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Abstract

Adolescent idiopathic scoliosis(AIS) has become a common spinal disorder among

teenagers. The traditional evaluation method for scoliosis is mainly using X-ray

equipment. However,X-ray equipment produces radiation, which can elevate the risk

of cancer with long-term exposure(especially for adolescents), making it unsuitable for

long-term follow-up of scoliosis. Additionally, traditional scoliosis screening methods

are time-consuming and dependent on experienced personnel, leading to low posi-

tive predictive values and potentially unnecessary referrals and radiation exposure.

Furthermore, early stage scoliosis is often accompanied by abnormal body posture,

making it difficult to distinguish and monitor. To achieve radiation-free early screen-

ing and monitoring of scoliosis and abnormal posture, we propose multiple methods

for automated screening and monitoring of scoliosis and abnormal posture using edge

devices. These edge devices consist of three-dimensional(3D) imaging devices(infrared

RGB-D camera) and two-dimensional(2D) imaging device (mobile phone).

However, assessing and screening for scoliosis based on 2D or 3D data of the human

back is not straightforward in real life. It requires an understanding of the spine’s

anatomical structure, the medical anatomical features of the human back, biome-

chanics, and the correlation between 2D and 3D data of the human back and above

features. To build a system for radiation-free assessment and screening of scoliosis

based on 2D or 3D data of the human back, we summarize three core challenges

in system construction and our main contributions to addressing these challenges in
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section 1.3. More precisely, by conducting a comprehensive background review of

scoliosis and related analysis system in chapter 2, we intend to build the systems in

three aspects: (1) In chapter 3, curvature is calculated from 3D point clouds of the hu-

man back to locate anatomical landmarks, and a correlation model integrating spinal

anatomy and biomechanics is established to precisely infer the spine’s 3D curve. Uti-

lizing the industry-standard for full-spine X-ray imaging, we validated the accuracy

of spinal Cobb angle estimation from 3D back point clouds, leading to the develop-

ment of a commercial system; (2) In chapter 4, a database of 2D back images and 3D

point clouds is created, confirming their high correlation on key metric Axial Trunk

Rotation(ATR); and (3) In chapter 5, the relationship between 2D postural features

and scoliosis X-ray imaging is explored and validated, with a deep learning-based

framework for landmark points and topological structures addressing the challenge of

accurately screening scoliosis and abnormal posture using 2D images.

In chapter 3, to explore the correlation between the 3D point cloud of the human

back and scoliosis and abnormal posture, we established a database of human 3D

back point clouds and the corresponding X-ray images. By identifying anatomical

landmarks on 3D back point clouds and correlating them with the spine’s midline, we

derived a 3D model of the spine’s midline. The results show that the proposed method

can extract anatomic landmark points and evaluate scoliosis accurately (average Root

Mean Square Error of anatomic landmark points extraction is around 5mm and Cobb

angle estimation is around 3◦), which is feasible and promising. In this chapter, we

validate the strong correlation between 3D back point clouds and scoliosis, and we

proposed a Kinect based low cost, easy to use, non radiation, and high accuracy

method to quickly reconstruct the 3D shape of the spine, which can be used to

evaluate spinal deformation. This method is effective for scoliosis assessment, but

3D point cloud images require additional RGB-D equipment to accurately evaluate

scoliosis and posture, which will limit usage scenarios. If the correlation between 2D

human back images and 3D back point cloud images can be verified, then 2D back
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images can be used to evaluate scoliosis and abnormal body posture.

In chapter 4, to better explore the correlation of features between 2D back im-

ages and corresponding 3D back point cloud images, we develop an efficient deep

learning-based framework to allow a large-scale screening for scoliosis using only one

2D unclothed human back image without any X-radiation equipment. We classify the

normal individual and abnormal scoliosis using the ATR value as the classification

label, calculated from the human back 3D point cloud. Our accuracy in the task of

AIS classification reaches 81.3%, far exceeding the accuracy of visual observation by

an experienced doctor (65.1%), which can be used as a remote preliminary scoliosis

screening method. This chapter verifies that 2D and 3D images of the human back

on concave convex features (such as ATR) have strong correlation, which can lay the

foundation for inferring the features of 3D point cloud images based on 2D images

of the back in the future and it also validates the feasibility of screening for scol-

iosis using an unclothed back image, thus empowering users. However, while using

a single back 2D image can help distinguish whether a person suffers from scolio-

sis, it is not capable of distinguishing the severity of scoliosis, especially considering

that scoliosis often accompanies abnormal posture, yet abnormal posture does not

necessarily indicate scoliosis. Furthermore, the inability to quantify mild scoliosis or

abnormal posture may hinder regular home monitoring, potentially leading to missed

opportunities for optimal intervention.

In chapter 5, to better distinguish the severity of scoliosis and identify the correlation

between 2D human body posture features and the 2D curve of scoliosis, we propose

a novel approach. we propose a set of back feature points and network topology

based on deep learning algorithms. We establish a database with labeled 2D back

images and corresponding whole-spine standing posterior-anterior X-ray images and

propose a new network topology of the 2D back image to localize the back landmarks.

With only an unclothed back image, this system can automatically classify normal

and abnormal posture and scoliosis with an overall classification accuracy of 88.1%.
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In order to improve the classification rate of scoliosis and posture abnormalities, as

well as to better quantify the risk severity of scoliosis and achieve quantifiable risk

progression monitoring, we propose the use of three back images for analysis. We

have developed an online mini-program where users only need to upload three im-

ages to achieve precise screening and monitoring of scoliosis and abnormal posture

at home. Simultaneously, we calculate parameters of the human back and the ATR

angle for quantifiable daily monitoring. The optimized system has a sensitivity of

96% and a specificity of 89% for scoliosis, far exceeding the accuracy of experienced

doctors (sensitivity of 81% and specificity of approximately 86%). The probability

of misjudging abnormal posture as scoliosis is 8%, and the probability of misjudging

scoliosis as abnormal posture is 5%. In this chapter, we verify that a new set of feature

points and network topology based on deep learning algorithms can effectively de-

scribe the correlation between 2D body features and scoliosis. Furthermore, based on

this structure, we have developed a mobile, cost-effective, accurate, and radiation-free

screening and monitoring system for the screening and daily monitoring of scoliosis.

To date, we have successfully deployed and commercialized the aforementioned sys-

tems, garnering accolades from numerous international innovation awards. We have

catered to over 20 hospitals, rehabilitation institutions, and insurance agencies, facil-

itating the screening of more than 300,000 adolescents.
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Chapter 1

Introduction

1.1 Research Background and Significance

Adolescent idiopathic scoliosis (AIS) is medically defined as a curvature of the spine

with greater than 10◦ of deformity, and the cause of scoliosis is unclear. The Cobb

angle is generally used to measureandresence of scoliosis in adolescents. Cobb angles

beyond 10◦ are defined as scoliosis [55]. Scoliosis is highly insidious and usually occurs

in adolescents between 10 and 18 years old. Adolescents who suffer from scoliosis

are at significant risk of rapid progression and the development of severe scoliosis if

the condition is left untreated before the skeletal maturity stage [117]. Severe cases

may impact an individual’s appearance and cardiopulmonary function and potentially

cause musculoskeletal and neurological pain.

Therefore, to achieve early screening and early intervention for scoliosis and reduce

the risk of scoliosis becoming severe in the future, the school scoliosis screening (SSS)

program has been advocated [40]. The majority of screening procedures used in

SSS are radiation-free. These procedures include appearance evaluation, palpation,

Adam forward bending test, scoliometer measurements, Moire/Infrared topography,

ultrasound, and X-ray [122].
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Chapter 1. Introduction

Figure 1.1: Dagrammatic sketch of Adam test with scoliometer examination.

At present, the mainstream screening method for abnormal spinal curvature is still the

Adam test with a scoliometer. The doctor instructed the adolescent to extend their

arms and gradually bend them to approximately 90◦. The doctor detected whether

the subjects had trunk asymmetry by using a scoliometer and calculated the Apical

Transverse Rotation (ATR) value. The measurement of schematic diagram of the

Adam test with scoliometer is shown in Figure 1.1. However, these methods have sig-

nificant drawbacks, including susceptibility to the subjectivity of screening personnel,

a time-consuming nature, and the requirement for unnecessary radiography, owing to

their low positive predictive value (PPV) [30][126][60][65].

Early identification of progressive conditions is crucial for effective treatment, neces-

sitating regular monitoring to ascertain potential exacerbation of scoliosis curvatures

during growth periods [119]. As early as the 1950s, large-scale school scoliosis screen-

ing (SSS) programs were implemented for the early detection of idiopathic scoliosis

(IS). However, the implementation of SSS is controversial due to its high false-positive

referral rate and substantial costs [45]. In 2004, the United States Preventive Services

Task Force recommended not to conduct routine IS screening for asymptomatic ado-

lescents based on comprehensive research recommendations [32][58]. However, a joint

position statement from the Society for Scoliosis Research, the American Academy of
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1.2. Related Work and Challenge

Orthopaedic Physicians, the North American Academy of Pediatric Orthopaedics, and

the American Academy of Pediatrics underscores the importance of training screening

personnel on the judicious use of spinal radiographs. They noted that not all children

identified through screening necessitate radiographic evaluation. In cases where ra-

diographs are required, physicians are urged to implement measures to minimize the

patient’s radiation exposure [46].

From the above background introduction, it can be seen that non-radiation analysis

for scoliosis and large-scale screening for scoliosis in adolescents is very necessary.

However, according to existing solutions, there are still the following pain points in

practice:

1. Although using X-rays for scoliosis screening or analysis has high accuracy, it can

expose many teenagers to unnecessary radiation, which is not conducive to physical

development;

2. The accuracy of usingAdam test and scoliometer depends heavily on the experience

of screening personnel, resulting in low overall accuracy. In addition, the cost of

manual screening in schools is high, which is not conducive to large-scale promotion;

3. It is hard to distinguish mild scoliosis and abnormal posture in adolescents. Even

if scoliosis is detected, not every teenager will progress, and only about 20% - 30% of

adolescents are at risk of developing scoliosis. However, if there is a lack of adequate

follow-up methods, even if it is screened, continuous monitoring cannot be carried

out, which can easily miss the optimal intervention period and only exacerbate the

anxiety of parents and children.

1.2 Related Work and Challenge

From the above content, it can be inferred that the traditional manual detection

method has the following problems: low efficiency, need to touch the back of the
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Chapter 1. Introduction

human body, low accuracy, radiation, and no follow-up. Many teams have proposed

many solutions in recent years to solve the above problems. In the realm of scoliosis

assessment, the most fundamental approach is the clinical examination, specifically

Adam’s forward bending test, which utilizes a scoliometer for quantitative analy-

sis [39][56]; Additionally, 3D ultrasound (US) imaging has emerged as a promising

technique, offering the advantage of employing nonionizing radiation [128]. Despite

the high sensitivity (83.3%) and specificity (86.8%) demonstrated by Adam’s forward

bending test, as well as the moderate linear correlation (y = 1.1797, R2 > 0.76) with

Cobb’s x-ray methods for US imaging [129],the manual placement and measurement

of the scoliometer or US imaging probe by the examiner remains a significant limita-

tion. This process is not only time-consuming but also imposes a significant burden

on healthcare professionals, such as doctors or school nurses, who are tasked with

screening a large number of individuals within limited timeframes. Other teams have

proposed 3D reconstruction of the back or the whole trunk using optical non-invasive

surface measurement system [80]. They mainly model the anatomical features of the

back, represented in section 3.3.3, and then use the physical model to represent the

spine’s shape in three dimensions. This method can achieve a non-radiation, non-

contact, and relatively accurate 3D evaluation of scoliosis. Still, its system needs to

be used in scenarios without light interference and is based on highly accurate surface

measuring devices, which are generally expensive.

A group proposed using the low-cost RGB-D camera to locate the anatomical land-

marks on the back of the human body [13]. Still, their methods have low back

anatomical landmarks positioning accuracy and thus lack robustness. In addition, to

address the labor cost and education issues of large-scale SSS, some research teams

have proposed the idea of home scoliosis screening, based on a single unclothed 2D

human back image, using image processing and AI algorithms. A research team has

proposed the classification of scoliosis based on a 2D unclothed back image, which

divides patients into Lenke type 1 and other categories using conventional image pro-
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Figure 1.2: Anatomical landmarks of human back.

cessing methods. However, this method has poor robustness and detection accuracy

[90]. Recently, a research team has used deep learning algorithms to construct corre-

lation models of unclothed back images and corresponding X-rays to classify scoliosis

severity using one back image. The method works well for scoliosis over 20◦. How-

ever, it performs poorly and cannot classify abnormal posture and scoliosis between

10 and 20◦ [124].

From this, we can derive the following research challenges:

1. The absence of a comprehensive dataset that includes 2D, 3D human back images,

and their corresponding X-ray images.

2. Accurately reconstructing 3D spinal curves from low-resolution 3D back point

clouds presents significant challenges.

3. Analyzing scoliosis and abnormal posture accurately using 2D back images is

challenging.
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1.3 Contributions

By establishing databases of 2D and 3D human back point clouds along with cor-

responding full-spine X-ray image, we explore and validate the correlations among

them based on spinal anatomy, biomechanics, and deep learning technologies, con-

structing a comprehensive radiation-free closed-loop solution for scoliosis screening

and assessment, as can be seen in Figure 1.3.

Figure 1.3: The framework for my thesis.

First, as will be discussed in chapter 3. We explore the correlation between the 3D

point cloud of the human back and scoliosis and abnormal posture. Also we propose

a low-cost, easy-to-use, radiation-free, and high-accuracy method to quickly recon-

struct the 3D shape of the spine, which can be used to evaluate spinal deformation.
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1.3. Contributions

Firstly, the depth images collected by the low-cost Kinect sensor are transformed

into 3D point clouds. Then, the features of anatomic landmark points and spinous

processes(SP) line are classified and extracted. Finally, the correlation model of the

SP line and spine midline is established to reconstruct the spine. The results show

that the proposed method can extract anatomic landmark points and evaluate sco-

liosis accurately (average root mean square error of 5mm and around 3◦), which is

feasible and promising. Concurrently, we have engineered an infrared 3D spinal and

posture evaluation system(ITSPES) based on the algorithms. This system has been

introduced to the market to cater to the needs of rehabilitation centers, hospitals,

fitness institutions, public welfare organizations, and traditional Chinese medicine

clinics. This groundbreaking system heralds a significant advance in medical technol-

ogy, providing comprehensive and precise assessment of spinal health and posture.

While this method allows for a non-radiative, 3D, precise, and objective evaluation of

the spine and posture, enhancing the accuracy of mass screenings and reducing overall

costs, it may lead to unnecessary privacy breaches and time delays due to the need

for undressing. Therefore, we recommend its use as a follow-up measure post-initial

scoliosis screening and monitoring method for scoliosis. To achieve a more cost-

effective and easily disseminated initial screening strategy, we explore using portable

edge devices, such as smartphones, for home-based scoliosis screening in the following

chapter.

Second, as will be discussed in chapter 4. We explore the correlation of features

between 2D back images and corresponding 3D back point cloud images. Since there is

a high correlation between the 2D human back image of AIS patients and ATR(which

can be calculated by 3D back cloud point), and ATR is also the standard for the

primary screening of scoliosis, we use deep learning technology to predict scoliosis

based on the unclothed human back 2D image and ATR value. This system takes

one single 2D image of the unclothed human back and uses ATR value as an indicator

to classify whether adolescents have scoliosis. First, we collect the 2D back image of
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the same sample and its corresponding 3D back point cloud data, and based on the

point cloud data, we calculate the ATR value of the back of the human body and

mark whether there is scoliosis according to the size of the ATR value. At the same

time, an experienced doctor will judge whether the sample has scoliosis through the

naked eye. Then, we use the UNET model [89] and the Y olo mode [86] to train the

human back segmentation model to segment the human back region on the 2D image

to achieve preprocessing. After that, we train the EFFICIENTNET −B4 network

[106] to classify images using the 2D image of the human back and the corresponding

label calculated using ATR values and 3D human back. The experimental results

reveal a high correlation between 2D human back image and ATR values. Using the

result of classifying scoliosis by ATR value as a label can well realize the classification

of scoliosis based on one single 2D human back image. Our accuracy in the task of

AIS classification reaches 81.3%, far exceeding the accuracy of visual observation by

an experienced doctor (65%), which can be used as a remote preliminary scoliosis

screening method.

