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Abstract 

Propelled by Industry 4.0 technical advancements, smart manufacturing is 

increasingly prioritized and implemented across various manufacturing systems. In this 

context, technology-supported scheduling plays crucial roles in ensuring smooth 

manufacturing processes, enabling agile responses to orders, and reducing operational 

costs. Two crucial aspects of this domain should be emphasized.  

First, from a physical perspective, the introduction of autonomous mobile robots 

(AMRs) automates laborious material handling tasks, enhancing operational efficiency. 

However, this also significantly increases the system complexity and necessitates 

precise production scheduling to accommodate complicated machine-robot interactions. 

Additionally, analysis of the robot fulfillment process reveals wastes of energy raised 

due to the mismatching between robot operations and machine processing. Realizing 

the lack of studies considering energy elimination from the perspective of facilitating 

operational collaboration, this dissertation (in Chapter 3) investigates an energy-aware 

robotic job shop scheduling problem. To conquer the complexity induced by machine 

and robot operations and enhance the collaboration between processing and moving, 

network-based energy-aware modelling approaches are developed. Computational 

experiments show their capabilities in reducing carbon emissions and maintaining 

throughout. 

Second, the integration of CPS has been instrumental in connecting the physical 

and digital worlds. Traditional scheduling methods, which typically rely on expert 

experiences, frequently overlook the complex interplay of various real-world factors, 

leading to impractical or inefficient schedules. The advent of IoT enables the collection 

of vast amounts of data from physical systems. It is thus promising to uncover useful 
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patterns from historical data and incorporate such data-driven insights into decision 

optimization processes to derive efficient schedules that are highly applicable to real-

world scenarios. Motivated by scheduling challenges in real-world systems and the lack 

of studies considering the incorporation of multiple realistic factors on production 

efficiency into the scheduling process, how the multiple factors during the production 

process can influence job processing status are explored (see Chapters 4 and 5). 

Moreover, whether the influences can be captured and utilized to enhance production 

scheduling is explored. Specifically, the study in Chapter 4 aims to jointly predict the 

job processing time and processing rate level to facilitate resource allocation and timely 

reporting of production status. A multi-input modules-supported dual-task learning 

model is proposed, which achieves good performance by capturing influences from 

various aspects within the performing sequence and leveraging the synergy between 

dual learning tasks. The study in Chapter 5 further develops a context-based scheduling 

method, which integrates the prediction of context-based job processing rate (CBPR) 

under varying execution scenarios to the optimization process. A CBPR-guided branch-

and-price-based scheduling approach is proposed, which can effectively identify 

promising execution positions for individual jobs so that overall production efficiency 

is substantially enhanced.  

To conclude, this research is devoted to developing efficient and sustainable 

scheduling methods for smart manufacturing systems. The whole work focuses on two 

main perspectives: (i) coordinating operations in complex robotic production cells to 

achieve green production, and (ii) deriving data-driven prediction and scheduling 

optimization methods to timely inform and maximize production efficiency. Important 

academic and practical insights are generated. 
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Chapter 1. Introduction 

1.1 Background of Research 

1.1.1 Smart manufacturing and scheduling 

Smart manufacturing is defined as the integration of information technologies and 

robotic automation into production processes to create efficient, interconnected, and 

adaptive manufacturing systems (Mourtzis, 2024). It is characterized by incorporating 

various advanced Industry 4.0 technologies, such as autonomous robots, Internet of 

Things (IoT), data analytics, and artificial intelligence (AI), to enhance production 

intelligence (Mourtzis, 2024; Schlemitz & Mezhuyev, 2024; Singh et al., 2023). These 

technologies are accelerating the fusion of devices in the physical world and virtual 

operations in cyberspace (Singh et al., 2024; Yang et al., 2019; Zheng et al., 2018). The 

so-formed cyber-physical systems (CPS) integrate sensors, actuators, devices, and 

computational algorithms to support decision making, accommodate complex emergent 

behaviours, enhance real-time adaptivity, and empower the workforce and 

environmental sustainability (Singh et al., 2024). In recent years, smart manufacturing 

has been increasingly appealing to production practitioners 1 . The global smart 

manufacturing market has been experiencing significant growth and is expected to 

reach $386.4 billion in 2025 and a further increase to $443.9 billion in 20262.  

Examining the critical technologies propelling smart manufacturing, the markets 

for IoT devices, AI, and big data analytics are estimated to expand greatly2. Another 

notable progress from the physical aspect is the introduction of autonomous mobile 

 
1 Details are available at: https://www.oracle.com/industrial-manufacturing/smart-factory-and-smart-

manufacturing/ (Accessed on 20 June 2024) 
2 Details are available at: https://scoop.market.us/smart-manufacturing-statistics/ (Accessed on 20 June 

2024) 

https://www.oracle.com/industrial-manufacturing/smart-factory-and-smart-manufacturing/
https://www.oracle.com/industrial-manufacturing/smart-factory-and-smart-manufacturing/
https://scoop.market.us/smart-manufacturing-statistics/
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robots (AMR). The AMR market is estimated to expand from $3.88 billion in 2024 to 

$8.02 billion by 20293. The growth demonstrates the increasing adoption of AMRs in 

streamlining manufacturing processes. In autonomous smart manufacturing systems, 

AMRs replace human beings in conducting repetitive and tedious tasks, such as picking, 

transporting, and sorting items3. Beyond providing a cost-efficient solution, applying 

AMR also largely enhances manufacturing resilience by providing continuous services 

and reducing labor-intensive tasks4 . However, despite the great portion of research 

attention paid to robot-facilitated production system operations, seldom studies have 

considered the energy issue of the robot-facilitated production process (Gürel et al., 

2019). Transportation of raw materials, work-in-progress pallets, and finished goods 

usually consumes substantial electrical power due to frequent movement and precise 

positioning. For example, in the automotive sector, robots account for 8% of total 

energy consumption5. Besides, machine idling/waiting also leads to significant energy 

consumption, as 30% of energy consumption by machines arises from stand-by-

operations to maintain process stability6. This inefficient energy consumption raises 

practitioners’ consciousness about carbon footprints and sustainability development 

demand. 

Besides the adoption of autonomous devices, the deployment of IoT and sensors 

enables the collection of data from various sources including facilities, participants, and 

activities during the manufacturing process (e.g., product line, equipment, production 

process, labour activity, and environmental conditions) (Wang et al., 2018a). Thus, 

 
3 Details are available at: https://www.mordorintelligence.com/industry-reports/autonomous-mobile-

robot-market (Accessed on 20 June 2024) 
4 Details are available at: https://roboticsandautomationnews.com/2021/02/01/the-business-case-for-

autonomous-mobile-robots-in-manufacturing/40092/ (Accessed on 20 June 2024) 
5 Details are available at: https://www.roboticstomorrow.com/story/2021/03/3-trends-in-robotics-

energy-consumption/16385/ (Accessed on 20 June 2024) 
6 Details are available at: https://www.iwu.fraunhofer.de/content/dam/iwu/en/documents/EffPro_en.pdf 

(Accessed on 20 June 2024) 

https://www.mordorintelligence.com/industry-reports/autonomous-mobile-robot-market
https://www.mordorintelligence.com/industry-reports/autonomous-mobile-robot-market
https://roboticsandautomationnews.com/2021/02/01/the-business-case-for-autonomous-mobile-robots-in-manufacturing/40092/
https://roboticsandautomationnews.com/2021/02/01/the-business-case-for-autonomous-mobile-robots-in-manufacturing/40092/
https://www.roboticstomorrow.com/story/2021/03/3-trends-in-robotics-energy-consumption/16385/
https://www.roboticstomorrow.com/story/2021/03/3-trends-in-robotics-energy-consumption/16385/
https://www.iwu.fraunhofer.de/content/dam/iwu/en/documents/EffPro_en.pdf
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sensors act as the crucial link between the tangible physical environment with the digital 

realm. In traditional production environments, decisions can only be made roughly 

according to prior experience, which may lead to a severe mismatching between 

personnel skills and job requirements, as well as a low utilization rate of materials and 

machine capacity (Qiao et al., 2021; Sotskov & Werner, 2014; Workneh & Gmira, 

2022). In the new smart manufacturing era, access to a wide spectrum of data can thus 

facilitate the adoption of data analytics and AI methods to promote a better 

understanding of changeable production situations subjecting to the complex interplay 

of substantial factors within production process, such as machine conditions, material 

utilization, and operational properties. With the adoption of AI techniques, the 

influences of such factors can be captured and utilized to derive smarter decisions in 

areas such as planning, scheduling, maintenance, energy cost control, and supply chain 

management (Rossit et al., 2019a; Wu et al., 2021). 

Among all the decisions in the manufacturing process, scheduling plays a pivotal 

role. It is dedicated to ensuring that all operations and procedures run smoothly and 

adhere to their designated timelines (Alemão et al., 2021). The scheduling problem 

investigates assigning and prioritizing a series of non-preemption jobs on a set of 

machines to maximize production efficiency with minimum costs. Such objectives can 

be implied by minimizing the production time, eliminating tardiness, maximizing the 

throughput, etc. (Mokhtari & Hasani, 2017; Zhang & Chiong, 2016). The new era of 

smart manufacturing proposes new contexts, requirements, and research directions for 

scheduling the shop floor (Parente et al., 2020). Combined with the new features of 

smart manufacturing as aforementioned, scheduling decisions thus should well address 

the interactions between different components of the complicated production systems 

induced by the incorporation of smart devices. Therefore, operations and specific 

timelines for activities of different participants or subsystems should be carefully 
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modelled so as to ensure the generation of practical schedules, and further to realize 

efficient and sustainable objectives. Besides, by harnessing the power of Industrial IoT 

(IIoT)-enabled data analytics, it is likely to develop novel scheduling processes driven 

by real data based insights and thus achieve a more effective alignment of resource 

allocation (such as workforce allocation, material usage, and machine configurations) 

with tasks to promote scheduling accuracy and improve resource utilization.  

Even though traditional scheduling methods proposed in the past decades remain 

effective in many production scenarios, they face significant limitations when applied 

to smart manufacturing systems. First, they tend to oversimplify the interactions among 

production components by neglecting some important subprocesses or operations, such 

as material transportation among the machines, setup processes for individual jobs, and 

other restrictions on storage, delivery, or machine buffer setting (Lee & Chen, 2001; 

Liu et al., 2018). Oversimplified schedules may result in infeasibility in real-world 

production (Sotskov & Werner, 2014; Workneh & Gmira, 2022). Secondly, vital 

parameters are often assumed to be deterministic or follow certain empirical 

distributions (Ramírez-Velarde et al., 2017). Consequently, jobs are often scheduled 

with given parameters (e.g., processing time based on a rough estimation by the 

planner). These empirical estimates, however, may not reflect the effect of real 

production situations on production performance due to the neglect of the potential 

interactions of factors involved (Sotskov & Werner, 2014; Wu et al., 2021b). Moreover, 

by doing so, it is implicitly assumed that production always proceeds at a normal status, 

which leads to the fragility of the system in dealing with unexpected downtime and 

delays (Lu et al., 2017). Additionally, traditional methods, relying on heuristics and 

stochastic modelling, struggle to grasp the complex and high-dimensional impacts of 

various elements within manufacturing systems, which can lead to system instability or 

failure (Sharp et al., 2018). 
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Motivated by the significance of smart manufacturing and the limitations of 

existing methodologies, this PhD study focuses on improving scheduling decisions of 

smart production floors from two main aspects at the operational level, namely physical 

operations collaboration and AI-empowered decision making, with advances in 

modelling, deep learning, and optimization algorithms. Considering the importance of 

integrating AMR into the production system and the challenges brought by such 

integration (which is detailed in Section 1.1.2), this PhD study concentrates on a green 

modelling approach to realize the integration of AMR into the system with the 

consideration of sustainability impact. Then, to explore how the influencing factors in 

the production environment affect production performance based on historical data 

(which is detailed in Section 1.1.3), this study is devoted to developing a novel deep 

learning (DL) architecture to capture the influences of production elements on 

performance. Then, to provide a data-driven scheduling decision process that mitigates 

discrepancies between the scheduled production timeline and the actual implementation, 

(which is detailed in Section 1.1.4), the study develops an AI-empowered scheduling 

method to find more accurate and efficient scheduling solutions. 

1.1.2 Autonomous robotic delivery system7 

As previously mentioned, AMRs have been increasingly adopted for intralogistics. 

For example, Amazon has widely deployed the Kiva system in logistics centres, where 

AMRs are used to move inventory pods. Large logistics companies like JD and Alibaba 

also largely use robots in their autonomous warehouses (Li et al., 2020a). In the 

manufacturing sector, the adoption of AMR is different from that in the logistics centres. 

The AMR adopted in the manufacturing process should accommodate the machine 

 
7 As a remark, a part of 1.1.2 has been published in paper Wen, X., Sun, Y., Ma, H. L., & Chung, S.H. 

(2023). Green smart manufacturing: energy-efficient robotic job shop scheduling models. International 

Journal of Production Research, 61(17), 5791-5805. 
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performing states and fulfill the product requirements. For example, the robot can only 

perform delivery after an operation is completed and should deliver the job to its next 

designated machine (Dai et al., 2019). Thus, integrating AMR seamlessly into existing 

processes and workflows is challenging and may introduce layers of complexity. To 

achieve such integration, it should tackle the interactions among machines and the 

robotic delivery process (e.g., determining the performing sequence of jobs on 

machines and routing/priority of robot movement). Besides, the application of robots 

leads to higher energy (electricity) 8 consumption, which worsens the environmental 

concerns for the energy-intensive manufacturing industry (Zhang & Yan, 2021). The 

existing practice overlooks the coordination between the machinery production process 

and the robot movement process, which leads to excessive energy wastes (Gürel et al., 

2019; Liu et al., 2019b). Implementing the aforementioned coordinated scheduling 

mechanism presents two major challenges. Firstly, the scheduling framework must 

identify the various interrelated factors that contribute to energy inefficiency in the 

production system. Secondly, the scheduling scheme must minimize energy waste 

resulting from speed mismatches between the two processes. This task is further 

complicated by the interactions between these processes. In the following section, the 

background of AMR-facilitated scheduling in a typical job shop setting (i.e., robotic 

job-shop scheduling) is first introduced, followed by the energy concerns in robotic 

cells and corresponding energy-reduction solutions. 

Robotic job-shop scheduling problem 

The robotic job-shop scheduling problem focuses on the scheduling and 

coordination of machines and a delivery robot in a robotic cell (Parente et al., 2020). It 

aims to identify the optimal production schedule for machines and the optimal delivery 

 
8 In a robotic cell, the energy consumed is generally electricity. In this study, “energy” and “electricity” 

are used interchangeably. 
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route for robots, with the objective of minimizing makespan to improve productivity 

(Brucker et al., 2012). In the basic setting, the machines are linearly arranged, and a 

robot is responsible for moving materials or semi-products among the machines for 

processing. A job usually consists of several operations that will be carried out on 

different machines. Different from the flowshop scheduling setting that is designed for 

the mass production of a single type of product, the job-shop setting allows different 

product types (i.e., with different operations or operating sequences) and one product 

may re-enter a machine (Demir & İşleyen, 2013). Besides, the involvement of robotic 

transportation process largely increases the problem complexity. That is because three 

decision sequences (i.e., sequence of operations in one job, sequence of operations on 

a machine, and sequence of operations carried out by the delivery tool) and 

corresponding restrictions (machine blocking, robot availability, robot delivery 

deadlock avoidance etc.) should be considered and fulfilled in the scheduling solution.  

 

Energy concerns in robotic cells 

The energy waste in robotic cells comes from several aspects. First, as the 

movement of the robot is subjected to diverse restrictions like robot availability, 

machines may stay idle for a long period (Koulamas & Panwalkar, 2019). Second, the 

robot/machines generally moves/work at a constant speed. It is thus commonly seen 

that (i) products are blocked on machines for a long time (i.e., the product is blocked 

on the processing machine after completion, waiting for the availability of the robot, 

named as machine blocking), or (ii) the robot arrives at a machine earlier than the 

completion of the current operation and has to wait there before conducting the next 

delivery (named as robot partial-blocking) 9 . These circumstances imply poor 

 
9  A robot full-blocking refers to the situation that the robot must wait at the machine for the whole 

operation process to deliver the same job (as instructed by the optimal schedule that minimizes the 

makespan while avoiding deadlocks). 
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coordination between the machine production process and the robot movement process, 

which causes nonnegligible energy waste. Considering the increasing energy costs and 

the growing public awareness of sustainability, the low energy efficiency in robotic 

cells greatly dampens the benefits brought by robotic technology (Mokhtari & Hasani, 

2017). It is thus of great significance to enhance the energy efficiency of robotic cells 

via improving scheduling decisions (Jiang & Wang, 2019; Lamotte & Geroliminis, 

2021). 

 

Speed adjustment system for machinery and delivery coordination 

According to (Zhang & Chiong, 2016), the energy consumption rate of machine 

production declines if it switches to a slower processing speed. Similarly, robots are 

shown to consume less electricity at a slower moving speed (Paryanto et al., 2015). 

Therefore, it is promising to achieve energy conservation through speed adjustments 

for both machines and robots. The mechanism of energy-reduction by speed adjustment 

is explained as follows. On one hand, to reduce machine idling and blocking periods, 

machines can process at a slower speed. In fact, as long as the processing finishes before 

the arrival of the robot, the overall makespan is not affected. In this way, the production 

energy consumption declines (as the processing speed is slower), while the energy 

waste caused by machine idling is also reduced. On the other hand, robot partial 

blocking can be eliminated/reduced if the robot moves at a slower speed, thus achieving 

movement energy reduction. Accordingly, the systematic energy consumption of a 

robotic cell can be reduced significantly through proper operating speed selection and 

better coordination between the machine production process and the robot movement 

process.  
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1.1.3 Production under multiple uncertain influencers 

Traditional scheduling methods are commonly established based on deterministic 

information directly related to scheduling, e.g., operation processing time, delivery 

dates, etc., which assume that the production systems always operate normally (Rossit 

et al., 2019a). However, in the actual production process, operation delays, uncertain 

events, and abnormal disturbances occasionally appear (Malhotra et al., 2015). For 

example, machines need to experience downtime occasionally due to the necessity of 

setup works, material changes, and other activities of operations that need human 

intervention. Therefore, the traditional static view of deterministic problem settings 

may not suit the varying performing circumstances, leading to production deviation and 

seriously affecting the success of schedule implementation (Fang et al., 2019). Besides, 

conventional uncertainty-aware methods focus on involving stochasticity or robustness 

in the scheduling. However, the empirical-based depiction of uncertainty may not affect 

the real situation and ignores the interactions of production factors on the performance. 

Taking advantage of IIoT-enabled data-collection, real-time data can be obtained. AI-

based methods can be developed to explore the joint effect of production factors on 

performance. In this section, the influencing factors are first identified. Then, the 

machine learning methods and production performance indicators are elaborated.  

 

Influencing factors and effects on production performance10 

The actual performance of many manufacturing sectors, such as printing, dyeing, 

and construction molding, rely on a portfolio of factors e.g., operator operations, 

machine operating status, resource use, operator proficiency, and even environmental 

 
10 As a remark, part of this section is included in paper Sun, Y., Chung, S.H., Choi, T.M., & Wang, Y. 

(2024). Feature-driven production scheduling systems: Unveiling and exploiting job processing rate 

dependencies. IEEE Transactions on Systems, Man and Cybernetics: Systems, under review. 
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factors. For example, in the dyeing process, the rates of dye absorption and fixation are 

controlled with dyeing temperature, liquor agitation, pH, and retarding agents. Also, the 

overall processing time (rate) of a dyeing task is affected by the depth of shade, the type 

of dyestuff, the nature of the textile material and the dyeing machine11. Similarly, the 

processing rate of an injection moulding process highly depends on the setup 

procedures, the shot size, the barrel temperature, and the injection speed12. Therefore, 

slight variations in the contexts of two identical jobs (i.e., jobs with the same quantity 

and quality requirements) may result in significant discrepancies in the processing rate, 

which can disturb the implementation of planned schedules. As a result, if the 

influences of the multiple related factors can be integrated into the planning and 

scheduling of such production activities, the schedules can more precisely 

accommodate the actual resource/processing time demands, which benefits cost control 

and quality enhancement. 

To further illustrate the variabilities or influential factors that are defined by the 

specific context, take the investigated printing company in China as an example. First, 

job-related factors such as material usage (paper and ink), quality of similar materials 

by different suppliers, customer importance, and requested quality level vary and can 

directly affect the processing rate from the product standard and the ease of use of 

materials. Another important aspect is the operator in charge. Operators with higher 

professionals may be more experienced and proficient in controlling the machine, 

conducting preparation jobs before printing (e.g., cleaning the die, changing fixtures, 

etc.), and responding to various circumstances (e.g., adjusting machine parameters, 

replacing washers, etc.). Moreover, environmental elements, such as the temperature 

and humidity around the printing machine can make a difference in the materials (e.g., 

 
11 Details are available at: https://textilelearner.net/dyeing-methods/ (Accessed on 22 June 2024) 
12 Details are available at: https://www.plasticstoday.com/injection-molding/troubleshooter-key-steps-

stable-injection-molding-process (Accessed on 22 June 2024) 

https://textilelearner.net/dyeing-methods/
https://www.plasticstoday.com/injection-molding/troubleshooter-key-steps-stable-injection-molding-process
https://www.plasticstoday.com/injection-molding/troubleshooter-key-steps-stable-injection-molding-process
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fluidity of the ink and the absorptivity of paper) and thus affect the quality of the product, 

which may consequently cause downtime for resetting the machine. 

Besides the factors related to the specific job execution, through data analytics, it 

is discovered that the execution of the immediately preceding job may highly affect the 

processing rate of succeeding jobs, The rationale behind this is that the preceding job 

will affect the changeover operations of the next job, such as necessary setups and 

configurations of machine, material utilization, and consistency in human operations. 

In addition, the predecessors may also exert an implicit influence on the following job 

performance through material availability, machine vibration or wear, and operator 

status fluctuation. Accordingly, the influencing factors are summarized into three levels, 

the direct influences (which are owing to the changes of specific factors related to the 

job under processing), the adjacent influence (which is caused by the influences of the 

immediate predecessor), and sequential influence (which is due to a series of 

predecessors). 

 

Indicators to track operating performance 

To measure the effects of the above factors on production efficiency, two 

performance indicators can be applied. The first one is the job processing time, which 

directly reflects the absolute time of processing a job. Knowing processing time is vital 

for establishing schedules that enable a smooth production process with less deviation. 

However, relying solely on processing time may not provide a comprehensive view of 

processing performance, as it does not necessarily reflect the current processing status. 

For instance, it may not indicate whether a job is being completed at an acceptable 

efficiency level or if there are underlying inefficiencies causing the processing rate to 

lag behind the expected standard. To solve this concern, the other indicator adopted is 

the relative processing rate level (PR level for short), which signifies the relative 
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production efficiency of a job (Owen & Blumenfeld, 2008). 

In particular, the PR level embeds more information that cannot be indicated by 

the processing time. For instance, within a given timeframe, the PR level can reveal 

insights into cost efficiency, the alignment between personnel skills and job 

requirements, the smoothness of material flow, and the environmental advantages or 

the presence of errors and slowdown factors. Previous studies point out that the 

processing rate varies due to influential factors like the starting time of the job in the 

sequence, the number of jobs being processed simultaneously, and other settings in the 

system (Alidaee & Womer, 1999; Glock & Grosse, 2021; Schweitzer & Seidmann, 

1991). They model the fluctuation in processing rates with linear or non-linear functions 

(Alidaee & Womer, 1999; Baldea & Harjunkoski, 2014). However, these approaches 

do not take into account the particular circumstances or conditions in which a job is 

performed. Therefore, by referring to the relative PR level, the decision makers can get 

knowledge about whether the performing factors are benefitting or impairing the job 

processing. Consequently, resource adjustments regarding machines, operators, 

materials, and environmental indicators (e.g., temperature and humidity etc.) can be 

applied to enable more jobs to be processed with a normal or even high PR level.  

 

Machine learning methods for prediction and classification 

Machine learning (ML) methods have been widely recognized for their ability to 

perform a variety of regression and classification tasks, offering the benefits of 

automating decision-making processes and uncovering patterns within large datasets. 

Traditional machine learning methods, such as the support vector machine and decision 

trees, often provide results with good explainability, as they typically require domain 

knowledge and human expertise in model construction and feature extraction (Mende 

et al., 2023). However, such methods also suffer notable limitations. For example, the 
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shallow nature of traditional ML architectures restricts the sophistication and accuracy 

of the models to learn deeper data representations (Janiesch et al., 2021). Furthermore, 

as data points are usually treated as independent entities, it is challenging for these 

methods to capture complex temporal dependencies that exist between multiple features 

and different data points, such as time series trends (Han et al., 2019). 

In recent years, advancements in statistics and optimization theory have 

significantly shifted the research focus toward deep learning, which largely transformed 

the methods to extract knowledge from high-dimensional data. With the deepening 

layers, DL models become more powerful in characterizing intricate relationships 

within the data (Han et al., 2019). By developing deep learning models that incorporate 

diverse functional layers, such as convolution layers (for extracting latent 

representations from structured inputs) as well as recurrent and transformer layers (for 

identifying temporal dependencies within time series data), deep learning architectures 

can be tailored to meet the specific requirements of various tasks.  

 

Multi-input modules supported dual-task learning 

Deep learning models process the flexibility of designing for suiting specific tasks. 

It is crucial to design input modules that can more explicitly reveal the intrinsic patterns, 

thereby enabling the learning model to capture the representation much more easily. 

Besides, most neural networks constructed in the literature only focus on training for a 

single task, such as predicting machine speed, and loading rate (Liu et al., 2019a). 

Notably, recent research has demonstrated the effectiveness of adopting multi-output 

learning in simultaneously predicting multiple outputs given an input (Xu et al., 2019). 

The rationale behind this is that many learning tasks share commonalities. Therefore, 

through training with neural networks sharing information between different tasks, the 

knowledge learned from one task can be transferred to another, which enhances the 
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performance of joint learning with the synergy between the tasks (Xu et al., 2019).  

To track the real-time production performance, it would be beneficial to know both 

processing time and the relative PR rate for a more comprehensive understanding of 

the production status. It is worth noting that these two indicators have inherent 

correlations as a relatively longer processing time regarding one performing task often 

represents a lower processing rate level. Thus, it can be inferred that the learning of 

both tasks may share inner representations. The adoption of multi-output architecture 

is promising in achieving good performance of both tasks. 

1.1.4 Context-based production rate guided scheduling 

As previously mentioned, most conventional scheduling approaches use 

predetermined parameters for scheduling. These parameters usually heavily rely on 

expert estimation (e.g., processing time and setup time), which may not be very accurate 

(Qiao et al., 2021). Such inaccurate estimations may cause the scheduling solutions to 

be fragile in real practice, leading to production delays and inefficiencies (Sotskov & 

Werner, 2014). Moreover, in normal circumstances, the processing time of a job will be 

positive to the quantity of production output and fluctuate around an average value, 

which can be described as normal distribution (depicted as Origin schedule in Figure 

1-1). However, As demonstrated in Section 1.1.2, the interplay of multiple factors (e.g., 

the status fluctuation of machines, status of operators, material use and its performance 

in different environmental circumstances) may drive the actual processing time away 

from its normal value/range. Therefore, the actual performance of the processing time 

may follow some real distributions that cannot be described with well-known 

distributions, thus leading to delays or inefficiencies (depicted by Scenario 1 and 

Scenario 2 in Figure 1-1). Therefore, prior literature based on stochastic programming 

or robust programming with empirical distribution assumptions may not well capture 
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the interrelationships between job and performing scenarios.  

 

 

Context-Based Production Rate (CBPR)-guided scheduling approach 

In Section 1.1.2, two indicators are proposed, namely the processing time and PR 

level, which can be used to measure the processing efficiency of a job on a specified 

execution machine (which is charged by one operator) and under a combination of 

resources and environmental conditions. As illustrated, a better understanding of factors 

affecting PR can largely benefit prediction accuracy and schedule reliability.  

Following the previous introduction, the portfolio of factors affecting the actual 

manufacturing process is defined as the processing context of a job (also the specific 

job execution scenario). The context involves critical job-specified features (e.g., job 

characteristics, machine setup, materials), operator in charge, and position in the 

execution sequence. A new index of context-based processing rate (CBPR) is proposed, 

which represents the processing rate of a job (i.e., JPR) under a particular context 

generated along with the scheduling process. The purposes of this index are to (i) 

provide a framework for interpreting factors influencing the JPR and (ii) enable a 

context-based scheduling method, which may capture JPR changes so that the 

scheduling algorithm can be sensitive to the varying context and adaptively produce 

Figure 1-1. Demonstration of different circumstances in scheduling 
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efficient solutions. The CBPR generated along with the scheduling process can be used 

to guide the schedule generation process to derive schedules that can more flexibly 

accommodate the production requirements. For example, it can apply the CBPR to 

guide the positioning of a job to beneficial performing places with suitable operator and 

resource combinations so that the generated schedules can obtain enhanced execution 

efficiency, proper job allocation and execution arrangement, improved resource 

utilization efficiency and operator physical demanding, and reductions in excessive 

buffer allocation or potential delays.  

 

1.2 Research Objectives 

This dissertation aims to reach the following main objectives. From the problem 

aspect, it is devoted to (i) enhancing the collaboration between production machines 

and smart delivery tools for a robotic job shop floor; and (ii) incorporating the 

influences of multiple real-world factors to achieve effective predictive analytics of 

production status and efficient data-driven scheduling. From the method aspect, this 

dissertation focuses on addressing: (i) modelling interactions between production 

machines and autonomous delivery tools; (ii) extracting the influencing pattern of 

multiple factors as well as the dependencies of job processing rate on related factors; 

and (iii) developing efficient solution algorithms to tackle the formulated scheduling 

model. More specifically, the research questions are summarized in the following: 

1. How can the operations of machines and the autonomous delivery tool (the mobile 

robot) be scheduled and effectively coordinated to achieve sustainable and 

efficient solutions that reduce carbon emissions while maintaining productivity? 

