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Abstract

Immersive video streaming has been drawing escalating attention in recent years and

is the foundation of a range of key VR applications, e.g., teleconferencing, remote

teaching, sports game broadcasting, and so on. Among many forms of immersive

videos, e.g., 360-degree video, Neural Radiance Fields (NeRF), and 3D Gaussian

splatting(3DGS), point cloud-based volumetric video is of particular interest due to

its good balance between low device dependency, low computation cost, and high

immersiveness. Many existing works focus on improving bandwidth efficiency and

adaptiveness under local networks but do not discuss the challenges facing the public

Internet. This difference could introduce a more stringent bandwidth constraint,

vulnerability to security attacks, and diversified viewing conditions. Therefore, it

is necessary to propose new schemes and methods to address these new challenges.

In this thesis, we conduct an in-depth study of these new problems and make the

following original contributions.

Firstly, we propose a bandwidth-efficient volumetric video streaming frameworkVSAS

that, for the first time, allows DASH-based video streaming of MPEG V-PCC for-

matted volumetric video streaming. MPEG V-PCC is a new standard for volumetric

video compression, featuring a high compression ratio and effective temporal predic-

tion. However, it is not readily applicable to work with dynamic network environment

streaming. First, there is a need for a rate-distortion model for MPEG V-PCC, which

is essential for achieving effective bitrate control. Therefore, we conducted one of the
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earliest rate-distortion studies on MPEG V-PCC and proposed a geometry-aware

model that achieves high accuracy; second, we designed a transformer-based offline

reinforcement learning method to control the Bitrate according to the network dy-

namics and user movements; third, as the coarse-grained DASH architecture causes

frequent frame freezing, we propose a DAG-based frame dropping mechanism that

enables the existing system with a frame rate scaling capability. Together, our VSAS

framework delivers a smooth Internet volumetric video streaming service. Extensive

experiments reveal that VSAS has achieved a lower stalling effect, better bandwidth

efficiency, and higher visual quality than existing systems.

Secondly, we study the generalization problem in tile-based volumetric video stream-

ing systems and propose FewVV. We first identified the limitation of the existing

system when facing an out-of-distribution environment, which essentially constrains

the real-world deployment of the tile pruning-based optimization of these systems.

To tackle this challenge, we noticed the few-shot and zero-shot adaptation ability

of the large language models; therefore, we first reformulate the volumetric video

streaming control into a multi-variate sequence modeling problem, then train a causal

transformer model with prompt-tuning to solve it. Our evaluation demonstrates a

consistent improvement compared to several baselines regarding the QoE and the

adaptation speed to an unseen environment.

Finally, we study the error concealing problem of volumetric video and built a novel

dataset,VVCorupt. We first introduce the background of the existing error-concealing

algorithms and related datasets, then we identify a lack of existing dataset for train-

ing and bench marking the error concealing algorithms. We build a corruption model

for the volumetric video streaming according to the network models, and then build a

large scale error concealing dataset with reference frame. We analyze the corruption

patterns in our collected dataset and point out the potential directions for building

an effective error concealing models for volumetric videos.

In summary, we conducted an in-depth study on three major challenges (efficiency,
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privacy, and generalization) toward a better volumetric video streaming system and

proposed effective methods to tackle them. We evaluate our methods by evaluating

prototype systems over various conditions to confirm their applicability. At the end

of the thesis, we reveal several insights for future research.
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Chapter 1

Introduction

1.1 Overview

Immersive video streaming has become a foundation technology component of vari-

ous VR and XR applications. For example, teleconferencing and telepresence, where

holographic [44] communication allows multiple users distributed at different geo-

graphical locations to be present in a virtual space. Much research has shown that

such a higher immersive presence provides unique advantages over 2D video confer-

encing, e.g., it provides a faster learning process and helps people to be aware of

their emotions. Another example is Sports Live Broadcasting, where the sports game

is recorded from multiple views and then forms unified dynamic virtual 3D scenes,

which later been streamed over the Internet for viewers to watch on VR headsets, e.g.,

Oculus Quest 2 [13] and Apple Vision Pro. As the 6G network accelerates, the future

of Internet applications could be largely enhanced with immersive video streaming

technologies. Multiple immersive video formats exist 360-degree, volumetric, and

NeRF [37]. Where 360-degree video [79] is the most accessible format, providing a

three-degree-of-freedom (3DoF) experience that allows the viewer to look in different

directions (yaw, pitch, row) but cannot allow the viewer to move the origin point of
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Chapter 1. Introduction

view, which has largely limited its immersive level. However, with the rise of network

bandwidth and the SoC performance of mobile and immersive devices, users demand

a higher level of immersiveness. Volumetric video streaming fills in this gap by pro-

viding a six-degree-of-freedom (6DoF) experience: three position freedom and three

rotation freedom without bringing excessive bandwidth or computation overhead.

Volumetric video was first standardized by MPEG in 2020. Where two standards

for volumetric video streaming, MPEG G-PCC [10] and MPEG V-PCC [39], are

published. Soon, academia noticed this development, and a range of research emerged

to build volumetric video streaming frameworks. This new video format has taken

significant steps forward and is now widely supported by commercial VR devices,

like Oculus Quest 2 and Apple Vision Pro, as well as 3D cameras like Kinect and

Intel RealSense RGB-D cameras. Volumetric videos are comprised of a temporal

sequence of frames. Different from 2D frames consisting of pixels arranged in a dense

and ordered manner, volumetric video frame is a dense colored point cloud. Each

point has its geometry position in the coordinate system and a group of attributes

attached to it that describe its visual characteristics, including the color, alpha, and

even the norms and point size. These points are unordered sets compared to the

ordered pixel in 2D, and these points have an uneven and sparse distribution in a

viewing space. These features have opened the design space for an efficient streaming

pipeline that effectively utilizes these characteristics. These features then lead to

two types of streaming schemes: i) projecting the point clouds to planar atlas maps

before streaming the existing 2D video streaming pipeline. ii) The tile-based viewport

adaptive streaming depending on pruning the point cloud. Using these schemes,

the volumetric video could be streamed over the Internet efficiently and effectively.

Providing a basic service to the VR users.

Although the existing works have made various efforts to build a useful volumetric

video streaming system from different perspectives, there are several gaps between

the existing research and a practical volumetric video streaming system that should

2



1.1. Overview

be both efficient and robust. First, the bandwidth efficiency issue: a volumetric video

streaming system is expected to consider both network fluctuations and the viewer’s

viewing behaviors using an adaptive mechanism. Although the MPEG V-PCC pro-

vides compression codecs with good rate-distortion performance, there have not been

any efforts to build a V-PCC-based volumetric video streaming system. This is partly

because of the lack of a rate-distortion model that allows the MPEG V-PCC to adapt

its compression parameters under different bitrate thresholds. Furthermore, even if

a rate-distortion model is proposed, MPEG V-PCC is not suitable for providing a

smooth playback experience due to its limited ability to scale the frame rate during

the run-time. The complex three-stream dependency between the attribute, geome-

try, and occupancy maps further increases the challenges of implementing a passive

frame-dropping mechanism that allows smooth playback of volumetric video without

interrupting the user-watching process under network fluctuations. Another challenge

of the volumetric video streaming system is its limited generalization ability. For a

tile-based volumetric video streaming system, the prediction accuracy of the view-

port and user behavior has an notable impact on system performance. Under a mixed

reality setting, this assumption could easily be breached by changing one of the fac-

tors: network environment, viewing space, or the volumetric video sequence content.

This has led to a drastic performance drop in the existing systems when tested under

a new environment. In practice, building a prediction model that suits all possible

deployment settings is infeasible. We notice the rise of few-shot and zero-shot learn-

ing algorithms in sequence modeling. Therefore, we can get a generalized system

by reformulating the volumetric video streaming into a sequence prediction problem

(FewVV). Finally, the robustness issue when transmitting the volumetric video over

the unreliable network channels, as the latency requirements gets stringent for volu-

metric video, the partial reliable network channels provides a lower latency yet lossy

transmission. To improve the robustness of volumetric video streaming process, an

error concealing model could be helpful, however there lacks a dataset that support

the effective training and benchmark of the error concealing models for volumetric

3



Chapter 1. Introduction

video. We build the first of its kind dataset to fill in this gap, and provide an in-depth

analysis into the corruption patterns.

In this chapter, we first briefly demonstrate the problems of volumetric video stream-

ing in Sec. 1.2. Then, we propose an overall research framework in Sec. 1.3, we

summarize the contributions made in this thesis in Sec. 1.4, and finally, we organize

this thesis in Sec. 1.5.

1.2 Research Problem

How to stream the Volumetric Video Effectively over the dynamic and

limited network resources? The volumetric video represents an important type

of immersive media. The fundamental challenge is balancing the high quality and

high volume data across the limited network resources. A practical system requires

an effective prediction of bandwidth dynamics, user viewport, and sequence salience.

To achieve a smooth playback, it is also important for a volumetric video streaming

system to have both coarse-grained and fine-grained adaptation ability. How to design

such a system is challenging.

How to achieve better generalization? The existing volumetric video streaming

systems rely heavily on the accuracy of viewport prediction accuracy. However, the

real-world deployment environment is highly diversified, and it is thus a challenging

problem to achieve a higher generalization level for the volumetric video streaming

system.

How to transmit the volumetric video over lossy network channels that

provides low latency? As the demand for higher interactiveness in volumetric

video streaming increases, the latency requirement becomes more and more stringent.

To this end, it is necessary to use unreliable (lossy) network channels, which do not
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Figure 1.1: Research Framework

use a re-transmission mechanism and achieve a low latency. However, the downside of

using these channels is their unreliability. The application layer decoders of volumetric

video will be exposed to corrupted bitstreams, causing undesirable frame artifacts.

Properly mitigating these errors’ negative visual effects is a significant challenge for

a robust volumetric video streaming system.

1.3 Research Framework

In this section, we demonstrate the overall research framework of this thesis. See

Fig. 1.1, the overall research framework. The applications of volumetric video stream-

ing systems, e.g., the teleconferencing, the sports game broadcasting, and remote

support are deployed over the dynamic and unreliable network environments (the

Internet) and viewed in the diversified virtual/augmented reality scenes. There are

two types of adversarial challenges in this Internet, one is the bandwidth fluctuation
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and scene diversity, and the other is the unreliable (lossy) network channels. In this

thesis, we mainly focus on solving the bandwidth efficiency, scene generalization, and

robustness over the unreliable networks.

To solve the first problem, bandwidth efficiency and fluctuation, we leverage the

most recent development on the volumetric video compression standard MPEG V-

PCC, which achieves high bandwidth efficiency but is not ready for video streaming

services. We propose a On-demand Volumetric Video Streaming with passive

frame dropping (VSAS) framework, where we design an on-demand video service

framework with mixed coarse-grained adaptive bitrate control and fine-grained frame

dropping to achieve a scalable, adaptive, and smooth volumetric video streaming

system.

To resolve the second problem, generalization to unseen environments, we design

a Few-shot Adaptive Bitrate Volumetric Video Streaming with Prompted

Online Adaptation (FewVV) algorithm to generalize the volumetric video stream-

ing. By reformulating the video streaming to a form suitable for transformer, we uti-

lize the strong generalization ability of transformer models to achieve a generalized

adaptive video streaming system.

Finally, for the third problem, we build a A Bitstream-corrupted Volumetric

Video Dataset for Partial Reliable Error Concealing (VVCorrupt), that

includes a wide range of volumetric video sequences corrupted using our bitstream-

level corruption model reflecting real-world network conditions. We made an in-depth

discussion of our collected dataset to highlight the patterns of network corruptions

on the decoded volumetric video artifacts.
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1.4 Contribution

In this thesis, we study the volumetric video streaming and present innovative systems

to address the challenges. To be specific, we made three major contributions:

1.4.1 MPEG V-PCC based bandwidth efficient volumetric

video streaming

Our first contribution is proposing a bandwidth-efficient volumetric video streaming

framework that, for the first time, allows DASH-based video streaming of V-PCC

formatted volumetric video streaming, which is largely backward-compatible with

the existing hardware acceleration chips and existing HTTP video streaming CDN

infrastructure. We fill up several blanks. First, we develop one of the earliest rate-

distortion model for V-PCC; second, we propose an offline reinforcement learning

method to control the Bitrate according to the network dynamics; third, as the coarse-

grained DASH architecture causes frequent frame freezing, we propose a DAG-based

frame dropping mechanism that enables the existing system with a frame rate scaling

capability. Together, our VSAS framework can deliver a smooth Internet volumetric

video streaming service.

1.4.2 A generalized volumetric video streaming control with

prompt-based tuning

Our second contribution is to study the generalization problem in tile-based volu-

metric video streaming systems. We first identified the limitation of the existing

system when facing an out-of-distribution environment, which essentially constrains

the real-world deployment of the tile pruning-based optimization of these systems.

To tackle this challenge, we first reformulate the volumetric video streaming systems
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control problem into a multi-variate sequence modeling problem, then train a causal

transformer model with prompt-tuning to solve it. Our evaluation demonstrates a

consistent improvement compared to several baselines regarding the QoE and the

adaptation speed to an unseen environment.

1.4.3 A Bitstream-corrupted Volumetric Video Dataset for

Partial Reliable Error Concealing

Our third contribution is to build a bitstream-corrupted volumetric video dataset for

partial reliable error concealing. As the demand for more interactive volumetric video

streaming services increases, the unreliable and partially reliable network channel is

introduced to reduce the latency, which exposes the volumetric video decoder to

possible corruption in the bitstream. We first propose a volumetric video corruption

model that effectively reflects the patterns of transmission-induced corruption. Based

on this model, we corrupt three types of volumetric video sequences with different

contents and diversified spatial features, and then We made an in-depth discussion of

of the visual effects of these corruption-induced artifacts. Finally, we outline practical

guidelines for designing an ideal learning-based error-concealing model.

1.5 Chapter Organization

The organization of this thesis consists of following chapters:

Chapter 2 Background and Literature Review. We present the background

and literature review of Volumetric video streaming in this Chapter, including the

definition, existing architecture, and the primary challenges in this field, which include

the performance issue due to limited network resources, the generalization problem

due to an immersive viewing space, and the robustness issue due to a higher demand
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on interactiveness. We present a comprehensive review of the literature addressing

these three challenges. Which mainly covers the existing adaptive video streaming

approaches and privacy protection schemes. We also discuss the problems of directly

using these schemes on immersive applications and point out several preliminary

solution approaches.

Chapter 3 VSAS. We focus on the performance issue of volumetric video stream-

ing in this Chapter. As a new compression format, MPEG V-PCC is being stan-

dardized by the MPEG, and it has revealed the potential to become an important

mainstream codec for volumetric video. However, due to its early development stage,

it is not well supported and cannot easily fit into the existing HTTP video streaming

infrastructures. Therefore, our work designs one of the earliest Internet volumetric

video streaming systems for MPEG V-PCC format. We tackled three major issues:

first, the lack of a rate-distortion model to facilitate rate control; second, the need for

an offline reinforcement learning algorithm, which is suitable for network adaptation

problem; third, to address the smoothness problem caused by the control granularity

mismatch, we propose a DAG-based frame scaling method. Finally, we evaluate our

system on various network conditions, video sequences, and viewer behavior datasets.

The results illustrate a large gain in quality of experience (QoE).

Chapter 4 FewVV. We explore the generalization problem of the volumetric video

streaming system in this chapter. We first measure the existing systems and identify

the impact of the generalization problem in the viewport prediction of the volumetric

video streaming. We reformulate the volumetric video streaming to be suitable for

sequential predictor, and then, we solve it by proposing a volumetric causal trans-

former with prompt tuning. The evaluation shows a faster adaptation to the new

environment, thus providing a higher generalization ability.
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Chapter 5 VVCorupt. In this chapter, we studied the error-concealing problem

of the volumetric video streaming system. We first identify the importance and ne-

cessity of error-concealing algorithms in interactive and low-latency volumetric video

streaming systems. We then propose a novel bitstream corrupted volumetric video

dataset to support the benchmarking and training of the error-concealing algorithm.

We made an in-depth discussion of of our dataset’s corruption patterns and point out

the practical guidelines for designing a learning-based error-concealing model. Our

dataset provides a solid foundation for developing learning-based error-concealing

algorithms for volumetric video.

Chapter 6 Conclusion. In this Chapter, we conclude the thesis. We present some

limitations and how well these techniques could be used in practical applications. We

point out several future directions that could be improved in the next step of research,

which could provide higher performance, better privacy protection, and more instant

feedback between people in immersive video environments.
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Chapter 2

Background and Literature Review

2.1 Volumetric Video Streaming

Volumetric video streaming is an important VR application. It pushed the 360-degree

video’s 3 Degree-of-Freedom experience further to 6 degree-of-freedom, allowing a

viewing direction to be free and the user to move the origin point of view. Compared

to similar techniques, volumetric video has a more accessible ground. It mainly relies

on developing two technologies: the RGB-D depth camera and the VR headsets

(Oculus Quest 2, Hololens 2). As these two devices become widely accessible to

consumers, volumetric video streaming becomes a readily deployable service. Various

immersive applications can be built upon the volumetric video streaming systems.

For example, telepresence is a holographic teleconferencing application that brings

geographically distributed people together in a shared virtual world. Telepresence

has been proved to facilitate more effective emotional communication and connections

between people, which could benefit education and professional collaborations. Sports

Live Broadcasting is another example, where a sports game is recorded from multiple

angles with high-resolution cameras, a background processing system transcoding it

into a volumetric video, and then streamed over the Internet. Boxing and football
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are two pioneer sports that introduce these experiences.

