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Abstract 

Precision measurement for micro-structured surfaces is important for the 

fabrication of micropatterns to guarantee form accuracy. Contact and non-contact 

measurement methods alike have been extensively used to inspect these surfaces, where 

the optical sensor used in the non-contact methods does not cause probable damage to 

the measured parts, and the speed of data acquisition is much faster. Among these non-

contact measurement technologies, an autostereoscopic measurement system with a 

rapid data acquisition process is an effective method to achieve accurate on-machine 

measurement. 

Autostereoscopy technology can provide a rapid and accurate three-dimensional 

(3D) measurement solution for micro-structured surfaces. The autostereoscopic 3D 

measuring system can record elemental images within one snapshot and the 

measurement accuracy can be quantified from the disparities existing in the 3D raw 

information. One of the primary challenges in improving the measurement resolution 

of autostereoscopic 3D systems is the natural compromise between spatial resolution 

resulting in finer details and angular resolution enabling accurate parallax restoration. 

This trade-off poses an obstacle to enhancing the resolution of the system.  

Improving angular resolution is of utmost importance when considering the trade-

off of light field data. Within the domain of enhancing angular resolution through deep 

learning methods, advancements have been made in both non-depth-based techniques 

and the techniques requiring depth estimation. However, non-depth-based methods 

usually generate image ghosting when the light field images have large disparity ranges. 

It is difficult to realize accurate disparity estimation directly obtained through light field 
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images for the depth-based methods, so image artefacts are usually fabricated in the 

novel views especially when scenes are complex. In addition, a lack of ground truth of 

the generated novel views makes the training on the finite data insufficient since the 

training data have to be split into inputs and their labels. In this thesis, a novel semi-

supervised learning paradigm for light field angular super enhancement is presented 

without the need for ground truth. Following the learning paradigm, the learning models 

can be directly supervised by the input, and training data are not required to be paired 

as input and labels. Hence, more light field images with redundant parallax information 

can be used for the learning of deep light field reconstruction.  

To take advantage of the learning paradigm, A convolutional network leveraging 

motion estimation is built to synthesize novel views via fusing adjacent views. The 

experiments demonstrate that the method, implemented under the proposed learning 

paradigm, achieves high-quality metrics for simulated and real-world light field data. 

This is particularly notable for scenes that include multi-depth targets, complex textures, 

and large baselines. More accurate parallax structures can be recovered based on the 

proposed learning paradigm, whilst over 69% of training data are saved compared with 

other methods. In addition, under the proposed learning paradigm, even a simple 

shallow network can synthesize high-quality novel views. The PSNR achieved by the 

baseline method is approximately improved by 2dB after the proposed semi-

supervision. Hence, the proposed semi-supervised learning paradigm can be easily 

integrated with other learning models. 

Regarding resolution enhancement of autostereoscopic measuring data, a self 

super-resolution algorithm driven by deep learning models has been designed. This 

algorithm is integrated into the measurement system, resulting in the creation of a self 
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super-resolution autostereoscopic 3D measuring system. The self super-resolution 

algorithm can generate novel perspectives between the neighbouring Elemental Images 

(EIs) so that the angular resolution is markedly enhanced several times over. The 

proposed algorithm has been embedded into an autostereoscopic 3D measuring system 

so that the system can achieve self super-resolution. To validate the feasibility and 

technical merit of the proposed self super-resolution 3D measuring system, a 

comprehensive comparison experiment was conducted between the traditional 

autostereoscopic measuring system without super-resolution and the proposed system. 

The results demonstrate that the self super-resolution system can significantly improve 

the resolution of the measuring data by around four-fold and enhance the measurement 

accuracy with lower standard deviations and biases. 

To reduce the effect of vibration during on-machine measurement, multiple frames 

captured by the autostereoscopic measuring system are able to be used to eliminate the 

measurement errors induced by the vibration. Furthermore, essential information for 

achieving high spatial resolution in the measurement data can be extracted from the 

redundant subpixel-level information. As a result, the study introduces a multi-frame 

autostereoscopic system designed specifically for the on-machine measurement of 

three-dimensional surfaces, aimed at enhancing resolution. It leverages the vibrations 

produced by the machine tool during on-machine measurements to capture multiple 

frames of the target surface with offsets. This approach allows for resolution 

enhancement. A multi-frame resolution-enhanced deep learning model is developed, 

along with a supervised training process, to generate resolution-enhanced raw 

elemental images. This approach is pivotal to improving the measurement resolution. 

Through experiments, the system performance is assessed, and the results demonstrate 

a four-fold enhancement in spatial resolution along with improved measurement 
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accuracy. 

In this study, learning-based techniques are applied to enhance LF resolution of 

measurement data gathered using the autostereoscopic 3D measuring system. Through 

experimental evaluation, the measurement resolution and accuracy for micro-structured 

surfaces are improved after artificial intelligence enhancement. In addition to the 

aforementioned advancements, the study also presents a generic semi-supervised 

learning paradigm specifically designed for deep learning models employed in angular 

resolution-enhancement tasks. This innovative paradigm allows for high data efficiency, 

ensuring superior performance in enhancing angular resolution using limited labelled 

data. The deep learning-based method results in an enhancement of angular resolution 

from 16 × 9 to 31 × 17, as well as an improvement in spatial resolution from 151 × 151 

to 604 × 604. This enhancement in angular resolution leads to a reduction in error 

between measured and true values from over 1 µm to around 0.1 µm on average, along 

with a decrease in repeated measurement deviation by around 1 µm. Additionally, the 

spatial enhancement contributes to an increase in accuracy by 1 µm and a reduction in 

the deviation of repeated measurements from 1.533 µm to 1.388 µm. The research 

highlights the potential of combining autostereoscopy technology with deep learning 

technology for precise measurement. 
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Chapter 1 Introduction 

1.1 Background of the study 

Surfaces with micro-structures are demonstrated to realize various functions such 

as self-cleaning, drag reduction, anti-fouling, low friction, etc. These micropatterns 

significantly impact the physical properties of a material so that these micro-structured 

surfaces can be applied in many applications in various fields. The applications of the 

micro-structured surfaces include optics (Li & Allen, 2012; Zhang et al., 2018), energy 

(Bixler & Bhushan, 2013; Wang et al., 2015), robotics (Breckwoldt et al., 2015; Yao et 

al., 2020), etc. as shown in Figure 1.1. 

Since the demand for micro-structured surfaces is growing quickly, great 

challenges are faced in manufacturing. As an important part of manufacturing, the 

accurate measurement of micro-structured surfaces has become vital in ultra-precision 

machining. Measurement aims to describe object properties using specific numbers to 

make quantitative descriptions of the observed objects. Measurement results are 

compared with other objects or the desired design value so that the difference between 

the two objects can be obtained. For ultra-precision manufacturing, form accuracy is a 

significant criterion since it directly determines the functional performance of the 

machined part.  
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Figure 1.1 Applications of micro-structured surfaces in (a) 

robotics (Breckwoldt et al., 2015; Yao et al., 2020), (b) optics 

& imaging (Li & Allen, 2012; Zhang et al., 2018), and (c) 

energy (Bixler & Bhushan, 2013; Wang et al., 2015). 

Surface measurement compares the machined surface form and the desired surface 

form so as to provide guidance on the post-machining process. Basically, dimensional 

measurement primarily concerns itself with assessing the dimensional and geometric 

accuracy of a workpiece's surface profile. The precision depends significantly on the 

cutting tool's movements relative to the workpiece. Different factors such as theoretical 

inaccuracy, geometric inaccuracy of machining tools and cutting tools, deformation of 

the machining system, and deformation of workpieces can contribute to the occurrence 

of form errors in the machined workpiece. 

Widely used surface dimensional measurement techniques mainly include stylus 

profilometers, interferometry, deflectometry, confocal methods, structured light, 
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electron microscopy, autostereoscopy, etc. With the rapid advancements in computer 

science and artificial intelligence (AI) techniques, AI is identified as a promising tool 

in the field of measurement science and technology. It enables the exploration and 

extraction of implicit information from extensive measurement data, thereby improving 

the performance of existing measuring systems. This new approach brings a fresh 

perspective and opens up new possibilities for improving measurement accuracy and 

efficiency. 

In the industry, contact profilometers are widely employed for surface 

measurement. These instruments utilize a contact stylus that moves in both vertical and 

lateral directions across the surface being measured. By doing so, the profilometer can 

accurately determine and record the distance between two measured points, as well as 

the contact force exerted during the movement. A contact profilometer requires no 

modelling, which makes it independent on the measured surfaces. It is also not sensitive 

to the specific properties of surfaces such as colour and reflectance that have a great 

influence on optical measurement instruments. Contact profilometers provide accurate, 

precise, and convincing measurement results, which contribute to their popularity in 

industry. However, two main drawbacks of contact profilometers are their time-

consuming data acquisition process and the nature of contact on the measured surfaces. 

The interaction of the probe might cause damage to the surfaces, especially when the 

surfaces are soft and delicate.  

Non-contact profilometers usually operate based on optical techniques. A vast 

amount of research on non-contact profilometers emerged over the decades, and various 

optical techniques have been employed in relation to measurement, including time of 

flight (ToF), laser triangulation, structure light, light field, etc. The most apparent merit 

of non-contact profilometers is that there are no additional force and effects interacting 
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with the measured surfaces. This suggests that non-contact instruments generally 

exhibit extended durability, while contact instruments that require interaction between 

a probe and a surface may cause wear on the probe tip over time.  

Autostereoscopy technology, as an emerging optical technology, was first 

introduced in the measurement field by Li et al. (2014) who developed an 

autostereoscopic measuring instrument for on-machine/in-situ measurement based on 

integral imaging. In acquiring the optical information of measured surfaces, the 

instrument utilizes a micro-lens array (MLA). This MLA enables the recording of 

multiple perspectives, resulting in a collection of 2D elemental images that contain 

valuable light field information. These images are then utilized for digital refocusing 

and disparity extraction purposes. As a consequence, accurate on-machine 

measurement of micro-structured surfaces is achieved in a single snapshot. However, a 

primary constraint of the autostereoscopic system is the resolution quality of the 

obtained data. The compromise between spatial and angular resolution of 

autostereoscopic data restricts the effectiveness of measurements. 

In light of the rapid advancement of artificial intelligence technology, the potential 

now exists to overcome the inherent resolution conflict in autostereoscopic measuring 

systems. This breakthrough can be achieved by leveraging artificial intelligence 

techniques to enhance the resolution capabilities of such systems. Following the 

proposal of the resolution-enhanced learning model (Dong et al., 2014), learning 

models have demonstrated their effectiveness in generating high-resolution data from 

low-quality inputs. The learning-based method can achieve automatic feature extraction 

and selection from the data without the requirement of expert experience and a priori 

knowledge. The complex mapping function from input to output, learned by learning 

models, is able to achieve a more accurate representation of the real world than 
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conventional methods. Various deep learning techniques including the residual 

architecture, the encoder-decoder network, the generative adversarial network (GAN), 

etc., have been designed and utilized to achieve a high-quality transformation from 

coarse information to detailed information.  

Apart from 2D super-resolution techniques, learning models are also being used 

to enhance the quality of 4D light field data. The improvement in spatial resolution is 

akin to solving the single-image resolution-enhancement problem, wherein the 

objective is to interpolate pixels between two adjacent pixels in an elemental image. 

The redundant pixel-level information lying in the other elemental images captured 

from different perspectives contains high-resolution clues for the pixel reconstruction. 

In terms of the angular super-resolution problem, novel view elemental images from 

new perspectives are required to be generated based on the input featuring limited 

angular resolution. During angular super-resolution, pixel interpolation occurs in the 

epipolar plane rather than the 2D image plane. The new pixels are desired to be 

reconstructed between two corresponding points in two elemental images. However, 

the two corresponding points might not be adjacent in the epipolar plane when a large 

baseline exists in the light field data.  

Depth-based and non-depth-based learning models have been presented to address 

the angular super-resolution problems. Non-depth-based methods usually can produce 

quite satisfying results when baselines are small, whereas image ghosting is generated 

for data with a large baseline. Depth-based learning models can avoid image ghosting 

by first performing preliminary disparity estimation. However, inaccurate estimation 

usually happens for data that record real-world scenes, especially those which contain 

various noises, occlusions, and complex illumination conditions. As a result, image 

artefacts are produced in the novel view images. Hence, the attainment of high-accuracy 
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reconstruction of high-resolution information remains a significant objective, 

ultimately leading to improved precision and accuracy in the measurement results 

acquired from the autostereoscopic 3D measuring system. As shown un Table 1.1, all 

the acronyms used in the thesis are listed for clarification. 

Table 1.1 Acronyms Included in the Thesis. 

Acronym Full Name 

CMM Coordinate-measuring machine 
CNN Convolutional neural network 
CP Corresponding point 
dB Decibel 
DEDI Direct extraction of disparity information 
EI Elemental image 
EPI Epipolar-plane image 
FOV Field of view 
GAN Generative adversarial network 
HR High resolution 
InI Integral imaging 
LF Light field 
LR Low resolution 
MAE Mean absolute error 
MLA Micro-lens array 
MSE Mean squared error 
PSNR Peak signal-to-noise ratio 
ReLU Rectified linear unit 
SAI Sub-aperture image 
SD Standard deviation 
SIFT Scale invariant feature transform 
SISR Single image super resolution 
SOTA State-of-the-art 
SR Super-resolution 
SSA Self super-resolution autostereoscopic 
SSIM Structural similarity index measure 
TAM Traditional autostereoscopic measuring 
Tanh Hyperbolic tangent 

The motivation is to leverage the high-speed capabilities of the autostereoscopic 
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system for data acquisition along with utilizing deep learning technologies to strengthen 

the quality of autostereoscopic data affected by insufficient illumination, various noise, 

and low resolution. By improving both the angular and spatial resolution through deep 

learning, achieving faster, highly accurate surface metrology is possible. 

1.2 Research objectives 

The research stated in the thesis aims to propose a high-resolution autostereoscopic 

3D measuring system that can break through the inherent dilemma of the InI technology 

so as to achieve high precision measurement for micro-structured surfaces. The 

research objectives are outlined as follows: 

(i) To propose a novel solution grounded in deep learning technologies to break 

through the resolution limitation of the autostereoscopic measuring system so that 

the measurement precision and accuracy can be improved. 

(ii) To develop a novel generic learning paradigm to improve the sampling efficiency 

during the process of training angular SR learning models so as to improve the 

learning efficiency for small datasets 

(iii) To develop a novel deep learning network that converts accurate depth estimation 

into a classification problem to achieve high-quality reconstruction of high-

angular-resolution information with less image ghosting and image artefacts for 

both synthesis data and real-world data. 

(iv) To develop a self super-resolution autostereoscopic measuring system that can 

realize self-enhancement solely based on the collected measurement data and 

achieve precision measurement for micro-structures. 

(v) To develop a multi-frame super-resolution autostereoscopic system for on-
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machine measurement so as to exploit the vibration of machine tools to collect 

multiple frames with subpixel displacement so as to achieve resolution 

enhancement of the measurement data.  

1.3 Organization of the thesis 

The thesis is divided into seven chapters.  

Chapter 1 introduces the research background, highlights the current research gaps, 

and defines the research objectives. This chapter also outlines the structure of the thesis 

comprehensively. 

Chapter 2 mainly focuses on a literature review of related research fields and 

investigates the latest development of the technologies. The review includes the 

research on precision surface metrology, contact and contactless measurement methods, 

autostereoscopic measurement methods based on InI, super-resolution techniques and 

reconstruction techniques applied for the InI systems, and deep learning approaches 

have been incorporated to boost the resolution of LF data collected by InI systems. 

Chapter 3 discusses the fundamentals of the autostereoscopic 3D measuring 

system, including the data recording process and surface reconstruction process. 

Related reconstruction techniques such as digital refocusing, epipolar-plane images, 

and direct extraction of disparity information based on disparity patterns are discussed. 

The limitations and room for improvement of the autostereoscopic system are also 

presented in this chapter. An example of rapid 3D inspection of wire bonding based on 

autostereoscopic measurement is provided, and experimental analysis is presented to 

evaluate the capability of the autostereoscopic measurement system. 

Chapter 4 introduces a deep learning model designed to enhance the angular 
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resolution of a LF captured using InI devices. A novel semi-supervised learning 

paradigm achieving high data efficiency is presented to train the deep learning model. 

Even a baseline method can be improved notably under the proposed semi-supervision. 

On the basis of the learning paradigm, a motion estimation network is proposed to 

achieve novel view synthesis through converting the regression problem of depth into 

a classification problem of motion. Experiments on public datasets are performed and 

the findings are discussed in the chapter. 

In Chapter 5, a self super-resolution autostereoscopic measuring system is 

presented, which is able to achieve angular super-resolution solely relying on the data 

collected by the system. The integration of a learning-based algorithm is proposed for 

incorporation into the measuring system, with the goal of improving the resolution of 

the measurement data. The chapter elaborates on the composition of the learning-based 

algorithm and presents experimental results using various samples to assess the 

performance. Comparisons of the digital refocused images, the reconstruction point 

clouds, and the measurement results, based on the LR measurement data and the HR 

data enhanced by the proposed algorithm are provided to reveal the improvement of the 

autostereoscopic measuring system. 

Chapter 6 provides a solution for on-machine measurement based on the 

autostereoscopic system and deep learning models. A multi-frame super-resolution 

solution is presented to make use of the vibration of the machine tools during on-

machine measurement. Jitter analysis between different frames collected in various 

timespans during the on-machine process is provided to demonstrate the existence of 

subpixel displacement among the multiple frames. A deep learning SR model and its 

structure are elaborated in this chapter. Consequently, various experiments are 

presented to assess the presented learning model. A comparison of the measurement 
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results obtained using LR data and HR data concludes the chapter. 

The final conclusion of the thesis is provided in Chapter 7, which outlines the key 

achievements of the research. Suggestions for further improvement are also made in 

this chapter to lead the way towards future endeavours.  
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Chapter 2 Literature review 

2.1 Introduction 

Measurement is essential for ultra-precision manufacturing, providing necessary 

feedback to machine tools. Both external and internal factors including vibration, 

thermal deformation, kinematic errors, etc. of machine tools result in form errors of 

measured parts during the ultra-precision machining process. The feedback obtained 

from measurements is utilized to identify and correct errors, thereby enhancing the 

quality of the machining process. In the last few decades, the instruments for offline 

measurement have been investigated and developed and have become a mature solution 

for precision measurement. However, removal and remounting of machined parts are 

unavoidable during offline measurement, which introduces extra errors. On-machine 

surface measurement is able to prevent remounting so that less transportation labour 

and time consumption are required. 

Based on the nature of the probe used by a measurement instrument, the 

measurement is basically divided into contact and non-contact types. Contact 

measurement (Bauza et al., 2011; Lee et al., 2012; Lei et al., 2014; Yin et al., 2018), by 

definition, uses a stylus in contact with the measured surfaces under some scanning 

strategies so that groups of points are acquired to represent the profile of the measured 

surfaces. To reach higher resolution, finer tips are developed to measure micro-

structured surfaces (Bauza et al., 2011; Lei et al., 2014). Contact measurement is mature 

and usually achieves high accuracy. However, the low scanning speed and the 

contacting nature make it inefficient in some situations, especially when the measured 

parts have soft surfaces. In terms of the limitations of contact measurement, non-contact 
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measurement that usually uses an optical probe for fast surface scanning without 

contact has emerged as a popular choice for ultra-precision measurement. Numerous 

optical probes based on various technologies such as interferometry, deflectometry, 

confocal, structured light, etc. have been developed to perform highly accurate 

metrology. 

InI is an emerging technology to record light distribution that is known as the light 

field. Compared with traditional 2D imaging which solely records the 2D projection of 

light rays in the image plane, the directions of the rays are also contained in a light field. 

As a result, a 3D world can be described and reconstructed based on the abundant 

information in a light field. Albeit that InI was originally proposed to achieve 

photorealistic image-based rendering (Kim et al., 2009), the applications of InI have 

been extended to a wide range including 3D reconstruction, object detection, 

recognition, etc. InI systems position a MLA before the image sensor so that multiple 

2D images (called elemental images) from different perspectives are recorded to 

acquire abundant 3D information. Plenoptic cameras which are also known as light 

field cameras are an alternative solution to record light field images, where an MLA is 

installed at the image plane of the main microscope lens (Howe et al., 2020) so that 

multiple micro-images named plenoptic frames are recorded by the image sensor 

behind the micro-lens array. Enormous amounts of research based on light field 

microscopy has been conducted in the biological sciences. In terms of ultra-precision 

measurement, pioneering work utilizing InI was introduced by Li et al. (2014) who 

presented an autostereoscopic 3D measuring system for micro-structured surfaces. 

However, the deficiency of the autostereoscopic measurement system is the 

resolution of the acquired data. Because of the intrinsic conflict between the spatial and 
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the angular resolution of InI, it is challenging to enhance the two kinds of resolution 

simultaneously. In other words, a choice between more details of the target objects and 

more information from different perspectives must be decided. To tackle the issue of 

low resolution in light field images, researchers have developed projection-based 

methods and optimization-based methods. These techniques aim to enhance the 

resolution of images captured by InI systems or plenoptic systems. 

Artificial intelligence has experienced significant advancements, leading to the 

extensive integration of deep learning in various industrial applications. Deep learning 

has seen outstanding success in multiple fields, including computer vision, natural 

language processing, and automated control. It has emerged into a benchmark approach 

for various tasks.. Deep learning has a strong capability to represent complex mapping 

functions, especially for image processing problems. Regarding super-resolution, deep 

CNN models with various network structures were developed to realize SISR that fully 

outperforms conventional methods. The emergence of generative adversarial networks 

further improves the resolution of super-resolved images, providing more realistic and 

natural textures. This allows possibilities to break through the bottlenecks of the 

autostereoscopy measurement system to achieve super-resolution of the recorded 

images. Through exploiting the powerful representation capability of the machine 

learning models, significant improvements to the effectiveness of the autostereoscopy 

measurement system are possible. 

2.2 Three-dimensional precision measurement 

Tactile profilometers are a kind of contact measurement instrument which are 

commonly used in the manufacturing industry. The tactile device used in profilometers 

is a stylus (also called a probe) that comes into contact with the actual measurement 
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surface directly. Contact measurement is a mature technique and can achieve accurate 

and precise measurement results. Another reason for the popularity of contact 

measurement is that the measurement data can be easily compatible with past 

accumulated data. Figure 2.1 illustrates the process of data acquisition. The 

measurement process is dependent on the movement of the stylus which moves 

vertically and laterally in contact with the measured workpiece and sequentially, and 

all the contact points are collected and stored, forming a point cloud representing the 

measured surface. With the vertical displacement of the stylus, the profilometer can 

measure small surface variations, achieving precision measurement.  

 

Figure 2.1 Acquiring profile data through a stylus-type 

profilometer (Lee et al., 2012). 

To achieve measurement on micro-dimension surfaces, Bauza et al. (2011) 

presented a fine tactile sensing probe that was vibrated by a quartz crystal oscillator. 

The oscillator generated a standing wave so that the tip was able to move a larger 

distance than the other location of the rod. This guaranteed that the fine tip interacted 

with the measured surfaces before the rod did so. A diagram illustrating the system 
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setup is displayed in Figure 2.2, where the probe is only 7 µm in diameter and 3.5 mm 

in length. The probe was integrated into a scanning system and the interaction between 

the tip and the surface was defined as a function of the probe radius. The wave 

amplitude was highly controllable at the micrometre scale. The system was evaluated 

using microscale holes and a sample with surfaces that were difficult to access. As a 

result of the probe's high aspect ratio, the presented measurement system was able to 

measure deep and narrow features. 

 

Figure 2.2 Diagram of a contact measurement instrument for 

micro-dimension metrology (Bauza et al., 2011). 

Lei et al. (2014) presented a micro tactile sensor as a probe to be integrated with a 

nano measuring machine (NMM) to achieve nano-precise dimensional measurement of 

microstructures. Shown in Figure 2.3 is a diagram of the measurement system alongside 

the stylus. To attain a high measurement resolution, the stylus used for data acquisition 

had a length of 13 mm and a probing sphere with a diameter of 300 µm. The relationship 
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between the sensor response and the structure parameters was modelled so as to analyze 

the sensor design. To demonstrate the system's achievement of resolution, experiments 

were conducted in which a resolution of 5 nm was achieved in the z direction, and 10 

nm in the x/y directions. 

