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Abstract

With the proliferation of Internet of Things (IoT) applications, a huge amount of data

is generated at the network edge. Due to bandwidth, storage, and most importantly

privacy concerns, it is impractical to move the local data to the cloud for centralized

analytics model training. Federated learning (FL) has been widely recognized as a

promising approach that enables individual edge devices (also known as “clients”)

to train a global model cooperatively without exposing their data and other private

information.

However, although FL has substantial advantages, it still faces the following chal-

lenges: First, due to the significant energy consumption for joining FL, the non-

independent and identically distributed (Non-IID) data and heterogeneous hardware

resources, the clients may be reluctant to participate in the FL without proper re-

wards from well-designed incentive mechanisms. Second, the Non-IID data distribu-

tion among extensive clients makes it impossible for a single global model to adapt

to the requirements of all clients simultaneously. This naturally derives the demand

of personalization on different clients, i.e., each client requests a personalized model

that can perfectly fit their local Non-IID data. Third, the extensive clients involved in

the FL system have strong dynamics. i.e., the new clients join and bring new knowl-

edge, while the old ones exit and leave obsolete knowledge in the system. Normally,

a fixed-size model has an upper limit on its knowledge capacity, i.e., it cannot learn

new knowledge indefinitely. Therefore, under the cooperation of all clients, model un-
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learning for obsolete knowledge is highly required in the FL system to accommodate

its strong dynamics.

In this thesis, we investigated the problems and challenges of these issues from the

perspectives of game theory and mechanism design, where the corresponding solutions

are proposed to handle them. For the first issue, we present long-term online VCG

auction incentive mechanisms based on deep reinforcement learning, which can adap-

tively assign proper rewards to clients with different resource and data conditions. It

considers several vital economic properties to guarantee a sustainable environment

for the long-term development of the FL system. For the second issue, we propose a

multiwise collaboration framework based on cooperative game theory, which only en-

courages clients with relevant data distribution for collaboration and trains their own

personalized model. For the third issue, we take the early step to comprehensively

investigate the machine unlearning paradigm in the context of FL (i.e., federated

unlearning) and thereby propose a general pipeline for federated unlearning based on

stochastic gradient ascent (SGA) and client cooperation.

We conduct extensive experiments to show the remarkable performance improvement

of our proposed methods compared with the existing methods on various datasets

and settings.
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Chapter 1

Introduction

In summary, this thesis investigates the complex competition and cooperation re-

lationship among massive edge devices in FL systems, which is caused by clients’

heterogeneous local resources and non-independent and identically distributed (Non-

IID) data. This is a critical research problem in the field of federated learning with

wide-ranging applications, which has also attracted significant attention from numer-

ous researchers. In this chapter, we first provide a brief overview of the research

challenges and problems involved in this thesis in Section 1.1. Then, we summarize

and highlight the main contributions of this thesis in Section 1.2. Finally, we illustrate

the thesis organization in Section 1.3 to provide a quick roadmap guide.

1.1 Thesis Overview

With the rapid advancement of machine learning technology nowadays, it is widely

applied in a variety of different fields, such as finance, smart healthcare, smart cities,

autonomous driving. Different from the traditional cloud-based centralized data cen-

ters, the above application scenarios are usually deployed in a series of network edge

devices such as smartphones, laptops, cars, and so on, resulting in a huge amount

1



Chapter 1. Introduction

of data being generated at the network edge. Massive data growth poses serious

challenges to the traditional centralized data processing framework regarding compu-

tation, communication and storage resources [89, 114]. As the recent performance

improvements of mobile devices in chip, storage and other various aspects, edge

devices are equipped with powerful computation capacity to directly process data

locally. This edge-side data processing manner brings a series of benefits: faster in-

formation extraction, less response time, and better bandwidth allocation [82, 59].

Furthermore, the widespread utilization of deep learning technologies has also raised

increasing clients’ concerns about data privacy protection, client’s refusal of data

sharing resulting in every edge device becoming a “data silo” [72, 51]. Without the

client data sharing, it’s impractical for traditional centralized framework to obtain

desirable model on each data silo, which only has limited data.

Figure 1.1: An overall demonstration of federated learning system architecture. Dif-

ferent from the traditional distributed machine learning paradigm, the edge devices

(clients) in the FL system are dynamic (old clients exit & new clients join), and all

the data are generated in the local edge, which is highly heterogeneous.

To break down data silos to achieve collaborative model training while meeting the

2



1.1. Thesis Overview

data privacy, security and regulatory requirements, Federated Learning (FL) has

been proposed as a new generation of distributed machine learning paradigm, which

allows various clients to collaboratively train a shared global model without sharing

their local data [47]. A detailed demonstration of the FL system architecture is

shown in Figure 1.1. First, all clients (mobile devices) download the shared global

model from the server side. Then, each client updates the downloaded model on their

own local data to obtain respective local models. Next, each client uploads their

local model to the server side. Finally, the server generates a new global model by

conducting model aggregation process on all local models. The above steps will keep

repeating round-by-round until the global model reaches convergence.

Despite its desirable advantages and potential on various edge applications, FL faces

a number of urgent technical challenges. First, the local data generated by different

client has a high degree of heterogeneity, which is academically referred to as “non

independently and identically distributed” (Non-IID). This data heterogeneity will

significantly degrade the global model performance and the training efficiency of FL

[113, 57]. Second, the diversity of clients (e.g., smartphones, laptops, cars, etc.)

leads to the local resource heterogeneity of clients, including computation capabilities,

communication bandwidth, storage memories and so on. The resource heterogeneity

can lead to an uncoordinated FL training process since the server need to wait for all

clients to finish local model uploading, which further undermines the overall training

efficiency [55, 38]. Third, FL system improve the generalization capability of its

global model by involving extensive clients for training, which also results in a strong

client dynamics within the system. After using the services provided by FL, many

old clients will take their local data away and directly exit the FL system, while other

new clients continue to participate in the system simultaneously. However, a fixed-size

model can only contain limited knowledge, Obsolete knowledge extracted from old

clients’ data still remains in the global model after their leaving, which significantly

hinders the model from learning new knowledge.
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Chapter 1. Introduction

Figure 1.2: The theoretical thesis framework overview

Therefore, in this thesis, we focus on utilizing the coexisting competition and coop-

eration relationships among various clients to design effective mechanisms, which can

tackle the above issues raised by the heterogeneous FL environment and its dynam-

ics. The theoretical research framework of this thesis is demonstrated on Figure 1.2,

which consists of the following three main parts. In the first part, we consider to uti-

lize the competition relationship among clients and present a long-term online VCG

auction-based mechanism that can incentivize the required clients to participate in

training according to the demands of the different stages in FL. In the second part, we

rethink the nature of client collaboration by domain relevance in FL and propose to

design personalized coalition cooperation for each client to generate their customized

models. In the third part, we innovatively derive the machine unlearning problem to
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the FL context and define different FL unlearning types. Furthermore, we proposed

a general pipeline for federated learning to collaboratively unlearn specific knowledge

from the current model.

1.2 Thesis Contribution

In this section, we briefly summarize the contributions of this thesis as follows:

1. Incentive Mechanism Design under Heterogeneous Client Competition.

Federated learning (FL) poses challenges related to client participation reluctance

and biased server selection, necessitating the implementation of a suitable incentive

mechanism. Moreover, the heterogeneity of client resources, encompassing local data,

computation, and communication capabilities, further contributes to disparities in

server selection for FL training. Consequently, a competitive relationship emerges

among clients in the absence of substantial incentives from the server side. To address

these challenges, we propose a long-term online Vickrey-Clarke-Groves (VCG) auction

mechanism for FL that employs an experience-driven deep reinforcement learning

algorithm to ascertain the optimal strategy. Notably, this mechanism extends the

economic properties pertinent to the successive FL process, ensuring its efficacy in

the long run. Additionally, we incorporate knowledge transfer techniques to mitigate

the excessive training overhead incurred by the VCG payment rules. By capitalizing

on the environmental similarity among sub-auctions, we introduce strategy sharing,

which yields a substantial 50% reduction in training time. To substantiate the efficacy

of our approach, we provide theoretical proofs of the extended economic properties

and conduct extensive experiments using multiple real-world datasets. Our results

demonstrate a notable improvement over state-of-the-art approaches, with a 36%

increase in long-term social welfare achieved alongside a 37% reduction in payment.

2. Rethinking Personalized Client Collaboration in Federated Learning.

5
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The model performance in FL can be compromised due to the high heterogeneity

in clients’ local data distributions, commonly known as Non-IID (non-independent

and identically distributed). Moreover, collaboration among highly dissimilar clients

exacerbates this performance degradation. Personalized FL seeks to mitigate this by

enabling clients to collaborate primarily with others who have similar data charac-

teristics, thereby producing personalized models. To tackle this issue, we enhance

personalized client collaboration in FL by introducing a metric for domain relevance

between clients. Specifically, to facilitate optimal coalition formation, we measure the

marginal contributions of client models using coalition game theory, providing a more

accurate representation of potential client domain relevance within the FL privacy-

preserving framework. Based on this metric, we then adjust each client’s coalition

membership and implement a personalized FL aggregation algorithm that is robust

to Non-IID data domain. We provide a theoretical analysis of the algorithm’s conver-

gence and generalization capabilities. Our extensive evaluations on multiple datasets,

including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, and under varying

Non-IID data distributions (Pathological and Dirichlet), demonstrate that our per-

sonalized collaboration approach consistently outperforms contemporary benchmarks

in terms of accuracy for individual clients.

3. Collaborative Model Knowledge Unlearning in Federated Learning.

In general, an FL system will include extensive edge devices (i.e., clients) in its training

process to collaboratively strengthen its model generalization capability. However,

these various clients also bring strong dynamics to the FL system (e.g., new clients

join & old clients exit). Since a fixed-size model can only contain a limited amount of

knowledge, obsolete knowledge from old clients still remains in the current model after

they leave the FL system, which significantly impacts the ability of the model to learn

new knowledge and adapt to new clients. To solve these issues, we present a general

pipeline for federated learning to collaboratively unlearn specific knowledge from the

current model, which is referred to as “Federated Unlearning (FU)”. Besides, we
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define three common types of federated unlearning requests namely class unlearning,

client unlearning, and sample unlearning. Then, we revisit the nature of how the

training data affects the FL model and thereby empower the proposed pipeline with

the reverse stochastic gradient ascent (SGA) and elastic weight consolidation (EWC),

which can achieve FU for different types of unlearning requests. Various experiments

are conducted to verify the effectiveness of the proposed method in both aspects of

unlearning efficacy and efficiency.

1.3 Thesis Roadmap

The rest of this thesis is composed of five chapters, which are organized as follows.

In § 2, we conduct a detailed background knowledge review for the research areas

covered in this thesis, including Federated Learning (FL), Machine Unlearning (MU),

Federated Unlearning (FU), Game Theory, and Deep Reinforcement Learning (DRL).

In § 3, we introduce a sustainable federated learning framework by the long-term

online VCG auction mechanism, which can motivate a continual stream of clients

to participate in FL training from a long-term perspective. In § 4, we rethink the

collaboration relationship among heterogeneous clients in the FL system and utilize

cooperative game theory to guide the personalized collaboration of each client to

improve their respective performance. In § 5, we define different types of unlearning

requests in the context of federated learning and propose a general pipeline based

on reverse stochastic gradient ascent (SGA) to collaboratively unlearn the specified

knowledge from the FL model. In § 6, we further summarize this thesis, explore some

potential research directions, and provide future visions involved research topics.
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Chapter 2

Background

2.1 Federated Learning

Federated learning (FL) constitutes a decentralized machine learning framework com-

prising a server and a collection of clients denoted by N = 1, · · · , N . Each client i

maintains a local dataset Di, comprising its individual data samples {xj, yj}j ∈ Di,

and engages in collaborative training on a shared global model governed by a loss

function f .

In the t-th round, each client i initially receives the global model ωt from the server

and conducts training on its local dataset Di to compute its local loss, expressed as

Fi(ω
t) =

1

di

∑
j∈Di

f(j,ωt), (2.1)

where di = |Di| denotes the size of client i’s local dataset, and f(j,ωt) represents

the loss incurred by model ωt on training sample j ∈ Di. Subsequently, the local

loss informs the model update via stochastic gradient descent (SGD), yielding the

updated local model ωt
i , given by

ωt
i = ωt − ηi

∂Fi(ω
t)

∂ωt
, (2.2)
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where ηi denotes the local learning rate. Each client then transmits its updated local

model ωt
i to the server for model aggregation, governed by

ωt+1 =
N∑
i=1

di
d
ωt

i , (2.3)

where d =
∑N

i=1 di represents the total data size across all clients. Finally, the server

dispatches the new global model ωt+1 to the clients as the starting point for the

subsequent round t+1. This iterative process continues until the model converges or

fulfills predefined convergence criteria.

Typically, the server maintains its own validation dataset Dv, aiming to identify the

optimal global model ω∗ that minimizes the validation loss function F (ω), given by

ω∗ = argmin
ω

F (ω), where F (ω) =
1

|Dv|
∑
j∈Dv

f(j,ω). (2.4)

Here, |Dv| denotes the size of the validation dataset, and f(j,ω) represents the loss

incurred by model ω on the validation sample j ∈ Dv. A visual representation of the

federated learning system is depicted in Fig. 2.1.

Figure 2.1: Overall architecture of federated learning.

Personalized Federated Learning (PFL).
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Recently we have witnessed significant progress in developing novel methods that

address different challenges in FL [42]. In particular, there have been several works

on various aspects of FL, including preserving the privacy of clients and lowering

communication cost. Several works develop algorithms for the homogeneous setting,

where the data points of all clients are sampled from the same probability distribution,

while more other works study the statistical heterogeneity of clients data points in

FL, but they do not attempt to find a personalized solution for each client.

Personalized Federated Learning (PFL) is a collaborative approach that aims to tai-

lor individualized models for each client, taking into account their unique data dis-

tribution while maintaining data privacy. Consider a group of clients denoted as

C1, C2, . . . , Cn, where each client employs a model M with distinct weight parame-

ters ω1,ω2, . . . ,ωn. The personalized models for each client can be represented as

M(ωi). In contrast to traditional federated learning, PFL recognizes that each client

i possesses a locally held dataset Di, which is independently sampled from its own

distinct data distribution Pi. Let ℓi denote the loss function associated with client i,

and Li represent the average loss over the private local dataset Di. Mathematically,

this is expressed as:

Li(ωi) =
1

di

∑
j∈Di

ℓi(j,ωi), (2.5)

where di denotes the size of the dataset Di, and j represents an individual data

sample within Di. Let ω denote the set of personalized model parameters {ωi}ni=1

for all clients. The optimization objective of PFL is to find the optimal personalized

model parameter set ω∗ = {ω∗
1,ω

∗
2, . . . ,ω

∗
n} that minimizes the average loss across

all clients:

ω∗ = argmin
ω

1

n

n∑
i=1

Li(ωi). (2.6)
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2.2 Machine Unlearning & Federated Unlearning

2.2.1 Machine Unlearning

Many enterprises and organizations collect clients’ data to train machine learning

(ML) models for a wide range of applications, e.g., medical diagnosis, movie recom-

mendation, etc. While the clients get convenience from these promising technologies,

the personal information is also recorded and used all the time, leading to concerns

about privacy leakage. With increased attention being paid to data privacy, clients

tend to delete or hide their personal information after the service is no longer required.

Recent privacy regulations like the “General Data Protection Regulatio (GDPR)” and

“California Consumer Privacy Act (CCPA)” grant data owners with the “right to be

forgotten” [22, 13]. In this case, the most straightforward way is to delete the data

of particular clients from the dataset and retrain a new model from scratch using the

remaining data. However, it is impractical to naively retrain models after every dele-

tion request in terms of the expensive training cost of both time and money. Machine

unlearning (MU) is proposed to unlearn the knowledge of the data that needs to be

deleted from the model without incurring the cost of retraining from scratch.

Following the introduction of MU in [14], several algorithms have been proposed [20,

28, 34, 30, 31, 8]. The existing research primarily centers around the process of un-

learning knowledge from straightforward classification models, such as logistic regres-

sion. However, these approaches are not applicable to more intricate models like deep

neural networks. Furthermore, certain algorithms have specific limitations, rendering

them suitable only for particular model architectures or scenarios. For instance, the

algorithm proposed by Brophy et al. exclusively fits random forest models [11], while

the work of Nguyen et al. focuses solely on Bayesian learning [71]. In traditional

machine learning scenarios, all the local data of clients will be uploaded to the server

for centralized management, so the server has a high level of flexibility to conduct
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arbitrary operations on all data. Therefore, various unlearning techniques (e.g., en-

semble learning for data splitting [8] or gradient amnesia of arbitrary batch [33]) are

designed to operate in settings where training data is readily available.

More specifically, the objective of the unlearning process, referred to as Model Un-

learning (MU), is to eliminate the influence of a specific subset of data, denoted as the

”forget dataset” Df , on the trained model parameters θ. Conversely, the remaining

dataset D\Df is referred to as the ”retain dataset.” The unlearning algorithm U is

defined as θf = U(θ, Df ), where θf represents the unlearned model. The primary

goal of unlearning is to obtain an unlearned model θf that exhibits comparable per-

formance to a model trained solely on the retain dataset (D\Df ). In other words, the

unlearned model θf should demonstrate favorable performance on the retain dataset

while exhibiting a state that it has never been exposed to the forget dataset Df . The

aim is to achieve a model that effectively generalizes to the data it was originally

trained on while minimizing the impact of the forget dataset.

