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Abstract

Training autoregressive models based on maximum likelihood estimation (MLE) has

become a mainstream method in text generation. However, this method has two

inherent limitations. First, the discrepancy between training and inference causes the

exposure bias problem. Secondly, these models are based on autoregressive structures

which have high latency during inference. They are thus inappropriate in scenarios

requiring low latency. Instead, Generative Adversarial Networks (GANs) are free from

the exposure bias problem and have the potential to construct non-autoregressive

(NAR) models. However, GANs have their own limitations in text generation.

First, how to make use of the signals from discriminators to update generators. In text

generation, tokens are always sampled from probability distributions while the sam-

pling operation prevents gradients from being passed to generators. Existing methods,

which model output probabilities, are either high variance or biased estimators. In-

stead, we first transform words into representations, and then train the generator to

recover these representations. We denote these methods as representation modeling

methods. We adopt dropout sampling and fully normalized LSTM to provide a more

effective sampling method and keep healthier gradients. Our proposed model out-

performs MLE-based models and existing GAN-based models in various evaluations

metrics.

Nevertheless, most of existing language GANs are based on autoregressive structures

which have high latency. We thus build GAN-based NAR models to obtain the
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results more efficiently. We divide text generation tasks from two different categories:

incomplete information scenarios and complete information scenarios.

For the incomplete information scenarios, whose target contains more information

than the input, the multi-modality problem in MLE-based NAR models will be fur-

ther augmented. In this scenario, each input has lots of diverse candidates which

will be more easily to be mixed. Language GANs tend to generate ungrammati-

cal sentences after adopting NAR structures. The input representations obtained

by existing methods are similar between different positions. Besides, Transformer

builds word dependencies only based on the attention mechanism, while this process

becomes unstable during the training of GANs. We tackle these problems by propos-

ing two facilities: 1) Position-Aware Self-Modulation to provide more effective input

signals, and 2) Dependency Feed Forward Network to strengthen the feed forward

network layer with the capacity of dependency modeling. The experimental results

demonstrate that our proposed model can obtain comparable performance as existing

mainstream models with much fewer decoding iterations.

For the complete information scenarios, whose input has complete information of the

output, the complicated mapping relations will cause greater errors in the learned

marginal distributions of MLE-based NAR models and thus exacerbate their multi-

modality problem. Even our previously proposed GAN-based NAR model also fails

to obtain satisfied performance due to the incapacity of modeling the complicated

relations. To tackle this problem, we first revise the discriminator structure to make

use of unpaired samples. Then, we integrate the reconstruction procedure to better

utilize paired samples. We test the performance of our proposed model in image

captioning, and our model achieves a new state-of-the-art for fully NAR models on

the MSCOCO dataset with much higher speedup and lower parameter number.
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Chapter 1

Introduction

1.1 Deep Generative Models

Generative models, which can learn data distributions, play a crucial role in machine

learning. Building high quality generative models is a long-standing goal and their

wide range of applications in real scenarios have gathered increasing interest from

researchers. More specifically, their applications can be summarized as follows [33].

First, adopting generative models for training and sampling provides an effective

method to evaluate the capacity of representing and manipulating high-dimensional

probability distributions. This capacity is important in various fields like mathematics

and engineering.

Secondly, generative models can be incorporated into reinforcement learning. For

example, it can be adopted to predict possible futures of the environment so to assist

the planning in reinforcement learning. Besides, generative models can also be used

to simulate environment, so we can avoid physical damage from agents’ possible

mistakes.

Besides, generative models can be trained to predict missing data. The complicated
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Chapter 1. Introduction

real scenarios may bring various data problems, while one of the most popular prob-

lems is data loss. Generative models, which can obtain new data from the original

distributions, can assist to tackle this problem. An important application is semi-

supervised learning in which generative models can either provide more synthetic

training data or be incorporated into training processes directly.

In addition, generative models can be used to learn multi-modal outputs. In many

tasks, each input corresponds to many possible outputs, while traditional methods

may not be able to learn all these candidates. Generative models can be trained with

these one-to-many data, and provide methods to obtain these various outputs.

Lastly, many tasks require model to obtain realistic samples from certain distribu-

tions. In computer vision, single image super-resolution and image-to-image trans-

lation have a wide range of applications. In natural language processing, machine

translation is a classical and important task. Besides, there are also a number of

cross modal tasks like text-to-image generation, and image captioning.

Recent generative models like ChatGPT1 and Sora2 have brought great impact to

the society. It demonstrates the significance of studying and developing generative

models.

The rapid development of deep neural networks over the past few decades has as-

sisted the emergence of deep generative models. Models like Variational Autoencoder

(VAE) [67], Generative Adversarial Networks (GANs) [34] and diffusion models [45]

have been widely adopted in various tasks. Although they have various training meth-

ods, they all try to obtain a deep learning model, with parameter θ, which can learn

the data distributions pdata:

pθ(x) = pdata(x) (1.1)

After obtaining pθ, a generative model can obtain new data by sampling from the

1https://chat.openai.com
2https://openai.com/research/video-generation-models-as-world-simulators
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1.2. Text Generative Models

learned distribution:

x ∼ pθ(x) (1.2)

In practice, we usually need to obtain new data based on conditions, in which a model

learns conditional distribution as follows:

pθ(x|c) = pdata(x|c) (1.3)

Similarly, we can sample new data based on the learned conditional distribution:

x ∼ pθ(x|c) (1.4)

The flexibility of deep neural networks enables deep generative models to be trained

on various structures, so researchers can choose appropriate ones for different tasks.

1.2 Text Generative Models

Although there are various generative models, adopting autoregressive structures with

Maximum Likelihood Examination (MLE) is the most popular one in text genera-

tion. Given a sequence (x1, x2, ..., xT ), autoregressive models learn its probability by

calculating their product:

pθ(x1, x2, ..., xT ) =
T∏
t=1

pθ(xt|x0, x1, ..., xt−1) (1.5)

This model can be incorporated with various neural networks. The most popular

one in the early stage is Sequence-to-Sequence (Seq2Seq) model [119]. It uses Long

Short-Term Memory (LSTM) [46] to construct an encoder to encode input into a

hidden vector, and then uses another LSTM, which is denoted as decoder, to decode

the target sequence. This structure allows models to process the data whose input

3



Chapter 1. Introduction

Figure 1.1: Training and Inference Stage of Autoregressive Models.

and output are in arbitrary length. Seq2Seq quickly becomes a popular model in text

generation tasks like machine translation.

However, LSTM can not fully make use of GPU hardware by processing input in

parallel, so Gehring et al. [30] propose a Convolutional Sequence to Sequence model

(ConvS2S) by replacing LSTM with Convolutional Neural Networks (CNNs) [55, 68,

72]. In addition, Vaswani et al. [120] propose Transformer only based on the attention

mechanism, which is originally proposed to enhance Seq2Seq model [7]. The atten-

tion mechanism supports highly parallel computation and enables models to consider

tokens regardless of distance. Its remarkable performance makes it quickly become

mainstream structures in text generation. Nevertheless, training models based on

autoregressive structures with MLE has its own limitations.

First, they use ground truth as input during training stage while read previously

generated tokens during inference. These two stages are shown in Figure 1.1. During

inference, if the model generates a wrong token (the green circle in Figure 1.1 (b)),

this token will be the fed into the model and the model will be in the state space it

has never met during training. The quality of generated sentences will thus decrease

sharply. This problem is known as the exposure bias problem [9].

In addition, these models generate tokens one-by-one, so they have high decoding

4



1.3. Generative Adversarial Networks

Figure 1.2: Differences of GANs in Image Generation and Text Generation.

latency during inference, and are not suitable for scenarios requiring low latency.

1.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [34] have the potential to tackle the two

problems above. There are two models in GANs: Discriminator and Generator. The

discriminator D is trained to identify whether the input is synthetic or not, while the

generator G tries to generate realistic samples. More specifically, these two models

play a minimax game with a value function V (D,G)3:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (1.6)

Goodfellow et al. [34] have proved that GANs can achieve the global optimality if and

only if the learned distribution is exactly same with the data distribution. During

3There are various training objectives for GANs. We use the initial one in the original GAN

paper [34] to illustrate its main idea.
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Chapter 1. Introduction

training, GANs do not rely on ground truth as input, so they provide a consistent

manner for both training and inference procedures and are free from the exposure

bias problem. Furthermore, their convergence does not rely on model structures, so

they provide a method to build non-autoregressive (NAR) models which can have

lower latency by obtaining results in parallel.

However, GANs have their own limitations when adapting to text generation. There

are fundamental differences when applying GANs in image generation and text gen-

eration.

In image generation, the generator obtains real value data and they are fed into the

discriminator directly. The gradients from the discriminator can pass through to the

generator directly (as shown Figure 1.2 (a)). Thus, the parameters in the generator

can be updated based on the gradients. In text generation, however, the generator

usually obtains probability distributions first, specific tokens are then sampled from

the distributions. This sampling operation is non-differentiable. It stops the gradients

from being passed to the generator. This process is shown in Figure 1.2 (b).

Most of existing language GANs adopt REINFORCE or continuous relaxations to

tackle this problem. REINFORCE adopts the output of the discriminator as re-

ward and update the generator based on it. Continuous relaxations (e.g., Gumbel-

softmax [54]) obtains continuous distributions which can be used as relaxations of

discrete distributions. However, REINFORCE is high variance, and continuous re-

laxations like Gumbel-softmax are biased [18]. Thus, these models highly rely on

pre-training techniques and their performance is also limited by their inherent prob-

lems.

6



1.4. Contribution

1.4 Contribution

In this thesis, we first explore how to adopt GANs in text generation. Instead of adopt-

ing REINFORCE or continuous relaxations, we transform words into representations

and train the generator to obtain these representations. The representations are then

directly fed into the discriminator, so as to avoid the non-differentiable sampling op-

eration. We denote this method as Representation Modeling Method. Although

this method can allow the gradients from the discriminator to pass through to the

generator, their performance is still limited by two problems: 1) invalid sampling

methods; and 2) unhealthy gradients. We tackle these two problems by presenting

two techniques: dropout sampling and fully normalized LSTM. Armed with these two

techniques, our model outperforms MLE-based models and existing GAN-based mod-

els in both existing evaluations metrics and our newly proposed metrics without any

pre-training techniques. These experimental results demonstrates the effectiveness of

building language GANs based on representation modeling methods.

However, most of existing language GANs adopt autoregressive structures, and they

do not support parallel computation in both the training and inference stage. It leads

to high latency and brings difficulties to adopt it on larger and more complicated

datasets. Thus, we further study how to extend representation modeling methods

to NAR models, which significantly decreases latency by obtaining all the results in

parallel. To conduct complete exploration about GAN-based NAR models, we divide

existing text generation tasks into two categories: 1) Incomplete information scenario

(IIS), where the target output has more information than the input; and 2) Complete

information scenario (CIS), where the input maintains complete information of the

target output;. We study GAN-based NAR models in both these two scenarios.

For the IIS, the inherent multi-modality problem in existing MLE-based NAR models

will be further augmented because of the increase of candidate numbers and diversity.

In this scenario, each input needs to complement additional information to obtain

7



Chapter 1. Introduction

output, and different information will lead to completely different results. It thus

has much more candidates which will be more easily to be mixed. Although the

global optimality of GANs can be guaranteed regardless of model structures and

representation modeling methods are also demonstrated to be effective methods in our

previous work, they tend to generate ungrammatical sentences after adopting NAR

structures. Our analyses reveal that the input representations obtained by existing

methods are similar between different positions, and it is difficult to generate the

diverse target output based on this similar input. Besides, Transformer, the widely

used backbone in NAR models, builds word dependencies only based on the attention

mechanism, while this dynamic process becomes unstable during the fragile training of

GANs. We tackle these problems by proposing two facilities: 1) Position-Aware Self-

Modulation to provide more effective input signals, and 2) Dependency Feed Forward

Network to strengthen the feed forward network layer with the capacity of dependency

modeling. We test the performance of the proposed model in incomplete information

scenarios. The experimental results demonstrate that our proposed model can obtain

comparable performance as existing mainstream models with much fewer decoding

iterations.

For the CIS, we investigate how to apply the model in complete information scenarios

with complicated mapping relations. Complete information scenarios, whose input

has complete information of the output, often have less candidates than incomplete

information scenarios, but they often have complicated mapping relations between

input and output. We study these scenarios based on a classical but challenging

task: image captioning. We find that the complicated relations will cause greater

errors in the learned marginal distributions of MLE-based NAR models and thus

exacerbate their multi-modality problem. Even our previously proposed GAN-based

NAR model, which is free from the multi-modality problem, also fails to generate high

quality samples that are consistent with input condition. The main difficulties come

from the incapacity of modeling the complicated mapping relations. To tackle this
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problem, we first revise the discriminator structure to be compatible with contrastive

learning. It can help the model to effectively make use of unpaired samples. Then, we

integrate the reconstruction procedure into the training process to better make use

of paired samples. By further adopting other effective techniques and our proposed

lightweight structure, our model achieves a new state-of-the-art for fully NAR models

on the challenging MSCOCO dataset with much higher speedup and lower parameter

number.

1.5 Thesis Overview

In section 2, we first give a comprehensive introduction about language GANs and

existing MLE-based NAR models. Then, in section 3, we introduce representation

modeling methods which allow the generator to update the parameters based on the

gradients from the discriminator directly. After that, we illustrate how to build GAN-

based NAR models in incomplete information scenarios and complete information

scenarios in section 4 and section 5, respectively. Finally, we draw our conclusion and

discuss future directions in section 6.
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Chapter 2

Background

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [34] are popular in image generation. There

are two models in GANs: Discriminator and Generator. The Discriminator is trained

to identify generated samples from true samples, while generators try to generate

indistinguishable samples. The high quality samples obtained by GANs prompt re-

searchers to adopt them in various tasks [10, 58, 140]. However, the training of GANs

is finding a saddle point in the optimization space. It leads the training process to

be extremely difficult. Researchers try to tackle this problem from different perspec-

tives [99, 118, 127].

