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Abstract

Knowledge graphs (KGs) serve as powerful tools in various domains by capturing and

organizing complex relationships between entities. Yet, despite their utility, KGs often

remain incomplete, limiting their full potential. KG completion and KG alignment

emerge as critical solutions to fill these gaps, and at the heart of both lies KG reasoning.

Traditional reasoning methods, whether neural or symbolic, often falter when tasked

with large-scale KGs due to challenges in scalability and interpretability. Hence,

advancing the efficiency and effectiveness of KG reasoning algorithms is paramount

for unlocking their broader applications.

This thesis presents several groundbreaking approaches designed to enhance KG

reasoning. First, we introduce DiffLogic, a differentiable neuro-symbolic reasoning

framework that fuses the strengths of symbolic rule-based inference with the flexibility

of neural networks. By modeling the joint probability of truth scores through weighted

logic rules embedded within a Markov random field, DiffLogic achieves efficient rule

grounding, allowing it to perform scalable inference over expansive KGs with precision.

Building upon this, we propose NeuSymEA, a robust entity alignment method that

bridges the gap between symbolic and neural reasoning through variational inference.

NeuSymEA is uniquely equipped to operate in low-resource environments, aligning

entities even when limited labeled data is available. Through logic decomposition and

deduction, NeuSymEA scales symbolic reasoning to handle long rule inferences, all

while ensuring interpretability and improving precision in alignment tasks. Lastly,
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we introduce LLM4EA, a label-free entity alignment framework that harnesses the

power of large language models (LLMs) to address noisy annotations. By actively

selecting key entities for annotation and refining label accuracy through probabilistic

reasoning, LLM4EA enhances alignment robustness, minimizing the effect of noise

while maximizing performance.

The research presented in this thesis pushes the boundaries of what’s possible in

KG reasoning, offering scalable and efficient solutions for constructing and exploiting

large KGs. The advancements presented in this work open new doors for robust and

interpretable applications across fields such as information retrieval, social computing,

health informatics, and bioinformatics, enabling the extraction of deeper insights from

the vast and interconnected data that knowledge graphs offer.
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Chapter 1

Introduction

1.1 Background and Motivation

Knowledge graph (KG) reasoning refers to the process of using existing facts in a KG to

infer new knowledge that is not explicitly stated in the original KG [40]. For instance,

if we know that (Paris, is_the_capital_of, France) and (France, is_a_country_in,

Europe), we can infer that (Paris, is_a_city_in, Europe), which is not explicitly

included in the original KG. KG reasoning is essential to KG completion [43] and

KG error detection [62, 13]. Moreover, KG reasoning can infer underlying knowledge

and improve the quality of learning or predictions on KGs, which benefits various

downstream tasks, such as question answering [22, 12], recommendations [21, 58], and

interpretable machine learning [26, 51].

From the perspective of KG construction, KG reasoning is crucial in developing larger

and more comprehensive knowledge graphs. By leveraging its ability to infer new facts

from existing ones, KG reasoning facilitates fundamental tasks such as KG completion

and KG alignment. This reasoning enriches the graph with inferential connections

and insights, enhancing the overall quality and applicability of the knowledge graph.

Additionally, KG reasoning can handle uncertainties within the KG and eliminate

1



Chapter 1. Introduction

erroneous noise in the data, thereby strengthening the stability of KG completion and

KG alignment processes in constructing larger KGs.

Specifically, KG completion leverages KG reasoning to predict and fill in missing

information, making the knowledge graph more comprehensive and useful. This

process is vital for ensuring the KG’s accuracy and completeness, which are essential

for its practical applications. In contrast, KG alignment uses KG reasoning to integrate

disparate knowledge graphs by aligning entities and relationships across them, creating

a unified and cohesive knowledge structure. This alignment process is critical for

consolidating information from multiple sources into a single, comprehensive KG.

Through these processes, KG reasoning not only enhances the current state of KGs

but also lays a robust foundation for advanced applications in areas such as question

answering, recommendations, and interpretable machine learning. By improving the

completeness, accuracy, and integration of knowledge graphs, KG reasoning signifi-

cantly contributes to the development of larger and more comprehensive knowledge

systems. Consequently, KG reasoning plays a pivotal role in constructing and refining

KGs, thereby enabling more sophisticated and reliable applications that rely on these

knowledge structures.

1.2 Knowledge Graph Completion at Scale: Differen-

tiable Neuro-symbolic Reasoning on Knowledge

Graphs

There are mainly two lines of research in KG reasoning [65, 64]. First, rule-based

reasoning derives new triples from existing ones by applying a set of predefined rules,

which are usually expressed in a form of logical statements [59, 39, 16]. For example,

if there are two triples (A, is_a_parent_of, B) and (B, is_a_parent_of, C), and a

2
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Reasoning on Knowledge Graphs

rule saying “the parent of a parent is a grandparent”, then we can infer a new triple

(A, is_a_grandparent_of, C). Rule-based reasoning is particularly effective when the

rules are well-defined and the KG is relatively small and static [1]. Recent studies

employ Markov logic network (MLN) [38] to dynamically learn soft rules, which are

associated with weight scores indicating their credibility. But it remains not scalable

because assessing the truth scores to all possible triples requires 𝒪(|ℰ|2|ℛ|) parameters,

where |ℰ| and |ℛ| denote the numbers of entities and relations. Thus, rule-based

reasoning becomes inefficient when dealing with large KGs. Second, KG-embedding

based reasoning projects a KG into a low-dimensional space and infers new relations

based on embedding representations [67, 37]. It assumes that KG embedding can

preserve most semantic information in the original KGs [3, 54, 49, 15] so that missing

relations can be inferred by using the distances or semantic matching scores in the

embedding space. Recent studies [41, 52, 63] also seek to design tailored Graph

convolutional networks for learning structural-aware KG embeddings. KG-embedding

based reasoning can be scalable [70, 37]. However, there is no explicit rule to ensure

its accuracy and logical consistency. Also, it requires a sufficient amount of training

data, and its results are difficult to interpret.

Neuro-symbolic reasoning models combine the advantages of both rule-based and

embedding-based techniques, which is to approximate the predicted truth scores of all

possible triples inferred by rules with the normalized output scores of a KG-embedding

model. However, it is nontrivial to effectively and efficiently construct such an

approximation. Directly employing rules [17, 18] to regularize the embedding learning

is efficient, but it cannot update rule weights and is thus sensitive to the initialization

of rule weights. Incorporating KG-embedding models into sophisticated rule-based

models, such as MLN, enables the handling of rule uncertainty [36, 66]. However,

directly approximating the distributions of the truth scores are still challenging. First,

directly approximating the distribution of truth scores within the MLN framework is

unfeasible. This process necessitates the optimization of the joint probability of the

3



Chapter 1. Introduction

approximated distribution, which subsequently requires the computation of integration

across all scores. Second, optimizing neuro-symbolic models rely on training with

ground formulas (i.e. instantiated rules). Given the large grounding space, the

performance of neuro-symbolic models may deteriorate if important ground formulas

are missed [17, 36], and efficiency issues may arise if too many ground formulas are

considered [66].

To this end, we proposed a differentiable framework - DiffLogic [42]. Firstly, a tailored

filter is used to adaptively select important ground formulas based on weighted rules

and extract connected triples. Second, a KG-embedding model is used to compute a

truth score for each triple. Then we employ a continuous MLN named probabilistic

soft logic (PSL) [1] that takes these truth scores as input, and assesses the overall

agreement among rules, weights, and observed triples with a joint probability. The

PSL template enables end-to-end differentiable optimization. In this way, DiffLogic

is optimized by alternately updating embedding and weighted rules. We present the

detailed problem statement and methodology in Chapter 3.

1.3 Robust Entity Alignment: Neuro-symbolic Entity

Alignment via Variational Inference

As another way to address the sparsity and incompleteness issues in KGs, entity

alignment (EA) aims to merge disparate KGs into a unified, comprehensive knowledge

base by identifying and linking equivalent entities across different KGs. For instance,

by aligning entities between a financial KG and a legal KG, EA facilitates the

understanding of complex relationships, such as identifying the same corporations

across the two KGs to assess how legal regulations impact their financial performance.

This alignment enables a more nuanced exploration and interrogation of interconnected

data, providing richer insights into how entities operate across multiple domains.
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1.3. Robust Entity Alignment: Neuro-symbolic Entity Alignment via Variational
Inference

To perform entity alignment, existing methods can be broadly categorized into sym-

bolic models and neural models. Symbolic models [44, 24, 34] provide interpretable

and precise inference by mining ground rules, but they struggle with aligning long-

tail entities, especially those without aligned neighbors. In such cases, the lack of

supporting rules leads to low recall. Conversely, neural models, such as translation

models [5, 47] and Graph Convolutional Networks (GCNs) [33, 31, 55, 32, 29, 28], excel

in recalling similar entities by embedding them in a continuous space, yet they often

fail to distinguish entities with similar representations, causing a drop in precision as

the entity pool grows. Neuro-symbolic models aim to combine the strengths of both

approaches, offering the interpretability and precision of symbolic models alongside

the high recall capabilities of neural models.

However, neuro-symbolic reasoning in entity alignment (EA) faces several challenges.

First, combining symbolic and neural models into a unified framework is suboptimal

due to the difficulty in aligning their objectives. Current approaches either use neural

models as auxiliary modules for symbolic models to measure entity similarity [34]

or employ symbolic models to refine pseudo-labels [30, 6]. Second, in EA task, the

search space for rules is large, as the EA task requires deriving ground rules from both

intra-KG and inter-KG structural patterns, leading to an exponentially large search

space with increasing rule length. Finally, generating interpretations for EA remains

underexplored. Effective interpretations should not only generate supporting rules

but also quantify their confidence through rule weights.

To overcome these challenges, we propose NeuSymEA [? ], a neuro-symbolic framework

that combines the strengths of both symbolic and neural models. NeuSymEA models

the joint probability of truth score assignment for all possible entity pairs using a

Markov random field, regulated by a set of weighted rules. This joint probability

is optimized via a variational EM algorithm. During the E-step, a neural model

parameterizes the truth scores and infers the missing alignments. In the M-step,

the rule weights are updated based on both observed and inferred alignments. To
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leverage long rules without suffering from the exponential search space, we employ

logic deduction to decompose rules of any length into shorter, unit-length rules. This

allows for efficient inference and weight updates for long rules. After training, the

learned rules are adapted into an explainer, enhancing interpretability. Specifically,

we reverse the logic deduction process to calculate the weights of long rules based

on the learned weights of their shorter counterparts. Additionally, an explainer is

introduced to efficiently generate supporting rules with quantified confidence through

breadth-first search, as explanations for inferred alignments. We present the details of

this model in Chapter 4

1.4 Label-free Entity Alignment: Entity Alignment

with Noisy Annotations from Large Language

Models

While we developed a robust and interpretable entity alignment model, it relies

on accurate seed alignments for training. Acquiring these seed alignments is still

prohibitively expensive due to the need for extensive cross-domain knowledge. Thus,

we propose a label-free entity alignment framework that facilitates effective learning

for any off-the-shelf EA model.

Recently, Large Language Models (LLMs) have showcased their superior capability in

processing semantic information, which has significantly advanced various graph learn-

ing tasks [27] such as node classification [7, 28], graph reasoning [68, 4], recommender

systems [72, 56], SQL query generation [60, 20], and knowledge graph-based question

answering [53, 61, 14]. Their capacity to extract meaningful insights from graph data

opens up new possibilities for automating EA. Notably, recent studies [50, 71, 69, 23]

have explored the use of LLMs in EA, primarily focusing on finetuning a pretrained

LLM such as Bert to learn semantic-aware representations, relying on accurate seed

6



1.4. Label-free Entity Alignment: Entity Alignment with Noisy Annotations from
Large Language Models

alignments as training labels. Yet, the potential of LLMs for label-free EA via

in-context learning remains unexplored.

However, directly applying LLMs to automate EA poses significant challenges. Firstly,

conventional EA models presume that all annotations are correct; yet, LLMs can gen-

erate false labels due to LLMs’ inherent randomness and the potential incompleteness

or ambiguity in the semantic information of entities. Training an EA model directly

on these noisy labels can severely impair the final alignment performance. Secondly,

given the vast number of entity pairs, annotation with LLMs would be prohibitively

expensive. Maximizing the utility of a limited LLM query budget is essential. Existing

solutions such as active learning cannot be directly applied since the annotations are

noisy.

In response to the outlined challenges, we introduce LLM4EA [6], a unified framework

designed to effectively learn from noisy pseudo-labels generated by LLMs while

dynamically optimizing the utility of a constrained query budget. LLM4EA actively

selects source entities based on feedback from a base EA model, focusing on those that

significantly reduce uncertainty for both the entities themselves and their neighbors.

This approach allocates the query budget to important entities, guided by the intra-KG

and inter-KG structure. To manage the noisy pseudo-labels effectively, LLM4EA

incorporates an unsupervised label refiner that enhances label accuracy by selecting

a subset of confident pseudo-labels through probabilistic reasoning. These refined

labels are then utilized to train the base EA model for entity alignment. The confident

alignment results inferred by the EA model inform active selection in subsequent

iterations, thereby progressively improving the framework’s effectiveness in a coherent

and integrated manner. We depict how probabilistic reasoning enhance entity alignment

with large language models in Chapter 5.
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1.5 Correlations among three work

1.5.1 Task-Level Correlations

The three research works—DiffLogic, NeuSymEA, and LLM4EA—are interrelated

in their collective aim to improve knowledge graph (KG) quality, which ultimately

facilitates downstream tasks such as recommendation systems, question answering,

and drug discovery. Each approach targets different challenges that, when addressed,

enhance the completeness, accuracy, and usability of KGs:

• DiffLogic: This work focuses on KG completion at scale by filling in missing

facts within KGs. Leveraging neuro-symbolic reasoning, DiffLogic combines

neural networks with rule-based logic to efficiently infer missing information

and ground rules. By ensuring parameter efficiency and scalability, DiffLogic

improves the quality of KGs with minimal computational overhead.

• NeuSymEA: Concentrating on robust entity alignment, NeuSymEA enhances

the process of aligning entities across different KGs, even in scenarios with

limited labeled data. It combines neural models with symbolic logic, ensuring

precise alignment—a critical factor for merging multiple KGs into a unified,

high-quality graph. NeuSymEA’s scalability to long, complex rules via logic

deduction further improves the overall structure and accuracy of KGs.

• LLM4EA: This work addresses label-free entity alignment by utilizing large

language models (LLMs) to handle noisy and incomplete annotations. Through

automated alignment processes, including active sampling and probabilistic label

refinement, LLM4EA minimizes noise and dependency on extensive manual

labeling. This approach significantly improves KG quality by making entity

alignment more robust and scalable.

In summary, all three works share the overarching goal of improving KG quality
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by addressing distinct aspects: KG completion (DiffLogic), robust entity alignment

(NeuSymEA), and label-free entity alignment (LLM4EA). Together, they contribute

to the enhanced utility of KGs in various downstream AI applications.

1.5.2 Methodology-Level Correlations

At the methodology level, the three works—DiffLogic, NeuSymEA, and LLM4EA—are

fundamentally connected through the neuro-symbolic reasoning framework, though

each applies this methodology in unique ways to tackle different aspects of KG

refinement.

Neuro-Symbolic Reasoning

All three works integrate symbolic logic with neural networks, providing a method-

ological foundation for combining the strengths of both paradigms. Symbolic models

offer logical structure and interpretability, while neural networks provide scalability

and handle uncertainty and noise. This combination allows the models to operate

effectively on structured knowledge (e.g., logic rules) and unstructured or noisy data

(e.g., KG embeddings, noisy annotations).

Rule-Based Reasoning

• DiffLogic: Rules are employed to guide the completion of missing facts in KGs.

Truth scores of facts are parameterized and optimized using a combination of

neural networks and weighted rules within a Markov random field (MRF). By

grounding and optimizing these rules in a differentiable manner, DiffLogic scales

efficiently to large KG completion tasks.

• NeuSymEA: Rule-based reasoning is extended to entity alignment. Here, long

rules are decomposed and composed via logic deduction, enabling efficient align-
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ment by leveraging logical relationships between entities across KGs. NeuSymEA

uses neural models to refine alignment scores, ensuring scalability to long and

complex rule structures.

• LLM4EA: While LLM4EA doesn’t directly ground rules like the other two,

it still employs probabilistic reasoning for label refinement. Through active

learning and continuous improvement of noisy labels provided by LLMs, it

achieves accurate entity alignment in a label-free manner.

Optimization Techniques

DiffLogic and NeuSymEA both rely on differentiable optimization techniques. In

DiffLogic, a hinge-loss MRF models the joint probability of truth scores, with t-norms

used to relax truth scores into a continuous space, enabling efficient gradient-based

optimization.

NeuSymEA uses a variational EM framework to jointly optimize the neural and

symbolic components. This allows for iterative refinement of both the neural model’s

parameters and symbolic rule weights, enhancing alignment performance.

In LLM4EA, although the focus is on probabilistic reasoning rather than directly

optimizing rules, probabilistic models are used to refine noisy annotations. This

reasoning approach adjusts and improves the entity alignment process continuously.

Handling Uncertainty and Noise

DiffLogic addresses uncertainty by allowing soft reasoning through the neural parame-

terization of truth scores and differentiable rule grounding.

NeuSymEA handles uncertainty by using neural models to supplement weak or missing

logical evidence, particularly in low-resource scenarios. It augments sparse anchor

pairs with inferred pairs from the neural model, ensuring robustness.
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LLM4EA directly tackles noise in annotations by utilizing LLMs to generate initial

labels and then employing probabilistic label refinement to correct and improve those

labels, making entity alignment more robust and accurate.

Conclusion

At the methodology level, the correlation among DiffLogic, NeuSymEA, and LLM4EA

is rooted in their shared use of neuro-symbolic reasoning, combining logical rules

and neural networks to enhance different tasks within KG refinement. Each work

applies this methodology to a specific challenge—KG completion, entity alignment, and

noisy label refinement—using techniques such as rule-based reasoning, differentiable

optimization, and probabilistic refinement to handle uncertainty and scale the reasoning

process effectively.

1.6 Summary of Contributions

The contributions of DiffLogic, NeuSymEA, and LLM4EA are significant in advancing

the fields of knowledge graph reasoning and entity alignment. Here is a breakdown of

the contributions from each work:

1.6.1 DiffLogic

• Efficient Rule Grounding: DiffLogic introduces a novel rule-guided iterative

grounding technique that significantly reduces the number of ground rules needed

during reasoning. This technique selectively identifies important ground formulas,

making the reasoning process more efficient while maintaining performance.

• Differentiable Optimization: The framework combines neural embeddings

and rule-based symbolic logic within a Markov random field (MRF), enabling
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scalable, differentiable optimization over large knowledge graphs. This allows for

continuous parameterization of truth scores, making the model more adaptable

to large-scale applications.

• Improved Scalability: DiffLogic effectively balances the trade-offs between

rule-based reasoning and neural embeddings, enabling it to scale to large KGs

while retaining logical consistency and parameter efficiency.

1.6.2 NeuSymEA

• Joint Neural-Symbolic Framework: NeuSymEA combines symbolic and

neural approaches for entity alignment, integrating them in a variational EM

framework. This allows it to model the joint probability of entity alignments by

leveraging both learned embeddings and symbolic rules.

• Scalability to Long Rules: The framework introduces logic deduction to

decompose long rules into shorter, more manageable units. This increases the

model’s capacity to handle long and complex rules while maintaining scalability.