2.2.2 Federated Unlearning

In federated learning (FL), beyond the “right to be forgotten”, removing data from

the model proves essential for several other purposes. For instance, being able to

quickly eliminate outdated, manipulated, or erroneously included data enhances the

security, responsiveness, and reliability of FL systems [17].

Federated Unlearning (FU) is a technique for knowledge removal from a trained model

that operates in a distributed and collaborative manner. Compared to traditional

Model Unlearning (MU), Federated Unlearning presents additional challenges stem-

ming from its decentralized nature. There are two primary reasons why FU is more

challenging than MU. Firstly, client data is strictly confined to the respective clients’

local environments and cannot be transferred to a central server in FU. This con-

straint necessitates active client participation in the unlearning process. Unlike MU,
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where the entire dataset is typically available centrally, FU requires coordinated ef-

forts from multiple clients to collectively contribute to the unlearning process. It also

implies that the server cannot conduct any fine-grained operations at the data level,

rendering many existing MU techniques inapplicable in FL settings. Second, when

the original model is also trained in a distributed, collaborative manner, e.g., using

FL, the server does not always have access to intermediate, granular training informa-

tion produced by clients. Some MU techniques rely on recorded training information

to carry out an unlearning operation [33]. In FU settings, however, the server might

be unable to collect specific training information for unlearning, e.g., model updates

per batch for each client.

In our scenario, we have a FL system consisting of N clients, such as mobile devices.

Each client i ∈ N possesses a local training dataset Di. The clients engage in col-

laborative training to develop a global FL model denoted as θ. This training process

follows a standard FL algorithm, such as FedAvg [63]. After the global model θ

has been trained, the parameter server, which serves as a central coordinating entity,

may receive a request to perform unlearning on a specific subset of data, denoted

as Df . The exact nature of the unlearning process is determined by the character-

istics and composition of the subset Df . The specific definition and composition of

Df determine the type of unlearning that will be carried out on the global model θ.

This characterization can vary depending on the particular requirements and objec-

tives of the unlearning request. We distinguish between the following three types of

unlearning:

• Class-level unlearning. This type of unlearning erases the knowledge of a

class. Here, Df contains the data of the entire class. Denoting by Dc
i the data

of class c with the i-th client, we have Df = ∪iD
c
i , where the union is over all

clients i which possess samples of class c. Thus, Df for class-level unlearning is

distributed across clients.
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• Client-level unlearning. This type of unlearning erases the knowledge of

a particular client, e.g., when exercising the right to be forgotten. Here, Df

contains the data of a single client. When unlearning for i-th client, Df := Di.

In this case, Df is concentrated on a single client.

• Sample-level unlearning. This type of unlearning erases the knowledge of one

or more samples. Here, Df can contain arbitrary samples from arbitrary clients.

Sample-level unlearning is the most general and difficult form of unlearning

[100, 75]. We note that Df can be distributed across clients.

Class-level and client-level unlearning are the two most common use cases in federated

settings [100, 75].

Retraining from scratch. A naive way to unlearn Df is to retrain the model from

scratch while omitting samples from Df . While this algorithm perfectly achieves

the desired goal, complete retraining is prohibitively expensive as it initiates new FL

training rounds on D\Df . Even executing a single unlearning request in such a way

is highly compute- and time-intensive. We refer to this algorithm as Retrain-Or, i.e.,

as a retraining oracle due to its ideal achieved performance.

Gradient calibration. One way to speed up retraining from scratch is to reuse

gradient information from the original training to avoid regenerating all gradients

from scratch. However, these gradients must be adapted based on the target Df and

D\Df , through a process referred to as gradient calibration. Algorithms employing

gradient calibration like FedEraser [56] thus trade the central server’s storage for

unlearned model’s construction time by leveraging historical parameter updates from

FL training. However, the storage costs can grow quite large while the efficiency gains

compared to retraining from scratch remain modest.

SGA. Another approach to FU includes performing several SGA steps on the forget

dataset Df [100]. In this approach, during each round of FL, clients that possess

data in Df perform local SGA steps, while the server aggregates the updates received
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from these clients. However, the SGA training process introduces noise that can have

a detrimental impact on the performance of the remaining data. To mitigate the

effects of this noise, subsequent recovery rounds are necessary. During these recovery

rounds, clients engage in regular SGD training on the remaining data, i.e., D\Df .

As a result, the unlearning process consists of two stages: unlearning on Df and

recovery on D\Df . Each round involves updating the model with the entire dataset.

Unfortunately, this process can be inefficient, particularly when dealing with large

volumes of data or when multiple unlearning requests need to be executed.

S2U. Inspired by the observation that the up- or down-scaling of model updates

can substantially influence the global model, S2U scales down the forgetting client’s

updates while scaling up the updates of remaining clients [26]. Its unlearning and

recovery stages are integrated together, similar to Retrain-Or. We remark that S2U

is only applicable to client-level unlearning.

Model Pruning. In the FU-MP approach proposed by Wang et al. [94], model

pruning is employed as the unlearning mechanism. The process begins by measuring

the class discrimination of different channels in the model, which reflects the relevance

of different classes to the model’s channels. Based on these measurements, the most

relevant channel of the target class is pruned, effectively unlearning that specific

class. Compared to the Retrain-Or approach, FU-MP demonstrates higher efficiency.

However, it is important to note that FU-MP is specifically designed for class-level

unlearning and may not be applicable to unlearning at a more granular level, such as

specific data instances or subsets. One limitation of model pruning, as used in FU-

MP, is that it irreversibly modifies the model. Once a channel is pruned, it cannot be

easily relearned or recovered. This means that if there is a need to reintroduce the

unlearned class or retrain the model with the previously pruned channels, additional

measures or techniques would be required.
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2.3 Game Theory

Game theory generally refers to the study of mathematical models that describe the

behavior of logical decision-makers [69]. It is widely used in many fields such as

economics, political science, politics, and computer science. Generally, a game refers

to a situation involving a set of players who each have a set of possible choices, in

which the outcome for any individual player depends partially on the choices made

by other players.

A player is the basic entity of a game who makes decisions and then performs ac-

tions. A game is a precise description of the strategic interaction that includes the

constraints of, and payoffs for, actions that the players can take, but says nothing

about what actions they actually take. A solution concept is a systematic description

of how the game will be played by employing the best possible strategies and what

the outcomes might be. The consequence function associates a consequence with

each action the decision makers take. A preference relation is a complete relation on

the set of consequences which model the preference of each player in the game. A

strategy for a player is a complete plan of actions in all possible situations throughout

the game. If the strategy specifies to take a unique action in a situation then it is

called a pure strategy. If the plan specifies a probability distribution for all possible

actions in a situation then the strategy is referred to as a mixed strategy. A Nash

equilibrium is a solution concept that describes a steady state condition of the game;

no player would prefer to change his strategy as that would lower his payoffs given

that all other players are adhering to the prescribed strategy. This solution concept

only specifies the steady state but does not specify how that steady state is reached in

the game. The Nash equilibrium is the most famous equilibrium, even though there

are many other solution concepts used occasionally. This information will be used to

define games that have relevant features for representing network security problems.

There are different types of Games in Game theory, they help in the analysis of differ-

16



2.3. Game Theory

ent types of problems, which can be categorized into two main branches: Cooperative

Game and Non-cooperative Game. They are formed on the basis of number of play-

ers involved in a game, symmetry of the game, and cooperation among players. A

game is cooperative if the players are able to form binding commitments externally

enforced (e.g. through contract law). A game is non-cooperative if players cannot

form alliances or if all agreements need to be self-enforcing (e.g. through credible

threats).

Cooperative games are often analyzed through the framework of cooperative game

theory, which focuses on predicting which coalitions will form, the joint actions that

groups take, and the resulting collective payoffs. It is opposed to the traditional

non-cooperative game theory which focuses on predicting individual players’ actions

and payoffs and analyzing Nash equilibrium. The focus on individual payoff can

result in a phenomenon known as Tragedy of the Commons, where resources are

used to a collectively inefficient level. The lack of formal negotiation leads to the

deterioration of public goods through over-use and under provision that stems from

private incentives.

Cooperative game theory provides a high-level approach as it describes only the struc-

ture, strategies, and payoffs of coalitions, whereas non-cooperative game theory also

looks at how bargaining procedures will affect the distribution of payoffs within each

coalition. As non-cooperative game theory is more general, cooperative games can be

analyzed through the approach of non-cooperative game theory (the converse does

not hold) provided that sufficient assumptions are made to encompass all the possible

strategies available to players due to the possibility of external enforcement of coop-

eration. While using a single theory may be desirable, in many instances insufficient

information is available to accurately model the formal procedures available during

the strategic bargaining process, or the resulting model would be too complex to offer

a practical tool in the real world. In such cases, cooperative game theory provides a

simplified approach that allows analysis of the game at large without having to make
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any assumption about bargaining powers.

2.4 Deep Reinforcement Learning

The main concept of reinforcement learning is that the agent needs to find the “right”

actions to achieve the overall goal through interaction with the environment. This

interaction process can be modeled as a Markov Decision Process by a 5-tuple (S, A,

R, P , γ), where S denotes the state set, A denotes the action set, a reward function R

is mapping each state s ∈ S and action a taken in it to an expected immediate reward

rt = R(st, at), P (·|s, a) is the transaction probability, while γ ∈ [0, 1] is the discount

factor to reflect the diminishing importance of current reward on future ones. The

Goal of the MDP is to find a policy π∗(a|s) that determinate the selected action a

under state s, so as to maximize the expected cumulative reward of the agent, i.e.,

its return, gT =
∑T

t=1 γ
t−1rt. We define a trajectory τ as a sequence of transition

from some state si to state sj+1;τ = [(si, ai, ri, si+1), ..., (sj, aj, rj, sj+1)]. the expected

discounted cumulative reward usually defined as the value function by the Bellman

equation:

V π(s) = Eπ[
∞∑
t=1

γt−1rt|s1 = s]

= Eπ[r1 + γ
∑
sτ∈S

P (sτ |s1, a1)V π(sτ )]

the optimal policy, π∗, has a corresponding state-value function V ∗(s), therefore, the

optimal state-value function can be obtain by:

V ⋆(s) = max
π

V π(s),∀s ∈ S (2.7)

There are two types of methods that commonly used in reinforcement learning:

Value-based reinforcement Learning: The value-based method is to output the
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value of all actions, and the agent will choose the action based on the highest value.

The action value can be represented by a function approximation, such as a neural

network. Let Qπ(s, a) denotes an approximate action-value function with policy π,

which is similar to V π. Correspondingly, the Q function Qπ : S × A → R maps a

state-action pair to the expected return which obtained from that state when the

selected action is executed, and then the π is followed from the next state onwards:

Qπ(s, a) = E[R|s, a, π] (2.8)

It should be noticed that the value function V ∗ and Q-function Q∗ which correspond

to the optimal policy π∗ are the optimal value function. The optimal policy π∗ can

be calculated from the optimal Q-function Q∗: π∗(a|s) = argmaxaQ(s, a), i.e., at

each time-step, the agent executes the action that related Q value in current state is

maximal. Similar to V π(s), the Q value can be calculated by the following expression:

Qπ (st, at) = Est+1 [rt+1 + γQπ (st+1, π (st+1))] (2.9)

There are several typical value-based reinforcement learning algorithms: Q-learning

[96], SARSA (the state-action-reward-state’-action’) [76], DQN (Deep Q-learning)

[68] etc. The difference between Q learning algorithm and SARSA algorithm is the

action selection strategies. For example, in Q-learning, the agent will firstly update

the Q value function according to the action that has maximal Q value, then choose

the actual action by ϵ-greedy, while the agent will immediately execute the action

choosing by ϵ-greedy and then update the Q value function in SARSA. Their update

process of Q value function can be summarized as follows:

• Q-Learning:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q (s′, a′)︸ ︷︷ ︸
Q target

−Q(s, a)]︸ ︷︷ ︸
Q eval

(2.10)
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• SARSA:

Q(s, a)← Q(s, a) + α[r + γQ (s′, a′)︸ ︷︷ ︸
Q target

−Q(s, a)]︸ ︷︷ ︸
Q eval

(2.11)

Q-learning and SARSA both use Q-table to store the Q values, which is impractical

to implement in real-world due to the finite size for state-action pairs. In this case,

DQN are proposed to overcome the limitation in Q-table, a deep neural network are

employed to approximate the Q value function.

Policy-based reinforcement Learning: In contrast to value-based methods, policy-

based methods are the most direct type of reinforcement learning. It can analyze the

environment and directly output the probabilities of various actions to be taken in

next step, and then choose actions based on the probability. Compared with the

policy-based methods that each action might be chosen even if the probability of a

certain action is small, the decision part of value-based methods is more definite and

merciless.

In policy-based methods, the objective is to find a policy that can maximize the

expected discounted cumulative reward, the objective function can be expressed as:

J(θ) = Eπθ

[
∞∑
t=1

γtrt |st+1 ∼ P (s′|st, πθ (st)) , s1 = s|

]
. (2.12)

Where P (s′|st, πθ (st)) is the probability function. To find the optimal policy, gradient

ascent method can be used to update the policy πθ:

∇θJ(πθ) = Eπ0 (∇θ log πθ(s, a)R (s′|s, πθ (s))) (2.13)

θ ← θ + α∇θJ(πθ) (2.14)

One example of such a method is the REINFORCE algorithm [99]. Standard REIN-

FORCE updates the policy parameters θ in the direction ∇θ log πθ (st, at)Rt, which is
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an unbiased estimate of ∇θJ(πθ). It is possible to reduce the variance of this estimate

while keeping it unbiased by subtracting a learned function of the state b, known as

a baseline, from the return. The resulting gradient is ∇θ log πθ (st, at) (Rt − b).

The combination of two methods: The value-based methods are suitable to

make one-step update, which is faster than the policy-based methods that using one-

episode update. Therefore, another method that combine the advantages of value-

based methods and policy-based methods are generated to make the learning process

more efficient, that is, Actor-Critic algorithms. In Actor-Critic algorithms, Actor is

used to update the parameters of value function.

Qw(s, a) ≈ Qπ(s, a) (2.15)

And Critic is used to update the parameters of policy, the gradients become:

∇θJ(πθ) ≈ Eπ0 (∇θ log πθ(s, a)Qw (s, a (s))) (2.16)

TRPO (Trust Region Policy Optimization) [78], DDPG (Deep Deterministic Policy

Gradient) [54], A3C (Asynchronous Advantage Actor-Critic) [66] and PPO (Proximal

Policy Optimization) [79] are both the implementations of this concept.
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Chapter 3

Sustainable Federated Learning

with Long-term Online

Vickrey–Clarke–Groves Auction

Mechanism

In the context of federated learning (FL), the willingness of clients to participate in

the energy-intensive FL process is contingent upon the provision of appropriate in-

centives. Currently, existing incentive mechanisms fail to adequately consider crucial

economic properties, such as social welfare, individual rationality, and incentive com-

patibility. This limitation significantly impedes the sustainability of FL in attracting

a larger pool of clients. To address this issue, the Vickrey-Clarke-Groves (VCG) auc-

tion emerges as an ideal mechanism that simultaneously ensures the fulfillment of

all vital economic properties, thereby maximizing social welfare. Nevertheless, the

direct application of the VCG auction to FL scenarios encounters several challenges.

Firstly, the need for precise analytical derivation of the optimal strategy poses a prob-

lem, given the inherent model-unknown and privacy-sensitive nature of FL. Secondly,
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the current auction modeling approach decomposes the entire process into multiple

independent rounds, solving them sequentially. This approach, however, disrupts

the inherent correlation between rounds in the long-term training process of FL. To

surmount these challenges, this chapter introduces a long-term online VCG auction

mechanism for FL, which leverages an experience-driven deep reinforcement learn-

ing algorithm to determine the optimal strategy. Moreover, we extend the economic

properties relevant to the successive FL process in a long-term context. Addition-

ally, knowledge transfer techniques are employed to mitigate the excessive training

overhead resulting from VCG payment rules. By capitalizing on the environmental

similarity among sub-auctions, we develop a strategy sharing framework that effec-

tively reduces the training time by half. Finally, we provide theoretical proofs of

the extended economic properties and conduct extensive experiments using multiple

real-world datasets. The results demonstrate a significant improvement over state-

of-the-art approaches, with a 36% increase in the long-term social welfare of FL,

accompanied by a 37% reduction in payment.

3.1 Introduction

Federated learning (FL) has gained considerable attention due to its ability to train

a global model among distributed clients and a server without the need to aggregate

raw data. This approach is highly regarded for its privacy-preserving and bandwidth-

efficient characteristics. However, the conventional FL scheme assumes that all clients

will willingly participate in the FL training process, which is not realistic given the

computational and communication resources required for local training and gradient

transmission. Without appropriate incentives, clients are reluctant to contribute their

energy and data, thus limiting the practical application of FL.

Some existing studies have focused solely on maximizing server-side utility and have

employed reward designs based on resource conditions [108, 107, 104] or reputation
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Figure 3.1: The pre-experiment results with different mechanism to illustrate why FL

needs a long-term social welfare maximization mechanism.

credit [43] to attract client participation. However, as FL is a multi-party collabora-

tive system, it is undesirable to adopt mechanisms that selfishly maximize server-side

utility, as this can discourage client involvement. Economic studies have shown that

constructing a sustainable development environment is crucial for facilitating the joint

development of the entire system and attracting a steady stream of clients [36, 65, 3].