 

Figure 2.3 A tactile profilometer for the measurement of 

microstructures. (a) Photograph of the probe. (b) Diagram of 

the system setup (Lei et al., 2014). 

Yin et al. (2018) suggested a contact profilometer for triangular microstructures 

and developed a compensation model to correct the errors resulting from the tilting of 

the sample plane and the dimension of the probe tip. A visual representation of the 

proposed system is included in Figure 2.4, where the measuring system is composed of 

a precision positioning stage, a stylus system with a diamond micro-stylus, and a 

vibration isolation table that was used to decrease the effects resulting in the 

perturbation of the measuring environment. Experiments showed that the contact 

profilometer achieved high accuracy for the measurement of triangular microstructures. 
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Figure 2.4 Diagram of a contact profilometer for measurement 

of triangular microstructures (Yin et al., 2018). 

Although contact measurement is able to achieve high accuracy, the sampling 

process is usually slow, and the sampling strategy needs to be delicately designed. It is 

also obvious that the actual profile is different from the measured profile owing to the 

dimensions and form of the stylus tip, though many researchers have developed finer 

tips to reach a high resolution. To investigate the distortion resulting from the size of 

the stylus tip, Lee et al. (2012) constructed a simulation model to denote the real contact 

mechanism and provided suggestions for the proper selection of the stylus according to 

the characteristics and structure of the measured workpiece. Clark and Greivenkamp 

(2002) proposed an iteration algorithm to correct the stylus error particularly for smooth 

surfaces after analyzing the generation of the errors, and Ahn et al. (2019) compensated 

for the error by predicting the actual contact points using a least square fit and 

comparing the difference between actual and theoretical displacement to obtain the 

compensation values.  

Another limitation of contact measurement is the nature of the stylus as inevitable 

damage and scratches may be caused by the contact, especially when the measured 

surfaces are soft (Li et al., 2019). This limits the application of profilometers in some 
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specific working situations. Hence, contactless measurement methods are gradually 

gaining significance in metrology.. 

Non-contact measurement methods basically depend on optical and computer 

technologies. Compared with contact methods, optical measurement methods require 

no touching of the surfaces, less time for measurement, less dependence on the 

conditions of the environment, and easier operation of deployment. This gives non-

contact measurement methods more opportunities to be put under the spotlight. 

One of the optical methodologies used for non-contact measurement is time of 

flight (ToF). It acquires and records the travel time of an object (e.g., particle, wave, 

ultrasonic signals, etc.) through a medium and conducts measurement based on the time. 

Robertson et al. (2002) made use of ultrasonic signals to realize surface metrology. As 

shown in Figure 2.5, an ultrasonic signal is focused onto the measured workpiece and 

then reflected from the surface through the air and returned to the transducer. To acquire 

all the features of the target surface, all of the waveform is acquired by the system.  

Therefore, depth information for the surface is obtained using the signal's time of 

flight. As for laser signals, Tian et al. (2009) introduced a measurement system that 

utilizes pulsed ToF laser radar for the purpose of measuring hot forgings. In contrast to 

conventional methods that rely on XY guide rails, floating platforms, and theodolites 

to support the scanning device, the proposed system employed a scanning device based 

on a two-degrees-of-freedom spherical parallel mechanism. Compared with other 

devices, it produced more accurate results by avoiding accumulated errors resulting 

from parallel or serial driving. 
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Figure 2.5 Surface metrology through the time of flight of 

ultrasonic signals (Robertson et al., 2002). 

Interferometry is another important technology used in non-contact measurement. 

The interferometry of these measurement methods is often combined with microscopy 

so that both a high resolution and large vertical range can be realized. One example 

(Wyant, 2002) that uses a white light interferometer for measurement is demonstrated 

in Figure 2.6, where a two-beam Mirau interferometer was used at the microscope 

objective. Interference occurred due to the interaction between the ray reflected off the 

measured surface and the ray reflected off the reference surface. The detector array 

recorded the interference pattern as images, and through post-processing the 

measurement result was acquired.  

 

Figure 2.6 White light interferometer (Wyant, 2002). 

Research on interferometers covers many fields, including using three-wavelength 
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light (red-green-blue) to inspect discontinuous structures (Pförtner & Schwider, 2003), 

increasing the speed of signal processing by using ellipse parameters (Dai et al., 2004), 

reducing the vibration of the measurement environment by active control so as to 

enhance the resolution of interference (Zhao & Burge, 2001), realizing high-resolution 

angle metrology using heterodyne interference (Hahn et al., 2010), etc.  

In terms of the difficulty of the calibration of freeform surfaces, Hao et al. (2016) 

presented a digital moiré interferometric technique to correct the alignment errors for 

non-null interferometry. A schematic of the proposed technique is shown in Figure 2.7, 

where two components including a virtual interferometer and a real interferometer 

comprise the whole system. To identify the designed residual wavefront aberration of 

the interferometer, a theoretical model was developed to achieve accurate prediction of 

the aberration to reduce the alignment errors. Through the accurate simulation of the 

real interferometer, only coarse alignment was required to achieve good measurement 

repeatability, even when obvious alignment errors existed. 

To realize adaptive interferometric null testing for unknown freeform surfaces, 

Huang et al. (2016) made use of a deformable mirror to realize the adaptive null 

measurement. The presented system is demonstrated in Figure 2.8, while the shape of 

the deformable mirror was refined employing the stochastic parallel gradient descent 

algorithm. Deformable mirror shape was precisely detected by an on-machine 

deflectometry system. In addition, a computer-generated hologram was integrated into 

the system to further compensate for the nominal wavefront deformation in case the 

deformation of the deformable mirror was insufficient. The final measurement profiles 

of the tested surfaces were acquired by combining the results of the deflectometry 

system and the interferometer data. 
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Figure 2.7 Schematic of a digital moiré interferometric 

technique presented in Hao et al. (2016). 

 

Figure 2.8 Diagram of an adaptive interferometer for the 

accurate evaluation of unknown freeform surfaces (Huang et al., 

2016). DM, deformable mirror; DS, deflectometry system.  

Lateral optical distortion is another challenge for coherence scanning 

interferometry. Systematic errors in the results of surface topography could be caused 

by the distortion. To reduce the errors, Ekberg et al. (2017) developed a correction 

model of optical distortion leveraging arbitrary surfaces to improve the measuring 

precision of coherence scanning interferometers. The correction process is shown in 
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Figure 2.9, where the calibration was executed in accordance with a subpixel image 

correlation method. Intensity maps were first extracted from a stack of data acquired by 

the coherence scanning interferometer through the detection of the best focus position 

of each pixel. Calibration grids were searched and determined using the subpixel image 

correlation method, and the final distortion and correction functions were obtained by 

a 2D self-calibration algorithm. 

 

Figure 2.9 Correction model of optics distortion for coherence 

scanning interferometers (CSI) (Ekberg et al., 2017). 

However, it is observed from the aforementioned research that a nominal static 

null component such as the computer-generated holograms are usually required during 

measurement using interferometers. In addition, the interferometers are usually 

sensitive to environmental factors including pressure, vibration, temperature, etc. 

(Faber et al., 2012). Deflectometry as an incoherent technique is used to develop surface 

measurement systems which are more tolerant towards environmental disturbance and 

require no extra null testing.  

Maldonado et al. (2014) proposed A lightweight solution for HR surface 

measuremen based on the deflectometry technique, with the system setup as shown in 

Figure 2.10. The researchers constructed a reverse ray model on the basis of reflection 

principles. Deflected patterns were detected and determined by phase shifting methods. 

Consequently, The mapping between the camera pixels and the sample points on the 
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tested surfaces was determined and calibrated. The surface profiles were finally fitted 

using Noll Zernike polynomials. The deflectometry measurement system achieved high 

dynamic range measurements. 

 

Figure 2.10 A portable deflectometry measurement system 

(Maldonado et al., 2014). UUT, unit under test. 

To measure surfaces with steep slopes, Liu et al. (2017) presented a surface 

measuring system operating on the basis of direct phase-measuring deflectometry. 

Since classical phase-measuring deflectometry systems may have difficulty in 

measuring samples with multiple discontinuous surfaces effectively, direct phase-

measuring deflectometry methods exploit two liquid crystal display (LCD) screens to 

form a parallel design which is more effective for the measurement of discontinuous 

surfaces. A diagram of the direct phase-measuring deflectometry method for 3D 

surfaces and its corresponding hardware setup are shown in Figure 2.11. The presented 

system constructed a mapping model between absolute phase maps and depth 

information of the tested surfaces through locating a liquid crystal display screen at two 

known positions. Through this configuration and operation, the desired depth was able 

to be directly determined from the phase map.  
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Structured light projection is a process to artificially generate patterns on recorded 

images to achieve matching. In general, the structure light systems widely make use of 

sequential-shot and single-shot schemes. Sequential 3D imaging systems adopt a series 

of patterns which are projected onto target surfaces. Multiple shots are required, and 

therefore the targets need to be static. In terms of dynamic targets, only single shot is 

acceptable. Hence, each pixel needs to be indexed uniquely to establish the 

correspondences. 

 

Figure 2.11 A direct phase-measuring deflectometry system for 

surface measurement proposed in Liu et al. (2017)  (a) 

Schematic. (b) Hardware setup. 

Li et al. (2021) presented a 3D measuring system that relies on structured light 

projection, making use of a divergent multi-line laser. The system was found to be 

simpler to implement compared to the traditional parallel multi-line laser system. 

Furthermore, this system achieved superior measurement accuracy and denser 

reconstruction in comparison to using a single-line laser. A diagram of the proposed 

structured light measurement system is illustrated in Figure 2.12. The pattern extraction 

was realized using the Steger algorithm based on a Hessian matrix and the fitting of the 
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light plane was achieved using the RAndom SAmple Consensus (RANSAC) algorithm. 

However, the experiments were only performed on macro-scale samples with simple 

surfaces. 

 

Figure 2.12 Diagram of a 3D measurement solution 

incorporating structured light projection (Li et al., 2021). 

Over the years, great progress has been made in structured light techniques. 

However, challenges still exist. Multi-shot structured light systems usually produce 

high-accuracy imaging results, but the targets are required to be static. In addition, the 

measurement of micro-structured surfaces using structured light is still challenging. 

In terms of the surfaces with large slopes that are difficult to access, the confocal 

technique is applicable to the measurement of complex micro-structured surfaces. Zou 

et al. (2017) investigated the application of the chromatic confocal technique in on-

machine measurement to achieve nanometre-scale accuracy. Figure 2.13 showcases the 

system diagram and setup of a chromatic confocal probe incorporated into a high-

precision diamond turning machine. Measurements were performed by mounting the 

confocal probe on the translation stage of the y-axis. A master sphere was mounted on 
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the vacuum chuck. Another reference sphere with a radius of 6.2 mm was mounted on 

a transition arm. The two spheres were used for accurate calibration of the measurement 

system. During measurement, the transition arm with the reference sphere and the 

confocal probe were required to be removed for component protection. Accurate 

reinstallation and recalibration were necessary for this system to guarantee the 

measurement accuracy. 

 

Figure 2.13 On-machine system method leveraging chromatic 

confocal (Zou et al., 2017). (a) System diagram. (b) System 

setup. 

Fu et al. (2020) developed a confocal-based measuring system for surface 

roughness measurement. The system demonstrated effective inspection of surface 

quality in the mass finishing process. A diagram of the confocal-based measuring 

system and its system setup are shown in Figure 2.14, where a commercial chromatic 

confocal probe was mounted on a linear stage. In addition, an industrial robot arm was 

installed in the system to achieve highly accurate positioning. A reference specimen 

was used to evaluate the performance of surface inspection and two curved blades that 

possessed different degrees of roughness and were manufactured via 3D printing were 

tested using the presented confocal-based measuring system. The results showed that 

the relative errors were kept within 5%, which demonstrates the viability and efficiency 
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of the confocal-based system. 

 

Figure 2.14 An on-machine confocal-based measuring system 

for surface roughness inspection (Fu et al., 2020). (a) System 

diagram. (b) System setup. 

2.3 Autostereoscopic three-dimensional measurement 

Autostereoscopy is an imaging and display technology which takes advantage of 

InI and LF techniques, and provides extra depth information compared with binocular 

systems. It is mainly used for glass-free 3D displays and virtual reality. Image 

integrating has been applied in many fields other than photorealistic rendering and 

display, such as 3D reconstruction, light field microscopy, biology, etc. The technology 

also plays a role in precision metrology. In this section, the development of InI 

technology is reviewed, and SOTA techniques are discussed. Additionally, the 

applications of InI in surface measurement are explored. 

2.3.1 Integral imaging and plenoptic systems 

The initial concept of InI was first presented in 1908 by Lippmann (1908) for real 
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3D display. Figure 2.15 demonstrates the recording process of the InI system. A set of 

images captured from various angles of a 3D scene are recorded by incorporating a 

MLA in front of a photographic film. These images with small lateral magnification are 

called elemental images. Overlapping usually happens in these elemental images 

following the initial concept. To further enhance the lateral resolution of elemental 

images, research on multi-camera systems (Lin et al., 2015) was investigated by directly 

recording high-resolution images from various perspectives using multiple 

synchronized cameras. 

Winnek (1936) implemented the initial InI principle using a traditional camera to 

avoid the overlapping and much smaller images named microimages were acquired. 

Based on the system presented by Winnek (1936), Bergen and Adelson (1991) 

improved the system and proposed the initial plenoptic formalism through placing the 

micro-lens array right at the image plane. A diagram of the recording process of 

plenoptic cameras is shown in Figure 2.16. Similarly, the pixels in microimages are 

able to be rearranged to compose a series of elemental images from different 

perspectives. These images are also called sub-aperture images in the plenoptic field.  

 

Figure 2.15 Scheme of InI. (Martínez-Corral et al., 2018). 
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Figure 2.16 Scheme of plenoptic cameras. The MLA is situated 

at the focal plane (Ng et al., 2005). 

Over the decades, both of these two development paths have been pursued. 

Although the configurations of InI systems and plenoptic cameras are different, the 

spatial‒angular information lying in the captured light field is majorly similar. Many 

commercial products were also produced to have effects in many industrial fields, 

including biomedical applications, wavefront sensing, head-mounted display 

applications, etc. 

 

Figure 2.17 InI used for real-time LF microscopy (Kim et al., 

2014). (a) InI system. (b) Organism observations from various 

perspectives using the real-time InI system. 
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Kim et al. (2014) presented a real-time InI system to achieve in-vivo observation 

of a living organism. The real-time system is shown in Figure 2.17 (a) and the 

observation results are exhibited in Figure 2.17 (b). An incoherent light source was used 

to illuminate the specimen and a relay lens passed the light field data to the image sensor. 

The capture rate reached 32 FPS and half of them were used for light field rendering. 

Similarly, Hua and Jia (2020) developed a Fourier light field microscopy system to 

realize high-resolution 3D live cell imaging. The lateral resolution and axial resolution 

reached 300~700 nm and 500~900 nm, respectively. 

2.3.2 Three-dimensional reconstruction for light field data 

Since the data collected by an InI system or a plenoptic system contains redundant 

stereo information in a light field, the 3D scenes are able to be reconstructed based on 

these 3D cues. The depth estimation methods for light field data are generally 

categorized as methods based on multi-view stereo (MVS), methods based on epipolar-

plane image (EPI) technologies, and defocus-based methods. Among these, a vast 

literature has investigated the MVS-based methods (Heber & Pock, 2014; Jeon et al., 

2015; Yu et al., 2013). MVS-based depth estimation methods usually perform a stereo 

matching process based on the multiple elemental images (also called sub-aperture 

images in plenoptic systems). Jeon et al. (2015) utilized the Fourier transform to convert 

the collected images from the space domain into the frequency domain so that the 

subpixel shifts among these images were able to be estimated in the frequency domain. 

The desired depth map was estimated by minimizing the matching cost between the 

shifted central sub-aperture image and the other sub-aperture images after the subpixel 

transformation. The estimation process and ultimate outcome is shown in Figure 2.18. 

The matching cost included two components that are absolute difference and 
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gradient difference. The final depth was determined by solving the optimization 

problem. In addition, other constraints were used and aggregated to the objective 

function, forming a multi-objective optimization problem. The constraints were derived 

from confident matching correspondences, implying that the correspondences should 

also be matched at salient feature points. This would provide a strong constraint for a 

satisfactory optimization result. The SIFT algorithm was employed as the feature 

extractor during the matching process.  

 

Figure 2.18 A method for LF depth estimation. (a) The central 

view image. (b) A disparity map estimated after minimizing the 

matching cost. (c) The map refined using a median filter. (d) 

Further optimization of the problem with constraints. (e) The 

final disparity map obtained by converting the discrete one into 

a continuous map. 

Heber and Pock (2014) proposed another matching method for the depth 

estimation of light field data. Inspired by robust principal component analysis, they 

tried to find a warping method that mapped the sub-aperture images to a certain space 

so that the matrix merged by these new vectors had a low rank. A similar idea initiated 

by Yu et al. (2013) used light field triangulation as the matching method. On the whole, 

the key issue of these MVS-based depth estimation methods is choosing an appropriate 

projection space for the matching process and determining an effective way in which 
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the light field data are matched. 

Epipolar-plane images are another widely used technology for the depth 

estimation of light field data. One example is illustrated in Figure 2.19 where the 

patterns in and  slices are epipolar-plane images. Figure 2.19 illustrates 

the generation of epipolar-plane images, which describes both the recording process of 

light field data and the extraction of epipolar-plane images. After obtaining the 

elemental images (or sub-aperture images), one row or one column of images are 

stacked and cut, and the cut section is an epipolar-plane image (the right top in Figure 

2.19).  

 

Figure 2.19 Various slices of light field data (Mitra & 

Veeraraghavan, 2012). 

Research on EPI-based depth estimation methods (Johannsen et al., 2017; J. Li et 

al., 2015; Wanner & Goldluecke, 2014; Zhang et al., 2016) is in general based on the 

relation between EPI slopes and disparity. The generation of EPIs is shown in Figure 

2.20. In an EPI, a larger slope corresponds to larger disparity. Hence, the key issue of 

! "− ! "−
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EPI-based methods is estimating the slopes of lines in EPI slices.  

 

Figure 2.20 Generation of epipolar-plane images (Johannsen et al., 2017). 

Wanner and Goldluecke (2014) used a Gaussian smoothing operator to perform 

estimation. A structure tensor was first estimated based on the epipolar-plane images, 

and depth estimation was determined using the structure tensor. The structure tensor 

was expressed as 

                      (2.1) 

where  is the epipolar-plane image,  is the structure tensor,  is the Gaussian 

smoothing operator.  and  are the gradients. Then, the slopes  in  were 

obtained from 

                     (2.2) 

With the known focus distance , the depth  was estimated as 

                                                         (2.3) 

Defocus-based depth estimation approaches (Tao et al., 2013; T.-C. Wang et al., 

2015; Zhu et al., 2017) firstly defocus the light field data and then make use of the 
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defocus depth cues to reconstruct depth maps. A demonstration of using defocus cues 

to perform depth estimation is shown in Figure 2.21. Tao et al. (2013) made an 

appropriate combination of defocus cues and MVS cues to generate high-quality depth 

estimation. As a result, a two-stage refocus-based depth estimation method was 

presented, which firstly used these two cues to perform the initial estimation of disparity 

and then computed the confidence of each cue so as to combine them together using 

Markov random fields.  

 

Figure 2.21 Depth estimation using both defocus cues and 

correspondence cues (Tao et al., 2013). 

Wang et al. (2015) further improved the defocus-based method by putting 

occlusion into consideration. To determine which pixel point was occluded, the 

researchers modelled an occlusion predictor based on defocus cues, MVS cues, and 

depth cues from an initial depth map estimated by Tao et al. (2013). Finally, the 

prediction results of occlusion were combined with the initial depth map using a 

Markov random field to realize high-quality depth estimation. The method produced a 
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quite inspiring result as shown in Figure 2.22. 

 

Figure 2.22 Comparison of the occlusion-ware defocus-based 

depth estimation method and other light field depth estimation 

methods (T.-C. Wang et al., 2015). 

2.3.3 Autostereoscopic measurement systems 

The pioneering research on the application of autostereoscopy in measurement 

systems was conducted by Li (2020), offering an innovative solution for on-machine 

micro-structured surface measurement. Figure 2.23 depicts a schematic diagram of the 

autostereoscopic measurement system. Taking a rectangular pyramid model as the 

measured workpiece, the measurement process consists of information capture and 3D 

reconstruction based on the recorded ray distribution.  As shown in Figure 2.23, a MLA 

is positioned before an image sensor. The sensor plane is labelled as an elemental image 

plane to record the elemental images from multiple perspectives. At the information 

capture stage, a sequence of 2D elemental images, each corresponding to the number 

of micro-lenses, is captured. A slight difference among the captured images exists since 

the micro-lenses change the propagation direction of the optical rays emitted from the 
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measured object. A single point of the object recorded in different elemental images 

has different  coordinates, and these different pixel points originating from the 

same object point are called corresponding points (CPs). The reconstruction process 

reverses the information capture process, with a symmetrical framework. The elemental 

images are directly used to reconstruct 3D information according to the disparity 

determined by the corresponding points. The disparity information indicates the depth 

information so that the surface profile is able to be reconstructed. The reconstructed 

images with focused and defocused points are formed by rearranging the corresponding 

points captured in the elemental images. The reconstructed images from the InI system 

display focused points that indicate the depth of the corresponding object points. 

 

Figure 2.23 Diagram of the autostereoscopic measuring system 

(Li, 2020). 

Based on the InI principle, Zhou et al. (2020) developed a 3D light field measuring 

system for specular surface measurements, with the system setup as shown in Figure 

! "−
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2.24. A diffuse light source was used to reduce the influence of the specular surfaces, 

and a polarizer was incorporated to further decrease the rays caused by specular 

reflection. A relay lens was employed to transmit the rays from the micro-lens array to 

the image sensor. The measured sample was a small tin wire stick as shown in Figure 

2.24(a). 

 

Figure 2.24 A 3D light field measurement system for the 

metrology of specular surfaces (Zhou et al., 2020). (a) 

Measured sample. (b) System setup. 

Fundamental limitations are involved in the working principle of the 

autostereoscopy measurement system. The resolution and number of elemental images, 

namely the spatial and angular resolution of LF data, are influenced by the increase or 

decrease in micro lenses. This effect occurs because of the image sensor's fixed 

resolution. Therefore, there is a critical need to develop a method that can enhance both 

the spatial and angular resolution, allowing for improved measurement resolution and 

accuracy of the metrology system. 
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2.3.4 Deep learning for the super-resolution of light field 

data 

Deep learning technologies recently have been developing rapidly and have drawn 

great attention in both academic and industrial fields. On the basis of the development 

of computer science and Internet of Things (IoT) technologies, a vast number of data 

are stored and can be processed quickly. The redundant data with enormous volumes 

of information make it possible to explore more complex relationships of different data 

in a much higher dimension. As a result, deep learning with powerful representation 

capability becomes a popular solution to mine the relationship of data, with less 

requirement of expert knowledge.  

Deep learning was proposed in the 1960s (Ivakhnenko et al., 1967; Rosenblatt, 

1961) but was limited by the capabilities of hardware. During the decades, deep 

learning has gone through several valleys, as well as reaching some peaks with the 

emergence of new techniques, and now is nearing maturity. Deep learning has gained 

immense traction with the advent of powerful devices like specialized graphic 

processing units (GPUs) and tensor processing units (TPUs), which possess high 

computing capabilities. These advancements have enabled deep learning to showcase 

its strength in utilizing much deeper neural networks. This ability enables the training 

of highly complex transformation functions to achieve superior performance in various 

domains. Living up to expectations, learning-based models have outperformed many 

conventional methods in a large number of fields, including vision and speech 

recognition (Amodei et al., 2016; Dong et al., 2015; He et al., 2016; Richardson et al., 

2015), forecasting (Gensler et al., 2016; Shi et al., 2017), and control (Silver et al., 

2017), even creating works that are similar to masterpieces (Briot et al., 2017). 
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To break through the inherit resolution limitation of light field data, researchers 

have investigated various methods to enhance the resolution of LF data.  Conventional 

methods for super-resolution in light field data fall into two categories: projection 

techniques and optimization approaches. Projection-based methods employ the 

subpixel information inherent in the LF data to achieve resolution enhancement. 