Model structure is an important perspective to improve the performance of GANs.

Radford et al. [103] propose to use CNNs and construct their models. They denote

these models as deep convolutional generative adversarial networks (DCGANs) [103],

which becomes a classical structure in GANs. Besides, ResNet [41] is also another

widely-used choice for researchers [93]. Recently, the success of vision transformer [21]

inspires researchers to apply Transformer [120] in GANs [56, 73].

10
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The training objective is another key in stabilizing and improving the performance

of GANs [97, 126]. Mao et al. [91] consider that the original loss function will have

the problem of gradient vanishment when fake samples are too far away from deci-

sion boundaries. Thus, they propose to use least squares loss to move fake samples

towards the decision boundaries [91]. Hinge loss is another popular loss function [79].

Besides, Arjovsky et al. [5] find JS divergence is not sensible loss functions when

learning distributions supported by low dimensional manifolds. Thus, they propose

to use Earth Mover (EM) distance which is also known as Wasserstein distance as

training objective. Considering the original form of Earth Mover (EM) distance is

highly intractable, Arjovsky et al. [5] use Kantorovich-Rubinstein duality [122] as the

objective.

The duality form requires the model following 1-Lipschitz constraint. Arjovsky et

al. [5] keep this constraint by clipping the weights in a fixed region. Gulrajani et

al. [38] consider that weight clipping may lead discriminators to become a too simple

function. Thus, they propose to use gradient penalty to control the overall gradi-

ents of discriminators to be close to 1. This idea also inspires a number of penalty

methods [101, 141]. Another method to keep 1-Lipschitz constraint is spectral nor-

malization [93]. Additionally, researchers find that keeping 1-Lipschitz constraint can

also improve the performance GANs in other objectives, so spectral normalization is

always adopted even when the training objectives are not Wasserstein distance [73].

Besides, researchers also propose a number of training techniques to improve the per-

formance of GANs, which include unrolled strategy [92], Exponential Moving Average

(EMA) [132], top-k training [116] and the two time-scale update rule [43].

These techniques enable GANs to generate high quality images. Recently, autore-

gressive models [28, 133, 137] and diffusion models [76, 94, 104, 110, 111] show their

effectiveness in image generation. Even so, Recent studies show that GANs are able

to obtain comparable performance in much lower latency [57, 113].
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2.2 Language GANs

The success of GANs in image generation prompts researchers to build GAN-based

models for text generation. However, the non-differentiable sampling process leads

the gradients from discriminators can not pass through to generators. Researchers

propose a number of methods to tackle this problem and most of them can be divided

into two categories: REINFORCE methods [13, 63, 134] and continuous relaxation

methods [14, 70, 139].

Yu et al. [134] first adopts REINFORCE in GANs in unconditional text generation.

As an early attempt, Yu et al. [134] focus on two problems: 1) Classical GANs can

not generate discrete output. 2) The discriminator can return the reward only when

the whole sentence is generated. They use REINFORCE methods to tackle the first

problem. In their model, generators do not need the gradients from discriminators

any more. Instead, they regard the outputs of discriminators as rewards and use these

rewards to update generators. However, discriminators in traditional GANs structure

can only provide rewards for each action (sampling word). They further adopt Monte

Carlo search with a roll-out policy to calculate rewards for each action. Li et al. [75]

also use similar methods to improve the performance in conversation generation.

To further enhance model performance, researchers propose various modeling meth-

ods. In original GANs, the discriminator is trained to finish a binary classification

task [34]. Lin et al. [82] consider that it significantly limits the diversity and richness

inside sentences. Thus, they propose to use rankers to replace discriminators to cal-

culate a relative rank among the sequences when given a reference. Besides, Fedus et

al. [24] focus on the training instability and mode dropping problem. To tackle these

problems, They propose to train the generator on a text in-filling task.

When using REINFORCE methods, rewards given by discriminators may be ex-

tremely unstable. To stabilize the reward value, Che et al. [13] propose a normalized

maximum likelihood optimization target. Besides, they further adopt importance
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sampling and several variance reduction techniques to stabilize training process. Ke

et al. [63] make an another attempt to stabilize training process. Inspired by the work

of Norouzi et al. [96], they propose to sample data from a distribution near the real

distribution instead of using distributions given by generators directly.

For the continuous relaxation methods, the most widely-used one is incorporating

Gumbel-softmax into GANs [70]. With the help of Gumbel-softmax, generators can

get a distribution that only the value in one dimension is close to 1 and the values in

the other dimensions are all close to 0. Thus, these results can be fed into discrimi-

nator directly and generators can update the parameters based on the gradients from

discriminator.

Researchers also propose a number of variants to improve the performance, like us-

ing feature matching scheme [139] and Feature-Mover’s (FM) Distance [14]. Nie et

al. [95] further improve the performance by making use of a relational memory based

generator [112] and multiple embedded representations.

However, these methods all heavily rely on MLE pre-training. Furthermore, Cacciaet

al. [11] find that when evaluating language GANs by considering fluency and diversity

together, existing models can not outperform the classical MLE methods. Researchers

begin to build models based on large scale pre-training models directly [114]. The de-

pendency on pre-training implies the internal limitations in current models. d’Autume

et al. [18] first attempt to train GANs in text generation without pre-training gener-

ators directly. Their method obtains comparable performance as MLE. Lin et al. [81]

further adopt the first-order Taylor expansion into models to try to reduce the batch

size. However, both of these two models are built on pre-training component, which

means their generators are dependent on pre-training embeddings. In other words,

existing GAN-based text generative models rely on either MLE pre-training or pre-

trained embedding.

In addition to REINFORCE methods and continuous relaxation methods, researchers
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also give attempt to modelling word representations directly. In this method, gener-

ators obtain word representation instead of probability distributions. However, these

methods have large gaps comparing with traditional MLE methods [69], or even are

listed as failure cases in some work [18]. The limited performance of this method

makes it less popular comparing with the other two methods.

2.3 Non-Autoregressive Models

NAR models are first proposed in machine translation [37]. Instead of obtaining

tokens one-by-one, they support parallel decoding so have much lower decoding

latency comparing with AR models [128]. Different with other generative models

which are first raised in unconditional generation and then extended to conditional

scenarios. NAR models are mainly discussed in specific tasks like machine trans-

lation [32, 62, 102]. Thus, these models were lack of complete theoretical analyses

in the early development stage and their development can not completely cover all

important scenarios.

Machine translation is one the most popular tasks to study NAR models. Xiao et

al. [128] analyze existing work from five aspects:

• Data Manipulation. The lost of word dependencies lead most of NAR models

to be incapable in modeling complicated data distributions. Thus, researchers

often simplify the distributions by adopting knowledge distillation [44, 65].

• Modeling. Different modeling methods are also proposed to enhance model per-

formance. For example, using iteration-based methods to construct the model,

which improve output quality iteratively [32]. Besides, researchers also explore

the method of using latent variables to learn target dependencies or integrat-

ing more information in the input or hidden states to improve model perfor-

mance [2, 8, 88].
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• Criterion. A number of researchers argue that the vanilla MLE is not suitable

for the training of NAR models, so they propose to use different loss func-

tions like Connectionist Temporal Classification (CTC) loss [36], N-gram level

loss [115], Aligned Cross Entropy (AXE) loss [31] and Order-Agnostic Cross

Entropy (OAXE) loss [22].

• Decoding. Decoding strategy is another perspective to improve model perfor-

mance. In addition to decode sentences iteratively [32], researchers also propose

a semi-autoregressive (SAR) structure whose decoding stage contains both AR

and NAR processes [123].

• Pre-trained Model. Recent research also adopts pre-trained techniques to fur-

ther boost the performance of NAR models [78, 84, 124].

Recently, Huang et al. [49] provide a unified perspective to analyze existing models.

They first reveal that optimizing the NAR models with MLE remains a non-negative

lower bound between learned distributions and real distributions, which is:

DKL[Pdata(Y |X)||pθ(Y |X)] ≥ −Hdata(Y |X) +
T∑
i=1

Hdata(yi|X)︸ ︷︷ ︸
C

(2.1)

where C is a non-negative constant called conditional total correlation. It quantifies

the dependency among a set of variables.

Huang et al. [49] find that existing mainstream techniques improve the performance

of NAR models by decreasing the conditional total correlation. They divide exist-

ing methods into two categories: modifying targets and enhancing inputs. For the

methods of modifying targets, knowledge distillation uses well-trained AR model to

generate pseudo targets to train NAR models, while methods like AXE and OAXE

change the targets adaptively. For the methods of enhancing inputs, CMLM is a fixed

method in enhancing inputs while GLAT is an adaptive methods. All these methods
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try to maintain a one-to-one mapping relation so to intuitively reduce the conditional

total correlation.

However, this limitation inherently exists in MLE-based NAR models. Existing meth-

ods can only relieve it instead of completely tackling it. Comparing with the rapid

development of NAR models in machine translation, their development in some tasks

are relatively slow. Image captioning is one of them.

Early study of NAR models in image captioning adopts iterative-based methods to

accelerate inference [25, 29]. However, these methods are trained on cross-entropy

and are not able to keep sentence-level consistency. To maintain sentence-level con-

sistency, Guo et al. [40] integrate the counterfactuals-critical multi-agent learning into

the training objective. Recently, researchers further enhance model performance by

making use of various structures. Semi-autoregressive (SAR) structures [26, 131] are

one of the methods. These methods have both autoregressive and non-autoregressive

generation processes and thus require multiple steps to obtain the results. In addition,

Luo et al. [87] incorporate diffusion models and obtain image captions in an iterative

manner. Although these methods obtain better performance than fully NAR models,

their inference latency is also higher.
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Chapter 3

Representation Modeling Based

Language GANs

3.1 Introduction

Text generative models are stepping stones for various natural language processing

tasks [89, 135]. Implementing Maximum Likelihood Estimation (MLE) with autore-

gressive structure has gained great success [30, 119, 120]. This method uses ground

truth as input during training, but reads previously generated tokens during infer-

ence. The discrepancy between training and inference, however, causes the exposure

bias problem [9, 35, 138]. This problem affects the quality of generated sentences

and grows the needs of exploring other alternatives in text generation. Generative

Adversarial Networks (GANs) [34] are central in many image generation success sto-

ries [10, 60, 61]. GANs can tackle the exposure bias problem by providing a consistent

generation manner in training and inference.

However, the non-differentiable sampling operations in text generators stop gradi-

ents from passing through to generators, which limit the direct applications of GANs

in text generation [134]. Currently, many researchers tackle this problem by RE-
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INFORCE [125] or continuous relaxations [54, 90]. REINFORCE is an unbiased

but high variance estimator [81], whereas continuous relaxations are low variance

but biased estimators [18]. The inherent limitations of these two methods not only

constraint the performance, but also lead the fragile training of GANs to be more un-

stable. Existing language GANs thus rely on either MLE pre-training or pre-trained

embedding to be comparable with MLE [81, 18, 114].

Methods based on REINFORCE or continuous relaxations explicitly model word

probabilities at each timestep, so we denote them as Probability Modeling Meth-

ods (PMMs). Another type of methods is to first transform words into repre-

sentations, and then train generators to model these representations. We denote

these methods as Representation Modeling Methods (RMMs). Research on

RMMs is extremely limited, due to the unsatisfactory performance in previous at-

tempts [18, 69]. However, such methods should be a promising research line, since

they contain neither non-differentiable operations nor biased estimators. The discrep-

ancy between theoretical feasibility and unexpected poor performance prompts us to

conduct an in-depth analysis of its reasons, based on which two problems are found

as responsible for the poor performance of RMMs.

The first one is called “invalid sampling” problem. RMMs do not have word probabili-

ties that can be sampled. Injecting random noise into generators is also demonstrated

as ineffective in autoregressive structures [105, 143]. Generators with an invalid sam-

pling method will generate samples in high similarities, and leads to the mode collapse

problem [5, 43]. Another problem is unhealthy gradients. RMMs update genera-

tors based on gradients from discriminators. Compared with other sequence mod-

els [100], more layers are stacked to build the discriminator and the generator, so

RMMs place higher demands on healthy gradients. Gradient vanishment is more

severe in LSTM [46], for the output gate there further narrows down the gradients

from other layers. Unhealthy gradients will directly influence the performance of

generators.
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To tackle the first problem, we introduce a simple but effective sampling method:

dropout sampling. Unlike injecting random noise, it provides a non-negligible

random factor by masking a certain number of dimensions in input. This method

improves both diversity and quality of generated samples via relieving the mode

collapse problem.

We solve the second problem by proposing a new variant of LSTM: fully normalized

LSTM. Our theoretical analyses show that incorporating layer normalization [6] in

the calculation of hidden states can relieve gradient vanishment by providing an addi-

tional augmentation term in its derivative. This operation, however, is omitted in the

existing combination of layer normalization and LSTM [6]. Fully normalized LSTM

makes up this shortcoming by simultaneously obtaining strong sequence modeling

capabilities and healthier gradients.

Theoretically, language GANs can get satisfactory performance without any pre-

training techniques (MLE pre-training or pre-trained embedding).We present Ini-

tialGAN to echo this significant goal in text generation. The contributions of this

work can be summarized as follows:

• We provide in-depth analysis and offer effective solutions to the two main lim-

itations of representation modeling methods. For the invalid sampling prob-

lem, we introduce dropout sampling which is a simple but effective sampling

method to improve both the quality and diversity of generated samples. For the

unhealthy gradient problem, we propose a fully normalized LSTM which can

relieve gradient vanishment by making use of layer normalization to provide an

augmentation term.

• We put forward InitialGAN as a representation modeling based language GAN

which is characterized by having all the parameters to be initialized randomly.

In particular, InitialGAN has three models: mapper, generator and discrimina-

tor. The mapper transforms words into representations, and the generator tries
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to model word representations; the discriminator uses these representations as

input and identify whether the representations are from the mapper or the gen-

erator. Different from existing language GANs which are based on pre-training

techniques, all the parameters in InitialGAN are initialized randomly.