(Related to Chapter 3) 

2. How can the various realistic operational factors (e.g., job characteristics, resource 
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utilization, production settings, environment, and preceding sequence) affect the 

actual production performance? With the availability of data collected from IoT 

devices, how can such influences be captured? (Related to Chapters 4 and 5) 

3. How can the job processing status be captured with predictive analytics? What 

performance indicators should be tracked and how to better predict them by 

developing advanced AI techniques? (Related to Chapter 4)  

4. How can the effects of multiple influencing factors on the processing rate be 

incorporated into the scheduling process to derive practical and efficient 

scheduling solutions? (Related to Chapter 5)  

1.3 Research Methodology 

The research methodologies employed in this dissertation focus on the 

development of optimization models & algorithms and deep learning methods to 

enhance the efficiency and sustainability of smart manufacturing systems. This 

dissertation first conducts a systematic review of the research development of 

production scheduling problems in the era of smart manufacturing. Then, based on the 

identified research gaps, three research studies were undertaken, employing 

methodologies covering the realms of mathematical modelling, real-world data 

processing, deep learning, and optimization algorithms. 

The first study in Chapter 3 focuses on the development of novel mixed integer 

linear programming models that incorporate energy considerations. To verify the 

performance of the proposed model under various scenarios, extensive computational 

experiments are conducted based on hypothetical data to evaluate the computational 

efficiency and derive managerial insights.  

Then, studies in Chapters 4 and 5 are based on a real-world production scenario. 

Comprehensive real-world processing data are collected from the company’s 
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production system. First, the raw data undergoes cleaning, processing, and encoding 

phases to prepare for analysis. Then, deep learning models are designed, which are 

tailored to capture the complex interrelationships existing in the data. Furthermore, the 

deep learning models are integrated with an optimization algorithm to create a novel 

solution architecture. The evaluation of these models is multi-faceted. Specifically, the 

performance of the proposed deep learning models is benchmarked against other 

leading models to establish their efficacy. A series of analyses involving ablation studies, 

benchmark comparisons, and sensitivity analysis, are conducted to deepen the 

understanding of the model performance and influencers. Additionally, computational 

experiments established with real-world data are conducted to validate the performance 

of the proposed integrated solution architecture and examine its applicability and 

effectiveness in practical settings.  

 

1.4 Research Significance and Contributions 

The study in Chapter 3. This study is one of the first attempts that focus on the 

energy consumption issue of robotic cells, which is becoming increasingly crucial in 

achieving sustainability within autonomous robot-enabled smart manufacturing 

systems. The detailed contributions are as follows:  

1. It is the first study that integrates the energy consumption from both the machine 

side and robot side into the RJSP framework, which theoretically contributes to 

the JSP literature by proposing a new research direction.  

2. The study is also the first to propose alleviating energy concerns of robotic cells 

by promoting better machinery-robot movement collaboration. To achieve so, two 

novel energy-efficient robotic job-shop scheduling models are proposed. A V-scale 

speed framework is applied for both machines and the mobile robot so that the 
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optimal speed for performing each operation/movement can be optimally selected 

to maximumly avoid machine idling and robot partial blocking circumstances. To 

be more specific, a robotic job-shop scheduling with energy consumption (i.e., 

RJSP-E) is first developed to minimize the total energy consumption. Then, a 

robotic job-shop scheduling with energy consumption and makespan limitation 

(i.e., RJSP-EM) is developed to simultaneously optimize energy consumption and 

system productivity.  

3. Through computational experiments, the RJSP-E is shown to remarkably reduce 

energy consumption (with an average of 15%) by selecting slower operating 

speeds, but at a cost of productivity. In comparison, the RJSP-EM demonstrates 

superior ability in selecting the most proper operating speeds based on the 

evaluation of the production system. Notably, the RJSP-EM is shown to reduce 

energy consumption by a mean of 10% compared with the traditional model even 

without sacrifice in productivity (i.e., when the makespan is not allowed to 

increase). Other managerial implications for enhancing the green level of smart 

manufacturing are also derived.  

 

The study in Chapter 4. Realizing the importance of production elements on actual 

production performance, this study is the first one that proposes a novel deep learning 

architecture to capture the dependencies of processing rate on utilized production 

resources, environmental factors, and the preceding jobs. The detailed contributions are 

as follows: 

1. The study is the first to identify the influencing production elements on production 

performance. Through exploring the high-dimensional real-world production data, 

such influences are extracted in three levels: the direct influence (job-related factors, 

e.g., material utilization, machine, operators, environments), the adjacent influence 
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(the immediate predecessor impact), and the sequential influences (the impact of a 

series of predecessors). 

2. This is the first study to propose utilizing the synergy between two production 

performance indicators (i.e., regression of processing time and classification of 

processing rate level), for a better measure of production performance, reflecting 

the performance of a single job and system status.  

3. To capture hierarchical influences and shared information between training the two 

tasks, a multi-input-module supported dual-task learning (MMDT) model is 

proposed, which can adaptively learn the inner patterns of sequential and 

multivariate job information. The model with three input modules can largely mine 

and exploit the information within the time series sequence to predict job processing 

status. A joint loss function with a controllable weight parameter is applied to train 

the multi-output neural network simultaneously. Such a co-learning mechanism 

reduces overfitting and also utilizes the synergy between the two tasks to learn the 

right representation for each task.  

4. Extensive experiments are conducted to validate the model performance. Compared 

with the single input module, the single output layer, and other state-of-the-art 

benchmarks, the proposed architecture shows significant effectiveness in improving 

the performance for both processing time prediction and PR level classification.  

 

The study in Chapter 5. Realizing that realistic operational factors in the 

production process will affect production performance and a lack of studies considering 

incorporating such influences in scheduling, this study proposes to investigate a new 

production scheduling problem with varying processing rates. The novel property of 

varying processing rates (determined by different production scenarios) results in the 

studied problem being non-deterministic. To tackle the induced problem complexity, 
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we propose an efficient solution architecture with tailored dominance rules. The 

detailed contributions are as follows: 

1. The study first proposes an index named Context-Based Processing Rate (CBPR) 

to indicate the processing rate of a job (i.e., JPR) under a particular context 

generated along with the scheduling process, which is sensitive to the varying 

context. It enables the incorporation of multiple realistic and operational factors for 

an accurate JPR prediction to empower the scheduling process. Also, the scheduling 

algorithm can adaptively produce efficient solutions.  

2. A DeepPR model is developed to capture the dependencies on CBPR with two 

attention mechanisms. A DeepPR integrated CBPR-guided branch-and-price (BnP) 

scheduling approach is further presented, which applies DeepPR to capture JPR 

changes under varying contexts and further uses the predictive CBPR to guide the 

optimization of assignment and sequencing of jobs to operators. The proposed 

CBPR-labelling algorithm with tailored dominance operations enables a CBPR-

guided scheduling process, which enables the scheduling scheme to focus more on 

exploring promising positions for individual jobs.  

3. Computational experiments show that the proposed DeepPR outperforms other 

state-of-the-art benchmarks in JPR prediction accuracy. Also, applying the CBPR-

guided scheduling approach to the investigated printing company enables a 

substantial enhancement of their production efficiency by reducing their processing 

time by an average of 12.84%. Additional experiments show that this method can 

effectively improve the overall processing rate. 

 

1.5 Dissertation Organization 

The outline of this dissertation is as follows. The introduction of background, 
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motivations, research questions, methodologies, and contributions are detailed in 

Chapter 1. Chapter 2 provides a comprehensive literature review of the research 

problems. Then, Chapters 3, 4, and 5 present the details of three studies. Finally, 

Chapter 6 concludes this dissertation.  

Figure 1-2 provides the overall structure of this dissertation. 

 

Figure 1-2. The outline of the overall dissertation 
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Chapter 2. Literature Review 

In this chapter, the literature on production scheduling in the smart manufacturing 

context is detailly reviewed. Section 2.1 provides a fundamental review for this 

dissertation by overviewing the research on production scheduling, the impact of 

Industry 4.0 on production scheduling, and existing solution approaches. Then, more 

detailed reviews are conducted for separate research studies. Section 2.2 (related to 

Chapter 3) reviews the robot-facilitated production scheduling and the energy 

consumption issue of robotic cells. Section 2.3 (related to Chapter 4) examines the 

adoption of machine learning methods in smart manufacturing and production 

scheduling. Section 2.4 (related to Chapter 5) reviews the combination of machine 

learning methods and operations research techniques in solving production scheduling 

problems. Finally, Section 2.5 derives the research gaps through the above review, 

which are addressed in this study.  

 

2.1 Evolution of Production Scheduling   

2.1.1 Considerations in production scheduling problems 

The main purpose of production scheduling is to transform the received order 

requirements into a series of ordered tasks to be performed on machines (Buxey, 1989). 

Due to the complicated nature of production processes, a good production schedule 

requires the coordination of multiple resources at various levels (Lohmer & Lasch, 

2021). Basically, production scheduling is related to decisions from multiple levels 

from more long-term and high-level decisions (e.g., facility configuration) to short-term 

(such as the daily operations) which are summarized in Table 2-1.   
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Table 2-1. A summary of research focuses on production scheduling 

Scheduling Decision Level Research Focus 

Strategic level 
Layout design and capacity configuration (Guo et al., 2023; 

Karmarkar & Kekre, 1987; Wu et al., 2020) 

Tactical level 

Worker employment and purchasing plan (Cornwell et al., 

2021; Ecer, 2022) 

Production mode (e.g., parallel machine processing, job-

shop, flowshop, open shop, etc.) (Jamrus et al., 2017; Rossit 

et al., 2018; Workneh & Gmira, 2022; Wu & Che, 2019) 

Operational level 

Job priority, job allocation, job sequencing, and timely 

schedule adjustment (Özgüven et al., 2010; Raheja & 

Subramaniam, 2002; Rossit et al., 2018; B. Wang et al., 

2022; Yanıkoğlu & Yavuz, 2022) 

 

The strategic decision aspect covers layout design (i.e., plan for placing facilities 

or departments) and capacity configuration (e.g., machine type and mode selection) 

(Guo et al., 2023; Karmarkar & Kekre, 1987; Wu et al., 2020). Due to the significant 

influences on the interactions between facilities on the shop floor, these decisions 

fundamentally affect the operational process (Lohmer & Lasch, 2021). Then, the 

tactical decision level establishes middle-term decisions, such as the employment of 

workers and creating resource purchasing requirements from suppliers (Cornwell et al., 

2021; Ecer, 2022). Besides, the mode of the production process can be determined 

according to system configurations. To be more specific, the production mode can be 

divided into single-stage or multiple-stage processing (Graves, 1981). The single-stage 

processing mode includes single machine scheduling (which is to determine the 

sequence of non-preemptive jobs on one processor) (Koulamas & Kyparisis, 2023) and 

parallel machine processing scheduling (which is to allocate a set of jobs on several 

parallel unrelated machines) (Wu & Che, 2019). Then, multiple-stage processing 

involves more complex processing patterns and thus requires good coordination 
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between machines to jointly complete the processing steps. The representative 

processing modes of this mode involve flowshop and job-shop scheduling settings. The 

flowshop mode is designed for producing the same type of product on a series of 

machines, which can facilitate mass production with enhanced production efficiency 

(Rossit et al., 2018). However, due to the limitations of flowshops in fulfilling 

customized preferences and the demand for variability, job shop scheduling is adopted 

in many areas (e.g., circuit board printing and semiconductor) to achieve more 

production flexibility (Jamrus et al., 2017; Workneh & Gmira, 2022). The job-shop 

scheduling mode enables producing products to follow different processing steps and 

allows jobs to re-enter a processing centre/machine more than once. To further increase 

flexibility, flexible job-shop scheduling and open shop scheduling problems are also 

popular research focuses (Rahmani Hosseinabadi et al., 2019; Shen & Yao, 2015).  

  Based on the above production layout and configuration, the operational-level 

scheduling decisions involve establishing a specific daily processing timetable for 

machines and workforce (Xu & Hall, 2021). It mainly determines job priority, job 

allocation to machines, and sequencing on machines (Özgüven et al., 2010; Rossit et 

al., 2018; Wang et al., 2022a; Yanıkoğlu & Yavuz, 2022). Moreover, necessary 

monitoring systems may track the production performance and make quick adjustments 

to production plans to control the process (Raheja & Subramaniam, 2002).  

 

2.1.2 Impact of Industry 4.0 on production scheduling 

Industry 4.0 brings manufacturing into a new era with the involvement of many 

disruptive technologies, e.g., the cyber-physical system, AI-facilitated autonomous 

devices, cloud computing, and digital twin (Rossit et al., 2019b). Research on the 

related field is seen from a large spectrum. Zheng et al. (2019a) review the smart 
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manufacturing systems for smart manufacturing and demonstrate their changes in 

design, machining, control, monitoring, and scheduling. Parente et al. (2020) 

summarize the impact of Industry 4.0 on modern production scheduling from the 

following aspects: cyber-physical systems (CPS), the Internet of Things (IoT), big data 

and cloud computing, integrated production systems and adaptive manufacturing. In 

Table 2-2, we summarize the main technical advancements and their applications in 

developing smart manufacturing systems. 

 

Table 2-2. A summary of main technical advancements in smart manufacturing 

Techniques Main Focus Applications 

Cloud computing and 

data analytics 

Management and storage of 

big data for production 

systems (Sharp et al., 2018; 

Xu, 2012) 

Integrated cloud-based and data-

driven solutions (Jiang et al., 

2022; Xu, 2012)  

Cyber-physical systems 

(CPS) and Digital twin 

Reconstructs the devices and 

operations in the physical real 

world to its virtual digital 

representation (Fang et al., 

2019; Zhang et al., 2019a).  

Manufacturing process control, 

product development, 

production planning, machine 

failure detection, performance 

assessment (Serrano-Ruiz et al., 

2021; Workneh & Gmira, 2022) 

Industrial Internet of 

Things (IIoT)  

Building interconnected 

production systems, with 

sensors, machines, materials, 

operators, robots, etc. (Yang et 

al., 2019).  

Intelligent connection, real-time 

data processing, monitoring and 

autonomous control (Chen et al., 

2023) 

Autonomous robots 

Automate the material 

handling process (Fragapane 

et al., 2021)  

Robot-facilitated material 

retrieval/picking, material 

handling, and material storage 

(Fragapane et al., 2021; Keung 

et al., 2021) 

 

As seen from Table 2-2, with the foundation of cyber-physical integration, data 

processing, and data analytics techniques, production scheduling and control can be 
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conducted in a data-driven approach with enhanced coordination between participants/ 

components and better alignment between resources (Bueno et al., 2020; Jiang et al., 

2022). Moreover, the adoption of autonomous robots in automating the material 

handling process is also emphasized by the literature in recent years. As the scheduling 

of the robot-facilitated material handling system is one of our main focuses, a more 

detailed review is available in Section 2.2.  

 

2.1.3 Solution approaches for production scheduling problems 

Modelling and solutions for deterministic scheduling problems 

Operations research techniques have been widely investigated for solving 

production scheduling problems. In the well-established literature, a specific 

production scheduling problem can be formulated as mathematical optimization models 

(e.g., linear programming and mixed integer programming models) with objectives of 

minimizing the completion time /makespan, maximizing the throughput, or minimizing 

the delays in fulfilling due dates (Mokhtari & Hasani, 2017). To formulate the 

scheduling problems, different scheduling methods are proposed, e.g., the position-

based modelling approach (Demir & İşleyen, 2013; Meng et al., 2020; Roshanaei et al., 

2013), sequence-based modelling approach (Karimi et al., 2017; Özgüven et al., 2010), 

and time-interval-based modelling approach (Yan et al., 2018).  

However, most production scheduling formulations (e.g., job shop scheduling 

problems) are very challenging combinatorial optimization problems and finding 

optimal solutions for large-scale problems in reasonable time limits is very challenging 

(Çaliş & Bulkan, 2015). Exact algorithms, such as branch-and-price, branch-and-bound, 

and benders decomposition, are popular research concentrations to increase the 

tractability of the formulated models (Avci et al., 2022; Gmys et al., 2020; Juvin et al., 
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2023; Naderi & Roshanaei, 2022; Quinton et al., 2020; Yanıkoğlu & Yavuz, 2022). 

Other scholars devote to developing numerous heuristic decision rules and 

metaheuristic algorithms (e.g., genetic algorithms, large neighbourhood search, 

simulated annealing, particle swarm, tabu-search) to obtain efficient scheduling 

approaches with relatively good results (Fan et al., 2021; Fontes et al., 2023; Gao et al., 

2019; Tamssaouet & Dauzère-Pérès, 2023).  

 

Uncertainty-aware production scheduling strategies 

Many studies investigate establishing resilient schedules by accommodating 

various uncertain factors, e.g., machine failures, malfunctions, breakdowns, or other 

abnormalities. From the literature, the most direct choice is to take reactive or corrective 

actions, such as rescheduling or dynamic scheduling (Ghaleb et al., 2020; Petrovic & 

Duenas, 2006). However, these event-driven interventions may unavoidably disturb 

normal operations and cause unnecessary costs. Another stream of studies investigates 

robust programming methods. For example, Enginarlar et al. (2002) propose to 

incorporate buffer or robustness into the schedule generation process so that the 

schedules can be more resilient to disruptions. Yue et al. (2020) propose a robust 

optimization model to tackle the uncertainty of job due date by minimizing the 

maximum tardiness in the worst-case scenario. Wu et al. (2021a) consider the 

uncertainty of scenario-dependent job processing time for an assembly flowshop 

scheduling problem and propose a solution method that minimizes the maximum 

makespan for all scenarios.  

Even though robust solutions may significantly enhance schedule resilience, 

adding buffers to schedules or considering the worst scenario can be very expensive. 

Therefore, other studies concentrating on production planning with uncertainty 

investigate stochastic or fuzzy optimization methods (He et al., 2021; Tirkolaee et al., 
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2020) by considering non-deterministic processing parameters (e.g., processing time, 

idle time, anomaly, etc.) following some deterministic distributions based on empirical 

experience, e.g., processing time follows normal or exponential distribution (Birge et 

al., 1990; Mittenthal & Raghavachari, 1993) or take its value range (discrete or 

continuous) into account to enhance scheduling adaptivity or flexibility (Ramírez-

Velarde et al., 2017; Sotskov, 2020). However, due to the complicated interactions 

among factors and intricate influences in the real-world production process, these 

assumptions may not hold, and it is difficult for the above approaches to model the 

uncertainty with the consideration of the influences of multiple real-world factors.  

 

Scheduling approaches in Industry 4.0 

In the context of Industry 4.0, the availability of data provides the potential to 

design scheduling solutions based on more information. Relevant studies are examined 

from three perspectives. First, several studies focus on building new scheduling 

architectures/frameworks for smart manufacturing systems supported by many 

advanced techniques (Qiao et al., 2021; Rossit et al., 2019a). The second category of 

studies focuses on online decision scheduling, which makes scheduling decisions in a 

real-time manner based on human-made decision rules or scheduling policies by 

reinforcement learning approaches (Gu et al.,2022; Park et al., 2019; Serrano-Ruiz et 

al., 2024; Wu et al., 2021b; Zhou et al., 2021). Last but not least, realizing the limitations 

of traditional scheduling approaches in making many unrealistic assumptions in many 

production-related factors, the importance of integrating data analytics and AI methods 

into production scheduling is increasingly emphasized (Workneh & Gmira, 2022). As 

the integration of AI and scheduling optimization methods is one of the main focuses 

of this dissertation, it will be more detailed in Sections 2.3 and 2.4.   

  To summarize, the IIoT systems enable the adoption of autonomous robots and 
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recording of the production process, which enables access to real-time processing data. 

Production scheduling in this novel context can be devoted to coordinating the 

intelligent production network and utilizing recorded processing data for better 

scheduling or adjustment of production settings, plans, maintenance, and employees in 

a real-time or short-term manner. 

 

2.2 Production Scheduling in Robotic Cells 

2.2.1 Application of autonomous techniques in intralogistics  

In recent years, the planning and control of AMRs in intralogistics (e.g., the 

manufacturing systems and warehousing environments) is a popular topic (Fragapane 

et al., 2021). In the domain of robotic fulfilment system scheduling, most studies focus 

on joint decisions of allocating/sequencing orders to workstations and delivery robots. 

Lee and Murray (2019) transform robotic order picking into a vehicle routing problem 

and formulate it as a mixed integer linear programming model. For the order assignment 

problem, Wang et al. (2022a) evaluate the order assignment performance of a robotic 

cell with multiple picking stations under a zoning policy. Cai et al. (2021) combine the 

goods location assignment, rack storage, and AGV path planning into one optimization 

problem to enhance collaborative optimization. To jointly optimise order sequencing 

and rack scheduling, Yang et al. (2021), Teck and Dewil (2022), and Shi et al. (2021) 

study the simultaneous assignment of orders and racks to multiple picking stations. 

Yang (2022) examines the joint impact of the item storage assignment policies and order 

batching policies on the order-picking process. Keung et al. (2021) study the IIoT-

enabled storage location assignment in a resource synchronization and sharing-based 

RMFS.  

Besides the above studies on robot-workstation or robot-order assignment, a few 
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studies focus on coordinating several robots. Yuan et al. (2021) propose to tackle the 

multirobot task allocation (MRTA) in robotic mobile fulfillment systems. Their model 

proposed model considers both the picking time balance of picking stations and the load 

balance of robots. A four-stage balanced heuristic auction algorithm is designed to solve 

the task allocation model and the tasks with an execution sequence for each robot. 

Zhuang et al. (2021) focus on the cooperative task planning of heterogeneous multi-

robots. They formulate the problem as open shop scheduling with sequence-dependent 

set-up and transportation times and developed a MILP model and a hybrid artificial bee 

colony algorithm. Qin et al. (2022) design dispatching algorithms to make real-time 

dispatching decisions among robots, racks, and workstations. Wang et al. (2022b) 

propose a stochastic dynamic program that scheduled robots and mobile racks with the 

consideration of the working state fluctuation of human pickers.  

 

2.2.2 Robotic flowshop and job-shop scheduling problems 

Robotic cells refer to production environments where autonomous mobile robot(s) 

(AMR) are deployed for material handling on an assembly line. The production modes 

are generally arranged as a flowshop or a job-shop environment and AMRs may 

perform the job transshipment among machines. The so-formed robotic flowshop cells 

is examined by Dawande et al. (2005). Similar to basic scheduling problems discussed 

in Section 2.1, the optimization objectives of scheduling in robotic cells are also to 

minimize the makespan, idle time, or tardiness and with considerations of job-specified 

processing sequence, and sequence on machines (Brucker et al., 2012; Dawande et al., 

2005; Petrović et al., 2019). However, due to the integration of AMR routing in the 

scheduling framework, scheduling both machines and robots in robotic settings is rather 

complicated (Brucker et al., 2012). Besides, compared with robotic fulfillment services 
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in order-picking systems, robot activities are largely different. Robots in robotic cells 

are required to visit one job several times (move to different workstations for moving 

goods, while in order-picking services, one task will be completed once the robot moves 

the goods from the storage area to the corresponding workstation. The additional 

restrictions involved are mainly indicated by the following aspects.  

Buffer capacity. Machine buffer decides whether semi-products can stay on the 

machine after finished or should be removed before conducting the next operation (Liu 

et al., 2018), while robot buffer determines how many products an AMR can carry 

(Drobouchevitch et al., 2010).  

Pickup criteria. Several pickup criteria can be adopted according to specific 

processing requirements, such as a blocking criterion (a semi-product stays on the 

current machine before the availability of the next machine), a no-wait criterion (a semi-

product should be removed immediately after finishing), and a time window one (a 

semi-product can be picked up within a legal time window (Caumond et al., 2009; 

Cheng et al., 2019; Hurink & Knust, 2002; Zeng et al., 2014).  

Deadlock avoidance. Another important aspect is the guarantee of conflict-free 

robot delivery to ensure smooth completion. A deadlock can happen when a robot tries 

to place a semi-product on a machine (with a single buffer) that is already occupied, or 

oppositely forcing a robot to carry another job when it is with a single buffer and is 

already occupied (Caumond et al., 2009; Ham, 2021; Yan et al., 2018).    

2.2.3 Energy consideration for robotic cells 

As green production and sustainability are more emphasized in modern production 

systems, increasing research attention has been paid to incorporating green strategies 

and resolutions in production scheduling (Abedi et al., 2020; Hassani et al., 2019; 

Mokhtari & Hasani, 2017). Through examining the literature, several energy-reduction 
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strategies are identified. 

Existing energy reduction strategies. The basic idea is to develop an energy-

concerned multi-objective optimization model for scheduling in robotic cells (Dai et al., 

2019). Besides, several research studies focus on increasing the scheduling of 

production activities to off-peak periods to reduce electricity costs (Masmoudi et al., 

2019; Wang & Wang, 2019) or exploring a turning off/on strategy, which turns off the 

machine when a long period of idling appears (Meng et al., 2019). However, this on/off 

strategy may cause a negative impact on the lifetime of devices or produce extra energy 

due to frequent on/off operations (Zhang & Chiong, 2016). To alleviate this concern, 

many scholars explore the speed scaling strategy, leveraging the fact that many 

industrial machines are equipped with the capability to adjust their operating speeds. 

On this issue, Zhang and Chiong (2016), Wu and Che (2019), and Abedi et al. (2020) 

all study the scheduling for machines with a speed scaling mechanism.  

Energy reduction from robot side. Even though many studies aim to tackle energy 

consumption from the machine side, there are very few studies on the energy 

consumption of the intra-transportation from the robot side. Only several studies are 

identified. Gürel et al. (2019) find that controlling robot speed is an effective method 

to reduce the energy consumption of a robotic cell. Their method can determine the 

robot performing sequence and robot speed. Similarly, Bukata et al. (2019) propose a 

method to reduce robotic cell energy consumption and meanwhile maintain system 

throughput by applying robot power-reduction modes and robot position adjustment. 

Barak et al. (2021) try to incorporate the energy efficiency of AGVs into flexible 

manufacturing systems by proposing an energy-efficient model that optimizes the 

allocation of operations to AGVs.  
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2.3 Machine Learning (ML)-Facilitated Smart Manufacturing  

Besides the adoption of autonomous devices at the physical level, another 

important aspect of smart manufacturing is to utilize advanced data analytics to improve 

decision-making in production systems, which is becoming increasingly popular (Wang 

et al., 2018a). The following two subsections examine the applications of ML 

techniques for industrial applications and the adoption of ML techniques for production 

scheduling.  

2.3.1 ML techniques for industrial applications 

ML techniques are increasingly emphasized to support the decision support of the 

manufacturing system, such as cost estimation, tool utilization, and batch size plan 

(Sharp et al., 2018). On these issues, classical machine learning methods, such as 

support vector machines are seen to be adopted in characterizing the cost space and 

constructing more accurate and generalizable cost estimation functions (Deng & Yeh, 

2011; Yeh & Deng, 2012). Nevertheless, the classical machine learning methods do 

work in performing classification and prediction tasks in many areas, these methods 

may require human expertise or prior knowledge for feature extraction or feature 

dimension reduction (Wang et al., 2018a) or cannot learn complicated non-linear 

relationships within data due to the shallow network (Jia et al., 2016).  

In comparison, deep learning (DL) models enable more powerful learning of 

representations from imbalanced data and data with noises (Khan et al., 2017). The deep 

architecture with hidden layers performs multi-layer nonlinear operations, thus 

obtaining advantages in feature representation, relationship approximation, and training 

(Wang et al., 2018a). Convolution neural networks (CNN) have good capability to 

extract information from structural data, e.g., two-dimensional input of figures (Zhang 

et al., 2019b). To deal with the time-series-based input signal, recurrent neural networks 
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(RNN) and various variants (e.g., LSTM, GRU) are advantageous, which learn 

historical patterns from the input of a sequence of time steps and predict future steps 

(Hochreiter & Schmidhuber, 1997). However, due to the gradient vanishing effect, 

RNN models are limited in their ability to process long-sequential data (Vaswani et al., 

2017). In 2017, the transformer model was developed and largely changed the 

landscape of dealing with multi-variant time series data, which can capture useful 

relationships from any two input steps through a self-attention mechanism (Grigsby et 

al., 2021; Vaswani et al., 2017).  

 

2.3.2 ML applications in production scheduling  

This section focuses on examining the adoption of ML methods in the production 

scheduling area. Wang et al. (2018a) summarize the main application of DL to industrial 

use into three aspects based on different analytic methods, namely, descriptive analytics 

(to identify useful relationships between production performance and environmental or 

operational settings); diagnostic analytics (to detect or examine the occurrence of 

disrupted events, e.g., machine breakdown); and predictive analytics (to learn from 

historical data and make predictions for future performance of components such as 

machines and robots so that preventive actions can be taken in advance of a failure). 

We identify the main application domains of ML to production scheduling as follows. 

Forecasting of demand and order arrival. Demand uncertainty is a major source 

of disruptions to the implementation of schedules, which frequently produces the need 

for rescheduling (Tang & Grubbström, 2002). Thus, demand forecasting is very 

necessary in managing production capacity. Time-series forecasting of demand changes 

provides valuable references for establishing production schedules (Matsumoto & 

Komatsu, 2015). Ghaleb et al. (2020) investigate how real-time updates on unexpected 
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job arrivals and other factors can be used for rescheduling in a flexible job-shop setting.  

Fault diagnosis and anomaly detection. Timely machinery health diagnosis and 

anomaly detection are important to guarantee smooth production process (Zhao et al., 

2017a). Many studies thus focus on using ML and DL methods to tackle these issues. 

Li et al. (2015) propose a multimodal deep support vector classification model to learn 

the deep representation from wide modalities and improve fault diagnosis ability. Jia et 

al. (2016), Lei et al. (2016), Guo et al. (2016), and Lu et al. (2017) develop deep learning 

methods for fault diagnosis in rotating machinery. To tackle the unplanned downtime, 

Lee et al. (2019) propose to use SVM and ANNs based on extracted meaningful features 

with domain knowledge for monitoring conditions of the cutting tool and the spindle 

motor. Another stream of studies manages machine health monitoring and detects 

anomalies with time-series-based data, with variants of recurrent neural networks to 

capture higher-level temporal features (Malhotra et al., 2015; Zhao et al., 2017a; Zhao 

et al., 2017b).  

Forecasting maintenance requirements. Due to the severe outcomes of machine 

breakdown/unavailability, maintenance is a key component for machine scheduling. 

O’Donovan et al. (2015) classify maintenance into four categories: reactive (to act when 

a failure appears), corrective (to spot abnormality during processing and act before 

failing), preventive (to regularly adjust and avoid failing), and predictive (to forecast 

failure and take actions). Reactive maintenance would lead to unplanned downtime and 

cascading failures (Sharp et al., 2018), while preventive maintenance may induce extra 

costs. Therefore, timely identifying the maintenance requirements and incorporating 

them into predictive maintenance scheduling is important. On this issue, Zonta et al. 