• Robustness in Low-Resource Scenarios: NeuSymEA demonstrates robust-

ness in label-limited scenarios, augmenting sparse anchor pairs through inferred

pairs from the neural model. This enhances alignment precision even with

limited training data.

• Interpretable Inference: NeuSymEA provides explainability by generating

supporting rules for each entity alignment with quantified confidence scores.

This makes the alignment process interpretable, adding value to applications

where transparency is important.
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1.6.3 LLM4EA

• Label-Free Entity Alignment: LLM4EA addresses the challenge of label-free

entity alignment by leveraging large language models (LLMs) to generate noisy

annotations. This reduces the dependency on manually curated seed alignments,

which are often expensive to obtain.

• Probabilistic Label Refinement: The model incorporates a probabilistic

reasoning-based label refiner to continuously improve the quality of noisy labels

generated by LLMs. This ensures that even noisy data can be used effectively

for entity alignment.

• Active Sampling for Efficient Annotation: To optimize the limited annota-

tion budget, LLM4EA employs active sampling techniques to focus on the most

important entities, maximizing the utility of each LLM query and improving

alignment performance while minimizing costs.

In summary, DiffLogic, NeuSymEA, and LLM4EA contribute to advancing knowl-

edge graph quality by addressing different challenges within the neuro-symbolic

reasoning framework. DiffLogic introduces an innovative differentiable reasoning

framework that efficiently combines symbolic logic with neural embeddings, enabling

scalable knowledge graph completion. It achieves this through a novel rule-guided

iterative grounding technique, which significantly reduces computational overhead

while maintaining high performance on large-scale knowledge graphs. Building on this

foundation, NeuSymEA extends the neuro-symbolic reasoning paradigm to the task

of entity alignment. By integrating neural models with symbolic reasoning through

a variational EM framework, NeuSymEA enhances the robustness and precision of

alignment, even in low-resource settings, while providing interpretability through

rule-based explanations. Finally, LLM4EA tackles the problem of noisy annota-

tions in entity alignment by leveraging large language models to perform label-free
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alignment. With active sampling and probabilistic label refinement, it minimizes the

reliance on expensive manual labeling and handles noisy data effectively, ensuring that

entity alignment remains robust and scalable. Together, these three works provide

a comprehensive approach to improving knowledge graph quality by addressing its

core challenges: completion, alignment, and the handling of noisy data, ultimately

facilitating more accurate and scalable downstream applications.

14



Chapter 2

Related Work

2.1 Knowledge Graph Reasoning

Neuro-symbolic reasoning for KG completion. There have been some studies

attempting to integrate rule-based methods and KG-embedding models. For the KG

completion task, [17] proposes to learn embeddings from both triples and rules by

treating triples as ‘atomic formulas’ while treating ground logic formulas as ‘complex

formulas’, thus unifying the learning from triples and rules. However, their framework

only uses hard rules and thus cannot make use of the soft rules with uncertainty.

Another study [18] applied soft rules for generating additional training data but

could not optimize rule weights, making the model’s effectiveness dependent on rule

weights initialization. [36] enable embedding learning and rule weight updating in

a tailored MLN framework, by alternately employing one component to annotate

triples to update the other component. However, the annotation process renders the

inference not differentiable and is sensitive to the annotation threshold. Moreover,

their grounding process only considers ground formulas with premise atoms observed

in the training set, limiting the model’s effectiveness due to the potential omission of

important ground formulas. [66] designed a graph neural network for learning structure-
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aware expressive representations under the MLN framework. However, its inference

efficiency suffers from a large number of ground formulas and limited generalization

ability (requiring querying the test data during inference). The MLN-based neuro-

symbolic models [36, 66] benefit from the dynamically updated rule weights which

handle uncertainty. However, they all fail to directly optimize the objective of MLN

due to the complexity of the associated integration and thereby resorting to optimizing

ELBO. Despite extensive studies of neuro-symbolic reasoning in KG completion[11, 9],

they only consider single-KG structures, thus cannot be directly adopted to entity

alignment which requires consideration of inter-KG structures.

Neuro-symbolic reasoning for entity alignment. Recent models have sought to

combine symbolic and neural approaches for the entity alignment task. For instance,

[34] enhances probabilistic reasoning by utilizing KG embeddings, employing a KG-

embedding model to measure similarities during both updating and inference processes.

[30] implements self-bootstrapping with pseudo-labeling in a neural framework, using

rules to choose confident pseudo-labels. However, it relies solely on unit-length rules,

which restricts its effectiveness for long-tail entities. Furthermore, neither of these

approaches offers interpretability for the inferred alignments.

Probabilistic Reasoning. In the literature on knowledge graph reasoning, prob-

abilistic reasoning has been effectively applied to infer new soft labels and their

associated probabilities from existing labels. It has been utilized in domains such

as knowledge graph completion [36, 42, 66] and entity alignment [44, 34], where it

naturally represents complex relational patterns with simple rules and performs precise

inferences. In our work in LLM4EA, however, due to the potential inaccuracies in the

pseudo-labels generated by LLMs, the newly inferred alignments may be incorrect.

Consequently, we opt not to employ probabilistic reasoning directly for the entity

alignment task. Instead, we emphasize its use primarily for filtering false pseudo-labels

that demonstrate structural incompatibilities within our framework.
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2.2 Entity Alignment with Large Language Models

Recent approaches have sought to leverage LLMs for entity alignment in knowledge

graphs, primarily focusing on integrating structural and semantic information for

improved alignment performance. BERT-INT [50] fine-tunes a pretrained BERT

model to capture interactions and attribute information between entities. Similarly,

SDEA [71] employs a pretrained BERT to encode attribute data, while integrating

neighbor information via a GRU to enhance structural representation. TEA [69]

reconceptualizes entity alignment as a bidirectional textual entailment task, utilizing

pretrained language models to estimate entailment probabilities between unified

textual sequences representing entities. A novel approach, ChatEA [23], introduces a

KG-code translation module that converts knowledge graph structures into a format

comprehensible to LLMs, enabling these models to apply their extensive background

knowledge to boost the accuracy of entity alignment. Notably, these models primarily

focus on fine-tuning pretrained language models using a set of training labels and

do not exploit the zero-shot capabilities of LLMs. In contrast, our proposed model,

LLM4EA, leverages the zero-shot potential of LLMs, enabling it to generalize to new

datasets without the need for labeled data.
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Differentiable Neuro-Symbolic

Reasoning on Large-Scale Knowledge

Graphs

In this chapter, we formally define the problem of knowledge base completion, provide

a brief introduction to first-order logic, and how to evaluate its agreement with a

knowledge base. Then propose a differentiable neuro-symbolic reasoning model –

DiffLogic, to tackle this problem.

3.1 Problem Statement

A knowledge base 𝒦 comprises a set of entities ℰ and a set of relations ℛ. For any

pair of head-tail entities (ℎ, 𝑡) ∈ ℰ × ℰ and a relation 𝑟 ∈ ℛ, the relation maps the

pair of entities to a binary score, i.e., 𝑟 : ℰ × ℰ → {0, 1},∀𝑟 ∈ ℛ, indicating that the

head entity ℎ either has the relation 𝑟 with the tail entity 𝑡 or not. In the knowledge

base completion problem, people observe a set of facts 𝒪 = {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖)}𝑛𝑖=1 along with

their true assignment vector 𝑥 = [𝑥1, . . . , 𝑥|𝒪|] ∈ R|𝒪| with 𝑥𝑖 = 𝑟𝑖(ℎ𝑖, 𝑡𝑖). Denote the
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unobserved facts as ℋ = ℰ×ℛ×ℰ∖𝒪, and let {(𝐹𝑞,𝑊𝑞)}𝑚𝑞=1 be a set of weighted rules,

where 𝐹𝑞 is a rule (see section 3.2.1 for details, where a rule is referred to as first-order

logic), 𝑊𝑞 is the corresponding rule weight. The knowledge graph completion task

aims to infer the assignment vector for all unobserved facts 𝑦 ∈ R|ℋ| given the observed

facts and the rules.

3.2 Preliminaries

3.2.1 First-order logic

First-order logic. A first-order logic (also referred to as “logic rule” in this thesis)

associated with a knowledge base 𝒦 is an expression based on relations in 𝒦. Formally,

a logic rule 𝐹𝑞 in clausal form can be represented as a disjunction of atoms and negated

atoms: (︀
∨𝑖∈ℐ+

𝑞
𝑟𝑖(𝐴𝑖, 𝐵𝑖)

)︀
∨
(︀
∨𝑖∈ℐ−

𝑞
¬𝑟𝑖(𝐴𝑖, 𝐵𝑖)

)︀
, (3.1)

where ℐ−𝑞 and ℐ+𝑞 are two index sets containing the indices of atoms that are negated

or not, respectively, 𝐴𝑖 and 𝐵𝑖 are variables. Logic rules in clausal form can be

equivalently reorganized as an implication from premises (negated) to conclusions

(non-negated):

∧𝑖∈ℐ−
𝑞
𝑟𝑖(𝐴𝑖, 𝐵𝑖) =⇒ ∨𝑖∈ℐ+

𝑞
𝑟𝑖(𝐴𝑖, 𝐵𝑖). (3.2)

The implication Eq. equation (3.2) is quite expressive since it includes many com-

monly used types of logic rule, e.g., symmetry/asymmetry, inversion, sub-relation,

composition, etc.

3.2.2 Rule grounding and distance to satisfaction

Rule grounding. For a logic rule 𝐹𝑞 in Eq. equation (3.2), by assigning entities

𝑒 ∈ ℰ to the variables 𝐴𝑖 and 𝐵𝑖, 𝐹𝑞 is grounded, producing a set of ground for-
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mulas. For example, consider a simple logic rule 𝐹𝑎𝑡ℎ𝑒𝑟(𝐴,𝐵) ∧ 𝑊𝑖𝑓𝑒(𝐶,𝐴) ⇒

𝑀𝑜𝑡ℎ𝑒𝑟(𝐶,𝐵). Let 𝐴 = 𝐽𝑎𝑐𝑘, 𝐵 = 𝑅𝑜𝑠𝑠 and 𝐶 = 𝐽𝑢𝑑𝑦, we get a ground formula:

𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑎𝑐𝑘,𝑅𝑜𝑠𝑠) ∧𝑊𝑖𝑓𝑒(𝐽𝑢𝑑𝑦, 𝐽𝑎𝑐𝑘)⇒𝑀𝑜𝑡ℎ𝑒𝑟(𝐽𝑢𝑑𝑦,𝑅𝑜𝑠𝑠).

Distance-to-satisfaction. Denote all ground formulas created by the 𝑞-th logic rule

𝐹𝑞 by {𝐺(𝑗)
𝑞 }𝑛𝑞

𝑗=1, where 𝑛𝑞 is the number of ground formula for the 𝑞-th rule. For

any ground formula 𝐺
(𝑗)
𝑞 of 𝐹𝑞, when 𝑟𝑖(ℎ𝑖, 𝑡𝑖) ∈ {0, 1}, the satisfaction of 𝐺(𝑗)

𝑞 can

be evaluated via Eq. equation (3.1). The value is either 1 or 0, meaning that the

ground formula is satisfied or violated, respectively. The binary value of 𝑟𝑖(ℎ𝑖, 𝑡𝑖) can

be relaxed to a continuous value ranging over [0, 1]. In such case, we may define the

distance-to-satisfaction for 𝐺
(𝑗)
𝑞 via Łukasiewicz t-norm:

d(𝐺(𝑗)
𝑞 ) := max

{︃
1−

∑︁
𝑖∈ℐ+

𝑞

𝑟𝑖(ℎ𝑖, 𝑡𝑖)−
∑︁
𝑖∈ℐ−

𝑞

(1− 𝑟𝑖(ℎ𝑖, 𝑡𝑖)), 0

}︃
. (3.3)

Note that 𝑑(𝐺(𝑗)
𝑞 ) ∈ [0, 1], and the smaller 𝑑 is, the better satisfied the ground formula

𝐺
(𝑗)
𝑞 is.

3.3 Differentiable neuro-symbolic reasoning

In this section, we propose a neuro-symbolic model, namely, DiffLogic, which uni-

fies KG-embedding and rule-based reasoning. What follows we present the overall

framework of DiffLogic, then show how to perform DiffLogic efficiently.

3.3.1 Overall framework

As shown in fig. 4.1, the model comprises three components: 1) an efficient grounding

technique serving as a filter to identify crucial ground formulas and extract triples

connected to them; 2) a KG-embedding model to compute truth scores for the

extracted triples; and 3) a tailored continuous MLN framework that takes the truth
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Figure 3.1: Overall framework of DiffLogic.

scores as input and assess the overall probability. The model is optimized using an EM

algorithm, alternating between embedding optimization and weight updating. During

the E-step, we fix the rule weights and optimize embeddings in an end-to-end fashion,

by maximizing the overall probability; while in the M-step, we design an efficient rule

weight updating method by leveraging the sparsity of violated rules. It is also worth

mentioning here that the model requires a set of rules, which can be obtained from

certain rule-mining process or domain experts.

Next, we turn to the abovementioned three components.

Rule-guided iterative grounding. The success of probabilistic logic reasoning

heavily depends on the grounding process. However, the number of grounding formulas

is overwhelmingly large, under our setting, equals
∑︀𝑚

𝑞=1 |ℰ||ℐ
−
𝑞 |+1. As a result, one has

to sample for approximation. In this work, we propose a grounding technique called

Rule-guided Iterative Grounding (RGIG) that incrementally identifies crucial ground

formulas, reducing the number of ground formulas needed for optimization without

compromising performance.

Inference inherently promotes the agreement between assignments (i.e., 𝑦, 𝑥) and

the weighted rule set (i.e., {(𝐹𝑞,𝑊𝑞)}𝑚𝑞=1) by penalizing violated rules. Consequently,

ground formulas with higher distance-to-satisfaction are more valuable in guiding
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optimization. In light of this, we only need to find the ground formulas whose premise

atoms in Eq. equation (3.2) have (or potentially have) high scores. Pursuing this idea,

RGIG iteratively grounds all logic rules and updates a fact set 𝒱. The fact set 𝒱 is

initialized with the observed facts 𝒪 from the training set. In each iteration, rules are

grounded only from the facts in 𝒱 that match the premise parts of the rules. New

facts are derived from the conclusion parts of the rules and subsequently added to 𝒱 .

In the subsequent iterations, the updated 𝒱 is used to derive more new facts. From

our numerical experience, a few iterations of RGIG are sufficient, say 3. In the end,

RGIG yields a set of ground formulas.

This grounding technique leverages the sparsity of violated rules (the distances to

satisfaction for most ground formulas are approximately zero) to efficiently identify

important ground formulas, facilitating data-efficient optimization. The case study in

section 3.4.2 illustrates that our grounding technique attains comparable reasoning

performance and is orders of (103 ∼ 105) more efficient in terms of the number of

ground formulas.

KG-embedding model. In the literature of probabilistic logic reasoning, the

representation of assignment 𝑦 for all unobserved facts is very expensive, which is

approximate |ℰ|2|ℛ| as the observed fact triples are only a small portion. To this

end, we employ a KG-embedding model to parameterize 𝑦 and 𝑥. By embedding

each entity to continuous representation with 𝑛𝑒 parameters, and each relation with

𝑛𝑟 parameters. The number of parameters is reduced from |ℰ|2|ℛ| to |ℰ|𝑛𝑒 + |ℛ|𝑛𝑟,

which is linear with respect to the number of entities/relations.

Although (re)-parameterization improves the representation efficiency, we also need

to consider effectiveness. The relation pattern modeling capability is essential for

honestly modeling the logic in a KG and performing reasoning. For example, the

ability to model symmetric and reverse relation is attributed to capturing logic rules

with one premise atom (e.g. 𝐻𝑢𝑠𝑏𝑎𝑛𝑑(𝐴,𝐵) ⇒ 𝑊𝑖𝑓𝑒(𝐵,𝐴)), while the ability to

model composition relation is attributed to capturing logic rules with two premise
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atoms (e.g. 𝐹𝑎𝑡ℎ𝑒𝑟(𝐴,𝐵) ∧𝑊𝑖𝑓𝑒(𝐶,𝐴) ⇒ 𝑀𝑜𝑡ℎ𝑒𝑟(𝐶,𝐵)). Among all candidate

KG-embedding models, we choose RotatE [49] for its simplicity and capability of

modeling the various logic patterns. And of course, one may use also other KGE

models instead. Let the KGE model be parameterized by 𝜃. Using the sigmoid

function, we can transform the score for the fact triple (ℎ, 𝑟, 𝑡) produced by the KGE

model into [0, 1], which can be taken as the truth value for (ℎ, 𝑟, 𝑡). So the truth value

for (ℎ, 𝑟, 𝑡) can be parameterized by 𝜃. Therefore, the assignment vectors 𝑥 and 𝑦 can

be parameterized by 𝜃, with their entries being the truth values for the observed and

unobserved fact triples, respectively.

Hinge-loss Markov random field. Given the parameterized assignments, we

employ PSL [1] to build a hinge-loss Markov random field (HL-MRF). Specifically,

given a knowledge base 𝒦 with assignments 𝑥,𝑦, and a set of weighted logic rules

{(𝐹𝑞,𝑊𝑞)}𝑚𝑞=1. A HL-MRF 𝑃 over 𝑦 conditioned on 𝑥 is a probability density function

defined as

𝑃𝑤(𝑦|𝑥) =
1

𝑍(𝑊 ,𝑥)
exp(−𝑓𝑤(𝑦,𝑥)), 𝑍(𝑊 ,𝑥) =

∫︁
𝑦

exp(−𝑓𝑤(𝑦,𝑥))d𝑦, (3.4)

where 𝑓𝑤 is the hinge-loss energy function, defined as the weighted sum of all potentials:

𝑓𝑤(𝑦,𝑥) = 𝑊⊤Φ(𝑦,𝑥) = [𝑊1, . . . ,𝑊𝑚][Φ1(𝑦,𝑥), . . . ,Φ𝑚(𝑦,𝑥)]
⊤ =

𝑚∑︁
𝑞=1

𝑊𝑞Φ𝑞(𝑦,𝑥),

(3.5)

and Φ𝑞(𝑦,𝑥) is the sum of potentials of all ground formulas of 𝐹𝑞, i.e., Φ𝑞(𝑦,𝑥) =∑︀𝑛𝑞

𝑗=1 d(𝐺
(𝑗)
𝑞 ).

HL-MRF optimizes the assignment 𝑦 and the rule weights 𝑊 by alternating between

Maximum a posterior (MAP) inference and weight learning. The former step fixes the

𝑊 and optimizes 𝑦, while the latter step fixes 𝑦 and updates 𝑊 .
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Smokes(A)=0.2 Smokes(B)=0.8 Friend(B, B)=0.2

Friend(A, B)=0.4

Friend(B, A)=0.9

Friend(A, A)=0.1

0.8 𝑆𝑚𝑜𝑘𝑒𝑠(𝑥)⋀𝐹𝑟𝑖𝑒𝑛𝑑(𝑥, 𝑦) ⟹ 𝑆𝑚𝑜𝑘𝑒𝑠(𝑦)

Cancer(A)=0.4 Cancer(B)=0.1

0.5 𝑆𝑚𝑜𝑘𝑒𝑠(𝑥) ⟹ 𝐶𝑎𝑛𝑐𝑒𝑟(𝑦)

Weight of rule 𝐹! Potential sum of the 𝐹!

𝑃! 𝑤𝑜𝑟𝑙𝑑𝑆𝑡𝑎𝑡𝑒 =
1
𝑍 exp(2𝑊#𝜙#(𝑤𝑜𝑟𝑙𝑑𝑆𝑡𝑎𝑡𝑒))

Figure 3.2: An illustration of probabilistic soft logic (PSL).