In this chapter, we have validated the use of mobile phones with 2D image for large-

scale, low-cost, and precise home-based scoliosis screening. However, we found that

many adolescents with mild scoliosis also exhibit poor posture, which is often over-

looked and fails to raise parental concern. Early and frequent home-based screening

and intervention for adolescent scoliosis and poor posture can effectively curb scoliosis

incidence and mitigate progression risk. Thus, in the following chapter, we explore the

use of edge devices for home-based screening and monitoring of scoliosis and postural

abnormalities.

Third, as will be discussed in chapter 5. We describe the correlation between 2D

human body posture features and scoliosis. Recent developments reveal that deep

convolutional neural networks have achieved state-of-the-art performance in human

pose estimation [104]. Besides, there is a high correlation between abnormal back

pose and spinal abnormality [108]. We propose a mobile-based scoliosis and abnor-
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1.4. Thesis Outline

mal posture screening and monitoring system based on the unclothed back image

to more effectively screen for scoliosis and categorize postural abnormalities. The

system uses deep learning algorithms and a specialized network topology based on

human biomechanics to locate and compute the parameters of human back landmarks

automatically, and it then classifies the results using correlation analysis. The system

correctly detects mild scoliosis and categorizes issues with only postural anomalies

(Only postural abnormalities, such as high and low shoulders, but without scoliosis).

Furthermore, we have devised an optimized system, leveraging the proposed algo-

rithm, to aid users in home-based scoliosis and posture abnormality screening and

monitoring. The optimized system has a sensitivity of 96% and a specificity of 89%

for scoliosis, far exceeding the accuracy of experienced screening doctors (sensitivity

of 81% and specificity of approximately 86%). The probability of misjudging abnor-

mal posture as scoliosis is 8%, and the probability of misjudging scoliosis as abnormal

posture is 5%. This work provides a solid foundation for the quantitative analysis of

Cobb angle measurements in scoliosis through the utilization of 2D back images.

1.4 Thesis Outline

The sections of this thesis are structured as follows: We dedicate three chapters

to exploring scoliosis and abnormal posture analysis via 2D and 3D back images

from mobile devices. In chapter 3,We validate the strong correlation between 3D

back point clouds and scoliosis, proposing a cost-effective, user-friendly, radiation-

free, and highly accurate method for rapid 3D spine reconstruction. In chapter 4, we

verify that 2D and 3D images of the human back on concave convex features (such as

ATR) have strong correlation and we use deep learning technology to predict scoliosis

based on the unclothed human back 2D image and ATR value. In chapter 5, we

verify that a new set of feature points and network topology based on deep learning

algorithms can effectively describe the correlation between 2D body features and
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scoliosis. Also we propose a mobile-based scoliosis screening system based on the

unclothed back images to more effectively screen for mild scoliosis and categorize

postural abnormalities, thereby laying the research foundation for the quantitative

analysis of scoliosis angle measurements using 2D back images. In conclusion, this

thesis explores future research prospects and highlights the societal impact of our

work through product translation in chapter 6.
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Chapter 2

Background Review

To facilitate understanding of scoliosis screening and monitoring, this chapter offers a

concise overview of spinal anatomy, types of spinal deformities, prevalent scoliosis and

posture assessment tools/methods, and international progress in scoliosis screening.

2.1 Spinal Anatomy

Understanding spinal anatomy, encompassing normal posture, curvature, and func-

tionality, is imperative for evaluating backs, body shapes, and postures of patients

with lower back pain and spinal disorders. The human spine, a complex structure

comprising 33 distinct vertebrae extending from the skull base to the pelvis, can be

segmented into five regions: cervical spine, thoracic spine, lumbar spine, sacrum, and

coccyx (as depicted in Figure 2.1). Specifically, the cervical spine, denoted as the ”C”

spine, comprises 7 cervical vertebrae (C1 to C7). The thoracic vertebrae, referred

to as the ”T” vertebrae, encompass 12 vertebrae (T1 to T12) and are considered

a quasi-rigid segment compared to the lumbar and cervical vertebrae. Lastly, the

lumbar spine, composed of five vertebrae (L1 to L5), primarily supports the entire

weight of the upper torso [71].

11
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Figure 2.1: Anterior (left) and lateral (right) perspectives of the human vertebral

column.

2.1.1 Anatomical Plane Definition

In the human body, three fundamental anatomical planes intersect, serving as refer-

ence points for determining the position or direction of anatomical structures’ move-

ment, as shown in Figure 2.2.

The sagittal plane, serving as a longitudinal divider, splits the body into distinct

left and right sections. In contrast, the coronal plane acts horizontally, segregating

the body into anterior and posterior segments. Moreover, the transverse plane, col-

loquially known as the horizontal plane, divides the body vertically, distinguishing

between superior and inferior portions.[84].
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2.1. Spinal Anatomy

Figure 2.2: Planes of the Human Body: Sagittal, Coronal, and Transverse [76].

2.1.2 Curvatures of Spine

The typical architecture of the spine is characterized by the presence of distinct curves,

as shown in Figure 2.3. Conventionally, it is understood that when viewed from the

coronal plane, the spine’s curvature appears as a straight alignment [9]. A study

reported that the right shoulder of right-handed young people is lower than the left

shoulder. The changes in shoulder joint level offer an indirect means of assessing

modifications in the coronal plane alignment of the spine [68].

When viewed from the sagittal perspective, the vertebral column is characterized by

four distinct curvatures. The S − shaped curvature is characterized by two posterior

convexities (thoracic and sacral), referred to as posterior convexity or primary curva-

ture. The cervical and lumbar segments’ two anterior convexities are termed anterior

convexity or secondary curvature.

The average thoracic kyphosis angle of asymptomatic young people and the average
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Figure 2.3: The curvatures of spine [74].

lumbar lordosis angle is 29.37±3.94◦ and −37.7◦ respectively. These values are closely

with those specified by the Society for Scoliosis Research (2017), which states that the

standard range for chest kyphosis in X-ray measurements falls between 20◦ and 40◦.

Similarly, the standard range of lumbar lordosis on radiographic images falls between

−20◦ and −60◦ whereas the average thoracic kyphosis angle in adults ranges from 30◦

to 50◦ , and the mean lumbar lordosis angle is approximated at −55◦. The variations

in these reported angles can be attributed to discrepancies in measurement techniques

and spinal curvature assessment tools. For instance, radiological methods for spinal

curvature measurement differ from those based on surface topography. Specifically,

X-rays assess spinal curvature through skeletal components, whereas surface topogra-

phy incorporates body surface characteristics, encompassing bones, muscles, adipose

tissue, and skin [102][11].
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2.2. Spinal Deformity

2.1.3 Evaluation of Spinal and Postural Alignment

Posture, defined as the interrelation of body segments at any given moment, and

back shape, which characterizes the asymmetry between bilateral sides, are critical in

assessing spinal alignment [51]. Alterations in spinal curvature can induce changes in

back shape,such as the development of asymmetrical rib protrusions stemming from

axial rotation of the thoracic spine [7]. Distinct anatomical landmarks on the posterior

surface of the human back, including the C7 vertebral prominence, sacral point,

acromion point, suprascapular point, subscapular point, posterior superior iliac, and

iliac crest point, are readily visible and palpable [80], as depicted in Figure 2.4. The

augmentation in the depth of the median sulcus is attributed to the two longitudinal

erector spinae muscle bundles [88]. Three pivotal investigations have documented the

typicality and symmetry of back morphology in a standing posture. One such study

employed the Integrated Spinal Imaging System (ISIS1) to evaluate the standard back

contour in young individuals. This optical computer system enables the measurement

of the 3D back surface morphology, allowing the creation of representative scan images

to illustrate the the back morphology for all subjects involved in the study. The study

reported an average thoracic kyphosis of 24.9mm [28][115].

Researchers propose that the categorization of back morphology/posture types can be

streamlined by identifying specific back shapes, evaluating posture, analyzing back

surface characteristics, and identifying key skeletal landmarks. This approach has

the potential to yield a diverse array of back surface parameters that are valuable for

research purposes, evidence-based practices, and clinical decision-making.

2.2 Spinal Deformity

Spinal deformities include kyphosis, scoliosis, and lordosis, which may lead to changes

in posture alignment and affect lung function [95] According to the literature, these
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Figure 2.4: Posterior view of back surface anatomic landmarks [75].

deformities are related to various factors, including intervertebral disc and/or verte-

bral degeneration, vertebral development problems, neuromuscular problems, and hip

joint problems. Spinal pain often arises from various factors, and one of the prevalent

contributors is idiopathic scoliosis [2].

Spinal kyphosis is a characteristic of sagittal curvature of the chest, resulting in a

hunchback posture. Scoliosis refers to the lateral deviation of the vertebral body

line from the midsagittal plane, which is often accompanied by kyphosis and can

potentially progress into a kyphotic deformity. Spinal lordosis is the result of ab-

normal sagittal plane of the lumbar spine, characterized by inward curvature. These

deformities may be caused by various reasons, such as intervertebral disc and/or ver-

tebral degeneration, vertebral development problems, poor posture, neuromuscular

problems, or hip joint problems [59].
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These spinal deformities have the potential to induce alterations in posture alignment,

thereby exerting adverse effects on the functionality of the musculoskeletal system.

In addition, spinal deformities may also lead to limited lung function and may be

associated with spinal pain. Therefore, prevention and early correction of spinal

deformities are very important.

2.3 Scoliosis and Posture Analysis Tools

A range of techniques exist for assessing posture and back morphology, including tac-

tile, non-tactile, two-dimensional, and three-dimensional approaches. Tactile mea-

surement methods involve the assessment of posture or back shape through direct

skin contact, for instance, by measuring flexion angles. Conversely, non-tactile mea-

surement methods, including X-ray and photogrammetric techniques, evaluate back

shape and posture without the need for direct skin contact [17].

In clinical practice, a variety of tools is utilized to evaluate posture and back mor-

phology, ranging from traditional to advanced methodologies. Nonetheless, the more

advanced technologies, including ultrasound, radiology, and inertial sensors, remain

inaccessible to many clinicians due to their high costs, the necessity for specialized

training, or their complex and challenging procedures. As a result, simpler and more

traditional approaches, such as photography and the use of plumb lines, continue to

be prevalently utilized [22].

Reliability and effectiveness are key factors to consider when selecting appropriate

posture and back shape assessment methods. [34]. In addition, when selecting the

appropriate method, factors such as cost, safety, ease of use, and measurement time

need to be considered [7].
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2.3.1 Two-Dimensional Analysis of Scoliosis and Posture

Tactile Methods of Measurement

Inclinometers and goniometers are commonly used for posture assessment owing to

their cost-effectiveness and user-friendliness. However, these tools have limitations

that need to be considered when assessing posture. One limitation of using incli-

nometers is that the measurements are limited to two-dimensional planes, which

means they cannot fully assess posture in both the frontal and transverse planes.

Furthermore, maintaining a consistent posture for patients during data collection can

be demanding, potentially introducing inaccuracies in the measurements. [33].

Similarly, goniometers have their own limitations. While they can directly measure

body posture variables, they are typically limited to individual measurements and

may not be suitable for assessing the entire body or posture. Furthermore, using

goniometers for posture assessment involves a lengthy evaluation process, which can

be time-consuming [83].

Additional research endeavors are imperative to overcome the existing limitations

and improve the accuracy and reliability of posture assessment methodologie. One

potential avenue is the development of automated tools that can recognize mark-

ers and calculate angles automatically. This approach would decrease measurement

discrepancies and expedite the process of data collection and analysis.

Additionally, exploring non-tactile measurement methods, such as visual observation

methods, could provide a more comprehensive evaluation of posture. Visual obser-

vation methods are commonly used in clinical practice and involve observing the

patient from multiple angles. By utilizing predetermined guides for ideal alignment,

therapists can analyze any visible deviations or asymmetries in posture.

In conclusion, while inclinometers and goniometers have advantages in posture as-

sessment, they also have limitations that must be addressed. Further research and
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the development of automated tools can help overcome these limitations and improve

the accuracy and reliability of posture assessment. Additionally, incorporating visual

observation methods can provide a more comprehensive evaluation of posture [49].

Non-tactile Methods of Measurement

In clinical practice, the visual observation method is frequently adopted for pos-

ture assessment, owing to its practicality and minimal requirements for specialized

equipment or designated space. any noticeable deviations or imbalances in posture,

employing a predefined framework for optimal alignment as a reference. However,

studies have shown that the inter-rater reliability of visual observation methods is

poor compared to photography measurement methods, making it challenging to as-

sess posture variables [96][100].

On the other hand, the photography measurement method has gained widespread use

in posture assessment. This method involves capturing digital images of the patient in

their optimal anatomical positions, specifically in the sagittal and frontal planes, and

subsequently determining posture angles through the delineation of lines connecting

distinct anatomical landmarks. Photography measurement has the advantages of

low cost, quantitative assessment, and reduced radiation exposure, making it more

feasible in clinical practice. Research has demonstrated reliability in quantifying and

measuring posture variables using photography measurement methods [4].

However, there are limitations to the photography measurement method as well. Some

studies have observed inconsistencies in the separation between the participant and

the camera during data collection, leading to data inconsistency. Moreover, The two-

dimensional nature of photography, specifically in the sagittal plane, poses challenges

in accurately analyzing deformities with rotational components and precisely assessing

genuine spinal curvature. Additionally, the presence of muscle mass in this plane can

obscure the midline groove of the back surface, further hindering the study of true
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spinal curvature [36][112].

In summary, while the visual observation method is convenient and widely used,

it has limitations in assessing posture variables and achieving inter-rater reliability.

The photography measurement method offers advantages such as quantification and

reliability. Still, it also has limitations in terms of data consistency and difficulties in

studying certain types of spinal deformities and rotational components.

Radiographic techniques, notably X-ray imaging, have traditionally been regarded

as the benchmark method for evaluating and screening individuals with spinal de-

formities. X-ray imagery serves as a crucial source of data regarding spinal bone

structure, facilitating the detailed examination of individual vertebrae as well as the

comprehensive contour of the spine.. This methodology offers precise diagnosis of

spinal anomalies and provides an accurate assessment of the extent and severity of

the condition [36].

However, radiological methods also have limitations. One major limitation is the in-

creased risk of radiation exposure, especially in adolescents and patients with scoliosis

who require long-term rehabilitation and monitoring. As evidenced by numerous stud-

ies, accumulated exposure to X-ray radiation has been consistently associated with an

increased risk of breast cancer development. Additionally, radiological examinations

are expensive, have strict requirements on the site, and require a technician to operate

the equipment. These factors have limited the usage of X-ray systems, especially in

home settings, where patients may not be able to receive timely screening and miss

the best chance for effective therapy [111].

In summary, while radiological methods provide valuable information on spinal de-

formities, they have limitations, such as increased radiation exposure and cost. Non-

invasive methods like photogrammetry offer some advantages, but they also have

limitations in data consistency and accurately capturing 3D aspects of spinal de-

formities.In recent years, various 3D measurement systems have been introduced to
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procure a comprehensive 3D characterization of spinal deformities as well as back

surface. These systems aim to provide a more comprehensive assessment of spinal

deformities.

2.3.2 Three-Dimensional Analysis of Scoliosis and Posture

In the past decade, there have been significant advancements in the 3D analysis of

posture and back morphology. These developments have expanded their applications

in spinal research and clinical settings, utilizing tactile and non-tactile tools.

Measurement of Spinal Curvature Using Tactile Tools

The Posturometer − S is a unique electronic device designed for objective, non-

invasive measurement of body posture. It incorporates three interconnected com-

ponents: a mechanical pointer to designate the position of the measured point, an

electronic unit to calculate the pointer’s three-dimensional spatial position, and a soft-

ware interface for analyzing the obtained results. This system grants practitioners

the ability to visually assess spinal curvature in all three planes and provides a quan-

titative representation of postural parameters. Nevertheless, a significant limitation

noted in the study is the lack of user-friendliness, the substantial space requirement

within the room, and the prerequisite of a profound understanding of the equipment

as well as adequate training before its operational utilization. [101][70].

Ultrasound imaging is another method for evaluating spinal deformities. Research has

shown that a radiation-free 3D ultrasound system can assess spinal curvature. This

method generates a 3D visualization of the spinal anatomy through the utilization of

ultrasound imagery and corresponding spatial data in three dimensions. While the

volume projection imaging method using ultrasound shows potential for evaluating

spinal deformities, it also has certain limitations. For instance, the ultrasound system

and its associated data are prone to electromagnetic field interference, which can
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introduce inaccuracies in spatial and directional measurements, manifesting as offsets

or jitters. Moreover, the volume projection imaging-related methodologies possess

additional limitations, including their cumbersome and heavy nature, a relatively high

reliance on skilled operators, and the time-consuming process of evaluating the entire

spine. Consequently, the application of the ultrasound volume projection imaging

technique in clinical settings may be deemed unsuitable due to its limitations [18][94].