(2022) propose a predictive maintenance model, which enables continuously adjusting 

the maintenance schedule based on predictions of machine operating conditions. Other 

studies can refer to Bencheikh et al., 2022 and Cardin et al., 2017. 
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Prediction for performance indicators. Several studies are identified to predict 

performance indicators for machine conditions and manufacturing processes. Wang et 

al. (2017) develop a deep belief network-based data-driven approach to uncover the 

relationship between material removal rate and operation parameters, such as pressure 

and rotational speed for a chemical mechanical polishing process. Considering the time 

series feature implied by machine conditions, Essien and Giannetti (2020) propose a 

deep convolutional LSTM end-to-end architecture to predict machine speed for 

production throughput optimization. Wang et al. (2018b) use a neural network to track 

the abnormal pattern of machine energy consumption. Lee et al. (2019) propose to use 

the flank wear and the bearing’s Remaining Useful Life (RUL) as classification metrics 

to represent the machine tools’ conditions. Chui et al. (2021) also predict RUL to avoid 

downtime or unnecessary checks. Other studies on RUL prediction can refer to Deutsch 

et al. (2017), Rathore and Harsha (2022), and Wu et al. (2018).  

 

2.4 Synergy between AI and OR for Enhanced Scheduling  

Realizing the importance of empowering production decision making with AI 

methods, several papers identified investigate integrating AI with optimization methods 

to tackle various challenges in production scheduling. Despite the great potential and 

importance, research in this area is still insufficient, leaving large research space for 

further exploration. The existing related studies mainly involve two aspects: (i) using 

AI methods to enhance scheduling decision making (prediction-based scheduling) and 

(ii) combining AI and OR algorithms for enhanced solution efficiency. 

2.4.1 Prediction-based scheduling 

Prediction-based scheduling focuses on leveraging AI techniques to optimize the 
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decision-making processes in production so that the scheduling can be enhanced with 

the availability of data, e.g., historical demand data and operational information from 

the real production process (Zonta et al., 2022). Del Gallo et al. (2023) examine the 

application of AI in solving production scheduling problems. They highlight the 

adoption of particle swarm optimization, neural networks, and reinforcement learning.  

Prediction for rescheduling. Wang et al. (2018b) design a big data-enabled 

intelligent immune system, which combines a neural network into a re-scheduling 

algorithm. It works once an anomaly is detected by solving a multi-objective 

optimization model. Li et al. (2020b) develop a rescheduling framework for a flexible 

job shop scheduling problem, where several ML methods are used to periodically learn 

from historical data and return predictive results of whether rescheduling is needed or 

not. Ghaleb et al. (2020) investigate the benefits of using real-time updates on the 

unexpected arrival of jobs and consider random machine breakdowns that follow 

exponential distribution to establish rescheduling decisions in a flexible job shop setting. 

Prediction for production resource allocation. Kim et al. (2020) propose a deep 

neural network-based dynamic scheduling method that predicts the next target machine 

with the considerations of automated material handling constraints. Jacso et al. (2023) 

also present an ANN-based model, aiming to optimize feed rates in trochoidal milling 

to derive schedules with better tool load control. Rohaninejad et al. (2023) propose a 

machine learning-enabled data-driven predictive scheduling method for a capacitated 

lot-sizing and scheduling problem with a job shop setting. In a rolling horizon setting, 

they predict (before the scheduling for the next period) the values of two types of 

reserves in the schedule based on the newly revealed values (e.g., customer demand) 

and generate the future schedule based on the existing information of the system and 

the predicted reserves. Morariu et al. (2020) present a hybrid solution for large 

manufacturing systems using Big Data techniques and a Long Short-term Memory 
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model for predicting instant power consumption of resources, which is then fed into a 

cloud-based scheduler that performs resource allocation and operations scheduling.  

Predictive maintenance scheduling. Azab et al. (2021) propose a machine-

learning-based simulation approach, which uses various ML methods to estimate 

predictive maintenance slots and incorporates the predictive maintenance into dynamic 

flow-shop scheduling to improve manufacturing efficiency. Ye et al. (2020) take 

machine speed, age, setups, and status into scheduling to improve production efficiency 

and maintenance decisions. Zonta et al. (2022) propose a predictive maintenance model 

to optimize the production schedule, which enables the adjustment of maintenance and 

scheduling based on machine conditions.  

Incorporation of predicted human factors into scheduling. Several studies focus 

on enhancing scheduling decisions by factoring in human elements, which try to 

incorporate human fatigue, physical demands, and diverse individual characteristics, 

into the scheduling process to identify optimal job assignments and sequences for each 

operator, thereby maximizing their efficiency (Du et al., 2021; Wang et al., 2022b). 

 

2.4.2 Combination of AI and optimization algorithms  

Realizing the great potential of combining AI with classical optimization 

algorithms, in recent years, increasing studies have explored this direction to suitably 

combine AI with operations research methods, aiming to leverage both the computation 

advantage of AI methods and the reliability of classical combinatorial optimization 

algorithms. Such combinations on one hand enhance the robustness of AI results, and 

on the other provide more efficient solutions for MIP problems.  

Enhancing AI performance with optimization methods. In terms of using OR 

methods to improve AI performance, a few examples are identified in the following. 
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Chui et al. (2021) use a non-dominated sorting genetic algorithm II to select the weights 

to combine RNN and LSTM in their model. Rathore and Harsha (2022) employ domain 

knowledge and particle swarm optimization for feature selection in performing the task 

of RUL prediction. Djenouri et al. (2023) present a hybrid method to predict traffic flow, 

which uses a graph convolutional neural network and RNN to capture spatial and 

temporal dependencies and a branch and bound algorithm to tune the hyperparameters.  

Empowering optimization algorithms with AI methods. A few studies focus on 

enhancing the efficiency of solving complicated discrete or combinatorial problems 

with AI methods. Instead of involving two separate layers for making decisions in a 

“predict-then-scheduling” manner, studies such as Baty et al. (2024) encapsulate the 

machine learning and combinatorial optimization into a pipeline, which iteratively 

trains the machine learning to predict better parameters for the combinatorial 

optimization. Besides, the notorious computational complexity of discrete and 

combinatorial optimization problems motivates many valuable efforts to leverage AI 

methods to speed up classical branch-and-bound or branch-and-cut algorithms while 

maintaining the solution quality (Huang et al., 2021). Zhang et al. (2023) provide a 

comprehensive survey about the attempts that AI is used to facilitate the solution of 

MIP models with exact algorithms and heuristic algorithms. They point out that the 

application of ML in “learning to branch” for improving solution efficiency of exact 

algorithms includes branching variable selection, branching node selection, cutting 

plane, and even decomposition strategy selection.  

 

2.5 Research Gaps 

The previous literature review is further summarized in Table 2-3. Moreover, 

based on the review, we derive several significant research gaps.  
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Table 2-3. Summary of prior literature and research gaps 

  Research Focus Prior Literature Research Gaps 

Problem 

Domain 

Production 

scheduling in 

robotic cells 

(i) The introduction of AMR in production cells 

complicates the production operations (Brucker 

et al., 2012); (ii) most studies focus on reducing 

energy from the machine side (Wu & Che, 

2019; Zhang & Chiong, 2016); (iii) only a few 

papers study the energy consumption of AMR 

(Gürel et al., 2019). 

(i) Energy efficiency of robotic cells 

is under-explored; (ii) The robot 

movement process has been rarely 

considered; (iii) No prior studies 

explore the coordination of these two 

processes to reduce energy waste. 

Enhancing 

production 

scheduling by 

incorporating 

multiple 

influencing 

factors 

Industry 4.0 empowers CPS systems and data-

based predictive analytics (Rossit et al., 2019a). 

Many studies focus on predicting order arrival, 

machine anomaly detection, maintenance 

requirements, and remaining useful life 

prediction (Ghaleb et al., 2020; Li et al., 2015; 

Rathore & Harsha, 2022; Zonta et al., 2022) 

Less concentration on exploring the 

influences of various operational 

production factors on processing 

performance, such as operator 

experience, material usage, material 

supply, product quality, environment, 

and performing sequence.  

Prediction for making rescheduling decisions, 

better scheduling of maintenance, and better 

production resource (e.g., machine) allocation 

(Jacso et al., 2023; Li et al., 2020b; Rohaninejad 

et al., 2023) 

No prior studies explore how can 

multiple operational production 

factors affect the job processing rate 

and how to utilize such influences to 

derive better schedules. 

Solution 

Method 

Enhancing 

machine and 

robot-handling 

collaboration 

Several energy-saving methods, such as multi-

objective optimization, turning on/off methods, 

and scheduling to off-peak periods, speed 

scaling methods (Dai et al., 2019; Meng et al., 

2019; Wang & Wang, 2019; Wu & Che, 2019) 

There is no investigation into 

developing a new modelling 

approach to facilitate the 

collaboration between the two 

subsystems. 

Efficient 

integrated AI-

empowered 

optimization 

solution 

approaches 

Classical ML models (e.g., SVM and ANN) and 

variants of RNN models are explored for 

industrial prediction (Yeh & Deng, 2012; 

Malhotra et al., 2015; Zhao et al., 2017a; Wang 

et al., 2018b). 

Developing powerful deep learning 

models for extracting useful patterns 

from relevant operational influencing 

factors is under-explored 

(i) Empowering scheduling results with AI 

techniques in a “prediction-then-scheduling” 

manner (Zonta et al., 2022). (ii) Improving the 

algorithmic efficiency of optimization 

algorithms with machine learning techniques 

(Baty et al., 2024; Huang et al., 2021) 

(i) Few research on integrated 

machine learning and optimization 

methods to solve production 

scheduling; (ii) Few investigations on 

prediction-enabled optimization 

methods for better scheduling and 

enhanced solution efficiency  
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From the summary in Table 2-3, first, although robotic technologies have reshaped 

the manufacturing industry, the energy efficiency of robotic cells is under-explored. 

Besides, even though several energy- reduction strategies have been developed for job 

shops, most studies focus on reducing energy consumption from the side of machines. 

However, the robot movement process which occupies a significant portion of cycle 

time and consumes lots of energy has been rarely considered. Moreover, a great amount 

of energy is wasted during machine idling, blocking, and robot movement due to the 

mismatching between the machine production and the robot movement. However, no 

prior studies explore the coordination of these two processes to reduce energy waste. 

More specifically, little research investigates the benefits of simultaneously controlling 

the operating speeds of machines and mobile robot in enhancing systematic 

sustainability performances. (These research gaps are addressed in Section 3).   

Previous studies using learning methods to extract knowledge from historical data 

often focus on the machinery side, such as anomaly detection, predictive maintenance, 

and remaining useful life prediction. These aspects are very important to get knowledge 

of when a machine may fail and suggest possible adjustment actions. However, from 

the operating level, they cannot directly indicate production status and guide the 

planning and resource allocation. Besides, very few studies concentrate on exploring 

the potential influences of factors in the operational processing circumstance on the 

production performance indicators such as the time consumption of carrying out tasks, 

and the tardiness of performing tasks with the resource plan. Moreover, no previous 

studies were found to consider the joint effect of multiple factors, such as operator 

experience, material usage, material supply, product quality, environment, and also the 

effect of previous job executions on production performance. (These research gaps are 

addressed in Section 4) 

By reviewing the literature, it is also discovered that research on applying data-
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driven methods or integrated machine learning and optimization methods to solve 

production scheduling to enhance decision quality is far from sufficient. Furthermore, 

previous research efforts aimed at enhancing scheduling outcomes with AI techniques 

typically adopt a "prediction-then-scheduling" approach. This method involves first 

executing the prediction task to acquire essential parameters, which then inform the 

creation and solution of mathematical models (including objectives and constraints) to 

generate scheduling results. No studies investigate algorithmic methods that integrate 

the prediction engine into the optimization decision making process to simultaneously 

produce better scheduling results and enhance algorithmic solution efficiency. (These 

research gaps are addressed in Section 5). 
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Chapter 3. Collaborative Robotic Job-Shop Scheduling13 

The study described in Chapter 3 concentrates on a green modelling approach to 

realize the integration of a mobile robot into the system with the consideration of 

sustainability impact. More specifically, a mobile robot is adopted for material handling 

in a production cell operated in the job shop setting. We propose an energy-efficient 

modelling approach that facilitates the operational collaboration between machines and 

mobile robot. By adopting the proposed method, energy reduction can be achieved by 

eliminating unnecessary energy consumption due to machine idling and robot waiting. 

In addition, the proposed method can achieve a balance between energy consumption 

and production efficiency by further taking production makespan into account. 

3.1 Problem Description 

The RJSP with energy considerations studied in this study is described as follows. 

In the robotic cell, there are |𝑀 | processing machines and one mobile robot. Each 

machine can perform a specific type of operation. An input depot D and an output stock 

S are placed at the two ends of the cell. The robotic cell aims to process sets of jobs. 

The job features and machine execution follows the job shop setting. Each job 𝑖 

consists of several ordered operations denoted by 𝐽𝑖  = {Oi1, Oi2, …, Oi|Ji|}. The 

sequence of operations for a job is named as in-job sequence. Each 𝑂𝑖 is a nonstop 

operation that will be performed by a designated machine 𝑀𝑖𝑗 with processing time 

𝑃𝑇𝑖𝑗. Pre-emption is not allowed. Notations used in this study are summarized in Table 

3-1.  

 

 
13 Most of this chapter is published in Wen, X., Sun, Y., Ma, H. L., & Chung, S.H. (2023). Green smart 

manufacturing: energy-efficient robotic job shop scheduling models. International Journal of Production 

Research, 61(17), 5791-5805. 
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Table 3-1. Notations14 

Parameters 

I Set for jobs, 𝐼 = {1,2, … , |𝐼|}. 

|𝐼| Total number of jobs. 

𝑖, 𝑚 , ℎ Indexes for jobs, where 𝑖, 𝑚, ℎ ∈ 𝐼. 

𝐽𝑖 Set for operations in job I, 𝐽𝑖 =  {1,2, … , |𝐽𝑖|}. 

𝐽𝑖’ Set for operations with the stock operation in job i, 𝐽𝑖’ =  {1,2, … , |𝐽𝑖| + 1}. 

|𝐽𝑖| Number of operations in job i. 

|𝐽𝑖’| Number of operations with the stock operation in job i, |𝐽𝑖’|= |𝐽𝑖| + 1. 

𝑗, 𝑛, 𝑔 Indexes for operations, where 𝑗 ∈  𝐽𝑖’ , 𝑛 ∈ 𝐽𝑚’, 𝑔 ∈ 𝐽ℎ’. 

𝑂𝑖𝑗 , 𝑂𝑚𝑛 , 𝑂ℎ𝑔 Index for the j-th, n-th, and g-th operation of job i, job m, and job h. 

𝑀 Set for machines, 𝑀 = {1,2, … , |𝑀|}. 

|M| Number of machines. 

𝑘 Index for the k-th machine, k ∈ 𝑀. 

𝑀𝑖𝑗 Index for the machine to execute 𝑂𝑖𝑗 . 

𝑃𝑀𝑖𝑗  Position for machine to execute 𝑂𝑖𝑗  (Positions for D and S: 𝑃𝑀𝐷 = 0, 𝑃𝑀𝑖|𝐽𝑖’| =

 |𝑀| + 1). 

𝑆𝑃𝑇𝑖𝑗  Processing time of 𝑂𝑖𝑗  on the machine under normal speed (stock operation: 

𝑃𝑇𝑖|𝐽𝑖’|
= 0). 

𝑡𝑙𝑖𝑗  Moving time for a loaded movement from 𝑀𝑖𝑗−1 to 𝑀𝑖𝑗. 

𝑡𝑢𝑖𝑗𝑚𝑛 Moving time for an empty movement from 𝑀𝑖𝑗 to 𝑀𝑚𝑛 under normal speed. 

𝑡𝑢𝑖𝑗𝐷 Moving time for an empty movement from 𝑀𝑖𝑗 to D under normal speed. 

𝜎𝑖𝑗 Moving distance for a loaded movement from 𝑀𝑖𝑗−1 to 𝑀𝑖𝑗. 

𝜎𝑖𝑗𝑚𝑛  Moving distance for an empty movement from 𝑀𝑖𝑗 to 𝑀𝑚𝑛. 

𝜎𝑖𝑗𝐷  Moving distance for an empty movement from 𝑀𝑖𝑗 to D. 

𝑉 Set for speed scales of machines and robot, 𝑉 = {1,2, … , |𝑉|}. 

|𝑉| Number of speed scales of machines and robot. 

𝑣𝑘  Normal processing speed for machine k.  

𝑣𝑘𝑣  Actual processing speed for machine k under speed scale v. 

𝑣𝑅  Normal robot moving speed (1 unit distance/minute). 

𝑣𝑟  Robot moving speed under speed scale r. 

µ𝑘 Processing power of machine k under normal speed (unit: w). 

µ𝑘𝑣 Processing power of machine k under speed scale v. 

𝛼𝑘 Operating characteristics of the machine k. 

p (q) Parameters denote the positive relationships between the speed and machine (robot) 

power. 

w Robot loaded weight. 

𝜉 Operating characteristics of the robot. 

𝐶0 Minimized makespan derived by the traditional model. 

𝐸𝐼𝑘  Idling energy consumption per unit time of machine k. 

 
14 The meanings of notations listed here are only applicable to Chapter 3. 
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𝑆𝑃𝐸𝑖𝑗  Energy consumption to perform 𝑂𝑖𝑗  under normal speed. 

𝐸𝑅𝐸 Energy consumption per unit distance for robot empty movements under normal 

speed.  

𝐸𝑅𝐿 Energy consumption per unit distance for robot loaded movements. 

𝑆𝐿𝐸𝑖𝑗  Energy consumption for robot loaded movement from 𝑀𝑖𝑗−1 to 𝑀𝑖𝑗. 

𝑆𝐸𝐸𝑖𝑗𝑚𝑛 Energy consumption for robot empty movement under normal speed from 𝑀𝑖𝑗 to 

𝑀𝑚𝑛. 

𝛽 A large positive number. 

α Makespan increase tolerance. 

F Dummy sink node that connects with the last operation in a job batch. 

Decision Variables 

𝑋𝑖𝑗𝑚𝑛  Binary decision variable. It equals 1 when the robot leaves for 𝑂𝑚𝑛 after 𝑂𝑖𝑗  starts, 

where i and m are two different jobs; 0 otherwise. 

𝑌𝑖𝑗(𝑗+1) Binary decision variable. It equals 1 when the robot waits for the entire processing 

time of the current operation 𝑂𝑖𝑗  and goes to 𝑀𝑖(𝑗+1); 0 otherwise. 

𝑍𝑖𝑗ℎ𝑔  Binary decision variable. It equals 1 when both 𝑂𝑖𝑗  and 𝑂ℎ𝑔 are executed on the 

same machine, and 𝑂𝑖𝑗  precedes 𝑂ℎ𝑔 (not necessarily the immediate predecessor); 

0 otherwise. 

𝑉𝑀𝑖𝑗𝑣  Binary decision variable. It equals 1 when machine executes 𝑂𝑖𝑗  with speed scale v. 

𝑉𝑅𝑖𝑗𝑚𝑛𝑟  Binary decision variable. It equals 1 when the robot selects speed scale r to execute 

the empty movement from 𝑀𝑖𝑗 to 𝑀𝑚(𝑛−1). 

𝑆𝑀𝑖𝑗  Starting time of 𝑂𝑖𝑗  on the assigned machine.   

𝑆𝑀𝐹  Time to reach the sink node F. 

𝑅𝑀𝑖𝑗  Removing time of 𝑂𝑖𝑗  from machine after completion. 

𝐴𝑃𝐸𝑖𝑗  Energy consumption of 𝑂𝑖𝑗  under actual processing speed. 

𝐴𝑃𝑇𝑖𝑗  Time consumption of 𝑂𝑖𝑗  under actual processing speed. 

𝐴𝐸𝐸𝑖𝑗𝑚𝑛 Energy consumption for moving from 𝑀𝑖𝑗 to 𝑀𝑚𝑛 under actual robot speed. 

𝑇𝐼𝑘  Total idling time of machine k.  

𝐶𝑚𝑎𝑥 Makespan. 

𝐿𝐸 Total energy consumption for loaded movements. 

𝐸𝐸 Total energy consumption for empty movements. 

𝑇𝐸 Total energy consumption for movements. 

𝑃𝐸 Total machine processing energy consumption. 

𝐼𝐸 Total machine idling energy consumption. 

𝐴𝐸 Total auxiliary energy consumption. 

 

A single-gripper robot is involved for the in-facility movements of goods. For each 

job, the robot should first pick the initialized job up at D before moving it to the first 

machine Mi1. Also, the robot should deliver the job to S after all operations within it are 

completed. As there is no precedence restriction between operations from different jobs, 
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the robot can flexibly turn to handle another job (after an upload action) if all in-job 

sequences are not violated. Two types of robot movement exist: loaded movement 

implies moving a job to a machine for uploading and processing, while empty movement 

indicates a deadhead movement that relocates the robot for job picking-up. Due to the 

linear layout, the moving time between any pair of machines is symmetrically 

determined by the absolute distance between their locations. Similar to Sun et al. (2021), 

this study considers the situation that machines have no buffer and the mobile robot has 

the capacity to hold one product each time. Therefore, machines and the robot can be 

occupied by only one job at any time. Besides, a job will be blocked on a machine after 

completing until the robot comes for releasing. Such periods are called machine 

blocking. The setup time of both the machines and the robots is incorporated into the 

processing times and movement times. 

The problem aims to simultaneously determine the job schedules and the robot 

route. Following the above settings, two scenarios can be extracted after a loaded 

movement that places job i (i∈ 𝐼) on one machine: the robot can (i) wait at the machine 

for the entire processing of the operation and then transport job i to its next handling 

machine (defined as a robot full-blocking); or (ii) turn to another job m (m∈ 𝐼; m≠ 𝑖). 

In the second scenario, the robot first moves emptily to the machine currently holding 

job m (or to D). Then, three sub-scenarios may appear: (a) the robot arrives later than 

the completion time of job m’s current operation (i.e., job m should experience a 

blocking period in this sub-scenario); (b) the robot arrives before the completion of that 

operation and the robot should experience a robot partial-blocking (RPB)) before it can 

conduct the transport; and (c) the robot arrives exactly when the operation is finished 

and could pick up job m directly for the next move. Sub-scenario (c) is a synchronized 

process, where machine blocking and robot partial-blocking are avoided. 

In the machine speed scaling framework, the processing speed of each machine 
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can be selected from a finite and discrete set (Abedi et al., 2020; Hassani et al., 2019; 

Zhang and Chiong, 2016). This study proposes to improve the coordination of machines 

and the robot with a V-scale speed framework that enables speed adjustment for both 

machines and the robot. Generally, machines and the robot operate at normal speeds 

(denoted as 𝑣𝑘  (𝑘 ∈ 𝑀 ) for machine 𝑘 , and 𝑣𝑅  for the robot). For productivity, 

companies usually set machines to work at a high speed. Thus, this study considers the 

normal speed as the highest speed. While with the V-scale speed framework, for each 

operation, the actual processing speed level 𝑣𝑘𝑣 (𝑘 ∈ 𝑀, 𝑣 ∈ 𝑉) is a value selected from 

|𝑉| levels (𝑣𝑘𝑣 ≤ 𝑣𝑘). Also. The moving energy can be reduced by adjusting the robot 

speed. As the robot partial-blocking only occurs after empty movements, the empty 

movements can be decelerated to eliminate the original robot partial-blocking periods 

under normal speeds. Thus, for each empty movement, the robot selects a speed 𝑣𝑟  (𝑟 ∈

𝑉) from the V- scale levels. Considering there is no robot partial-blocking after loaded 

movements or movements to D and S, these movements are conducted at the highest 

speeds to ensure productivity. 

Here the energy calculation methods for machines and the robot are specified. 

Following Zhang and Chiong (2016), the machine processing energy equals the actual 

processing time (APT) multiplying the power under this speed. If the normal speed is 

applied for 𝑂𝑖𝑗 , the 𝐴𝑃𝑇𝑖𝑗  equals to the normal processing time 𝑆𝑃𝑇𝑖𝑗 . While if a 

lower speed 𝑣𝑘𝑣  is selected, the 𝐴𝑃𝑇𝑖𝑗  is proportionally changed to 
𝑣𝑘

𝑣𝑘𝑣
𝑆𝑃𝑇𝑖𝑗 . µ𝑘 

denotes the power of machine k with normal speed, and µ𝑘𝑣 represents the power of 

Machine k under the selected speed 𝑣𝑘 . µ𝑘 > µ𝑘𝑣  because the machine power is 

positively related to the processing speed. Besides, similar to Zhang and Chiong (2016), 

this study considers cases where energy consumption decreases with reduced speed 

despite the longer processing time. Therefore, µ𝑘 × 𝑆𝑃𝑇𝑖𝑗 > µ𝑘𝑣 × 𝐴𝑃𝑇𝑖𝑗. Equations 
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(3.1) - (3.2) derive the machine power under the normal speed and the selected speed. 

Parameter p denotes the positive relationship between the speed and the power, which 

should be larger than 1 to guarantee that the speed growth leads to an increasing energy 

consumption rate. Note that 𝛼𝑘 represents the operation characteristics of machine k. 

Equations (3.3) calculate the actual energy consumed for processing 𝑂𝑖𝑗 and derives 

the relationship between the actual energy consumption 𝐴𝑃𝐸𝑖𝑗  and the normal 

consumption 𝑆𝑃𝐸𝑖𝑗. 

µ𝑘𝑠 = 𝛼𝑘𝑣𝑘
𝑝           (3.1) 

µ𝑘𝑣 = 𝛼𝑘𝑣𝑘𝑣
𝑝           (3.2) 

𝐴𝑃𝐸𝑖𝑗 = µ𝑘𝑣 × 𝐴𝑃𝑇𝑖𝑗 = 𝑆𝑃𝑇𝑖𝑗 × (
𝑣kv

𝑣k
)𝑝−1 × µ𝑘𝑠 = 𝑆𝑃𝐸𝑖𝑗  ×  (

𝑣kv

𝑣k
)𝑝−1            (3.3) 

 

Following Gürel et al. (2019), it is considered that the robot movement energy 

consumption depends on the robot moving speed, the travelled distance, the carrying 

load, and the operating characteristics of the robot. Equations (3.4) calculate the loaded 

energy consumption per unit distance (ERL), which is jointly determined by robot 

operating characteristics 𝜉 , loaded weight w, and robot normal speed 𝑣𝑅 . The 

exponential parameter q (q>1) forms the positive relationship between the moving 

speed and energy consumption, which indicates that higher speeds lead to larger energy 

consumption (but not a linear relationship). Equations (3.5) obtain the energy for loaded 

movement from 𝑀𝑖(𝑗−1) to 𝑀𝑖𝑗 (the travelling distance is 𝜎𝑖𝑗). Similarly, Equation 

(3.6) computes the unit consumption of empty movements under normal speed, based 

on which Equation (3.7) calculates the energy consumption of empty movements under 

normal speed for a distance 𝜎𝑖𝑗𝑚𝑛. Equations (3.8) derive the actual energy needed for 

an empty movement from 𝑀𝑖𝑗 to 𝑀𝑚𝑛  by applying the V-scale speed scales. 
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𝐸𝑅𝐿 = 𝜉𝑤𝑣𝑅
𝑞 (3.4) 

𝑆𝐿𝐸𝑖𝑗 = 𝜎𝑖𝑗 × 𝐸𝑅𝐿           (3.5) 

𝐸𝑅𝐸 = 𝜉𝑣𝑅
𝑞           (3.6) 

𝑆𝐸𝐸𝑖𝑗𝑚𝑛 = 𝜎𝑖𝑗𝑚𝑛 × 𝜉𝑣𝑅
𝑞              (3.7) 

𝐴𝐸𝐸𝑖𝑗𝑚𝑛 =  𝜎𝑖𝑗𝑚𝑛 × 𝜉𝑣𝑟
𝑞 = 𝜎𝑖𝑗𝑚𝑛 × 𝐸𝑅𝐸 × (

𝑣𝑟

𝑣𝑅
)𝑞  (3.8) 

   

3.2 Model Development  

As introduced, this study proposes two novel robotic job-shop scheduling models 

to enhance energy efficiency. In this section, the novel RJSP-E is first presented. Then, 

the RJSP-EM is constructed in Section 3.2.2. 

 

3.2.1 Model RJSP-E  

The model named robotic job-shop scheduling with energy consumption (i.e., 

RJSP-E) is first formulated with Equation (0) to Equations (44) in Table 3-2. Following 

Sun et al. (2021), a network-based modelling approach is applied to build the new 

models. The optimization objective is to minimize the total energy consumed by the 

robotic cell. The overall energy consumption (as shown in Equation (0)) consists of 

four parts: the machine processing energy, the machine idling energy, the robot 

movement energy, and the auxiliary energy consumption. In the following, the energy 

consumption constraints are first explained. Then, other traditional RJSP constraints are 

briefed. 

 

Total machine processing energy consumption 

The energy consumed by machine production is the product of the power of 
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machines (in Watts, w) and the processing time (in seconds). Constraints (18-20) 

calculate the total machine processing energy consumption by summing the actual 

energy consumed by each operation. Specially, Constraints (18) ensure that each 

operation is assigned with one speed from the V-scale framework. Constraints (19) 

derive the actual processing energy ( 𝐴𝑃𝐸𝑖𝑗 ) under the selected speed with the 

relationship between 𝐴𝑃𝐸𝑖𝑗  and the normal energy consumption  𝑆𝑃𝐸𝑖𝑗  (refer to 

Equation (3.3) in Section 3.1). Constraints (20) then add up all 𝐴𝑃𝐸𝑖𝑗 to obtain the 

total machine energy consumption PE. 

 

Total robot movement energy consumption 

The energy consumed by robot movement is the product of the electricity 

consumed for a unit distance15 movement (in KJ) and the moving distance. Constraints 

(21-25) formulate the total robot movement energy consumption by summing up the 

robot energy consumed by loaded movements and empty movements. Constraints (21) 

make sure that the empty movement from 𝑂𝑖𝑗  to 𝑂𝑚(𝑛−1)  will be assigned a speed 

level if an arc 𝑋𝑖𝑗𝑚𝑛 is selected. Constraints (22-24) derive the total energy consumed 

by empty movements (EE), which is further divided into empty movements to machines 

(Constraints (22)) and empty movements to the D (Constraints (23)). Constraints (22) 

apply the V-scale speed framework to empty movements and derive the energy 

consumption (refer to Equations (3.8) in Section 3.1). Constraints (23) add up all empty 

movements to the input depot for picking up the initialized jobs, which are conducted 

at the normal speed. Constraints (25) obtain the energy consumed for loaded 

movements (LE) by summing up the electricity used for every loaded movement, as 

calculated with Equations (3.5) in Section 3.1.  