3.3.2 Optimization

Below we elaborate on the optimization details of DiffLogic. We demonstrate how

the model optimization is efficiently performed by employing numerical optimization

techniques and approximation methods that leverage sparse properties.

Embedding updating The task in the inference step is to infer 𝑃𝑤(𝑦|𝑥), i.e.,

finding the optimum 𝑦 given the observed assignment 𝑥 and current weights 𝑊 ,

which can be formulated as a maximum a posterior (MAP):

argmax𝑦 𝑃𝑤(𝑦|𝑥) ≡ argmin𝑦∈[0,1]|ℋ| 𝑊
⊤Φ(𝑦,𝑥).

To be consistent with the observation, 𝑥(𝜃) should be as small as possible. Additionally,

we also want the truth values for negative samples to be large. So, the overall cost

function can be formulated as:

min
𝜃

𝑊⊤Φ(𝑦(𝜃),𝑥(𝜃)) + 𝜆

⎛⎝ 1

|𝑇+|
∑︁

(ℎ,𝑟,𝑡)∈𝑇+

[1− 𝑟(ℎ, 𝑡; 𝜃)] +
1

|𝑇−|
∑︁

(ℎ,𝑟,𝑡)∈𝑇−

𝑟(ℎ, 𝑡; 𝜃)

⎞⎠ ,

(3.6)

where 𝑥, 𝑦 are parameterized by 𝜃, 𝜆 > 0 is a parameter, 𝑟(ℎ, 𝑡; 𝜃) ∈ [0, 1] stands for

the truth value of a fact triple (ℎ, 𝑟, 𝑡), 𝑇+ and 𝑇− are positive and negative sample

sets, respectively. The optimization problem Eq. equation (3.6) can be solved by

stochastic gradient descent, where we sample a batch of ground formulas to compute

the potentials, 𝑇+ is a batch of positive triples from 𝒪, and 𝑇− is a set of negative

samples obtained by corrupting 𝑇+.
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Rule weights updating In this step, 𝜃 is fixed, and rule weights are updated by

maximizing log𝑃𝑤(𝑦|𝑥). The gradient of log𝑃𝑤(𝑦|𝑥) with respect to the weight of

𝐹𝑞 can be given by

𝜕 log𝑃𝑤(𝑦 | 𝑥)
𝜕𝑊𝑞

= E𝑊 [Φ𝑞(𝑦,𝑥)]− Φ𝑞(𝑦,𝑥). (3.7)

The first term computes the expectation of potential, which involves integration over 𝑦

under the distribution defined by rule weight 𝑊 . Directly computing the integration

is impractical, so we instead optimize the pseudo-likelihood of training data:

𝑃 *
𝑤(𝑦 | 𝑥) =

𝑛∏︁
𝑖=1

exp
[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

, 𝑓 𝑖
𝑤 =

𝑚∑︁
𝑞=1

𝑊𝑞

𝑛𝑞∑︁
𝑗=1

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 ).

Here 1{𝑦𝑖→𝐺
(𝑗)
𝑞 } = 1 if 𝑦𝑖 is connected to ground formula 𝐺

(𝑗)
𝑞 , otherwise, zero. 𝑍𝑖 is the

integration of 𝑓 𝑖
𝑤 over 𝑦𝑖, similar to the second equation in Eq. equation (3.4). The

pseudo-likelihood is a mean-field approximation for the exact likelihood in Eq. equa-

tion (3.4). It approximates the exact likelihood by decomposing it into a product of

the probabilities of 𝑦𝑖’s, conditioned on the Markov Blanket of 𝑦𝑖 denoted by MB(𝑦𝑖).

The gradient of the pseudo-likelihood is as follows (see Appendix A.2.1 for a detailed

derivation):

𝜕 log𝑃 *
𝑤(𝑦 | 𝑥)

𝜕𝑊𝑞

=
𝑛∑︁

𝑖=1

{︀
E𝑦𝑖|MB

[︀
Ψ𝑞,𝑀𝐵(𝑖)

]︀
−Ψ𝑞,𝑀𝐵(𝑖)

}︀
, Ψ𝑞,𝑀𝐵(𝑖) =

𝑛𝑞∑︁
𝑗=1

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 ).

The above equality enables us to estimate gradients by minibatch sampling. For each

sampled 𝑦𝑖, we need to compute both Ψ𝑞,𝑀𝐵(𝑖) and its expectation. The integration

term can be estimated using Monte Carlo integration by fixing other variables and

sampling 𝑦𝑖 on the interval [0, 1]. The Monte Carlo integration is parallelizable and

converges quickly as the number of samples increases.

To further reduce the computation burden, we leverage the sparsity of the violated

ground formulas to filter ground formulas. Practically, we pre-compute the truth

scores of all triples connected to the ground formulas using the KG-embedding model,

then use a threshold to divide these triples into a "positive" set and a "negative"
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set. A ground formula is expected to be violated if all its premise atoms are positive

and all its conclusion atoms are negative. By only involving the violated rules when

computing potentials, we significantly reduce computational costs.

Joint reasoning with rules and embeddings After training, we get the trained

embeddings and updated rule weights, which can be used to perform reasoning. There

are two ways to compute the score: 1) compute each embedding score 𝑟𝑖(ℎ𝑖, 𝑡𝑖; 𝜃) using

the learned embeddings 𝜃; 2) compute the cumulative rule score 𝑓𝑟𝑢𝑙𝑒(ℎ𝑖, 𝑟𝑖, 𝑟𝑖;𝑊 ) by

summing up weights of ground formulas that infer the target triple:

𝑓𝑟𝑢𝑙𝑒(ℎ𝑖, 𝑟𝑖, 𝑡𝑖;𝑊 ) =
𝑚∑︁
𝑞=1

𝑊𝑞

𝑛𝑞∑︁
𝑗=1

1{𝑟𝑖(ℎ𝑖,𝑡𝑖) can be inferred by 𝐺
(𝑗)
𝑞 }.

To perform joint inference using both embedding scores and rule scores, a simple way

is to use the weighted sum of embedding scores and the normalized rule scores:

𝑟𝑖(ℎ𝑖, 𝑡𝑖) = (1− 𝜂) · 𝑟𝑖(ℎ𝑖, 𝑡𝑖; 𝜃) + 𝜂 · ̂︀𝑓𝑖(ℎ𝑖, 𝑡𝑖;𝑊 ), (3.8)

where ̂︀𝑓𝑖(ℎ𝑖, 𝑡𝑖;𝑊 ) is the rescaled value of 𝑓𝑟𝑢𝑙𝑒(ℎ𝑖, 𝑟𝑖, 𝑡𝑖;𝑊 ) calculated by minmax

normalization. The optimum weight coefficient 𝜂 is selected by using the validation

set.

3.4 Experiments

In this section, we conduct experiments to answer the following research questions.

RQ1: Can DiffLogic outperform rule-based and embedding-based models in terms

of reasoning performance? RQ2: Can DiffLogic scale to large knowledge graphs

that rule-based models struggle to handle? RQ3: Does DiffLogic actually learn

representations compatible with rules? RQ4: Quantify the efficiency and scalability

of DiffLogic. RQ5: How effective is the model in terms of leveraging prior knowledge

encoded in rules, compared with data-driven methods?
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Datasets and candidate rules. We incorporate four real-world knowledge graph

datasets: YAGO3-10, WN18, WN18RR, and CodeX (available in three sizes: small,

medium, and large), along with a synthetic logic reasoning dataset: Kinship. Dataset

statistics and descriptions can be found below. We also list the statistics of the

real-world knowledge graph datasets in Table 3.1 and the synthetic Kinship dataset in

Table 3.2. We present detailed descriptions for each dataset below. Candidate rules

for knowledge graphs are mined using AMIE3 [25], with rule weights initialized by

rule confidence scores.

• CodeX. The CodeX dataset, recently proposed for knowledge graph completion

tasks, is a comprehensive collection extracted from both Wikidata and Wikipedia.

This challenging dataset comes in three versions: small (S), medium (M), and

large (L), allowing for comprehensive evaluation.

• YAGO3-10. YAGO3-10 is a subset of YAGO3 [45], a large knowledge base

completion dataset, with the majority of triples describing attributes of persons,

including their citizenship, gender, and profession.

• WN18. WordNet 18 (WN18) dataset is one of the most commonly used subsets

of WordNet.

• WN18RR. WN18RR is a modified version of WN18 designed to be more

challenging for knowledge graph reasoning algorithms by removing reverse

relations in the knowledge graph.

• Kinship. A synthetic dataset, widely used [66, 16] for evaluating the statistical

relational learning ability and the scalability of reasoning algorithms. We use five

different sizes of the dataset for evaluating its run time efficiency and parameter

scalability, namely Kinship-S1/S2/S3/S4/S5, respectively.

Baseline models. Baseline models include four KG-embedding models — TransE [3],

RotatE [49], TuckER [2], MLP [15], two GNN-based models — SACN [41], CompGCN
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Table 3.1: Statistics of real-world knowledge base datasets.

Dataset #Ent #Rel #Train/Valid/Test #Rules

CodeX-s 2,034 42 32,888/1,827/1,828 35

CodeX-m 17,050 51 185,584/10,310/10,311 52

CodeX-l 77,951 69 551,193/30,622/30,622 57

YAGO3-10 123,182 37 1,079,040/5,000/5,000 22

WN18 40,943 18 141,442/ 5,000/ 5,000 140

WN18RR 40,943 11 86,835/ 3,034/ 3,134 51

Table 3.2: Statistics for Kinship datasets of varied sizes (S1-S5).

S1 S2 S3 S4 S5

Number of rules containing 1 premise atom 12 12 12 12 12

Number of rules containing 2 premise atoms 9 9 9 9 9

Number of predicates 15 15 15 15 15

Number of entities 52 106 158 202 267

[52], four rule-learning models — Neural LP [59], DRUM [39], RNNLogic [35], RLogic

[10], a discrete MLN engine MLN4KB [16], and a neuro-symbolic model pLogicNet

[36] that also integrate KG-embedding and MLN. We exclude the recently proposed

ExpressGNN [66] from our experiments on KG experiments since it requires querying

test data1 during training and is inapplicable in our setting. For all baselines that

employ a KG embedding model, we unify the negative sampling scheme as adversarial

negative sampling for fair comparison. Hyperparameters for each baseline are taken

from their original paper.

1Please see the discussion on the usage of test data at https://openreview.net/forum?id=

rJg76kStwH.
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Table 3.3: Reasoning performance on real-world datasets. [T=n] means the maximum

body length of mined rules is n. The best results are shown in bold and the second

best are underlined. [NA] indicates that the model cannot finish inference within ten

hours.

CodeX-s CodeX-m CodeX-l WN18RR YAGO3-10

MRR hit@10 MRR hit@10 MRR hit@10 MRR hit@10 MRR hit@10

MLP 0.279 0.502 0.197 0.347 0.190 0.339 0.139 0.218 0.365 0.575

RotatE 0.421 0.634 0.325 0.466 0.319 0.453 0.469 0.566 0.495 0.670

TuckER 0.444 0.638 0.328 0.458 0.309 0.430 0.470 0.526 - -

TransE 0.353 0.607 0.320 0.481 0.308 0.452 0.218 0.510 0.436 0.647

SACN - - - - - - 0.470 0.540 - -

CompGCN - - - - - - 0.479 0.546 - -

AMIE 0.195 0.283 0.063 0.095 0.026 0.029 0.36 0.485 0.25 0.343

NeuraLP 0.290 0.395 NA NA NA NA 0.433 0.566 NA NA

DRUM(T=2) 0.290 0.393 NA NA NA NA 0.434 0.565 NA NA

DRUM(T=3) 0.342 0.542 NA NA NA NA 0.486 0.586 NA NA

RNNLogic+ - - - - - - 0.51 0.597 NA NA

RLogic+ - - - - - - 0.52 0.604 0.53 0.703

MLN4KB 0.082 0.134 0.035 0.045 0.028 0.032 0.368 0.374 0.460 0.525

pLogicNet 0.342 0.505 0.306 0.448 0.270 0.388 0.440 0.534 0.387 0.595

DiffLogic 0.445 0.662 0.335 0.487 0.326 0.448 0.493 0.585 0.503 0.673

DiffLogic+ 0.458 0.655 0.343 0.495 0.337 0.46 0.50 0.587 0.513 0.674

3.4.1 Reasoning on real-world knowledge graphs

To answer RQ1, RQ2, and RQ3, we conduct link prediction tasks on several real-

world datasets. Including WN18RR, YAGO3-10, and CodeX of three sizes (denoted

as CodeX-s/m/l). Note that YAGO3-10 and Codex-l are large knowledge graphs that

are suitable for assessing scalability. We report the performance of DiffLogic under
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two settings, using embedding scores for reasoning (denoted by DiffLogic) and using

both embedding scores and rule scores for reasoning (denoted by DiffLogic+). We

evaluate the performance using the Mean Reciprocal Rank (MRR) and Hit@10, with

the results presented in Table 3.3. We also investigate the evolution of violated rules

and MRR on WN18RR during the inference of DiffLogic and RotatE, as demonstrated

in Figure 3.3. These results lead to several key observations:

First, DiffLogic surpasses both rule-based and KG embedding-based meth-

ods. This can be primarily attributed to the fact that it combines the ability of both

sides: 1) the ability to utilize embeddings to model similarities among entities, which

enhance the reasoning performance; and 2) compared with data-driven KG-embedding

models that only learn rule patterns from a large amount of labeled data, DiffLogic

can explicitly leverage rule patterns within a principled logic reasoning framework,

leading to better overall performance. Our results also indicate that jointly using rules

and learned embeddings for reasoning is more effective than solely relying on embed-

dings. This suggests that rules and embeddings can complement each other during

the reasoning process, ultimately leading to more accurate and robust inferences.

Second, DiffLogic outperforms pLogicNet, a neuro-symbolic model. Although

pLogicNet also integrates MLN and KG-embeddings for reasoning, the key difference

is that DiffLogic optimizes MLN and KG-embedding using a unified objective, whereas

pLogicNet accommodates the discrete nature of MLN and essentially employs an

MLN as a data augmentation technique to annotate additional facts for training KG

embeddings. As a result, the optimization of MLN and KG embedding in pLogicNet

is less consistent, and its performance is sensitive to the annotation threshold. Its

performance is lower than TransE - its base KG embedding model on several large

KGs (YAGO3-10/CodeX-l) because the annotated triples are mostly false positive.

This highlights the advantages of DiffLogic in providing a more coherent and robust

optimization process.
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Third, DiffLogic demonstrates superior scalability compared to rule-based

methods. DiffLogic is adept at efficiently scaling to expansive KG datasets like

YAGO3-10 and CodeX-l. Conversely, rule-based methods, including NeuraLP, DRUM,

RNNLogic, and MLN4KB, often encounter challenges when attempting to scale to

such large KGs. An exception is RLogic, which is a scalable rule-learning model

designed to mine complex and lengthy rules for reasoning. Remarkably, our model

achieves comparable results by including only simply rules with a rule body length of

≤ 2.

Furthermore, DiffLogic proficiently learns representations that align with

both KG-embeddings and rules. As the left subfigure in Figure 3.3 demonstrates,

the number of violated rules during the inference (embedding learning) phase is initially

sparse, rises rapidly, and eventually decreases with training progression. We attribute

this to 1) the random initialization of embeddings, which assigns low truth scores to

most triples, resulting in fewer initial violations; 2) the model’s training phase, where

truth scores for training set triples increase but rule patterns are not yet fully captured,

causing a rapid rise in rule violations; 3) as training progresses, KG embeddings

begin to encapsulate rule patterns, reducing the number of violations. Importantly,

despite its base embedding model being RotatE, DiffLogic is more effective than pure

data-driven RotatE in capturing rule patterns, ensuring a consistent decrease in rule

violations. As depicted in the middle subfigure in Figure 3.3, DiffLogic achieves faster

convergence in test MRR compared to RotatE.

3.4.2 Scalability of optimization

To answer RQ4, we assess the scalability of our methodology, focusing primarily on

optimization efficiency, i.e., the efficacy of grounding. We employ Kinship, a widely

used [66, 16] synthetic benchmark dataset, to evaluate the efficacy and efficiency of

RGIG in identifying important ground formulas. This dataset includes a training set,
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Figure 3.3: Left: Violated rules evolution during inference on WN18RR. Middle:

MRR evolution on WN18RR. Right: Number of considered ground formulas in

PSL/ExpressGNN and RGIG.

a test set, and a set of logic rules with full confidence. Some predicates are unobserved

in the training set and can only be inferred via logic rules. The task is to deduce

the gender of each individual in the test set, given the training set and the rule set.

Kinship, designed for logical reasoning, necessitates resolving contradictions among

ground formulas, thus the reasoning performance heavily depends on the grounding

process. Such a challenging dataset is suitable for assessing the efficacy of grounding

techniques.

In our empirical evaluations, we discovered that three iterations of RGIG are enough

to identify crucial ground formulas for accurate reasoning, yielding an AUC-ROC of

0.982± 0.014 (detailed results are available in Section 3.4.4). We then compared the

efficiency of RGIG with PSL and ExpressGNN’s grounding techniques by examining

the number of ground formulas considered for optimization across five different sizes

of the Kinship dataset. Detailed calculations for PSL grounding can be found in

Appendix A.3. The comparative results are depicted in the right subfigure in Figure 3.3.

Although PSL and ExpressGNN can also perform accurate reasoning on Kinship, our

model using RGIG has orders of (103 ∼ 105) more data-efficient optimization process

over varied sizes of Kinship dataset, demonstrating its applicability.

To further evaluate the efficiency of RGIG, we empirically test the run-time and

memory overhead on real-world datasets. Results are presented in Table 3.4.
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Table 3.4: Grounding overhead on real-world datasets. Run-time overhead is evaluated

ten times and report mean and std.

Datasets CodeX-s CodeX-m CodeX-l WN18RR YAGO3-10

Run-time(/sec) 0.03±0.00 0.38±0.01 0.87±0.04 0.54±0.01 3.20±0.04

Memory(/MB) 2.19 11.57 25.58 18.73 262.65

The experimental results demonstrate that RGIG can efficiently scale to accommodate

large KGs while maintaining minimal run-time and memory overhead. On the largest

KG, YAGO3-10, the grounding process is completed in approximately 3.2 seconds,

using around 262 MB of memory. In practice, we also observed that as the grounding

iteration progresses, most inferred facts turn out to be negative triples. This trend

could introduce noise and potentially impact efficiency. To enhance the efficiency of

RGIG, one could consider filtering out facts with low scores by using a pre-trained

RotatE model.

3.4.3 Learning from data vs. learning from rules

To answer RQ5, we design a “rule-pattern re-injection” experiment to evaluate Dif-

fLogic’s capability of injecting prior knowledge into embeddings, and compare it with

pure data-driven based KG-embeddings. The design details are as follows:

The experiment contains two steps: 1) rule pattern removal, and 2) rule pattern re-

injection. In our experiments, we use WN18 and select fourteen rules whose confidence

scores are higher than 0.95. Then we deduplicate these rules so that no rules can

be inferred from other rules, resulting in seven compact rules. In the rule pattern

removal step, we use the selected seven rules to split the original training set, by

finding all paths in the original training set that match the rules and extract the

connected triples. The triples that match the conclusion part of the rules comprise the

pattern set, and the original training set with the pattern set removed becomes the fact
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set. In this way, the generated fact set does not contain any pattern for the seven rules.

