tseung Kwan 

O 

(22.32, 114.26) CMP11 

 

Table 15 Comparison between validation field data with the estimated result at the five 

validation sites 

Site Estimated result (Wh/m2) 
Measurement (Wh/m2) (MRE) 

MS-802  CM21 CMP11 

1   18,979 19,092 

(−0.59%) 

19,711 

(−3.71%) 

N/A 

2   12,771 11,331 

(12.71%) 

11,408 

(11.95%) 

N/A 

3    35,914 35,964 

(−0.14%) 

37,508 

(−4.25%) 

N/A 

4    42,631 43,038 

(−0.94%) 

44,412 

(−4.01%) 

44,264 

(−3.69%) 

5   24,357 24,357 24,357 24,232 (0.51%) 

 

4.3.5 Comparison between physical model and machine learning 

model  

The physical model demonstrated highly accurate results, with hourly estimations exhibiting 

4.01% MRE for the entire year. Although the accuracy of the RF7 model at 7.72% MRE is 

slightly lower than that of the physical model, both models can provide high accuracy and 

reliable estimation results. For comparison, the physical model and RF7 model were used to 

estimate rooftop solar irradiation on 5,334 buildings. These buildings cover 423,876 square 

meters which are selected randomly from the 18 districts in Hong Kong. The physical model 

spent around 927 seconds, whereas the RF7 model cost 6 seconds. From Table 8, it is clear that 

all calculation time required for estimating the whole rooftop solar potential using the RF7 

model is approximately 33.82 h. In contrast, the physical model needs to spend nearly a year to 

complete the same estimation. This demonstrates that our model can greatly reduce 

computation time and thus overcome the low-efficiency problem when using the physical 

model. For the input parameters, the physical model utilized DSM, locational information 

(latitude and longitude), slope, aspect, and direct and diffuse solar radiation to calculate the 

rooftop solar irradiation, obtaining high spatial-temporal resolution of solar radiation. 

Compared with the physical model, the RF7 model only uses seven parameters (i.e., DSM, 
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shadow from the surrounding buildings, shadow from natural terrain, rooftop aspect, rooftop 

slope, and SVF) to achieve highly accurate and efficient estimation, and these parameters are 

relatively easy to obtain a reliable generalization.  

 

4.3.6 Analysis of rooftop solar irradiation distribution 

After the estimation of annual mean solar irradiance by applying our trained model, we 

conducted an analysis to explore the relationship between annual mean solar irradiance and 

slopes as well as aspects. This analysis involved associating the estimated solar irradiance 

values with their corresponding slopes and aspects, which were determined based on the 

geographical locations of the rooftops. Figure 35 visualizes the average annual solar irradiation 

received by the rooftop as a function of roof slope and aspect. Overall, the annual mean solar 

irradiation received by rooftops is high, from 1,120 kWh/m2 to 1, 280 kWh/m2. This suggests 

that solar potential on rooftops in Hong Kong could generate a considerable amount of 

electricity efficiently. The distribution of rooftop solar irradiation is east-west symmetry, and 

the values of solar irradiation gradually decrease from north to south. Furthermore, the largest 

irradiation is found for south-facing rooftops with a slope between 30 and 40 degrees, while 

north-facing rooftops have the lowest solar irradiation, smaller than 1, 200 kWh/m2. The results 

are in line with the order of nature that the sun shines mainly from the south to the north in the 

northern hemisphere. 

 

The team also investigated annual mean solar irradiation on rooftops surfacing different aspects 

and slopes, respectively. Results in Figure 36 (a) show that the rooftops facing south receive 

the greatest solar irradiation, followed by rooftops facing west and east; in particular, the north 

receives the least irradiation, as expected. Figure 36 (b) shows that the flat to gently sloping 

rooftops, with the slope ranging from 0-40 degrees, receive the greatest solar irradiation. The 

results illustrate the steeper the slope, the smaller the received solar irradiation.  
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Figure 35 Annual mean solar radiation (kWh/m2) as a function of slope and aspect of roof 

surfaces for buildings in Hong Kong, China 

        

             (a)                                 (b) 

Figure 36 Annual mean solar irradiation (kWh/m2) of roof surfaces for different ranges of (a) 

aspect and (b) slope 

 

4.4 Conclusion 

This study proposes a fast and accurate method to estimate annual rooftop solar irradiation at a 

spatial resolution of 1 m in Hong Kong, China. This study parameterizes the influential factors 

(i.e., morphological features, building rooftop structures, DSM, the shadow from buildings, and 

the shadow from terrain) and quantifies the importance of these features on rooftop solar 

irradiation. Compared between RF, GBM, and AdaBoost, the RF model is used for the 

estimation of annual rooftop solar irradiation for individual buildings since its estimation 

accuracy is high (R2=0.77), and the computation speed is fast. Compared with the physical 

model, the machine learning models developed in this study can greatly reduce the computation 

time for rooftop solar estimation at fine spatio-temporal scales. These results suggest that our 
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method can estimate rooftop solar irradiation on individual buildings, which is useful for solar 

related applications, such as planning rooftop PV arrays. As our developed models are well-

trained and validated with satisfactory scalability in various spatial and temporal resolutions, it 

is possible to apply these models to other regions having a similar built environment, and the 

proposed method is also deliverable for entirely different areas. 

 

The traditional methods of calculating building density usually require the definition of a 

reference boundary, which is generated by a grid or administrative limits of a district. However, 

these methods just calculate the average value in a certain portion and fail to capture site-

specific and density information related to buildings. The morphological tessellation method 

used in our study can overcome this limitation, which makes it possible to capture the specific 

impact of surrounding space on each building. 

 

This study approximated the estimated rooftop solar irradiation from the physical model as the 

ground truth for cross-validation. This is because getting field measurements by installing high-

density of solar sensors on all the rooftops in Hong Kong is almost impossible. This is one of 

the feasible solutions as previous studies also utilized a similar method for validation (Gastli et 

al., 2010; Duraˇciov´a et al., 2022). 

 

Compared with the conventional physical models, such as the upward-looking hemispherical 

viewshed algorithm, our approach is 5,592 times faster in computing annual solar potential on 

all rooftops in Hong Kong. Therefore, we conduct recursive parameter selection to filter out 

redundant parameters based on the balance of estimation accuracy and computation time. 

Results of the model with seven parameters show high accuracy with fast computation, and this 

indicates that this model satisfies the requirements for estimating rooftop solar irradiation in 

terms of accuracy and computation speed.  