 

 
15 A unit distance is the distance moved in a minute of the robot. 
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Total machine idling energy consumption 

The total machine idling energy consumption is the electricity used during 

machine idling periods throughout the entire manufacturing process. Constraints (26) 

calculate the length of idling time encountered by each machine by subtracting the 

processing time of that machine from the lasting time Cmax. Constraints (27) obtain 

the total machine idling energy consumption by adding up the idling energy of each 

machine, and the latter is calculated by multiplying the individual idling power and the 

idling time. 

 

Auxiliary energy consumption 

The auxiliary energy is consumed by supporting activities in the robotic cell not 

directly related to production, such as keeping temperature and humidity. Following 

Meng et al. (2019), it is modelled as proportional to the total processing time (i.e., the 

makespan) by an auxiliary energy consumption coefficient s (Constraint (28)). 

 

Table 3-2. The formulation of RJSP-E. 

Obj. Min 𝑃𝐸 + 𝐼𝐸 + 𝐿𝐸 + 𝐸𝐸 +  𝐴𝐸  (0) 

s.t.   

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑀𝐹 ,   (1) 

𝑆𝑀𝐹 ≥ 𝑆𝑀𝑖𝑗 ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (2) 

𝑆𝑀11 = |𝑃𝑀11 − 𝑃𝑀𝐷| 𝑣𝑅⁄ ,   (3) 

∑ ∑ 𝑋𝑖𝑗𝑚𝑛𝑛∈𝐽𝑚’𝑚∈𝐼 + 𝑌𝑖𝑗(𝑗+1) = 1,   ∀𝑖, 𝑖 ≠ 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (4)  

∑ ∑ 𝑋𝑚𝑛𝑖𝑗𝑛∈𝐽𝑚’𝑚∈𝐼 + 𝑌𝑖(𝑗−1)𝑗 = 1,  ∀𝑖, 𝑖 ≠ 𝑚, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, (5)  

∑ ∑ 𝑋𝑖|𝐽𝑖’|𝑚𝑛 +𝑛∈𝐽𝑚’𝑚∈𝐼 𝑋𝑖|𝐽𝑖’|𝐹
= 1,     ∀𝑖, 𝑖 ≠ 𝑚, (6) 

∑ ∑ 𝑋𝑚𝑛𝑖1𝑛∈𝐽𝑚’𝑚∈𝐼 = 1,   ∀𝑖, 𝑖 ≠ 𝑚, 𝑖 ≠ 1, (7) 

𝑆𝑀𝑖1 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝐷 + 𝑡𝑙𝑖1 − (1 − 𝑋𝑚𝑛𝑖1) × 𝛽, ∀𝑖, 𝑚, 𝑖 ≠ 𝑚, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (8) 

𝑅𝑀𝑖𝑗 ≥  𝑆𝑀𝑚𝑛 + ∑ 𝑉𝑅𝑚𝑛𝑖(𝑗+1)𝑟 × 𝑡𝑢𝑚𝑛𝑖𝑗 × (𝑣𝑅 𝑣𝑟⁄ )r∈V − (1 − 𝑋𝑚𝑛𝑖(𝐽+1)) ×

𝛽,  

∀𝑖, 𝑚, 𝑖 ≠ 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, , 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (9) 

𝑅𝑀𝑖𝑗 ≥ 𝑆𝑀𝑖𝑗 + 𝐴𝑃𝑇𝑖𝑗 ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (10) 

𝐴𝑃𝑇𝑖𝑗 = ∑ 𝑉𝑀𝑖𝑗𝑣 × 𝑃𝑇𝑖𝑗 × (𝑣k 𝑣kv⁄ ),𝑣∈V   ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (11) 

𝑆𝑀𝑖𝑗+1 ≥ 𝑅𝑀𝑖𝑗 + 𝑡𝑙𝑖𝑗+1 ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (12) 

𝑍𝑖𝑗ℎ𝑔 + 𝑍ℎ𝑔𝑖𝑗 = 1,   ∀𝑖, ℎ, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (13) 

𝑆𝑀𝑖𝑗 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − 𝑍𝑖𝑗ℎ𝑔 × 𝛽, ∀𝑖, ℎ, 𝑗 ∈ {2,3, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (14) 
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𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)ℎ(𝑔−1) + 𝑡𝑙ℎ𝑔 − (1 − 𝑍𝑖𝑗ℎ𝑔) × 𝛽, ∀𝑖, ℎ, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {2,3, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (15) 

𝑆𝑀𝑖1 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝐷 +  𝑡𝑙𝑖1 − 𝑍𝑖1ℎ𝑔 × 𝛽,   ∀𝑖, ℎ, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖1 = 𝑀ℎ𝑔, (16) 

𝑆𝑀ℎ1 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)𝐷 + 𝑡𝑙ℎ1 − (1 − 𝑍𝑖𝑗ℎ1) × 𝛽,   ∀𝑖, ℎ, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑀𝑖𝑗 = 𝑀ℎ1, (17)  

Processing   

∑ 𝑉𝑀𝑖𝑗𝑣𝑣∈V = 1,  ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (18) 

𝐴𝑃𝐸𝑖𝑗 = ∑ [𝑉𝑀𝑖𝑗𝑣 × 𝑆𝑃𝐸𝑖𝑗 × (𝑣kv 𝑣k⁄ )𝑝−1],𝑣∈V   ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (19) 

𝑃𝐸 = ∑ ∑ 𝐴𝑃𝐸𝑖𝑗𝑗∈𝐽𝑖𝑖∈𝐼 ,   (20) 

Transportation   

∑ 𝑉𝑅𝑖𝑗𝑚𝑛𝑟r∈V = 𝑋𝑖𝑗𝑚𝑛 ,  ∀𝑖, 𝑚, 𝑚 ≠ 𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, 𝑛 ∈ {2,3, … , |𝐽𝑚’|}, (21) 

𝐴𝐸𝐸𝑖𝑗𝑚𝑛 ≥ ∑ [𝑉𝑅𝑖𝑗𝑚𝑛𝑟 × 𝜎𝑖𝑗𝑚(𝑛−1) × (𝑣𝑟 𝑣𝑅⁄ )𝑞 × 𝐸𝑅𝐸]r∈V ,  ∀𝑖, 𝑚, 𝑚 ≠ 𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, 𝑛 ∈ {2,3, … , |𝐽𝑚’|}, (22) 

𝐴𝐸𝐸𝑖𝑗𝑚1 ≥ 𝜎𝑖𝑗𝐷 ∗ 𝐸𝑅𝐸 − (1 − 𝑋𝑖𝑗𝑚1) × 𝛽,  ∀𝑖, 𝑚, 𝑚 ≠ 𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (23) 

𝐸𝐸 ≥ ∑ ∑ ∑ ∑ 𝐴𝐸𝐸𝑖𝑗𝑚𝑛 ,𝑛∈𝐽𝑚’𝑚∈𝐼𝑗∈𝐽𝑖’𝑖∈𝐼    (24) 

𝐿𝐸 ≥ ∑ ∑ (𝜎𝑖𝑗 × 𝐸𝑅𝐿) +𝑗∈{2,3,…,|𝐽𝑖’|}𝑖∈𝐼  ∑ 𝜎𝑖1 × 𝐸𝑅𝐿,𝑖   (25) 

Idling   

𝑇𝐼𝑘 ≥ 𝐶𝑚𝑎𝑥 − ∑ ∑ 𝐴𝑃𝑇𝑖𝑗 ,𝑗∈𝐽𝑖’𝑖∈𝐼   ∀𝑘 ∈ {1,2, … , |𝑀|}, 𝑀𝑖𝑗 = 𝑘; (26) 

𝐼𝐸 = ∑ (𝐸𝐼𝑘 ×𝑘∈M 𝑇𝐼𝑘),   (27) 

Auxiliary   

𝐴𝐸 = 𝑠 × 𝐶𝑚𝑎𝑥,  (28) 

𝑋𝑖𝐽𝑚𝑛 ∈ (0,1), ∀𝑖, 𝑚 ∈ {1,2, … , |𝐼| + 1}, 𝑖 ≠ 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, n ∈

{1,2, … , |𝐽𝑚’|}, 

(29) 

𝑌𝑖𝑗(𝑗+1) ∈ (0,1), ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (30) 

𝑍𝑖𝐽ℎ𝑔 ∈ (0,1), ∀𝑖, ℎ, 𝑖 ≠ ℎ, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, (31) 

𝑉𝑀𝑖𝑗𝑣 ∈ (0,1), ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑣 ∈ {1,2, … |V|}, (32) 

𝑉𝑅𝑖𝑗𝑚𝑛𝑟 ∈ (0,1) ∀𝑖 , 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, 𝑟 ∈

{1,2, … |V|}, 

(33) 

𝑆𝑀𝑖𝑗 > 0, ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (34) 

𝑅𝑀𝑖𝑗 > 0, ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (35) 

𝐴𝑃𝐸𝑖𝑗 > 0, ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (36) 

𝐴𝑃𝑇𝑖𝑗 > 0, ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, (37) 

𝐴𝐸𝐸𝑖𝑗𝑚𝑛 > 0, ∀𝑖, m, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (38) 

𝑇𝐼𝑘 > 0, ∀𝑘 ∈ {1,2, … , |𝑀|}, (39) 

𝑡𝑢𝑖𝑗𝑚𝑛 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑚𝑛| 𝑣𝑅⁄ ,  ∀𝑖, 𝑚, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (40) 

𝑡𝑙𝑖𝑗 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑖(𝑗−1)| 𝑣𝑅⁄ , ∀𝑖, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, (41) 

𝑡𝑙𝑖1 = |𝑃𝑀𝑖1 − 𝑃𝑀𝐷| 𝑣𝑅⁄ ,   ∀𝑖, (42) 

𝑡𝑢𝑖𝑗𝐷 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝐷| 𝑣𝑅⁄  ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}. (43) 

 

Other constraints 

Although the makespan minimization is not the optimization objective of the 

RJSP-E, Constraints (1-2) calculate the value of makespan to obtain the length of 
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processing and idling time for machines. Specifically, makespan is no less than the time 

when the algorithm reaches the dummy sink node F. Constraint (3) provides the entry 

of the model by specifying 𝑂11  as the first operation to execute. Constraints (4-7) 

formulate the transportation network. Constraints (8) specify that the first operation of 

job 𝑖 (𝑖≠1) should be later than the starting time of 𝑂𝑚𝑛 plus the travelling time of (i) 

the empty movement from 𝑂𝑚𝑛 to D and (ii) the loaded movement from D to 𝑀𝑖1, as 

long as 𝑂𝑚𝑛 is linked to 𝑂𝑖1 by an X arc. Constraints (9-10) integrate the speed scaling 

framework into the robot transportation and machine scheduling processes, which 

guarantees that the removing time of 𝑂𝑖𝑗 should satisfy two criteria: (i) if 𝑂𝑖(𝑗+1) is 

the next operation to be executed after 𝑂𝑚𝑛, the removing action of 𝑂𝑖𝑗 can happen 

after the empty movement of the robot from 𝑀𝑚𝑛 to 𝑀𝑖𝑗 (the removing time here is 

denoted by 𝑇1); (ii) the removing action of 𝑂𝑖𝑗 can take place after the operation is 

completed on the dedicated machine with the actual speed (the removing time here is 

denoted by 𝑇2). Note that if 𝑇1 > 𝑇2, a machine blocking appears (the length of the 

blocking period is 𝑇1 − 𝑇2 ); if 𝑇1 < 𝑇2 , a partial-blocking of the robot occurs (the 

length of the robot partial-blocking period is 𝑇2 − 𝑇1); and if 𝑇1 = 𝑇2, no blocking or 

robot partial-blocking happens since 𝑂𝑖𝑗  is finished exactly when the robot arrives, 

which is a synchronized situation. Constraints (11) obtain the actual processing time 

𝐴𝑃𝑇𝑖𝑗   of each operation under the selected speed. Constraints (12) regulate the 

operation execution sequence within each job. Constraints (13) make sure that there is 

only one execution sequence for two operations assigned to the same machine, while 

Constraints (14-17) forbid possible deadlock situations in the production process. 

Constraints (29-43) specify the value scope of variables and the calculation methods of 

parameters.  
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3.2.2 Model RJSP-EM  

In the RJSP-E developed in the previous section, the makespan of the production 

system may increase significantly in order to reduce energy, which can cause additional 

delays in fulfilling the orders. Therefore, it is desired that the makespan vary in a certain 

range to avoid heavy impact on makespan while achieving significant energy reduction. 

To achieve so, this section further formulates the model named robotic job-shop 

scheduling with energy consumption and makespan limitation (RJSP-EM). An 

additional Constraint (44) is involved in the RJSP-EM, which restricts that the increase 

in makespan should not exceed an upper limit. Note that 𝐶0 is the makespan obtained 

by the traditional model without energy considerations, while 𝛼  represents the 

tolerance of the decision-maker on the increase in makespan. Through this approach, it 

is clear for the company to (i) identify how much energy they could reduce if 

encountering a certain makespan growth, and (ii) understand how the makespan 

tolerance will affect the speed selection and the trade-off between energy consumption 

and makespan. 

𝐶𝑚𝑎𝑥 ≤ 𝐶0 × (1 + 𝛼)  (44) 

 

The logic behind this constraint can be explained as follows. If there is no 

makespan restriction, both machine operation processing and robot empty movements 

will be carried out at a low speed to minimize energy consumption. However, as 

productivity is another important evaluator for the industry, it is crucial to ensure that 

the makespan will not be compromised much when we try to reduce energy. 

Through numerical examples, the RJSP-E reduces the most energy by selecting 

slow production/moving speeds by sacrificing makespan. Differently, the RJSP-EM is 

able to reduce energy consumption by selecting the most appropriate speeds for both 



65 

 

machines and the robot to realize coordination, thus achieving energy reduction without 

much compromise in productivity. Prominently, even when the makespan is not allowed 

to increase (α=0), the RJSP-EM can reduce the system energy consumption.  

 

Table 3-3. Instances 

Instance Code Problem Scale Instance Code Problem Scale 

1 5×3×4 6 6×3×4 

2 6×3×4 7 8×3×4 

3 6×4×4 8 6×4×4 

4 5×5×4 9 5×4×4 

5 5×3×4 10 6×4×4 

3.3 Computational Experiments 

In this section, computational experiments are conducted to examine the 

performances of the proposed models. The traditional RJSP model without energy 

considerations (see Appendix A), the RJSP-E, and the RJSP-EM are coded in OPL and 

use the IBM commercial solver CPLEX Studio IDE 12.10 to solve the models on a 

desktop MacBook Pro with 1.4 GHz Intel Core i5 processor and 8 GB of RAM. The 

running time limit is set as 3600s. Ten job set instances are tested, which are generated 

based on the classical work of Bilge and Ulusoy (1995). The problem scales are 

presented in Table 3-3, denoted by i×j×k (the number of jobs, the number of operations 

in the job, and the number of machines). Table 3-4 and Table 3-5 show energy-related 

parameters for machines and robot movements. Specially, a three-scale speed 

framework is applied to machines and robot. Specifically, the normal speed 𝑣𝑘  is 

defined as level 3, which is the fastest. Machines can turn to slower speeds 
5

6
𝑣𝑘 and 

2

3
𝑣𝑘. While the robot is considered to have a larger adjustment range. It can change to 
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2

3
𝑣𝑅 and 

1

3
𝑣𝑅. 

 

Table 3-4. Parameters for machine energy consumption 

 

Processing power (w)  

Idling power 

(w) 

Level 3  

(Normal 

speed 𝑣𝑘) 

Level 2  

( 
5

6
𝑣𝑘) 

Level 1 

( 
2

3
𝑣𝑘) 

machine 1 2270 1665 1139 370 

machine 2 1820 1335 914 350 

machine 3 1880 1379 944 350 

machine 4 2340 1717 1175 383 

 

 

Table 3-5. Parameters for robot movement energy consumption 

 
Loaded 

movement 

Empty movement 

Level 3 

(Normal 

speed 𝑣𝑅) 

Level 2  

(
2

3
𝑣𝑅) 

Level 1  

( 
1

3
𝑣𝑅) 

Energy consumption 

(KJ/unit distance) 
47 28 18 8 

 

This study tests and compares the performance of the traditional model, the RJSP-

E, and the RJSP-EM with four different increase tolerance levels (α=0, 5%, 10%, 15%). 

The models are evaluated from perspectives of the total energy consumption, the energy 

consumed by machine and transport processes, the makespan, and the CPU time. Major 

test results are listed in Table 3-6, which lists the comparison of the above models from 

three perspectives: overall energy, makespan, and CPU time. The following sections 

unveil the impact of incorporating energy considerations in the RJSP decision 

framework (the performance of RJSP-E) and the performance of RJSP-EM compared 

with RJSP-E and the traditional model.  
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Table 3-6. Experiment results 

Metrics Instance 
RJSP-E 

(KJ) 

RJSP-EM (KJ) Traditional 

model 

(KJ) 
α =0 α = 5% α = 10% α = 15% 

Overall 

Energy 

1 25402 26338 25727 25540 25422 30131 

2 26823 29383 28213 27514 27160 32062 

3 28943 31673 30459 30036 29494 34882 

4 27023 28188 27305 27029 27023 31201 

5 20186 20474 20333 20284 20196 23151 

6 31885 33911 33075 32349 31919 37857 

7 Uns. 29669 28407 27596 27073 32860 

8 38689 38984 38689 38689 38689 44836 

9 31795 33924 33142 32524 32182 36935 

10 37750 41008 39953 39077 38425 44766 

Makespan 

1 122 103 108 111 118 103 

2 131 103 108 113 118 103 

3 134 107 112 117 123 107 

4 139 123 129 135 139 123 

5 112 88 91 94 101 88 

6 155 130 136 143 148 130 

7 Uns. 108 113 118 124 108 

8 172 166 172 172 172 166 

9 166 133 139 146 152 133 

10 197 161 169 177 185 161 

CPU Time 

1 5 0.55 0.74 0.91 1.36 1.36 

2 124 0.91 3.21 4.19 2.26 2.26 

3 440 0.75 4.63 5.93 5.13 5.13 

4 140 8.34 6.82 11.23 3.82 3.82 

5 51 1.27 2.43 2.04 0.88 0.88 

6 33 3.02 7.73 6.4 2.04 2.04 

7  N/A 56.22 85 300 32.75 32.75 

8 540 108 317 694 3.81 3.81 

9 20 2.12 3.86 4.08 2.63 2.63 

10 227 5.69 8.59 12.56 6.08 6.08 
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3.3.1 Performance of RJSP-E in energy reduction 

First, the performances of the RJSP-E and the traditional model is analyzed. 

Compared with the traditional model, RJSP-E can achieve a remarkable 15% (on 

average) reduction in energy. However, such an achievement is at the cost of the 

increase in makespan and CPU time. Since the machines and robots tend to select 

moderate speed, the makespan average grows by 20% based on the traditional model. 

Even though RJSP-E is superior in reduction overall energy consumption, the CPU time 

to reach optimality is 48 times longer than the conventional model. Besides, Instance 7 

is unsolvable for the RJSP-E within the given time limit. Therefore, the productivity of 

the manufacturing system is impaired due to a sacrifice in makespan, and the solution 

efficiency is much lower. 

 

3.3.2 Performance of RJSP-EM in energy and productivity 

To test the performance of RJSP-EM, four makespan increase tolerance levels, 0, 

5%, 10%, and 15%, are examined. Table 3-7 summarizes the main metrics comparison 

results between RJSP-EM vs. EJSP-E and the traditional model.  

RJSP-EM vs. RJSP-E 

The RJSP-EM alleviates the disadvantages of the RJSP-E in productivity loss with 

the insertion of the makespan increase restriction. It is reasonable that a tighter 

makespan increase tolerance level (i.e., a smaller α) leads to a shorter mean makespan 

(Column MSDE). Besides, the makespan increase constraint shows the potential to 

accelerate the solution process. Compared with RJSP-E (Column CRE), the RJSP-EM 

consumes much less CPU time. When α=0, the RJSP-EM even reduces the CPU time 

by an average of 96%. However, when α=15%, the figure decreases to 77%, which 

means the advantage in computing time is impaired along with the increase of α. 
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Obviously, the RJSP-EM consumes more energy than the RJSP-E due to the 

compressed makespan. Comparing the overall energy between RJSP-EM and RJSP-E 

(Column TECDE), 6% more energy is witnessed in RJSP-EM when the makespan is not 

allowed to increase. While the reduction discrepancy is narrowed along with the 

increase in α. When α equals 15%, the average difference in energy consumption 

between RJSP-EM and RJSP-E is reduced to 1%, demonstrating the energy-reduction 

efficacy of RJSP-EM approximates the RJSP-E when α increases to 15%. 

 

Table 3-7. Main metrics comparison 

Tolerance α 
Energy Makespan CPU Time 

TECDE TECDT PECDT IECDT TECDT MSDE MSIT CRE CRT 

α = 0 6% 10% 10% 13% 7% 16% 0% 96% 7% 

α = 5% 3% 12% 14% 11% 8% 13% 5% 93% -279% 

α = 10% 2% 14% 16% 8% 9% 9% 9% 85% -899% 

α = 15% 1% 15% 18% 3% 10% 6% 13% 77% -1970% 

TECDE: total energy consumption discrepancy compared with RJSP-E; TECDT: total energy consumption 

discrepancy compared with the traditional model; PECDT: processing energy consumption discrepancy compared 

with the traditional model; IECDT: idle energy consumption discrepancy compared with the traditional model; 

TECDT: transportation energy consumption discrepancy compared with the traditional model; MSIT: makespan 

increase compared with the traditional model; MSDE: makespan decrease compared with the RJSP-E; CRE: CPU 

time reduction based on the RJSP-E. 

 

RJSP-EM vs. traditional model 

The performance of the RJSP-EM over the traditional model is further examined 

to illustrate the significance of the proposed model in facilitating processing and 

transport collaboration. From column MSIT, it is obvious that the makespan obtained 

by the RJSP-EM equals that of the traditional model when α=0. For the RJSP-EM with 

the other three α, the average makespan increases are prone to reach the given upper 



70 

 

bound (i.e., 5%, 9%, and 13% under α=5%, 10%, and 15%). This shows that the RJSP-

EM is efficient in adjusting the operating speed for operations or empty movements by 

fully utilizing the allowed makespan relaxation. 

From the perspective of energy reduction, the amount of energy reeduced by the 

RJSP-EM increases along with the growth of α (Column TECDT), which is reasonable 

because the relaxation in makesapn leaves more space for energy-reduction solutions. 

It is valuable to note that when α=0, the RJSP-EM outperforms the traditional model 

with a significant average energy reduction of 10%, demonstrating the merits of the 

EJSP-EM in speed coordination for reduction energy. However, with the rise in α, even 

though more energy can be reduced, the reduction efficacy declines. For example, the 

energy is reduced by 12% when α is set as 5%, while the figure only grows to 15% 

when α is 15%. 

A closer look is taken into the decomposed energy consumption (i.e., the machine 

processing energy consumption (PE), the machine idling consumption (IE), and the 

robot movement energy consumption (TE)). The RJSP-EM is shown to consume less 

PE than the traditional model in all instances by switching to lower production speeds 

(Column PECDT). Besides, along with the increase in the allowed production time, 

more energy reduction from PE is witnessed, while the reduction rate is slowed down. 

For IE (Column IECDT), the largest reduction by RJSP-EM is achieved when α=0. This 

reduction efficacy is also weakened with the increased α. Moreover, the TE reduction 

achieved by the RJSP-EM overall witness a slight growth along with the increase in α 

(Column TECDT). But it does not show a necessary growing trend in individual 

instances, because under different α the robot can re-design the delivery route or 

accelerate the movement when necessary to better coordinate with the machine 

production process. Thus, the increase in TE can be counteracted by the reduced PE to 

achieve overall energy reduction. 
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By comparing the CPU time with the traditional model (Column CRT), it is seen 

that the RJSP-EM with the tightest makespan upper bound shows higher solution 

efficiency at an average of 7%. However, along with the growth in α, a much longer 

CPU time is required for the RJSP-EM. 

 

3.3.3 Sustainability analysis 

The RJSP-EM and RJSP-E can facilitate the coordination between machines and 

robot with the V-scale speed framework. However, in a more general view, the 

coordination of machines and robot depends on many factors. Basically, it relates to the 

number of jobs (batch size), the number of operations in each job (processes), and the 

number of machines. From the machine perspective, it also depends on the processing 

time of operations and machine speed. While from the transport perspective, it relies 

on the layout of machines and the speed of the robot. Therefore, to explore the 

sustainability of the robotic cell, in this section, a sustainability analysis is further 

conducted for the above covariates. 

To evaluate the sustainability of the entire system (i.e., the coordination between 

machines and robot in performing batches of jobs), machine blocking and robot 

blocking (both full-blocking and partial-blocking) can be adopted as measurements. As 

the experiments vary in the number of machines and the optimal makespan, the average 

machine blocking rate and robot blocking rate are used as metrics. First, Figure 3-1(a-

c) shows the optimal schedules of three different scenarios with a variation in the 

number of jobs and machines (operations) at the normal processing speed. Specifically, 

it plots the schedules of operations on machines and the schedule of robot movement. 

The X-axis is the processing time. The Y-axis includes the robot (bottom green bar) and 

the code of the machines. In the bottom green bar, the dark green is the loaded robot 
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movement, and the light green is the empty robot movement. Each job is represented 

by two colours: the dark one denotes the processing, and the light one denotes the 

machine blocking. In case 1, there are three jobs (each job has eight operations) and 

eight involved machines. Case 2 oppositely schedules eight jobs (each job has three 

operations) on three machines. In the more balanced case 3, five jobs (each job has five 

operations) are planned on five machines.  

Table 3-8 summarizes the sustainability indicators. As can be seen, in case 1 when 

machines are in a large number while the number of jobs is small (but each job has a 

large number of operations), the machine blocking rate and robot blocking rate are not 

very high, as the robot can readily handle the products. On the other hand, when more 

jobs are scheduled on a few machines in case 2, the machine blocking rate is reduced 

while the robot’s blocking time increases. This is because jobs should always wait for 

the availability of machines and the robot is often blocked by machines (machines are 

usually occupied). In case 3, the growth in the number of jobs enables parallel 

processing. The increase in the number of machines facilitates the reduction of robot 

waiting caused by the high machine occupation rate and transport restrictions. Thus, 

the robot is more occupied. Nevertheless, the machine blocking rate becomes larger, 

showing the struggle of the robot to handle a larger workload but still maintain the 

system efficiency. Consequently, the number of machines and robots should be matched 

to ensure the sustainability of the system.   

 

Table 3-8. Summary of sustainability indicators.  

 Avg_machine_blocking_rate Robot_blocking_rate 

Case 1  0.08 0.15 

Case 2  0.05 0.45 

Case 3 0.15 0.12 
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(a). Gantt Chart for Case 1: 3 jobs, 8 operations, and 8 machines. 

 

(b). Gantt Chart for Case 2: 8 jobs, 3 operations, and 3 machines. 

 

 

(c). Gantt Chart for Case 3: 5 jobs, 5 operations, and 5 machines. 

Figure 3-1. Gantt chart for three representative cases 

 

This study further explores how the speed changes of machines and robot will 

affect the production process. Figure 3-2 presents the changes of two metrics (machine 

blocking rate and robot blocking rate) along with the four factors: (a) controls the 

number of jobs, (b) controls number of machines (operations in jobs), (c) controls the 

machine speed, and (d) controls the robot speed. Similar to the above analysis, when 

the number of jobs increases, the robot blocking time is likely to be reduced (Figure 3-2 

(a)). When the number of machines (also operations in jobs) increases, the robot 

blocking time decreases, while the machine blocking time increases (Figure 3-2 (b)).   

Figure 3-2 (c) reflects the changes in two metrics with the machine speed 

adjustment. Decreasing the machine speed has a slight impact on machine blocking 

time but tends to increase the robot blocking rate. This is because the robot needs to 
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wait longer in both full-blocking and partial-blocking. While in Figure 3-2 (d), 

decreasing the robot speed will increase the robot blocking rate as the robot is less 

capable of processing more operations simultaneously. Instead of turning to other 

operations, the robot will often be blocked by the current operation.  

Therefore, the speed scale also has an impact on the system sustainability. 

However, by using the proposed models, instead of uniformly changing the speed levels, 

the machines and robot speeds are changed for separate operations or transport, which 

can be seen as system fine-tuning for sustainability improvement under the premise of 

maintaining productivity.  

 

 

Figure 3-2. Sustainability measurement and general factors 
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3.4 Summary 

Smart manufacturing has boosted the wide application of mobile robots in robotic 

cells. However, the mismatching between machine production and robot movement 

causes extensive energy waste. This study innovatively proposes to achieve energy 

reduction by enhancing the process coordination between machine production and 

robot movement. Two MILP models are developed with the application of a V-scale 

speed adjustment framework. The RJSP-E minimizes the overall energy consumption, 

while RJSP-EM simultaneously considers makespan and energy consumption. 

Computational experiments are conducted to verify the model performance. The RJSP-

E demonstrates superior performances in reducing overall energy consumption (with 

an average of 15%) but at a loss of makespan (20% on average) due to the slow 

operating speeds. On the other hand, the RJSP-EM is able to select the most suitable 

operating speeds to achieve energy reduction without much sacrifice in productivity. 

Notably, the RJSP-EM reduces energy consumption by a mean of 10% with no 

compromise in makespan. However, the energy-reduction efficacy of the RJSP-EM 

declines with the enlarged permitted makespan duration, as the energy reduced from 

machine processing is counteracted by the additional prolonged idling consumption.  

 

Managerial Implications 

The novel RJSP approaches developed in this work can enhance the energy 

efficiency of modern robotic cells, thus promoting the healthy and sustainable 

development of smart manufacturing. The study shows that in a smart manufacturing 

environment with an automated material handling process, production energy can be 

significantly reduced by developing more powerful scheduling models to achieve 
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intelligent and sustainable interactions/collaboration between machines and robots. 

Through dynamically adjusting operating speed to accommodate different scenarios (on 

one hand, adjusting to lower robot speed to reduce unnecessary waiting periods at 

machines, or on the other hand, slowing down machine speed to suit the transportation 

capacity of the robot), a significant portion of energy can be reduced without affecting 

the makespan or throughput of the system. 

Also, the autonomous production system is complex and requires the coordination 

and adaptability of multiple participants and their operational settings. Through 

sustainability analysis, we show that the number of robots and the speed of machines 

or robots should be configured according to many factors, including the number of jobs, 

the number of operations involved in a job, the number of machines, and the layout of 

the shop floor (e.g., distances between machines), so that the delivery capacity of robots 

can maximumly satisfy the material handling requirements and reduce the unnecessary 

blocking periods of machines and robots.  