In the rule pattern re-injection step, we add different ratios (0%, 10%, 20%, 100%)

of the pattern set back into the fact set, so that rule patterns become increasingly

evident. For DiffLogic, seven rules are applied to the training process for explicit rule

pattern injection. We also include three KG-embedding models for comparison. To

fairly compare the rule-injection capability for embeddings, we use only the embedding

scores of DiffLogic for evaluation. Experimental results are presented in Table 3.5.

Table 3.5: Comparison of pure data-driven training and rule injection by DiffLogic for

embeddings.

Model
MRR Hits@10

0% 10% 20% 100% 0% 10% 20% 100%

MLP 0.123 0.156 0.198 0.851 0.279 0.364 0.449 0.932

TransE 0.399 0.469 0.500 0.775 0.917 0.944 0.944 0.957

RotatE 0.579 0.890 0.927 0.944 0.784 0.949 0.961 0.962

DiffLogic 0.954 0.953 0.952 0.954 0.964 0.966 0.963 0.967

The results show a significant difference between the two rule pattern learning

paradigms: DiffLogic can directly leverage explicit prior knowledge compactly encoded

in rules, achieving significant improvement in reasoning performance by using only a

small number of logical rules. On the contrary, pure data-driven based KG-embedding

algorithms can only implicitly learn rule patterns from labeled data. By adding

more data from the pattern set back to the fact set, the performance of data-driven

algorithms increases as the rule patterns become more evident in the knowledge

base. Nevertheless, these data-driven algorithms are not comparable to DiffLogic even

though rule patterns are observable.
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Table 3.6: Comparative evaluation of reasoning performance on the Kinship dataset.

Ground AUC-ROC

Algorithms iteration S1 S2 S3 S4 S5

PSL - .976±.011 .980±.005 .991±.003 .982±.005 .972±.004

ExpressGNN - .957±.002 .921±.001 .959±.004 .940±.001 .989±.004

1 .841±.005 .895±.001 .922±.001 .901±.001 .903±.000

DiffLogic-RotatE 2 .931±.005 .994±.001 .998±.001 .985±.001 .993±.001

3 .937±.005 .987±.001 .995±.001 .978±.001 .989±.001

1 .567±.099 .537±.041 .507±.024 .503±.018 .504±.014

DiffLogic-MLP 2 .956±.032 .997±.002 .999±.003 .999±.001 .999±.000

3 .982±.014 .997±.001 .999±.001 .999±.000 .999±.000

3.4.4 Probabilistic logic reasoning on Kinship Dataset

We assess performance on the Kinship dataset across five different sizes. Due to the

full confidence of rules, we only perform inference in this experiment and do not need

to update weights. We include DiffLogic using two different embedding models, i.e.,

RotatE and MLP, and evaluate their reasoning performance using RGIG with varied

iterations (i.e., 1, 2, 3) for grounding. We include PSL and ExpressGNN as baselines,

but we exclude pLogicNet due to its inability to utilize handcrafted rules. Given that

the Kinship dataset lacks a validation set, we run each model ten times and report

the AUC-ROC statistics from the final epoch of each run on the test set. The results

are presented in Table 3.6, with the best results shown in bold.

3.4.5 Comparing inference time on Kinship

We evaluate the inference time on the Kinship dataset across five different sizes. We

include models in Section 3.4.4 for this experiment. For two DiffLogic variants, we

only evaluate their inference time when using 3 iterations of RGIG for grounding.
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All the runtime experiments are conducted in the same machine with configurations

as in Table 3.7. All of these models are implemented in Python, thereby ensuring a

fair comparison. The inference time results are displayed in Table 3.8, with the best

results shown in bold.

Table 3.7: Machine configuration.

Component Specification

GPU NVIDIA GeForce RTX 3090

CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz

Table 3.8: Comparison of runtime of inference on Kinship.

Grounding Runtime

Algorithms iteration S1 S2 S3 S4 S5

PSL - ∼3.6min ∼7.9min ∼12.9min ∼13.5min ∼32min

ExpressGNN - ∼18.4min ∼19.1min ∼18.9min ∼19.4min ∼20.2min

DiffLogic-RotatE 3 37s ∼1.5min ∼3.2min ∼3.6min ∼4min

DiffLogic-MLP 3 21.8s 41.5s 45s 54.4s ∼1.2min
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Chapter 4

Neuro-symbolic Entity Alignment via

Variational Inference

4.1 Preliminaries

4.1.1 Problem statement

A knowledge graph 𝒢 comprises a set of entities ℰ , a set of relations ℛ, and a

set of relation triples 𝒯 where each triple (𝑒𝑖, 𝑟𝑘, 𝑒𝑗) ∈ 𝒯 represents a directional

relationship between its head entity and tail entity. Given two KGs 𝒢 = {ℰ ,ℛ, 𝒯 },

𝒢 ′ = {ℰ ′,ℛ′, 𝒯 ′}, and a set of observed aligned entity pairs 𝒪 = {(𝑒𝑖, 𝑒′𝑖)|𝑒𝑖 ∈ ℰ , 𝑒′𝑖 ∈

ℰ ′}𝑛𝑖=1, the goal of entity alignment is to infer the missing alignments by reasoning

with the existing alignments. This problem can be formulated in a probabilistic way:

each pair (𝑒, 𝑒′), 𝑒 ∈ ℰ , 𝑒′ ∈ ℰ ′ is associated with a binary indicator variable 𝑣(𝑒,𝑒′).

𝑣(𝑒,𝑒′) = 1 means (𝑒, 𝑒′) is an aligned pair, and 𝑣(𝑒,𝑒′) = 0 otherwise. Given some

observed alignments 𝑣𝑂 = {𝑣(𝑒,𝑒′) = 1}(𝑒,𝑒′)∈𝒪, we aim to predict the labels of the

remaining hidden entity pairs ℋ = ℰ × ℰ ′∖𝒪, i.e., 𝑣𝐻 = {𝑣(𝑒,𝑒′)}(𝑒,𝑒′)∈ℋ.
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4.1.2 Symbolic reasoning for entity alignment

Given an aligned pair (𝑒𝑗, 𝑒′𝑗), a new aligned pair (𝑒𝑖, 𝑒′𝑖) can be inferred with confidence

score 𝑤𝑝,𝑝′ if they are each connected to the existing pair via a relational path 𝑝 and

𝑝′ respectively, formally:

𝑤𝑝,𝑝′ : (𝑒𝑗 ≡ 𝑒′𝑗) ∧ 𝑝(𝑒𝑖, 𝑒𝑗) ∧ 𝑝′(𝑒′𝑖, 𝑒
′
𝑗) =⇒ (𝑒𝑖 ≡ 𝑒′𝑖), (4.1)

where 𝑝 = |ℛ|𝐿, 𝑝′ = |ℛ′|𝐿 are a pair of paths each consisting of 𝐿 connected relations,

and 𝑤𝑝,𝑝′ measures the rule quality that considers the intra-KG structure and inter-KG

structure, such as the indicative of each path, and the similarity between two paths.

By instantiating such rule with the constants (real entities and relations) in the KG

pair, a symbolic model predicts the label distribution of an entity pair (𝑒, 𝑒′) by:

𝑝𝑤(𝑣(𝑒,𝑒′)|𝒢,𝒢 ′), for (𝑒, 𝑒′) ∈ {𝒪 ∪ℋ}. (4.2)

Using logic rules to infer the alignment probability can leverage the high-order struc-

tural information for effective alignment as well as provide interpretability. However,

exact inference is intractable due to the massive amount of possible instantiated rules

(exponential to 𝐿), limiting its applicability to real-world KGs.

4.2 Neuro-symbolic reasoning framework for entity

alignment

4.2.1 Variational EM

Given a set of observed labels 𝑣𝑂, our goal is to maximize the log-likelihood of these

labels, i.e., log 𝑝𝑤(𝑣𝑂). Directly optimizing this objective is intractable because it

requires computing an integral over all the hidden variables. Instead, we optimize the

evidence lower bound (ELBO) of the log-likelihood as follows:

𝑝𝑤(𝑣𝑂) ≥ 𝐸𝑞(𝑣𝐻) [log 𝑝𝑤(𝑣𝑂,𝑣𝐻)− log 𝑞(𝑣𝐻)] = ELBO(𝑞,𝑣𝑂;𝑤), (4.3)
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𝑝𝑤 𝑒𝑖 ≡ 𝑒′𝑖 𝑝, 𝑝
′ = 𝑤𝑝,𝑝′
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Target KG
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𝑒′𝑗
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ground rule with weight

Neural Model
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Figure 4.1: Framework illustration of NeuSymEA. The yellow solid line represents the

alignment of an anchor pair. The symbolic model computes the matching probability of

entity pairs by mining supporting rules (path pairs from anchor pairs) and evaluating

their corresponding weights. The neural model learns embeddings and calculates

entity-level matching scores based on embedding similarity. NeuSymEA models the

agreement between the symbolic reasoning and neural representations using a joint

probability distribution over observed pairs and parameterized truth scores for hidden

pairs, optimized through a variational EM algorithm.
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here, 𝑞(𝑣𝐻) is a variational distribution of the hidden variables 𝑣𝐻 . This inequality

holds for all 𝑞 because 𝑝𝑤(𝑣𝑂) = ELBO(𝑞,𝑣𝑂;𝑤) +𝐷𝐾𝐿(𝑞(𝑣𝐻)‖𝑝𝑤(𝑣𝐻 | 𝑣𝑂)), where

𝐷𝐾𝐿(𝑞(𝑣𝐻)‖𝑝𝑤(𝑣𝐻 | 𝑣𝑂)) ≥ 0 is the KL-divergence between 𝑞(𝑣𝐻) and 𝑝𝑤(𝑣𝐻 | 𝑣𝑂).

Under this framework, the log-likelihood 𝑝𝑤(𝑣𝑂) can be optimized using an EM

algorithm: during the E-step, we fix 𝑤 and update the variational distribution 𝑞;

during the M-step, we update 𝑤 to maximize the log-likelihood of all the entity pairs,

i.e., 𝐸𝑞(𝑣𝐻)[log 𝑝𝑤(𝑣𝑂,𝑣𝐻)], as illustrated in Figure 4.1.

Explicitly representing the variational distribution 𝑞 is parameter intensive, which

requires ≈ |ℰ||ℰ ′| variables because the observed pairs are very sparse. To this end, we

parameterize 𝑞 with a neural model as 𝑞𝜃, with 𝜃 being the parameters of the neural

model.

4.2.2 E-step: inference

In this step, we fix 𝑤 and update 𝑞𝜃 to minimize the KL divergence 𝐷𝐾𝐿. Directly

minimizing 𝐷𝐾𝐿 is intractable, as it involves computing the entropy of 𝑞𝜃. Therefore,

we follow [? ] and optimize the reverse KL divergence of 𝑞𝜃 and 𝑝𝑤, leading to the

following objective:

𝜑𝑣𝐻 ,𝜃 =
∑︁

(𝑒,𝑒′)∈ℋ

E𝑝𝑤(𝑣(𝑒,𝑒′)|𝑣𝑂)𝑞𝜃(𝑣𝐻). (4.4)

To optimize this objective, we first use the symbolic model with weighted rules to

predict 𝑝𝑤(𝑣(𝑒,𝑒′) | 𝑣𝑂) for each (𝑒, 𝑒′) ∈ ℋ. If 𝑝𝑤(𝑣(𝑒,𝑒′) | 𝑣𝑂) > 𝛿, where 𝛿 is a

threshold, we treat this entity pair as a positive label; otherwise, we regard the pair

as a negative pair that can be selected during negative sampling process of the neural

model.

The observed labels can also be used as training data for supervised optimization.

The objective is:

𝜑𝑣𝑂,𝜃 =
∑︁

(𝑒,𝑒′)∈𝒪

log 𝑞𝜃(𝑣(𝑒,𝑒′) = 1). (4.5)
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The final objective for 𝑞𝜃 is obtained by combining these two objectives: 𝜑𝜃 =

𝜑𝑣𝐻 ,𝜃 + 𝜑𝑣𝑂,𝜃.

4.2.3 M-step: Rule weight Update

In this step, we fix 𝑞𝜃 and update the rule weight 𝑤 to maximize ELBO(𝑞,𝑣𝑂;𝑤).

Since the right term of the ELBO in equation (4.3) is constant when 𝑞𝜃 is fixed, the

objective is equivalent to maximizing the left term 𝐸𝑞𝜃(𝑣𝐻)[log 𝑝𝑤(𝑣𝑂,𝑣𝐻)], which is

the log-likelihood function.

Specifically, we start by predicting the labels of hidden variables using the current

neural model. For each (𝑒, 𝑒′) ∈ ℋ, we predict the labels 𝑣(𝑒,𝑒′)(𝜃) and obtain the

prediction set 𝑣𝐻(𝜃) = {𝑣(𝑒,𝑒′)(𝜃)}(𝑒,𝑒′)∈ℋ. In this way, maximizing the likelihood

practically becomes maximizing the following objective:

𝜑𝑤 = log 𝑝𝑤(𝑣𝑂,𝑣𝐻(𝜃)). (4.6)

To obtain the pseudo-label 𝑣(𝑒,𝑒′) using 𝑞𝜃, we employ the trained neural model to

compute the matching score of any entity pair (𝑒, 𝑒′) ∈ ℋ. However, this strategy can

easily introduce false positives into the pseudo-label set especially when the number

of entities is large. To mitigate this, we consider one-to-one matching to sift only

the most confident pairs. Practically, we first sort all pairs by their confidence score,

then we annotate the pairs as positive following the order of the confidence. If a pair

contains an entity observed in the annotated pairs, then this pair is skipped. This

simple greedy strategy significantly reduces the amount of false positives.
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4.3 Optimization and Inference

4.3.1 Efficient optimization via logical deduction

Inference and learning with logic rules of length 𝐿 can be computationally intensive,

as the search space for paths grows exponentially with increasing 𝐿. To enhance

reasoning efficiency, we decompose a rule in equation (4.1) using logic deduction,

inspired by (author?) [8] in KG completion:

𝑤𝑝,𝑝′ : (𝑒𝑗 ≡ 𝑒′𝑗) ∧

(︃
𝐿⋀︁

𝑘=1

𝑟𝑘(𝑒𝑘−1, 𝑒𝑘)

)︃
∧

(︃
𝐿⋀︁

𝑘=1

𝑟′𝑘(𝑒
′
𝑘−1, 𝑒

′
𝑘)

)︃
=⇒ (𝑒𝑖 ≡ 𝑒′𝑖). (4.7)

Here
⋀︀𝐿

𝑘=1 𝑟𝑘(𝑒𝑘−1, 𝑒𝑘) represents the path formed by 𝑟1, 𝑟2, ..., 𝑟𝐿 connecting 𝑒𝑖 to 𝑒𝑗

with 𝑒0 = 𝑒𝑖 and 𝑒𝑘 = 𝑒𝑗. This can be reorganized as a series of single-step logic

reasoning :

𝑤𝑝,𝑝′ : (𝑒𝑗 ≡ 𝑒′𝑗) ∧

(︃
𝐿⋀︁

𝑘=1

[︀
𝑟𝑘(𝑒𝑘−1, 𝑒𝑘) ∧ 𝑟′𝑘(𝑒

′
𝑘−1, 𝑒

′
𝑘)
]︀)︃

=⇒ (𝑒𝑖 ≡ 𝑒′𝑖). (4.8)

In this way, each logic rule of length 𝐿 can be viewed as a deductive combination of 𝐿

short rules of length 1. At each step, following [44], we perform one-step inference to

update 𝑝𝑤(𝑣(𝑒,𝑒′)) for each (𝑒, 𝑒′) ∈ ℋ by aggregating the alignment probability from

neighbors:

1−
∏︁

(𝑒,𝑟,𝑒𝑡)∈𝒯 ,
(𝑒′,𝑟′,𝑒′𝑡)∈𝒯 ′

(︀
1− 𝜂(𝑟)𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′)𝑝𝑤(𝑣(𝑒𝑡,𝑒′𝑡)

)
)︀
×
(︀
1− 𝜂(𝑟′)𝑝𝑠𝑢𝑏(𝑟

′ ⊆ 𝑟)𝑝𝑤(𝑣(𝑒𝑡,𝑒′𝑡)
)
)︀
.

(4.9)

where 𝜂(𝑟) is a relation pattern of 𝑟 measuring the uniqueness of 𝑒 through relation

𝑟 given a specified tail entity 𝑒𝑡, quantified by 𝜂(𝑟) = |{𝑒𝑡|(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯 }
|{(𝑒ℎ,𝑒𝑡)|(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯 )}| . 𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′)

denotes the probability that relation 𝑟 is a subrelation of 𝑟′. This formulation enables

inference with confidence by explicitly quantifying confidence 𝑤 using 𝜂 and 𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′).

In this way, the update of the weight 𝑤 simplifies to updating 𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′) during the

M-step (equation (4.6)), as 𝜂(𝑟) for each relation 𝑟 is constant. In practice, the update
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of 𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′) can be computed by:∑︀(︁
1−

∏︀
(𝑒′ℎ,𝑟

′,𝑒′𝑡)∈𝒯 ′

(︀
1− 𝑣(𝑒ℎ,𝑒

′
ℎ)
𝑣(𝑒𝑡,𝑒′𝑡)

)︀)︁
∑︀(︁

1−
∏︀

𝑒′ℎ,𝑒
′
𝑡∈ℰ ′

(︀
1− 𝑣(𝑒ℎ,𝑒

′
ℎ)
𝑣(𝑒𝑡,𝑒′𝑡)

)︀)︁ . (4.10)

where 𝑣(𝑒ℎ,𝑒
′
ℎ)

and 𝑣(𝑒𝑡,𝑒′𝑡)
are labels (or pseudo-labels) from 𝑣𝑂 ∪ 𝑣𝐻(𝜃).

After optimization, rule weights can be computed by taking the product of the

importance scores 𝜂 of relations and the sub-relation probabilities of the corresponding

relation pair:

𝑤𝑝,𝑝′ :=
𝐿∏︁

𝑘=1

𝜂(𝑟𝑘) · 𝜂(𝑟′𝑘) ·
𝑝𝑠𝑢𝑏(𝑟𝑘 ⊆ 𝑟′𝑘) + 𝑝𝑠𝑢𝑏(𝑟

′
𝑘 ⊆ 𝑟𝑘)

2
. (4.11)

4.3.2 Inference with interpretability

To predict new alignments, there are two approaches: using the symbolic model or the

neural model. The symbolic model infers alignment probabilities with the optimized

weights 𝑤. Due to scalability concerns, symbolic methods generally adopt a lazy

inference strategy that only preserves the confident pairs implied by the neighbor

structure during inference. On the other hand, the neural model computes similarity

scores for all entity pairs (𝑒, 𝑒′) ∈ ℋ using the learned parameters 𝜃, generating a

ranked candidate list for each entity.

The evaluation of these models thus differs. Symbolic models are generally evaluated

by precision, recall, and F1-score for their binary outputs, while neural models are

assessed using hit@k and mean reciprocal ranks (MRR) for their ranked candidate lists.

Following the practices in [34] and [30], we unify the evaluation metrics by treating

the recall metric of symbolic models as equivalent to hit@1, facilitating comparison

with neural models.

To enhance the interpretability of predictions, we adapt the optimized symbolic

model into an explainer. For any given entity pair, the explainer generates a set
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of supporting rule path pairs that justify their alignment, each associated with a

confidence score indicating its significance. The explainer operates in two modes: (1)

hard-anchor mode, which generates supporting paths only from prealigned pairs,

and (2) soft-anchor mode, which includes paths from both prealigned and inferred

pairs, providing more informative interpretations.