Conversely, optimization-based approaches employ optimization models to produce 

HR images within the super-resolved domain. 

In terms of projection-based super-resolution methods (Lim et al., 2009), the basic 

consideration behind the methods is the redundant radiance information recorded by 

light field systems. Different from traditional cameras which only record the position 

and wavelength of emitted rays, light field cameras are able to capture the directions of 

the rays. This is achieved by micro-lenses and their relative positions. Consequently, 

each point of the target object is recorded by different micro-lenses many times, with 

subpixel shifting existing among the corresponding pixel points in multi-perspective 

images. The subpixel shifting enables the inclusion of additional high-resolution 

information, allowing for the reconstruction of high-resolution images through accurate 

registration and merging of the raw data. 

Other research on projection-based super-resolution methods for plenoptic 

cameras was conducted by Georgiev and Lumsdaine (2012), with the principle and 

results as shown in Figure 2.25(a) and Figure 2.25(b), respectively. As shown in Figure 

2.25(a), through projecting the pixels of different microimages images onto a new plane 

at an appropriate angle, it is obvious that the pixel points in different microimages 

contribute extra resolution information to their neighbouring points. As a result, a high-

resolution image is obtained by combining these relative points together. The 

combination is realized by convolutional operation using fixed kernels. A comparison 
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between this method and conventional demosaicing methods (Gotoh & Okutomi, 2004; 

Vandewalle et al., 2007) is shown in Figure 2.25(b). Conventional demosaicing 

methods have been developed for scenes involving SISR. The comparison revealed that 

the projection-based method not only enhances details significantly but also minimizes 

the occurrence of artefacts. 

 

Figure 2.25 Projection-based super-resolution method 

(Georgiev & Lumsdaine, 2012). (a) simply illustrates the super-

resolution principle by projecting. (b) compares the super-

resolved images by the projection-based method and a 

traditional Bayer demosaicing method. 

Liang and Ramamoorthi (2015) simulated the LF capturing and rendering process 

using a light transport framework. As depicted in Figure 2.26 (c), the illustrated process 

closely resembles the approach presented in Georgiev and Lumsdaine (2012), which 

shows that the resolved resolution is limited by the projection plane since the 

distribution density in the projection plane is higher than the micro-lens images. 

Through applying a prefiltering operation to the light field radiance, the limited 

resolution can be tackled, as shown in Figure 2.26(d). Similar work was done by Yu et 

al. (2012), where a frequency-domain filter was utilized to resample the 4D colour-
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filtered radiance. 

 

Figure 2.26 Illustration of the projection-based SR process 

(Liang & Ramamoorthi, 2015). 

Optimization-based super-resolution methods for light field data also make use of 

the idea of subpixel information. Unlike directly projecting pixel points from different 

micro-lens images onto high-resolution image planes, the optimization-based method 

adopts a different approach. In this method, the initial step involves estimating the depth 

map of the scene using the light field representation. Subsequently, high-resolution 

images are obtained using a variational Bayesian framework. The author presented a 

point-spread function based on the Gaussian optics assumption for plenoptic cameras. 

The process can be formulated as 

                                                 (2.4) 

where  is the image captured by the plenoptic camera,  is the unknown reflectance, 

i.e., the light field desired to be reconstructed,  represents the point-spread function 

of the plenoptic camera, and  is Gaussian noise. The method uses conjugate gradient 

least squares for the optimization objective, trying to estimate the reflectance  based 

on the observed  and an estimation of the depth map which indicates the point-spread 

function . One super-resolved result is shown in Figure 2.27. On the left is the original 

! "# ω= +

! !

!

ω

!

!

!



42 
 

sub-aperture image, obtained by rearranging the pixels from the micro-lens images. On 

the right is the HR image generated through the SR method. 

 

Figure 2.27 Comparison between traditional rendering methods 

and an optimization-based super-resolution method (Bishop et 

al., 2009). The two images are both the centre view extracted 

from a light field. The left was generated by traditional 

rendering methods and the right was generated by the super-

resolution method. 

Similar to Bishop et al. (2009), Mitra and Veeraraghavan (2012) also used Eq. (2.4) 

to establish a SR model to enhance the LF resolution. Compared with 2D images with 

only two dimensions  and , light field data have two more dimensions  and . 

As a result, the epipolar-plane images in  and  planes can be obtained. 

The disparity information lies in these epipolar-plane images. To make use of the low 

dimension of epipolar-plane images, a Gaussian mixture model (GMM) was presented 

by Mitra and Veeraraghavan (2012). Gaussian patch priors were learned to determine 

the disparity so that the disparity maps were estimated first. The enhancement of the 

epipolar-plane images was performed by an optimization process using a linear 

minimum mean square estimator based on the previously estimated disparity values. 

! ! ! !
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The high-resolution images were reconstructed using the enhanced epipolar-plane 

images that reach higher quality than images interpolated by bicubic interpolation as 

shown in Figure 2.28. 

 

Figure 2.28 Spatial-resolution-enhanced light field data 

recorded by plenoptic cameras based on the method proposed 

in Mitra and Veeraraghavan (2012) . 

So far, the mentioned research has mainly focused on improving the spatial 

resolution of LF images. Wanner and Goldluecke (2012) proposed a super-resolution 

method that focuses on enhancing both spatial and angular resolution, thus improving 

the overall angular resolution of the images. Similarly, the method realized the angular 

super-resolution through synthesizing novel view images based on depth estimation. 

Using the original light field data, the estimation of point positions in 3D space was 

conducted using the available disparity information. The novel views were then 

synthesized via remapping the points into the virtual image plane based on the 

geometrical relationship. The reconstruction process is depicted in Figure 2.29, where 
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 is a mapping function between the image plane  and a new perspective plane , 

the scene surface  is inferred based on depth estimation, and a mask is used to block 

out points that are invisible on plane . After modelling the mapping function, novel 

views were synthesized by solving the inverse process using the fast iterative shrinkage 

and thresholding algorithm. 

 

Figure 2.29 Reconstruction of novel view images based on 

depth estimation (Wanner & Goldluecke, 2012). 

Regarding super-resolution, deep learning has made progress both in single 2D 

images and light field data. Dong et al. (2014) used a very simple CNN to perform SISR 

and acquired better results compared with conventional methods. The pioneering work 

inspired the development of learning-based models in super-resolution areas. 

Sequentially, learning-based models have also been developed to super-resolve LF 

images and produce satisfactory results.  

A comprehensive comparison among different methods for LF super-resolution 

was conducted by Cheng et al. (2019), with the results shown in Figure 2.30 using the 

PSNR as a metric. Two datasets were used, where the HCI dataset (Honauer et al., 2016) 
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consists of synthetic light field images and the EPFL dataset (Rerabek & Ebrahimi, 

2016) is composed of realistic LF images. In the research, only the quality of spatial 

SR was discussed, and BIC represents bicubic interpolation. PRO (Liang & 

Ramamoorthi, 2015), GB (Rossi & Frossard, 2017), and RR (Farrugia et al., 2017) are 

based on conventional theories. LFCNN (Yoon et al., 2017) is a fully learning-based 

model that utilizes convolutional neural networks. VDSR (Kim et al., 2016) is based 

on deep learning and specifically designed for SISR. It is obvious that for the synthetic 

data (the HCI dataset), although conventional methods outperformed the learning-based 

model in some situations, the learning-based model always produced a better result in 

the real-world dataset (the EPFL dataset). An additional discovery reveals that the 

learning-based SISR method consistently generates high-quality high-resolution 

images for both synthetic and realistic images. This underscores the significant 

potential of learning-based models for light field resolution enhancement.  

The super-resolution CNN (Dong et al., 2014) laid the foundation as pioneering 

work that employed a learning-based model for reconstructing HR images. Figure 2.31 

displays the framework of the method, which is a straightforward yet efficient 

architecture. The authors claimed that the process of patch extraction and representation 

in conventional super-resolution methods in fact is equivalent to convolutional 

operation. 

Based on the statement, the network composed of three convolutional layers was 

proposed. The three layers contained 64, 32, and 1 convolutional kernel separately and 

the corresponding kernel sizes are 9 × 9, 1 × 1, and 5 × 5. The activation function chosen 

for each layer was the ReLU. In the image processing pipeline, the input images 

underwent a conversion from RGB to YCrCb colour space. Subsequently, only the 

luminance channel (Y channel) of the images was subjected to super-resolution by the 
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method. The frames of the other two channels were enhanced using traditional 

interpolation methods. The authors further improved the method of Dong et al. (2015) 

that was able to super-resolve all the frames of three channels, and high-resolution 

images were generated via merging the high-resolution frames.  

 

Figure 2.30 Evaluation of various SR techniques for LF (Cheng 

et al., 2019). 

In contrast to conventional approaches, the initial layer functioned as a feature 

extractor, carrying out patch representation. To improve the representational capacity 

of the learning model, a non-linear mapping operation was conducted using the second 

layer. The high-resolution images were reconstructed by the third layer using the 

features generated by the second layer. The whole process was similar to the traditional 

super-resolution methods. However, the feature extraction and the reconstruction 

strategies were automatically learned by the learning model with no a priori knowledge. 
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Figure 2.31 Framework of the resolution-enhanced learning 

model in Dong et al. (2014). 

Another representative learning-based model named Very Deep Super-Resolution 

(VDSR) was proposed by Kim et al. (2016). VDSR made use of a residual architecture 

to reduce the information required to be learned so that the learning speed was improved. 

Figure 2.32 illustrates that the main distinction from the model in Dong et al. (2014) is 

the inclusion of a pixel-wise summation operator before the final output. The 

researchers held the belief that there exists similarity in low-frequency information 

between low- and high-resolution images. Consequently, the learning model can solely 

concentrate on capturing the dissimilarity in high-frequency information, which is 

known as the residual information.  

The model was able to be trained at a faster speed with even better super-resolution 

performance. VDSR used a very deep architecture, totally consisting of 20 layers. The 

convolutional kernels in each layer were of a small size, only . Although the size 

was smaller, the receptive field was quite large due to the deep architecture. The authors 

also found that learning models with deep architectures always perform better. 

! !×
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Figure 2.32 Framework of a residual model in Kim et al. (2016). 

GAN proposed by I. Goodfellow et al. (2014) is an unsupervised learning method 

composed of two networks that engage in a zero-sum game, competing against each 

other. In a GAN model, a generative network is used to generate synthetic data from 

input such as noise data, low-resolution data, etc. A discriminative network is used to 

obtain the generator's output and judges whether the output of the generation is from a 

realistic dataset or a synthetic dataset. After continuous contests, the discriminator 

becomes cleverer at distinguishing a synthetic input from a real input, but meanwhile 

the generator is also able to output data with higher quality to fool the discriminator. It 

is obvious that the GAN models are very suitable for performing super-resolution. A 

GAN-based SR learning model named SRGAN (Ledig et al., 2017) was consequently 

developed, and its framework is shown in Figure 2.33. The generator used in SRGAN 

made use of many deep learning techniques including residual blocks, pixel shuffle, 

and batch normalization to enhance its representation ability, while the discriminator 

was a deep classification network to perform the distinguishment. The distinguishment 

results were only fed back to the generator while training, indicating the gap between 

the fake images and the real one.  
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Figure 2.33 Framework of a GAN-based learning model 

proposed in Ledig et al. (2017). 

Figure 2.34 illustrates the super-resolved outcomes of SRGAN, where the 

generator SRResNet is trained without receiving feedback from the discriminator. An 

interesting finding in the results is that SRGAN can produce high-resolution images 

with clearer edges and more elaborate details than the generator without the 

discriminator, but the artefacts are also more obvious (e.g. the necklaces in the third 

image compared to the original image have different patterns). 

 

Figure 2.34 High-resolution images generated by bicubic 
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interpolation, SRResNet, and SRGAN with 4-time upscaling 

(Ledig et al., 2017). 

Regarding LF super-resolution, the methods can be categorized into two types: 

spatial SR and angular SR. Spatial SR techniques are designed to enhance the resolution 

of each elemental or sub-aperture image through the interpolation of pixels that lie 

between adjacent pixels in the image. The methods for angular super-resolution are able 

to synthesize novel view images between adjacent elemental images or sub-aperture 

images. Since the experiment performed in Cheng et al. (2019) has shown that VDSR 

outperforms other conventional methods for spatial SR of LF data, learning-based SISR 

methods can serve as a more effective alternative for achieving spatial super-resolution 

in LF images. 

In the context of angular SR, learning-based approaches include depth-based and 

non-depth-based models. Similar to the traditional angular SR methods, the learning 

models integrated with depth cues usually synthesize novel views with a higher quality 

especially when the disparities of LF data are large. However, accurate depth estimation 

is difficult so that image artefacts are always generated by the depth-based models, 

especially for real-world LF data. 

The Light Field Convolutional Neural Network (LFCNN) was the pioneering deep 

convolutional neural network (Yoon et al., 2015, 2017). This network was specifically 

designed to enhance the resolution of light field data obtained from commercial 

plenoptic cameras. The framework is shown in Figure 2.35, where two stages exist in 

the super-resolving process. In the initial stage, a spatial SR net is employed to enhance 

the spatial resolution. The spatial network is totally the same as the network proposed 

in Dong et al. (2015), containing three convolutional layers.  
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Figure 2.35 Framework of the pioneer learning model for the 

resolution improvement of LF data (Yoon et al., 2017). 

After obtaining the high-resolution images, at the second stage, three angular 

super-resolution networks are used to synthesize new view images. The authors 

grouped the input elemental images into vertical, horizontal, and central pairs and the 

corresponding angular network generated a middle or a central new view according to 

the geometrical relationship of the image pairs. Every angular super-resolution network 

had three convolutional layers and the last two layers shared their weights. This was 

depicted as the first layer of each angular super-resolution network being used to extract 

features from different images recorded from perspectives and the last two layers being 

used to recover the high-resolution information. The authors compared LFCNN with 

the conventional method (Mitra & Veeraraghavan, 2012) using a real-world light field 

dataset, and the outcomes are displayed in Figure 2.36. The research demonstrates that 

even simple deep learning models can effectively achieve high-quality resolution 

enhancement.  

To obtain the ground truth, the researchers down-sampled the angular resolution 

of the original dataset to train the model. This artificial sampling method became a 



52 
 

popular learning paradigm for the training of CNN-based resolution enhancement 

methods. Meng et al. (2020) integrated generative adversarial networks into the 

learning models for the LF super-resolution, and the framework is shown in Figure 2.37. 

High-dimensional convolution was utilized in the model to realize a 4D convolution so 

as to make full use of the spatial‒angular redundance lying in the light field data. A pre-

trained network was also integrated to provide perceptual loss. Through confronting the 

distinguishing of a discriminator, the super-resolution networks could achieve high-

quality reconstruction. 

Instead of directly processing the information in the spatial space, the models 

proposed in Wu et al. (2017, 2019) were trained to learn to reconstruct HR EPIs from 

the LR data. The authors (Wu et al., 2019) presented a sheared EPI concept that converts 

the depth estimation problem into an evaluation problem of candidates for the EPI 

shearing. 

 

Figure 2.36 Evaluation of SR results obtained using 

conventional methods and a learning-based method. (a) Ground 

truth. (b) The learning-based method proposed in Yoon et al. 
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(2017). (c) Bicubic interpolation. (d) The conventional method 

proposed in Mitra and Veeraraghavan (2012). 

 

Figure 2.37 A GAN-based light field model (Meng et al., 2020). 

The super-resolution process in Wu et al. (2019) is shown in Figure 2.38. In this 

study, a CNN was developed to quantify the resemblance between input sheared EPIs 

and the reference EPIs. Subsequently, this CNN generated evaluation scores for each 

pixel, thereby aiding in the super-resolution process. The volumes of score maps were 

used for the fusion tensor calculation. The final EPI reconstruction was performed using 

a pyramid decomposition‒reconstruction technique. The method used a depth-free 

framework so that it was competent in handling the datasets without the ground truth 

of depth. The authors also showed its capability in relation to synthetic, real-world, and 

microscopy light field data. 

 

Figure 2.38 Angular super-resolution based on sheared EPIs (Wu et al., 2019). 
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Depth-based learning models do not regress target pixel values directly but use 

estimated depth maps as an intermediate transformation from the input low-angular-

resolution LF data into HR data. Taking advantage of the CNN models, more accurate 

depth estimation can be achieved. Yeung et al. (2018) trained a CNN model utilizing 

spatial‒angular separable filters that are a kind of 4D filter to process the 4D LF inputs. 

The network framework of Yeung et al. (2018) is shown in Figure 2.39, where two 

stages are required for the super-resolution. The first stage was performed by a view 

synthesis network that made use of pseudo 4D filters to extract spatial‒angular clues 

existing in the input sparse light field data. A view refinement network was used to 

further refine the coarse intermediate synthesis views generated by the first stage. 

Although the method did not conduct depth estimation straightforwardly, the depth cues 

lying in the input light field data were implicitly exploited by the 4D convolution. The 

work generated good performance for real-world images with small disparity ranges. 

 

Figure 2.39 A learning-based angular SR network in Yeung et 

al. (2018). 
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 Jin, Hou, Yuan, et al. (2020) used a more complicated and deeper network to 

realize the estimation and reconstruction processes, and the network framework is 

shown in Figure 2.40. A depth estimation module was used to perform direct depth 

estimation based on the input sparse light field data. After obtaining the depth maps, 

the input views were warped to new perspectives separately so that the novel views 

based on every input view were acquired. The final high-angular-resolution data were 

reconstructed by a light field blending module based on the warped light field data 

generated in the previous stage. A skip connection was used to form a residual learning 

relationship. This method achieved satisfactory reconstruction results, especially for the 

light field data with a large baseline. This was due to the accurate depth estimation 

performed by the estimation module. Nonetheless, the depth of real-world data is more 

difficult to predict. With incorrect estimation, the depth-based methods usually produce 

severe artefacts in the reconstruction results. 

 

Figure 2.40 A learning-based angular SR network for large-

baseline light field data (Jin, Hou, Yuan, et al., 2020). 

Although these learning-based models have different architectures, the training 
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paradigm of them is very similar. Training is a significant process for learning-based 

methods, where the learning models adjust their parameters iteratively based on some 

evaluation metrics (i.e., loss functions) until the models converge to global minima. 

Abundant data are used during training, and ground truth (also called label data) is 

usually used as a reference in supervised learning. The training objective is to minimize 

the output difference from ground truth. Backpropagation is commonly employed in 

the training phase of learning models to address the optimization problem.  In terms of 

unsupervised learning, learning models discover the underlying patterns and internal 

representations via self-organizing without expert experience, a priori knowledge, and 

manually labelling.  

Regarding the training process of SISR models, MSE also referred to as L2 loss, 

and MAE also known as L1 loss, are commonly utilized as evaluation metrics in 

machine learning. A study (Zhao et al., 2016) compared the performance using different 

loss functions and found that L1 loss usually produces better results in image restoration. 

Part of the comparison outcomes are presented in Table 2.1, where  denotes the L1 

loss and  denotes the L2 loss. The super-resolution results generated by the bilinear 

method, the learning model trained using L1 loss, and the same learning model trained 

using L2 loss are compared with the ground truth. It is observed that the model trained 

using L1 loss (MAE) tends to outperform the model trained with L2 loss (MSE) across 

all evaluation metrics. The researchers performed additional experiments and found 

that the model trained only using L2 loss usually converges to a local minimum. The 

model trained with L1 loss consistently achieves a superior minimum. Another 

interesting finding was that training a model with L2 loss initially and then refining it 

with L1 loss subsequently results in reaching an even better minimum. However, 

splotchy artefacts still exist in the reconstruction results of the model. The artefacts can 
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be avoided by training the model using L1 loss. 

Perceptual loss is also usually utilized in image reconstruction. The perceptual loss 

quantifies the feature distance, where features are obtained using a pre-trained deep 

learning model. The pre-trained VGG (Simonyan & Zisserman, 2014) model is usually 

taken as the feature extractor, since the model was trained in ImageNet (Deng et al., 

2009) which is a huge image dataset consisting of a vast number of natural images. 

Table 2.1 Average scores of multiple image quality indicators 

under different loss function scenarios. Lower is better for  

and , and higher is better for PSNR and SSIM. (Extracted 

from Zhao et al. (2016)). 

Super-resolution Training loss function 

Image quality metric Bilinear   

 2.5697 1.2407 1.1062 

 28.7764 20.4730 19.0643 

PSNR 27.16 30.66 31.26 

SSIM 0.8632 0.9274 0.9322 

Through integrating perceptual loss into the multi-loss function of model training, 

the reconstruction results usually contain more realistic textures. A study (Wu et al., 

2020) compared the super-resolution results reconstructed by models trained only using 

L1 loss, low-level perceptual loss, high-level perceptual loss, and perceptual similarity 

loss. The results are shown in Figure 2.41, where Llp, Lhp, and Lps denote the low-level 

perceptual loss, high-level perceptual loss, and perceptual similarity loss, respectively. 

From a visual inspection perspective, it is evident that the model trained solely with 

perceptual loss can generate more realistic and intricate details. 
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2.4 Summary 

With the increasing demand for micro-structured surfaces with high precision, on-

machine measurement is playing an important role in advanced manufacturing. Albeit 

that offline measurement methods can produce high-accuracy measurement results, 

errors caused by remounting the measured parts are unavoidably introduced so that the 

precision of the re-machining process cannot be guaranteed. 

 

Figure 2.41 Evaluation of super-resolution results reconstructed by the learning 

models trained with only L1 loss, low-level perceptual loss, high-level perceptual 

loss, and perceptual similarity loss (Wu et al., 2020). 

To acquire precision on-machine measurement results, both contact and 

contactless measurement methods have been developed over the decades. Contact 

measurement that uses a finer probe or stylus to make contact with the measured 

surfaces is easier to be implemented for accurate measurements, but the nature of the 

interaction with the surface may cause damage to the surfaces. Non-contact 

measurement methods usually incorporate an optical probe to perform inspection 

through analyzing the signals. Many techniques including interferometry, 

deflectometry, structured light, confocal, etc. have been integrated into an ultra-

precision machine tool for on-machine measurement.  
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Among the optical techniques, autostereoscopy as a promising technique that can 

capture 3D information within one snapshot is able to perform on-machine 

measurements for micro-structured surfaces. The autostereoscopic 3D measurement 

system makes use of the InI technique to record spatial‒angular information from which 

the 3D information of the measured surfaces can be extracted, and the profile can be 

reconstructed. However, an inherent trade-off of the autostereoscopy technique is the 

resolution of the recorded data. Given the inherent nature of the technique, it is difficult 

to simultaneously enhance the two types of LF resolution. 

To this end, a vast number of studies have been reported to enhance the resolution 

of light field data based on conventional image processing techniques or artificial 

intelligence techniques. Deep learning, a highly powerful representation model for 

image processing shed light on the SR problems of LF data. However, the enhancement 

results generated by current deep learning methods usually contain severe image 

ghosting and artefacts that could induce additional errors during the depth estimation 

process. 

In summary, the gaps existing in this research can be concluded as: 

(i) The performance of the autostereoscopic 3D measuring system is limited by the 

inherent trade-off that arises from the principle of InI. A larger angular resolution 

provides more disparity information to the raw measurement data so that the 

matching accuracy can be improved during the depth estimation process. The 

spatial resolution is important to the details of the recorded 3D scene. With finer 

details in the elemental images, the resolution of the depth slices during the digital 

refocusing process will be improved. As a result, it is important to enhance LF 

resolution so as to improve the measurement accuracy of the autostereoscopic 3D 

measuring system. 
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(ii) The current deep learning methods for angular super-resolution can be categorized 

into non-depth-based and depth-based approaches. Methods without initial depth 

estimation often result in image ghosting in the novel views, while depth-based 

methods require accurate depth estimation prior to novel view reconstruction. 

Consequently, depth-based methods often produce image artefacts in the 

reconstruction results as a result of inaccurate estimation. 