• Observing that the existing embedding level metric is not sensitive to the change

of sample quality, we propose a new metric: Least Coverage Rate, which can

better identify the differences among different models. The experimental results

show that InitialGAN outperforms both MLE and other compared models. To

the best of our knowledge, it is the first time a language GAN can outperform

MLE without using any pre-training techniques. It also demonstrates that

RMMs denote a promising research line for language GANs.

Figure 3.1: Structure of InitialGAN.
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3.2. Model

3.2 Model

In this section, we firstly introduce the structure of InitialGAN. Next, we present

dropout sampling and fully normalized LSTM to tackle invalid sampling method and

unhealthy gradients, respectively. After that, we introduce the training objectives of

InitialGAN.

3.2.1 Model Structure

The structure of InitialGAN is shown in Figure 3.1. There are three models in Initial-

GAN: mapper, generator and discriminator. The mapper is based on the encoder in

Transformer [120]. It needs to map words to representations. For the discriminator,

we train it to identify whether a specific representation in the t-th timestep is from

the mapper or the generator based on the previous (t− 1) representations:

ct = D(rt|rt−1, ..., r1)

where rt is the t-th representation from the mapper or the generator. For the gen-

erator, we use latent input zt to generate representations and their corresponding

words:

r
(g)
t = G(zt|zt−1, ..., z0) (3.1)

x̂t = FLT (r
(g)
t ) (3.2)

where r
(g)
t is the t-th representation and FLT (·) is the transformation layer from

the mapper. Its parameters are fixed during the training of the generator. In the

following, we elaborate the details about the two important techniques in InitialGAN:

Dropout Sampling and Fully Normalized LSTM.
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Figure 3.2: Effects of Dropout Sampling. (a) The real distribution. (b) The distribu-

tion learned by a sub-model (blue area). (c) The distribution learned by the complete

model.

3.2.2 Dropout Sampling

An effective sampling method plays a crucial role in training GANs. Once we choose

to model representations, we can no longer sample words from word probabilities

directly. Although we can sample results by feeding random noise into generators as

a part of input, previous work [105, 143] shows that generators with autoregressive

structures tend to ignore those additional input. As a result, these generators will

suffer from the mode collapse problem [5, 43] and give samples in high similarities.

In this time, the discriminator will prompt generated samples to rotate between the

different modes, so the generator can only learn a small subset of the real distributions

instead of the whole one.

Ever since Dropout [117] was introduced in 2014, it has been widely used in train-

ing neural networks. Previous work [53] also adopts dropout as random noises in

image GANs. Using dropout in both training and inference as a sampling method

is extremely suitable in representation modeling methods because it provides a non-

negligible random factor. During training, the hidden representations in the generator

will be randomly masked. Under the guidance of the discriminator, the generator will

learn to use different combinations of the values in hidden representations to obtain
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results following real distributions. During inference, the generator has consistent

masking strategy to ensure the quality of generated results.

However, the distribution provided by dropout sampling is decided by the input

which is always in the form of trainable embeddings. It leads the distribution to keep

changing during training and may cause the training process to be unstable. Thus,

we concatenate the input with random noise to increase the robustness of the model.

The complete method is:

zt = Dropout(E(x̂t−1)⊕ ε, ρ)

where zt is the t-th latent variable, x̂t−1 is the word generated in the last timestep,

E(·) is a function to transform words into embeddings, ε is random noise sampled from

a pre-defined distribution and ρ is the dropout rate. Dropout can be viewed as the

selection of sub-models. Given a real distribution in Figure 3.2 (a), even though each

sub-model may still suffer from mode collapse as shown in Figure 3.2 (b), different

sub-models can cover different modes. Hence the distribution given by the complete

model is closer to the real data distribution (as shown in Figure 3.2 (c)).

The dropout operation will mask a certain number of dimensions of hidden vectors.

Dropout sampling will thus slow down the convergence of generators, since the pa-

rameters are updated less frequently. To speed up the training process, we propose to

use imbalanced batch size. Suppose bsd is the batch size of discriminator’s training,

setting the batch size of the generator’s training as bsg = bsd/(1− ρ) can have more

samples for the generator to update and thus bridge the gap in update frequency.

3.2.3 Fully Normalized LSTM

When building representation modeling based language GANs, generators update

their parameters based on the gradients from discriminators. Compared with other

sequence models [100], representation modeling methods place higher demands on
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healthy gradients, since they need to stack more layers to build discriminators and

generators.

In a language GAN, a generator makes predictions based on previous output in both

training and inference. It limits the use of Transformer [120] whose computational

speed is extremely slow without parallel computation. When generating the t-th

word, Transformer needs to calculate attention weights for the previous t− 1 words,

and it has relatively high complexity. Consequently, LSTM [46] is more popular in

language GANs [18]. To obtain the output, it only needs to consider the hidden state

from the last timestep and the current input, so it has a constant fast computational

speed.

When using LSTM to build a representation modeling method, however, we need to

care about possible gradient vanishment among both different timesteps and different

layers. This time, the gated mechanism in LSTM cuts both ways. Although the

grated mechanism can relieve gradient vanishment among different timesteps, the

hidden states of LSTM needs to multiply with the results from the output gate,

whose values are between (0, 1). Thus, the gradients from the previous layers will be

inevitably narrowed.

The problem gets worse when we stack several LSTM layers to build the generator

and the discriminator. Unhealthy gradients will exist throughout the whole training

process and affect model performance directly. Thus, we need to find a method to

relieve the gradient vanishment problem.

Layer normalization [6] is a widely used technique in neural networks [120]. Previous

work [129] shows that layer normalization helps stabilize training by reducing the

variance of gradients. We further find that layer normalization has potential to relieve

gradient vanishment. A common understanding is that it can shift and scale input into

a more reasonable interval to avoid the interval whose gradients are small. However,

layer normalization does more than that. According to our analyses, it provides an
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addition term to augment gradients when the deviation of the normalized term is

smaller than 1, as stated in Theorem 1 below.

Theorem 1 Suppose yl+1 = Fl(yl) is the l-th layer in a model, yl is the input of the

l-th layer and also the output from the (l− 1)-th layer. Adopting layer normalization

in the input (i.e., yl+1 = Fl(LN(yl))) provides an addition term when calculating the

partial derivative of yl+1 with respect to yl. This term can augment the gradients

when the deviation of yl is smaller than 1.

The proof of Theorem 1 can be found in the Appendix A.1. In LSTM, the hidden

state can be regarded as the yl in Theorem 1. It is the element-wise product of the

output gate (which is in (0, 1)) and cell state (which is in (−1, 1)). Its deviation must

be smaller than 1, which can meet the conditions of Theorem 1. Thus, we have the

following:

Corollary 1 Adopting layer normalization when calculating the hidden state in

LSTM provides a scaler factor to augment the gradients, thereby mitigating the gra-

dient vanishment between different layers in LSTM.

Based on our analyses, we propose a fully normalized LSTM as follows:
ft

it

ot

ĉt

 = LN(Whht−1) + LN(Wxxt) + b

ct = LN(Fs(ft) ◦ ct−1 + Fs(it) ◦ Fh(ĉt))

ht = LN(Fs(ot) ◦ Fh(ct))

(3.3)

where ◦ is the element-wise product, LN(·) is layer normalization, b is a trainable vec-

tor, Fs(·) is sigmoid function and Fh(·) is tanh. The fully normalized LSTM is based

on LayerNorm LSTM [6] whose effectiveness has been shown by various tasks [18, 47].
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The main difference is that the fully normalized LSTM adopts additional layer nor-

malization when calculating the hidden state, so as to offset the influence from the

output gate. Thus, it can obtain both strong sequence modeling capabilities and

healthier gradients. In practice, we adopt fully normalized LSTM to construct both

the discriminator and the generator to obtain healthier gradients.

3.2.4 Training Objective

The training objective of the mapper is based on the loss function of Variational Au-

toencoder (VAE) [67], so the mapper can map word xi into a distribution N (µxi , σ
2
xi

).

The vector sampled from N (µxi , σ
2
xi

) is transformed back into words with a linear

transformation FLT . The distribution N (µxi , σ
2
xi

) describes a region in the space as

representation rather than a point. It can increase the robustness during generation,

since FLT can map representations with minor errors into correct words.

However, the mapper trained via the VAE objective tends to assign large regions to

high frequency words, while the regions of low frequency words are extremely small.

It brings difficulties to generate low frequency words, since small errors may lead the

representations to lie in the region of other words. Thus, we propose a new training

objective to tackle this problem:

LA = −Eẑ∼q(ẑ|xi)(logp(xi|ẑ)) +KL(q(ẑ|xi)||p(ẑ)) + λalog(σ2
xi

) (3.4)

where σ2
xi

is the variance of word xi and λa is a hyperparameter. The first two terms

consist of the original objective in VAE. The last term provides a penalization to the

variance, which controls the size of the representation region directly. This objective

can help keep the regions of different words in similar size by giving more penalization

to the variance of high frequency words. In practice, λa is set to be a small number

and the original training objective of VAE can ensure that σ2
xi

is not too small.

We train the mapper based on the strategy of BERT [19]. More specifically, 15% of
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Algorithm 1 Training of InitialGAN

Input: Initial parameters of the mapper, discriminator, and the generator. Batch

size m and imbalanced batch size m′.

while the mapper has not converged do

for i = 1→ m do

Sample real data x ∼ Px
µx, σ

2
x ←M(x)

ε̂ ∼ N (0, 1)

ẑ← ε̂ ◦ σx + µx

LiA ← −Eẑ∼q(ẑ|x)(logp(x|ẑ)) +KL(q(ẑ|x)||p(ẑ)) + λalog(σ2
x)

LA ← LA + LiA

end for

Update the parameters of the mapper based on LA

end while

while the generator has not converged do

for i = 1→ m do

Sample x ∼ Px, z ∼ Pz.

µx, σ
2
x ←M(x)

LiD ← −D(µx) +D(G(z))

LD ← LD + LiD

end for

Update the parameters of the discriminator based on LD

for i = 1→ m′ do

Sample latent variable z(i) ∼ Pz
LiG = −D(G(z(i)))

LG ← LG + LiG

end for

Update the parameters of the generator based on LG

end while
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words in training data will be randomly selected as the ones to be predicted. Among

the replacing words, 80% of them are replaced with [MASK] token, 10% of them

are replaced with random tokens, and 10% of them are unchanged. In the training

objective of the mapper, we propose to add an additional term to penalize σ2
xi

. Vanilla

VAE also needs to calculate σ2
xi

to update the KL divergence term in the objective,

so there is nearly no additional computational cost in the new training objective.

After the training of the mapper is finished, all its parameters are fixed and the

transformation layer which transforms representations back into words will be shared

with the generator.

Both the discriminator and the generator are constructed based on the fully normal-

ized LSTM. Dropout sampling is adopted in both training and inference stage of the

generator. The generator uses the same linear transformation FLT in the mapper to

transform representations back into words. We adopt Wasserstein distance [5] as the

training objective, and use Lipschitz penalty [101] to regularize the discriminator.

The loss functions of the discriminator LD and the generator LG are:

LD = −Eµx∼Pd
[D(µx)] + Ez∼Pz [D(G(z))] (3.5)

LG = −Ez∼Pz [D(G(z))] (3.6)

where z is from dropout sampling, and µx is the word representation from the mapper.

The full training process of InitialGAN is described in Algorithm 1.

3.3 Experiment

In this section, we introduce the evaluation metrics, datasets and compared models.

After that, we provide the experimental results with our analyses. In the experiment,

we first demonstrate the effectiveness of InitialGAN in both short sentence genera-

tion and long sentence generation. Then, we show the reliance of existing models on

pre-trained techniques. Besides, we conduct ablation study to show the effectiveness
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of dropout sampling and fully normalized LSTM. Furthermore, models are compared

from the training stability and sentence length distribution. Last but not least, addi-

tional experimental results like the effectiveness of fully normalized LSTM to gradient

are demonstrated to give more complete analyses to our proposed technique.

3.3.1 Evaluation Metrics

For the token level metrics, we use BLEU [98] to evaluate fluency and Self-BLEU [144]

to evaluate diversity. In addition, Inverse BLEU is also a good choice for evaluating

the overall performance in both fluency and diversity. Inverse BLEU uses sentences

in test sets as inference and generated sentences as references. Sentences in test sets

are fluency and diverse, so the generated sentences can get high Inverse BLEU only

when they have good performance in terms of both aspects. When calculating token

level metrics, all of them are calculated up to 5 grams and the size of each set is set

to be 5,000.

For the embedding level metrics, we use Fréchet Embedding Distance (FED) [18]

which is identical with Fréchet inception distance (FID) [43] except for the encoding

model. Although it can evaluate the global similarity of two distributions, previous

work [81, 18] shows that its values are extremely small, and it is not sensitive to

the change of sample quality. When models get similar FED, it does not mean that

they get close performance. To further identify the differences of compared models,

we propose a new metric, Least Coverage Rate (LCR), which is calculated as

follows:

Sij = Sim(E(xai ),E(xbj))

Ra =
1

n

n∑
i=1

δ(
m∑
j=1

Sij ≥ τ)

Rb =
1

m

m∑
j=1

δ(
n∑
i=1

Sij ≥ τ)

LCR(Xa,Xb) = min(Ra,Rb)

(3.7)
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where xai and xbi are the i-th and j-th sentences from sentence sets Xa and Xb,

respectively. E(·) is the model to transform sentences into embeddings, τ is a hyper-

parameter, Sim(·) is a similarity function and δ(·) is a function which returns 1 if

input is higher than 0, and 0 for others. Ra and Rb are the coverage rates of Xa and

Xb, respectively. LCR has following features:

• It compares two distributions in a fine-grained level. Given two sets of sentences,

LCR computes the similarity of every two sentences in the two sets to make sure

whether specific modes are covered or not. Thus, it can be more sensitive to

the change of sample quality.

• The minimum operation in LCR helps it be sensitive to two common problems

in generative models: 1) generating samples out of the real distribution; 2)

generating samples in high similarities. The coverage rates on test sets are

aware of the mode collapse problem, while the coverage rates on inference sets

can identify the generated samples out of the real distribution.