 

However, the developed method outperformed when compared with others, it has some 

limitations, i.e. we calculated building shadow and terrain shadow on one specific day to 

represent annual shadow distribution, which would affect the estimation accuracy to some 
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extent. This is because the calculation of hourly building shadow and terrain shadow for one 

day with high spatio-temporal resolution requires a computation time of around 24 hours. In 

this regard, this study uses this estimation method for shadow data. From the final results of the 

estimation of rooftop solar irradiation, the method proposed in this study can provide high 

estimation accuracy. Therefore, using generalized shadow data can decrease the computation 

time and confirm estimation accuracy at the same time.  

 

In conclusion, the author proposes a fast and accurate parametric method for estimating rooftop 

solar irradiation based on the machine learning method using seven parameters (DSM, SVF, 

shadow from buildings, shadow from mountains, VRF, slope, and aspect). The results 

demonstrate that the proposed method can provide a reliable, fast, highly accurate reference for 

potential applications, including solar PV installation planning, financial analysis and 

investment decision-making, and urban planning. Specifically, our results can help relevant 

parties identify suitable locations for solar PV installations and make decisions on the feasibility 

and optimal placement of solar panels on rooftops. The method also can help to assess the 

potential solar energy generation and associated cost savings, enabling governments and 

companies to evaluate the viability and profitability of rooftop solar PV installations. 

Additionally, the highly accurate estimation results can provide reliable references to optimize 

the orientation and layout of future constructions and maximize solar energy utilization which 

can help to effectively reduce the Urban Heat Island. 
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Chapter 5 A data-model dual-driven loosely coupled 

approach for fast and accurate estimation of hourly rooftop 

solar irradiation at the building scale 

The annual rooftop solar irradiation can be estimated using the method proposed in Chapter 4, 

which is crucial to evaluate the solar development potential for the city. However, dynamic 

solar radiation data can help power companies monitor changes in PV output in real-time and 

predict short-term generation trends. This enables them to take proactive measures to address 

potential supply fluctuations, thereby enhancing grid stability. Therefore, this Chapter proposes 

a combined approach using a physical model and machine learning decoupling for the hourly 

refined estimation of rooftop solar irradiation. Due to the lack of real-time observational data 

for urban rooftop solar radiation, a partial calculation of rooftop solar radiation values is initially 

performed using a physical model, with these values serving as ground truth for deep learning. 

Rooftop solar radiation is influenced by various factors, including shading from buildings, 

meteorological conditions, and urban morphology. This chapter employs the quantification 

parameter approach from the previous chapter to parameterize these data and investigates the 

relationship between static and dynamic parameters and the hourly dynamic changes in rooftop 

solar energy. Finally, this paper employs the DGTFT deep learning method to estimate urban 

rooftop solar radiation on an hourly basis. The application of this method contributes to a more 

comprehensive understanding of urban rooftop solar potential and provides robust support for 

urban photovoltaic development planning. 

 

5.1 Study area and data 

5.1.1 Study area 

We also choose Hong Kong as the study area in this study. Since the meteorological data is 

considered as the inputs for estimating hourly rooftop solar irradiation, we selected the five 

sites which buildings are the nearest meteorological stations. The distribution of five sites is 

shown in Figure 37. There are two reasons why this study selects these five sites to generate 

the dataset for modeling. First, the meteorological data shows little difference in the small 
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region, so the distance among these sites is quite far. Second, the locations of selected sites are 

representative. We selected two sites in high-density buildings in the urban region and three 

sites in low-density buildings in rural regions.  

 

Table 16 The details of the five sites 

Near station 

name 

Site ID Location Near station 

name 

Site ID Location 

Hong Kong 

International 

Airport 

HKA (22º18'34",113º55'19") Hong Kong 

Observatory 

HKO (22º18'07",114º10'27") 

King’s Park KP (22º18'43",114º10'22") Lau Fau Shan LFS (22º28'08",113º59'01") 

Ta Kwu Ling TKL (22º31'43",114º09'24")    

 

 

Figure 37 The distribution of five sites in Hong Kong 
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5.1.2 Data 

The amount of the receiving solar irradiation on the building rooftop can be affected by many 

factors. Specifically, weather factors play a significant role in estimating solar irradiation. For 

example, Liao et al. (Liao et al., 2023) suggest that meteorological conditions can affect land 

surface solar irradiation to some extent. Furthermore, many studies (Schunder et al., 2020; 

Boccalatte et al., 2022; Huang et al., 2022; Liao et al., 2023) suggest that complex shadow 

conditions from surrounding buildings and terrain and urban morphology are the main limiting 

factors to decrease rooftop solar irradiation. Additionally, DSM is an important input for 

calculating solar radiation using the physical model mentioned in Appendix 2. Therefore, this 

study used DSM, shadow from buildings and terrain, morphological data, and mereological 

data (i.e., hourly prevailing direction in degree, mean sea level pressure, hourly mean wind 

speed, relative humidity, and temperature) to generate the dataset for training the TFT model.  

DSM and the morphological data used in this Chapter are the same as the Chapter 4. Other data 

are detailed as follows. The methods for calculating the shadow from the buildings and terrain 

are the same as that in Chapter 4. However, Since the shadow shows the differences in different 

seasons, we calculated the monthly shadow from the buildings and terrain. Specifically, we 

calculated the shadow from the buildings on the 15th of each month from 7 am to 5 pm and the 

calculation values of the middle day of the month are assigned as the shadow values for other 

days of that month. The method of assigning values for shadows from the terrain is consistent 

with the method for shadows from the buildings. Furthermore, meteorological data were 

obtained from the Hong Kong Observatory, including hourly prevailing direction in degree, 

mean sea level pressure, hourly mean wind speed, relative humidity, and temperature. The 

shadows from buildings and terrain and the meteorological data are from January 1st, 2019 to 

December 31st, 2020 at the interval of one hour from 7 am to 5 pm. 

 

5.2 Methodology 

In Chapter 4, the author proposed a data-model dual-driven method to estimate the annual 

rooftop solar irradiation, which only investigates the impact of the static parameters on the 

annual rooftop solar irradiation. In this chapter, we also employ the data-model dual-driven 
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framework to estimate the hourly rooftop solar irradiation at the building scale. This framework 

contains a model-driven method and a data-driven model. The model-driven method employs 

the upward-looking hemispherical viewshed algorithm proposed by Rich et al. (Rich et al., 

1994), and the mechanism of this algorithm is detailed in Appendix 2. The aim of the model-

driven method is to calculate the hourly rooftop solar irradiance by the function of Solar 

Radiation Tool in ArcGIS, and the calculation values are regarded as the ground truth for 

modeling using the data-driven model. The data-driven model uses the DGTFT method to 

estimate the hourly rooftop solar irradiation at 1m resolution, and it uses the solar irradiation 

values calculated by the model-driven method to train the DGTFT model. The specific 

methodology is detailed as follows. 