In addition, current deep learning methods for angular resolution require splitting 

the finite training data into input and the corresponding ground truth. This requires 

a sampling-inefficient learning paradigm and enormous data of various 3D scenes 

to be necessary for model training. In terms of the real-world light field data with 

a large baseline, most of the current models cannot produce high-quality 

reconstruction results since the real-world data usually contain severe noises and 

complex illumination conditions. Hence, it is necessary to develop a novel learning 

paradigm to improve the training efficiency for angular super-resolution and 

develop a learning-based approach to achieve high-quality super-resolution for 

real-world data with large baselines.  

(iii) In terms of on-machine measurement, the vibration of the machine tools cannot be 

avoided and could introduce more measurement errors to the measuring system. 

To make full use of the vibration, multiple frames captured over various timespans 

can be used to eliminate the effects resulting from the vibration. In addition, the 

pixel-level information among the multiple frames will provide redundant 

information to reconstruct high-resolution patterns. By employing this approach, 

the spatial resolution of the data obtained from the autostereoscopic 3D measuring 

system can be enhanced. Hence, the development of a resolution enhancement 

method based on the multiple frames captured in an on-machine process will 
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benefit the inspection performance of the autostereoscopic system. 
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Chapter 3 Autostereoscopic three-dimensional 

measurement system 

3.1 Introduction 

An autostereoscopic measuring system is generally composed of a high-

magnification zoom lens system, an objective lens, a micro-lens array, and an image 

sensor. Illumination devices are usually necessary for micro-structure measurement so 

that the system can receive the light rays from the target surfaces. A general system 

setup is shown in Figure 3.1, where a ring-type and a co-axial illumination device is 

utilized, and the target sample is mounted on a 3-axis displacement platform. By 

leveraging the InI principle, the MLA inserted in front of the image sensor captures the 

image occurring behind the zoom lenses from various perspectives. The separation 

between the object point and the objective lens determines the difference in pixel 

coordinates of the corresponding points captured by different micro-lenses. By 

analyzing the pixel difference, also known as disparity, among a group of image points 

originating from the same object point, it becomes possible to determine the separation 

from the object point to the object lens. This allows for the acquisition of axial 

information about the target surface. Since the single-image sensor is split into multiple 

regions to record the observations of every micro-lens, the resolution of the lateral 

information is decreased. This is an inevitable trade-off of the autostereoscopic 3D 

measuring system, limiting the resolution of the measurement results.  

In this chapter, the measurement principle of the autostereoscopic system is 

discussed, and various depth recognition methods are presented. An experiment of rapid 

inspection of surface-mounted light-emitting diodes using the autostereoscopic 3D 
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inspection system was performed to evaluate the measurement performance. The main 

limitation of the current autostereoscopic measuring system is discussed. 

 

Figure 3.1 General system setup of an autostereoscopic 3D 

measuring system. 

3.2 Autostereoscopic measurement principles 

A 4D light field can be represented by parameterization (Levoy et al., 2006) as 

shown in Figure 3.2, where two planes are placed in a free 3D space so that rays that 

interact with the two planes are recorded with their directions available as well. The 4D 

light field function (also called plenoptic function) is represented as . By 

leveraging the spatial‒angular cues, the 3D data of the scene can be extracted and 
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reconstructed from the 4D light field information. This is the fundamental approach of 

the autostereoscopy-based system to realize 3D inspection and measurement. 

 

Figure 3.2 4D light field. 

The measuring principle of the autostereoscopic 3D measuring system is shown in 

Figure 3.3, where the micro-lens array is regarded as a pinhole-like array of lenses for 

simplification. Under the assumption, light rays can only pass through the centre of the 

lenses. Three points A, B, and C are demonstrated in the diagram where point A and 

point C are at the same depth whereas point B is closer to the micro-lens array. It is 

obvious that multiple images (i.e., elemental images) are recorded by the image sensor 

behind every micro-lens from various perspectives. The number of recording 

perspectives is determined by the array size of the MLA. The separation between the 

MLA and the image sensor is  and the physical baseline distance of two adjacent 

micro-lenses is . Obviously, the centre distance of two arbitrary micro-lenses in one 

row or column is  where . 
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Figure 3.3 Measuring principle based on InI. 

As shown in Fig. 3.3, each object point (A, B, and C) are recorded by each of the 

micro-lenses with different  coordinates. These pixel points from the same object 

point (e.g., the blue pixel points) are corresponding points whose coordinate difference 

is the disparity determined by the depth of the object point. After stacking the elemental 

images as Figure 3.3(b), the disparities of the corresponding points of A, B, and C are 

, , and , respectively in the adjacent EIs. Based on the geometrical 

relationship shown in Figure 3.3(b), the relationship between the disparity and the depth 

can be established as shown in Eq. (3.1). 

                                               (3.1) 
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where  represents the gap from a point to the MLA and  is the pixel size. It is 

apparent that the depth for the object point can be acquired based on disparity 

information of the corresponding points. Regarding the non-adjacent EIs, the equation 

changes to 

                           (3.2) 

where  is the disparity of the corresponding points in non-adjacent EIs. 

Obviously,  in the diagram. Finally, the axial distance  of two 

object points can be acquired as  

                        (3.3) 

3.3 Depth reconstruction 

Based on the spatial‒angular information recorded in the raw measurement data, 

it is possible to extract disparities directly or implicitly from the data to reconstruct the 

target surfaces. The digital refocusing method is used to rearrange the pixels of the 

recorded elemental images at various depth planes, and therefore, all the corresponding 

points from one single object point only focus at a deterministic depth. Through 

analyzing the focus level of the CPs, the depth of the corresponding object point is able 

to be determined. This method reconstructs the refocused images based on the 

reversibility of light rays and the disparities are not extracted directly but contribute to 

the focus level. The method based on epipolar-plane images is used to directly extract 

disparities from the elemental images, where one angular dimension and one spatial 
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dimension are fixed and the pixels in the remaining two directions form a map (which 

is called an epipolar-plane image). The CPs in one EPI form a diagonal whose slope is 

the disparity. In this section, various methods for depth reconstruction are discussed. 

3.3.1 Digital refocusing 

The digital refocusing method reprojects the pixels in EIs to various depth planes 

so as to compose multiple refocused images, with a vivid illustration shown in Figure 

3.4. A virtual MLA that is assumed to be a pinhole-like array of lenses for simplification 

is placed behind the EI plane so that every pixel produces a backpropagated ray in a 

free space. Various depth planes can be placed in any position behind the virtual MLA 

at will, and the backpropagated rays are projected onto the planes to form a sequence 

of defocused images. In the diagram, obviously, point B’ (in red) that is from point B 

is focused at the depth (b) and point A’ (in blue) and C’ (in green) are focused at the 

depth (d). At depth (a) and depth (c), all the corresponding points of points A, B, and C 

cluster in bokeh regions, and no focus information is detected. 

Using ray transfer matrix analysis, it is possible to map the coordinates of each 

pixel from the EI plane to the depth plane, which is perpendicular to the EI plane and 

has a small ray angle denoted by . Under the small-angle approximation, . 

For simplification, only two dimensions  and  are considered for the demonstration. 

A point P with  coordinates in the EI plane is rearranged with  and  at 

the depth  and , respectively. As a result, the difference between  and  is 

                               (3.4) 
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where  is the pixel size of the image sensor. It is noted that the maximum value of 

 is determined by . Since the pixel number is finite in the refocused images, 

the axial resolution of the depth slices is determined by minimum . Obviously, 

the axial resolution of the depth slices is enhanced by decreasing the size of one single 

pixel.  

 

Figure 3.4 Principle of the digital refocusing method. 

3.3.2 Epipolar-plane image analysis 

An illustration of epipolar-plane image analysis is shown in Figure 3.5 where the 

central view of the elemental images is shown in (a), and one epipolar-plane image with 

its gradients along the x axis is shown in (c). The scene is from the Stanford light field 

dataset (Wilburn et al., 2005) and the angular resolution is . After fixing the v 

and y coordinates at , a 2D image (i.e., the epipolar-plane image) is acquired in 

!∆

α !! "

!"#$$

!" !"×

( )! !"! "



69 
 

the  plane. It is observed that the corresponding points form multiple diagonals 

in the EPI. The slopes  of the diagonals are different and determined by the 

distance from the corresponding object point to the MLA.  

 

Figure 3.5 Illustration of EPI extracted from LF data. 

Compare the EPI with the diagram shown in Figure 3.5 (d) where  denotes the 

disparity between two corresponding points in two adjacent EIs. It is found that the  

of one slope in the EPI is the disparity which is determined by the object depth. As a 

result, the depth of the object points are obtained after the extraction of the slopes in 

the EPI based on Eq. (3.2). As shown in Figure 3.5 (c), the angular resolution 

determines the quantity of corresponding points and the length of the associated 

diagonals. Hence, the larger angular resolution increases the estimation accuracy of the 

slopes in the EPIs. 
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3.3.3 Disparity pattern-based autostereoscopic 

reconstruction 

The disparity pattern-based reconstruction method was proposed by D. Li et al. 

(2015), which performs digital refocusing based on the disparity pattern to realize a 

reconstruction with only focused information. As shown in Figure 3.6, a point S moves 

axially and a group of disparity patterns is available at any depth based on the 

relationship between disparities and depth. In other words, if the point S is right at the 

depth , the corresponding points of S must obey the same distribution as the disparity 

pattern. As a result, a group of points from the EIs are extracted based on the disparity 

patterns at an assigned depth and the points are matched as corresponding points. 

Evaluation of the matching is based on the greyscale of pixel points and the gradient of 

multiple directions. If the points do not correspond to the same object point, the points 

are filtered and not projected onto the depth planes for refocusing. Essentially, the 

method integrates the disparity patterns as a constraint to the matching process so as to 

improve the matching efficiency. 

 

Figure 3.6 Illustration of disparity patterns at various depths. 
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3.4 Calibration process of autostereoscopic systems 

The calibration process is illustrated in in Figure 3.7, where a standard target serves 

as the calibration reference. This reference target is mounted on an XY translation stage 

and moves axially within the depth of field of the autostereoscopic measuring system. 

As the target position changes, multiple calibration data points are acquired for disparity 

extraction through digital refocusing. The separation  between the target and the 

main lens determines the value of the disparity , and their correlation can be 

expressed as . However, accurately measuring the exact distance is 

challenging, making it difficult to establish a precise relationship .  

It should be noted that the distance can be further represented as  

where  is a constant. The value of  can be obtained from the translation stage, 

corresponding to the movement of the reference target. Obviously, it is possible to find 

a function  that correlates the translation  with the disparity , formulated as 

. Consequently, by using the multiple calibration data, a curve that maps the 

relationship between  and  can be fitted for the calibration of the autostereoscopic 

system. 

 

Figure 3.7 Calibration process of the autostereoscopic measuring system. 
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3.5 Rapid 3D inspection of wire bonding 

Surface-mounted devices (SMD) such as light-emitting diodes (LED) are widely 

used electrical components, mounted or placed on the surface of a circuit board. They 

usually consist of resins, a chip, two pads, a gold wire, and a circuit pattern. SMD LEDs 

have been applied in car lights, street lamps, displays, projectors, general illumination, 

industrial illumination, decorative lights, etc. (Vieroth et al., 2009), because of their low 

power consumption and high luminance emission. An important manufacturing process 

of SMD LEDs is wire bonding during which the chip and the circuit are connected. 

Since the wire dimension is small, which is usually within the range of 15 µm to 50 μm 

in diameter, defects could occur during the wire bonding. The possible defect categories 

are shown in Figure 3.8. 

 

Figure 3.8 Defect categories of bonding wire. 

The five types of defects include high loop, low loop, sagged wire, broken wire, 

and wire missing (Chen et al., 2021). To avoid the defects resulting in the failure of the 

LEDs, effective and efficient inspection of the LEDs to measure the 3D dimension 



73 
 

information of the bonding wire is necessary. Some of the current wire bonding 

inspection systems (Chen et al., 2021; Chen & Tsai, 2021) can only detect lateral 

defects by looking at the samples from above. However, the defects caused by the 

wrong height of the wire are not able to be recognized.  

Traditional optical measurement systems (Perng et al., 2007) for wire bonding 

obtain 3D dimensional information by moving the lens several times along the axial 

axis or repositioning the sample stage to inspect different parts of the samples. Some 

stereo inspection systems (Ye et al., 2000) can obtain the height information from 

multiple angles, but the calibration could import further measurement errors. In addition, 

most of the current systems are either time-consuming or complicated to establish, 

which makes the practical implementation difficult for rapid and accurate 3D 

dimensional inspection. To this end, an autostereoscopic 3D measurement system for 

SML LED inspection has been developed to cater to the needs of the SMD LED 

manufacturing industry.  

On the basis of the autostereoscopic principle, the proposed system for rapid 

inspection of SMD LEDs is illustrated in Figure 3.9, where Figure 3.9 (a) presents the 

system architecture. Figure 3.9 (b) demonstrates the measuring principle. One single 

super-zoom magnification objective lens directly receives light rays emitted by the 

measured SMD LEDs, an MLA is positioned between the objective lens and a high-

resolution image sensor, and a series of EIs from slightly different view angles is 

recorded on the image sensor. Each small image region corresponding to the micro-

lenses records a part of the measured object and one single object point is recorded on 

different image regions forming multiple pixel points which are called corresponding 

points. The depth information can be analyzed and extracted from these corresponding 

points.  
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Figure 3.9 Rapid inspection system for SMD LEDs based on 

autostereoscopy. (a) System framework. (b) Recording process. 

According to the imaging theory, the rays emitted by the measured object form an 

image behind the objective lens. Since the distances from the object points to the lens 

are different (e.g., point A, B, and C), the image distances are also different. The MLA 

adjacent to the image sensor receives the rays emitted by the image points and splits 

the rays into different directions. Each micro-lens from a specific angle observes the 

image points behind the objective lens, and the image sensor records the rays passing 

through the micro-lenses. As a result, a series of EIs with different view angles is 

obtained. 

During measurement, the shooting distance  determines the recording 

positions of each object point on each EI. On the fundamental basis of the 

autostereoscopic principle, the recording process is formulated as Eq. (3.5) and Eq. 

(3.6). 

                                               (3.5) 
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                                               (3.6) 

where  is the imaging distance,  is the distance from the objective lens to the 

MLA,  represents the focal length of the main lens,  represents the individual 

micro-lens pitch,  is the distance from the MLA to the image sensor, and  is the 

distance of the CPs of one point in the neighbouring elemental images. For the object 

points with the same depth (e.g., point A and B), they have the same . The points 

with different depths (e.g., point A and C) have different . Hence, the depth 

information can be straightforwardly extracted from the EIs obtained. 

A reconstruction method for the rapid inspection of SMD LEDs is presented as 

illustrated in Figure 3.10. Since the depth information is directly related to the positions 

of the corresponding points of one object point, every group of the corresponding points 

is only focused on a specific depth. Through simulating the recording process using the 

virtual MLA, the refocusing is achieved by mapping all the pixel points in the EIs to a 

specific depth plane. After multiple refocusing processes on various depths, an image 

sequence of depth slices is acquired. The successful focused region in each depth slice 

indicates that the group of the corresponding points forming this focused region come 

from this depth. By stacking the depth slices, the focused slice can be detected to 

determine the 3D dimensions of the measured samples. 
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Figure 3.10 Refocusing process for the 3D inspection of SMD 

LEDs. 

On the basis of the refocusing process, the depth extraction is realized by 

identifying the focused pixel regions in every depth slice. A sharpness function is 

defined to detect the focus level of a pixel point in one slice. The detected focus level 

is determined by the greyscales of the centre point and its surrounding points in a small 

region. Define a group of pixels in a  region as . The function is to compute 

the gradient value of the centre pixel point  using Eq. (3.7), where  is the 

sharpness index in the -th depth slice.  and  are the gradient matrices in the 

 and  directions, respectively. After  depth slices are obtained, the peak 

gradient value of one pixel point among the slices is the desired focused value. Hence, 

the depth points can be acquired by Eq. (3.8), where  is the desired depth of the 

point . 
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                                 (3.7) 

                         (3.8) 

An example of the image sequence of the depth slices is shown in Figure 3.11. 

The wire roof (red circle) and the welding spot (blue circle) are focused on slices (B) 

and (C), respectively. It is obvious that the pixel points of the wire roof have the 

maximum sharpness value in the depth represented by the slice (B), as shown by the 

peak of the red curve. Through the same analysis of the points of the wire spot, the span 

of the wire and the height of the wire are easy to calculate.  

To achieve a fast inspection, the proposed system uses a local reconstruction based 

on the mentioned focus detection method, instead of reconstructing all the depth slices. 

The local reconstruction is performed on the regions of interest so that only finite pixels 

corresponding to the key points of target samples are remapped on the depth slices. This 

achieves a comparatively rapid inspection of the defects of the targets. 
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Figure 3.11 Depth detected via the focused planes. 

The proposed 3D inspection system for SMD LEDs and the experiment platform 

were established as depicted in Figure 3.12, where a ring-shaped light device was 

placed above the package of SMD LEDs. An X-Y positioning stage was used to realize 

the lateral movement of the measured samples. A series of EIs of the samples were 

captured within one snapshot and were processed by the proposed refocusing method 

to determine the 3D information of the measured LEDs. A total of 10 experiments were 

performed to reduce the systematic error without changing the axial and longitudinal 

measurement region. The experimental outcomes are displayed in Table 3.1. When the 

sample contains defects, the height of the bonding deviates from the standard 

requirement according to the defect categories. Accurate measurement of the height is 

used to filter out defective samples. The results acquired by Alicona IntiniteFocus 

which is a mature commercial 3D measurement system were taken as a reference. It is 

shown that the measurement results obtained by the proposed system realize high 

accuracy and reliability by comparison with the reference value. In addition, the 
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proposed system only took approximately 1.8 seconds to obtain the results, which 

dramatically exceeds the processing speed of the compared commercial system. 

 

Figure 3.12 Setup of the proposed 3D inspection system for 

SMD LEDs based on autostereoscopy. 

The proposed 3D inspection system is effective and efficient to conduct inspections 

of SMD LEDs. The system can reconstruct the desired 3D dimensions of the measured 

samples so that the quality of the bonding wire can be inspected during manufacturing. 

Since the system can record multiple viewpoint EIs within just one snapshot, the 

measurement speed is high. In addition, accurate height and lateral dimension 

information can be rapidly reconstructed using the proposed refocusing method. The 

proposed system is compact and easy to implement under various working conditions 

including external environments. The system has the potential for the improvement of 

the manufacturing efficiency of SMD LEDs and reduction of the failure rate resulting 

from the wire bonding defects.  
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Table 3.1 Experimental results for the 3D inspection of SME 

LEDs 

Measurement Time (s) Height (μm) Span (μm) 

Alicona IntiniteFocus > 300 53.146 348.475 

Proposed 

1 1.748 52.9 348.3 

2 1.764 52.7 348.1 

3 1.793 53.1 348.7 

4 1.802 53.1 348.7 

5 1.800 53.3 349.0 

6 1.811 53.1 348.9 

7 1.723 52.9 348.4 

8 1.746 52.8 348.2 

9 1.829 53.2 349.0 

10 1.834 53.3 349.1 

Avg. 1.785 53.04 348.64 

 

3.6 Summary 

In this chapter, the measuring principle of the autostereoscopic 3D measuring 

system based on InI is discussed. An autostereoscopic system typically consists of a 

main lens, a high-magnification zoom lens system, a micro-lens array, and an image 

sensor. Illumination devices are necessary for micro-structured surfaces to make the 

system able to inspect the micro-scale patterns. The reconstruction process is reversed 

with the recording process and the disparity information lying at the corresponding 

points which is directly determined by the distance between the observed point and the 
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micro-lens array. Based on the digital refocusing method, EPI-based method, and 

disparity patterns, the 3D information of the measured surfaces is detected so as to 

conduct the reconstruction. An experiment on rapid inspection of wire bonding was 

conducted to assess the feasibility and measurement performance of the 

autostereoscopic 3D measurement system. Importantly, the limitation of the 

autostereoscopy-based system is the resolution of the recorded elemental images. On 

the basis of the previous analysis, the spatial resolution contributes to the depth 

resolution in the digital refocusing process, whereas the angular resolution implicitly 

determines the matching accuracy during disparity extraction. This trade-off constrain 

the measurement accuracy of the autostereoscopic system. Hence, enhancing the 

resolution of the measurement data is crucial. 
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Chapter 4 Angular resolution enhancement for 

autostereoscopic measurement data using deep 

learning 

4.1 Introduction 

Light field techniques have been widely used since the techniques can provide rich 

3D information of the real world within only one snapshot. Three-dimensional scenes 

can be easily reconstructed through extracting the disparity information in the LF 

images which are composed of a series of sub-aperture images (SAIs). This makes LF 

cameras draw a lot of attention in photography (Marwah et al., 2013), vehicle vision 

(Fürsich, 2019), virtual reality (Overbeck et al., 2018), etc. However, an inevitable 

obstacle of LF techniques is the trade-off between image detail and the range of viewing 

angles in LF images. Currently, a vast amount of research work has been conducted to 

restore spatial resolution from low-resolution SAIs (Jin, Hou, Chen, & Kwong, 2020; 

Zhang et al., 2019). The work is similar to SISR and many techniques have been 

developed to achieve spatial resolution enhancement. Enhancing angular resolution by 

interpolating novel views from low-angular-resolution SAIs is still challenging.  

The methods applied for angular resolution improvement are basically non-depth-

based (Meng et al., 2020; Yeung et al., 2018; Yoon et al., 2017) as well as depth-based 

(Jin, Hou, Chen, Zeng, et al., 2020; Jin, Hou, Yuan, et al., 2020; Wu et al., 2017, 2019). 

Some of the non-depth-based methods (Meng et al., 2020; Yoon et al., 2017) directly 

process low-resolution SAIs and generate novel views. Some researchers (Wu et al., 

2017, 2019) used epipolar-plane images to achieve novel view interpolation. 

Nevertheless, when the disparity range of the LF images is large, these methods usually 
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produce severe ghosting on the interpolated novel view images. Depth-based methods 

usually produce high-quality images with sharper edges and less image ghosting. 

Correct depth estimation is vital to provide geometric transformation for the 

reconstruction of novel views. However, accurate depth estimation in real-world 

scenarios is more challenging especially when large baselines and multiple targets with 

various depths exist in a scene, and the target surfaces include complex textures or 

patterns. 

One challenging issue related to angular resolution enhancement is the lack of 

ground truth. A popular supervised learning paradigm artificially down-samples the 

raw dataset first and makes use of the raw SAIs as ground truth. To reach a compromise 

on the traditional learning paradigm, the data are required to be paired as input and 

corresponding labels. This imposes a simple artificial down-sampling strategy to the 

training process of the learning models. According to Dansereau et al. (2013), the rays 

in a 4D light field captured by a plenoptic camera can be represented as 

  (4.1) 

where  are the pixel indices within each lenslet image,  are the indices of the 

micro-lens, and  is a homogeneous intrinsic matrix. It is obvious that the count 

of rays in a captured light field is dependent on pixel density. The density of rays in a 

LF affects the precision of disparity estimation and the quality of novel view 

reconstruction. Hence, this down-sampling wastes the redundant light field information 

in the light field data. More density information is required to be complemented by the 
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learning models so that more challenges are imposed on the ill-posed problem. Another 

issue in current research is the performance for real-world images with large baselines. 

Although many learning models can produce excellent results and high PSNR/SSIM 

for synthetic light field datasets, it is still tricky to reconstruct clear novel views on real-

world light field scenes with large baselines and muti-depth targets. More attention 

should be paid to the angular enhancement of the sparse real-world light field images. 

This chapter introduces a new semi-supervised learning paradigm designed to fully 

exploit captured light field data. No ground truth is required by the proposed learning 

paradigm and the model is directly supervised by the input. As a result, all the data 

could be exploited thoroughly without the wastage of data. To adapt the proposed 

learning paradigm, a straightforward convolutional neural network is developed to 

synthesize novel views via fusing adjacent views in the raw dataset. The synthetic 

manner is similar to the pioneer baseline method (LFCNN) proposed in Yoon et al. 

(2017).  