Maximizing social welfare is one of the vital economic properties in achieving this

objective. Our pre-experiments in Fig.3.1(a) shows the utility of multiple parties

and the social welfare of the system in a single round with different incentive mech-

anisms. Evidently, the utility offered by these methods is primarily concentrated on
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the server-side, resulting in insufficient utility for all clients to effectively incentivize

their participation. In contrast, our proposed approach enables the server to motivate

clients significantly by sacrificing a portion of its own utility. This strategy ultimately

leads to higher social welfare within the system. However, it should be noted that

the majority of widely used auction mechanisms only satisfy a subset of the essen-

tial economic properties necessary for maximizing social welfare. Consequently, these

mechanisms are inadequate in ensuring a sustainable FL environment.

Moreover, given that the training process of federated learning (FL) encompasses

a series of long-term successive rounds, the utilization of online auctions has been

deemed suitable for modeling incentive mechanisms that aim to maximize social wel-

fare [81, 16, 103]. Nonetheless, existing online auction approaches typically involve de-

composing the overall process into a sequence of sub-problems within each individual

round, subsequently optimizing them independently. Applying such online auctions

directly to FL disrupts the inherent long-term continuous correlation between the

rounds. Our preliminary experimental findings, as depicted in Figure 3.1(b), reveal

that this decomposition approach results in a substantial degradation of total social

welfare when viewed from a long-term perspective. Notably, the long-term mecha-

nism fails to achieve optimality in specific rounds, such as rounds 5 and 6. However,

through consideration of the inter-round correlation in FL, the mechanism can ap-

propriately sacrifice a portion of the current social welfare to facilitate subsequent

rounds, thereby guaranteeing optimality throughout the entire long-term process.

In order to bridge the existing gaps in economic properties and establish a sustain-

able environment for the current federated learning (FL) system, the development

of a mechanism that ensures all essential economic properties, including incentive

compatibility (IC) and individual rationality (IR), while maximizing social welfare

is crucial. Among various auction mechanisms, the Vickrey–Clarke–Groves (VCG)

auction stands out as the sole mechanism capable of simultaneously satisfying all

aforementioned requirements [48, 90]. Consequently, the VCG auction is adopted
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as a guiding framework for the design of our mechanism. Furthermore, considering

the long-term optimization needs of the FL process, we extend the traditional VCG

economic properties to encompass a long-term perspective. This extension involves

the incorporation of long-term social welfare, long-term incentive compatibility, and

long-term individual rationality, which are vital considerations for achieving optimal

outcomes in the FL system.

Nonetheless, auction mechanisms encounter a significant challenge that must be ad-

dressed. This challenge stems from the privacy protection measures inherent in fed-

erated learning (FL), whereby clients remain unwilling to disclose their private in-

formation to the server, including computational overhead, communication overhead,

and data-related information. Of greater importance is the fact that the quality of

FL’s global model relies on the aggregation of local models, which entails a complex

and dynamic process due to the black-box nature of the FL model, typically im-

plemented as a deep neural network. Consequently, formulating an accurate system

model that captures the accuracy change process of the FL global model is unattain-

able. These inherent difficulties render all existing auction mechanisms, including the

VCG auction we have employed, incapable of accurately modeling the FL training

process.

In order to tackle the aforementioned challenges related to long-term optimization,

black-box models, privacy protection, and other factors, this chapter proposes the

utilization of deep reinforcement learning (DRL) as a solution. DRL offers the ad-

vantage of acquiring the optimal strategy through a model-free and experience-driven

approach. To this end, we employ an experience-driven DRL algorithm to design a

long-term online Vickrey-Clarke-Groves (VCG) auction mechanism specifically tai-

lored for federated learning (FL). In contrast to the traditional approach of inde-

pendent optimization through single-round decomposition, our proposed mechanism

directly focuses on optimizing the long-term social welfare of the online auction. This

is achieved by leveraging the environment and its inherent dynamics, without relying
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on any prior knowledge of the underlying system.

Moreover, in our utilization of the Vickrey-Clarke-Groves (VCG) mechanism, we have

noticed that a substantial number of deep reinforcement learning (DRL) agents must

be trained in order to acquire the optimal strategies for various sub-auctions. Notably,

the number of agents required is directly proportional to the scale of the participants,

resulting in a significant consumption of system resources. To address this particular

challenge, we leverage the inherent similarity across the different sub-auctions within

the environment. Consequently, we propose a parameter-based knowledge transfer

scheme that enables the sharing of learned strategies among the DRL agents. This

scheme proves to be highly effective in reducing the training overhead, ultimately

alleviating the resource demands associated with training a large number of agents.

The contributions of this chapter are highlighted as follows:

• In order to establish a sustainable development environment for federated learn-

ing (FL), we extend the essential economic properties to encompass the long-

term training process of FL. This extension is formulated as a long-term online

Vickrey-Clarke-Groves (VCG) auction, which aims to maximize social welfare

while maintaining economic desiderata.

• To overcome the challenges associated with accurately modeling the FL process,

attributed to privacy protection measures and the black-box nature of deep

neural networks (DNNs), we develop a reinforcement framework that is both

experience-driven and model-free. This framework enables us to exploit an

optimal strategy without relying on explicit system modeling. Furthermore, we

adopt a parameter-based knowledge transfer technique to facilitate the sharing

of learned strategies among deep reinforcement learning (DRL) agents. By

doing so, we are able to significantly reduce the extensive training overhead

typically associated with the VCG payment rules.

• The theoretical analysis of our proposed mechanism establishes its long-term
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economic properties. Additionally, we conduct extensive experiments on dif-

ferent datasets, including MNIST, Fashion-MNIST, and CIFAR-10, to evaluate

the performance of our mechanism. The experimental results demonstrate that

our approach achieves a 36% increase in long-term social welfare while reducing

payment by 37% compared to the current baselines.

3.2 Related Work

3.2.1 AI-Empowered Auction

Auction theory has emerged as one of the most widely employed approaches for de-

signing incentive mechanisms, finding applications in numerous domains. However,

traditional auction theory has long been confronted with inherent challenges related

to computational complexity. To address these challenges and attain optimal auction

designs, researchers have explored the integration of various artificial intelligence (AI)

techniques into the auction design process. For instance, Dutting et al. [21] utilized

a multi-layer neural network (NN) to encode auction mechanisms and learned the

optimal auction design through iterative sampling. Building upon this work, Feng

et al.[23] extended this approach to address the budget-constrained bidder problem,

while Golowich et al. [32] applied it to solve the facility location problem. Fur-

thermore, Luong er al. [58] constructed a multi-layer NN framework based on the

optimal analytical solution of auctions, demonstrating the substantial advantages of

employing deep learning approaches to derive optimal auction designs. However,

these existing works have primarily focused on utilizing deep learning technology to

design optimal auctions for single-round scenarios, rendering them unsuitable for ad-

dressing long-term online auction scenarios with multiple rounds. In contrast, the

objective of this chapter is to employ deep reinforcement learning (DRL) approaches

to design a long-term optimal online auction mechanism specifically tailored for fed-

28



3.2. Related Work

erated learning (FL). By leveraging the capabilities of DRL, our proposed mechanism

aims to overcome the challenges associated with the prolonged and dynamic nature

of FL training, enabling the development of an effective long-term online auction

mechanism.

3.2.2 Incentive Mechanism for FL

The design of incentive mechanisms in the field of federated learning (FL) has been

a subject of extensive research from various perspectives. Initially, some studies con-

centrated on maximizing the utility at the server-side through different approaches.

For example, the implementation of reputation-based mechanisms aimed to encourage

the participation of trustworthy edge nodes in the training process [98]. Additionally,

incentive mechanisms formulated with Stackelberg game models were explored to en-

hance communication efficiency in FL [74, 45]. Taking a step further, recent studies

have recognized the significance of incorporating economic properties into incentive

mechanisms. These studies have embraced auction-based solutions as a means of op-

timizing the overall social welfare of the system. For example, the work of Zeng et

al. introduced the ”Fmore” framework, which utilizes auction modeling to allocate

multi-dimensional resources in the context of FL training [106]. Similarly, Jiao et al.

proposed an automated auction framework for the FL services market [41]. Further-

more, Yuan et al. developed an online auction mechanism to facilitate an efficient

FL client selection strategy while considering energy constraints [105]. These studies

exemplify the application of auction-based approaches in FL, aiming to enhance the

efficiency and effectiveness of resource allocation and client selection while promoting

overall social welfare. However, these existing works fail to address several critical

challenges that arise in the context of federated learning (FL): Firstly, while opti-

mizing social welfare is an essential economic property for establishing a sustainable

development environment, it is crucial to consider other economic properties such as

incentive compatibility and individual rationality. Unfortunately, most widely used
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auction mechanisms are unable to simultaneously satisfy all of these economic proper-

ties. The absence of these economic properties poses a significant obstacle to ensuring

a sustainable mechanism for long-term FL training. Secondly, the system model-

ing approach adopted by current online auction methods decomposes the entire FL

training process into independent sub-problems for each round, thereby disregarding

the long-term successive correlation that exists between FL rounds. Thirdly, the

inherent challenges associated with privacy protection and the black-box nature of

deep neural network (DNN) models in FL render current auction methods ineffec-

tive. These methods are unable to provide precise system modeling for the dynamic

FL training process. Consequently, alternative approaches are required to overcome

these limitations and address the privacy and modeling challenges inherent in FL.

3.3 Preliminaries and Definitions

In this section, we will introduce some parameter definitions for both FL and DRL

and provide the corresponding symbols used in later sections.

3.3.1 Federated Learning

Federated learning operates as a distributed machine learning framework, compris-

ing a server and a collection of clients denoted by N = 1, · · · , N . Each client i

possesses a local dataset Di, which consists of its own data samples represented as

{xj, yj}j ∈ Di. Collaborative training takes place on a shared global model, involving

the optimization of a loss function f .

In the t-th round, each client i initially receives a global model denoted as ωt from

the server. Subsequently, the client engages in training using its local dataset Di to

compute its local loss, denoted as Fi(ω
t). Specifically, the local loss is determined as

follows:
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Fi(ω
t) =

1

di

∑
j∈Di

f(j,ωt), (3.1)

where di represents the size of client i’s local dataset (di = |Di|), and f(j,ωt) cor-

responds to the loss of the model ωt on the training sample j ∈ Di. Subsequently,

the local loss is utilized to update the model through the stochastic gradient descent

(SGD) approach, given by the equation

ωt
i = ωt − ηi

∂Fi(ω
t)

∂ωt
, (3.2)

where ηi denotes the local learning rate, and ωt
i represents the updated local model

of client i. Following the local model updates, each client proceeds to transmit its

updated local model ωt
i to the server for model aggregation. This aggregation process

is expressed as

ωt+1 =
N∑
i=1

di
d
ωt

i , (3.3)

where d =
∑N

i=1 di denotes the total size of the global dataset. Finally, the server

transmits the newly aggregated global model ωt+1 back to the clients as the starting

point for the subsequent round, denoted as t + 1. The aforementioned process is

repeated iteratively until the model converges or satisfies the specified requirements.

The server typically possesses its own validation dataset denoted as Dv, and the

objective is to identify the optimal global model ω∗ that minimizes the function

F (ω). Specifically, the optimal global model is obtained by solving the optimization

problem:

ω∗ = argmin
ω

F (ω), (3.4)

where F (ω) is defined as the average loss over the validation dataset Dv, computed

as:

F (ω) =
1

|Dv|
∑
j∈Dv

f(j,ω). (3.5)
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In general, as the loss F (ω) decreases, the model validation accuracy A(ω) gradually

improves, where the model validation accuracy A(ω) is defined by:

A(ω) =

∑
j∈Dv

1 (yj = ŷj(ω))

|Dv|
(3.6)

Consequently, we employ the model validation accuracy A(ω) on the validation

dataset Dv as the performance metric to evaluate the model’s effectiveness in the

subsequent analysis.

3.3.2 Deep Reinforcement Learning

In a conventional deep reinforcement learning (DRL) framework, an agent engages

in an iterative interaction with the environment, denoted as E, in order to evolve its

decision-making policy. At each discrete timestep t, the agent actively observes the

current state of the environment, denoted as st ∈ S, and subsequently takes an action

at ∈ A based on its policy π : S→ A. The agent is then rewarded with a scalar value

rt = r(st, at) ∈ R from the environment and transitions to the subsequent state st+1,

as dictated by a probabilistic state transition function P : S×A→ S. The primary

objective of the agent is to learn an optimal policy π∗ that maximizes the expected

cumulative reward R =
∑T

t=0 γ
trt, where γ ∈ (0, 1] denotes the discount factor. The

cumulative reward is computed over a finite time horizon T , and the discount factor

ensures that future rewards are given less weight compared to immediate rewards.

In the context of deep reinforcement learning (DRL), the agent aims to acquire the

mapping relationship between the current state and the available actions to maximize

the cumulative reward. However, attempting to learn this mapping for all possible

state-action combinations is often impractical due to the large number of such com-

binations. Consequently, function approximation techniques are commonly employed

to parameterize the agent’s policy πθ(a|s) using a parameter vector θ, which has a

significantly smaller dimensionality compared to the space of all possible state-action

pairs. Various methods exist for constructing this approximator, with deep neural
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networks (DNNs) being the most widely utilized approach. By employing a DNN,

the DRL agent can effectively learn and represent the policy πθ(a|s). Subsequently,

the agent updates the parameter vector θ to adapt and improve its policy based on

the observed quadruple {st, at, rt, st+1}.

3.4 System Model and Problem Formulation

3.4.1 Auction-based System Model

In an auction-based federated learning (FL) system, the overall process unfolds over

a series of rounds denoted as 1, 2, · · · , K, where K represents the total number of

rounds required for global model convergence. Within each round k ∈ [1, K], every

client i initially submits its bidding price bki per local epoch to the server, based on

its corresponding true value vki (see Fig. 3.2-❶). Subsequently, the server determines

a strategy τ k = {τ k1 , · · · , τ kN}, which specifies the number of local epochs allocated to

each client in the k-th round (see Fig. 3.2-❷). Here, τ ki denotes the number of local

epochs assigned to client i during the k-th round. Following the local training process

carried out by the clients and the subsequent global model aggregation performed by

the server (see Fig. 3.2-❸), the server proceeds to calculate the payment pki that

is to be provided to each client i in the k-th round (see Fig. 3.2-❹). For a more

comprehensive visual representation of the auction-based FL model, please refer to

Fig. 3.2. The subsequent sections discuss the detailed auction process for each step

within the k-th FL communication round.

During the initial step, each client i ∈ N within the set of clients N provides a bid bki

to participate in the federated learning (FL) training during the k-th round. The bid is

determined based on the client’s true value vki . The true value of each client represents

an estimation of the resources they may consume as a result of their involvement in the

FL training process. It is important to note that the true value varies significantly
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Figure 3.2: Illustration of online auction-based FL.

among clients due to factors such as heterogeneity in hardware configurations and

non-IID (non-independent and identically distributed) data distribution. The true

value of a client comprises various components, which are as follows:

1) Computation Energy Consumption. Each client i possesses a dataset Di consisting

of data samples that are uniform in type and volume, such as images with a fixed

number of bits. Consequently, the number of CPU cycles required for client i to

process a single training data sample is denoted by c, which remains constant across all

clients and can be determined beforehand. Let βi represent the effective capacitance

coefficient of client i’s computation chip-set, and δi denote the CPU-cycle frequency

employed by client i during the execution of the federated learning task. Notably,

due to the inherent hardware heterogeneity among clients, the values of βi and δi

differ across individual clients i. Recalling that di = |Di| denotes the size of the local

34



3.4. System Model and Problem Formulation

dataset held by client i, we adopt the widely accepted system energy model [12] to

describe the computation energy consumption incurred by client i per local epoch.

This energy consumption is represented by the equation:

ecomp
i = βicdiδ

2
i . (3.7)

2) Communication Energy Consumption. After completing the local training phase,

each client i is required to transmit its local model to the server using a wireless com-

munication network, such as WiFi. The energy consumed during this communication

process can be estimated using the widely accepted system energy model [12].

Let ξ represent the size of the local model, which remains consistent among all clients

due to the identical model structure. Additionally, Bk
i denotes the network band-

width available to client i during the k-th round. With these parameters, we can

calculate the communication time for client i in the k-th round as T comm
i,k = ξ/Bk

i . It

is important to note that the local model size ξ is the same across all clients.

The communication energy consumption of client i in the k-th round can be calculated

using the equation:

Ecomm
i,k = ϵiT

comm
i,k =

ϵiξ

Bk
i

, (3.8)

Here, ϵi represents the unit energy consumption of client i when uploading the local

model, and its specific value is determined by the hardware configuration of the

respective clients.

3) Data Usage. Apart from the aforementioned energy resource consumption, as

evidenced by several prior studies [27, 9, 86], the local dataset owned by each client

is also a crucial resource for federated learning (FL) training. This dataset possesses

inherent data value and should be appropriately accounted for in terms of its usage.