• It better makes use of sentence encoders. Most of sentence encoders are de-

signed to compare sentence similarities with a pre-defined method (e.g., cosine

similarity). FED only considers the mean and covariance of two sets, and does

not make use of this feature directly.

• It is efficient in computation. Although it needs to compute the similarity of

every two sentences in the two sets, it can be implemented in a high efficiency

way. For example, if we use Universal Sentence Encoder to transform sentences

into embeddings, we can easily implement the calculation by making use of

matrix multiplication.

When adopting these two embedding level metrics, we select 10,000 sentences in each

set and use Universal Sentence Encoder [12]1 to encode them into embeddings. For

1https://tfhub.dev/google/universal-sentence-encoder/4
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the similarity function in LCR, we use cosine similarity suggested by the Universal

Sentence Encoder [12].

3.3.2 Experiment Setup

We use two datasets in our experiment: COCO Image Caption Dataset [83] 2 and

EMNLP 2017 News Dataset 3. For the COCO Image Caption Dataset, we choose

50,000 sentences as training set. For the EMNLP 2017 News Dataset, we choose

200,000 sentences as training set. These sentences are used to prepare experiment for

unconditional generation instead of their original tasks.

We compare the performance of InitialGAN with MLE and other language GANs.

For REINFORCE methods, we choose SeqGAN [134], RankGAN [82], MaliGAN [13],

LeakGAN [39] and ScratchGAN [18]. For continuous relaxation methods, we choose

RelGAN [95]. All these methods except for ScratchGAN rely on MLE pre-training,

while ScratchGAN is based on pre-trained embeddings. InitialGAN is the only lan-

guage GAN whose parameters are initialized completely randomly.

The mapper is constructed based on the original Transformer structure. The word

embeddings will be added with fixed positional encoding and then feed into a stack

of Transformer blocks. Each block is consisted of a multi-head attention layer and

feed forward network layer. Layer normalization is adopted after each layer. Both

the generator and the discriminator are constructed based on the fully normalized

LSTM.

The batch size of InitialGAN is set to be 128. The maximum training epoch of the

mapper is 200, while the maximum adversarial training epoch is set to be 3,000 for the

COCO dataset and 2,000 for the EMNLP dataset. The embedding size is 512. The

feature size of the mapper is set to be 512, while the feature size of the discriminator

2https://cocodataset.org
3http://www.statmt.org/wmt17/
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Figure 3.3: Changes of LCR and FED on Image COCO Caption Dataset.

and the generator is set to be 1024 and 512, respectively. The dimension of random

noise is 128. We stack 4 transformer layers to build the mapper and its head number is

set to be 8. Both the layer number of the discriminator and the generator is set to be

2. The dropout rate of the mapper is 0.5, and the dropout rate in dropout sampling

is set to be 0.75. The learning rate of the mapper is 0.0001 and it is optimized with

AdamW (β1 = 0.9, β2 = 0.999, weight decay=0.00001). The learning rates of the

discriminator are set to be 0.0004 for the COCO dataset and 0.0002 for the EMNLP

dataset. Its optimizer is AdamW (β1 = 0.5, β2 = 0.9, weight decay=0.0001). The

learning rate of the generator is set to be 0.0001 and its optimizer is Adam (β1 = 0.5,

β2 = 0.9).

We save the model after every epoch, and select the best model based on FED on

validation sets. We follow the settings of the previous work [144] to implement MLE

except for the layer number and feature size which are set to be same with the

generator in InitialGAN. It not only leads the model to be more comparable, but also

improves its performance. We obtain the results of other language GANs by running

the public code 4 5 6. We implement InitialGAN based on Tensorflow [1]. It is trained

on NVIDIA GeForce RTX 3090.

4https://github.com/geek-ai/Texygen
5https://github.com/deepmind/deepmind-research/tree/master/scratchgan
6https://github.com/weilinie/RelGAN
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Figure 3.4: Evaluation Results in Fréchet Embedding Distance (FED) on COCO

Caption Dataset and EMNLP 2017 News Dataset. Lower is Better.

3.3.3 Experimental Results

Comparisons between FED and LCR

We first conduct experiments to explore the effectiveness of Least Coverage Rate

(LCR). We explore the sensitivity of LCR and FED to data changes by replacing

words in sentences with random ones in a certain probability. The experimental

results are shown in Figure 3.3.

Generally, the changes of FED are not obvious even when replacing 10% of words

with random words. In the early stage, we nearly cannot observe any changes in

FED. It shows that FED is not sensitive to the change of sample quality. Different

with FED, LCR is a much more sensitive evaluation metric. Even minor changes can

be reflected in LCR. LCR decreases from around 0.75 to less than 0.5 when 10% of

words are replacing with random words. This result shows that LCR can be a good

compliment when the compared model gets close performance in FED.

Performance of Different Models

Figure 3.4 reports FED of different models. On the COCO Image Caption Dataset,

MLE, ScratchGAN and InitialGAN can significantly outperform other compared

models; the differences among these three models are not clear. On the EMNLP
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Figure 3.5: LCR with different τ on the COCO Dataset. Higher is Better.

Figure 3.6: LCR on EMNLP 2017 News Dataset (τ = 0.45). Higher is Better.
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Table 3.1: Evaluation Results of Token Level Metrics on Image COCO Caption

Dataset

Model BLEU Self-BLEU Inverse BLEU

Training Data 34.99 34.80 35.36

MLE 32.59 37.15 32.03

SeqGAN 34.68 69.85 22.34

RankGAN 37.32 73.30 22.10

MaliGAN 26.49 53.47 25.95

LeakGAN 33.14 56.88 29.43

ScratchGAN 30.98 35.72 30.76

RelGAN 54.04 73.70 29.53

InitialGAN 34.87 39.06 33.06

Table 3.2: Evaluation Results of Token Level Metrics on EMNLP 2017 News Dataset

Model BLEU Self-BLEU Inverse BLEU

Training Data 20.50 20.47 20.62

MLE 16.66 17.21 16.97

SeqGAN 9.01 27.89 9.90

RankGAN 10.35 56.77 10.37

MaliGAN 12.23 21.34 13.11

LeakGAN 27.61 50.55 11.59

ScratchGAN 17.54 19.04 17.19

RelGAN 30.95 57.48 14.74

InitialGAN 19.40 23.74 17.74
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Figure 3.7: Ablation Study of ScratchGAN on EMNLP 2017 News Dataset.

2017 News Dataset, ScratchGAN and InitialGAN slightly outperform MLE, though

the gaps between these three models are still limited. FED can not effectively capture

the change of data qualities.

To better evaluate the performance among these three models, we further compare

their performance in LCR. The results are shown in Figures 3.5 and 3.6. We explore

the effectiveness of the threshold τ in LCR on Image COCO Caption Dataset. The

results are demonstrated in Figure 3.5. Although the values change significantly with

different τ , the rankings of different models are kept when τ is in a reasonable interval.

According to Figure 3.5, ScratchGAN is slightly inferior to MLE while InitialGAN

can outperform both models. Figure 3.6 shows LCR on EMNLP 2017 News Dataset.

InitialGAN gets the highest LCR among all three models. Unlike on Image COCO

Caption Dataset, ScratchGAN outperforms MLE on this dataset. EMNLP 2017

News Dataset consists of long sentences and its distribution is more complicated.

The exposure bias problem in MLE is more likely to happen, which leads to the poor

performance on this dataset.

The evaluation results in token level evaluation metrics are shown in Tables 3.1
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Figure 3.8: Ablation Study of InitialGAN on COCO Dataset. Tech. 1: Dropout

Sampling. Tech. 2: Fully Normalized LSTM.

and 3.2. We first analyze the results on COCO Image Caption Dataset. Except

for ScratchGAN and InitialGAN, most of language GANs tend to get very high Self-

BLEU. Sentences generated by these models have high similarities, which indicates

the mode collapse problem in these models. ScratchGAN can tackle this problem and

get better result in Inverse BLEU. However, compared with MLE, it still has a gap

even with the help of pre-trained embeddings. InitialGAN is the only language GAN

which can outperform MLE when considering fluency and diversity together.

Similar results can be found on EMNLP 2017 News Dataset. The difference is that

ScratchGAN can slightly outperform MLE in terms of Inverse BLEU. It is consistent

with the results in LCR. When generating long sentences, MLE is more likely to

meet exposure bias, so MLE gets lower BLEU, which means these sentences are lack

of local consistency. Besides, the Self-BLEU shows that sentences generated by MLE

are more diverse than training data. A number of generated sentences are out of the

real distribution. It explains why MLE only get unsatisfactory performance on this

dataset.

We further explore the performance of ScratchGAN without pre-trained embeddings,
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Figure 3.9: Dropout Sampling with different dropout rates.

and show the results in Figure 3.7. Once we remove the pre-trained embeddings,

ScratchGAN can no longer outperform MLE, and the gap between ScratchGAN and

InitialGAN becomes larger. It reflects the dependence of ScratchGAN on pre-trained

embeddings.

Existing language GANs highly rely on pre-training techniques to be comparable to

MLE, while InitialGAN is the only language GAN, which can get better performance

without using any pre-training techniques. It demonstrates the effectiveness of RMMs

against high variance REINFORCE or biased continuous relaxation methods.

Ablation Study

Figure 3.8 shows the experimental results of the ablation study about dropout sam-

pling and fully normalized LSTM. Without dropout sampling, the LCR decreases a

lot because of the mode collapse problem. In this time, the generated samples have

extremely high similarities and its Self-BLEU is 71.88, which is much higher than

the value of real data. The situation gets worse if we further remove the fully nor-

malized LSTM. These results demonstrate the importance of dropout sampling and
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Figure 3.10: Comparisons of different LSTM.

fully normalized LSTM to the performance of InitialGAN. Additional experiments on

COCO Image Caption Dataset are conducted to further explore these two proposed

techniques. The results are shown in Figure 3.9 and Figure 3.10.

Figure 3.9 shows the influence of dropout rate to FED. The curve shows a rough

symmetry. We suppose it comes from the symmetry of combinations. Given a d-

dimension vector, the number of possible combinations of masking ρ · d dimensions is

the same as the number of masking (1−ρ) ·d dimensions (ρ is the dropout rate). Fig-

ure 3.10 shows the change of FED on the validation set during the training process.

LayerNorm LSTM, the original combination of LSTM and layer normalization [6],

can outperform LSTM, while our fully normalized LSTM can further speed up con-

vergence and get better FED.

Additional Analysis

LCR uses the minimum values among two coverage rates as the final results, and

analyzing these two coverage rates can also help us better understand the models.

We train MLE and InitialGAN with different random seeds on COCO Image Cap-

39



Chapter 3. Representation Modeling Based Language GANs

Figure 3.11: Coverage Rate of MLE and InitialGAN (τ = 0.65).

Figure 3.12: Sentence length distribution.
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Figure 3.13: Gradient Norm.

tion Dataset, and show their average coverage rates with the standard deviations

in Figure 3.11. InitialGAN gets higher coverage rates and its standard deviation is

slightly smaller than that of MLE. It shows InitialGAN can get consistently better

result with different random seeds. Besides, MLE gets a lower coverage rate in the

inference set. We regard the exposure bias as the cause leading MLE to generate

sentences out of the real distribution, so its coverage rate of inference set is lower.

InitialGAN gets higher coverage rate on the inference set, so further work is needed to

relieve the mode collapse problem. We also show the sentence length distributions in

Figure 3.12. Compared with MLE, sentences generated by InitialGAN have a closer

distribution to the training data.

According to our analyses, fully normalized LSTM can relieve the gradient vanishment

by providing an augmentation term. We train models with different variants of LSTM,

and show their average gradient norms of first 100 training batches in Figure 3.13.

These norms are calculated based on the gradients of the input linear transformation

matrix in the last layers of generators. LayerNorm LSTM can slightly augment the

gradient norm, while fully normalized LSTM can obtain more obvious augmentation.

The experimental results are consistent with our theoretical analyses.
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Table 3.3: Number of Parameters and Computation Time of LayerNorm LSTM and

Fully Normalized LSTM

Model Parameter number Computation time

LayerNorm LSTM 2,108,416 109.4ms

Fully Normalized LSTM 2,109,440 138.5ms

Besides, we also conduct experiments to compare the number of parameters and

computation time of LayerNorm LSTM and Fully Normalized LSTM. We construct

1-layer model with these two structures and the hidden size is set to be 512. We

feed a sequence of length 50 into the models 1,000 times and calculate the average

running time. The results are shown in Table 3.3. The parameter numbers of Fully

Normalized LSTM and LayerNorm LSTM are extremely close. The computation time

of Fully Normalized LSTM is slightly higher than LayerNorm LSTM because of the

additional layer normalization operation.

Figure 3.14: The performance of InitialGAN with mappers in different objectives.

In the mapper, we map words into distributions instead of specific embeddings. We

show the FED and LCR (τ = 0.65) of these two mapping methods on Image COCO

Caption Dataset in Figure 3.14. The mapper trained by cross entropy, which maps
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words into specific points, is inferior to the one trained by our proposed loss function

in both FED and LCR. Cross entropy does not provide confirmed mapping relations

when the generated representations are away from the real representations. Minor

errors in the generated representations may lead them to be mapped into totally

irrelevant words. It brings additional errors to training and increases instability in

inference.

3.4 Summary

In this work, we conduct an in-depth study about constructing language GANs based

on representation modeling. We analyze two main problems which limit the perfor-

mance of representation modeling methods: invalid sampling and unhealthy gradients.

To tackle the invalid sampling, we introduce dropout sampling, a simple but effective

method. For the unhealthy gradients, we conduct thorough analyses of layer normal-

ization and present the fully normalized LSTM. Armed with these two techniques, we

propose InitialGAN which is composed of three models, i.e., mapper, generator and

discriminator. Different from existing language GANs which are based on pre-training

techniques, all the parameters in InitialGAN are initialized randomly. Besides, we

find that FED is not sensitive to the change of sample quality, so we propose Least

Coverage Rate (LCR) to better identify the differences among different models. We

conduct experiments on two widely used datasets, and the experimental results show

that InitialGAN can outperform both MLE and other compared models. To the best

of our knowledge, it is the first time that a language GAN can outperform MLE

without using any pre-training techniques. This work also demonstrates that RMMs

denote a promising research line for language GANs.

