
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



COORDINATED OPTIMAL DESIGN OF 

ZERO/LOW ENERGY BUILDINGS IN 

HIGH-DENSITY CITIES CONSIDERING 

THEIR INTERACTION WITH LOCAL 

MICROCLIMATE

ZHAO ZEMING 

PhD 

The Hong Kong Polytechnic University 

2024



The Hong Kong Polytechnic University 

Department of Building Environment and Energy Engineering 

Coordinated Optimal Design of Zero/Low 

Energy Buildings in High-density Cities 

Considering Their Interaction with Local 

Microclimate 

ZHAO ZEMING 

A thesis submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy 

May 2024 



i 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge and 

belief, it reproduces no material previously published or written, nor material that has been 

accepted for the award of any other degree or diploma, except where due acknowledgement 

has been made in the text. 

_ ___ _______ (Signed) 

Zeming Zhao    (Name of student) 



 

ii 

 

ABSTRACT 
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Load reduction is a fundamental means for achieving the goal of zero/low-energy buildings 

and for accomplishing carbon-neutrality. Zero/low energy buildings with low energy demand 

and high utilization of renewable energy are therefore recognized as effective means to 

facilitate carbon neutrality, and are receiving increasing attention from government, society 

and professionals. As the world undergoing an intense process of urbanization, the 

development of high-density cities becomes rapid. In high-density areas, buildings can modify 

the surrounding microclimate and are recognized as one of the main contributors to the urban 

local microclimate. Meanwhile, the microclimate also has a considerable impact on the 

building energy performance. However, there is still lack of an effective design optimization 

method to identify global optimal solutions enhancing both building energy performance and 

pedestrian thermal comfort while considering the interaction between buildings and the local 
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microclimate. The mutual impacts between them are ignored in current optimal design 

practices for zero/low energy buildings due to a lack of comprehensive understanding. In 

addition, the accurate prediction of the local microclimate surrounding the building with low 

computing cost is currently absent, which is the foundation for effective optimization. 

This study therefore aims to develop an effective and comprehensive optimal design method 

based on multi-objective optimization for zero/low energy buildings and local microclimate, 

considering their interactions in high-density cities. Machine learning-based surrogate models 

are also developed for fast evaluation of the local microclimate. 

The most influential design parameters of high-rise and low-rise buildings in different climate 

zones are identified by sensitivity analysis, and the impacts of climate and building height are 

studied and compared. A total of thirty-five design parameters under five categories are 

considered. Five Chinese climate zones covering three typical climates worldwide are 

researched. The key design parameters affecting winter thermal discomfort in climate zones 

typically without heating provision are also identified. The impact of thermal bridge on 

building energy performance is further investigated. Remarkable finding is that overhangs are 

among the most important elements for high-rise buildings in all climate zones concerned, 

while skylights are among the most influential elements for low-rise buildings concerning 

building load. 

A comprehensive and systematic analysis is conducted to investigate the mutual impacts 

between new individual building design and the local microclimate, and to identify the major 
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influential building parameters on both local microclimate and building energy performance in 

subtropical urban area. A large number of high-resolution microclimate and building 

simulations based on advanced GIS spatial analysis technique are performed under different 

building designs for the mutual impact assessment. A global sensitivity analysis is conducted 

to identify the major influential building parameters. The results show that different building 

designs lead to significant variation of local wind velocity (i.e., -0.95~+4.51 m/s) and air 

temperature (i.e., -0.60~+1.17 K), while the local microclimate results in a change in the 

building energy consumption from -41.75kJ/m2 to 291.54kJ/m2. 

Machine learning-based surrogate models are developed to predict the impacts of local 

microclimate (i.e., local air temperature and wind velocity) due to the addition of a new 

individual building in high-density urban area. Two complementary machine learning-based 

surrogate models are identified and recommended for their high accuracy and high efficiency, 

including an SVR-based local air temperature model and a LightGBM-based local wind 

velocity model. They are identified by evaluating and comparing eight alternative machine 

learning models, four for each model development. 200 sets of CFD simulation data 

corresponding to different building designs are used for the model training and validation. The 

results show that the developed surrogate models can dramatically reduce computation time 

(from over 5 hours to less than a second for a single prediction) while keeping the same order 

of accuracy of CFD simulations for local microclimate prediction of individual buildings. It 

therefore facilitates the fast, comprehensive and accurate prediction of the impacts on the local 
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microclimate at the early design stage of new construction and renovation of individual 

buildings, for designers to deliver preferred local microclimate and/or avoid unacceptable 

microclimate changes. 

A coordinated design optimization method is proposed, allowing the design optimization of a 

zero/low energy building and its microclimate to be achieved within practically affordable time 

by adopting an effective quantification method. Local microclimate surrogate models and 

automated building simulation are integrated with the optimizer to enhance the optimization 

efficiency and generalizability. The essential design variables can, therefore, be optimized 

comprehensively with affordable computation efforts using multi-objective optimization. The 

global optimal solutions (i.e., Pareto front) identified by NSGA-II are further evaluated using 

the entropy-TOPSIS method to determine the best solution. The proposed method is tested and 

validated by implementing it in a development case of integrated building in Hong Kong. The 

results show that, when using the coordinated optimal design method, the total building energy 

consumption can be saved up to 63.6% and the pedestrian thermal discomfort degree can be 

reduced up to 1.9 K. The computation time of a design optimization is reduced by 99.98% (i.e., 

from 42684.44 to 8.89 hours) compared with that using conventional simulation methods. 
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CHAPTER 1   INTRODUCTION 

1.1 Background and motivation 

Carbon neutrality is increasingly recognized as the world’s most urgent mission to limit global 

warming. Around 137 countries have committed to achieving carbon neutrality [1]. The 

government of the Hong Kong SAR has also pledged to achieve net zero carbon emissions by 

2050 [2]. Reducing energy demand and increasing renewable energy generation are the 

fundamental means to achieve this challenging goal. Zero/low energy buildings with low 

energy demand and high utilization of renewable energy are therefore considered as effective 

means to facilitate the achievement of carbon neutrality, and are receiving increasing attention 

from government, society and professionals [3-8]. The zero/low energy buildings are typically 

associated with significantly reduced energy needs through energy efficiency technologies and 

passive design methods. This approach allows for the maintenance of indoor environmental 

quality and the achievement of energy reduction goals. Currently, most of the research related 

to zero/low energy buildings focuses on low-rise buildings, which are relatively easy to achieve 

zero/low energy standards because certain energy-efficient technologies, such as ground 

cooling and green roofs, have limitations when applied in high-rise buildings due to roof area, 

site coverage, and structural load limitations [9]. However, most countries are undergoing a 

fast urbanization process today, and most newly-constructed urban blocks are composed of 

high-rise buildings to increase land use efficiency in high-density urban cities [10]. Therefore, 

the design of zero/low energy buildings in high-density cities becomes an important objective 
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for building energy efficiency,as achieving the goal of low energy consumption can lead to 

significant energy conservation. 

As the world experiences rapid urbanization, the population in urban cities has been increasing 

intensely over the past decades. Currently, around 56% of the global population lives in urban 

areas, and this percentage will continue to increase to 61% by 2030 according to the United 

Nations [11]. In order to cope with the increase in population and improve the quality of the 

living environment, new building development or building renewal becomes common in high-

density cities. The new development can modify the local microclimate, such as by blocking 

wind flow and affecting heat removal in summer. One major phenomenon is the urban heat 

island (UHI) effect. A UHI refers to an urban area with a higher temperature than its rural 

surroundings. The UHI can contribute to thermal discomfort among urban residents and even 

lead to heat-related illnesses such as respiratory difficulties, heat cramps, heat exhaustion, and 

non-fatal heat stroke.  

As buildings are recognized as major contributors to the urban local microclimate, attention 

must be paid to how zero/low energy building design affects the local microclimate. Both 

building morphology and thermal characteristics can have significant impacts on the local 

microclimate [12]. Different building morphologies can result in a variation in local air 

temperature by up to 2.5°C in Zürich, Switzerland [13]. The  application of cooling material 

with high albedo on building envelope design can lead to a decrease of local air temperature 

up to 0.7 °C in Thessaloniki, Greece [14]. On the other hand, the microclimate also affects the 
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building energy performance considerably [15]. In Rome, the variation of the local air 

temperature can cause a reduction in heating load by up to 21% and an increase in cooling load 

by up to 74% in residential buildings [16]. As urbanization accelerates the development of 

high-density urban areas, the impact of changes to a building on the surrounding microclimate 

becomes more pronounced due to limited space. Therefore, it is necessary to consider the 

mutual impacts when optimizing the design of zero/low energy buildings to improve both 

building energy performance and outdoor thermal comfort. However, there are still several 

challenges to address in the design optimization of zero/low energy buildings, considering their 

interaction with the local microclimate in high-density cities: 

Firstly, the mutual impacts between zero/low energy building design and the local microclimate 

have been ignored in the design optimization of zero/low energy buildings in current design 

practices due to a lack of comprehensive understanding and particularly effective assessment 

methods. Existing investigations on the local microclimate are always at the district scale for 

district/urban planning and are insufficient to support the design of zero/low energy buildings. 

There is still a lack of comprehensive understanding of the major influential building 

parameters affecting both building energy performance and the local microclimate to support 

zero/low energy building design while considering mutual impacts. 

Secondly, there is still a lack of accurate prediction methods for the local microclimate 

surrounding buildings that have low computing costs to assist in the design optimization of 

zero/low energy buildings while considering their interaction with the local microclimate. Due 
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to the complexity of both the geometric model of the urban neighborhood/district and the 

variations in the local microclimate, there is significant bias in estimating the local 

microclimate. Existing predictions of high-resolution temporal and spatial local microclimate 

information mostly rely on CFD simulations, which face significant challenges in practical 

applications for the design optimization of zero/low energy buildings due to the complexity of 

setting up simulations and high computing loads. The development of a fast and accurate 

prediction method for the local microclimate is necessary and serves as the foundation for the 

design optimization of zero/low energy buildings while considering their interaction with the 

local microclimate. 

Thirdly, the trade-offs between building energy performance and the local microclimate have 

not been addressed in the design of zero/low energy buildings due to complexity. Existing 

studies on the design optimization of zero/low energy buildings have not considered outdoor 

thermal comfort, while the impact of the local microclimate on building energy performance 

is also ignored in the design optimization. The mutual impacts between zero/low energy and 

microclimate are ignored when making the design optimization. It is necessary to propose 

compromise design solutions that strike a balance to maximize the benefits of building energy 

efficiency and pedestrian thermal comfort. 

1.2 Aim and objectives 

The aim of this PhD study is to develop an effective and comprehensive optimal design method 

based on multi-objective optimization for zero/low energy buildings and local microclimate 
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considering their interactions in high-density cities. Additionally, machine learning-based 

surrogate models are developed for the fast prediction of the local microclimate. It is 

accomplished by addressing the following objectives: 

1. Develop an automated building performance simulation model considering the interaction 

with local microclimate. The building performance model is utilized for testing and validating 

the proposed coordinated design optimization method efficiently, generically, and 

automatically when applied to new design scenarios. 

2. Develop a global sensitivity analysis method and conduct systematic and comparative 

sensitivity analyses to investigate the impacts of building design parameters on the energy 

performance of zero/low energy buildings in different climate zones, taking into consideration 

the impacts of climate and building height. The intention is to identify the most influential 

design parameters of zero/low energy buildings in different climate zones and at different 

building heights for testing and validation of the proposed coordinated design optimization 

method. 

3. Investigate the mutual impacts between zero/low energy building design and the local 

microclimate, considering their interaction, and conduct a global sensitivity analysis to 

investigate the impacts of design parameters on building energy performance and the local 

microclimate. The intention is to identify the major influential building parameters affecting 

both the local microclimate and building energy performance in a subtropical urban area. 

Perform a large number of high-resolution microclimate and building simulations based on 
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advanced GIS spatial analysis techniques under different building designs for mutual impact 

assessment. 

4. Develop surrogate models of local microclimate (i.e., local air temperature surrogate model 

and local wind velocity surrogate model) with high efficiency and high accuracy. The surrogate 

models of local microclimate are utilized for the fast and accurate prediction of local 

microclimate changes under different building designs, which is the foundation of the test and 

validation of the proposed coordinated design optimization method. 

5. Develop a coordinated optimal design method for zero/low energy buildings and their local 

microclimate considering the interactions between them. This method is expected to achieve 

simultaneous design optimization of buildings and local microclimate effectively  and identify 

the global optimal design solutions maximizing the benefits of energy efficiency in zero/low 

energy building and pedestrian thermal comfort. 

1.3 Organization of thesis 

This thesis consists of 8 chapters as shown in Figure 1.1, which are organized as follows. 

Chapter 1 presents the background and motivations for developing zero/low energy buildings 

considering the interaction with the local microclimate. The technical challenges faced in 

developing zero/low energy buildings considering their interaction with the local microclimate 

are discussed. Then, the aims and objectives of this study are presented as well as the 

organization of this thesis. 
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Chapter 2 presents a comprehensive literature review on the mutual impacts between zero/low 

energy buildings and the local microclimate, as well as the modelling and optimal design of 

zero/low energy buildings and the local microclimate. The zero/low energy building studies 

are reviewed in terms of the definition, technologies and the parametric studies of zero/low 

energy buildings. The mutual impacts between buildings and the local microclimate are 

reviewed in terms of the impacts of building design on the local microclimate, the impacts of 

the local microclimate on building performance, and the studies on mutual impacts between 

buildings and the local microclimate. The modelling and simulation of local microclimate are 

reviewed in terms of the conventional methods and the emerging data-driven methods. The 

optimal design of zero/low energy buildings and local microclimate is reviewed in terms of the 

design optimization of zero/low energy buildings, the design optimization of local 

microclimate and the multi-objective design optimizations. The research gaps in the above 

subject areas are summarized. 

Chapter 3 presents an overview of the research scenario used in this study and the automated 

building simulation model. A new building to be developed in an existing district in Hong 

Kong, which is a typical design scenario of high-density urban area,is determined as the 

research scenario for the test and validation of the proposed surrogate models of local 

microclimate and the proposed coordinated design method. The automated building simulation 

model is of efficiency and generalizability when applying to new design scenarios. 
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Chapter 4 presents the identification of the most influential design parameters of high-rise and 

low-rise zero/low energy buildings in different climate zones. The global sensitivity analysis 

method is performed and a total of thirty-five design parameters under five categories are 

considered to identify the key envelope design parameters that significantly affect the building 

energy performance. The key design parameters affecting winter thermal discomfort in climate 

zones typically lacking heating provision are also identified. The impact of thermal bridge on 

building energy performance is further investigated. 

Chapter 5 presents the investigation on the mutual impacts between new individual building 

design and local microclimate considering the interaction and the identification of the major 

influential parameters of zero/low energy buildings on both local microclimate and building 

energy performance in the subtropical urban area. A large number of high-resolution 

microclimate and building simulations based on advanced GIS spatial analysis techniques are 

performed under different building designs for mutual impact assessment. A global sensitivity 

analysis is conducted to identify the major influential building parameters. 

Chapter 6 presents the procedures and methods for developing local microclimate surrogate 

models. Machine learning-based surrogate models are developed to predict the impacts on local 

microclimate (i.e., local air temperature and wind velocity) due to the addition of new 

individual zero/low energy buildings. 200 sets of CFD simulation data corresponding to 

different building designs are used for the training and validation of the model. Four machine 

learning algorithms are evaluated and compared for the model development, including ANN, 
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SVR, RF and LightGBM. A case study is conducted to validate the local microclimate 

surrogate models. 

Chapter 7 presents the procedure and methods of the proposed coordinated design optimization 

method for zero/low energy buildings and the local microclimate, considering the interactions 

between them. Comprehensive design variables are optimized using multi-objective 

optimization. The automated building simulation and local microclimate surrogate models are 

combined with the optimizer to enhance efficiency and generalizability. The obtained Pareto 

optimal solutions are evaluated using the entropy-TOPSIS method, and the best solution is 

recommended. A case study in Hong Kong is utilized to test and validate the proposed method. 

Chapter 8 summarizes the main contributions and conclusions of the work conducted in this 

PhD project and provides recommendations for future research on the subjects covered in this 

study. 
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Figure 1.1 Organization of main chapters 
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CHAPTER 2   LITERATURE REVIEW 

A comprehensive literature review on the optimal design of zero/low energy buildings and 

local microclimate is conducted to provide the research background and a clear picture of what 

has been done and what needs to be done (i.e., the research gaps) in this research domain. 

Section 2.1 presents an overview of the studies on zero/low energy buildings, including the 

definition and zero/low energy technologies, and the parametric studies of zero/low energy 

buildings. Section 2.2 presents a review on the mutual impacts between buildings and the local 

microclimate, including the impacts of building design on the local microclimate, the impacts 

of the local microclimate on building performance, and the studies on mutual impacts between 

buildings and the local microclimate. Section 2.3 presents the modelling and simulation of local 

microclimate, including the conventional methods and the emerging data-driven methods. 

Section 2.4 presents a review of the optimal design of zero/low energy buildings and the local 

microclimate, including the design optimization of zero/low energy buildings, the design 

optimization of the local microclimate, and the multi-objective design optimizations. Section 

2.5 presents a summary of the research gaps in the above research areas. 

2.1 Overview of zero/low energy buildings technologies and parametric studies 

2.1.1 Definition and technologies of zero/low energy buildings 

Zero/low energy buildings have received widespread attention in recent years due to their low 

energy demand and high utilization of renewable energy, which have been seen as effective 
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solutions to reduce carbon emissions and facilitate the achievement of carbon neutrality. In 

concept, zero/low energy buildings have greatly reduced energy demand through energy 

efficiency measures so that the remaining energy demand can be supplied by renewable energy 

technologies [3,8]. The term “zero energy” refers to the balance between building energy 

demand and the building energy supply. At the strictest level, zero energy buildings generate 

enough renewable energy on-site to equal or exceed their energy use. Therefore, two major 

tasks must be addressed in the development of zero/low energy buildings. One task is to 

minimize the energy demand of buildings through energy efficiency measures. The other task 

is to generate energy for buildings through renewable energy technologies and other means. 

As for the energy-efficient measures for zero/low energy buildings, there are three aspects 

concerned in previous studies: building envelope, building energy systems and internal 

conditions [7]. Buildings in different climate zones have different requirements for building 

envelopes that aim to reduce heat gain in summer and heat loss in winter. The strategies are 

mainly related to wall, window, roof, floor, and skylight. For instance, Akbari et al. investigated 

the energy saving potential of reflective roofs for residential and commercial buildings in the 

eleven United States metropolitan statistical areas in a variety of climates. In the hottest and 

sunniest cities, such as Phoenix, the largest savings are of 51 dollars per year per 1000 ft2 roof 

area of air-conditioned buildings. However, as the climate gets cooler, the savings decrease. In 

Miami, the savings are of 30 dollars [17]. As for the building energy systems,  HVAC systems, 

and electric lighting systems are the two major energy-consuming systems in buildings, which 
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account for 40~60% and 20~30% of total building energy consumption [7]. Zhu et al. proposed 

an advanced model predictive control method for chillers that are integrated with cold water 

storage technology in data centers. The coefficient of performance (COP) was increased by 

1.96, the cooling system energy consumption was reduced by 5.8%, and the power usage 

effectiveness was reduced by 0.013 when utilizing the proposed method compared with the 

baseline strategy [18]. Internal conditions, including the indoor design conditions and internal 

heat load, have significant energy-saving potential. For instance, Sadineni et al. concluded that 

raising the thermostat temperature from 23.9 °C to 26.1 °C from 4:00 PM to 7:00 PM resulted 

in the decreased average demand by 69% during the peak period [19]. 

The renewable energy technologies are utilized to supply the remaining energy for zero/low 

energy buildings. The strategies mainly include the utilization of photovoltaics, wind turbines, 

solar water heaters, heat pumps and district heating and cooling [7]. Li et al. adopted semi-

transparent photovoltaic panels together with the dimming controls in office buildings, through 

which the annual building electricity was saved by 1203 MWh and the peak cooling load was 

reduced by 450 kW. In the meantime, the utilization of semi-transparent photovoltaics is also 

environmentally friendly due to the reduction of annual emissions of CO2, SO2, NOx, and 

particulates by the amounts of 852, 2.62, 1.45, and 0.11 tons [20]. The hybrid PV-wind power 

generation systems have developed rapidly in recent years as the solar availability and the wind 

availability can compensate for each other at different times of the year. TAZAY et al. proposed 

a grid-connected large-scale PV/wind hybrid power system in the Gabel El-Zeit region located 
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along the coast of the Red Sea, Egypt. The developed PV/wind hybrid power system can 

achieve a total annual electricity generation of about 1509.85 GWh/year, including the 

generation from the PV station of 118.15 GWh/year (7.83 %) and generation from the wind 

farm 1391.7 GWh/year (92.17%) [21]. 

2.1.2 Parametric studies of zero/low energy buildings 

In recent years, many efforts have been made to identify the key design parameters affecting 

building performance [22-69]. These parameters are critical to the optimal design of building 

envelopes in order to achieve zero/low energy buildings. Some representative studies are 

summarized and listed in Table 2.1. For instance, Li et al. investigated the impacts of the main 

design parameters and conducted a multi-stage sensitivity analysis to identify the key 

influential design parameters in the subtropical climate for zero/low energy buildings among a 

total of 29 parameters. The zero carbon low-rise building in Hong Kong is selected as the 

reference building [43]. Chen et al. utilized the multiple linear regression to conduct sensitivity 

analysis for a standard floor of a typical high-rise residential building in hot and humid climates 

[42]. The window transmittance property and window-to-ground ratio were determined as the 

most influential parameters affecting daylight, natural ventilation, and thermal comfort 

performance in hot and humid climates. Li et al. investigated the impacts of nine building 

envelope parameters and spatial factors on the energy demand of a multi-story ultra-low-energy 

building in hot summer and cold winter zones, and recommended that increasing the standard 

floor area and reducing the floor height are critical to building energy efficiency [48]. 
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It can be observed from the reviewed 48 papers that most of the current studies (i.e. 36 out of 

48) related to the identification of the key design parameters concern the low-rise buildings, 

while a small part (i.e. 12 out of 48) concerning the high-rise buildings. This means that the 

highly sensitive parameters for building envelope design are mainly identified from low-rise 

buildings in previous studies, while the key design parameters for high-rise buildings have not 

been sufficiently investigated. However, the significant difference between low-rise and high-

rise buildings cannot be ignored, and has to be considered seriously [46]. As for the existing 

studies on high-rise buildings, there are two limitations, which are summarized in the following. 

Firstly, a typical floor of high-rise buildings is usually selected and used in performance 

evaluation to save simulation time [9,22,40,42,44], while it cannot represent performance of 

the entire building as building performance on different floors may vary [33]. Secondly, current 

studies have considered only part of the main design parameters, so that some key design issues 

(e.g., the overhang and skylight) of high-rise buildings may be ignored 

[9,22,23,31,33,40,42,44,46,50,51,62]. There is also a lack of comparison between key design 

parameters of high-rise and low-rise buildings. 

Currently, the key design parameters of the building envelope in different climate zones around 

the world have been studied [22-69]. Zhao et al. investigated the impacts of seven building 

design parameters on the heating and cooling energy demand of the standard floor in a high-

rise residential building in five climate zones of China. The results showed that optimizing the 

three most sensitive design parameters led to the reduction of total energy demand by 75 
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kWh/(m2∙a) in the severe cold zone, 40 kWh/(m2∙a) in the cold and the hot summer and cold 

winter zones, 50 kWh/(m2∙a) in the hot summer and warm winter zone, and 35 kWh/(m2∙a) in 

the mild zone [22]. Guo et al. conducted a sensitivity analysis to assess the impacts of six 

building design parameters on the building energy demands and thermal comfort of a seven-

storey office building in five climate zones in China. The results indicated that the energy 

saving potential of different climate zones was different when optimizing the design parameters. 

The severe cold zone achieved the greatest energy saving by 18–24%, the hot summer and cold 

winter zone achieved the energy saving of 16–19%, and the cold zone and mild zone achieved 

energy savings of 12–15%. However, the hot summer and warm winter zone achieved the 

lowest energy savings, at only 5–7% [27]. 

It can be observed that the highly-sensitive design parameters for building performance in 

different climate zones vary. The indoor temperature set-point and parameters associated to air 

tightness are commonly the highly sensitive parameters in all kinds of climate zones. In the 

climate zone with severe cold winter, the U-value of external wall and the thickness of 

insulation are the key parameters affecting building energy performance [22]. As for the 

climate zone with hot summer, the parameters related to skylight and solar protection are the 

most influential [43]. The parameters related to window thermal characteristics are the crucial 

ones to the zones with mild climate [9,22]. However, the parameters considered in different 

studies vary, which are not comprehensive enough to quantify the impact on building 

performance in different climate zones. Although there are some studies comparing key design 
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parameters of the building envelope in different climate zones, only part of the main design 

parameters are taken into account. Therefore, the outputs of existing studies are insufficient to 

compare the major design concerns in different climate zones. Furthermore, in existing studies, 

the diversity of local design conditions in different climate zones, which leads to the diversity 

of building performance objectives, has almost been ignored when setting the simulation 

models. Therefore, the parameters identified by sensitivity analysis may not be representative 

for certain climate zones because building performance may not be quantified according to 

local energy demand in reality. 

Table 2.1 Representative studies on parametric analysis of buildings 

Reference Climate zones Building performance 

objectives 

Number of 

parameters 

considered 

Type of building 

Guo et al. 

[27] 

5 climate zones of 

China 

Cooling, heating and total 

energy demands, thermal 

comfort index 

6 Office building (7 

storeys) 

Zhao et al. 

[22] 

5 climate zones of 

China 

Cooling, heating and total 

energy demands 

7 Standard floor in 

high-rise residential 

building 

Lee et al. 

[41] 

Korea Heating demand 15 Rural house (1 storey) 

Li et al. [43] Hot and humid 

subtropical climate 

zone (HK) 

Comprehensive objective 

(building energy consumption 

and winter thermal discomfort) 

29 Low-rise building 

Chen et al. 

[42] 

Hot and humid 

subtropical 

climatic zone (HK) 

Indoor environment index 

(illuminance level, air change 

rate and ASHRAE55 comfort 

time) 

9 Standard floor in 

high-rise residential 

building (30–40 

storeys) 

Yıldız et al. 

[33] 

Hot-humid climate 

zone (Izmir, 

Turkey) 

Heating and cooling energy 

loads 

35 High-rise apartment 

building (10 storeys) 

Lam [31] Hot and humid 

subtropical climate 

zone (HK) 

Annual building energy 

consumption and peak design 

load 

12 High-rise office 

building (40 storeys) 

Delgarm 

[47] 

4 climate zones of 

Iran (cold, mild, 

warm–dry, and 

Total building energy demands 

(cooling, heating and lighting) 

12 Multi-story building 

(4 storeys) 
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warm–humid) 

Heiselberg 

[28] 

Denmark Heating, ventilation, cooling 

and lighting energy use 

21 Office building (7 

storeys) 

Li [48] Hot summer and 

cold 

winter zone of 

China 

Heating and cooling load 9 Multi-story office 

building (5 storeys) 

Yu [23] Hot summer and 

cold 

winter zone of 

China 

Cooling, heating and yearly 

energy use 

8 Multi-story building 

(6 storeys) 

Feng [30] Severe cold zone 

of China 

Heating, cooling and total 

building energy 

4 Low-rise residential 

building (2 storeys) 

Lu [24] Hot and humid 

subtropical climate 

zone (HK) 

Combination of total annualized 

cost, CO2 emissions and grid 

interaction index 

4 Low-rise building 

Tavares 

[26] 

Portugal Annual cooling, heating and 

electric energy 

10 Multi-story office 

building (5 storeys) 

Andarini 

[29] 

Indonesia Decrease of cooling energy 

demand 

9 Office building (3 

storeys) 

Samuelson 

[60] 

2 ASHRAE 

climate zones 

Energy Use Intensity, peak 

loads and passive survivability 

9 High-rise residential 

building 

CORRADO 

[36] 

Italy Heating and cooling energy 

demand 

13 Single-family house 

(2 storeys) 

Raji [59] Temperate 

maritime climate 

Annual heating, cooling and 

lighting demand 

14 High-rise office 

building 

Menberg 

[52] 

England Annual heating demand 11 Office building (2 

storeys) 

2.2 Mutual impacts between buildings and local microclimate 

2.2.1 Impacts of building design on local microclimate 

In the past decade, increasing efforts have been made to investigate the impacts of building 

design on the local microclimate [12-15,70-89]. The representative studies are summarized in 

Table 2.2. The methods used to quantify the impacts can be classified into two categories, i.e., 

on-site monitoring and simulation. When the on-site monitoring method is adopted, monitoring 

stations are used to collect local weather data, such as dry-bulb temperature, relative humidity, 

global solar radiation, wind direction, and wind speed. When the simulation method is adopted, 
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the impacts of buildings in the neighborhood or district on the local microclimate were mainly 

investigated using software such as FLUENT, STEVE, UWG, SOLENE, OpenFOAM and 

CitySim. The study period varies from a selected hour to one year. The factors concerned 

include the district density and district geometry parameters (e.g., plan density, street 

height/width ratio and sky view factor), building morphology parameters (e.g., building aspect 

ratio and building height) and thermal characteristics parameters (e.g., albedo and emissivity). 

According to the analysis results, the design of the district can have significant impacts on the 

surrounding local microclimate under different climate conditions. For instance, Bourbia et al. 

monitored the local air temperature for one month in Constantine, Algeria to investigate the 

impacts of district morphology parameters on the local microclimate. The results showed that 

variations in district morphology parameters, including street height-to-width ratio, sky view 

factor, and street orientation, led to an increase in local air temperature of up to 6 K in the 

Mediterranean climate [81]. Allegrini et al. simulated the local microclimate in one typical 

hour affected by the six different district height topologies utilizing the coupled Computational 

Fluid Dynamics (CFD) and building energy simulations in the software OpenFOAM and 

CitySim. The local air temperature increased by 1.5–2.5 K due to variations in district height 

topologies in Zürich, Switzerland, with a temperate maritime climate [13]. Merlier et al. 

investigated the impacts of building configurations of the district on local air temperature on 

two selected days utilizing the SOLENE-microclimat models, which led to an increase in local 
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air temperature in the range of 1.7~2.8 K in Lyon, France, with a Continental temperate marine 

climate [82]. 