 

5.2.1 The physical model for estimation of rooftop solar irradiation 

The hemispherical viewshed algorithm explained in Appendix 2 was used to calculate the solar 

radiation over a geographic area or for specified point locations (longitude, latitude). To obtain 

the precise rooftop solar irradiation at 1m resolution, we convert the building polygons into the 

building points, and we perform the hemispherical viewshed algorithm to calculate the solar 

irradiation of these points. 

   

This algorithm takes location, elevation, slope, aspect, and atmospheric transmission as the 

most relevant inputs. Since this study just investigates the rooftop solar potential on flat 

surfaces, the constant values of zero are used for slope and aspect. Furthermore, there are two 

crucial parameters, i.e. diffuse proportion (D) and transmittivity (T), which denote the 

proportion of global normal radiation flux that is diffuse and the fraction of radiation that passes 

through the atmosphere (averaged over all wavelengths), respectively. The author proposed 

improving the accuracy of the modeling results by fine-tuning the input parameters of the model 

to co-match the direct and diffuse solar irradiations obtained from the Hong Kong Observatory 

(HKO). Therefore, the hourly global, direct, and diffuse irradiation data measured at the King’s 

Park and Kau Sai Chau stations were obtained for parameter optimization. The total amount of 

radiation calculated for a given location is given as global radiation in the (energy) units of 
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Wh/m2. Since the research objective in this study focuses on the building rooftop, we use the 

DSM in Hong Kong as the input raster data for calculating rooftop solar irradiation, which 

contains the elevation information. Other parameters used for calculating the rooftop solar 

irradiation by the physical model are shown in Table 17. 

 

Table 17 The parameters used for calculating the rooftop solar irradiation by the physical 

model 

Parameter name value 

Skysize 400 

DayInterval 1 

HourInterval 1 

ZFactor 1 

CalcDirections 32 

ZenithDivisions 16 

AzimuthDivisions 16 

 

5.2.2 Dual-gate Temporal Fusion Transformer for estimating solar 

irradiation 

The aim of this study is to investigate the non-linear relationship between the shadow from the 

buildings and terrain, the morphological parameters, the meteorological parameters, and the 

rooftop solar irradiation. These parameters can be classified into static parameters and time-

varying parameters. However, it is difficult for traditional machine learning methods to extract 

the time series characters from these data. Therefore, this study employs the temporal fusion 

transformer method to integrate the static features from the morphological data with the 

dynamic features from the shadow of buildings and terrain and the meteorological data for 

estimating hourly rooftop solar irradiation at the building scale. 

 

In this study, Let 𝐼 represents unique entities in rooftop solar irradiation. Each entity 𝑖 consists 

of static metadata 𝑠𝑖, time series inputs 𝑋𝑖,𝑡, and solar targets 𝑦𝑖,𝑡 at time step 𝑡, 𝑡 ∈ [0,   𝑇𝑖]. 

In the case of this study, 𝑠𝑖  contains the value of DSM and the morphological data, 𝑋𝑖,𝑡 
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contains the shadow from the buildings and terrain and the meteorological data, and the 𝑦𝑖,𝑡 is 

the hourly rooftop solar irradiation. As the mentioned in Chapter 3, 𝑋𝑖,𝑡 can be classified into 

two categories, 𝑋𝑖,𝑡 = [𝑧𝑖,𝑡
𝑇 , 𝑥𝑖,𝑡

𝑇 ]𝑇. Past inputs 𝑧𝑖,𝑡 consists of relative time index, hill shadow, 

building shadow, hourly prevailing direction in degree, mean sea level pressure, hourly mean 

wind speed, relative humidity, temperature, and rooftop solar irradiation, and know future 

inputs 𝑥𝑖,𝑡  contains relative time index, hill shadow, building shadow, hourly prevailing 

direction in degree, mean sea level pressure, hourly mean wind speed, relative humidity, and 

temperature. The prediction function is defined as follows: 

 

𝑦̂𝑖(𝑡, 𝜏) = 𝑓(𝜏, 𝑦𝑖,𝑡−𝑘:𝑡, 𝑧𝑖,𝑡−𝑘:𝑡,𝑥𝑖,𝑡−𝑘:𝑡+𝜏, 𝑠𝑖 )                  (5.2.2) 

 

Where 𝑦𝑖,𝑡−𝑘:𝑡 = {𝑦𝑖,𝑡−𝑘 , … , 𝑦𝑖,𝑡} denotes targets of hourly rooftop solar irradiation until the 

time 𝑡, and 𝜏 represents the prediction time point. 

 

5.2.3 The data-model dual-driven mechanism 

To obtain the accurate and fast estimation results of rooftop solar irradiation at a fine resolution, 

we employ the data-model dual-driven mechanism. Specifically, the data-driven model and the 

model-driven method are loose coupling. The whole processing of this mechanism is detailed 

as follows. 

 

i) Selection sites for generating datasets. We selected five representative weather 

stations and searched for the nearest building polygon. Then, we converted these 

building polygons into the five points. We performed the estimation of solar 

irradiation on these five sites. 

 

ii) Calculation of rooftop solar irradiation by the model-driven method. We use the 

hemispherical viewshed algorithm to calculate the solar irradiation on five sites 

from January 1st,2019 to December 31st, 2020 at the interval of one hour. Since 

only solar radiation in the daytime has the research values, we just calculate the 
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values from 7 am to 5 pm within a day. The validation of the model-driven method 

has been demonstrated in Chapter 4, and the results suggest the accuracy of the 

results of the model-driven method enables the calculation values to as the ground 

truth for modeling the data-driven model. 

 

iii) Generation of the datasets for the data-driven model. The formats of the shadow 

from the buildings and terrain, parameterized urban morphology, and DSM are Tiff 

images. So, we extracted the above parameter values from the corresponding sites. 

The solar irradiation calculated from the model-driven method was used as the 

ground truth for training the DGTFT model. All data was organized in 

chronological order. These data were labeled as the static data, time-varying data, 

and the target data. 

 

iv) Division of the datasets. We divided the entire time-series dataset into a series of 

samples, and each sample is a subsequence of a full-time series. The subsequence 

consists of encoder and decoder/prediction time points for a given time series. In 

the case of our study, the length of the encoder is 66 hours (there are 11 hours time 

points within a day, here we use the data of six days), and the length of the decoder 

is 11 hours. We use the dataset from four sites as the training and validation datasets 

and the dataset from the TKL site as the test dataset. 