By integrating a breadth-first search algorithm (detailed in Appendix A.4.1), the

explainer efficiently generates high-quality interpretations. For truly aligned pairs, it

typically produces high-confidence interpretations, while for non-aligned pairs, the

interpretations may result in an empty set (indicating no supporting evidence) or have

low confidence scores. See Figure 4.3 for a visualized comparison.

4.4 Experiments

4.4.1 Experimental settings

In this section, we conduct experiments to answer the following questions. RQ1:

Can NeuSymEA outperform existing neural, symbolic, and neuro-symbolic methods

in terms of alignment performance? RQ2: Can symbolic and embedding-based

methods complement each other in our framework? RQ3: How does the incor-

porated embedding-based model affect the alignment performance? RQ4: How

does NeuSymEA interpret the inferred entity pairs, and how is the effectiveness of

interpretations with respect to the rule length?

Datasets. We utilize the multilingual DBP15K dataset, which consists of three cross-

lingual knowledge graph (KG) pairs: ja-en, fr-en, and zh-en. Note that the original full

version [46] of this dataset contains a significant number of long-tail entities, presenting

challenges for GCN-based models in terms of sparsity and large size. Therefore, many

recent works [55, 33, 30] employ a condensed version, where long-tail entities and their
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connected triples are removed. For a comprehensive evaluation, we use both versions.

Detailed statistics for these datasets are provided in Section 4.4.1 and Section 4.4.1.

Each dataset is divided into training, validation, and test sets following a 5-fold

cross-validation scheme, with a ratio of 2:1:7.

Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs

zh-en
Chinese (zh) 66,469 2,830 153,929

15,000
English (en) 98,125 2,317 237,674

ja-en
Japanese (ja) 65,744 2,043 164,373

15,000
English (en) 95,680 2,096 233,319

fr-en
French (fr) 66,858 1,379 192,191

15,000
English (en) 105,889 2,209 278,590

Table 4.1: Data statistics of the full DBP15K dataset.

Datasets KG Entities Relations Rel. Triplets Aligned Entity Pairs

zh-en
Chinese (zh) 19,388 1,701 70,414

15,000
English (en) 19,572 1,323 95,142

ja-en
Japanese (ja) 19,814 1,299 77,214

15,000
English (en) 19,780 1,153 93,484

fr-en
French (fr) 19,661 903 105,998

15,000
English (en) 19,993 1,208 115,722

Table 4.2: Data statistics of the condensed DBP15K dataset.

Baselines and metrics. Baseline models include six neural models – GCNAlign [55],

AlignE, BootEA [47], RREA [33], Dual-AMN [31], LightEA [32], one symbolic models

– PARIS [44], and two neuro-symbolic models – PRASE [34], EMEA [30]. We use

Hit@1, Hit@10, and MRR as the evaluation metrics. For PARIS and PRASE that

have binary outputs, we report their recall as Hit@1, following (author?) [30].

45



Chapter 4. Neuro-symbolic Entity Alignment via Variational Inference

Hyperparameters. NeuSymEA has two key hyperparameters: the number of EM

iterations and the threshold 𝛿 for selecting positive pairs from the symbolic model.

We tune these hyperparameters and select the best values based on the validation

set. The search space for 𝛿 is {0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99}, while the number of

iterations is searched from 1 to 9.

4.4.2 Results

Comparison with baselines

To answer RQ1, RQ2 and RQ3, we compare NeuSymEA with baseline models on

two versions of the DBP15K dataset: the full version (group1) and the condensed

version (group2). Results are presented in Table 4.3. The results for PRASE, and

EMEA on the condensed DBP15K are adopted from the original EMEA paper. We

employ both Dual-AMN and LightEA as the neural models in our framework, denoted

as NeuSymEA-D and NeuSymEA-L, respectively. These results lead to several key

observations:

First, NeuSymEA surpasses both symbolic and KG embedding-based

models. This can be attributed to the fact that it combines the capacity of both sides:

1) the ability to precisely infer confident pairs with rules by leveraging the multi-hop

relational structures; and 2) the ability to effectively model entity representations in a

unified space to jointly optimize the alignment of two KGs. NeuSymEA seamlessly

combines both symbolic reasoning and neural representations in a principled variational

framework, leading to improved performance.

Second, NeuSymEA outperforms both neuro-symbolic models, PRASE and

EMEA. This improvement can be largely attributed to the model objective design

in our framework. While PRASE and EMEA treat the symbolic and neural models

as separate components, NeuSymEA integrates them within a principled variational
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Table 4.3: Entity alignment results on DBP15K dataset. The suffixes "-D" and "-L"

indicate the use of Dual-AMN and LightEA as the neural models. The results of

RREA and EMEA are omitted on the full dataset due to an OOM (Out of Memory)

error.

Category Model
ja-en fr-en zh-en

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

Group 1: Results on the full DBP15K dataset

Neural

GCNAlign 0.221 0.461 0.302 0.205 0.475 0.295 0.189 0.438 0.271

BootEA 0.454 0.782 0.564 0.443 0.799 0.564 0.486 0.814 0.600

AlignE 0.356 0.715 0.476 0.346 0.731 0.475 0.333 0.690 0.453

Dual-AMN 0.627 0.883 0.717 0.652 0.908 0.744 0.650 0.884 0.732

LightEA 0.736 0.894 0.793 0.782 0.919 0.832 0.725 0.874 0.779

symbolic PARIS 0.589 - - 0.618 - - 0.603 - -

Neuro-Symbolic PRASE 0.611 - - 0.647 - - 0.652 - -

Ours
NeuSymEA-D 0.806 0.942 0.855 0.827 0.952 0.871 0.801 0.925 0.843

NeuSymEA-L 0.781 0.907 0.826 0.834 0.937 0.871 0.785 0.894 0.825

Group 2: Results on the condensed DBP15K dataset

Neural

GCNAlign 0.331 0.662 0.443 0.325 0.688 0.446 0.335 0.653 0.442

BootEA 0.530 0.829 0.631 0.579 0.872 0.961 0.575 0.847 0.668

AlignE 0.433 0.783 0.552 0.457 0.821 0.580 0.474 0.806 0.587

RREA 0.749 0.935 0.818 0.797 0.958 0.859 0.762 0.938 0.827

Dual-AMN 0.750 0.927 0.815 0.793 0.954 0.854 0.756 0.919 0.816

LightEA 0.778 0.911 0.828 0.827 0.943 0.830 0.770 0.894 0.816

symbolic PARIS 0.565 - - 0.584 - - 0.543 - -

Neuro-Symbolic
PRASE 0.580 - - 0.622 - - 0.593 - -

EMEA 0.736 - 0.807 0.773 - 0.841 0.748 - 0.815

Ours
NeuSymEA-D 0.805 0.930 0.849 0.835 0.953 0.879 0.815 0.926 0.855

NeuSymEA-L 0.811 0.928 0.854 0.858 0.954 0.894 0.804 0.904 0.840

EM framework, unifying their objective as the log-likelihood of the observed variables.

This approach allows for the joint optimization of both components, ensuring they

work together to maximize the log-likelihood. By iteratively refining both components
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through the EM algorithm, NeuSymEA achieves a more coherent and convergent

solution, leading to superior performance, as shown by the empirical results.

Finally, NeuSymEA demonstrates superior robustness across both versions

of the DBP15K dataset. Comparisons between two groups of results offer an

interesting insight: embedding-based models experience significant performance degra-

dation when moving from the condensed version to the full version of DBP15K (e.g.,

MRR of Dual-AMN decreases from 0.815 to 0.717 on ja-en), while symbolic models,

in contrast, show improvements. We attribute this to two key factors: (1) Embedding-

based models rely on entity-level matching, which is sensitive to dataset size. As the

dataset grows, the number of similar entity embeddings increases, leading to reduced

accuracy. The full version of DBP15K contains significantly more entities than the

condensed version, exacerbating this effect. (2) Symbolic models, on the other hand,

perform path-level matching. Their effectiveness is constrained more by substructure

heterogeneity and sparsity than dataset size. The full version of DBP15K includes

more relational triples, which enhances the rule-mining process, ultimately making

the symbolic models more effective in this scenario. NeuSymEA, by combining

symbolic reasoning with KG embeddings, mitigates the shortcomings of

both approaches, making it robust to changes in dataset scale and structure.

This synergy allows NeuSymEA to consistently outperform baselines in

both sparse and dense settings.

Evolution of rules and embeddings

We study how rules and embeddings evolve and interact with each other during the

EM steps, with results shown in Figure 4.2. Results in the left subplot indicate that

in each EM iteration, the number of rule-inferred pairs grows consistently with high

precision, implying that the embedding model continuously improves the inference

performance of rules. These precise pairs, in turn, enhance the performance of the
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Figure 4.2: (Left) Evolution of rule inferred pairs, with solid lines representing total

inferred pairs and dashed lines representing true inferred. The shaded areas indicate

the number of false pairs. Precision values are annotated at each data point. (Right)

Convergence of MRR of the neural model.

neural model. As shown in the right subfigure, the MRR of the neural model converges

within a few iterations.
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Figure 4.3: (Left) Probability density of the top supporting rule’s confidence; (Middle)

Number of supporting rules (thresholded by confidence score) relative to the maximum

rule lengths under the soft anchor mode; (Right) Number of supporting rules relative

to the maximum rule lengths under the hard anchor mode.

We investigate the interpretations generated by the explainer on the fr-en dataset. The

left subfigure of Figure 4.3 shows the probability density of confidence scores for sup-
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Table 4.4: Examples of supporting rules for query pairs in fr-en. Anchor pairs are

shown in bold.

Query Pair Supporting Rule Confidence

Maison_de_Savoie (Humbert_II_(roi_d’Italie), dynastie, Maison_de_Savoie), (Humbert_II_(roi_d’Italie), conjoint, Marie-José_de_Belgique)
0.80

House_of_Savoy (Umberto_II_of_Italy, house, House_of_Savoy), (Umberto_II_of_Italy, spouse, Marie_José_of_Belgium)

Légion_espagnole (Légion_espagnole, commandantHistorique, Francisco_Franco), (Francisco_Franco, conjoint, Carmen_Polo)
0.59

Spanish_Legion (Spanish_Legion, notableCommanders, Francisco_Franco), (Francisco_Franco, spouse, Carmen_Polo,_1st_Lady_of_Meirás)

Premier_ministre_du_Danemark (Premier_ministre_du_Danemark, titulaireActuel, Lars_Løkke_Rasmussen)
0.79

Prime_Minister_of_Denmark (Prime_Minister_of_Denmark, incumbent, Lars_Løkke_Rasmussen)

porting rules (with a maximum rule length of 3) associated with entity pairs. Positive

pairs are derived from the test set, while negative pairs are created by replacing one

entity in each test pair with another randomly sampled entity. The distinct confidence

distributions indicate that positive pairs generally have more evidence for

alignment, which aligns with intuition. However, the probability density distribution

also reveals that some positive pairs do not have high confidence scores. Upon fur-

ther examination, we found that many test pairs are isolated, i.e., they lack

directly aligned neighbors. Despite this, NeuSymEA successfully generates

supporting rules for isolated pairs by exploiting multihop dependencies.

In Table 4.4, we provide several examples of supporting rules and their associated

confidence scores for the queried entity pairs.

To examine the impact of rule length on the explainer’s effectiveness, the middle and

right subfigures in Figure 4.3 show the number of supporting rules for test positive pairs

as the maximum rule length increases. Compared to hard anchor mode, the explainer

in soft anchor mode generates more high-quality supporting rules by leveraging inferred

pairs as complementary anchor pairs, mitigating the sparsity issue. We also observe

that increasing the maximum rule length leads to more high-quality rules;

however, the number of high-confidence rules grows more slowly than lower-

confidence rules. This can be attributed to our method for calculating confidence:

the logical deduction-based approach computes a rule’s confidence as the product of

the confidences of its decomposed length-one sub-rules (as in Equation (4.11)). For
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example, a rule with two sub-rules, each with confidence 0.8, results in an overall

confidence of 0.8× 0.8 = 0.64. Considering this, the confidence score tends to decrease

when the rule length increases, thus increasing the maximum length tends to discover

supporting rules with lower scores.
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Figure 4.4: Alignment performance with varying percentages of pairs as training data.

Robustness in low resource scenario

Figure 4.4 illustrates the performance of various models in low-resource settings, where

the amount of training data is significantly limited. As expected, all models experience
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performance declines in Hit@1 as the percentage of training data decreases. However,

several key observations stand out:

• Robustness of NeuSymEA: NeuSymEA (both NeuSymEA-L and NeuSymEA-

D) demonstrates remarkable robustness, consistently outperforming other

models across all datasets, even with minimal training data. Notably, when

trained with only 1% of the data, NeuSymEA-L achieves a Hit@1 score above

0.7 on the fr-en dataset, surpassing some state-of-the-art models trained on 20%

of the data. This highlights the effectiveness of combining neural and symbolic

reasoning in entity alignment, offering a significant advantage over purely neural

or symbolic methods.

• Impact of Training Data: While all models generally improve as the amount

of training data increases, the rate of improvement varies:

– Traditional neural models like GCNAlign and AlignE show steep improve-

ments, indicating their heavy reliance on larger datasets.

– In contrast, NeuSymEA maintains high performance even with minimal

training data, showcasing its efficiency and potential for low-resource sce-

narios.

• Language Pair Difficulty: The experiments reveal varying degrees of difficulty

in entity alignment across different language pairs:

– Japanese-English (ja-en) alignment consistently achieves the highest

performance across models.

– French-English (fr-en) follows closely behind, while Chinese-English

(zh-en) proves the most challenging.

These differences may be influenced by factors such as linguistic distance, writing

system differences, or the availability of pre-existing resources, highlighting the

need for language-specific strategies in entity alignment.
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• Scalability and Adaptability of NeuSymEA: The consistent performance

of NeuSymEA across various datasets, metrics, and training data levels suggests

that it is both scalable and adaptable. Its robustness makes it well-suited for

cross-lingual knowledge integration tasks across diverse domains and languages.

Additionally, its strong performance with limited data indicates its potential

applicability in low-resource scenarios, allowing it to be deployed effectively in

languages or domains with limited training data.

In summary, NeuSymEA stands out as a robust and scalable solution for entity

alignment, excelling in low-resource settings and adapting well to diverse language

pairs and contexts. This makes it a highly versatile model for cross-lingual knowledge

integration tasks.
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Figure 4.5: Performance sensitivity to hyperparameters iteration and threshold 𝛿.

We present the hit@1 performance of NeuSymEA across three datasets, varying hyper-

parameters, illustrated by a three-dimensional graph. The threshold hyperparameter

𝛿 is explored within the set {0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99}, while the number of

EM iterations ranges from 1 to 9. Performance levels are indicated using a colormap.

Performance sensitivity analysis in Figure 4.5 reveals that for all datasets, performance

generally improves as the iteration increases. On the other hand, the performance is

less sensitive to the threshold 𝛿.
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Chapter 5

Probabilistic reasoning for zero-shot

Entity Alignment with Large

Language Models

5.1 Problem definition

A knowledge graph 𝒢 comprises a set of entities ℰ , a set of relations ℛ, and a

set of relation triples 𝒯 where each triple (𝑒ℎ, 𝑟, 𝑒𝑡) ∈ 𝒯 represents a directional

relationship between its head entity and tail entity. Given two KGs 𝒢 = {ℰ ,ℛ, 𝒯 },

𝒢 ′ = {ℰ ′,ℛ′, 𝒯 ′} and a fixed query budget ℬ to a Large Language Model, we aim

to train an entity alignment model 𝜃 based on the LLM’s annotations to infer the

matching score 𝑚𝜃(𝑒, 𝑒
′) for all entity pairs {(𝑒, 𝑒′), 𝑒 ∈ ℰ , 𝑒′ ∈ ℰ ′}. The evaluation

process utilizes a ground truth alignment set 𝒜 to assess the prediction accuracy for

target entities in both directions, i.e.,(𝑒, ?) and (?, 𝑒′) for each true pair (𝑒, 𝑒′) ∈ 𝒜,

based on the ranked matching scores 𝑚𝜃. Evaluation metrics are hit@k (where

𝑘 ∈ {1, 10}) and mean reciprocal rank (MRR).
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5.2 Entity alignment with noisy annotations from

LLMs

We aim to design a framework to perform entity alignment with LLMs. Our design

is motivated by the following insights. Firstly, we have a huge search space (the

overall annotation space is 𝑂(|ℰ||ℰ ′|)) to identify the core entity pairs to annotate.

Secondly, we don’t know whether the annotated labels are correct or not, because we

have no prior knowledge or heuristic of the label distribution. Finally, we perform

annotations iteratively, requiring the model to adjust its search policy based on

annotation effectiveness, while we have no verifiable feedback of this annotation

accuracy.

Based on these insights, we propose LLM4EA—an iterative framework that consists of

four interconnected steps in each cycle, as illustrated in Figure 5.1. Initially, an active

selection technique optimizes the use of resources by choosing critical source entities

that significantly reduce uncertainty for themselves and their neighbors. Subsequently,

an LLM-based annotator identifies the counterparts for the selected source entities,

generating a set of pseudo-labels. Next, a label refiner improves label accuracy

by eliminating structurally incompatible labels. This process involves formulating

a combinatorial optimization problem and utilizing a probabilistic-reasoning-based

greedy search algorithm to efficiently find a local-optimal solution. Finally, these

refined labels are used to train a base EA model for the entity alignment task. The

outcomes of the alignment then serve as feedback to inform subsequent rounds of the

active selection policy. Further details are provided below.

5.2.1 Active selection of source entity

We aim to maximize the utility of the budget by actively allocating the budget to

those beneficial entities. To do this, we sample source entities that reduce the most un-
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Figure 5.1: Overview of the LLM4EA framework. LLM4EA utilizes active sampling to

select important entities based on feedback from an EA model. It also includes a label

refiner to effectively train the base EA model using noisy pseudo-labels. Feedback

from the EA model updates the selection policy.

certainty of both themselves and their neighboring entities, by a dynamically adjusted

policy. The measurement of uncertainty reduction is based on two assumptions: 1) an

entity’s own uncertainty is inversely proportional to its alignment probability with

its most probable counterpart; 2) the amount of uncertainty an entity eliminates for

its neighbors is closely linked to the relational ties between them. To systematically

assess this, we introduce the concept of relational uncertainty, quantified as follows:

𝑈𝑟(𝑒ℎ) = (1− 𝑃 (𝑒ℎ)) +
∑︁

(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯

𝑤𝑟 (1− 𝑃 (𝑒𝑡)) . (5.1)

Here, 𝑤𝑟 is a weight coefficient reflecting the significance of relation 𝑟 and signifies

how much 𝑒ℎ contributes to reducing the uncertainty of 𝑒𝑡 through the relation 𝑟. For

this purpose, we employ functionality ℱ(𝑟) (formally defined in Eq. equation (5.4))

as the weight 𝑤𝑟, as it quantifies the uniqueness of the tail entity for a given specified

head entity. 𝑃 (𝑒) := max𝑒′∈ℰ ′ 𝑃 (𝑒 ≡ 𝑒′) represents the alignment probability of the

top-match entity for 𝑒. These alignment probabilities 𝑃 (𝑒 ≡ 𝑒′) are obtained through

probabilistic reasoning during label refinement (Section 5.2.3) and are augmented

by the inferred alignments from the base EA model (Section 5.2.4). In the initial

iteration, all alignment probabilities are set to 0.