Not only do building morphology but also building thermal characteristics have an effect on 

the surrounding local microclimate. Ali-Toudert et al. combined urban microclimate and 

building energy modelling in TEB and TRNSYS to simulate the local air temperature at the 

neighborhood scale in Mannheim, Germany. It was concluded that variations in thermal 

insulation, thermal inertia, albedo, and emissivity of the building envelope, street aspect ratio, 

and plan density led to variations in local air temperature in the range of in the range of -

1.21~+0.34 K in the Temperate continental climate[70]. Tsoka et al. investigated the 

application of cooling material with high albedo on building envelope design in Thessaloniki, 

Greece, using the ENVI-met model, which led to a decrease in local air temperature of up to 

0.7 °C in the Mediterranean climate [14]. 

Table 2.2 Representative studies on the impacts of building design on local microclimate 

Referenc

e 

Location 

and climate 

Building-

related factors 

concerned 

Research 

scale 

Quantificati

on method 

Period Impacts on 

microclimate 

[12] Reading, 

UK; 

Temperate 

maritime 

Building form Neighbor

hood 

On-site 

monitoring 

1 year T: -0.27~+0.7 
K 

[89] Singapore; 

Tropical 

rainforest 

Floor area 

ratio, gross site 

coverage, open 

space ratio, 

number of 

stories, sky 

view factor 

District Simulation 

(STEVE) 

- T: -1.3 K  

[70] Mannheim, 

German; 

Temperate 

continental 

Thermal 

insulation, 

thermal inertia, 

albedo and 

Neighbor

hood 

Simulation 

(TRNSYS) 

1 year T: -

1.21~+0.34 K   
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emissivity of 

building 

envelope, 

street aspect 

ratio, plan 

density 

[75] Basel, 

Switzerland

; Toulouse, 

France; 

Temperate 

maritime 

Thermal 

properties of 

construction 

materials 

City Simulation 

(UWG) 

1 year T: +2.4~+3.6 

K  

[13] Zürich, 

Switzerland

; Temperate 

maritime 

Building 

height 

topologies of 

district 

District Simulation 

(OpenFOA

M & 

CitySim) 

A 

select

ed 

hour 

T: +1.5~+2.5 
K  

[81] Constantine

, Algeria; 

Mediterrane

an 

Street 

height/width 

ratio, sky view 

factor 

District On-site 

monitoring 

1 

month 
T: +3~+6 K 

[82] Lyon, 

France; 

Continental 

temperate 

marine 

Building 

configuration 

of district 

District Simulation 

(SOLENE-

microclimat

) 

Two 

select

ed 

days 

T: +1.7~+2.8 
K  

[83] Serres, 

Greece; 

Mediterrane

an 

District 

geometry and 

street 

configuration 

District On-site 

monitoring 

1 

month 

WS: -67%~-

75%;  

T: +5~+5.5 K 

in afternoon 

and night, -7 
K in morning  

[84] Zürich, 

Switzerland 

District 

geometry and 

albedo 

District Simulation 

(CFD & 

CitySym) 

A 

summ

er 

aftern

oon 

T: +1 K 

[14] Thessalonik

i, Greece 

Cooling 

materials of 

building 

(emissivity and 

albedo), 

district aspect 

ratio 

District Simulation 

(ENVI-met) 

A 

typica

l 

summ

er day 

under 

clear 

sky 

condit

ion 

T: -0.5~-0.7 

K 

Note: T and WS refer to air temperature and wind speed respectively. 
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2.2.2 Impacts of local microclimate on building performance 

Meanwhile, the impacts of the local microclimate can influence building performance across 

different climate conditions [12,15,16,82,88-99]. The representative studies are summarized in 

Table 2.3. The climate conditions vary from temperate to tropical, and from continental to 

maritime. Typical reference buildings were selected as examples to investigate the impacts of 

the local microclimate on building performance in previous studies. Building cooling and 

heating loads are the major building performance metrics of concern. A few studies also 

investigated the impacts of cooling/heating degree days, indoor air temperature, 

dehumidification load, and night ventilation cooling potential [12,15,92]. The simulation 

method is usually adopted to quantify these impacts. The simulation software includes IES-VE, 

TRNSYS, EnergyPlus, DeST, City Energy Analyst, WUFI Plus, and SOLENE-microclimat. 

The simulation period varies from a typical day to several years. 

Table 2.3 shows that the local microclimate significantly impacts building performance in 

different climate conditions and for different building types. For instance, when the local air 

temperature increased by around 1.1-1.2 K, the building cooling load increased by 5% in Zürich, 

Switzerland, with a temperate maritime climate [88], but by up to 41% in Milan, Italy, with a 

Mediterranean climate [92]. Zinzi et al. monitored the UHI effect in Rome, Italy, which led to 

an increase in air temperature of about 0.7 K in summer and 1 K in winter compared with a 

rural reference. The monitored data were used to simulate building energy consumption, and 

the results showed that the UHI effect resulted in a reduction in heating energy consumption 
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by up to 21% in residential buildings and 18% in office buildings, while the urban heat island 

effect resulted in an increase in cooling energy consumption by up to 74% in residential 

buildings and 53% in office buildings in the Mediterranean climate [16]. Palme et al. estimated 

the cooling demand of various types of residential buildings in four South American Pacific 

coastal cities, considering the UHI effect to investigate its impact on building energy 

performance. The results indicated that the UHI effect led to an increase in building cooling 

demand in the range of 15~200% in the tropical rainforest and desert climates [91]. Cui et al. 

analyzed the UHI effect in Beijing, China, utilizing the long-term measured weather dataset 

from 1961 to 2014 for ten rural stations and seven urban stations. When taking the UHI effect 

into consideration, the cooling load increased by 11%, while the heating load decreased by 16% 

in the temperate monsoon climate [94]. Merlier et al. investigated the energy demand of a 

monozonal building, considering the urban microclimate in Lyon, France. It is concluded that 

an increase of air temperature in the range of 1.7~2.8 K resulted in a decrease in heating demand 

in the range of 5~7%, while it resulted in an increase in cooling demand in the range of 23~100% 

in the continental temperate marine climate [82]. 

Table 2.3 Representative studies on the impacts of local microclimate on building 

performance 

Referen

ce 

Location 

and climate 

Variation 

of 

microclima

te 

Building 

type 

Quantificati

on method 

Period Impacts on 

building 

performance 

[12] Reading, 

UK; 

Temperate 

maritime 

T: -

0.27~+0.73 
K 

A five-

storey 

faculty 

building 

Simulation 

(IES-VE) 

1 year HL: -10.8%; 

night 

ventilation 

cooling 

potential: 

+26~+31% 
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[88] Zürich, 

Switzerland; 

Temperate 

maritime 

T: -

0.7~+1.2 
K; WS: -

1.7~-

0.1m/s 

Real 

building

s in a 

district 

Simulation 

(City 

Energy 

Analyst) 

An 

extrem

e hot 

day 

CL: +5% 

[15] Shenzhen, 

China; 

Subtropical 

monsoon 

T: +5.9 K;  

RH: -

26.3% 

4 DOE 

referenc

e 

building

s 

Classical 

equations 

1 week Cooling 

degree days: 

+12.60%, 

heating degree 

days: -11.92% 

[16] Rome, Italy; 

Mediterrane

an 

T: +2.8 K 

in summer, 

+1 K in 

winter  

A 

residenti

al 

building 

& an 

office 

building 

Simulation 

(TRNSYS) 

3 years CL: 

+53~+74%; 

HL: -18~-21% 

[91] 4 South 

American 

Pacific 

coastal 

cities; 

Tropical 

rainforest & 

desert 

T: -1.15 ~ 

+0.59 K at 

night, 

+0.15 ~ 

+4.87 K in 

daytime 

Single 

building 

Simulation 

(UWG and 

TRNSYS) 

A 

summ

er 

week 

CL: 

+15~+200% 

[92] Milan, Italy; 

Mediterrane

an 

T: +1.1 K;  

H: -

0.67g/kg 

A 

residenti

al 

building 

Simulation 

(WUFI 

Plus) 

6 years HL: -12~-

16%; CL: 

+39~+41%; 

dehumidificati

on load: -74~-

78%;  

T: +1.4+1.5 K 

[93] Barcelona, 

Spain; 

Mediterrane

an 

T: +1.7 K 

in summer, 

+2.8 K in 

winter  

A 

residenti

al 

building 

Simulation 

(EnergyPlus

) 

Two 

summ

er days  

Sensible CL: 

+18%~+28% 

[94] Beijing, 

China; 

Temperate 

monsoon 

T: +2.5 K 

in summer 

daytime, 

+8 K in 

winter 

nighttime  

A seven-

storey 

office 

building 

Simulation 

(DeST) 

1 year CL: +11%;  

HL: -16% 

[96] Hong Kong, 

China; 

Subtropical 

monsoon 

T: +2.4 K;  

H: 

+0.68g/kg 

A high-

rise 

residenti

al 

building 

Simulation 

(DeST) 

9 years Sensible CL: 

+100%; latent 

CL: +96% 

[82] Lyon, T: A Simulation Two HL: -5%~-7%; 
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France; 

Continental 

temperate 

marine 

+1.7~+2.8 
K 

monozo

ne 

building 

(SOLENE-

microclimat

) 

selecte

d days  

CL: 

+23~+100% 

Note: T, RH, H and WS refer to air temperature, relative humidity, absolute humidity and wind 

speed respectively; HL and CL refer to heating load and cooling load respectively. 

2.2.3 Studies on mutual impacts between buildings and local microclimate 

It can be observed that considerable work has been done to investigate the impacts of building 

design on the local microclimate and the effects of the local microclimate on building 

performance [12-16,70-99]. The mutual impacts between them are rarely addressed and should 

not be ignored. Due to limited space in developed, high-density cities, the development or 

renewal of individual buildings in existing districts is common compared to developing entire 

districts. The compact layout may result in more significant mutual impacts of building 

variations on the surrounding microclimate. Therefore, a new design perspective is needed for 

developing individual buildings in existing high-density districts. 

According to existing studies investigating the impacts of the local microclimate on building 

performance, most primarily use meteorological data considering the local microclimate  to 

simulate building performance, while the impact of building design on the local microclimate 

is often ignored [16,82,90-99]. Among the large number of studies, only a few (4 [12,15,88,89] 

of the reviewed 37 [12-16,70-99]) study the mutual impacts between them. For instance, Xie 

et al. performed a one-year measurement of the microclimate surrounding four typical types of 

built forms, including a street canyon, a courtyard, a semi-closed courtyard, and a relatively 

larger open area in Reading, UK. A five-storey faculty building was selected as the reference 
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building to simulate the building energy demand, and the results showed that different building 

forms resulted in variations of local air temperature in the range of -0.27~+0.73 K compared 

with typical meteorological year (TMY) data, which led to a decrease of annual heating demand 

up to 10.8% and a variation in night ventilation cooling potential in the range of +26~+31% in 

the Temperate maritime climate [12]. Mosteiro-Romero et al. coupled the microclimate 

simulation model ENVI-met with the district-scale energy simulation tool City Energy Analyst 

to evaluate district energy demand, considering the urban microclimate effect. The results 

indicated that the district microclimate, with variations in local air temperature in the range of 

-0.7~+1.2 K and wind speed in the range of -1.7~-0.1m/s, led to a 5% increase in space cooling 

demand on the selected day and more than an 8% increase in peak cooling load for each 

building in the district with a temperate maritime climate [88]. 

However, several research gaps can still be observed from the literature, particularly regarding 

the design of new individual buildings. Firstly, existing studies mainly investigate the impacts 

of district design rather than those of individual building design on the local microclimate 

[15,88,89]. These district design parameters related to district density and geometry (e.g., plan 

density, street height/width ratio, and sky view factor) are less applicable to individual building 

design due to existing surroundings. Though these research outcomes can be adopted in 

district/urban planning, they are insufficient to support the design of buildings. Secondly, 

several existing studies investigate the impacts of building design on the local microclimate by 

monitoring the local microclimate surrounding the limited existing buildings [12]. However, 
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there is still a lack of comprehensive understanding of the major influential building parameters 

on both building performance and the local microclimate to support building design, 

considering mutual impacts. Thirdly, a simplified geometric model of the neighborhood/district 

is usually used in previous research, which ignores the real terrain [12-16,70-99]. This may 

increase the bias in estimating the impacts between buildings and local microclimate [100]. 

2.3 Modelling and simulation of local microclimate  

2.3.1 Conventional methods  

Currently, predictions of urban climate mostly rely on simulation. Numerous urban climate 

simulations have been performed at different scales, including mesoscale, local scale, and 

microscale [101]. At the mesoscale, the whole city and its surrounding suburban or rural area 

are investigated. The dimension range is typically more than several kilometers. The MESO-

NH model integrated with the Town Energy Balance (TEB) model and the Weather Research 

and Forecast (WRF) model integrated with the Building Effect Parameterization (BEP) model 

are generally used for simulation [16,102]. At this scale, local characteristics cannot be 

explicitly represented due to low horizontal resolution. At the local scale, the microclimate in 

a district is typically modeled. Two major categories of models are used for the simulation, i.e., 

parametric models and explicit models. The parametric models do not represent the explicit 3D 

(three-dimensional) geometry, but use parameters to translate the impacts. Its  dimension range 

is typically a hundred meters to several kilometers. Typical parametric models include the 

Urban Weather Generator (UWG) model, the Canyon Air Temperature (CAT) model, and the 
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Canopy Interface Model (CIM) [75,103]. The explicit models represent the 3D geometry and 

allow for a detailed representation of the microclimate surrounding buildings. Its dimension 

range is typically several meters to a hundred meters. Typical explicit models include ENVI-

met and SOLENE-Microclimat, the simulation of which is based on CFD simulations [82,88]. 

At the microscale, the microclimate of a street is simulated. The dimension range is typically 

several meters to a hundred meters. At this scale, the microclimate can be modeled in more 

detail [70]. Therefore, CFD models are widely developed for local microclimate predictions 

with high 3D resolution.  

CFD simulations can provide a feasible way to make predictions of high-resolution temporal 

and spatial local microclimate information with detailed flow fields by numerically solving sets 

of non-linear governing equations [104]. Considerable work has been done on detailed analysis 

of airflow motion, heat transfer, and contaminant transport, as well as wind flow and pollution 

dispersion around buildings in urban environments through CFD simulations [105]. Chen et al. 

conducted CFD simulations to investigate the influence of building height variations and 

building packing densities on the city breathability and flow adjustment [78]. The results 

showed that with variations in building heights, taller buildings had larger drag forces and 

greater city breathability than shorter buildings. Allegrini et al. performed CFD simulations in 

OpenFOAM to compare the local microclimate created by different district designs. Twelve 

CFD simulation models were developed concerning two designs of district geometries, two 

wind directions, two wind speeds, and two different albedos of building envelopes in Zürich, 
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Switzerland, and the best design was selected for achieving the most comfortable local 

microclimate at pedestrian level (2m above ground) [71]. Yassin investigated the flow and 

dispersion of gaseous emissions from vehicle exhaust in a street canyon with variations in the 

district aspect ratio and wind direction.. The three-dimensional flow and dispersion of gaseous 

pollutants were simulated utilizing a CFD simulation model numerically solved by Reynolds-

averaged Navier–Stokes (RANS) equations. The results indicated that when the wind direction 

and district aspect ratio increased, the pollutant concentration levels decreased [77]. Chow et 

al. conducted a numerical analysis of the airflow and heat dissipation at the condensing units 

of a low-rise residential building in Hong Kong, China. The condenser heat dissipation was 

influenced by the plant room location and the building layout, which affected the surrounding 

local microclimate. The CFD simulations were conducted for five design options in order to 

avoid the adverse effects on the local microclimate [86]. Although CFD simulations are 

effective in providing accurate high-resolution local microclimate predictions, they face great 

challenges in their wide and practical application in new building design optimization due to 

their complexity in setting up simulations and the high computing load. 

2.3.2 Emerging data-driven methods 

The technology advancements and increasing availability of machine learning techniques make 

fast and even real-time predictions of the local microclimate practical. In recent years, a few 

attempts have been made to develop machine learning models for predicting the local 

microclimate [72,106-116]. The representative studies are summarized in Table 2.4. It can be 
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seen that various machine learning methods have been used, e.g., multivariate linear regression, 

gaussian process regression, long short-term memory (LSTM) network, gradient boosting 

regression, artificial neural network (ANN), random forests (RF), support vector regression 

(SVR), recurrent neural network (RNN) and generative adversarial network (GAN). Different 

models have been developed to predict local microclimate (e.g., wind velocity, air temperature, 

relative humidity, and solar radiation) at building, district, and city scales. The urban 

morphological parameters and the meteorological parameters are usually used as the model 

inputs. CFD simulation data are mostly used for the model development, while very few studies 

utilize monitoring data.  

Wu et al. constructed surrogate models to predict the wind velocity ratio and wind velocity 

Gini index of a residential district based on 400 CFD simulation results, in which eleven urban 

morphological parameters are determined as the model inputs. Overall, six machine learning 

algorithms, including multivariate linear regression, multivariate polynomial regression, 

support vector regression, random forest regression, bagging regression, and gradient boosted 

regression trees regression, are compared to determine the best fit surrogate model for assisting 

mathematical urban microclimate design optimization [106]. 

Wu et al. used Gaussian process regression to train the prediction model of pedestrian-level 

wind velocity to assist the optimization of wind comfort utilizing 90 CFD simulation results. 

The building factors included building width, building depth, building height, and building 

orientation angle, which were determined as the model inputs, while the wind velocity at 57 
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measuring positions in the district was determined as the model output. The model achieved 

good performance and its mean absolute error (MAE) was in the range of 0~0.2 m/s [107]. 

Kastner et al. developed a surrogate model for prediction of wind velocity distributions in an 

urban district utilizing the GAN algorithm, which was able to process arbitrary building 

geometries. Structural Similarity Index Measure was selected as the performance index of the 

model accuracy, the value of which ranged from 75% to 97% based on the CFD simulation 

results of 564 different urban geometries [108]. 

Huang et al. developed a GAN-based surrogate model to accelerate the environmental 

performance-driven urban design optimization, through which pedestrian level wind, annual 

cumulative solar radiation, and Universal Thermal Climate Index (UTCI) in urban districts 

could be predicted in real time. 300 CFD simulation results, radiation simulation results, and 

UTCI simulation results for obtaining the distributions of pedestrian-level wind, annual 

cumulative solar radiation, and UTCI under varied morphologies of urban blocks were used to 

generate the dataset for training. The results showed that the GAN-based surrogate model can 

speed up 120–240 times compared to conventional numerical simulations.  [109]. 

Zhang et al. developed a long short-term memory network model based on on-site monitoring 

data to predict the local microclimate of the target building for the next hour [114]. The model 

had a rather low root mean squared error (RMSE) of 0.75 °C for air temperature and 0.65 m/s 

for wind velocity, indicating high accuracy in prediction, indicating a rather high accuracy for 

prediction. 
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Kong et al. simulated the microclimate in a district in the U.S. based on CFD and Geographic 

Information System (GIS), and used the simulation data to train the ANN-based microclimate 

model for predicting local wind velocity and temperature under variations in wind direction 

[115]. Five sets of CFD simulation results of the whole computational domain were utilized to 

obtain the dataset for model development. 

Table 2.4 Representative studies on local microclimate prediction model development 

adopting machine learning methods 

Referenc

e 

Inputs Outputs Machine 

learning 

methods 

Microclimat

e scale 

Data source 

and volume 

[106] 11 urban 

morphologica

l parameters 

Wind 

velocity 

ratio, wind 

velocity 

Gini index 

Multivariate 

linear 

regression, 

multivariate 

polynomial 

regression, 

SVR, RF, 

bagging 

regression, 

gradient 

boosted 

regression 

District 400 CFD 

simulation 

data 

[107] Building 

width, 

building 

depth, 

building 

height, 

building 

orientation 

angle 

Wind 

velocity at 

of 57 

measuring 

positions 

Gaussian 

process 

regression 

District of 

target 

building 

90 CFD 

simulation 

data 

[108] Wind velocity 

distribution 

under varied 

morphologies 

of urban 

block 

Wind 

velocity 

distribution 

GAN District 564 CFD 

simulation 

data 
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[109] Pedestrian 

level wind, 

annual 

cumulative 

solar 

radiation, 

Universal 

Thermal 

Climate Index 

(UTCI) 

distribution 

under varied 

morphologies 

of urban 

block 

Pedestrian 

level wind, 

annual 

cumulative 

solar 

radiation 

and 

Universal 

Thermal 

Climate 

Index 

(UTCI) 

distribution 

GAN District 300 CFD, 

Radiation, 

UTCI 

simulation 

data 

[110] Wind velocity 

distribution 

under varied 

morphologies 

of urban 

block 

Wind 

velocity 

distribution 

GAN District 1025 CFD 

simulation 

data 

[111] Height, width 

of main 

structure, 

height, width, 

depth, shape 

of central 

core, 

orientation of 

building 

Percentage 

of wind 

comfort, 

percentage 

of thermal 

comfort 

ANN Lift-up 

building 

150 CFD 

simulation 

data 

[112] Wind 

velocities at 

different 

locations 

around the 

building 

Wind 

velocities at 

unmeasured 

locations 

around the 

building 

GAN, 

multiple 

imputations 

by chained 

equations 

(MICE), 

neighbored 

distanced 

imputation 

(NDI) 

Target 

building 

Measurement 

data of wind 

velocity at 

555 locations 

[113] Wind velocity 

distribution 

under varied 

morphologies 

of urban 

block 

Wind 

velocity 

distribution 

Convolutiona

l neural 

network 

(CNN) 

District 3500 CFD 

simulation 

data 
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[114] 24 hours data 

of 

temperature, 

relative 

humidity, dew 

point, solar 

radiation, 

wind 

direction, 

wind speed 

Following 

one hour 

data of 

temperature

, relative 

humidity, 

dew point, 

solar 

radiation, 

wind 

direction, 

and wind 

speed 

LSTM Target 

building 

4 years 

measurement 

data from 

2016 to 2019 

[104] Urban 

density, target 

building 

heights, 

buildings’ 

height 

variation, 

opening size, 

wind 

direction, 

orientation of 

urban canyons 

CIOI index 

reflecting 

cross 

ventilation 

potential 

Multivariate 

linear 

regression, 

gradient 

boosting 

regression 

Target 

building 

3,840 CFD 

simulation 

data 

[72] Urban 

morphology 

factor, solar 

exposure 

factor, albedo 

coefficient 

Average 

monthly 

temperature 

Multiple 

linear 

regression 

City Weather data 

from weather 

stations in 

Turin, 

satellite data 

and urban 

variables data 

from the 

Technical 

Map of the 

Metropolitan 

[115] 3 orthogonal 

coordinates 

(x,y,z) and the 

wind direction 

3 wind 

velocity 

components 

(vx,vy,vz) 

and the air 

temperature 

ANN  District 5 sets of CFD 

simulation 

data of the 

whole 

computationa

l domain 

[116] Wind velocity 

distribution 

under varied 

layout and 

configurations 

of 4 buildings 

Wind 

velocity 

distribution 

CNN District 3600 CFD 

simulation 

data 
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However, several research gaps can still be observed from the literature. Firstly, the dataset 

collection of some existing studies is relying on monitoring the existing buildings, district or 

city, which cannot meet the need of investigating the effect of building variations on local 

microclimate to help with the building optimal design [72,112,114]. Secondly, many existing 

machine learning models are developed to predict the local microclimate under the variations 

of urban morphologies rather than building morphologies [106,115]. The models can be 

applied for district and urban planning, but not applicable to the new individual building design 

in high-density cities. As for the models concentrating on the building design, the input 

variables are not comprehensive enough and ignored some key design parameters such as 

thermal characteristics [107]. The influence of building on local microclimate has been 

underestimated. There is still lack of the prediction model of local microclimate assisting the 

systematic and comprehensive analysis for building design. Thirdly, many deep learning 

models (i.e., CNN, GAN) developed to predict the spatial distribution of local microclimate 

parameters have limitations regarding the model complexity and high requirement for the data 

volume and data quality, which increases the computational cost [108-113,116]. The accuracy 

of these models significantly relies on the dataset volume for model training [109], which is 

not friendly to the research whose data generation depends on the time-consuming CFD 

simulations. The larger the data volume is required, the more computational cost increases. 

Fourthly, the current predictions are mostly concerning about the wind flow, very few papers 

concentrate on the air temperature which is essential to the outdoor thermal comfort [72,114]. 
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2.4 Design optimization of zero/low energy buildings and local microclimate 

2.4.1 Design optimization of zero/low energy buildings 

As buildings are considered as the key factor affecting total global energy consumption, the  

design optimization of zero/low energy buildings are investigated with growing interests in 

recent years. Previous studies related to design optimization of buildings mainly focus on the 

building envelope design and energy systems design [117-133].  

The optimized variables of building envelope design can be summarized into categories of 

building layout and shape parameters, envelope thermal characteristics parameters, 

construction quality parameters and energy efficient strategy parameters [117-133]. The 

parameters related to building layout and shape include building orientation, footprint, building 

aspect ratio, number of storeys, building-height-to-street-width ratio, window-to-wall ratio, etc. 

The parameters related to envelope thermal characteristics include the U-value, thermal 

absorptance, solar absorptance, solar heat gain coefficient, visible light transmittance of wall, 

roof and window, etc. The parameters related to construction quality include air-tightness of 

façade, linear coefficient of thermal bridges, etc. The parameters related to energy efficient 

strategy, such as shading strategy parameters, include shading material type, overhang 

projection ratio, overhang depth, overhang installation angle, etc. 

The variables related to energy systems mainly include HVAC system parameters, power 

generation system parameters, and energy storage system parameters. The cooling/heating 

setpoint temperature, supply air temperature setpoints, supply/return water temperature 
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setpoints, heat exchanger efficiency, ventilation supply airflow rate, capacity and number of 

wind turbines and chillers, capacity of battery, photovoltaic surface area and photovoltaic tilt 

angle on façades are widely used for design optimization of building energy systems [117-133]. 

The objectives concerned in building design optimization are mainly minimizing the building 

energy demand (e.g. energy demand of cooling, heating and lighting), minimizing the building 

life cycle cost and life cycle environmental impact; while maximizing the power generation of 

renewable energy, maximizing the indoor thermal comfort and visual comfort [117-133]. The 

optimization methods used include genetic algorithm (GA), ant colony optimization algorithm 

(ACO), particle swarm optimization algorithm (PSO), response surface method (RSM), firefly 

algorithm, Manta-Ray foraging optimization algorithm and hypervolume estimation algorithm 

(HypE).  

For instance, Li et al. made the coordinated optimal design of building envelope and energy 

systems using GA for stand-alone and grid-connected zero/low energy buildings. The multi-

stage design optimization was conducted considering the interactions between building 

envelope and energy system. The Hong Kong zero carbon building was utilized as the reference 

building, and the results showed that  the proposed method could efficiently save 4% of the 

total cost comparing with the uncoordinated design and reduce the accumulated unmet cooling 

loads by over 22% [117]. Bui et al. used modified firefly algorithm to optimize the design of 

the adaptive façade system in buildings, in which the thermal and visible transmittance was 

adaptive to the dynamically varying climatic conditions. Two case studies including a typical 
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single office room and a medium office building were conducted for validating the performance 

of the adaptive façade system, and the results indicated that 14.2–29.0% building energy 

consumption could be reduced compared to the static façades [124].  

However, the mutual impacts between building design and local microclimate are not 

concerned in the process of building design optimization [117-133]. Based on the literature 

review [106,107,109,111,116-138], it can be observed that there has been no current research 

finding the compromise design solution to making balance of building energy performance and 

outdoor thermal comfort. It means there is a lack of consideration of mutual impacts between 

building design and microclimate when making the design optimization. Among the large 

numbers of studies on building design optimization, the objective related to ensuring outdoor 

thermal comfort has not been addressed [117-133]. In the meanwhile, the impact of the local 

microclimate on building energy demand has been largely ignored [106,107,109,111,116,134-

138]. It may lead to significant bias of energy performance estimation affecting the results of 

building design optimization [100]. 

2.4.2 Design optimization of local microclimate 

With growing interest in the outdoor wind and thermal comfort in recent years, several studies 

have investigated the urban microclimate and addressed the environmental performance 

optimization based on data-driven models. The representative studies are summarized in Table 

2.5 [106,107,109,111,116,134-138]. It can be seen that the microclimate optimization is mostly 

proceeded at the district scale. The optimization variables mainly include urban morphological 
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design parameters (e.g. building coverage ratio, plan area density, buildings geometry 

configuration) and building morphological design parameters (e.g., building width, depth, 

height, orientation). The design variables are generally optimized under typical meteorological 

weather condition to minimize building energy demand, life cycle cost or environmental impact 

e.g., carbon emissions and pollutant emissions), while maximizing renewable power generation, 

indoor thermal comfort, and visual comfort. Detailed evaluation indexes related to wind and 

thermal comfort are used as the optimization objectives, such as the wind velocity ratio, the 

wind velocity Gini index, the Universal Thermal Climate Index (UTCI), and the 

Physiologically Equivalent Temperature (PET). Optimization methods such as genetic 

algorithm (GA), ant colony optimization algorithm (ACO), particle swarm optimization 

algorithm (PSO), response surface method (RSM), firefly algorithm, Manta Ray foraging 

optimization algorithm and hypervolume estimation algorithm (HypE) are widely adopted. 

For instance, Wu et al. adopted Non-dominated Sorting Genetic Algorithms (NSGA-II) to 

address the urban morphological design problems in order to maximize economic benefits 

while ensuring the outdoor wind comfort for a residential district. In this way, a near-optimal 

site plan with a wind velocity ratio of 0.36, a wind velocity Gini index of 0.31, and a gross 

profit of 4.05 × 108 RMB was obtained [106]. Huang et al. combined GAN-based surrogate 

model with NSGA-II algorithm to achieve real-time optimization of urban morphology in order 

to increase urban block ventilation and reduce thermal discomfort, which offers a time 

advantage over simulations when the number of optimized samples exceeds 174 [109]. 
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Weerasuriya et al. utilized NSGA-II to make design optimization for lift-up buildings in order 

to improve both the wind and thermal comfort in pedestrian level. Through optimizing the lift-

up building parameters, including the height and width of the main structure, the height, width, 

and depth of the central core, and the orientation, the surrounding area of the lift-up building 

with pedestrian thermal comfort was enlarged by 18% in hot climates with calm wind 

conditions and by 10% in cold climates with windy conditions, while the surrounding area with 

pedestrian wind comfort was enlarged by 46% in hot climates with calm wind conditions and 

by 37% in cold climates with windy conditions [111]. 

However, currently, these studies mainly focus on the urban/district design optimization 

[106,107,109,111,116,134-138]. Only a few papers address individual building design [32]. 