 

v) TFT modeling. After generating the datasets, we train the DGTFT model using the 

train and validation datasets and use the test dataset to evaluate the accuracy. And 

then, we employ the trained model to estimate the rooftop solar irradiation on 

individual buildings. 

 

 

5.2.4 Evaluation metrics 

In this Chapter, four indicators were used to evaluate the estimation performance, including R2, 
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MAE, RMSE, and Mean Absolute Percentage Deviation (MAPE). The formulas for R2, MAE, 

and RMSE are listed in Chapter 3.1.6, and the formula of MAPE is as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖−𝑦̂𝑖|

|𝑦𝑖|
𝑁
𝑡=1                   (5.2.4) 

5.3 Results 

5.3.1 Data cleaning 

To confirm the quality and dependability of the data, data cleaning is performed on all the data 

to filter the outliers, including missing values and non-numeric values. We counted the number 

of outliers as a percentage of the total number of data in five datasets, and the statistical results 

are shown in Table 18. From this table, we found that the ratios of the outliers in all datasets 

are low. However, solar irradiation is the classic time-series data, and the integrity of the time 

series of data can help the DGTFT model greatly capture the time series features from the 

dataset. Therefore, we use the zero values to replace the values of these outliers to ensure the 

integrity of the time series of data. 

 

Table 18 The ratio of the outliers in five datasets 

Dataset name Outliers ratio Dataset name Outliers ratio 

HKA 0% HKO 0.012% 

KP 0.90% LFS 0.11% 

TKL 0.79%   

 

5.3.2 The result from the physical model  

In this study, the calculation results of the physical model are the ground truth for generating 

the datasets for training and testing the TFT deep learning model. Our research period covers 

from January 1st, 2019 to December 31st, 2020 at the interval of one hour from 7 am to 5 pm. 

So the total time point of each dataset is 8041. We used the hemispherical viewshed algorithm 

to calculate the rooftop solar irradiation on the selected five sites and record the computation 

time. The experiment was performed on a desktop with Intel (R) Core (TM) i7-9700K CPU 

and 32 GB memory. The results of the computation time of each site point using the physical 
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model are shown in Table 19. The computation time for one site point is about seven hours, 

which suggests that the computation speed is low and this leads to huge time costs when the 

physical model is applied for calculating the large amount of rooftop solar irradiation. 

 

Table 19 The computation time of each site point using the physical model 

Site name Time (h) Site name Time (h) 

HKA 7.16 HKO 6.62 

KP 7.26 LFS 6.14 

TKL 7.29   

 

5.3.3 DGTFT model results 

We employ the datasets generated from HKA, HKO, KP, and LFS sites as the training datasets, 

and the dataset from the TKL site is the test dataset. The four indicators are used to evaluate 

the accuracy, including R2, MAE, RMSE, and MAPE. The results are shown in Table 20. These 

results indicate that the DGTFT model displays high-accuracy estimation performance, with 

R2=0.90, MAE=26.90 (MJ/m2), RMSE=32.39 (MJ/m2), and MAPE=18%. Additionally, we 

also calculate the computation time of training the model and testing the model. Training the 

DGTFT model costs about 0.20 hours and using the trained model to estimate the test dataset 

just costs 0.13 hours. Compared to the results of the physical model, the time cost of the DGTFT 

model is far less than that of the physical model. Specifically, the physical model requires 7.29 

hours to calculate the hourly rooftop solar irradiation covering two years using TKL dataset, 

while the DGTFT model just needs 0.13 hours to complete the estimation task under the 

equivalent computation. These results demonstrate that the DGTFT model can provide a fast 

and accurate estimation result for hourly rooftop solar irradiation. 

Table 20 The test accuracy results 

Model R2 MAE (MJ/m2) RMSE (MJ/m2) MAPE 

DGTFT 0.90 26.90 32.39 18% 

 

One of the innovations of the DGTFT model is to calculate the importance of the static variables 

and time-varying variables. From Figure 38, it is noticed that the hill shadow accounts for the 
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most importance in the Decoder, at about 80 %, following by the mean wind speed, at about 

8%. Other variables account for a very small percentage. These results suggest that hill shadow 

plays a significant role in helping the Decoder layer to predict rooftop solar irradiation. 

Furthermore, we also found that the relative time index accounts for the most importance at 

around 35%, and the hill shadow and building shadow account for about 17% and 16% in the 

Encoder layer from Figure 39. The importance of the rooftop solar irradiation, prevailing 

direction in degree, mean sea level pressure, mean wind speed, relative humidity, and 

temperature decrease in percentage from about 9% to 3%. These results suggest that the relative 

time index plays an important role in estimating the time-series solar data, and the shadow from 

the buildings and terrain are two important factors to affect the amount of rooftop solar 

irradiation. Furthermore, the DGTFT model calculates the importance of the static variables, as 

shown in Table 21. It is noted that the most important variable is solar radiationcenter, at 26.77% 

of importance, while the other remaining variables account for far less importance. This may 

suggest that the morphological variables are not important factors in estimating hourly rooftop 

solar irradiation, because the importance of all morphological variables is far lower than that of 

the solar radiationcenter. 

 

Figure 38 The importance of the variables in Decoder 
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Figure 39 The importance of the variables in Encoder 

 

Table 21 Importance of the static variables in the DGTFT model 

Parameter  Importance 

(%) 

Parameter Importance 

(%) 

Parameter Importance 

(%) 

Parameter  Importance 

(%) 

SolarRadiation_scale 26.77 t_lal 1.74 mean_heigh 1.23 squareness 0.66 

CAR 8.56 hd_n 1.68 squ_comp 1.21 hd 0.62 

mean_ta 6.62 orientatio 1.66 mean_FAR 1.21 Rug 0.6 

FAR 5.03 mean_volum 1.64 perimeter 1.14 rect 0.48 

neighbours 4.84 mean_inter 1.56 elongation 1.01 floor_area 0.46 

adjacency 3.82 station_x 1.55 encoder_length 0.95 vfr 0.44 

SolarRadiation_center 3.31 alignment 1.48 Dsm 0.92 mean_CAR 0.32 

eri 3.13 comp 1.36 fractal 0.89 roof_heigh 0.23 

hd_p 2.98 volume 1.34 height 0.85 lal 0.1 

hw 1.92 swr 1.3 mean_fa 0.66 squareness 0.66 

svf 1.8 shape_inde 1.27 mean_area 0.66 hd 0.62 

5.3.4 Estimation hourly map 

The author utilized the trained model to generate hourly rooftop solar irradiation maps at a 1-

m spatial resolution for the building in Hong Kong on October 1st, 2020, spanning from 7 am 

to 6 pm. The solar maps generated by the trained model were compared with the results 

calculated by the physical model. The comparison result is presented in Figure 40. 
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In general, solar irradiation progressively increases from 7 am to 12 pm, reaching its peak at 

noon. Subsequently, it gradually decreases, and by 6 pm, solar irradiation is at its lowest. 