In conclusion, the primary limitations of the tactile posture measurement system are

errors caused by electromagnetic and patient interference during data collection. The

requirement for patients to sustain a stationary standing posture for prolonged du-

rations poses a significant challenge, thereby heightening the risk of errors occurring.

Furthermore, while the ultrasonic volumetric imaging technique shows potential for

evaluating spinal deformities, it is affected by electromagnetic interference and other

technical limitations. Thus, these limitations and constraints must be considered

when selecting posture assessment tools.

Measurement of Spinal Curvature Using Non-tactile Tool

The utilization of 3D computed tomography (CT) scanning serves as a traditional

imaging modality for assessing posture and spinal deformation.3D computed tomog-

raphy (CT) scanning represents a traditional imaging technique that employs spe-

cialized X-ray devices to generate cross-sectional views of bodily tissues and organs

across varying angles and planes, ultimately culminating in high-resolution three-

dimensional data. This imaging modality enables visualization of the superior and

transitional pelvic regions, facilitating the examination of the spine’s rotational and

deforming components. In clinical settings, CT scans are frequently employed to as-

sess the efficacy of spinal implants and are instrumental in initial diagnostic processes

or when symptoms indicate the need for further investigation of potential abnormal-

ities. However, the main limitations of CT scanning are the high risk of patient
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exposure to ionizing radiation and the longer time required to acquire cross-sectional

images, which may result in motion artifacts [77].

The skin surface measurement system is another method for assessing posture and

back shape. Morie topography and structured light photogrammetry are the most

commonly used non-radiographic tools. These systems project structured light onto

the back and generate Morie topography images through the reflection of this struc-

tured light. The contour lines in Moiré images help visualize the asymmetry of the

back, and furthermore, they document spatial details pertaining to the subject’s 3D

back configuration and posture. A significant limitation of Morie topography lies

in its reliance on the precise order of Morie fringes, which can be influenced by pa-

tient positioning and slight variations in movement. Therefore, direct examination of

Morie fringes can be misleading, and data analysis is a complex process [103][73].

An improved skin surface measurement system is the ISIS2 system, which utilizes a

digital camera and projector to accurately capture and measure the 3D back shape.

The ISIS2 system gathers data through palpation and the identification of anatomic

landmarks, subsequently utilizing Fourier transform contour measurement to trans-

late distortions in reference grid lines into a three-dimensional representation of the

back’s surface topography. Compared to the traditional ISIS system, the ISIS2

system offers higher measurement speed, accuracy, reliability, and ease of use. It

can be used for screening and monitoring the development of spinal deformities and

shows no statistically significant difference compared to measurements from X-ray

images. However, the ISIS2 system is heavier, less mobile, and requires skilled clin-

icians. Additionally, identifying bony landmarks like spinous processes can be more

challenging for extremely obese or heavily muscled patients [7][8][54].

Another surface measurement system is the Microsoft KinectTM system, which uses

a depth sensor to measure the 3D back shape. Previous research has shown that the

KinectTM system effectively measures the back surface of both scoliosis patients and

healthy volunteers, demonstrating comparable intertrial reliability and correlation
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with a reference standard. However, its accuracy in measuring the three-dimensional

spine and body posture has not been fully validated [15].

In summary, three-dimensional computed tomography (CT) scanning and skin surface

measurement systems are commonly used for evaluating posture and back shape. CT

scanning provides high-quality three-dimensional data but has limitations regarding

radiation risk and motion artifacts. Skin surface measurement systems collect three-

dimensional shape data of the back using methods like Morie topography or the

ISIS2 system. Still, they have limitations regarding data analysis complexity and

operational constraints. Additionally, the Microsoft KinectTM system has been used

to measure the 3D back surface but has not been fully validated for measuring the

spine and body posture.

2.4 Preliminary for Scoliosis Screening

Adolescents suffering from scoliosis experience significant physical and psychological

implications that affect their overall well-being, particularly during the critical growth

phase between 8 to 12 years of age, where the progression of scoliosis deformity is no-

tably rapid. Without timely intervention, the severity of the deformity may escalate,

leading to diminished labor capacity, cardiovascular complications, lower back pain,

and potentially paralysis, which may further contribute to social and psychological

issues. In clinical practice, it is observed that a majority of scoliosis patients seek

medical attention at advanced stages of the condition, thereby complicating the treat-

ment process, escalating costs, and adversely affecting outcomes. Consequently, early

detection, diagnosis, and intervention hold paramount importance for the well-being

of scoliosis patients and the broader societal context [10].

Advancements in imaging technology and a deeper comprehension of three-dimensional

space theory have progressively revealed that spinal deformities encompass more than

24



2.4. Preliminary for Scoliosis Screening

just imbalances or abnormal curvatures within a specific body plane. They also in-

volve complex deformations across three-dimensional spaces, including the coronal,

sagittal, and transverse planes. Characterized as a three-dimensional distortion in-

volving spinal and trunk torsion, scoliosis manifests through lateral curvature in the

coronal plane, vertebral rotation in the horizontal plane, and deviations from the

spine’s normal physiological curvature within the sagittal plane. The Scoliosis Re-

search Society (SRS) categorizes scoliosis based on the Cobb method, which measures

spinal curvature on upright X-rays at angles exceeding 10◦ [5]. Scoliosis is classified

into congenital, acquired, and idiopathic forms, with acquired scoliosis further sub-

divided into postural, neuropathic, pathological thoracic, and malnutrition-related

scoliosis according to its origins. Idiopathic scoliosis, particularly adolescent idio-

pathic scoliosis (AIS), is the most prevalent form, with an incidence rate of approxi-

mately 1%-3% [117], predominantly affecting girls. The typical onset age for scoliosis

is around 10 years, and its etiology remains largely unknown. Nonetheless, cur-

rent studies suggest a correlation with genetic factors, hormone levels, and endocrine

anomalies, such as melatonin deficiencies [131].

The screening method for scoliosis in foreign countries: In the 1980s, scoliosis screen-

ing was carried out among school-age children, usually including physical examina-

tion, which visually observes whether there is an asymmetry in the shoulders, shoulder

bones, and buttocks of the examinee. The Adam’s Forward Bending Test, commonly

known as the Adam test, involves an examination of the back unbalance while the

subject leans forward with their torso. During the Adam test, scoliometer is employed

to quantify the torso’s rotation angle. Conversely, the Moire measurement technique

is adopted to delineate the 3D back contours. In the year 1979, an innovative ap-

proach utilizing Moire images was employed to investigate scoliosis and establish a

correlation between the asymmetry of these images and the Cobb angle, which is a

metric that serves as a standard for assessing the severity of spinal curvature dis-

orders. Notably, Moire stripes exhibited pronounced deformation in concave areas
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while appearing clearer in convex areas. This finding provided valuable insights into

the structural characteristics of scoliosis and contributed to the understanding of the

condition [120].

In 1981, a comprehensive screening method was introduced for scoliosis: Adam test

+ spinal X-ray imaging. This method is accurate but requires a large amount of

X-ray imaging. Adam test + Moire measurement + X-ray imaging, Adam test

is recognized as the primary examination method, and positive cases are measured

using Moire. Combining the two can reduce false positives in the Adam test, save

resources, and is suitable for the urban census. Adam test+spinal inclination angle

measurement+spinal X-ray film, using a spinal measuring ruler to measure spinal

inclination angle, convenient to carry, suitable for school and rural census [6]. In 1982,

a formula was proposed for calculating the Cobb angle using a pair of asymmetric point

information on Morie fringes in Morie images for determining the degree of scoliosis

[50]. In 2006, some researchers used the MinoltaV IV ID700 laser scanner to obtain

three-dimensional accurate data on the human back. Based on its symmetry features

and support vector machine method, they determined scoliosis with a discrimination

rate of 85% [85]. Meanwhile, other researchers reconstructed the human back using

rectangular structured light and extracted its three-dimensional symmetry features

to determine scoliosis [7].

Scoliosis screening programs for children and adolescents are prevalent across vari-

ous nations. Initiated in the 1960s in Delaware, USA, the screening for Adolescent

Idiopathic Scoliosis (AIS) was subsequently adopted across the United States and

extended to other countries and regions, including Canada and Europe. Despite this,

the implementation of compulsory screening remains a subject of debate [3]. A sys-

tematic review in the United States, encompassing 14 studies with a total of 448,276

participants, concluded that such screenings are effective in identifying AIS and that

early interventions, such as the utilization of braces and exercise therapy, to arrest or

reduce the progression of this condition [41][29]. Similarly, evidence from Australia
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advocates for the execution of scoliosis screenings within school settings to promote

timely treatment for affected students [3]. A study in Denmark found that health-

care systems that did not conduct school scoliosis screening had a greater angle of

scoliosis when patients were detected compared to those that conducted school scol-

iosis screening [78]. The study in Singapore believes that screening for scoliosis has

important clinical significance and will continue to be a routine health service project

[31].

In 1995, the Hong Kong Department of Health included scoliosis screening in routine

health services. In 2021, China governments and education departments at all levels

have included scoliosis screening in physical examinations for primary and secondary

schools. In 1985, the Moire measurement method and visual method were used to

conduct a scoliosis survey on 2500 primary and secondary school students aged 7-16

in Shanghai, with a prevalence rate of 12.05%. In 1988, 20418 students aged 7-15

in Beijing were screened using a combination of prodromal testing, Moire measure-

ment, and X-ray photography, and the incidence of scoliosis was found to be 1.04%

[63]. From this, it can be seen that using different screening schemes and standards

for scoliosis can lead to significant differences in screening results. A device-based

screening standard strategy is needed globally.
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Chapter 3

Back Shape Measurement and

Three-dimensional Reconstruction

of Spinal Shape Using RGB-D

Sensor

Spinal screening relies mainly on direct clinical diagnosis or X-ray examination (which

generates harmful radioactive exposure to the human body). In general, the lack of

knowledge in this area will prevent parents to discover adolescents’ spinal deformation

problems at children’s early age. Therefore, we propose a low-cost, easy to use, radia-

tion free and high-accuracy method to quickly reconstruct the three-dimensional(3D)

shape of the spine, which can be used to evaluate spinal deformation. Firstly, the

depth images collected by Kinect sensor are transformed into 3D point clouds. Then,

the features of anatomic landmark points and spinous processes line are classified and

extracted. Finally, the correlation model of spinous processes line and spine midline

is established to reconstruct the spine. The results show that the proposed method

can extract anatomic landmark points and evaluate scoliosis accurately, which is fea-

28



3.1. Introduction

sible and promising. In this chapter, we validated the high correlation between the

3D back point cloud and 3D spine curve, and we proposed a Kinect based low cost,

easy to use, non radiation, and high accuracy method to quickly reconstruct the three

dimensional shape of the spine, which can be used to evaluate spinal deformation

3.1 Introduction

It is important to monitor the spine trunk deviation when a person is standing straight

because it can indicate whether or not the subject has orthopathology [125]. At

present, the most serious spine problem is scoliosis caused by 3D deformation of the

spine, which can be diagnosed based on the deviation of the spine from the vertical

plane and the Cobb angle measured between the inflection points and the spine curve

[27][87]. In the assessment of scoliosis, the computation of the Cobb angle proceeds

through distinct stages: Firstly, the identification of the terminal vertebrae, character-

ized by the utmost tilt towards the concavity of the curvature, is crucial. Secondly, the

delineation of horizontal lines on the superior margin of the uppermost vertebra and

the inferior margin of the lowermost vertebra is performed. The angle that emerges

from the intersection of these lines serves as the metric known as the Cobb angle, as

illustrated in Figure 3.1 [130].In the context of scoliosis management, the Cobb angle

serves as an important indicator for determining the appropriate course of treatment.

Typically, patients presenting with a Cobb angle below 25◦ require close monitoring.

However, if annual progression surpasses 5◦ and the Cobb angle exceeds 25◦, brace

therapy is recommended. For scoliosis cases with Cobb angles ranging from 25◦ to

40◦, rthopedic braces are considered the primary treatment modality. In cases where

progression exceeds 5◦ annually and the Cobb angle surpasses , surgical intervention

is typically advised. Furthermore, scoliosis with a Cobb angle between 40◦ and 50◦

is prone to further progression due to the significant curvature, necessitating surgi-

cal treatment for immature patients. Mature patients with scoliosis exceeding 50◦ in
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curvature and demonstrating significant progression during follow-up also require sur-

gical intervention. Ultimately, a Cobb angle greater than 50◦ unequivocally indicates

the need for surgical management. The quantification of the Cobb angle may exhibit

variability due to factors such as patient positioning, radiographic technique, and

delineation methodology, with a standard error value typically ranging from 3 − 5◦.

Factors such as patient age, curve type (single or double), and curve apex location

(thoracic, thoracolumbar, or lumbar spine) also influence these measurements [52].

Figure 3.1: Illustration of Cobb angle.

Scoliosis is a chronic disease that can be found in children and adolescents at early

ages. It is believed that prevention of such disease is far more important than later

treatment [38]. At present, the main detection method for scoliosis is X-ray ex-

amination. Despite the popularity and authority in diagnose accuracy, it still has

the following limitations. First, X-ray devices expose patients to radiation, espe-

cially adolescents and patients with scoliosis who need long-term rehabilitation and

monitoring [23]. Secondly, the information obtained from the X-ray machine is a two-

dimensional(2D) image, which is not sufficient to fully evaluate 3D spine deformity.
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In addition, X-ray examinations are expensive, and they have strict requirements on

the site and require a technician to operate.

These shortcomings have restricted the usage of the X-ray system, such as at home.

Since it has not been widely used in the field of screening, patients generally are not

able to know if they have scoliosis in time, thus missing the best chance of effective

therapy. In addition, the main method for current screening is to use palpation,

whose accuracy is highly related to the clinician’s experience, and the clinicians often

need to touch the back of the patient’s body, which brings ethical issues. To solve

these problems, many teams have proposed portable and non-invasive methods for the

evaluation of scoliosis [82][98]. One team proposed a new ultrasound-based approach

to image the spine shape [19]. Other teams have proposed 3D reconstruction of the

back or the whole trunk using an optical non-invasive surface measurement system

[80]. They mainly model the anatomical features of the back, represented in Fig.1, and

then use the physical model to represent the spine’s shape in three dimensions. Their

systems are based on highly accurate surface measuring devices, which are generally

expensive. Thus, the main challenge is to develop a non-invasive, non-contact, and

low-cost method to achieve initial screening analysis of scoliosis and subsequent spinal

rehabilitation follow-up. A group proposed using the low-cost RGB-D camera to

locate the anatomical landmarks on the back of the human body [13]. Still, their

methods have low back anatomical landmarks positioning accuracy and thus lack

robustness. To estimate the anatomical landmarks and reconstruct the 3D shape of

the spine automatically and accurately, this chapter proposes a systematic method

based on the analysis of the back surface using a low-resolution Kinect sensor.

3.2 Challenges and Contribution

Through the analysis of non radiative spine 3D reconstruction methods mentioned

above, the key challenges can be outlined as follows: 1. How to use low resolution
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RGB-D cameras to achieve recognition of human back feature points; 2. How to re-

construct the midline of the spine based on three-dimensional back feature points; 3.

Lack of three-dimensional point clouds on the human back and corresponding spinal

X-ray databases for relevant experimental research. In response to the above chal-

lenges, the following significant contributions have been made in the present study:

1. We use depth images captured by RGB-D cameras to represent the concavity and

convexity of the human back and find corresponding anatomic landmark points by

calculating surface curvature;

2.We established a correlation model between the spinal midline and the symmetrical

midline of the human back, which was derived by calculating the symmetrical mid-

line based on the curvature of the human back. This integration incorporated the

biomechanical characteristics of the spine and the relationship between the spinous

process points and the spinal center. By identifying the 3D back landmark points,

we reconstruct the 3D spinal midline curve;

3. We have established a dataset that includes 3D point cloud of the human back

and corresponding spinal X-ray image and We developed a 3D spine and posture

analysis system based on this algorithm using RGB-D, and have validated the results

accordingly.

3.3 Materials and Methods

3.3.1 Data Acquisition

Six healthy people and two scoliosis patients have participated in the experiment.