The optimization of individual buildings is significant in high-density urban areas, because the 

development or renewal of individual buildings in existing districts is common practice 

compared to the full development of entire districts due to limited available space. A trade-off 

between building performance and local microclimate in design optimization is beneficial 

when considering their interaction (i.e., the impact of building design on local microclimate 

and the impact of local microclimate on building performance). Some key building design 

variables, such as the variables related to envelope thermal characteristics, are ignored 

[107,111,137], which leads to the incomplete optimization. The wind environment is generally 

considered, while the impacts on local air temperature, which is also a primary factor affecting 



 

41 

 

building performance and outdoor thermal comfort, are often ignored 

[106,107,109,111,116,135-138]. 

Table 2.5 Representative studies on design optimization of local microclimate based on data-

driven methods 

Reference Variables Objectives Optimization 

methods 

Optimization 

scale 

Goals 

[106] Building width; 

building depth; 

floors number 

of high-rise 

building, mid-

rise building 

and low-rise 

building 

Wind velocity 

ratio; wind 

velocity Gini 

index; gross 

profit 

NSGA-II District Maximize 

economic 

benefits; 

maximize 

outdoor wind 

comfort 

[107] Building width; 

building depth; 

building 

height; 

building 

orientation 

Positions 

meeting wind 

comfort level 

NSGA-II Target 

building 

Maximize 

summer and 

winter outdoor 

wind comfort 

[109] Building 

coverage ratio; 

floor area ratio; 

average 

building 

height; 

standard 

deviation of 

building 

height; 

building shape 

factor; frontal 

area ratio 

Pedestrian 

level wind; 

radiation; 

UTCI 

NSGA-II District Maximize 

urban block 

ventilation; 

minimize heat 

and discomfort 

[111] Height and 

width of main 

structure; 

height, width, 

depth of central 

core; 

orientation of 

building 

Percentage 

area of wind 

comfort; 

percentage 

area of 

thermal 

comfort 

NSGA-II Lift-up 

building 

Maximize 

pedestrian 

wind comfort 

and thermal 

comfort 
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[116] Aspect ratio; 

ratio of long 

side to short 

side; horizontal 

rotation angle 

of building; 

corner cutting 

dimensions at 

corners of 

building 

Building 

height; along-

wind force 

coefficient; 

wind velocity 

GA; SA; 

sequential 

quadratic 

programming 

method 

District Minimize 

wind forces; 

minimize local 

strong winds 

around 

buildings; 

maximize 

heights of 

buildings in 

development 

area 

[134] Angle of 

central street 

segment, 

bridge location, 

building 

volumes. 

Minimize 

squared 

difference 

from target 

temperature, 

maximize 

comfortable 

area and 

minimize 

dangerous 

areas, 

maximize 

visitor 

potential, 

minimize 

average travel 

time 

GA City Maximize 

outdoor wind 

comfort and 

thermal 

comfort 

[135] Buildings 

heights 

configuration; 

plan area 

densities 

Aerodynamic 

index of urban 

area 

GA; PSO District Improve 

pedestrian-

level wind 

conditions; 

minimize low-

wind-speed 

regions; 

maximize 

outdoor urban 

ventilation; 

maximize 

outdoor wind 

comfort 
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[136] Building 

densities; 

building plot 

ratios; building 

height; number 

of buildings in 

the plot; 

number of 

buildings in the 

columns; 

building 

spacing 

Sunshine 

hours; wind 

speed; solar 

radiation heat 

gain 

GA District Maximize 

outdoor wind 

comfort and 

thermal 

comfort 

[137] Face-to-face 

gaps between 

buildings; 

height of upper 

building; 

height of lift-

up core, width 

of lift-up core 

Area 

weighted 

mean wind 

velocity ratio; 

area weighted 

PET 

NSGA-II Lift-up 

building 

Maximize 

pedestrian 

level wind 

comfort and 

thermal 

comfort 

[138] Buildings’ 

layout in the 

block 

Daylight 

factor; sky 

view ratio; 

window 

sunlight 

hours; site 

sunlight 

hours; UTCI 

NSGA-II District Maximize 

indoor visual 

comfort and 

outdoor 

thermal 

comfort 

2.4.3 Multi-objective design optimizations 

The mutual impacts between buildings and the local microclimate have not been addressed in 

design optimization due to the complexity of attaining design objectives related not only to 

building performance but also to microclimate improvement. When different design objectives 

need to be attained, decision-makers can only agree on compromise design solutions to achieve 

a balance and maximize the benefits of multiple conflicting objectives [107]. With the 

increasing application of multi-objective optimization methods, different objectives can be 

optimized simultaneously and the global optimum solutions can be found. Evolutionary 
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algorithms are popular methods used for solving the problem of multi-objective optimization 

as they can address computational complexity, spread, and convergence of Pareto solutions 

[139]. The non-dominated sorting approach NSGA-II is the most wildely used method in 

tackling microclimate optimization due to its good performance and fast convergence speed, 

as shown in Table 2.5.  

For instance, Wu et al. reached compromise design solutions of building morphology 

considering different wind comfort requirements in winter and summer using the evolutionary 

search algorithm. The building morphology variables, including building width, depth, height, 

and orientation, were optimized for the positions meeting the wind comfort level based on 

NSGA-II [107]. 

Du et al. investigated the design optimization for lift-up buildings utilizing NSGA-II in order 

to maximize both the wind and thermal comfort. The Pareto optimal solutions were identified 

for both weighted wind velocity parameter and outdoor thermal comfort parameter PET, in 

which  the face-to-face gaps between buildings, the height of the upper building, the height of 

the lift-up core, and the width of the lift-up core were optimized [137]. 

Wang et al. used NSGA-II to optimize the layout of high-rise residential buildings in the district 

in order to find integrated solutions ensuring both indoor visual comfort and outdoor thermal 

comfort. The results showed that almost 21% of the building layout options had better 

performance than the baseline case due to the identified top 30 options out of 150 options, in 
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which the objectives related to daylighting were maximized while the objectives related to 

thermal discomfort were minimized [138]. 

2.5 Summary of research gaps 

This chapter provides a comprehensive review of the mutual impacts between zero/low energy 

buildings and the local microclimate, as well as their optimal design. Based on the above review, 

the research gaps can be summarized as follows:  

• The key design parameters for high-rise buildings have not been sufficiently investigated. 

Current studies on key design parameters mainly focused on low-rise buildings, but the 

significant difference between low-rise and high-rise buildings cannot be ignored. There 

is a lack of comparison between the key design parameters of high-rise and low-rise 

buildings. Existing studies investigating the key design parameters in different climate 

zones are insufficient for making a comprehensive comparison due to the limited 

parameters considered. 

• The mutual impacts between zero/low energy buildings and the local microclimate are 

seldom studied in existing studies. The existing studies mainly investigate the impacts of 

district design rather than individual building design on the local microclimate, which is 

insufficient to support the zero/low energy building design. The simplified geometry 

model of the neighborhood/district is usually used in previous research, which may 

introduce bias when estimating the impacts between buildings and the local microclimate. 
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• There is still a lack of fast and accurate prediction models for the local microclimate that 

assist in the systematic and comprehensive analysis of zero/low energy building design. 

Existing machine learning models have been developed to predict the local microclimate 

under variations of district morphologies rather than building morphologies. They are not 

applicable for assisting zero/low energy building design.  The input variables are not 

comprehensive enough, and some key design parameters are ignored, which may lead to 

underestimating the building's impact on the local microclimate. 

• The mutual impacts between buildings and the local microclimate have not been addressed 

in design optimization due to the complexity of identifying compromise design solutions 

that balance building energy performance and outdoor thermal comfort. Most of the 

current studies focus on district design optimization rather than building design 

optimization. Some key building design variables, such as variables related to envelope 

thermal characteristics, are ignored, resulting in incomplete optimization. 
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CHAPTER 3   OVERVIEW OF THE RESEARCH SCENARIO 

AND BUILDING PERFORMANCE SIMULATION 

This chapter presents an overview of the research scenario and the automated building 

simulation model used in this study. A typical design scenario in a high-density urban area, in 

which a new zero/low energy building is to be developed in an existing district in Hong Kong, 

is determined as the research scenario for the test and validation of the proposed method. The 

automated building simulation with efficiency and generalizability is utilized to simulate the 

building energy performance for the analysis of mutual impacts and the test and validation of 

the proposed surrogate models of local microclimate and the proposed coordinated design 

method in this PhD study. 

3.1 Description of the research scenario 

A new zero/low energy building to be developed in Kowloon, Hong Kong is used as the case 

to investigate the mutual impacts between individual zero/low energy building design and local 

microclimate in high-density city in this study. This will also test and validate the proposed 

surrogate models of local microclimate and the proposed coordinated design method in a high-

density city. Due to the limited available space in developed and high-density cities, the 

development or renewal of individual buildings within existing districts is a common practice 

compared to the full development of entire districts. Figure 3.1 shows an aerial view of the 

study area and the location of the new zero/low energy building. 
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The zero/low energy building will be located on a hillside near Tat Hong Avenue, Kowloon, 

which is a dense and central urban area in Hong Kong. The maximum land area available for 

the new building is 170m×125m. Hong Kong is characterized by high-density and high-rise 

development. The climate in Hong Kong is subtropical monsoon. In summer, the average air 

temperature is approximately 28℃ and the average relative humidity is more than 80% [140], 

while in winter, an ambient temperature below 10℃ is uncommon in urban areas [43]. The 

prevailing wind direction is from the east. 

 

Figure 3.1 Aerial view of the study area and the location of the new building 

3.2 Building performance simulation 

The impacts of the local microclimate on the building energy performance considering the 

interaction between them are quantified by: the building energy consumption per area of the 

building in subtropical region on summer typical design day including 24 hours. The weather 
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data which considers the impacts of local microclimate is used for the building energy 

performance simulation. 

The automated building performance simulation model is utilized to quantify building energy 

consumption. In climate zones without heating provision, the building energy consumption 

consists of the energy consumption for cooling, lighting, and other equipment in the building. 

In the climate zones with heating provision, the building energy consumption consists of the 

energy consumption for cooling, heating, lighting and other equipment in the building. In 

Chapter 4, in order to make a comprehensive analysis and comparison of the design parameters 

of zero/low energy buildings in different climate zones, a total of five typical cities in five 

different climate zones are investigated in the sensitivity analysis. In Chapter 5, Chapter 6, and 

Chapter 7, in order to test and validate the proposed methods, only the research scenario in 

Hong Kong with the subtropical monsoon is utilized as the case study. 

The building is assumed to function as a public building that integrates teaching, offices, events, 

and accommodation for a campus. It is designed to serve as versatile spaces accommodating 

various activities and needs and to provide users with a multifunctional environment that 

facilitates communication, learning, work, and living activities. The building performance 

model is developed using the software EnergyPlus, which is combined with the optimization 

technique through Eppy toolkit in Python. The simulation process is efficient and takes only 

about four seconds for a single simulation. The model also has high generalizability and 

automation due to its easy operation when applied to a new design scenario. The building 
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performance simulation can proceed automatically by only modifying the settings of the 

simulation model in Python. 

In order to take the mutual impacts between building design and local microclimate into 

consideration, the local microclimate data obtained from surrogate models are used as 

meteorological data in the automated building performance simulation to calculate building 

energy consumption. Figure 3.2 shows an example of the building geometry model used for 

building performance simulation. 

 

Figure 3.2 An example of the building geometry model for coordinated design optimization 

A coordinated control of natural ventilation, air conditioning and heating, along with a 

daylighting control system, is adopted, as natural ventilation and daylighting are generally 

utilized to minimize building energy consumption in zero/low energy buildings. The logic of 

the coordinated control of natural ventilation, air conditioning, and heating is illustrated in 

Figure 3.3. When the indoor temperature is between the heating set point and cooling setpoint, 

natural ventilation is utilized to minimize the energy consumption of cooling and mechanical 
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ventilation while maintaining indoor thermal comfort. However, when the indoor temperature 

reaches the heating or cooling set point during the building and system operating time, natural 

ventilation is shut off, and mechanical ventilation is switched on. Outside the operating time, 

mechanical ventilation, air conditioning and heating systems are switched off. When 

mechanical ventilation is on, the heating or cooling system is switched on if heating or cooling 

is required In the absence of heating provision, the Predicted Mean Vote (PMV) is used to 

calculate the discomfort index if the indoor air temperature is equal to or lower than the indoor 

heating set point for winter thermal discomfort assessment. 

In winter, to prevent buildings in severe cold zones and cold zones from suffering from severe 

cold, a constant temperature set point for heating is set at 5℃ outside the building’s operating 

period, according to standards [141]. 

Humidity control is also considered to be part of the simulation model. The set point for relative 

humidity during summer operating time is set at 60% for dehumidification. Humidification is 

not considered in the simulation model because the energy consumption for humidification is 

not included in the calculation of building energy consumption, according to standards [142]. 
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Figure 3.3 Logic of coordinated natural ventilation, heating and air-conditioning controls in 

simulation 

The electric lighting is adjusted based on daylight illumination. Daylight illumination at the 

center of the room, at a height of 2.0 m, is selected as the reference point. The control logic of 

electric lighting is illustrated in Figure 3.4. The lower and upper limits for daylighting 

illuminance are set as 0 and 500 lux, respectively. When daylight illuminance increases 

between the lower limit and upper limit, the electric lighting power input decreases linearly 

from the full lighting load to 10% of the load. When daylight illuminance exceeds 500 lux, the 

electric lighting is switched off, and its power input becomes zero. 
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Figure 3.4 Daylight dimming control logic 

The operating time of the building and the air-conditioning system is from 0:00 to 24:00 on all 

days. The water-cooled electric chillers are adopted for the cooling system. The overall 

coefficient of performance of air-conditioning system is determined as 4. The control logics of 

the air-conditioning and lighting systems in the model are set to maximize the use of natural 

ventilation and daylight. The schedules of the occupancy rate and the utilization rates of electric 

lights, equipment and HVAC system are set according to Table 4-6. As a large number of 

building performance simulations are required for a comprehensive analysis of the mutual 

impact between the new building and the local microclimate, JEPlus is adopted to automate 

the process of conducting numerous building performance simulations. JEPlus can 

automatically modify the parameter values (i.e., the six parameters listed in Table 3) in the 

building simulation model according to the generated scenarios and invoke EnergyPlus to 

perform the simulation. 

Table 3.1 Daily schedule of occupancy rate 

Operating Time Occupancy rate 

0:00~8:00 0.95 

8:00~9:00 0.90 
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9:00~17:00 0.30 

17:00~19:00 0.50 

19:00~24:00 0.95 

 

Table 3.2 Daily schedule of electric light utilization rate 

Operating Time Electric light utilization rate 

0:00~1:00 0.3 

1:00~2:00 0.2 

2:00~6:00 0.1 

6:00~7:00 0.7 

7:00~8:00 0.4 

8:00~10:00 0.6 

10:00~17:00 0.36 

17:00~19:00 0.5 

19:00~24:00 0.8 

 

Table 3.3 Daily schedule of electric equipment utilization rate 

Operating Time Electric equipment utilization rate 

0:00~1:00 0.3 

1:00~2:00 0.2 

2:00~5:00 0.1 

5:00~6:00 0.2 

6:00~7:00 0.4 

7:00~8:00 0.5 

8:00~10:00 0.4 

10:00~17:00 0.25 

17:00~19:00 0.6 

19:00~20:00 0.8 

20:00~23:00 0.9 

23:00~24:00 0.5 

3.3 Summary 

This chapter presents an overview of the research scenario and the automated building 

simulation model used in this study. A typical design scenario in a high-density urban area is 

determined as the research scenario for testing and validating the proposed method. The 
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scenario involves a new zero/low energy building to be developed in an existing district in 

Hong Kong. The automated building simulation is utilized to quantify the building energy 

performance, considering the interaction with the local microclimate, in order to reduce 

computation time and enhance generalizability. The automated building simulation serves as 

the basis for analyzing mutual impacts and for testing and validating the proposed local 

microclimate surrogate models and coordinated design method in this PhD study. 
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CHAPTER 4   IDENTIFICATION OF THE KEY DESIGN 

PARAMETERS OF ZERO/LOW ENERGY BUILDINGS 

UNDER DIFFERENT CLIMATES AND BUILDING 

MORPHOLOGIES 

This chapter presents a systematic and comparative study of the key design parameters of 

building envelopes under different climate conditions and building morphologies. The most 

influential design parameters of high-rise and low-rise zero/low energy buildings in five 

climate zones, which cover three typical climates worldwide, are identified. The global 

sensitivity analysis method, Morris, is used, considering a total of thirty-five design parameters 

under five categories, to identify the key envelope design parameters that significantly affect 

the building energy performance. The key design parameters affecting winter thermal 

discomfort in climate zones typically without heating provision are also identified. The impacts 

of climate and building height are studied and compared. The impact of thermal bridge on 

building energy performance is further investigated. 

4.1 Overview of building models and climate conditions concerned 

4.1.1 Description of high-rise and low-rise building models 

The typical geometry models of the high-rise and low-rise buildings are determined in this 

chapter in order to make comparison of the key design parameters at fair bases, as shown in 

Figure 4.1. The building geometry models are built in the software OpenStudio Sketchup [64]. 

The low-rise building is determined as a one-story building, and the high-rise building is 
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determined as a ten-story building, considering the height requirement [65] while ensuring that 

height difference between the buildings is significant enough to differentiate them for 

investigating the impacts of building morphology. The building shape is determined as a 

rectangle, and the standard floor of the high-rise and low-rise building is set to be the same for 

cross-comparison analysis between them. The floor area of a typical floor is determined as 

500m2 (25m×20m) and the typical floor height is determined as 3.6m. The aspect ratio is 1.25:1 

and the shape coefficient is 0.458. 

   

(a) Low-rise building                         (b) High-rise building 

Figure 4.1 Geometry model of high-rise and low-rise building 

Table 4.1 The internal load settings of the building 

Item Design Value 

Occupancy 4 m2/person 

People load 108 W/person 

Lighting load 10 W/m2 

Electric equipment load 7.6 W/m2 
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Table 4.2 Settings of occupancy rate and the lights and equipment utilization rate 

Operating Time Rate 

8:00~9:00, Weekdays 0.2 

9:00~12:00, Weekdays 0.95 

12:00~14:00, Weekdays 0.5 

14:00~18:00, Weekdays 0.95 

18:00~20:00, Weekdays 0.3 

8:00~18:00, Saturdays 0.3 

The function of the building is assumed to be an office building for both the high-rise and low-

rise buildings. And the internal setting of the simulation model is shown as Table 4.1. The 

operating time of the building and system is 8:00~20:00 on weekdays and 8:00~18:00 on 

Saturdays. The occupancy rate and the lights and equipment utilization rate are set as Table 

4.2. 

4.1.2 Selection of cities in different climate zones 

In this study, all 5 climate zones of different climate conditions in China are studied in order 

to make a comprehensive comparison of the main building design parameters in different 

climate conditions. These 5 climate zones include: severe cold zone, cold zone, hot summer & 

cold winter zone, mild zone and hot summer & warm winter zone, which cover three typical 

climates out of six usually considered in the world. One typical city is selected in each of  the 

five climate zones, as shown in Figure 4.2, including: Harbin, Beijing, Shanghai, Hong Kong 

and Kunming. Their categorization of each typical city in the China’s climate zones and the 

World’s climates are shown in Table 4.3. 
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Table 4.3 The climate zones in China and the climate zones of the world of the typical cities 

Typical cities Climate zones in China Climates in the world 

Harbin Severe cold zone Temperate monsoon climate 

Beijing Cold zone Temperate monsoon climate 

Shanghai Hot summer & cold winter zone Subtropical monsoon and monsoon humid 

climate 

Kunming Mild zone Subtropical monsoon and monsoon humid 

climate 

Hong Kong Hot summer & warm winter zone Tropical monsoon climate 

 

Figure 4.2 Typical cities of the 5 climate zones 

The typical meteorological year (TMY) weather data [55] is used for simulation tests. The 

cities in severe cold zone (Harbin), cold zone (Beijing), and in hot summer and cold winter 

zone (Shanghai) are designed with both cooling and heating provisions due to the presence of 

hot summer and cold winter. However, cities in mild zone (Kunming) and in hot summer and 

warm winter zone (Hong Kong) are designed with only cooling provision , in accordance with 

the local requirements in standards and the normal design practice, despite the occurrence of 

certain cold days beyond the thermal comfort range in winter. 
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4.2 Initial selection of parameters affecting building performance 

A comprehensive and collective consideration of the parameters deemed influential on building 

performance in previous studies is undertaken in this study. A total of 35 parameters affecting 

building performance are considered in the sensitivity analysis. They are divided into 5 

categories including: building layout and shape, envelope thermal characteristics, construction 

quality, system design and energy efficiency measures. The preset ranges of these parameters 

are determined based on the design codes [61-63,65] and previous research [22-69], which are 

summarized in Table 4.4. The ranges are set the same for different climate zones in order to 

make a fair comparison of the key design parameters in different climate zones. Thus wide 

parameter ranges are adopted in this study as the requirements for zero/low energy building 

design are different in different climate zones, while the wide range settings will not lead to 

inaccuracy of the sensitivity analysis results for zero/low energy buildings. Furthermore, the 

parameters are set as continuous variables with a uniform distribution over their preset ranges.  

Among these parameters, some are related to building noumenon design or the building 

envelope design, such as layout and shape, envelope thermal characteristics, construction 

quality, and the overhang under energy efficient measures. The others are not related to 

building noumenon design or building envelope design, such as system design parameters and 

heat recovery parameters under energy-efficient measures. However, they are also included in 

the sensitivity analysis in order to make a comprehensive comparison of the relative 
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significance of each parameter and further identify the key design parameters related to 

building envelope.  

In this study, sensitivity analysis is based on a comprehensive consideration of the building 

envelope parameters, including the parameters related to wall, window, roof and ground, and 

systematic comparison of their impacts in different climate zones. Among these parameters, 

the parameters related to skylight and overhang are mostly ignored and not studied sufficiently 

in previous research. The parameters related to thermal bridge are usually considered as 

influential factors of building energy performance in climate zones with cold winter [41,67]. 

In fact, thermal bridge is identified as a key influential factor in some previous studies [41]. 

But, in those studies, only a few influential factors, rather than all the factors, are considered 

and compared. In this study, a comprehensive study considering all the influential parameters 

is conducted. At the same time, to avoid the underestimation on the impact of thermal bridge, 

the overall wall U-value integrating multiple transmittance types associated to thermal bridge 

is determined in the building performance simulation, as shown in Eq. (4.1) [60].  

                                                          𝑈𝑇 =
∑(𝜑∙𝐿)+ ∑(χ)

𝐴𝑡𝑜𝑡
+ 𝑈0                                               (4.1) 

where, UT is the total assembly wall U-value (W/(m2∙K)), which represents the overall effect 

of thermal bridge. U0 is the wall U value (W/(m2∙K)). Atot is the total opaque wall area (m2). 𝜑 

is the linear thermal transmittance (W/(m∙K)) representing the added heat flow associated with 

a linear thermal bridge that is not included in the U0. L is the length of a linear thermal 
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transmittance (m). χ is the point thermal transmittance (W/K) representing the added heat flow 

associated with a point thermal bridge that is not included in U0. 

Table 4.4 Parameters affecting building performance concerned for sensitivity analysis 

Category Parameter (Unit) Abbreviation Value Range Units 

Layout and 

Shape 

Building orientation BO 0~360 ° 

Window to wall ratio WWR 0.1~0.9 - 

Skylight to roof ratio SRR 0~0.9 - 

Envelope 

Thermal 

Characteristics 

Wall U-value WU 0.09~ 11.1 W/(m2∙K) 

Wall specific heat WSH 800~2000 J/(kg∙K) 

Wall thermal absorptance WTA 0.1~0.9 - 

Wall solar absorptance WSA 0.1~0.9 - 

Wall visible absorptance WVA 0.1~0.9 - 

Roof U-value RU 0.09~ 4.8 W/(m2∙K) 

Roof specific heat RSH 450~1400 J(/kg∙K) 

Roof thermal absorptance RTA 0.1~0.9 - 

Roof solar absorptance RSA 0.1~0.9 - 

Roof visible absorptance RVA 0.1~0.9 - 

Ground slab U-value GU 0.15~2.27 W/(m2∙K) 

Ground slab specific heat GSH 800~2000 J(/kg∙K) 

Ground thermal absorptance GTH 0.1~0.9 - 

Window U-value WIU 0.2~7.0 W/(m2∙K) 

Window SHGC WSHGC 0.1~0.9 W/(m2∙K) 

Window visible light 

transmittance 

WVLT 0.06, 0.1~0.9 - 

Skylight U-value SU 0.2~7.0 W/(m2∙K) 

Skylight SHGC SSHGC 0.1~0.9 W/(m2∙K) 

Skylight visible light 

transmittance 

SVLT 0.06, 0.1~0.9 - 

Construction 

Quality 

Infiltration air mass flowrate 

coefficient 

IAMF 1~1.5 1/h 

Floor slab linear thermal 

transmittance 

FSLTT 0.007~1.842 W/(m∙K) 

Glazing transition linear 

thermal transmittance 

GTLTT 0.030~1.058 W/(m∙K) 

Parapet linear thermal 

transmittance 

PLTT 0.056~1.060 W/(m∙K) 

Corner linear thermal 

transmittance 

CLTT 0.036~0.684 W/(m∙K) 

Interior wall intersection 

linear thermal transmittance 

IWILTT 0.039~1.150 W/(m∙K) 

System Design Outdoor airflow rate OAR 0~0.02 m³/(person

∙s) 

Indoor setpoint temperature 

for cooling 

STC 22~28 ℃ 
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Indoor setpoint temperature 

for heating  

STH 16~22 ℃ 

Energy Efficient 

Measures 

Overhang tilt angle OTA 0~180 ° 

Overhang depth as fraction of 

window/door height 

ODF 0~3 - 

Sensible heat recovery 

effectiveness 

SHRE 0~0.9 - 

Latent heat recovery 

effectiveness 

LHRE 0~0.9 - 

4.3 Methodology and procedure for identifying the key design parameters 

Sensitivity analysis is conducted to identify the key design parameters for high-rise and low-

rise buildings in different climate zones. First, an efficient method, Morris, is selected to 

identify the highly sensitive parameters in each climate zone. Then the key parameters, 

essential for the optimal design for high-rise and low-rise buildings in different climate zones, 

are selected. The parameters selected as the inputs in sensitivity analysis are the same for both 

high-rise and low-rise buildings in each climate zone, while the objectives, used to evaluate the 

building performance, are not the same for different climate zones. As for climate zones with 

both cooling and heating provisions, the objective is the total annual energy consumption of a 

building. For zones without heating provision where the thermal comfort cannot be guaranteed 

in winter, the objectives are the building total annual energy and the “winter thermal discomfort” 

instead. Furthermore, the performance objective is quantified by building performance 

simulation and the settings in each model are selected according to the real local design 

conditions for different climate zones. 
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4.3.1 Procedure and methods of sensitivity analysis 

In this study, the sensitivity analysis is conducted to identify the highly sensitive parameters 

which affect the building energy performance in each of the climate zones. As for climate zones 

with heating provision, the sensitivity analysis is conducted to identify the key parameters 

affecting the building energy consumption, while, for climate zones without heating provision, 

the key parameters affecting the building energy consumption and winter thermal discomfort 

are identified respectively. 

The procedure of sensitivity analysis is illustrated in Figure 4.3. First, SimLab is used to 

generate the samples of scenarios as the 'joblist', which will be provided to JEPlus. Then JEPlus 

is adopted to conduct the parametric study according to the joblist based on the building 

performance simulation in EnergyPlus. In this way, the performance objectives in each of the 

input scenarios will be obtained and then be returned to SimLab. Finally, the sensitivity 

analysis will be implemented in SimLab. The sensitivity analysis is performed by quantifying 

the impact of each parameter on the performance objective, such that each parameter will be 

sampled within its preset range. The parametric study is conducted by performing a large 

number of simulations. JEPlus, the parametric study software, is used to set the model 

parameters for building simulation automatically. EnergyPlus will do the building performance 

simulation for each sample. Simlab is the software used to make sensitivity analysis. 

Morris is selected as the sensitivity analysis method, which is a global sensitivity analysis 

method to rank all of the input parameters. It is an efficient sensitivity analysis method with 
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low calculation expense, applicable for analyzing a large number of parameters. In this study, 

Morris sampling method is selected when using the Morris sensitivity analysis method. 2 

indicators are used to measure the sensitivity of each parameter, including μ and σ. The value 

of μ represents the absolute value of elementary effects of a parameter, which reflects the 

importance of this parameter. The value of σ represents the non-linear effects of a parameter, 

which reflects the interactions with other parameters. In this study, only the absolute 

elementary effects are concerned, and thus μ is used to measure the relative importance of each 

parameter. 

 

Figure 4.3 Procedures of sensitivity analysis 

4.3.2 Performance objectives of sensitivity analysis 

In this study, building performance is evaluated using not only the building energy demand but 

also the indoor thermal comfort. The performance objectives of buildings in different climate 

zones are not set the same (as shown in Table 4.5). Instead, they are determined according to 
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the local requirements in standards [62], actual demand of users and design conditions. 

Currently, nearly all of the office buildings in different climate zones are with cooling provision 

in hot summer so that the satisfactory indoor thermal comfort in summer is assumed in this 

study. The buildings in all climate zones adopt the cooling system using water-cooled electric 

chillers for fair comparison. 

Table 4.5 Performance objectives concerned for sensitivity analysis in different climate zones 

Climate zone Performance objective 

Severe cold zone 

Building energy consumption 
Cold zone 

Hot summer & cold winter 

zone 

Mild zone Building energy consumption 

and winter thermal discomfort Hot summer & warm winter 

zone 

In climate zones where the buildings are with heating provision, the satisfactory indoor thermal 

comfort can also be assumed in cold winter. The heating system is determined as district 

heating with gas-fired boiler for buildings in all climate zones with heating provision. The 

performance objective is to quantify building energy consumption only, including that for 

heating, cooling, lighting and other equipment, as shown in Eqs. (4.2) [61]. 