The research community and the industry have made a significant effort to stan-

dardize and improve volumetric video streaming. The foundations of any streaming

system are codecs. There are two mainstream standards: First, the MPEG G-PCC

standard, which organizes the point cloud using a tree-based data structure, allows

effective incremental coding for the spatially sparse point clouds; however, this stan-

dard does not consider the temporal consistency in compression logic. Streaming

volumetric video as independent frames using the G-PCC standard is still possible,

but the compression efficiency is limited. Second, the MPEG V-PCC standard, that

compress the point cloud as 2D video streams, e.g., a group of static point clouds

arranged according to the timeline with constant intervals, each static point cloud is

an analogy to the frame in the 2D video compression. This standard first projects

the point cloud into several agnostic patches, and for each patch, it retains depth and

color information with some metadata to allow reconstruction. This approach allows

effective reuse of the existing 2D video codecs with very strong temporal compression

ability, and it achieved an outstanding compression ratio that can stream the com-

mon quality volumetric video over the 4g/5g bandwidth. MPEG V-PCC also features

better backward compatibility as there is a wide range of hardware acceleration for

the underlying codecs.

Based on the two volumetric video coding standards above, the video streaming

systems have been developed [12, 74] and optimized [63, 29] to adapt to the network

and user-watching behavior dynamics. The decoding efficiency issue on GPUs has

also been studied to reduce computation overhead [28]. The quality-of-experience

model used in streaming optimization has also been a research focus [32, 34, 63],

reflecting the need for different streaming architectures.
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2.1.1 Traditional video streaming control

video streaming is a problem that finds an intersection between the dynamic network

conditions (bandwidth, delay, and packet loss) and the video quality. Intrinsically, the

2D video streaming system should maximally utilize the available network resources

to deliver a highest video quality, which is widely measured as quality-of-experience.

However, this problem varies according to different scenarios with different application

requirements. Broadly categorized to three types, the Video-on-demand services, the

live-streaming services, and real-time services.

VoD Streaming Control Video-on-demand service is a service that playback a

pre-stored video, like movie, from an content-distribution-network (CDN) server, it

has a loose delay requirements, since the video is already stored, it is a single-way

service. However, a high quality and a high frame rate is expected, as well as a

smooth playback experience. Robust-MPC [70] first formulated this problem into a

model predictive control process’s. Then the rate-based [19, 58] and buffer-based [15,

56] methods are proposed later, further the unified methods using learning-based

algorithms [6, 25] are proposed to use more advanced techniques. Recently the Meta-

learning and Meta Reinforcement Learning are introduced to this community.

Live-streaming Control LiveNet [30] tries to design a low-latency video transport

network that scales better than WebRTC-based systems while achieving lower latency

than DASH-based systems that helps to meet the requirements of the massive live

streaming with strong interactive needs. Tightrope [57], explored the playing speed

problem on top of the existing rate control systems, which opens a new dimension

for the quality-of-experience optimization. There are several other works on live

streaming [30, 46]. Recently the meta-learning has matured and being introduced to

the live-streaming communities, which is based on the personalization effect observed

in several aspect of the video streaming systems, for example, MERINA [22] takes
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a meta-learning approach to achieve an online reinforcement learning with strong

generalization ability. MultiLive [64] consider a server-driven approach to support a

large scale bitrate and loss control for the Live Video Streaming.

Real-time Video Control OnRL [78] propose the first reinforcement learning (on-

line) system to facilitate real-time video telephony, with several designs to alleviate

the exploration cost arising from the random sampling process. QARC [16] propose

to control the sending rate only with deep reinforcement learning, and it also op-

timizes the quality of the video. Tambur [50] pushes this further to consider loss

recovery directly inside the codec, which achieved much better performance by utiliz-

ing several codecs specific design. Loki [77] first identifies the long-tail distribution of

the learning-based real-time communication(RTC) systems. It then proposes a mix-

ture of rule-based methods to mitigate such an effect, outperforming the end-to-end

reinforcement learning approaches. There are also several other works on congestion-

based RTC [62, 80].

2.1.2 Volumetric video streaming control

Volumetric video streaming control is a more complex problem than traditional video

streaming problems. At the current state-of-the-art level, on-demand video streaming

is a mainstream service, while live-streaming and real-time streaming remain chal-

lenging applications to implement. There are three volumetric video streaming sys-

tem approaches based on different compression formats: MPEG G-PCC (tile-based),

MPEG V-PCC, and Mesh. We introduce existing works on these three approaches

below.

Tile-based. Vivo [12] proposed three visibility-aware optimization to reduce the

volumetric video Bitrate while minimizing the negative impact on QoE. It is the pio-
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neering work on octree-based point cloud video streaming. GROOT [28], also based

on octree format, modified the traditional octree data structure to support parallel

encoding/decoding on mobile GPU, drastically improving the decoding speed. Lisha

Wang et.al. [63] proposed a rolling window method with DRL. It instantiates a novel

prediction-optimization-transmission (POT) framework inspired by the rolling win-

dow principle. This closely fits into the GoF structure of volumetric video streaming.

They use a DQN-based deep reinforcement learning for each rolling window to control

the Bitrate. Jie Li et.al. [29] proposed a QoE-driven adaptive streaming approach. It

achieves two goals: first, it achieves a high QoE by modeling a perspective projection,

and second, it reduces the transmission redundancy. Their primary contribution is a

new and comprehensive QoE function considering several indicators, including spatial

position, occlusion, and device resolution. Yu Liu et al. [34] proposed a practical

mobile volumetric video streaming system using a multi-view transcoding approach.

It differs from the Vivo because it does not directly decodes the point cloud on the

client device, instead it adopts an edge server-assisted streaming paradigm. The

point cloud is streamed from the cloud to the edge, the decoding and rendering are

finished on the edge, and then the client is fed by a 2D video streaming according to

its viewing coordinates. Their work pushes this architecture further by pre-fetching

and computing a range of candidates’ views instead of a single view, which allows

a faster reaction given a new FoV of the viewer. They also propose a QoE model

to facilitate this process. Anlan Zhang et.al. [74] in their work Yuzu choose a very

different direction to improve the point cloud streaming quality. They use point cloud

up-sampling and coloring to balance communication and computation. The system

first down-samples and compresses the volumetric video into low resolution and low

quality to meet the tight network bottleneck. Then after the receiver receives the

low-quality point cloud, it up-samples the point cloud to a high quality. They solved

the coloring problem of the existing works, and evaluated this idea using a prototype

system.
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V-PCC-based. MPEG V-PCC [39] is a new way of compression the dynamic

point cloud. It first projects the point cloud into three planar images, the attribute

map(color), geometry map(depth), and occupancy map(metadata), with a group of

optimization processing, it uses 2D video codecs, e.g., H.264/AVC to compress the

resulting image stream. When the receiver receives the stream, it reconstructs the 3D

point cloud according to the projection metadata and the three-plan image stream.

By doing this, V-PCC achieved a very high temporal compression efficiency. Yet, the

existing support for V-PCC to work on the streaming is limited. Shuang et.al. [53]

propose to use down-sampling and super-resolution to achieve a low bitrate V-PCC-

based volumetric video streaming.

Mesh-based. Free viewport video [8] is a mesh-based volumetric video streaming

system, which takes a surface reconstruction procedure first to translate the point

cloud into triangle meshes and then register the texture on these triangle surfaces. In

this work, a group of heuristic improvements is proposed to achieve a higher level of

experience at a lower computation cost and network consumption cost. First, they

propose an adaptive meshing scheme that localizes the region of interest (RoI) within

a mesh, e.g., an actor’s face, before giving the RoI a higher meshing density. Such

a design allows a higher resolution and more detail for those salient areas within a

volumetric video. Second, they design a temporal incremental coding scheme that uses

key and incremental frames to achieve an effective temporal compression. Since the

content of the volumetric video is often temporally consistent, e.g., a person dancing

in a scene, the similarity between consecutive frames is very high. Therefore, storing

each frame independently and with full information is unnecessary. Although the idea

of this compressing scheme is the same as 2D videos, it carries a unique challenge:

maintaining the meshing consistency between the frames, which is non-trivial for

existing meshing algorithms. And finally, they propose an effective parallel computing

system to process these data. Bitrate adaptation and bandwidth prediction are based
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on a naive design that is sufficient for a meshed system.

2.2 Quality-of-Experience Metrics

It is important to have an optimization objective, which is the user’s satisfaction.

It is directly measured by the MOS (mean opinion score), it is typically collected

using a survey, commonly at the end of a video play. However, since this metric is

sparse and can hardly be connected to the objective parameters (resolution, frame

rate, encoding rate, and latency), a model that maps these measurable metrics to

the MOS is proposed, called the quality-of-experience (QoE) estimation model. We

adopt these models as metrics across the evaluation of this thesis.

2.2.1 QoE Factor Balance

Vue [34] conducted a subjective study on the QoE of the mobile volumetric systems.

They first organize a group of subjects (viewers) to watch the video sequences using

their system running on the VR headsets. Then, they collect the objective metrics

during this viewing process and form a dataset. Finally, they asked the subjects to

answer a survey and collect the subjective MOS. By mining and analyzing this col-

lected dataset, they point out several key factors that impact the volumetric QoE.

That includes the Viewport Smoothness SV , the Motion-to-Photon Latency L, Reso-

lution R, Viewport Drift DV , and Stalling B. The relative weights of these impacting

factors are learned by regression in the collected dataset. QoE-DAS [63] takes a dif-

ferent path towards a QoE function to facilitate the tile pruning-based volumetric

video streaming over MPEG G-PCC, the primary factor to consider is the user’s

viewing direction and viewing frustum parameters, because whether a tile is located

inside the viewing frustum of a viewer directly determines the relative importance of

this tile. Also, it is necessary to consider the occlusion problem and the perspective
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projection caused by distance effects. QoE-DAS discovers that these challenges can

be addressed by migrating the computer graphics rendering pipeline. Therefore, they

proposed modeling the QoE using the perspective projection matrices and the occlu-

sion detection approaches in Computer Graphics. In this way, they proposed the first

analytical model of the QoE Factor Balance. CaV3 [32], on the other hand, tried to

extend the traditional 2D Adaptive bitrate streaming (ABR) QoEs to the 3D scenar-

ios to facilitate the caching acceleration of volumetric video, the relative importance

between the tiles are of particular interest in this QoE function. The core idea is to

separate the tiles into high-quality and low-quality tiles. For each set of tiles, the a

VQA metric is used, then they give different weights to these two sets of tiles and

conclude caching-oriented QoE functions. All these functions are widely dependent

on video quality assessment metrics like PSNR to evaluate the relative quality of a

single frame or tile.

2.2.2 Video Quality Assessment Metrics

There are two main paradigms to evaluate the relative quality of a streamed volu-

metric video frame. The first is the fully referenced video quality assessment metrics,

which depend on comparing the original uncompressed and compressed video frames.

By formulating different features from the contrast of the original and the processed

frame, the fully referenced VQA metrics can accurately reflect the quality level of a

video frame. In a practical video streaming system, an original uncompressed frame

could be sent over the Internet as a sample for the quality and can then be used

as an optimization factor. The second is the non-reference video quality assessment

metrics, which do not need an original reference frame to predict the quality. These

models are mostly learning-based and achieve a slightly worse performance than fully

referenced models, but they also have the advantage of a wider application scenario.

Full-reference VQA: PSNR-I [27] proposed the PSNR for 3D geometry information,
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which is a 3D extension of the traditional PSNR, which considers the geometry infor-

mation difference with a unique function. PCQM [36], on the other hand, explored

a learned balance between the geometry and texture features. They first propose

a group of features that involve contrast, lightness, and the difference between the

texture, as well as the local geometry features like curvature, curvature structure,

and so on. Then, through organizing a subjective study, they find the relative im-

portance of these features. They conclude that lightness comparison and lightness

structure in texture reflect the most importance of texture, and curvature structure

carries the highest importance of geometry. They give a group of empirical param-

eters for reference. Their evaluation of the correlation between PCQM and Mean

Opinion Score shows that PCQM outperforms other fully referenced VQA metrics by

a large margin. There are also point-to-plain PSNR and point-to-point PSNR [59]

that are widely used in the standardization activities of MPEG Immersive Projects,

which mainly uses the distance between the points and plane to give an error before

adopting the log scale transformation of PSNR to get a final score, although this

metric lacks the consideration on the color features, it is very stable and widely used

when assessing the volumetric video compression codecs.

Non-reference VQA: IT-PCQA [68] belongs to the no-reference method, which

uses domain adaptation to transfer the 2D non-reference method to the 3D domain.

It uses an H-SCNN neural network architecture and a generator-discriminator design

to train a meaningful VQA model, which does not rely on the reference frame.
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Chapter 3

An On-demand Volumetric Video

Streaming System with

Video-based 3D Codec

3.1 Introduction

Immersive video, represented by 3D volumetric video, has recently emerged as a

promising application in the Mixed-Reality industry, serving as the technology foun-

dation of AR, VR and the future Metaverse. According to the market report [35],

the volumetric video market value is now 1.5 billion and will reach 4.9 billion in 2026.

The leading Internet giants have already set up their strategic plans in this field, for

example, the Holopresense project [44] from Microsoft and Starline project [26] from

Google.

Volumetric videos, like 2D videos, are comprised of a sequence of frames. However,

different from 2D frames consisting of pixels, the content of the volumetric video

frame is 3D, represented by 3D points, Meshes, or other 3D formats. It essentially is

a real-time captured 3D model of a scene. Therefore, viewers can freely navigate the
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video. Such navigation includes 6 DoF, including three translational DoF (up-down,

left-right, forward-backward) and three rotational DoF (yaw, pitch, roll). A group

of innovative applications can be delivered through volumetric video, e.g., remote

teaching and immersive live concert. This 3D content is typically viewed using Head-

mounted-display(HMD) devices, e.g., Oculus Quest II.

Given the tremendous volumetric video size, various compression solutions are pro-

posed for affordable transmission over Internet, where MPEG V-PCC is a promis-

ing one. MPEG V-PCC, proposed by MPEG, is designed for commodity-quality

volumetric video streaming. It achieves a high compression rate and fast decoding

by facilitating the widely-deployed hardware acceleration chips for H.264/AVC and

H.265/HEVC codecs. It adopts the 3D to 2D projection method, followed by a tra-

ditional 2D video encoding pipeline to maximally utilize these existing chips while

achieving a state-of-art temporal prediction coding ratio. Generally, MPEG V-PCC

is able to achieve an average of 30 to 90 times compression over ply format point

cloud raw data.

Due to the increased immersiveness and interactivity, users’ quality of experiences

(QoEs) in volumetric video have changed drastically compared to a 2D scenario. One

of the most important factors that affect QoE is the stalling effect. It is a common

effect in 2D video-on-demand systems and happens when the network speed is lower

than the video’s intrinsic encoding rate. However, in 3D scenario, due to more strict

delay requirement and more immersive watching experience, this effect will cause more

significant QoE degradation. Thus, the traditional DASH-based chunk-level bitrate

adaptation strategy, which works well in 2D video system, is no longer suitable in the

3D volumetric video service.

We argue that more fine-grained streaming configuration strategy is in urgent de-

mand so as to satisfy the smooth QoE in 3D volumetric video watching. However,

all existing works ignored this issue and mainly focused on other streaming opti-

mization. For example, Vivo [12] proposed to improve Draco, an Octree-based direct
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point cloud compression, with several viewport-based heuristics, to save bandwidth

consumption. The free-viewport video [8] used mesh representation and proposed face

detection-based heuristics to adaptively control the mesh density in order to better

adjust the streaming decision. Such streaming adaptation works can only optimize

network transmission from a macro perspective, while solving the network condition

fluctuation problem within a chunk time remains a key challenge.

On the other hand, the coarse-grained bitrate adaptation of on-demand video stream-

ing differs from 2D video streaming because of the difference in viewing devices. As

users tend to use XR devices to watch the video, they are encouraged to move around

during the watching. However, the new generation of Wi-Fi technology is sensitive to

the occlusion and the relative position between the router and end device due to its

bean-forming technology and higher frequency wireless signal usage, see Fig. 3.1. This

makes it important to take the user’s movement data into consideration in bitrate

estimation. However, the complexity of movement slows down the convergence of any

online reinforcement learning-based controller. We thus choose an offline reinforce-

ment learning controller (decision transformer), which learns on the offline collected

large dataset rapidly while fine-tuning online periodically with high data efficiency.

In this paper, we, for the first time, try to address the adaptive video streaming issue in

MPEG V-PCC. To our knowledge, our work is the first DASH-based video streaming

framework supporting MPEG V-PCC. We will show that by combining the existing

chunk-level ABR with a passive frame-dropping add-on, the DASH-based MPEG

V-PCC can eliminate most of the stalling event while keeping the scalability of the

DASH architecture. During this process, we faced major challenges. (1) there is a lack

of a rate-distortion model at the 3D level. More specifically, this model establishes the

relations between the 3D QoE, Bitrate, and the configurations of VPCC codecs, and

(2) there lacks an understanding of the internal bitstream structure and the complex

frame dependency within a MPEG V-PCC chunk, making it difficult to drop the

frames wisely.
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Our paper designs an Internet Volumetric Video Streaming Framework for a new

format, MPEG V-PCC, which the MPEG has recently standardized. This format has

a very high compression ratio and achieves high quality in terms of rate-distortion

curve. However, due to its comparatively complex and coupled design, there is not

yet any framework to allow an Internet Streaming of Volumetric Video in this format.

To address this issue, we design a new rate-distortion model that fills the gap and

allows MPEG V-PCC to fit in the DASH framework.

To mitigate the DASH’s large chunk size-led stalling effect, we introduce a passive

frame-dropping (skipping) mechanism. Although there is similar work on 2D DASH,

MPEG V-PCC differs from it as it maps the 3D point cloud into three synchronized

2D image streams with complex dependency; therefore, we first model this depen-

dency into a DAG(directed acyclic graph), then propose a method to drop the frame

according to this DAG. This design removed most of the stalling, and since stalling

is especially sensitive in HMdevices, this improvement helps to increase the QoE for

a large margin.

The complex and heterogeneous environment of the VR headset ask for a more ad-

vanced Bitrate Selection method (ABR). We propose to use a language model in-

spired Meta Offline Reinforcement Learning algorithm Decision Transformer to solve

the Volumetric ABR problem, we motivate and introduce the movement-awareness to

the bandwidth predictor, use a fast environment-shift adaptation method, and build

the first offline reinforcement learning trajectory dataset for V-PCC based volumetric

video streaming system. We trained our model and evaluated it on a large corpus

of volumetric video sequences, network environment, and the movement trajectory.