To achieve interpolation with a better view, inspired by the plane sweep volume 

technique (Im et al., 2019), a simplified equivalent of depth estimation is utilized in the 

proposed method which predicts the opposite motion values of local regions in two 

adjacent input views rather than directly predicting the disparity pixel-wisely. In 

addition, the motion estimation is converted to a classification problem (Peleg et al., 

2019) to constrain the prediction of desired motion to a pre-defined range. 

Evaluation experiments are conducted on real-world LF and autostereoscopic 

datasets to demonstrate the universal effectiveness of the presented algorithm and its 

superiority to autostereoscopic measurement. The proposed model is trained on 20 
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scenes of the Heidelberg Collaboratory for Image Processing (HCI) dataset (Honauer 

et al., 2016), following the proposed semi-supervised learning paradigm. To illustrate 

the data efficiency of the proposed learning model, the training data are assumed to 

have a low angular resolution.  

Under this assumption, the data are down-sampled from 9×9 to 5×5 in angular 

resolution and the filtered data are removed from the training set. It is noted that the 

purpose of this down-sampling is different from that in previous research for the 

generation of ground truth. The down-sampling aims to create a training set with a 

limited angular resolution which usually happens in a self-built light field.  

As a result, the proposed method is trained using only 500 SAIs, while other 

comparative methods utilize the complete dataset consisting of 1,620 SAIs for 

comparison. The evaluation is performed without any finetuning. Quantitative results 

show that the learning model following the proposed learning paradigm can achieve 

high PSNR/SSIM for both synthetic and real-world datasets in comparison with the 

SOTA methods (Jin, Hou, Chen, Zeng, et al., 2020; Jin, Hou, Yuan, et al., 2020; Wu et 

al., 2019), whereas fewer training data are used.   

Qualitative comparisons reveal that the proposed method can interpolate high-

quality novel views with sharper edges and clear contents, and the proposed method 

tends to reconstruct more accurate parallax structures under the semi-supervised 

learning paradigm. To further demonstrate the superiority of the proposed learning 

paradigm, the baseline method of LFCNN is trained under supervision and the proposed 

semi-supervision separately. Quantitative experiments are performed on multiple real-

world datasets and the improvement is up to 2 dB in PSNR. It is also found that the 
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parallax structures recovered by the semi-supervised LFCNN contain more accurate 

details. 

In terms of measurement data captured by the autostereoscopic 3D measuring 

system, finetuning is conducted for all the methods. However, the comparative methods 

which are effective for the LF images fail to produce accurate novel views, where 

severe image ghosts occur in the reconstruction. This is because the measurement data 

are small in regard to spatial resolution and texture-less. It is difficult for the 

comparative methods to achieve high-quality reconstruction by struggling for accurate 

depth estimation from the measurement data. The proposed method has the capability 

to reconstruct high-quality novel views under the training of limited measurement data. 

Digital refocusing is performed to show the improvement achieved by various methods. 

The proposed learning paradigm and method also achieve more accurate angular super-

resolution by reconstructing more sharp edges and clear geometries compared with the 

other method. 

4.2 Angular super-resolution definition 

The proposed method aims to interpolate novel views among the low-resolution 

SAIs. Let  represent the intensity of a pixel located at coordinate  of 

the SAI and the SAI is at the angular coordinates  of the 4D LF.  and 

 are the angular and the spatial resolution of the LF data, respectively. A group 

of SAIs is shown in Figure 4.1 and four neighbouring SAIs are circled. Novel-view 

SAIs can be interpolated based on the four neighbouring SAIs, which are located in the 

middle and centre of the four SAIs. A total of five novel-view images can be 

reconstructed from these four SAIs. As a result, the angular resolution is enhanced from 
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 to after interpolation. To further enhance the angular 

resolution, the interpolation can be performed multiple times. For instance, two times 

of interpolation improves the angular resolution from  to . 

Different from SISR that computes and interpolates new pixels between the 

neighbouring pixels, angular super-resolution methods make use of the pixels from the 

neighbouring SAIs and their neighbouring regions to determine the desired new pixel 

values. These input pixels are represented by the same object point but recorded from 

different view angles. Defining these different view-angle pixels as a group of 

corresponding points and the interpolation problem of angular super-resolution can be 

simply defined as 

 

Figure 4.1 An example of 4D light field images. 

                          (4.2) 

where  and  are two neighbouring SAIs which could be in the horizontal 

direction or the vertical direction, and  is the desired novel-view SAI.  

denotes the coordinates of the corresponding points in the SAI .  and  are two 
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small pixel regions within a range , of which the centre pixels are the 

corresponding points. All the pixels in the two regions contribute to the reconstruction 

of the corresponding new points in the interpolated-view SAI. Obviously, the different 

view angles lead to the different centre coordinates  of the two corresponding 

regions. Direct convolution on the neighbouring SAIs (Meng et al., 2020; Yoon et al., 

2017) usually holds the hypothesis that the  coordinates of the centres are 

approximately the same, i.e.,  and , where  is a negligible 

constant. As a result, the direct convolution usually generates ghosting interpolation 

results when parallax is large. For the data with large parallax, accurate depth estimation 

can guarantee that the two local regions have correspondence. 

4.3 Semi-supervised learning paradigm 

According to Eq. (4.1), the reconstruction process aims to extract the ray 

distribution in a light field based on the finite recorded pixels. In some research, only 

corner SAIs are input into the learning models and the remaining SAIs are used as 

ground truth. As a result, the learning models can only make use of a finite ray 

distribution of the captured light field and need to learn to fit the dense light field 

information under supervision. Albeit that the redundant light field information is not 

fully exploited, most of the models can achieve excellent estimation due to the powerful 

fitting capability of the learning models. To allow more efficient learning of a light field 

representation, a learning paradigm that can make full use of the collected data is 

necessary to improve the learning efficiency, especially when only limited training data 

are acquirable. 

T Using three contiguous SAI regions, labelled (A), (B), and (C) in Figure 4.1 as 
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an illustration, a desired novel view (P) could be interpolated between (A) and (B), 

while another view (Q) is between (B) and (C). The pixels in the novel views (P) and 

(Q) can be interpolated by finding corresponding points in (A), (B), and (C). When  is 

small, the corresponding points can be involved within one convolutional window so 

that the baseline method of LFCNN can even achieve satisfactory results for data with 

small baselines. In terms of a large baseline, explicit and implicit depth estimation is 

always necessary to determine the corresponding points in different views. The 

synthetic novel views (P) and (Q) are required to be supervised so that the models can 

be trained to detect the corresponding points. Unfortunately, there is no ground truth 

for (P) and (Q) if no artificial down-sampling is performed before the training. It is 

obvious that another novel view (Z) can be interpolated between (P) and (Q) and the 

view (Z) should be an equivalent to the original view (B). Therefore, the synthetic view 

(Z) can be supervised so (P) and (Q) can be constrained indirectly. It is noted that the 

interpolation can be performed infinitely and ‘ground truth’ for the novel views can 

always be found after every 2-step interpolation, though the ‘ground truth’ may not 

always be the original SAI but an interpolated view. 

Motivated by the above analysis, a novel semi-supervised learning paradigm in a 

cycle-like fashion is proposed, which is illustrated in Figure 4.2. During each training 

iteration, totally nine neighbouring SAIs  in a 3×3 grid are fed into the model. 

Horizontal and vertical interpolation happens in the middle of the adjacent SAI pairs, 

and another horizontal interpolation between the two novel views produces the centre 

view.  In Step 1, a total of 16 novel-view SAIs  are interpolated horizontally, 

vertically, and centrally. This enhances the angular resolution of the original data from 

3×3 to 5×5. The red SAIs in Figure 4.2 are the novel views interpolated in the first step. 
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Figure 4.2 Flowchart of the proposed semi-supervised learning paradigm. 

Since there is no ground truth for the 16 novel SAIs, in Step 2,  are directly fed 

into the network again and a new round of the three interpolation operations happens. 

It is noted that the values in the novel-view SAIs exceeding 1.0 are truncated for 

normalization. Based on the novel views horizontally interpolated in the first step, nine 

novel views (in blue) are produced by the second round of vertical interpolation. 

Similarly, another nine novel views (in purple) are produced by the second round of 

horizontal interpolation. Additional horizontal interpolation based on the blue views 

produced in the second step synthesizes five new views in green. As a result, a total of 

23 novel-view SAIs  (in purple, blue, and green) are produced in Step 2. It is noted 

that no backpropagation happens during the first two steps. After the interpolation in 

the first two steps, redundant novel-view SAIs (a total of 39 views) are produced based 

on the nine input SAIs. Obviously, some views have the same angular coordinates 

 and can be constrained by each other. 

According to the above analysis, the errors between the SAIs with the same angular 

coordinates are measured to provide the training loss in Step 3. Firstly, a reconstruction 

loss between  and  is acquirable since part of the novel views interpolated in the 

!!!

!!!

( )!! "

!"#! !!!



91 
 

second step have the same  as the original input. These new perspectives can be 

directly supervised using the input. It is also found that a consistency loss between  

and  is obtainable in a similar fashion.  

In terms of the reconstruction loss, L1 (Least Absolute Deviations) and perceptual 

loss are used to obtain the errors. The L1 loss can constrain the pixel-wise errors 

between the different views at the same angular coordinate, and the perceptual loss 

measures the perceptual differences at feature levels. The reconstruction loss  is 

formulated as Eq. (4.3),  

  (4.3) 

  (4.4) 

where  is the expectation,  is the high-level features and  is the penalty 

coefficient. A similar consideration is carried out for the consistency loss between  

and . Only L1 loss is used to measure the errors to accelerate the training speed. 

Although the perceptual loss may provide a feature constraint between  and , the 

additional computation cost only yields a negligible improvement in our experiments. 

As a result, the consistency loss is formulated as Eq. (4.5). The integral loss function of 

the proposed learning paradigm is formulated as Eq. (4.6), where  is the penalty 

coefficient of the consistency loss.  

During the training process under this paradigm, 39 novel views are interpolated. This 
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achieves considerable self-augmentation of the training data so that the learning 

efficiency can be improved significantly. In addition, the training paradigm is consistent 

with the recording of light fields where the interpolated views are the rays not recorded 

but that exist in the field, so that the light field structures can be learned during the 

training. 

  (4.5) 

  (4.6) 

4.4 Super-resolution model for angular resolution 

enhancement 

4.4.1 Deep convolutional neural networks 

Deep models are composed of many convolutional layers. Each layer has a certain 

number of convolutional kernels that slide on the input image data or feature maps with 

a given stride and use different weights to convert the input into a new feature map. 

Figure 4.3 illustrates a convolutional operation using one 2D kernel, where the stride 

size is , and the padding sizes in (a) and (b) are 0 and  respectively. The 

input data can be either images captured by sensors or feature maps output by the 

previous convolutional layer. The input has three dimensions, namely width , height 

, and the number of channels . Generally, an RGB image has three colour channels, 

and a grey image only has one channel. One 2D kernel totally has  weights and 

transforms the input to a single channel output.  
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It is obvious that the shape  of the output is smaller than the input after 

convolution when no extra padding is used. To keep the output and input having the 

same shape, a padding operation is usually used in convolutional neural networks. As 

shown in Figure 4.3 (b), the yellow squares are zero pixels padded to the original input. 

Then, under the same convolutional operation as shown in Figure 4.3 (a), the output 

can have the same 2D dimension as the input. The relationship between  and  

can be formulated as 

                                               (4.7) 

where  is the stride size and  is the padding size. In 2D convolution, the 

channel count of output is determined by the amount of kernels per layer.  

 

Figure 4.3 Convolution with 1×1 stride. Each square denotes a 

pixel point. (a) Using no padding. (b) Using zero-padding. 

A pooling layer is a sampling process, following a convolutional layer as usual. 
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The pooling operation down-samples the contents in a region based on some rules 

including keeping the maximum value, stochastic selection, and computing average 

values. In general, pooling layers are used to achieve deformation invariance so that the 

deformation including shifts, rotation, etc. cannot affect the performance of learning 

models. However, a recent study (Ruderman et al., 2018) claimed that pooling is not 

necessary for a CNN, and deformation invariance is mainly realized via adequate 

training. However, pooling operation is still an effective method for dimension 

reduction to filter redundant information. 

Activation functions are a key component for CNNs since the main non-linear 

transformation is achieved by them. Activation functions play a similar role as a switch 

in an electrical circuit, deciding which values should be passed to the next layers. In a 

CNN, an activation function node often follows a pooling layer or is directly placed 

after a convolutional layer. Commonly used activation functions include Logistic 

(Sigmoid and Softmax), TanH, Rectified linear unit, exceptional linear unit (ELU), etc. 

The logistic functions are usually used as the final activation node of classification 

networks. The Sigmoid function is mostly used for binary classification and the 

Softmax function is usually used for multi-classification problems. Since ReLU was 

proposed (Glorot et al., 2011), it has replaced TanH, becoming one of the most popular 

activation functions. Some ReLU-like functions such as leaky ReLU and PReLU 

(Parametric ReLU) performed better in some works. However, ReLU is still the first 

choice for the implementation of a deep model because other ReLU-like functions 

introduce more computational complexity to the learning models. 
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4.4.2 Angular super-resolution through motion estimation 

A straightforward learning model inspired by plane sweep volume and motion 

estimation is developed to evaluate the proposed semi-supervised learning paradigm. 

In this model, the SAIs are assumed to be a group of scenes captured by a camera 

moving along the  and  axes. The difference of the  and  coordinates of two 

neighbouring SAIs causes a -direction and a -direction translation motion of the 

corresponding points in the two SAIs. The value of the translation motion of the 

corresponding points is different and depends on the disparity. Instead of direct 

estimation of the disparity pixel-wisely, the model directly predicts the motion value of 

small local regions of two views and synthesizes the new pixels in the novel view via 

fusing the two shifted local regions.  

To improve the learning efficiency, the prediction problem is converted into a 

classification problem. Based on Eq. (4.2), the shifting of the local regions will reduce 

the  so that the corresponding points in the different views are moved to one 

convolutional window, and pixel-level fusion can be achieved by the convolutional 

layers. 

To simulate the motion, a series of translation SAI pairs with specific translation 

values are generated and stacked, forming a pyramid-like structure which is called a 

Motion Pyramid in this paper for a vivid demonstration. The layers in the Motion 

Pyramid are called Levels numbered with the specific translation value. The proposed 

method is shown in Figure 4.4, where a neighbouring SAI pair (Level 0) in the 

horizontal ( ) direction is used for a demonstration. Level  is defined as all the pixel 

points in the left SAI moving along the  axis by  pixels and all the right SAI’s points 
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moving by  pixels, where  and . These Levels are inputted into a 

motion estimation network individually. The motion estimation network can output a 

confidence map. Every value in the map  at coordinates  represents the 

confidence of each point at  in the inputted Level . The higher confidence 

indicates that the desired interpolated point at  of the novel-view SAI is more 

possibly acquired from this Level.  

 

Figure 4.4 Framework of the proposed learning model based on 

motion estimation. 

4.4.3 Motion estimation network 

Before processing, the SAIs at different Levels are randomly shuffled first to 

improve the robustness of the estimation. In addition, the two SAIs at Level  first go 

through a point-wise subtraction. This is reasonable since the corresponding points are 

recorded from the same object point so that these points should have similar pixel 

intensity values. The point-wise subtraction operation can improve the learning 
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efficiency. The result from subtraction undergoes processing through a series of 

convolutional layers, succeeded by batch normalization. The output feature (in black) 

is shrunk by two max-pooling layers with different scales  and  simultaneously. 

The two low-dimension features are up-sampled by a bilinear process to the same size 

as the inputs for feature fusion. The three features (black, red, and blue) are then merged 

and concatenated into one global pyramid feature for the subsequent processing. The 

architecture is adapted from a pyramid pooling module that has been proved to be an 

effective global contextual prior (Zhao et al., 2017). It is noted that the number of 

channels vary among the three features during the concatenation process where the two 

low-dimension features (red and blue) only have half the channel count of the high-

dimensional feature map (black).  

Since the motion estimation is intended to perform for a local region, the pooling 

scales  and   determine the sizes of the local regions. It is noted that when 

, the estimation is equivalent to the depth estimation for each pixel. In the 

experiments, it is found that a large  usually causes break areas on the borders of the 

local regions. Hence,  and  are set to 2 and 4 for multi-level feature fusion.  

The final output of the motion confidence map is produced by two convolutional 

layers with  kernels to replace the operation of fully-connected neurons. This could 

reduce the number of weights imported by the fully-connected layers. Two dropout 

layers are used in the training process to avoid overfitting. The confidence maps 

generated by the motion estimation network are normalized in the channel direction 

using the SoftMax function. As a result, a motion probability map of each Level  is 

acquired. The entire motion estimation process can be formulated as Eq. (4.8) and Eq. 
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(4.9). 

 

                           (4.8) 

                                         (4.9) 

where  is the output motion probability map corresponding to the Level , 

i.e.,  and  is the difference of the translation values between two adjacent 

Levels.  denotes the mapping function of the motion estimation network.  and 

 are the neighbouring SAIs in the horizontal direction.  denotes that all the 

pixel points of a SAI  are translated by  pixels.  

4.4.4 Novel-view reconstruction network 

The next stage is the reconstruction of the novel-view SAI  between  and 

. In this stage, the two SAIs at each Level are inputted into a pyramid block. The 

block compresses the two SAIs into one single image, formulated as 

                                               (4.10) 

                             (4.11) 
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where  denotes the mapping function of the pyramid block which consists of 

two max-pooling layers and two up-sampling layers. This is a non-depth-based fusion 

of the two SAIs only based on pixel information. Similar to the motion estimation 

network, multi-dimensional and multi-level features extracted from the SAIs are 

concatenated and merged for the effective recognition of the multi-level feature 

information. Batch normalization is not used in the pyramid block since research has 

found that batch normalization can deteriorate the accuracy of image restoration (Fan 

et al., 2018). There are two different routes for the training and inference processes. As 

for the training process, a Hadamard product is directly conducted between the output 

 and its corresponding probability map . The maximum operation is then 

conducted at every point on  to filter the points with fewer probabilities so that a 

single image  is acquired, formulated as 

                         (4.12) 

where  is the Hadamard product. To restore the pixel intensities, the same maximum 

operation is also performed on the group of probability maps to acquire a maximum 

probability map .  

                                     (4.13) 

The novel view is obtained through dividing  by the maximum probability map 

pixel-wisely as shown in Eq. (4.14).  

                                              (4.14) 
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Since the values of the confidence map  are arbitrary without being 

constrained by Sigmoid or other activation functions, the model tends to output very 

large values in the confidence map to achieve a high probability after the SoftMax 

function. Eq. (4.14) can help to avoid this instability during the training process since 

the maximum probability need not be close to 1.0 after this operation.  

As for the inference process, the probability maps are encoded using the one-hot 

strategy so that only the maximum probability remains as 1 at each point  and the 

other probabilities are set to 0. Hence, the pixel intensities of the novel-view SAIs in 

the inference process are formulated as 

                             (4.15) 

where  denotes the one-hot encoding strategy. The produced SAIs both in the 

training and the inference processes are further refined by another pyramid block  

which generates the final output of the interpolation.  

                                        (4.16) 

In terms of the training of the model under the proposed learning paradigm, an 

additional L2 regularization is used to constrain the weights of the networks to prevent 

overflowing of the SoftMax. Hence, the integral loss function is formulated as Eq. 

(4.17), where , , and  are the weights of the motion estimation network and the 

two pyramid network blocks.  is the penalty coefficients of the L2 regularization. 

  (4.17) 
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4.4.5 Optimal maximum translation value 

A rapid and simple method to identify the optimal maximum translation value is 

salient point matching. It is possible to detect and describe multiple salient points from 

the adjacent views based on mature feature detectors such as the SIFT method and the 

speeded up robust feature (SURF) method so that the point distance can be measured. 

The matching can provide a motion range for the motion estimation. In this paper, the 

SIFT detector and descriptor are used for the key point detection and matching. To cater 

for the vertical and the horizontal motions, the adjacent views of an input in the two 

directions are used for the matching. The point distances can be acquired based on the 

pixel coordinates of the matched points.  

4.5 Experiments on LF and autostereoscopic 

measurement datasets 

4.5.1 Training datasets 

Similar to other light field super-resolution research, the proposed work uses the 

HCI dataset as the training dataset including 24 scenes. All the 24 scenes can be used 

for the training of the proposed method following the semi-supervised learning 

paradigm, because of no ground truth being required during training. The dataset is split 

for training and testing. The training set includes 20 scenes, and the test set contains 4 

scenes (bedroom, bicycle, dishes, and herbs). To further simulate the real-world light 

field images which only have a limited angular resolution, the angular resolution of the 

HCI dataset is down-sampled from 9×9 to 5×5, and the original angular resolution is 

assumed to be 5×5.  
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As a result, only a total of 500 images are used for the training of the proposed 

learning model and the remaining 1,120 images are just dropped without being used. 

Compared with other approaches that used the 20 scenes of 9×9 light field images for 

training, the proposed learning paradigm saves over 69% of the training data. It is noted 

that the proposed method is not further trained and finetuned on other datasets for the 

evaluation. 

4.5.2 Test datasets 

Real-world LF datasets established with various recording devices are used for the 

real-world image evaluation. One dataset named Lytro 1st (Mousnier et al., 2015) is 

composed of 30 scenes recorded by the 1st-generation commercial LF camera, where 

the baseline between multiple perspectives is minor.  

Another dataset named SFLA-Lego (Stanford Light Field Archive: Light fields from 

the Lego gantry) (Adams, 2008) is more challenging. Since the data were recorded by 

a self-built light field recording system which contains a camera on a moving platform, 

a large depth of field from a single perspective is achievable so that multiple objects 

from various distances can be recorded with sharp edges and clear details. In addition, 

the baseline is generally much larger and more flexible based on the movement of the 

platform. The illumination conditions and patterns of target objects are also more 

complicated in the SLFA dataset. 

To collect testing autostereoscopic data, an autostereoscopic measuring system is 

established and its setup is shown in Figure 4.5. The system includes an objective lens 

and a zoom imaging system that allows for adjusting the magnification factor. Coaxial 

and ring-type illumination is installed to ensure the visibility of micro-structured 
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surfaces. The system utilizes a CCD sensor with a resolution of 2456×2058 and a pixel 

size of 3.45 µm. A MLA is incorporated, with a pitch size of 150 µm, a focal length of 

5.6 mm, and a scale of 10 mm × 10 mm. The resolution of the raw data is 

15×13×151×151. 

 

Figure 4.5 Autostereoscopic measuring system for data collection. 

4.5.3 Experimental details 

The ReLU is set as the non-linear activation function of the proposed network. To 

achieve higher accuracy of the view reconstruction, the penalty coefficient  is set to 

0.1 to constrain the contribution of the feature perceptual loss during training. 

Following previous research (Cheng et al., 2020; Rahim & Nadeem, 2018), the 

regularization parameter  is set to  to avoid overfitting. A large penalty 

coefficient  usually resulted in difficulty in convergence during the beginning of the 

training in the experiments. Hence,  is determined through the grid search technique 

and finally set to . The Adam algorithm is used for weight optimization with 

 and . The input images are converted to the YCbCr space. 

Training is solely conducted on the Y channel. In the testing stage, the Cb and Cr 
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channels are reconstructed by the trained networks. Thorough data augmentation is 

conducted including flipping, rotation, and resizing with a pre-defined probability. The 

resizing scale factors are set to 1.0 and 0.5 randomly. The implementation of the 

learning models is implemented on the Pytorch platform using NVIDIA RTX 2080 

GPUs.  

During the training process, the loss curve is monitored for hyper-parameter 

adjustments. By appropriately adjusting the learning rate, the loss curve eventually 

converges and flattens, indicating no further decline. This can be considered a stop 

signal for the training. In the experiment, training is halted when the variations in L1 

loss are less than 10-3 during the last 10 epochs. Checkpoints are also saved at different 

training epochs to identify the best model with greater generalization capability. The 

trained model is then evaluated to ensure the training is complete. 