                         𝐸𝑡𝑜𝑡 = (𝐸𝐻𝐸 + 𝐸𝐶𝐸 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸) ∙ 𝑓𝑒𝑙𝑒                                  (4.2) 

                                           = (𝑄𝐻𝐿/
𝑠
/𝑞𝑔𝑎𝑠/𝑞𝑐𝑐𝑜𝑝 ∙ 𝜑𝑐𝑓𝑔𝑡𝑐 + 𝑄𝐶𝐿/SCOP𝑠 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸) ∙ 𝑓𝑒𝑙𝑒 

where, Etot is the performance objective, i.e. the annual total building consumption (kWh), 

which is converted into primary energy. fele is the conversion factor [63]. ELE is the annual 

lighting electricity consumption (kWh). EEE is the annual electricity consumption (kWh) of 

other electric equipment. EHE is the equivalent annual electricity consumption (kWh) for 
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heating. It is converted from QHL the annual heating demand of building (kWh) [61]. ηs is the 

efficiency of district heating system with gas-fired boiler. qgas is the heating value of natural 

gas. qccop is the coal consumption of power generation. φcfgtc is the conversion factor converting 

gas to standard coal. ECE is the annual consumption (kWh) of cooling, which is calculated from 

QCL the annual cooling demand of building (kWh). SCOPs is the overall coefficient of 

performance of air-conditioning system. The values of the factors involved in Eqs. (4.2) are set 

according to the requirements of zero/low energy building design specified in Ref. [63], as 

listed in Table 4.6. 

Table 4.6 Settings of the factors and efficiencies in Eqs. (4.2) 

ll Value Units 

felectricity 2.6 kWh/kWh 

ηs 0.75 - 

qgas 9.87 kWh/m³ 

qccop 0.36 kgce/kWh 

φcfgtc 1.21 kgce/m³ 

SCOPs 4 - 

However, in the climate zones without severe cold winter but there are a few cold days during 

which the indoor environment may be out of the thermal comfort range. Two building energy 

performance objectives are defined. The one is used to evaluate the building energy 

consumption. The other is used to evaluate the winter thermal discomfort. Building energy 

consumption includes that used for cooling, lighting and other equipment. A discomfort index, 

Ddis is defined to evaluate the winter thermal discomfort, which is calculated based on the 

hourly PMV according to Eqs. (4.4-4.5). A PMV value less than -0.5 represents discomfort due 

to too cold [62], which is then accumulated to form the discomfort index. 
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𝐸𝑡𝑜𝑡 = 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐸𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 + 𝐸𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 

                                                = (𝐸𝐶𝐸 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸) ∙ 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦                                        (4.3) 

                = (𝑄𝐶𝐿/SCOP𝑠 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸) ∙ 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

                                                                𝐷𝑑𝑖𝑠 = ∑ 𝑋𝑖                                                           (4.4) 

                                        𝑋,𝑖 = {
|𝑃𝑀𝑉𝑖  − (−0.5)|     𝑃𝑀𝑉𝑖 < −0.5 
0                                  𝑃𝑀𝑉𝑖 ≥ −0.5

                                  (4.5) 

where, Ddis is the thermal discomfort index, which is annual accumulation of hourly thermal 

discomfort in the operating period over the typical year. PMVi is hourly average value of PMV. 

4.4 Results of sensitivity analysis 

4.4.1 High-rise buildings in different climate zones 

Climate zones with heating provision in winter 

The top 20 highly sensitive parameters for the building energy performance of the high-rise 

buildings in climate zones with both heating and cooling provisions are shown in Figure 4.4 

(a-c). These parameters are ranked according to their μ value. It can be seen that the most 

sensitive parameters are the outdoor airflow rate, sensible heat recovery effectiveness, 

infiltration air mass flowrate coefficient, indoor setpoint temperature for heating and indoor 

setpoint temperature for cooling. All of them are the parameters not related to the building 

envelope. The top 3 parameters are the outdoor airflow rate, sensible heat recovery 

effectiveness and infiltration air mass flowrate coefficient. These are the parameters associated 
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to the fresh air heating/cooling loads. It is due to the significant difference between the indoor 

and outdoor temperature and humidity in these regions.  

The other top 10 highly sensitive parameters are associated to overhang, window and wall for 

the high-rise buildings. In the “severe cold zone”, as shown in Figure 4.4 (a), the parameters 

associated to window and wall are the most important building envelope parameters. Where, 

the window U value and WWR are ranked 5th and 7th. The wall thermal absorptance and wall 

U value are ranked 8th and 10th. However, in the “cold zone” and “hot summer & cold winter 

zone” of higher outdoor air temperature, the parameters associated to overhang are the most 

important parameters for the high-rise buildings. Where, the overhang tilt angle and overhang 

depth as fraction are ranked 6th and 9th in “cold zone” and are ranked 6th and 7th in “hot summer 

& cold winter zone”.  

Among the highly sensitive parameters associated to window, the window U-value is more 

sensitive for the zones with lower outdoor air temperature, Where, it is ranked 5th in “severe 

cold zone”, 8th in “cold zone” and 11th in “hot summer & cold winter zone”. With the increase 

of the outdoor air temperature, the window visible light transmittance becomes much more 

significant. It is ranked 10th in “hot summer & cold winter zone”, 11th in “cold zone”, 15th in 

“severe cold zone”. Among the parameters associated to the wall, the results show that the wall 

thermal absorptance is a key parameter influencing the building energy performance. It is 

ranked 8th in “severe cold zone”, 10th in “cold zone” and 12th in “hot summer & cold winter 

zone”. In fact, the wall thermal absorptance has been ignored and rarely been investigated 
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before. The wall U-value is another the highly sensitive one (ranked 10th in “severe cold zone”, 

12th in “cold zone” and 13th in “hot summer & cold winter zone” in this study), which is 

consistent with the conclusion reported in previous studies [9,30]. The parameters associated 

to the overhang, i.e., the overhang tilt angle and overhang depth as fraction of height, are 

significant for the high-rise buildings (both of them are ranked the top ten in the regions with 

heating provision). However, they have seldom been studied before. In terms of the rankings, 

this study shows (see Figure 4.4 (a-c)) that the overhang tilt angle is always more significant 

than overhang depth as fraction of height in regions of concern. 

Climate zones without heating provision in winter 

It can be seen from Fig.6 (d-e) that, in the climate zones without heating in winter, the building 

energy performance is mainly affected by the building envelope parameters. Although the most 

sensitive parameter is indoor setpoint temperature for cooling, nearly all of the other parameters 

of the top 10 are related to overhang, window and wall. In these areas without heating provision, 

overhang tilt angle is still more significant than the overhang depth as fraction of height. The 

overhang tilt angle and overhang depth as fraction are ranked 2nd and 3rd in “mild zone” and 

are ranked 4th and 5th in “hot summer & warm winter zone” respectively. As for the key 

parameters related to window, the window visible light transmittance, WWR and window 

SHGC are the most important ones. The rankings of them are 4th ,5th and 6th in “mild zone” and 

6th, 9th and 8th in “hot summer & warm winter zone” respectively. Among the sensitive 

parameters related to wall, the wall solar absorptance is more significant than the wall thermal 
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absorptance. The wall solar absorptance is ranked 7th and 10th in “mild zone” and wall thermal 

absorptance is ranked 10th and 14th in “hot summer & warm winter zone”, respectively. The 

skylight is also a crucial element for the high-rise buildings. The SRR and skylight SHGC are 

the highly sensitive ones. They are ranked 8th and 9th in “mild zone” and 12th and 11th in “hot 

summer & warm winter zone”, respectively.  

When compared with the “mild zone” where the summer is not severely hot and the winter is 

not very cold, the building performance in the “hot summer & warm winter zone” is affected 

much more by the outdoor fresh air, so that the outdoor airflow rate and infiltration air mass 

flowrate coefficient are more significant. The outdoor airflow rate and infiltration air mass 

flowrate coefficient are ranked 1st and 7th in “hot summer & warm winter zone, and 12th and 

11th in “mild zone” respectively. The latent heat recovery effectiveness (ranked 3rd) is also a 

key parameter in “hot summer & warm winter zone”. But it is not significant in the “mild zone” 

(ranked 16th). Therefore, it is important to the zones where the outdoor air relative humidity is 

much higher such as “hot summer & cold winter zone” (ranked 9th) and “hot summer & warm 

winter zone”. 

In the regions without heating provision in winter, the parameters significantly affecting winter 

thermal discomfort for the high-rise are shown in Figure 4.5 (a-b). It can be seen that the indoor 

thermal discomfort of the high-rise buildings is mainly affected by the outdoor fresh air and 

building envelope. The top 2 significant parameters are the outdoor airflow rate and infiltration 

air mass flowrate coefficient, which are in fact not envelope parameters. As for the building 
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envelope, the wall, window and skylight are the most crucial elements. The wall thermal 

absorptance and solar absorptance, SHGC and area ratio of both window and skylight are the 

highly sensitive ones affecting both the winter thermal discomfort and building energy 

performance in this region. Note, nearly all of them are among the top 10, concerning both the 

winter thermal discomfort and building energy performance. However, the window U-value is 

the key parameter affecting the winter thermal discomfort (ranked 7th in “mild zone” and 6th in 

“hot summer & cold winter zone”) but not significant to energy performance (ranked 14th in 

“mild zone” and 16th in “hot summer & cold winter zone”) of high-rise buildings in zones 

without heating provision. Furthermore, the overhang tilt angle also has high impact on the 

winter thermal discomfort (ranked 11th in “mild zone” and 9th in “hot summer & cold winter 

zone”), although it is not as significant as its impact to the building energy performance (ranked 

2nd in “mild zone” and 4th in “hot summer & cold winter zone”). 
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              (b) Cold zone                           (c) Hot summer and cold winter zone  

          

             (d) Mild zone                            (e) Hot summer and warm winter zone 

Figure 4.4 Highly sensitive (top 20) parameters of the high-rise buildings in 5 climate zones 

― Building energy performance 

    

                        (a) Mild zone                              (b) Hot summer and warm winter zone 

Figure 4.5 Highly sensitive (top 20) parameters of the high-rise buildings in climate zones 

without heating provision ― Winter thermal discomfort 
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4.4.2 Low-rise buildings in different climate zones 

Climate zones with heating in winter 

The top 20 highly sensitive parameters for the building energy performance of the low-rise 

buildings in climate zones with both heating and cooling provision are shown in Figure 4.6 (a-

c). According to the μ value, the most sensitive parameters are not related to building envelope. 

But they are outdoor airflow rate, sensible heat recovery effectiveness, infiltration air mass 

flowrate coefficient and indoor setpoint temperature for cooling. It means that the low-rise 

buildings in these regions are also affected significantly by the fresh air loads because of the 

huge difference between the indoor and outdoor air temperature and humidity.  

The other top 10 highly sensitive parameters of the low-rise buildings in “severe cold zone”, 

“cold zone” and “hot summer & cold winter zone” are associated to the skylight, roof and 

ground. Among the highly sensitive parameters related to skylight, SRR is the significant one 

in the zones with heating provision in winter (ranked 7th in “severe cold zone”, 5th in “cold 

zone” and 5th in “hot summer & cold winter zone”). Besides SRR, the skylight U-value 

becomes much more significant with the decrease of outdoor air temperature (ranked 4th in 

“severe cold zone”, 7th in “cold zone” and 11th in “hot summer & cold winter zone”). The 

skylight SHGC becomes much more significant with the increase of outdoor air temperature 

(ranked 3rd in “hot summer & cold winter zone”, 10th in “cold zone” and 16th in “severe cold 

zone”). Roof U-value and ground slab U-value are the key parameters (ranked 6th and 9th in 

“hot summer & cold winter zone”, 8th and 9th in “cold zone”, 9th and 8th in “severe cold zone”, 
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respectively). Therefore, the U-value of the top surface (e.g., roof and skylight) and the bottom 

surface (e.g., ground slab) of low-rise buildings are very important to the building energy 

performance. The latent heat recovery effectiveness (ranked 10th) is also a key parameter 

affecting the building energy performance in “hot summer & cold winter zone” where the 

outdoor air relative humidity is much higher. 

Climate zones without heating provision in winter 

It can be seen from Figure 4.7 (d-e) that the key parameters affecting building energy 

performance of the low-rise in climate zones without heating provision in winter are 

significantly different with them in climate zones with heating provision. They are mainly 

related to the building envelope, although the setpoint temperature for cooling is the most 

significant parameter (ranked 1st in “mild zone” and 2nd in “hot summer & warm winter zone”). 

According to the rankings of these parameters, the most important elements affecting the 

building energy performance of the low-rise buildings are the skylight and ground. They are 

also the significant elements to the low-rise buildings in the regions with heating provision. 

The key parameters associated to skylight are skylight SHGC, SRR and skylight U-value. They 

are ranked 1st, 2nd and 5th in “mild zone”, 1st, 3rd and 8th in “hot summer & warm winter zone”, 

respectively. The key parameter related to ground slab is the ground slab U-value (ranked 4th 

in “mild zone” and 5th in “hot summer & warm winter zone”), the same as in climate zones 

with heating in winter. While the parameters related to solar protection and solar absorption 

are also important to the climate zones without heating in winter, such as overhang tilt angle 
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(ranked 5th in “mild zone” and “hot summer & warm winter zone”), wall solar absorptance 

(ranked 8th in “mild zone” and 10th in “hot summer & warm winter zone”) and roof solar 

absorptance (ranked 9th in “mild zone” and 11th in “hot summer & warm winter zone”). 

Comparing the key parameters in the “mild zones” and the “hot summer & cold winter zone”, 

the parameters related to outdoor fresh air, including outdoor airflow rate, latent heat recovery 

effectiveness and infiltration air mass flowrate coefficient, are more important to the building 

energy performance in the “hot summer & cold winter zone”. Where, they are ranked 2nd, 6th 

and 7th in “hot summer & warm winter zone” but they are out of the top 10 in “mild zone”. It 

is due to the significant difference of the indoor and outdoor temperature and humidity in the 

“hot summer & cold winter zone”. Besides the key parameters associated to building envelope 

mentioned above, WWR and ground slab specific heat are the highly sensitive parameters in 

the “mild zones” but not sensitive to the “hot summer & cold winter zone”. Where, they are 

ranked 7th and 10th in “mild zone” but they are out of the top 10 in “hot summer & warm winter 

zone”. 

As shown in Figure 4.7 (a-b), the highly sensitive parameters affecting the indoor thermal 

discomfort of low-rise buildings in the zones without heating provision are all associated to the 

building envelope and outdoor fresh air. The most significant parameters are related to skylight, 

including skylight SHGC, skylight U-value and SRR (ranked 1st, 3rd and 5th in “mild zone” and 

1st, 3rd and 8th in “hot summer & warm winter zone”, respectively), the same as the parameters 

affecting the building energy performance. The outdoor airflow rate, infiltration air mass 
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flowrate coefficient and sensible heat recovery, which are not envelope parameters but 

associated to outdoor fresh air, are also the top 10 sensitive parameters. According to the 

rankings, the wall and roof are also the crucial elements of the low-rise buildings besides the 

skylight. The key parameters associated to wall including wall thermal absorptance and wall 

solar absorptance (ranked 6th and 7th in “mild zone” and 7th and 11th in the “hot summer & 

warm winter zone”, respectively). The key parameters associated to roof include the roof U-

value and roof solar absorptance (ranked 8th and 9th in “mild zone” and 5th and 10th in “hot 

summer & warm winter zone”, respectively). 
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                        (d) Mild zone                               (e) Hot summer & warm winter zone 

Figure 4.6 Highly sensitive (top 20) parameters of the low-rise buildings in 5 climate zones 

― Building energy performance 

   

                  (a) Mild zone                            (b) Hot summer & warm winter zone 

Figure 4.7 Highly sensitive (top 20) parameters of the low-rise buildings in climate zones 

without heating provision ― Winter thermal discomfort 

4.4.3 Comparison of highly sensitive parameters for high-rise and low-rise buildings 

In the climate zones with both heating and cooling provision, it can be seen from Figure 4.4 (a-
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energy performance. They are outdoor airflow rate, sensible heat recovery effectiveness, 

infiltration air mass flowrate coefficient, indoor setpoint temperature for heating and indoor 

setpoint temperature for cooling. However, in the climate zones without heating provision, only 

the indoor setpoint temperature for cooling is within the top five highly sensitive parameter not 

related to building envelope. 

According to the rankings of the parameters, the building envelope design parameters affecting 

the building energy performance for the high-rise buildings and low-rise buildings are 

significantly different. As shown in Figure 4.4 (a-e) and Figure 4.6 (a-e), overhang parameters 

are the most important to the high-rise buildings in each climate zones, while skylight is the 

most important to the low-rise buildings. In this study, the key parameters associated to 

overhang including overhang tilt angle and overhang depth as fraction of height. The results 

show that the overhang tilt angle is always more significant than overhang depth as fraction of 

height in each climate zone. It can be seen from Figure 4.4 and Figure 4.6 that skylight SHGC, 

SRR and skylight U-value are the key design parameters associated to skylight of low-rise 

buildings. SRR is the highly sensitive parameters to each climate zone. Skylight U-value is 

more crucial to the climate zone with lower temperature, while as the air temperature increases, 

skylight SHGC becomes more significant.  

Besides the overhang, window and wall are also the important envelope affecting building 

energy performance to high-rise buildings. Among the parameters associated to window, 

WWR is the significant one for each climate zone. Window U-value is more important to the 
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zones with heating in winter, while window visible light transmittance and window SHGC are 

more important to the areas without heating in winter. As for the parameters related to wall, 

wall thermal absorptance is the significant one for each climate zone, but it is ignored and 

rarely investigated before in previous research. Wall U-value is also significant to climate 

zones with heating in winter, while wall solar absorptance is important to the zones without 

heating in winter. Besides the skylight, roof and ground slab are also the important envelope to 

low-rise buildings. The ground slab U-value is important to each climate zone. The U-value of 

roof and window are important to the zones with heating in winter. The solar absorptance of 

roof and wall and overhang tilt angle are important to the regions without heating in winter.  

In these areas where the thermal comfort cannot be guaranteed in winter, the consideration of 

both winter thermal discomfort and the building energy performance is needed. As for the 

parameters influencing the winter thermal discomfort of climate zones without heating 

provision (shown in Figure 4.5 and Figure 4.7), the top parameters are related to outdoor fresh 

air, including outdoor airflow rate and infiltration air mass flowrate coefficient. They are also 

the highly sensitive parameters affecting the building energy performance in “hot summer & 

warm winter zone” to both of the high-rise and the low-rise buildings. However, they are not 

the highly sensitive parameters affecting the building energy performance in “mild zone” 

where the difference of indoor and outdoor air temperature and humidity is small. Therefore, 

the building envelope design in such areas is actually important to the building energy 

performance there.  
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As for the building envelope of the high-rise buildings in zones without heating provision in 

winter, it can be seen from Figure 4.4 (d-e) and Figure 4.5 (a-b) that the wall, window, overhang 

and skylight are the crucial elements to both the winter thermal discomfort and the building 

energy performance. To compare with the high-rise buildings, the skylight becomes the most 

important element of the low-rise buildings affecting both winter thermal discomfort and 

building energy performance (as shown in Figure 4.6 (d-e) and Figure 4.7 (a-b)). Skylight 

SHGC, skylight U-value and SRR are the highly sensitive parameters. 

4.5 Analysis on impact of thermal bridge on building energy performance 

Based on the results of the sensitivity analysis in this research listed in Figure 4.4 (a-e) and 

Figure 4.6 (a-e), it can be seen that the 5 parameters associated to thermal bridge, including 

floor slab linear thermal transmittance (FTLTT), glazing transition linear thermal transmittance 

(GTLTT), parapet linear thermal transmittance (PLTT), corner linear thermal transmittance 

(CLTT) and interior wall intersection linear thermal transmittance (IWILTT), are not the 

crucial ones in the 5 climate zones to both the high-rise and the low-rise buildings. They are 

listed in the 15 (out of the 35) parameters of the least impact on building energy performance 

in 5 climate zones as shown in Table 8 (for the high-rise buildings) and Table 9 (for the low-

rise buildings). However, in some previous research, thermal bridge has a significant impact 

on the building energy consumption especially in the regions where the temperature in winter 

is extremely low [41,66,68,143-151], while the other existing sensitivity analysis did not 

consider thermal bridge as a parameter of high impact [9,22,27,30,43,47,48] or considered but 
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concluded with its insignificance [28]. Three main reasons may lead to the different 

conclusions on the impact of the thermal bridge. The first reason is that, in this study, the preset 

ranges of the parameters associated to thermal bridge are within the normal range under the 

normal construction quality. In order to offer valuable references for the building envelope 

design for the zero/low energy buildings, the extremely poor construction quality or 

maintenance is not considered in this study. The second reason is that, among the large number 

of parameters related to the building energy performance, the rankings of the thermal bridge 

parameters are not the high ones. The third reason is that these 5 individual parameters related 

to thermal bridge are considered separately so that the impacts of individuals may not be 

obvious or significant. 

Thermal bridges refer to the localized areas of high heat flow through walls, roofs and other 

insulated building envelope components. It is caused by highly conductive elements that 

penetrate the thermal insulation and misaligned planes of thermal insulation [66]. These paths 

allow heat flow to bypass the insulating layer and reduce the effectiveness of the insulation, 

leading to significant heat loss in localized areas. 

In this section, a further assessment of the collective impact of the thermal bridge parameters 

is conducted in order to make a comprehensive consideration of the highly sensitive parameters 

affecting the building energy performance and avoid ignorance of critical ones in building 

optimal design. It can be seen from Table 4.7 and Table 4.8 that the 5 individual thermal bridge 

parameters are more influential in the “severe cold zone” compared with the other zones for 
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both the high-rise and the low-rise buildings. Therefore, the “severe cold zone” is selected for 

the further assessment of the collective impact of the thermal bridge parameters. The 5 

parameters related to the linear thermal bridge are therefore assessed as a whole as a combined 

parameter. A combined linear thermal bridge transmittance 𝜑𝑇  is introduced in sensitivity 

analysis by replacing the 5 individual thermal bridge parameters. This combined parameter is 

defined as Eqs. (4.6) [66].  

                                                                   𝜑𝑇 =
∑(𝜑∙𝐿)

∑ 𝐿
                                                        (4.6) 

The results of the sensitivity analysis using the combined linear thermal bridge transmittance 

are shown in Table 4.9. The 15 parameters of the least impact on building energy performance 

in 5 climate zones of the high-rise and low-rise buildings are listed. When comparing the 

sensitivity analysis results considering the impacts of thermal bridge using the 5 individual 

parameters, it can be seen that the ranking of the combined linear thermal bridge transmittance 

is close to the ranking of the 5 individual thermal bridge parameters in the “severe cold zone”. 

The ranking of the combined linear thermal bridge transmittance (CLTBT) for the high-rise 

building is 22 out of the 31 parameters and its ranking for the low-rise building is 25 out of the 

31 parameters. The most sensitive individual thermal bridge parameter of the high-rise 

buildings is parapet linear thermal transmittance (PLTT), which is ranked 22 out of the 35 

parameters. As for the low-rise buildings, the most sensitive individual parameter is the interior 

wall intersection linear thermal transmittance (IWILTT), which is ranked 25 out of the 35 

parameters. Therefore, when the preset ranges of the parameters associated with the thermal 
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bridge are within the normal design range under the normal construction quality, the impacts 

of both the combined parameter and the individual parameters are not significant for both high-

rise and low-rise buildings, though the thermal bridge parameters are more influential for high-

rise buildings compared to low-rise buildings. 

Table 4.7 The 15 (out of the 35 or 34) parameters of the least impact on building energy 

performance in 5 climate zones ― High-rise buildings 

Rank Severe cold 

zone 

Cold zone Hot summer 

& cold 

winter zone 

Mild zone Hot summer 

& warn 

winter zone 

35 CLTT IWILTT RSH - - 

34 GSSH SVLT GSSH CLTT IWILTT 

33 RVA RTA IWILTT IWILTT CLTT 

32 RSH FSLTT GTLTT GTLTT GTLTT 

31 SVLT GSTA RVA RVA PLTT 

30 GSTA RVA SVLT FSLTT FSLTT 

29 GTLTT CLTT CLTT GSTA RSH 

28 RTA RSA PLTT PLTT SVLT 

27 RSA GSSH RTA GSSH RVA 

26 FSLTT RSH FSLTT RSH GSTA 

25 IWILTT GTLTT RSA SVLT GSSH 

24 OR PLTT GSTA RTA RU 

23 WSH WSH WSH WU OR 

22 PLTT SSHGC OR RU RTA 

21 SSHGC OR GSU WSH WU 

 

 Table 4.8 The 15 (out of the 35 or 34) parameters of the least impact on building energy 

performance in 5 climate zones ― Low-rise buildings 

Rank Severe cold 

zone 

Cold zone Hot summer 

& cold 

winter zone 

Mild zone Hot summer 

& warn 

winter zone 

35 RSH PLTT OR - - 

34 CLTT GTLTT IWILTT PLTT IWILTT 

33 FSLTT IWILTT CLTT FSLTT PLTT 

32 GTLTT OR RTA IWILTT FSLTT 

31 RVA RSH PLTT GILTT CLTT 

30 PLTT FSLTT FSLTT OR GTLTT 

29 SVLT WSH GTLTT CLTT OR 

28 OR CLTT WSH WSH WU 
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27 WVA WVA RSH RSH RSH 

26 WSH RSA RSA WU WSH 

25 IWILTT RTA WSHGC SHRE WVA 

24 LHRE GSSH WVA LHRE RVA 

23 ODF ODF WSA WVA RU 

22 GSSH SVLT ODF RVA RTA 

21 WVLT RVA GSSH RTA ODF 

 

Table 4.9 The 15 (out of the 35 and 31) parameters of the least impact on building energy 

performance in severe cold zone 

High-rise buildings Low-rise buildings 

Rank 5 

individual 

parameters 

Rank Combined 

parameter 

Rank 5 

individual 

parameters 

Rank Combined 

parameter 

35 CLTT 31 SVLT 35 RSH 31 RVA 

34 GSSH 30 GSH 34 CLTT 30 WSH 

33 RVA 29 RSH 33 FSLTT 29 WVA 

32 RSH 28 WSH 32 GTLTT 28 RSH 

31 SVLT 27 RTA 31 RVA 27 WVLT 

30 GSTA 26 RVA 30 PLTT 26 SVLT 

29 GTLTT 25 RSA 29 SVLT 25 CLTBT 

28 RTA 24 BO 28 OR 24 BO 

27 RSA 23 GTA 27 WVA 23 ODF 

26 FSLTT 22 CLTBT 26 WSH 22 GSH 

25 IWILTT 21 SSHGC 25 IWILTT 21 RSA 

24 OR 20 WVA 24 LHRE 20 RTA 

23 WSH 19 GU 23 ODF 19 LHRE 

22 PLTT 18 RU 22 GSSH 18 WSHGC 

21 SSHGC 17 LHRE 21 WVLT 17 GTA 

4.6 Recommendations on key building design parameters to be optimized 

In this study, a comprehensive analysis on the significance of the design parameters is also 

made by comparing the assessment results from both this study and previous studies. Among 

all the 35 parameters, the top 20 parameters in each climate zone listed in Fig.6-Fig.9 are 

identified as the highly sensitive parameters. Among them, the key design parameters, which 

need to be optimized at the design stage, are further discussed. 
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In fact, some highly sensitive parameters are not related to building envelope design. Instead, 

they are related to the building energy system design, such as the outdoor airflow rate, heat 

recovery effectiveness, and indoor setpoint temperature for heating or cooling.  Therefore, they 

are not the parameters which need optimization in the building envelope design. In the 

meanwhile, the parameters related to construction quality, such as infiltration air mass flowrate 

coefficient, are not the parameters which need to be optimized because the construction quality 

is the higher the better for good building energy performance. 

Therefore, the top ten highly sensitive building envelope design parameters are further 

discussed concerning building envelope design optimization in each climate zone, as shown in 

Table 4.10 (a-c). The numbers in bracket represent the ranking of each parameter among the 

total of 35 parameters in the sensitivity analysis. As for the climate zones with both heating 

and cooling provision, the building energy performance is the only objective. Therefore, among 

the top ten highly sensitive parameters in the list, professionals can weigh the relative 

importance of the parameters referring to their rankings among the 35 parameters to select the 

parameters for optimization. The more parameters are selected, the more comprehensive the 

optimal design will be, but the more demand for optimization it requires, and the more difficult 

it becomes for the convergence of optimization. Therefore, the professionals need to make 

proper compromise. For the climate zones without heating provision, both of the building 

energy performance and the winter thermal discomfort are the performance objectives. 

Therefore, the professionals can prioritize the parameters and select the optimization 
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parameters from both lists of the ten highly sensitive parameters affecting building energy 

performance and the winter thermal discomfort. 