Additionally, from Figure 40, the maps generated by the DGTFT model are diametrically 

similar to those generated by the physical model. To greatly evaluate the estimation 

performance of the DGTFT model, we calculated the mean absolute hourly error of the results 

between the proposed method and the physical model from 6 am to 5 pm. The result is shown 

in Figure 41. It is noted that the mean absolute hourly error is relatively small, with a maximum 

value of 59.1 MJ/m². This suggests that the DGTFT model provides highly accurate estimations 

for rooftop solar irradiation. These hourly results offer a precise and reliable reference for 

optimizing the dispatch and management of solar power systems. 

 

Figure 40 The comparison of hourly estimated rooftop solar irradiation from 6 am to 5 pm 

between the proposed method and the physical model. 
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Figure 41 The mean absolute hourly error of the results between the proposed method and 

the physical model from 6 am to 5 pm.  

 

5.4 Discussion and Conclusion 

This chapter proposed a data-model dual-driven loosely coupled approach for fast and accurate 

prediction of hourly rooftop solar irradiation at the building scale. Firstly, the model-driven 

method (physical model) was used for calculating the hourly rooftop solar irradiation from 

January 1st, 2019 to December 31st, 2020 at the interval of one hour from 7 am to 5 pm. Since 

the estimation accuracy of the physical model was evaluated and demonstrated in Chapter 4, 

this study also uses the calculation values of rooftop solar irradiation as the ground truth for 

training the data-driven model. After that, this study parameterized the relative parameters, 

including hourly hill shadow and building shadow, morphological data, and integrated DSM, 

meteorological data, and rooftop solar irradiation calculated by the model-driven method with 

these parameterized data to generate the datasets. The author selected the four sites for training 

the data-driven model (DGTFT model), and one site for testing. The results show the data-

model dual-driven approach can provide a fast and accurate estimation result of hourly rooftop 

solar irradiation, with R2=0.90, MAE=26.90 (MJ/m2), RMSE=32.39 (MJ/m2), and 

MAPE=0.18. And the model-driven method takes 56 times longer than the data-driven model. 

The proposed dual-driven approach integrates the merits of highly accurate estimation using 

the model-driven method with the merits of fast computation capability using the DGTFT data-
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driven model. Furthermore, the DGTFT model calculated the importance of static variables and 

time-varying variables in the static layer, Encoder layer, and Decoder layer. The results suggest 

that shadow from buildings and terrain can greatly affect rooftop solar irradiation, and the 

relative time index is an important factor for modeling time series data using DGTFT. 

Additionally, the most significant static variable is solar radiationcenter, while morphological 

variables and DSM seems to make fewer contributions to training the DGTFT model. It is 

possible that this study just employs four sites for training the model and the DGTFT model is 

difficult to extract the static features from small static data samples.  

 

In conclusion, this study provides a fast and high-accuracy estimation method for hourly 

rooftop solar irradiation based on the data-model dual-driven approach. The hourly result 

estimated by this method can provide a reliable reference for the government to make decisions 

for solar PV installation on rooftops and give an accurate suggestion for how to realize 2050 

carbon neutrality. 
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Chapter 6 Conclusions and Recommendations 

 

In this Chapter, I discuss the results of the land surface solar potential and the rooftop solar 

potential. I also conclude the machine learning-based methods used for the estimation of solar 

potential from the perspective of the macro-geographical level to the spectator-building level. 

Finally, I present several recommendations for the current limitations and how to extend the 

existing context into broad practice. 

 

6.1 Discussion 

To realize the fast and highly accurate estimation of solar potential at a high spatio-temporal 

resolution, several Geo-AI methods were used for estimating hourly/daily land surface solar 

irradiation in Australia, China, and Japan, and a data and model dual-driven method was 

employed for estimating annual and hourly rooftop solar irradiation in Hong Kong. The key 

findings are as follows: 

 

1) Among the traditional machine learning methods, the GBM model is the optimal model to 

estimate land surface solar irradiation over large-scale regions. However, these traditional 

methods cannot consider the impact of the geographic variation on solar irradiation. 

therefore, an interpretable DGTFT deep learning method was proposed and applied for 

solving this issue, the results suggest this method has good estimation performance and 

transferability. 

 

2) A data and model dual-driven method can greatly integrate the merits of fast computation 

of the data-driven method and the high-accuracy results of the model-driven method, and 

the results suggest that this method can offer a fast and accurate estimation result for rooftop 

solar potential. 

 

3) The DGTFT method is the optimal method to estimate hourly rooftop solar irradiation 

because it not only can consider the impact of static geographic variation and dynamic 
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factors on rooftop solar irradiation but also overcomes the limitation of the “black-box” 

nature to give the interpretability of all inputs. It also has the capability of fast computation 

and highly accurate results. 

 

6.2 Limitations 

There are some limitations in this thesis. Firstly, to test the transferability of the methods used 

for estimating land surface solar irradiation, three countries, including Australia, China, and 

Japan, were selected as the research regions. However, since some inputs for estimating rooftop 

solar irradiation, such as building polygon and DSM, are not easy to obtain, the research region 

just focuses on Hong Kong. This increases the difficulty in testing the transferability of this 

method in other cities. Secondly, some data used for estimating rooftop solar irradiation, such 

as building polygon and DSM, are historical data, and this would lead to the estimated bias 

because urban buildings change slowly over time. Finally, this thesis just estimates rooftop 

solar irradiation on the whole rooftop. However, not all areas of the rooftops are suitable for 

installing PV panels. Therefore, accurately estimating the availability of rooftop areas for solar 

irradiation is further work. 