4.5.4 Evaluation of the proposed learning paradigm  

An ablation study about the improvement made by the proposed semi-supervised 

learning paradigm is presented, where the baseline method of LFCNN is used and 

trained under the traditional supervised and the proposed semi-supervised learning 

paradigm. The training set is the same as stated in section 4.5.1. To only enhance the 

angular resolution, the spatial super-resolution layers of LFCNN are removed and the 

other layers are the same as described in Yoon et al. (2017). For clarification, LFCNN 

is trained in a supervised fashion and LFCNN-semi is the semi-supervised model. The 

two models both go through 50-epoch training. The learning rate is initialized to 1×10-

4 initially and decays every 10 epochs. The same data augmentation is used, and the 

cropping size of the input patches is set to 96×96. To further eliminate the contribution 
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made by the perceptual loss, only L1 loss is employed in Eq. (4.3) during the proposed 

semi-supervised process. 

Since LFCNN can barely solve the light field data with a large baseline, 5×5-to-

9×9 enhancement is performed during the quantitative analysis. Similarly, the four 

scenes (bedroom, bicycle, dishes, and herbs) of the HCI dataset are used as the test set. 

Apart from the Lytro 1st dataset, another five real-world datasets including Reflective 

(Raj et al., 2016), 30 scenes (Kalantari et al., 2016), and three categories (ISO and 

colour charts, Light, and Mirrors and transparency) of the EPFL (École polytechnique 

fédérale de Lausanne) (Rerabek & Ebrahimi, 2016) dataset are used for the real-world 

evaluation. All of the real-world data are recorded by commercial light field cameras 

and contain small baselines to cater for the requirements of the baseline method. The 

quantitative experimental results (PSNR/SSIM) are presented in Table 4.1, where 

LFCNN outperforms on the HCI test set, though LFCNN-semi achieves quite similar 

results.  

Table 4.1 Evaluation of supervised baseline models against the 

introduced semi-supervised approach. 

Datasets LFCNN LFCNN-semi 

HCI 29.95/0.855 29.64/0.822 

Lytro 1st 35.31/0.954 38.07/0.973 

Reflective 36.70/0.950 38.33/0.961 

30 scenes 36.70/0.958 37.94/0.967 

EPFL-ISO 34.91/0.926 36.72/0.941 

EPFL-Light 35.36/0.937 37.66/0.960 

EPFL-Mirrors 35.10/0.929 37.08/0.956 
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However, regarding the six real-world datasets, LFCNN-semi improves the PSNR 

results by around 2 dB. The results show that the proposed semi-supervised learning 

paradigm can enhance the learning efficiency of the angular SR learning model by 

exploring more LF information among the data instead of splitting the finite data into 

input-label pairs. 

4.5.5 Comparison with SOTA approaches  

The proposed method is evaluated against several SOTA techniques, including Wu 

(2019) (Wu et al., 2019), LFASR (Jin, Hou, Chen, Zeng, et al., 2020; Jin, Hou, Yuan, 

et al., 2020), and LFASR-FS-GAF (Jin, Hou, Chen, Zeng, et al., 2020). The three 

models are trained on the same HCI training set but utilize the entire dataset consisting 

of 1,620 images. Only the proposed model is trained using only 500 images under the 

semi-supervised paradigm.  

Table 4.2 Comparison using the synthetic dataset. 

 Light field 
Scenes Wu (2019) LFASR LFASR-FS-

GAF Proposed 

HCI 

bedroom 39.15/0.961 41.98/0.975 41.91/0.975 39.74/0.968 

bicycle 30.84/0.924 34.03/0.954 33.92/0.959 32.20/0.945 

herbs 30.80/0.831 32.76/0.882 37.53/0.985 34.31/0.945 

dishes 26.59/0.876 29.63/0.938 35.20/0.946 37.77/0.984 

 Avg. over 4 
scenes 

31.84/0.898 34.60/0.937 37.139/0.966 36.01/0.961 

The quantitative evaluation (PSNR/SSIM) using the HCI test set is shown in Table 

4.2 where part of the results are acquirable in Jin, Hou, Yuan, et al. (2020). As the 

results demonstrate, LFASR-FS-GAF achieved relatively higher PSNR and SSIM, but 
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the proposed method obtained a higher PSNR in the dishes scene. The results are 

consistent with our previous assumption that the depth estimation for the regions 

containing complex patterns is challenging.  

The quantitative comparison results (PSNR/SSIM) using the Lytro 1st dataset are 

presented in Table 4.3. The dataset consists of 30 scenes captured by a commercial light 

field camera in various indoor and outdoor environments. The SAIs are decoded from 

the raw lenslet images based on Dansereau et al. (2013). The results show that the 

developed model enhanced the metrics for the 30 scenes by around 1.5 dB on average. 

Note that the baselines of this dataset are quite small, so every model can produce quite 

satisfactory results. No finetuning is performed to these models to show the 

representation capabilities of different models for both the simulation and realistic light 

fields. 

Table 4.3  Comparison using the Lytro 1st dataset. 

Light field 
Scenes Wu (2019) LFASR LFASR-FS-

GAF Proposed 

Beers 32.45/0.961 34.57/0.966 33.46/0.959 37.35/0.985 

BSNMom 33.19/0.951 27.98/0.868 30.52/0.912 37.90/0.983 

Edelweiss 32.53/0.966 34.24/0.975 32.57/0.966 36.27/0.988 

Street 33.55/0.970 35.04/0.976 33.62/0.973 37.24/0.986 

Avg. over 30 
scenes 36.68/0.970 38.28/0.970 36.85/0.967 39.76/0.984 

The evaluation (PSNR/SSIM) for SLFA-Lego is presented in Table 4.4. Since the 

spatial resolution of the data is large and different in multiple scenes, the data for 

evaluation are resized and centrally cropped to 512×512 which is the same as the size 

of the HCI data. Since larger baselines are contained in some scenes, depth estimation 
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is necessary.  

Table 4.4 Comparison using the SLFA-Lego dataset. 

Light field Scenes Wu (2019) LFASR LFASR-FS-
GAF Proposed 

Bracelet 22.63/0.792 29.39/0.933 23.12/0.831 36.17/0.982 

Jelly Beans 31.41/0.937 37.10/0.968 29.98/0.928 41.60/0.977 

Lego Bulldozer 25.78/0.854 32.10/0.938 25.23/0.921 35.16/0.974 

Lego Gantry Self 
Portrait 

21.78/0.813 22.68/0.827 20.94/0.793 24.83/0.919 

Avg. over 13 scenes 30.87/0.882 34.14/0.918 32.06/0.897 34.88/0.960 

Regarding the evaluation using autostereoscopic data, LFASR, LFASR-FS-GAF, 

and the proposed method are compared. All the models are finetuned using the collected 

autostereoscopic dataset. Figure 4.6 displays the synthetic outputs of four-prism 

structures, frustums, wire bonding, and pyramid structures that are at a scale of a 

hundred micrometres. The first row displays the enhancement from low-resolution to 

high-resolution SAIs. The angular resolution of the system is improved from 15×13 to 

29×25. The details are highlighted to show the accuracy of new-view synthesis. The 

results reveal that the LF-oriented methods are ineffective in generating novel views 

for autostereoscopic data. Compared with SSRAMS, the method produces sharper 

edges. 

Another experiment on wire bonding structures is shown in Figure 4.7, where (a) 

exhibits the low-angular-resolution (low AR) data recorded by the measuring system, 

and (b) shows the high-angular-resolution (high AR) data. Columns (c) and (d) are the 

outcomes of LFASR and the proposed, respectively, where the four corners are the 

input and the other views are reconstructed for super-resolution. It is noted that LFASR 
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fails to produce clear edges and more artefacts occur in the novel views. This could 

have resulted from the depth estimation process which requires clearer details and 

textures to predict the depth for the novel-view reconstruction. 

 

Figure 4.6 Evaluation using autostereoscopic measurement data. 

Both the raw low-resolution data and the high-resolution data are processed via 

digital refocusing so that multiple refocused images at different depth planes are 

obtained for focus detection. The Laplacian filter is used for focus detection so that the 
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depth of a region of interest (ROI) can be determined. The detection results are shown 

in Figure 4.8. The three ROIs coloured red, green, and blue are focused at the bottom, 

the middle, and the top. It can be found that the checkerboard artefacts are eliminated 

by more perspectives of SAIs after super-resolution. The detection results retain more 

edge information and less high-frequency noise. 

 

Figure 4.7 Qualitative comparison using the autostereoscopic 

measurement data (wire bonding). 

4.6 Summary 

In this chapter, a novel semi-supervised learning paradigm with no requirement of 

ground truth is presented for the training of angular resolution enhancement methods. 

A motion estimation model based on plane sweep volume is developed to cater for the 

behaviour of the proposed learning paradigm for performance evaluation. The 

improvement of the proposed semi-supervised learning paradigm is evaluated by 

supervising and semi-supervising a baseline method of LFCNN. The PSNR of the novel 

views produced by the semi-supervised LFCNN is enhanced by 2 dB compared with 
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the same model trained under traditional supervision. The evaluation of the motion 

estimation model under semi-supervised training is performed using both LF and 

autostereoscopic measurement datasets.  

 

Figure 4.8 Focus detection of the digital refocusing results from 

the autostereoscopic measurement data. 

The proposed model is trained only using 30% of data and compared with the other 

methods trained using the full data. For the scenes with large baselines, multi-depth 

objects, and complex textures, the PSNR achieved by the proposed method is improved 

by over 3 dB on average, whereas the SOTA methods always produced blurred images 

and artefacts in these scenes. The evaluation results using a real-world dataset with 

small baselines are also improved by around 1.5 dB on average compared with the 

SOTA methods. The experiments confirm the effectiveness of the proposed approach 

for the sparse LF data recorded by self-built devices, since the baselines can be much 

larger and the target textures can be more complex under various recording conditions. 
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In addition, the proposed learning paradigm is more data-efficient so that thorough 

training can be realized using a limited dataset. Experiments also indicate that the 

proposed learning paradigm is flexible and can be reformed for the training of other 

light field super-resolution models to improve the reconstruction performance. 

As a way forward, there may be some room to further increase the precision of the 

detection of the maximum motion value, based on the SIFT matching in the paper. This 

detection can be integrated into the neural network to be performed more precisely in 

an end-to-end fashion. It is also anticipated that the powerful depth-based angular 

resolution models are benefited by the semi-supervised learning paradigm.  

Hence, the proposed semi-supervised method proves its efficiency in angular 

super-resolution for LF images as well as autostereoscopic measurement data. 

Exploiting super-resolution enhancements, a high-angular-resolution autostereoscopic 

measuring system can be established, resulting in a more accurate 3D reconstruction of 

the target surface. 
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Chapter 5 Self super-resolution autostereoscopic 

measuring system using deep learning 

5.1 Introduction 

The manufacture of micro-structured freeform surfaces has become a key research 

issue with the rapidly increasing commercial demand for them. The applications of 

these complicated surfaces have been used in various industries, including biology and 

bionics science, space and astronautics science, advanced electronic products, etc. 

(Hornbuckle et al., 2020; Park et al., 2018). The research community has shown 

significant interest in the rapid and accurate measurement of products that possess 

micro-structured features. Coordinate measuring machines (CMMs) are widely used 

for complex structure measurement due to their stability and high accuracy (Mian & 

Al-Ahmari, 2014). A probing system is used in CMMs to scan the measured surfaces 

so that the surface geometry can be reconstructed.  

Since a contact stylus could result in damage to the measured parts, optical 

scanners are being developed to perform non-contact measurement (Gapinski et al., 

2014). However, a fact that cannot be neglected is the low efficiency of CMMs. The 

amount of sampling points acquired by the stylus or scanners directly affects the 

measurement performance. A large number of sampling points also contribute to a time-

consuming measurement process. In addition, the risk of probe damage increases with 

a higher scanning speed (Bastas, 2020). To overcome the drawbacks, the 

autostereoscopic imaging technology is an alternative novel solution to realize fast and 

highly accurate 3D surface profile measurement. 

Autostereoscopic three-dimensional imaging technology can obtain 3D 
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information from multiple view-angle elemental images that are captured in one 

snapshot. The measured surfaces can be reconstructed using the disparity information 

stored in the EIs and digital refocusing techniques. Compared with other non-contact 

measuring systems, the autostereoscopic 3D measurement system is relatively easy to 

implement, requires less restrictive machining conditions, and is able to record richer 

3D information for disparity extraction. Nevertheless, an inherent conflict in 

autostereoscopic technology arises from the trade-off in the resolution.  

The spatial resolution refers to the FOV of each individual EI, while the angular 

resolution indicates the number of views from which these EIs are captured. To obtain 

high-resolution EIs, some conventional methods (Mitra & Veeraraghavan, 2012; 

Wanner & Goldluecke, 2014) have been developed to super-resolve low-resolution 3D 

information. However, these research works mostly relied on accurate disparity 

estimation which imposed difficulty and severe errors. Moreover, the research studies 

on how to enhance the angular resolution are still receiving relatively little attention. 

Machine learning, exceptionally deep CNNs, have witnessed significant 

advancements these years. These networks have been successfully employed for SR 

tasks, outperforming conventional methods and delivering superior performance (Dong 

et al., 2014; Kim et al., 2016). Some deep learning methods (Jin, Hou, Yuan, et al., 

2020; Yoon et al., 2017) have also been presented to enhance angular resolution, that 

is generated via simulation or captured by commercial light field cameras. However, 

there are few noises and almost perfect illumination conditions in the simulated stereo 

images. The images recorded by the commercial light field cameras usually have a 

small baseline. As a result, these models cannot achieve high-quality enhancement of 

the measurement data with various noises, complex illumination effects, and a large 
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baseline. The advancement of a super-resolution method for measurement data can 

enhance the measurement performance of autostereoscopic measuring systems. 

In this chapter, a self super-resolution autostereoscopic (SSA) 3D measuring 

system is presented. The objective of the study is to synthesize novel views between 

adjacent EIs so that more corresponding points originating from every object point are 

acquired. With more corresponding points, the matching errors can be reduced during 

the 3D reconstruction process and the digital refocusing process. As a result, the 

measuring results are improved due to the more accurate depth estimation. To this end, 

a self super-resolution algorithm for the EIs recorded by the optical measuring system 

has been developed using a deep CNN that can enhance the angular resolution of the 

EIs by nearly four-fold.  

This enhancement also resulted in the enhancement of the spatial resolution of the 

refocused images which were two-fold larger, which contributed to a more delicate 

structure reconstruction in the axial direction and more accurate measurement by the 

autostereoscopic measuring system. The measurement results were greatly improved in 

the bias, standard deviation, and maximum absolute error dimensions compared with 

the traditional autostereoscopic measuring (TAM) system proposed in Li et al. (2014).  

5.2 Autostereoscopic measurement for micro-

structured surfaces 

Autostereoscopy technology can obtain raw 3D information from one snapshot 

through embedding a micro-lens array into a traditional imaging system without any 

hardware aids. It is a rapid optical solution to acquire 3D information of the measured 
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parts. There are three steps during autostereoscopic 3D measurement, which are the 

recording process, 3D reconstruction, and disparity information extraction. During the 

recording process as shown in Figure 5.1, the MLA splits the rays emitted from the 

main objective lens so that multiple EIs at slightly different angles are recorded. The 

differences of these EIs indicate the disparities in the series of images. The disparities 

are directly related to the depth of the different target points on the measured surface, 

i.e., the desired measuring quantity.  

As the whole measurement system is fixed and ensured, the disparities of the EIs 

are solely correlated to the depth information. The EIs and their disparities are used for 

the next-step 3D reconstruction process. The 3D reconstruction process is symmetrical 

with the recording process since optical rays are reversible. By utilizing the disparity 

information stored in the EIs, the depth can be determined by considering the distance 

between the MLA and the imaging sensor, as well as the spacing between two precisely 

focused points across different EIs. By establishing the relationship between image 

pixels and depth, it becomes possible to obtain 3D reconstruction surfaces and 

refocused images using the abundant information present in the EIs. The digital 

refocusing process involves rearranging the pixels layer by layer, and the refocused 

pixels are produced at different reconstructed planes. As a result, a sequence of 2D 

images, each with different focus on separate depth levels, is captured, enabling the 

identification of the precise depth where the image is sharpest. 

In accordance with autostereoscopic theory, an essential factor influencing the 

measurement resolution and accuracy is the pitch size and the quantity of micro-lenses. 

When the dimensions of a MLA remain unchanged, increasing the pitch size leads to 

larger dimensions for each individual EI, but a smaller number of EIs. Figure 5.1 
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demonstrates that the resolution of each individual EI and the total number of EIs are 

determined jointly by the resolution of the image sensor and the array size of the MLA.  

 

Figure 5.1 Autostereoscopic recording process. 

As a result, an increase in spatial resolution leads to a decrease in angular 

resolution. Conversely, as the number of micro-lenses increases, the spatial resolution 

decreases. To break through the trade-off by avoiding changing the optical system, a 

SR algorithm that can enhance the angular resolution without reducing the size of EIs 

is essential. 
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5.3 Self super-resolution approach based on deep 

learning 

The proposed self super-resolution approach based on deep CNNs consists of a 

registration network, a residual encoder‒decoder, a refining network, and a 

discriminator, illustrated in Figure 5.2 and explained in sections 5.3.1, 5.3.2, 5.3.3, and 

5.3.4, respectively. To enhance the angular resolution of the measurement data, novel-

view EIs are interpolated between adjacent EIs. Taking a neighbouring image 

grid as an example, novel views of the EIs are interpolated in the middle of the 

horizontal images, the vertical images, and the center of the four images. Hence, the 

input EIs of the proposed self super-resolution approach can be grouped as horizontal 

pairs, vertical pairs, and central groups.  

In the network framework, the registration network applies affine transformation 

to the input image pairs. The residual encoder‒decoder network extracts features from 

the registered images and reconstructs the features of the desired novel-view images. 

Lastly, the residual refining network refines the features and recovers the novel-view 

images. The generative network integrates three network elements: the registration 

network, the encoder‒decoder, and the refining network. This generative process 

synthesizes the EIs that are desired to be interpolated in the low-angular-resolution 

measurement data. The synthetic images, which are the interpolation results, undergo 

additional constraints imposed by the discriminator network. This network 

distinguishes the synthetic images from real data. The discriminative results are 

provided as feedback to the generative network, enabling it to generate high-quality 

synthetic novel-view images that deceive the discriminator. Hence, the angular 

! !×
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resolution enhancement is achieved by high-quality interpolation. The specifics of the 

network components and training process are discussed in the following sections and 

two neighbouring horizontal EIs  and  are taken as a horizontal input pair for 

demonstration. The vertical input pairs and the central input groups are processed under 

the same rule. 

 

Figure 5.2 Framework of the proposed self super-resolution 

approach. The approach receives low-angular-resolution 

measurement data as input and enhances the angular resolution 

of the data by interpolating synthetic views. The final output 

high-resolution data are composed of the original measurement 

data and the synthetic data. 

5.3.1 Registration network 

In the autostereoscopic system, the three-dimensional information is reconstructed 

using the corresponding points in every EI. The axial dimension of the measured parts 

can be determined by calculating the disparity difference between two object points 

located in different depth planes.  is the disparity of a point which can be determined 

through .  is the distance from the MLA to the image sensor,  is the 
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baseline distance between two adjacent micro-lenses, and  is the shooting distance. 

The disparity difference between two object points located on the top surface and the 

bottom surface can be clearly expressed as 

                                    (5.1) 

where the disparity and shooting distance of the top surface point are  and , 

respectively.  and  are the disparity and shooting distance of the bottom surface 

point. Since the dimensions of the measured micro-structures are much smaller than the 

shooting distance (i.e., ),  is much smaller than 

. This reveals that the large baseline contributes less to the desired 

measuring values, and affine transformation to the adjacent EIs is able to reduce the 

redundant disparity information. In addition, the direct fusion of two adjacent EIs with 

the large baseline could result in severe image artefacts. To eliminate the impact of the 

large baseline, the proposed registration network is employed to align the neighbouring 

EIs. The registration process can be formulated in Eq. (5.2) where  is the affine 

parameters. It is obvious that the neighbouring images in each input pair has their own 

affine parameters  and , and the affine parameters are predicted by the registration 

network .  

         (5.2) 

The registration network aims to predict the affine parameters from the input image 
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pairs, with the process as illustrated in Figure 5.3. The desired input images to be 

registered are firstly processed by four convolutional blocks and mapped to a feature 

space. Each block is comprised of two convolutional layers for feature extraction. The 

mapping from  to the features  happens in each layer. To reduce the feature 

dimension, a max-pooling layer is employed after each convolutional block. This layer 

applies a filter that strides on the input and only permits the maximum value to pass 

through. At the end of the registration network, there are three fully connected layers 

that flatten the 2D features outputted by the convolutional blocks into 1D neurons. 

Finally, the affine parameters are predicted by the last fully connected layer. The input 

image pairs are then registered using the affine parameters so that they can be involved 

in the same coordinate system.  

It is noted that there are three types of input. To maintain consistency with different 

registration processes, a total of three registration networks are required for horizontal, 

vertical, and central registration. These registration networks are all in the same 

architecture but possess their own weights without sharing. 

 

Figure 5.3 Registration network (horizontal). Vertical and 

central registration networks share an identical architecture but 

possess different weights. 

! !
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5.3.2 Residual encoder‒decoder network 

The main component of the generative network is the residual encoder‒decoder 

network, which is responsible for feature extraction and feature reconstruction. The 

output features are directly used for the synthesis of the novel view EIs. The framework 

of the residual encoder‒decoder network, as depicted in Figure 5.4, enables feature 

extraction and view reconstruction. An encoder, comprising of three convolutional 

blocks, is employed to accomplish the feature extraction.  

 

Figure 5.4 Framework of the residual encoder‒decoder network. 

Vertical and central input pairs are processed under the same 

rule. All the input is processed by the encoder network 

separately. 

Likewise, a max-pooling layer follows the first two blocks to reduce the feature 

dimensions. Direct convolution on the concatenation of the input EIs from different 

perspectives delivers image artefacts to the subsequential feature extraction and feature 

reconstruction, with a demonstration shown in Figure 5.5. To this end, the registered 

input is processed separately by the encoder and the fusion happens between the local 

and global features. The fusion on the feature level will reduce the artefacts in the final 
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output.  

 

Figure 5.5 Depiction of the effect of separate processing of the 

encoder. The image artefacts are unavoidable after 

concatenation and are imported to the subsequential feature 

extraction, fusion, and novel view generation processes. 

Taking the horizontal image pairs for explanatory purposes, the two images are 

separately processed by the encoder. Hence, two dimension-reduced features 

corresponding to the two input images are acquired. The two features are concatenated 

and merged as one feature and input to the horizontal decoder for feature reconstruction. 

To compensate for the reduction in feature dimensions during encoding, the decoder 

employs a symmetric architecture with the encoder. It replaces the max-pooling layers 

with up-sampling layers, which can restore the dimension of the features. It is worth 

noting that the two image features produced by each convolutional block of the encoder 

are shared with the decoder. These features are then concatenated with the output of 

each block of the decoder, resulting in a new feature that encompasses both local and 

global information. The concatenated feature is then inputted to the next block of the 

decoder. This forms a residual architecture and can dramatically accelerate the learning 

efficiency and reconstruction performance of the encoder‒decoder network since multi-

level features are taken into consideration during the feature reconstruction. With 
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regard to the three input types, there are also three types of decoders to process 

horizontal, vertical, and central paired images separately with the same concern of the 

setup of the registration network. 

5.3.3 Refining network 

To recover the novel view of EIs from the features reconstructed by different 

decoders, a refining network is built to refine features and recover images as shown in 

Figure 5.6, which is also in a residual architecture. It contains three residual 

convolutional blocks with their details shown in the middle of Figure 5.6. By learning 

the residual value between its input and output, the residual blocks can prevent gradient 

vanishing and enhance learning efficiency. Regardless of the input types, there is only 

one refining network that accepts all the outputs from the three different decoders to 

perform feature refining and novel view generation. This is helpful to maintain the 

consistency of the novel views corresponding to different input pairs since all the 

interpolated novel images are finally generated by the sole network.  

 

Figure 5.6 Framework of the residual refining network. 

5.3.4 Generative adversarial network 

The three networks, i.e., the registration network, the encoder‒decoder network, 
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and the refining network form a generative network. The low-angular-resolution 

measurement data are inputted to the generative network and go through registration, 

encoding, decoding, and refining. Finally, high-angular-resolution measurement data 

are output. To further improve the quality of the synthetic interpolation data, a 

discriminator network is constructed to establish an adversarial relationship with the 

generative network. The GAN is an unsupervised learning framework, which can learn 

to generate data that follows a targeted distribution (I. J. Goodfellow et al., 2014).  