The results show a significant gain.

We choose ChatGPT2-based DRL as it belongs to the category of the Meta Offline

Reinforcement Learning and has a state-of-the-art performance. Compared to the

online RL, Offline RL has two advantages, first the safety, the HMDdevice and Mixed

Reality Environment makes the system works on human beings, sometimes when the
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online DRL agent makes a drastically bad decision, it could harm the user physically,

therefore it is favored that any DRL controller should not explore a random action

online. In this case, the offline RL achieves a better safety, as it is only trained on

a closed offline trajectory dataset (a group of running trace collected from an expert

controller). Therefore, it does not need to explore a random action during the test

time. Second, the training and adaptation efficiency, offline RL is able to consume a

large data corpus and trained very fast, while online DRL would have to learn by a

lot of random explorations on real system with human, this is time consuming as each

feedback could takes a long time. (the simulator-based online DRL training, however,

cannot capture the true systems’ behavior and thus achieves a sub-optimal result).

On the other hand, thanks to the inherited generalization (Multi-task) ability of the

GPT2, our proposed method is able to adapt to a new environment faster than the

existing Meta-learning based algorithms.

We conducted an in-depth study on the MPEG V-PCC. We built two models to tackle

these challenges: (1) a new volumetric Rate-Distortion Model that depicts the rela-

tionship between the encoding parameters, mainly quantization parameter (QP) and

down-sampling rate (Dr) with the resulting files Bitrate (Rate) and PSNR (Distor-

tion). So that given a Bitrate target, we can choose the optimal encoding parameters

that maximize the PSNR of a single MPEG V-PCC video chunk. We systematically

validated our Rate-Distortion model on a famous volumetric video dataset (8i Vox-

elized Human Body) with eight sequences. The results show high accuracy. (2) a

new simplified graph model that depicts the frame dependency relationship between

the three streams of MPEG V-PCC, e.g., the Attribute Map Stream, the Geometry

Map Stream, and the Occupancy map streaming. We then design a Multi-constrained

optimal path (MCOP) algorithm on this graph to compute the optimal frame order

offline. We open-source these two models for future research in this field. Finally,

we design a new volumetric video streaming framework based on DASH and using

MPEG V-PCC as the codecs.
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We evaluated our new VSAS framework on a large corpus of network bitrate datasets

with a wide range of volumetric video sequences. We compared our framework with

two state-of-art systems, the Vivo, an octree-based compression codecs supported

system, and FVV, a mesh-based streaming system. We show that our framework

outperforms these two baselines with a large margin of 1.67x on average. We open-

sourced our code and dataset on Github https://github.com/VSASproject/vsas.

Our contributions are:

• For the first time, we tailor the existing 2D MPEG DASH video streaming

to support the MPEG V-PCC-based volumetric video streaming in 3D scenes.

We design a new Media Presentation Description format and a new Decision

Transformer-based ABR algorithm to control the bitrate adaptation process.

• We introduce a new Rate-distortion model for MPEG V-PCC-based volumetric

videos. We systematically validate our model on a large dataset and propose

an optimizer that outputs an optimal encoding parameter combination given a

bitrate target to satisfy the need of dynamic bandwidth.

• For frame-level adaptation, we design a graph-based model that can reflect

the complex frame dependency in MPEG-VPCC. We use it to passively drop

the unimportant frames when network capacity is insufficient due to in-chunk

fluctuation.

• We implemented a VSAS prototype on Quic-go [7] and MPEG V-PCC ref-

erence software [39], we conducted a trace-driven evaluation of VSAS over a

large-scale network traces corpus. The result shows a significant improvement

of 1.67x compared to the three state-of-the-art volumetric video streaming sys-

tems, Vivo [12], FVV-Mesh [8], VPCC-Raw [10].
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Figure 3.1: The environment occlusion causing Bitrate fluctuation.

3.2 Related Work

3.2.1 Background

Volumetric Video Streaming Vivo [12] proposed three visibility-aware optimiza-

tion to reduce the volumetric video Bitrate while minimizing the negative impact on

QoE. It is the pioneering work on octree-based point cloud video streaming. Our work

differs from it as we use a more recent MPEG V-PCC point cloud format instead of the

old octree-based Draco. GROOT [28], also based on octree format, modified the tra-

ditional octree data structure to support parallel encoding/decoding on mobile GPU,

drastically improving the decoding speed, which is agnostic to our work. Microsoft

High-fidelity Free viewport video [8] is a mesh-based volumetric video streaming sys-

tem, which takes a surface reconstruction procedure first to translate the point cloud

into triangle meshes, and then register the texture on these triangle surfaces. It is
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not backward compatible with the existing 2D video streaming pipeline.

Decision Transformer As the GPT and BERT show strong performance on long

sequence prediction in the language field, offline reinforcement learning, a type of se-

quential prediction problem, has evolved to use this strong sequence-to-sequence pre-

diction capability. Given a target reward, it predicts the best action with the highest

probability of reaching it at this step. In this way, a causal transformer(GPT) [5]

can be used to memorize all the expert demonstrations that ever reached the target

reward. It can find the most similar expert trace and outputs the action taken at this

step by that expert demonstration. Repeating this process in an auto-regressive way

will yield a online control process. DT encodes each token into an embedding and

adds a positional encoding to each embedding. These aligned sequences of embedding

are then fed into the GPT-2[49] Causal Transformer (it’s possible to use GPT-3 and

newer version of GPT here, but due to the speed issue, DT uses GPT-2 at present).

GPT-2 applies an attention mechanism to predict a left-shifted version of the input:

(⟨ŝk−W , âk−W , ĝk−W ⟩, . . . , ⟨ŝk, âk, ĝk⟩). This shifting is a key design component of the

Decision Transformer. All these elements are available during the training on an of-

fline collected trajectory of past replay. Such an offline trajectory can be collected

from expert demonstrations or random trajectories. 1

Volumetric QoE Vue [34] built a subjective QoE prediction model for volumet-

ric video on a VR headset. Which systematically studied the factor that impacts

the quality of experience of a volumetric video viewer using a Head-mounted-display

(HMD) device. They considered Viewport Smoothness SV , the Motion-to-Photon

Latency L, Resolution R, Viewport Drift DV , and Stalling B in their study and

concluded the relative weight. Because The HMD device performance solely deter-

mines viewport-related metrics, we only adopt the relative weight of Resolution and

Stalling in their study in our QoE model. We considered their viewport insights and

stalling time-sensitively in our design. While PSNR-I [27] proposed the PSNR for 3D

1During inference, at is unknown and will be predicted in an auto-regressive manner.
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geometry information, which we used in our evaluation.

Rate-Distortion Optimization Rate-Distortion Optimization and Rate-Distortion

Modeling are mature research fields in signal processing and video coding community.

It lies in the center of a trade-off between the encoded video rate and its quality(

roughly defined as the inverse of distortion). The traditional works focus on the

PSNR. For example, Singhadia et.al.[55]’s work established the relationship between

the QP, Encoding Rate, and the Reconstruction PSNR for H.265/HEVC codecs and

proposed a logistic model, and the result shows good accuracy. Our work differs

from theirs, as we focus on point cloud video instead of 2D video. There is also

3D rate-distortion optimization. In their work, Xiong et.al [65] propose to use the

occupancy map in MPEG V-PCC to guide the Rate-distortion optimization process,

which results in a fast CU mode selection algorithm. Our work, however, chooses

a direct modeling approach that targets the raw point cloud input instead of the

projected 2D map.

3.2.2 Limitations of the existing system

DRL-based 360-degree video ABR systems. DRL360 is a pioneer work on

optimizing the 360-degree video streaming with an in-depth study into the viewport,

tiling and bitrate adaptation mechanisms with strong theoretical analysis. The Deep

Reinforcement Learning was used to optimize the final adaptation. This paper studied

a similar, yet different type of video media, volumetric video, which is a group of point

cloud with a dynamic movement, that is rendered again to show. Both volumetric

video streaming and 360-degree steaming provides an immersive experience on HMD

devices. While compared to 360-degree video’s 3 DoF(degree of freedom) experience,

volumetric video advances with another three DoF.

However, they share lots of similarities, they both depend on the viewport predic-

tion, and they both have a tile-based ABR mechanism on DASH. What’s different
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is that Volumetric video has a higher bitrate in its raw format, thus demanding a

more efficient compression that is very different from H.264, and Volumetric video

has movement in the viewport trajectory, makes it more challenging to predict the

viewport for volumetric video.

Directly applying the DASH-based on-demand video streaming framework on volu-

metric video is not ideal. The main reason is the impact of the stalling effect. See

Fig. 3.2.

The stalling effect happens when the buffer is empty, this effect happens frequently

when the ABR’s bitrate prediction is inaccurate, and it becomes more serious when

then buffer is small. Which is common in the Live streaming applications, where the

buffer is set to one to two chunks for a lower end to end delay.

On this occasion, the playback will freeze. This effect is ok in a 2D scenario because

the user watches the video on TV. However, in a 3D volumetric scenario, it is unac-

ceptable. Because users use an immersive VR headset to view it, such stalling can

cause physical injury to the user. However, any DASH-based method can hardly re-

move the stalling effect because the DASH chunk makes the shortest decision interval

of 5 seconds. We thus introduce a passive frame-dropping method to mitigate this

stalling problem. As passive frame dropping will allow the chunk to be partially trans-

mitted, and thus by cutting the tail frames can guarantee low stalling in any network

circumstances. But MPEG-VPCC uses three different video streams with complex

inter-dependency. We solve this in our design by building a new graph model. While

we also adopted a more advanced ABR to improve the chunk-level bitrate decision

accuracy.
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3.3 Design

3.3.1 Design Overview

Fig. 3.3 illustrates the system framework. Which mainly involves two sides, the server

and client sides. Note that the server side can scale to support multiple clients. This

design is inherited from a standard HTTP service. While The client-side is a Unity

script written in C Sharp, running on a HoloLens2. This design can easily extend to

WebXR-based Android phones and other VR devices. As our framework is platform-

independent. The client side is responsible for the runtime adaptation, which includes

two modules. The first is the Bitrate adaptation module, which works on a chunk

granularity and makes the per-chunk decision of point cloud chunk representation.

The second one is a Frame Adaptation module responsible for the frame adaptation.

This module is an add-on to the Bitrate adaptation module, as the Bitrate adapta-

tion module works on a chunk granularity that equals a playtime of 5 seconds. If the

network environment experiences a significant change during this 5 seconds interval,

Bitrate adaptation cannot react. This is the root cause of the stalling effect. How-

ever, because Volumetric video is played on a VR headset, such stalling is minimally

acceptable. So We introduce a Frame Adaptation module to handle this scenario. On

the server side, the volumetric video needs to be compressed by the server into several

MPDs, with different representation levels. We design a new representation here, see

3.4, which reflects three factors, the Downsampling rate, the attribute QP, and the

geometry QP. However, there is no existing method to determine the combination of

these parameters to achieve a target bitrate, so we introduce a new Rate-distortion

model to facilitate this process.

Bitrate Adaptation module The bitrate adaptation module determines the bi-

trates of the playback process in a chunk granularity according to the bandwidth es-

timation and the viewport information. We choose a learning-based approach, which
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integrates bandwidth estimation and decision-making into a single GPT model. Our

analysis observes that the recently proposed offline reinforcement learning is a suit-

able class of algorithms for volumetric video streaming control. See the details in

Sec.3.3.3.

Frame Adaptation module The frame adaptation module is a passive module that

cuts the tail of the chunk when the actual network bandwidth runs lower than the

estimated available bandwidth, which will cause a stalling without a frame adaptation

module. This mechanism is beneficial for a weak network environment, where the

bitrate adaptation module rarely gets a chance to accumulate enough buffer.

Server-side DASH Representation Format We designed a new DASH Me-

dia Presentation Description format for the MPEG V-PCC-based volumetric video

streaming process. Which allows variable chunk size and frame rate. See Fig. 3.4.

The dynamic point cloud sequence is captured from the RGB-D cameras or comes

from a stereo-calibrated camera. Typically, such a capture system requires three or

more cameras to capture a whole human body point cloud in real time. The resulting

format is a point cloud. That is, each frame of the volumetric video stream is a static

colored point cloud. The V-PCC standard first projects the point clouds to three

planar images, including color and depth information from different projection angles

and aliased onto a plane.

We first cut the video sequences into 5-second chunks with an original frame rate of

15-30FPS. This is equivalent to 75-150 frames per chunk. Then for each chunk, We

compress it into N different representations(bitrate levels). For each representation, it

has a target bitrate. By using the Rate-Distortion Optimizer proposed in Section.3.4,

we find a set of encoder parameters that achieves this target bitrate. We then use a

MPEG V-PCC encoder with FFMPEG support to encode the chunks to N different

representations.

Finally, we generate an XML file called Manifest, including the URI link to each chunk
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Figure 3.4: The Media Presentation Description Format for VSAS.

and a list of available representations. This design ensemble the design of DASH and

HLS. An example Manifest and a Typical VPCC MPD is shown in Fig. 3.4.

3.3.2 QoE Model

QoE is the reflection of the humans’ perception and experience over a multimedia

content. In the scenario of the volumetric video streaming. It mainly includes three

factors. First, the individual quality of the frame Q0
i , which is the quality of a chunk

ci, this factor is directly related to the bitrate of the video, while, in this work, we

use point to plain (p2plane)-PSNR as our primary metrics, that is a reference-based

video quality assessment metric. It considers similarity between the origin content

and decoded point cloud. The formula is listed as below:

Q0 = PSNR = 20log10(MAXc)− 10log10

(
E(fi − f̂i)

)
. (3.1)

where fi is the pixel value after compression, and f̂i is the pixel value before the

compression. So it is a log scale measure of the mean difference before and after a
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compression/transmission process. For volumetric video, the basic unit is the point

instead of pixel, so fi is the point’s value.

The second factor is the quality switching penalty, this factor measures the fluctuation

of the video quality between differ net chunks. Human beings prefer a smooth and

consistent watching experience, therefore, it is better to avoid unnecessary fluctuation

of the quality shift. It is formulated as the change of the Q0.

Q1
i = |Q0

i −Q0
i−1| (3.2)

And the third factor is the stalling time, which is the time that the frame frozen,

which happens when the buffer is drained out. We defined is as Q2
i = max{Ct− St

Bt
, 0}.

Where Bt is the available bandwidth and St is the bitrate. And finally the overall

QoE is the linear combination of these three factors.

Qi = αQ0
i − βQ1

i − γQ2
i (3.3)

3.3.3 Bitrate Adaptation

Bitrate adaptation of an on-demand volumetric video streaming system differs from

traditional 2D video streaming systems due to the movement-caused network varia-

tion problem and a higher sensitivity to the stalling effect. In 2D video streaming,

the viewers tend to stay static (sitting on a chair watching a TV) during the viewing

process, however in 3D, because of the nature of 6 Degree-of-Freedom navigation, the

user will wear a VR headset and move around the viewing environment(for example,

a classroom), see Fig. 3.1. Further, when multiple users share a viewing environment,

their movement complicates the situation. On the other hand, Wi-Fi 6 and newer

generations of wireless networks root heavily on high-frequency, beam-forming tech-

nology, regardless of its higher throughput. This technical decision has made this

generation of wireless networks susceptible to occlusion because as the wavelength

of a wireless signal gets shorter, its ability to bypass the obstacles weakens. To this
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end, the user’s movement will be essential when predicting the bandwidth between

the Wi-Fi access point and the end device. [76]

Problem Formulation. Due to the similar binary file format and compatible codecs

format, on-demand volumetric video streaming over MPEG-VPCC is similar to a

typical ABR system. The video is cut into K chunks (i.e., segments), L represents

the playtime of each chunk. Each chunk can be encoded with different bitrate A =

a1, a2, . . . , aM . For each chunk Uk, the bitrate assigned is denoted as ak ∈ A. Note

that in each time slot t, the receiver side can determine to initiate a pull request to

download the k-th chunk and put it to the receiver-side playback buffer B, after Uk

has been downloaded, the the buffer space (measured by residual playing time) of

B is denoted as Bk. When BK < 0, it means the player does not have the content

to play at the moment, and it will lead to a stalling event. Stalling will cause the

picture of the volumetric video to freeze and potentially hurt the user from either a

physical or experience perspective. As can be seen in the above formulation, the key to

solving this temporal decision problem requires an accurate estimation or prediction

of average bandwidth during the next time slot Ck, and considering the current buffer

occupancy Bk, to choose the best version of k-th chunk ak, so that there won’t be

any stalling event, and the quality of play Eak is maximized.

This process is in fact a Markov Process. Where the state, sk represented as the

combination of the above mentioned features, and action being the representation of

the k-th chunk ak. and the reward r(sk, ak) quantified as the linear combination of

the stalling time and quality.

r(sk, ak) = q(ak)− β(dk −Bk−1) (3.4)

Here q(ak) is pre-computed by using the p2plane-PSNR[18], and we have R-D model

in Sec.3.4 to find the trade off between p2plane-PNSR and the bitrate Eak . It is now

a reinforcement learning, which optimizes the sum of the quality rk, subject to the
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Figure 3.5: Decision Transformer

bandwidth constraint.

a∗k = argmax
a

1

K

K∑
k=1

r(sk, ak)

s.t.sk+1 = f(sk, ak), ak ∈ A

(3.5)

Where f(s, a) is the state transition function that maps the state and action of the

current time slot k to the states of the next time slot k+1. Note that, the state tran-

sition probability 0 ≤ P (st+1|st, at) ≤ 1 is implicitly represented in f . Unfortunately,

the analytical form of this function is hard to obtain because it involves the complex

and heterogeneous network bandwidth variation and the personalized change of the

user viewing position. Thus, we seek a learning-based model to learn and represent

this hidden function parameterized by θ.

Decision Transformer for Volumetric ABR

Online and Offline Reinforcement Learning Due to its two traits, we consider

offline RL as our system paradigm. First Offline Reinforcement Learning algorithm is

more safe, as the volumetric video streaming is immersive, a wrong action of the ABR
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controller could frighten the viewer and potentially cause physical injury to the user.