Nevertheless, owing to the non-IID (non-identically distributed) data profiles among

clients, the data value associated with each client is distinct and subject to dynamic
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changes based on the FL model requirements for the current FL round. Each round of

federated learning introduces the need for different combinations of data to enhance

the performance of the FL model. Consequently, this dynamic requirement leads to

varying demands for each client’s dataset. In simpler terms, if a client is frequently

selected by the server (assigned a higher number of local epochs), their data will

contribute more significantly to the server’s accuracy improvement. This implies that

the client possesses a higher data value to the server. This fluctuating data value

can be aptly depicted using the economic model of supply and demand [24], where

the client with a local dataset represents the supply-side, while the server represents

the demand-side. To incorporate the dynamics of data value within the market, we

can apply principles from the field of marketing [7]. Let’s assume that the value of

data owned by client i in the k-th round is denoted as Dk
i . Similar to the approach

described in the context of housing (reference omitted), we can describe the dynamics

of data value in the market using the equation Dk
i = M(Dk−1

i , τ k−1
i ), where M is a

Markovian function that captures the influence of demand on the value. We have

implemented the function M by comparing the current epoch number τ ki with the

historical average epoch number τ̄i assigned to client i in previous training rounds.

This average epoch number can be interpreted as the server’s level of demand for the

local dataset of client i. If the current epoch number τ ki determined by the server

is greater than the historical average τ̄i, it indicates a favorable condition for the

supply-side in the market. In such cases, client i will consider increasing the data

value by a factor of (τ ki − τ̄i)/τ̄i. Conversely, if the current epoch number is lower

than the historical average, it implies a less favorable supply-side market, and client

i may adjust its data value accordingly.

To provide bidding, each client i needs to follow a two-step process, given that its

local epoch number τ ki for the current round k is determined by the server at a later

stage and is unknown beforehand. The steps involve: 1) Estimating the true value

of the client for the current round. 2) Providing the bidding based on the estimated
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value. The estimated true value of client i in the k-th round can be represented by

a function that incorporates its historical average epoch number τ̄ ki . This function is

given by:

vki (τ̄
k
i ) = µ1 · (ecomp

i × τ̄ ik) + µ2 · Ei, kcomm + µ3 ·Dk
i , (3.9)

Here, µ1, µ2, and µ3 are hyperparameters that allow for preference adjustment. The

computation energy consumption ecomp
i is evaluated for each local epoch, while the

communication energy consumption Ecomm
i,k and data value Dk

i are evaluated for the

entire round. This is because each local training round only requires data usage and

model upload once.

Client i may exhibit selfish and rational behavior, leading to the possibility of raising

a bidding price bki that differs from its true value vki , with the intention of maximizing

payment from the server (Fig. 3.2-❶). Consequently, the bidding bki provided by

client i in the k-th round, based on its estimated true value vki , can be represented

as:

bki (τ̄
k
i ) = vki (τ̄

k
i ) +N(µ, σ2), (3.10)

Here, N(µ, σ2) represents Gaussian noise with a mean (µ) of 0 and a variance (σ2) of

1. This noise factor accounts for the deviation from the true value and reflects the

strategic behavior of client i in setting its bidding price.

Subsequently, the server can determine the local epoch number strategy τ k = τ k1 , · · · , τ kN
for all clients as the output of the current deep reinforcement learning (DRL) strategy

network (Fig. 3.2-❷). The input to the network is the clients’ bidding. It is worth

noting that the server has the authority to reject the participation of certain clients

by assigning a local epoch number of zero to them. Additionally, clients have the

option to voluntarily exit the current federated learning (FL) round by intentionally

overbidding their true values.

Following the determination of the local epoch number strategy τ k by the server,

clients will execute the corresponding federated learning training task based on the
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received local epoch number τ ki (Fig. 3.2-❸). Subsequently, they will upload the

training results back to the server.

During this process, the client data value Dk
i will be updated according to the local

epoch number τ ki as Dk+1
i = M(Dk

i , τ
k
i ).

Finally, the server will distribute the respective payment pki to each client (Fig. 3.2-❹)

in accordance with the VCG (Vickrey-Clarke-Groves) payment rules, which will be

further defined in Section 3.5.3.

After the auction process of the current round is completed, both the server and

clients will calculate their own utility and update their strategies for the next round.

On the client side, the utility of client i in the k-th round can be computed based on

the payment pki received from the server, using the following equation:

Uk
i (τ

k
i ) = pki − vki (τ

k
i ) = pki − (µ1e

comp
i τ ki + µ2E

comm
i,k + µ3D

k
i ). (3.11)

Here, Uk
i (τ

k
i ) represents the utility of client i in the k-th round, which is the difference

between the payment received and the estimated true value based on the local epoch

number τ ki .

Following the usual convention in economics, we assume that clients are individually

rational, meaning that client i aims to maximize its long-term utility over the entire

online auction. Consequently, the overall long-term utility for client i is given by:

Ui =
K∑
k=1

Uk
i , (3.12)

where K represents the total number of rounds in the auction process.

On the server side, after performing the global aggregation of all the uploaded local

models from clients, the server can obtain the global federated learning (FL) model

performance A(·) for the current k-th round by evaluating it on its own validation

dataset Dv, as described in Equation (3.4). After obtaining the global FL model

performance, the server proceeds to calculate the payment pki that will be distributed
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to each client i. This payment calculation is based on the Vickrey-Clarke-Groves

(VCG) payment rules, which are defined in Section 3.5.3. The VCG payment rules

are designed to ensure efficiency and truthfulness in the auction mechanism, taking

into account the individual contributions of each client and their impact on the overall

FL model performance. The utility of the server in the k-th round can be computed

as follows:

Uk
s (τ

k) = λ ·∆Ak(τ k)−
∑
i∈N

pki , (3.13)

Here, ∆Ak(τ k) = A(ωk) − A(ωk−1) represents the model accuracy increment of the

federated learning (FL) task after applying the local epoch number strategy τ k in

the k-th round. The term λ is a non-negative parameter that allows for adjusting

the server’s preference. A higher value of λ indicates that the server places greater

importance on maximizing the model accuracy, while a lower value of λ indicates a

relatively higher weight on other factors. The utility of the server is calculated as the

difference between the model accuracy increment (weighted by λ) and the sum of the

payments distributed to the clients. This formulation allows the server to balance

the improvement in model accuracy with the cost associated with compensating the

clients.

Indeed, the decision of the local epoch number strategy τ k has two significant impacts

on the federated learning (FL) system. Firstly, since the clients’ data profiles are non-

IID (i.e., each client possesses a unique subset of data), the choice of τ k affects the

accuracy performance of the FL model. By selecting different combinations of clients

to participate in the FL training, the model’s performance can vary. This problem is

commonly known as the client selection problem in FL. Making an optimal decision

for τ k becomes crucial in order to maximize the accuracy of the FL model. Secondly,

the decision of τ k also impacts the training cost of the system. This cost includes

factors such as computation, communication energy consumption, and data usage.

The selection of clients and the allocation of local epoch numbers directly affect these

costs. Achieving an optimal trade-off between system performance (model accuracy)
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and training cost (computation, communication, and data usage) is essential in order

to ensure efficient and effective FL. Therefore, finding a balance between system per-

formance and training cost through the decision of the local epoch number strategy

in each communication round is a critical challenge in FL. It requires careful con-

sideration of the characteristics of the clients’ data, the available resources, and the

objectives of the FL system.

3.4.2 Problem Formulation

Prior to presenting the problem formulation, it is pertinent to introduce a set of

foundational economic properties derived from traditional auction theory [48]. These

properties, widely acknowledged in the field, provide a fundamental framework for

the analysis and design of auction mechanisms.

- Social welfare: the utility sum of all participants within the system, not the

utility of a specific participant.

- Incentive compatibility : each participant can obtain the best return if and only

if it bids truthfully.

- Individual rationality : all participants can obtain non-negative utility.

Given that the online auction for federated learning (FL) comprises a sequence of

interconnected auctions, representing the communication rounds of the FL training

process, the aforementioned classic economic properties are not inherently suitable for

addressing the long-term requirements of our proposed mechanism, as they primarily

focus on individual rounds. Consequently, we extend these properties to encompass

the overarching objective of our mechanism, which aims to ”maximize the long-term

social welfare of a FL system while ensuring the fulfillment of key economic properties

over an extended duration.” In the subsequent sections, we provide a comprehensive

description of this objective.
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1) Maximizing long-term social welfare: In order to evaluate the performance of

our proposed online auction mechanism [48, 81, 16, 103], we adopt the concept of long-

term social welfare within the federated learning (FL) system. This welfare is defined

as the cumulative utility of both the server, denoted as
∑

k∈K Uk
s , and the individual

utility gains of all participating clients, represented by
∑

k∈K
∑

i∈N Uk
i (τ

k), across

all communication rounds. The social welfare in the k-th round can be computed as

follows:

Sk(τ k) = Uk
s (τ

k) +
∑
i∈N

Uk
i (τ

k)

= λ ·∆Ak(τ k)−
∑
i∈N

(µ1e
comp
i τ ki + µ2E

comm
i,k + µ3D

k
i ),

(3.14)

where λ, µ1, µ2, and µ3 are weighting factors, ∆Ak(τ k) represents the aggregate

accuracy improvement achieved in the k-th round, ecomp
i denotes the computational

efficiency of client i, τ ki represents the computational resource allocated to client i in

round k, Ecomm
i,k represents the energy consumption of client i for communication in

round k, and Dk
i represents the data discrepancy between client i and the server in

round k. The long-term social welfare of the FL system is given by:

S(τ ) =
K∑
k=1

Sk(τ k). (3.15)

Consequently, to achieve the highest long-term social welfare, it is imperative to

determine the optimal strategy for selecting the number of local epochs, denoted as

τ ∗. This optimal strategy can be obtained by solving the following maximization

problem:

τ ∗ = argmaxS(τ )

s.t. Ui(τ
∗) ≥ Ui(τ̃

∗),∀i. (Long-term IC)

Ui(τ
∗) ≥ 0,∀i. (Long-term IR)

(3.16)

, where the two constraints here, i.e., Long-term IC and Long-term IR, will be elab-

orated later.
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2) Long-term incentive compatibility: In order to ensure long-term incentive

compatibility in the auction mechanism, it is crucial that every client, denoted as i, has

the incentive to truthfully disclose their true value, vki , in any given communication

round, regardless of the bids submitted by other clients. In other words, if we assume

that τ ∗ represents the socially optimal strategy when client i bids truthfully and τ̃ ∗

represents the strategy when client i bids untruthfully, we can establish the following

condition:

Ui(τ
∗) ≥ Ui(τ̃

∗),∀i. (3.17)

3) Long-term individual rationality: To attract more potential clients to the FL

system, the mechanism needs to satisfy individual rationality which means each client

can obtain a non-negative utility when participating in a FL task, i.e.,

Ui(τ
∗) ≥ 0,∀i. (3.18)

This inequality signifies that client i will obtain at least the same utility or greater

when employing the truthful bidding strategy (τ ∗) compared to the scenario where

they adopt an untruthful bidding strategy (τ̃ ∗), regardless of the bids made by other

clients.

It is important to note that the extended long-term properties should not be inter-

preted as an absolute guarantee of their fulfillment in every round of the federated

learning (FL) process. Striving for perfect adherence to these properties in every

round would be excessively idealistic and essentially unattainable in practice. In re-

ality, the attainment of the long-term properties signifies that both the server and

clients may be willing to accept a lower level of utility in specific rounds of FL to

optimize the overall utility and effectiveness of the entire FL training process. This

recognition acknowledges that achieving the maximum long-term benefits may involve

making certain trade-offs and adjustments in utility allocation across different rounds

of FL. By adopting such an approach, a more realistic and practical optimization

strategy can be pursued that takes into account the overall utility and welfare over
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the entire duration of FL.

3.5 Mechanism Design

3.5.1 Motivation: why must DRL

The VCG (Vickrey-Clarke-Groves) mechanism [90] is a widely studied auction mech-

anism that offers a general framework guaranteeing both social welfare maximization

and truthfulness. Given its desirable properties, the VCG mechanism is an ideal

choice for our auction design. The standard VCG scheme consists of two main steps.

First, it involves determining an optimal strategy by solving the social welfare opti-

mization problem, which aligns with the objective expressed in Equation (3.16) in our

specific problem setting. Second, the VCG mechanism calculates payments to each

client, taking into account the externalities imposed by each client on the others. The

payment rule, which will be discussed in detail in Section 3.5.3, ensures that clients

are compensated properly. However, employing the standard VCG mechanism for our

problem is challenging due to various critical obstacles that hinder the acquisition of

the optimal long-term social welfare strategy, τ ∗. These challenges pose difficulties in

determining the most beneficial allocation of computational resources over multiple

rounds, thereby limiting the direct applicability of the standard VCG mechanism to

our specific auction design.

1) Myopic Observation: The optimal solution to Equation (3.16) requires a long-

term optimization approach for social welfare. However, obtaining this solution

directly using traditional optimization methods is impractical due to the need

for complete knowledge about the entire lifespan of the federated learning (FL)

system.

2) Information Isolation: To derive the theoretical optimal solution τ ∗ in Equation
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(3.16), we need to substitute Equations (3.7)-(3.9) into Equation (3.14) to obtain

the social welfare Sk(τ k) in the k-th round. However, Equations (3.7)-(3.9)

incorporate private information (such as βi, ci, di, δi) of clients, which cannot be

made publicly available due to privacy protection principles in FL.

3) Model Unknown: In a FL system, the involvement of neural networks and

collaborative training introduces elements that cannot be accurately modeled.

For instance, deriving an analytical model of the global performance, denoted

as A(ωk), is infeasible. Consequently, the final global model performance can

only be obtained through actual training processes.

Given the aforementioned challenges, Deep Reinforcement Learning (DRL) emerges as

a promising approach as it is an experience-driven method that does not rely on prior

knowledge during its training process. Consequently, it is well-suited for addressing

the challenges outlined above. Recent research has demonstrated the effectiveness of

DRL as a model-free approach, surpassing human-level performance in various com-

plex environments such as Atari games [67] and Dota [5]. This success showcases the

suitability of DRL in tackling the challenge of model uncertainty present in the FL

system. Furthermore, DRL is capable of optimizing long-term cumulative rewards,

enabling the auction mechanism to overcome the myopic observation challenge and

focus on the optimization of long-term social welfare. By considering the cumula-

tive rewards over time, DRL allows for a more comprehensive and forward-looking

approach to optimizing the FL process.

Furthermore, practical machine learning applications, as shown in previous studies

[88], are often deployed in dynamic environments where data patterns change over

time. For instance, in a recommendation system for a shopping platform, clients’

interests frequently shift. As a result, the global model on the server side in federated

learning (FL) needs to be continuously updated to adapt to the dynamic environment.

This continuous updating process accumulates substantial historical experience on the
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server side, creating a favorable condition for the integration of Deep Reinforcement

Learning (DRL) into the FL server.

Motivated by these advantages, we propose to combine DRL with the long-term

online VCG auction mechanism. By leveraging the historical experience accumulated

by the server, DRL can effectively optimize the auction mechanism over time, taking

into account the changing dynamics of the FL environment. This integration enables

the auction mechanism to adapt and make optimal decisions in response to evolving

client preferences and data patterns, leading to improved overall performance and

long-term social welfare in FL.

3.5.2 DRL Design

The online auction in the federated learning (FL) setting is structured as a sequence

of successive rounds of auctions. This sequential nature makes it well-suited for inte-

gration with the Markov Decision Process (MDP) framework of Deep Reinforcement

Learning (DRL), as well as the FL training process. Each auction segment corre-

sponds to a state transition process denoted by sk, ak, rk, sk+1, representing the state,

action, reward, and next state in the k-th FL training round. In our approach, we

employ the Proximal Policy Optimization (PPO) algorithm as our chosen DRL al-

gorithm [79]. PPO is selected due to its ability to address the sensitivity of policy

gradient methods to the update step size. If the step size is too small, progress be-

comes exceedingly slow, while if it is too large, the signal can be overwhelmed by noise

or result in catastrophic drops in performance. Although alternative algorithms such

as TRPO and ACER have attempted to mitigate these limitations, ACER is com-

paratively complex as it requires additional off-policy corrections and a replay buffer.

On the other hand, TRPO presents challenges in parameter sharing with other al-

gorithms, which hampers subsequent transfer learning in our context. In our DRL

model design for the online auction in FL, we define the state, action, and reward
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components as follows:

State Design: The state of the agent in the k-th FL round, denoted by sk, is

represented by the bidding price vector of all clients for one local epoch. It can be

written as sk = bk1, · · · , bki , · · · , bkN , where bki represents the bidding price of client i in

the k-th round (as discussed in Section 3.4.1).

Action Design: The action of the agent in the k-th FL training round, denoted by

ak, is defined as the local epoch number vector for each client. It can be represented

as ak = τ k1 , · · · , τ ki , · · · , τ kN , where τ ki corresponds to the local epoch number chosen

by client i in the k-th round.

Reward Design: The reward for the agent is determined by the social welfare of

the system in the k-th FL training round, denoted as rk = Sk. The social welfare

Sk is calculated using the formula λ · ∆Ak −
∑

i∈N(µ1e
comp
i τ ki + µ2E

comm
i,k + µ3D

k
i ),

where λ is a weighting factor, ∆Ak represents the change in global model performance

from the previous round, ecomp
i is the computation cost of client i, Ecomm

i,k denotes the

communication cost of client i in the k-th round, and Dk
i represents the data utility

loss of client i. Although the agent receives a reward in each round, we adopt a

Monte-Carlo update approach where the strategy is updated based on the reward

obtained in the last round. This update scheme aims to optimize long-term social

welfare.