Although language GANs can tackle the exposure bias problem, their training speed

is one of the most notable limitations which must be tackled. Language GANs need to

use previously generated tokens as input in both training and inference, so its training
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speed can not be improved by parallel computation structures like Transformer. It

limits the applications of current language GANs on large and complicated datasets.

How to improve the training speed is a key problem that needs to be solved urgently.
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GAN-based NAR models for

Incomplete Information Scenarios

4.1 Introduction

Existing language GANs adopt autoregressive (AR) structure, and have high latency

during training and inference. It prompts us to build language GANs based on other

structures, of which non-autoregressive (NAR) is a promising one. NAR models have

lower decoding latency compared with AR models hence received growing attention

from the research community [49]. NAR models are emerging in tasks like machine

translation [37] and text summarization [85]. These tasks are based on the scenario

where the input contains complete information of target sentences. However, another

scenario in which the input does not possess complete target information, is seldomly

explored in the study of NAR models. For convenience, we denote these two scenarios

as the Complete Information Scenario (CIS) and Incomplete Information

Scenario (IIS), respectively.

The IIS covers both unconditional and conditional generation tasks, such as generat-

ing sentences based on given attributes [64], writing stories based on limited clues [23]
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Figure 4.1: Comparisons between the CIS and IIS. (a) Translating a sentence. (b)

Generating comments based on an emotion label.

and supporting semi-supervised learning [130]. Models for these tasks need to obtain

long texts or even infer new data during training process. The decoding latency will

be augmented, thereby significantly increasing the computation cost. Extending NAR

models (which have lower decoding latency) to the IIS is therefore a promising line

of further developments for these tasks.

To this end, we begin with a thorough analysis of existing NAR models which are

trained on Maximum Likelihood Estimation (MLE). Due to the lost of word depen-

dencies, these models tend to mix words in different candidates. This problem, which

is known as the multi-modality problem [37], will be exacerbated in the IIS. As shown

in Figure 4.1, in the CIS, the number of possible candidates and their diversity are

significantly constrained by the input so as to maintain balanced input and output in-

formation. In the IIS, however, because of the incomplete input information, addition

information is needed to obtain the output. Complementing different information will
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lead to completely different results, so the candidate number and the output diversity

will significantly increase. Models without word dependencies will easily mix words

in different candidates and generate ungrammatical sentences.

In contrast, the synthetic distributions of GANs can theoretically converge to the

real distributions regardless of model structures, so they are free from the multi-

modality problem. More importantly, it can obtain high quality samples in one single

forward pass, which exactly meets the needs of NAR models. Instead of adopt-

ing unstable REINFORCE [125] or biased continuous relaxations [54] to process

the non-differentiable sampling operation in language GANs, we follow the research

line of representation modeling methods [108] and propose an Adversarial Non-

autoregressive Transformer (ANT) for the IIS. There are two features in ANT:

Position-Aware Self-modulation for obtaining more reasonable hidden representa-

tions; and Dependency Feed Forward network (Dependency FFN) for helping the

model to capture more accurate word dependencies in the unstable training of GANs.

The experimental results demonstrate that ANT gets comparable performance as ex-

isting AR models in the IIS but achieves lower decoding latency. The contributions

of this work can be summarized as follows:

• We articulate the significance of the IIS in text generation, and compare the

differences between the CIS and IIS. Moreover, we reveal the limitations of

existing (MLE-based) NAR models in the IIS.

• Based on GANs, we propose an Adversarial Non-autoregressive Transformer

(ANT), which supports two features, Position-Aware Self-modulation and De-

pendency FFN, to further improve its performance by providing more reasonable

representations and enhance its capacity in dependency modeling.

• We compare the performance of ANT with existing models. The experimental

results demonstrate that ANT can get comparable performance as other models

with much lower decoding latency. We also show the great potential of ANT
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in various applications like latent interpolation and data augmentation. To the

best of our knowledge, it is the first work demonstrating the effectiveness of

GANs in building NAR models.

4.2 Background

To narrow down the gaps between NAR models and AR models, researchers improve

performance from different perspectives including simplifying data distributions [37],

adopting new training objectives [22], and designing new modeling methods [32].

Among them, there are two most popular techniques: 1) simplifying output with

knowledge distillation [65]; 2) enhancing input based on conditional masked language

models [32]. Knowledge distillation simplifies the original one-to-many mapping re-

lations into one-to-one relations, so to prevent models from mixing words in different

candidates. However, the IIS requires the model to obtain a number of diverse results

with same conditions, so it is necessary to directly model the original one-to-many

relations. Conditional masked language models obtain results following an iteration

manner, so it will inevitably have higher latency. Although these two techniques are

so popular that most of exiting NAR models are deeply bound to at least one of them,

they are not applicable methods if we want to build a fully NAR model in the IIS.

Recently, two NAR models, which do not rely on the two techniques above, are

proposed: Diffusion-lm [77] and Directed Acyclic Transformer (DA-Transformer) [50].

Diffusion-lm draws the idea of diffusion models [45, 20] into text generation. It

starts with Gaussian noise vectors and gradually denoises them into specific word

representations. Although it is effective on various tasks, it inherits the high latency

feature of diffusion models. During inference, it requires 200-2000 steps to obtain the

results, which has much higher decoding latency than AR models [77].

DA-Transformer [50] remedies the multi-modality problem by assigning various can-
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didates to different paths in a directed acyclic graph. Although it obtains remarkable

performance in machine translation, its theoretical convergence has not been proved

yet. In our experiments, it fails to converge when migrating to the IIS. The key to its

successful training is the peak path distributions led by the limited number of candi-

dates. This kind of path distributions can avoid the model changing the candidates

of other paths when updating the sample in one path [50]. In the IIS, each input

corresponds to a lot of diverse candidates, and each vertex thus has many possible

next vertices. The model needs to assign comparable transition probabilities to all

these vertices and finally leads to a flat path distribution. In this time, the candidates

in other paths will be inevitably changed when updating the sample in one path, and

the model will finally fail to learn different candidates. Therefore, although there are

various NAR models in the CIS, they are not reasonable choices for building fully

NAR models in the IIS.

4.3 Model

4.3.1 Model Structure

Based on the representation modeling framework [108], we propose an Adversarial

Non-autoregressive Transformer (ANT) which generates text in a fully NAR manner.

As shown in Figure 4.2, there are three parts in ANT: mapper, discriminator and

generator. The mapper transforms words into representations, and the generator

tries to recover these representations from input. The discriminator needs to identify

whether input representations are from the mapper or the generator. We adopt

Transformer [120] as the backbones of all the three parts to support highly parallel

computation. An input is firstly added with a positional encoding and fed into encoder

layers. Each encoder layer has a multi-head attention (MHA) module and feed forward

network (FFN) module. A layer normalization is added after each module.
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Figure 4.2: Structure of Adversarial Non-autoregressive Transformer (ANT)

Figure 4.3: Cosine similarity of the output from (a) Self-Modulation; and (b) Position-

Aware Self-Modulation.
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The mapper is trained to reconstruct words based on the masked input, which is

the same as the training process of BERT [19]. Following the previous work which

adopts representation modeling methods to train language GANs [108], we use the

loss function of variational autoencoder (VAE) [67] to train the mapper:

LA = −Ez′i∼q(z′i|xi)(logp(xi|z
′
i)) +KL(q(z′i|xi)||p(z′i)) (4.1)

where xi is the i-th word in the sentence, z′i is obtained by using reparameterization

trick: z′i = µxi + σxi · N (0, 1), and z′i is transformed back into words with a linear

transformation layer FLT . Different from cross entropy which maps words into specific

points in the representation space, this method describes a region for each word, so

representations slightly away from their central points µxi can still be transformed

into correct words.

A non-autoregressive generator can not adopt previously generated words as the in-

put, so we use trainable representations as input and incorporate latent variables

into the representations. The generator then gives output representations ri in dif-

ferent positions and uses the same linear transformation layer FLT in the mapper

to transform these representations back into words. The discriminator adopts the

output representations from the mapper and the generator (µxi and ri) as input, and

identifies whether they are synthetic or not. Different from image GANs whose dis-

criminators give a single scaler output for an image, our discriminator gives output

for each representation. During training, the mapper will be trained first, and its

parameters are fixed during the training of the discriminator and the generator. The

representations given by the generator need not be transformed into words in train-

ing process, so the gradients from the discriminator can directly pass through to the

generator.

Causal masks are adopted in both the discriminator and the generator to break the

possible symmetry in the input. We use Wasserstein distance [5] as the training

objective and adopt Lipschitz penalty [101] to regularize the discriminator. More
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specifically, the loss functions of the discriminator LD and the generator LG are:

LD = −Eµxi∼Px [D(µxi)] + Ez∼Pz [D(G(z))] (4.2)

LG = −Ez∼Pz [D(G(z))] (4.3)

where µxi is obtained by the mapper and z is the latent variable sampled from a

pre-defined distribution.

Figure 4.4: Position-Aware Self-Modulation

However, there is still a gap between our basic model and existing autoregressive

models. To improve its performance, we propose Position-Aware Self-Modulation

and Dependency Feed Forward Network (Dependency FFN).

4.3.2 Position-Aware Self-Modulation

An effective sampling method plays a key role in the success of GANs. Recent studies

about Transformer in image GANs [73] adopt self-modulation [15] to sample data.

Self-modulation assigns the same shift and scale factors to the normalized results in

different positions, which leads the representations in various positions to be highly

similar even with positional encodings (as shown in Figure 4.3 (a)). However, the

output of the generator (i.e., word representations in different positions) are of high

diversities. Similar input representations can not provide clear signals to the generator
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to obtain those diverse output representations. It brings difficulties for the generator

to converge and recover the data distribution.

To tackle this problem, we propose Position-Aware Self-Modulation. As shown

in Figure 4.4, this method adopts different mapping layers for the calculations in

different positions so as to gain diverse results. In practice, a parallel implementation

is adopted to improve the computation efficiency, which is:


h′1

h′2
...

h′N

 = MLP (z)

hi = γ(h′i) ◦ LN(xi) + β(h′i)

(4.4)

where z is the latent variable, h′i is the hidden representation in the i-th position,

MLP (·) is a non-linear transformation whose activation function is GELU [42], LN(·)

is the layer normalization, N is the length of the sentence, and γ(·) and β(·) are lin-

ear transformations. In Position-Aware Self-Modulation, representations in different

positions are calculated based on unique parameters and have clear differences (as

shown in Figure 4.3 (b)), so as to provide more effective signals to recover original

sentences.

Our preliminary experiment shows that representations obtained by Position-Aware

Self-Modulation are of high diversities, while equipping it in every layer will slow

down the convergence. Thus, we adopt it only in the input and use dropout as an

additional sampling method by using it in both training and inference stage [108]. It

can improve model performance by injecting slight random noise and regularizing the

model at the same time.
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Figure 4.5: Dependency Feed Forward Network

4.3.3 Dependency Feed Forward Network

Transformer [120] builds word dependencies solely based on the attention mechanism

by assigning weights dynamically. This process, however, is unstable under the train-

ing of GANs. It will lead the models to lose word dependencies, and finally result in

ungrammatical sentences. To tackle this problem, we propose Dependency Feed For-

ward Network (Dependency FFN) to strengthen the FFN module with the capacity

of dependency modeling. The structure of Dependency FFN is shown in Figure 4.5,

and it is calculated as follows:

st = σ(xtWs + bs)

ot = st−1Wa + stWb + bo

(4.5)

where σ(·) is an activation function which is GELU in this work. With causal masks,

st−1 and st contain the information of first (t−1) and t words, respectively. Using the

sum of these two variables can help the model to explicitly build stable dependencies

between the t-th word and previous (t − 1) words in the fragile training process of

GANs.

In our experiment, adopting Dependency FFN in the discriminator can significantly

improve model performance, while its effectiveness to the generator is limited. A

powerful discriminator can guide the generator to model word dependencies with the
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Table 4.1: FED and I. BLEU on the COCO Dataset and EMNLP Dataset.

Model DI
COCO EMNLP

FED ↓ I. BLEU ↑ FED ↓ I. BLEU ↑

Training Data - 0.007 35.36 0.010 20.62

Transformer O(N) 0.008 34.28 0.014 19.50

RelGAN O(N) 0.062 29.53 0.136 14.74

ScratchGAN O(N) 0.014 30.76 0.018 17.19

InitialGAN O(N) 0.013 33.06 0.025 17.74

V-CMLM O(k) 0.016 27.65 0.062 16.67

V-NAT O(1) 0.024 26.41 0.111 11.38

NAGAN O(1) 0.084 24.98 0.748 2.01

ANT O(1) 0.013 31.12 0.026 15.51

original structure. We thus only adopt Dependency FFN in the discriminator.

4.3.4 Extension to Conditional Generation

IIS not only covers unconditional generation tasks, but also includes conditional gen-

eration tasks. In the following, we introduce how to extend ANT to conditional

generation. Given a condition representation c, the generator can consider it by

shifting the original latent variable z. We find that using trainable factors to assign

weights to z and c can slightly improve the performance. Thus, we incorporate the

condition as follows:

ẑ = α1 ◦ z + α2 ◦ c (4.6)

where α1 and α2 are two trainable variables. Then, ẑ is fed into Position-Aware

Self-Modulation, so the generator can consider the condition representation.

For the discriminator, we use the sum of word representations xdt and conditional
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Figure 4.6: Model Performance at Various Temperature

Figure 4.7: Least Coverage Rate
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representations c as the input: x̂dt = xdt + c. Then, x̂dt is fed into the remaining

modules of the discriminator.