 

6.3 Conclusions 

Accuracy evaluation of solar potential is greatly significant in providing a reliable and 

reasonable reference for urban designers and the government to effectively generate renewable 

energy and mitigate energy-related emissions. The hierarchy for rooftop photovoltaic energy 

comprises three levels: (i) the physical potential, which encompasses the total amount of energy 

received from the Sun in the area of study; (ii) the geographic potential, which restricts the 

locations where this energy can be captured; and (iii) the technical potential, which further takes 

into account the technical characteristics (including performance) of the equipment used for 

transforming the resource into electrical energy (Izquierdo wt al., 2008). This thesis focuses on 

the physical potential and the geographic potential. In this thesis, I propose a framework to 

estimate the land surface solar potential and rooftop solar potential. Specifically, firstly, I 

propose a simple and effective method for the estimation of land surface solar irradiation based 
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on machine learning models using meteorological data, Himawari-8 satellite cloud and aerosol 

products, and solar observation data in Australia and China. The estimation of solar irradiation 

based on four machine learning models, i.e., RF, SVR, MLP, and GBM, is effective and 

reliable, and GBM has achieved the best performance in terms of accuracy and computational 

efficiency. The estimation of seasonal and annual solar irradiation at nationwide levels is useful 

for planning solar-related applications. Furthermore, to solve the “black box” problem of the 

traditional machine learning methods and enhance the capabilities of extracting information 

from spatio-temporal sequence data, an interpretable DGTFT deep learning method was 

designed to improve the estimation performance for land surface solar irradiation. Thirdly, from 

the perspective of geographic potential, the author investigated the impact of multi-source data 

on the amount of annual solar irradiation on building rooftops and constructed a machine 

learning model to fast and accurately estimate rooftop annual solar irradiation with a 1m 

resolution. In addition, the author also analyzed the mean annual solar irradiation received by 

the rooftops as a function of rooftop slope and aspect. The results are particularly useful for 

designers, investors, owners, and stockholders in providing quantitative information on the 

effects of roof slope and aspect on the PV solar potential at the design stage. In the final part, I 

used a data-model dual-driven framework to estimate hourly solar irradiation on rooftops with 

a 1m resolution. Its results with high spatial and temporal resolution can be used for precisely 

calculating the specific electrical energy generated by the PV panels on rooftops. 

 

This thesis provides the following insights on the estimation of solar potential: 

1) Among the traditional machine learning methods, GBM achieved the highest accuracy 

with R2 at all stations, followed by RF, SVR, and MLP. It suggests that the proposed 

method can provide an accurate and reliable estimation of land surface solar irradiation, 

compared with the theoretical solar irradiation without the obstacle of the atmosphere. 

While the RF model outperformed GBRT and AdaBoost for estimating annual rooftop 

solar irradiation, with R2=0.77 and MAE=22.83kWh/m2/year. Additionally, the time 

for training and prediction of rooftop solar irradiation is within 13 hours, achieving a 

99.32% reduction in time compared to the physical-based hemispherical viewshed 

algorithm. These results suggest that the proposed method can provide an accurate and 
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fast estimation of annual rooftop solar irradiation for large datasets. 

 

2) Meteorological parameters play a significant role in estimating spatio-temporal solar 

irradiation, including hourly/daily land surface solar irradiation and hourly rooftop 

solar irradiation. These parameters can greatly help increase the estimation accuracy. 

 

3) The proposed DGTFT deep learning method is effective for large geographical regions 

and can be used worldwide when similar datasets are obtained. Also, the DGTFT model 

provides a fast and accurate estimation result of hourly rooftop solar irradiation, with 

R2=0.90, MAE=26.90 (MJ/m2), RMSE=32.39 (MJ/m2), and MAPE=0.18. The 

physical-based hemispherical viewshed algorithm takes 56 times longer than the 

DGTFT model. Hourly rooftop solar irradiation at a fine resolution can aid in the 

accurate assessment of solar energy resources at specific locations, which is crucial for 

the planning and design of solar energy projects to maximize renewable energy 

utilization. 

 

4) Compared to the solar resources in China and Japan, Australia has the most abundant 

physical potential, suggesting this country is the optimal region to develop and promote 

the solar industry. In addition, Hong Kong has abundant rooftop solar potential, with 

annual power generation of 3.3 TWh. 

 

6.4 Recommendations for the Future Work 

Although this thesis has proposed a framework to estimate the land surface solar irradiation 

and rooftop solar irradiation at a fine spatio-temporal resolution, this study also has some 

limitations: 

5) This paper only considers the maximum potential of solar photovoltaic electricity 

generation, and in practical applications, there are still numerous factors to be taken 

into account. These include the economic feasibility of installing solar panels, the angle 

of installation on building rooftops, vegetation cover, building materials, local 
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atmospheric conditions, and other factors. Therefore, it is recommended that future 

research further expands consideration of the factors related to the application of urban 

rooftop photovoltaics to achieve energy savings and emissions reduction in urban areas. 

 

6) The estimation of solar geographical potential includes assessing the potential of 

building rooftops and facades. This study specifically focuses on rooftop potential but 

can be extended in the future to encompass a comprehensive estimation of the entire 

rooftops and facades of buildings. Additionally, not all rooftop areas are suitable for 

solar panel installation. Therefore, estimating the area of rooftops suitable for solar 

panel installation is crucial for a detailed evaluation of rooftop solar potential. This 

estimation can provide valuable insights for optimizing recommendations for solar 

panel installation. In future research, remote sensing technology and deep learning 

methods can be employed to more accurately estimate the available area on rooftops 

for solar utilization. 
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Appendix 1 

 

Name Description Symbol Category Equation 

Building height Building height H D - 

Building area Building footprint 

area 

A D - 

Building 

volume 

Building volume V D - 

Building 

perimeter 

Sum of lengths of 

the building 

exterior walls 

P D - 

Building 

longest axis 

length 

Diameter of the 

minimal 

circumscribed 

circle around the 

building footprint 

LAL D - 

Building 

volume to 

façade 

ratio 

Ratio between 

building volume 

and the total area 

of façades 

VFR D 
𝑣𝑓𝑟 =

𝑣𝑜𝑙𝑢𝑚𝑒

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 ∙ ℎ𝑒𝑖𝑔ℎ𝑡
 

Building 

fractal 

dimension 

Statistical index 

of the complexity 

of a geometry 

Fra D 
𝑓𝑟𝑎𝑐𝑡𝑎𝑙 =

2 log(𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟/2)

log(𝑎𝑟𝑒𝑎)
 

Building 

circular 

compactness 

Index of the 

similarity of a 

shape with a 

circle. It is based 

on the area of the 

minimal 

enclosing circle 

(Ac) 

Com S 
𝑐𝑜𝑚𝑝 =

𝑎𝑟𝑒𝑎

𝐴𝑐
 

Building 

square 

compactness 

Measure of the 

compactness of 

the building 

footprint 

Squcom S 
𝑠𝑞𝑢𝑐𝑜𝑚𝑝 = (

4√𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
)2 

Building 

squareness 

Mean deviation 𝜇 

of each i corner 

of the building 

from 90°. Ncor is 

the number of 

corners 

Squ S 
𝑠𝑞𝑢𝑎𝑟𝑒𝑛𝑒𝑠𝑠 =

∑ 𝜇𝑖
𝑁𝑐𝑜𝑟
𝑖=1

𝑁𝑐𝑜𝑟
 

Building 

Rectangularity 

Index of the 

similarity of a 

Rec S 
𝑟𝑒𝑐𝑡 =

𝑎𝑟𝑒𝑎

𝐴𝑀𝐵𝑅
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shape with a 

rectangle. It is 

based on the area 

of the minimal 

rotated bounding 

rectangle of the 

building (AMBR) 