Therefore, an online reinforcement learning’s random exploration behavior should be

avoided. Second, offline reinforcement learning allows a faster adaptation to the new

scenario, because offline reinforcement learning has a faster training speed, a large

trajectory dataset can be used, which allows the offline reinforcement learning to be

more general and has a multi-task ability.

Now, we formalize the reinforcement learning problem. the RL problem is a decision

making process, that aims to optimize the accumulated reward by finding a good

policy. Each of this RL task can be modeled as a Partial Observable Markov Deci-

sion Process (POMDP). Let M = (S,A,P ,R, µ). Where S is the state space, and

each state s ∈ S is within this set, it is patially observable for the volumetric video

streaming problem, as the underlying network status can only be estimated not truly

measured. While A is the action space, in the volumetric video streaming task it is

defined as the bitrate and frame rate of the next chunk. And P is the state transition

matrix.

Under a online setting(the traditional setting), the RL agent is allowed to explore the

random actions. The state would change accordingly, and send a feedback including

the new states st+1 and the reward rt+1, and using a policy or value gradient method,

the DRL agent could find a better policy. However, this process is time consuming,

in Volumetric video streaming setting, each step could takes 2 seconds to finish (2

seconds per chunk). While a typical PPO(policy proximal optimization) agent could

takes 100k steps to converge, this translates to a very slow training. When it comes

to the simulator-based online training, simulator is not a true system, and could

hardly imitate the behavior of a true system, thus any agent trained on simulator is

constrained by the fidelity of the simulator. This approach is thus not ideal.

While for offline reinforcement learning, the system could first run on any policy

defined. and then a trajectory {s0, a0, r0, . . . , sT , aT , rT} could be collected and form

a dataset. Using only this dataset D, making this problem more challenging than the
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traditional RL problem.

Since the multi-task nature of the volumetric video streaming, as different people and

different viewing environment would lead to a fundamentally different state transition

metrics P . For a set of tasks T . Ti ∈ T = {Mi, πi}. That is each task Ti is

corresponding to a partial observable Markov decision process Mi and a policy πi.

We use a double loop to minimize the in-task loss and the multi-task difference. See

Alg. 1.

Difference between the online and offline reinforcement learning for Volu-

metric ABR problem. Online reinforcement learning is a learning algorithm that

interacts with the environment and learns from the reward feedback signals. It grad-

ually learns the optimal actions by exploring different actions under the given states.

By balancing the exploration and exploitation, it could also avoid the negative im-

pact of this learning process. On the other hand, offline reinforcement learning does

not need to interact with the environment and relies solely on the previous offline

trajectory dataset to find an optimal solution. Offline reinforcement learning is more

challenging than online, as it needs to infer the full state transition by giving par-

tial observations without access to the new samples. However, because of its higher

sampling efficiency and safe behavior, it is widely used in autonomous driving and

robotics by imitating the human expert.

Advantages and limitations of offline reinforcement learning. The main

advantages of offline reinforcement learning are twofold: first, sampling efficiency.

Because the solution space of the volumetric ABR problem is much larger than the

traditional ABR problem, the sampling efficiency becomes a central problem in build-

ing a practical system. Offline reinforcement learning could train offline, compared to

online reinforcement learning training on the simulator, it achieves faster training on

a large solution space; second, safety, because offline reinforcement learning does not

explore random new actions during the run-time, its behavior is more predictable,

and therefore achieves a safer performance, which is importance on Volumetric ABR
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system because Volumetric video is widely viewed on HMD devices, this means a

poor streaming quality could potentially lead to physical injury. On the other hand,

the primary limitation of offline reinforcement learning is its generalization ability,

because the model is trained offline, and only do inference online, it has a limited

ability to adapt to new environment.

The movement-awareness for bitrate prediction. Here, we explore the movement-

awareness, see Fig. 3.6, the first row is the distance between the router and the head-

set, the second one is the angle, while third row is the corresponding bandwidth,

we can see that the bandwidth varies according to both the distance and the angle

between the router and the headset. Fig. 3.8 and Fig. 3.7 shows similar result on

classroom and outdoor scenes. This motivate us to involve the movement and posi-

tion as the input to the decision transformer, see Fig.3.9, the QoE can benefit greatly

by introducing the movement features into the state of the decision transformer.

States. The state of the rate adaptation module at time slot k includes several

factors. The first bandwidth estimation is denoted as Bk. Second, the playback buffer

occupancy is denoted as Ck. Third, the playback deadline Lk. Fourth, the viewer’s

movement trajectory in the most recent W frames V⃗k = [Vk, Vk−1, . . . , Vk−W+1].

Actions. The decision transformer will decide three actions for each chunk, first the

quantitative parameters Q⃗Pk for each block. Second, the point cloud density D⃗rk of

each block corresponds to the video resolution in 2D. Third, the frame rate of this

chunk Mk. For notation simplicity, we let ak = Q⃗Pk, D⃗rk,Mk Note that these factors

will determine the bitrate and quality of the volumetric video and will result in a

reward, our newly designed MPD format(See Fig. 3.4) allows indexing using QP and

DR as index. The bitrate is a function of these three parameters fBR(Q⃗Pk, D⃗rk)×Mk,

and the quality of the resulting chunk is measured by the receiver by using p2plane-

PSNR score, a full-reference metric, it can be directly referenced from the MPD

metadata.
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Figure 3.10: System Arch of Decision Transformer Controller.

Reward-to-go function. We use the reward function r(sk, ak) = q(ak) − β(dk −

Bk−1), and let the expected reward be G∗, then the reward to go is computed as

r̂ =
∑K

i=k ri during the training, as we already know the reward of the future playback

in the trajectory. During the inference, it is computed as expected reward deducts

all past reward r̂k = G∗ −
∑k−1

i=0 ri.

Offline Dataset Collection and Pre-Training See Fig. 3.10, the collection and

training architecture. The decision transformer is used to control the Unity-based

VR player, while the VR player will collect the history trajectory and reward and

update the offline training dataset on the edge server. The edge server will re-train the

decision transformer with an updated dataset periodically. 2 The training algorithm

is shown in Alg. 1. Here the loss of the Decision transformer is defined as

LDT = −ak log(âk[ak]), âk ∈ A

Where âk is the DT predicted action at k-th chunk, ak is the true-optimal action. The

2We note that there is a more efficient decision transformer that does not require a full model

fine-tuning to adapt to the new environment. We leave this part to our future study[66].
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decision transformer needs to be pre-trained before operation in real-world systems.

We used two methods to generate an offline trajectory dataset for the pre-training.

Random. Here, as the decision transformer is able to learn from the random exam-

ples, we start our trajectories with a random token set. We first choose a network

trace for each time slot k, and we get the bandwidth, and latency, then generate

a grid of viewports, in a circle, with an interval of 5 degrees. Now for each state,

we randomly sample N encoding parameters and M down-sampling rates from the

possible datasets. We then compute the PSNR using the Rate-Distortion Model in

Sec.3.4. We repeat this process for all the trajectories, and we get a dataset with

sufficient knowledge for the offline RL to discover the optimal setting under each

situation. Afterward, we compute the Reward-to-go for each trace at the end of the

trace generation.

RobustMPC. Besides the Random demonstration trajectories, to accelerate the con-

vergence of the decision transformer pre-training, we provide a portion of expert

demonstration. We implement a simple RobustMPC-based[70] ABR controller and

collect the running data, and we choose it because of its simplicity and reasonable

performance.

Run-time inference After offline pre-training, the decision transformer model is

ready to be used as the controller in a volumetric video streaming player. We set

the observation scope W = 10, selected through an empirical study. We first run the

bitrate adaptation controller with a RobustMPC-based online reinforcement learning

agent, then after W time slot, we start predicting the aW+1 with decision transformer,

and we move the history window forward by one-time slot. And continue the control

in this fashion.
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Algorithm 1: Decision Transformer for Volumetric ABR
Input: Task Set T , random offline dataset D, the expert demonstration P = {P}

1 for n = 1, 2, 3, . . . , N do

2 for Ti ∈ T do

3 for m = 1, 2, 3, . . . ,M do

4 Sample K-trajectory ϵi,m from D;

5 Find a demonstration ϵ′i,m from Pi;

6 Combine Sample and Demonstration ϵini,m = [ϵ′i,m, ϵi,m];

7 Batch Assemble GZ
i = {ϵini,m}Mm=1;

8 Prepare the Training batch H = {GZ
i }

|T |
i=1;

9 a⃗ = GPT2θ(H);

10 L = MSE(⃗a, a∗);

11 θ = θ − β∇θL;

3.3.4 Frame Rate Adaptation

As shown in the motivation, the chunk-level ABR cannot react to the network fluc-

tuation within the timespan of 5s chunk length L. While such mis-prediction could

result in a physical injury for a immersive VR viewer, and should be removed as

much as possible, we thus introduce a frame dropping mechanism to guarantee the

low stalling in this scenario. The intuition of frame selection at the server side is

to gracefully reduce the frame rate of a chunk when Client-Side ABR wrongly esti-

mates the Bitrate. This can greatly resolve the stalling (re-buffering) problem since

it will drop the tail part of a chunk when the playout deadline is reached. However,

unlike HEVC, MPEG V-PCC’s binary stream includes three separate streams, i.e.,

the geometry, attribute, and occupancy. This greatly complicates the frame depen-

dency and thus needs a new model to depict this character. A new frame-dropping

algorithm is needed to optimize the frame-dropping strategy. We propose the graph

model for this dependency. We use an MCOP algorithm to find the optimal sending

order for each GoP profile. Our algorithm runs offline and provides a profile for each

43



Chapter 3. An On-demand Volumetric Video Streaming System with Video-based
3D Codec

GoP structure (for each ctc.cfg file).

Insights: The frame dependency of MPEG V-PCC formatted volumetric video is

more complex than 2D video. Each MPEG-VPCC chunk includes several GoPs,

which start with a key frame (I-frame) and are followed by n non-key frame (P-

frames). Each P-frame depends on previous frame mi −→ mi−1. There are two

synchronized streams in a MPEG V-PCC chunk, one storing the texture (attribute)

image, called AVD, and another storing the geometry (depth) image, called GVD,

which includes two layers, one for the far side, and one for near side projection. The

frame i needs geometry and attribute image to decode correctly. And each AVD and

OVD follows standard 2D temporal dependency. We have several key observations

on the V-PCC frame dependency:

• The playback must start from an I-frame.

• The tail frames of a GOP could be dropped with the neglectable cost of PSNR.

• The geometry far layer could be dropped.

• The attribute layer of a frame may be dropped with a small cost on PSNR.

We note that adding support to the IBBP GoP structure is possible by constructing

a DAG graph on the streams. It is essentially similar to the GoP DAG of the IPP

structure, the only difference is that the B frame could have both backward depen-

dency to the previous P frame and a forward dependency on the next P frame, such

forward dependency could slightly limit the possible frame dropping granularity. In

this case, we usually need to drop the frames by entire P frame group (the two con-

secutive P frames and the B frames between them, the typical group includes four

frames). Since IPP GoP is the primary structure for the low-latency streaming, so

we focus on IPP structure here.

Graph Model Formulation of Frame DependancyWe encode these observations

44



3.3. Design

into a directed acyclic graph G = (V,E), as shown in Fig. 3.11. It is constructed as

below:

Vertices. Each frame mi includes three components, the near layer of a geometry

map image mg,n
i , the far layer of geometry map image mg,f

i , and an attribute map ma
i .

Each component is represented by a vertex in Fig. 3.11, and the three components of

all frames form the vertex set of G. We organize these vertices into three layers. The

upper layer is the geometry near layer. The second layer is the geometry far layer.

The third layer is the attribute layer. They are denoted as Mg,n, Mg,f , and Ma. Now

we add an auxiliary source vertex s and an auxiliary sink vertex t. Together they

form the vertex set V = {s, t} ∪Mg,n ∪Mg,f ∪Ma. Each vertex has two properties,

value pq(·), and cost pc(·). Where pq(·) must satisfy pq(I-frame) > pq(P-frame), and

pq(geometryNear) > pq(attribute) > pq(geometryFar). pc(·) is directly available as

the frame size in Bytes. Any assignment satisfying the above inequalities is valid.

Edges. Since our solution algorithm requires the values and cost on edges. We

define the pq(·) and pc(·) of a directed edge e = (va, vb) to be pq(e) = pq(vb) and

pc(e) = pc(vb). We now add edges. First, we add an edge from auxiliary source vertex

s to each I-frame’s geometry near layer, denoted as MI
g,n, that is:

Es = {(s,mg,n
i )|mg,n

i ∈MI
g,n}

Then we add an edge from each vertex in Ma to the virtual sink t, with value pq(·) = 0

and cost pc(·) = 0, so that algorithm can always drop all the consequent frames,

denoted as Et.

Et = {(ma
i , t)|ma

i ∈Ma}

Now, we add two edges to link the three frame components of the same frame.

(mg,n
i ,mg,f

i ) and (mg,f
i ,ma

i ). To show the dependency that the geometry far layer

of a frame depends on its near layer, and the attribute layer depends on geometry
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Figure 3.11: The frame unit graph.

layers. These edges are denoted as Eh. Finally, we link the attribute vertex ma
i to

the (i+1)th frames geometry near layer mg,n
i+1.

Skip links We now model the insight that the far layer of a geometry map may be

dropped. We simply add an edge e = (mg,n
i ,ma

i ) so that there is a detour path from

the geometry map’s near layer to the attribute layer, skipping the geometry far layer.

Similarly, we allow both geometry far layer and attribute layer to be dropped by

adding an edge e = (mg,n
i ,mg,n

i+1). We finish the graph construction here. This graph

will differ if the GOP structure change. Thus, the chunk GOP structure (determined

by the MPEG V-PCC profile) impacts its loss tolerance.

The Volumetric Frame Sorting Algorithm We can see that a cost-constrained

optimal path on G encodes frame sequences that achieve the maximum PSNR while

satisfying the bandwidth limits. Given the estimated bandwidth b̂ and deadline td,

the available network resources r is just the product of them, r = b̂× td.

r = b̂× td (3.6)

Korkmaz et.al. [24] proposed the multi-constrained optimal path (MCOP) algorithm
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Algorithm 2: The Volumetric Frame Sorting Algorithm.

Input: The profile set, B. The bitrate conditions, B̂. The chunk length, td.

Output: Optimal frame order under each bitrate condition and profile, S∗

1 Set S∗ ← [];

2 for t = 1, 2, 3, ..., T do

3 Set S∗
t ← [];

4 for b̂ in B̂ do

5 Compute r, given b̂ and td, using (3.6);

6 Construct frame unit graph G for profile Bt;

7 Compute the value of the pq(·) for each edge of G;

8 Run MCOP algorithm to solve G given r, S;

9 S∗
t ← S∗

t ∪ S;

10 S∗ ← S∗ ∪ S∗
t ;

Output: S∗

to solve the optimal path problem on the acyclic graph. We use this sub-routine

as a major building block in our Volumetric Frame Sorting Algorithm, which it-

erates through all the possible GoP structures listed in the available profiles and

computes the optimal path under different bandwidth limits. This procedure is com-

puted offline. While, in run-time, the server simply sorts the frames according to

the corresponding frame order. The Volumetric Frame Sorting Algorithm is shown

in Alg. 2.

The algorithm takes the profile set B, the ABR bandwidth steps B̂, and the time slot

deadline td as the input. The output is a lookup table containing the optimal frame

order given a specific chunk encoding profile Bt and ABR bandwidth step b̂. The

algorithm iterates through T profiles, and for each profile, it iterates each bandwidth

step b̂.

Given the profile and bandwidth step, the algorithm computes the resources con-
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Table 3.1: The Model Fitting Accuracy

Dataset
Volumetric

Sequence

aa1 ba1 ca1 da1 ea1 fa
1 ga1 ha

1 RMSE

8iVFBv2

[25]

longdress 30.42 -6.36 32.20 414.10 1.05 1645.88 756.59 1.49 0.0355

loot 106.49 -78.55 106.99 -539.5 -3.78 -417.33 -1096.22 1.44 0.0466

redblack 6.23 3.65 15.38 -565.3 382.62 -204.34 -28.34 0.34 0.0210

soldier 1.62 8.95 11.15 -962.86 679.78 -383.76 -51.02 1.28 0.31

Owlii

[69]

basketball 32.00 -5.70 14.54 141.46 0.01 80.79 106.60 1.15 0.1195

dancer 32.00 -5.70 14.54 190.59 1.04 123.53 39.59 26.49 0.1067

model 32.00 -5.70 14.54 229.56 0.01 108.39 79.33 1.17 0.0324

exercise 32.00 -5.70 14.54 707.25 0.00 70.35 48.60 0.77 0.0569

MVUB

[4]

andrew10 64.74 -39.53 43.26 40.13 0.00 121.25 -1.97 -0.23 0.0328

david10 1.89 28.22 4.69 29.14 11.72 53.78 27.97 14.76 0.0181

phil10 74.69 35.19 91.88 53.05 0.02 60.99 46.66 4.78 0.0357

sarah10 32.00 -5.70 14.54 55.20 49.92 96.66 188.69 0.29 0.0282

ricardo10 32.00 -5.70 14.54 123.04 15.55 186.21 -107.12 1.02 0.0495

straint r with the ( 3.6). Then we construct a frame graph, assign the edge weight,

and run the MCOP [24] algorithm to compute optimal frame order as a path on G,

denoted as S. The time complexity is O(m+m log(n)) for each setting. In run-time,

the server will choose the frame order from S∗ given chunk profile t and the bitrate

of the next chunk b̂.
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3.4 A New Rate-Distortion Model for Point Cloud

Compression

Trade-off between quality and resource: In the adaptive volumetric video stream-

ing problem, there is a tradeoff between the quality and the resource consumption,

especially the network bandwidth. For example, tuning the quantization parameters

to give a better quality will inevitably increase the bitrate of the resulting bitstream.

If this rate is above the capacity of the network bandwidth, the playback of the volu-

metric video streaming would be interrupted, causing a freezing picture. To address

this problem, we need to find a balance between the quality and the bandwidth re-

source consumption by tuning the quantization parameters. This problem is formally

defined as the rate-distortion optimization problem.