Moreover, robotic cells with configurations similar to the problem settings of this 

study can apply the proposed model and fine-tune the parameters (like the distances 

among machines, machine production speeds, and robot movement speeds) to 

determine their own job assignments, job sequences, machine processing speeds, and 

robot moving speeds. In addition, job shops with more robots can take the model 

proposed as a benchmark to adjust their production schedules. 
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Chapter 4. AI-Enabled Production Status Prediction 

This study is driven by the practical needs of a production company operating in 

the printing industry. Through their operations, it is observed that the time consumed to 

produce tasks with similar requirements (e.g., output quantity) can vary significantly, 

which heavily disturbs the establishment of production schedules or the implementation 

of production plans. This issue raises the demand for production planners to figure out 

the interrelationship between the job processing time (JPT) and related production 

factors. In addition, apart from gaining a deeper understanding of the individual JPT, 

decision-makers such as production line planners also desire a better estimate of the 

performance of the undergoing production activities. As mentioned in Section 1.1.3, the 

relative job processing rate (JPR) can provide decision-makers with insights into the 

system's operating status by indicating whether the performance is high, moderate, or 

delayed. Inspired by such benefits, this study explores the adoption of AI technology to 

forecast both the absolute JPT and relative JPR to provide insights for controlling 

production activities and enabling better planning. Specifically, JPT forecasting is 

formulated as a regression problem that obtains the estimation of the absolute value of 

processing time. JPR is cast into six levels, the higher the efficiency of the system. The 

estimation of JPR is thus a multi-class classification problem. 

 

4.1 Dataset and Potential Dependencies 

4.1.1 Dataset 

This study adopts the real-world data collected from a partner printing company 

with IoT sensors (recording real-time processing data and environmental data) and ERP 

systems (for job specifications, materials, etc.). After data merging and preprocessing 
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(e.g., handling outliers, missing values, different devices), the following categories of 

data are involved as shown in Table 4-1. The engineering related data records the 

production requirements for a specific printing job, such as the desired output quantity 

and the utilization of the material (paper and ink); order related data concerns 

information about the customer and other product preferences; material inspection data 

is about detailed specifications of materials; technician information provides the grades 

and service length (indicating experience) of each operator; environmental data records 

the temperature and humidity at each time step; and production data records production 

details (e.g., work shift, machine speed, and setup jobs) when a job is carried out. 

Table 4-1. Involved data categories 

Engineering Information 

Order ID * (ido); Sheet ID * (ids); Job Category (tc); Quantity/Workload (w); Paper 

Consumption (pc); Paper Supplementary (ps); Grams (g); Size (width) (sw); Size 

(length) (sl); Paper Brand (pb); Printing Ink (pi); Printing Color (c); Material Code 

(mc); Material Quantity (mq) 

Order Information 

Order ID * (ido); Product Category (prc); Customer Category (cc); Quality Grade (qg) 

Material Inspection Report 

Material Code (mc); Material Brand (mb); Material Batch Number (mbn); Proportion 

(mp); Whiteness (w); Thickness (t); Folding Resistance (fr); Roughness (r); Weight 

(mw); Material Suppliers (ms)  

Technician Information 

Operator ID * (idt); Grade (opg); Rank (opr); Service Length (sl) 

Operating Environment 

Record Time * (rt); Temperature (et); Humidity (eh) 

Production Information 

Date *; Shift (s); Sheet ID * (ids); Operator ID * (idt); Output Quantity (oq); 

Processing Rate (pr); Machine Speed (mss); Preparation jobs (pj) 
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4.1.2 Dependencies within processing sequence  

Upon scrutinizing the job processing workflow on a specific machine, three 

potential interdependencies between a job’s performance and its corresponding 

circumstances can be identified (which is defined as “context” in the study of Chapter 

5). First, to perform the tasks, factors directly related to the processing job are vital, the 

impact from which is defined as “direct influence”. Such factors include the material 

usage, the quality of materials and quantity of output, the operator in charge, and the 

environmental indicators like temperature and humidity. The interrelations and 

interactions among these elements to a large degree affect the JPT&JPR. Then, the 

actual performance of a job is largely affected by its immediate predecessor, e.g., the 

changeover time, and the set-up operations. For example, if the former job is labour-

intensive, the operator may turn to a low status, which affects the processing rate of the 

current job. If the former job is largely different from the current one in terms of 

materials and settings, it may require more time to do the changeover between the two 

tasks, which will deteriorate the average processing rate of the current job. In this study, 

the influence coming from the immediate predecessor is defined as “adjacent 

influence”. Thirdly, the processing of one job may be influenced by its previous 

predecessors, e.g., the processing of a series of jobs on one machine may affect the 

running speed and the inherent status of the machines, which may exert a so-called 

“sequential influence” on the successors. It is therefore necessary to capture the impact 

from these three levels to fully utilize the historical data for estimating the production 

performance. 

 

4.2 Proposed Architecture 

To simultaneously account for the influence from three levels and undertake the 
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dual tasks of predicting JPT and estimating JPR level, a multi-module supported dual-

task learning (MMDT) architecture is proposed. As shown in Figure 4-1, the MMDT 

adopts three input modules, which are responsible for extracting the influence of the 

previously mentioned three levels. The proposed model also involves dual output layers 

to simultaneously learn the JPT and JPR. It will show that both learning tasks benefit 

from the hierarchical influence captured by three input modules, and also the co-

learning mechanism enabled by the dual output layers. The details of each input module 

and output layer are detailed in the following. 

4.2.1 Input modules 

Direct influence module (DIM)16 

The DIM module is responsible for extracting information from the individual job-

related features. The module structure involves several linear layers each followed by 

a ReLU activation function (to identify nonlinear relationships) and dropout operations 

(to avoid overfitting). The connected layers enable extracting information from the 

input factors related to job characteristics (e.g., output quantity, material requirements), 

operational property (e.g., operator proficiency, machine setting), and environment (e.g., 

temperature). Then, the input is transformed into a feature representation of the desired 

dimension. The computation of the output of layer 𝑙 and input to the next layer 𝑙 + 1 

can be denoted as:  

𝑧(𝑙+1) =  𝑊(𝑙)𝑎(𝑙) + 𝑏(𝑙) 

𝑎(𝑙+1) = 𝑓(𝑧(𝑙+1)) 

where 𝑊(𝑙) is the weight matrix of layer 𝑙, 𝑏(𝑙) is the bias of layer 𝑙, and 𝑓(. ) 

is the activation function where ReLU is adopted: 𝑓(𝑧(𝑙+1)) = 𝑚𝑎𝑥{0, 𝑊(𝑙)𝑎(𝑙) + 𝑏}. 

 
16 As a remark, meanings of the notations appearing in Chapter 4 below are only applicable to this 

chapter. 
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Figure 4-1. Proposed end-to-end MMDT deep learning framework 

 

Adjacent influence module (AIM) 

Then, the second input module (AIM) focuses on extracting dependency between 

adjacent jobs. This is achieved by implementing the temporal convolution operation. 

Convolution operation is in essence a mathematical operation that can be regarded as 

the integral of two functions with one function sliding on the input features and the 

other a shared weight matrix so that the features of different areas can be captured. The 

shared kernel is designed to highlight certain features in the input data.  

For the sequential job processing data of this study, we care about the potential 

linkage between two jobs conducted on the same machine/by the same operator, thus 
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we focus more on the time-series-based dimension. A set 𝐾 of parallel 1D kernels is 

used to highlight such features by moving along the time-based dimension. The formula 

of 1D-convolution can be described as:   

𝑍𝑘[𝑖] = (𝐼 ⋅ 𝐾)[𝑖] = ∑ 𝐼(𝑖 +  𝑗) ⋅ 𝑘(𝑗)

𝑘𝑙−1

𝑗=0

, 𝑘𝐾 

where 𝐼 is the input matrix and 𝑘 is one 1-D kernel belonging to the set of all 

used parallel kernels 𝐾. 𝑘(𝑗) is the weight vector of kernel 𝑘 at position 𝑗 and 𝑘𝑙 

is the length/size of the kernel 𝑘. Let 𝐿𝑖𝑛 denotes the length of the input data, 𝑃, 𝐷, 

and 𝑆 denote padding, dilation size, and stride, respectively. The length of 𝑍𝑘 at the 

time-series-based dimension can be derived as ⌊
𝐿𝑖𝑛+2𝑃−𝐷⋅(𝑘𝑙−1)−1

𝑆
+ 1⌋ . After the 

convolution, the extracted feature map 𝑍𝑘 is fed to a densely connected linear layer, 

which produces the output of  

ℎ𝑊,𝑏(𝑧) = 𝑍𝑘𝑊𝑇 + 𝑏 

where 𝑊 is the weight matrix, 𝑏 is the bias vector.  

The implementation of the AIP module shown in Figure 4-1 is briefed in the 

following. Let feature dim denote the dimension of input features of the data. The 

adjacent influence is first extracted with a temporal convolution layer, which adopts 16 

parallel 1D kernels with the size of (2, feature dim) to capture the inherent feature 

representation between the two adjacent jobs (the parallel kernels using different 

weights can capture different aspects of information). The reason for setting the kernel 

size as two is that the AIM only focuses on capturing the influence of the immediate 

predecessor on the current job under prediction. Then, the representation feature map 

goes through fully connected layers to further aggregate the information, which 

transforms the learned feature map of the adjacent influence as an 8-dimensional 

representation. 
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Long-term influence module (LIM) 

To capture the long-term influence exerted by the previous job queue, deep 

learning models with the ability to capture temporal influences are required. While 

recurrent neural networks such as LSTM and GRU networks can be applied, they may 

suffer from gradient vanishing (Pascanu et al., 2013), which can result in a weakened 

impact of information from jobs far ahead. Thus, to capture the influence of the 

historically executed job queue more accurately, we use the transformer encoder layer, 

which applies the self-attention mechanism to relate different positions in one sequence, 

based on which to compute a feature representation with weighted significance for the 

entire job sequence. Compared with RNN models, it computes the weight for different 

positions of the entire input to understand the importance of different predecessors, so 

that the attention can be allocated to different preceding jobs. The core operation of 

self-attention is the scaled-dot product between queries and keys. The calculation of the 

self-attention is given by: 

𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

where 𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , and 𝑉 = 𝑋𝑊𝑉 . 𝑋  denotes the input matrix, and 

𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are weight matrices. 𝑑𝑘 is the dimension of the queries. By this 

operation, an attention score can be computed between each position and the job 

sequence, allowing the model to weigh different steps (preceding jobs) of the sequence 

simultaneously. The obtained attention vector thus contains the effect/ importance of 

each preceding job to the job under prediction.  

Then, to further transform the attention feature map from the encoder layer into a 

higher-level representation, a 2D-convolution layer with Maxpooling operations is 

exerted. The first dimension of the convolution aggregates information on the job 
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sequence level, and the second dimension works at the feature level. The formula of 

2D-convolution can be described as:   

𝑍𝑘[𝑖, 𝑗] = (𝐼 ⋅ 𝑘)[𝑖, 𝑗] = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑖 + 𝑛) ⋅ 𝑘(𝑚, 𝑛)

𝑘𝑤−1

𝑛=0

𝑘ℎ−1

𝑚=0

,   𝑘𝐾 

where 𝐼 is the input matrix. 𝑘𝐾 is one 2-D kernel, with a height of 𝐾ℎ and 

width of 𝐾𝑤. After one convolution operation, the kernel slides to the next window 

until deriving the (𝐼 ⋅ 𝑘) . After the 2D-convolution and Maxpooling, the obtained 

feature map is flattened and further fed into a linear layer to adjust the output shape.  

It should be noted that only the transformer encoder is applied in the proposed 

architecture to extract the effect from previous jobs that have been executed and uses 

2D-convolutional layer and Maxpooling to further extract information. This 

architecture is different from the traditional transformers adopting an encoder-decoder 

structure. The rationale behind this is that we only need to predict the JPT and JPR for 

a single job at each step, and consequently only the encapsulated information of 

predecessors is needed for predictions. The decoder layer thus becomes redundant.  

The implementation details of our LIM in Figure 4-1 are as follows. First, the 

features of a series of preceding jobs and the current job under prediction are fed into 

the transformer encoder to generate a feature map (e.g., if five preceding jobs are 

involved, the size of the feature map is 1×6×21). Then, the extracted map is further 

extracted first with a 2D-convolution layer, using one 3×3 kernel. Then a Maxpooling 

operation is performed to subsample from the feature representation by using one 3×3 

filter moving across each channel of the feature map to generate a statistical summary 

of the features for each nearby region.  
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4.2.2 Fusion of input modules 

The output of the three input modules, i.e., DIM, AIM, and LIM are then fused 

with a concatenation layer. The extracted high-level feature map combining the 

knowledge from three input modules is then passed to the output layers for learning the 

parameters of output layers. It should be noted that the dimension of information (i.e., 

feature map) injected into the concatenated vector by different input modules can be 

controlled by adjusting the output dimension of the modules, which helps control the 

proportion or contribution of each input module and further manage the dimension of 

the learned feature representation vector. For example, in Figure 4-1, the output 

dimensions of DIM, AIM, and LIM are 16, 8, and 8, respectively. 

 

4.2.3 Dual output layers 

Traditional neural networks (NN) are commonly designed as single-task NN. 

However, it is shown that by sharing feature representations between two learning tasks 

with a synergy effect, the prediction performance for both models can be improved 

(Ruder, 2017). As shown in Figure 4-2, different from the single task network, a multi-

output NN contains a few layers shared by different tasks (as shown at the bottom in 

Figure 4-2). The input data will first go through shared layers, and then the separate 

subnetworks are constructed to learn the unique feature map of individual tasks. With 

this approach, during the training process, the backpropagation algorithm can jointly 

optimize the parameters of the two output layers concurrently. For separate 

subnetworks, the parameters are trained separately, while for shared layers, both 

gradients passed from the two subnets will be used to correct the weights, so that the 

shared hidden units can learn the joint representation of the two tasks.  
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Following the above idea, the MMDT network incorporates two output layers, 

which learn the classification task and the regression task separately, while the joint 

feature representation map extracted from the three input modules is shared by both 

tasks. The common knowledge shared by the two tasks thus helps the model figure out 

the similarities and connections between the tasks and transfer knowledge learned from 

one task to another. As data representation learned by one task can be used by the other, 

more implicit feature information for one task can be learned with the help of the other 

through this mechanism. Besides, for each individual task, the training for the other one 

will eliminate the effects of the noise in the data and the overfitting, as the existence of 

the other training job forces the network to concentrate on features that really matter.  

 

 

Figure 4-2. Dual-output NN that simultaneously tackles two tasks 

 

It should be noted that one critical requirement to applying the above multi-task 

training is that the tasks should have commonalities in relevant features. That enables 

each task to provide meaningful training signals for training each other. In the joint 

learning of our problem, the prediction of processing time and the classification of 
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processing rate have many connections. In a continuous perspective, the processing rate 

depends on the inverse of the processing time and the production quantity. The rate 

classification is therefore a higher-level viewpoint comprising more information. For 

example, considering performing two tasks with the same output quantity, the 

judgement of the processing rate level will produce a direct impression for decision-

makers in terms of the system efficiency in carrying out the job under these two 

situations. Both the classification and prediction tasks are based on the utilization of 

internal and external influencing factors, making it possible for the two tasks concerned 

to work in a collaborative manner. 

The implementation details of the dual output layers (shown in Figure 4-1) are as 

follows. The JPT prediction (regression problem) is task 1 and the PR classification 

problem is task 2. The inputs from three input modules are concatenated to a feature 

map with the size of 32×1, which is then fed into both the JPT prediction layer and the 

PR classification layer for separate training (or prediction/classification). For the JPT 

prediction layer, the combined feature vector goes through two linearly connected 

layers with dropout operations, which first transform the vector dimension to 16 and 

then to 8. Finally, the 8×1 vector is aggregated to a single value, which is the output 

for JPT prediction. On the other hand, for the PR classification task, the concatenated 

feature vector goes through two dense layers with dropout operations and is mapped to 

a 6× 1 vector. After a SoftMax operation, the vector is changed to probability 

corresponding to 6 PR classes. The argmax function is finally applied to the probability 

vector and derives the class with the highest probability, which serves as the output of 

the PR output layer. The model is trained iteratively to mitigate the deviation from the 

predicted JPT and the real value as well as maximize the probability of the correct class 

that the job belongs to.   
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4.3 Training of the Proposed Architecture 

The proposed architecture adopts a supervised learning training approach. The 

input samples to the network are denoted as (𝑥(𝑖), 𝑦1̂
(𝑖), 𝑦2̂

(𝑖)
), where 𝑥(𝑖) is the feature 

space of the  𝑖 -th sample, and 𝑦1̂
(𝑖)

  (i.e., the JPT) and 𝑦2̂
(𝑖)

  (i.e., the correct 

classification of PR) for sample 𝑖 are two labels obtained under a certain execution 

circumstance. Parameters of the model are denoted with 𝑊, and bias is denoted as 𝑏.  

The mean-square-error is applied as the loss function to train the task of JPT 

regression, which is described as:  

𝐽1(𝑊, 𝑏) =  
1

𝑛
∑(𝑦1

(𝑖)
− 𝑦1̂

(𝑖))2

𝑛

𝑖=1

 

where 𝑦1
(𝑖)

 is the output of the first sub-network or the predicted JPT. 

On the other hand, the cross-entropy loss (CE loss) is applied to train the multi-

classification network, which is given as:  

𝐽2(𝑊, 𝑏) = −
1

𝑛
∑ ∑ 𝑦2(𝑐)̂

(𝑖) log 𝑦2(𝑐)
(𝑖)

𝐶

𝑐=1

𝑛

𝑖=1

 

where 𝑦2(𝑐)
(𝑖)

 is the output of the second sub-network (i.e., the PR classification) 

of the 𝑖-th instance for the classification 𝑐, which is calculated as 𝑦2(𝑐)
(𝑖)

=  
exp (𝑧(𝑐)

(𝑖)
)

∑ exp (𝑧(𝑗)
(𝑖)

)𝐶
𝑗=1

. 

To efficiently train the joint model, a combined loss function is defined as: 

𝐽(𝑊, 𝑏) =  𝛼 𝐽1(𝑊, 𝑏) +  𝐽2(𝑊, 𝑏) 

where 𝛼 is a parameter that controls the contribution of two outputs of the sub-

networks. The joint loss is a combination of two terms from the two subtasks, thus the 

loss of one task can be regarded as a regularization term to the other, which forces the 

model to find a balance between the two tasks and avoid overfitting to one specific task. 

Feedforward propagation. In forward propagation of the MMDT architecture has 

been detailed in the previous illustration of the three input modules and the dual output 
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layers. It can be generalized as 𝑧(𝑙+1) =  𝑊(𝑙)𝑧(𝑙) + 𝑏(𝑙) , where 𝑧(𝑙)  denotes the 

output of layer 𝑙 and the input to the layer 𝑙 + 1 as well. 

A more critical step of model training lies in the backpropagation process, which 

tries to mitigate the discrepancy between the prediction value and the label by 

iteratively updating the parameters of the whole network so that the model can learn 

the approximation function between the input and the labels. 

Backpropagation. After the feedforward propagation, a joint error 𝐽(𝑊, 𝑏)  is 

obtained from the output units, which can be regarded as a function of parameters 𝑊, 𝑏. 

Therefore, the process to optimize the parameters of the network is the process to find 

the best solution of 𝑊, 𝑏 that can minimize the joint error of the network, which is 

denoted as: 

𝑊, 𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊,𝑏𝐽(𝑊, 𝑏) 

The error term of the output layer is described as (𝐿) =  𝛼1 + 2 , where 𝐿 

refers to the index of the final output layer; 1 and 2 are the backpropagated error 

terms for loss 𝐿1 and 𝐿2. Through the chain rule, the error terms for previous layers 

from 𝑙 = 1 to 𝑙 = 𝐿 − 1 can be obtained by: 

(𝑙) = (𝑊(𝑙+1))
𝑇


(𝑙+1)
 

where 𝑊(𝑙+1)  denotes the weight matrix of layer 𝑙 + 1 , (𝑙+1)
  is the loss at 

layer 𝑙 + 1. Thus, the gradients of the cost function 𝐽(𝑊, 𝑏) in terms of parameters 

𝑊 and 𝑏 at layer 𝑙 in the 𝑡 iteration can be obtained by: 

𝑔𝑡(𝑊(𝑙)) =  𝑊(𝑙) 𝐽(𝑊, 𝑏; 𝑥, 𝑦1̂ , 𝑦2̂) = (𝑙+1)(𝑧(𝑙))𝑇 

𝑔𝑡(𝑏(𝑙)) =  𝑏(𝑙) 𝐽(𝑊, 𝑏; 𝑥, 𝑦1̂ , 𝑦2̂) = (𝑙+1)
 

Let (, ) denote the estimate of the first and second moments of the gradients 𝑔𝑡, 

which can be described as: 
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
𝑡
(𝑊(𝑙)) =  𝛽1(

𝑡−1
) + (1 − 𝛽1)𝑔𝑡(𝑊(𝑙)) 

𝑡(𝑊(𝑙)) =  𝛽2(𝑡−1) + (1 − 𝛽2)𝑔𝑡(𝑊(𝑙))
2
 

and 


𝑡
(𝑏(𝑙)) =  𝛽1(

𝑡−1
) + (1 − 𝛽1)𝑔𝑡(𝑏(𝑙)) 

𝑡(𝑏(𝑙)) =  𝛽2(𝑡−1) + (1 − 𝛽2)𝑔𝑡(𝑏(𝑙))
2
 

where 𝛽1, 𝛽2[0, 1], 
0
 and 0 are initialized as zero. Then, the bias-corrected 

first and second moment estimates are computed with: 

̂
𝑡
(𝑊(𝑙)) =  


𝑡
(𝑊(𝑙))

1 − 𝛽1
, ̂𝑡(𝑊(𝑙)) =  

𝑡(𝑊(𝑙))

1 − 𝛽2
 

̂
𝑡
(𝑏(𝑙)) =  


𝑡
(𝑏(𝑙))

1 − 𝛽1
, ̂𝑡(𝑏(𝑙)) =  

𝑡(𝑏(𝑙))

1 − 𝛽2
 

and the parameters updated using adaptive learning rate with Adam rule is given 

by: 

𝑊𝑡
𝑙 =  𝑊𝑡−1

𝑙 −


√̂𝑡(𝑊(𝑙)) + 

 ̂
𝑡
(𝑊(𝑙)) 

𝑏𝑡
𝑙 =  𝑏𝑡−1

𝑙 −


√ ̂𝑡(𝑏(𝑙)) + 

̂
𝑡
(𝑏(𝑙)) 

where  is the learning rate or step size and  is a small positive number to 

avoid dividing by zero. With the Adam optimization algorithm and through a sufficient 

number of iterations, the loss will be reduced until reaching the stop condition.  

With the above parameter updating methods, the training algorithm of the MMDT 

model is presented in the following:  
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Training of the proposed MMDT architecture 

Input: 

Training set (𝑥(𝑖),  𝑦1̂
(𝑖),  𝑦2̂

(𝑖)
), i=1, …n; 

Sequence length: 𝑁 + 1 

Separate data with sequence length: A set of (𝑁 preceding jobs + 1 succeeding job) 

Learning rate: ; 

Joint loss function:  

𝐽(𝑊,  𝑏) = (−
1

𝑛
∑ ∑ 𝑦2(𝑘)

(𝑖)
log

exp(𝑧(𝑘)
(𝑖)

)

∑ exp(𝑧(𝑗)
(𝑖)

)𝐾
𝑗=1

)𝐾
𝑘=1

𝑛
𝑖=1 +𝛼

1

𝑛
∑ (𝑦1

(𝑖)
− 𝑦1̂

(𝑖))2𝑛
𝑖=1 ; 

Decay rates: 𝛽1, 𝛽2. 

Initialization: 

Initialize parameters W and b; 

Initialize: 
0
 ← 0, and 0← 0; 

Initialize step: t ← 0. 

While 𝑊,  𝑏 do not converge: 

t ← t+1; 

Compute the output 𝑎(𝑙+1) at each layer by forward propagation; 

Obtain feature maps of three input modules; 

Fusion of feature maps from three input modules; 

Compute the error term (𝑓𝑙)
 at the output layer; 

Compute the error term (𝑙)
 at all hidden layers; 

Compute the gradients 𝑔𝑡(𝑊(𝑙)),  𝑔𝑡(𝑏(𝑙)); 

Update the 𝑊(𝑙), 𝑏(𝑙) with the Adam rule; 

Until the stop criteria are reached. 

Output: 

A trained architecture with optimized parameters. 

 

4.4 Computational Experiments 

4.4.1 Experimental setup 

The experimental data is collected from a collaborated printing company in China. 

The job production data are arranged according to the performed sequence, with a 

single operator working for a shift (eight hours) and then turning to another operator 

for the next shift. Printing jobs across two shifts are split into two jobs with 
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corresponding operators and workload (calculated by actual time proportion).  

 The labels of the two tasks are generated as follows. The total operating time 

(JPT) of a job is the total time to complete a task, which is computed by: 

𝐽𝑃𝑇 = 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 + 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + ℎ𝑢𝑚𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒  

where the setup time of a job includes the changeover time between two 

succeeding tasks and preparation time, the second term takes the machine working time 

into account, and the third term is the time cost for operators performing activities like 

cleaning the box, changing the die, etc. to make sure the job is carried out smoothly 

(also taken as the necessary machine downtime during the operating period). These 

three time periods are recorded by sensors in the heartbeat data form. 

 

Figure 4-3. Distribution of collected data samples with two labels 

 

The label of processing rate level is computed in two steps. First, the absolute 

continuous processing rate (CPR) is computed by: 

𝐶𝑃𝑅 =  
𝑂𝑢𝑡𝑝𝑢𝑡 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

𝐽𝑜𝑏 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝐽𝑃𝑇)
 

Then, through examining the region that all CPR falls in, the total region is 

classified into 6 areas that correspond to PR levels from 1-6 according to the 

distribution of the data. It is found that most CPR falls into the interval of 50-130. To 
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balance the samples of each group and make the classification sensitive to the PR 

changes, the six groups of PR are set up as: Class 1: (CPR<50, label: 0, num: 322), 

Class 2: (50CPR<70, label: 1, num: 380), Class 3: (70CPR<90, label: 2, num: 503), 

Class 4: (90CPR<110, label: 3, num: 546), Class 5: (110CPR<130, label: 4, num: 

418), Class 6: (CPR130, label: 5, num: 157). Figure 4-3 shows the distribution of the 

collected data samples in terms of two labels. Following conventions of DL literature, 

we divide the dataset into the training dataset and test dataset with a ratio of 8:2. After 

data processing, 2096 pieces of job records are obtained for training, and 524 job data 

records for testing.  

 

Figure 4-4. Flowchart of the training and testing process 

 

Figure 4-5. Experimental comparisons dimensions 
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4.4.2 Experimental results and comparisons   

The overall flow of the model training and testing is shown in Figure 4-4. A series 

of computational experiments are conducted to examine the performance of the 

proposed MMDT in the following three perspectives. First, the effectiveness of 

components contained by MMDT is tested. More specifically, we validate the effect of 

incorporating the three input modules (DIM, AIM, and LIM, which capture the 

information from three levels of relationships) and the effect of simultaneously training 

for two output layers (dual-task learning). Then, in the second part of the experiments, 

the proposed MMDT is compared with other benchmarks that have been well 

established in the machine learning area, including the traditional machine learning 

models (SVM and SVR), multi-layer neural network models, recurrent neural network 

models (LSTM model), and the complete transformer model. Lastly, sensitivity 

analysis is conducted to examine the influences of some important parameters, which 

involve the weight that controls the contributions of two outputs to the final loss 

function and the length of the input sequence (which aims to see how changing the 

number of predecessors will influence the prediction). In addition, for the first and 

second parts of the experiments, the sequence length is chosen as five (i.e., four 

predecessors are involved as the preceding sequence to predict the following task). This 

setting is reasonable because the average processing time for the printing jobs is 61.79 

minutes according to historical data. Thus, in general, seven to nine jobs can be 

completed in one shift. Therefore, a middle number of 4 preceding jobs is selected as 

the benchmark. Figure 4-5 shows the three dimensions of the following experiments.  

 

Ablation studies of multi-modules and dual-task learning 

First, ablation studies are conducted to validate the effect of the three input 
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modules. To do so, the three modules are separately used to predict both the JPR level 

and the JPT with others blocked (i.e., only involving single DIM (S-DIM), only 

involving single AIM (S-AIM), and only involving single LIM (S-LIM)). Then, 

combinations of different input modules are applied to learn both tasks together. Each 

experiment is trained with the training dataset and then tested on the test dataset in 150 

epochs. The results of the final 12 epochs were recorded. Table 4-2 shows the results of 

JPR regression using only a single input module, including the joint training loss and 

the MSE and MAPE on the test dataset. It can be seen that model S-DIM cannot achieve 

satisfactory performance. However, model S-AIM helps reduce the mean squared error 

(MSE) to 39.512 and the mean absolute percentage error (MAPE) to 7.52%, while 

model S-LIM achieves a significant reduction of MAPE to 7.13%. These results imply 

that the JPT is highly affected by the sequential relationship. Therefore, capturing the 

influence of different preceding jobs in the execution sequence on the JPT of 

succeeding ones is crucial for improving prediction accuracy.  