The subjects were asked to stand in the upright position naturally. As described in

Figure 3.2, a Kinect 2 (MicrosoftR) sensor was located at 1m behind the subject

and the height of the Kinect sensor was set to 1.3m. The Kinect’s sensing plane
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remains relatively parallel to the wall. After the acquisition process, which lasted

approximately 2 seconds, a back depth map was acquired. A global system of reference

(XY Z) was defined corresponding to the wall position in Figure 3.2. According to

the global reference system, a 3D back shape point cloud was created. The resolution

of the 3D back shape reconstruction is proved to be below 2mm over a human’s

back [125]. Before data acquisition, an experienced clinician locates the anatomic

landmarks and spinous processes line on the back of the subjects by palpation and

marks them in Figure 3.3 in order to evaluate the accuracy of the proposed method.

These anatomic landmarks include the 7th cervical(C7), the sacrum, the posterior

left and right iliacs spines(PSIS). In order to reduce the comparison error between

different reconstructions of the subjects and that of the same subject with different

angles relative to the main plane (XY plane) of the Kinect sensor. It is essential to

rotate the trunk 3D point cloud into a body-fixed coordinates reference [27].

Figure 3.2: The global coordinates reference.

3.3.2 Human Back Extraction

Initially, the regions of interest, spanning from the neck to the hip, are automatically

localized employing the Faster − RCNN [87]. Subsequently, a Resnet architecture
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Figure 3.3: The body-fixed coordinates.

with 101 layers is employed to recognize the distinctive characteristics of each group

[42]. Preprocessed images are then fed into the Resnet model to extract high-level

features for both binary and multiclass classification tasks based on the groups men-

tioned above. Following this, the segmented 2D image is projected onto the 3D point

cloud, leveraging an alignment function. Ultimately, this process leads to the segmen-

tation of the 3D back point cloud. The results are represented in Fig. Figure 3.4(b).

3.3.3 Automatic Features Extraction

Anatomical Landmarks

To locate the anatomical landmarks automatically, the Gaussian curvature and Mean

curvature are calculated from the 3D trunk point cloud [35]. These curvature maps

help to represent the convexity and concavity of the 3D point cloud. Firstly, the

3D point cloud data is meshed. In the experiment, the data is about 500*700 points,

which depends on the size of the human body. Secondly, Gaussian Blur is used to pre-
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(a) Original point data (b) Human back point cloud

Figure 3.4: Illustration for human back extraction.

smoothing the grid plane to avoid the interference of the global curvature calculation

caused by enlarging the local curvature properties of raw data. Finally, the Gaussian

and Mean curvature maps are calculated based on the body reference:

H =
1

2
(k1 + k2) (3.1)

K = k1 · k2. (3.2)

Where k1 and k2 are two directions of the principal curvature, and they are perpen-

dicular to each other. H and K are the Mean curvature map and Gaussian curvature

map, as depicted in Figure 3.5(a) and Figure 3.5(b).

According to [24][26], the anatomical landmarks are characterized by specific trunk

surface curvature. The curvature criteria are as follows: Parabolic, Convex, Concave,

and Saddle-shaped, which are listed in Table 3.1. We assume that k2 is the maximum

and k1 is the minimum in the two principal curvatures. The Gaussian curvature map

can be described as Figure 3.6.
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(a) Back Mean curvature map (b) Back Gaussian curvature map

Figure 3.5: Human back curvature.

Table 3.1: Surface curvature criteria.

Parabolic k1 = 0 or k2 = 0

Convex k2 < 0

Concave k1 > 0

Saddle-shaped k2 > 0 > k1

Back Spinous Processes Line

Before the location of the spinous processes line, we assume that the spinous processes

line of a human’s body is at the symmetrical midline of the human back, which divides

the back into a left and right side with minimum asymmetry [99][127][44], as show in

Figure 3.7.

However, some points in the midline are not consistent and cannot represent the

accurate position of the spinous processes as the spinal deformation is continuously

changing. To solve this problem, some criteria were obtained based on the midline:

(a)Depth of the minima in the transversal surface of human back point cloud;

(b)Smoothness of the spinous processes line;
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Figure 3.6: In the Gaussian curvature map, convex, parabolic, saddle-shaped, and

concave regions are represented as red, white, green and blue respectively. All the

anatomic landmarks are pointed out by the yellow cross.

Figure 3.7: The symmetry line often passes through the midpoint of PSIS and sacrum.

For solving this problem, some criteria were obtained based on the midline: (a) depth

of the minima, (b) smoothness of the resulting line. First, 16 points between C7 and

37



Chapter 3. Back Shape Measurement and Three-dimensional Reconstruction of
Spinal Shape Using RGB-D Sensor

the mid-point of the PSIS on the midline were acquired at equal intervals, as shown

in Figure 5.12(a). Second, we calculate the normal of 16 points on the midline and

extract the cross-section that passes through these 16 points and is perpendicular to

the midline, as shown in Figure 5.12(b). Third, We extract the profile of the cross-

section and calculate its local minimum value, then compare whether the midpoint

estimated through symmetry and the points of the local minimum value coincide.

If they do not coincide, we select the local minimum value to replace the original

value, as shown in Figure 5.12(c). Last, after the 18 points were determined, a two-

dimensional second order polynomial was used to fit the spinous processes line to

keep its smoothness, as shown in Figure 5.12(d)

3.3.4 Three-dimensional Construction of The Spinal Midline

The procedure of 3D spinal midline reconstruction is based on the spinous processes

line based on the following assumptions:

1) The horizontal component of the normal angle is equal to vertebral rotation.

2) The direction of surface normals along the symmetry line represents the degree of

vertebral rotation.

3) The distance between the center of a vertebra and the back surface is infinitely

small, which can be ignored and is considered a function that varies with the order

of different vertebrae in the spine and the length of the main body of the spine.

The spinal midline (xm, ym, zm) was calculated based on the spinous processes line

(xs, ys, zs) using the following (Equation 3.3) proposed by [25]:
xm = xs + L · sinθ

ym = ys

zm = zs + L · cosθ

(3.3)

Among them, L represents the length of a single vertebrae, representing the distance

from the skin surface of the back to the center of the vertebrae. θ is vertebral rotation,
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(a)

(b)

(c)

(d)

Figure 3.8: The schematic diagram for finding a more reasonable spinous processes

line.

which represents the angular deviation between the normal vector of the spinous

process point within the x− z direction and the z-axis of the cross-section, as shown

in Figure 3.9. By testing the samples, the main length of a single vertebra can be

calculated by the scale factor, the length of the trunk of the spine, and the longitudinal

coordinates of the spine. It is expressed as Equation 3.4:

L(ys) = 0.132 · T − 0.035 · ys (3.4)

L is also a function of the longitudinal coordinates of the spine ys. T is the main
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Figure 3.9: Establishment of the spinal midline in a transverse trunk section utilizing

back surface data. Specifically, the vertebral midpoint M is constructed by traversing

from the surface point S located on the spinous processes line, in a direction opposite

to the normal, by a distance of L.

length of the spine(the projection distance from the C7 point to the midpoint of the

PSIS). For a specific sample, it is equivalent to a constant.

Through (Equation 3.3) and (Equation 3.4), we are able to calculate the midline of

scoliosis, but the results showed that due to only relying on the normal rotation angle

of the spinous process points, some angles may have significant errors due to local

unevenness on the body surface. To correct the overall body rotation, We attempt

to use a new method for estimating the curvature of the spinal midline in the XY

plane, leveraging biomechanical principles of the spine and relying on the spinous

processes line as a reference. By calculating the rotation angle that conforms to spine

biomechanics and inferring the 3D curve of the Spine midline.

In order to maintain body balance, there are usually 2-3 bends in the back of each
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scoliosis patient, including one big bend and two small bends in the opposite di-

rection, as shown in Figure 3.10(a). Vertical deviation of spinous processes line in

scoliosis is closely related to spine rotation angle. Vertical deviation of the spinous

processes line can reflect spine rotation angle positively. A single side bend is shown

in Figure 3.10(b). Ca is the spinous processes line, Cb is the spine midline and dmax

denotes the max vertical offset of the point on the spinous processes line to the line

connecting C7 point and the midpoint of the right and left PSIS. Assuming that

the endpoints of the spinous processes line coincide with those of the Spine spinous

processes line midline, the coordinates of the Cb line can be predicted by the Ca line.

The calculating model of the severity of scoliosis is expressed as (Equation 3.5):

V =
len chord

T
(3.5)

Among them, V represents the severity of scoliosis, and len chord represents the center

chord length of each bend, as shown in Figure 3.10(a) and Figure 3.10(b). Further,

the calculation model of the degree of deviation between the spinous processes line

and the spine midline is expressed as (Equation 3.6):

r =
d1

dmax

= 1 +
wcheck

dmax

(3.6)

r denotes the degree of deviation between the spine midline and spinous processes

line in each curve; d1 denotes the maximum distance between the spine midline point

and the central chord; dmax denotes the maximum distance between the spinous

processes line point and the central chord; wcheck is the difference in the vertical

distance between d1 and dmax, their relationship can be expressed by (Equation 3.7):

d1 = dmax + wcheck (3.7)

Further, the formula for calculating wcheck can be interpreted as Equation 3.8:

wcheck = p1 · 0.5 · wy max ·min(1, p2) (3.8)
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(a) Example of spinous processes line

with three band

(b) Spine midline and spinous pro-

cesses line in one band

Figure 3.10: Illustration for an spinous processes line with three bends in the XY

plane and relationship between the Spine midline and spinous processes line on one

bend.

p1 represents an empirical value of the deviation strength parameter between the

spine midline and the spinous processes line estimated from parameter V . According

to experience, when V < 0.1, p1 is 0.5; when 0.1 < V < 0.2, p1 is 0.8; when 0.2 <

V < 0.4, p1 is 0.9; otherwise, p1 is 1. p2 represents the severity of single bend, which

can be calculated by (Equation 3.9):

p2 =
dmax

len chord

(3.9)

wy maxindicates the width between the spinous processes line and the center chord in

the y-axis direction. min(1, p2) represents the minimum values of 1 and p2.

We set the ratio r of the distance from each point on the spine midline to the central

chord and the distance from the corresponding point on the spinous processes line to

the central chord to be equal in each bend, according to the ri(i = 1, 2, 3) and spinous

processes line coordinates of each bend, the coordinates of the corresponding spine
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midline points can be calculated.

According to (Equation 3.3), the calculation equation of vertebral rotation angle can

be expressed as follows (Equation 3.10):

θ = arcsin
xm − xs

L
(3.10)

After calculating the vertebral rotation angle of the spine, they are brought back into

(Equation 3.3) to calculate the final 3D spine midline.

Body-fixed Coordinates

The camera plane needs to be relatively parallel to the back plane of the human body

when collecting the original point cloud. However, due to the inability to fix the upper

body of the human body, unnecessary left and right rotations can occur, resulting

in incorrect point clouds obtained and affecting subsequent calculations. Due to the

relative stability of the left and right PSIS and the fixed position of the keel within the

human anatomy, it is expected that there will be no significant changes. Therefore,

we established the body-fixed coordinates system using C7, left and right PSIS in the

coordinate form of Figure 3.3 in subsection 3.3.1. Within this body-fixed coordinate

system, the origin is designated as the midpoint between the left and right posterior

superior PSIS. The Y -axis is defined by the line connecting point C7 to the origin,

with positive direction being upward. In the plane encompassing C7 and the left and

right PSIS, the X-axis is a straight line passing through the origin and perpendicular

to the Y -axis, with positive direction towards the right. The Z-axis is perpendicular

to the XY plane. To facilitate subsequent calculations, once the coordinate axes are

established, the origin is shifted to point C7.
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Single Vertebra Position Simulation

In order to better simulate the correlation between each vertebra, we annotated about

1000 X-ray images and statistically analyzed the length, width, and spacing of each

vertebra from C7 to L5, and obtained their statistical correlation. After obtaining the

3D spine midline, we obtained the specific positions of each vertebra from C7 to L5

based on the correlation between cone size and spacing, which is used for subsequent

calculation of parameters such as Cobb angle.

3.4 Accuracy Analysis Results

Figure 3.11 shows a representative result of one patient with moderate scoliosis. We

can find out that the black spots are the anatomical landmark points marked by

experienced clinical, and the red spots represent the point automatically found by

the proposed algorithm.

Table 3.2: RMS error of the anatomical landmarks and Cobb angle.

Proposed method Bonnet method [13]

C7 6± 4(mm) 10± 6(mm)

Right PSIS 4± 3(mm) 5± 4(mm)

Left PSIS 4± 2(mm) 8± 6(mm)

Sacrum 2± 2(mm) 6± 2(mm)

Cobb 3± 2(◦) NAN

Figure 3.13 shows the results of 3D imaging of one subject spine, and Figure 3.12

shows the frontal and lateral views of the spinous processes line and spine midline

by the proposed algorithm. Table 3.2 shows the accuracy of the anatomical markers

location and the spine midline reconstruction based on the proposed system, which

shows the excellent performance of this method. As can be seen from the table,
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the average Root Mean Square(RMS) error of anatomical markers is less than 5 mm.

There is the biggest error in the positioning of C7. Because of the accuracy of imaging

equipment, it is not sensitive to the calculation of the back surface curvature of C7

area, which leads to a higher final positioning error. For the accurate analysis of 3D

spine imaging results, the traditional Cobb angle parameters are used to compare the

results calculated in this method with those calculated after X-ray detection and the

final RMS error is around 3◦.

Figure 3.11: Representative result showing the estimate of anatomic landmarks po-

sitions and spinous processes line for a subject in the global coordinates [m].
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Figure 3.12: The frontal and lateral views of the spinous processes line and spine

midline and the vertebral rotation of the spine calculated by the proposed method,

the results are represented in the body-fixed coordinates[mm].

Figure 3.13: The 3D imaging of the spine(C7-L5) with anatomic landmarks for a

subject.
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3.5 System Development and Comprehensive Val-

idation

3.5.1 Equipment

Our device mainly consists of Kinect Sensor Version 2, a Windows laptop, and a

retractable tripod, as shown in Figure 3.14.

Figure 3.14: Hardware composition of system.

The second-generation Kinect, known as Kinect v2, represents Microsoft’s advanced

iteration, integrated into the next-generation gaming console, Xbox One, for captur-

ing 3D imagery and audio. The Time of Flight(ToF) processing unit within Kinect

v2 utilizes the TSMC 0.13 chip [81][97]. As depicted in Figure 3.15, Kinect v2 com-

prises a color camera, a depth sensor, and an infrared emitter, enabling the acquisition

of depth, color, and infrared data from the environment.

The Kinect v2 uses Time of Flight (ToF) technology, utilizing a square wave-modulated
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Figure 3.15: Structure of Kinect2.

illumination source originating from its camera and operating at an average frequency

of 80MHz. Utilizing phase detection methods, the phase shift and attenuation of light

is determined as it traverses from the emitter, reflects from the object, and returns to

the sensor. This process enables the estimation of the light’s round-trip transit time.

Consequently, the distance between the object and the sensor can be derived based

on the round-trip flight time of the light. The depth measurement is computed by

applying the following (Equation 3.11):

2d =
phase

2π
· c
f

(3.11)

d represents the depth, phase denotes the modulation signal phase shift, c signifies

the light speed, which is approximately c = 3 × 108m/s when propagating through

air, and f corresponds to the modulation frequency of the sensor.

The color camera resolution of Kinect v2 is 1920x1080, coupled with a horizontal

field of view of 70◦ and a vertical field of view of 60◦. Additionally, it offers a remark-

able data transfer speed, capable of acquiring depth data at a maximum rate of 60

frames per second. In executing a 3D reconstruction of the human back utilizing the

Kinect v2, the overarching 3D reconstruction algorithm of this system adheres to the
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algorithmic framework of Kinect Fusion [72]. On this basis, the main contributions

of this system are:

1. Firstly, using the basic Application Programming Interface(API) driver provided

by Kinect v2 SDK, the depth data acquisition module of the reconstruction system

is constructed;

2. Secondly, a depth data noise processing and depth camera calibration module are

added;

3. Thirdly, a complete, low-cost, real-time, accurate 3D scanning solution is imple-

mented.

In order to obtain a complete and relatively low noise image of the human back, we

placed the Kinect device at a distance of about 1 meter behind the plane of the

human back and adjusted the height of the device to the position between the third

to seventh thoracic vertebrae of each person. A specific usage scenario is shown in

Figure 3.16.

3.5.2 System Procedure

Data Acquirement

According to Figure 3.2 in subsection 3.3.1, we collect images of the human back.