4.4 Experiment

4.4.1 Experiment Setup

The experiment covers both unconditional generation and conditional generation to

evaluate model performance under the IIS comprehensively. For the unconditional

generation, we follow previous work [18, 108] and use sentences from two datasets: the

COCO Image Caption Dataset [83]1 and the EMNLP 2017 News Dataset2. The size

of training sets of the COCO dataset and the EMNLP dataset are set to be 50,000 and

200,000, respectively. The COCO dataset can support evaluations in short sentence

generation, while the EMNLP dataset focuses on long sentence generation. For the

conditional generation, we randomly select 100,000 sentences from the Yelp Dataset3

as training data and use emotion labels (positive or negative) as conditions. The

training process of ANT is similar with the training algorithm of InitialGAN (as

describe in Algorithm 1).

The layer numbers of the mapper, generator and discriminator are all set to be 4.

Their input dimension is 256, and the hidden dimension of FFN / Dependency FFN

is 1,024. The head number is set to be 8. We use AdamW [86] as the optimizer of the

mapper and the weight decay is set to be 1e-5; its learning rate is 0.0001. During the

adversarial training, AdamW [86] is used as the optimizer of the discriminator whose

weight decay is set to be 0.0001; its learning rate is 0.0002 for the COCO and Yelp

dataset, and 0.00015 for the EMNLP dataset. We choose Adam [66] as the optimizer

1https://cocodataset.org
2http://www.statmt.org/wmt17/
3https://www.yelp.com/dataset
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Table 4.2: FED, I. BLEU and Acc. on the Yelp dataset

Model DI FED I. BLEU Acc.

Training Data - 0.008 24.18 92.47%

Transformer O(N) 0.011 23.04 91.73%

V-CMLM O(k) 0.015 18.35 87.85%

V-NAT O(1) 0.032 11.81 83.54%

ANT O(1) 0.018 19.08 88.35%

of the generator and its learning rate is 0.0001. The β1 and β2 in the optimizers of the

discriminator and the generator are set to be 0.5 and 0.9, respectively. The maximum

training epoch is set to be 4,500. We implement our model based on Tensorflow4 [1]

and the model is trained on NVIDIA GeForce RTX 3090.

4.4.2 Evaluation Metrics

The evaluation is conducted at both embedding level and token level. In embedding

level, we use Universal Sentence Encoder5 [12] to transform sentences into embed-

dings. Then, we calculate both Fréchet Embedding Distance (FED) [18] and

Least Coverage Rate (LCR) [108] to evaluate the overall similarity and the fine-

grained similarity of two distributions, respectively.

In token level, we use Inverse BLEU (I. BLEU) to evaluate model performance in

terms of quality and diversity together. The Inverse BLEU uses generated sentences

as references and sentences in the test set as inferences. A model can get high Inverse

BLEU only if it can obtain a good trade-off between quality and diversity [108]. We

also draw a curve of BLEU [98] and Self-BLEU [144] by tuning the temperature

4https://www.tensorflow.org
5https://tfhub.dev/google/universal-sentence-encoder/4
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of the model to evaluate the overall performance [11]. For conditional generation,

we additionally use Universal Sentence Encoder to construct a classifier and use it to

calculate Accuracy (Acc.), so as to verify whether the models generate sentences

with expected labels or not.

4.4.3 Compared Model

Transformer [120] is an important compared model in our experiment, since it is now

the mainstream model in various text generation tasks. Considering ANT is a GAN-

based model, we also choose several representative models in language GANs for

comparisons: RelGAN [95], which uses Gumbel-softmax to obtain gradients; Scratch-

GAN [18], which is based on REINFORCE ; InitialGAN [108], which does not use the

above two method and adopts representation modeling. All the models mentioned-

above are AR models whose Decoding Iteration (DI) is O(N) (N is the sequence

length).

Figure 4.8: Ablation study of Dependency FFN
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Figure 4.9: Ablation study of Position-Aware Self-Modulation.

For the NAR models, we compare with NAGAN [48], which is also a GAN-based NAR

model. Although existing MLE-based NAR models can not be adopted to the IIS

directly, we still want to compare the differences between MLE-based methods and

GAN-based methods. Thus, we use the idea of VAE to get the hidden representations

of sentences and adapt two existing popular NAR models into the IIS. One is based on

Non-autoregressive Transformer (NAT) [37] which uses the hidden representations to

generate sentences in a fully NAR manner; we denote this model as V-NAT. Another

one in based on conditional masked language model (CMLM) [32] which generates

sentences by iteratively masking and generating words; we denote this model as V-

CMLM.

More specifically, a Transformer-based encoder is adopted to encode the sentences

into hidden representations during training. Then, these representations are fed into

the decoder to reconstruct the input sentences. During inference, representations

sampled from the standard normal distribution will be fed into the decoder, and the
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decoder will generate sentences based on the sampled representations. The original

structure of NAT and CMLM are kept as much as possible. For V-NAT the repre-

sentations are fed into decoder as input (which is same with NAT). For V-CMLM,

the representations are concatenated with the embeddings of input tokens (masked

or unmasked words). The hyperparameters of V-NAT and V-CMLM are set as close

as possible to those of ANT. The iteration number k of V-CMLM is set to be 10 as

in previous work [32, 51].

4.4.4 Experimental Result

Unconditional Generation

The experimental results of the unconditional generation are shown in Table 4.1. “DI”

indicates Decoding Iteration indicating the steps that require for generation. For the

COCO dataset, Transformer gets the best performance in AR models, while ANT is

the best one in NAR models. ANT gets 0.013 in FED, which is better than other NAR

models and close to AR models like ScratchGAN and InitialGAN. Similar results can

be found in Inverse BLEU. ANT gets 31.12 in I. BLEU and it is much better than

other NAR models. There are large gaps between MLE-based NAR models (V-NAT

and V-CMLM) and AR models, and it is consistent with our analyses. The input with

incomplete information increases the difficulties of MLE training. NAGAN, another

GAN-based NAR model, is inferior to all the other models. It shows the limitations

of the biased straight-through estimator.

For the EMNLP dataset, Transformer is still the best model. ANT outperforms

other NAR models in FED, while V-CMLM can slightly outperform ANT in Inverse

BLEU. The iterative decoding mechanism helps V-CMLM to better process compli-

cated datasets with higher decoding latency. To further discuss their performance

in the token level, we draw the curve of Self-BLEU and Negative BLEU by tuning

the temperature in Transformer and show the results in Figure 4.6. ANT is the only
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NAR model which can get comparable performance with AR models, while other

NAR models (including V-CMLM) remain behind obviously. Specifically, NAGAN

gets extremely low BLEU, which indicates that NAGAN can not generate fluency

sentences. It reveals the difficulties of NAGAN to converge on complicated datasets.

Furthermore, we compare Least Coverage Rate (LCR) of Transformer and other NAR

models in Figure 4.7. ANT outperforms V-CMLM with lower decoding iterations,

and it is the only NAR model which can get close performance with Transformer.

Conditional Generation

The experimental results of conditional generation are shown in Table 4.2. Trans-

former gets the best performance in all the evaluation metrics with more decoding

iterations. Among NAR models, ANT gets comparable performance with V-CMLM

in FED, and achieves higher Inverse BLEU and Accuracy with lower decoding latency.

V-NAT, which has the same decoding iterations as ANT, is inferior to other models.

Given an emotion label, there are a large number of possible candidates, and it will

augment the inherent multi-modality problem in MLE-based NAR models. Thus,

fully NAR models trained under MLE will easily mix words in different candidates

and finally obtains poor performance. For the accuracy, ANT gets 88.35% which is

the highest one among all the NAR models. ANT can generate sentences that are

consistent with the given labels. It reveals that ANT has great potential in both

unconditional generation and conditional generation.

Ablation Study

We design two features for ANT: 1) Dependency FFN, which strengthens model ca-

pacity in dependency modeling; and 2) Position-Aware Self-Modulation, which pro-

vides clearer signals for the model to recover the original data. We also conduct

experiments to demonstrate the effectiveness of these two modules.
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Figure 4.10: Speedup of Different Models.

Table 4.3: Effectiveness of ANT in Data Augmentation (Num.: number of labeled

data).

Method Num. P R F1

Original
500

91.28% 89.06% 90.15%

Data Aug. 90.77% 92.15% 91.46%

Original
1000

92.42% 91.33% 91.87%

Data Aug. 94.87% 92.39% 93.62%

For Dependency FFN, we compare the performance between Dependency FFN and

the original FFN on the COCO dataset and show the results in Figure 4.8. ANT

with Dependency FFN has lower FED and higher Inverse BLEU. It obtains better

performance in both the token-level metrics and the embedding-level metrics. These

results show that Dependency FFN can help improve model performance by modeling

more accurate word dependencies.

For Position-Aware Self-Modulation, we compare the training curves with original

Self-Modulation with FED. The results are shown in Figure 4.9. ANT with Position-
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Figure 4.11: Case Study of Latent Interpolation

Aware Self-Modulation converges faster, and finally achieves better performance. For

the Self-Modulation, it is rebounded around epoch 1000-1500. We assume that the

discriminator has the overfitting problem and the performance of the generator thus

decreases. Position-Aware Self-Modulation can provide clearer input signals for the

model and further enhance model performance.

4.4.5 Discussion

ANT is a fully NAR model so it has much lower decoding latency. We compare the

speedup of different models and show the results in Figure 4.10. ANT can generate

sentences 14.75 times faster than Transformer. Even comparing with V-CMLM, it

also has much lower decoding latency while obtaining comparable or even better

performance.

Generative models can perform data augmentation to boost the performance of clas-

sification models. We investigate the application of ANT in data augmentation by

incorporating it into the training of a classification model. The classification model

is trained to identify emotion labels of sentences in the Yelp dataset. We prepare two
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training sets. One is composed of 500 labeled data and the other one consists of 1,000

labeled data. The results are shown in Table 4.3. The classification models based on

data augmentation consistently outperform the original ones. ANT can obtain data

following same distributions as the original data so as to help the classification model

capture more accurate data distribution and achieve better performance.

Besides, ANT enables latent interpolation just like image GANs. There are two latent

variables in ANT: z, which is sampled from a pre-defined distribution; and c, which

is a condition representation. We fix one of them and gradually change the other one.

The upper part of Figure 4.11 shows the samples given by tuning z with fixed c, in

which ANT transforms one sentence into another one, with the middle sentences kept

understandable. The lower part of Figure 4.11 shows the samples given by changing

c from the negative representation to the positive representation. ANT gradually

transforms negative words into positive ones while keeping the main structure of the

sentence. Such latent interpolation is seldomly explored by NAR models, and it may

inspire further ideas for related tasks.

4.5 Summary

In this work, we firstly analyze the limitations of existing NAR models in the IIS.

The features of the IIS will augment the inherent multi-modality problems of MLE-

based NAR models and the lower bounds between their learned distributions and

real distributions will be higher under the IIS. Instead, we find GANs denote a more

promising method to train NAR models in the IIS. Thus, we propose an Adversarial

Non-autoregressive Transformer (ANT) based on GANs. ANT supports two novel

features: Position-Aware Self-Modulation and Dependency FFN. With the help of

these two facilities, ANT can get comparable performance as other AR models but

with much lower decoding latency. Besides, we also demonstrate the great potential

of ANT in various tasks like smooth latent interpolation and data augmentation.
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Although ANT can significantly reduce the decoding latency, it still does not outper-

form Transformer. In the future, we will explore more techniques to further improve

the performance of ANT and extend it into other tasks.

66



Chapter 5

GAN-based NAR models for

Complete Information Scenarios

5.1 Introduction

In addition to IIS, there is another kind of important scenario: CIS. The input in

CIS contain complete information of the output. Although the candidates in CIS

are less diverse, they may have complicated mapping relations. In this section, we

study GAN-based NAR models in CIS based on a classical and challenge tasks: image

captioning.

Comparing with the rapid development of NAR models in machine translation [128],

its progress in image captioning is relative slow. Recent study directly enhances

performance by significantly sacrificing decoding efficiency [26, 131]. Exiting work

constructs NAR image captioning models based on Maximum Likelihood Estimation

(MLE) [25, 29, 40], which meets obvious obstacles in their developments. First, MLE-

based NAR models can learn the marginal distributions of different candidates, but

lose word dependencies and remain non-negative lower bounds in the KL divergence

between the learned distributions and real distributions [49]. Thus, these models
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tend to generate ungrammatical sentences by mixing words in different candidates,

which is known as the multi-modality problem [37]. Secondly, the difficulties in the

alignment between images and text will cause greater errors in the learned marginal

distributions, thereby exacerbating the multi-modality problem by mixing irrelevant

candidates.

Figure 5.1: The Performance of Compared Models. The red, yellow and blue points

indicate AR, SAR and NAR models, respectively. The area indicates the number of

parameters.

Different with MLE, which is inherently incompatible with NAR models, Generative

Adversarial Networks (GANs) [34] denote a more promising method. Their learned

distributions can theoretically converge to the real distributions with one single for-

ward pass [34]. It exactly fits the needs of NAR models. In text-to-image generation,

GANs have been demonstrated to be an effective method. They can generate high

quality images with much lower latency [113, 57]. However, their potentials in image-

to-text generation have not been explored yet.

The main obstacle of adopting GANs in text generation comes from the non-differentiable

sampling operation in the generator, which prevents the gradient of the discriminator
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from being passed to the generator. Recently, a representation modeling method is

introduced to tackle this problem by removing the sampling operation during train-

ing [108]. It is later extended to NAR models for incomplete information scenar-

ios [107]. This model, which is denoted as Adversarial Non-autoregressive Trans-

former (ANT), obtains poor performance when transferred to image captioning (as

shown in Figure 5.1). ANT is designed for the scenarios with relatively simple in-

put conditions (e.g., class labels). In image captioning, however, the input images are

highly diverse, and ANT becomes incapable of building complicated relations between

images and text.

In this work, we release the capacity of GANs in image captioning by proposing an

Adversarial Non-autoregressive Transformer for Image Captioning (CaptionANT).