It’s important to note that some source entities are linked to a large number of

uncertain neighbors (those with low 𝑃 (𝑒)). These source entities are crucial but may
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be overlooked if their connected relations have low functionality. Hence, we introduce

neighbor uncertainty as another metric to assess an entity’s importance, by removing

the functionality-based weight coefficient:

𝑈𝑛(𝑒ℎ) = (1− 𝑃 (𝑒ℎ)) +
∑︁

(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯

(1− 𝑃 (𝑒𝑡)) . (5.2)

To integrate these two metrics, we employ rank aggregation by mean reciprocal rank:

𝑈(𝑒ℎ) = 2×
(︂

1

𝑟𝑢𝑟(𝑒ℎ)
+

1

𝑟𝑢𝑛(𝑒ℎ)

)︂
. (5.3)

Here, 𝑟𝑢𝑟(𝑒ℎ) and 𝑟𝑢𝑛(𝑒ℎ) denote the ranking of 𝑒ℎ when using 𝑈𝑟 and 𝑈𝑛 as metric,

respectively. This simple-effective aggregation technique is advantageous for our task

since it’s scale invariant and requires no validation set for tuning hyperparameters,

making it more practical in this task.

5.2.2 LLM as annotator

Counterpart filtering. With the selected source entities, we employ an LLM as an

annotator to identify the counterpart from ℰ ′ for each source entity, generating a set

of pseudo-labels ℒ = {(𝑒, 𝑒′)|𝑒 ∈ ℰ , 𝑒′ ∈ ℰ ′}. To narrow down the search space, we first

filter out the less likely counterparts before querying the LLM, selecting only the top-𝑘

most similar counterparts from ℰ ′. The similarity metric is flexible: we use a string

matching score based on word edit distance, but other methods are also viable, such

as semantic embedding distances derived from word embedding models. By adjusting

𝑘, we can trade-off between the recall rate of counterparts and the query cost.

Prompt design. There are primarily two methods for retrieving context information

to construct textual prompts: randomly generated prompts and dynamically tuned

prompts. The former involves randomly selecting neighbors to construct contexts

for the entity, while the latter dynamically selects neighbors based on feedback from

the EA model. For a fair comparison, we use randomly generated prompts across all
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baselines and the proposed LLM4EA. These prompts include the name of each entity

and a set of relation triples to three randomly selected neighbors. For the baseline

models, pseudo-labels are generated at once and used for training. For LLM4EA,

we evenly divide the budget ℬ into 𝑛 iterations and generate pseudo-labels at each

iteration using the allocated ℬ/𝑛 budget.

5.2.3 Probabilistic reasoning for label refinement

The pseudo-labels generated by the LLM can be noisy, and directly using these labels

to train an entity alignment (EA) model could undermine the final performance.

Although estimating the label distribution by asking the LLM for confidence scores

or querying multiple times to measure consistency are potential solutions, these

approaches can be vulnerable or introduce additional costs.

In light of this, we propose a label refiner that leverages the structure of knowledge

graphs. The refinement process is framed as a combinatorial optimization problem

aimed at minimizing overall structural incompatibility among labels. Utilizing a

probabilistic reasoning technique, we progressively update our confidence estimation

for each label and select those that are mutually compatible, ultimately producing a

set of accurate pseudo-labels. Detailed explanations follow below.

Functionality and probabilistic reasoning

Functionality. The functionality of a relation quantifies the uniqueness of tail entities

for a specified head entity, calculated as the ratio of unique head entities to total

head-tail pairs linked by the relation. Conversely, inverse functionality quantifies the

tail entity uniqueness for a specified head entity. Formally, these are defined as:

ℱ(𝑟) := |{𝑒ℎ|(𝑒ℎ, 𝑟, 𝑒𝑡) ∈ 𝒯 }
|{(𝑒ℎ, 𝑒𝑡)|(𝑒ℎ, 𝑟, 𝑒𝑡) ∈ 𝒯 )}|

, ℱ−1(𝑟) :=
|{𝑒𝑡|(𝑒ℎ, 𝑟, 𝑒𝑡) ∈ 𝒯 }

|{(𝑒ℎ, 𝑒𝑡)|(𝑒ℎ, 𝑟, 𝑒𝑡) ∈ 𝒯 )}|
. (5.4)
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For instance, suppose a KG contains two triples for the relation 𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛: (𝐻𝑎𝑤𝑎𝑖𝑖, 𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛,

𝑈𝑆) and (𝑀𝑖𝑎𝑚𝑖, 𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛, 𝑈𝑆). Then ℱ(𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛) = 1.0 and ℱ−1(𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛) =

0.5. In other words, given (𝑀𝑖𝑎𝑚𝑖, 𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛, ?), the answer for the missing tail entity

is unique; while given (?, 𝑙𝑜𝑐𝑎𝑡𝑒_𝑖𝑛, 𝑈𝑆), there are multiple answers for the missing

head entity. Such relational patterns are useful for identifying an entity based on its

connections within the intra-graph structure.

Probabilistic reasoning. If two entities are each connected to entities that are

aligned across KGs, this increases the likelihood that they should be aligned as well.

Based on this heuristic, an entity pair’s alignment probability 𝑃 (𝑒ℎ ≡ 𝑒′ℎ) can be

inferred by aggregating its neighbors’ alignment probability via relation functionality:

1−
∏︁

(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯 ,
(𝑒′ℎ,𝑟

′,𝑒′𝑡)∈𝒯 ′

(︀
1−ℱ−1(𝑟)𝑃 (𝑟 ⊆ 𝑟′)𝑃 (𝑒𝑡 ≡ 𝑒′𝑡)

)︀
×
(︀
1−ℱ−1(𝑟′)𝑃 (𝑟′ ⊆ 𝑟)𝑃 (𝑒𝑡 ≡ 𝑒′𝑡)

)︀
.

(5.5)

Here, 𝑃 (𝑟 ⊆ 𝑟′) denotes the probability of 𝑟 being a subrelation of 𝑟′, estimated by

alignment probabilities of connected entities:

∑︀(︁
1−

∏︀
(𝑒′ℎ,𝑟

′,𝑒′𝑡)∈𝒯 ′ (1− 𝑃 (𝑒′ℎ ≡ 𝑒ℎ)𝑃 (𝑒′𝑡 ≡ 𝑒𝑡))
)︁

∑︀(︁
1−

∏︀
𝑒′ℎ,𝑒

′
𝑡∈ℰ ′ (1− 𝑃 (𝑒′ℎ ≡ 𝑒ℎ)𝑃 (𝑒′𝑡 ≡ 𝑒𝑡))

)︁ . (5.6)

These formulations allow for the propagation and updating of alignment probabilities

in a manner that is cognizant of relational structures. We employ this technique to

design a label refiner below.

Label refiner

Label incompatibility. We exploit the "incompatibility" of labels for label refine-

ment, based on the assumption that correct labels can infer each other, while a false

label could be incompatible with its correctly aligned neighbors. We define the overall

59



Chapter 5. Probabilistic reasoning for zero-shot Entity Alignment with Large
Language Models

incompatibility on a label set ℒ as:

Φ(ℒ) :=
∑︁

(𝑒ℎ,𝑒
′
ℎ)∈ℒ

(︀
1𝑃 (𝑒ℎ≡𝑒′ℎ)<max𝑒∈ℰ 𝑃 (𝑒,𝑒′ℎ)

+ 1𝑃 (𝑒ℎ≡𝑒′ℎ)<max𝑒′∈ℰ′ 𝑃 (𝑒ℎ,𝑒′)

)︀
. (5.7)

Here, 1𝑃 (𝑒ℎ≡𝑒′ℎ)<max𝑒∈ℰ 𝑃 (𝑒,𝑒′ℎ)
= 1 if 𝑒ℎ is not the top-match for 𝑒′ℎ, otherwise 0. It’s

important to note that a detected incompatibility doesn’t necessarily indicate the false

alignment of (𝑒ℎ, 𝑒′ℎ): it may suggest a misalignment of their neighbors. Given this,

the key to label refinement is to jointly optimize the label’s overall incompatibility

while avoiding accidentally filtering out correct labels.

Objective. To enhance label quality, we propose to refine the pseudo-label set

ℒ by finding a subset ℒ* ⊂ ℒ that minimizes its overall incompatibility: ℒ* =

argminℒ′⊂ℒΦ(ℒ′). Noteworthy that a trivial solution for this optimization problem

is only preserving a set of isolated labels, such that max𝑒∈ℰ 𝑃 (𝑒 ≡ 𝑒′ℎ) = 0 and

max𝑒′∈ℰ ′ 𝑃 (𝑒ℎ ≡ 𝑒′) = 0 for all (𝑒ℎ, 𝑒′ℎ) ∈ ℒ′. This trivial solution would lead to the

exclusion of most accurate labels, an outcome we aim to avoid. Considering this, we

introduce an 𝑙1 penalty term to penalize the removal of labels, leading to our overall

objective:

ℒ* = argminℒ′⊂ℒ (Φ(ℒ′) + 𝜆|ℒ − ℒ′|) . (5.8)

Here 𝜆 > 0 is a weight coefficient. Solving the above combinatorial problem is

intractable as it requires computing Φ(ℒ′) for each possible set ℒ′ ⊂ ℒ, which is NP-

hard. Below we propose to search for a local-optimal solution by a greedy algorithm

powered by probabilistic reasoning.

Greedy search. The algorithm begins by initializing the alignment probability

𝑃 (𝑒 ≡ 𝑒′) = 𝛿0 for every pair (𝑒, 𝑒′) within the set ℒ, where 𝛿0 is a constant within the

range (0,1). It then iteratively performs a search for an optimal label set ℒ′ through a

series of voting steps. Each iteration is comprised of two main steps: probabilistic

reasoning and label adjustment.

During the probabilistic reasoning step, the alignment probabilities and subrelation

probabilities are updated according to Eq. equation (5.5) and Eq. equation (5.6),
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respectively. This update process refines our estimates of label confidence based on

the latest information. During the label adjustment step, the label set ℒ′ is updated

based on these updated probabilities. Labels are appended to ℒ′ if their updated

alignment probabilities exceed 𝛿0, indicative of high confidence in their alignment,

supported by their neighbors:

ℒ′ ← ℒ′ ∪ {(𝑒ℎ, 𝑒′ℎ) ∈ ℒ|𝑃 (𝑒ℎ ≡ 𝑒′ℎ) > 𝛿0} . (5.9)

Conversely, labels demonstrating structural incompatibilities are excluded from ℒ′:

ℒ′ ← ℒ′ ∖
{︂
(𝑒ℎ, 𝑒

′
ℎ) ∈ ℒ | 𝑃 (𝑒ℎ ≡ 𝑒′ℎ) < max

(︂
max
𝑒∈ℰ

𝑃 (𝑒, 𝑒′ℎ),max
𝑒′∈ℰ ′

𝑃 (𝑒ℎ, 𝑒
′)

)︂}︂
. (5.10)

In this manner, labels are removed if they are incompatible with updated aligned

neighbors, ensuring the preservation of only the most confident pairs within ℒ′. To

further refine the search process in subsequent iterations, we augment all entity

alignment probabilities within ℒ′ to a superior score:

𝑃 (𝑒 ≡ 𝑒′)← max (𝑃 (𝑒 ≡ 𝑒′), 𝛿1) for each (𝑒, 𝑒′) ∈ ℒ′. (5.11)

Here 𝛿1 ∈ (𝛿0, 1) serves as a new threshold, elevating the alignment probabilities of

confident pairs to foster a more directed and effective search. After 𝑛𝑙𝑟 iterations,

we get a set of confidently selected labels ℒ* that have high compatibility. The

detailed algorithm is presented in Algorithm 1, and analyses of parameter efficiency

and computational efficiency are provided in Section 5.3.

Below we present the pseudo-code of the greedy algorithm, that incorporates proba-

bilistic reasoning to refine the label set.

5.2.4 Entity alignment

With the refined labels, we train an embedding-based EA model to learn structure-

aware representations for each entity. After training, the EA model computes a

matching score 𝑚𝜃(𝑒, 𝑒
′) for each entity pair (𝑒, 𝑒′) for evaluation. The selection of

61



Chapter 5. Probabilistic reasoning for zero-shot Entity Alignment with Large
Language Models

Algorithm 1 The greedy label refinement algorithm
Inputs: The pseudo-label set ℒ

Parameters: The intialization probability 𝛿0 ∈ (0, 1), the threshold 𝛿1 ∈ (𝛿0, 1), proba-

bilistic reasoning iterations 𝑛𝑙𝑟

Outputs: The refined pseudo-label set ℒ* ⊂ ℒ

ℒ′ ← ∅.

∀𝑒 ∈ ℰ ,∀𝑒′ ∈ ℰ ′, 𝑃 (𝑒 ≡ 𝑒′)← 0

∀(𝑒, 𝑒′) ∈ ℒ, 𝑃 (𝑒 ≡ 𝑒′)← 𝛿0

𝑖← 0

while 𝑖 < 𝑛𝑙𝑟 do

∀𝑒ℎ ∈ ℰ , ∀𝑒′ℎ ∈ ℰ ′, 𝑃 (𝑒ℎ ≡ 𝑒′ℎ) ← 1 −
∏︀

(𝑒ℎ,𝑟,𝑒𝑡)∈𝒯 ,
(𝑒′ℎ,𝑟

′,𝑒′𝑡)∈𝒯 ′

(︀
1−ℱ−1(𝑟)𝑃 (𝑟 ⊆ 𝑟′)𝑃 (𝑒𝑡 ≡ 𝑒′𝑡)

)︀
×(︀

1−ℱ−1(𝑟′)𝑃 (𝑟′ ⊆ 𝑟)𝑃 (𝑒𝑡 ≡ 𝑒′𝑡)
)︀
. /* Update entity alignment probabilities.*/

∀𝑟 ∈ ℛ, ∀𝑟′ ∈ ℛ′, 𝑃 (𝑟 ⊆ 𝑟′)←
∑︀(︁

1−
∏︀

(𝑒′
ℎ
,𝑟′,𝑒′𝑡)∈𝒯 ′(1−𝑃 (𝑒′ℎ≡𝑒ℎ)𝑃 (𝑒′𝑡≡𝑒𝑡))

)︁
∑︀(︁

1−
∏︀

𝑒′
ℎ
,𝑒′𝑡∈ℰ′(1−𝑃 (𝑒′ℎ≡𝑒ℎ)𝑃 (𝑒′𝑡≡𝑒𝑡))

)︁ /* Update

subrelation probabilities. */

ℒ′ ← ℒ′ ∪ {(𝑒ℎ, 𝑒′ℎ) ∈ ℒ|𝑃 (𝑒ℎ ≡ 𝑒′ℎ) > 𝛿0} /* Label adjustment, add confident pairs to

the label set.*/

ℒ′ ← ℒ′ ∖ {(𝑒ℎ, 𝑒′ℎ) ∈ ℒ | 𝑃 (𝑒ℎ ≡ 𝑒′ℎ) < max (max𝑒∈ℰ 𝑃 (𝑒, 𝑒′ℎ),max𝑒′∈ℰ ′ 𝑃 (𝑒ℎ, 𝑒
′))} /*

Label adjustment, remove less confident pairs from the label set. */

𝑃 (𝑒 ≡ 𝑒′)← max (𝑃 (𝑒 ≡ 𝑒′), 𝛿1) for each (𝑒, 𝑒′) ∈ ℒ′ /* Elevate alignment probability

of confident pairs. */

end while

ℒ* ← ℒ′ ∪ {(𝑒, 𝑒′)|𝑃 (𝑒 ≡ 𝑒′) > 𝛿1} /* Augment the refined label set with confident

pairs.*/

Return ℒ*

=0

the base EA model is flexible, tailored to the task requirements. We chose a recently

proposed GCN-based model, Dual-AMN [31], for its effectiveness and efficiency.

Feedback from the base EA model is crucial for dynamic update of the active selection

policy. To generate effective feedback, we infer high-confidence pairs (𝑒, 𝑒′) with the
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trained EA model, by selecting the pairs that both entities rank top for each other.

These pairs are injected into the probabilistic reasoning system. Similar to the label

refinement process, this system initializes with an alignment probability of 𝛿0 for these

pairs and updates the estimation of alignment and subrelation probabilities using

Eq. equation (5.5) and Eq. equation (5.6). The updated probabilities are used to

construct the uncertainty terms (i.e., 𝑈𝑟 and 𝑈𝑛) to inform the active selection policy

in subsequent iterations, thereby optimizing the budget utility and improving final

performance continuously.

5.3 Efficient implementation of label refiner

Parameter-efficient probabilistic reasoning. The total number of alignment

probabilities for all entity pairs is |ℰ||ℰ ′|, resulting in a large parameter size when

the KGs involved are extensive. We enhance memory efficiency by adopting a lazy

inference strategy in probabilistic reasoning. This strategy involves only saving the

alignment probabilities of the most probable alignments:{︂
𝑃 (𝑒ℎ, 𝑒

′
ℎ), |, 𝑒ℎ ∈ ℰ , 𝑒′ℎ ∈ ℰ ′, 𝑃 (𝑒ℎ ≡ 𝑒′ℎ) = max

(︂
max
𝑒∈ℰ

𝑃 (𝑒, 𝑒′ℎ),max
𝑒′∈ℰ ′

𝑃 (𝑒ℎ, 𝑒
′)

)︂}︂
,

(5.12)

Probabilities of other entity pairs can be inferred from these saved alignment proba-

bilities using Eq. equation (5.5) when necessary. In this way, parameter complexity is

reduced to 𝑂(max (|ℰ|+ |ℰ ′|)).

Computation efficiency of probabilistic reasoning. Probabilistic reasoning is

executed iteratively, with each iteration updating the alignment probabilities of all

entities and relations following Eq. equation (5.5) and Eq. equation (5.6). We detail

the analysis of these two update phases in the following separately.

Since we adopt a lazy inference strategy, the update of entity alignment probabilities

involves updating the set of most probable alignments and associated probabilities as
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shown in Eq. equation (5.12). This update requires the estimation of all 𝑃 (𝑒, 𝑒′ℎ), 𝑒 ∈ ℰ

and all 𝑃 (𝑒ℎ, 𝑒
′), 𝑒′ ∈ ℰ ′, for each current pair (𝑒ℎ, 𝑒′ℎ) to determine if this pair needs

an update. Consequently, the computational complexity of this process is proportional

to the size of this set, which is 𝑂(|ℰ|). The estimated scores 𝑃 (𝑒, 𝑒′ℎ), 𝑒 ∈ ℰ and

𝑃 (𝑒ℎ, 𝑒
′), 𝑒′ ∈ ℰ ′ can be precomputed in advance and reused for all pairs (𝑒ℎ, 𝑒

′
ℎ),

leading to a computation complexity of 𝑂(|ℰ||ℰ ′|). Thus, the overall computational

complexity for updating entity alignment probabilities is 𝑂(|ℰ||ℰ ′|+ |ℰ|) = 𝑂(|ℰ||ℰ ′|).

The update process for sub-relation probabilities involves updating all 𝑃 (𝑟 ⊂ 𝑟′) for

𝑟 ∈ ℛ and 𝑟′ ∈ ℛ′, resulting in a complexity of 𝑂(|ℛ||ℛ′|). The estimation of Eq.

equation (5.6) utilizes the probabilities of the most probable alignments from Eq.

equation (5.12). Notably, most relation pairs (𝑟, 𝑟′) do not have aligned head entities

(𝑒ℎ, 𝑒
′
ℎ) or aligned tail entities (𝑒𝑡, 𝑒

′
𝑡), thus most relation pairs can be excluded for

efficient computation by exploiting this sparsity heuristic, reducing the computations

by orders.