During the data collection process, we find that a significant deviation angle between

the camera plane and the plane of the human back can introduce substantial errors in

the 3D reconstruction, even after attempting to correct these errors using the human

coordinate system. The original data inaccuracies resulting from this misalignment

persist and are not adequately compensated. So before collecting, we need to find a

wall and adjust the equipment plane to be relatively horizontal with the wall. During

the testing process, the subject needs to have their feet together and lean vertically

against the wall. To optimize the parallelism between the equipment and the wall,
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Figure 3.16: Detection display.

we integrated a mesh structure into the data collection interface. This allows for

precise adjustments in the left-right rotation of the equipment by identifying distinct

horizontal and vertical line patterns on the wall. As depicted in Figure 3.17.

After obtaining the raw data, the algorithm automatically extracts a 3D point cloud

map of the human back using the human back extraction model trained in subsec-

tion 3.3.2, as shown in Figure 3.18.

Calculation

Utilizing the method outlined in subsection 3.3.3, we determine the curvature of the

human back and the 3D spinous processes line. Additionally, we identify and mark

the midpoint of the spinal vertebrae ranging from C1 to L4, both the left and right

PSIS, and their respective midpoints (representing L5’s center here). Furthermore,

we locate and label the sacrum points, as shown in Figure 3.19.
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Figure 3.17: Optimized data collection interface.

Figure 3.18: Human back 3D point cloud.

Finally, based on the content of subsection 3.3.4, we calculate the 3D spine midline in

the human coordinate system based on the found feature points and spinous processes

line, as shown in Figure 3.20.

Given that the assessment of the 3D spinal morphology relies heavily on X-ray imaging

from coronal and sagittal views encompassing the entire spine, we conducted a com-
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Figure 3.19: Human back curvature and landmarks.

Figure 3.20: 3D human back and spine.

parative analysis of the 3D spine and body posture measurements obtained through

our system against the corresponding X-ray findings. The comparison is shown in

Figure 3.21 and Figure 3.22
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Figure 3.21: Comparative analysis of system outcomes and X-ray imaging in coronal

view.

Figure 3.22: Comparative analysis of system outcomes and X-ray imaging in sagittal

view.

3.5.3 Clinical Experiment

Experimental Motivation

Exploring the reliability and validity of our system infrared 3D spinal and posture

evaluation systems(ITSPES) for measuring Cobb angle in AIS patients, guiding the

further application of the research results in clinical diagnosis in the future.
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Experimental Design

1) Experimental design: This experiment adopts a multicenter, single-blind diagnos-

tic test;

2) Basic methods of clinical trials: Adhering to the Guidelines for Reporting Relia-

bility and Agreement Studies (GRRAS), the current clinical investigation employed

X-ray plain film outcomes as the benchmark control for evaluating the reliability and

validity of the ITSPES system in quantifying the Cobb angle among patients;

3) Research subjects: 57 suspected adolescent idiopathic scoliosis patients were re-

cruited from the Rehabilitation Medicine Center of West China Hospital of Sichuan

University and the Traditional Chinese Medicine Hospital of Guangling District,

Yangzhou City. All examination subjects are first-time patients who have not un-

dergone any treatment related to scoliosis. They are between 6 and 16 years old and

have a scoliosis degree between 5 and 50◦;

4) Diagnosis and measurement methods: To reduce imaging and measurement errors,

X-rays and ITSPES need to be performed at the same time. Three independent eval-

uators, blinded to the measurement process, assessed the Cobb angles of the thoracic

and lumbar vertebrae for the subjects, utilizing both the X-ray results and the out-

comes generated by our system. After measurement, a researcher who was unclear

about the experimental content conducted statistical analysis on the results of the

two groups.

Evaluation Methods

Utilize X-ray plain films and the ITSPES system to diagnose and calculate the Cobb

angles pertaining to the thoracic and lumbar spinal segments. The measurement

method for Cobb angles is shown in subsection 3.3.4.
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3.5.4 Experimental Result

Table 3.3 shows the reconstructed spine model’s Cobb angle errors. The overall av-

erage Cobb angle error is 4.67◦ in thoracic region, and 2.51◦ in lumbar region. The

average error is about 3.59◦.

Table 3.3: Cobb angle error of the reconstructed spine.

Error◦ mean± std(max)

Thoracic 4.67± 4.31(14.75)

Lumbar 2.51± 3.22(10.25)

Besides the Cobb angle in the coronal position of the spine, we also conducted mor-

phological analysis on the morphology of the sagittal position and the concavity and

convexity of the human back surface and found a high correlation between the 3D

back surface and the range of scoliosis angle. Comparative cases of different Cobb

angles of scoliosis are illustrated in Figure 3.23.

Figure 3.23: Comparison of sagittal, coronal, and back surface imbalances between

our system(ITSPES) and X-rays at different Cobb angles.
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3.6 Conclusion

In this work, we use a low-cost 3D camera (Kinect) to recognize the anatomical mark-

ers on the back of the human body and establish an accurate model to reconstruct

the 3D spine. The performance of the proposed method is verified via experiments on

practical investigation. Compared with the method proposed by Bonnet [8], our al-

gorithm has higher accuracy. The average RMS difference calculated is around 5mm.

It is worth mentioning that when the patient’s scoliosis is less than 50◦, the differ-

ence between the Cobb angle calculated by our method and that calculated by X-ray

examination is around 3◦. Before putting the product into use, we use more data to

verify the system’s accuracy, and we collaborate with multiple hospital institutions

to conduct clinical trials on the results. Through clinical validation with 57 people,

our system has an average error of 3.6◦ in Cobb angle accuracy and X-ray. Due to

the absence of a shared dataset and the lack of radiation-free equipment, such as

ultrasound-based spinal analysis devices and grating 3D spinal analysis devices, we

are currently unable to conduct an accurate precision comparison. However, based

on the results from existing literature, our method, while slightly less accurate than

ultrasound-based spinal analysis devices, offers higher stability and is non-contact.

Compared to grating 3D spinal analysis devices, we cannot analyze the accuracy

from the Cobb angle dimension as there are no articles on their Cobb angle accuracy

analysis. Nevertheless, from a cost and convenience perspective, our method is more

cost-effective and, utilizing far-infrared imaging, is not sensitive to visible light, thus

eliminating the need for use in a darkroom. The significant error in the thoracic verte-

brae may be due to the connection between the thoracic vertebrae, ribs, and scapula,

which can easily lead to substantial morphological changes in the back, resulting in

inaccurate results. This has also become a direction for improvement in the future.
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Inferring Back 3D Point Cloud

Feature From 2D Back Images

Adolescent idiopathic scoliosis (AIS) is a high incidence disease in adolescents, with

a long treatment time and difficult to cure. As a consensus, the preliminary AIS

screening is of crucial importance to detect the disease at an early stage and allows

proactive interventions to prevent the disease from becoming worse and reduce future

treatment. Currently, the conventional palpation or Adam forward leaning is the

most widely used preliminary screening method considering the Axial Trunk Rotation

(ATR) value calculated by scoliosis assessment equipment. However, this method

relies heavily on the subject’s standing posture and the doctor’s experience.

Through the content of chapter 3, we have learned that there is a high correlation

between the 3D human back and scoliosis. In this chapter, we explore the correlation

between important features (ATR) between 2D back images and corresponding 3D

back point cloud images. We develop an efficient deep learning-based framework to en-

able a large-scale scoliosis screening by using only one unclothed two-dimensional(2D)

human back image, without any X-radiation equipment. We classify the normal and

abnormal scoliosis using ATR value as classification label which calculated from the
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human back three-dimensional(3D) point cloud. Our accuracy in the task of AIS clas-

sification reaches 81.3%, far exceeding the accuracy of visual observation by the expe-

rienced doctor (65%), which can be used as a remote preliminary scoliosis screening

method. This chapter verifies that 2D and 3D images of the human back on concave

convex features (such as ATR) have strong correlation, which can lay the foundation

for inferring the features of 3D point cloud images based on 2D images of the back

in the future and it also validates the feasibility of screening for scoliosis using an

unclothed back image

4.1 Introduction

AIS is the most common spinal disease in adolescents, with a global prevalence of

0.5 − 5.2% [124]. Without intervention, AIS will continue to develop before the

adolescent bone matures, affecting the body appearance, cardiopulmonary function,

and even paralysis [118]. However, as a chronic disease, it can usually be found early

in the disease, such as judging by abnormal posture and back muscle imbalance.

Through timely regular review and health education, it can be effectively controlled

and corrected. Therefore, it is considered that the prevention of such diseases is far

more important than later treatment [122]. AIS is generally diagnosed by ATR angle

or Cobb angle. Although Cobb angle is more authoritative in AIS diagnosis, it cannot

be accurately calculated from human back shape, and additional invasive radiography

is required to expose the characteristics of the whole spine. In the field of large-scale

scoliosis screening, some research teams found through a large number of samples

that judging whether adolescents have scoliosis by whether the ATR value exceeds 5°

has achieved the highest sensitivity of 87% in the AIS classification task. Research

shows a good correlation with the radiographic measurements, which become a more

popular and universal AIS screening standard in the world [20].

The routine AIS screening process includes preliminary screening, outpatient screen-
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ing and instrument screening. As the first step of AIS diagnosis, preliminary screening

is an important basis for disease awareness and treatment. In the initial screening,

patients judged to be at risk of spinal abnormalities will receive follow-up outpatient

screening and instrument screening according to the recommendations to further di-

agnose posture abnormalities or scoliosis.

At present, the common means of preliminary screening include general examina-

tion, Adam forward leaning test [1] and scoliosis meter examination [14]. General

examination and forward leaning test require the subject to expose his back, stand

naturally or make a standard flexion posture, and the examiner shall make a diagno-

sis through visual observation. Their accuracy is highly dependent on the clinician’s

diagnostic experience, leading to the subjectivity of screening. Scoliosis measurement

instrument detects ATR value through scoliosis measurement instrument on the ba-

sis of forward bending posture or standing posture. ATR value is highly correlated

with back information, and the current mainstream screening method is to calculate

ATR value. Previously, a research team estimated the rotation angle of vertebrae by

calculating the 3D back surface ATR data of human body in standing position, and

found that they had a high correlation [108].Although it is cheap, easy to obtain and

harmless, complex processes and screening instruments with different quality levels

are difficult to ensure the standardization of the screening process.

The well-known diagnostic method X-ray examination, although it is professional

and authoritative in diagnostic accuracy, the radiation injury of X-ray, high cost and

environmental requirements limit its large-scale application in primary screening. In

order to solve the problems of large-scale AIS preliminary screening. Many nonin-

vasive AIS evaluation methods have been proposed [82], such as Moire topographic

map or parallel light to display the back surface shape, but strict equipment use con-

ditions hinder their popularization and universal application. Another non-radiation

injury evaluation method [19] through ultrasound is introduced to image the shape

of the spine, but it needs to apply media on the back of the human body, professional
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doctors to operate, and contact the back of the human body. This method has low

efficiency and weak stability. In addition, the optical non-invasive surface measure-

ment system [80] developed based on high-precision surface measurement equipment

can realize 3D reconstruction of the back or the whole torso, but it is usually very

expensive.

4.2 Challenges and Contribution

Based on the above preliminary screening work for scoliosis, the main challenges are

as follows: 1. The current mainstream non-radiation scoliosis assessment equipment is

relatively large and not portable enough; 2. The screening equipment costs are high; 3.

The screening equipment detection efficiency is low. Since there is a high correlation

between the 2D human back image of AIS patients and ATR, and ATR is also the

standard for the primary screening of scoliosis, we use deep learning technology to

predict scoliosis based on the unclothed human back 2D image and ATR value. This

system takes one single 2D image of the unclothed human back and uses ATR value

as an indicator to classify whether adolescents have scoliosis. First, we collect the

2D back image of the same sample and its corresponding 3D back point cloud data,

and based on the point cloud data, we calculate the ATR value of the back of the

human body and mark whether there is scoliosis according to the size of the ATR

value. At the same time, an experienced doctor will judge whether the sample has

scoliosis through the naked eye. Then, we use the UNET model [89] and the Y olo

mode [86] l to train the human back segmentation model to segment the human

back region on the 2D image to achieve preprocessing. After that, we train the

EFFICIENTNET − B4 network [106] to classify images by using the 2D image

of the human back and corresponding label calculated by using ATR values and 3D

human back. The experimental results reveal that there is a high correlation between

2D human back image and ATR values. Using the result of classifying scoliosis by
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ATR value as a label can well realize the classification of scoliosis based on one singe

2D human back image. In summary, the contributions of this paper are outlined

below:

1. We are the first to establish a 2D human back image and the corresponding 3D

point cloud database to analyze the correlation between 2D and 3D point cloud images

of the human back on ATR features. All data contain the 2D human back image of

the same sample and the corresponding labeled 3D back point cloud.

2. We propose a fast, accurate, and low-cost scoliosis screening algorithm. This

method creatively uses ATR-based classification results as labels. This system learns

the correlation between the 2D human back image and the ATR-related information

calculated from the 3D point cloud of the unclothed human back. Finally, the system

can classify scoliosis based on a single 2D image of the back and the screening effect

is better than that observed by experienced doctors with the naked eye.

3. This method realizes the user’s family’s independent screening without professional

doctors and radiation.

4.3 Related Works

4.3.1 AIS Screening Using 3D Image

A research group proposed to use low-cost RGB-D camera to locate the anatomical

landmarks on the back of the human body [122]. This method has high accuracy and

stability, but the subjects need to take off their clothes in public, which is still limited

to large-scale screening. Some other teams use the support vector machine model

to classify the severity of scoliosis based on the 3D human back surface. However,

the main classification ranges are the Cobb angle less than 60◦ and greater than 30◦,

which can not be used for preliminary screening [85].
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4.3.2 AIS Screening Using 2D Image

With the the image processing technology and deep learning technology rapidly de-

veloping, some researchers have applied image processing and deep learning algorithm

to AIS screening by using one single 2D human unclothed back image. A research

group proposed an edge-based contour model to reconstruct the contour of the back

of the human body and the center of the spine. Although this method is very simple

and has a certain degree of accuracy, the results are unstable and inaccurate due to

the complex background and the uneven light on the back of the human body [79].

Another research team uses one single RGB image of the human back, the Cobb angle

interval is predicted based on RESNET model to realize classification. The classi-

fication accuracy is only about 60%, which is similar to that of experienced doctors’

visual diagnosis [124]. Deep learning methods are popular in many screening fields.

However, there are less studies are proposed for AIS screening.

4.4 Data Acquisition

1935 subjects participate in the experiment. They are healthy or have different de-

grees of scoliosis, and their ages are concentrated between 5 and 14 years old with

ATR ranges from 1 − 15◦. All the images used in the experiment are taken when

the subjects stood naturally facing the wall without upper clothes (above the sacrum

and completely exposed the anatomical landmarks on the back). Kinect2 (Microsoft)

sensor is located 1 meter behind the subject, and the height of Kinect sensor is about

the position of the fifth thoracic vertebra of the subject. The sensing plane of Kinect

is still relatively parallel to the wall [122]. After the acquisition process lasting about

2 seconds, a group of RGB-D images of the back of the same person at the same time

are obtained, which includes 2D human back image and depth map. The ATR value

and classification label are obtained by 3D point cloud data, which calculated by
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depth map. We use 2D human back image as input and its corresponding ATR value

as label for training and testing. In order to compare with the artificial naked eye

diagnosis, an experienced doctor uses the naked eye to judge whether the sample has

scoliosis. The doctor marks 1 for the samples with scoliosis, and 0 for those without

scoliosis. We count the data observed by doctors with the naked eye for comparison.

Our collection method and collected data example are shown in Figure 4.1.

(a) (b) (c)

Figure 4.1: The data acquisition method, 2D back image and depth map data are

shown in (a), (b) and (c) respectively.

4.5 Scoliosis Risk Assessment Model

Figure 4.2 shows the framework of our model. Our scoliosis risk assessment model

includes three modules: 2D image data processing, 3D human back ATR calculation

and label classification, and scoliosis risk classification. The data processing module

helps to remove interference features and retain the necessary image features for

scoliosis risk assessment. The scoliosis risk classification module classifies the spinal

abnormalities based on the label calculated by ATR value under international AIS

criteria.
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Figure 4.2: The framework of proposal model.

4.5.1 Image Pre-processing Module

Before assessing the risk of scoliosis, we process the original 2D images to obtain

back images. As shown in Figure 4.2, we first segment the people in the 2D image
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with UNET model. Using the model information our data pre-trained on the human

matching dataset [16], we obtain an image mask in which the background area is

black and the human back is white. Mask the image mask on the 2D image, and

fill the background with black according to formula (1) to eliminate the interference

caused by background information.

aij = min(cij,mij) (4.1)

where aij, cij and mij respectively represent the pixel values with coordinates (i, j)

in the segmented 2D image, original 2D image and human mask. Further, in order

to extract the region of interest in the human back, we train a Y olo algorithm to

identify the back region of interest from C7 to the sacrum. We use Y olo V5 released

in June 2020 as the back region recognition model, which is faster, more flexible and

lighter than the previously released version [12]. So as to obtain our training data.