State Transition: At the onset of the k-th federated learning (FL) training round,

all participating clients contribute their bids, denoted as the state sk, to the server

for the ongoing FL task. Upon receiving the state, the server employs its policy

πθ(ak|sk) to determine the appropriate local epoch number, referred to as the action

ak, for each client. Subsequently, all clients engage in FL task training based on the

specified requirements and subsequently upload their respective local training results

to the server. Following this, the server performs global aggregation to obtain the

new model, thereby facilitating the calculation of the social welfare, denoted as the
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reward rk, for the current round. Finally, all clients receive their respective payments

and update their bids in preparation for the subsequent round of the FL task. This

results in the emergence of a new state, denoted as sk+1, which serves as the basis for

the next FL training round.

3.5.3 VCG-based Payment Rule

In mathematical terms, we can define SN\i(τ
∗) as the social welfare achieved when

applying the optimal global strategy τ ∗ but without taking into account the cost of

client i. Furthermore, we define τ ∗
−i as the optimal individual strategy obtained from

a sub-auction. This strategy is derived from an individual environment that excludes

client i, as illustrated in Figure 3.3(b). By considering the individual environment

without client i, we can assess the optimal strategy for the remaining clients in a

scenario where client i is absent.

According to the payment rule of the VCG mechanism, the payment made to client

i is determined using the following equation:

pi = SN\i(τ
∗)− S(τ ∗

−i), (3.19)

where pi =
∑K

k=1 p
k
i is the total payment of client i throughout the FL training. To

implement the VCG payment rule, a bookkeeping scheme (as shown in Section 3.4.1

) is employed, where the contributions of clients in each round are recorded. In this

scheme, each client’s payment is determined at the end of the FL training based on

the recorded contributions.

Then, we can get the following theorem.

Theorem 1. The reinforcement online mechanism that produces allocation τ and

payments p, is both incentive-compatible and individual rationality.
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Proof. Based on the payment rule given in (3.19), we can get

Ui(τ ) = pi − vi(τ )

= pi −
K∑
k=1

(µ1e
comp
i τ ki + µ2E

comm
i,k + µ3D

k
i )

= SN\i(τ
∗)− S(τ ∗

−i)−
K∑
k=1

(µ1e
comp
i τ ki + µ2E

comm
i,k + µ3D

k
i )

≥ S(τ ∗)− S(τ ∗
−i) ≥ 0

(3.20)

Therefore, the individual rationality property of reinforcement online mechanism is

satisfied.

Next, to prove the truthfulness of the mechanism, we compare the utility of client

i under the truthful bid and an untruthful bid. Suppose that in k-th round, client

i submits an untruthful bid bki which is not equal to its true value vki , i.e., b
k
i ̸= vki ,

then the optimal strategy becomes τ̃ ∗. His utility under untruthful bidding can be

calculated by

Ui(τ̃ ∗) = (S̃N\i(τ̃ ∗)− S(τ ∗
−i))− vi(τ ). (3.21)

Then, the difference of utilities under truthful and untruthful bidding is

Ui(τ )− Ui(τ̃
∗) ≥(S(τ ∗)− S(τ ∗

−i))

− ((S̃N\i(τ̃
∗)− S(τ ∗

−i))− vi(τ ))

=S(τ ∗)− (S̃N\i(τ̃
∗)− vi(τ ))

=S(τ ∗)− (SN\i(τ̃
∗)− vi(τ ))

≥S(τ ∗)− S(τ̃ ∗).

(3.22)

Since τ ∗ maximizes the long-term social welfare of FL system, we can obtain Ui(τ )−

Ui(τ̃ ) ≥ 0, which means client i cannot increase its utility by bidding untruthfully.
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3.5.4 Parameter-based Knowledge Transfer for DRL Train-

ing

According to the VCG payment rule presented in equation (3.19) and illustrated in

Figure 3.3(a), the computation of payments assigned to each client i entails training

a main-agent to acquire the optimal global strategy τ ∗ within an environment that

incorporates the participation of all clients. This universal global strategy can subse-

quently be employed to calculate SN\i(τ
) for any client i. Then, to compute S(τ ∗−i), a

separate agent referred to as a sub-agent must be trained to obtain the optimal indi-

vidual strategy τ ∗
−i within client i’s unique environment. This environment consists of

all clients except for client i, denoted as 1, . . . , i− 1, i+ 1, . . . , N . Consequently, each

distinct client i necessitates the training of an individual sub-agent to derive their

respective τ ∗
−i using traditional Deep Reinforcement Learning (DRL) methods, given

the varying environments across clients. In summary, the computation of payments

requires the training of N sub-agents, each dedicated to obtaining the optimal indi-

vidual strategy τ ∗
−i for a specific client. This process becomes more time-consuming

as the number of clients increases, scaling linearly with the client count.

Indeed, it is evident that there exist notable similarities between these environments.

The global strategy τ ∗ is acquired within an environment that encompasses the par-

ticipation of all clients (referred to as the global environment), while the individual

strategy τ ∗
−i for client i is obtained within an environment that excludes client i

(known as the individual environment). The sole distinction between these two envi-

ronments lies in the absence of client i, with all other clients remaining identical. In

essence, all the individual environments for τ ∗
−i,i∈N can be regarded as subsets of the

global environments for τ ∗. A visual representation of this relationship is provided

in Figure 3.3(b).

Based on the aforementioned similarity between the global and individual environ-

ments, we propose the utilization of transfer learning as a technique to expedite the
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acceleration to compute the VCG-based payment.

training process of sub-agents in acquiring their optimal strategies. Transfer learn-

ing is a methodology that leverages pre-existing knowledge to facilitate the learning

of new knowledge [97, 73]. Particularly in the field of machine learning, transfer

learning involves applying knowledge gained from a source domain to a distinct but

related target domain. In the VCG payment rule, the global environment in which

the main-agent obtains the global strategy τ ∗ can serve as the source domain, while

the individual environments in which sub-agents acquire their individual strategies

τ ∗
−i,∈N can be regarded as the target domains. Therefore, by implementing transfer

learning, the knowledge acquired by the main-agent from the global environment can

be shared with all sub-agents. This enables the sub-agents to benefit from the pre-

existing knowledge, leading to a significant reduction in training time compared to

the original approach of training each sub-agent from scratch repeatedly.

In DRL, the agent enhances its knowledge by engaging in iterative interactions with

the environment. This knowledge is encapsulated within the agent’s deep neural

network, manifested through various weight parameters. Therefore, we adopt the

parameter-based transfer learning approach [87] to facilitate knowledge transfer be-

tween agents One straightforward approach for parameter control in transfer learning

is to directly share the parameters of the source learner with the target learner. For in-
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stance, if we have a neural network model for the source task, we can share (or freeze)

most of its layers and only fine-tune the last few layers to create the target network.

This parameter sharing technique has been widely employed in network-based trans-

fer learning methods [97, 37, 73, 87]. Furthermore, since the shared parameters have

already converged during the previous training, in order to enhance their general-

ization capabilities and enable adaptation to the new environment, we introduce a

small amount of random Gaussian noise denoted as σ to the shared parameters. This

noise injection serves to improve the flexibility and adaptability of the parameters

when confronted with novel tasks or environments. A detailed representation of our

parameter-based knowledge transfer methodology can be found in Figure 3.3(c).

In the final step, our main-agent and sub-agents undergo training through parameter-

based knowledge transfer. The main-agent and sub-agents share an identical neural

network architecture. The training process is depicted in Algorithm 1.

The workflow of parameter-based knowledge transfer for training DRL agents is as

follows: First, the network parameters θ of the main-agent are randomly initialized

(Line 2). Subsequently, DRL training is conducted on the source domain, which

represents the global environment, as shown in Fig 3.3(b). (Line 3). As the training

process gradually converges, the network parameters are updated from θ to θ(τ ∗),

enabling the main-agent to acquire the optimal global strategy τ ∗ for all clients (Line

4).

For each sub-agent i ∈ N , a parameter-based knowledge transfer approach is em-

ployed to accelerate its initial training. Initially, the network parameters θi of sub-

agent i are randomly initialized (Line 7). Next, the first two layers of the main-

agent’s network parameters θ(τ ∗) are shared with θi, effectively replacing the original

parameters of θi (Line 8). To enhance the generalization performance of these shared

parameters, a random Gaussian noise σ is added to them (Line 9). Finally, the

sub-agent undergoes a similar training process on the target domain, fine-tuning its

parameters θi to θ(τ ∗
−i), resulting in the sub-agent i acquiring the optimal individual
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Algorithm 1: The workflow of parameter-based knowledge transfer for DRL

agent training (same network architecture).

1 The training of main-agent:

2 Initialize network parameters θ of main-agent

3 Perform DRL training on the source domain until convergence

4 The network parameters are updated from θ to θ(τ ∗), and the main-agent

obtains the optimal global strategy τ ∗ for all clients

5 The training of N sub-agents:

6 for client i in 1, 2, · · · , N do

7 Initialize the network parameters θi of sub-agent i

8 Share the first two layers of main-agent’s network parameters θ(τ ∗) with θi

9 Add a random Gaussian noise σ to these shared parameters of θi

10 Perform DRL training on the target domain until convergence

11 The network parameters are fine-tuned from θi to θ(τ ∗
−i), and the sub-agent i

obtains the optimal individual strategy τ ∗
−i

strategy τ ∗
−i for client i (Line 10-11).

3.6 Performance Evaluation

3.6.1 Experimental Setup

We utilize the FedAvg framework, originally proposed by Google, as the basis for

our experiments. These experiments are conducted on various real-world datasets,

namely MNIST, Fashion-MNIST, and CIFAR-10. The parameter settings for the

neural networks employed in the image classification task for each dataset align with

the configurations outlined in [63].

Federated Learning Setup: Regarding the federated learning setup, there are some
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variations between the datasets. However, certain FL settings remain consistent

across all datasets. We evaluate all mechanisms using Non-IID data partitioning,

wherein the entire dataset is randomly distributed among the clients, with each client

possessing unique data. Different degrees of Non-IID are achieved by adjusting the

random seed. In terms of local model training, we employ Stochastic Gradient Descent

with a mini-batch size of 20, while the learning rate for local updates is set to 0.01.

For energy consumption analysis, we assume that the number of CPU cycles required

to process a single sample, denoted as ci, is 20 cycles/bit. Additionally, the effective

capacitance coefficient βi is randomly distributed within the range of 1 × 10−28 to

2× 10−28. To account for the heterogeneity in clients’ hardware resources, the CPU-

cycle frequency δi is randomly distributed within the range of 1 to 2 GHz.

Deep Reinforcement Learning Setup: In the DRL setup, we configure several pa-

rameters to facilitate the experience-driven learning process. Specifically, we set the

number of episodes, denoted as E, to 3000. Within each episode, the agent takes a

fixed number of steps, denoted as K, which is set to 5. Additionally, the learning

rates for both the actor and critic networks are set to lra = lrc = 0.00003. These

learning rates decay by 95% every 40 episodes to facilitate convergence. To optimize

the long-term target directly, the update batch size of the agent is set to the same

value as the step number K. In terms of reward design, we employ a reward discount

factor of γ = 0.95 to account for future rewards. Furthermore, we introduce a prefer-

ence adjustment coefficient, denoted as λ, which is set to 1000. In Fig 3.5, a diverse

range of results for different λ values is displayed. For the Actor-Critic model utilized

in our DRL agent, we adopt the same well-established settings as outlined in [93].

Benchmark mechanism: we assess the effectiveness of the proposed deep reinforce-

ment mechanism by comparing it against several benchmark mechanisms as follows:

1) Myopia: This mechanism decomposes the problem at hand into a series of one-

round problems, akin to the approach used in online auctions in other domains rather

than federated learning [81, 16, 103]. Each individual problem is solved optimally

53



Chapter 3. Sustainable Federated Learning with Long-term Online
Vickrey–Clarke–Groves Auction Mechanism

using exhaustive search, resulting in a short-term optimal solution. The payment

scheme for each round follows the VCG mechanism. 2) Expert-FedAvg (EFA):

Building upon the FedAvg framework proposed in [63], this mechanism incorporates

our historical training experience to manually set the local epoch number for each

federated learning communication round. 3) Greedy: This mechanism adopts a

greedy strategy by selecting the strategy with the maximum reward from the expe-

rience replay buffer with an 80% probability. With the remaining 20% probability, it

generates a random strategy.

3.6.2 Performance Analysis

First, we present the performance of our mechanism in terms of optimizing the long-

term social welfare within the FL system, as depicted in Fig. 3.4(a). As the training

process of the DRL agent progresses, the long-term social welfare exhibits a consis-

tent upward trend. Notably, the metric reaches convergence at approximately 2000

episodes. This observation suggests that the agent gradually acquires the optimal

strategy for the FL online auction over time, resulting in the maximization of social

welfare in the long run.

The effectiveness and superiority of our proposed mechanism can be better demon-

strated through a comprehensive comparison with other mechanisms, as illustrated in

Fig. 3.4. We conducted a series of experiments using real datasets, namely MNIST,

Fashion-MNIST, and CIFAR-10. Our deep reinforcement mechanism consistently

outperforms all other benchmark mechanisms in terms of long-term social welfare

optimization. To further illustrate the advantages of our approach, we focus on the

results obtained from the MNIST dataset, as shown in Fig. 3.4(b). While the myopia

approach employed in previous works has achieved notable improvements through in-

dependent single-round optimization, our method still manages to increase the long-

term social welfare by an impressive 36% by incorporating long-term optimization
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(d) Long-term social welfare comparison
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Figure 3.4: The performance of our mechanism and its comparison with other base-

lines.

considerations. Furthermore, we compare our proposed mechanism with the manu-

ally adjusted EFA method, which benefits from the experience accumulated during

the historical training process. Although the EFA method surpasses the random

sampling-based Greedy method, it falls short when compared against our proposed

mechanism. Similar observations can be made when examining the results obtained

from the Fashion-MNIST dataset, as depicted in Fig. 3.4(c). Due to the close similar-

ity in dataset features between Fashion-MNIST and MNIST, the performance trends

remain consistent, further highlighting the effectiveness of our proposed mechanism.

In Fig. 3.4(d), we present the results obtained from the CIFAR-10 dataset. While
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values of λ on MNIST, where λ is a preference adjustment parameter.

the experimental details are largely similar to those of the previous datasets, the

higher complexity of CIFAR-10 poses a greater challenge for non-learning benchmark

mechanisms to identify optimal strategies. Consequently, our proposed deep rein-

forcement mechanism achieves a more significant improvement in terms of long-term

social welfare optimization on CIFAR-10.

Referring to equations (3.13) and (3.14), it is worth noting that the preference ad-

justment coefficient λ plays a significant role in balancing the various components

of long-term social welfare. A higher value of λ indicates a stronger preference for

model accuracy. To investigate the impact of dynamically varying λ on the trade-

off between accuracy and training cost, we conducted a series of experiments, as

illustrated in Fig.3.5. The experimental results showcase that as the value of λ pro-

gressively increases, both the model accuracy and training cost of federated learning

(FL) exhibit an upward trend. In particular, the figure indicates two critical junc-

tures at λ = 1000 and 5000. As λ escalates from 100 to 1000, the accuracy-cost

proportion leans towards cost, prompting a transition in our mechanism from an ex-

treme strategy, favoring the selection of the most cost-efficient clients, towards an

optimal strategy, which involves a more diversified client selection. Throughout this

transition, the associated cost undergoes a modest increase, yet yields a noteworthy
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Figure 3.6: The payment comparison on different strategy baselines with different

datasets, and the experiment proof of the client long-term individual rationality (IR)

property in Eq. (3.18) on all datasets.

enhancement in accuracy. Within the λ range of 1000 to 5000, accuracy and cost pro-

portions align closely, rendering the mechanism sensitive to their trade-off. Notably,

accuracy improvements in this range coincide with sharp increases in cost. Upon

exceeding λ = 5000, the mechanism gravitates towards an accuracy-centric approach,

albeit with diminishing returns due to convergence saturation. Consequently, further

investment in training cost fails to yield significant accuracy improvements.

Fig. 3.6 illustrates the payment comparison across various mechanisms under distinct
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Figure 3.7: The performance of parameter-based knowledge transfer approach, where

the traditional approach is to retraining DRL agent from scratch.

scenarios. Considering the absence of truthfulness assurance in mechanisms such as

EFA and Greedy, wherein clients may misrepresent their costs to maximize payment

from the server, a parameter denoted as α is introduced to simulate varying degrees

of untruthfulness among clients. Specifically, the payment allotted to each client is

computed as the product of (1 + α) and its respective cost. Notably, as reinforce-

ment mechanisms and Myopia ensure truthfulness, their α values are set to 0. The

comparative analysis presented in Fig. 3.6 indicates that our mechanism achieves

the minimal truthful payment when juxtaposed with Myopia across all datasets, re-

sulting in a reduction of 37% on MNIST, 39% on F-MNIST, and 60% on CIFAR-10,

while concurrently enhancing long-term social welfare. Furthermore, to elucidate the

concept of long-term individual rationality as delineated in Equation (3.18), we jux-

tapose the payment against the aggregated true values of clients, corresponding to

their costs for participation in FL training. The outcomes depicted in Fig. 3.6(d)

affirm our adherence to this property.