It is worth noting that these computations can be further accelerated through paral-

lelization, as their execution solely depends on the results from the previous iteration.

5.4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of our framework.

We begin by introducing the experimental settings. Then, we present experiments to

answer the following research questions: RQ1. How effective is the overall framework?

RQ2. What is the impact of the choice of LLM on the cost and performance of

LLM4EA? RQ3. What is the effect of the label refiner? RQ4. What is the impact of

active selection? RQ5. How is the runtime-performance trade-off managed?
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5.4.1 Experimental setting

Datasets and LLM. In this study, we use the widely-adopted OpenEA dataset [48],

including two monolingual datasets (D-W-15K and D-Y-15K) and two cross-lingual

datasets (EN-DE-15K and EN-FR-15K). OpenEA comes in two versions: "V1" the

normal version, and "V2" the dense version. We have chosen "V2" because it more

closely resembles existing KGs. Datasets are preprocessed before used, as detailed

in Section 5.4.1. The LLM version in this experiment is GPT-3.5 (gpt-3.5-turbo-

0125) and GPT-4 (gpt-4-turbo-2024-04-09). By default, the overall query budget is

ℬ = 0.1|ℰ|.

Baselines. Baseline models include three GCN-based models — GCNAlign [55],

RDGCN [57], Dual-AMN [31], and three translation-based models — IMUSE [19],

AlignE, BootEA [47], Here, BootEA is a variant of AlignE that adopts a bootstrapping

strategy, equipped with a label calibration component for improving the accuracy

of bootstrapped labels. Baseline models are directly trained on the pseudo-labels

generated by the LLM annotator, without label refinement or active selection. Every

experiment is repeated three times to report statistics.

Setup of LLM4EA. We employ GPT-3.5 as the default LLM due to its cost efficiency.

Other parameters are 𝑛 = 3, 𝑛𝑙𝑟, 𝑘 = 20, 𝛿0 = 0.5, 𝛿1 = 0.9.

Hardware and software configurations

Our experiments were conducted on a server equipped with six NVIDIA GeForce RTX

3090 GPUs, 48 Intel(R) Xeon(R) Silver 4214R CPUs, and 376GB of host memory. The

models were implemented using TensorFlow, NumPy, and SciPy. It was observed that

the software version significantly affects hardware-software compatibility. Specifically,

the original implementation of Dual-AMN was based on TensorFlow 1.14.0, which is

not compatible with newer GPUs such as the NVIDIA GeForce RTX 3090. Therefore,
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we updated the code to be compatible with TensorFlow 2.7.0, enabling the model to

leverage GPU acceleration effectively. The details of the software packages used in

our experiments are listed in Table 5.1.

Table 5.1: Package configurations of our experiments.

Package tqdm numpy scipy tensorflow keras openai

Version 4.66.2 1.24.4 1.10.1 2.7.0 2.7.0 1.30.1

Dataset statistics and preprocessing

Table 5.2: Data statistics of used OpenEA dataset.

Datasets KG #Rel. #Rel tr. #Attr. #Attr tr. #Named Ent. #Targets in top-𝑘

EN-FR
English (EN) 193 96,318 189 66,899 15,000

13,550
French (FR) 166 80,112 221 68,779 15,000

EN-DE
English (EN) 169 84,867 171 81,988 15,000

13,330
German (DE) 96 92,632 116 186,335 15,000

D-W
DBpedia (DB) 167 73,983 175 66,813 15,000

12,910
Wikidata (WD) 121 83,365 457 175,686 13,458

D-Y
DBpedia (DB) 72 68,063 90 65,100 15,000

15,000
Yago (YG) 21 60,970 20 131,151 15,000

In our experiments, we utilized the OpenEA dataset version 1.1 (V2), specifically the

15K set. The statistics are detailed in Table 5.2. It’s important to highlight that the

destination dataset for D-W-15K, originating from Wikidata, contains only entity

IDs, lacking explicit names. These IDs, devoid of semantic content, are not inherently

meaningful to a language model. To rectify this, we processed the dataset using the

‘wikidatawiki-20160801-abstract.xml’ dump file from Wikidata. This file provided

the raw data necessary for constructing the D-W-15K dataset, enabling us to extract

meaningful entity names.
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We shown the quantity of entities with names (after name extraction) for each KG in

the ’Named entities’ column in Table 5.2.

In the counterpart filtering phase, we selected the top-𝑘 (where 𝑘 = 20 for our

experiments) most similar candidates. The ‘Target in top-𝑘’ column of Table 5.2

shows the number of target entities included in this selection.

5.4.2 Results

Comprehensive evaluation of entity alignment performance

Table 5.3: Evaluation of entity alignment performance, measured by Hit@K for

𝐾 ∈ {1, 10}, and Mean Reciprocal Rank (MRR), presented in %. Experiment

statistics are computed over three trials.

EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

Group1. Entity Alignment with GPT-3.5.

IMUSE 50.0±0.1 72.6±0.8 57.5±0.4 51.6±4.7 75.9±3.9 60.5±4.5 6.0±0.2 14.6±2.5 9.0±1.0 54.4±2.5 78.9±1.1 63.2±2.0

AlignE 6.6±0.3 24.5±0.5 12.6±0.5 6.2±0.3 18.4±1.0 10.4±0.5 8.0±0.9 24.0±2.7 13.3±1.4 50.1±2.0 76.6±1.4 59.2±1.8

BootEA 44.8±1.1 71.9±1.2 54.2±1.2 68.1±0.2 85.4±0.3 74.3±0.2 60.8±0.2 79.3±0.1 67.4±0.2 87.8±0.1 96.7±0.1 91.2±0.1

GCNAlign 17.4±0.3 43.2±0.4 25.9±0.3 22.2±0.2 46.2±1.1 30.3±0.3 16.9±0.1 39.3±0.3 24.3±0.1 45.3±0.4 68.3±0.6 53.3±0.5

RDGCN 69.3±0.3 82.5±0.3 74.3±0.3 73.3±4.3 84.6±2.6 77.4±3.7 79.2±0.7 89.7±0.5 83.2±0.6 82.6±3.7 91.9±1.3 86.1±2.7

Dual-AMN 51.9±0.3 79.6±0.9 61.6±0.5 70.5±0.7 91.1±0.3 78.9±0.6 62.0±0.1 86.8±0.1 71.9±0.1 85.8±0.3 98.4±0.0 91.4±0.1

LLM4EA 74.2±0.3 92.9±0.4 81.0±0.3 89.1±0.5 97.8±0.1 92.6±0.3 87.5±0.3 96.7±0.1 90.9±0.2 97.7±0.0 99.5±0.0 98.3±0.0

Group2. Entity Alignment with GPT-4.

IMUSE 52.7±0.9 74.9±1.0 59.8±0.9 59.6±2.6 81.8±1.5 67.9±2.1 21.6±6.1 50.0±10.0 31.1±7.4 86.6±0.5 94.2±0.1 89.2±0.4

AlignE 30.8±2.4 69.1±2.5 43.1±2.5 46.4±5.2 76.5±3.8 56.6±4.8 36.1±3.7 67.8±3.6 46.7±3.7 86.4±0.9 97.0±0.3 90.2±0.6

BootEA 58.2±0.3 83.7±0.3 67.0±0.3 80.5±0.4 92.6±0.2 84.8±0.3 71.6±0.2 88.3±0.2 77.6±0.2 95.0±0.1 98.6±0.0 96.3±0.1

GCNAlign 30.6±0.0 65.3±0.3 42.1±0.2 41.9±0.4 68.6±0.5 51.2±0.4 31.3±0.3 61.6±0.1 41.4±0.2 82.6±0.2 94.9±0.2 87.2±0.1

RDGCN 72.1±0.2 84.5±0.1 76.7±0.2 74.1±1.1 85.1±0.7 78.0±1.0 82.5±1.1 91.4±0.7 85.9±1.0 85.4±0.9 93.2±0.4 88.3±0.8

Dual-AMN 76.7±0.1 94.9±0.3 83.6±0.2 90.7±0.1 97.9±0.2 93.6±0.1 81.5±0.1 94.9±0.2 86.7±0.1 97.5±0.0 99.3±0.1 98.1±0.0

LLM4EA 80.2±0.3 96.0±0.2 86.0±0.2 93.1±0.5 98.7±0.2 95.3±0.3 89.8±0.3 97.9±0.2 92.9±0.3 97.9±0.1 99.6±0.0 98.5±0.1

To answer RQ1 and RQ2, we conducted two groups of experiments on OpenEA

datasets, using GPT-3.5 and GPT-4 as the annotator, respectively. Results are

presented in Table 5.3. We also investigated the performance-cost comparison between

67



Chapter 5. Probabilistic reasoning for zero-shot Entity Alignment with Large
Language Models

the GPT-3.5 annotator and the GPT-4 annotator, illustrated in Figure 5.2. To control

the randomness introduced by the LLMs, each experiment was repeated three times

to report mean and standard deviation. These results lead to several key observations:

First, LLM4EA surpasses all baseline EA models, which are directly trained

on the pseudo-labels, by a large margin. This can be attributed to 1) our label

refiner’s capability in filtering out false labels, reducing noise during training and

enabling more accurate optimization towards the ground true objective; 2) our active

selection component’s ability to smartly identify important entities to annotate, which

takes full advantage of the fixed query budget.

Second, using the GPT-4 results in higher performance than using the

GPT-3.5 as the annotator. This observation conforms to the fact that GPT-4 is a

more advanced LLM with higher reasoning capacity and stronger semantic analysis,

resulting in more precise annotation results and higher recall, thus providing more

labels of high quality. We also observe that translation-based models (e.g., AlignE)

are sensitive to noisy labels under GPT-3.5, while state-of-the-art GCN-based models

(e.g., RDGCN and Dual-AMN) are more robust. BootEA also demonstrates superior

performance and robustness, attributed to its bootstrapping technique and enhanced

by its capability in calibrating bootstrapped labels. However, its label calibration is

only applied to the bootstrapped labels, so it still suffers from the false training labels.

Our proposed LLM4EA, on the other hand, refines the label accuracy before training

the EA model, thus ensuring more accurate training.

Finally, LLM4EA is noise adaptive, enabling cost-efficient entity alignment.

To further investigate the effect of the choice of LLM, we examined the performance-

cost comparison between GPT-3.5 and GPT-4 as the annotator. We illustrate MRR

in Figure 5.2 (detailed results are available in Table 5.4). The results show that,

by increasing the query budgets (measured by the number of tokens) for GPT-3.5,

the performance gradually increases. When the budget is 2× that of GPT-4, the

performance is comparable to or exceeds the performance of using GPT-4 as the
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Figure 5.2: Performance-cost comparison between GPT-3.5 and GPT-4 as the an-

notator, evaluated by MRR. We increase the budget for GPT-3.5 to evaluate its

performance. [𝑛×] denotes using 𝑛× of the default query budget. Each experiment is

repeated three times to show mean and standard deviation.

Table 5.4: Performance-cost comparison between GPT-3.5 and GPT-4 as annotator.

We increase the budget for GPT-3.5 to evaluate its performance. [𝑛×] denotes using

𝑛× of the default query budget.

EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

GPT-3.5 74.2±0.3 92.9±0.4 81.0±0.3 89.1±0.5 97.8±0.1 92.6±0.3 87.5±0.3 96.7±0.1 90.9±0.2 97.7±0.0 99.5±0.0 98.3±0.0

GPT-3.5 (1.2×) 75.4±0.4 93.2±0.4 81.9±0.2 90.2±0.6 98.0±0.0 93.3±0.4 88.4±0.1 97.1±0.2 91.7±0.1 97.6±0.0 99.3±0.1 98.2±0.0

GPT-3.5 (1.4×) 77.2±0.2 94.5±0.5 83.4±0.3 91.0±0.4 98.1±0.1 93.9±0.3 89.2±0.2 97.9±0.0 92.6±0.1 97.7±0.0 99.5±0.0 98.4±0.0

GPT-3.5 (1.6×) 76.3±2.4 94.1±0.7 82.7±1.9 91.4±0.2 98.4±0.0 94.2±0.2 89.6±0.0 97.9±0.2 92.8±0.1 97.7±0.0 99.4±0.0 98.3±0.0

GPT-3.5 (1.8×) 78.8±0.5 95.2±0.4 84.9±0.5 91.9±0.1 98.1±0.0 94.4±0.1 90.1±0.5 97.9±0.2 93.1±0.4 97.7±0.0 99.5±0.1 98.3±0.0

GPT-3.5 (2×) 80.6±0.2 95.9±0.1 86.3±0.1 92.7±0.2 98.5±0.1 95.0±0.2 90.7±0.2 98.5±0.1 93.7±0.1 97.8±0.0 99.5±0.0 98.4±0.0

GPT-4 80.2±0.3 96.0±0.2 86.0±0.2 93.1±0.5 98.7±0.2 95.3±0.3 89.8±0.3 97.9±0.2 92.9±0.3 97.9±0.1 99.6±0.0 98.5±0.1

annotator. According to the pricing scheme of OpenAI, the input/output cost for 1

million tokens for GPT-3.5 and GPT-4 is $0.50/$1.5 and $10/$30, respectively. This

means that our noise-adaptive framework enables cost-efficient entity alignment with

less advanced LLMs at 10× less actual cost than using more advanced LLMs, simply

by increasing the token budget for the less advanced LLMs.

Effect of the label refiner

To answer RQ3, we first analyze the evolution of the True Positive Rate (TPR) and

the recall rate of the refined labels. Specifically, at each label refinement iteration,
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Figure 5.3: Analysis of the Label Refinement. We illustrate the evolution of the true

positive rate (TPR) (left) and recall (middle) for refined labels across four datasets.

Furthermore, we assess the robustness of the label refinement process by examining

the TPR of refined labels against varying initial TPRs within the D-W-15K dataset

(right), with initial pseudo-labels synthesized at different TPR levels.

the TPR is calculated as |𝒜∩ℒ′|
|ℒ′| , and the recall is calculated as |𝒜∩ℒ′|

|𝒜∩ℒ| . The left and

middle subfigures of Figure 5.3 demonstrate how our label refiner progressively

discovers accurate labels and optimizes the TPR. Initially, the TPR of the

refined label set is high (approximately 1.0), then it decreases by a certain percentage,

and eventually increases again to a high TPR. We attribute this pattern to: 1) the

most confident labels being discovered in the earliest iterations, which are obvious

alignments with many connected alignments; 2) as the algorithm progresses, some false

pseudo-labels being erroneously added to the label set ℒ′; 3) as the label refinement

continues, ℒ′ is adjusted and the false pseudo-labels are replaced with the correct

labels inferred by the updated probability as in Eq. equation (5.10).

Furthermore, we assess the robustness of our label refiner, as depicted in the right

subfigure of Figure 5.3. We synthesize noisy labels and evaluate the output TPR in

relation to varying input TPR levels, using two experimental schemes: fixed budget,

where the budget remains constant at 0.1|ℰ| while the TPR changes, and fixed TP,

where the number of true positives is fixed but the TPR and corresponding budgets are

adjusted. The results demonstrate that the label refiner consistently elevates the

TPR to over 0.9, even when the initial TPR is around 0.5, showcasing its high
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robustness to noisy pseudo-labels. This result also reveals why our framework

demonstrates robust performance with the less advanced GPT-3.5 annotator.

Ablation study

Table 5.5: Ablation study overview. The table presents the performance of the

LLM4EA (Ours) with various modifications. Group 1: removing the label refiner

(w/o LR) and the active selection component (w/o Act); Group 2: replacing the

active selection technique with relational uncertainty (-ru), neighbor uncertainty (-nu),

degree (-degree), and functionality sum (-funcSum).

EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

Ours 74.2±0.3 92.9±0.4 81.0±0.3 89.1±0.5 97.8±0.1 92.6±0.3 87.5±0.3 96.7±0.1 90.9±0.2 97.7±0.0 99.5±0.0 98.3±0.0

w/o LR 51.6±1.0 80.2±0.7 61.9±0.8 74.4±1.7 94.2±0.6 82.6±1.3 39.2±1.4 75.7±0.7 52.9±1.2 85.3±1.0 99.2±0.1 91.5±0.5

w/o Act 68.1±2.1 88.4±1.7 75.4±2.0 78.4±0.8 93.9±0.3 84.6±0.6 82.8±0.7 92.5±0.6 86.3±0.6 97.5±0.1 99.2±0.3 98.1±0.1

Ours-ru 70.8±1.0 91.2±0.4 78.2±0.8 83.9±0.3 97.7±0.2 89.6±0.2 88.7±0.6 97.4±0.3 92.1±0.5 97.7±0.0 99.4±0.1 98.3±0.0

Ours-nu 74.5±0.7 93.1±0.5 81.2±0.6 88.8±0.2 96.7±0.3 91.8±0.3 85.1±0.5 95.2±0.5 88.9±0.5 97.6±0.1 99.4±0.0 98.2±0.0

Ours-degree 73.6±2.6 92.5±0.8 80.4±2.0 88.4±0.1 96.6±0.2 91.5±0.2 80.1±3.7 90.9±2.2 84.0±3.2 97.2±0.2 99.0±0.1 97.9±0.1

Ours-funcSum 59.5±0.6 78.8±0.6 66.3±0.6 81.2±0.5 96.0±0.3 87.1±0.4 83.9±0.9 93.1±1.1 87.3±1.0 97.5±0.1 99.4±0.1 98.1±0.1

Ablation studies detailed in Table 5.5 answer RQ4 and reveal several key insights: 1)

Necessity of the Label Refiner for Effective Active Selection: The performance

of “w/o LR”, which lacks a label refiner, is inferior not only to other model variants

but also to the base model, Dual-AMN. This underscores that active selection depends

crucially on reliable feedback, which is compromised when the label refiner is absent;

2) Contribution of Relation and Neighbor Uncertainty in Active Selection:

Incorporating both relation and neighbor uncertainties significantly enhances the

utility of the budget. Methods like “Ours-degree” and “Ours-funcSum” focus only on

their connections to neighbors and ignore the uncertainty of neighbors. In contrast,

“Ours-ru” and “Ours-nu”, which take these uncertainties into account, exhibit superior

performance. This underscores the importance of considering neighbor uncertainty

for effective active selection; 3) Robust Active Selection through Combined

71



Chapter 5. Probabilistic reasoning for zero-shot Entity Alignment with Large
Language Models

Metrics: Our active selection approach integrates both relation uncertainty and

neighbor uncertainty to enable robust active selection. By employing rank aggregation,

it prioritizes entities that are deemed significant by both metrics, ensuring a more

effective and nuanced selection process.

Pareto frontier of runtime overhead against performance.
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Figure 5.4: Performance of entity alignment across four datasets with varying active

sampling iterations, under a fixed query budget.

We answer RQ5. in this experiment. The runtime overhead is directly proportional to

the number of active selection iterations 𝑛, since each iteration involves a subsequent

label refinement process. To explore the runtime-performance trade-off, we examine

the Pareto frontier of runtime versus performance. We conduct entity alignment

experiments with a fixed query budget, varying the number of active selection iterations.

The results of these experiments are illustrated in Figure 5.4.

The results indicate that performance initially increases as the number of iterations

rises from 1 to around 3, but further increases beyond this point lead to a decline.

This pattern can be attributed to two main factors: (1) More iterations allow for

extensive learning from feedback during the active selection phase. (2) However, when

iterations are excessively high, the number of generated pseudo-labels per iteration

becomes small, leading to isolated pseudo-labels that undermine the label refinement

process. This occurs because label refinement heavily relies on the compatibility

of the local structure, causing correct labels to be identified less frequently and
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making the feedback for active selection less informative. These findings suggest that

an optimal balance between runtime efficiency and performance can be

achieved without excessive trade-offs, indicating a specific threshold for iterations

beyond which no further performance gains are observed.