Building shape 

index 

Shape index of 

the building 

footprint 

Shpidx S 

𝑠ℎ𝑎𝑝𝑒𝑖𝑛𝑑𝑒𝑥 =

√
𝑎𝑟𝑒𝑎

𝜋

0.5 ∙ 𝑙𝑎𝑙
 

Building 

equivalent 

rectangular 

index 

Measure of shape 

complexity based 

on the area of the 

minimal rotated 

bounding 

rectangle of a 

building (AMBR) 

and its perimeter 

(PMBR) 

ERI S 
𝑒𝑟𝑖 = √

𝑎𝑟𝑒𝑎

𝐴𝑀𝐵𝑅
∙

𝑃𝑀𝐵𝑅

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

Building 

elongation 

Measure of the 

deviation of the 

building shape 

from a square 

based on the 

length of the 

minimal rotated 

bounding 

rectangle of a 

building (LMBR) 

and its width 

(lMBR) 

Elg S 
𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =

𝐿𝑀𝐵𝑅

𝐼𝑀𝐵𝑅
 

Floor area ratio Ratio between the 

building total 

floor area and the 

area of the related 

tessellation cell 

Flrarea I 
𝑓𝑙𝑜𝑜𝑟𝑎𝑟𝑒𝑎 =

𝑎𝑟𝑒𝑎

𝑡_𝑎𝑟𝑒𝑎
 

Shared walls 

ratio of 

adjacent 

buildings 

Ratio between the 

length of the 

perimeter shared 

with adjacent 

buildings 

(Pshared) and the 

building 

perimeter 

SWR SD 
𝑠𝑤𝑟 =

𝑃𝑠ℎ𝑎𝑟𝑒𝑑

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
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Building 

orientation 

Building 

orientation 

Ort D - 

Alignment Mean deviation 

of solar 

orientation 

(devsol) of 

neighboring 

buildings 

Ali SD 
𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =

∑ 𝑑𝑒𝑣𝑠𝑜𝑙(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ

𝑁𝑛𝑒𝑖𝑔ℎ
 

Building 

adjacency 

Ratio between the 

number of joined 

adjacent 

structures 

(Nneigh,join) and 

the number of  

neighboring 

buildings 

(Nneigh) 

Adj SD 
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 =

𝑁𝑛𝑒𝑖𝑔ℎ_𝑗𝑜𝑖𝑛

𝑁𝑛𝑒𝑖𝑔ℎ
 

Mean inter-

building 

distance 

Mean distance 

between the 

building and the 

adjacent 

buildings 

IBDmean SD 
𝑚𝑒𝑎𝑛𝑖𝑛 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝑑(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

building area 

Mean footprint 

area of building 

neighboring 

constructions 

Amean SD 
𝑚𝑒𝑎𝑛𝑎𝑟𝑒𝑎 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝑎𝑟𝑒𝑎(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

building height 

Mean height of 

building 

neighboring 

constructions 

Hmean SD 𝑚𝑒𝑎𝑛ℎ𝑒𝑖𝑔ℎ𝑡

=
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ ℎ𝑒𝑖𝑔ℎ𝑡(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

building 

volume 

Mean volume of 

building 

neighboring 

constructions 

Vmean SD 𝑚𝑒𝑎𝑛𝑣𝑜𝑙𝑢𝑚𝑒

=
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝑣𝑜𝑙𝑢𝑚𝑒(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

building total 

floor area 

Mean total floor 

area of building 

neighboring 

constructions 

TFAmean SD 𝑚𝑒𝑎𝑛𝑓𝑎

=
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝑓𝑙𝑜𝑜𝑟_𝑎𝑟𝑒𝑎(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

Height to 

Width ratio 

Mean ratio 

between building 

height and width 

of building 

neighboring 

constructions  

HW SD 
ℎ𝑤 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑

𝐻

𝑑(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
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Distance–

weighted 

average height 

difference 

Mean height 

difference with 

distance weighted 

between the 

reference 

building and its 

neighboring 

buildings  

HD SD 
ℎ𝑑 =

∑ (𝐻(𝑗) − 𝐻) ∙ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ

∑ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Average 

neighborhood 

shading angle 

Mean shading 

angle between the 

reference 

building and its 

neighboring 

buildings 

Shdmean SD 𝑠ℎ𝑎𝑑𝑒𝑎

= arctan (
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑

𝐻(𝑗) − 𝐻

𝑑(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
) 

Positive 

distance–

weighted 

average height 

difference 

Mean height 

difference with 

distance weighted 

between the 

reference 

building and its 

neighboring 

buildings 

(H(j)>H) 

HDp SD 
ℎ𝑑_𝑝 =

∑ (𝐻(𝑗) − 𝐻) ∙ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ

∑ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Negative 

distance–

weighted 

average height 

difference 

Mean height 

difference with 

distance weighted 

between the 

reference 

building and its 

neighboring 

buildings 

(H(j)<H) 

HDn SD 
ℎ𝑑_𝑛 =

∑ (𝐻(𝑗) − 𝐻) ∙ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ

∑ 𝑤(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Positive 

average 

neighborhood 

shading angle 

Mean shading 

angle between the 

reference 

building and its 

neighboring 

buildings 

(H(j)>H) 

Shdap SD 𝑠ℎ𝑎𝑑𝑒𝑎𝑝

= arctan (
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑

𝐻(𝑗) − 𝐻

𝑑(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
) 

Negative 

average 

neighborhood 

shading angle 

Mean shading 

angle between the 

reference 

building and its 

neighboring 

Shdan SD 𝑠ℎ𝑎𝑑𝑒𝑎𝑛

= arctan (
1

𝑁𝑛𝑒𝑖𝑔ℎ
∑

𝐻(𝑗) − 𝐻

𝑑(𝑗)𝑗∈𝑛𝑒𝑖𝑔ℎ
) 
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buildings 

(H(j)<H) 