To enable the model to build more complicated relations, the discriminator structure

in the previous work [107] is modified to be compatible with contrastive learning, so

CaptionANT can better align images and text by effectively making use of unpaired

samples. In addition, we integrate a reconstruction process to further boost model

performance by better making use of paired samples. During the reconstruction pro-

cess, the key challenge comes from the ambiguous reconstruction target led by the

one-to-many mapping relations in image captioning. We tackle this problem by in-

tegrating part of target sentences into the input so as to have clearer reconstruction

targets. By further combining with other effective techniques (like feature ensem-

ble and the truncation trick) and our proposed lightweight structure, CaptionANT

achieves new state-of-the-art performance for fully NAR models on the challenging

MSCOCO dataset with much higher speedup and lower parameter number (as shown

in Figure 5.1). The contributions of this work can be summarized as follows:

• Considering the limitations of MLE-based NAR image captioning models, we

propose a GAN-based NAR model—CaptionANT. We redesign the model struc-

ture and incorporate contrastive learning in CaptionANT. It thus can effectively

make use of unpaired samples to model complicated relations between images
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and text. To the best of our knowledge, CaptionANT is the first GAN-based

NAR model in image captioning.

• We further propose to incorporate a reconstruction process into the training

stage of language GANs based on representation modeling methods. It can

further improve model performance by better utilizing paired samples. For the

ambiguous reconstruction targets led by the one-to-many mapping relations, we

propose to integrate part of target information into the input so to have clear

reconstruction targets.

• By further combining with other effective techniques (like feature ensemble

and the truncation trick) and our proposed lightweight structure, CaptionANT

achieves new state-of-the-art performance for fully NAR models with lower pa-

rameter number and faster speed.

Figure 5.2: General Structure of CaptionANT.

5.2 Model

To allow the gradients from the discriminator to be passed to the generator di-

rectly, we adopt the representation modeling method [108], which can avoid the non-

differentiable sampling operation during training. More specifically, we first adopt a
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model, which is denoted as Mapper in this work, to map words into representations.

Then, the generator is trained to recover these representations under the guidance of

the discriminator. Both the representations from the mapper and the generator are

fed into the discriminator as input, and the discriminator needs to identify whether

the input is from the mapper or not.

The general structure of CaptionANT is shown in Figure 5.2. As described above,

there are three different models in CaptionANT: Mapper, Discriminator and Gener-

ator. All these three models adopt Transformer [120] as backbones to support highly

parallel computation.

5.2.1 Mapper

The mapper needs to map words into representations. It is trained before the gener-

ator and the discriminator. The training process of the mapper is described in the

blue dashed box of Figure 5.2. A certain number of words in a sentence are randomly

masked or replaced, and the mapper is trained to reconstruct the original input. We

follow the settings in the previous work [107], and incorporate the idea of variational

auto-encoder (VAE) [67] into the training objective. More specifically, after obtaining

the mean µxi and standard deviation σxi for each word xi, the mapper first adopt

reparameterization trick to obtain hidden representations z′i = µxi +σxi ·N (0, 1), and

then use the following objective to train the model:

LA = −Ez′i∼q(z′i|xi)(logp(xi|z
′
i)) +KL(q(z′i|xi)||p(z′i)) (5.1)

where z′i is transformed into words by a linear layer FLT . The vector µxi will be

regarded as the representation of xi and fed into the discriminator.

This training objective provides a dense and continuous representation space, so rep-

resentations slightly away from the central point can still be mapped into correct

words [107].
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5.2.2 Discriminator

Structure

The discriminator is consisted of a stack of Transformer blocks. Different with our

previous work [107], we do not observe improvements from the look-ahead mask, so

we remove it and the input in different positions can consider each other directly.

One key challenge in building the discriminator is how to incorporate conditions into

the model. The previous work [107] feeds the condition representation as input. This

structure is also adopted in other GAN-based text-to-image generation models [106,

136, 74]. However, it only considers one pair of mismatched samples at a time and can

not effectively make use of them to build more accurate alignments between images

and text.

To tackle this problem, we separate the condition representation from the input.

Instead, we map input text to the same space as the condition representation, so it can

measure the correlation between the two by calculating dot product. This modeling

method can efficiently utilize unpaired samples through contrastive learning. The

detailed calculation of this modeling methods is described as follows:

ĥ
(l)
i = LN(MHA(h

(l−1)
i ) + h

(l−1)
i )

h
(l)
i = LN(DFFN(ĥ

(l)
i ) + ĥ

(l)
i )

h̃i = Whh
(LD)
i + bh

yi = h̃i · ĉᵀ

(5.2)

where MHA(·) is the multi-head attention mechanism (here is the self-attention,

where query, key and value are the same), h
(l)
i and ĥ

(l)
i are the i-th hidden represen-

tations of the the l-th layer, LN(·) is layer normalization, ĉ is the normalized image

representation (ĉ = c/||c||, and c is the image representation provided by the image

encoder) and LD is the layer number. DFFN(·) is the dependency feed forward
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network [107], which is calculated as follows:

ĝi = GELU(ĥiWg + bg)

gi = ĝi−1Wl + ĝiWk + bo

(5.3)

where ĥi is the input of DFFN, and gi is the output and will be incorporated into

the calculation of Eq 5.2. DFFN directly models the relations between ĝi−1 and ĝi,

so it can strengthen the dependency modeling capacity of the discriminator in the

unstable training of GANs [107].

Training Objective

We follow the previous work [108], and adopt Wasserstein distance [5] as the training

objective:

LAdvD =− Ex∼Px [D(M(x), c)] + Ez∼Pz [D(G(z), c)] (5.4)

where M(·) is the mapper, c is the condition representation obtained by the image

encoder, D(·) and G(·) are the discriminator and the generator, respectively. We

adopt Lipschitz penalty [101] to stabilize the training process.

Contrastive Constraint To fully make use of the advantages of our discriminator

structure, we further integrate a contrastive constraint into the training objective

to regularize the model by considering unpaired samples effectively. We first obtain

the representation of the k-th sentence Hk by calculating the mean of h̃i in different

timesteps. Then, the contrastive constraint is calculated as follows:

Cd = −τ exp(Hk · ĉᵀ/τ)∑
j=1 exp(Hj · ĉᵀ/τ)

(5.5)

where ĉ is the normalized condition representation. We obtain the negative samples

from two different sources: 1) the real but mismatched sentences in the same batch; 2)

the synthetic sentences given by the generator with the same batch of condition repre-

sentations. The real but mismatched sentences can help the model quickly regularize
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its representations in the early training, while the synthetic sentences can further

boost model performance when the generator begins to generate real-like sentences.

Incorporating the contrastive constraint, the complete training objective of the dis-

criminator is:

LD = LAdvD + λd · Cd (5.6)

where λd is a hyper-parameter which can adjust the importance of the contrastive

constraint.

5.2.3 Generator

Structure

The generator is constructed based on Transformer [120]. The input is a trainable

matrix. The vectors obtained by the final Transformer block will be the word rep-

resentations after a linear transformation. During training, these representations

(denoted as ri) will be fed into the discriminator, and the discriminator will guide the

generator to obtain the representations following same distributions with µxi from

the mapper. During inference, ri will be transformed back into words with the same

linear layer FLT of the mapper.

Feature Ensemble An effective method to incorporate latent vectors plays a key

role in the performance of the generator. Previous work [107, 73] calculates shift and

scale vectors for the normalized input based on latent vectors. We further enhance

model performance by adopting feature ensemble which can provide images features

74



5.2. Model

from two representation spaces. It is described as follows:


s′1

s′2
...

s′N

 = F1
M(z1) + F2

M(z2)

si = γ(s′i) ◦ LN(Xg
i ) + β(s′i)

(5.7)

where Xg
i is the trainable input matrix, γ(·) and β(·) are linear layers after GELU,

and si will be fed into a set of Transformer blocks as input. z1 and z2 are the

concatenations of random noises and image features extracted by two different models.

For the random noise, we adopt the truncation trick [10] which samples the noise

in a truncated distribution during inference.

The transformation modules F1
M(·) and F2

M(·) are in a same structure but with inde-

pendent parameters. The design of the transformation modules will directly influence

the performance, and a detailed discussion is conducted in the following.

Light Position-Aware Self-Modulation Different methods adopt different trans-

formation modules. Self-modulation [15] uses same layers at different positions, and

the obtained representations at each position are thus too similar to recover the diverse

word representations at different positions [107].Ren et al. [107] tackle this problem

by proposing a Position-Aware Self-Modulation (PASM) which adopts unique layers

at different positions to obtain diverse representations.

This method, however, has independent layers for each position. It causes a dramatic

increase in the number of model parameters, which we find is not necessary. Instead,

we propose and adopt a Light Position-Aware Self-Modulation (Light PASM). The
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Table 5.1: Evaluation Results on the “Karpathy” Split of MSCOCO Dataset

Model BLEU-1 BLEU-4 METEOR ROUGE SPICE CIDEr #Param. Speedup

Autoregessive Models

Up-Down [4] 79.8 36.3 27.7 56.9 21.4 120.1 - -

M2-T [17] 80.8 39.1 29.2 58.6 22.6 131.2 - -

A2-Transformer [27] 81.5 39.8 29.6 59.1 23.0 133.9 - -

AIC (bw=1) 80.3 38.9 28.7 58.5 22.4 127.1
54.9M

1.22×

AIC (bw=3) 80.4 39.2 28.8 58.6 22.5 128.6 1.00×

Semi-Autoregessive Models

PNAIC [26] 79.9 37.5 28.2 58.0 21.8 125.2
54.9M

5.43×

SAIC [131] 80.3 38.4 29.0 58.1 21.9 127.1 3.42×

Non-Autoregessive Models

MNIC [29] 75.4 30.9 27.5 55.6 21.0 108.1 36.0M 2.80×

IBM [25] 77.2 36.6 27.8 56.2 20.9 113.2 77.0M 3.06×

NAIC [40] 80.3 37.3 28.1 58.0 21.8 124.0 50.1M 13.90×

CaptionANT 80.8 38.0 28.7 58.7 22.5 126.2 18.2M 26.72×

transformation module (F1
M and F2

M in Eq. 5.7) in our proposed model is:
ŝ1

ŝ2
...

ŝN
2

 =


W1

W2

...

WN
2

 · ẑ +


b1

b2
...

bN
2

 (5.8)


ŝN

2
+1

ŝN
2
+2

...

ŝN

 = W ′ ·


ŝ1

ŝ2
...

ŝN
2

 + b′ (5.9)

where ẑ is the z1 or z2 in Eq. 5.7. Light PASM first obtains the hidden representations

of the previous half position with unique linear layers. Then, another linear layer is

adopted to get the remaining half of the representations. This method can maintain

the diversity of representations between different positions while significantly reducing

the parameter number.
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Figure 5.3: Effectiveness of Masked Sentence Representation Shift (MSRS).

Different with existing NAR image captioning models [40, 26] which first use an

encoder to process image features and then generate sentences with a decoder, the

generator in CaptionANT directly transforms image features into sentences, so it has

a lighter and more efficient structure.

Training Objective

Corresponding to the discriminator, the adversarial training objective of the generator

is:

LAdvG =− Ez∼Pz [D(G(z), c)] (5.10)

In addition, we also adopt the following constraints to boost its performance.

Contrastive Constraint Similar to the discriminator, we adopt a contrastive con-

straint to better align input images and output text.

Cg = −τ exp(H′k · ĉᵀ/τ)∑
j=1 exp(H

′
j · ĉᵀ/τ)

(5.11)
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where H′k is the mean of h̃i from the discriminator in different timesteps, and the

negative samples are the captions generated based on the unpaired conditions in the

same batch.

Reconstruction Constraint Reconstruction constraint has been adopted to sta-

bilize the training and enhance model performance in image GANs [142]. It provides a

more effective way to utilize paired samples. However, how to incorporate reconstruc-

tion constraint in language GANs, which are based on the representation modeling

method, has not been explored yet. The key challenge is from the diverse words in

the same positions among different candidates. We give an example in Figure 5.3

(a). If the model is trained to fit all candidates together, it will try being close to the

diverse word representations in different candidates and finally degenerate to learn

mean values instead of specific representations.

We tackle this problem by proposing a Masked Sentence Representation Shift

(MSRS). When calculating the reconstruction constraint term, the input represen-

tations si obtained by Eq. 5.7 are added with shift vectors as follows:

ei = Emb(xi) + posi

êi = Mask(ei, ρ)

ṡi = ω ◦MHA(si, êi, êi)

ŝi = si + ṡi

(5.12)

where xi is the i-th word of the sentence, Emb(·) is an embedding layer, posi is the

positional encoding for the i-th position, ρ is the mask rate, MHA(query, key, value)

is the multi-head attention, ω is a trainable vector which can directly control the scale

of ṡi. This process is shown in the blue path of Figure 5.2. It should be noted that

ŝi is only used when calculating the reconstruction constraint, and the generator still

adopts si as input when calculating the adversarial loss and generating captions in

inference stage.
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Table 5.2: Evaluation Results on the Online MSCOCO Test Server

Model
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down [4] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

M2-T [17] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

A2-Transformer [27] 82.2 96.4 67.0 91.5 52.4 83.6 40.2 73.8 29.7 39.3 59.5 75.0 132.4 134.7

NAIC [40] 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2

CaptionANT 80.3 94.7 64.5 88.2 49.4 78.5 37.1 67.3 28.4 37.3 58.2 73.0 120.9 124.7

The effectiveness of the MSRS is described in Figure 5.3 (b). By providing shift

vectors ṡi, MSRS incorporates unmasked words into the input representations. This

approach reduces the number of possible candidates and transforms the mapping

relations from input to output to a roughly one-to-one relation. Thus, the model can

learn to reconstruct specific word representations instead of ambiguous ones. The

reconstruction constraint is:

Cr = ||µxi − r′i||2 + λs||ṡi||2 (5.13)

where µxi is the representation of the word xi obtained by the mapper, r′i is the i-th

word representation given by the generator, and λs is a hyper-parameter. The norm

of ṡi is also minimized, so the shifted representation ŝi can be as close to the original

input representation si as possible.