As shown in Design overview, A MPD representation, see Fig. 3.4, will need a Rate-

Distortion model to figure out the Bitrate and PSNR given the quantization param-

eter(QP) and downsampling rate (DR). However there is no such R-D model in the

existing work, we propose the first in its kind model here. Due the to the simi-

lar codecs implementation between MPEG V-PCC and the H.264/AVC, we build

our model based on Singhadia et.al.[55]’s work about Quantization Parameters and

Meynets et al.’s work [36] on point cloud feature extraction. Singhadia et.al.[55]’s

work established the relationship between the QP and the PSNR in a 2D scenario.

While in the 3D scenario, simply considering the QP is not enough. Because the 2D

image is dense and identically distributed. Contrarily, the 3D point cloud is sparse

and unequally distributed over the coordinate system. Although it is reasonable to

assume QP has an equal impact on each pixel for a 2D image, it is insufficient for

point clouds. We found that the point density and curvature significantly impact

the compression ratio (Bit per point). Therefore, we holistically consider point cloud

density, point curvature, and Quantization Parameters in our new 3D rate-distortion

model.
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We first extract the point cloud-related intrinsic features of the input. The first one

is point density, denoted as ϕp. This is the ratio between the number of points in

a space and space volume. ϕp = |P |
V
. While point curvature is more complex. We

borrow the definition from Meynets et al.’s work [36].

The curvature is defined on a neighborhood of a sampled point p. To compute it,

one needs to first fit the surface around the neighborhood with radius h, denoted as

N(p, h
2
) using a quadratic fitting. Then using the coefficient obtained in the fitting,

we can compute the local curvature centered in p.

ρ =
(1 + d2)a+ (1 + e2)b− 4abc

(1 + e2 + d2)
2
3

(3.7)

We define κ as the mean curvature over the entire point cloud. In practice, it is

sufficient to use a sampled subset of points to estimate this value.

κ =
1

|P |
∑
p∈P

ρp (3.8)

In contrast to ϕp, κ, which are intrinsic characteristics of the input point cloud, Dr is

a tunable knob in most 3D libraries. Without losing generality, we consider uniform

down-sampling here. In this setting, Dr is a linear knob to tune the effective point

density ϕt
p, with relation ϕt

p = Drϕp. ϕt
p is an intermittent variable here, we replace

it by Drϕp in our following discussion. After transforming effective point density ϕt
p

to log scale, it has a sigmoid style jumping impact on the final PSNR and Bitrate.

That is why we use a sigmoid function to depict this pattern. See (3.9).

ga1
1 + elg(Drϕp)−ha

1
(3.9)

The G-PSNR function. The rationale behind this sigmoid logit relationship is

rooted in the definition of point2point-PSNR(G-PSNR) [47]. For each decoded point

f ′
i , the PSNR tool will find its matching point in the original point cloud fi by

searching the k-nearest neighbor in 3D space. So, as long as the point density is high
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(in terms of a threshold, ϕt
p ≥ h

1/2
1 ), down-sampling will have a minimal impact on

this searching process. But when the effective point density drops below a threshold

ϕt
p < h

1/2
1 , it will massively interrupt this matching and cause a huge matching error,

leading to a sudden PSNR drop. Together we conclude the form of the G-PSNR

function as in (3.10):

f g
PSNR(QPg, Dr, κ, ϕp) = ag1 × exp

{
−
(
lg(κ)QPg − bg1

cg1

)2
}

+ dg1 × exp

{
−
(
lg(κ)QPg − eg1

f g
1

)2
}

− gg1
1 + elg(Drϕp)−hg

1

.

(3.10)

The Bitrate function. During the 3D-2D projection procedure, the 3D points

are projected to several optimized patches. One can think of such a patch as an

optimized projection plane that minimizes the magnitude of the projected RGB-D

image pixel value. So, as long as the effective point density is above a threshold

ϕt
p ≥ h

1/2
2 , the mapping on the 2D patches will not change. So as long as ϕt

p ≥

h
1/2
2 , changing ϕt

p has a limited impact on bitrate BR, so we also use the sigmoid

function to model this pattern. On the other hand, point curvature κ also impacts

the bitrate. As κ increases, the impact of QP will arise because a more complex

geometry structure will need finer quantization on depth value. Since this impact

changes only when κ greatly increase, we use a log scale function to depict this

pattern, see da1 × exp

{
−
(

lg(κ)QPa−ea1
fa
1

)2
}
.

fa
BR(QPa, Dr, κ, ϕp) = aa2 × exp

{
−
(
QPa − ba2

ca2

)2
}

− da2
1 + elg(Drϕp)−ea2

.

+ fa
2 κ.

fBR = fa
BR ∗ (1 +m).

(3.11)

Our measurement found that the attribute(color) stream takes most of the encoding
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bits. Hence, it is sufficient to assume the total bitrate is just 1+m times the attribute

stream bitrate. The resulting volumetric rate-distortion model is then (3.12) and

(3.11).

fa
PSNR(QPa, Dr, κ, ϕp) = aa1 × exp

{
−
(
lg(κ)QPa − ba1

ca1

)2
}

+ da1 × exp

{
−
(
lg(κ)QPa − ea1

fa
1

)2
}

− ga1
1 + elg(Drϕp)−ha

1
.

(3.12)

Model Validation Dataset. We evaluate our model on a large corpus of volumetric

video sequences, which includes three datasets, the MVUB [4], Owlii [69], and 8i [25],

each including sequence with thousands of frames. They represent three different

types of volumetric video contents. Microsoft Voxelized Upper Bodies(MVUB) is

a dataset of human upper body, it is captured by four RGBD cameras, at 30fps,

each lasts for 7-10 seconds. It is later processed to 1024x1024x1024 voxels. Owlii

Dataset, on the other hand is full body human point cloud dataset, which includes

four sequences basketball, dancer, exercises, and model, captured at 30fps, lasts for

20 seconds. Finally 8i, is a full body point cloud dataset that captured by 42 RGB

cameras, including four sequences soldier, longdress, loot, and redblack, with 30fps

frame rate and 10 seconds length. As these sequences has different content type, we

think these sequences reflects generality of our proposed Rate-Distortion model.

Model Fitting. We use a standard curve fitting function in the scipy library to fit

our model, with an random initial weight and a learning rate ϵ = 0.0001. We set

the maximum iteration to be 10k. The fitting parameters and the accuracy is listed

below in Tab. 3.1.

Result. We can see in Table. 3.1 that the RMSE reached below 0.05 for all the

sequences within the tested QP and Dr range. Therefore, our model is a practical

building block for further rate-distortion optimization in the streaming framework.

The fitting curve is demonstrated in the Fig. 3.12, Fig. 3.13, and Fig. 3.14. Where
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the scatters are the true measurement values, and the solid curve is the fitted model

predictions.

We also compared our 3D Rate-Distortion with three other approaches: 1. 2D-RD,

that directly apply 2D rate-distortion to the three compressed V-PCC streams, (At-

tribute map, geometry map, and occupancy map); 2. MSE-RD, using a Mean-Square-

Error(MSE)-based Rate-distortion model instead of PSNR-based Rate-distortion model;

3. E2E, that directly let the RL controller to determine the encoding parameters,

without needing a Rate-Distortion model for Mapping between encoding parameter

and bitrate.

In Fig. 3.15, we can see that VSAS-RD model has the best performance. Compared

to the 2D-RD method, it considered the 3D related features, e.g., the point cloud

density, which allows a more accurate R-D model on a wide range of different con-

tents. Compared to MSE-RD approach, as MSE is not a good QoE indicator (as

show MSE has a non-linear relationship to the user’s subjective experience), there-

fore it has not achieved excellent QoE. Compared to the E2E-RD approach, As there

are more unknown parameters for Decision Transformer to learn (it needs to learn

Rate-Distortion model implicitly), this cause a higher learning complexity, and as

a result leads to a slower convergence in pre-training, as well as slower adaptation

to the new environment (it does not sure whether Rate-Distortion Relationship has

changed for the new environment). This results in a worse performance and unstable

controller behavior. The experiment confirms its inferior performance compared to

the analytical 3D R-D model approach.

3.5 Evaluation

In this section, we perform experiments on various traces to evaluate the QoE per-

formance of VSAS compared with several existing solutions. Our results on a wide
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range of open source volumetric video datasets show that the VSAS framework can

avoid overshooting throughput and improve the QoE performance of VPCC under

4G, 5G, and Wi-Fi environments.

3.5.1 Experiment Setup

We cut the volumetric videos into the chunks of 2 seconds, and uses a bitrate sets of

[1MB, 5MB, 7MB, 15MB, 25MB] according to the MPEG common test conditions

for immersive video [40], the video encoder is the HEVC encoder used in the default

encoder of the MEPG V-PCC’s TMC3 [39], we use the ctc-common.cfg as the primary

configure file, which is based on the IPPP GoP structure, and has a GoP size of 15.

We slight modify this implementation with FFMPEG decoder, which has a much

faster decoding speed than the default decoder used in the reference software. We

use the GPT2-default (124M) as the foundation model of the decision transformer,

and fine-tune it on our trajectory corpus with 35k sequences.

3.5.2 Methodology

Video traces. We built a large corpus of volumetric video sequences, which in-

cludes three datasets, the MVUB [4], Owlii [69], and 8i [25], each including sequence

with thousands of frames. They represent three different types of volumetric video

contents. Microsoft Voxelized Upper Bodies(MVUB) is a dataset of human upper

body, it is captured by four RGBD cameras, at 30fps, each lasts for 7-10 seconds.

It is later processed to 1024x1024x1024 voxels. Owlii Dataset, on the other hand

is full body human point cloud dataset, which includes four sequences basketball,

dancer, exercises, and model, captured at 30fps, lasts for 20 seconds. Finally 8i, is

a full body point cloud dataset that captured by 42 RGB cameras, including four

sequences soldier, longdress, loot, and redblack, with 30fps frame rate and 10 seconds

length.
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Network traces. We combined traces from three public datasets: Belgium 4G/LTE

bandwidth dataset [61] for 4G/LTE, Raca dataset [48] for 5G/NR, and the Kaggle

Internet Speed Dataset [21] for Wi-Fi. The network emulation is replayed by calling

netem [31].

Baseline: We choose five baselines, FVV-Mesh [8], ViVo [12], GROOT [28], DRL360 [79],

and MT-BC. They represent three state-of-art technologies for adaptive volumetric

video streaming, see details as below:

• FVV-Mesh[8]. We use MeshLab to compress original point cloud frames to

mesh+texture atlas(FVV format). The Bitrate is determined by the number of

sample points. We use the Ball Pivoting Surface Reconstruction method and

choose 500, 1000, 2000, and 4000 sample points for four bitrate steps. And

follow the system design in FVV-Mesh[8] to reproduce their results.

• Vivo[12]. According to the setting in Vivo, we use Draco[9] to prepare the

chunks. The Bitrate is determined by the leaf size of VoxelGrid. We set the

leaf size of the VoxelGrid filter to 10, 7.5, 5, and 3.5 for four bitrate levels. The

viewport-based pruning feature is implemented as mentioned in the paper.

• GROOT [28]. GROOT is a G-PCC based volumetric video streaming system

optimized for the mobile devices, e.g., smart phones. Their major contribution

is to propose a parallel decodable tree data structure to compress the point

cloud. And based on it, they achieved high-performance hardware acceleration

on the Mobile GPU. They also consider the bitrate adaptation and viewport

pruning problem. We use it as a baseline for mobile Volumetric video streaming

system.

• DRL360 [79]. DRL360 proposed a DRL framework to control the 360-degree

video streaming. We compare it with our system by extending it to the volu-

metric environment.
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• MT-BC. MT-BC is another offline reinforcement learning algorithm, which

uses Multi-layer perception (MLP) instead of the GPT-2 as the sequence pre-

dictor. And it uses a behavior cloning as the imitation learning method, we

replace Decision Transformer with Multi-task Behavior Cloning to see the im-

pact of the decision transformer in our entire system.

• VSAS.Our newly proposed framework, with both chunk-level ABR and MCOP

based frame dropping. We use 1k lines of golang codes to implement the server

by modifying the HTTP server example of quic-go[7].

3.5.3 Overall performance.

Fig. 3.16 shows the QoE comparison among different baselines. We can see that

VSAS outperforms the MT-BC, Vivo, DRL360, GROOT, and FVV-Mesh For 19.10%,

44.98%, 61.18%, 65.27% and 253.3%, respectively. It outperforms the MT-BC because

MT-BC uses a Multi-layer Perception (MLP)-based backbone, which has a weaker

ability than the GPT-2 used by the VSAS. VSAS outperforms the Vivo, as Vivo

uses a traditional decoupled design that independently predicts the viewport and

bandwidth, which has a smaller solution space, therefore limiting its potential. While

the G-PCC compression format used by Vivo also has a lower compression efficiency.

While GROOT is focused on speed instead of quality, it has a lower QoE due to

its lower compression efficiency and empirical bitrate adaptation strategies. DRL360

uses a traditional online DRL ABR algorithm instead of the offline RL algorithm

Decision Transformer we used. Such an algorithm has a slower convergence speed

and sometimes have difficulties adapting to a new scenario, for example, a mixed

video seqeuence from differnet dataset. Fig. 3.20 shows the QoE performance among

different volumetric video sequences. We can see that VSAS outperforms the MT-

BC, Vivo, DRL360, GROOT, and FVV-Mesh for 24.43%, 32.89%, 45.21%, 66.36%,

and 213% percent on MVUB; which is similar to the result on 8i, which is 29.37%,
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ferent volumetric video sequences
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different networks
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different networks
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Figure 3.23: PC-MSDM comparison

on different networks

33.88%, 47.41%, 73.84% and 355.4%, this is because MVUB has a more frequent

content movement, giving a larger gain space for the frame dropping and Bitrate

adaptation strategy.

3.5.4 QoE Breakdown.

Since different people could have different preferences over the QoE function, to reveal

where the advantage comes from, we draw the breakdown figure for the three com-

ponents of the QoE: the PSNR (quality), the stalling time (delay), and the quality
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switch penalty(quality variation).

Quality. See Fig. 3.17, the PSNR of baselines. We can see that VSAS outperforms

MT-BC, Vivo, DRL360, GROOT, and FVV-Mesh for 7.25%, 13.07%, 17.12%, 32.91%

and 41.05%, respectively. The gain mainly comes from the higher compression rate

of MPEG V-PCC, which achieves a higher quality under the same bitrate. Decision

Transformer also gives a more accurate bitrate selection that maximize the utility of

the avialable bandwidth, which translates to a higher quality. Note that in Fig. 3.21,

Fig. 3.22, and Fig. 3.23, these three different video quality metrics demonstrate a

similar result as of PSNR.

Stalling Time. While Fig. 3.18 shows the stalling time comparison, we can see that

VSAS has significantly lower latency than all the baselines. This is mainly because of

VSAS’s frame-dropping mechanism that automatically drops the tail frames, which

allows it to guarantee a very low stalling.

Quality Switching Penalty. Finally, regarding the quality switching penalty, see

Fig. 3.19, where VSAS has a relatively lower quality switching penalty. This is mainly

due to its higher bandwidth prediction accuracy and a more effective bitrate adap-

tation logic coming from the decision transformer, which has a much better control
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Figure 3.25: Impact of the Different Pre-fetching strategy

performance compared to the existing online reinforcement learning algorithms.

3.5.5 Ablation study.

We now explore the contribution of each module in VSAS. Fig. 3.24 illustrate the dif-

ference between VSAS with Frame Dropping on (VSAS-FrameDrop) and off (VPCC-

Raw). We can see that VSAS-FrameDrop outperforms VPCC-Raw for 17.19%,

42.81%, and 22.84% improvement, respectively, under 4G, 5G, and Wi-Fi networks.

This demonstrates the positive impact of adding the passive frame-dropping mecha-

nism (step 2) to the traditional client-driven ABR.

Real-time behavior of the VSAS. To see the framd dropping in action, we

draw the real-time bitrate plots in Fig. 3.28. In this trace, the ABR mechanism often

leads to an exceedingly high bitrate or a sending rate far under the true bandwidth.

This is because the decision granularity of Client-driven ABR is in the levels of 5

seconds. The prediction at the start of the time slot could be wrong within the 5s time

interval. VPCC-Raw cannot adapt to this in-chunk network change. While seen in

the 20-60s in the trace, the VSAS can dynamically decrease the Bitrate through frame

dropping in a finer granularity, thus eliminating most of the stalling. (which happens

when chosen Bitrate exceeds the true bandwidth). While VSAS is not perfect, when
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Figure 3.28: Real-time Bandwidth of

VPCC-Raw and VSAS

true bandwidth exceeds the ABR chosen Bitrate, like between 60-80s, VSAS cannot

increase the Bitrate above the VPCC-Raw chunk bitrate. Since frame dropping can

only reduce the Bitrate of ABR given chunk, not increase, we leave this disadvantage

to future work.

Impact of different Pre-fetching Methods. Fig. 3.25 explore the impact of

different pre-fetching strategy on the VSAS, we replace the pre-fetching module of

the Decision Transformer with BOLA, Festive, and Oboe, respectively. We can see

that all three pre-fetching method achieve a similar QoE, at 167.3, 159.8, and 173.6,

respectively. We conclude that VSAS can works with different pre-fetching algorithm

without losing much of its performance.

The computation overhead. Our algorithm uses GPT-2 as the foundation of

the sequence predictor, however, GPT-2 is a large model, we measure the com-
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putation overhead of the GPT-2. Since the Chunk size is 1-5 seconds for most

applications(Video-on-demand, Live-streaming), so as long as the inference time is

lower than the 1000ms, than the system could achieve a real-time control. See

Fig. 3.27, the inference time of the different versions of the Decision Transformer run-

ning on different versions of GPT-2 model(default, Medium), we can see that GPT-2

default version costs 49.3ms on MVUB video sequences, and 43.6ms on 8i sequences,

this difference comes from different input token length. while GPT 2-Medium takes

72.8ms and 65.6ms respectively, which is longer than the GPT 2 default as it includes

more parameters. While, we also involve a LSTM-based version for comparison, which

is also called Decision-LSTM, it has a inference time of 26.7ms and 22.5ms. However,

note that all these inference time is far smaller than the real-time threshold(1000ms),

and therefore, we prefer the large model GPT2 that fits into our system for better

performance. The memory costs is show in Fig 3.26. This size is able to fit into

the GPU memory of most of the commodity machines, so we consider this system

practical for deployment.