In this work, the discriminator network is a classifier whose framework is shown 

in Figure 5.7. It is able to differentiate the real data obtained by the measuring system 

and the synthetic data interpolated by the generative network. During training, the 

differentiation results are provided as feedback to the generative network, enabling it 

to update its weights and generate data of higher quality. Consequently, the generative 

network has the capability to generate high-quality synthetic novel views that exhibit a 

similar distribution to the real measurement data, thereby enhancing the angular 

resolution. Eventually, the discriminator is unable to discern the distinction between 

real data and synthetic data. This adversarial game between the generative network and 

the discriminator can prevent the synthetic data far away from the real measurement 

data. 
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Figure 5.7 Framework of the discriminator network. 

5.3.5 Network training 

According to the working principle of the proposed self super-resolution approach, 

the data collected from previous experiments is split into different training pairs. Taking 

a  neighbouring grid of the EIs captured in one snapshot in Figure 5.8 as an 

example, the input data for the learning models consists of images captured at the four 

right angles, while the remaining views are utilized as ground truth. The four input 

images can be grouped as horizontal, vertical, and central input pairs. Following the 

previous discussion, the middle image in the first row can be regarded as the ground 

truth of the novel view generated from the horizontal pair. Similarly, the middle image 

in the left column and the central image can be regarded as the ground truth for vertical 

and central input pairs, respectively.  

Hence, the training process aims to minimize the errors between the synthetic novel 

view images and the ground truth by iteratively updating the weights of the network. It 

is noted that the input data in the training process are not adjacent, and are different 

from those inputted in the super-resolution test process. The function of the registration 

network is to predict the distance between pixels from two EIs caused by the large 

! !×
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baseline . Albeit that only non-adjacent EIs are able to be used 

for the supervised learning of the proposed model due to the unavailability of the 

ground truth of the novel views, the baseline between the non-adjacent EIs is still 

determined by the specifications of the MLA and the shooting distance.  

The non-adjacent baseline is  where  is the centre 

distance of the two non-adjacent micro-lenses. It is possible for the registration network 

to predict the baseline with different values of   solely based on pixel information. For 

a generalization consideration, the input of the proposed algorithm is not only  

neighbouring grids, but also  non-adjacent grids down-sampled from a 

 neighbouring grid. By undergoing end-to-end learning with the entire 

algorithm, the registration network becomes capable of predicting affine parameters 

using pixel information from the input EIs. This prediction helps eliminate the impact 

of the large baseline. 

 

Figure 5.8 The training data and their corresponding ground truth. 

To determine the errors, a mean absolute error loss, a perceptual loss, and an 

adversarial loss are used and incorporated as one composed multiple loss function for 

the network training. The MAE loss is used to directly compare the pixel error, and 
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formulated as 

                                         (5.3) 

where  is the interpolation result ,  is the batch size in one iteration during the 

network training, and  is the ground truth corresponding to . Perceptual loss was 

proposed by Johnson et al. (2016), which can compare the style differences of two 

images through determining the distance between the perceptual features extracted 

from the images.  

Since the MAE loss only compares the difference between pixels, some image 

properties such as perceptual similarity and image styles, are overlooked. This 

neglection can contribute to a distortion and low-quality reconstruction of novel-view 

images. Hence, the perceptual loss serves to monitor the high-level differences, by 

comparing their features extracted by a fixed pretrained VGGNet. The VGGNet was 

proposed by the Visual Geometry Group of Oxford University (Simonyan & Zisserman, 

2014) and trained on an enormous image recognition dataset. The perceptual loss is 

formulated as 

                                     (5.4) 

where  denotes the feature extraction performed by the VGGNet whose parameters 

are frozen during the training process. In terms of the adversarial loss, the distinguishing 

results of the discriminator are used to constrain the output of the generative network, 

with the formulation as follows 
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                                           (5.5) 

where  is the distinguishing operation performed by the discriminator. The 

discriminator is trained simultaneously with the generative network through the 

following training loss 

                             (5.6) 

Hence, the multiple loss function of the generative network is 

      (5.7) 

where  and  are the penalty coefficients for the perceptual loss and the adversarial 

loss, respectively. The data necessitates no additional processing, enabling seamless 

adaptation and transfer of the network for evolving datasets or new tasks without 

complications. 

5.4 Depth reconstruction 

To reconstruct the target surface, a depth reconstruction algorithm based on 

disparity patterns is developed. The method consists of four steps, including pixel-point 

description, matching, depth optimization based on disparity patterns, and coordinate 

mapping. First, all the pixel points are described using the local region information 

including greyscale values and gradient values. On the basis of the description, the 

points in each EI are matched to the central EI in the multi-view EI array separately. 
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One group of matched points are corresponding points in a determined 3D position in 

the reconstruction coordinate.  

Due to the unavoidable measurement uncertainty and the matching errors, it is 

impossible for the group of matched points to focus accurately on one point in the 3D 

coordinate so that only the points in the centre EI are kept for the reconstruction. Finally, 

an optimization process is utilized to find the accurate depth of the matched points. 

From each resolvable depth, a group of disparity patterns can be determined based on 

the working principle of autostereoscopic technology. During the optimization process, 

the patterns should be the closest to the group of matched points. Finally, the spatial 

coordinates of the remaining points are mapped to the 3D coordinate and the point cloud 

can be obtained. In addition, since each EI acquired by the proposed system only 

contains part information of the target object, a sliding window technique is exploited 

to use a small image window sliding on the whole EI array with 1 stride. This can assure 

that in each sliding window the EIs required to be matched contain similar information 

so that the rate of correct matching can be improved. 

5.5 Experiments on micro-structured surfaces 

5.5.1 System setup 

The SSA system was established as shown in Figure 5.9, where the schematic 

diagram of the system is shown in (a), the system implementation is shown in (b), and 

the measured sample is shown in (c). To demonstrate the advancement and 

improvement over the pioneering research (Li et al., 2014), the same sample was used 

for the evaluation to control the variables. The sample is a surface with pyramid micro-

structures. Each pyramid has two edges named Edge A and Edge B in the lateral 
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direction and a height in the axial direction. The measured sample was mounted on a 

three-axis positioning stage for the lateral and longitudinal motion. An illumination 

device was used in the dark measurement environment. Multiple illumination 

conditions were performed to construct the dataset. The acquired measuring data were 

sent to a computing station for super-resolution, digital refocusing, and surface 

geometry reconstruction. Table 5.1 shows the specifications of the system. 

Table 5.1 Specifications of the SSA system. 

Item Specification 

CCD Sensor Pixel Size 5.86 µm 

 Sensor Size 2/3 inch 

MLA Pitch 500 µm 

 Focal Length 13.8 mm 

 Scale 10×10 

Objective Lens System NA 0.28 

 Overall Magnification 35X 

 Adjustable Zoom 1-12 

To train the proposed self super-resolution approach, a dataset was first built using 

the data collected from preliminary experiments. The dataset was composed of 80 

scenes with various samples including the aforementioned micro-structured surface and 

3D complex microstructures. The data were captured under different conditions, 

including optical system parameters, illumination conditions, exposure conditions, etc. 

to improve the generalization capability of the approach. The resolution of each scene 

was   and , in spatial and angular terms, respectively. As a result, there 

were 11,520 EIs in the dataset in total. Among the dataset, 72 scenes were used for the 

training of the proposed networks and eight scenes were used for testing. 
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It is noted that the proposed self super-resolution approach can only be trained 

using the measurement data obtained by the proposed system. This indicates that the 

trained networks can be easily finetuned on new scenes without modification of the 

networks and massive consumption of time. As pilot research, this work currently 

performs a series of measurements on one target surface to verify the proposed 

measurement method and system. Further research was conducted to validate the 

effectiveness of different workpieces. The approach was implemented using PyTorch. 

The multiple loss penalty coefficients  and  were set to 0.01 and 0.01, 

respectively.  

 

Figure 5.9 Setup of the SSA system. (a) Schematic diagram of 

the proposed system. (b) System implementation. (c) Measured 

samples. 

The Leaky ReLU and ReLU were taken as the activation functions of the generative 

network and the discriminator. The Adam optimizer was used as the training optimizer. 

The computation platform was equipped using a Nvidia GeForce RTX 2080 graphics 
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card and an Intel Core i7-8700 central processing unit. The training was conducted over 

approximately 200 epochs, with continuous observation of the loss curve trends. 

Additionally, checkpoints were saved at various training epochs to identify the model 

that achieved the highest reconstruction score. 

5.5.2 Experimental analysis 

All the experimental results were acquired in accordance with the procedure as 

shown in Figure 5.1. The acquired measuring data, i.e., the Eis, went through a super-

resolution process performed by the trained self super-resolution network, and then 

digital refocusing and reconstruction. The digital refocusing process was based on the 

method proposed in D. Li et al. (2015) and the reconstruction was conducted using the 

proposed depth reconstruction approach. As a result, the geometry and height 

information of the measured surfaces were obtained. The experimental results were 

compared with the measuring results acquired by the TAM system without super-

resolution. Three different comparisons regarding angular resolution, spatial resolution 

of the refocused images, and 3D reconstruction results are presented in this 

experimental study to provide powerful illustration of the novelties of the proposed 

method. 

The first comparison took place between the measuring data of the TAM system 

and the super-resolution measuring data of the proposed SSA system. The angular 

resolution of the EIs recorded in one snapshot by the TAM system were .  After 

super-resolution, the angular resolution of those images recorded by the SSA system 

was expanded to , nearly a four-fold improvement. The low-angular-resolution 

images recorded by the TAM system are shown in Figure 5.10 (a). Figure 5.10 (c) 
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presents the high-resolution EIs produced by the SSA system and a  local region 

was enlarged as shown in Figure 5.10 (b) for a vivid comparison, where the low-

angular-resolution EIs were bordered in colour and those without coloured borders were 

the novel views generated by the proposed self super-resolution approach. The 

comparison indicates that the proposed self super-resolution approach is able to 

interpolate high-quality novel-view EIs and the angular resolution of the 

autostereoscopic system is obviously enhanced.  

A comparative experiment was conducted at this stage to appraise the effectiveness 

of the proposed SR approach. A 4D bilinear method was incorporated as a standard 

interpolation approach, which was taken as a baseline method, while a SOTA deep 

learning approach was used for comparison, as proposed in Jin, Hou, Yuan, et al., 

(2020), which has achieved high-quality angular SR for synthetic LF images. 

In this experiment, the model of Jin, Hou, Yuan, et al. (2020) was retrained using 

the measurement data collected by the proposed autostereoscopic system under the 

same training conditions as the proposed approach. In addition, the pre-trained model 

of Jin, Hou, Yuan, et al. (2020) which was supervised by a public light field dataset was 

also finetuned using the measurement dataset for evaluation. The outcomes generated 

by the baseline method and the SOTA approach (Jin, Hou, Yuan, et al., 2020) are 

exhibited in Figure 5.11, where the baseline method produced some image artefacts in 

the novel views, and both the retrained and pre-trained model of Jin, Hou, Yuan, et al. 

(2020) failed to generate high-quality novel views since inevitable noises, imperfect 

illumination conditions, and the missing part in the large-baseline EIs limited the depth 

estimation premise of Jin, Hou, Yuan, et al. (2020). 
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Figure 5.10 Comparison of the EIs between the proposed SSA 

system and the TAM system. (a) Low-resolution measurement 

EIs (TAM system). (b) Partial enlargement of the high-

resolution EIs. (c) High-resolution EIs generated by the 

proposed self super-resolution approach (SSA system). 

To further elaborate the advantage of the proposed high-resolution approach, the 

angular super-resolution results for other complex surfaces are shown in Figure 5.12, 

Figure 5.13, and Figure 5.14 which are the results of the pyramid sample under different 

illumination conditions, a wire bonding sample, and a pyramidal frustum structure, 

respectively. 
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Figure 5.11 Comparison of the angular SR methods. The novel 

views are reconstructed using (a) the 4D Bilinear method as a 

baseline, (b) a SOTA deep learning model (Jin, Hou, Yuan, et 

al., 2020) trained on the measurement dataset, (c) the model (Jin, 

Hou, Yuan, et al., 2020) pre-trained on a public light field 

dataset and finetuned on the measurement dataset, and (d) the 

presented model, trained exclusively with the measurement set. 

The second comparison was performed between the refocused images of the TAM 

system and the SSA system. With the proposed system, enhancing the angular 

resolution by roughly four times also led to a twofold improvement in the spatial 

resolution of the refocused images. Two refocused images obtained by the TAM system 

and the SSA system are shown in Figure 5.15, with the same local regions magnified 

to the same scale.  

Moreover, it is noted that the smoothness of the refocused images is improved 

significantly since these novel-view EIs provide extra pixel information to fill the space 

between the two points in the digital refocusing process. According to the 

autostereoscopic theory and the refocusing principle, the corresponding points from the 

EIs are focused on different focal planes to form multiple refocused images. It is notable 

that the amount of the corresponding points determines the quantity of focal planes in 
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the stack. Increasing the layers of the focal stack improves the axial measurement 

precision. Hence, the novel views produced by the proposed SSA system result in the 

increase of the corresponding points and consequently the improvement of both lateral 

and axial measurement resolution. 

 

Figure 5.12 Angular super-resolution result of sample 1 

(pyramid structures) under different illumination conditions. 

The third comparison is about the 3D reconstruction results based on the 

measurement data. The reconstruction was performed using the low-resolution EIs 

recorded by the TAM system and our high-resolution EIs. The reconstruction results of 

the target surface are compared in Figure 5.16, where the point cloud generated by our 

high-resolution EIs is distinctly denser with more details kept. 
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Figure 5.13 Angular super-resolution result of sample 2 (wire 

bonding). 

 

Figure 5.14 Angular super-resolution result of sample 3 

(pyramidal frustum structures). 
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Figure 5.15 Comparison of the refocused images between the 

proposed SSA system and the TAM system. (a) Low-resolution 

refocused images with different focal length (TAM system). (b) 

Partial enlargement for comparison. (c) High-resolution 

refocused images (SSA system). 

 

Figure 5.16 Reconstruction evaluation between the proposed 

SSA system and the TAM system 

The measuring results obtained by the SSA system are shown in Table 5.2, which 

were determined using the disparity information extracted from the refocused image. 

Height is the axial dimension of the structure, while Edge A and Edge B are the two 

lateral dimensions. A total of 15 measurements were conducted and two targets were 

measured to verify the feasibility and measurement performance of the SSA system. 

The measurement result acquired by a commercial measurement product – Zygo 

Nexview Optical profiler ‒ was used as the true value of the dimensions of the measured 
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pyramid structure. Statistical results including bias, standard deviation (SD), and 

maximum absolute error (MaxAE) are provided in Table 5.2, which indicates that the 

measurement data acquired by the SSA system is valid. A comparison between the SSA 

system and the TAM system is provided in both Table 5.2 and Figure 5.17. The 

numerical comparison shows the improvement of the measurement performance 

realized by the proposed system and the superiority of the system. 

5.6 Summary 

Autostereoscopic technology provides a rapid and accurate 3D measuring solution 

that can acquire the surface profile with only one snapshot. However, the dominant 

limitation of the autostereoscopic 3D measuring system is the trade-off regarding data 

resolution. In this chapter, a self super-resolution approach based on deep convolutional 

neural networks is embedded into the autostereoscopic measuring system, which helps 

the system to achieve self super-resolution during the measurement process and 

significantly enhances the angular resolution of the measuring data.  

The self super-resolution approach was composed of a registration network, a 

residual encode‒decoder network, and a refining network. All of these key components 

form a generative network that can interpolate novel views between the neighbouring 

EIs acquired by the proposed SSA measurement system. A discriminator network was 

implemented to distinguish the generative synthetic results from real measuring data. 

The distinguishing results were fed back to the generative network as an adversarial 

loss. Furthermore, a multi-loss function is used for training the proposed self super-

resolution approach. 
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Table 5.2 Statistical comparison between the SSA system and 

the TAM system. 

Measuring system SSA TAM SSA TAM SSA TAM 

Pyramid 1 Height Edge A Edge B 

True value (µm) 55.2 67.4 67.1 

Bias (µm) 0.10 1.32 0.11 0.89 0.24 0.66 

Standard deviation (µm) 0.27 1.14 0.37 0.85 0.40 0.92 

Max. absolute error (µm) 0.45 4.05 0.78 2.12 0.84 1.96 

Pyramid 2 Height Edge A Edge B 

True value (µm) 54.7 70.4 67.8 

Bias (µm) 0.12 1.40 0.15 0.90 0.44 0.77 

Standard deviation (µm) 0.28 1.67 0.32 0.96 0.33 0.73 

Max. absolute error (µm) 0.58 5.48 0.83 2.17 0.90 2.10 

 

 

Figure 5.17 Accuracy evaluation between the proposed SSA 

system and the TAM system. 

To showcase the effectiveness of the proposed self super-resolution approach, a 

series of experiments were conducted. Comparison was also conducted between the 

proposed SSA measurement system and the traditional autostereoscopic measurement 

system without super-resolution from many aspects including the resolution of 

measuring data, the quality of refocused images, and the statistics of their measurement 

results, which manifest in the better measurement performance of the proposed SSA 
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measurement system. This research reveals the potential and value of the SSA system 

to be used for rapid and accurate measurement on micro-structured surfaces. 
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Chapter 6 Multi-frame resolution-enhanced 

autostereoscopic measurement system 

6.1 Introduction 

The utilization of three-dimensional surfaces in product development has 

increasingly gained in popularity, enabling the realization of optical and mechanical 

functions that are specifically designed. Applications can be found in various industries 

such as biomedical (Tetsuka & Shin, 2020), optics (Hinman et al., 2017), aerospace 

(Civcisa & Leemet, 2015), energy, etc. Measuring the increasing geometrical 

complexity of 3D surfaces, especially for on-machine measurement, poses significant 

challenges. Although various high-precision on-machine measurement systems have 

been proposed, their performance is influenced by the machine kinematic errors, and 

they are susceptible to machine vibration (Gao et al., 2019). Although contact 

measurement methods generally achieve higher precision, noncontact methods are 

more flexible to implement and require less time consumption and system complexity, 

especially for small measured parts with microstructures. 

Autostereoscopic 3D surface metrology is a noncontact surface detection 

technology that utilizes a single-lens imaging system integrated with a MLA. This setup 

enables the capture of raw 3D information of the measured surface in a single snapshot. 

This results in faster data acquisition for the measurement.  A system-associated direct 

extraction of disparity information (DEDI) method (Li et al., 2015) provides 3D surface 

reconstruction. This solution offers a turnkey method for measuring 3D surfaces 

directly on the machine. Nevertheless, the resolution of this measurement system has 

been constrained due to the division of the image sensor's pixel count into multiple 
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smaller areas by the numerous small apertures of the MLA. Moreover, these segmented 

small areas of pixels need to go through a matching process and screening process 

before the final 3D point cloud of the target surface can be generated. Stated differently, 

the overall resolution of the measurement system is directly influenced by the resolution 

of each segmented small area. Undoubtedly, the segmentation caused by the MLA has 

a negative impact on the data resolution. 

To boost the resolution of the autostereoscopic 3D surface measurement system, 

this study introduces a multi-frame resolution-enhanced autostereoscopic system. This 

system leverages the inherent vibrations generated by machine tools during the on-

machine measurement process. By capturing multiple frames of the target surface with 

offsets caused by the vibrations over a short time span, it enables more precise 

measurements of 3D surfaces. The multi-frame resolution enhancement is realized by 

the subpixel information contained in different frames with slight displacement, a deep 

learning-based resolution-enhanced network and a training process. The processed 

resolution-enhanced image can reconstruct the 3D surface with significant 

improvements in both lateral and axial resolution. Experiments conducted on a sample 

with a micro-structured surface were employed to assess the efficacy of the presented 

approach and setup. The approach has been observed to effectively enhance spatial 

resolution and enhance measurement accuracy. 

6.2 Multi-frame resolution-enhanced autostereoscopic 

measurement 

Figure 6.1 is a schematic diagram of the system of multi-frame resolution-enhanced 

autostereoscopy for on-machine 3D surface measurement, including the recording and 
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reconstruction processes. Different spatial locations of the elemental lenses in a MLA 

cause small differences of viewing angle in the elemental images received on the image 

sensor (known as disparities). The disparity information can be utilized to infer the 3D 

information of the target surface, which is an essential step in the reconstruction process. 

The specific point's disparity can be quantitatively expressed by considering the 

parameters of the system setup, such as the size of each pixel on the image sensor, the 

pitch of the MLA, the gap (distance between the MLA and the image sensor), and the 

dimensional variation along the depth direction. 

The quantitative disparity information, which encompasses both the lateral and 

depth directions, is transferred from the recording process to the reconstruction process. 

The corresponding points, represented by image points from different EIs, originate 

from a single object point in the object space (depicted as red points in Figure 6.1). 

These points adhere to a quantitative relationship between disparity information and 

system parameters. Corresponding points need to be accurately chosen based on the 

match of pixel information and its neighbourhood in EIs and form the 3D digital 

reconstruction at corresponding spatial locations. The reconstructed and object spaces 

are symmetrical both in the lateral and axial directions according to the reversibility of 

optical rays. 

During the on-machine measurement process, vibration from the machine tool 

between the target surfaces and the measurement system is inevitable. This vibration 

results in a slight movement at the micrometre scale towards the image sensors. As a 

result, each of the measurement frames captures a combination of various optical 

signals, as depicted in Figure 6.1.  In this sense, the pixel representation of the same 

scene and the same object is different. High-resolution (HR) images can be 
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reconstructed by analyzing and processing the different pixel representations of 

multiple frames. 

 

Figure 6.1 Working principle of multi-frame resolution-

enhanced autostereoscopic metrology for on-machine 3D 

surface measurement. 

As illustrated in Figure 6.2, the two different frames are recorded for the same 

object but have a slight displacement. The pixel distribution of the two frames, which 

refers to the value of the pixel points of the target surfaces, is different when the object 
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appears in a different position of the image sensor. After registration and fusion, the 

redundant pixel information is combined and forms a new pixel distribution in a 

subpixel space. The new pixel distribution is processed in the reconstruction process 

and a high-resolution frame with sharp edge information and details is generated from 

multiple frames. The fusion of multiple frames can be viewed as an optimization 

process aimed at finding an ideal distribution that closely approximates high-resolution 

data. Each frame is down-sampled from a high-resolution distribution, with sub-pixel 

differences generated by displacements resulting from vibrations. Since the super-

resolution problem is ill-posed—meaning that a single low-resolution data does not 

correspond to a unique high-resolution data—more low-resolution data down-sampled 

from the high-resolution distribution can provide greater support for identifying the 

unique distribution of the high-resolution data. The proposed fusion method seeks to 

determine the ideal data distribution from the enriched multi-frame information. 

 

Figure 6.2 Illustration of the multi-frame resolution-enhancement process. 

The two key issues to address in the multi-frame resolution-enhancement problem 

are registration and reconstruction. Conventional methods usually use a priori 

knowledge to extract features from the multiple frames and realize registration based 

on these features. Fusion is achieved by a series of designed kernels based on 

experiments or expert experience. However, conventional methods often struggle to 

extract effective features from images and reconstruct high-resolution images with 
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robustness due to the presence of various noises such as Gaussian noises, salt and 

pepper noises, smudge noises, etc. These noises are typically caused by factors like 

illumination, exposure, and lens conditions in the measurement images. It is inspiring 

to utilize deep learning to generate resolution-enhanced EIs through performing 

accurate registration and high-resolution reconstruction. A deep-learning network is 

employed to construct a multi-frame resolution-enhanced model. This model is 

designed to enhance the resolution of LR measurement image stacks, while also 

improving denoising and preserving clear details in the resulting HR images.  

6.3 Multi-frame resolution-enhanced deep learning 

model 

To generate resolution-enhanced EIs based on multiple frames of low-resolution 

EIs, a deep learning network is developed. A supervised training process is used to 

generate resolution-enhanced images based on image data collected under various 

conditions, light intensity, recording device, etc. 