Table 4.10 (a) Parameters need to be optimization for climate zones with heating provision 

 

 

Rank Severe cold zone Cold zone Hot summer & cold winter zone 

Low-rise High-rise Low-rise High-rise Low-rise High-rise 

1 Skylight U 

Value (4) 

Window U 

Value (5) 

SRR (5) Overhang Tilt 

Angle (6) 

Skylight SHGC 

(3) 

Overhang Tilt 

Angle (6) 

2 Roof U 

Value (6) 

WWR (7) Skylight U 

Value (7) 

WWR (7) SRR (5) Overhang 

Depth as 

Fraction (7) 

3 SRR (7) Wall Thermal 

Absorptance 

(8) 

Roof U 

Value (8) 

Window U 

Value (8) 

Ground Slab U 

Value (8) 

WWR (8) 

4 Ground 

Slab U 

Value (9) 

Overhang Tilt 

Angle (9) 

Ground 

Slab U 

Value (9) 

Overhang 

Depth as 

Fraction (9) 

Roof U Value (9) Window 

Visible Light 

Transmittance 

(10) 

5 Window U 

Value (10) 

Wall U Value 

(10) 

Skylight 

SHGC (10) 

Wall Thermal 

Absorptance 

(10) 

Skylight U Value 

(11) 

Window U 

Value (11) 

6 WWR (11) Overhang 

Depth as 

Fraction (11) 

Window U 

Value (11) 

Window 

Visible Light 

Transmittance 

(11) 

WWR (12) Wall Thermal 

Absorptance 

(12) 

7 Wall 

Thermal 

Absorptance 

(12) 

Wall Solar 

Absorptance 

(12) 

WWR (12) Wall U Value 

(12) 

Window U Value 

(13) 

Wall U Value 

(13) 

8 Wall Solar 

Absorptance 

(13) 

Window 

SHGC (13) 

Wall 

Thermal 

Absorptance 

(13) 

Window SHGC 

(14) 

Overhang Tilt 

Angle (14) 

SRR (14) 

9 Wall U 

Value (14) 

Skylight U 

Value (14) 

Overhang 

Tilt Angle 

(14) 

Wall Solar 

Absorptance 

(15) 

Window Visible 

Light 

Transmittance 

(15) 

Skylight 

SHGC (15) 

10 Overhang 

Tilt Angle 

(15) 

Window 

Visible Light 

Transmittance 

(15) 

Wall U 

Value (15) 

SRR (16) Skylight Visible 

Light 

Transmittance 

(16) 

Wall Visible 

Absorptance 

(16) 
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Table 4.10 (b) Parameters need to be optimization for mild zone without heating provision 

 

Table 4.10 (c) Parameters need to be optimization for hot summer & warm winter zone 

without heating provision 

Rank Low-rise High-rise 

Building energy 

consumption 

Winter thermal 

discomfort 

Building energy 

consumption 

Winter thermal 

discomfort 

1 Skylight SHGC (1) Skylight SHGC (1) Overhang Tilt Angle (2) Wall Thermal 

Absorptance (3) 

2 SRR (2) Skylight U Value (3) Overhang Depth as 

Fraction (3) 

Wall Solar 

Absorptance (4) 

3 Ground Slab U Value 

(4) 

SRR (5) Window Visible Light 

Transmittance (4) 

Window SHGC (5) 

4 Skylight U Value (5) Wall Thermal 

Absorptance (6) 

WWR (5) Window U Value (7) 

5 Overhang Tilt Angle 

(6) 

Wall Solar 

Absorptance (7) 

Window SHGC (6) WWR (8) 

6 WWR (7) Roof U Value (8) Wall Solar Absorptance 

(7) 

Skylight SHGC (9) 

7 Wall Solar 

Absorptance (8) 

Roof Solar 

Absorptance (9) 

SRR (8) SRR (10) 

8 Roof Solar 

Absorptance (9) 

Window SHGC (11) Skylight SHGC (9) Overhang Tilt Angle 

(11) 

9 Ground Slab Specific 

Heat (10) 

Roof Thermal 

Absorptance (12) 

Wall Thermal Absorptance 

(10) 

Wall Specific Heat 

(12) 

10 Window SHGC (11) WWR (13) Wall Visible Absorptance 

(13) 

Skylight U Value (13) 

Rank Low-rise High-rise 

Building energy 

consumption 

Winter thermal 

discomfort 

Building energy 

consumption 

Winter thermal 

discomfort 

1 Skylight SHGC (1) Skylight SHGC (1) Overhang Tilt Angle (4) Wall Thermal 

Absorptance (3) 

2 SRR (3) Skylight U Value (3) Overhang Depth as Fraction 

(5) 

Window SHGC (4) 

3 Ground Slab U Value 

(5) 

Roof U Value (5) Window Visible Light 

Transmittance (6) 

Window U Value (6) 

4 Skylight U Value (8) Wall Thermal 

Absorptance (7) 

Window SHGC (8) Wall Solar 

Absorptance (7) 

5 Overhang Tilt Angle 

(9) 

SRR (8) WWR (9) WWR (8) 

6 Wall Solar 

Absorptance (10) 

Window SHGC (9) Wall Solar Absorptance 

(10) 

Overhang Tilt Angle 

(9) 

7 Roof Solar Roof Solar Skylight SHGC (11) Skylight SHGC (10) 
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It can be seen that the key building envelope design parameters affecting building energy 

performance for high-rise buildings and low-rise buildings are significantly different, which 

indicates the need of different design focuses for their designs. Overhang is the most important 

element for high-rise buildings in all climate zones, while skylight is the most important 

envelope element for low-rise buildings. The key parameters related to overhang include the 

overhang tilt angle and overhang depth as a fraction of height, and both are seldom addressed 

in previous research. Overhang tilt angle is always more significant than overhang depth as 

fraction of height in all climate zones. Skylight SHGC, SRR and skylight U-value are the key 

design parameters associated with skylight of low-rise buildings.  

Besides the overhang, window and wall are the most sensitive ones for high-rise buildings. As 

for the “severe cold zone”, window and wall are the more significant elements compared with 

the overhang concerning the building energy performance, while as for the “cold zone” and 

“hot summer & cold winter zone” with less cold weather, the overhang is the most significant 

element. In the “mild zone” and “hot summer & warm winter zone” without heating provision 

and the guarantee of the winter thermal comfort, the parameters associated to wall, window, 

overhang and skylight are the crucial elements to both the winter thermal discomfort and the 

building energy performance.  

Absorptance (11) Absorptance (10) 

8 WWR (12) Wall Solar 

Absorptance (11) 

SRR (12) Wall U Value (11) 

9 Window SHGC (13) Roof Thermal 

Absorptance (12) 

Wall Thermal Absorptance 

(14) 

Wall Specific Heat 

(12) 

10 Ground Slab Thermal 

Absorptance (15) 

Ground Slab U 

Value (13) 

Wall Visible Absorptance 

(15) 

SRR (13) 
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In addition to the skylight, roof and ground are also the crucial elements of low-rise buildings. 

The thermal characteristics of the top and the bottom surfaces are significant to the energy 

performance of low-rise buildings. In the climate zones with the heating provision in winter, 

the U-value of roof and ground slab are the highly sensitive parameters affecting the building 

energy performance. In the climate zones without the heating provision in winter, the ground 

slab U-value, the solar absorptance of roof and wall are the important parameters affecting both 

building energy performance and winter thermal discomfort. 

When comparing the results with those of previous studies, the parameters related to thermal 

bridge, whether the 5 individual ones or their combination, are not crucial in all climate zones 

for both high-rise and low-rise buildings. These parameters do have certain impact on the 

building energy consumption as indicated by the sensitivity analysis results, but they are not 

the highly sensitive ones when their values are within the normal range (i.e., with the normal 

building construction quality). Wall thermal absorptance is a key parameter affecting the 

building energy performance in all climate zones which has been ignored before. 

4.7 Summary 

In this chapter, the most influential design parameters of high-rise and low-rise buildings in 

different climate zones are identified by sensitivity analysis. The impacts of climate and 

building height on the key building design focus are studied and compared. The sensitivity 

analysis is performed using Morris, and a total of thirty-five design parameters under five 

categories are considered. Five Chinese climate zones covering three typical climates in the 
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world are investigated. Based on results of the sensitivity analysis, the major conclusions can 

be briefly summarized as follows. 

• The key design parameters affecting energy performance of a building are significantly 

different in different climate zones and for different building morphology (i.e., high-rise 

and low-rise in this study). 

• The highly sensitive envelope design parameters of high-rise buildings are related to the 

envelope components, including overhang, window, and wall, in all climate zones. 

• The highly sensitive envelope design parameters of low-rise buildings are related to the 

envelope components, including skylight, roof, and ground, in all climate zones. 

• Wall thermal absorptance is a key parameter affecting the building energy performance in 

all climate zones which has been ignored before. 

It should be noted that the key design parameters of high-rise and low-rise buildings in different 

climate zones are identified in this study for building optimal design concerning the common 

performance indicators only (i.e., energy performance and thermal comfort). However, a good 

building design should not only be limited to minimizing the building energy consumption 

while maintaining a comfortable indoor environment, but also contribute to the development 

of a comfortable outdoor environment by minimizing its impacts on the ambient environment. 

In the next chapter, we will further investigate the key building design parameters affecting the 

microclimate (particularly in high-density cities), and consider these parameters in building 

optimal design. 
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CHAPTER 5   INVESTIGATION ON THE MUTUAL 

IMPACTS OF ZERO/LOW ENERGY BUILDING DESIGN 

AND LOCAL MICROCLIMATE 

This chapter presents a comprehensive and systematic analysis of the mutual impacts between 

new individual zero/low energy building design and the local microclimate considering the 

interaction, and the identification of the major influential parameters of zero/low energy 

buildings on both local microclimate and building energy performance in subtropical urban 

area. A large number of high-resolution microclimate and building simulations based on 

advanced GIS spatial analysis technique are performed under different building designs for the 

assessment of mutual impacts. A global sensitivity analysis is conducted to identify the major 

influential building parameters. 

5.1 Main building parameters concerned 

A total of 6 building parameters affecting building performance and local microclimate are 

considered in the mutual impact assessment and sensitivity analysis in this study as listed in 

Table 5.1. They can be classified into two main categories, i.e., building morphology and 

building thermal characteristics. The building morphology parameters include building height, 

building orientation, and building aspect ratio. The building thermal characteristics parameters 

include the overall heat transfer coefficient of building envelope, emissivity of wall, and heat 

rejection of air-conditioners. The variation ranges of the parameters are set as wide as possible 
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by referring to the requirements in related design codes [146,152] and the settings in previous 

research [13,70,89,99,152]. 

Building aspect ratio [15,76], building height [15,74,13,89], orientation [70,78], emissivity 

[14,71,72,74,84], building height [74,13,15,89] and heat transfer coefficient [71] are the key 

influential parameters of building design affecting local microclimate, which are widely 

investigated in previous studies as shown in Table 1. It is worth noticing that the heat rejection 

of air-conditioners, as a major source of anthropogenic heat particularly in cooling-dominated 

regions [73], is rarely investigated in previous studies on local microclimate but included in 

this study. Existing related research only focuses on the air flow and temperature near the 

condensing units of air-conditioners, to determine their optimum placement for enhanced 

system coefficient of performance [77,99]. Though the district design parameters (e.g., district 

density [15,71,74,76,89], district morphology [71,78,13,83,88], street height/width ratio 

[14,70,74,81,87] and sky view factor [81,89] are widely concerned in previous microclimate 

studies, they are not considered in this study because they are not the building design 

parameters affecting the building performance directly.  In the research scenario with existing 

surroundings, the district design parameters which reflect the relationship of buildings can be 

determined by the three selected building morphology parameters. 
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Table 5.1 Building parameters concerned in this study 

Category Parameter Range  Unit 

Building morphology Building height 6~200 m 

Building orientation 0~360  ° 

Building aspect ratio 1:1, 1.2:1, 1.4:1, 

1.5:1, 2:1, 3:1, 4:1, 

5:1, 6:1, 7:1, 8:1, 9:1 

- 

Building thermal 

characteristics 

Overall heat transfer 

coefficient of building 

envelope 

1.1~14.0 W/(m2∙K) 

Emissivity of wall 0~1 - 

Heat rejection of air-

conditioners 

75~150 W/m2 

5.2 Overall assessment procedure and methods 

In this study, the mutual impacts between individual building design and local microclimate 

are investigated and a global sensitivity analysis is conducted by varying the building 

parameters simultaneously. The detailed procedure is illustrated in Figure 5.1. Firstly, 200 

scenarios of building design are generated using Latin hypercube sampling method [81] 

according to the ranges of the main building parameters concerned. Secondly, the local 

microclimate under each scenario of building design is simulated using Fluent based on the 

district 3D geometry model generated based on GIS under the hottest hour on the summer 

typical design day. 3D steady Reynolds-Averaged Navier-Stokes (RANS) CFD simulations of 

incompressible flow are performed using RNG k-ε turbulent model. The typical meteorological 

year (TMY) weather data is used as the weather data input for the local microclimate simulation 

in this study. After generating the microclimate effect for each building design under the hottest 

hour, the microclimate effect is added to each hour of the summer typical design day (including 

24 hours). Then the building energy performance for each scenario of building design is 
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simulated for the summer typical design day (including 24 hours) considering the microclimate 

effect. using EnergyPlus. The weather data generated considering the microclimate impacts is 

used as the weather data input. Fourthly, the values of performance indexes under different 

scenarios are calculated based on the simulation results of local microclimate and building 

energy performance. The performance indexes include: (i). the average difference between 

pedestrian-level (i.e., 3.0m away from the building and 1.5m height in this study) air 

temperatures of the district with and without the new building (local air temperature difference 

in short in the rest of this paper); (ii). the average difference between pedestrian-level wind 

velocities of the district with and without the new building (local wind velocity difference in 

short); (iii). the pedestrian thermal discomfort degree of the district considering local 

microclimate impacts (pedestrian thermal discomfort degree in short, Ddiscom); (iv). the building 

energy consumptions considering the interaction with local microclimate (the building energy 

consumption in short). Fifthly, mutual impact assessment is performed in Matlab based on the 

calculated performance indexes. The mutual impact assessment includes the analysis on the 

impacts of building design on local microclimate (e.g., air temperature, wind velocity, and 

pedestrian thermal discomfort), and the impacts of local microclimate on building energy 

performance. Based on the mutual impact assessment, the major influential building parameters 

on both the local microclimate and building energy performance are finally identified through 

a global sensitivity analysis. 
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Figure 5.1 Outline of the overall research methodology and procedure 

5.3 High-resolution 3D microclimate simulation and building simulation using advanced 

GIS-based spatial analysis techniques 

5.3.1 Generation of 3D computational domain based on GIS 

The investigation on the mutual impacts of individual building design and local microclimate 

needs very detailed and accurate geographic information. In this study, 3D structural geological 

model of high resolution is adopted based on advanced GIS spatial analysis technique for 

subsequent high-accuracy microclimate simulations. The CFD simulations of the 200 design 

scenarios are conducted under the most unfavorable weather condition (the hottest hour) of the 

summer typical design day with the prevailing wind condition in order to assist the evaluation 
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of the design performance and significantly reduce the computing cost. The development of 

high-resolution 3D microclimate simulation model involves: the generation of computational 

domain based on GIS, grid discretization, and the development of the microclimate simulation 

model, which are introduced in detail as below. 

Generation of computational domain 

The 3D computational domain is generated using advanced spatial analysis techniques based 

on GIS. GIS is a system which can store, visualize, analyze, and interpret geographic data. The 

geographic data includes the descriptive information of the geographic features, such as the 

altitude/elevation, the widths of roads, and the locations and dimensions of buildings, which 

are necessary for generating the computational domain for CFD (Computational Fluid 

Dynamics) simulation [115]. The utilization of GIS allows to account for the complexity of the 

urban structure and the specific surface characteristics on a fine spatial scale [153]. It can not 

only simplify the process of generating the computational domain while ensuring the accuracy 

of microclimate simulation, but also benefit the spatial analysis by reloading the simulation 

data back to GIS. 

The generation of computational domain includes two main steps. Firstly, the geographic data 

of the target district is collected from Google Map. Secondly, the captured geographic data is 

vectorized and converted using Global Mapper to generate the 3D geometry model of the 

district, which contains the landforms, buildings and roads. Figure 5.2 shows the 3D geometry 

model of the target district in this study, which is a 1,000m×1,000m urban area in Kowloon, 
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Hong Kong. Based on the developed district 3D geometry model, the whole computational 

domain is generated using SpaceClaim. The dimension of the entire computational domain for 

microclimate simulation as shown in Figure 5.3 is determined to be 8,000m×4,500m×2,100m 

for fully developed flow according to the CFD simulation guidelines and previous research 

[154,155]. The maximum height of the buildings and terrain elevation is H=300m. The distance 

between the built area to the lateral boundaries, upper boundary and inlet boundary of the 

computational domain is determined as 5H. The distance between the built area to the outlet 

boundary of the computational domain is determined as 15H for flow re-development behind 

the wake region. 

 

Figure 5.2 3D geometry model of the target district in SketchUp 
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Figure 5.3 3D computational domain in SpaceClaim 

Grid discretization 

Grid discretization is performed using the software Meshing. The unstructured grid is used in 

this study in view of the complicated geometry of the target district. The grid independence 

verification is performed using three grid systems to find the proper grid resolution, including 

a coarse grid system, a basic grid system, and a fine grid system. The basic grid system is 

finally adopted and the grid number in the 200 cases of microclimate simulations ranges from 

8.225 to 31.071 million. Local grid refinement is implemented near the wall of the buildings 

and the ground, while coarser mesh is for far field. 

5.3.2 Development of high-resolution 3D microclimate and building simulation model 

In this study, two types of 3D microclimate simulation models are developed using Fluent 

based on the generated computational domain and mesh in order to investigate the impacts of 

new building development on the local microclimate. One is the 3D simulation model of the 

target district without the new building, which is regarded as the baseline model for comparison. 

The other one is the microclimate simulation models of the target district with different designs 
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of individual building. The impacts of the individual building design on the local microclimate 

are quantified by: (i). the local air temperatures difference; (i). the local wind velocity 

difference; (iii). the pedestrian thermal discomfort degree (Ddiscom). Ddiscom is defined to assess 

the degree of outdoor thermal discomfort at the pedestrian level. A higher absolute value means 

a higher degree of thermal discomfort. It is calculated based on the widely-used outdoor 

thermal comfort index PET [156], as shown in Eq. (5.1-5.2). Where, PETn is the neutral 

physiological equivalent temperature, which is set to 28℃ in this study [141]. PETave is the 

average PET of male (PETmale) and female (PETfemale). 

                                                   𝐷𝑑𝑖𝑠𝑐𝑜𝑚 = 𝑃𝐸𝑇𝑎𝑣𝑒 − 𝑃𝐸𝑇𝑛                                              (5.1) 

                                            𝑃𝐸𝑇𝑎𝑣𝑒 = (𝑃𝐸𝑇𝑚𝑎𝑙𝑒 + 𝑃𝐸𝑇𝑓𝑒𝑚𝑎𝑙𝑒)/2                                     (5.2) 

3D steady Reynolds-Averaged Navier-Stokes (RANS) CFD simulations of incompressible 

flow are performed using RNG k-ε turbulent model due to its high accuracy [154]. For the 

near-wall treatment, scalable wall functions with no-slip boundary condition are adopted 

considering the compromise between simulation accuracy and computing cost. Radiation with 

discrete ordinates (DO) model is adopted in the calculation. The SIMPLE scheme was used for 

the pressure and velocity coupling. The second-order schemes are used for discretization to 

improve numerical accuracy. As the prevailing wind in Hong Kong is from the east, the right 

surface of the computational domain is determined as the velocity inlet as shown in Figure 5.3. 

The vertical velocity profile Uz, the turbulent kinetic energy kz, and the turbulence dissipation 

εz are calculated according to the AIJ's benchmark tests, as shown in Eqs. (5.3-5.7) 
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[104,142,155]. The downstream boundary is defined as outflow. The lateral and upper surfaces 

of the computational domain are set as the symmetry boundary conditions. The surfaces of 

buildings and the ground are set as the no-slip wall boundary conditions. The boundary 

conditions are set according to the CFD simulation guidelines and previous research 

[78,104,142,155,157,158]. The validation of the CFD model is conducted in order to ensure 

the fidelity of the CFD simulation results. The boundary conditions and parameter settings of 

the CFD model are validated by comparing the numerical modeling results with the wind tunnel 

test data of Case E wind tunnel experiment made by Architecture institute of Japan (AIJ) [159]. 

The wind tunnel experiment area of Case E is an actual urban area in the Niigata city of Japan, 

the configuration of which is similar to our study area. The CFD simulations is performed using 

Fluent (2019R3) in a server with an AMD EPYC 7T83 CPU at 3.40 GHz and Windows 10 

Enterprise 64-bit OS. The computational time for each CFD simulation is about 1~2 hours. 

                                                                 𝑈𝑧 = 𝑈𝑠 ∙ (
𝑧

𝑧𝑠
)𝛼                                                      (5.3) 

                                                             𝑘𝑧 = 1.5 ∙ (𝐼𝑧 ∙ 𝑈𝑧)2                                                   (5.4) 

𝐼𝑧 = 0.39 ∙ (
𝑧

10
)−𝛼                                                      (5.5) 

                                                            𝜀𝑧 = 𝐶𝜇
0.75 ∙ 𝑘𝑧

1.5/𝑙𝑧                                                 (5.6) 

𝑙𝑧 = 100 ∙ (
𝑧

30
)0.5                                                    (5.7) 

where, z is the vertical coordinate of the calculation point in the computational domain. Us is 

the velocity at the reference height, which is set to 2.639m/s in this study. zs is the reference 

height, which is set to 62m in this study. α is the power-law exponent, which is set to 0.39 
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according to the terrain category. Iz is the turbulent intensity. Cµ is the model constant, the value 

of which is 0.09. lz is the turbulence integral length. 

The internal settings and the settings of the parameters not under investigation in the simulation 

model are determined as shown in Table 5.2. The standard floor height is set as 3m, and the 

ground floor height can be 3m, 4m, or 5m. The building height is increased by increasing the 

floor number and varying the ground floor height. The dimension of each building design 

scenario is determined by Latin hypercube sampling method, which has the maximum floor 

area under the sampled orientation and aspect ratio in the design area available for the new 

building (170m×125m) and has the sampled height. The dimension can be modified by 

controlling the coordinate settings. 

As a large number of building performance simulations are required for a comprehensive 

mutual impact analysis between the new building and the local microclimate, jEplus is adopted 

to achieve the automatic process of numerous building performance simulations. jEplus can 

automatically modify the parameter values (i.e., the six parameters listed in Table 3) in building 

simulation model according to the generated scenarios and call EnergyPlus to perform the 

simulation. 

Table 5.2 The internal settings and the settings of the parameters not under investigation in 

the simulation model 

Parameter Value Units 

Window to wall ratio 0.25 - 

Wall specific heat 920 J/(kg∙K) 

Wall thermal absorptance 0.9 - 
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Wall solar absorptance 0.7 - 

Wall visible absorptance 0.7 - 

Roof specific heat 920 J/(kg∙K) 

Roof thermal absorptance 0.9 - 

Roof solar absorptance 0.7 - 

Roof visible absorptance 0.7 - 

Ground slab specific heat 920 J/(kg∙K) 

Ground thermal absorptance 0.9 - 

Window SHGC 0.15 W/(m2∙K) 

Window visible light transmittance 0.61 - 

Infiltration air mass flowrate 

coefficient 

1 1/h 

Outdoor airflow rate 0.00944 m³/ (person∙ s) 

Indoor setpoint temperature for 

cooling 

25.5 ℃ 

Overhang tilt angle 90 ° 

Sensible heat recovery effectiveness 0.7 - 

Latent heat recovery effectiveness 0.65 - 

Occupancy 4 m2/person 

People load 108 W/person 

Lighting load 10 W/ m2 

Electric equipment load 7.6 W/ m2 

5.4 Analysis on impacts of building design on local microclimate 

5.4.1 Impacts on local air temperature 

The distributions of local air temperature differences under the 200 scenarios on the six 

building parameters are shown in Figure 5.4. It can be seen that the development of a new 

building in an existing district will not always lead to an increase in the local air temperature 

surrounding the building. Different building designs bring impacts of varying degrees on the 

local air temperature. In this research case, the local air temperature difference varies between 
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-0.60 K and +1.17 K under different building design scenarios. Among them, 49% of the 

scenarios have a decrease in the local air temperature, and 50% of the scenarios have a 

temperature increase higher than 0.40 K. The air temperature distributions under different 

target buildings in planning are significantly different. Take Scenario 87 (shown in Figure 5.5 

(a)) and 37 (shown in Figure 5.5 (b)) as examples, when the building orientation increases from 

0° (Scenario 87) to 90° (Scenario 37) and other 5 design variables vary by a little (0~5% of 

their varying ranges), the local air temperature increases by 0.48 K. This is because when the 

control strategy adopted in the design building maximizes the use of natural ventilation, an 

orientation aligning with the windward direction can promote the wind flow and thus reduce 

the local air temperature, otherwise, the reverse. 

 

(a) Scenario 1~ Scenario 100 
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(b) Scenario 101~ Scenario 200 

Figure 5.4 Local air temperature differences between with and without the new building 

under different scenarios 
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(a) Scenario 87 

 

(b) Scenario 37 

Figure 5.5 Air temperature distributions at z=1.5m of magnified view of study area 
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5.4.2 Impacts on local wind velocity 

The results of local wind velocity differences under the 200 building design scenarios are 

shown in Figure 5.6 (a) and Figure 5.6 (b). It can be seen that different design of a new building 

can lead to an increase or decrease in the local wind velocity surrounding the building. The 

local wind velocity difference between with and without the new building varies from -0.95m/s 

to +4.51m/s under the 200 design scenarios. In nearly half of the scenarios, the local wind 

velocity is increased and the wind velocity difference falls within a range between 0.01m/s and 

0.95m/s. The average wind velocity difference under all of the scenarios is 0.15m/s. The wind 

velocity distributions under different building design are absolutely different. It can be 

observed from Figure 5.7 (a) (Scenario 33) and Figure 5.7 (b) (Scenario 23) that the building 

aspect ratio has considerable impacts on the local wind velocity. The increase of the aspect 

ratio from 1.4:1 (Scenario 33) to 9:1 (Scenario 23) can lead to 0.57m/s of velocity increase 

because the flow past a building which seems like a flat plate can promote the ventilation 

around it. 
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(a) Scenario 1~ Scenario 100 

 

(b) Scenario 101~ Scenario 200 

Figure 5.6 Local wind velocity differences between with and without the new building under 

different scenarios 
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(a) Scenario 23 

 

(b) Scenario 33 

Figure 5.7 Wind velocity distributions at z=1.5m of magnified view 
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5.4.3 Impacts on pedestrian thermal comfort 

The pedestrian thermal discomfort degrees under the 200 building design scenarios are shown 

in Figure 5.8. It can be seen that the pedestrian thermal discomfort degree varies from 13.75℃ 

to 22.65℃ under different building design scenarios, corresponding to the thermal perception 

from hot to very hot. 95.5% of the scenarios have a high pedestrian thermal discomfort degree 

higher than 18℃. The average pedestrian thermal discomfort degree is around 20.61℃. Figure 

5.9 shows the pedestrian thermal discomfort degrees of the district under the typical scenarios 

of building design. It can be seen that the one-variable-dominated variation (other 5 building 

design variables setting as the same or varying by a little) can lead to the changes of pedestrian 

thermal discomfort degree in the range of -1.45~3.90℃. The increase of building height from 

65m (Scenario 92) to 141m (Scenario 56) can dominate the significant mitigation of pedestrian 

thermal discomfort (Ddiscom decrease of 3.90℃). The Ddiscom decrease of 2.10℃ is 

dominated by the increase of building orientation from 0° (Scenario 125) to 135° (Scenario 

156). The increase of the aspect ratio from 1.4:1 (Scenario 33) to 9:1 (Scenario 23) dominates 

the Ddiscom decrease of 0.40℃. The increase of the wall emissivity from 0.35 (Scenario 172) 

to 0.78 (Scenario 36) can mitigate the pedestrian thermal discomfort to 1.70℃. When the 

overall heat transfer coefficient increases from 1.32 W/(m2∙K) (Scenario 102) to 5.13 W/(m2∙K) 

(Scenario 149), Ddiscom increases by 1.45℃. The increase of heat rejection of air-conditioners 

from 96.64 W/m2 (Scenario 123) to 145.23 W/m2 (Scenario 2) can dominate the Ddiscom 

increase of 1.05℃. 
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(a) Scenario 1~ Scenario 100 

 

(b) Scenario 101~ Scenario 200 

Figure 5.8 Pedestrian thermal discomfort degrees under different scenarios 
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Figure 5.9 Pedestrian thermal discomfort degrees of the district with the new building under 

different scenarios 

5.5 Analysis on impacts of local microclimate on building energy performance 

The differences between building energy consumptions considering local microclimate 

impacts and without considering the local microclimate impacts (i.e., under TMY weather) 

under the 200 scenarios of building design are shown in Figure 5.10, as well as the 

corresponding air temperature and wind velocity differences between the local microclimate 

and TMY weather. It can be seen that the air temperature difference between the local 

microclimate and TMY weather varies from +0.18 ~ +1.96 K under different building design 

scenarios, while the wind velocity difference varies within a range between -3.06 m/s and +2.40 

m/s. Among the 200 scenarios, all of the scenarios have a higher local air temperature than that 
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of TMY weather, and 99.5% of the scenarios have a lower local wind velocity than that of 

TMY weather. The local microclimate can lead to an increase or decrease of building energy 

consumption within the range between -41.75kJ/m2 and +291.54kJ/m2 compared with the 

TMY weather. Only 2.5% of the scenarios has a decrease in the building energy consumption 

due to the microclimate impact. 91% of the scenarios has an increase in the building energy 

consumption larger than 50kJ/m2. The average building energy consumption difference caused 

by local microclimate is 123.31kJ/m2. The highest building energy consumption increase 

happens when the air temperature difference is 1.49 K and the wind velocity difference is -2.74 

m/s. When the air temperature difference is 1.12 K and the wind velocity difference is -2.05 

m/s, there shows the largest decrease in the building energy consumption. 

 

 Figure 5.10 Building energy consumption, outdoor air temperature and wind velocity 

differences between local microclimate and TMY under different scenarios 
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5.6 Identification of the major influential building parameters on both local microclimate 

and building performance 

5.6.1 Results of sensitivity analysis 

In this study, regression method, as a widely-used global sensitivity analysis method, is adopted. 

Spearman Correlation Coefficient (SPEA) is used to measure and compare the sensitivity of 

each building parameter to the four performance indexes introduced in Section 5.2 to identify 

the major influential parameters. A positive value means a positive correlation exists between 

the building parameters and the performance concerned, while a negative value means negative 

correlation. The larger the absolute value of SPEA is, the more sensitive the building parameter 

is to the performance. 

Figure 5.11 shows the SPEA correlation coefficient between the six building parameters and 

the four performance indexes concerned. It can be seen that the building orientation and wall 

emissivity are the highly-sensitive parameters. The building orientation and overall heat 

transfer coefficient are positively correlated with the local air temperature difference, while the 

building height, aspect ratio, wall emissivity and heat rejection of air-conditioners are 

negatively correlated. This means that the increase in the building height, aspect ratio and wall 

emissivity would increase the ambient air temperature around the target building, while the 

increase in the overall heat transfer coefficient would decrease the ambient air temperature. 

These results are similar to those in previous studies concerning the impacts of district [70,89]. 

The results are rational because the increase in the building height or aspect ratio would 
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increase the shading around the building and the ambient wind velocity around the target 

building, and therefore decrease the ambient air temperature. The increase in the emissivity 

and the decrease in the heat transfer coefficient would lead to the less heat exchange and 

therefore a decrease in the ambient local air temperature. The results regarding the heat 

rejection of air-conditioners seem inconsistent with previous studies where an increase of air 

temperature is observed around the condensing units of air-conditioners [77,99]. This problem 

will be further discussed in section 5.6.2. As for the local wind velocity difference, building 

height and aspect ratio are the highly-sensitive parameters. In general, the six building 

parameters have more significant impacts on the local wind velocity than local air temperature. 

The building parameters that have positive impacts are the morphology parameters (i.e., 

building height, orientation, and aspect ratio), and the parameters that have negative impacts 

are the thermal characteristic parameters (i.e., wall emissivity, overall heat transfer coefficient, 

and air-conditioner heat rejection). Most of these results are similar to the previous studies. 