Performance comparison against rule-based models

Table 5.6: Performance comparison against rule-based models, evaluated by precision,

recall, and f1-score.

EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Emb-Match 90.1 4.4 8.4 69.3 3.1 6.0 80.8 3.4 6.6 100 1.0 2.0

Str-Match 84.8 69.8 76.6 92.3 71.4 80.5 96.2 57.9 72.3 76.9 100 86.9

PARIS 58.3±0.5 26.5±0.3 36.5±0.4 90.8±0.3 50.7±0.3 65.0±0.3 92.4±0.4 70.2±0.2 79.8±0.2 99.1±0.1 96.7±0.1 97.9±0.1

LLM4EA 68.6±0.3 53.1±0.2 59.8±0.2 90.5±0.3 82.4±0.4 86.2±0.4 90.7±0.4 81.6±0.5 85.9±0.5 98.9±0.0 97.6±0.1 98.3±0.0

In this section, we compare the LLM4EA model with several rule-based models,

including two lexical matching-based approaches: Emb-Match and Str-Match. Emb-

Match uses cosine similarities between word embeddings to identify aligned pairs,

employing the fasttext-wiki-news-subwords-300 model, which can handle unseen words

due to its subword capabilities. Str-Match utilizes the Levenshtein Distance to calculate

similarity scores. Additionally, the probabilistic reasoning model PARIS performs

entity alignment by relying on probabilistic methods.

For the lexical matching-based models, we compute the similarity and evaluate the

confident entity pairs, specifically targeting those whose normalized similarity scores

exceed 0.8. The same word embedding model used for Emb-Match is ‘fasttext-wiki-

news-subwords-300’, notable for its ability to process unseen words as a subword

model. For PARIS, we assess all inferred aligned pairs by setting the threshold to zero.

The entity alignment (EA) model of LLM4EA generates a ranked score list, which is

not directly comparable with these rule-based models. To facilitate comparison, we
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use the trained EA model to generate confident pairs, ensuring that each entity is

the top-ranked candidate for its counterpart. These pairs are then processed through

our label refiner, and the refined pairs are evaluated. Experiments for PARIS and

LLM4EA are repeated three times to ensure statistical reliability; for Emb-Match and

Str-Match, experiments are performed once as these algorithms are deterministic. The

results are presented in Table 5.6.

The findings reveal that: 1) Emb-Match demonstrates low recall due to its inability

to fully grasp the semantics of many unseen words, despite generating embeddings for

them; 2) Str-Match performs well on these datasets because most names are identical,

thus enhancing the precision of its string matching algorithm; 3) PARIS delivers precise

inference results by managing noisy data through probabilistic reasoning, although it

shows lower recall than LLM4EA; 4) LLM4EA, benefiting from its active selection

and label refinement techniques, demonstrates robust and precise performance across

all datasets.
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Conlusion and future work

6.1 Conlusion

In this thesis, we present algorithms and applications for Knowledge Graph (KG)

reasoning. We start by introducing neural, symbolic, and neuro-symbolic algorithms

for reasoning within a single KG, and propose a differentiable neuro-symbolic KG

reasoning framework, DiffLogic, for the KG completion task. We then extend the topic

to reasoning algorithms that exploit inter-KG structures and propose a probabilistic

reasoning system for entity alignment between two KGs. This probabilistic reasoning

not only infers new alignments but also provides robust label refinement capabilities

that continuously improve the accuracy of noisy labels. Based on this reasoning system,

we propose a novel framework, LLM4EA, that enables label-free entity alignment with

noisy annotations from large language models. We also employ feedback from the

reasoning system to inform an active selection component, continuously improving the

utility of the fixed query budget to the LLMs. Finally, we introduce an acceleration

algorithm that employs randomized sparse computation to accelerate graph learning,

a core step of state-of-art neural reasoning methods.
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6.2 Future Research Directions

In this section, we outline potential avenues for future research that build upon the

findings of this thesis, particularly focusing on (1) KG reasoning with quantified

uncertainty, and (2) integration of Large Language Models (LLMs) and Knowledge

Graphs (KGs).

6.2.1 Conformalized KG reasoning

Existing KG reasoning methods only output a ranked list as the prediction without

predicting true/false labels and associated confidence scores. For instance, given a

head-relation pair (ℎ, 𝑟, ?), existing reasoning models perform the KG completion

task by generating a ranked list of matching scores for each possible candidate

tail entity but do not produce a set of the most confident triplets each associated

with a confidence score. In real-world applications, the ranked score list does not

provide trustworthy predictions for downstream tasks. Additionally, annotating these

candidate tails is more labor-intensive than labeling a set of high-confidence triplets.

To address this, we propose extending conformal prediction—a statistical framework

that predicts trustworthy outputs with quantized uncertainty scores—to KG reasoning.

This framework can incorporate any off-the-shelf reasoning models and is capable of

generating a set of confident triplets with a statistically guaranteed true-positive rate,

even if the chosen model does not perform well. The challenge in this task lies in

conformal prediction’s requirement for the exchangeability of the validation set and

the test set, while KG reasoning is intrinsically transductive, and the existence of these

triplets depends on other triplets through the graph structure. The core of this work

will address the exchangeability requirement and formulate an effective uncertainty

score for each prediction.
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6.2.2 LLM for Knowledge Graph Construction

Future work will explore the development of advanced LLMs specifically designed

for the automatic construction of Knowledge Graphs. This involves enhancing the

capabilities of LLMs to extract, organize, and represent knowledge from unstructured

data sources, thereby facilitating the creation of comprehensive and dynamic KGs.

Investigating the effectiveness of various LLM architectures in this context will be a

key focus.

6.2.3 Knowledge Graph for LLM: Graph Retrieval Augmented

Generation

Another promising direction is the utilization of KGs to augment LLMs in generating

more contextually relevant and accurate outputs. This can be approached in two main

ways:

• KG as Knowledge Carrier: Future research will examine how KGs can serve

as a repository of structured knowledge that LLMs can reference during the

generation process. This integration aims to improve the factual accuracy and

relevance of the generated content.

• KG as Index Graph: Additionally, we will investigate the potential of KGs

as index graphs to enhance the retrieval of information. By leveraging the

relationships and entities within KGs, LLMs can be guided to access pertinent

information more efficiently, thereby improving the overall quality of generated

responses.

By pursuing these avenues, we aim to bridge the gap between LLMs and KGs,

ultimately leading to more intelligent and context-aware systems capable of handling

complex information retrieval and generation tasks.
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6.2.4 Building Upon Our Current Work

The current work, including DiffLogic, NeuSymEA, and LLM4EA, lays a strong

foundation for future research in KG reasoning and entity alignment by addressing

key challenges in scalability, robustness, and label-free learning. Here’s how our work

connects with the proposed future directions:

• Foundation for Conformalized KG Reasoning: Our work in neuro-symbolic

reasoning, particularly DiffLogic, provides a framework for efficiently combining

symbolic logic with neural networks, making it suitable for integrating conformal

prediction methods. The differentiable neuro-symbolic approach allows for

scalable reasoning, which can be extended to produce predictions with quantized

uncertainty scores. DiffLogic’s ability to reason over large-scale KGs with learned

rules will be a valuable asset when incorporating uncertainty quantification into

predictions, making them more reliable for downstream applications.

• NeuSymEA as a Precursor to Robust, Adaptive Models: NeuSymEA’s

robustness in low-resource settings, achieved through its integration of symbolic

reasoning and neural embeddings, sets the stage for adaptive models that can

operate in a wide variety of contexts. Its variational EM framework can be further

developed to accommodate uncertainty and probabilistic outputs, making it a

natural fit for future work in KG reasoning with uncertainty scores. Additionally,

its scalable and interpretable alignment framework is well-suited for advancing

LLM4EA and exploring hybrid LLM-KG architectures.

• LLM4EA and Knowledge Integration: LLM4EA’s approach to label-free

entity alignment via large language models offers a direct path for exploring

deeper integration between LLMs and KGs. The model’s capability to handle

noisy annotations and refine labels using probabilistic reasoning can serve as a

starting point for developing advanced LLMs that interact with KGs to auto-

matically construct, update, and retrieve knowledge. Furthermore, LLM4EA’s
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active learning mechanism aligns with the goals of using KGs as a structured

knowledge base for LLMs, enhancing both the accuracy of generated content

and the relevance of retrieved information.

In summary, our current work provides essential methodological and conceptual

tools for the proposed future directions. By leveraging the advancements made in

neuro-symbolic reasoning, robust entity alignment, and label-free learning, we can

expand the scope of KG reasoning and LLM-KG integration, leading to more scalable,

interpretable, and context-aware AI systems.
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Appendix A

Mathematical Proofs

A.1 Notations of DiffLogic

Table A.1: Notations.

Notation Description

𝒦 The knowledge base

ℰ The entity set

ℛ The relation set

𝒪,ℋ The set of observed and unobserved facts

𝑥,𝑦 The assignments of 𝒪 and ℋ, respectively

{𝐹𝑞,𝑊𝑞}𝑚𝑞=1 The set of logic rules and attached weights

ℐ−𝑞 , ℐ+𝑞 The index set of premise atoms and conclusion atoms of rule 𝐹𝑞, respectively

𝐴,𝐵, ... Variables in logic rules

{𝐺(𝑗)
𝑞 , 𝑗 ∈ 𝑡𝑞} All ground formulas created by the 𝑞𝑡ℎ logic rule

Φ𝑞(𝑦,𝑥) The sum of potentials of all ground formulas of 𝐹𝑞

𝜃 The embedding parameters
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A.2 Mathematical analysis of DiffLogic

A.2.1 Derivation of rule weight gradient

Given

𝑃 *
𝑤(𝑦 | 𝑥) =

𝑛∏︁
𝑖=1

𝑃 * (𝑦𝑖 | MB(𝑦𝑖) ,𝑥) =
𝑛∏︁

𝑖=1

exp
[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

,

𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥) =

∫︁
𝑦𝑖

exp
[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
, 𝑓 𝑖

𝑤 =
𝑚∑︁
𝑞=1

𝑊𝑞

𝑛𝑞∑︁
𝑗=1

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 ),

we have
𝜕 log𝑃 *(𝑦 | 𝑥)

𝜕𝑊𝑞

=
𝑛∑︁

𝑖=1

𝜕 log𝑃 *(𝑦𝑖 | MB(𝑦𝑖) ,𝑥)

𝜕𝑊𝑞

. (A.1)

The partial derivative in the left side of Eq. equation (A.1) is a summation of 𝑛 terms,

each term represents the partial derivatives of the pseudo-log-likelihood for each 𝑦𝑖,

conditioned on its Markov blankets. Each term can be further simplified as follows:

𝜕 log𝑃 *(𝑦𝑖 | MB(𝑦𝑖) ,𝑥)

𝜕𝑊𝑞

=
𝜕
{︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀
− log𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

}︀
𝜕𝑊𝑞

=
𝜕
{︁
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀
− log

∫︀
𝑦𝑖
exp

[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀}︁
𝜕𝑊𝑞

.

Here, we can easily get

𝜕𝑓 𝑖
𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀
𝜕𝑊𝑞

=
∑︁
𝑗

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 ). (A.2)

To make the writing concise, we replace the right term of Eq. equation (A.2) with the
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following notation:

Ψ𝑞,𝑀𝐵(𝑖) =
∑︁
𝑗

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 ).

In this way, we can deduce that:

𝜕 log𝑃 *(𝑦𝑖 | MB(𝑦𝑖) ,𝑥)

𝜕𝑊𝑞

=−Ψ𝑞,𝑀𝐵(𝑖) −
1

𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

𝜕
∫︀
𝑦𝑖
exp

[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
𝜕𝑊𝑞

. (A.3)

The partial derivative and the integration in Eq. equation (A.3) can be swapped using

Lebesgue’s dominated convergence theorem, the Eq. equation (A.3) thus becomes:

𝜕 log𝑃 *(𝑦𝑖 | MB(𝑦𝑖) ,𝑥)

𝜕𝑊𝑞

=−Ψ𝑞,𝑀𝐵(𝑖) −
1

𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

∫︁
𝑦𝑖

𝜕 exp
[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
𝜕𝑊𝑞

=−Ψ𝑞,𝑀𝐵(𝑖) +

∫︁
𝑦𝑖

exp
[︀
−𝑓 𝑖

𝑤

(︀
𝑦𝑖 ∪ 𝑦∖𝑖,𝑥

)︀]︀
𝑍𝑖(𝑊 , 𝑦𝑖 ∪ 𝑦∖𝑖,𝑥)

Ψ𝑞,𝑀𝐵(𝑖)

=−Ψ𝑞,𝑀𝐵(𝑖) +

∫︁
𝑦𝑖

𝑃 * (𝑦𝑖 | MB(𝑦𝑖) ,𝑥)Ψ𝑞,𝑀𝐵(𝑖)

=−Ψ𝑞,𝑀𝐵(𝑖) + E𝑦𝑖|MB

[︀
Ψ𝑞,𝑀𝐵(𝑖)

]︀
.

Therefore, the partial derivative of pseudo-log-likelihood with respect to rule weight

𝑊𝑞 is computed by:

𝜕 log𝑃 *(𝑦 | 𝑥)
𝜕𝑊𝑞

=
𝑛∑︁

𝑖=1

{︃
E𝑦𝑖|MB

[︃∑︁
𝑗

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 )

]︃
−
∑︁
𝑗

1{𝑦𝑖→𝐺
(𝑗)
𝑞 }𝑑(𝐺

(𝑗)
𝑞 )

}︃
.
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A.2.2 Calculation of number of ground formulas for Kinship

datasets

We present a detailed calculation of the number of ground formulas considered by

PSL in Kinship datasets as follows.

Given

• a first-order logical rule 𝐹𝑞 containing |ℐ−𝑞 | premise atoms, and

• a knowledge base containing |ℰ| number of entities,

the number of variables in 𝐹𝑞 is |ℐ−𝑞 |+ 1.

PSL grounds each rule by substituting the variables with all possible entities. The

number of ground formulas created by this logic rule 𝐹𝑞 on the knowledge base is:

|ℰ||ℐ
−
𝑞 |+1.

Thus the overall ground formulas created by the rule set {𝐹𝑞}𝑚𝑞=1 is:

𝑚∑︁
𝑞=1

|ℰ||ℐ
−
𝑞 |+1.

Given the statistics of Kinship datasets in Table 3.2, rules statistics are shared across

different sizes of Kinship datasets, each dataset contains 12 rules that contain two

variables and 9 rules that contain 3 variables. The number of ground formulas

considered by PSL is thus computed by:

12× |ℰ|2 + 9× |ℰ|3. (A.4)

By applying the Eq. equation (A.4), we can get the ground formula number for each

size of the Kinship dataset, as presented in Table A.2:
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Table A.2: Number of ground formulas of Kinship datasets created by classical

grounding method.

Kinship Size S1 S2 S3 S4 S5

Number of
1,373,601 10,853,976 35,798,376 74,671,320 172,162,935

ground formulas

A.3 Notations of NeuSymEA

Notation Description

𝒢,𝒢 ′ The source and target knowledge graphs, respectively

ℰ , ℰ ′ The sets of entities in 𝒢 and 𝒢 ′, respectively

ℛ,ℛ′ The sets of relations in 𝒢 and 𝒢 ′, respectively

𝒯 , 𝒯 ′ The sets of relational triplets in 𝒢 and 𝒢 ′, respectively

𝒪 The set of observed aligned entity pairs between two knowledge graphs 𝒢 and 𝒢 ′

ℋ Set of unobserved entity pairs, i.e., ℰ × ℰ ′∖𝒪

𝑣(𝑒,𝑒′) Binary indicator variable for an entity pair (𝑒, 𝑒′), where 𝑣(𝑒,𝑒′) = 1 indicates alignment

𝑤𝑝,𝑝′ Confidence score of a rule-inferred alignment based on paths 𝑝 and 𝑝′

𝑝𝑤(𝑣(𝑒,𝑒′)|𝒢,𝒢 ′) Probability distribution of the alignment indicator 𝑣(𝑒,𝑒′) given knowledge graphs 𝒢 and 𝒢 ′

𝜃 Parameters of the neural model

𝛿 Threshold to select positive pair from the symbolic model

𝜂(𝑟) Relation pattern measuring the uniqueness of an entity through relation 𝑟

Table A.3: Notations

A.4 Algorithms of NeuSymEA

A.4.1 Pseudo-code of Explainer

Below is the pseudo-code of how the explainer generates supporting rules as interpre-

tations for the query pair. It consists of two stages: searching reachable anchor pairs,

and parsing rule paths as well as calculating rule confidences.
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Algorithm 2 Generating Interpretations for the Queried Entity Pair with Weighted

Rules
Inputs: Subrelation probabilities 𝑝𝑠𝑢𝑏(𝑟 ⊆ 𝑟′), 𝑝𝑠𝑢𝑏(𝑟

′ ⊆ 𝑟) for 𝑟, 𝑟′ ∈ ℛ; Knowledge Graph

pair (𝒢,𝒢′); Maximum rule length ℒ; Anchor pairs 𝒜 with source-to-target mapping S2T

and target-to-source mapping T2S; Query entity pair (𝑒𝑞, 𝑒
′
𝑞)

Outputs: Ranked rules based on confidence

1. Search Reachable Anchor Pairs within Max Depth ℒ

𝑅𝑁 ← BFS(𝑒𝑞,𝒢,ℒ) /* Search reachable neighbors of 𝑒𝑞 using breadth-first search, max

depth ℒ */

𝑅𝑁 ′ ← BFS(𝑒′𝑞,𝒢′,ℒ) /* Search reachable neighbors of 𝑒′𝑞 using breadth-first search, max

depth ℒ */

𝑅𝑁𝑎 ← 𝑅𝑁 ∪ T2S(𝑅𝑁 ′;𝒜) /* Find source nodes of reachable anchor pairs using hash

mapping */

𝑅𝐴← {(𝑒, S2T(𝑒;𝒜)) | 𝑒 ∈ 𝑅𝑁𝑎} /* Identify reachable anchor pairs */

2. Parse and Rank Rules Based on Confidence

for ∀(𝑒, 𝑒′) ∈ 𝑅𝐴 do

Extract paths: 𝑝(𝑒, 𝑒𝑞) = 𝑟1 ∧ 𝑟2 ∧ . . . , 𝑝′(𝑒′, 𝑒′𝑞) = 𝑟′1 ∧ 𝑟′2 ∧ . . .

if |𝑝(𝑒, 𝑒𝑞)| ≠ |𝑝′(𝑒′, 𝑒′𝑞)| then

𝑤𝑝(𝑒,𝑒𝑞),𝑝′(𝑒′,𝑒′𝑞)
← 0 /* If path lengths don’t match, rule confidence is 0 */

else

𝑤𝑝(𝑒,𝑒𝑞),𝑝′(𝑒′,𝑒′𝑞)
←
∏︀|𝑝|

𝑖=1 𝜂(𝑟𝑖) · 𝜂(𝑟′𝑖) ·
𝑝𝑠𝑢𝑏(𝑟𝑖⊆𝑟′𝑖)+𝑝𝑠𝑢𝑏(𝑟

′
𝑖⊆𝑟𝑖)

2 /* Compute rule confidence

by products of subrelation probabilities and relation functionalities */

end if

end for

Sort the rules (𝑝, 𝑝′) by 𝑤𝑝,𝑝′ in descending order

Return the ranked rules =0
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