Table 4-2. Comparisons of solely involving one input module for JPT prediction 

  S-DIM S-AIM S-LIM 

  

Joint 

Loss 

Test 

MSE 

Test 

MAPE 

Joint 

Loss 

Test 

MSE 

Test 

MAPE 

Joint 

Loss Test MSE 

Test 

MAPE 

exp1 17.475 89.366 13.90% 34.636 41.106 7.60% 16.543 106.617 6.73% 

exp2 19.378 99.531 15.00% 34.515 40.649 7.60% 18.731 137.639 6.44% 

exp3 17.564 95.409 14.30% 34.385 40.409 7.60% 20.199 124.289 7.29% 

exp4 17.681 80.54 13.50% 34.243 40.111 7.50% 42.464 109.839 6.37% 

exp5 17.511 90.781 14.20% 34.095 39.589 7.50% 34.124 101.896 8.32% 

exp6 18.11 94.453 14.50% 33.939 39.015 7.40% 16.833 110.111 6.70% 

exp7 18.666 127.248 17.30% 33.779 38.685 7.40% 25.353 104.598 7.84% 

exp8 17.82 156.439 19.70% 33.627 38.639 7.40% 16.395 109.747 6.67% 

exp9 15.747 115.9 17.00% 33.484 38.811 7.50% 16.846 112.753 6.69% 

exp10 17.517 98.805 15.70% 33.346 39.026 7.50% 21.135 108.240 7.84% 

exp11 26.982 87.238 13.90% 33.216 39.103 7.60% 34.124 101.896 7.40% 

exp12 20.298 189.053 21.60% 33.087 39.004 7.60% 24.145 98.603 7.29% 

AVG 18.729 110.397 15.88% 33.863 39.512 7.52% 23.908 110.519 7.13% 
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Table 4-3 shows the results of using combined modules on JPT prediction. The 

ablation studies focus on examining the involvement of sequential influence to original 

features Thus, the combination of DIM and AIM (C-DIM&AIM, which adds the 

influence of adjacent preceding job) and combination of DIM and LIM (C-DIM&LIM, 

which adds the attended information from the performed sequence) are tested. It can be 

seen that C-DIM&AIM can achieve lower MAPE (7.41%) compared with S-DIM and 

S-AIM, and a lower MSE (52.790) compared with S-DIM. Similarly, model C-

DIM&LIM shows advantages in reducing MAPE to 6.89% and MSE to 41.21. The 

proposed MMDT facilitates the reduction of MAPE to an average of 6.24%. The 

ablation studies show that the combined input modules are capable of approximating 

the inherent relationship within the JPT prediction.  

 

Table 4-3. Comparisons of involving more than one input module for JPT prediction 

C-DIM&AIM C-DIM&LIM 
MMDT 

(C-DIM&AIM&LIM)  

  
Joint 

Loss 

Test 

MSE 

Test 

MAPE 

Joint 

Loss 

Test 

MSE 

Test 

MAPE 

Joint 

Loss 
Test MSE 

Test 

MAPE 

exp1 31.373 40.345 7.64% 10.38 41.045 7.50% 9.363 37.705 6.10% 

exp2 12.776 54.141 7.30% 12.167 35.415 6.10% 11.429 37.733 5.80% 

exp3 11.321 74.568 7.20% 11.208 46.087 7.15% 8.83 36.383 6.60% 

exp4 19.052 70.921 7.90% 10.84 52.264 6.90% 9.247 52.727 6.00% 

exp5 9.617 78.323 7.30% 10.46 36.321 7.20% 11.743 33.746 5.70% 

exp6 10.775 57.399 6.90% 10.89 32.677 6.10% 12.937 36.023 5.90% 

exp7 30.868 37.570 7.28% 7.166 38.313 6.90% 12.713 46.019 6.40% 

exp8 31.264 39.636 7.55% 9.684 31.218 6.00% 11.56 36.023 5.90% 

exp9 30.958 37.955 7.33% 9.471 46.935 7.52% 10.457 46.019 6.40% 

exp10 19.844 65.200 7.60% 15.043 37.872 7.10% 11.204 36.383 6.60% 

exp11 31.158 38.991 7.47% 10.02 44.06 7.30% 11.232 50.61 6.80% 

exp12 31.055 38.428 7.39% 10.84 52.264 6.90% 9.107 54.98 6.70% 

AVG 22.505 52.790 7.41% 10.68 41.21 6.89% 10.819 42.029 6.24% 
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This study then examines the effect of using the different modules for performing 

the PR classification task. It should be noted that the PR classification problem is a 

multi-class classification problem that estimates which degree (1-6) the production 

efficiency level belongs to. Multi-class classification problems can provide a more 

detailed view of the production efficiency, while it tends to be more complicated than 

binary classification in which the decision boundary is relatively easy. In this part, we 

measure and visualize the performance of PR classification with accuracy, which is 

calculated by the sum of the number of jobs correctly classified in each class dividing 

the number of samples in the test dataset. A deeper analysis of classification 

performance for each category is provided later.    

Following the same logic of JPT prediction, the ablation experiments are 

conducted using only single modules or combined modules. Table 4-4 shows results 

involving single modules. Then, Table 4-5 shows the results of using combined modules. 

The results show that only combining DIM and AIM (model C-DIM&AIM) is less 

helpful, which even disturbs the capability of the model to understand the PR compared 

with using single modules. In comparison, combining DIM and LIM shows more 

effectiveness in reducing training loss and test loss and can improve the accuracy to 

65.57%. It is noticeable that with the adoption of three input modules, the MMPT model 

further improves the classification accuracy to an average of 75.77%. The results 

suggest that the PR classification problem largely benefits from the multi-input-

modules structure. The fusion of patterns extracted from different perspectives of the 

performing sequence helps the model understand the complex PR variations and 

correctly diagnose the PR level. 
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Table 4-4. Comparisons of solely involving one input module for PR classification 

  S-DIM S-AIM S-LIM 

  Joint Loss 
Test 

CEL 
Accuracy Joint Loss 

Test 

CEL 
Accuracy Joint Loss 

Test 

CEL 
Accuracy 

exp1 17.475 1.171 59.10% 28.155 0.889 61.96% 17.609 1.137 47.60% 

exp2 19.378 1.136 63.50% 28.147 0.888 60.87% 18.467 1.17 48.50% 

exp3 17.564 0.947 66.10% 28.138 0.884 60.43% 23.211 1.085 52.40% 

exp4 17.681 1.053 62.60% 28.116 0.877 60.43% 25.378 1.086 53.70% 

exp5 17.511 1.073 63.50% 28.085 0.869 60.65% 11.975 1.064 52.80% 

exp6 18.11 1 63.70% 28.030 0.858 62.39% 12.466 1.12 49.30% 

exp7 18.666 1.092 58.50% 27.961 0.847 62.83% 32.731 1.004 55.20% 

exp8 18.688 1.085 62.00% 27.894 0.868 61.52% 20.055 1.036 57.20% 

exp9 17.82 1.151 58.50% 27.846 0.886 58.48% 12.881 0.987 55.00% 

exp10 15.747 1.242 54.10% 27.806 0.900 57.39% 17.092 0.954 57.20% 

exp11 17.517 1.148 55.70% 27.769 0.907 56.74% 18.026 0.944 61.70% 

exp12 26.982 0.999 62.00% 27.735 0.904 56.96% 17.071 1.035 57.40% 

AVG 18.595 1.091 60.78% 27.974 0.882 60.05% 18.914 1.052 54.00% 

CEL stands for cross-entropy loss.  

 

Table 4-5. Comparisons involving more than one input module for PR classification 

  C-DIM&AIM C-DIM&LIM 
MMDT 

(C-DIM&AIM&LIM)  

  
Joint 

Loss 

Test 

CEL 
Accuracy Joint Loss 

Test 

CEL 
Accuracy 

Joint 

Loss 

Test 

CEL 
Accuracy 

exp1 17.567 1.29 50.70% 10.38 0.903 65.20% 9.363 0.732 74.80% 

exp2 12.776 1.033 55.70% 12.167 0.998 63.30% 11.429 0.724 76.30% 

exp3 11.321 0.942 57.20% 10.635 0.866 64.80% 8.83 0.736 76.30% 

exp4 19.052 0.951 60.70% 10.84 0.996 63.90% 9.247 0.678 77.83% 

exp5 9.617 0.919 61.30% 10.46 0.873 67.20% 10.457 0.731 76.10% 

exp6 10.775 0.933 63.00% 10.89 0.843 68.00% 11.204 0.766 76.70% 

exp7 9.953 1 58.30% 7.166 0.877 64.10% 11.232 0.701 75.20% 

exp8 12.382 1.198 56.30% 9.684 0.849 67.00% 9.107 0.758 77.20% 

exp9 12.483 1.356 55.00% 11.275 0.882 66.30% 11.059 0.830 73.30% 

exp10 19.844 0.886 63.30% 15.043 0.789 68.30% 12.713 0.694 76.09% 

exp11 12.382 1.198 56.30% 10.635 0.866 64.80% 18.614 0.748 74.60% 

exp12 10.226 1.121 52.60% 10.84 0.996 63.90% 11.56 0.784 74.80% 

AVG 13.198 1.069 57.53% 10.835 0.895 65.57% 11.235 0.740 75.77% 

CEL stands for cross-entropy loss.  
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Table 4-6. Comparisons between single or dual output(s) with the proposed architecture 

  Single JPT output MMDT (JPT) Single PR output  MMDT (PR) 

  Test MSE 
Test 

MAPE 
Test MSE 

Test 

MAPE 
Test CEL Accuracy 

Test 

CEL 
Accuracy 

exp1 42.038 6.80% 37.705 6.10% 1.354 66.30% 0.732 74.80% 

exp2 103.283 10.80% 37.733 5.80% 1.365 65.00% 0.724 76.30% 

exp3 53.779 8.50% 36.383 6.60% 1.234 67.20% 0.736 76.30% 

exp4 35.857 7.00% 52.727 6.00% 1.404 67.20% 0.678 77.83% 

exp5 34.195 6.60% 33.746 5.70% 1.379 67.00% 0.731 76.10% 

exp6 53.473 9.90% 36.023 5.90% 1.816 57.80% 0.766 76.70% 

exp7 35.783 7.30% 46.019 6.40% 1.521 65.90% 0.701 75.20% 

exp8 40.882 7.30% 36.023 5.90% 1.331 66.50% 0.758 77.20% 

exp9 45.371 8.30% 46.019 6.40% 1.97 59.80% 0.830 73.30% 

exp10 46.009 7.40% 36.383 6.60% 1.59 62.40% 0.694 76.09% 

exp11 43.632 8.40% 50.61 6.80% 1.682 64.10% 0.748 74.60% 

exp12 43.887 8.60% 54.98 6.70% 1.575 65.20% 0.784 74.80% 

AVG 48.182 8.08% 42.029 6.24% 1.518 64.53% 0.740 75.77% 

 

After examining the input modules, ablation studies are further conducted to test 

the effect of simultaneously training two outputs on the performance. Table 4-6 shows 

the effect of involving one or two outputs for our proposed architecture. It can be seen 

that for both tasks, training with the combination of three input modules and only one 

output shows a significant disadvantage compared with dual-task training. The results 

demonstrate that the application of the co-learning mechanism enabled by the dual-task 

training largely benefits a more accurate approximation of both tasks. Also, it implies 

that knowledge learned from training JPT prediction and PR level classification can 

also be used to figure out the dependence between the inputs and the other tasks.  
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Comparisons with other benchmarks 

In this section, the proposed model is compared with other state-of-the-art models 

to further demonstrate the model performance. The benchmark models can be divided 

into two categories, i.e., models with sequence information and models without 

sequence information. The former category involves recurrent neural network LSTM 

and a simplified transformer-based model, which takes the job under prediction and a 

set of preceding jobs as input so that the dependencies between JPT and PR level on 

previous jobs can be taken into account. The latter category, DNN and SVR, however, 

solely captures the JPT and PR level based on the job characteristics as they only take 

the features of the job under prediction as input. The SVC and SVR models were 

implemented using the scikit-learn package with default settings, while the other 

models were developed using PyTorch. We perform a grid search to tune the 

hyperparameters for models of interest (as shown in Table 4-7). The best parameter 

combinations of models are summarized in Table 4-8. 

 

Table 4-7. Grid search for model hyperparameters 

Model Hyperparameters Range 

Transformer

-based 

model 

Number of encoder layers  

Number of decoder layers 

Feedforward dimensions 

Number of heads 

Learning rate 

[1, 2] 

[1, 2] 

[128, 64] 

[1, 3] 

[1e-2, 1e-3] 

LSTM Number of hidden units  

Number of LSTM layers 

Dropout rate 

Learning rate 

[16, 32] 

[1, 2] 

[0.2, 0.3] 

[1e-2, 1e-3] 

DNN Number of layers 

Number of neurons on each layer 

 

Dropout rate 

Learning rate 

[2, 3, 4, 5] 

[64, 32], [32, 62, 32], [128, 64, 32, 16], [128, 64, 32, 

16, 8]  

[0.2, 0.3] 

[1e-2, 1e-3] 
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MMDT Concatenating units of DIM 

Concatenating units of AIM 

Concatenating units of LIM 

Number of AIM channels 

Number of encoder layer 

Number of multi-heads 

2D-kernel size 

[1, 2, 4, 8, 16] 

[1, 2, 4, 8, 16] 

[1, 2, 4, 8, 16] 

[16, 32] 

[1, 2] 

3 

[[2, 2], [3, 3]] 

 

 

Table 4-8. Parameter specifications 

Model Parameters specifications 

Transformer-based 

model 

Number of encoder layers: 1, Number of decoder layers: 1, 

Feedforward dimensions:  128, Number of heads: 3, Learning 

rate: 1e-3   

LSTM 
Number of layers: 1, Number of hidden units: 32, Dropout rate: 

0.2, Learning rate: 1e-3 

DNN 
Number of layers: 4, Number of neurons on each layer: [128, 64, 

32, 16], dropout rate: 0.2, learning rate: 1e-3 

MMDT 

Concatenating units of DIM: 4, Concatenating units of AIM: 2, 

Concatenating units of LIM: 2, Number of AIM channels: 16, 

Number of encoder layer: 1, Number of heads: 3, 2D-kernel size: 

[3, 3], Learning rate: 1e-3 

 

Table 4-9 summarizes the results of comparisons between different DL models for 

JPT prediction. In terms of performing the JPT prediction task, models with sequential 

information perform better than models without sequential information. The 

transformer-based model plays better than the LSTM model, which reduces MSE to 

91.377 and MAPE to 7.62%, While the proposed model demonstrates superiority in 

reducing both the MSE (42.029) and MAPE (6.24%).  

 

 



102 

 

Table 4-9. Comparisons between different DL models for JPT prediction 

  SVR DNN LSTM 
Transformer-based 

model 

Proposed 

MMDT 

  
Test 

MSE 

Test 

MAPE 

Test 

MSE 

Test 

MAPE 

Test 

MSE 

Test 

MAPE 

Test 

MSE 

Test 

MAPE 

Test 

MSE 

Test 

MAPE 

exp1 353.850 12.46% 153.594 12.40% 202.487 8.90% 90.207 8.40% 37.705 6.10% 

exp2 267.661 10.37% 197.466 15.90% 203.37 8.80% 89.530 7.94% 37.733 5.80% 

exp3 393.653 10.29% 247.566 17.40% 208.633 8.60% 92.539 6.77% 36.383 6.60% 

exp4 421.453 14.13% 181.432 13.20% 221.809 8.40% 93.444 7.59% 52.727 6.00% 

exp5 620.496 11.02% 226.255 16.00% 197.125 8.90% 92.521 7.21% 33.746 5.70% 

exp6 245.331 11.62% 577.445 15.00% 181.41 8.00% 76.820 6.67% 36.023 5.90% 

exp7 216.888 10.07% 423.864 17.30% 194.404 7.30% 85.709 7.68% 46.019 6.40% 

exp8 463.341 10.08% 368.365 15.00% 167.231 6.60% 84.457 8.07% 36.023 5.90% 

exp9 1284.951 11.64% 366.017 20.70% 171.722 9.60% 105.537 7.97% 46.019 6.40% 

exp10 887.014 12.29% 326.926 15.90% 213.005 9.10% 95.667 7.22% 36.383 6.60% 

exp11 693.183 11.59% 339.478 18.60% 202.974 8.50% 88.303 7.88% 50.61 6.80% 

exp12 715.033 11.35% 311.318 18.50% 193.123 8.80% 101.786 8.08% 54.98 6.70% 

AVG 546.904 11.41% 309.977 16.33% 196.441 8.46% 91.377 7.62% 42.029 6.24% 

 

Table 4-10. Comparisons between different models for PR classification 

  SVC DNN LSTM 
Transformer-based 

model 
Proposed MMDT 

  Accuracy 
Test 

CEL 
Accuracy 

Test 

CEL 
Accuracy 

Test 

CEL 
Accuracy 

Test 

CEL 
Accuracy 

exp1 58.20% 0.676 67.60% 1.611 27.00% 1.83 68.00% 0.732 74.80% 

exp2 64.40% 0.685 68.50% 1.633 27.80% 1.631 68.90% 0.724 76.30% 

exp3 63.10% 0.683 68.30% 1.649 28.50% 1.649 69.10% 0.736 76.30% 

exp4 61.30% 0.676 67.60% 1.664 28.90% 1.671 67.00% 0.678 77.83% 

exp5 59.20% 0.663 66.30% 1.678 28.90% 1.845 66.10% 0.731 76.10% 

exp6 60.80% 0.646 64.60% 1.694 27.80% 1.65 68.00% 0.766 76.70% 

exp7 60.30% 0.62 62.00% 1.718 27.00% 1.845 67.40% 0.701 75.20% 

exp8 58.70% 0.602 60.20% 1.751 26.10% 1.758 66.50% 0.758 77.20% 

exp9 60.80% 0.617 61.70% 1.792 26.10% 2.052 63.70% 0.830 73.30% 

exp10 59.30% 0.667 66.70% 1.83 26.10% 2.214 64.30% 0.694 76.09% 

exp11 58.20% 0.654 65.40% 1.858 26.30% 1.735 67.80% 0.748 74.60% 

exp12 58.40% 0.626 62.60% 1.874 25.40% 1.979 65.40% 0.784 74.80% 

AVG 60.23% 0.651 65.13% 1.729 27.16% 1.822 66.85% 0.740 75.77% 

CEL stands for cross-entropy loss.  
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Furthermore, Table 4-10 shows the performance of different DL models in 

conducting PR-level classification. It can be seen that the proposed MMDT 

demonstrates significant superiority in PR classification compared with other state-of-

the-art models. For other models, similar to the JPT prediction, the transformer-based 

model performs better and achieves an accuracy of 66.85%. While it is noticeable that 

still with the sequential information, the LSTM model performs poorly and can be 

barely trained. DNN is seen as more competitive in performing the PR level than JPT. 

While it is noted that the DNN model achieves a less cross-entropy loss (0.651) 

compared with the proposed MMDT, the accuracy of the DNN model is not very high, 

which suggests the overconfidence of the model in making incorrect classifications.  

 

Sensitivity analysis of important parameters 

In this section, the impact of important parameters on the model performance of 

both tasks is examined. First, we test the effect of changing the weight α that determines 

the contribution of the two output layers to the joint loss. The default value of α in 

precious experiments is 1. As the two errors are of different magnitudes, it is desired to 

identify the best α that facilitates the execution of the two tasks. Specifically, we 

conduct a series of computational experiments with different values of α = {0.25, 0.5, 

0.75, 2, 3}. The results of α = 1 are omitted, as it has been displayed in previous sections. 

Table 4-11 and Table 4-12 show the effect of variation of weight α on the JPT prediction 

and PR level classification. Figure 4-6 further plots the changes of (i) MSE and MAPE 

of JPT prediction and (ii) CE loss and classification accuracy of PR level classification 

along with varying α.   

(1) Effect of the weight in joint loss on the performance 

From Table 4-11, it can be seen that when α = 0.75, the MAPE reaches the minimal 

value of 6.15%. Also, the MSE reaches a minimal value. When α increases to 2, the 
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performance significantly worsens. However, when α = 3, the prediction accuracy 

increased compared with when α = 2. This result suggests that adding the proportion of 

MSE loss in the joint loss may slightly benefit JPT prediction performance. However, 

the performance is worse compared with placing the other loss with proper weight.   

 Table 4-12 shows the effect of changing α on the PR classification task. It can be 

seen that when α takes a small value, the classification accuracy is poor. Along with the 

increase in weight, the loss is narrowed and the accuracy is greatly improved. Especially, 

when α = 0.75, the prediction accuracy reaches the highest and when α = 1, the CE loss 

is reduced to the minimum level. However, when the α further increases (to 2, 3), the 

prediction performance largely deteriorates. The results suggest that the CE loss should 

have a weight slightly less than the weight of the MSE loss of the JPT prediction so that 

the model can achieve superior performance in PR classification. This finding justifies 

the significance of co-learning. When the JPT loss contribution is too small, the PR 

classification task cannot effectively learn from the training of the JPT prediction task. 

However, when the contribution of JPT loss is too large, the learning of PR 

classification is disturbed. A middle value (e.g., 0.75, 1) benefits both tasks. 

Table 4-11. Sensitivity analysis of weight α on JPT prediction 

  α = 0.25 α = 0.5 α = 0.75 α = 2 α = 3 

  
JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

exp1 66.49 8.37% 70.43 9.95% 33.23 6.41% 59.50 9.35% 57.73 9.17% 

exp2 51.68 7.00% 44.54 6.99% 49.33 7.33% 92.56 11.66% 69.46 9.42% 

exp3 77.63 10.08% 46.36 7.31% 38.84 7.45% 61.69 10.43% 68.28 7.86% 

exp4 64.22 8.38% 39.17 6.68% 35.45 6.12% 60.89 10.35% 53.69 7.47% 

exp5 69.71 7.87% 43.40 6.18% 33.83 5.26% 76.45 10.13% 45.61 7.91% 

exp6 192.67 13.76% 47.70 7.56% 39.20 6.46% 50.41 8.36% 78.78 9.57% 

exp7 71.52 9.18% 65.45 8.32% 35.50 5.19% 100.20 13.00% 67.69 7.87% 

exp8 47.85 7.37% 47.68 7.29% 42.84 6.23% 59.50 9.35% 52.35 8.58% 

exp9 65.69 9.22% 49.87 8.39% 33.36 4.90% 73.02 10.73% 59.11 7.36% 

AVG 78.61 9.02% 50.51 7.63% 37.95 6.15% 70.47 10.37% 61.41 8.36% 
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Table 4-12. Sensitivity analysis of weight α on PR classification  

  α = 0.25 α = 0.5 α = 0.75 α = 2 α = 3 

  
PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

exp1 0.96 68.04% 0.88 75.00% 0.760 76.74% 1.07 60.43% 1.29 49.35% 

exp2 0.77 74.13% 0.77 78.26% 0.860 75.87% 1.02 60.65% 1.28 47.17% 

exp3 0.95 69.35% 0.95 72.17% 0.661 78.91% 1.05 58.26% 1.43 42.17% 

exp4 0.85 69.57% 1.09 67.61% 0.850 76.09% 1.05 60.00% 1.41 42.83% 

exp5 1.08 65.22% 0.97 71.96% 0.702 78.26% 1.09 58.91% 1.36 46.30% 

exp6 1.54 54.57% 0.88 73.26% 0.665 79.57% 1.04 61.74% 1.39 45.22% 

exp7 1.08 67.17% 0.90 73.26% 0.930 79.57% 1.02 61.30% 1.49 43.04% 

exp8 0.79 71.96% 0.77 76.96% 0.642 78.26% 1.07 60.43% 1.37 46.30% 

exp9 0.88 69.78% 1.05 69.35% 0.800 79.57% 1.01 61.09% 1.42 46.09% 

AVG 0.99 67.75% 0.92 73.09% 0.763 78.09% 1.05 60.31% 1.38 45.39% 

 

 

Figure 4-6. MSE, MAPE, CE loss, Accuracy changes with varying weight α 
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Figure 4-7. ROC curves for multiple classes 

A deeper look is then paid to the PR classification result of each PR level. ROC 

8 (b) α = 0.5 8 (a) α = 0.25 

8 (d) α = 1 8 (c) α = 0.75 

8 (f) α = 3 8 (e) α = 2 
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curves are generally used to evaluate the performance of binary classifiers, which can 

demonstrate the trade-off between true-positive rate (TPR) and false-positive rate 

(FPR). In the ideal situation, the ROC curve will reach the top-left corner, where the 

TPR is 1 and the FPR is 0. The ROC curves (under the best case in the training epochs) 

are plotted for all classes involved using the One-vs-Rest strategy (OvR), which is to 

take one class as the positive class and the remaining classes as the negative class. Also, 

the micro- and macro-averaged ROC curves are plotted for the entire PR classification 

task to see the overall classification performance. It can be seen in Figure 4-7 that the 

macro-averaging ROC curve almost overlaps with the micro-averaging ROC curve, 

suggesting that our classification task is barely influenced by imbalanced data.  

Moreover, from the ROC curves with different α, it can be seen that the best 

classification performance is reached when α=0.75, with the area under the curve (AUC) 

reaching 0.97. From Figure 4-7, it is also seen that, among all classes, the best 

classification performance is achieved for class 0, which is followed by class 1. It is 

worth noting that the classification accuracy for class 5 is also high in relative, of which 

the AUC reaches 0.97 when α=0.75 and equals 0.95 when α=0.25. While the 

classification accuracy for the middle three classes (classes 2, 3, and 4) is relatively 

weak. These results suggest that it is relatively difficult to distinguish between the three 

classes with middle PR, as the similarities they share make the determination of the 

decision boundaries relatively difficult. Nevertheless, the proposed framework can 

effectively identify and correctly classify the extreme cases that lead to significantly 

slow or fast PR rates. This finding is important for controlling the production process, 

as extreme cases generally make large interruptions to the production process, which 

can be effectively identified by the proposed method.   
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(2) Effect of sequence length on the performance 

In the last section, the impact of sequence length on the prediction and 

classification performance is tested. Specifically, the length of involved historical jobs 

varies from 2 to 7, which means the whole sequence length considered varies from 3 to 

8 (including the one under prediction). As involving 5 historical jobs is the preliminary 

model setting, the results have been shown in the previous sections. As shown in Table 

4-13, Table 4-14, and Figure 4-8, it is clear that for the PR classification task, when the 

sequence length is 5, the model can achieve the best average performance in reducing 

the CE loss and enhancing the classification accuracy (which can reach 77.29% on 

average). When the sequence length is too short or too long, the classification 

performance deteriorates. Then, for JPT prediction, along with the increase of sequence 

length, the JPT prediction MSE loss and MAPE loss both see a downward trend at first 

and reach the minimal with the sequence length of 6. With a further increase in the 

sequence length, the prediction performance worsens. It suggests that the JPT 

prediction performance and PR classification accuracy are affected by the predecessors. 

As time goes by, the prior jobs far ahead will have little impact on both indicators.  

Table 4-13. Comparisons of different sequence lengths on JPT prediction  

  seq_len = 2+1 seq_len = 3+1 seq_len = 4+1 seq_len = 6+1 seq_len = 7+1 

  
JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

JPT 

MSE 

JPT 

MAPE 

exp1 73.92 10.23% 62.54 9.48% 45.57 6.36% 53.28 9.20% 44.24 8.00% 

exp2 52.49 9.11% 45.81 7.32% 49.34 8.28% 52.48 8.75% 78.13 9.17% 

exp3 55.49 8.45% 62.08 8.70% 49.18 9.66% 78.55 11.40% 43.42 7.46% 

exp4 37.17 7.69% 50.63 7.95% 50.70 7.40% 45.81 7.86% 45.15 7.86% 

exp5 58.65 9.18% 86.93 10.05% 41.51 7.58% 55.58 9.43% 57.33 8.89% 

exp6 89.59 9.78% 39.86 7.38% 43.26 8.95% 62.53 9.98% 49.04 8.23% 

exp7 43.31 7.98% 55.26 8.12% 43.93 7.90% 56.03 9.25% 55.79 8.24% 

exp8 42.60 7.20% 44.57 7.31% 32.53 5.60% 57.59 10.35% 39.09 7.14% 

exp9 38.47 7.39% 36.40 7.21% 71.11 8.09% 65.27 11.21% 63.52 9.00% 

AVG 54.63 8.56% 53.79 8.17% 47.46 7.76% 58.57 9.72% 52.86 8.22% 
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Table 4-14. Comparisons of different sequence lengths on PR classification 

  seq_len = 2+1 seq_len = 3+1 seq_len = 4+1 seq_len = 6+1 seq_len = 7+1 

  PR loss 
PR 

accuracy 
PR loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

PR 

loss 

PR 

accuracy 

exp1 0.87 68.04% 1.22 57.61% 0.74 78.04% 0.78 71.30% 1.01 65.22% 

exp2 1.03 63.04% 1.28 57.83% 0.77 75.65% 0.82 66.30% 1.13 60.22% 

exp3 1.09 65.22% 1.33 48.91% 0.71 78.04% 0.90 62.61% 1.02 65.65% 

exp4 1.05 64.13% 1.19 57.17% 0.79 75.22% 0.82 66.52% 1.05 62.83% 

exp5 1.02 64.13% 1.17 55.00% 0.69 79.13% 0.89 62.61% 1.20 59.57% 

exp6 1.23 61.96% 1.16 58.91% 0.71 78.70% 0.83 64.57% 1.28 58.70% 

exp7 1.06 62.17% 1.20 58.26% 0.86 73.70% 0.85 67.17% 1.12 62.17% 

exp8 1.14 63.48% 1.23 59.35% 0.76 78.26% 0.79 71.09% 1.13 63.26% 

exp9 1.06 65.43% 1.23 55.65% 0.72 78.91% 0.85 65.87% 1.20 59.78% 

AVG 1.06 64.18% 1.22 56.52% 0.75 77.29% 0.84 66.45% 1.13 61.93% 

 

 

Figure 4-8. MSE, MAPE, CE loss, Accuracy changes with varying sequence lengths 
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4.5 Summary 

This study is motivated by the operating issues of a real-world production system. 

The effect of various real-world factors causes discrepancies in the production time of 

similar tasks. To capture such influences and promote scheduling efficiency, the study 

proposes to simultaneously predict the job processing time (JPT) and processing rate 

(PR) level to better understand and capture production status. A multi-module supported 

dual-task learning model (MMDT) is thus proposed. Extensive computational 

experiments show that the proposed model can significantly enhance the accuracy of 

PR classification and JPT prediction compared with other benchmarks. Further ablation 

studies show that the information captured by different input modules from the three 

levels (i.e., direct influence, adjacent influence, and sequential influence) is useful in 

correctly understanding PR variations. Also, both tasks benefit from learning from the 

representation shared by each other. 

 

Managerial Implications 

By implementing the proposed method, a timely alarm/indication of machine 

status or task-resource alignment degree can be provided to operators. Based on the 

most recent system information and the predictive indicators, operators can get an idea 

of when there is an inefficient alignment between the task to be executed and resources 

allocated to it, (e.g., materials, machines, operators) and even whether environmental 

factors benefit the execution or not. Therefore, resources can be adjusted promptly 

ahead of implementation (e.g., changing the task to another machine/operator, or 

adjusting the environmental elements). Besides, the predictive model also may help to 

identify useful patterns from historical data. More specifically, it may derive which 

combinations of parameters can better support a specific type of job. By utilizing this 

knowledge, wiser resource planning and scheduling decisions can be further developed.  
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The proposed learning model adopts the co-learning mechanism, which can 

leverage the synergy between two learning tasks. It is therefore important to identify 

learning tasks with inherent linkage or knowledge sharing. We conduct sensitivity 

analyses, which show that the weight that controls the proportion or contributions of 

the two loss functions in the joint loss function plays a vital role in model performance, 

which should be carefully chosen. The experiments conducted suggest 0.75 or 1 to be 

a good choice.  