Finally, the efficacy of the parameter-based knowledge transfer approach is evidenced

through the analysis presented in Figure 3.7. The convergence assessment conducted

on CIFAR-10, as depicted in Fig 3.7(a), underscores the comparable efficacy of knowl-

edge transfer relative to conventional methods, alongside a notable 50% reduction in
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Figure 3.8: The detailed performance comparison between knowledge transfer and

traditional approaches.

required training iterations (from 2000 rounds to 1000 rounds). Fig. 3.7(b) provides

a comparative analysis of actual training durations across diverse datasets, revealing

a substantial halving of the training period. Furthermore, Fig 3.8 offers a detailed

performance juxtaposition of two DRL training strategies across various datasets. It

is noteworthy that the knowledge transfer technique incurs only a marginal diminish-

ment in social welfare compared to traditional training-from-scratch methods. This

slight loss arises from disparities between the source and target environments, which,

despite their similarity, prevent perfect adaptation. However, this diminishment pales

in comparison to the considerable reduction in training time achieved through knowl-

edge transfer.

3.7 Remarks

This chapter delves into the incentivization of clients to partake in Federated Learn-

ing (FL) training. Recognizing the pivotal importance of long-term social welfare

in FL, particularly considering its iterative communication-intensive nature, we pro-

pose a reinforcement-empowered online auction mechanism. This mechanism aims to

optimize FL’s long-term social welfare by integrating Deep Reinforcement Learning

(DRL) and Vickrey-Clarke-Groves (VCG) mechanisms. Furthermore, to address the

repeated training inherent in VCG payment rules, we introduce a parameter-based
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knowledge transfer approach to facilitate policy sharing among agents.

The performance evaluation of our proposed mechanism demonstrates a notable 36%

enhancement in long-term social welfare and a 37% reduction in payments compared

to benchmark mechanisms. Moreover, the knowledge transfer approach significantly

mitigates training duration, achieving a 50% reduction while maintaining comparable

results.

Additionally, several intriguing avenues warrant further exploration. These include

strategies for mitigating potential malicious client behavior in FL environments and

devising methodologies for handling multiple heterogeneous FL tasks within the sys-

tem.

3.8 Discussion

In this chapter, we designed a Vickrey-Clarke-Groves (VCG) auction based incentive

mechanism and utilize the Deep Reinforcement Learning (DRL) technique to achieve

the long-term optimization for FL system. However, we would like to point out in

particular that:

1. The VCG auction is not the only choice for system modeling. In our settings, to

satisfy the constraints of three key properties for FL system sustainability, we choose

the VCG auction. Once the constraints are changes under other cases, there will be

many other potential system modeling methods.

2. DRL technique is not the only solution here. Actually, the traditional Ant Colony

Optimization (AOC) can also find the optimal results, but with a huge computational

cost. Other method, like distributed optimization, is also a potential solution, where

the server and the clients solve the sub-objective respectively.
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Chapter 4

Rethinking Personalized Client

Collaboration in Federated

Learning

Federated Learning (FL) has gained considerable attention recently, as it allows

clients to cooperatively train a global machine learning model without sharing raw

data. However, its performance can be compromised due to the high heterogeneity

in clients’ local data distributions, commonly known as Non-IID (non-independent

and identically distributed). Moreover, collaboration among highly dissimilar clients

exacerbates this performance degradation. Personalized FL seeks to mitigate this by

enabling clients to collaborate primarily with others who have similar data charac-

teristics, thereby producing personalized models. We noticed that existing methods

for assessing model similarity often do not capture the genuine relevance of client do-

mains. In response, this chapter enhances personalized client collaboration in FL by

introducing a metric for domain relevance between clients. Specifically, to facilitate

optimal coalition formation, we measure the marginal contributions of client models

using coalition game theory, providing a more accurate representation of potential

61



Chapter 4. Rethinking Personalized Client Collaboration in Federated Learning

client domain relevance within the FL privacy-preserving framework. Based on this

metric, we then adjust each client’s coalition membership and implement a person-

alized FL aggregation algorithm that is robust to Non-IID data domain. We provide

a theoretical analysis of the algorithm’s convergence and generalization capabilities.

Our extensive evaluations on multiple datasets, including MNIST, Fashion-MNIST,

CIFAR-10, and CIFAR-100, and under varying Non-IID data distributions (Patho-

logical and Dirichlet), demonstrate that our personalized collaboration approach con-

sistently outperforms contemporary benchmarks in terms of accuracy for individual

clients.

4.1 Introduction

With the ongoing advancement of web services, vast amounts of client data are gener-

ated daily, that can be immediately exploited through machine learning technology.

Indeed, machine learning models, when fueled by such extensive data, have found

applications in a myriad of contexts, revolutionizing fields like precision medicine and

recommendation systems, to name a few. Within these applications, the precision and

generalizability of models are paramount, attributes that are enhanced by training

on large data volumes. However, legal constraints, business confidentiality, and indi-

vidual privacy concerns prevent clients from directly sharing data. This leads to the

creation of ”data silos”, limiting the potential enhancement of model capabilities [42].

Federated Learning (FL) is a distributed machine learning approach that enables

clients to collaboratively train machine learning models using their local data, with-

out the need to exchange raw data [63]. Instead, by sharing model parameters or

intermediate results via a central server, data from different clients can be virtually

fused and aligned, enabling clients to collaborate and learn from each other. Im-

portantly, FL strikes a balance between data privacy and data sharing, embodying

the principle that while ”data remains unseen, it is still accessible” and ”data stays

62



4.1. Introduction

Figure 4.1: Heterogeneous client data domain profiles in an agnostic federated learn-

ing system. client 1 and 2 are domain-relevant since they both have ‘cat ’, while client

1 and n are domain-irrelevant with no label overlap. But these domain relevances are

agnostic to clients with the inherent FL privacy protection regulations.

stationary, but models are exchanged.”

While Federated Learning (FL) offers potential, its client collaboration often falls

short in performance due to the heterogeneous alignment of data domains across

clients also known as Non-IID data. Recognizing the needs of the clients, previous

studies [80, 110, 39, 18] have investigated the concept of personalized collaboration.

Leading methods like FedFomo [110] and FedAMP [39] promote collaboration between

client pairs with similar local models. Precisely, FedFomo gauges similarity through

loss metrics, while FedAMP utilizes model parameter similarity. These methods

operate under the assumption that clients with analogous models share high relevance

and should therefore collaborate to enhance performance. However, our experiments

indicate that neither loss nor model similarity conclusively indicates domain relevance

among clients.

Motivation: We rethink the problem of personalized client collaboration in FL by

focusing on measuring domain relevance between clients. To elucidate our motivation,

consider the example depicted in Fig. 4.1. While the ‘cat ’ on client 1 and 2 is domain-
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Figure 4.2: The influence of domain relevance on the personalized performance of

client A (MNIST). We repeat experiments for 5 times (indicated by different colors)

and the black line is their average.

relevant in the data domain, the data domains between client 1 and client n are

entirely unrelated. A core insight from our work is that collaboration between domain-

relevant clients boosts performance, whereas involving unrelated clients can severely

degrade outcomes.

To further certify our above key insight, we conducted a preliminary experiment using

the standard FedAvg Algorithm on MNIST with the following settings in Figure 4.2.

We configured a setup with a total of 5 clients: A,B,C,D,E, assuming that the

personalized task of client A is the even number classification, i.e., {0, 2, 4, 6, 8}. The

label distribution of other clients are: B : {0, 2, 4}, C : {6, 8}, D : {1, 3, 5} and

E : {7, 9}. It is very clear that class labels owned by client B and C overlap with

client A. Thus, they (B&C) are A’s domain-relevant clients, while the other two

clients (D&E) are domain-irrelevant. Subsequently, we devised a personalized model

for client A using the FedAvg algorithm under two distinct scenarios: In scenario (a),

we aggregate the models of all 5 clients to generate a personalized model for client A.

This scenario encompassed collaborations that intermingled with domain-irrelevant
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clients. In scenario (b), we only aggregate the models from client A, B, and C to

generate a personalized model for client A, concentrating exclusively on collaboration

with domain-relevant counterparts. We can observe that the personalized accuracy

of user A converges rapidly within a few communication rounds when the collabora-

tion is strictly with domain-relevant clients. Conversely, including domain-irrelevant

collaborators in the mix degrades the final personalized accuracy of user A.

Given the privacy protection requirement in the FL system, it’s impossible to directly

conduct domain relevance analysis between clients on the data level, where the only

available medium for information exchange is the model of each client. Therefore, dif-

ferent from the previous simple model similarity perspective, this chapter introduces

coalition game theory [19] to perform complex analysis on the model level so that

the potential domain relevance at the data level can be accurately reflected. In this

way, we can guarantee the domain relevance identification, while strictly adhering to

the privacy protection requirement of FL. This theory aids each client in assessing

the marginal contributions made by other clients’ models to their own personaliza-

tion process. The calculation of the average marginal contribution of a participating

client’s model considers all potential combinations of clients within the ongoing per-

sonalized coalition. This computation, also referred to as the Shapley Value (SV),

encapsulates the collaborative impact of each client’s model.

Expanding on this groundwork, we enhance the involvement of individual clients in

coalitions and present a personalized FL aggregation algorithm. This algorithm repur-

poses the SV as aggregation weights, effectively steering the FL training procedure.

Notably, this approach showcases robustness even in scenarios with highly Non-IID

data distributions. We embark on a theoretical analysis of the convergence and gen-

eralization bounds of the proposed algorithm. Additionally, we notice that the local

SV evaluation on each client requires them to download the model of others, which

raises issues about communication overhead and privacy. Thus, we further utilize a

shared feature extractor to reduce communication overhead and differential privacy
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techniques to protect model privacy.

To the best of our knowledge, this is the first time that coalition game theory has

been used as a guiding principle for the personalized collaboration process within FL.

In summary, the principal contributions of this chapter are four-fold:

• We revisit the personalized client collaboration problem in FL from the per-

spective of domain relevance and model this problem as a coalition game.

• We employ the insights from coalition game theory, particularly the Shapley

Value (SV), to aid each client in identifying domain-relevant collaborators. This

is achieved by assessing the marginal contributions of other clients to their own

personalized performance.

• The SV from domain relevance analysis can be reused as aggregation weights to

steer the FL training process, which implements a personalized FL aggregation

algorithm without any extra information. The convergence and generalization

bounds of the algorithm are theoretically analyzed.

• We conduct extensive experiments to validate the performance of our proposed

algorithm, pFedSV, on datasets with different non-IID settings. The results

show that pFedSV outperforms state-of-the-art baselines.

4.2 Related Work

4.2.1 Personalized Federated Learning

Recently, to address the client data heterogeneity challenge, Personalized Federated

Learning (PFL) is proposed by utilizing the knowledge from other clients to cus-

tomize a unique model for themselves, rather than using the traditional FL method

to generate a single global model for all, which can significantly improve the model

66



4.2. Related Work

performance for every client in FL system. Initially, an additional fine-tuning step for

the global model on each client’s local dataset is a natural strategy for personalization

[62, 95], which enables the global model to fit local data domains. Besides, some pre-

vious studies also attempted to enhance the robustness of global model under severe

data non-IID level. They tried to add regularization term [85] or proximal term [51]

to constraint the update of global model, which keeps the robust to all heterogeneous

clients However, their methods are all based on the adjustment of a single global

model scheme, which cannot satisfy the personalized demand of individual clients

at the local data level, as the target distribution of clients in severe data Non-IID

setting can be fairly different from the global average aggregation [40]. Therefore, a

part of work, such as pFedHN, considers directly generating personalized parameters

for each client’s model [80]. While most other works try to promote collaboration

between different clients to achieve mutual progress, FedFomo [110] and FedAMP

[39] follow a similar idea that encourages pairwise collaboration among clients with

similar model features, where the former uses loss similarity and the latter adopts

parameter similarity. Clients who have higher similarity in these model features will

be assigned higher aggregation weights, rather than the previous average. Although

pairwise collaboration methods have achieved good results, they still do not capture

the essence of PFL: 1) Each client wants to collaborate with others who are truly rele-

vant at the local data level, not model similarity. 2) Model aggregation is a multiwise

process, only considering pairwise relationships ignores the intertwined interactions

among models. Thus, We introduce SV from coalition game theory to help each

client accurately identify their domain-relevant collaborators with privacy guarantee,

by complex marginal contribution analysis. Furthermore, the SV can also be reused

as personalized model aggregation weights for each client.
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4.2.2 Shapley Value for Federated Learning

The conventional FL framework is a multi-party architecture where clients collabo-

ratively train a shared global model with data privacy protection. Considering the

heterogeneity of clients in terms of data domain, hardware, resources, etc., the contri-

bution of different clients to the single shared global model varies significantly, which

is also very difficult to precisely quantify them. As a fair contribution evaluation

metric, the Shapley Value from the cooperation game theory [25] can successfully

solve this problem by measuring the marginal contribution of collaborators on the

final outcome, where its calculation process considers the final results under vari-

ous different combinations of collaborators. Therefore, it’s widely applied in various

multi-party collaboration scenarios, such as FL. Wang et al. use SV in FL for vari-

ous applications: 1) they measure the contribution of different clients for fair credit

allocation [92], and 2) they quantify the importance of different features to the final

prediction [91]. Song et al. achieve a fair profit allocation for clients in FL by us-

ing SV as the contribution index [83]. Furthermore, Yu et al. also utilizes the fair

property of SV to design an incentive mechanism in FL [104]. However, they mainly

utilize the desirable properties of SV to ensure the fairness of their contribution eval-

uation on different clients, but ignore that SV as a meaningful quantitative metric,

can also guide the training process of FL. Some other works also notice that SV can

be a effective guidance for typical FL training. Nagalapatti et al. propose to use

SV-based model aggregation on heterogeneous client models to obtain a global model

with higher performance [70]. Sun et al. present an adaptive SV-based weighting

mechanism for the robustness of FL [84]. However, these works cannot be well gener-

alized to the PFL scenario, since their server’s general dataset can only enable global

SV evaluation. The personalized SV evaluation requires local client data as metric,

which is a significant challenge under FL data protection principle. In our work, the

SV evaluation of the final model performance can help analyze the underlying data

quality of different clients, without disclosing any data privacy. Besides, SV can also
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be reused as personalized aggregation weight to enhance model robustness against

Non-IID data distribution.

4.3 The Essence of PFL Problem

4.3.1 Problem Formulation

The objective of PFL, as described in the literature [42, 113], is to customize per-

sonalized models for each client while accommodating their private data distribution

through collaboration among a set of clients. In PFL, there are n clients denoted

as C1, C2, . . . , Cn, and each client has the same model structure M but with differ-

ent weights θ1, θ2, . . . , θn. The personalized models for each client are represented

as M(θi). In contrast to traditional federated learning, each client i has a private

dataset Di that is sampled from their own distinct data distribution Pi. The loss

function for client i is denoted as ℓi, and the average loss over the private dataset

Di is given by Li(θi) = 1
di

∑
j∈Di

ℓi(j, θi), where di represents the size of Di and j

represents a data sample in Di. The optimization objective of PFL is to find the

optimal set of personalized model parameters Θ∗ = argminΘ
1
n

∑n
i=1 Li(θi), where

Θ is the set of personalized model parameters {θi}ni=1. In the subsequent analysis,

we will investigate the underlying factors contributing to the encountered challenges

by conducting a series of pre-experimental analyses. Furthermore, we will propose a

collaborative solution using the Shapley value, aiming to mitigate these issues in a

multiwise fashion.

4.3.2 Root Causes of PFL Problems

Domain Relevance. According to extensive previous work for data Non-IID prob-

lem in FL [113, 51, 52, 44], the model performance degradation is due to the client
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Figure 4.3: The validation of model similarity theory on domain relevance identifica-

tion, where the table shows the ground truth of client label distribution and the bar

chart shows the model difference ||θA − θi||2 between client A and other clients.

data domain heterogeneity. However, the inherent data privacy protection of FL

makes it difficult to identify other domain-relevant clients, when facing an agnostic

system. Since the client models are the only communication intermediary in this

situation, previous work directly adopts one-to-one model similarity test to represent

domain relevance, i.e., clients with higher model similarity will be regarded as having

higher domain relevance. But, there are some flaws lurking behind this theory, which

can cause wrong identification. In the table of Fig. 4.3, we show the ground truth

of all client label distribution, where the data distribution is pathological Non-IID

partition on CIFAR-10 dataset, and numbers 0 ∼ 9 represent the index of different

labels. Take client A with labels [0, 1] as an example. Client B with labels [1, 2]

and client C with labels [0, 3] are its domain-relevant clients since they both have

overlap labels of A. We use Euclidean distance, i.e., ||θA − θi||2, i ∈ {N}, to measure

the model difference between client A and other clients in Fig. 4.3. If the theory is

true, the model differences of B and C should be the smallest among all clients, i.e.,

||θA − θB||2 ≈ ||θA − θC ||2 < ||θA − θi||2, i ∈ N \ {B,C}, while the results in Fig. 4.3

are not consistent with it.