However, the result related to the building height is not consistent with that in previous studies 

concerning the impacts of district buildings [89,104]. The results are both rational due to the 

difference of the research scenarios concerned. In this study, the individual building is 

concerned. The increase in the building height would result in the higher ambient wind velocity 

and accelerate the ventilation around it. For the district buildings, the increase in the average 

building height would block the airflow of the district and thus decrease the wind velocity. 
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As for the pedestrian thermal discomfort degree, the building parameters that have positive 

impacts are overall heat transfer coefficient, and air-conditioner heat rejection. The parameters 

that have negative impacts are the morphology parameters and wall emissivity. Building height 

and overall heat transfer coefficient are the highly-sensitive parameters. Building height is the 

only parameter that has negative correlation with the building energy consumption considering 

local microclimate impacts. Building height, aspect ratio and overall heat transfer coefficient 

are the highly-sensitive parameters. However, in previous studies [70] regarding the impacts 

of district design, emissivity is recognized as the highly sensitive parameter, while the district 

aspect ratio has low impact. It is worth noting that the correlations between building parameters 

and local microclimate are relatively low compared with those with building energy 

consumption. This is because the building parameters which affect both the building 

performance and local microclimate are only considered, and the impacts of an individual 

building are limited compared with a whole district. However, the impacts of the relatively 

sensitive parameters (e.g., building height) cannot be ignored. 
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Figure 5.11 SPEA correlation coefficient between building parameters and the performance 

indexes concerned 

5.6.2 Discussion on the impacts of heat rejection of HVAC on local microclimate 

It is worth noticing that the heat rejection of air-conditioners has negative correlations with the 

local air temperature and wind velocity differences, which seems inconsistent with theoretical 

inference. To further verify the rationality, a local sensitivity analysis of the air-conditioner 

heat rejection to the local microclimate is conducted by set other building parameters as fixed 
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different distances (i.e., 0.1m, 0.2m, 0.3m, 0.4m, 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m) from 

the new building in the horizontal direction is simulated under 20 different settings of heat 

rejection. The settings are determined according to the random sample from the corresponding 

range (i.e., 75~150 W/m2). The results are shown in Figure 5.12.  

It can be seen from Figure 5.12 (a) that the air conditioner heat rejection increases the 

windward-side local air temperature at any distance concerned. The increase of the air 

conditioner heat rejection also leads to the increase of ambient air temperature difference when 

the distance is less than 0.5m. When the microclimate at a further distance is concerned, the 

impacts of air-conditioner heat rejection become weak. Therefore, it is rational that the SPEA 

correlation coefficient between the heat rejection and local air temperature difference shown 

in Figure 5.15 is slightly negative, as it is calculated based on the average local air temperature 

differences of all sides at the distance of 3.0m where the impacts become weak at a far distance 

and complicated under the variation of all building parameters including building orientation. 

The windward-side local wind velocities at different distances are reduced due to the 

development of the new building as seen from Figure 5.12 (b). But the local wind velocity 

difference does not show an obvious increase or decrease particularly at far distances when the 

air-conditioner heat rejection increases, due to insignificant impact of heat buoyancy force. 

Therefore, the slightly negative value of the SPEA correlation coefficient between the heat 

rejection and local wind velocity difference (shown in Figure 5.11) does not mean an obvious 
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negative correlation, which is also applied for local air temperature difference. It is just the 

average impact under the 200 cases. Thus, the sensitivity analysis results are rational.  
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(b) Wind velocity difference (m/s) 

Figure 5.12 Windward-side local microclimate differences at different distances under 

different settings of air-conditioner heat rejection 
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velocity are building height and building aspect ratio, followed by the heat rejection of air-

conditioners. The wall emissivity has the least impact on local wind velocity. It is worth 

noticing that the emissivity of wall and the heat rejection of air-conditioners, which are found 

to have significant impacts on local air temperature or wind velocity, are ignored in previous 

research. 

As the pedestrian thermal comfort is widely used to evaluate the local microclimate, the 

building parameters affecting the pedestrian thermal discomfort degree are also ranked and 

compared with those affecting building energy consumption considering the microclimate 

impacts. The results are listed in Table 5.4. It can be seen that the major influential building 

parameters on pedestrian thermal discomfort degree are building height and overall heat 

transfer coefficient of building envelope, while the parameter with the least impact is the heat 

rejection of air conditioners. The ranking orders of the building parameters affecting building 

energy consumption are almost the same as those affecting pedestrian thermal discomfort 

degree, except for building orientation and overall heat transfer coefficient. The major 

influential parameters on building energy performance include building height, building aspect 

ratio, overall heat transfer coefficient of building envelope. It is recommended that the 

restrictions on the overall heat transfer coefficient of building envelope and building height 

specified in the building design guidelines or related policies should be given considering the 

impacts on both building energy consumption and local microclimate.  
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Table 5.3 Ranking of major building parameters affecting local microclimate 

           Performance 

Rank 

Local air temperature Local wind velocity 

1 Building orientation Building height 

2 Emissivity of wall Building aspect ratio 

3 Building aspect ratio Heat rejection of air-conditioners 

4 Overall heat transfer 

coefficient of building 

envelope 

Overall heat transfer coefficient of 

building envelope 

5 Building height Building orientation 

6 Heat rejection of air-

conditioners 

Emissivity of wall 

 

Table 5.4 Ranking of major building parameters affecting pedestrian thermal discomfort 

degree and building energy consumption considering microclimate impacts 

           Performance 

Rank 

Pedestrian thermal 

discomfort (Correlation) 

Building energy consumption 

(Correlation) 

1 Building height (Negative) Building height (Negative) 

2 Overall heat transfer 

coefficient of building 

envelope (Positive) 

Building aspect ratio (Positive) 

3 Building aspect ratio 

(Negative) 

Overall heat transfer coefficient of 

building envelope (Positive) 

4 Building orientation 

(Negative) 

Building orientation (Positive) 

5 Emissivity of wall 

(Negative) 

Emissivity of wall (Positive) 

6 Heat rejection of air-

conditioners (Positive) 

Heat rejection of air-conditioners 

(Positive) 

Although the ranking orders of the building parameters affecting pedestrian thermal discomfort 

and building energy consumption are similar, the correlations between the parameters and the 

performance are not the same. For instance, the building aspect ratio, building orientation and 

wall emissivity have negative correlations with pedestrian thermal discomfort, but positive 

correlations with the building energy consumption. Therefore, a building design which has the 

lowest building energy consumption is probably not friendly to the local microclimate. So it is 

necessary to consider the mutual impacts between building design and local microclimate in 
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the design of new buildings to improve building energy performance while minimizing the 

impacts on the local microclimate.  

5.7 Summary 

In this chapter, a comprehensive and systematic analysis is conducted to investigate the mutual 

impacts between new individual building design and local microclimate considering their 

interaction in subtropical urban area, and to identify the major influential parameters on both 

local microclimate and building energy performance by sensitivity analysis. The mutual impact 

analysis and sensitivity analysis are based on 200 sets of microclimate and building 

performance simulations using advanced GIS-based spatial analysis techniques. Based on the 

analysis results, the major conclusions can be drawn and summarized as follows. 

• Strong mutual impacts exist between the new building design and urban local 

microclimate. In this study, different building designs lead to significant variations of local 

wind velocity (i.e., -0.95~+4.51 m/s), air temperature (i.e., -0.60~+1.17 K), and pedestrian 

thermal discomfort degree (i.e., 13.75~22.65℃). The local microclimate results in a 

change in the building energy consumption from -41.75kJ/m2 to 291.54kJ/m2. 

• The major influential parameters on local air temperature, wind velocity and pedestrian 

thermal discomfort are rather different. The major influential parameters on local air 

temperature are building orientation and wall emissivity, while the major influential 

parameters on local wind velocity are building height and aspect ratio. As for the 
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pedestrian thermal discomfort, the major influential parameters include building height 

and overall heat transfer coefficient of building envelope. 

• The major influential parameters on both local microclimate and building energy 

performance are building height and overall heat transfer coefficient of building envelope. 

Although the ranking orders of the building parameters affecting pedestrian thermal 

discomfort and building energy consumption are similar, the correlations between the 

parameters and the performance are significantly different. Therefore, it is necessary to 

consider the mutual impacts between building design and local microclimate in the design 

of new buildings to improve building energy performance while minimizing the impacts 

on the local microclimate. 

In this study, the thermal characteristics of the building for building performance simulation in 

EnergyPlus, such as the specific heat capacity, density, thickness, thermal absorptance, solar 

absorptance, and visible absorptance, are assumed as constant values, the impacts of which on 

the microclimate are ignored and could be investigated in future work. The representation of 

trees and roads in the study area is simplified to save computational resources. 
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CHAPTER 6   DEVELOPMENT OF A GENERIC DATA-

DRIVEN LOCAL MICROCLIMATE MODEL CONSIDERING 

THE IMPACTS OF BUILDING DESIGN 

This chapter presents the development of local microclimate surrogate models for efficient and 

accurate assessment of the impacts on the local microclimate when making optimal building 

design. Two complementary machine learning-based surrogate models are proposed, including 

an SVR-based local air temperature model and a LightGBM-based local wind velocity model. 

They are identified by evaluating and comparing eight alternative machine learning models. 

Totally four machine learning algorithms are used for each model development, including 

ANN, SVR, RF and LightGBM. The case study is conducted to validate the local microclimate 

surrogate models. 

6.1 Methodology of the machine learning-based surrogate models development 

This chapter presents the procedure and methods of the development of local microclimate 

surrogate models. The machine learning-based surrogate models are developed to predict the 

impacts on the local microclimate (i.e., local air temperature and wind velocity) due to the 

addition of new individual zero/low energy building. 200 sets of CFD simulation data 

corresponding to different building designs are used for the model training and validation. Four 

machine learning algorithms are used for each model development, including ANN, SVR, RF 

and light gradient boosting machine (LightGBM). A case study is conducted to validate the 

local microclimate surrogate models. The surrogate models that demonstrate the highest 
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efficiency and accuracy are recommended for predicting changes in the local microclimate 

during the early stages of new zero/low energy building design. 

6.1.1 Outline of the surrogate models 

A surrogate model refers to a simplified model for replacing the computationally expensive 

model, which can obtain a much faster and more efficient approximation for faster evaluations 

and analysis [106,108]. In this study, the machine learning-based surrogate models are 

developed to predict the local microclimate impacts under different designs of new individual 

building, replacing the computationally expensive and time-consuming microclimate 

simulations. 

To enhance the generalizability of the surrogate model, two major works has been undertaken. 

One is to set the comprehensive key building parameters affecting local microclimate as the 

model inputs, including two major categories, i.e., building morphology and building thermal 

characteristics, which can provide the comprehensive and systematic prediction of the potential 

for individual building design’s impact. The key influential building parameters are identified 

by a comprehensive impact analysis made previously. The variables concerning building 

morphology include building height, building orientation, and building aspect ratio. The 

parameters concerning building thermal characteristics include the overall heat transfer 

coefficient of building envelope, emissivity of wall, and heat rejection of air-conditioners. The 

other one is to set the relative changes in the local microclimate (i.e., local air temperature and 

wind velocity) before and after the addition of a new building as the model outputs. Compared 
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with existing models directly using the local microclimate parameters as the model outputs, the 

surrogate models developed in this study can significantly reduce the dependency on the 

climate conditions. The position for evaluating the relative changes refers to the four lines of 

3.0m away from the building and at a height of 1.5m (described as the pedestrian-level in the 

rest of this thesis). The relative changes are the average changes of the four lines. The temporal 

condition for evaluation is under the most unfavorable weather condition (the hottest hour) of 

the summer typical design day in order to assist the evaluation of the design performance and 

significantly reduce the computing cost. 

The detailed procedure of the model development is illustrated in Figure 5.1. Firstly, the dataset 

for model training and testing is generated via CFD simulations. Various scenarios of building 

design (e.g., 200 scenarios in this study) are generated using Latin hypercube sampling method 

according to the ranges of the identified key influential building parameters. The local 

microclimate (i.e., local air temperature and wind velocity) under each scenario of building 

design is simulated using Fluent based on the 3D district geometry model developed based on 

GIS. The local microclimate impacts under each scenario are calculated by comparing the 

simulated local microclimate with the reference scenario (i.e., before the addition of the new 

building). The building designs and corresponding local microclimate relative changes under 

all the scenarios constitute the dataset for model development. Secondly, the dataset is 

preprocessed by min-max normalization method to adjust the data to the range between 0 and 

1, and thereby improve the stability and facilitate the convergence of the learning process while 
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preventing overfitting. Then the whole dataset is divided into training and testing data. Thirdly, 

alternative machine learning models are trained based on the training data using ANN, SVR, 

RF and LightGBM respectively. Fourthly, the model performances are evaluated using the 

testing data in terms of different performance evaluation metrics. The machine learning models 

with the best model performance are selected as the surrogate models for predicting the impacts 

on the local air temperature and wind velocity due to the variation of the new building design. 

 

Figure 6.1 Outline of the overall research methodology and procedure 
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6.1.2 Machine learning techniques concerned 

The four machine learning algorithms, i.e., ANN, SVR, RF and LightGBM, are selected in 

view of their good capability in learning and modelling the nonlinear and complex relationship. 

These algorithms are all used and compared for developing the surrogate models for predicting 

the impacts on local air temperature and wind velocity respectively, considering that different 

algorithms may be preferred due to their different variation characteristics. 

ANN is a fundamental supervised learning algorithm in deep learning. It is highly effective in 

dealing with high-dimensional problems, and has been applied to numerous complex problems 

[105] including local microclimate prediction as summarized in Table 2.4. In this study, a feed-

forward back propagation neural network is adopted. It consists of an input layer, a hidden 

layer, and an output layer, as shown in Figure 6.2. The input layer is composed of 6 neurons 

corresponding to the identified six model inputs, and the output layer involves 1 neuron 

corresponding to the specific model output concerned. The number of hidden neurons is to be 

optimized during model training. 

 

Figure 6.2 Neural network for predicting the changes of local microclimate 
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SVR is a widely used supervised learning algorithm in machine learning, which has distinct 

advantages for small datasets and can maintain a good generalization capability [160]. Given 

the high computational load of CFD simulations in data generation in this study, SVR could be 

a good option for model development with limited dataset while ensuring a high prediction 

accuracy. SVR is the application of the support vector machine in regression analysis, which 

can be utilized to solve non-linear problems, so it is selected to address the non-linear problem 

of local microclimate prediction in this study. 

RF is an ensemble learning method consisting of a collection of decision trees. It is one of the 

most popular supervised learning algorithms for solving regression problems due to its 

simplicity, robustness and high accuracy [161]. RF is an extension of bagging method and 

shows the property of parallelization, in which each weak learner is trained independently. 

Both the random sample of data and the random feature selection add diversity and reduce the 

correlation among these decision trees, which maintains the generalization ability of RF. The 

good generalization ability can avoid the risk of overfitting and maintain the simplicity and 

robustness for prediction of the local microclimate relative changes. In this study, the final 

prediction result of this RF model is based on majority averaging of all trees in the forest to 

yield a more accurate and stable estimate. 

LightGBM is also an ensemble learning method based on decision tree algorithms, which has 

been emerging in the prediction of building area and shows better prediction results 

[106,162,163]. Unlike RF, LightGBM is built on a gradient boosting framework, which is a 
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serial integration model that combines weak learners into strong learners by creating sequential 

models with the aim of maximizing the final model’s accuracy. The highly optimized 

histogram-based decision tree learning algorithm is adopted to reduce the consumption of 

memory and calculations [162]. The prediction model of the local microclimate changes can 

benefit from the higher efficiency, lower memory usage and improved accuracy of LightGBM. 

6.1.3 Performance evaluation metrics 

Four commonly-used metrics [110-112,114] are utilized to evaluate the performance of the 

machine learning models, including MAE, mean squared error (MSE), normalized RMSE and 

median absolute deviation (MAD). They can be calculated using the Eqs. (6.1-6.4) respectively. 

Where, 𝑦𝑖̂ is the predicted value. 𝑦𝑖is the true value. 𝑦𝑚𝑎𝑥 is the maximum of the true value. 

𝑦𝑚𝑖𝑛 is the minimum of the true value. n is the total number of samples. MAE, MSE and MAD 

are scale-dependent metrics, which offer a straightforward method to quantify prediction error. 

They also allow a comparison between the prediction error with the measurement error of air 

temperature and wind velocity for practical physical interpretations. The scale-independent 

metric, i.e., normalized RMSE is selected to eliminate the unit difference and assess the relative 

performance of different models. It is within the range from 0 to 1. A lower value indicates 

better predictive performance of the model, while a higher value indicates poorer predictive 

performance. Other scale-independent metrics, such as the mean absolute percentage error 

(MAPE), are not considered in this study as the equation denominator (i.e., the relative changes 

in local wind velocity and wind velocity) may be zero [164]. 
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Two information criteria, i.e., AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion), are utilized to evaluate the model overfitting by balancing the goodness 

of fit and model complexity. AIC is based on information theory, while BIC is based on 

Bayesian theory. Smaller values indicate better model selection. AIC and BIC can be calculated 

using the Eqs. (6.5-6.6) respectively. Where,𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  is the value of the model's log-

likelihood function. k is the number of parameters in the model, the value of which is 6 in this 

study. 

                                                         𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̂ − 𝑦𝑖|

𝑛
𝑖=1                                                   (6.1)  

                                                        𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1                                                  (6.2) 

                                         normalized 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖−1

𝑛
/(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)                    (6.3) 

                                         𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖̂ − 𝑦𝑖|, … , |𝑦𝑛̂ − 𝑦𝑛|)                                      (6.4) 

                                                   𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2𝑘                                             (6.5) 

                                             𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 ∙ 𝑙𝑜𝑔(𝑛)                                     (6.6) 

6.2 Development of alternative data-driven models 

6.2.1 Data generation and preprocessing 

The local microclimate surrounding the building is simulated using Fluent under different 

building designs obtained by varying the six influential building parameters concerned as 

shown in Table 6.1. 200 scenarios are generated using Latin hypercube sampling method 
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according to the ranges of the parameters for microclimate simulations as shown in Section 5.1 

[166]. 

Based on the simulation results, the changes in the local microclimate due to the addition of 

the new building are calculated under the 200 scenarios, including: (i). the average relative 

change at the pedestrian-level (i.e., 3.0m away from the building and 1.5m height in this study) 

air temperatures in the district before and after the addition of the new building (local air 

temperature change for short in the rest of this paper); (ii). the average relative change on 

pedestrian-level wind velocity in the district before and after the addition of the new building 

(local wind velocity change for short). Then the dataset of local air temperature impacts and 

local wind velocity impacts, together with corresponding building parameters, are normalized 

for model training and testing. 

6.2.2 Training of the machine learning models 

Single-output machine learning models are developed to predict the local air temperature 

difference and local wind velocity difference respectively, using the four selected machine 

learning algorithms. The single-output prediction models can realize more accurate prediction 

results than one multiple-output prediction model [104,105]. 90% of the 200 dataset is used for 

the model training, while the rest (i.e., 10%) is used for testing. The 10-fold cross validation 

and parameter grid search are utilized for hyperparameter optimization during the model 

training. The optimization range and optimization results of hyperparameter in grid search are 

listed in Table 6.1. 
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For the ANN model, the number of hidden neurons is optimized within a range between 10 and 

1000. The learning rate is optimized within a range from 0.00001 to 1. Different activation 

functions (i.e., ‘identity’, ‘logistic’, ‘tanh’ and ‘relu’) and solvers (i.e., ‘lbfgs’, ‘sgd’, and ‘adam’) 

are compared respectively to select the proper ones. For the SVR model, the kernel function of 

Gaussian radial basis is utilized in this study. The regularization parameter C is optimized 

within a range between 0.0001 and 100000. A larger C tends to make the model more prone to 

overfitting, while a smaller C is more likely to cause underfitting. The kernel coefficient 

gamma is optimized within a range from 0.0001 to 12.8. For the RF model, the bootstrap 

samples method is adopted to reduce the variance of the predictions and improve the predictive 

performance. The number of trees in the forest is optimized within a range between 10 and 

1000. The maximum depth of the tree is optimized within a range from 2 to 15. For the 

LightGBM model, the gradient boosting decision tree is adopted. The number of boosted trees 

is optimized within a range from 10 to 1000. The maximum tree depth and leaves for the base 

learners are optimized within the ranges of 2-15 and 3-39 respectively. The learning rate is 

optimized within a range between 0.00001 and 1. The subsample ratio of the training instance 

and the columns when constructing each tree are optimized within a range from 0.8 to 1. The 

hyperparameter optimization results for the prediction model of local air temperature difference 

and local wind velocity difference are listed in Table 6.1. 
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Table 6.1 Hyperparameter optimization for the prediction model of local microclimate 

impacts 

Machine 

learning 

model 

Hyperparame

ter 

Optimization range Optimization value 

Local air 

temperature model 

Local wind 

velocity model 

ANN Numbers of 

hidden layers 

1, 2, 4, 5, 10 1 1 

Hidden layer 

size 

10, 50, 100, 200, 300, 

400, 500, 800, 1000 

10 1000 

Learning rate 1e-5, 1e-4, 0.001, 0.005, 

0.01, 0.05, 0.1, 0.5, 1 

0.1 1e-5 

Activation 

functions 

‘identity’, ‘logistic’, 

‘tanh’, ‘relu’ 

tanh tanh 

Solver ‘lbfgs’, ‘sgd’, ‘adam’ stochastic gradient 

descent 

stochastic 

gradient descent 

SVR Regularizatio

n parameter 

1e-4, 0.001, 0.01, 0.1, 1, 

10, 100, 1000, 10000, 

100000 

1 10 

Kernel 

coefficient 

gamma 

1e-4, 0.001, 0.005, 0.01, 

0.05, 0.1, 0.2, 0.4, 0.6, 

0.8, 1.6, 3.2, 6.4, 12.8 

0.001 1e-5 

RF Number of 

trees 

10, 100, 200, 500, 1000 10 10 

Maximum 

depth of tree 

2, 3, 4, 5, 10, 15 5 5 

LightGBM Number of 

trees 

10, 100, 200, 500, 1000 1000 1000 

Maximum 

depth of tree 

2, 3, 4, 5, 10, 15 2 2 

Maximum 

tree leaves 

3, 7, 15, 31, 1023, 32767 3 3 

Learning rate 1e-5, 1e-4, 0.001, 0.005, 

0.01, 0.05, 0.1, 0.5, 1 

1e-5 0.05 

subsample 

ratio 

0.8, 0.9, 1 1 1 
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6.3 Results of local microclimate prediction 

6.3.1 Local air temperature impact prediction 

The predicted local air temperature change given by different machine learning models is 

shown in Figure 6.3. A positive value means the pedestrian-level local air temperature is 

increased due to the addition of the new building. Where, a negative value indicates the 

pedestrian-level local air temperature is decreased. The comparison of the pedestrian-level 

local air temperature distributions (calculated by CFD simulations) before and after the 

addition of the new building, taking Case 8 as an example, are shown in Figure 6.4 and Figure 

6.5 The area concerned is marked in Figure 6.5. As shown in Figure 6.3, the actual local air 

temperature change (i.e., that given by CFD simulations) is predominantly positive with 

minimal variation, ranging from -0.21 to 1.15 °C. The predicted local air temperature impacts 

given by the four machine learning models show the similar pattern. Although significant 

increases or decreases of the actual local air temperature profiles can be observed occasionally, 

the SVR model can effectively capture these variations. The RF model can also reflect the 

variations, but the trends are not always correct. In contrast, the ANN and LightGBM models 

lack the sensitivity to predict the variations of the impact due to different new building designs 

on the local air temperature, although the discrepancies between their predictions and the 

predictions of other two models are not substantial. 

The local air temperatures are predicted by adding the predicted local air temperature changes 

to the corresponding simulated local air temperature in the reference case (i.e., before the 
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addition of the new building). The results are presented in Figure 6.6, together with the “actual” 

local air temperature (i.e., given by CFD simulation). According to the lines representing the 

error of +0.5 °C and -0.5 °C, the majority of the predicted local air temperature based on the 

four machine learning models fall within this range. The prediction performance of the four 

machine learning models appears to be good, with insignificant differences between them.  

 

Figure 6.3 Predicted local air temperature difference given by different machine learning 

models 
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Figure 6.4 Pedestrian-level local air temperature distribution of the reference case calculated 

by CFD simulations (a). entire computational domain; (b). magnified view of the district 

without new building in development 

 

Figure 6.5 Pedestrian-level local air temperature distribution of the Case 8 calculated by CFD 

simulations (a). entire computational domain; (b). magnified view of the district with new 

building in development 
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Figure 6.6 Predicted local air temperature vs actual local air temperature 

6.3.2 Local wind velocity impact prediction 

The predicted local wind velocity change given by different machine learning models is shown 
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level local wind velocity distributions (calculated by CFD simulations) before and after the 

addition of the new building, take Case 33 as an example, are shown in Figure 6.8 and Figure 
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change between each case are noticeable, ranging from -0.63 to 1.47 °C. Most of the prediction 

results given by the four machine learning models exhibit similar patterns. Although there are 

occasional significant increases or decreases in the actual local wind velocity change, the four 

machine learning models can mostly track the variation trends. However, the prediction results 

given by different models exhibit distinct characteristics. The ANN and LightGBM models are 

more sensitive in predicting the variation trends of the local wind velocity change, compared 

with the RF and SVR models. The ANN model can mostly predict the correct direction of 

variation, while the LighjtGBM model is sensitive enough to predict the peak values. Although 

the RF and SVR models are more sensitive in predicting the variations of local air temperature 

change, they lack sensitivity in predicting the impact on the local wind velocity. It can be 

observed that the predicted local wind velocity change given by the RF and SVR models are 

negative while the actual value is positive in a few cases. The discrepancies between the 

predicted values given by the four machine learning algorithms and the true values do not 

appear to be significant. 

The predicted local wind velocities are calculated for the relative error analysis, by adding the 

predicted local wind velocity changes to the corresponding simulated local wind velocity of 

the reference case (i.e., before the addition of the new building). The results are presented in 

Figure 6.10. The dashed lines in the figure represent the relative error of +20% and -20%. It 

can be seen that the majority of the predicted local wind velocities based on the four machine 

learning models under the test cases predicted fall within this range. Though these models can 
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hardly provide accurate prediction results when the actual local wind velocity (i.e., given by 

CFD simulation) is extremely large or small, the prediction performances of the four machine 

learning models appear to be good, with insignificant differences between them. 

 

Figure 6.7 Predicted local wind velocity difference given by different machine learning 

models 
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Figure 6.8 Pedestrian-level local wind velocity distribution of the reference case calculated 

by CFD simulations (a). entire computational domain; (b). magnified view of the district 

without new building in development 

 

Figure 6.9 Pedestrian-level local air temperature distribution of the Case 33 calculated by 

CFD simulations (a). entire computational domain; (b). magnified view of the district with 

new building in development 
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Figure 6.10 Predicted local wind velocity vs actual wind velocity 
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computing time being nearly one-eighth of SVR’s and one-twenty-fifth of ANN’s. RF appears 

to be the most computationally demanding method for local air temperature impact prediction. 

The predictions errors of the four machine learning models under the test cases are presented 

in Fig.6.11. It can be seen that the range of the prediction error for the SVR model is the 

smallest.  But the error distributions of the four models are similar. The median values of the 

prediction errors of the ANN, SVR, RF and LightGBM models are 0.036℃, 0.082℃, 0.037℃, 

0.054℃, respectively. The majority (25%~75%) of the prediction errors for the ANN, SVR, 

RF and LightGBM models fall within the ranges of -0.140~0.230℃, -0.098~0.235℃, -

0.158~0.181℃, -0.117~0.238℃. This indicates that the prediction performances of the four 

machine learning models are commendable, with errors less than the error range of an air 

thermometer (i.e., ± 0.5℃). The MAE, MSE, RMSE and MAD of the four machine learning 

models in predicting local air temperature are also calculated and compared, as presented in 

Table 6.2. It can be seen that the SVR model exhibits the best performance. Its MAE (i.e., 

0.194℃), MSE (i.e., 0.065℃), normalized RMSE (i.e., 0.187) and MAD (i.e., 0.120℃) is the 

smallest among the four models. The differences in MAE, MSE, normalized RMSE and MAD 

between the ANN, RF and LightGBM models are minimal, which are around 0.023℃, 0.019℃, 

0.026, and 0.041℃ higher than those of the SVR model. 

The information criteria of the four machine learning models in predicting local air temperature 

are also calculated and presented in Table 4. It can be seen that both AIC (i.e., 50.055) and BIC 
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(i.e., 56.029) of the SVR model are the smallest among the four machine learning models, 

which indicates the best performance of balancing the model fit and complexity. 

 

Figure 6.11 Prediction errors of different machine learning models in predicting local air 

temperature difference 

Table 6.2 Performance of different machine learning models for local air temperature 

difference prediction 
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SVR 0.194 0.065 0.187 0.120 50.055 56.029 
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0.55s, 3.83s and 0.07s respectively for the ANN, SVR, RF and LightGBM models per 

prediction. Similar to the local air temperature impact prediction model, LightGBM proved to 

be the most efficient method for local wind velocity impact prediction, with its computing time 

being less than half of SVR’s and one-tenth of ANN’s. RF is also the most computationally 

demanding method for local wind velocity impact prediction, with its computing time being 

fifty times higher than LightGBM’s. 

The prediction errors of the four machine learning models under the test cases are summarized 

in Figure 6.12. It can be seen that the ANN model has the smallest error range, while the 

LightGBM model has no obvious outlier. The error distributions of the four models are 

obviously different. The median values of the prediction errors of the ANN, SVR, RF and 

LightGBM models are -0.019m/s, -0.168m/s, 0.037m/s, 0.096m/s, respectively. The majority 

of the prediction errors for the ANN, SVR, RF and LightGBM models fall within the ranges 

of -0.328~0.106m/s, -0.398~0.096m/s, -0.294~0.388m/s, 0.380~0.163m/s, respectively. This 

indicates that the prediction performances of the four models are good, with the errors less than 

the error range of a thermoelectric anemometer for outdoor meteorological parameter detection 

(i.e., 0~1m/s). The MAE, MSE, normalized RMSE and MAD of the four machine learning 

models in predicting the local wind velocity impact are also calculated and presented in Table 

5. It can be seen that LightGBM exhibits the best performance. It has the smallest MAE, MSE 

and normalized RMSE (0.352m/s, 0.192m/s and 0.212) among the four models, even though 
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the differences of MAE, MSE, normalized RMSE and MAD between the four models are 

minimal. 

The information criteria of the four machine learning models in predicting local wind velocity 

are also calculated and presented in Table 6.3. It can be seen that both AIC (i.e., 52.604) and 

BIC (i.e., 58.578) of the LightGBM model are significant smaller than them of the other three 

machine learning models, which indicates the best performance of balancing the model fit and 

complexity. 