Moreover, it is shown that the sequence length involved will affect the prediction 

accuracy for both learning tasks. However, the results also suggest that even though the 

sequential effects should be considered, they can have negative effects if the sequence 

of prior work involved is too long. Experiments of both tasks suggest that involving too 

many prior jobs (over 5) will increase training difficulties or even impair the prediction 

and classification accuracy.   

Through ROC curves of separate PR levels, it is discovered that middle-class tasks 

can be regarded as fluctuating around the average value. Determining decision 

boundaries for these classes is relatively difficult. However, the proposed MMDT can 

very effectively identify extreme cases when PR is very high or low. Since extreme 

cases with significant deviations from the average level have a more significant 

disturbance or impact on normal production, it will be very helpful to apply the 

proposed methods to achieve a timely detection of abnormal situations.  
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Chapter 5. Context-based PR Guided Scheduling17 

The investigated job scheduling problem is based on the real demand of a major 

printing company in China. Historical data were collected from different departments 

of the company, which can be categorized into information related to engineering, order, 

material inspection, technician, production, and processing environment (Details are 

presented in Chapter 4). As concerned in Chapter 1, the JPR of the same job may vary 

under different contexts that are defined by multiple job-specified factors and the 

position in the job sequence. Thus, a major aim of this study is to derive practical and 

efficient scheduling approaches able to flexibly deal with variabilities in the processing 

context. 

 

5.1 Problem Explanation and Preliminary Model18 

The scheduling of jobs can be extracted as a parallel machine scheduling problem 

with a set of jobs (printing jobs) 𝐽 = {1, 2, … |𝐽|} to be assigned and sequenced on a 

set of identical machines 𝑀 = {1, 2, … |𝑀|} . Each machine 𝑚  is operated by an 

operator 𝑜 belonging to 𝑂 = {1, 2, … |𝑂|}. Operators work either a daily shift or a 

night shift, with each shift being 8 hours (any job that spans two shifts is split into two 

jobs performed by different operators). Our task is to assign jobs to operators in a proper 

sequence to minimize the total completion time of processing all jobs. As it is a 

common assignment problem, the preliminary model can be easily formulated using a 

position-based modelling approach. 

 
17 Most part of this chapter is included in Sun, Y., Chung, S.H., Choi, T.M., & Wang, Y. (2024). Feature-

Driven Production Scheduling Systems: Unveiling and Exploiting Job Processing Rate Dependencies. 

IEEE Transactions on Systems, Man and Cybernetics: Systems, under review. 
18 As a remark, meanings of the notations appearing in Chapter 5 below are only applicable to this 

chapter. 
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(PM) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑝𝑖,𝑜,𝑘 ∙ 𝑥𝑖,𝑜,𝑘

𝑖𝐽𝑜𝑂𝑘𝐾

 (1) 

 ∑ ∑ 𝑥𝑖,𝑜,𝑘

𝑘𝐾𝑜𝑂

= 1,   ∀𝑖𝐽 (2) 

 ∑ 𝑥𝑖,𝑜,𝑘

𝑖𝐽

≤ 1,   ∀𝑘𝐾, 𝑜𝑂 (3) 

 ∑ ∑ 𝑝𝑖,𝑜,𝑘 ∙ 𝑥𝑖,𝑜,𝑘 ≤ 𝑈𝐵𝐿,

𝑘𝐾𝑖𝐽

    ∀𝑗𝑂 (4) 

 𝑥𝑖,𝑜,𝑘{0, 1} (5) 

The parameter 𝑝𝑖,𝑜,𝑘  is the processing time of job 𝑖  to be performed by 

operator 𝑜  (on the corresponding machine) in position 𝑘  of the processing 

sequence. The decision variable 𝑥𝑖,𝑜,𝑘 denotes whether a job 𝑖 is allocated to operator 

𝑜 at the execution position 𝑘. Constraints (2) ensure that each job is to be allocated to 

one operator in one position. Constraints (3) force that at most one job could be 

allocated to a position for each operator. Constraints (4) ensure that the upper bound 

(UBL) of a working period for an operator is not violated. Constraints (5) force 𝑥𝑖,𝑜,𝑘 

to be binary. 

Model PM provides a deterministic assignment model that allocates jobs to 

machines. However, as the JPR (and processing time) of job 𝑖 varies according to the 

specific execution contexts this basic model cannot capture such variations unless all 

possible scenarios are enumerated to obtain parameters 𝑝𝑖,𝑜,𝑘 under each circumstance. 

It is obviously unrealistic and inefficient due to the high computational overhead. 

 

5.2 Proposed Solution Architecture 

To effectively capture the influences of multiple variants under varying execution 

contexts and avoid the above computational challenge, this study proposes a context-

based branch-and-price heuristic approach with a four-tier solution architecture (as 

shown in Figure 5-1). Such a framework can incorporate the multi-factor effect in the 
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scheduling process (prediction layer) and enable the use of context-based JPR to guide 

the schedule generation process (optimization layers). It should be noted that different 

from conventional methods that treat parameter prediction and optimization as two 

independent steps (i.e., predict parameters first and feed them into optimization models), 

the proposed framework novelly integrates both. More specifically, the optimization 

layers provide the prediction layer with promising context information, and meanwhile, 

the CBPR derived by the prediction layer guides the optimization algorithm to further 

explore promising schedule solutions. The synergy between these two components 

enables both the effectiveness and efficiency of the proposed solution architecture. 

 

Figure 5-1. The four-tier solution architecture 

 

More specifically,  
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• Input layer (Detailed in Section 5.2.1) – receives and preprocesses a set of jobs 

(with job-related features) to be scheduled and passes the job information to 

Schedule Assignment layer.  

• Prediction layer (Detailed in Section 5.2.2) - captures CBPR with a proposed 

DeepPR model for Schedule Generation layer. After receiving the features passed 

from Schedule Generation layer, it supplements job-specified features (e.g., 

engineering requirements, materials) to form the complete execution context.  

• Optimization layers (Detailed in Section 5.2.3-5.2.5) - The optimization layers 

constitute a Schedule Assignment layer and a Schedule Generation layer, which are 

created based on the logic of column generation. 

o Schedule Assignment layer - determines which schedule received from the 

generation layer (including initial tentative schedules) should be adopted for 

each operator-machine pair. The strategy of creating tentative schedules (initial 

solution pool) both ensures feasibility and accelerates the computation. 

o Schedule Generation layer - iteratively produces promising schedules for 

individual operators with a proposed JPR-guided labelling algorithm enabled 

by the interaction with the prediction layer. More specifically, each time to 

decide whether a job should be included in the current schedule (i.e., the 

extension process), it provides information about the current operator/machine- 

and sequence-related information to the prediction layer for CBPR prediction.  

   

5.2.1 Input layer: Feature extraction for CBPR prediction 

From the historical records from sensors and ERP systems, enriched context-

related information can be obtained, including detailed information for processing 

starting/ending time, engineering requirements, orders, machine processing parameters, 
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materials, technical operator in charge, environments, and preceding jobs on the same 

machine (operator). Such abundant information provides a solid foundation for JPR 

prediction, while challenges arise in identifying available and critical features for 

scheduling and handling real-world data of high dimensions and multiple types (Gao et 

al., 2021). 

First, data cleaning was performed by visualizing outliers and deleting jobs with 

maximum or minimum values for each float-type area. Forms from heterogeneous 

sources, like production data (recorded by machines for each job) and environmental 

data (by sensors for each time step) were merged. One-hot encoding and ordinal 

encoding were applied for categorical and string-type columns, which unfortunately 

further increases the data dimension.  

Although feature reduction techniques like PCA-related methods are useful for 

dimension reduction, they may damage the internal structure of features (Gao et al., 

2021). Besides, considering our purpose to combine JPR prediction into the scheduling 

process, identifying representative and compact features benefits prediction efficiency. 

Thus, several feature engineering strategies are applied for feature extraction: 

• (Manual aggregation): using aggregated features to represent several pieces of 

information. For instance, the material batch number is used to involve quality-

related specifications; the number of setup works is used to simplify encoding 

strings that record setup works.  

• (Statistical correlation analysis): statistically calculating the correlation between 

features and labels and eliminating those with poor correlations.  

• (Noise reduction): eliminating columns showing poor distribution consistency 

between training samples and test samples.  

 

After applying the above strategies, the following informative features are 
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extracted to describe the context of a job from the job-specified aspect (Section B will 

further introduce the sequence-based aspect). Furthermore, we distinguish these 

features into two categories: static features and dynamic features. The static features 

are those predetermined with the printing jobs, while the dynamic features are obtained 

during the schedule generation process. 

 

Context Description from Job-specified Aspect 

Internal features External features 

Engineering:  Job Category (tc); 

Quantity/Workload (w); Customer Category 

(cc); Quality Grade (qg) 

Materials: Material Batch Number (mbn); 

Supplier (ms); Quantity (mq); Weight (mw); 

Length (sl); Width (sw) 

 

Operating: Operator Grade (opg); 

Machine speed (mss); Daily/Night shift 

(s); No. Setup jobs  

Environment: Temperature (et); 

Humidity (eh) 

 

 

Figure 5-2. An illustrative example of JPR prediction under different contexts 

 

5.2.2 Prediction layer: DeepPR model for CBPR prediction 

In practice, prior jobs can have a significant effect on the processing time of the 

succeeding job(s) in terms of setups and changeover time (e.g., material/ink swapping), 

operator status, and even machine performance and downtime. Thus, besides the job-
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specified features (specified in Section 5.2.1), JPR may also depend on its preceding 

jobs. Thereby, we consider the CBPR determined by two aspects as shown in Figure 

5-2: job-specified features and sequential-based information that embeds a series of 

preceding jobs executed by the same operator on the same machine.  

To capture variabilities in JPR under dynamic processing contexts, a learning 

model capable of extracting the dependencies between both aspects is needed. A 

DeepPR model is proposed to perform a regression task that predicts the JPR with 

context-based features (i.e., CBPR). As shown in Figure 5-3, the model contains two 

input modules, which are designed for extracting features from both job-specified and 

sequence-based levels. The direct influence module (DIM) takes job-specified features 

of job k with the size of 1×Dim_input (where Dim_input is the dimension of the features 

of job k) as input. It comprises several densely connected layers with ReLU activation 

function and dropout operations so that the direct influences from multiple input 

features can be extracted. The sequential influence module (SIM) extracts the inner 

pattern from the performed job sequence. It adopts a transformer encoder layer to 

embed a set of N preceding jobs into a 1×N×Dim_input matrix.  

To uncover information from the embedded matrix, two attention methods are 

applied in parallel, i.e., channel-wise attention and job-wise attention, to extract 

influences from the preceding jobs by weighing both the importance of features and the 

importance of each preceding job. The channel-wise attention component first uses a 

1D-convolution layer at the feature dimension to transform the influence of all features 

into a vector with 1×Dim_input dimension. A sigmoid function is then applied to 

transform the obtained vector into attention scores, which correspond to the weight of 

features implied by the predecessors involved. The scores are then applied to the 

original features. The obtained weighted feature vector is added to the original feature 

vector of the DIM so that the obtained feature map contains the sequence-based feature-
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wise effect. On the other hand, a simplified transformer decoder with attention and 

feedforward operations is applied to capture job-wise attention. By comparing the 

features of job k with the embedded N preceding jobs, the effect of each single prior job 

on job k can be acquired. 

The latent features derived by the dual input modules DIM and SIM are then fused 

by concatenation. In Figure 5-3, the output features of both modulesℝ8, while it is 

worth noting that the contribution of the dual input modules can be adjusted by 

changing the size of their output features. Finally, the CBPR is derived after several 

dense layers and dropout operations.  

 

Figure 5-3. DeepPR architecture  
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Section 5.3.1 compares the model performance with other state-of-the-art deep 

learning models, namely, transformer, LSTM, TCN, and DNN. Through extensive 

experiments, it is found that DNN models cannot well capture JPR variabilities without 

knowing positioning information. However, the JPR prediction accuracy can be largely 

improved when knowledge of preceding jobs is available. Therefore, sensitivity 

analysis regarding the length of time sequence is further carried out. Results show that 

the JPR prediction performance can be largely improved when the prediction window 

includes only two adjacent jobs, indicating that the JPR of one job is highly related to 

its immediate predecessor due to the involved changeover and status transition. Even 

though involving more predecessors in prediction may slightly improve the accuracy, 

it will significantly increase the computational burden. To balance the computational 

consumption and model performance, the processing context is defined by the job-

related features and features of the immediate predecessor and the DeepPR is used to 

implement further forecasting-embedded pricing.  

 

5.2.3 Optimization layers – Model reformulation and decomposition 

Following the problem setting in Section 5.1, the investigated problem aims to 

schedule a set of |𝐼| jobs to |𝑂| operators and each operator is in charge of one 

machine. The notations involved are presented in Table 5-1. 

 

Table 5-1. Notations 

Symbol Meaning 

I Set of printing jobs to be processed 

|𝐼| Number of printing jobs 

𝑆 Set of schedules added in the restricted master problem 

𝑠 Index of a schedule  
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𝑆𝑜 Set of schedules belonging to operator 𝑜 

𝑖, 𝑗 Index of printing jobs 

𝑂 Set of operators 

|𝑂| Number of operators 

𝑤𝑖 Workload/output quantity of job 𝑖 

𝑎𝑖,𝑠 Binary, which takes value 1 if job 𝑖 is included in schedule 𝑠, 0 

otherwise 
𝑃𝑅(𝑠(𝑖)) Processing rate derived under the certain processing context of job 𝑖 

in schedule 𝑠 
𝑐𝑠 Cost (completion time) of the schedule 𝑠 

𝐶𝑖(𝑠) Completion time of job 𝑖 in schedule 𝑠 

𝑦𝑠
𝑜 Binary variable, 1 if schedule 𝑠 of operator 𝑜 is adopted in the 

final solution, 0 otherwise 
 

As the operations of operators are independent of each other, it is natural to form 

job sequences for individual operators and later select the best solution that minimizes 

the total completion time required to complete the entire job set, i.e., one schedule for 

an operator/machine. Accordingly, the schedule-based model is formulated as below.  

(RM) 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑠 ∙ 𝑦𝑠

𝑜

𝑠𝑆

 (6) 

 
𝑠. 𝑡.      ∑ ∑ 𝑎𝑖,𝑠 ∙ 𝑦𝑠

𝑜

𝑠𝑆𝑜𝑜𝑂

≥ 1,   ∀𝑖𝐽 (7) 

 
∑ 𝑦𝑠

𝑜

𝑠𝑆𝑜

≤ 1,   ∀o𝑂 (8) 

 
∑ 𝑎𝑖,𝑠 ∙

𝑤𝑖

𝑃𝑅(𝑠(𝑖))
𝑖𝐼

≤ 𝑈𝐵𝐿 (9) 

 

𝑐𝑠 = ∑ 𝐶𝑖(𝑠)
|𝐼|

𝑖=1
= ∑ 𝑎𝑖,𝑠 ∙

|𝐼|

𝑖=1

𝑤𝑖

𝑃𝑅(𝑠(𝑖))
 (10) 

 
𝑦𝑠

𝑜{0, 1}. (11) 

Constraints (7) ensure that every job should be covered. Constraints (8) require 

each operator to be allocated with at most one schedule. Constraints (9) is transformed 
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from Constraints (4), indicating that the sum of processing time (determined by CBPR) 

of all jobs involved in a schedule should be less than the upper bound limit. Constraints 

(10) obtain the completion time or cost of a schedule by summing up the predicted 

processing time (at the corresponding positions in the schedule) of the jobs covered by 

the schedule. Constraints (11) are variable-type restrictions. 

To solve the (RM), it is decomposed into a restricted master problem (RMP) and 

a pricing subproblem (PS) following the logic of column generation. The decomposed 

models are solved at two layers respectively:  

(Schedule Assignment layer): iteratively solves a restricted problem that 

determines the allocation of schedules to operators. The schedules involved are 

continuously updated by solving problems at Schedule Generation layer.  

The RMP is stated as:  

(𝑹𝑴𝑷)     𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (6) 

             𝒔. 𝒕.     𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (7), (8), (10) 

𝑦𝑠
𝑜 ≥ 0,  ∀o𝑂, 𝑠𝑆 (12) 

Let 𝑢𝑖  and 𝑣𝑜  denote dual values associated with Constraints (7) and (8) 

respectively. The RMP reaches optimal if the reduced cost of any additional schedule 

𝑠 satisfies:  

𝑐𝑠 − ∑ 𝑎𝑖,𝑠 ∙ 𝑢𝑖

𝑠𝑆𝑜

− 𝑣𝑜 ≥ 0, ∀s𝑆𝑜 , 𝑜𝑂 

 

(Schedule Generation layer): solves a set of ( 𝑷𝑺(𝒐) ) to generate promising 

schedules with negative reduced costs for each operator 𝑜, which are added to the 

master problem for improving the master solution. When no columns with negative 

reduced cost can be found, the master problem reaches optimality. The pricing 

subproblem is formulated as: 
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(𝑷𝑺(𝒐))   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑐𝑠 − ∑ 𝑎𝑖,𝑠 ∙ 𝑢𝑖

𝑠𝑆𝑜

− 𝑣𝑜 

𝑠. 𝑡.      𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (9) 

Constraints (9) can be satisfied in pricing at the generation layer (detailed in 

Section D). If the optimal objective value is less than zero, the corresponding schedule 

𝑠 derived for operator 𝑜 can be added to the schedule pool 𝑆𝑜 of the operator 𝑜. The 

pricing subproblem terminates when no columns with negative reduced cost can be 

found for all operators. 

 

5.2.4 Schedule generation layer – CBPR-guided pricing 

The schedules are generated with the synergy between Schedule generation layer 

and the prediction layer. CBPR is dynamically predicted along with schedule 

generation to identify promising schedules for individual operators. Note that the 

subproblem PS(o) can be viewed as a 0-1 knapsack model, but the traditional dynamic 

programming method is computationally challenging because of the non-deterministic 

nature of job processing time and the demand for scheduling accuracy. We thus 

transform the subproblem PS(o) into an elementary shortest path problem with resource 

constraint (ESPPRC). A tailored CBPR-labelling algorithm is proposed to generate 

columns with negative reduced costs using dual information ( 𝑢𝑖  and 𝑣𝑜 ). Those 

columns are added to the master problem to improve the objective.  

By assigning printing jobs with increasing ID (according to the received timeline) 

and taking them as nodes within a network (connected in an ID-increasing direction), 

the labelling algorithm explores possible extensions to the next eligible jobs (rendering 

the total processing time to stay within the time limit/upper bound of work length). 

Moreover, we define the following label for a partial path 𝛼 currently extended to 
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node 𝑖 (𝑖 is the latest extended node in the path 𝛼) as: 𝐿𝑖
𝛼 = [𝑖, 𝛼, 𝑟𝛼, 𝑣𝛼 , 𝐷𝛼 =

{𝑑1
𝛼, 𝑑2

𝛼 , … 𝑑|𝐼|
𝛼  }, 𝑝(𝛼)], which is used to track current node 𝑖; ID of current path 𝛼; 

accumulated resource consumption 𝑟𝛼 by adding up all predicted processing time of 

selected jobs in 𝛼  (i.e., ∑
𝑤𝑗

𝑃𝑅(𝛼→𝑗)𝑗𝐼𝛼
, where 𝐼𝛼  is the set of selected jobs in 𝛼 , 

𝑃𝑅(𝛼 → 𝑗) denotes the predicted JPR by placing job 𝑗 as the next processing job in 

path 𝛼 and 𝑤𝑗 denotes the workload of job j); accumulated value 𝑣𝛼 (calculated by 

adding up all the reduced arc costs ∑ (
𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)𝑗𝐼𝛼

); vector recording node 

eligibility 𝐷𝛼 (consisting of elements 𝑑𝑘
𝛼); and ID of prior path 𝑃(𝛼) from which the 

𝛼 is extended (to derive the entire schedule in a backward direction).  

Before presenting the CBPR-labelling algorithm, we introduce the proposed node-

checking step and dominance rule, which play significant roles in accelerating the 

pricing process. First, after each node extension, the following node-checking step is 

performed to update the reserved 𝐷𝛼, 𝐽𝑉𝑁 is the set of nodes that have been visited. 

𝑑𝑗 = {

1,  𝑓𝑜𝑟 𝑟𝛼 +
𝑤𝑗

𝑃𝑅(𝛼 → 𝑗)
≤ 𝑈𝐵𝐿

0, 𝑓𝑜𝑟 𝑗𝐽𝑉𝑁 𝑶𝑹 𝑟𝛼 +
𝑤𝑗

𝑃𝑅(𝛼 → 𝑗)
> 𝑈𝐵𝐿

 

After checking for each node, the vector 𝐷𝛼  records the remaining nodes (of value 

1) that are eligible to be further visited by path 𝛼. Different from the generic ESPPRC 

problem, we consider generating schedules in a node ID-increasing direction. Besides, 

even though JPR fluctuates with changing processing contexts, it mainly depends on 

the immediate predecessor and job-specified features. Consequently, tailored 

dominance operations can be developed and implemented between partial paths ending 

at the same node as the succeeding jobs only depend on the effect of the same preceding 

node. Proposition 1 provides the dominance rule. We prove it holds under different 

possible circumstances so as to ensure a safe elimination of unpromising paths/partial 
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schedules, which enhances the solution efficiency of the CBPR-labelling algorithm. 

Proposition 5.1. For two paths (partial schedules) 𝛼 and β ended at node 𝑖, β is 

dominated by 𝛼 if: (i) 𝑣𝛼 ≤ 𝑣𝛽 AND 𝑟𝛼 ≤ 𝑟𝛽 with at least one strict inequality, or (ii) 

𝑣𝛼 < 𝑣𝛽, 𝐷𝛼 = 𝐷𝛽, AND 𝑟𝛼 + ∑
𝑤𝑗

𝑃𝑅(𝛼→𝑁𝑗→𝑗)𝑗𝐷𝛽 < 𝑈𝐵𝐿, where 𝐷𝛽 is the set of eligible 

nodes that can be extended after node 𝑖 and 𝑁𝑗(⊆ 𝐷𝛽) denotes the set of eligible 

nodes between nodes 𝑖 and 𝑗. 

Proof. Conditions (i) are obtained by Pareto optimality. As 𝑟𝛼 ≤ 𝑟𝛽  implies  

𝐷𝛼 ≤ 𝐷𝛽 , comparisons of 𝐷 are not needed. Conditions (ii) enhance dominance by 

removing more paths when 𝑣𝛼 < 𝑣𝛽 but 𝑟𝛼 > 𝑟𝛽 (𝐷𝛼 = 𝐷𝛽 implies the number of 

remaining unexplored nodes is equal for 𝛼 and 𝛽). We demonstrate that conditions (ii) 

hold.   

Case I. Extending all 𝑗𝐷𝛽 benefits the solution.  

The accumulated value of the partial path 𝛼  increases (
𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)  by 

extending node j. As 𝑟𝛼 + ∑
𝑤𝑗

𝑃𝑅(𝛼→𝑁𝑗→𝑗)𝑗𝐷𝛽 < 𝑈𝐵𝐿 guarantees that path 𝛼 can legally 

incorporate all remaining nodes in path 𝛽 , the final accumulated value for path 𝛽 

follow 𝑣𝛼 + ∑ (
𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)𝑗𝐷𝛽 < 𝑣𝛽 + ∑ (

𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)𝑗𝐷𝛽 , and thus 𝛽  can be 

dominated by 𝛼. 

Case II. Extending only partial 𝑗𝐷1
𝛽

 (𝐷1
𝛽

⊂ 𝐷𝛽) benefits the solution, which may 

result in JPR changes due to positioning variability (we only prove cases where JPR 

uniformly increasing or decreasing, while the mixed scenario can be easily extended). 

Case II(a). JPRs are enlarged due to positioning variability. The enlarged JPR 

results in decreased processing time. This guarantees 𝑟𝛼 + ∑
𝑤𝑗

𝑃𝑅(𝛼→𝑁𝑗→𝑗)𝑗𝐷1
𝛽 < 𝑈𝐵𝐿, 

which implies the extension is feasible for path 𝛼. The dominance rule can cover this 

situation and the proof is easily derived similar to case I by replacing 𝑗𝐷𝛽 with 𝑗𝐷1
𝛽

. 
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Thus, 𝛽 can be dominated by 𝛼. 

Case II(b). JPR decreases due to positioning variability, which may cause the 

infeasibility of path 𝛼  to achieve such an extension. However, this case requires 

∑
𝑤𝑗

𝑃𝑅(𝛼→𝑁𝑗→𝑗)𝑗𝐷1
𝛽 > ∑

𝑤𝑗

𝑃𝑅(𝛼→𝑁𝑗→𝑗)𝑗𝐷𝛽  . Also, from the duality theory, 𝑢𝑗 ≥ 0 (𝑗𝐷𝛽). 

Thereby, the accumulated value of such an extension of path 𝛽  is 𝑣𝛽 +

∑ (
𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)

𝑗𝐷1
𝛽 > 𝑣𝛽 + ∑ (

𝑤𝑗

𝑃𝑅(𝛼→𝑗)
) − ∑ 𝑢𝑗𝑗𝐷1

𝛽𝑗𝐷𝛽 ≥ 𝑣𝛽 + ∑ (
𝑤𝑗

𝑃𝑅(𝛼→𝑗)
− 𝑢𝑗)𝑗𝐷𝛽 . 

Thus, the extended 𝛽 can be dominated following Case I.                  (Q.E.D) 

Remark. The above conditions imply that any extension of path 𝛽 after node 𝑖 

until the final node can be replicated for path 𝛼 and path 𝛼 can achieve a smaller 

reduced cost. Moreover, the algorithm prefers positioning jobs in a JPR-increasing 

direction. However, as comparisons of the last condition bring extra computational 

burden and are less effective when exploring nodes far ahead of the destination, we can 

adjust when to involve Conditions (ii) in implementation.  

By integrating the node-checking step and dominance checking for acceleration 

(Proposition 1), the CBPR-labelling algorithm is as follows. 

Proposed CBPR-Labelling Algorithm 

Input: Set of jobs I, Dual values U, transformer model, UBL  

Initialization: O-label=[s, 0, 0, 0, [1, 1, …1],  NONE] 

SET T_LIST = [I]  # the array of set of jobs to schedule 

WHILE T_LIST ≠ Ø DO 

CHOOSE the first node i in T_LIST and GET all non-dominated paths at 

the node 𝑃𝑖. 

FOR path 𝛼 in 𝑃𝑖 DO 

{* Path extension step *}  

GET new label β extended to a new node (suppose j) 

{* Node checking step *} 

FORALL unvisited nodes k𝐽𝑈𝑁 GET 𝑤𝑗/𝑃𝑅(𝛼 → 𝑘) and UPDATE 

𝐷𝛽 

GET all non-dominated paths at node j, 𝑃𝑗  and ADD 𝛽 to 𝑃𝑗 
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{* Dominance checking step *} 

FOR path  in 𝑃𝑗 APPLY dominance rules 

IF  is dominated by 𝛽, THEN REMOVE   

ELSE IF 𝛽 is dominated by , THEN REMOVE 𝛽 

 

5.2.5 Schedule assignment layer - Acceleration strategies 

Several acceleration strategies are employed to enhance algorithm implementation. 

First, following the literature, multiple columns (obtained from pricing) are returned to 

the master problem instead of only the one with the most negative reduced cost. 

Second, due to the shortage of columns in the first iterations, the dual values provided 

can barely reflect the real situation. An initial solution pool is established with a set of 

feasible schedules (Preparation layer in Fig. 1), in which randomly a considerable 

number of job sequences are generated by using the pre-trained transformer to predict 

the JPR within the fixed initial schedule patterns. In this way, the algorithm can be 

started with relatively accurate dual values. Thus, a large portion of initial iterations 

approximating dual values are skipped. In addition, as the constraint of forcing the 

number of schedules that an operator can severely restrict the feasibility of the initial 

master problem, we remove Constraints (8) first to obtain relatively accurate dual 

values at the beginning and then re-introduce these constraints to derive feasible 

solutions for the next iterations. 

To achieve a balance between solution quality and CPU time, a heuristic rounding 

strategy is adopted for branching. After solving the master model to optimality, the 

column with the largest value that approximates one is fixed and all settled jobs are 

removed from the following subproblems. This method is repeated until the schedules 

for all operators are determined. 
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5.3 Computational Experiments 

The experiments are conducted in two main aspects. The performance of the 

proposed DeepPR is first compared with other benchmark models on the previously 

introduced dataset. Sensitivity analysis for the length of preceding jobs involved based 

on the DeepPR is carried out to uncover the sequence-based influence. Then, the 

performance of the proposed CBPR-guided B&P heuristic scheduling approach 

(CBPR-guided approach for short in the following) is presented by comparing its 

performance with the scheduling results based on the printing company’s practice.  

The deep learning models are coded with PyTorch 1.11. The optimization 

framework is coded in Python. The Python API of the commercial solver CPLEX, 

DOcplex (version 2.23) is used to solve the relaxed linear programming model of the 

master problem. The models are run on a computer with a 1.9GHz i9 CPU, 64G RAM, 

and Windows 11 system. 

After data processing, we get N = 2620 pieces of data in total. The data are 

arranged according to the executed order, with a single operator working for a shift 

(eight hours) and then turning to another operator for the next shift. Printing jobs across 

two shifts are split into two jobs with corresponding operators and workload (calculated 

by actual time proportion). Five categories of printing jobs are involved, namely, 

Hardcover Bound (HCB), Paperback (PB), Loose-leaf Bound (LLB), Folding Box 

(BXF), and Saddle Stitch (SS). The data are divided into a training dataset and a test 

dataset with a ratio of 8:2. In this way, 2096 pieces of job records are obtained for 

training, and 524 job data records for testing. 

 

5.3.1 Comparison with other benchmarks 

To see the performance of the proposed DeepPR, the following benchmarking 
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models are applied: TCN-based model, transformer-baed model, LSTM, and DNN. It 

should be noted that the former three models are promising DL models in handling 

time-series data. Those models take both a set of ordered preceding jobs and the job-

specified features as inputs, and thus we name them sequence-based models. On the 

contrary, for the DNN model, jobs are treated as independent, and thus we call it non-

sequence model. Adam is used as the optimizer. For the JPR regression task, the label 

JPR is derived with JPR = output quantity/(setup time + machinery processing time + 

human operating time). The criterion selected to train the models is the mean square 

error (MSE). The mean absolute percentage error (MAPE) is calculated as another 

measure for comparison.  