Multiwise Collaboration Weights. Another significant aspect pertains to the

aggregation of personalized models within the coalition to generate client-specific
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Figure 4.4: The schematic of Multiwise vs. Pairwise collaboration and the experiment

results on CIFAR-10 dataset with the pathological Non-IID setting.

models. Previous approaches have predominantly employed pairwise collaboration,

involving a comparison of model similarities on a one-to-one basis, and subsequent as-

signment of aggregation weights proportional to their magnitudes. This methodology

is visually depicted in Figure 4.4. However, let us consider a hypothetical scenario

where the client’s current model is analogous to a carriage, while each of the other

clients’ models represents a force that propels the carriage towards a specific direction,

ultimately reaching the client’s optimal personalized model. Evidently, the movement

of the carriage is the outcome of a combination of multiple forces. This implies that

the collaborative generation of personalized model aggregation weights must take into

account the multiwise influences among the collaborators. To investigate this further,

we conducted extensive experiments under controlled conditions, wherein each client

possessed prior knowledge of domain-relevant clients. The sole variable in these ex-

periments was the method of collaboration employed among the clients for generating

aggregated weights. The results depicted in Figure 4.4 indicate the superiority of the

multiwise collaboration approach over the pairwise collaboration approach.
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4.3.3 Domain-relevant Coalition Formation and Personalized

Model Generation

Preliminaries of SV

In the context of the coalition game, each client can be regarded as a player, and the

set of all clients is denoted as N = 1, 2, . . . , n. A utility function v(S) : 2n → R is

defined, where S ⊆ N represents a coalition of players, and the value v(S) quantifies

the overall gain achieved by the coalition. It is conventionally assumed that v(∅) = 0,

indicating that an empty coalition yields no gain. Formally, let π ∈ Π(N) be a

permutation of clients in N , and Cπ(i) = j ∈ π : π(j) < π(i) represents the coalition

consisting of all predecessors of client i in the permutation π. The SV for client i is

defined as the average marginal contribution to all possible coalitions Cπ(i) formed

by other clients. It can be calculated using the following formula:

φi(v) =
1

|N |!
∑

π∈Π
[v(Cπ(i) ∪ {i})− v(Cπ(i))]. (4.1)

Alternatively, the SV can be expressed using the following equivalent formulation:

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)]. (4.2)

The SV possesses several desirable and unique properties, making it an effective

tool for achieving domain-relevant coalition formation for each client and facilitating

personalized model generation within the coalition.

SV for Domain Relevance

• Symmetry : If two clients, denoted as i and j, make equivalent contributions

to any coalition, they should receive the same value. In other words, if for all

subsets S ⊆ N \ i, j it holds that v(S ∪ i) = v(S ∪ j), then the Shapley values

for clients i and j will be equal, i.e., φi = φj.

72



4.3. The Essence of PFL Problem

• Null Player : when a client makes zero marginal contributions to all possible

coalitions. In such cases, the client is considered a null player and receives a

Shapley value of zero. Formally, if v(S ∪ i) = 0 for all subsets S ⊆ N \ i, then

φi = 0.

The Symmetry and Null Player properties in SV are particularly useful in assisting

each client in identifying their domain-relevant counterparts. Clients who do not con-

tribute significantly to any coalition, i.e., Null Players, can be identified as irrelevant

in the collaborative process. Meanwhile, clients who exhibit similar contributions are

treated equally, ensuring fairness and accuracy in the identification of domain-relevant

clients.

The process of identifying domain-relevant clients involves a systematic workflow. In

each communication round denoted by t, every client i initiates the process by upload-

ing their locally updated model θti to the server. These individual models collectively

constitute a model pool θti
n
i=1 on the server-side. Subsequently, clients retrieve models

belonging to other clients from the model pool, allowing them to construct their own

domain-relevant coalition. This coalition formation is based on the downloaded mod-

els, which are carefully evaluated for their relevance and compatibility. Following the

coalition formation, each client performs personalized model aggregation, leveraging

the models obtained from the selected coalition members. It is important to note

that in the agnostic federated learning system, the availability of clients is not guar-

anteed at the outset. Consequently, the composition of the domain-relevant coalition

undergoes dynamic reconstruction during the training process to accommodate the

evolving presence and relevance of clients.

In order to identify domain-relevant clients, we establish a model download vector

for each client based on relevance scores. For client i ∈ N , a relevance vector ϕi,t =

[ϕi,t
1 , · · · , ϕi,tn] is generated, where ϕji,t represents the relevance score of client j to

client i in the t-th round. Initially, ϕi,t=0 is set to the zero vector. To select which
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models to download, we consider the top-k clients based on their relevance scores in

the vector. (Note: In the first round, k other clients’ models are randomly downloaded

as the vector is initialized with all zeros). This process allows each client to form a

personalized coalition set St
i,k, which includes their own index and the downloaded

models. With this coalition set, client i can evaluate its SV using the following

coalition game and their local validation dataset DVi
. We define a coalition game

(θtjj ∈ Si, kt, v), where v is a utility function that assigns a value to each client subset

X ⊆ St
i,k. The value is determined by the performance A of the model θtX generated

from subset X on the validation dataset DVi, as expressed by the following equations:

θtX =
1

|X|
∑

j∈X
θtj, and v(X,DVi

) = A(θtX ,DVi
). (4.3)

By solving the coalition game (θtjj ∈ Si, kt, v) using the Shapley value calculation

method, we obtain the Shapley values φt
j for all clients j ∈ St

i,k within the personalized

coalition St
i,k in the t-th round, as defined by Eq. (4.1). Next, client i updates the

relevance scores in their relevance vector to ϕi,t+1 using the following formula:

ϕi,t+1
j = αϕi,t

j + (1− α)φt
j, ∀j ∈ St

i,k (4.4)

In Eq. (4.4), α is a weight parameter that determines the influence of the previous

relevance score ϕi,t
j compared to the obtained Shapley value φt

j. This update process

enables the relevance scores to be adjusted based on the contributions of the clients

in the personalized coalition.

Intuitively, a higher relevance score assigned to client j indicates a greater contribu-

tion to the personalized performance of client i. Consequently, it suggests a higher

likelihood of client j being considered as a domain-relevant client for client i. Further-

more, it is observed that the relevance vector exhibits instability during the initial

rounds, primarily due to the fact that not all models from domain-relevant clients

can be downloaded. To address this, the relevance vector undergoes several rounds of

iterative updates, employing the top-k scheme for screening. It is worth noting that
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in the coalition game, if the models of other clients negatively impact the personal-

ized performance, the corresponding Shapley values can be negative. Consequently,

the irrelevance of certain clients becomes evident as their scores rapidly decline and

may eventually become negative throughout the iterations, leading to their exclusion

from consideration. For instance, consider a scenario where client i has a total of 20

clients, with 2 being domain-relevant. Assuming that client i downloads the top-5

models from other clients in each round, it would require a maximum of 5 rounds to

identify all the domain-relevant clients. A comprehensive analysis of the convergence

of the Dynamic Top-k Download Mechanism is provided in Section 4.4.2.

Dynamic top-k download mechanism: To minimize communication overhead, the

download number k in each round can be dynamically adjusted. Through iterative

updates, only domain-relevant clients maintain a positive relevance score. Conse-

quently, if the number of clients with a positive score does not match the current

value of k, it is dynamically modified to ensure that all downloads are exclusively

focused on the necessary domain-relevant clients. This dynamic adjustment guar-

antees that the communication process is optimized by downloading models only

from clients who are deemed relevant, reducing unnecessary data transmission and

improving efficiency.

SV for Multiwise Collaboration Weights

• Group Rationality : This property ensures that the total gain or value of the

entire coalition S is distributed among all the clients in the coalition, i.e., v(S) =∑
i∈S φi.

• Linearity : The linearity property states that the values obtained under different

utilities can be summed up to obtain the value under a utility that is the sum of

all those utilities: φi(v)+φi(u) = φi(v+u). This property is beneficial for per-

sonalized model aggregation as it allows for the combination of models trained
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on different datasets or with different features. This property also ensures that

scaling the utility or the contribution of a client by a constant factor results in

a proportional scaling of their SV, i.e., for every i ∈ N and any real number a,

it has φi(av) = aφi(v).

By satisfying these properties, personalized model aggregation with multiwise collab-

oration in the coalition adheres to principles of fairness, cooperation, and linearity.

These properties provide a solid foundation for effective and equitable collaboration

among clients in the coalition.

The computation of the SV in personalized model aggregation, as represented by

Eq. (4.1), involves the exhaustive exploration of permutations among clients within

the coalition game. Through this process, the intricate multiwise influences that exist

among the clients are inherently taken into account, thereby enabling a comprehen-

sive assessment of their respective contributions to the final results. Moreover, the

Group Rationality property ensures a shared objective among all clients within the

coalition. Specifically, their collective aim is to achieve optimal performance for the

current client i, thereby necessitating the identification of personalized model pa-

rameters that yield the highest performance. Consequently, the distribution of the

collective gain or value, as encapsulated by the SV, aligns seamlessly with this com-

mon objective, fostering fairness and cooperation within the coalition. The Linearity

property naturally integrates into the model aggregation process. It captures the

relationship between the improvement in personalized accuracy resulting from the

aggregation of other client models with one’s own. The SV of the model serves as an

accurate reflection of this aggregated impact on performance. Notably, a larger pos-

itive SV signifies a greater positive contribution to performance improvement, while

a larger negative SV indicates a more pronounced detrimental effect. As such, the

linearity property facilitates a clear understanding of the relative significance and

influence of each client’s model within the aggregation process.
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Based on the Shapley values (SV) φt
j of all clients j ∈ St

i,k in Eq. (4.4), the down-

loaded models are assigned real numbers that quantify their marginal contribution

to the personalization of the current client i. A positive number indicates a positive

effect, while a negative number indicates a negative effect. To facilitate multiwise

collaboration in the current round, it is necessary to exclude models from irrelevant

clients with negative SV. Only domain-relevant clients within the coalition are con-

sidered for weight computation. The weights wt
j for these clients are determined as

follows:

wt
j =

max(φt
j, 0)

∥θti − θtj∥
, (4.5)

Here, the model differences ∥θti − θtj∥ are incorporated to further refine the resulting

weights, taking into account the dissimilarity between the parameters of the current

client i and those of the selected clients j. Subsequently, the weights obtained are

normalized using 0-1 normalization to obtain personalized aggregation weights wt∗
j ,

satisfying the conditions wt∗
j ∈ [0, 1] and

∑
j w

t∗
j = 1. Finally, the personalized model

of client i in the t-th round is generated through the following multiwise collaboration:

θt∗i =
∑

j
wt∗

j θ
t
j, ∀j ∈ St

i,k. (4.6)

It is important to note that SV evaluations are performed in each round to account

for small changes in multiwise influences resulting from parameter updates after client

local model training. This ensures that the personalized model accurately reflects the

evolving collaborative dynamics.

4.4 The pFedSV Algorithm

Based on the above solution frame, we propose our pFedSV Algorithm, where the

whole workflow is demonstrated in Algorithm 2 and 3. The procedure begins with each

client initializing their model parameters θi and the relevance vector ϕi (Algorithm 2,

Line 1-2). In each round t, the clients update their model parameters to θti through E
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Algorithm 2: Shapley value based Personalized Federated Learning on whole

model (pFedSV)

Input: n, N , {θi}ni=1, k, E, T , R and DVi

Output: {θ∗i }ni=1: clients’ personalized model parameters

1 Initialize the clients’ model parameters {θi}ni=1.

2 Initialize clients’ relevence vector: ϕi,t=1 = 0⃗, ∀i ∈ N .

3 for client i = 1, 2, · · · , n do

4 update model parameter to θti via E local epochs and upload to the server.

5 download k copies of other clients’ model parameters from the server with

the dynamic top-k download mechanism.

6 St
i,k ← θti ∪ {k downloaded model parameters}.

7 φt
j ⇐ SV evaluation(St

i,k,DVi
, R), ∀j ∈ St

i,k. ▷ Details in Algorithm 2

8 ϕi,t+1
j = αϕi,t

j + (1− α)φt
j,∀j ∈ St

i,k

9 wt∗
j =

wt
j∑

j w
t
j
⇐ wt

j =
max(φt

j ,0)

∥θti−θtj∥
, ∀j ∈ St

i,k.

10 θt∗i =
∑

j w
t∗
j θ

t
j,∀j ∈ St

i,k.

local epochs of training and subsequently upload them to the server (Algorithm 2, Line

4). Subsequently, the clients download k copies of other clients’ model parameters

based on a dynamic top-k download mechanism (Algorithm 2, Line 5). At this stage,

the fundamental conditions for each client’s coalition game, required for their own

model personalization, are established. Initially, a coalition game (θtjj ∈ Si, kt, v) is

formed, where St
i,k represents the set of model parameters comprising the downloaded

models as well as the client’s own model (Algorithm 2, Line 6). Then, the process

of evaluating the Shapley values (SV) is performed to obtain the SV for each model

parameter in St
i,k (Algorithm 2, Line 7), which will be further elaborated in Algorithm

3. The obtained SV values serve two purposes: updating the relevance vector of each

client to identify their domain-relevant clients (Line 8), and calculating multiwise

aggregation weights for model personalization (Algorithm 2, Line 9). Finally, each
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client performs the respective weighted aggregation to obtain new model parameters,

which serve as the starting point for the subsequent round t+ 1.

Algorithm 3: Shapley value evaluation

Input: St
i,k, DVi

, R.

Output: φt
j,∀j ∈ St

i,k.

1 P ← set of R permutations of St
i,k.

2 for client j ∈ St
i,k do

3 for permutation p ∈ P do

4 X t
p,j = {l|l ∈ St

i,k ∧ p(l) ≤ j}

5 apj ← v({X t
p,j ∪ j},DVi

)− v(X t
p,j,DVi

)

6 φt
j ← φt

j +
1
|P |a

p
j .

To address the exponential time complexity required for accurate evaluation of SV,

an approximation algorithm is employed. A widely accepted approach is to utilize

Monte Carlo sampling techniques, which treat the computation of SV as an expec-

tation calculation problem [61, 15, 60]. The details of the approximation process

are outlined in Algorithm 3. First, a set P is created by randomly sampling R per-

mutations of St
i,k from the total |St

i,k|! possible permutations (Algorithm 3, Line 1).

For each permutation in P , the algorithm scans the elements from the first to the

last and calculates the marginal contribution for each newly added model parameter

(Algorithm 3, Line 3-5). This procedure is repeated for all R permutations, and the

approximation of the SV is obtained by averaging the calculated marginal contribu-

tions (Algorithm 3, Line 6). As the number of samples R increases, the Monte Carlo

sampling technique becomes an unbiased estimate of the SV. Therefore, by gradually

increasing the number of samples, a more accurate approximation of the SV can be

obtained.
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4.4.1 Convergence of SV Evaluation Approximation.

The computation complexity for precise SV evaluation is exponential to the number

of players. According to Eq. (4.1), the computation process can be viewed as an

expectation calculation problem, thus the Monte Carlo sampling technique can be

used to approximate the SV. It will converge to an unbiased estimate of the SV as the

increasing of sampling number R. It’s proved that R = 3|St
i,k| ≪ |St

i,k|! Monte Carlo

sampling number is sufficient for convergence, with a small approximation bound

ϵ > 0 [60].

4.4.2 Convergence Analysis of Dynamic Top-k Download Mech-

anism

Assume that there are total n clients with 100% participation, the local data dis-

tributions of these clients follow the pathological data Non-IID setting, where each

client is randomly assigned m types of labels. An example of client label distribution

on the CIFAR-10 dataset with m = 2 is shown in Fig. 4.3 for reference. Domain

heterogeneity is defined as each client’s label distribution is different, while domain

relevance is defined as there are same class labels between different clients. There-

fore, we can observe from the ground truth of Fig. 4.3 that each client has m other

domain-relevant clients in this setting from an omniscient perspective.

Suppose that the initial model download number for each client is k. Then, we

provide the convergence proof of our dynamic top-k download mechanism. Take the

personalization process of client A as an example, there are two conditions for the

settings of hyperparameters m and k (m < k or m > k), and we will explain them

one by one.

When m < k: In the first round, each client will randomly download k copies of

other clients’ models from the server-side and there are various (Ck
n) possible model
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combinations.

• For the best case, other m domain-related clients’ models are all included

in the initial k copies, that is for ∀i ∈ {m}, we have i ∈ {k}. Thus, we can

identify all domain-relevant clients of client A in the first round, where the SV

of the domain-relevant clients is positive and the domain-irrelevant clients are

negative.

• For the worst case, none of the m domain-related models is included in the

first k copies, that is for ∀i ∈ {m}, we have i /∈ {k}. Next, we prove the

maximum number of rounds that is required to identify the m domain-relevant

clients from all n clients when the worst case occurs in each round. For the

first round, since k copies of models are all from the domain-irrelevant clients,

their SV will be negative in the evaluation process, which makes their relevance

score be negative after updating. Therefore, according to the top-k rule, these

clients will not be selected in the next round because the relevant scores of

other clients who have never been selected are the initial 0, which is larger

than negative scores. The worst case will continue until a certain round t,

which satisfies tk > n−m−1 (1 is client A itself). It means that in round t, we

have excluded all domain-irrelevant clients with negative SV, and the remaining

clients are all domain-relevant clients. Since k > m (they are both integers), we

have (t + 1)k = tk + k > n −m − 1 + k > n + (k −m − 1) ≥ n, which means

that we must be able to find all domain-relevant clients in the next round t+1.

Finally, we prove that it takes at most ⌈n−m−1
k
⌉+ 1 round to identify all other

domain-relevant clients.

When m > k, following the similar logic as above, we can get the subsequent con-

vergence proof.