In conclusion, the VSAS outperforms state-of-art systems by a large margin. The

improvement mainly comes from better client-side ABR algorithms and the ability

to optimally drop the frames when the network experience a sudden fluctuation.

3.6 Discussion and Conclusion

This paper proposed a new DASH-based framework for volumetric video streaming,

supporting MPEG V-PCC codecs. This framework features a higher temporal com-

pression ratio and a better 3D QoE. We observe stalling and smoothness as the major

difference between existing 2D system and 3D systems. To tackle this challenge, we

proposed a new rate-distortion model for 3D QoE, and a new frame dropping mech-

anism tailored for MPEG V-PCC, we control the bitrate adaptation through a new

offline learning paradigm, and develop a decision transformer-based ABR controller.
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We implemented our framework, and evaluated it on a large dataset, the results shows

a 1.67x improvement over three SOTA systems. Although our work outperforms the

existing baselines, it still has potential room for further improvement, in terms of

handling the scenario change during the playing, and faster server-side encoding to

make this framework suitable for live volumetric video streaming.
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Chapter 4

Few-shot Adaptive Bitrate

Volumetric Video Streaming with

Prompted Online Adaptation

4.1 Introduction

In the era of virtual reality, a new type of application volumetric video streaming

demonstrate a good potential. It provides a free-viewport experience, which allows

not just the rotation of the viewing point but also the changing of viewing position. It

is now feasible to capture the volumetric video in real-time with off-the-shelf devices.

For example, three Kinect cameras can support full-angle volumetric video, while one

is sufficient for one-angle video streaming. At the same time, there are more and

more VR/XR viewing devices at consumer exposure. For example, Apple Vision Pro

has been widely considered the most innovative product in recent years, along with

a wide range of XR glasses from other vendors [60, 13].

There have been existing works in supporting tile-based volumetric video streaming.

These works mainly focus on optimizing the volumetric video streaming by several
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viewport-based heuristics using a deep reinforcement learning framework [29]. Where

they train a policy to optimize the system performance under a given distribution.

However, in practice, these RL-based systems face two challenges: first, the poor

generalization ability to the unseen environment, that is, when the system encounters

a strange environment, its performance will degrade greatly; second, the catastrophic

forgetting, that is when an RL policy is trained on a mixed diversified dataset, it

could forget the knowledge, and perform badly on a single dataset.

Recently the Large Language Models have led to a new trend of the AGI (Artificial

General Intelligence). Researchers found that as the size of the language model in-

creases, its ability to few-shot learning shows a steep improvement. ChatGPT [3] can

learn a new task without retraining the core transformer weights. This provides us

with a new approach to solving the above-mentioned out-of-distribution adaptation

problem by reformulating the volumetric video streaming control into a sequence pre-

diction problem. We can borrow LLM’s ability to achieve a few-shot adaption for

new datasets, thus improving the generalization of the tile-based volumetric video

streaming systems.

Designing a few-shot offline reinforcement learning system for volumetric video stream-

ing systems is non-trivial. The first challenge is a lack of a framework supporting

edge-assisted few-shot reinforcement learning. The second challenge is modeling the

volumetric video streaming system into a multi-variate sequential prediction problem.

The third challenge is training such a model and balancing the online adaptation abil-

ity with the inference cost. To tackle them, we introduce a systematical design of a

novel GPT-based model demonstrating a high few-shot learning ability in our proto-

type implementation. We evaluate it on a large dataset corpus, and it shows a fast

run-time adaptation and good out-of-distribution generalization.

We summarize our contributions as below:

• For the first time, we study the generalization problem of the volumetric video
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(a) Accurate Prediction (b) Rotation Error

Figure 4.1: Visual Effect of Viewport Prediction Error.

streaming system through a measurement study.

• Based on these observations, we design the first generalized few-shot volumetric

video streaming (FewVV) framework, and reformulated the volumetric videos

streaming control as a multi-variate sequence prediction problem.

• We solve this problem using a GPT-based transformer Volumetric Causal Trans-

former.

• We evaluated FewVV on various networks, content, and viewing environments.

We show that FewVV outperforms the existing system on overall QoE and can

generalize to the out-of-distribution video sequences effectively.
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Figure 4.2: Viewport Prediction Generalization Issue

4.2 Related Works

4.2.1 Volumetric Video Streaming Systems

Volumetric Video Streaming Systems are systems that support the immersive 6

Degree-of-Freedom Video Streaming. Different from 360-degree videos, volumetric

video streaming allows not only the rotation of the viewport but also the movement

of the viewing position. Such a video format has been widely used in movie pro-

duction [52], virtual reality entertainment [71], and industry’s remote technical sup-

port [73]. These systems can be classified into three categories according to their stor-

age format, the point cloud-based [12], the mesh-based [8], and video-based [39]. More

recent development has been presented in Neural Radiance Rendering(NeRF) [37]

and Neural Network-based methods [45]. Vivo [12] is one of the earliest research on

the tile-based point cloud format video streaming. They first demonstrate the com-

ponents of the volumetric video streaming systems, then propose a visibility-aware

streaming system. Vivo [12] are different from our work, as we study and explore

the need for generalization, instead of the basic viewport heuristics. GROOT [28],

68



4.2. Related Works

on the other hand, is the first work that proposes a new tree data structure that is

effectively parallel, which allows GPU-assisted decoding, which hugely accelerates the

frame rate of the decoding process, their implementation achieves a piratical system

working on a wide range of mobile devices (smartphones). Our work does not focus

on the codecs of the dynamic point cloud and, therefore is agnostic to GROOT [28].

Zhang Ding, et al. [75] considered the case of multi-user streaming with Wi-Fi 6’s

beamforming and multi-casting technique to improve the wireless speed. They con-

sider a cross-layer design to take the viewer’s movement and relative positions caused

occlusion into bandwidth scheduling. Our work differs from it as we consider move-

ment for scheduling the content in the application layer, while their work uses the

user’s moving trajectory to improve link layer efficiency. The focus of our work is

on the generalization of the volumetric video streaming systems, the foundational

architecture belongs to the research stream of Vivo, the tile-based volumetric video

streaming with point cloud format. Now we analyze the generalization problem in

existing systems and inspire our novel design.

4.2.2 Visibility-aware adaptive volumetric video streaming

Visibility-aware adaptive volumetric video streaming is a approach that first cut the

point cloud into a number of tiles, each tile is compressed and transmitted indepen-

dently with its own compression parameters. Because the visibility of each tile are

different from others, they have different visual importance, for example, if some tiles

are far from the viewer, they are less important, while if a tile is occluded by other

tiles, it could be excluded from transmitting. The visibility-aware adaptive volumet-

ric video streaming use the visibility to compute the relative importance of the tiles

and choose different transmission parameters accordingly.
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4.2.3 The Generalization Problem in Volumetric Streaming

Control

The impact of viewport and position (FoV) prediction error The exist-

ing volumetric video streaming systems depends heavily on the viewport predic-

tion, however, it could be difficult to achieve high accuracy on the practical envi-

ronment [34, 74]. Which has largely undermined the effectiveness of the viewport

pruning-based tiled volumetric streaming [12]. In Fig.4.1, we depict the visual im-

pact of the viewport prediction error. Where Fig.4.1(a) is the accurate volumetric

video of the dancer, the viewport predictor in Fig.4.1(b) failed to predict the rotation

angle accurately, thus it decide to prune the tile including the dancer’s lower limb,

causing a fracture of picture. To quantify this loss, in Fig.4.2(a), we show the band-

width cost of rotation (type 1: yaw, pitch, raw error) and position (type 2, x, y, z

coordinates error) error for the volumetric video streaming system.

The FoV prediction generalization The Field-of-View (viewport) prediction of

existing works takes a multi-layer-perception (MLP) approach, which is a traditional

neural network-based method, although this approach has strong performance on the

training dataset, it has difficulties to generalize to the out-of-distribution (OOD) en-

vironment. We demonstrate this effect in Fig. 4.2(b), when MLP is trained on 8i

dataset, and used on FSVVD [14] dataset, its accuracy drops from 93.1% to 67.2%.

Similarly, when MLP is trained on FSVVD dataset and used on 8i dataset, its accu-

racy drops from 95.8% to 76.7%. To resolve this problem we need a sequence model

that can generalize to the new environment in a few-shot basis (tuned by 5-10 expert

examples). Such capability has been noticed in the recent large language models. In

this paper, we try to introduce this potential approach in this paper. We first design

a new framework to facilitate few-shot adaptation of the volumetric video streaming

system.
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4.3 The GVVS framework

The system mainly includes three parts. The Volumetric Sequence Server (VoD)

running on the Edge Server; the Unity Player, a player application on the XR

headset, that receives the point cloud tiles and renders them to the environment; and

the Birate Selector, whose job is to control the bitrate according to the feedback

coming from the Unity Player. Now, we introduce them in detail and show their

interaction workflow.

4.3.1 Volumetric Sequence Server

Volumetric Sequence Server has following modules:

Storage of the DPC The dynamic point cloud (DPC) is stored on the edge server

using lossless octree-based compression. We use Draco Library [9] from Google as our

encoder. This design allows a Video-on-Demand service, and can be easily extended

to the Live-streaming scenario.

Tile cuts and compression The dynamic point cloud (DPC) is a series of frames.

Each frame is a static point cloud, a set of unordered points in space. Volumetric

Sequence Server first decompresses the lossless full DPC into the raw format, then

sub-divides the space into N blocks, and each block is called a Tile. The tiles are

processed independently using Draco [9], an octree-based encoder, which can compress

the Tile into a target bitrate. It then transmit these compressed tiles in a data stream

to the Player.
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4.3.2 Unity Player

The Unity Player is an application running on XR devices (e.g., HoloLens 2 [60], Ocu-

lus Quest II [13]) written using Unity Game Engine [11]. It is the primary component

on the receiver side and is directly responsible for rendering and showing the DPC to

the viewers. Its function is in three folds: First, it collects the viewers’ viewport infor-

mation, history bandwidth, and other data; Second, it sends the information to the

Bitrate Selector to ask for a proper bitrate selection vector at+1 for next frame t+ 1,

then the Bitrate Selector will send the vector at+1 to the Volumetric Sequence Server

(Edge Server); Finally, the Unity Player receives the tiles compressed by Draco [9]

from the Server, and render it on the XR device.

4.3.3 Bitrate Selector

The Bitrate Selector is located on the Edge server, that receives the feedback signals

(viewport, distribution shift, bandwidth) from the Unity Player, and runs the volu-

metric causal transformer algorithm to output a bitrate selection action. It reuses

the history prompt when there is no distribution shift, while when there is a shift,

it attaches the extra prompt from the Unity Player and adapts to the new scenario

using a few-shot adaptation. We give the details of the Bitrate Selector Algorithms

in Sec. 4.5.

4.4 Problem Formulation

QoE Model

Quality-of-Experience (QoE) is a metric that reflects the human’s subjective percep-

tion score over multimedia content, there are two factors that impacts this perception:

first, the quality of the frame qj; second, the playback latency (delay) lj. Since we
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have tiled the frame into several tiles, the quality of these tiles can be independently

adjusted. We denote the quality of the i-th tile in the j-th frame as qij. This quality is

proportional to the bitrate allocated to this tile qij ∝ bij. We define the quality of the

frame j to be the average of each tile. Let the number of chunks be C. See Eq. 4.1.

qj =

∑C
i=1 q

i
j

C
(4.1)

And QoE of the frame is the linear combination of the quality and stalling time, that

is

QoEj = a1lj + a2qj. (4.2)

The instance value of the hyper-parameter a1 and a2 is different between different

viewers, according to their preferences.

The GVVS Bitrate Selection (GVVS-BS) Problem

We now formulate the GVVS bitrate selection GVVS-BS problem. First, the objective

of the system optimization is to maximize the accumulated QoE of all frames across

all tiles. The action knobs are the bitrate bij for each tile i in each frame j. The

constraint is the dynamic bandwidth limits Bt, and the available bitrate ranges R.

The formulation is shown as follows:

argmax
bj ,I(cj)

J∑
j=1

QoEj

s.t. Bj ≥
M∑
i=1

I(cij)b
i
j

M ≥
M∑
i=1

I(cij)

bij ∈ R

(4.3)

Where the algorithm should choose the bitrate bij for each tile j in each frame j, and

determine the value of indicator function I(cij) whether a tile i should be transmitted.
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Clearly, since the system works under a VoD assumption (the video is pre-compressed

into several bitrate levels). So the available bitrate bij must belong to a discrete set

of the bitrates R. The sum of the transmitted bitrate for each tile I(cij)b
i
j must not

exceed the available network bandwidth.

Problem Analysis. The GVVS-BS problem includes three sub-problems: first, the

viewport prediction, which predicts the viewport of a user in a scene-given given con-

tent; second, the bandwidth prediction, which uses past bandwidth and buffer status

to predict the future bandwidth; third, the bitrate allocation, where the available

bitrate is allocated to the proper tiles that matter to the user. Some existing systems

solve these three problems in an agnostic manner. However, these three problems are

not independent. For example, the bitrate selection could change the user’s viewport

in the next time slot, which sometimes leads to a vicious circle of fluctuation. On the

other hand, because the viewport could change greatly according to different users’

behavior characteristics and their interest in different content, the out-of-distribution

situation is common in real-world deployment. Such a generalization problem is a

major obstacle to an ideal and practical visibility-aware streaming system.

Potential Approach. To address the first challenge, the error propagation due to

the decoupled design of three modules, we propose an end-to-end sequence modeling

approach to directly predict the action of the next time slot, given the history of pre-

vious states, actions, and rewards. In this way, the three subproblems are simplified

into a sequence prediction problem. To further improve the generalization ability and

address the second challenge of out-of-distribution adaptation, we design a few-shot

learning approach on top of the sequence model, which uses trajectory prompts to

hint at the sequence model during the run-time, allowing a fast online adaptation. In

the next section, we give a detailed description of our design.
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4.5 End-to-End Causal Transformer for GVVS

4.5.1 Preliminaries

Formally, reinforcement learning is a sequential decision-making process. The algo-

rithm (agent) takes feedback from the environment and outputs the action according

to a learned policy, hoping to optimize an objective. In traditional settings, rein-

forcement learning is operated online, where the agent explores the environment by

trying some randomly sampled actions, the environment feedback to the agent with

an instance of reward R and the state transition F , and the RL agent slowly learns

the state transition, while solving an optimal policy under this environment.

However, the RL problem can also be formulated to a offline scenario, where all the

history is recorded as trajectories of actions, reward, and states, these trajectories

are collected into a dataset D. A K-trajectory is defined as a sequence of length

K, {r0, s0, a0, r1, s1, a1, . . . , rK−1, sK−1, aK−1}, that is a sample of a teachers action

sequence. The offline RL should learn the optimal policy solely depends on this

dataset’s trajectory.

States For the GVVS-BS problem, we first need the information to predict the

bandwidth and the viewport, for bandwidth, we choose the bandwidth of past W

time slots as the states B = {Bt−W , . . . , Bt−1, Bt}, we also define the Nq available

bitrate levels for each tile to be Q = {q1, q2, . . . , qNq}. For viewport, each viewport

point is defined by a 6-tuple v = [x, y, z, yaw, pitch, row], and we use a W time slots

viewport history V = {vt−W , . . . , vt−1, vt} as the viewport state. We also include the

buffer occupancy O in our states. The state vector is then S⃗ = [B,Q,V ,O].

Actions For each time slot, we determine the bitrate of each of M tiles, according

to the states provided above. We also set an indicator action, that indicates whether
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Figure 4.3: The architecture of volumetric causal transformer model.

a tile will be included in the transmission. That is bitrate selection vector B⃗ =

[b1, b2, . . . , bM ], and the tile occupancy vector I⃗ = [I1, I2, . . . , IM ], where Ii ∈ [0, 1].

The action vector is the combination of these two actions a⃗ = [B⃗, I⃗].

Reward After each round, the feedback reward is computed as the instant QoE,

which is the interpolation between the quality, and the latency shown in Eq.(4.2)

Joint Optimization of Higher-order data. As seen in the above formulation,

the order of states and actions is higher than a traditional 2D ABR problem, where

the action only has one dimension, and states come from 1-dimensional embeddings.

Higher-order data challenges a traditional multi-layer-perception (MLP) neural net-

work to capture their internal relationship. To address this problem, we instead use a

stack of decoder-only transformer modules with many parameters to solve this com-

plex joint optimization problem and train it on a large-scale trajectory dataset. See

the details in the next section.
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Algorithm 3: Volumetric Causal Transformer Pre-training

Input: Scene TaskTscene, Network TaskTnetwork, the history training trajectory

dataset D, and the few-shot expert prompt dataset P = {Pscene,Pnetwork}

1 for n = 1, 2, . . . , E do

2 Initialize the batch pool;

3 for Ti ∈ Tscene do

4 for m ∈ {1, 2, . . . , Z} do

5 Randomly choose a trajectory ηi,m with length K in D;

6 Generate the prompt η′i,m from P i
scene;

7 Form the input sequence ηini,m = [η′i,m, ηi,m];

8 Summarize the scene task batch SZ
i = {ηini,m}Zm=1;

9 for Ti ∈ Tnetwork do

10 for m ∈ {1, 2, . . . , Z} do

11 Randomly choose a trajectory ηi,m with length K in D;

12 Generate the prompt η′i,m from P i
network;

13 Form the input sequence ηini,m = [η′i,m, ηi,m];

14 Summarize the network task batch LZ
i = {ηini,m}Zm=1;

15 Integrate a training batch A = {LZ
i , S

Z
i }

|Tscene∪Tnetwork|
i=1 ;

16 a⃗ = V CTθ(A);

17 L = MSE (⃗a, a∗);

18 θ = θ − β∇θL;

4.5.2 Model Design

We design the volumetric causal transformer architecture in Fig.4.3, which is based

on the decoder only transformer architecture of GPT [3], and we introduce its detail

as below:

The decoder block: The overall architecture of the volumetric causal transformer
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is a stack of basic transformer decoder block. The input is first mapping into an

embedding, and then feed into the first layer of the causal decoder block. The block

uses a multi-head attention as the core, followed by a feed forward layer.