4.5.2 ATR Calculation Module

We extract feature points from the 3D human back, as shown in Figure 4.3(a). The

following anatomical landmarks need to be located: Carinal point (C7), posterior

superior iliac spine (PSIS), spinous process line (a series of lines from carinal bone to

the midpoint of left and right PSIS).

In order to reduce the comparison error between different the reconstructions of

the subjects and that of the same subject with different angle relative to the main

plane(XY plane)of the Kinect sensor. It is essential to rotate the trunk 3D point

cloud into a body-fixed coordinates reference [122].

According to the method in [122], based on the Mean curvature and Gaussian curva-

ture calculated by the 3D point cloud, we obtain the curvature map of the human back

according to a certain curvature criterion, as shown in Figure 4.3(b); and calculate

the line of the spinous processes, as shown in the red line in Figure 4.3(c). As shown
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in Figure 4.3(d), 10 transverse sections (y = 0, plane, near horizontal) are divided

by equal distance from C7 to the midpoint of left and right PSIS. In each section,

the paramedian lines are 10% of the length of the back body to the left and right

of the spinous process point, the red point represents the spinous process point, and

the right and left paramedian line are represented by yellow and purple respectively.

The trunk rotation angle is a positive number when the right side is higher; Then,

we do polynomial fitting on the rotation angle calculated by 10 transverse sections,

and calculate the value with the largest absolute value as the final ATR value in the

results [108]. Finally, according to the international scoliosis classification standard,

we label the data as 0 or 1 based on the ATR value as training and testing labels.

0 means that the sample has no scoliosis, and 1 means that the sample has scoliosis

[123].

4.5.3 Scoliosis Risk Assessment Module

At present, the standard of medical treatment is to refer the subjects with ATR≥ 5◦

to the hospital for X-ray evaluation, while the subjects with ATR <5◦ should not

be re-screened [123]. The screening classification criteria based on ATR value are as

follows:

1. If ATR <5◦, it indicates that the sample is normal with low scoliosis risk.

2. If ATR≥ 5◦, It means that the sample is abnormal and is suspected of scoliosis.

We train EFFICIENTNET −B4 network to classify images and minimize the loss

function (2) to obtain the best classifier f :

f = argmin

N∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (4.2)

where n is the number of samples, y is the real label, and p is the prediction proba-

bility.
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(a) (b)

(c) (c)

Figure 4.3: Point cloud map of human back; Curvature anatomical feature point map;

The spinous process line diagram and ATR value calculation diagram are represented

by (a), (b), (c) and (d) respectively

4.6 Experiment Results

4.6.1 Evaluation Metrics

Five evaluation indicators are used to evaluate our model, which are defined as follows:

Accuracy =
TP + FN

TP + FN + TN + FP
(4.3)

F1 =
2× Precision×Recall

Precision+Recall
(4.4)

Precision =
TP

TP + FP
(4.5)

Recall/Sensitivity =
TP

TP + FN
(4.6)
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Specificity =
TN

TN + FP
(4.7)

where TP and TN represent true positive and true negative respectively, which means

that people with normal and suspected scoliosis are predicted to be in the correct

category; FP indicates false negative, indicating that subjects with suspected scoliosis

are predicted to be normal; FN indicates false negative, indicating that the model

wrongly judges normal people as suspected scoliosis. Their meaning is shown in

Figure 4.4.

Figure 4.4: The meaning of TP ,TN ,FP ,FN .

In addition, the false positive rate represents the misdiagnosis rate, that is, the

percentage of actual normal samples judged as suspected scoliosis(Equation 4.8);

The false negative rate represents the missed diagnosis rate, that is, the percent-

age of samples actually suspected of scoliosis but mistakenly recognized as nor-

mal(Equation 4.9). It is an important index to judge whether the model is available.

false positive rate = 1− Specificity (4.8)

false negative rate = 1− Sensitivity (4.9)

4.6.2 Model Training and Testing

The training and testing of all our deep learning models are performed on a Linux

server with four NV IDIA Tesla V 100.

Firstly, the Y olo V5 algorithm is trained on a private dataset containing 1935 images

without background. They are labeled using Labelimg software [109], a rectangular
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(a) (b) (c) (c)

Figure 4.5: The loss change of human back segmentation model in training and

verification dataset : (a) is the generalized intersection over union(GIoU) loss function

on the training dataset; (b) is the loss of target detection during training; (c) is the

bounding box loss on the verification dataset; (d) is the loss of verification dataset

target detection.

(a) (b) (c) (d)

Figure 4.6: Partial results of human segmentation, target detection label, human back

recognition, and human back segmentation on test data. (a) is original 2D image; (b)

is ground truth of human back detection; (c) is the segmentation result predicted by

Y olo V5 model; (d) is segmented human back.

frame is used to surround the back area, which is slightly larger than the area from

the C7 to the sacrum. An experienced doctor helps us to correct the labeling results.
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80% of the data is divided into the training dataset and the remaining 20% is used in

the testing process. The maximum number of iterations is 300 epochs and the batch

size is 16. Other parameters are set using default.

The final model for human back recognition has an average map value of 0.999 when

the Intersection Over Union(IOU) threshold is 0.5. When the step size is 0.05, the

average map value is 0.945. Figure 4.5 shows the changes in loss, precision, and recall

on the training and verification dataset. Figure 4.6 shows part of the results of the

human body segmentation and back segmentation process.

Subsequently, we train and test the scoliosis evaluation model. After ATR value

calculation and labeling, 948 available images are marked as normal and the other

987 are marked as abnormal. We arbitrarily split the images for training and the

rest for testing(75% of the images are used as training dataset and the rest as test

dataset). When training the scoliosis risk assessment model, the dataset was enhanced

by rotation and turnover, and it is expanded by 8 times. The input image size is

adjusted to 380× 380 to adapt to the network.

Table 4.1: Performance of our model scoliosis assessment task.

Metric Normal Abnormal

f1-score 0.832 0.788

precision 0.754 0.907

Recall/Sensitivity 0.929 0.696

Specificity 0.696 0.929

The final scoliosis risk classification model accuracy is 0.813.The observation accuracy

of experienced doctors is 65.1%, which is much higher than the naked eye observation

of experienced doctors. Therefore, it can be concluded that there is a high correlation

between 2D back images and 3D back point cloud images in terms of ATR feature.

Its Receiver Operating Characteristic(ROC) curve is shown in Figure 4.7(a), and the
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(a) (t)

Figure 4.7: Performance of the model on test dataset.(a)The ROC curve and AUC

value of proposal method for discerning whether the ATR >5◦.(b)Confusion matrix

on the test dataset

Normal

(a) (b)

Abnormal

(c) (d)

Figure 4.8: Correctly classified samples. (a) For normal samples correctly classified,

ATR <5◦(label=0); (b) For abnormal samples correctly classified, ATR≥ 5◦(label=1)

Area Under the Curve(AUC) of the algorithm is 0.839. The confusion matrix on

the test dataset is shown in Figure 4.7(b). The results recorded in Table 4.1 show
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that the system has the precision and specificity of 0.907 and 0.929 to detect suspect

scoliosis, indicating that this system can well detect the occurrence of abnormalities

despite the possibility of missed detection. Most of the normal samples with the

wrong classification have ATR values close to 5◦ because these samples have slight

differences in 2D characteristics. However, for abnormal samples, our model has a

high false negative rate (0.304), which means that it will predict some abnormal

samples as normal. Most of the incorrectly classified abnormal samples have large

ATR values, which means that they have severe scoliosis. The failure of this model

is due to the lack of enough samples of severe scoliosis. In fact, these samples can

be easily identified by the naked eye. An example of correctly classified samples is

shown in Figure 4.8.

4.7 Conclusion

In this chapter, We have verified the high correlation between 2D back images of

the human body and 3D back point clouds on the key feature of ATR, and by ver-

ifying this correlation, we have developed a new preliminary AIS screening method,

which puts the scoliosis screening power into the user’s hand. This method uses 2D

human back image to classify scoliosis normal and abnormal based on deep learning

algorithm, so as to realize the large-scale preliminary scoliosis screening. No need

for professional doctors, high precision and no radiation are the main contributions

of this paper. In addition, ATR is creatively classified as a classification label and

screening ground truth, based on the high correlation between ATR value and sco-

liosis risk. Experimental results verify the effectiveness of the proposed model with

state-of-the-art accuracy(81.3%) over naked eye tests by professional doctors(65.1%).
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Chapter 5

Novel Back Topology and Deep

Learning Algorithms for

Automated Scoliosis and Abnormal

Posture Evaluation Using 2D Back

Images

Adolescent idiopathic scoliosis is becoming a common spinal disorder among adoles-

cents. The traditional methods of scoliosis diagnosis are labor-intensive and can re-

sult in unnecessary referrals and radiological exposure for adolescents due to their low

positive predictive value. In order to enable early screening, diagnosis and sustained

monitoring of scoliosis patients, a new low-cost, convenient, and accurate method

needed to be proposed.

In chapter 4, we have verified the high correlation between 2D and 3D human back

images on certain important features. To better describe the correlation between

2D body features and scoliosis, we propose a novel set of 2D human back feature
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points and topological structures based on deep learning algorithms. We establish

a database with labeled 2D unclothed back images and corresponding whole-spine

standing posterior-anterior X-ray images, and innovatively propose a new network

topology of the 2D back images to localize the back landmarks. With three unclothed

back images, this system can automatically classify normal, abnormal posture and

scoliosis with an overall classification accuracy of 88.1%. This system has the potential

to overcome the time and space limitations of conventional screening for scoliosis and

abnormal posture. In addition, we have developed a mobile based, cost free, accurate,

and radiation free scoring screening and monitoring system for early screening and

monitoring of scoring and abnormal posture based on this structure.

5.1 Introduction

Adolescent idiopathic scoliosis (AIS) is medically defined as a curvature of the spine

[55] with more than 10◦ of deformity and the cause of scoliosis is unclear. The Cobb

angle is generally used to measure the presence of scoliosis in adolescents. Scoliosis

is defined when the Cobb angle exceeds a threshold of 10◦ [69]. Scoliosis is highly

insidious and usually occurs in adolescents between the ages of 10 and 18 years. If

not intervened in time before the adolescent’s skeletal maturity, scoliosis has a high

probability of becoming severe, which not only affects the appearance of the body and

cardiopulmonary function, but also may cause musculoskeletal and neurological pain

[116] [117][118]. Therefore, in order to achieve early screening and early intervention

for scoliosis and reduce the risk of scoliosis becoming severe in the future, the school

scoliosis screening (SSS) program has been advocated [40].

SSS includes a variety of assessment methods, except for radiation-based X-rays,

the majority of screening is based on radiation-free methods, including appearance

inspection, Adam forward bending tests, scoliometer measurement, Moire/Infrared

topography and ultrasound [30, 65, 110]. The main screening method is the forward
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bending tests combined with scoliometer measurement, which can improve the ac-

curacy [60]. Moire/Infrared topography related screening method based on the high

correlation between the back surface and the center of the spine, is used to pre-

dict scoliosis by analyzing the three-dimensional topographic asymmetry of the back,

which is efficient and accurate, and does not require specialized physician, but the

overall screening cost is still high and some studies have shown that this method has

a high false positive rate [26, 122]. Screening using ultrasound is highly accurate, but

screening is inefficient due to the need to apply media and contact with the human

back, and is difficult to use in large-scale school scoliosis screening scenarios because

the equipment is expensive and cannot replace X-rays for definitive diagnosis [18].

Due to the current imbalance in medical resources and high labor costs in many re-

gions, SSS is difficult to spread on a large scale. In addition, because the government

often organizes scoliosis screening, the screening process can cause conflicts between

parents and the government or hospitals due to various reasons such as missed diag-

noses, misdiagnosis, and privacy leaks, so scoliosis screening in schools is prohibited

in some developed countries due to a combination of cost and social conflicts [29, 93].

In order to make scoliosis screening widely available, some research teams have intro-

duced the concept of home scoliosis screening, based on a single unclothed 2D back

human back image, using image processing and AI algorithms to assist parents with

home adolescent screening using mobile devices. This reduces the financial burden

on society and gives parents the right to screen [124].

A research team has proposed the classification of scoliosis based on 2D unclothed

back image, which classifies patients by traditional image processing techniques for

Lenke type 1 and other types. However, this method has low detection accuracy

and low robustness [91]. Another research team used unclothed 2D back images to

determine the midline of the human back from the edge of the back and screen scoliosis

on the basis of this midline. Although this method achieved reasonable accuracy, it

requires a high level of background complexity and human back edge condition and
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has low robustness [79]. Recently, a research team has used deep learning algorithm

to train correlation models of unclothed back images and corresponding X-rays to

classify scoliosis severity by inputting one single image. The method is effective for

screening scoliosis greater than 20◦, but it is poor in screening patients in the range

of 10 − 20◦ and cannot determine abnormal posture. Also, this method does not

allow for quantitative analysis and follow-up of people with postural abnormalities

and scoliosis [124].

Recent developments reveal that deep convolutional neural networks have achieved

state-of-the-art performance in human pose estimation [105]. Besides, there is a high

correlation between abnormal back pose and spinal abnormality [108]. To better

screen for scoliosis and classify postural abnormalities, we propose a mobile-based

scoliosis screening system based on unclothed back image. The system automati-

cally locates and calculates parameters of human back landmarks by deep learning

algorithm and specific topological network based on human biomechanics, and finally

classifies the results by correlation analysis with corresponding X-ray calculated la-

bels. In addition to accurately screening for mild scoliosis, the system also classifies

problems with only postural abnormalities (Only postural abnormalities, such as high

and low shoulders, but without scoliosis).

5.2 Challenges and Contribution

Through the analysis of the above research works it can be found that currently,

most of the work on using 2D images for scoliosis analysis mainly focuses on direct

classification and does not describe scoliosis and body abnormalities through more

features. In order to better describe the correlation between 2D human body posture

features and scoliosis, there are some challenges: 1. Lack of corresponding 2D human

back image and corresponding spine X-ray databases; 2. The feature points contained

in traditional motion tracking algorithms [66] cannot accurately describe the posture
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Figure 5.1: Details of the methods

and scoliosis of the human body; 3. Due to the need for the subject to take off their

shirt for measurement if put into large-scale use, it may cause privacy leakage issues.

In response to the above challenges, the following contributions have been made in

this chapter:

1. We have established a database of 2D human back photos and corresponding spinal

X-ray images;

2. We have established a new set of human back feature points and verified their high

correlation with scoliosis;

3. Based on a novel human back network topology and training on small models, we

have achieved feature point localization on the smallest possible model. This model

can be installed on mobile phones to achieve edge computing and solve the problem

of privacy leakage.

4. We have developed a scoliosis and abnormal posture assessment system based on
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two-dimensional human back photos using this proposed method.

5.3 Materials and Methods

The system is capable of screening adolescents for scoliosis using only a 2D unclothed

back image, and the results are classified as normal posture, abnormal posture, and

scoliosis. Abnormal posture means the subject has abnormal posture(including high

and low shoulder, and back asymmetry) but has no scoliosis; scoliosis means abnor-

mal posture with a Cobb angle over 10◦. The details of the methods are shown in

Figure 5.1: first, extract the human back region from the image; then calculate the

landmarks of the back and the network topology; then, based on these landmarks

and the network topology, the back midline and the area of the different back region

are determined, and finally, the discriminator classifies the spine condition using the

parameters calculated by the back midline and the contrast of different back areas.

5.3.1 Data Acquisition and Pre-Processing

A total of 1050 validated data are collected from Chinese subjects aged 6-24 years

(including male and female), of whom 65 have different degrees of scoliosis (nontrue

scoliosis and other spine diseases are excluded). We collected unclothed images of

the human back of the subjects in different scenarios using a 1920×1080 resolution

camera and whole-spine standing posterior-anterior X-ray images. The experienced

physicians used the annotation software to annotate the unclothed images with land-

marks and calculate the spinal curvature based on the X-ray images and finally clas-

sified the subjects by the calculated results. We used the classification results as

ground truth and labels.