 

Figure 6.12 Prediction errors of different machine learning models in predicting local wind 

velocity difference 

Table 6.3 Performance of different machine learning models for local wind velocity 

difference prediction 
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6.5 Discussion on the model efficiency and accuracy 

In this study, the device used for computation of the machine learning models is the PC with 

an i7-3770 CPU running at 3.40 GHz and running Windows 7 Enterprise 64-bit OS. The 

instantaneous machine learning model of local microclimate prediction can allow the designer 

to make a local climate assessment in seconds at the early stage of building design compared 

with the need of over 5 hours when using CFD simulation. The total time consumption required 

for model development and local microclimate prediction for a single prediction is around 

0.14s~7.66s. Once the development of the machine learning model completes, the prediction 

results can be obtained instantaneously, the time consumption of which is less than 1s. The 

total time consumption required for model development and local air temperature impact 

prediction for a single prediction is 1.72s, 0.58s, 3.83s and 0.07s respectively for the ANN, 

SVR, RF and LightGBM models, while the single prediction of local wind velocity impact 

costs 2.41s, 0.55s, 3.83s and 0.07s respectively for the ANN, SVR, RF and LightGBM models. 

As for the CFD simulation, the total time consumption for a single CFD simulation of the local 

microclimate is around 5.38 h or 320 min. The time consumption mainly includes the time for 

grid discretization and the time for CFD simulation. On the same device, the average time 

consumption for grid discretization of the 200 cases is around 20 mins. Each CFD simulation 

costs around five hours on the same device, which includes the automatic process of the mesh 

improvement, parameter setting, model simulation and results processing.  
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Comparing with the current deep learning models in local microclimate prediction under varied 

district or building designs, this study demonstrates a significant reduction in time consumption. 

When compared to existing GAN models, this study achieves a time reduction for model 

training from about 20 hours to about 2 minutes. Similarly, when compared to current CNN 

models, this study achieves a time reduction for model training from about 16 hours to about 2 

minutes. In this study, the time consumption for the model training of local wind velocity 

impact is around 1.55min, 6min, 2.23min and 1.65min respectively for the ANN, SVR, RF and 

LightGBM models, while the time consumption for the model training of local air temperature 

impact is around 2.17min, 5.93min, 2.23min and 1.55min respectively. However, the 

development of GAN models and CNN models relies on large dataset. The number of samples 

based on CFD simulations used in studies with GAN models is around 500~3000 [108-110], 

which is 2.5~15 times consumption for data preparation of it in this study. The time 

consumption for existing GAN model training (including hyperparameter tuning and data 

processing) is around 20h using 2665 samples [109], and the prediction time is around 4~10s 

for a single prediction [108,109]. As for CNN models, the samples based on CFD simulations 

are around 3400~3500 [113,116], which is 17~18 times consumption for data preparation of it 

in this study. The time consumption for model training is around 16h using 3400 samples, and 

the prediction time is around 0.005s for a single prediction. 

As for the model accuracy, the local microclimate prediction for pedestrian level in this study 

can keep the same order of accuracy as the GAN models and the CNN models, while greatly 
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reduce the time needed for data preparation, model training and prediction. The LightGBM-

based local wind velocity prediction model in this study can achieve an MAE of 0.35m/s, an 

MSE of 0.26m/s and an RMSE of 0.44m/s at pedestrian level using the dataset of 200 CFD 

simulation results. The LightGBM model shows the better accuracy in the prediction of local 

wind velocity than SVR and RF, which is consistent with the results in previous research [18]. 

It was concluded that the gradient boosting regression predicted the wind velocity parameters 

with the higher accuracy than SVR and RF. The SVR model for local air temperature prediction 

proposed by this study can achieve an MAE of 0.19℃, an MSE of 0.07℃ and an RMSE of 

0.26℃ at pedestrian level. Comparing with GAN-based local wind velocity prediction model, 

the MAE at the pedestrian level is 0.5m/s using the dataset of 1025 CFD simulation results 

[110]. In some local areas around the buildings, the MAE is more than 3.75m/s when using the 

dataset of 564 CFD simulation results with a prediction time of 4s [108]. The RMSE of local 

wind velocity prediction is around 0.16~0.63m/s using the dataset of 1025 CFD simulation 

results with the prediction time of 5~10s and the model training time of 20h [109]. Most of the 

errors in the computational domain are within the error range of a thermoelectric anemometer 

for outdoor meteorological parameter detection (i.e., 0~1m/s), indicating a high-accuracy 

prediction of local wind velocity. As for the near-instantaneous CNN prediction model of local 

wind velocity (the prediction time is around 0.005s) using the dataset of 3400 CFD simulation 

results with the model training time of 16h, though the MSE is less than 0.5m/s in the most of 

the computational domain, it is more than 0.5 surrounding the buildings [109]. 
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6.6 Recommendation on the data-driven model for microclimate simulation 

Based on the performance evaluation, the SVR-based local air temperature prediction model 

and LightGBM-based local wind velocity prediction model offer the best overall performance 

and are, therefore, recommended as the surrogate models for fast local microclimate impact 

predictions in new individual building design in Hong Kong.  

As for the local air temperature impact prediction, SVR exhibits the best prediction 

performance in terms of prediction accuracy, whose MAE, MSE, normalized RMSE and MAD 

is 0.194℃, 0.065℃, 0.187 and 0.120℃ respectively. SVR also exhibits the best performance 

of balancing the model fit and complexity to mitigate the risk of overfitting, whose AIC and 

BIC is 50.055 and 56.029 respectively. LightGBM and SVR are proven to be the more efficient 

methods among the four algorithms, whose computing time is 0.07s and 0.58s respectively. 

Given that the computing time for each CFD simulation is over five hours, the difference 

between the computing time of the LightGBM and SVR models is minimal. As for the local 

wind velocity impact prediction, the LightGBM model exhibits the best performance in terms 

of prediction accuracy, as it has the smallest MAE, MSE and normalized RMSE (0.352m/s, 

0.192m/s and 0.212) among the four models. LightGBM also exhibits the best performance of 

balancing the model fit and complexity, whose AIC and BIC are 52.604 and 58.578 

respectively. LightGBM is proven to be the most efficient method among the four algorithms 

in terms of the computing time. The computing time of the LightGBM model is 0.07s. 

Comparing with the conventional CFD simulation which requires over five hours for each 
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simulation, the use of the LightGBM model can significantly reduce the computing time, 

making the consideration of microclimate impact in building design optimization feasible. 

6.7 Summary 

In this chapter,  machine learning-based surrogate models are developed to predict the impacts 

of local microclimate (i.e., local air temperature and wind velocity) due to the addition of a 

new individual building in high-density urban area. Two complementary machine learning-

based surrogate models are identified and recommended for their high accuracy and high 

efficiency, including an SVR-based local air temperature model and a LightGBM-based local 

wind velocity model. Totally four machine learning algorithms are evaluated and compared for 

each model development, including ANN, SVR, RF and LightGBM. Six key influential 

building parameters are selected as the model inputs based on a comprehensive impact analysis 

made previously. 200 sets of CFD simulation data corresponding to different building designs 

are used for the model training and testing. The developed surrogate models can assist 

designers for fast and accurate prediction of the impacts on the local microclimate at the early 

design stage of new construction and renovation of buildings for preferred local microclimate 

and/or avoiding negative impacts on local microclimate. Based on the results, the major 

conclusions can be briefly summarized as follows. 

• The machine learning models dramatically reduce computation time (from over 5 hours to 

less than a second) for local microclimate prediction, compared with using CFD 
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simulations. LightGBM and SVR are the efficient methods for both local air temperature 

and wind velocity prediction, while RF is the most computational expensive method. 

• ANN, SVR, RF and LightGBM show good performance of local microclimate prediction, 

providing the same order of accuracy of CFD simulations. The prediction errors of local 

air temperature based on these four algorithms are below the error range of an air 

thermometer (± 0.5℃), and SVR shows the best performance. The prediction errors of 

local wind velocity based on the four algorithms are below the error range of 

thermoelectric anemometer (0~1m/s), and LightGBM shows the best performance. 

• The single-output prediction model of local air temperature based on SVR is 

recommended due to their high efficiency, high accuracy and low risk of over-fitting, The 

computation time is 0.58s, and its MAE and normalized RMSE (0.194℃ and 0.187) are 

the smallest among the four methods. 

• The single-output prediction model of local wind velocity based on LightGBM is 

recommended due to their high efficiency, high accuracy and low risk of over-fitting. The 

computation time is 0.07s, and its MAE and normalized RMSE (0.352m/s and 0.212) are 

the smallest among the four methods. 
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CHAPTER 7   DEVELOPMENT OF A COORDINATED 

DESIGN OPTIMIZATION METHOD OF ZERO/LOW 

ENERGY BUILDINGS CONSIDERING THEIR 

INTERACTION WITH LOCAL MICROCLIMATE 

This chapter presents the procedure and methods of the proposed coordinated design 

optimization method for improving building energy performance while mitigating the 

unacceptable negative impacts of local microclimate, considering the interactions between 

them. The local microclimate surrogate models and automated building simulation are 

combined with the optimizer to enhance the efficiency and generalizability. The multi-

objective optimization for extensive design variables is therefore facilitated. The global optimal 

solutions identified are evaluated by the entropy-TOPSIS method, and the best solution is 

finally recommended. A case study in Hong Kong is utilized to test and validate the proposed 

method. 

7.1 Procedure of coordinated design optimization and optimization problem formulation 

The building design variables (i.e. building aspect ratio and building orientation) have opposite 

effects on the two objectives of energy performance-driven design and local microclimate-

driven design, which will be further elaborated in Section 7.3.1. Therefore, proposed 

coordinated design optimization considering the mutual impacts of a building and its 

microclimate is essential. 
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7.1.1 Overall procedure and major steps 

The multi-objective optimization is adopted for the coordinated optimal design of a building 

and its local microclimate to effectively identify the global optimal design solutions 

considering their mutual impacts. The detailed procedure of the coordinated design 

optimization is illustrated in Figure 7.1. 

 

Figure 7.1 Outline of the overall research methodology and procedure 

The coordinated design optimization involves the energy performance-driven design and the 

environmental performance-driven design. The building design variables affecting building 

energy performance and local microclimate are optimized. The ranges of the variables are 

preset for the optimizer to generate building design options. The multi-objective optimization 

is conducted to identify the optimal building design solutions using non-dominated 
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evolutionary algorithm NSGA-II [139], which minimizes the optimization objectives of both 

energy performance-driven design and environmental performance-driven design, subject to 

the satisfaction of the design constraints.  

The optimization objective of energy performance-driven design is calculated using the 

automated building performance simulation in the software Energyplus, which is integrated 

with the optimizer based on the optimization technique through Eppy toolkit in Python in order 

to ensure the generalizability, fidelity and automation. The optimization objective of 

environmental performance-driven design is calculated using the local microclimate surrogate 

models with high accuracy and high efficiency, including an SVR-based surrogate model of 

local air temperature and a LightGBM-based surrogate model of local wind velocity. These 

surrogate models are developed based on the typical scenario of high-density urban district 

which can ensure the model generalizability. The results of a large number of 3D high-

resolution microclimate simulations based on CFD simulation and advanced GIS spatial 

analysis technique are used for the surrogate model development. The prediction results of 

local microclimate under different building design options are provided not only for the 

calculation of environmental performance-driven design objective concerning the pedestrian 

thermal comfort, but also for the automated building energy performance simulation, in order 

to consider the mutual impacts between building design and local microclimate.  

Based on the energy and environmental performance evaluation of the building design options, 

the optimizer identifies the Pareto front including a few global optimal solutions of 
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simultaneous building and local microclimate optimization. Finally, the Pareto optimal 

solutions are evaluated and the best design solution is recommended using the entropy-TOPSIS 

method. 

In this study, two major efforts have been made to enhance the efficiency, generalizability and 

automation of the optimization model. Firstly, the automated building performance simulation, 

using the software EnergyPlus, is integrated with the optimization technique through Eppy 

toolkit in Python. Once design optimization is needed in a new design scenario, the building 

performance simulation will proceed automatically with need to modify the ranges of building 

design variables and settings of parameters in Python only. Secondly, the surrogate models of 

local microclimate are also integrated with the optimization solver, which predict the local 

microclimate instantaneously given the ranges of design variables for a new design scenario. 

7.1.2 Formulation of the optimization problems 

The coordinated design optimization problem of a building and its local microclimate is 

formulated as Eq. (7.1). Where, F is the design optimization objective. X is the building design 

variables. The subscript “ene” refers to the energy performance, and the subscript “env” refers 

to the environmental performance. The building design variables are optimized within their 

searching ranges, subject to the design constraint C as shown in Eq. (7.2). 

                                                     Minimize: 𝐹 = (𝐹𝑒𝑛𝑒 , 𝐹𝑒𝑛𝑣)                                          (7.1) 

Subject to: 𝑋𝑚𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 

𝐶(𝑋) ≤ 0                                                 (7.2) 
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7.2 Building design variables and optimization objectives 

7.2.1 Building design variables concerned 

Totally eleven building design variables affecting building energy performance and local 

microclimate are considered in the coordinated design optimization. They are overhang tilt 

angle, window SHGC, window to wall ratio, wall solar absorptance, skylight SHGC, skylight 

to roof ratio, building height, building aspect ratio, overall heat transfer coefficient of building 

envelope, building orientation and emissivity of wall. These design variables are selected based 

on the results of a systematic and comprehensive sensitivity analysis on the key building design 

parameters affecting building energy performance and local microclimate in subtropical 

regions in Chapter 4 and Chapter 5. They are optimized in their searching ranges as listed in 

Table 7.1. The ranges are determined according to the requirements of building energy 

efficiency [144,146,165] and the settings in previous studies [83,88,152]. 

Table 7.1 Design variables of coordinated optimal design of building and local microclimate 

Category Design 

variables 

Abbreviation Value Range Units 

Building design Overhang tilt 

angle 

OTA 0~180 ° 

Window SHGC WSHGC 0~0.48 W/(m2∙K) 

Window to wall 

ratio 

WWR 0.1~0.4 - 

Wall solar 

absorptance 

WSA 0.1~0.9 - 

Skylight SHGC SSHGC 0.1~0.3 W/(m2∙K) 

Skylight to roof 

ratio 

SRR 0~0.9 - 

Building design 

and local 

microclimate 

design 

Building height BH 6~200 m 

Building aspect 

ratio 

BAR 1~9 - 

Overall heat 

transfer 

OHTC 1.1~14.0 W/(m2∙K) 
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coefficient of 

building 

envelope 

Building 

orientation 

BO 0~360 ° 

Local 

microclimate 

design 

Emissivity of 

wall 

EW 0~1 - 

7.2.2 Optimization objectives 

In this study, two design objectives are adopted in the coordinated design optimization. One 

evaluates the energy performance of the building, and the other evaluates the local 

environmental performance surrounding the building. 

Optimization objective evaluating energy performance 

The energy performance objective (Fene) is formulated as shown in Eqs. (7.3), which is adopted 

to evaluate the building energy consumption affected by the local microclimate. The total 

building energy consumption includes the total electricity consumption for cooling, lighting 

and other equipment on a typical design day. The building design variables are optimized to 

minimize this objective to achieve a higher energy efficiency of the building designed. This 

objective is quantified by the automated building energy performance simulation under the 

most unfavorable weather condition, i.e., the typical summer design day under clear sky 

conditions, which accounts for the local microclimate effect. The typical summer design day 

under clear sky conditions is utilized to assess the building energy consumption under extreme 

climate conditions. Thus, the representative daily building energy consumption can be analyzed 

[88,99]. 
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                                        𝐹𝑒𝑛𝑒 = 𝐸𝑡𝑜𝑡 = 𝐸𝐶𝐸 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸                                                 (7.3) 

                                                              = 𝑄𝐶𝐿/SCOP𝑠 + 𝐸𝐿𝐸 + 𝐸𝐸𝐸  

where, Etot is total building energy consumption (kWh/m2). ECE is the electricity consumption 

for cooling (kWh/m2), calculated based on the cooling demand (QCL) of the building (kWh/m2) 

and the overall coefficient of performance of the air-conditioning system (SCOPs). In this study, 

SCOPs is set to 4. ELE is the lighting electricity consumption (kWh/m2). EEE is the electricity 

consumption (kWh/m2) of other electric equipment. 

Optimization objective evaluating environmental performance 

The environmental performance objective (Fenv) is adopted to evaluate the pedestrian thermal 

discomfort under the local microclimate, which is affected by the building design. It is 

formulated as shown in Eqs. (7.4-7.5). The building design variables are optimized to minimize 

this objective to improve the outdoor thermal comfort surrounding the building. In this study, 

pedestrian-level refers to the position of 3.0m away from the building and at a height of 1.5m. 

This objective is quantified under the most unfavorable weather condition, i.e., the hottest hour 

in the typical summer design day under clear sky conditions with the prevailing wind condition. 

The hottest hour is utilized to assess the pedestrian thermal discomfort under extreme climate 

conditions and significantly reduce the computing cost [13,14,79,80,82].. 

                                              𝐹𝑒𝑛𝑣 = 𝐷𝑑𝑖𝑠𝑐𝑜𝑚 = 𝑃𝐸𝑇𝑎𝑣𝑒 − 𝑃𝐸𝑇𝑛                                         (7.4) 

                                            𝑃𝐸𝑇𝑎𝑣𝑒 = (𝑃𝐸𝑇𝑚𝑎𝑙𝑒 + 𝑃𝐸𝑇𝑓𝑒𝑚𝑎𝑙𝑒)/2                                      (7.5) 
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where, Ddis is the pedestrian thermal discomfort degree (°C). A higher absolute value indicates 

a higher degree of thermal discomfort. PETn is the neutral physiological equivalent temperature, 

which is set to 28℃ in Hong Kong [141]. PETave is the average PET of male (PETmale) and 

female (PETfemale). The PETmale and PETfemale are calculated by pythermalcomfort.models 

toolkit in Python utilizing the developed local microclimate surrogate models.. 

7.3 Preprocessing of design optimization 

7.3.1 The needs of coordinated design 

In this section, the need of coordinated design optimization of a building and its local 

microclimate is elaborated. Figure 7.2 shows the relationship between the design variables and 

objectives of the energy performance-driven design and the environmental performance-driven 

design. The positive sign refers to the positive relationship between the design variable on the 

optimization objective, while the negative sign refers to the negative relationship. The impacts 

are investigated in Chapter 4 and Chapter 5. It can be seen that there are four building variables 

affecting both building energy performance and local microclimate. They are the building 

height, building aspect ratio, overall heat transfer coefficient of building envelope and building 

orientation. However, some of these design variables (i.e. building aspect ratio and building 

orientation) have opposite effects on the two optimization objectives (i.e. total building energy 

consumption and pedestrian thermal discomfort degree). The increase of building aspect ratio 

leads to higher building energy consumption but lower pedestrian thermal discomfort. 

Similarly, when the building orientation increases, the pedestrian thermal discomfort decreases 
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but the building energy consumption increases. That means a building design which has the 

lowest building energy consumption is probably not friendly to the local microclimate. 

Therefore, it is necessary to coordinate the building and local microclimate design to make a 

balance between the improvements of building energy performance and local microclimate. 

 

Figure 7.2 The relationship between design variables and objectives of the energy 

performance-driven design and the environmental performance-driven design 

7.3.2 Automated building performance simulation model 

The automated building performance simulation model is utilized to calculate the building 

energy consumption, considering the interaction with the local microclimate on a typical 



 

163 

 

summer design day. The building performance model is developed using the software 

EnergyPlus, which is combined with optimization techniques using the Eppy toolkit in Python. 

The detailed settings of the control logic and schedules for the air-conditioning and lighting 

systems in the EnergyPlus model are detailed in Chapter 3. 

7.3.3 Local microclimate surrogate model 

The fast and efficient surrogate models of local microclimate are adopted in order to 

significantly reduce the computing time while keeping the same order of accuracy with CFD 

simulations. Two single-output surrogate models are developed for the prediction of the local 

air temperature and wind velocity respectively, which are the major microclimate parameters 

affecting thermal comfort. Single-output surrogate models are adopted as different machine 

learning methods are appropriate for different prediction purposes and they demonstrate higher 

accuracy than the multi-output surrogate model in the test and validation. The inputs of the 

surrogate models are five key building design variables affecting local microclimate, as shown 

in Figure 7.2. The output of the local air temperature surrogate model is the change of the local 

air temperature affected by the building design. The output of the local wind velocity surrogate 

model is the change of the local wind velocity affected by the building design.  

The surrogate models of high computing efficiency and prediction accuracy have been 

developed in a Chapter 6. The developed SVR-based local air temperature surrogate model has 

a high prediction accuracy (i.e., MAE of 0.194), and the prediction time is at the millisecond 

level for a single prediction. The LightGBM-based local wind velocity surrogate model has a 
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MAE of 0.352 and the prediction time is at the millisecond level for each prediction. The 

computations are performed on a PC with an i7-3770 CPU at 3.40 GHz and Windows 7 

Enterprise 64-bit OS using the Scikit-learn machine learning library in Python 3.2.2 (64-bit). 

The generalizability and automation of the models are enhanced by incorporating various 

design scenarios in model training and integrating the model with the optimization technique 

in Python. 

7.4 Design constraints of the validation case 

Some constraints on the building geometry are considered in the coordinated design 

optimization, which are shown in Eqs. (7.6-7.7). The building volume for each building design 

option is fixed to provide the expected floor area for accommodating occupants, which is 

determined as 127,500 m3 in this study. The width of the new building (d) is constrained within 

a range from 15m to 125m, considering the minimum width requirements and the maximum 

available site area. Where, BH is the building height (m). BAR is the building aspect ratio.. 

                                                       𝐵𝐻 ∙ 𝐵𝐴𝑅 ∙ 𝑑2 = 127500                                            (7.6) 

                                                               15 ≪ 𝑑 ≪ 125                                                    (7.7) 

7.5 Results and analysis of optimization case study 

7.5.1 Optimal design results of building and its local microclimate 

The purpose of the coordinated design optimization is to identify the global optimal building 

design solutions which minimizes both total building energy consumption (Etot) and the 
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pedestrian thermal discomfort (Ddis), by considering the interactions between the building and 

its local microclimate. NSGA-II algorithm is adopted in this study for the multi-objective 

optimization due to its good performance and fast convergence speed. It has the structure of 

evolutionary algorithm, in which the non-dominated sorting approach and crowded comparison 

operator are utilized to rank and preserve the elitism solutions [107]. The initial population was 

set as 100 designs and 80 iterations were conducted for the evolutionary search process to 

converge and obtain the final Pareto solutions. . 

The historical samples of building design and the identified Pareto optimal set in the 

coordinated design optimization are shown in Figure 7.3. A total ten global optimal solutions 

are identified as the Pareto front, each of which is not dominated by other solutions. The 

detailed optimization results are listed in Table 7.2. If the priority of the building design is to 

improve building energy performance, the total building energy consumption on typical 

summer design day can be as low as 0.060 kWh/m2 and the pedestrian thermal discomfort 

degree would be 8.580°C. The building energy consumption under this scenario is reduced by 

up to 63.34% (0.104 kWh/m2) compared with historical samples. As the pedestrian thermal 

comfort improves, the building energy consumption increases. When the priority is to improve 

pedestrian thermal comfort, the pedestrian thermal discomfort degree can be as low as 7.785°

C, which is reduced by 9.3% (i.e., 0.795 K) compared to the scenario where the priority is given 

to building energy performance, and is reduced by 19.41% (i.e., 1.875 K) compared with 

historical samples. The building energy consumption on typical summer design day under this 
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scenario is 0.066 kWh/m2, which is increased by 0.007 kWh/m2 compared to the scenario 

where the priority is given to building energy performance.  

 

Figure 7.3 Historical design samples (1st to 80th generation) and Pareto optimal set in the 

coordinated optimal design 

The searching range, mean value, median value and distribution of the Pareto front of the 

building design variables are shown in Figure 7.4. It can be observed that within a wide range 

of the variables to be optimized, the impact of variables on energy consumption and thermal 

discomfort is not monotonic. The Pareto front suggests that the optimal range for overhang tilt 

angle of 125~170°, window SHGC of 0.01~0.06 W/(m2∙K), window to wall ratio of 0.2~0.3, 

wall solar absorptance around 0.1, skylight SHGC of around 0.3W/(m2∙K), skylight to roof 

ratio of 0.01~0.05, building height of 180~191m, building aspect ratio of 1.3~1.8, overall heat 

transfer coefficient of building envelope of 1.5~5.7 W/(m2∙K), building orientation of 8~18°, 
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and emissivity of wall of 0.6~0.7 can minimize the building energy consumption while 

mitigating the pedestrian thermal discomfort in the test case. The optimization results of 

window SHGC, window to wall ratio, skylight SHGC and skylight to roof ratio can effectively 

meet the Chinese standards for near zero energy buildings and energy efficiency of buildings 

in subtropical regions [144,146,165]. Within the permissible range, a larger overhang angle 

can more effectively block sunlight and reduce solar heat gain, thus reducing the energy 

consumption for cooling. A smaller wall solar absorptance can reduce the solar heat gain of the 

wall, consequently increasing the cooling load of the building. As for the four design variables 

involved in both energy performance-driven design and environmental driven-design, a lager 

building height and more compact building geometry (i.e., BAR of 1.3~1.8) is suggested in 

this optimization case, however, an optimal range of height (i.e., 180 to 191m) is proposed 

rather than pursuing sheer magnitude. A high-rise building with a low aspect ratio has relatively 

few interface areas for conducting heat exchange with the outdoors, thus reducing the building 

energy demands [167,168]. Meanwhile, the effects of the vertical meteorological pattern can 

lead to a lower air temperature and a higher wind speed in the vertical direction as height 

increases [169,170], thereby decreasing the cooling loads per unit area [171-174]. It is 

recommended to consider a lower overall heat transfer coefficient of the building envelope to 

alleviate both building energy consumption and pedestrian thermal discomfort, which is 

consistent with the result in Chapter 5. However, an optimal range (i.e., 1.5 to 5.7 W/(m²∙K)) 

is proposed, and smaller values are not always optimal (i.e., less than 1.5 W/(m²∙K)). In the test 

case, a windward orientation (i.e., 8~18°) helps direct wind flow along the sides of the building, 
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thereby reducing the surrounding air temperature and enhancing both the building energy 

performance and pedestrian thermal comfort. 

 

Figure 7.4 Searching range, and mean value, median value and distribution of the Pareto front 

of the building design variables 
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Table 7.2 Pareto optimal solutions of the coordinated optimal design of building and local microclimate 

Scheme 

number 

Building design variables Optimization 

objectives 
OTA WSHGC WWR WSA SSHGC SRR BH BAR OHTC BO EW Etot Ddis 

1 169.607 0.015 0.237 0.104 0.255 0.051 188.260 1.288 1.508 18.021 0.683 0.060 8.580 

2 125.856 0.015 0.257 0.107 0.256 0.052 186.339 1.298 1.510 11.664 0.682 0.061 8.550 

3 161.050 0.020 0.187 0.104 0.269 0.049 180.446 1.530 1.555 8.356 0.641 0.061 8.500 

4 146.566 0.007 0.233 0.108 0.251 0.007 187.638 1.328 1.578 10.028 0.629 0.061 8.190 

5 156.230 0.059 0.194 0.102 0.255 0.044 186.344 1.827 2.021 8.220 0.629 0.061 8.100 

6 144.303 0.014 0.188 0.127 0.256 0.053 186.343 1.848 1.597 10.466 0.629 0.062 8.095 

7 124.921 0.007 0.236 0.101 0.255 0.051 188.451 1.803 2.911 10.476 0.629 0.064 8.085 

8 129.530 0.007 0.189 0.104 0.256 0.036 186.343 1.803 5.242 10.459 0.630 0.066 8.055 

9 138.218 0.059 0.180 0.105 0.258 0.050 190.995 1.511 5.635 17.064 0.629 0.066 7.855 

10 134.863 0.007 0.249 0.115 0.269 0.014 186.842 1.794 5.704 10.341 0.629 0.066 7.785 
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7.5.2 Solution evaluation and recommendation based on entropy-TOPSIS method 

In this study, the entropy-TOPSIS method is utilized for the evaluation of the Pareto optimal 

solutions obtained by the coordinated design optimization to select the best solution 

maximizing the overall benefits concerning building energy performance and pedestrian 

thermal comfort. The entropy-TOPSIS method mainly includes two stages. In the first stage, 

the Shannon's entropy weight method is utilized to give weight to each design variable which 

is determined as the evaluation criteria in this study. In the second stage, the TOPSIS technique 

is applied to ranking the Pareto optimal solutions. 

Shannon's entropy is a measure of the uncertainty in information representing the average 

intrinsic information transmitted for decision-making [175]. The smaller the information 

entropy is, the greater the weight is. The Shannon's entropy weight method includes the process 

of normalization of the decision matrix, calculation of information entropy and calculation of 

weight for evaluation criteria. In order to make comparison across the evaluation criteria, the 

data in decision matrix with various criterion dimensions is normalized to the non-dimensional 

criterion. The decision matrix is normalized as P=[pi,j]m×n, i=1,2,…,m; j=1,2,…,n. In this 

study, pi,j is the value of the building design variable in a design scheme after normalization. m 

is determined as 14 which is the number of Pareto optimal solutions to be evaluated, n is 

determined as 11 which is the number of evaluation criteria. The information entropy for each 

evaluation criteria is formulated as Eq. (7.8). The weight given to each evaluation criteria is 

formulated as Eq. (7.9). The weighted matrix is formulated as Eq. (7.10). 

                                                𝐸𝑗 = −(ln 𝑚)−1 ∑ 𝑝𝑖,𝑗
𝑚
𝑖=1 ln 𝑝𝑖,𝑗                                            (7.8) 

                                                𝑤𝑗 = (1 − 𝐸𝑗)/(𝑛 − ∑ 𝐸𝑗
𝑛
𝑗=1 )                                              (7.9) 

                                                            𝑝𝑖,𝑗
𝑤 = 𝑤𝑗 ∙ 𝑝𝑖,𝑗                                                         (7.10) 
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The technique for order preference by similarity to ideal solution (TOPSIS) used for ranking 

is one of the well-known methods in multi-criteria decision making. The best solution 

determined by TOPSIS has the shortest distance to the positive ideal solution while having the 

farthest distance to the negative ideal solution. The positive ideal solution can maximize the 

benefit criteria and minimize the cost criteria. On the contrary, the negative ideal solution can 

maximize the cost criteria and minimize the benefit criteria [176]. The positive ideal solution 

and negative ideal solution of each evaluation criterion can be determined as Eq. (7.11-7.12), 

respectively. The Euclidean Distance of each Pareto optimal solution to the positive ideal 

solution and the negative ideal solution is formulated as Eq. (7.13-7.14). The relative closeness 

of each Pareto optimal solution to the ideal solution, which is used as the score of 

comprehensive evaluation, is formulated as Eq. (7.15). The larger the value is, the closer the 

solution to the positive idea solution is, and the better the design performance of the solution 

will be. 