Attention(Q,K, V ) = softmax(QKT/
√
dk)V (4.4)

We give the equation of the attention in Eq.(4.4). where dk represents the scale factor.

This stack of decoders include a large amount of the weights, and is able to learn a

complex knowledge during the pretraining given a large dataset, which allows it to

have a better generalization ability than the existing approaches.

4.5.3 Training Process

During the training, we choose two sets of datasets with several training tasks Ttrain =

Tscene ∪ Tnetwork, the test tasks Ttest are mixed tasks with different combination of

the different network and scene. For each task, we generate a prompt. Then, the

generated prompt is attached to the head of the raw decision sequence. Let the

prompt length be K∗, and the raw decision sequence of length K, then the attached

input sequence for the training is of length K +K∗. These sequences are organized

into batches before the training.

See Alg. 3, the Volumetric Causal Transformer pre-training. The training is done

in batches. There are two levels of the batch: first, the outer batch, which groups

E training instance, and second, the inner task batch, which chooses Z different

examples from each task (network task, scene task). We first sample a trajectory ηi,m

from the random offline dataset D, which includes a mixed large dataset generated

with rule-based and random action trajectories. Then we generate the prompt η′i,m

from the expert demonstration dataset P i
network for network tasks, and P i

scene for scene

tasks. Then, the prefixed input sequence ηini,m is formed by prefixing the prompt to

the main input sequence. The sequence then has a length of K + K∗. Then, we
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Figure 4.4: The inference pipeline of GVVS controller in run-time

group Z traces to form the scene task batch SZ
i and network task batch LZ

i for each

instance of the tasks in the task categories.

The training is done by first attach both scene batch and network batch to a whole

epoch batch A = {LZ
i , S

Z
i }

|Tscene∪Tnetwork|
i=1 , then the optimizer first do a forward step

a⃗ = V CTθ(A), where VCT model outputs the next action vector a⃗. The MSE loss

between a⃗ and a∗ is computed L, and the parameters of the causal transformer θ is

updated through back-propagation with a learning rate β.

In this way, the Volumetric Causal Transformer is trained to recognize the distribution

shift (task change) directly by recognizing the prompt. It can even adapt to the scenes

and network from our training dataset, We confirm this ability and its limitations in

our ablation evaluation Sec. 4.7.
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4.5.4 Inference with Prompt for Runtime Adaptation

During the test time, as the Volumetric Causal Transformer is trained to take prompt

and the input trace, we first initialize a zero input trace at the beginning of the

test(real-world system operation). Then, as the data accumulate, we can get a full-

length K-input sequence in the real world, which is maintained in an auto-regressive

fashion. The receiver controller collects and generates the prompt, including an action

sequence and high-accuracy rewards. The process is seen in Fig. 4.4. The system

can then work by repeating the line. 16 in the Alg. 3 without computing the loss

and the back-propagation process. Prompt-based tuning does not require the model

parameter θ to be fine-tuned online, and thus has a faster adaptation speed and

requires less computing power during the deployment.

4.6 Implementation

4.6.1 Unity Player Implementation

We implement GVVS Unity Player modules by extending Draco’s example on Unity

Engine [11] with a Microsoft Mixed Reality Toolkit [43]. The player is responsible

for receiving and buffering the received point cloud frames into a playback buffer,

then it decodes the point cloud frame and concatenates the point cloud tiles together

after depression, then it is fed into the rendering queue. The player then renders the

point cloud onto a stub object with color using the Unity Pcx-plugin [41]. The player

runs a small module that detects the context change event and feeds the volumetric

sequence server with high-quality feedback when there is a change in scene or people.
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4.6.2 Volumetric Sequence Server Implementation

We use PyTorch to implement Volumetric Causal Transformer(FewVV). We train

FewVV on our medium-quality dataset, we collect the expert data using the converged

PPO agent, and we then mix in a large portion of random demonstrations to expand

the size of the dataset. We implement the Storage Module using the quic-go example

HTTP server [7], we implement the tile compression and decompression module using

Draco [9], and implement the tile cut with Open3D Library [81].

4.7 Evaluation

4.7.1 System Setup

Video Parameters: Our video sequences are chosen from the database of 8iVSLF [25],

MVUB [4], and Owlii [69]. We cut the original frames into 12 tiles referencing the

setting in Vivo [12], according to the 3D space boundary of each frame.

Network Trace: Our network traces are mainly from dataset Belgium 4G/LTE

bandwidth logs (bonus) [61], Kaggle Internet Speed Dataset [21] and a 5G dataset

[48], we divided these datasets into 4G/LTE, 5G, and WiFi for trace generation.

Evaluation Metrics: We use QoE defined in Section. 4.4 as the primary evaluation

metric. We adopt two full-reference 3D video quality assessment (VQA) metrics

PCQM [36] and point-to-plain PSNR [59] to compute the per tile quality in Eq. 4.1.

Because PCQM is a measure of distance, so a smaller PCQM represents a higher

quality, while for p2plain-PSNR, a larger PSNR shows higher quality, we use residual

of PCQM to balance this difference. The QoE hyper-parameters are determined by

the user preference (delay preferred or bandwidth preferred).

We evaluate GVVS (FewVV) with three baseline schemes:
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• ViVo [12]: Vivo uses a decoupled design, it propose a MLP model to predict

the viewport, then develop an optimization algorithm to assign proper weights

to different tiles to achieve the viewport-oriented tile pruning and optimization,

they use a lightweight bitrate estimator to finish the bitrate selection. Because

ViVo didn’t provide a source code, we reproduce ViVo according to their de-

scription.

• Rolling POT [29]: Rolling POT proposes a prediction-optimization-transmission

framework, that achieve a better prediction and optimization coordination.

• QoE-DAS [63]: QoE-DAS first propose a innovative QoE model of volumet-

ric video inspired by the perspective projection of the 3D computer graphics

rendering process, and then it transforms QoE optimization to a submodular

function and proposed a greedy algorithm.

• Vue [34]: Vue first studied an edge-assisted transcoding system for volumetric

video, they build the first QoE model for mobile edge-assisted volumetric video

streaming. It uses a group of small machine learning models to implement a

adaptive multiview transcoding scheme, that adapts to bandwidth dynamics

and improve the QoE by saving bandwidth consumption.

• Yuzu [74]: Yuzu is the first super resolution framework for volumetric video

streaming. They optimize the inter and intra frame behavior of the existing

3D super resolution models. Which increase the inference speed of the 3D SR

models by 542 times, and allows a real-time 3D super resolution. Their full

system implementation shows a good real-world performance at the cost of a

slight higher latency penalty.

• Multi-task Behavior Cloning (MT-BC) [1]: A offline imitation learning

algorithm with meta-learning ability, it is another approach to achieve gener-

alization, we use it in the adaptation ability comparison as baseline. Behavior
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Figure 4.6: QoE Components Breakdown.

Cloning learns from experts’ trajectories and conducts pairs of states and corre-

sponding optimal actions, it is less general, and more sensitive to training data

quality.

4.7.2 Overall Performance

From a perspective of overall QoE, we evaluate the performance of FewVV system.

The QoE Comparison to the existing methods As shown in Fig. 4.5(a),

FewVV consistently outperforms the baselines on different video sequences. First,

the Recardo sequence, since the content of the video remain to be the same person, it

requires less generalization ability. FewVV outperforms the Yuzu, Vue, Rolling POT,

QoE-DAS and Vivo by 8.66%, 22.85%, 44.68%, 49.17%, and 47.20% respectively.

While on the Longdress+Andrew10 sequence, which starts with Longdress sequence

in 8i dataset, then followed by Andrew10 sequence in MVUB. This leads to a distribu-

tion shift during a single playback session, and would test the generalization ability of

the volumetric video streaming system. Here FewVV outperforms the Rolling ROT,

QoE-DAS, and Vivo by 43.60%, 46.12%, and 51.32%. This result shows that FewVV
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can generalize to different content features. We also show the point-to-plain PSNR,

and PCQM in Fig. 4.5(b) and Fig. 4.5(c), this confirms that our gain is consistent

across different visual quality assessment (VQA) metrics. While Fig. 4.5(d) depicts

the statistical performance of the FewVV on full video dataset corpus, which shows

a consistent higher quality compared to baselines.

QoE Breakdown Analysis The QoE score for each frame is calculated by a linear

combination between uniform QoE score and latency penalty, we analyze these two

components’ impact in Fig 4.6. we can see that the FewVV algorithm’s advantage

is mainly gained from uniform QoE score (Fig. 4.6(a)), which means FewVV assigns

bitrate for each tiling with higher accuracy, and can predict the viewport more ac-

curately, which avoids transmitting the invisible tiles and reduced the bandwidth

consumption. On the other hand, we can see in Fig. 4.6(b), FewVV can also get a

lower latency penalty, which is 16.64%, 5.64%, and 10.52% percent lower than Vivo,

QoE-DAS, and Rolling POT, this is because FewVV has a higher bandwidth pre-

diction accuracy, that prevented using excessive sending rate, thus reduced network

queuing delay. This gap widens to 42.07% percent compared to the Yuzu, this is

because Yuzu needs to call the 3D super resolution model, which leads to a high

model inference delay. Fig. 4.7(b) shows the bandwidth prediction comparison across

the baselines, where FewVV demonstrated a higher accuracy, which roots from its

better generalization ability and a larger model size, that deliver a superior sequence

prediction capability.

The performance under different networks Fig. 4.7(a) evaluates the perfor-

mance of FewVV under different network environments compared to the baselines.

For 4G/LTE networks, FewVV achieves 10.26%, 20.75%, 43.61%, 46.13%, and 51.32%

higher QoE respectively compared with Vivo, QoE-DAS, Rolling POT, VUE, Yuzu.

For 5G networks, FewVV gains 10.91%, 21.01%, 41.07%, 49.69%, and 44.52%. For
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Figure 4.7: The Generalization to the Different Network Condition

WiFi networks, FewVV outperforms other models by 12.15%, 14.32%, 37.51%, 43.76%,

and 44.04%. Such results demonstrate the FewVV’s strong generalization ability to

new network environments.

4.7.3 Ablation Study

To explore the root cause of the FewVV’s gain compared to existing systems. We

evaluates the relative importance of different system factors on FewVV.

The impact of the dataset quality and scale Since FewVV is an offline rein-

forcement learning algorithm, its performance depends on the quality and scale of the

training dataset. We evaluate this impact factor here. We first explore the impact of

the dataset quality in Fig. 4.8(a), we can see the gap between the expert and random

datasets are 4.89%, 9.06%, and 5.40% for FewVV, MT-BC, and Vivo respectively.

FewVV has a smaller gap than MT-BC, this is because FewVV can learn the intrinsic

relationship between the bitrate, viewport, and QoE from random trajectories, it is

less sensitive to the training trace quality.
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Second, we explore the impact of the dataset scale in Fig. 4.8(b). We can see that

the gap between the small and large datasets are 8.13%, 12.33%, and 22.95% re-

spectively for ViVo, MT-BC and FewVV. This is because the FewVV is based on a

large language model, it has a slower convergence during the pre-training stage, so

it takes more offline data trajectory to train. however, its has a higher asymptotic

performance when converged. Although FewVV requires more data in pre-training,

the pre-training is done offline, so it has no impact on the run-time adaptation per-

formance of FewVV, we will explore FewVV’s run-time adaptation performance in

next section.

Fast Adaptation to New Scene and Network Condition In Fig. 4.9(a), we

change the sequence from Andrew10 to David10 during the run-time, we can see that

FewVV converges within 30 iterations, while MT-BC costs 175 iterations and ViVo

costs 255 iterations. We also compare the performance of FewVV for offline mode,

adaption for 50 iterations, and adaption for 200 iterations respectively.

4.7.4 System Overhead

To explore the real-world applicability of FewVV, we conduct a group of experiments

to analyze its system overhead, including analysis on computation resources, mem-
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ory usage, and overall system performance under various conditions. The primary

impacting factor here is K, the length of the context window.

Fig. 4.10 depicts the GPU Utility of FewVV under different context lengths K. When

K increases from 8 to 64, the GPU Utility of FewVV goes up from 8.3% to 18.5%.

This is because a longer context length requires more operations within each layer

of the VCT model, which naturally increases the computation resource consumption.

Similarly, the Memory Usage also goes up from 660MB to 1512MB, as shown in

Fig. 4.11. Changing K is an effective trade-off between the system overhead and the

performance. In Fig. 4.12, we can see how the Overall system performance changes

according to the K. We observe that when K reaches a sufficient length of 32, the

system performance gain will diminish. To sum up, a typical value of K=32 could

reach an ideal performance for FewVV, which consumes a GPU utility of 12.9% and

a memory usage of 980MB, which is not a bottleneck for most real-world deployment

environments. However, a user could choose a proper K that fits into their system

capacity in real-world deployment.

4.7.5 Discussion

System Complexity

System complexity is a potential limitation of FewVV, as shown in Sec. 4.7.4. FewVV

has a higher system complexity regarding GPU utilization and memory usage. It is

mainly because of a larger control model VCT and a longer context window size.

Although a larger model and a longer context window size bring a better general-

ization ability, its complexity is also higher. Nevertheless, in practice, we observe

that the system complexity incurred by FewVV is not a bottleneck to the system

performance under a typical setting. However, to allow our system to be applicable

to a wider range of real-world deployment environments, we think reducing the model

complexity is an important direction for future work.
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Dependency on Dataset Quality

The dependency of dataset quality is another potential limitation of FewVV. In

essence, FewVV will need to learn from the offline collected trajectories. Although it

can selectively learn the dataset by recognizing the high reward trajectories, learning

a good action from a poor dataset is still challenging. We construct two categories

of poor-quality datasets to explore the potential impact of the dataset quality on

the FewVV. In the first dataset, we mix the expert (high-quality) trajectories with

the rule-based (low-quality) trajectories. By increasing the ratio of the rule-based

dataset, we get a training dataset with worse quality. Similarly, we construct the

second dataset by mixing expert and random trajectories.

The results are shown in Fig. 4.13. As the quality of the dataset drops, the per-

formance of FewVV drops slightly but is maintained at a high level. We think the

quality of the dataset does have an impact on FewVV. Yet, as long as the amount of

low-quality data is not dominant, our algorithm can resist its negative effect without

losing much performance. But, in future work, it is possible to improve the robustness

of FewVV to further reduce the negative impact of poor quality trajectories, allowing

the FewVV to be more practical in real-world applications.
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4.8 Conclusion

In this article, we studied the generalization problem of the volumetric video stream-

ing system, a type of virtual reality video. The existing systems use DRL-driven

viewport-based pruning and bitrate allocation to improve communication efficiency.

We examine the limitation when these systems experience a distribution shift, where

the system is tested on an unseen dataset with an out-of-distribution environment.

To alleviate these limitations, we propose a new framework, GVVS, that allows a few-

shot adaptation. We develop a new formulation suitable for sequence predictors, then

solve it with a few-shot transformer model. The evaluation demonstrates a significant

improvement over the existing system in both in-distribution and out-of-distribution

scenarios.
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Chapter 5

A Bitstream-corrupted Volumetric

Video Dataset for Partial Reliable

Error Concealing

5.1 Introduction

As 3D capturing devices like RGB-D camera and LiDAR become more compact and

affordable. The 3D media that can support free-viewport experiences is getting more

and more attention. Applications such as teleconference, sports game broadcasting,

and Metaverse are widely used in commercial activities and educational scenarios for

professional and entertainment purposes. Which has now becomes a one of the most

dominant applications [44] for the VR [13] and XR [60] devices. There are several

formats of the immersive videos, first the 360-degree video, which is the first widely

commercialized immersive video format, 360-degree video provides a parametric ex-

perience that allows the users to experience a real-world capture environment with

excellent quality, it is a killer application for most of the VR headsets like Oculus

Quest II, Hololens II, and the Apple Vision Pro. Such video is essentially a projected
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video of multiple cameras calibrated with a single origin. Because its compress for-

mat is large similar to the existing 2D video frames, it can rides over the current

video streaming infrastructure including the Content-Distributing-Network (CDN)

for video-on-demand service, and the overlay networks for video conference and Live-

streaming services. However, this format cannot provides six-degree-of-freedom ex-

perience, that is it only allows the users to rotate the viewport while not changing

the viewing position of the viewer, that largely limited its immersiveness for the user.

Therefore, several free-viewport video formats are proposed, e.g., volumetric video,

Neural Radiance Fields (NeRF) [37], and the 3D Gaussian Splatting [23].

NeRF has the highest quality compared to the volumetric video and 3D Gaussian

Splatting, that uses a Multi-Layer-Perception Network to learn an implicit repre-

sentation of a 3D scene, that given the position and the angle, it outputs directly a

radiance level with several parameters. Such technique provides a camera level quality

by providing a very accurate lighting fidelity. However, its large amount of param-

eters cause a very large storage costs, a single frame could have tons’ of Gigabytes,

making it unsuitable for dynamic scene storage and streaming, even worse, its implicit

representation nature making it hard to decompose the frame into blocks, preventing

it from being suitable for the viewport-dependant bandwidth saving schemes. As a

result, NeRF is not ready for streaming 3D videos.

Therefore, the Volumetric video streaming [12, 74, 34], which stores the 3D content in

a collection of points with temporal movements, achieves a perfect balance between

the quality and the backward compatibility to the existing Internet architectures, and

becomes the dominant video format for the large scale adoption. The raw dynamic

point clouds have a high demand for network bandwidth, ranging from 200Mbps

to 600Mbps. For today’s network devices, such a high throughput could be diffi-

cult to transmit over the Internet, involving multiple hops of routers and networks.

Therefore, compression is a necessary technique to enable commercial DPC-based

applications.
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In traditional real-time video streaming, because of the low latency requirement,

RTP is widely used as the transport protocol with strong compatibility with the

video codecs and relies on the UDP protocol, giving a low communication latency.