6.3.1 Model framework 

As shown in Figure 6.3, the proposed multi-frame resolution-enhanced deep 

learning model consists of four components: a single-frame resolution-enhanced 

network, a registration network, an auxiliary-frame resolution-enhanced network, and 

a series of convolutional layers for post-processing. A schematic diagram of the model 

is depicted in Figure 6.3. The captured multiple frames are divided into a base frame 

and auxiliary frames. The high-resolution image output retains the same geometric 

position as the base frame, while the auxiliary frames are utilized to provide redundant 
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subpixel information. The base frame is first up-sampled using Bilinear so that the 

spatial dimension is increased to a desired value. The up-sampled base frame serves as 

the input to the single-frame resolution-enhanced network. Meanwhile, the input frame 

undergoes convolutional layers and activation functions to convert it into a stack of 

high-dimensional single-frame features. These features are then utilized for subsequent 

processing. 

The registration network aligns all frames, including the base frame and auxiliary 

frames, by taking them as input. Although the displacement detection and registration 

are also able to be achieved by traditional methods such as SIFT (Lindeberg, 2012), the 

traditional methods are more sensitive to the noises which are unavoidable during on-

machine measurement due to illumination, vibration, machining environment, etc. In 

addition, the registration network can realize an end-to-end training and inference 

fashion so that no extra pre-processing of the raw measurement data is required. 

Since these frames only undergo slight displacement, it is assumed that only 

translation occurs. According to the affine transformation matrix, the registration 

process is formulated as 

                                        (6.1) 

where  is one of the auxiliary frames and  is the corresponding 

registered frame which has been aligned with the base frame.  is the translation 

parameters. The translation parameters  are the output of the registration 

network. 
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To efficiently compress the dimensions of the input while retaining the essential 

information, the registration network employs max-pooling filters. Fully connected 

layers are followed to realize the prediction of the translation parameters. The Tanh 

(hyperbolic tangent) activate function is used to compress the output translation 

parameters in [-1, 1]. The output auxiliary frames are aligned with the base frame 

through registration. With a similar process to the aforementioned single-frame super-

resolution route, the aligned auxiliary frames are up-sampled and input into the 

auxiliary-frame resolution-enhanced network.  

As a result, these auxiliary frames are converted into a stack of multi-frame features. 

These two stacks of features, i.e., the single-frame features and the multi-frame features 

are merged and then input into the post-processing convolutional layers. After the post-

processing layers, a high-resolution image is reconstructed. All these mentioned sub-

networks use a residual connection architecture (ResB in  Figure 6.3) to avoid gradient 

vanishing. Apart from the registration network using ReLU and Tanh, all the other sub-

networks use Leaky ReLU as their activation functions since research (Lai et al., 2017; 

Xu et al., 2021) has shown the superiority of Leaky ReLU for super-resolution 

applications. 
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Figure 6.3 Multi-frame resolution-enhanced deep learning model. 

6.3.2 Model training 

To train the proposed model, a supervised training process is used based on image 

data collected under various conditions, light intensity, recording device, etc. During 

training, the input data are initially down-sampled, while the raw data are utilized as 

the ground truth. To realize a clearer reconstruction, Gaussian noises are added to the 



152 
 

input data to simulate the noises in realistic environments. Hence, the objective of the 

proposed multi-frame resolution-enhanced network is not only to recover the high-

resolution information but also to achieve denoising.  

The loss function is comprised of three parts which are reconstruction loss, gradient 

loss, and perceptual loss. The reconstruction loss is evaluated by computing the mean 

absolute errors between the HR synthetic images and the actual images, which serves 

as the metric for error assessment. To preserve the edge information of the 

reconstructed high-resolution images, the gradients of the ground truth and the 

reconstructed images are compared in both the horizontal and vertical directions. The 

resulting errors are then utilized as the gradient loss. The perceptual loss (Johnson et 

al., 2016) measures the feature distance. The features are acquired by a pre-trained 

network (Simonyan & Zisserman, 2014), which is a widely used trained network. 

Hence, the total loss is 

                            (6.2)           

where  is the high-resolution images reconstructed by the proposed network,  is 

the ground truth, and  denotes the VGG network. Furthermore, to ensure 

comprehensive training of the proposed network, the training data were augmented 

through techniques such as rotation, flipping, and random cropping. 

6.3.3 Implementation details 

In this work, the measurement images with  pixels are super-resolved and 
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up-scaled four-fold. The number of total input frames is 4. The single-image resolution-

enhanced network and the auxiliary-frame resolution-enhanced network both contained 

two residual blocks and the post-processing layers contained two residual blocks.  

The training data are collected by a 2D imaging system and a Lytro Illum 

commercial light field camera. Since a single EI captured by the proposed measurement 

system has limited pixels, the data obtained by the Lytro Illum camera and the 2D 

system with higher resolution can provide much richer pixels to achieve more effective 

training of the resolution-enhanced model that learns the mapping from the LR to HR 

images. Multiple scenes that include various samples such as sphere surfaces, 

machining parts, bonding wires, and other objects containing complex surfaces are 

captured under different illumination conditions for the construction of the training 

dataset. Each scene contains four frames with slight displacement. One of the four 

frames is used as the base frame and the other frames are used as the auxiliary frames.  

For more efficient learning using the limited measurement data, the up-scale factor 

is set to 2 during training but changed to 4 after the model is well-trained so that the 

resolution of the autostereoscopic measurement data is improved by four-fold. Data 

augmentation is conducted by rotating the training data by 45, 90, 135, 180, 225, 270, 

and 315 degrees, flipping them from left to right or from up to down, and cropping the 

data into random-size patches. The input patch size is configured as 128. The model is 

realized using PyTorch and trained on NVIDIA RTX 2080 GPUs. The initial learning 

rate is . The learning rate is decayed at intervals of 10 training epochs. In the 

experiment, learning is stopped when the L1 loss variation remains below 10-3 for the 

last 10 epochs. Furthermore, checkpoints are saved at different stages of training to 

determine the best-performing model. 

!"#−
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6.4 Surface Reconstruction 

The depth estimation process relies on the direct extraction of the disparity 

information method (Li et al., 2015), disparity patterns, and shape from focus via digital 

refocusing (Li et al., 2014), as shown in Figure 6.4. Digital refocusing is first performed 

using the recorded autostereoscopic data so that a stack of refocused images is 

acquirable. The corresponding points should focus at a specific depth plane that is 

equivalent to finding focus regions in the refocused image stack. A focus measure 

operator is used to detect focus points in every refocused image so as to obtain the focus 

volume. By applying smoothing and denoising techniques to the focus volume, an 

initial depth map is estimated using the winner-takes-all strategy.  Utilizing the 

preliminary estimate, achieving a fully-focused image becomes feasible. To further 

refine the estimated depth, guided filtering is performed on the preliminary estimation 

based on the all-in-focus image. Outlier points caused by incorrect estimation such as 

small locally convex or concave regions in the depth map are further disposed of under 

pre-defined thresholds based on the assumption of continuity surfaces. As a result, 

desired depth maps, point clouds, and the corresponding all-in-focus images can be 

acquired from the low-resolution (LR) or high-resolution (HR) autostereoscopic 

measurement data. 
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Figure 6.4 Framework of the surface reconstruction process from the 

autostereoscopic measurement data. 

6.5 Experiments on micro-structured surfaces 

6.5.1 System setup for the on-machine system 

A prototype, depicted in Figure 6.5, of the multi-frame resolution-enhanced 

autostereoscopic 3D surface measurement system was built to perform on-machine 3D 

surface measurement. The whole system is mounted on the motion stage of a Moore 

Nanotech 350FG ultra-precision machine. Based on the offline calibration of the system, 

considering the overall magnification of the objective lens, zoom lens, and the size of 

the image sensor used, the measurement system has an overall field of view (FOV) of 

625 μm diagonally. 

To assess the accuracy and resolution of the autostereoscopic system, a series of 

measurement experiments are performed on a 3D micro-structured sample. The 

machine's air bearing work spindle is used to mount the sample. Multiple frames of the 

EIs of the sample with offsets of pixels are captured during the on-machine 

measurement process. The offsets among the multiple collected frames are analyzed 

based on pixel values and greyscale projection. The results show that the subpixel level 

offsets between the different frames happened during the on-machine measurement 
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which qualifies for the proposed multi-frame resolution-enhanced method. 

 

Figure 6.5 On-machine measurement through a multi-frame 

resolution-enhanced autostereoscopic 3D surface measurement 

system. 

To examine the frame jitter resulting from machine tool vibrations, the SIFT 

descriptor is employed to determine the pixel-level shifting among multiple consecutive 

frames captured during the measurement. The first frame is used as the reference, and 

the other frames are matched with the reference frame to detect the small displacement. 

The SIFT descriptor and detector are employed to detect and compute the key points of 

both the reference frame and the other frames. The matching is achieved using the 

FLANN (Fast Library for Approximate Nearest Neighbours) method.  

Since the SIFT detector is able to achieve detection at subpixel scale, the subpixel-

level distances between the matched points can be determined so that the frame jitter 

will be identified. To mitigate the impact of inaccurate matching, a total of 500 groups 

of matched points from the reference frame and the detected frame are utilized for the 
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analysis. To eliminate the effects resulting from noises, the same displacement 

detection is performed on noised data which are generated by adding extra Gaussian 

noises to the reference frame. To guarantee the reliability of the analysis, the average 

greyscale difference per pixel between the noised data and the reference data is 

measured at the same scale as the greyscale difference among the multi-frame data. The 

results show a difference of 0.950 per pixel between the noised data and the reference, 

and 0.931 per pixel among the multiple frames.  

The results of the multi-frame data and the noised data are shown in Figure 6.6, 

where a total of five frames excluding the reference frame are involved. The pixel 

displacement of the noised data is represented by the red lines, while the pixel 

displacement of the multi-frames is depicted by the blue lines. The results demonstrate 

that the subpixel displacement happens during the on-machine measurement. Since the 

system utilizes a CCD sensor with a resolution of 2456x2058 and a pixel size of 3.45 

µm, the vibration amplitude is around 1.725 µm based on the image point matching 

shown in Figure 6.6. Hence, the on-machine measurement data align with the 

aforementioned assumption of multi-frame super-resolution and enables resolution 

enhancement at a subpixel level. 
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Figure 6.6 Jitter analysis of the multiple measurement frames 

captured during the on-machine process (blue lines) and the 

noised data generated by imposing Gaussian noises (red lines). 

6.5.2 Experimental analysis 

Figure 6.7 shows a comparison between high-resolution EIs acquired by the 

bilinear method and the proposed multi-frame resolution-enhanced deep-learning 

method. Upon comparing the details of the sectional zoom-out, as depicted in Figure 

6.7, it is worth noting that the proposed method exhibits improved visual sharpness for 

high-frequency signals. Slightly different from computer image super-resolution tasks, 

the enhancement for measurement is invalid if more image artefact points are created 

for a huge contribution to the visualization.  

The proposed method clearly enhances high-frequency signals, which typically 
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correspond to edges or key points in the measured sample. These signals are more 

important to depth estimation during the shape-from-focus process. The enhancement 

of these high-frequency signals contributes to the accuracy of focus measurement on 

the refocused image stack so that the corresponding points can be detected at the correct 

depth plane. 

 

Figure 6.7 Comparison of experimental results obtained by the 

bilinear method (a) and the multi-frame resolution-enhanced 

deep-learning method (b) 

For a convincing demonstration of the proposed resolution-enhancement model, 

multiple experiments on various samples both at micro scale and macro scale are 

performed. The scenes of several surfaces at various scales are captured by different 

systems and devices, with the resolution-enhancement results shown in Figure 6.8. The 

superiority of the proposed multi-frame resolution-enhancement model in recovering 

finer details from low-resolution inputs is evident when compared to traditional 

methods. In addition, the improvement is not limited to the proposed system; it is 

effective in various systems with a variety of fields of view. In the same way, the high-

frequency signals in these scenes are further enhanced by the proposed method, and 

these sharp key points definitely benefit the corresponding point matching and the depth 
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estimation. 

 

Figure 6.8 Multi-frame resolution-enhancement results of 

various surfaces. (a) Pyramidal frustums. (b) Sphere surfaces. 

(d) Wire bondings. 

Based on the autostereoscopy theory, digital refocusing is able to reconstruct a 

series of image slices with various focus depths so that the height of the measured 

sample is able to be detected. In terms of the detection of the focus region so as to 

determine the desired depth information, a Sobel filter is used as the focus measure 

operator. A curve of the focus levels is fitted, and the peak value of the curve can be 

estimated. The peak value is the disparity, i.e., the depth of a target object point, and 

therefore the surface reconstruction can be achieved. Figure 6.9 presents a comparison 

between the conventional single-frame method and the proposed multi-frame 

resolution-enhanced deep-learning method. The comparison includes the all-in-focus 

image generated during shape from focus, the depth estimation results, and the point 

clouds. These results vividly demonstrate the resolution enhancement achieved by the 

proposed method. A measurement result from a commercial measurement product – 
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Zygo Nexview Optical profiler ‒ is presented as the reference. The resolution of each 

EI both in lateral and axial directions has been enhanced four-fold, from 151×151 pixels 

to 604×604 pixels.  

Regarding the all-in-focus results, it can be found that the focus measurement 

achieves more accurate detection for the high-resolution data acquired by the multi-

frame system whereas the low-resolution data result in inaccurate focus detection at the 

edges, as highlighted in Figure 6.9 (a). The depth estimation derived from low-

resolution data exhibits more noise and incorrect points, as evidenced in Figure 6.9 (b) 

and (c). Furthermore, the intensity of point clouds generated by the multi-frame system 

is significantly enhanced. 

Figure 6.10 shows the error maps analyzed by the iterative closest point (ICP) 

method which compares measured data acquired via repeated measurements. The 

repeatability of the proposed displays better performance regarding the standard 

deviation of 10 repeated measurements as shown in Figure 6.10. 

 

Figure 6.9 Comparison of experimental results from the single-

frame (SF) system and multi-frame (MF) system. (a) All-in-

focus image, (b) depth estimation, (c) point cloud, and (d) 

reference results.  
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Figure 6.10 Standard deviation of repeated measurements using 

(a) the traditional single-frame method and (b) proposed multi-

frame resolution-enhanced method. 

However, it is still found that the deviation at the edges is much larger in both the 

single-frame and multi-frame systems. This could have resulted from the capability of 

the focus measurement operator which is sensitive to high-frequency signals which are 

not only edges and key points, but also could be noises. Hence, more investigations and 

research for robust and adaptive focus measurement operators can further benefit the 

improvement of depth estimation accuracy for the autostereoscopic measuring system. 

6.6 Summary 

This chapter presents the development of a multi-frame resolution-enhanced 

autostereoscopic system for on-machine 3D surface measurement. The system takes 

advantage of the machine vibration together with a multi-frame resolution-enhanced 

deep learning model to acquire multiple frames of the target surface profile with offsets 

to enhance the resolution and accuracy of on-machine 3D surface measurement. The 

performance evaluation results demonstrate that the proposed system outperforms the 

conventional single-frame system in terms of measurement accuracy in repeated 

measurements. The proposed method also provides around 16 times the total amount 

of point cloud data with the additional improvement of measurement accuracy and 
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robustness. 
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Chapter 7 Overall conclusion and future work 

7.1 Overall conclusions 

The autostereoscopic 3D measuring system achieves fast data collection within 

one snapshot, and the disparity information is extracted from the captured elemental 

images from multiple perspectives. Based on the disparity information and the recorded 

pixels, the axial and the lateral dimensions are inspected to realize surface 

reconstruction. The autostereoscopic measuring system typically consists of several 

components including an objective lens, a high-magnification zoom lens system, a 

MLA, and an image sensor. To enable observations from multiple perspectives, the 

MLA is positioned in front of the image sensor. These elemental images captured by 

the image sensor record a plenoptic map which contains redundant disparity 

information. Digital refocusing, epipolar-plane image analysis, and extraction of 

disparity information based on disparity patterns can be performed to implicitly or 

directly make use of the stereo clues for 3D reconstruction. 

However, a main obstacle blocking the development of the autostereoscopy 

technology is the resolution of the recorded data. Since the micro-lenses split the image 

sensor into multiple regions to recode the multi-perspective views, the resolution of 

each view is limited by the finite pixels. Obviously, the increase of the resolution of 

each view results in a decrease in the number of perspectives. Enhancing the lateral and 

axial resolution simultaneously at the hardware level is a challenging trade-off for 

autostereoscopic systems. 

To achieve this objective, the thesis contributes to an angular SR algorithm and a 

multi-frame spatial SR algorithm. These algorithms aim to improve the data resolution 
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of the autostereoscopic measuring system and are seamlessly integrated into the 

measuring system to augment its measuring capability. The notable contributions of 

this study are listed below: 

(i) Firstly, the development of a novel algorithm based on deep learning becomes 

crucial for enhancing the angular resolution of LF data, since current learning 

models generally cannot produce high-quality interpolation results using real-

world data with severe noise and large baselines that always happen in the 

measurement data. As a result, a learning model for angular SR is presented 

to perform a motion estimation so that the regression problem of coarse 

disparity estimation (which is used for the reconstruction of novel views) is 

converted into a classification problem of motion estimation.  

 

A generic semi-supervised learning paradigm is presented for the learning 

models for angular super-resolution, which performs 2-step inference before 

every backpropagation and does not require splitting the training data into 

input and ground truth. The output is supervised directly by the input. To 

evaluate the effectiveness of the presented model, a series of extensive 

experiments have been performed using synthetic and realistic public datasets. 

These experiments aim to compare and assess the effectiveness of the 

proposed model in relation to other SOTA methods. In the scenes with large 

baselines and multi-depth objects, both PNSR and SSIM are improved by the 

proposed model compared with other methods. In contrast to other SOTA 

methods, the proposed model demonstrates the ability to generate images with 

fewer artefacts and reduced image ghosting. Moreover, it excels in achieving 

high-quality reconstruction using data with noise, large baselines, and 
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complex textures, where other methods often fall short. It is also inspiringly 

noted that the proposed model only takes around 30% of data for training to 

achieve better results. 

 

(ii) To enhance the angular resolution and improve the measurement precision 

and accuracy of the autostereoscopic measuring system, a deep learning 

model for angular SR is integrated into the system. This integration enables 

the system to achieve self SR solely based on the measurement data collected 

by itself. Since a quite large baseline exists in the measurement data collected 

by the system, a registration network is built to estimate the displacement 

between the elemental images before the novel view reconstruction. Once the 

registration process is complete, an encoder‒decoder network is utilized to 

extract features from the input data individually. The extracted features are 

subsequently employed to reconstruct the features of the novel views.  

 

To further improve the quality, a refining network is employed which maps 

the features outputted by the encoder‒decoder network onto the novel view 

plane. To further enhance the quality of the generated novel views, a 

discriminator network is established to distinguish the generated images. The 

differentiation results are incorporated into the generation process to enhance 

the quality of the output images. The super-resolution capability of the 

proposed deep learning model is evaluated using multiple samples. The 

experiments indicate that the outputs by the model exhibit comparable quality 

to realistic measurement data. To showcase the advancements achieved by the 

proposed self SR autostereoscopic measuring system, various evaluations 
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such as digital refocusing, surface reconstruction, and measurement results 

are performed using both the enhanced data and the raw LR data. 

 

After applying the resolution enhancement method, the angular resolution is 

increased from 16 × 9 to 31 × 17. The discrepancy between the average 

measured values and the true values is reduced by approximately 1 

micrometre, from over 1 µm to around 0.1 µm. Furthermore, the deviation of 

repeated measurements is also reduced by around 1 micrometre. As a result, 

the super-resolved high-resolution data lead to improved measurement 

accuracy. 

 

(iii) In terms of the enhancement of spatial resolution, a multi-frame super-

resolution algorithm is introduced. This algorithm utilizes the inherent 

vibrations of machine tools to enhance the accuracy of on-machine 

measurement. Since the vibration of machine tools is inevitable, the frames 

captured over various timespans should have a subpixel level of displacement 

between each other. Based on the subpixel level of displacement, the 

reconstruction of high-resolution information can exploit the redundant 

subpixel information in the multiple frames.  

 

As a result, a multi-frame super-resolution model based on deep learning is 

proposed to enhance the spatial resolution of the elemental images recorded 

by the measuring system, thereby yielding significant improvements. Jitter 

analysis between different frames is performed to demonstrate the existence 

of subpixel displacement. In the proposed model, the initial step involves 
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reconstructing high-resolution features using a base frame. These features are 

then combined with the features extracted from other auxiliary frames to 

generate the final HR outcomes. The effectiveness is assessed by utilizing 

multiple multi-frame data captured from macro surfaces, microstructures, and 

complex scenes. 

 

Experiments show that the learning model is capable of achieving spatial 

super-resolution based on multiple frames captured with minor vibration. The 

autostereoscopic measuring system integrated with the multi-frame super-

resolution model is tested for on-machine measurement on a Moore Nanotech 

350FG ultra-precision machine. Comparisons including the reconstruction 

point clouds and the measurement results are conducted and indicate that the 

measurement accuracy can be enhanced by the multi-frame super-resolution 

solution. 

 

This method significantly improves the spatial resolution by 4 folds, from 151 

× 151 to 604 × 604. This enhancement allows for the restoration of more 

detailed and precise edge information from the spatial data. Additionally, the 

average measurement bias towards the true values is reduced from 

approximately 1.4 µm to around 0.3 µm, resulting in a reduction of 1 µm. 

Furthermore, the deviation among repeated measurements is reduced from 

1.533 µm to 1.388 µm. 

7.2 Suggestions for future work 

The proposed autostereoscopic measuring system in this thesis is still mainly 
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dependent on computer vision and image processing. There is still room to improve the 

measurement capability and suggestions are as follows: 

(i) Spectrum analysis for super-resolution methods can provide a more 

straightforward evaluation of the enhanced results. The information in an image, 

categorized into low, medium, and high frequencies, offers different visual and 

physical insights for the final analysis. Generally, the main difference between hi 

gh-resolution and low-resolution data lies in the high-frequency information, 

which typically denotes edges and salient points in the images with significant 

pixel gradient changes. Although error maps between ground truth and the output 

of the methods implicitly indicate the accuracy of high-frequency information, 

spectrum analysis based on Fourier transform can provide more concrete 

evidence of the improvements made by the enhancement methods. Low- and 

medium-frequency information can also be analyzed similarly to investigate the 

performance of the learning models. Therefore, spectrum analysis can be a 

valuable approach for evaluating super-resolution methods. 

(ii) A simulation model is essential to study the interaction between the light rays and 

the surfaces being measured. In addition, the simulation data are able to be used 

to train AI models to realize intelligent reconstruction directly from the 

measurement data. On the basis of the simulation, the ray propagation in the 

system can be described more precisely so that the noises and illumination can be 

adaptively controlled to cater to different samples and scenes. It is still a tricky 

issue to select and adjust illumination devices from different micro-structured 

surfaces since the rays reaching the small features of the surfaces are limited 

under improper illumination conditions. This can result in an unclear observation 

of some key features. In addition, the complex interaction between the rays and 
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the measured surfaces will affect the quality of measurement data significantly. 

The low quality of raw data could increase the difficulty during the matching 

process, even after enhancement. Hence, it is important to theoretically model the 

ray interaction in the whole system to achieve a more accurate measurement. 

(iii) The main workflow of the autostereoscopic measuring system still relies on 

image processing based on human recognition. The learning models employed in 

the thesis serve to improve the image quality at a level that aligns with human 

perception. However, the interaction between rays and measured surfaces may be 

outside the scope of perception of human beings. The powerful representation 

capability of deep learning models enables the direct extraction of 3D information 

from the raw signal recorded by the sensor. Hence, it is inspiring to explore more 

possibilities for deep learning models to make a difference during 

autostereoscopic measurement instead of as a tool for image processing. 

(iv) A more efficient depth estimation method is expected to be developed to achieve 

more accurate 3D inspection. Since the micro-structured surfaces usually have a 

very good finish, the features that are able to be captured for focus-level detection 

and stereo clue matching are limited. This will result in a sparse point cloud as 

the direct output from the input data. The dense point cloud is reconstructed 

primarily based on a priori knowledge. It is possible to get rid of a priori 

knowledge during the dense reconstruction by using machine learning models to 

recognize the measured surfaces based on the measurement data. It is possible to 

realize a more intelligent generation of a dense point cloud based on a sparse one. 
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