With the constraints above, the complete training objective of the generator is:

LG = LAdvG + λg · Cg + λr · Cr (5.14)

where λg and λr are both hyper-parameters which can control the effects from the

constraints.
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5.3 Experiment

5.3.1 Experiment Setup

The MSCOCO dataset [16] is one of most popular dataset in image captioning. We

adopt the widely used “Karpathy” splits [59] to conduct experiments. It contains

113,287 images for the training set, 5,000 images for the validation set and the test

set, respectively.

5.3.2 Evaluation Metric

We adopt standard evaluation metrics to compare the performance of different models

comprehensively: BLEU [98], METEOR [71], ROUGE-L [80], SPICE [3], CIDEr [121].

Besides, we also show the parameter numbers of different models and the speedup

value. The speedup value of CaptionANT is calculated based on the average latency

of generating 10,000 sentences.

Figure 5.4: CIDEr Scores of Different Structures.
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5.3.3 Implementation Details

The input size of the mapper and the generator is set to be 384, and the hidden

size of the FFN is set to be 1,536, while the input size of the discriminator is 768

and the hidden size of DFFN is 3072. The head numbers are all set to be 8. They

are all stacked with 4 blocks. We adopt AdamW as the optimizer of the mapper

(β1 = 0.9, β2 = 0.999, weight decay = 1e − 5) and the discriminator (β1 = 0.5,

β2 = 0.9, weight decay = 1e− 4), and Adam (β1 = 0.5, β2 = 0.9) as the optimizer of

the generator. The λd is Eq. 5.6, λg and λr in Eq. 5.14 are all set to be 1. The λs in

Eq 5.13 is set to be 5.

For the discriminator, we use OpenCLIP ViT-G/14 [52] as the image encoder. For

the generator, we additionally use the features from OpenCLIP ConvNext-XXLarge

for the feature ensemble module. All the parameters of the image encoders are fixed

during the training process. Knowledge distillation [65] is adopted as in previous

work [40, 26]. The mapper is first trained and its parameters are fixed during the

training of the discriminator and generator. Different with the previous work [40]

which needs a careful adjustment of learning rates, our model can obtain remark-

able performance with fixed ones. The learning rates of the mapper, generator and

discriminator are set to be 1e-4, 1e-4 and 2e-4, respectively.

Our model is implemented based on Tensorflow1 and trained on NVIDIA GeForce

RTX 3090.

5.3.4 Experimental Result

Overall Performance We compare the performance of CaptionANT with both AR

models [4, 17, 27], semi-autoregressive (SAR) models [26, 131] and NAR models [29,

25, 40]. Following previous work [40], we choose AIC as our AR baseline. AIC is

1https://www.tensorflow.org
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Table 5.3: Ablation Study of CaptionANT.

B1 B4 M R S C

CaptionANT 80.8 38.0 28.7 58.7 22.5 126.2

- w/o T. 80.0 37.1 28.3 58.3 22.0 123.5

- w/o F. 79.9 36.4 28.1 57.9 22.0 121.4

- w/o R. 78.5 35.1 27.3 56.8 20.7 116.0

- w/o P. (ANT) 74.9 31.1 25.7 54.3 19.0 102.4

a Transformer based AR model which is first trained with cross entropy and then

fine-tuned with SCST [109].

The evaluation results of the “Karpathy” split and the online server can be found in

Table 5.1 and Table 5.2, respectively. CaptionANT obtains new state-of-the-art per-

formance for fully NAR models. For the “Karpathy” split, it achieves 126.2 for CIDEr,

which is 2.2 higher than the existing best fully NAR model, CMAL [40]. Besides, it is

also the only fully NAR model which can outperform the reported results of PNAIC2.

It obtains extremely close performance compared with AIC (bw=1), and even out-

performs it on some metrics. It is the first time a fully NAR model can achieve such

remarkable performance. More importantly, existing SAR and NAR models need

more than 50M parameters to obtain close performance as the AR baseline, while

CaptionANT obtains the remarkable performance with only 18.2M parameters. It is

only 33.1% parameters of the models like AIC and PNAIC, and 36.3% parameters

of CMAL. Different with SAR models, which improve model performance by sacri-

ficing speedup, CaptionANT is 26.72× faster than AIC (bw=3). This speedup is

much higher than other NAR models. These experimental results demonstrate that

CaptionANT can achieve better performance with much fewer parameters and faster

speed.

2SAR models can further improve performance by sacrificing speedup. More experimental results

on these models can be found in their original papers.
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Table 5.4: Effectiveness of the Contrastive Constraints.

B1 B4 M R S C

Only Cd 80.5 37.5 28.4 58.4 22.1 124.3

Only Cg 79.3 36.8 28.0 57.8 21.5 121.7

Both 80.8 38.0 28.7 58.7 22.5 126.2

Performance in Different Strucures We also explore the differences brought by

different discriminator structures. We compare the performance between Struct. A:

the structure which uses image representations as additional input of the discriminator

as in the previous work [107], and Struct. B: the structure adopted in CaptionANT.

The results can be found in Figure 5.4 (a). Compared to Struct. A, Struct. B

can effectively make use of unpaired samples to regularize hidden representations.

The discriminator thus can better align images and texts, and finally obtains better

performance.

Figure 5.5: Examples of Generated Captions.

In addition, we replace the Light PASM in CaptionANT with Self-modulation (SM)

and PASM. Their performance is shown in Figure 5.4 (b). Both PASM and Light

PASM outperform Self-Modulation. It is consistent with the results in the previous
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Figure 5.6: Failure Cases.

work [107]. PASM and Light PASM provide diverse input signals which can help mod-

els recover different word representations more effectively. The performance between

PASM and Light PASM is extremely close, but the parameter number is significantly

reduced after adopting Light PASM (the parameter number of the model with PASM

is 27.0M while the number of adopting Light PASM is 18.2M). It demonstrates that

Light PASM can make the model lighter while maintaining the original performance.

Ablation Study Furthermore, we explore the effectiveness of the adopted tech-

niques and show the results in Table 5.3. The “T.”, “F.” and “R.” indicate the

truncation trick, feature ensemble and the reconstruction constraint, respectively.

The “P.” indicates the projection structure in the discriminator of CaptionANT. Af-

ter further removing it, the settings will be similar to ANT [107]. The performance

continuously decreases after removing these techniques, which demonstrates their ef-

fectiveness.

The contrastive constraints are adopted in the training objectives of the discriminator
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and the generator. We also conduct experiments to explore its effectiveness and

demonstrate the results in Table 5.4. Both Cd and Cg contribute to the improvement

of model performance, while the contribution from Cd is more important. Cd can

help the discriminator obtain more reasonable hidden representations, and identify

irrelevant captions more accurately.

Case Study The effectiveness of the contrastive constraints can also be illustrated

with the samples in Figure 5.5. In the first case, the model fails to capture the detail

”flower” if one of the constraints is disabled, while the detail is captured accurately

when using the two constraints together. In the second case, the models confuse

the numbers of ”bicycles” and the ”bus” if the constraints are lost. With the two

constraints, the model describes the numbers correctly.

To perform a complete analysis of CaptionANT, we also show failure cases in Fig-

ure 5.6. In the first case, CaptionANT meets an image in a less common style and

uses unrelated words (like sunglasses, and white tie) to describe it. For the second

case, although the style is a common one, the content that describes two fighting ze-

bras is not frequent, and CaptionANT fails to describe this image accurately. For the

third case, CaptionANT gives a general description, but misunderstands the relatively

complicated details (black and white stripes). And it also fails to recognize that this

plane is a model airplane. These cases demonstrate that the capacity of CaptionANT

in processing less common image styles or content and identifying complicated details

requires further enhancement.

5.4 Summary

In this work, we first analyze the limitations of existing MLE-based NAR models,

whose inherent multi-modality problem will be exacerbated in image captioning. Al-

though GANs have potential to tackle this problem, the existing GAN-based NAR
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model fails to learn complicated relations between images and text, and thus obtains

poor performance when transferred to image captioning.

To tackle this problem, we propose CaptionANT. CaptionANT is constructed based

on GANs, so it is naturally free from the multi-modality problem. To model the com-

plicated relations between various images and text, we first modify the discriminator

structure to enable the use of contrastive learning. The model thus can effectively

make use of unpaired samples. Then, we integrate a reconstruction process into

the training to better utilize paired samples. By further combining with other ef-

fective techniques (like feature ensemble and the truncation trick) and our proposed

lightweight structure, CaptionANT achieves new state-of-the-art performance for fully

NAR models on the MSCOCO dataset with 36.3% parameters of the existing best

fully NAR model and 26.72× speedup compared with the AR baseline.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we first analyze the limitations of existing MLE-based autoregressive

models. Then, we explore how to construct language GANs based on representation

modeling methods. After that, we adopt representation modeling methods to build

NAR models. We demonstrate the effectiveness of GAN-based NAR models in both

IIS and CIS.

More specifically, the contributions of this thesis can be summarized as follows:

• To avoid the non-differentiable sampling operation in language GANs, we adopt

representation modeling methods to train the generator to obtain word repre-

sentations instead of probability distributions. Thus, the generator can make

use of gradients from the discriminator to update the generator. Even though,

its performance is still limited by the invalid sampling problem and unhealthy

gradients. We tackle these two problems by adopting dropout sampling and

fully normalized LSTM. The experimental results demonstrate that our pro-

posed model, InitialGAN, can outperform MLE without making use of any
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pre-training techniques.

• We adopt representation modeling methods to construct GAN-based NAR mod-

els for IIS. We propose Position-Aware Self-modulation which can provide more

effective signals to recover word representations, and Dependency Feed Forward

network (Dependency FFN) which can help the model to capture more accu-

rate word dependencies in the unstable training of GANs. The experimental

results demonstrate that our proposed model, ANT, can obtain comparable

performance as other models with much lower decoding latency.

• In order to enable GAN-based NAR models to model complicated mapping rela-

tions in the CIS, we revise the discriminator structure so it can effectively make

use of unpaired samples with contrastive learning. Furthermore, reconstruction

process is incorporated into the training procedure to better utilize paired sam-

ples. We test the performance of our proposed model on the MSCOCO dataset.

The experimental results demonstrate that our proposed model achieves a new

state-of-the-art for fully NAR models with lower parameter number and faster

speed.

This thesis demonstrates the great potential of building NAR language GANs based

on representation modeling methods in various tasks.

6.2 Future Work

There are several important directions need to be explored in the future.

First of all, it is important to scale up the models to apply it in more complicated sce-

narios. Building larger models can increase its capacity in learning more complicated

data distributions. However, there may be various problems like gradient vanishment

need to be tackled. How to improve model performance by scaling up the model size
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is a significant problem need to be tackled to apply it in more complicated scenarios.

Secondly, a classical problem of GANs is its unstable training process. Although a

number of techniques have been proposed to relieve this problem, it has not been

completely tackled yet. How to further stabilize the training process of language

GANs is an important problem need to be explored.

Last but not least, LLMs have obtained remarkable performance in various tasks.

How to make use of LLMs to boost the performance of GAN-based NAR models is

another research topic needs to be studied.

89



Appendix A

Theoretical Proof

A.1 Proof of Theorem 1

Suppose F is a non-linear transformation in a model. We investigate the effects of

layer normalization by analyzing two different implementations:

y
(a)
l+1 = Fa(yl) (A.1)

y
(b)
l+1 = Fb(LN(yl)) (A.2)

where LN(·) is layer normalization. These two implementations are both based on yl,

which is the output from the previous layer. The difference is that Eq. A.1 does not

use layer normalization in the input, while Eq. A.1 uses it. The gradients of output

to input are:

dy
(a)
l+1

dyl
= F ′a(yl) (A.3)

dy
(b)
l+1

dyl
= F ′b(LN(yl)) · LN ′(yl) (A.4)

There are two differences in Eq. A.3 and Eq. A.4. yl is normalized when calculating

F ′b(·). It can prevent input from lying in an interval whose gradients are extremely
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small. Another difference is the additional term LN ′(yl) in Eq. A.4. To simplify the

notations, we use x to represent yl . Layer normalization is related to the mean and

standard deviation among all the dimensions of x. We start the analyses from the

i-th dimension in x, which is denoted as x[i].

LN ′(x[i]) = [
x[i] − µx

σx
]′

=
([x[i] − µx]′ · σx)− ((x[i] − µx) · σ′x)

σ2
x

(A.5)

The derivative of [x[i] − µx] is:

[x[i] − µx]′ = d(x[i] −
1

H

H∑
j=1

x[j])/dx[i] = 1− 1

H
(A.6)

where H is the dimension of x. The derivative of σx is:

σ′x = dE(x2 − E2(x))
1
2/dx[i]

=
1

2
E[x2 − E2(x)]−

1
2 · [E(x2)− E2(x)]′

=
1

2σx
(
2x[i]
H
− 2E(x)

H
)

=
x[i] − µx
H · σx

(A.7)

Considering Eq. A.5, A.6 and A.7, we have:

LN ′(x[i]) =
(1− 1

H
) · σx −

(x[i]−µx)2

H·σx
σ2
x

=
− 1
H
σ2
x + σ2

x −
(x[i]−µx)2

H

σ3
x

=
−σ2

x

H
+

∑
j 6=i(x[j]−µx)2

H

σ3
x

=
−σ2

x

H
+ H−1

H

∑
j 6=i(x[j]−µx)2

H−1

σ3
x

(A.8)

WhenH is large enough, we can adopt the law of large numbers to obtain the following

relation:
1

H − 1

∑
j 6=i

(x[j] − µx)2 ≈ σ2
x (A.9)
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Thus, Eq. A.8 can be further transformed as:

LN ′(x[i]) ≈
−σ2

x

H
+ H−1

H
σ2
x

σ3
x

=
H − 2

H
· 1

σx
= (1− 2

H
)

1

σx

(A.10)

We can regard 1− 2
H
≈ 1 when H is large enough, so we have:

LN ′(x[i]) ≈
1

σx
(A.11)

If the deviation of x is smaller than 1, this term will be a scaler factor larger than 1.

In this time, it can help augment gradients and relieve gradient vanishment problem.
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and Roman Garnett, editors, Advances in Neural Information Processing Sys-

tems 31: Annual Conference on Neural Information Processing Systems 2018,

NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 7310–7321, 2018.
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