However, this low latency leads to a break in reliability. Although the video codecs

have some tolerance for packet loss, either through FEC redundancy encoding or error

concealing methods, it would still cause some damage to the image. This effect is

rarely studied in 3D scenarios. Although extensive research is on deep learning-based

2D video restore, there is limited work on the dynamic point cloud. This paper aims

to build a bitstream-corrupted volumetric video dataset that reflects a real-world

corruption situation.

This paper is organized as follows. First, we propose a corruption model based on the

possible patterns of the network loss situations. Second, we build a comprehensive

dataset that reflects most of the corruption scenarios. Third, we conduct a detailed

analysis of the factors and features of the corruption patterns. Finally, based our

observation, we point out the guidelines for designing an ideal learning-based error

concealing model for volumetric video based on these discoveries.

We made several original contributions:

• We propose the first error corruption model for the real-time and live-streaming

volumetric video. We build a new corruption model that has several new param-

eters based on real-world network loss models, we argue that our model has a

more realistic effect than the existing network agnostic datasets. And therefore

providing a more accurate benchmark for the existing error concealing methods

on volumetric video streams.

• We open-source one of the first bit-error corrupted volumetric video stream-

ing dataset, that reflects the loss corruptions occurs in the real-time and live

streaming scenarios. Where the network are unreliable or partial-reliable due

to the strict latency requirements.
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• Based on our dataset, we analyzes the corruption performance on different type

of volumetric compression codecs. Finally, we analyze the artifact and the

implications of these video codecs.

5.2 Dataset

Volumetric Video is a new type of media format that provides 6 DoF experiences to

the users. Each frame of a volumetric video is a dense colored point cloud. Which

could either be captured by using a single RGB-D camera, or multiple stereo cameras,

achieving different level of quality and fidelity’s. According to different quality, cap-

ture devices, and subject of capture, the volumetric video datasets could be classified

to several classes, including the full body dataset 8i, the upper body dataset MVUB,

the full scene dataset FSVVD, and so on. These datasets are in its raw format ply,

that is a binary encoded points, each points has several parameters, including its

position in the space, the color, and lighting information. However, the dense point

cloud is a highly bandwidth intensive, there dataset in its raw format is not suitable

for Internet video streaming, a typical volumetric video has a bitrate of 1.4Gbps be-

fore the compression. Therefore, a range of compression algorithms are proposed to

facilitate the video streaming process. MPEG G-PCC and Draco take a Octree-based

compression methods, it first organize the points into a Octree, then encodes the po-

sition of each points with a incremental coding methods, note that this approach has

no temporal compression feature, which means the frames of a sequence are encoded

independently.

However, these compression itself cannot provides a adaptive video streaming service,

it is necessary to combine them with the specific video streaming service frameworks.

DASH and RTP are two representative technologies, whereas DASH is good on its

scalability; RTP has a lower latency, and is more responsive. The early stage of

the DASH technologies only provides video-on-demand services of long video, like
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movie and TV programs. Which has now been replaced by the short videos and

live castings. The live streaming services does not use a reliable network protocol,

therefore leading to parts of packet loss and bit-errors from times to time. The error

concealing technologies is thus proposed to protect and recover the video codecs.

Recently, the deep learning-based error concealing of the volumetric video is also

proposed for this purpose.

These learning-based error concealing algorithms need a dataset that includes the

volumetric videos before and after the corruption and there lacks a benchmark to

compare different volumetric error concealing methods. Therefore, in this work we

propose the first bitstream-corrupted volumetric video dataset.

Our dataset includes three type of scenes:

• Biterror-corrupted Voxelized Human Body (based on 8i dataset[25])

• Packet-corrupted Upper Body (based on Microsoft Voxelized Upper Body dataset[4])

• Stochastic-corrupted Full Scene Volumetric Video Dataset (based on FSVVD

datsaet[14])

For each scene, we corrupt it with different corruption parameters, we provide 16

combinations of the corruption parameters and in total, we have 1.5k frames of cor-

rupted video datasets with its original frame as reference frame, and the corrupted

frame with different corruption parameters.

5.3 Corruption Model

Network loss models play a pivotal role in the realm of wireless communication, serv-

ing as the cornerstone for accurately depicting the behavior of packet loss in simulated

network environments. These models are essential for conducting network simulations
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Figure 5.1: Gilbert Model

and emulations, which in turn are critical for predicting system performance, guiding

the design of communication protocols, and evaluating the efficacy of various network

strategies. The significance of network loss models lies in their ability to encapsu-

late the inherent unpredictability and complexity of wireless channels, where factors

such as multipath fading, shadowing, and interference contribute to the variability in

packet loss patterns.

The development of network loss models reflects a transition from basic to complex

representations, enhancing the accuracy of wireless network simulations. Initial mod-

els like the Bernoulli Model assumed independent packet losses, while subsequent

models such as the Gilbert and Gilbert-Elliot Models introduced state transitions to

account for loss bursts. Further complexity was added with models like the Three-

state Markov Model and the Extended Gilbert Model, which consider multiple states

for varied packet loss scenarios.

These models are essential for predicting the quality of video transmission and for de-

vising strategies to mitigate the effects of data loss. As we embark on this exploration,

we will methodically review these models, detailing their unique characteristics and

applicability to the realm of video streaming.

Bernoulli Model: The Bernoulli Model [42, 2, 51, 67] is a simplistic approach that

treats each packet transmission as an independent event with a binary outcome: either

a success or a loss. This model assumes that the probability of packet loss remains

constant across transmissions and does not account for the bursty nature of packet
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losses. On contrast, Bernoulli model define RRL (reception run-lenth) and LRL (loss

run-lenth) as i.i.d variables, where in reception status packets are intact, in contrast,

in loss status, the packets would experience a loss. The random variable Xi is set

to 1 if the packet i is lost. We define the average loss rate as r̂, while RRL, LRL

distribution is given as:

fRRL(i) = r̂(1− r̂)i−1 for i = 1, 2, . . . ,∞

fLRL(i) = (1− r̂)r̂i−1 for i = 1, 2, . . . ,∞

Gilbert Model [72, 20]: In the Gilbert model, a Markov chain with two state R

(Receive) and L (Loss) are introduced. The advantage of Gilbert Model in packet loss

simulation is it’s capability of capturing the dependency between consecutive packet

losses, providing a more accurate representation of burst loss behavior.

The Gilbert Model consider the transmission is always start with the first state of R.

In state R, the transmission is error free, while state L indicate packet loss. The prob-

ability that state R transit to state L and its reverse process are p and q, respectively.

Therefore we have following state transition matrix:

P =

R L

R 1− p p

L q 1− q

Gilbert-Elliot Model [54]: This Model is an extended version of Gilbert Model.

That allows both the good and bad states to have packet loss, therefore, this model

offers a more flexible framework to represent different probabilities of loss in each

state, thus accommodating varying network conditions.

Three-state Markov Model [38]: This model adds an intermediary (I) state to

the Gilbert-Elliot Model, providing a finer granularity in the transition between loss

and no loss states. This model is particularly useful for environments where packet
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loss is not solely binary but can involve temporary degradation in signal quality.

Typically, both the state G and state I are error-free. However, the state G have a

much more higher self-transition possibility than state I, which leading to a long-term

of lossless status in state G and a short-term of lossless status in state I. Therefore,

with the help of state I, it can better represent the burst packet loss.

P =

G B I

G 1− p p(1− h) ph

B q (1− h)(1− q) h(1− q)

I q (1− h)(1− q) h(1− q)

After implementing these aforementioned network loss models, we can proceed to sim-

ulate network transmission to obtain various Bitstream-corrupted Volumetric Videos.

Because of different robustness among different encoders, not all Bitstream-corrupted

files can be successfully decoded into damaged ply files.

5.4 Dataset Analysis

In this section, we analyze the characteristics of the collected volumtric video dataset

with bitstream corruption. Which is based on three uncorrected volumetric video

dataset 8i[25], MVUB[4], and FSVVD [14].

Geometry Dominant Loss Effects See Fig. 5.4, in this set of frames, most of

the corruption happens on the geometry information, and therefore, leading to the

distortion or loss of the geometry information. Which can be roughly classified into

two categories: i) the root node loss, where the loss happens on the root nodes or

low-depth layer of the octree data structure, this types of loss would cause a blank

area in a large portion of the volumetric 3D objects. In our example, the skirt area of
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Figure 5.4: The Loss on the Root Node of the Octree Data structure(Geometry Loss

Dominant)
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Figure 5.5: The Loss on the Color encoding parts(Color Loss Dominant)
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the dancer is fully lost. Clearly, this type of loss would cause a significant challenge

to the spatial interpolation and temporal prediction-based error concealing schemes.

ii) the leaf nodes loss, where the loss happens on the leaf nodes or high-depth layer

of the octree data stucture, the effect is a large area with Gaussian Noise distributed

while spots. Because the most of the neighbor areas are intact, a spatial interpolation

error concealing should be sufficient to recover this type of loss.

Color Distortion Dominant Loss Effects See Fig. 5.5, in this set of frames, the

color distortion is dominant, we can see that although the overall geometry structure

is correct decoded, the color information is distorted. Instead of total loss of the

color, these color error is largely a inaccurate color in a clustered localized area, that

is because of the MPEG G-PCC has a spatial localization feature. This provides

a solid foundation for allowing the geometry information to guide the color error

concealing. We utilize this observation into our new error recovery model design.

It is also worth noting that most area of the loss is due to the loss of a single color

channel, for example, either red, blue, or green channel is lost. This further simplified

the recovery design of the error concealing model.

In summary, the randomness of the loss leads to multiple types of corruption and

distortions on both color and geometry information of volumetric video dataset, these

losses can be categories into various types and having a diversified characteristics that

ask for diversified error concealing technology.

5.5 Related Work

BSVC [33] proposed the first 2D video stream corruption dataset and benchmarked

it with a bit-stream level corruption model. They first demonstrate the difference

between the existing video corruption dataset and their newly proposed method, then

give a plug-and-play module that allows a ready-to-go augmentation of the existing
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Figure 5.6: The visual quality of various algorithms on four types of loss.

error-concealing models. They propose a three-parameter video corruption model

and demonstrate the distribution of the frame corruption given different corruption

parameters. In this way, they achieved a more accurate benchmark of the existing

error-concealing models. It allows a new group of error-concealing models to be made.

Our work differs from that of the other two, as we target volumetric videos instead of

2D videos. Volumetric video in MPEG V-PCC format is based on the 2D codecs, as it

utilizes three different streams and a group of patching and interpolation mechanisms,

making it different from the 2D video concealing. Applying the 2D video concealing

directly on the MPEG V-PCC video stream does not yield optimal recovery results,

as 3D reconstruction has a non-linear relationship between the projected streams

and the original stream. As for the MPEG G-PCC-based streams, they also have a

different feature: corrupting the part of the video will break the lower levels of the

octree data structures, therefore leading to a complex process.

There are several works on 3D error concealing, Fig. 5.6 demonstrate their perfor-

mance on our dataset, which include both empirical and learning-based methods.

Huang et.al. [17] proposed an error-concealing method for MPEG V-PCC-based vol-
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umetric video streaming. Based on the analysis of the three streams of the V-PCC

video stream, they classified the error into seven categories and found unique loss

patterns. They design three approaches. 1) the point-to-point interpolation uses

point-level temporal consistency and coherence to achieve a good performance(PI).

2) triangular interpolation (TI), which considers the point itself and the neighbor-

hood points, better utilizing the other two streams of information. 3) the cube motion

interpolation. Our work first provides a benchmark for these state-of-the-art error

concealing algorithms. And we also propose a new error concealing model, that fully

utilize the feature of the volumetric video from both color and geometry information,

which is the largest difference from the existing geometry only approaches.

5.6 Conclusion

In this paper, we propose new dataset for the error concealing of the volumetric

videos. Volumetric video is an important type of video formats that has low com-

putation cost, high quality, and high data volume. It is potentially the future of

the VR, AR, and Metaverse applications, e.g., the teleconferencing, remote medical,

gaming, and live sports broadcasting. However, to transmit these video streaming

over the Internet, the partial reliable or unreliable channels are necessary to get a

low latency experiences, which has been widely proofed in the 2D video streaming

applications like 2D video conferencing, Live Streaming, and IPTV applications. This

is because the reliable transmission protocols have a high latency overhead due to its

re transmission mechanisms. Therefore, any real-time or responsiveness video stream

is prune to the bit-errors or packet loss in the bitstream, leading to the corruption

of the video stream. Such corruptions become a more serious problem due to the

intra and inter-frame coding of the video compression algorithms. We propose a

bit stream corrupted VVS dataset, that includes a wide range of volumetric videos

representing most of the public volumetric video datasets. We build a realistic loss
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model to reflect the bit-error and packet loss under the real-world scenarios. Based

on this model, we build a large dataset according to various network conditions and

video sequence encoded with three mainstream volumetric compression coding. In

conclusion, this paper gives a new dataset that simulate the real-world real-time vol-

umetric video streaming corruption scenarios, which provides the foundation for the

evaluation and development of the error concealing methods and future error-resilient

3D scene representation formats.
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Chapter 6

Conclusions and Future Directions

6.1 Future Directions

There are several potential directions for further improving the volumetric video

streaming systems. First, it is worth noting that some more advanced 3D representa-

tion technologies have recently been proposed, e.g., 3D Gaussian Splatting (3DGS),

which gives a high-fidelity representation of a 3D scene in a photo-realistic quality.

However, the storage format of 3DGS is a straightforward extension of volumetric

video codecs. Therefore, there is a potential to extend our approach to support

the more advanced 3DGS video streaming. Nevertheless, the state-of-the-art 3DGS

format is not readily streamable due to the high bandwidth consumption, lack of

efficient compressing codecs, and high decoding and rendering costs that impose a

large computational overhead on the existing edge devices. Some pioneer works have

been on reducing the transmission costs of 3DGS adaptive bitrate control for 3DGS.

In our view, there are many challenges to this emerging problem. So, extending our

adaptive volumetric video streaming frameworks to support 3DGS and building a

rate-distortion model for 3DGS is very promising and meaningful future work to do.

The second is extending the system to be aware of the multiple user scenarios. Our
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current system mainly serves a single viewer within a scene. However, in many appli-

cation scenarios, having multiple viewers sharing a single watching space is common.

For example, in a remote medical teaching class, many students would share a sin-

gle classroom and watch the same scene. In this scenario, the interaction between

viewers has two major impacts on the volumetric video streaming process. First is

the sharing of the network channels. Because these users typically share a router in

a single room. In this case, balancing the available bandwidth for these users could

have an impact on the overall quality of experience (QoE). There is a need for a

new QoE metric that considers the multiple users aggregated experience and consider

fairness. Second is the viewport prediction correlation. The viewport of these users

is not independent. They can occlude each other’s light-of-sight. These problems

are highly suitable for a multi-variate sequence model. Therefore, extending our ap-

proach can potentially solve this challenge with more advanced QoE modeling and an

inter-dependency-aware multi-variate sequence model. We leave this for future work.

The third is building an error-concealing model to support partial, reliable, real-time

volumetric video streaming. Latency requirements are essential for any real-time

video streaming system. These stringent latency requirements lead to a design choice

of unreliable or partially reliable network protocols. This is because the reliability

is based on re-transmission and a large buffer, which largely expands the system’s

latency. Therefore, it is important to have error-concealing mechanisms to recover

the video stream from error. In this direction, we built an early-stage dataset to

explore this problem. By benchmarking several existing methods, temporal interpo-

lation, spatial interpolation, and temporal prediction, we observe their limitation for

volumetric video streaming. In the future, we think building a deep learning-based

error concealing model for volumetric video recovery will be another important work.
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6.2 Conclusion

In this thesis, we studied the volumetric video streaming problem. The volumet-

ric video provides a free viewport viewing experience but also burdens the existing

Internet infrastructures with its high volume. Its higher level of information also

imposes a greater threat to the privacy of content sharing. This thesis first presents

the background of Volumetric Video Streaming, the basic architectures, challenges,

and opportunities. Then, it provides a comprehensive literature review that cov-

ers the existing works in the field of 2D and volumetric video streaming adaptation

and quality-of-experience metrics. Then, for the three aspects of volumetric video

streaming, performance, generalization, and robustness, we reveal three key research

problems: First, how to effectively stream the volumetric video over the complex

Internet according to the fast varying network conditions and user’s viewing behav-

iors; Second, how to achieve generalization of the tile pruning-based volumetric video

streaming systems; Third, how to transmit the volumetric video over lossy network

channels that provides low latency? To address these research problems, we con-

duct a study and measurement to reveal the potential solution approaches and gain

space, and for each of them, we give a solution. This thesis then makes three contri-

butions: First, it proposes a new MPEG V-PCC-based volumetric video streaming

framework that supports a backward-compatible HTTP video streaming for volumet-

ric videos, during which it composes a combination of a new rate-distortion model for

the V-PCC-based volumetric video rate control, a new offline reinforcement learning-

based bitrate adaption algorithm, and a frame rate scaling mechanism to improve the

smoothness of the playback by filling the gap between the coarse-grained DASH con-

trol and fine-grained network variations. Second, we propose a few-shot adaptation

framework to solve the generalization problem in the tile pruning-based volumetric

video streaming systems. Third, this thesis proposes a novel bitstream corrupted

volumetric video dataset to support partially reliable volumetric video streaming.

As the latency demands of volumetric video streaming systems get more stringent,
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a shift from a high-latency reliable channel to a low-latency unreliable channel has

happened. Therefore, a group of error-concealing methods is proposed to mitigate

the error exposed from the network channel to the application decoder. However, a

comprehensive and realistic dataset for corrupted volumetric videos is lacking. We

fill this gap and propose a network-inspired corruption model. We made an in-depth

qualitative discussion of our dataset and pointed out the patterns of the loss-induced

frame artifacts, which provide a practical guideline for designing future learning-based

error-concealing models for volumetric video. We evaluated our systems and observed

a meaningful gain. In conclusion, we discuss future works and summarize this thesis.
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