To compare the performances of the models, a grid search is performed for model 

hyperparameter tuning, as shown in Table 5-2. After 150 epochs of training, the 

performances of all models converge. Table 5-3 records the most promising parameters 

for each model and the results of the average values for 10 trials. Figure 5-4 plots the 

MSE loss curve on the test dataset for the involved models. Noticing that the average 

time for processing a job is around one hour and thus the average number of jobs that 

can be processed in one shift is around eight. Thus, it is reasonable to take the average 

value of four as the sequence length for comparing the prediction performance of 

sequence-based models. Later, a sensitivity analysis is conducted to explore the effect 

of sequence length on the prediction performance.   

From Table 5-3, From Table III, it can be seen that the DeepPR can achieve better 

results in comparison with other benchmarks by reducing the MSE to 42.6 and MAPE 

to 5.53%, which shows the effectiveness of the proposed model. This result is followed 

by the Transformer-based model, which is well-known for its powerful attention 

allocation mechanism. The other two sequence-based models (i.e., TCN-based model 

and LSTM) are less competitive in achieving satisfiable results. Additionally, compared 
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with these time-series models, the structure of the multiple inputs of DeepPR brings the 

benefits of adjusting the contribution of different input modules by controlling the 

number of hidden cells when combining the latent features extracted from both modules, 

which can bring more flexibility.  

 

Table 5-2. Grid search for model hyperparameters 

Model Hyperparameters Range 

Transformer-

based model 

Number of encoder layers  

Number of decoder layers 

Feedforward dimensions 

Number of heads 

Learning rate 

[1, 2] 

[1, 2] 

[128, 64] 

[1, 3] 

[1e-2, 1e-3] 

TCN-based 

model 

Number of channels 

1D-Kernel size 

Dilation  

Number of layers 

Learning rate 

[16, 8, 4], [32, 16, 8], [32, 8, 4] 

2 

[No dilation, [layer_index+1]] 

3 

[1e-2, 1e-3] 

LSTM Number of hidden units  

Number of LSTM layers 

Dropout rate 

Learning rate 

[16, 32] 

[1, 2] 

[0.2, 0.3] 

[1e-2, 1e-3] 

DNN Number of layers 

Number of neurons on each 

layer 

Dropout rate 

Learning rate 

[2, 3, 4, 5] 

[64, 32], [32, 62, 32], [128, 64, 32, 16], [128, 

64, 32, 16, 8] 

[0.2, 0.3] 

[1e-2, 1e-3] 

DeepPR Concatenating units of DIM 

Concatenating units of SIM 

Number of encoder layers 

Number of decoder layer 

Number of multi-heads 

1D-kernel size 

[4, 8, 16] 

[4, 8, 16] 

[1, 2] 

[1, 2] 

3 

[3, 1] 

 

Then, for DNN models which predict only using job-specific features, the best 

performance they can achieve is 243.3 of MSE and 13.34% of MAPE, which are 
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significantly worse than the sequence-based models. Besides, the MSE loss curve 

shows that the DNN model is less stable than other models due to the lack of sequence-

related information. This justifies that the context should be built based on both the job-

related features and its sequentially positioning information. 

 

Table 5-3. Prediction results by different learning models 

Models Parameters combination 
Avg. 

MSE 

Avg. 

MAPE 

TCN-based model 
#channels [32, 8, 4], dilation size [1, 2, 3], 

dropout 0.2, learning rate1e-3 
126.8 9.59% 

Transformer-based 

model 

# encoder layers 1, # decoder layers 1, # 

feedforward 128, #heads 3, learning rate 

1e-3 

57.4 6.61% 

LSTM 
#layers 1, #hidden units 32, dropout rate 

0.2, learning rate 1e-2 
92.2 8.45% 

DeepPR 

#DIM units 8, #SIM units 8, #encoder 

layer 1, #decoder layer 1, #feedforward 32, 

kernel size [3, 1], learning rate 1e-3 

42.6 5.53% 

DNN 

#layers 4 respectively with [128, 64, 3

2, 16] neurons, dropout rate 0.2, learni

ng rate 1e-2 

243.3 13.34% 

 

 

Figure 5-4. MSE loss curve of representative deep learning models 
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Table 5-4. Prediction results under varying sequence length 

Sequence 

length 
Avg. MSE Avg. MAPE 

2 59.6 6.44% 

3 58.4 6.42% 

4 42.6 5.53% 

5 54.1 6.10% 

6 66.2 6.47% 

 

 

Figure 5-5. Prediction performance visualization for different sequence lengths 

 

Sensitivity analysis is conducted for sequence-length variation. The sequence 

length (Seq_len) varies from two (only one immediate predecessor and the job to be 

predicted) to six based on the proposed DeepPR. The results of the average MSE and 

MAPE of 10 trials are summarized in Table 5-4. Figure 5-5 visualizes the predicted 

values for the first 60 jobs extracted from the test dataset by DeepPR with different 

sequence lengths and the ground truth.  

The results imply that along with the increase in sequence length, the prediction 

error first goes down and then goes up. It implies that properly incorporating a few 

predecessors is helpful for JPR prediction. The performance, however, tends to 
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deteriorate when involving excessive predecessors (the relationships are very weak and 

interfere with the training). Furthermore, it is noticeable that by adopting two as the 

sequence length, the prediction performance is already largely improved compared with 

non-sequence model (i.e., DNN) with MSE 59.6 and MAPE 6.44%. Therefore, the 

execution of the immediately preceding job has a high effect on its immediate successor 

due to possible changeover operations and extra setups. 

Since the slight discrepancy in predicting accuracy will have a small influence on 

the schedule quality but significantly benefit computational efficiency, the sequence 

length of two is taken as the learning pattern to implement CBPR-guided scheduling. 

 

5.3.2 Comparisons of scheduling performance 

Then, the performance of the proposed CBPR-guided approach is verified by 

comparing its performance with the scheduling results based on the company’s practice. 

By the company’s current practice, a simple linear relationship between the actual 

processing time of a job and the workload (printing quantity) of the job is considered. 

Thus, the processing time for a job is estimated by timing the output quantity of the job 

with a ratio obtained according to experience (i.e., historical total workload/historical 

total time consumption). We call this scheduling approach the traditional method. As a 

comparison, by using the proposed CBPR-guided approach, the JPR will be predicted 

under contexts dynamically produced during pricing, and the scheduling algorithm will 

generate schedules by allocating jobs to operators and placing them in suitable positions 

in the performing sequence as well.  

We test instances obtained by randomly sampling from the test dataset. Nine 

instances of different scales were generated, from 20 jobs to 100 jobs (the instance code 

contains information about the number of jobs, the number of shifts, and the number of 
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machines to be scheduled). Acceleration strategies are applied. The result comparison 

between the CBPR-guided approach and the traditional method is shown in Table 5-5. 

From the results, it can be seen that after embedding the CBPR prediction into the 

scheduling process, the model still can be efficiently solved within acceptable time 

limits. For small instances of 20 jobs in one shift and processed on three machines, the 

CPU time needed is around 10 seconds. The instance of 100 jobs can be solved at 

around 1200s, which represents the workload for two days in four shifts. Moreover, 

schedules derived by the CBPR-guided method significantly reduced the total 

completion time by an average of 12.84% across all instances due to the increase in 

JPR under better schedule solutions that have considered the sequence-dependent 

relationship between adjacent jobs and the combined effect of a variety of job-specified 

factors related to engineering, operating, and environmental elements. 

 

Table 5-5. Comparison between prediction-based scheduling and current practice 

Instance 
CBPR-guided-

TOT 
Estimation-TOT Improving CPU time (s) 

20j 1s 3m 1277 1438 11.20% 13 

30j 1s 3m 1726 2006 13.96% 55 

40j 2s 3m 2517 2936 14.27% 136 

50j 2s 3m 3053 3488 12.47% 295 

60j 2s 3m 3564 4134 13.79% 245 

70j 3s 3m 4251 4909 13.40% 338 

80j 3s 3m 4784 5466 12.48% 587 

90j 4s 3m 5487 6167 11.03% 415 

100j 4s 3m 6284 7220 12.96% 1273 

CBPR-guided-TOT: Total operation time obtained by the CBPR-guided approach; Estimation-

TOT: Total operation time obtained by the empirical estimation-based scheduling method. 

 

To further verify the effect of the proposed scheduling method on the scheduling 

solution, computational experiments are conducted to uncover the effect of the CBPR-
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guided approach on scheduling solutions. To be specific, we compare the JPR changes 

of printing jobs belonging to different categories. From the historical data, five 

categories of printing jobs are involved, i.e.,𝐶𝐴𝑇 = {𝐻𝐶𝐵, 𝑃𝐵, 𝐵𝑋𝐹, 𝐿𝐿𝐵, 𝑆𝑆}. Due to 

different technical requirements, the JPR of these categories shows some discrepancies. 

For example, the production of 𝐵𝑋𝐹 is relatively complicated and thus induces lower 

JPRs, while the JPRs of 𝑆𝑆 are relatively high. The average JPR of each category of 

jobs are: 99 (𝐻𝐶𝐵), 93(𝑃𝐵), 64(𝐵𝑋𝐹), 75(𝐿𝐿𝐵), and 115(𝑆𝑆). Then, we constructed 10 

instances ( 𝐼𝑁𝑆 = {𝐼𝑁𝑆1, 𝐼𝑁𝑆2, … , 𝐼𝑁𝑆10} ) by random sampling, and each instance 

contains 100 jobs, which are a mixture of five job categories (the number of jobs 

|𝐼𝑁𝑆𝑛,𝑐|, (𝑛{1, 2, … , 10}) that were randomly sampled from the category 𝑐, (𝑐𝐶𝐴𝑇), 

waved around 20). We compare the JPR derived from our method and the original 

schedule to illustrate the JPR improvement. Specifically, the following performance 

indicators are evaluated:  

• RNEA (Beyond-sample comparison): Ratio of jobs getting a JPR exceeding the 

average JPR of its category, that is  
∑ Ⅱ(𝑃𝑅(𝑖)>𝐴𝑣𝑔(𝑐))𝑖𝐼𝑁𝑆𝑛,𝑐

𝐶𝑜𝑢𝑛𝑡(𝐼𝑁𝑆𝑛,𝑐)
, ∀𝑛, 𝑐. Ⅱ(∙) is an indicator 

function; 𝑃𝑅(𝑖) is the JPR obtained by job 𝑖. 

• In-sample comparison: Statistics including median, quartile, minimum/ 

maximum score of each category for all sampled instances, 𝐼𝑁𝑆𝑐 =∪

𝐼𝑁𝑆𝑛,𝑐 , 𝑛{1, 2, … , 10} 

The RENA is called a beyond-sample comparison because it compares the JPR 

results derived from the CBPR-guided approach with the average JPR of the entire job 

category. Correspondingly, to ensure a fair comparison, in-sample comparisons are 

included to unveil changes in JPR distributions between original schedules and results 

from the CBPR-guided approach. Thus, the former indicator focuses on overall 

improvement, while the latter stresses individual jobs. As shown in Table 5-6, 
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compared with the average JPR of each category, the mean RNEA of all instances is 

66% (across five categories and ten tested instances), which represents a significant 

improvement for the entire job set since more jobs now obtain a JPR over the previous 

average level. Besides, through the proposed CBPR-guided scheduling method, the 

relatively less efficient jobs belonging to 𝐵𝑋𝐹  and 𝐿𝐿𝐵 (suffering low JPRs) have 

seen the largest JPR enhancement, with 72% of jobs exceeding the average JPR level, 

while the JPR increments of the other three categories are relatively small.  

 

Table 5-6. RNEA of each instance under all categories 

 HCB PB SS BXF LLB Ins.AVG 

INS1 65% 58% 60% 58% 75% 63% 

INS2 60% 47% 65% 76% 71% 64% 

INS3 70% 75% 60% 63% 78% 69% 

INS4 70% 75% 70% 47% 74% 67% 

INS5 59% 80% 55% 67% 83% 69% 

INS6 80% 65% 65% 78% 68% 71% 

INS7 47% 65% 60% 82% 76% 66% 

INS8 55% 53% 60% 78% 65% 62% 

INS9 50% 55% 75% 94% 61% 67% 

INS10 55% 56% 75% 80% 65% 66% 

c.AVG 61% 63% 65% 72% 72% 66% 

c.AVG: the average RNEA of the corresponding category. 

Ins.AVG: the average RNEA of the corresponding instance. 

 

Then, the boxplot of Figure 5-6 is used to show the in-sample comparison result, 

which indicates JPR changes compared with the original JPR within samples. It can be 

seen that the CBPR-guided method can enhance the scheduling solutions by improving 

the JPR of all categories on the whole. Specifically, the lower limit and upper limit of 

JPR for most categories are enhanced, and for each category, more than half of jobs 

now obtain JPRs falling into intervals with larger JPRs compared with the median of 

original sample records. The magnitude of improvement for categories 𝐵𝑋𝐹 and 𝑆𝑆 is 
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more significant. These results verify that by capturing variabilities in the scheduling 

context, the CBPR-guided approach can position jobs in beneficial places and thus lead 

to improvement in the overall processing rate and production efficiency. 

 

 

Figure 5-6. JPR changes between predicted results and original records 

 

 

5.4 Summary 

This study is based on the real demand of an industrial printing company. As the 

JPR is affected by the joint impact of multiple factors (e.g., order, material, operating, 

and environment) as well as positioning in a sequence, a practical learning-embedded 

branch-and-price heuristic scheduling approach is proposed to capture the influences of 

multiple factors on JPR and enable scheduling with more accurate JPR prediction. The 

CBPR-labelling algorithm proposed in this study embeds the prediction of JPR under 

varying contexts constructed by positioning a job at different execution places in 

schedules. Such predictions enable the generation of schedules with minimum 

completion time with the consideration of multiple realistic factors. Experiments unveil 
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the dependency of JPR on CBPR and show that the proposed deep learning model 

outperforms other models in prediction accuracy. By employing JPR prediction into the 

scheduling framework, our method can achieve an improvement of 12.84% on average 

in terms of completion time compared with the traditional method based on estimation. 

Furthermore, the CBPR-guided approach can derive better schedules with enhanced 

JPR.   

 

Managerial Insights 

As shown by the real production processes, uncertain combinations of operational 

factors often have a great influence on the actual job execution process (e.g., affecting 

the production rate/duration). In smart manufacturing environments, the installation of 

IoT devices and sensors facilitates timely data collection from multiple sources, which 

enhances the tracking of machine status, material usage, and operational conditions. 

Using deep learning technologies can facilitate capturing the interplay of different 

variations and thus enable a better understanding of how production performance is 

influenced by multiple factors.  

Furthermore, it is more important to transform the knowledge learned from 

historical production data into decision-making, thereby achieving more efficient 

resource utilization, reducing machine downtime and improving operator performance. 

The developed scheduling approach integrates a deep learning engine with an 

optimization algorithm. Therefore, when implementing our method in an actual 

production scenario, a set of jobs to be scheduled and their corresponding features can 

be encoded and input into the algorithm. Then, instead of solving static deterministic 

scheduling problems, the optimization process will explore a huge number of different 

circumstances or combinations of production settings to find efficient solutions (i.e., 

schedules) that place jobs into advantageous performing positions. Besides, guided by 
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AI-driven insights, the derived solutions can be more practical and suitable for the 

specific production system and meanwhile, be efficient due to the wide consideration 

of a large number of potential placements. 

Additionally, while the investigated problem is based on a printing process, the 

proposed scheduling method can be applied to many other industries and production 

scenarios, such as injection moulding and dyeing. This is because the operations and 

schedules of these industries are also affected by various factors in a similar manner. 

Efforts can be made to use deep learning models to identify the key operational factors 

that influence the crucial performance indicators (e.g., the production efficiency 

indexes or production quality indicators) in these systems and then leverage the 

influencing patterns to optimize their decisions of scheduling or operations.  
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Chapter 6. Concluding Remarks 

6.1 Conclusions 

Smart manufacturing is demonstrating its significance in various production 

industries. This dissertation focuses on developing sustainable and efficient scheduling 

strategies for smart manufacturing systems. On this topic, two significant research 

aspects are concentrated: (i) from the physical configuration of production cells, mobile 

robots are increasingly adopted for automating the material handling process, which 

induces new scheduling challenges and energy concerns for robotic cells, and (ii) 

production data timely collected from multiple resources enables the predictive analysis 

of production and AI-enabled scheduling process. Three research studies are described 

in this dissertation, with the main focuses and key insights summarized in Table 6-1.   

The first research study (described in Chapter 3) focuses on a robot-facilitated job 

shop scheduling problem, which simultaneously plans robot routing and machine 

operating sequences to reduce energy consumption (promoting sustainable goals) 

through the collaboration between the two subjects. From the methodology aspect, it 

focuses on developing efficient modelling techniques (i.e., a network-based model) to 

tackle the complicated operational restrictions of robot operations and machine 

processing. Then, the second study (described in Chapter 4) focuses on predicting two 

important production performance indicators based on a real-world production dataset. 

An effective deep learning model with multiple input modules and dual output layers 

is proposed, which can extract useful patterns from different levels of the performing 

sequence. The third study (described in Chapter 5) further integrates the deep learning-

supported processing rate prediction into the scheduling optimization process so that 

the processing rate can be forecasted for varying processing circumstances to guide the 

allocation of jobs to beneficial execution positions and proper operators. 
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Table 6-1. A summary of main focuses, methods, key findings, and managerial implications 

Chapters Main Focus Proposed Methods Key Findings Managerial Implications 

Chapter 3 

Energy reduction by 

enhancing 

collaborations 

between machine-

robot operations 

Two MILP models are developed. 

RJSP-E minimizes the overall 

energy consumption, while RJSP-

EM simultaneously considers 

makespan and energy consumption.  

The RJSP-E can reduce overall energy 

consumption by an average of 15%, but at 

a loss of makespan; while RJSP-EM 

reduces energy consumption by a mean of 

10% with no compromise in makespan. 

RJSP approaches developed in this work can 

enhance the energy efficiency of modern robotic 

cells, thus promoting the healthy and sustainable 

development of smart manufacturing.  

Chapter 4 

To capture the 

effect of various 

real-world factors 

on the actual 

production process 

A multi-module supported dual-

task learning model (MMDT) to 

simultaneously predict the job 

processing time (JPT) and 

processing rate (PR) level for a 

better understanding and capture of 

production status. 

(i) The proposed model can enhance the 

accuracy of PR classification and JPT 

prediction compared with other 

benchmarks. (ii) Patterns captured by 

different input modules from three levels 

are helpful for predicting PR variations. 

(iii) Both tasks benefit from learning from 

the representation shared by each other. 

(i) The proposed method can provide timely 

alarm of inefficient alignment between task and 

production resources. (ii) To increase the JPR 

prediction ability, it will benefit if a suitable 

number of preceding jobs is involved. (ii) By 

applying the proposed model, extreme cases 

(when JPR is significantly low or high) can be 

effectively identified. 

Chapter 5 

Incorporating 

multiple factors to 

develop efficient 

AI-empowered 

optimization 

solution approaches 

A CBPR-labelling algorithm is 

proposed, which utilizes the 

prediction of JPR under varying 

contexts to drive the generation of 

beneficial schedules with enhanced 

efficiency. 

(i) By employing JPR prediction into the 

scheduling framework, the production 

completion time can be reduced by 12.84% 

on average. (ii) The CBPR-guided 

approach can derive better schedules with 

enhanced JPR.    

(i) Integration of AI engines with optimization 

algorithms enables the latter to derive more 

practical and efficient decisions; (ii) Our 

method can be applied to many other industries, 

such as injection moulding and dyeing systems, 

as their operations also suffer uncertain 

influencing factors in a similar manner. 
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To conclude, this dissertation focuses on improving scheduling decisions of smart 

manufacturing systems from two aspects (i.e., physical-level operations collaboration 

and AI-empowered decision-making) with advances in modelling, deep learning, and 

optimization algorithms. However, it is worth mentioning that the studies reported also 

have limitations, which highlight many potential directions for future studies.  

 

6.2 Future Studies 

(i) Scheduling for robotic cell with multi-robots. The study in Chapter 3 only 

considered one mobile robot to carry out the movement of all materials, semi-

products and also finished goods. Future research attention thus can be paid to 

investigating the involvement of additional robots in a robotic cell to increase 

efficiency, reduce deadlock situations, and further achieve sustainability goals. 

However, it can be foreseen that the adoption of multiple robots will greatly 

complicate the interactions between individual robots (e.g., task prioritization and 

allocation to multiple robots as well as multi-robots route planning) and the 

interactions between robots and machines (e.g., task allocation and sequencing on 

machines involving the movement of material/semi-product operations by multiple 

robots). These elements will significantly increase the problem complexity. 

Therefore, it is worth further investigating more efficient modelling methods and 

solution algorithms for such systems.  

(ii) Scheduling for human-robot collaboration. The study in Chapter 3 does not 

consider human interventions or operations. However, in many production systems, 

an efficient manufacturing process requires collaboration between human operators 

and mobile robots. For example, mobile robots are responsible for the delivery of 

materials or tools, while human operators will carry out specific processing 



143 

 

operations on machines. In this mode, the delivery efficiency of robots will have a 

large influence on overall production efficiency. Therefore, research can be drilled 

into developing efficient scheduling approaches to better coordinate mobile robots, 

human operators, and machines to ensure a harmonious production environment.  

(iii) Investigation in other real-world manufacturing systems. The study in Chapter 

4 is motivated by the scheduling challenge of a real-world production company in 

the printing industry. It is worth further investigating the characteristics of other 

real-world manufacturing systems to figure out the critical factors that will make 

an impact on their operational efficiency through AI methods, and furthermore to 

incorporate the data-driven insights in their decision-making. 

(iv) Developing prediction-enabled scheduling approaches for other production 

settings. In studies of Chapters 4 and 5, we explored the incorporation of precise 

job processing rate prediction into deriving efficient production schedules. It is 

worth noting that the nature of printing jobs determines the scheduling mode in the 

study of Chapter 5, which is to plan each printing task as a holistic job. Future 

research can be devoted to generalizing the investigated scheduling method to other 

manufacturing systems with different production modes, such as the flowshop and 

job shop scheduling problems so that the performance of these systems can greatly 

benefit from precise scheduling solutions.  

(v) Incorporation of AMR and energy consideration for production systems 

under multiple influencing factors. The study in Chapter 3 has preliminarily 

explored the integration of AMR operations and analyzed the impact of speed 

adjustment on the energy consumption of production systems. Further investigation 

is warranted to incorporate AMR operations and energy considerations into 

production scheduling problems that take the effect of various operational factors 

into account so as to enhance the efficiency and sustainability objectives of real-
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world manufacturing systems. 

(vi) Development of online scheduling methods. Another promising future research 

direction is to develop online scheduling solutions for systems that require a rapid 

response to real-time fluctuations, such as order cancellation or demand surging, 

task requirement change, and machine breakdown. It is therefore promising to 

develop dynamic scheduling algorithms by leveraging the advantages of both 

machine learning and optimization methods to accommodate various production 

scenarios and unexpected circumstances in an online manner.   
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Appendix A - Traditional RJSP model  

The traditional RJSP model without energy considerations is created following 

Sun et al. (2021). Still using the notations in Table 3.1, the traditional RJSP model is 

formulated as below. 

 

Obj. Min 𝐶𝑚𝑎𝑥  (A.0) 

s.t.   

𝐶𝑚𝑎𝑥 ≥ 𝑆𝑀𝐹 ,   (A.1) 

𝑆𝑀𝐹 ≥ 𝑆𝑀𝑖𝑗 ∀𝑖, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (A.2) 

𝑆𝑀11 = |𝑃𝑀11 − 𝑃𝑀𝐷| 𝑣𝑅⁄ ,   (A.3) 

𝑆𝑀𝑖𝑗 + 𝑆𝑃𝑇𝑖𝑗 + 𝑡𝑙𝑖(𝑗+1) ≤  𝑆𝑀𝑖(𝑗+1), ∀𝑖, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|} (A.4)  

∑ ∑ 𝑋𝑖𝑗𝑚𝑛𝑛𝑚 + 𝑌𝑖𝑗(𝑗+1) = 1,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.5)  

∑ ∑ 𝑋𝑚𝑛𝑖𝑗𝑛𝑚 + 𝑌𝑖(𝑗−1)𝑗 = 1,  ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.6)  

∑ ∑ 𝑋𝑖(|𝐽𝑖|+1)𝑚𝑛 +𝑛𝑚 𝑋𝑖(|𝐽𝑖|+1)𝐹 = 1,     ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑛 ∈ {1,2, … , |𝐽𝑚’|} (A.7) 

∑ ∑ 𝑋𝑚𝑛𝑖1𝑛𝑚 = 1,   ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑖 ! = 1, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.8) 

𝑆𝑀𝑖𝑗 + 𝑆𝑃𝑇𝑖𝑗 + 𝑡𝑙𝑖(𝑗+1) ≤  𝑆𝑀𝑖(𝑗+1) + (1 − 𝑌𝑖𝑗(𝑗+1)) × 𝛽, ∀𝑖, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, (A.9) 

𝑆𝑀𝑖𝑗 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − (1 − 𝑋𝑚𝑛𝑖𝑗) × 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.10) 

𝑆𝑀𝑚(𝑛+1) ≥  𝑆𝑀𝑖𝑗 + 𝑡𝑢𝑖𝑗𝑚𝑛 + 𝑡𝑙𝑚(𝑛+1) − (1 − 𝑋𝑚𝑛𝑖𝑗) × 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑗 ∈ (1, |𝐽𝑖| + 1), 𝑛 ∈ (1, |𝐽𝑚|), (A.11) 

𝑆𝑀𝑖1 ≥  𝑆𝑀𝑚𝑛 + 𝑡𝑢𝑚𝑛𝐷 + 𝑡𝑙𝑖1 − (1 − 𝑋𝑚𝑛𝑖1) ∗ 𝛽, ∀𝑖, ∀𝑚, 𝑖! = 𝑚, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.12) 

𝑍𝑖𝑗ℎ𝑔 + 𝑍ℎ𝑔𝑖𝑗 = 1,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (A.13) 

 𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖𝑗 + 𝑆𝑃𝑇𝑖𝑗 − (1 − 𝑍𝑖𝑗ℎ𝑔) ∗ 𝛽,  ∀𝑖, ∀ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (A.14) 

𝑆𝑀𝑖𝑗 ≥  𝑆𝑀ℎ𝑔 + 𝑆𝑃𝑇ℎ𝑔 − 𝑍𝑖𝑗ℎ𝑔 ∗ 𝛽,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔, (A.15) 

𝑆𝑀ℎ𝑔 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)ℎ(𝑔−1) + 𝑡𝑙ℎ𝑔 − (1 − 𝑍𝑖𝑗ℎ𝑔) × 𝛽, ∀𝑖, ∀ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ {2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (A.16) 

𝑆𝑀𝑖𝑗 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝑖(𝑗−1) + 𝑡𝑙𝑖𝑗 − 𝑍𝑖𝑗ℎ𝑔 × 𝛽, ∀𝑖, ∀ℎ, ∀𝑗 ∈ (2,3, … |𝐽𝑖|), 𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖𝑗 = 𝑀ℎ𝑔,, (A.17) 

𝑆𝑀ℎ1 ≥ 𝑆𝑀𝑖(𝑗+1) + 𝑡𝑢𝑖(𝑗+1)𝐷 + 𝑡𝑙ℎ1 − (1 − 𝑍𝑖𝑗ℎ1) × 𝛽,   ∀𝑖, ∀ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑀𝑖𝑗 = 𝑀ℎ1, (A.18)  

𝑆𝑀𝑖1 ≥ 𝑆𝑀ℎ(𝑔+1) + 𝑡𝑢ℎ(𝑔+1)𝐷 +  𝑡𝑙𝑖1 − 𝑍𝑖1ℎ𝑔 × 𝛽,   ∀𝑖, ∀ℎ, ∀𝑔 ∈ {1,2, … , |𝐽ℎ|}, 𝑀𝑖1 = 𝑀ℎ𝑔, (A.19) 

𝑋𝑖𝐽𝑚𝑛 ∈ (0,1), ∀𝑖, ∀𝑚 ∈ {1,2, … |𝐼| + 1}, 𝑖! = 𝑚, 𝑗 ∈ {1,2, … , |𝐽𝑖’|}, n ∈ {1,2, … , |𝐽𝑚’|}, (A.20) 

𝑌𝑖𝑗(𝑗+1) ∈ (0,1), ∀𝑖, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, (A.21) 

𝑍𝑖𝐽ℎ𝑔 ∈ (0,1), ∀𝑖, ∀ℎ, 𝑖! = ℎ, ∀𝑗 ∈ {1,2, … , |𝐽𝑖|}, 𝑔 ∈ (1, |𝐽ℎ|), (A.22) 

𝑆𝑀𝑖𝑗 > 0, ∀𝑖, ∀𝑗 ∈ {1,2, … , |𝐽𝑖’|}, (A.23) 

𝑡𝑢𝑖𝑗𝑚𝑛 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑚𝑛| 𝑣𝑅⁄ ,  ∀𝑖, ∀𝑚, 𝑗 ∈ {2,3, … , |𝐽𝑖’|}, 𝑛 ∈ {1,2, … , |𝐽𝑚’|}, (A.24) 

𝑡𝑙𝑖𝑗 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝑖(𝑗−1)|/𝑣𝑅, ∀𝑖, ∀𝑗 ∈ {2,3, … , |𝐽𝑖’|}, (A.25) 

𝑡𝑙𝑖1 = |𝑃𝑀𝑖1 − 𝑃𝑀𝐷|/𝑣𝑅,   ∀𝑖, (A.26) 

𝑡𝑢𝑖𝑗𝐷 = |𝑃𝑀𝑖𝑗 − 𝑃𝑀𝐷|/𝑣𝑅 ∀𝑖, ∀𝑗 ∈ {1,2, … , |𝐽𝑖’|}. (A.27) 
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Constraints (A.9-A.11) play a similar role as constraints (9-12) in the proposed 

RJSP-E. While these constraints are a bit different as the RJSP-EM involves a variable 

RM to capture the removing time of jobs. Moreover, it is worth noting that by 

implementing the traditional model without energy consideration, neither the machine 

nor the robot can change the operating speed. Therefore, in constraints (A.3), (A.9), 

(A.13), and (A.14), the processing time under the normal speed is used to replace the 

processing time under a specific operating speed scale (i.e., 𝑆𝑃𝑇𝑖𝑗 is used to replace 

𝑃𝑇𝑖𝑗). As other constraints in (A.0) - (A.27) are covered by model RJSP-E, they are not 

repeated here.  