The image pre-processing effect is shown in Figure 5.2. The initial data is firstly

removed from the background, and then the back segmentation is performed to obtain
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the human back image. Since the background noise greatly reduces the accuracy of

back recognition, we use a human body extraction model to process the image. In

terms of model selection, we decided to use the Robust Video Matting (RVM) model

[61] due to its suitability for mobile deployment. The architecture of this model

is depicted in Figure 5.3. Also, given that the officially provided pre-trained RVM

model is not applicable to human body extraction, we made a dataset containing 1050

sheets containing only human bodies and divided it into training and test dataset in

a 4:1 ratio to enhance the model’s proficiency in handling this task. To reduce the

influence of other body parts on the later back landmarks recognition, we used the

Y olo V5 model [107] to perform back segmentation on the human image without the

background to get the human back image. Also, to make the model more suitable for

the back segmentation task, we made a human back detection dataset containing 500

images to help the training. Finally, we obtain the human back image for subsequent

detection of landmarks on the human back.

Figure 5.2: The workflow of human back extraction

5.3.2 Back Landmarks Estimation

Network Topology

We present a new topology using 9 points on the human body, as shown in Figure 5.4.

Compared to predicting the human back landmarks individually, the introduction of

network topology using the principles of human anatomy is beneficial to accurately
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Figure 5.3: RVM model framework

predict the landmarks [67]. The definition of the back landmarks is explained in

Table 5.1.

Figure 5.4: Back landmarks and topology

Model Selection

ResNet [43] is the most common backbone network for image feature extraction and it

is proven for key points estimation. MMPose [21] framework suggests a methodology
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Table 5.1: Definition of back anatomical landmarks

1 Left inner shoulder

2 Right inner shoulder

3 Left outer shoulder

4 Right outer shoulder

5 Left axilla

6 Right axilla

7 Most proximal points on left side of waist

8 Most proximal points on right side of waist

9 Top of the intergluteal furrow

characterized by the exclusive addition of several deconvolutional layers subsequent to

the concluding convolutional stage within the ResNet [121] and introduces Squeeze-

and-Excitation (SE) block [47] to improve the accuracy of landmarks detection. The

whole model architecture is illustrated in Figure 5.5. We opted for this structure due

to its arguable simplicity in generating heatmaps from deep, low-resolution features.

Specifically, it incorporates three deconvolutional layers, each incorporating batch

normalization [48] and ReLU activation [57]. Each layer consists of 256 filters with a

4 × 4 kernel. A stride of 2 is employed, and a 1 × 1 convolutional layer is appended

at last to produce predicted heatmaps H1, H2, H3, ..., H9 for all 9 landmarks.

Figure 5.5: The architecture and workflow of SENet
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Training Details

We first expanded the height or width of the human detection box to an aspect ratio

(aspect ratio = height/width) and then cropped the box from the image to resize it to

288×384. Additionally, a number of data enhancement methods are employed, such

as affine transformation, half-body data transformation, random scaling and rotation,

and center-of-box randomization. By performing pre-training on the COCO dataset

[62], our network is built up (including 57K images and 150K individual instances).

The basal learning rate for the landmark estimation training task is 1e-4, and it

decreases to 1e-5 and 1e-6 at the 35th and 70th epochs, respectively. The Adam

optimizer [53] ends the training phase after 100 epochs.

Loss Function

Mean Squared Error (MSE) used in heatmap regression has two broad issues: (I) The

insensitivity of Mean Squared Error (MSE) to minor errors has significant implications

on the precision of identifying the mode of a Gaussian distribution. (II) During

training, all landmarks having the same loss function and equal weights can impact

the learning process. However, the difficulty of predicting critical points in different

parts of the back will be inconsistent. Inspired by Adaptive Wing (AWing) loss

[114], different landmark types may have different target weights. The loss function

is defined as follows:

Loss (y, ŷ) =


ω ln

(
1 +

∣∣∣y−ŷ
κ

∣∣∣β−y
)
, if |(y − ŷ)| < θ

A |y − ŷ| − C, otherwise

(5.1)

Where y and ŷ are the pixel values on the ground truth heatmap and the predicted

heatmap respectively. A = ω(1/(1 + (θ/κ)(α−y)))(α− y)((θ/κ)(α−y−1))(1/κ) and C =

(θA − ω ln(1 + (θ/κ)α−y)) are used to make loss function continuous and smooth at

|y − ŷ| = θ. ω, θ, κ and β are hyperparameters. We empirically used ω = 14, θ = 0.5,

κ = 1 and β = 2.1 in our model. Equation 5.1 is the loss between the predicted and
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targeted heatmaps.

5.3.3 Back Midline Estimation

The back midline is defined to divide the human back into left and right symmetrical

sides. We calculated four midpoints on the back based on the symmetrical landmarks

on both sides of the human body(such as the midpoint of point 1 and point 2 in

Figure 5.4) and the top of the intergluteal furrow(point 9 in Figure 5.4), and then used

the quadratic Newton interpolation method (Equation 5.2, Equation 5.3) to fit the

pairs[37], where xi, i = 1, 2, ..., 5 are the identified 5 points, f(x) is the corresponding

y-coordinate, N(x) is the Newton fitting function, and finally stitched to obtain the

human back midline.

As shown in Figure 5.6, the dark blue line is the interpolated back midline, and the

light blue line(back baseline) connects the midpoint of the two inner shoulder points

and the top location of the intergluteal furrow used to analyze the maximum offset

distance of back midline. In addition, the topography and the back baseline divide the

human back into 8 areas (as shown in Figure 5.1 Phase 3 left), after which we will use

the area contrast between these 8 areas as one of the features to distinguish scoliosis

from the abnormal posture. In order to visualize the high correlation between the

predicted back midline and the trend of the spinal midline of the X-ray, we selected

the corresponding landmarks of the RGB map and the X-ray in order and used the

affine transformation to make the latter image transparent and align the two images

according to the corresponding landmarks.

N3(x) =f(x0) + f [x0, x1](x− x0)+

f [x0, x1, x2](x− x0)(x− x1)
(5.2)

83



Chapter 5. Novel Back Topology and Deep Learning Algorithms for Automated
Scoliosis and Abnormal Posture Evaluation Using 2D Back Images

f [x0, · · · , xm] =
m∑
k=0

f(xk)
m∏

i=0,i ̸=k

(xk − xi)
(5.3)

Figure 5.6: Alignment of spine midline and X-ray: the dark blue line is the

back midline obtained by interpolation, the black dotted line represents the ground

truth(Spline midline) marked by X-ray and the light blue line is the back baseline.

Label: [0, 0] represents normal; [1, 0] represents abnormal posture; [1, 1] represents

scoliosis, and [0, 1] represents classification error.

5.3.4 Scoliosis and Abnormal Posture Classification

A discriminator is designed using the contrast of the region area and the maximum

offset distance of the back midline as input. The contrast of the area is calculated

according to Equation 5.4, where Si represents the area of the i area and S2i represents
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the area of the 2∗ i area. The maximum offset distance of the top of the back midline

is calculated according to Equation 5.5, where lgt is the back baseline, and lpred is

the interpolated back midline. After computing these parameters, we will use a BN

layer to normalize them to reconstruct the inconstancy of the different modals. We

randomly divided the samples of normal, abnormal posture, and scoliosis into training

and test sets respectively in the ratio of about 4:1. The discriminator is trained using

840 samples, and 210 samples are used for testing and accuracy analysis. As shown

in Figure 5.1 Phase 4, in which the discriminator consists of a BN layer with a Multi-

Layer Perceptron(MLP) network to be labeled based on the X-ray and the physician’s

judgment of the subject. The final output is the confidence level for the three cases

of normal, abnormal posture, and scoliosis.

Contrast =


|S2i−S2i+1|
S2i+S2i+1

, i = 0, 1, 2, 3

|S2i+S2i+2−S2i+1−S2i+3|
S2i+S2i+2+S2i+1+S2i+3

, i = 0, 1, 2

|S2i+S2i+2+S2i+4−S2i+1−S2i+3−S2i+5|
S2i+S2i+2+S2i+4+S2i+1+S2i+3+S2i+5

, i = 0

(5.4)

Offset = max(lgt − lpred) (5.5)

5.4 Results

5.4.1 Effectiveness of Back Extraction

We use two metrics in the model evaluation. (1) The mean Intersection-Over-Union

(mIOU) is utilized to measure the cross-merge ratio between the prediction and the

groundtruth of the segmentation target, which is shown in Equation 5.6, where the pij

means that the model categorizes a pixel into j-th category but the pixel truly is i-th

category. In this task, we simply categorize the pixel into the human with background

category and the human without background category. As shown in Figure 5.7, our
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RIM model and the RVM model perform similarly. (2) The binary cross entropy loss

shown in Equation 5.7 is utilized to let our model learn the segmentation probability

by the prediction mask St and the ground-truth binary label S∗
t . Figure 5.8 shows

that RIM has less loss than RVM and performs better.

mIOU =
1

2

1∑
i=0

pii
1∑

j=0

pij +
1∑

j=0

pji − pii

(5.6)

LS = S∗
t (− log(St)) + (1− S∗

t )(− log(1− St)) (5.7)

Figure 5.7: The mIOU curve in training epoch

Figure 5.8: The binary cross entropy loss curve in training epoch
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5.4.2 Effectiveness of Landmarks Estimation

In the evaluation index of landmarks estimation, the PCK (torso-normalized prob-

ability of correct key point) score is used [92]. Considering that this model needs

to be deployed to edge devices, this model needs to be small with guaranteed accu-

racy. Different baselines are used on our data. As shown in Table 5.2, the results of

the original dataset contain the PCK@0.03 results and the model parameters. The

SEResNet is the most suitable model baseline.

As shown in Table 5.3, the results of cross dataset contain three methods, “Baseline”

and “Ours” have the same model structure, hyperparameter settings, and runtime en-

vironment, but landmarks in the dataset label of “Ours” have topology. The “Noise”

and “Ours” method is the same but the former dataset label retains the background

noise. The PCK@0.1 and PCK@0.05 scores are reported. Figure 5.9 shows that our

method can predict each landmark consistently by connecting specific points. More

importantly, the score of “Ours” is 7.9 higher than the score of “Baseline” as shown

in Table 5.3, which verifies the topology, and the RIM model is beneficial for the

landmarks estimation model.

Table 5.2: Comparison of different baselines on the original dataset. Inn. represents

the inner shoulder, Out. represents the outer shoulder, Axi. represents the Aixlla,

Wai. represents the Waist, and Fur. represents the intergluteal furrow.

Method Inn. Out. Axi. Wai. Fur. Total Param

SwinT[64] 90.8 79.0 85.2 61.4 72.6 78.4 203.39M

PVTV2[113] 88.1 82.2 82.6 62.9 60.4 76.2 29.05M

SEResNet[47] 90.1 84.7 82.0 63.2 62.8 78.1 57.77M
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Table 5.3: Comparison of same method and settings on the cross dataset.

Method Inn. Out. Axi. Wai. Fur. Total

PCK@0.1

Baseline 97.3 85.3 97.5 88.1 95.2 91.7

Noise 99.7 97.9 100 97 100 98.9

Ours 100 99.5 100 98.6 100 99.6

PCK@0.05

Baseline 97 95.6 97.3 76.2 65.2 86.4

Noise 99.1 83.8 98.5 86.9 72.3 89.8

Ours 97.5 82.1 99.7 82.1 97.3 91.1

5.4.3 Effectiveness of Classification

As shown in Table 5.4, our discriminator achieves an overall classification accuracy

of 88.1% on our test set.

Table 5.4: Accuracy analysis

Situation Number of images Correct Results Accuracy

Normal 159 143 89.9%

Abnormal Posture 36 28 77.8%

Scoliosis 15 14 93.3%

Total 210 185 88.1%

5.4.4 Ablation Study

To assess the efficacy of each component in our proposed methodology, we conducted

an extensive evaluation on our self-made dataset. Notably, all results were consistently

generated under identical hardware and software conditions.

Topological landmarks on the back. We empirically analyzed the effect of our
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Figure 5.9: Comparisons of “Ours” and “Baseline”. (a)(d) input image; (b)(e) “Base-

line”; (c)(f) “Ours”

method of making back landmarks in a topological way. If they are asymmetric, each

landmark is a separate point. Figure 5.9 shows that our method is able to predict

each landmark consistently by the connection of specific points. More importantly,

the score of “Ours” is 7.9 higher than the score of Baseline.

5.5 Discussion

In this chapter, We propose a new set of 2D human back feature points and topo-

logical structure, and verify the correlation between 2D human back images and the

degree of scoliosis. Also, we propose a system that enables AIS and abnormal pos-
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ture screening on mobile edge devices using different deep learning algorithms. This

system breaks the time and space limitations of AIS and abnormal posture screening

and is cost-free, fast, accurate, and radiation-free. Only one 2D unclothed back im-

age is needed to classify scoliosis, abnormal or normal posture. By establishing color

images of the human back, X-ray data, and the corresponding calibration database,

we innovatively define a new network topology of the human back and combine deep

learning algorithms to achieve an accurate normal posture, abnormal posture, and

scoliosis classification accuracy(88.1%).

5.6 System Development

To promote this technology better, we have developed a mini-program called DrBody

on the WeChat platform. After logging in, users only need to upload a photo of

their back for early screening. To reduce the errors caused by non-standard image

acquisition, we have asked users to supplement the anterior bending back images

of the thoracic and lumbar vertebrae according to the requirements of the Adam’s

forward bending test. This approach aids in the screening and analysis of scoliosis

and abnormal posture, as the Adam’s test is currently recognized as an international

benchmark for initial scoliosis screening and monitoring. The comprehensive usage

procedure is outlined in Figure 5.10.

During the system’s development process, we encountered two noteworthy challenges:

1. It is difficult to determine whether the Adam forward bending test is correct, and

incorrect movements can lead to errors in the evaluation results;

2. Lack of sufficient dataset to annotate feature points in images of Adam forward

bending test to achieve ATR calculation;

To address the aforementioned issues, we have designed a real-time pose-tracking

algorithm based on a human pose-tracking system to ensure that the subject’s move-
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Figure 5.10: User operation process.

ments are correct during the Adam forward bending test. Finally, we built a database

and network topology of over 10000 annotated images of Adam forward bending test

to annotate feature points, achieving automatic ATR angle calculation. We also

classified scoliosis and posture abnormalities based on single back photos and ATR

quantification results.

5.6.1 Posture Recognition

The positioning protocol for subjects undergoing the Adam’s Forward Bending Test

necessitates the following: 1. bowing their heads; 2. Legs straight and at around 90◦

to the ground; 3. Place their hands in front of their knees; 4. Fold their hands in

front of their knees; 5. Keep their feet together. When measuring the ATR angle of

the thoracic spinal segment, the palm position should be slightly above the knee cap.

When measuring the lumbar spine segment, the palm should be slightly below the
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kneecap.

Firstly, we established correct and incorrect datasets for different Adam bending

positions, annotated key points, and used MMPose to customize human key point

data and identify key points. Based on the relationship between the positions and

angles of each key point, we set thresholds and detected the results. Illustrative

examples of both accurate and inaccurate results are presented in Figure 5.11(a) and

Figure 5.11(b).

(a) Adam test position(front) (b) Adam test position(back)

Figure 5.11: Correct Adam forward bending position.

5.6.2 ATR Calculation

After collecting 12030 photos of the standard Adam test, we established the topolog-

ical structure and annotated it using the same method as section 5.3 and used the

same model for training. Since the form is the same, we will not repeat it here. The

results are depicted in Figure 5.13(a) and Figure 5.13(b).
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(a) Feet not aligned (b) Wrong palm position and

feet not aligned

(c) Legs not straightened (d) Legs not straightened and

head not lowered

Figure 5.12: Wrong Adam forward bending position.

By determining the positions of two specific points on the subject’s back profile, the

system is capable of estimating the angle between them. Among the angles derived

from the two images, the system selects the maximum ATR angle and designates it
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(a) Label in Adam test(front) (b) Label in Adam test(back)

Figure 5.13: Label in Adam forward bending position.

as the subject’s overall maximum ATR angle.

5.6.3 Result Judgment Criteria

The system evaluates the final result based on a single back photo and the maximum

ATR value of the Adam test.

If the result of a single back photo is scoliosis and the ATR degree exceeds 5◦, the

algorithm system’s judgment result is scoliosis; If the result of a single back photo

is scoliosis and the ATR angle is less than 5◦, the algorithm system’s judgment is

abnormal posture. If the judgment result of a single back photo is abnormal posture,

but the ATR angle exceeds 5◦, then the judgment result of the algorithm system is

scoliosis; If the judgment result of a single back photo is abnormal posture, but the

ATR angle is below 5◦, then the judgment result of the algorithm system is abnormal

posture; If the result of a single back photo is normal and the ATR angle exceeds 5◦,

the algorithm system’s judgment result is abnormal posture; If the result of a single
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back photo is normal and the ATR angle is less than 5◦, then the algorithm system’s

judgment is normal.