                                                      𝑝𝑗
+ = max(𝑝𝑖,𝑗

𝑤 ) , i ∈ [1, m]                                           (7.11) 

                                                      𝑝𝑗
− = min (𝑝𝑖,𝑗

𝑤 ), i ∈ [1, m]                                           (7.12) 

                                               𝑑𝑖
+ = √∑ (𝑝𝑖,𝑗

𝑤 − 𝑝𝑗
+)2𝑛

𝑗=1 , i ∈ [1, m]                                   (7.13) 

                                              𝑑𝑖
− = √∑ (𝑝𝑖,𝑗

𝑤 − 𝑝𝑗
−)2𝑛

𝑗=1 , i ∈ [1, m]                                    (7.14) 

                                                 𝐶𝑖 = 𝑑𝑖
−/(𝑑𝑖

+ + 𝑑𝑖
−), i ∈ [1, m]                                         (7.15) 

In this study, minimizing the total building energy consumption and mitigating the pedestrian 

thermal discomfort are of equal importance. The scores of the solutions are normalized to the 

range of 0~1 for ranking. The larger the score obtained by the solution, the better the 

performance of energy and local microclimate of the building design, which will result in a 
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higher ranking for the solution. The rankings and scores of the ten Pareto optimal solutions 

evaluated by the entropy-TOPSIS method are shown in Figure 7.5. The best solution (Scheme 

2) with the highest score (i.e., 0.826) is marked on the Pareto front in Figure 7.6. It can be 

observed that it is the building design scheme that has the total building energy consumption 

of 0.061kWh/m2 (the second lowest total building energy consumption), 1835.1 kWh for the 

entire building on a typical summer design day, and the pedestrian thermal discomfort degree 

of 8.55°C (the second highest pedestrian thermal discomfort degree) on a typical summer 

design day. Scheme 2 has a building height of 186m, building orientation of 12°, building 

aspect ratio of 1.3, emissivity of wall of 0.7, heat transfer coefficient of building envelope of 

1.5 W/(m2∙K), overhang tilt angle of 126°, window SHGC of 0.015 W/(m2∙K), window to wall 

ratio of 0.26, wall solar absorptance of 0.1, skylight SHGC of 0.256 W/(m2∙K), skylight to roof 

ratio of 0.05. The solution (Scheme 10) with the lowest score (i.e., 0.009) is also marked on 

the Pareto front in Fig. 9. It can be observed that it has the largest total building energy 

consumption of 0.066kWh/m2, 1835.1 kWh for the entire building on a typical summer design 

day, and the lowest pedestrian thermal discomfort degree of 7.785°C on a typical summer 

design day. Scheme 10 has a building height of 135m, building orientation of 10°, building 

aspect ratio of 1.8, emissivity of wall of 0.629, heat transfer coefficient of building envelope 

of 5.7 W/(m2∙K), overhang tilt angle of 135°, window SHGC of 0.007 W/(m2∙K), window to 

wall ratio of 0.25, wall solar absorptance of 0.1, skylight SHGC of 0.269 W/(m2∙K), skylight 

to roof ratio of 0.01.  

As the building height is identified as the variable negative impacts on both total building 

energy consumption and pedestrian thermal discomfort in previous research, it is considered 

as a beneficial criterion in this study. That means a larger value of it can benefit both of the 

building energy performance and local microclimate, as proposed in Scheme 2. Meanwhile, as 

the overall heat transfer coefficient has positive impacts on both total building energy 
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consumption and pedestrian thermal discomfort, it is therefore determined as the cost criteria 

to be minimized in this study, as proposed in Scheme 2. When compared to historical building 

design solutions, the recommended best solution (Scheme 2) can save up to 62.9% (0.103 

kWh/m2of total building energy consumption and 3109.4 kWh for the entire building on a 

typical summer design day, while mitigating pedestrian thermal discomfort by up to 11.5% 

(1.11K) to prevent unacceptable extreme weather. 

 

Figure 7.5 Rankings and scores of the Pareto optimal solutions evaluated by entropy-TOPSIS 

method 



 

174 

 

 

Figure 7.6 The best solution on the Pareto front 

7.5.3 Discussion on optimization complexity and computation cost 

In this study, the computing time of the design optimization can be reduced by 99.98% (i.e., 

from 42684.44 to 8.89 hours) compared with that using conventional simulation methods. The 

performance evaluation of each building design option, including the automated building 

performance simulation and the surrogate model-based local microclimate simulation, totally 

costs about 4 seconds. In this coordinated optimal design, a total of 8000 evaluations including 

100 populations for 80 generations are conducted to converge, which takes about 8.89 hours. 

As for the conventional performance evaluation utilizing EnergyPlus and CFD simulations, the 

total computing time consumption is estimated to be around 42684.44 hours, given that each 

EnergyPlus and CFD simulation take about 4s and 5.33 hours (19204 seconds) respectively. 

The device used for computation is a PC with an i7-3770 CPU at 3.40 GHz and Windows 7 
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Enterprise 64-bit OS. The coordinated design optimization, automated building performance 

simulation model and local microclimate surrogate model development are conducted in 

Python 3.2.2 (64-bit). 

Even taking into account the computing time for surrogate model development, the proposed 

method can still save 41608.75 hours and 97.48% of the total computing time for the 

coordinated design optimization compared with the conventional simulation methods (i.e., 

from 42684.44 to 1075.69 hours). The utilization of the surrogate models for local 

microclimate prediction saves a large amount of time compared with the time-consuming CFD 

simulation. Once the model development completes, the prediction time is at millisecond level. 

To develop the surrogate models, totally 200 high-resolution CFD simulations are proceeded 

for obtaining the training dataset. Each CFD simulation, including the automatic process of 

mesh improvement, parameter setting, model simulation and result processing, takes about 

5.33 hours using Fluent 2019 (R3). The total time for developing the SVR-based local air 

temperature surrogate model (including the time for hyperparameter tuning and data processing) 

is around 1.65min, while the time for developing the LightGBM-based local wind velocity 

surrogate model is around 5.93 minutes. Thus, the development of the local microclimate 

surrogate models totally costs 64,008 minutes (i.e., 3,840,455 seconds). 

In order to weigh up the computational cost in the design optimization, a linear model (as 

shown in Figure 7.7) is developed to make a comparison of the proposed method in this study 

and the traditional method. Where, x is the sampling design solutions (i.e., 

generations*populations) included in the design optimization. C1 is the computing time for the 

traditional method. C2 is the computing time including that for surrogate model development. 

It can be observed in Fig. 10 that when the number of samples exceeds 200, the proposed 

method in this study has a significant advantage over the traditional method in terms of 

computational efficiency. For the design optimization involving numerous design variables 
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(i.e., 11 in this study), adequate iterations and samplings are necessary to converge and identify 

the global optimum solution, and to avoid local optimum. The proposed method in this study 

can provide the designers with a comprehensive and efficient analysis of building design and 

local microclimate considering the interaction between them. 

 

Figure 7.7 Comparison of time consumption for traditional method and proposed method 

7.6 Summary 

In this chapter, a coordinated design optimization method is proposed for improving building 

energy performance while mitigating the unacceptable negative impacts of local microclimate, 

considering their mutual impacts. The automated optimization solver combines the surrogate 

models of local microclimate and the building performance simulation software EnergyPlus 

with the optimization technique through Eppy toolkit in Python, which enhances the efficiency, 

generalizability and automation of the optimization model. The multi-objective optimization 

using NSGA-II for extensive design variables is therefore facilitated. The Pareto optimal 

solution set is identified by NSGA-II, reaching the compromise design solutions of building 

energy performance and pedestrian thermal comfort. The solutions are evaluated by the 

entropy-TOPSIS method, and the best solution is finally recommended. The case study in Hong 
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Kong is utilized to test and validate the proposed method. The coordinated optimal design 

proposed in this study can fill the gap of the simultaneous design optimization of building and 

local microclimate and provide global optimal design solutions to improve building energy 

performance while improving the local microclimate and/or avoiding unacceptable negative 

impacts in an efficient, generic and automatic way. Based on results of the optimization case 

study, the major conclusions can be briefly summarized as follows. 

• The coordinated design optimization building and its local microclimate is necessary when 

some building design variables lead to conflicting impacts. The Pareto optimal solutions 

identified by the proposed method can reach compromise building design solutions of 

energy efficiency and pedestrian thermal comfort, which and help to save total building 

energy consumption about 59.5~63.6% (0.097~0.104kWh/m2) while mitigating the 

pedestrian thermal discomfort about 11.2~19.4% (1.08~1.88K) on typical summer design 

day. 

• The Pareto front suggests the optimal ranges of building design variables that can minimize 

the building energy consumption while mitigating the pedestrian thermal discomfort in the 

test case in subtropical areas (i.e., window to wall ratio of 0.2~0.3, wall solar absorptance 

around of 0.1, skylight to roof ratio of 0.01~0.05, building height of 180~191m, building 

aspect ratio of 1.3~1.8, overall heat transfer coefficient of building envelope of 1.5~5.7 

W/(m2∙K), and building orientation of 8~18°). 

• The best design solution recommended by the entropy-TOPSIS method, with a larger 

building height and a smaller overall heat transfer coefficient within the optimal range, can 

save up to 62.9% (0.103 kWh/m2) of total building energy consumption and 3109.4 kWh 

for the entire building on a typical summer design day, while mitigating pedestrian thermal 

discomfort by up to 11.5% (1.11K) to prevent unacceptable extreme weather. 
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• The coordinated design optimization method proposed in this study can reduce the 

computation time by 99.98% (i.e., from 42684.44 to 8.89 hours), and reduce the total 

computational cost by 97.48% (i.e., from 42684.44 to 1075.69 hours) compared with that 

using conventional simulation methods. When the samples exceed 200, the proposed 

method has a great advantage over the traditional method in time saving. 

In this study, only the most unfavorable weather condition is used to evaluate the coordinated 

optimal design performance. This approach assesses representative pedestrian thermal 

discomfort and total building energy consumption under extreme climate conditions while 

significantly reducing computing costs. Performances under other conditions are not 

considered, and annual total building energy consumption is not addressed. The optimization 

results are validated with a test case in subtropical regions, and recommendations are provided 

for these areas. 
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CHAPTER 8   CONCLUSION AND FUTURE WORK 

This chapter presents the main contributions of this PhD project, and the conclusions of the 

work conducted in this PhD project are summarized. The recommendations for future research 

on the research subjects are concerned in the end. 

8.1 Main contribution of this study 

This PhD study proposed the identification of the most influential design parameters of 

zero/low energy buildings considering the impacts of climate and building height, the mutual 

impacts between zero/low energy building design and the local microclimate, the local 

microclimate surrogate models and coordinated design optimization method for the zero/low 

energy building and local microclimate considering the mutual impacts. The main 

contributions are summarized as follows: 

1. A systematic and comparative study on the key design parameters of zero/low energy 

building envelopes is conducted. The most influential design parameters of high-rise and 

low-rise buildings in different climate zones are identified by sensitivity analysis and the 

impacts of climate and building height are studied and compared. The key design 

parameters affecting winter thermal discomfort in the climate zones typically without 

heating provision are also identified. The impact of thermal bridge on building energy 

performance is further investigated. 

2. The mutual impacts between zero/low energy building design and the local microclimate 

considering the interactions are investigated, and the major influential building parameters 

on both local microclimate and building energy performance in subtropical urban area are 

identified. A large number of high-resolution microclimate and building simulations based 

on advanced GIS spatial analysis technique are performed under different building designs 
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for the mutual impact assessment. A global sensitivity analysis is conducted to identify the 

major influential building parameters. 

3. Machine learning-based surrogate models with high efficiency and high accuracy are 

developed to predict the impacts on local microclimate (i.e., local air temperature and wind 

velocity) due to the addition of a new individual building. Four machine learning 

algorithms are evaluated and compared for the model development, including ANN, SVR, 

RF, and LightGBM. 

4. A coordinated design optimization method is proposed for zero/low energy building and 

local microclimate to effectively identify the global optimal design solutions considering 

the interactions between them. The automated building simulation and local microclimate 

surrogate models are combined with the optimizer to enhance the efficiency and 

generalizability. The multi-objective optimization for extensive design variables is 

therefore facilitated. The Pareto optimal solutions obtained are evaluated by the entropy-

TOPSIS method, and the best solution is finally recommended. 

8.2 Conclusions 

Conclusions on identification of key design parameters of zero/low energy buildings 

1. The key design parameters affecting energy performance of a building are significantly 

different in different climate zones and for different building morphology (i.e., high-rise 

and low-rise in this study). 

2. The highly sensitive envelope design parameters of high-rise buildings are related to the 

envelope components including overhang, window and wall in all climate zones. 

3. The highly sensitive envelope design parameters of low-rise buildings are related to the 

envelope components including skylight, roof and ground in all climate zones. 
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4. Wall thermal absorptance is a key parameter affecting building energy performance in all 

climate zones, which has been ignored before. 

Conclusions on mutual impacts of zero/low energy building design and local microclimate 

1. Strong mutual impacts exist between the new building design and urban local 

microclimate. In this study, different building designs lead to significant variations of local 

wind velocity (i.e., -0.95~+4.51 m/s), air temperature (i.e., -0.60~+1.17 K), and pedestrian 

thermal discomfort degree (i.e., 13.75~22.65℃ ). The local microclimate results in a 

change in the building energy consumption from -41.75kJ/m2 to 291.54kJ/m2. 

2. The major influential parameters on local air temperature, wind velocity and pedestrian 

thermal discomfort are rather different. The major influential parameters on local air 

temperature are building orientation and wall emissivity, while the major influential 

parameters on local wind velocity are building height and aspect ratio. As for the 

pedestrian thermal discomfort, the major influential parameters include building height 

and overall heat transfer coefficient of building envelope. 

3. The major influential parameters on both local microclimate and building energy 

performance are building height and overall heat transfer coefficient of building envelope. 

Although the ranking orders of the building parameters affecting pedestrian thermal 

discomfort and building energy consumption are similar, the correlations between the 

parameters and the performance are significantly different. Therefore, it is necessary to 

consider the mutual impacts between building design and local microclimate in the design 

of new buildings to improve building energy performance while minimizing the impacts 

on the local microclimate. 

In this study, the thermal characteristics of the building for building performance simulation in 

EnergyPlus, such as the specific heat capacity, density, thickness, thermal absorptance, solar 
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absorptance, and visible absorptance, are assumed as constant values, the impacts of which on 

the microclimate are ignored and could be investigated in future work. The representation of 

trees and roads in the study area is simplified to save computational resources. 

Conclusions on generic data-driven model of local microclimate 

1. The machine learning models dramatically reduce computation time (from over 5 hours to 

less than a second) for local microclimate prediction, compared with using CFD 

simulations. LightGBM and SVR are the efficient methods for both local air temperature 

and wind velocity prediction, while RF is the most computational expensive method. 

2. ANN, SVR, RF and LightGBM show good performance of local microclimate prediction, 

providing the same order of accuracy of CFD simulations. The prediction errors of local 

air temperature based on these four algorithms are below the error range of an air 

thermometer (± 0.5℃), and SVR shows the best performance. The prediction errors of 

local wind velocity based on the four algorithms are below the error range of 

thermoelectric anemometer (0~1m/s), and LightGBM shows the best performance. 

3. The single-output prediction model of local air temperature based on SVR is 

recommended due to their high efficiency and high accuracy, The computation time is 

0.58s, and its MAE and RMSE (0.194 and 0.255) are the smallest among the four methods. 

4. The single-output prediction model of local wind velocity based on LightGBM is 

recommended due to their high efficiency and high accuracy. The computation time is 

0.07s, and its MAE and RMSE (0.352 and 0.439) are the smallest among the four methods. 

Conclusions on coordinated design optimization 

1. The coordinated design optimization building and its local microclimate is necessary when 

some building design variables lead to conflicting impacts. The Pareto optimal solutions 

identified by the proposed method can reach compromise building design solutions of 
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energy efficiency and pedestrian thermal comfort, which and help to save total building 

energy consumption about 59.5~63.6% (0.097~0.104kWh/m2) while mitigating the 

pedestrian thermal discomfort about 11.2~19.4% (1.08~1.88K) on typical summer design 

day. 

2. The Pareto front suggests the optimal ranges of building design variables that can 

minimize the building energy consumption while mitigating the pedestrian thermal 

discomfort in the test case in subtropical areas (i.e., window to wall ratio of 0.2~0.3, wall 

solar absorptance around of 0.1, skylight to roof ratio of 0.01~0.05, building height of 

180~191m, building aspect ratio of 1.3~1.8, overall heat transfer coefficient of building 

envelope of 1.5~5.7 W/(m2∙K), and building orientation of 8~18°). 

3. The best design solution recommended by the entropy-TOPSIS method, with a larger 

building height and a smaller overall heat transfer coefficient within the optimal range, 

can save up to 62.9% (0.103 kWh/m2) of total building energy consumption and 3109.4 

kWh for the entire building on a typical summer design day, while mitigating pedestrian 

thermal discomfort by up to 11.5% (1.11K) to prevent unacceptable extreme weather. 

4. The coordinated design optimization method proposed in this study can reduce the 

computation time by 99.98% (i.e., from 42684.44 to 8.89 hours), and reduce the total 

computational cost by 97.48% (i.e., from 42684.44 to 1075.69 hours) compared with that 

using conventional simulation methods. When the samples exceed 200, the proposed 

method has a great advantage over the traditional method in time saving. 

In this study, only the most unfavorable weather condition is used to evaluate the coordinated 

optimal design performance. This approach assesses representative pedestrian thermal 

discomfort and total building energy consumption under extreme climate conditions while 

significantly reducing computing costs. Performances under other conditions are not 

considered, and annual total building energy consumption is not addressed. The optimization 
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results are validated with a test case in subtropical regions, and recommendations are provided 

for these areas. 

8.3 Recommendations for future work 

This PhD study has made significant efforts to address the mutual impacts between zero/low 

energy buildings and the local microclimate in the coordinated design optimization of them. In 

future studies, more efforts can be made on the following aspects to further enhance the 

methods and the convenience for practical applications. 

1. The coordinated design optimization in this study mainly concerned about building energy 

efficiency and pedestrian thermal comfort, while the indoor thermal comfort and life cycle 

cost of zero/low energy buildings, which are also significant in design practices, are not 

addressed in this study. Therefore, the indoor thermal comfort and the life cycle cost of 

the zero/low energy building can be taken into consideration in coordinated design 

optimization of building and its local microclimate 

2. In this study, the variations of local air temperature affecting the indoor air temperature 

play a role in the coordinated natural ventilation and air-conditioning controls in building 

simulation. However, the local wind velocity which can affect the natural ventilation is 

not concerned in natural ventilation control. Therefore, the natural ventilation control 

strategies considering the impact of local wind velocity can be proposed to enhance the 

natural ventilation and energy efficiency of zero/low energy building 

3. The zero/low energy building adopts the cooling system using water-cooled electric 

chillers in this study. Renewable energy systems, such as photovoltaic power generation, 

are commonly utilized in the design of zero/low energy buildings. Therefore, the 

coordinated design optimization is needed to make trade-offs between the power 

generation, the energy consumption, and the impacts on the local microclimate in future 
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zero/low energy building design in high-density cities to facilitate the achievement of 

carbon neutrality.  

4. The impacts of local microclimate on building energy performance are significant. 

Therefore, the impacts of local microclimate variations should not be ignored in energy-

saving strategies. In the future studies, optimal energy management strategies considering 

the impacts of local microclimate variations will be proposed. 
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APPENDIX 

 

(a) 

 

(b) 

Figure A1 Distribution of the 200 scenarios generated by Latin hypercube sampling method 

(a). building morphology; (b). building thermal characteristics. 
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Table A1 200 scenarios generated by Latin hypercube sampling method 

Scenario Building 

height 

Building 

orientation 

Building 

aspect 

ratio 

Overall 

heat 

transfer 

coefficient 

of building 

envelope 

Emissivity 

of wall 

Heat 

rejection of 

air-

conditioners 

1 15 45 1 0.657  8.305  149.548  

2 7 60 1.4 0.633  8.348  145.232  

3 134 0 5 0.076  3.917  75.847  

4 97 90 1 0.640  9.843  137.288  

5 125 15 5 0.114  4.351  77.165  

6 53 105 9 0.063  7.311  80.455  

7 35 15 1.5 0.236  4.640  119.782  

8 178 120 7 0.089  10.980  79.247  

9 129 45 1.5 0.586  6.026  94.245  

10 156 75 1.2 0.036  13.647  91.987  

11 107 60 8 0.141  5.888  144.532  

12 154 135 1.2 0.060  13.392  87.873  

13 128 120 9 0.445  10.169  129.703  

14 17 165 1.5 0.407  2.373  145.503  

15 176 45 1 0.825  4.170  84.923  

16 197 165 2 0.313  1.269  89.259  

17 31 120 4 0.777  10.261  143.123  

18 188 45 1.2 0.796  3.042  111.163  

19 191 135 2 0.267  9.944  130.444  

20 36 75 5 0.561  5.522  82.044  

21 75 120 3 0.638  8.788  103.946  

22 67 135 7 0.392  2.758  124.880  

23 146 30 9 0.326  5.002  81.630  

24 14 0 9 0.115  8.413  79.609  

25 23 135 2 0.179  10.448  117.717  

26 71 135 1.5 0.021  9.898  116.974  

27 11 30 6 0.831  7.501  149.040  

28 109 45 1.4 0.012  7.805  110.737  

29 70 165 4 0.342  4.651  117.877  

30 113 150 6 0.680  10.019  86.931  

31 185 30 6 0.844  8.493  86.619  

32 89 105 1.5 0.593  5.702  97.682  

33 165 30 1.4 0.433  2.488  84.265  

34 103 15 1 0.323  2.186  121.119  



 

188 

 

35 183 60 2 0.188  5.083  82.495  

36 58 120 1.4 0.782  9.126  129.247  

37 189 90 4 0.544  1.156  146.579  

38 174 0 1 0.513  8.067  112.822  

39 186 75 1 0.192  5.572  132.556  

40 191 45 8 0.092  12.445  85.477  

41 52 0 6 0.534  11.105  79.896  

42 20 60 1.2 0.138  6.777  90.588  

43 33 165 1 0.756  3.455  101.580  

44 83 30 1.5 0.398  8.003  103.210  

45 134 30 3 0.688  11.405  96.947  

46 71 150 9 0.929  3.717  136.826  

47 84 15 7 0.848  12.223  92.534  

48 157 30 1.5 0.506  2.532  117.085  

49 46 30 8 0.518  1.863  82.915  

50 196 75 6 0.025  1.479  102.773  

51 90 165 1.5 0.651  12.565  111.566  

52 153 75 1.4 0.256  10.959  142.172  

53 132 60 1 0.221  12.387  123.790  

54 160 120 2 0.568  12.259  121.205  

55 124 150 8 0.218  11.700  82.554  

56 141 105 4 0.770  8.223  113.689  

57 8 150 7 0.968  12.875  96.339  

58 105 135 1.4 0.933  7.570  109.068  

59 164 150 1.2 0.339  9.369  148.674  

60 25 165 2 0.648  10.763  143.353  

61 91 30 1.5 0.317  10.500  102.236  

62 39 165 3 0.181  12.194  81.334  

63 21 90 3 0.241  4.837  145.051  

64 69 15 1.2 0.291  13.582  87.369  

65 135 75 6 0.475  5.257  135.708  

66 161 0 1 0.215  6.733  98.769  

67 116 75 1.2 0.285  12.047  99.337  

68 92 60 4 0.681  5.444  93.045  

69 115 45 1.2 0.736  7.717  116.101  

70 49 15 4 0.230  13.686  91.786  

71 152 60 9 0.916  3.227  147.171  

72 176 120 5 0.273  4.291  125.635  

73 76 165 1.5 0.983  9.035  84.609  

74 107 75 8 0.947  10.893  95.166  

75 123 45 3 0.503  4.567  126.288  

76 172 105 9 0.942  3.324  126.668  
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77 86 30 4 0.728  2.282  140.647  

78 119 135 1 0.451  4.895  128.147  

79 62 60 4 0.840  7.484  109.940  

80 39 165 1 0.747  8.621  94.676  

81 148 75 5 0.998  5.385  99.650  

82 187 15 2 0.907  5.850  137.143  

83 128 15 4 0.537  6.395  122.603  

84 118 90 6 0.380  2.406  77.946  

85 29 120 1.4 0.365  6.142  110.393  

86 28 120 7 0.809  2.840  93.562  

87 194 0 4 0.489  1.588  147.630  

88 97 0 1 0.285  4.445  140.142  

89 150 150 5 0.528  8.677  108.070  

90 126 105 7 0.763  13.930  122.801  

91 117 45 3 0.246  13.190  136.176  

92 65 105 4 0.858  8.916  97.926  

93 198 75 4 0.610  6.366  135.035  

94 111 150 8 0.469  12.921  138.140  

95 147 165 4 0.603  2.001  107.484  

96 170 0 9 0.170  1.524  92.686  

97 95 135 6 0.731  10.248  97.335  

98 139 90 1.4 0.307  7.836  120.089  

99 65 150 3 0.817  2.587  75.087  

100 100 90 7 0.991  7.941  146.900  

101 79 135 6 0.765  11.183  119.573  

102 120 150 9 0.446  1.318  105.329  

103 195 105 1.2 0.389  1.734  123.142  

104 60 90 1.4 0.464  2.234  112.303  

105 63 0 8 0.720  4.498  80.751  

106 182 150 3 0.253  13.284  77.542  

107 93 45 4 0.382  3.255  95.584  

108 73 120 8 0.581  12.621  113.592  

109 44 30 4 0.713  5.999  91.001  

110 26 30 7 0.017  8.174  109.403  

111 99 105 3 0.953  4.107  118.161  

112 55 0 2 0.788  9.786  106.445  

113 74 60 5 0.921  11.772  134.465  

114 54 150 1 0.986  6.484  125.568  

115 36 135 5 0.358  11.982  106.713  

116 60 105 9 0.124  10.700  104.549  

117 151 105 6 0.195  9.295  88.922  

118 68 45 9 0.005  10.614  139.076  
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119 88 0 6 0.598  9.001  138.495  

120 181 45 6 0.374  9.556  136.091  

121 14 30 9 0.048  13.136  102.455  

122 167 15 4 0.155  11.457  90.161  

123 16 60 1.4 0.825  8.852  96.641  

124 168 90 5 0.302  1.791  91.140  

125 22 0 2 0.877  2.077  134.238  

126 79 60 8 0.126  9.485  98.407  

127 64 135 3 0.861  9.452  88.683  

128 50 15 6 0.723  3.978  100.949  

129 179 90 3 0.880  12.826  87.613  

130 94 165 6 0.750  7.399  85.856  

131 46 30 1 0.938  12.995  104.776  

132 115 105 5 0.523  6.991  139.747  

133 73 105 1.4 0.577  3.862  101.900  

134 170 135 2 0.207  2.685  95.818  

135 87 150 1.2 0.102  6.196  137.862  

136 30 15 1.2 0.619  3.129  144.257  

137 48 45 1.4 0.164  13.837  105.437  

138 102 60 4 0.810  10.789  133.160  

139 184 150 8 0.605  13.302  75.484  

140 81 150 1.2 0.498  4.250  76.326  

141 85 120 1 0.795  6.090  78.456  

142 57 105 9 0.165  10.075  78.365  

143 10 120 4 0.146  12.760  111.782  

144 132 165 3 0.554  13.517  114.472  

145 180 45 6 0.660  7.269  142.597  

146 40 90 5 0.202  12.708  100.863  

147 141 15 7 0.709  13.994  93.767  

148 37 0 1.4 0.559  7.093  126.989  

149 102 150 9 0.437  5.133  100.453  

150 27 75 1.5 0.850  3.760  149.725  

151 24 105 1.2 0.695  2.921  121.711  

152 121 75 6 0.421  7.123  120.462  

153 47 45 1.4 0.296  2.036  132.044  

154 144 135 8 0.672  9.221  122.115  

155 200 75 1.2 0.264  1.370  131.148  

156 31 135 2 0.892  3.376  115.552  

157 33 30 1.5 0.481  6.868  116.516  

158 7 45 5 0.043  11.273  131.326  

159 100 60 5 0.902  8.545  83.876  

160 137 45 8 0.109  9.723  147.930  
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161 146 135 8 0.575  11.096  140.532  

162 131 150 3 0.082  2.853  127.753  

163 173 90 3 0.912  11.594  105.877  

164 12 75 8 0.493  11.502  79.019  

165 110 150 7 0.334  3.614  109.808  

166 19 15 2 0.364  13.431  133.649  

167 178 30 2 0.622  5.335  115.249  

168 158 90 3 0.899  4.010  127.342  

169 167 0 7 0.225  9.277  123.655  

170 195 75 5 0.478  7.199  99.897  

171 138 75 1.5 0.874  6.693  118.700  

172 42 120 1.4 0.355  9.662  128.251  

173 59 165 9 0.429  6.287  103.522  

174 96 120 2 0.963  11.622  141.439  

175 112 90 7 0.629  5.781  76.573  

176 149 90 8 0.280  2.990  131.909  

177 43 0 8 0.741  10.541  141.052  

178 193 0 2 0.072  5.166  107.174  

179 155 15 1.5 0.413  13.746  141.789  

180 127 15 6 0.975  7.659  113.145  

181 18 165 7 0.404  1.927  85.941  

182 142 60 1.5 0.417  11.862  143.957  

183 161 0 2 0.978  5.647  89.893  

184 108 105 2 0.700  1.220  118.892  

185 144 90 7 0.802  1.658  83.294  

186 172 30 9 0.695  13.051  129.972  

187 105 120 1.2 0.068  12.507  124.242  

188 80 75 7 0.887  11.332  130.781  

189 136 90 7 0.866  3.489  114.360  

190 83 105 1.4 0.034  7.929  139.216  

191 51 105 1 0.050  11.902  124.667  

192 157 165 5 0.959  10.350  134.996  

193 44 120 1.4 0.155  4.757  107.756  

194 10 60 1.5 0.547  12.104  108.457  

195 165 120 1.2 0.458  6.574  88.459  

196 122 165 3 0.667  6.920  128.745  

197 190 165 8 0.345  6.594  145.989  

198 163 15 9 0.098  3.660  114.820  

199 56 135 6 0.009  4.915  132.953  

200 77 60 1.2 0.133  8.755  148.467  
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