Rugosity Ratio between the 

building volume 

and the area of 

the related 

tessellation cell 

Rug I 
𝑅𝑢𝑔 =

𝑣𝑜𝑙𝑢𝑚𝑒

𝑎𝑟𝑒𝑎_𝑡
 

Floor area Floor area of each 

object based on 

height and area 

FA S 
𝐹𝐴 =

ℎ𝑒𝑖𝑔ℎ𝑡 ∙ 𝑎𝑟𝑒𝑎

3
 

Coverage area 

ratio 

Ratio between the 

building footprint 

area and the 

area of the related 

tessellation cell 

CAR I 
𝐶𝐴𝑅 =

𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎_𝑡
 

Mean coverage 

area ratio 

Mean coverage 

area ratio of the 

neighboring 

tessellation cells 

CARmean SD 
𝑚𝑒𝑎𝑛_𝐶𝐴𝑅 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝐶𝐴𝑅(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Mean floor 

area ratio 

Mean floor area 

ratio of the 

neighboring 

tessellation cells 

FARmean SD 
𝑚𝑒𝑎𝑛_𝐹𝐴𝑅 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝐹𝐴𝑅(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

Sky view 

factor 

Sky view factor SVF  SD  

Number of 

neighbors 

Number of 

neighbors 

Nneigh SD - 

Tessellation 

longest axis 

length 

Diameter of the 

minimal 

circumscribed 

circle 

around the 

tessellation cell 

LALtess D - 

Average 

tessellation 

area 

Mean tessellation 

area of building 

neighboring 

tessellation cells 

Atess SD 
𝑚𝑒𝑎𝑛_𝑡𝑎 =

1

𝑁𝑛𝑒𝑖𝑔ℎ
∑ 𝑎𝑟𝑒𝑎_𝑡(𝑗)

𝑗∈𝑛𝑒𝑖𝑔ℎ
 

 

D=dimension, S=shape, I=intensity, SD=spatial distribution 
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Appendix 2 

1 Upward-looking hemispherical viewshed algorithm 

The estimates of rooftop solar irradiation calculated by the Solar Analyst Tool in ArcMap are 

as the ground truth in our machine learning model training. The Solar Analyst Tool is based on 

methods from the hemispherical viewshed algorithm developed by Fu and Rich (Fu and Rich, 

2022). The specific process of the upward-looking hemispherical viewshed algorithm is as 

follows. 

 

1.1 Viewshed calculation 

A viewshed is the angular distribution of sky visibility versus obstruction and represents the 

proportion of the obstructed sky in a specific location on a DEM, which is similar to the view 

from upward-looking hemispherical photographs. Viewsheds are calculated by searching a 

specified set of directions around an interesting location on DEM in each direction and 

determining the maximum angle of sky obstruction. For the unsearched directions, the 

interpolation method is used to calculate the horizon angles. The horizon angles are projected 

into a two-dimensional (2D) grid using an equiangular hemispherical projection. A value with 

visible versus obstructed sky directions is assigned to each corresponding grid unit. The grid 

cell location (i.e., row and column) represents a zenith angle 𝜃 and an azimuth angle 𝛼 on 

the hemisphere of directions.  

   

1.2 Sunmap calculation 

After generating a viewshed for a specific location on a DEM, a sunmap is created to represent 

the amount of direct solar radiation from each sky direction in the same 2D grid system. The 

sunmap consists of specified suntracks, and it represents the apparent position of the sun as it 

varies through time. Zenith and azimuth angles are used to represent the position of the sun, 

and they are calculated based on latitude, day of year, and time of day using standard 

astronomical formulae (Rich et al., 1994). Zenith and azimuth angles are projected to 2D grids 

with the same resolution as the viewsheds. Two sunmaps are created, namely, a sunmap for 
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winter solstice to summer solstice, and sunmap for summer solstice to the winter solstice. For 

each sky sector of the sunmap, the associated time duration and the position of the sun are 

calculated, and each sector is assigned a unique identification number. 

 

1.3 Skymap calculation 

To achieve the skymap calculation, the whole sky is divided into a series of sky sectors defined 

by zenith and azimuth divisions. The skymap is used in the final solar radiation calculation to 

estimate diffuse solar radiation. The sky sectors in the skymap are required to be small enough 

that the centroid zenith and azimuth angles can reasonably represent the direction of the sky 

sector in subsequent calculations. The skymap is also projected into the 2D grid for the final 

solar radiation calculation.  

 

1.4 Overlay of viewsheds with sunmaps and skymaps 

After creating sunmap and skymap, two maps are overlayed to enable calculation of the direct 

and diffuse solar radiation received from each sky direction. For gap fraction in the skymap or 

sunmap sector, it is calculated by dividing the number of unobstructed units by the total of units 

in that sector. 

 

1.5 Global solar radiation calculation 

Since reflection radiation accounts of the small proportion of the global solar radiation, global 

radiation GR is calculated as the sum of direct and diffuse radiation of all sectors in the sunmap 

and skymap. The formula is as follows: 

 

𝐺𝑅 = 𝐷𝑅 + 𝐹𝑅                           (1) 

 

where DR denotes the total direct solar radiation for all sunmap sectors, FR represents the total 

diffuse solar radiation for all skymap sectors. The formula is as follows: 

 

𝐷𝑅 = ∑ 𝐷𝜃,𝛼                            (2) 
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where 𝐷𝜃,𝛼 denotes the direct insolation from the sunmap sector with a centroid at zenith angle 

𝜃 and azimuth angle 𝛼. The formula for calculation of 𝐷𝜃,𝛼 is as follows: 

 

𝐷𝜃,𝛼 = 𝑆𝑐𝑜𝑛𝑠𝑡 × 𝜏𝑚(𝜃) × 𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼 × 𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼 × cos(𝐴𝑛𝑔𝐼𝑛1𝜃,𝛼)     (3) 

 

where Sconst denotes a solar constant and its range is from 1338 to 1368 WM-2, 𝜏  is 

transmittivity of the atmosphere for the shortest path, m (𝜃) is the relative optical path length, 

𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼the time duration represented by the sky sector, 𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼 is the gap fraction for 

the sunmap sector, and 𝐴𝑛𝑔𝐼𝑛1𝜃,𝛼 is the angle of incidence between the centroid of the sky 

sector and the axis normal to the surface. The formula for calculation of FR is as follows: 

 

𝐹𝑅 = 𝑅𝑔𝑙𝑏 × 𝑃𝑑𝑖𝑓 × 𝐷𝑢𝑟 × 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼 × 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝛼 × cos(𝐴𝑛𝑔𝐼𝑛2𝜃,𝛼)     (4) 

 

where 𝑅𝑔𝑙𝑏 is the global normal radiation, 𝑃𝑑𝑖𝑓 is the proportion of global normal radiation 

flux that is diffused, 𝐷𝑢𝑟  is the time interval for analysis, 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼  is the gap fraction 

(proportion of visible sky) for the sky sector, 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝛼 is proportion of diffuse radiation 

originating in a given sky sector relative to all sectors. 𝐴𝑛𝑔𝐼𝑛2𝜃,𝛼 is the angle of incidence 

between the centroid of the sky sector and the intercepting surface. 
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