5.6.4 Clinical Experiment

Experimental Motivation

This study aims to investigate and evaluate the sensitivity and specificity of utilizing

artificial intelligence algorithms for diagnosing scoliosis through mobile phone-based

applications.

Experimental Design

1) Experimental design: This experiment adopts a multicenter, single-blind diagnos-

tic test

2) Basic methods of clinical trials: Pursuant to the Guidelines for Reporting Relia-

bility and Agreement Studies (GRRAS), the present clinical investigation employed

X-ray plain film findings as the benchmark for assessing the diagnostic sensitivity and

specificity of the mobile phone-based artificial intelligence diagnose algorithms in AIS

patients.

3) Research subjects: From September 2023 to December 2023, 80 suspected adoles-

cent idiopathic scoliosis patients underwent treatment at the Rehabilitation Medicine

Center of West China Hospital of Sichuan University and the Traditional Chinese

Medicine Hospital of Guangling District, Yangzhou City. All examination subjects

are the first diagnosis and have not undergone any treatment related to scoliosis.

4) Diagnostic method: a) X-ray plain film examination: After understanding the

patient’s medical history and basic information, the same senior imaging physician

uses the same measuring instrument to examine the patient’s standing position in

the front, side, and left and right functional positions through X-ray examination. At
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the initial diagnosis, radiographic imaging in both anteroposterior and lateral orien-

tations of the patient’s spine must be acquired, alongside functional images capturing

the left and right positions, to ensure a comprehensive evaluation;

b)Palpation: A senior rehabilitation therapist uses the palpation method to label

situations of scoliosis and abnormal posture;

c) Mobile Scoliosis Diagnosing Algorithm: Operated by a seasoned rehabilitation

therapist. Firstly, open the online testing program and fill in patient information.

Then, ask the patient to take off their coat, put their feet together, straighten their

knees, and stand upright. The therapist takes photos of the patient’s back standing

position, front 90◦ bending position, and back 90◦ bending position. During the

process of taking detection images, a detection pose frame and immersive visual

interaction in this system can be added to reduce the uploading of incorrect detection

images, eensuring the precision of the patient’s posture prior to advancing to the

subsequent imaging step. After uploading the images, the algorithm calculates the

early screening and judgment of scoliosis and generates an evaluation report. It

should be noted that the mobile spinal scoliosis screening algorithm method is only

performed at the initial diagnosis. The therapist needs to repeat the above operation

once.

Evaluation Methods

Calculate the ATR results and corresponding report results based on the AI scoliosis

screening algorithm of the mobile phone, as well as the doctor’s palpation results. A

senior orthopedic doctor annotated and statistically analyzed the X-ray results of the

same subjects, while a researcher who was not familiar with the experimental content

conducted statistical analysis on the three groups of results.
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5.6.5 Experimental Result

Our mobile AI screening system has been compared with X-ray experiments and

found that our optimized system has a sensitivity of 96% and a specificity of 89% for

screening scoliosis. The probability of misjudging abnormal posture as scoliosis is 8%;

The probability of misjudging scoliosis as abnormal posture is 5%; The sensitivity

of manual palpation for scoliosis is 81%, and the specificity is 86%. Our system

has achieved state of art results, far exceeding offline manual screening and scoliosis

screening. Additionally, by calculating the maximum offset distance from the back

midline and the ATR angle from the Adam forward bending test, we can analyze

the progression trend of the subject, serving the purpose of progress monitoring.

We present the practical use case results of the mini program in Figure 5.14 and

corresponding image results Figure 5.15.

Figure 5.14: Report of evaluation result.

In the experiment, we found that there is still room for improvement in distinguishing

between mild scoliosis and abnormal posture. We found a few cases of adolescents

with obvious abnormal posture on their body surface and ATR angles exceeding 5◦
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Figure 5.15: Evaluation result and ground truth for scoliosis.

bending position and back 90◦ bending position. During the process of taking (the

empirical threshold used to distinguish scoliosis in the Adam forward bending test).

Still, their X-ray Cobb degree deficiency was only close to 10◦ bending position and

back 90◦ bending position. This type of case can lead to misjudgment of abnormal

posture as scoliosis, thereby reducing the specificity of screening for scoliosis. The

case results are depicted in Figure 5.16 and Figure 5.17. This is also the direction we

can explore and solve in the future.

5.7 Conclusion

In this chapter, We propose a system that enables AIS and abnormal posture screen-

ing on mobile edge devices. This method breaks the time and space limitations of

AIS screening and is cost-free, fast, accurate, and radiation-free. Only a single un-

clothed back image is needed to classify scoliosis and abnormal or normal posture.

By creating color images of the human back, X-ray data, and the corresponding cal-

ibration database, we innovatively define a new topological network of the human

back and combine image processing algorithms and deep learning to achieve accurate

scoliosis screening classification (88.1%).In order to better promote this technology

to the public, we have developed an online mini program where users only need to
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Figure 5.16: Report of abnormal posture evaluation result.

Figure 5.17: Evaluation result and ground truth for abnormal posture

upload three photos to achieve precise screening of scoliosis and abnormal posture

at home. The optimized system has a sensitivity of 96% and a specificity of 89%

for scoliosis, far exceeding the accuracy of experienced screening doctors (sensitiv-

ity of 81% and specificity of approximately 86%). Owing to the absence of publicly

accessible datasets and open-source algorithms, we are currently precluded from em-

ploying identical datasets to replicate the findings of other investigators. Nonetheless,

when examining the prevailing results from mainstream studies based on single back
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photographs for the classification of scoliosis, these studies report an accuracy of

85.6%, with sensitivity and specificity of 87% and 83%, respectively. Our method has

achieved significantly higher accuracy, sensitivity, and specificity compared to these

results. However, a limitation of our system is the requirement for capturing three

photographs, which inevitably leads to increased time and computational resource

consumption.
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Chapter 6

Conclusions and Suggestions for

Future Research

6.1 Conclusion

The screening and evaluation of adolescent scoliosis has been widely spread worldwide,

from radiation-based X-ray screening and evaluation to non-radiation-based manual

palpation to using scoliosis rulers, moiré imaging equipment, and subsequent ultra-

sound scoliosis screening and evaluation. Technology has constantly improved, but

each technology has significant limitations. The current mainstream non-radiative

scoliosis evaluation method is ultrasonic scoliosis screening evaluation. Still, it is dif-

ficult to popularize on a large scale due to excessive reliance on manual operation,

complex operation processes, and high costs. At present, the screening of scoliosis

still mainly relies on manual screening in schools. Still, the low accuracy and high

cost of manual screening have become the most significant limitations of this govern-

ment public welfare project. To address the pain points in screening and evaluation

mentioned above, We first explored and validated the correlation between the 3D

back point cloud captured using an economical RGB-D camera and the X-ray of the

101



Chapter 6. Conclusions and Suggestions for Future Research

entire spine segment, and developed a 3D spine and posture analysis system; After-

wards, we explored and verified the correlation between 2D back images and 3D back

point clouds on the key parameter of ATR, and achieved the accurate classification

of scoliosis and normal based on 2D image of the human back; Finally, we established

a new set of feature points and topology structures for the human back, which better

explained the correlation between 2D human back image and X-ray image of scoliosis.

Based on model improvements, we developed a precise evaluation system for scoliosis

and body abnormalities on edge devices such as smartphones.

In summary, We have explored and validated the correlation between 2D back images

of the human body, 3D point cloud images of the human back, and spinal X-ray

images, and innovatively proposed a non-radiative and accurate solution for screening

and evaluating scoliosis and body abnormalities based on edge devices such as RGB-D

cameras and RGB cameras and have achieved large-scale engineering implementation.

The entire report also revolves around the above solutions’ research, development, and

validation.

• we validate the high correlation between the 3D back point cloud and 3D spine

curve, and we proposed a Kinect based low cost, easy to use, non radiation,

and high accuracy method to quickly reconstruct the 3D shape of the spine,

which can be used to evaluate spinal deformation. We use ultra-low-cost RGB-

D cameras for non-radiative 3D spine and posture screening and evaluation.

ITSPES has the characteristics of non-radiation, non-contact, low cost, and

high accuracy. By reconstructing the human back in 3D, medical anatomical

feature points are found, and a correlation model between the back feature

points and the center of the spine is established to infer the 3D curve of the

spine. Finally, relevant clinical demand parameters are calculated based on the

parameters of the spine and posture. Through multi-center scientific clinical

comparison verification, our system has an average error of 3.6◦ in Cobb angle

accuracy and X-ray, and the imbalance of the human back surface can be seen,
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which is also valuable clinical information that cannot be obtained by X-ray

but is valuable for rehabilitation therapists The entire measurement process has

low requirements for the testing environment and does not require professional

personnel to touch the back for operation. The overall sample cost is less than

600 U.S. dollars. Our products can be used in school screening for scoliosis,

scoliosis re-examination, exercise rehabilitation centers, women’s postpartum

centers, traditional Chinese medicine clinics, gyms, and other scenarios.

• We verify that that 2D and 3D images of the human back on concave convex

features (such as ATR) have strong correlation, which can lay the foundation

for inferring the features of 3D point cloud images based on 2D images of the

back in the future and it also validates the feasibility of screening for scoliosis

using an unclothed back image. We have developed a classification system for

scoliosis and normal posture based on a single photo of the human back. We

innovatively use the international scoliosis screening standard ATR angle as a

label to achieve binary classification of individual images of the human back.

We are the first to establish a 2D human back image and the corresponding

3D point cloud database for scoliosis screening to achieve this goal. All data

contain 2D human back image of the same sample and the corresponding 3D

back point cloud. This system learns the correlation between the 2D human

back image and the ATR-related information calculated from the 3D point cloud

of the unclothed human back. Finally, the system can classify scoliosis based

on a single 2D image of the back and the screening accuracy(81.3%) over naked

eye test by professional doctors(65.1%)

• we verify that a new set of feature points and network topology based on deep

learning algorithms can effectively describe the correlation between 2D body

features and scoliosis. Also we have developed a system for screening scoliosis

and abnormal body posture based on color photos of the human back. Firstly,

we used a single photo of the human back and X-ray results as labels. Based on
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deep learning algorithms and novel topological structures, we found the rela-

tionship between color feature points of the human back and X-rays. Finally, we

achieved the classification of scoliosis, abnormal body posture, and normal body

posture based on a single photo of the back. To better quantify scoliosis and

abnormal posture, we introduced the Adam forward bending test and obtained

more quantitative parameters, which will significantly improve the screening of

scoliosis and abnormal posture and achieve progressive monitoring. At the same

time, we have developed a home-based online scoliosis and body posture assess-

ment system based on the above principles, which can help teenagers achieve

home-based screening and monitoring of scoliosis and body posture abnormal-

ities. It can reduce the screening cost of about 2 U.S. dollars per person to

below 0.07 U.S. dollars, and solve pain points such as inaccurate on-site school

screening and inability to continue monitoring in the future. While the third

part of the work can potentially replace the second part, the model in the third

part is more complex and has higher demands on computational power and

real-time performance. Additionally, the work in the second part actually lays

the foundation for subsequent efforts to infer 3D back images from single 2D

back images.

6.2 Future Work

Although we have proposed new solutions for screening and evaluating scoliosis in

adolescents, they can effectively address the pain points currently encountered. In

practice and industry implementation, we have also discovered many areas that need

improvement and are worth exploring.

• The ITSPES we have developed, even though we can simulate the 3D shape

of the spine very well, in the thoracic segment, it is still difficult to simulate

and infer the true shape due to the complexity of the human body surface,
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which is greatly influenced by other bones; In addition, the positioning of the

SP line on the back is a decisive factor in the 3D reconstruction of the spine. In

our practical process, we found that some obese subjects (BMI > 28kg/m2),

due to their obesity, have unclear or absent medical anatomical landmarks on

their backs, which can cause the system to be unable to calculate. This is

also a major drawback of our system. In the future, for subjects whose back

anatomical landmarks disappear or are not obvious due to obesity, we still need

to manually find the position of the anatomic landmark points on the human

back and attach reflective markers, thereby facilitating the system’s assessment

capabilities. In addition, during the practical implementation process, we found

that the unevenness of the back surface can effectively reflect the progression

of scoliosis. In the future, we can analyze the imbalance of the back surface by

defining parameters that can assist rehabilitation therapists in evaluating other

musculoskeletal problems, including scoliosis.

• In the process of industrial implementation, we have also encountered some chal-

lenging issues regarding the mobile side scoliosis and abnormal posture screening

system. The most obvious one is that the user did not tie up their hair accord-

ing to the shooting requirements or did not take off their clothes, which resulted

in the algorithm being unable to automatically recognize back feature points,

as shown in Figure 6.1. On this issue, we are also developing and researching

anti-occlusion algorithms for human posture, achieving automatic recognition

of feature points when some features of the human body are occluded. In the

future, it can be achieved that there is no need to remove clothing altogether,

and underwear with less occlusion can be worn for analysis, better protecting

user privacy. In addition, since we already have image data and corresponding

X-ray data of different postures of the human back, we can use deep learning

to learn the correlation between them. Not only can we use ATR single pa-

rameters as classification criteria, but we can also achieve end-to-end training
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by inputting only three photos of the human back and directly outputting the

classification results of scoliosis. In addition, we will continue to expand our

dataset in the future, based on photos of the human back, to achieve more

analysis of body shape problem parameters and have a greater impact on the

fields of sports rehabilitation and clothing customization.

Figure 6.1: Some cases of back landmarks localization failure due to different degrees

of occlusion caused by underwear, pants, and hair.

6.3 Social Impact

Our developed ITSPES and mobile spine and posture evaluation system have been

used in the market after self-development and clinical research. The ITSPES can

complete radiation-free and high-precision detection within 3 seconds through Time

of flight(TOF) imaging technology analysis and image algorithms. At the same time,

the instrument is lightweight and portable, making it easy to operate. After uploading
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data to the cloud, it will integrate health records, making it convenient for patients

and physicians to follow up on treatment situations in a timely manner, enormously

meeting the current needs of large-scale spine screening, daily rehabilitation, and body

training follow-up, The usage scenarios are shown in Figure 6.2 and Figure 6.3. At

the same time, the mobile spine and posture evaluation system, with the support of

self-developed AI image algorithms, allows users to quickly and accurately self-check

their physical health status and contact experts at home using artificial intelligence.

The usage scenario is shown in Figure 6.4.

Figure 6.2: School scoliosis screening.

So far, we have provided our system services to more than 20 hospitals, insurance in-

stitutions, and rehabilitation institutions, providing screening and evaluation services

for more than 300000 adolescents with scoliosis. We have detected more than 1300

adolescents with scoliosis early, helping them and their parents to become aware of the
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(a) Before exercise rehabilitation (b) After six months of exercise reha-

bilitation

Figure 6.3: Spinal curve and body surface imbalance before and after six months

exercise rehabilitation. The blue region indicates the concavity of the body surface,

the red region indicates the convexity of the body surface, and the darker the color,

the greater the degree of concavity and convexity

problem and take relevant intervention measures. The service areas are distributed

in Jiangsu Province, Guangdong Province, Yunnan Province, Sichuan Province, and

Hong Kong in China. According to the screening summary data, abnormal posture

accounts for 27.69%; Scoliosis accounts for 3.09%. Notably, the incidence rate of

scoliosis in adolescents aged 10-14 can reach up to 8.42%. Therefore, in the future,

screening can focus on the high-risk scoliosis population aged 10-14. Since its launch,

the system has won multiple international and Hong Kong invention awards, like

Geneva International Invention Award - Gold award, Hong Kong ICT Gold Awards

and Grand of the year 2021(Student Innovation Award), China International College

Students’ “Internet+” Innovation and Entrepreneurship Competition - Silver Award
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and First prize in the Hong Kong College Student Innovation and Entrepreneurship

Competition, as shown inFigure 6.5,Figure 6.6, Figure 6.7 and Figure 6.8.

Figure 6.4: Home-based scoliosis and abnormal posture screening and monitoring.

Figure 6.5: Geneva International Invention Award - Gold award.
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Figure 6.6: Hong Kong ICT Gold Awards and Grand of the year 2021(Student Inno-

vation Award).

Figure 6.7: China International College Students’ “Internet+” Innovation and En-

trepreneurship Competition - Silver Award.
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Figure 6.8: Hong Kong College Student Innovation and Entrepreneurship Competi-

tion - First prize.
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