• For the best case, since m > k, we cannot include all m domain-relevant

clients in the first round with only k downloaded models. Therefore, the process
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will continue until all clients are scanned by once. Thus, we need ⌈m
k
⌉ round to

identify all domain-relevant clients.

• For the worst case, we need ⌈n−m−1
k
⌉ rounds to exclude all domain-irrelevant

clients and then we still need up to ⌈m
k
⌉ rounds to identify all domain-relevant

clients. Finally, it takes at most ⌈n−m−1
k
⌉+ ⌈m

k
⌉ rounds.

Normally, to ensure efficient traversal, we will set a large value of k at the beginning.

Although a large k leads to a large communication overhead in the beginning, it can

help the client rapidly scan all other clients and converge to a specific value k = m,

which is equal to the number of other domain-relevant clients.

4.4.3 Convergence Analysis of pFedSV.

We prove that pFedSV can assist each client converge to their respective local opti-

mums under the following assumptions: 1) L1, · · · ,Ln are all µ-strongly-convex, 2)

L1, · · · ,Ln are all L-smooth, 3) the variance of stochastic gradients in each client is

bounded by σ2
i and 4) the expected squared norm of stochastic gradients is uniformly

bounded by G2.

Theorem 2. Let all above assumptions hold and µ, L, σi, G are defined therein. Choose

κ = L
µ
, γ = max{8κ,E} and the learning rate ηt = 2

µ(γ+t)
. Then, each client in

pFedSV satisfies

E[Li(θi)]− L∗
i ≤

κ

γ + T − 1

(
2B

µ
+

µγ

2
E∥θ1i − θ∗i ∥2

)
(4.7)

The full version of the convergence analysis of the pFedSV algorithm will be elabo-

rated as follows:

The personalized performance convergence analysis for each client is the same, so

we only focus on one client i ∈ {N}. Consider a scenario where each client parallel
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performs E local SGD step to update their own model. Then, they will commu-

nicate with the server to download the model for personalized model aggregation,

which is denoted as the synchronization step. First, we analyze the case on pFedSV

that all other clients (including both domain-relevant and domain-irrelevant clients)

participate in the aggregation step to generate the personalized model.

Additional Notation

Let θkt represent the model parameters of the k-th client at the t-th step. The vari-

able E denotes the number of local update epochs, while IE represents the set of

synchronization steps, defined as IE = {nE; |;n = 1, 2, · · · }. If t+1 ∈ IE, it signifies

that the model update involving all participants can be described as follows:

vkt+1 = θkt − ηt∇Lk(θ
k
t , ξ

k
t ) (4.8)

θkt+1 =

vkt+1, if t+ 1 /∈ IE∑N
k=1 pkv

k
t+1, if t+ 1 ∈ IE

(4.9)

In this context, an auxiliary variable vkt+1 is introduced to capture the immediate

outcome of a single step of stochastic gradient descent (SGD) applied to θkt+1. The

parameter θkt+1 itself corresponds to the model parameter obtained after the commu-

nication steps.

In the subsequent analysis, we introduce two virtual sequences: v̄t,i =
∑N

k=1 pkv
k
t+1

and θ̄t,i =
∑N

k=1 pkθ
k
t+1. These sequences serve as useful abstractions for our purposes.

The virtual sequence v̄t+1,i is obtained by performing a single step of stochastic gradi-

ent descent (SGD) on θ̄t, i. It is generated as a result of this computation. To facilitate

the analysis, we also define ḡt,i =
∑N

k=1 pk∇Lk(θkt ) and gt,i =
∑N

k=1 pk∇Lk(θkt , ξkt ).

Consequently, we establish the relationship v̄t+1,i = θ̄t,i − ηtgt,i, while observing that

the expected value of gt,i is equivalent to ḡt,i.
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Key Lemmas

In order to present a clear proof, it is essential to establish several lemmas prior to

stating the main theorem. The detailed proofs of these lemmas can be found in the

work by Li et al. [52]. For the purpose of this discussion, we will focus solely on

presenting the main theorem.

Lemma 1. The results of one step SGD. Assume the assumption 1 and 2 hold. we

have

E||v̄t+1,i−θ∗i || ≤ (1−ηtµ)E||θ̄t,i−θ∗i ||2+η2tE||gt,i− ḡt,i||2+6Lη2tΓ+2E
N∑
k=1

pk||θ̄t,i−θtk||2

where Γ = L∗
i −

∑N
k=1 pkL∗

k ≥ 0.

Lemma 2. Bounding the variance. Assume Assumption 3 holds. It follows that

E||gt,i − ḡt,i||2 ≤
N∑
k=1

p2kσ
2
k

Lemma 3. Bounding the divergence of {θkt,i}. Assume Assumption 4 holds, that ηt

is non-increasing and ηt ≤ 2ηt+E for all t ≥ 0. It follows that

E

[
N∑
k=1

pk||θ̄t,i − θtk||2
]
≤ 4η2t (E − 1)2G2.

Full Proof of Theorem 2

Proof. No matter whether t + 1 ∈ IE or t + 1 /∈ IE, we always have the following

equation: θ̄t+1,i = v̄t+1,i. Let ∆t = E||θ̄t,i − θ∗i ||2. From Lemma 1, Lemma 2 and

Lemma 3, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

where

B =
N∑
k=1

p2kσ
2
k + 6LΓ + 8(E − 1)2G2
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For a diminishing stepsize, ηt = β
t+γ

for some β > 1
µ
and γ > 0 such that η1 ≤

min{ 1
µ
, 1
4L
} and ηt ≤ 2ηt+E. We prove that ∆t ≤ v

γ+t
where v = max{ β2B

βµ−1
, (γ+1)∆1}.

First, the definition of v ensures that it holds for t = 1. Assume the conclusion holds

for some t, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

≤
(
1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

γ + t+ 1

(4.10)

Then,according to the L-smoothness of Li(·), we have

E[Li(θ̄t,i)]− L∗
i ≤

L

2
∆t ≤

L

2

v

γ + t
.

Specifically, if we choose β = 2
µ
, γ = max{8L

µ
, E} − 1 and denote κ = L

µ
, then

ηt =
2
µ

1
γ+t

. One can verify that the choice of ηt ≤ 2ηt+E for t ≥ 1. Then we have

v = max{ β2B

βµ− 1
, (γ + 1)∆1} ≤

β2B

βµ− 1
+ (γ + 1)∆1 ≤

4B

µ2
+ (γ + 1)∆1,

and

E[Li(θ̄t,i)]− L∗
i ≤

L

2

v

γ + t
≤ κ

γ + t

(
2B

µ
+

µ(γ + 1)

2
∆1

)

4.4.4 Generalization Bounds of pFedSV.

In this section, We theoretically prove that the performance of pFedSV can outper-

form conventional FedAvg algorithm and local training only, through the theorem

from domain adaptation [4].
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Theorem 3. For each client i ∈ N , we denote its local distribution and empirical

distribution as Di and D̂i. The model parameters learned on D̂i is denoted by θD̂i
.

Then we have

LDi

(∑
j
wt∗

D̂j
θtD̂j

)
≤ LDi

(
1

n

∑
j
θtD̂j

)

≤ LD̂i
(θD̂i

) +
1

n

∑
j

(
1

2
d(Di,Dj) + ξj

)
+

√
log 2n

δ

2m

(4.11)

where wt∗
D̂j

is the SV-based aggregation weight, d(·) measures the distribution discrep-

ancy between two distributions, m is the number of samples per local distribution and

ξj is the minimum of the combined loss LD̂i
+LD̂j

. The detailed proof of generalization

bounds is elaborated as follows:

Proof. Before the analysis of the generalization bound, we introduce the following

notations. In PFL, each client has its own local data distribution Di over domain

Ξ := X × Y , where X ∈ Rd is the input space and Y is the output space. For the

empirical distribution D̂i by the given dataset, we assume that each client local model

has access to an equal amount (m) of local data samples. For each client, we assume

the local model θ as a mapping θ : X → Y . The cross-entropy loss function of task

is defined as L(θ(x), y) = L(ŷ, y), where ŷ := θ(x). Note that L(ŷ, y) is convex with

respect to ŷ. We denote argminθ∈Θ LD̂i
(θ) by θD̂i

According to the Domain Adaptation theory [4], we utilize the domain measurement

tools developed below to analyze the generalization bound of the personalized model

that is aggregated from an ensemble of other clients’ models.

Theorem 4. (Domain Adaptation) Considering the distribution DS and DT , for

every θ ∈ Θ and any δ ∈ (0, 1), with probability at least 1− δ (over the choice of the

samples), there exists:

LDT
(θ) ≤ LDS

(θ) +
1

2
d(DS,DT ) + λ, (4.12)

where λ = LDS
(θ∗) + LDT

(θ∗), and θ∗ := argminθ∈Θ LDS
(θ) + LDT

(θ) corresponds to

the optimal joint model that minimize the combined loss.
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Now we start the proof of Theorem 3 by two parts. 1) we first prove that the

personalized model aggregated by the FedAvg algorithm for each client is better than

training with their own local data only. 2) Then, we prove that the aggregation by

pFedSV only on other domain-relevant clients is better than FedAvg with all clients’

participation.

• For the first part, we start with the risk of the personalized model of client i,

LDi
( 1
n

∑
j θD̂j

), which is aggregated from FedAvg with the participation of all other

clients.

Considering the distance between LDi
( 1
n

∑
j θD̂j

) and LD̂i
(θD̂i

). By the convexity of

L and Jensen inequality, we have

LDi
(
1

n

∑
j

θD̂j
) ≤ 1

n

∑
j

LDi
(θD̂j

). (4.13)

Using the domain adaptation theory, we transfer from domain Di to Dj,

LDi
(θD̂j

) ≤ LDj
(θD̂j

) +
1

2
d(Dj,Di) + λj, (4.14)

where λj := LDi
(θ∗) + LDj

(θ∗) and θ∗ := argminθ∈Θ LDi
(θ) + LDj

(θ).

We can bound the risk with its empirical counterpart through Hoeffding in equality,

which gives

Pr
[∣∣∣LDj

(θD̂j
)− LD̂j

(θD̂j
)
∣∣∣ ≥ ϵ

]
≤ 2 exp

−2m2ϵ2∑m
k=1(b− a)2

, (4.15)

where [a, b] is the range of loss function. In our case, the loss function is bounded in

[0, 1] so that (b− a)2 ≤ 1. Thus, with the probability at least 1− δ
n
, over the draw of

m i.i.d. samples Sj from Dj,

LDj
(θD̂j

) ≤ LD̂j
(θD̂j

) +

√
log 2

δ
n

2m
, (4.16)
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Thus for n sources, we have

Pr
S1∼Dm

1 ,··· ,Sn∼Dm
n

 n⋂
j=1

LDj
(θD̂j

) ≤ LD̂j
(θD̂j

) +

√
log 2

δ
n

2m




= 1− Pr
S1∼Dm

1 ,··· ,Sn∼Dm
n

 n⋃
j=1

LDj
(θD̂j

) ≥ LD̂j
(θD̂j

) +

√
log 2

δ
n

2m




≥ 1−
n∑

j=1

Pr
S1∼Dm

1 ,··· ,Sn∼Dm
n

LDj
(θD̂j

) ≥ LD̂j
(θD̂j

) +

√
log 2

δ
n

2m




≥ 1− δ.

(4.17)

Based on the definition of ERM, we have LD̂j
(θD̂j

) ≤ LD̂j
(θD̂i

), where θD̂i
is the

personalized model trained on client i. By using the definition of D̂i (D̂i =
1
n

∑
j D̂j)

and the linearity of expectation, we have

1

n

∑
j

LD̂j
(θD̂j

) ≤ 1

n

∑
j

LD̂j
(θD̂i

) = LD̂i
(θD̂i

). (4.18)

Putting these equations together, we have probability of at least 1 − δ over S1 ∼

Dm
1 , · · · , Sn ∼ Dm

n that

LDi
(
1

n

∑
j

θD̂j
) ≤ 1

n

∑
j

LDi
(θD̂j

)

≤ 1

n

∑
j

(
LDj

(θD̂j
) +

1

2
d(Dj,Di) + λk

)

≤ 1

n

∑
j

LDj
(θD̂j

) +

√
log 2n

δ

2m
+

1

2
d(Dj,Di) + λk


≤ 1

n

∑
j

LDj
(θD̂j

) +

√
log 2n

δ

2m
+

1

n

∑
j

(
1

2
d(Dj,Di) + λk

)

≤ LDi
(θD̂i

) +

√
log 2n

δ

2m
+

1

n

∑
j

(
1

2
d(Dj,Di) + λk

)
,

(4.19)

where λk = infθ∈Θ(LDi
(θ) + LDj

(θ)).
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• For the second part, we prove that the collaboration with only other domain-relevant

clients by pFedSV is better than the collaboration with all clients mixed by FedAvg.

According to the domain relevance theory and the personalized performance conver-

gence analysis, the collaboration mixed with domain-irrelevant clients will degrade

the personalized model performance. Assume the domain-relevant clients set of client

i is R. Thus, we have

LDi

(
1

n

∑
j∈R

θD̂j

)
≤ LDi

 1

n

∑
j∈R

θD̂j
+

1

n

∑
j /∈R

θD̂j

 = LDi
(
1

n

∑
j

θD̂j
). (4.20)

The domain adaptation theory provide insights that for two models (θDS
and θDS′ )

trained on different source domains (S and S ′). The higher the relevance between the

source and target domains, the better the performance of the models, which means:

LDT
(θDS

) ≤ LDT
(θDS′ ), if d(DT ,DS) ≤ d(DT ,DS′)

On the other hand, our pFedSV can precisely identify the domain relevance and assign

the aggregation weights w∗
D̂j

according the relevance (The higher relevance, the larger

weights). Thus, we have

d

(
θ∗Di

,
∑
j∈R

w∗
D̂j
θD̂j

)
≤ d

(
θ∗Di

,
1

n

∑
j∈R

θD̂j

)

and then

LDi

(∑
j∈R

w∗
D̂j
θD̂j

)
≤ LDi

(
1

n

∑
j∈R

θD̂j

)

Finally, we have

LDi

(∑
j
wt∗

D̂j
θtD̂j

)
≤ LDi

(
1

n

∑
j
θtD̂j

)
≤ LD̂i

(θD̂i
)+

1

n

∑
j

(
1

2
d(Di,Dj) + ξj

)
+

√
log 2n

δ

2m

(4.21)
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4.5 Communication Overhead Reduction & Model

Privacy Protection

Since each user needs to download many model copies of other users to perform their

local SV evaluation in our pFedSV algorithm, we are also aware of the potential

communication overhead increase and model privacy issues arising from this model

downloading process, and provide solid solutions to address them in this section.

4.5.1 Communication Overhead Reduction

Except for the top-k dynamic mechanism in 4.3.3, we further exploit the advantage

of a global shared feature extractor between users to reduce the communication over-

head. Specifically, for different learning tasks (i.e., image classification and next word

prediction), the model can be divided into two parts: feature extractor and classifier,

where the former has a generic function for all users, and the latter is unique for

different user’s local data domains [18]. According to the latest research [57], they

measure the Centered Kernel Alignment (CKA) similarity between the representa-

tions from the same layer of different clients’ local models, on standard CNN [50].

The observation is clear: comparing different layers in the local models learned on dif-

ferent clients, the similarity of feature extractors among different client local models

is very high, while the classifiers have the lowest similarity

Therefore, for the personalization of each user, the most important thing they need

to focus on is the classifier of other users, while the feature extractor part can be

shared. Following this insight, each user only needs to download one global shared

feature extractor and several classifiers of other users to reduce the communication

overhead, not the whole model before. And the whole model of other users can

be reconstructed by replacing different classifiers. The modified federated learning

workflow is demonstrated in Fig.4.5.
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Figure 4.5: The modified federated learning workflow is based on model splitting,

where the model of each user is divided into a feature extractor and classifier. The

server only generates a global shared feature extractor among different users while

maintaining their personalized classifiers.

Nevertheless, since our pFedSV is a general personalization algorithm for different

learning tasks, other classical techniques, such as model quantification and compres-

sion, can also be applied for further communication reduction.

4.5.2 Model Privacy Protection

To address the issue of model privacy in our proposed framework, we have imple-

mented a two-fold approach. Firstly, we have ensured anonymity by removing any

client-specific information from the downloaded models throughout the entire pro-

cess of pFedSV. This measure ensures that the models themselves do not contain

any identifiable information pertaining to individual clients. However, it is important

to note that the model parameters themselves may still indirectly reveal sensitive

client data. To tackle this concern more effectively, we have incorporated a robust

privacy protection mechanism based on (ϵ, δ)-differential privacy (DP) principles, as

outlined by Abadi et al. [1]. In our approach, we introduce Gaussian noise into the

model parameters following each client’s local training process. This additional noise
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injection guarantees that the resulting models satisfy the requirements of differential

privacy. By adopting this technique, we provide a stronger level of privacy protection,

ensuring that the models do not inadvertently leak sensitive client information. The

level of privacy in our framework can be adjusted by introducing more noise into the

model parameters. However, it is important to note that increasing the amount of

noise comes at the expense of performance. To evaluate the trade-off between pri-

vacy and performance, we conducted extensive experiments. The results, which are

presented in a later section, demonstrate that our pFedSV algorithm with DP-based

Noise Addition can still outperform other personalized baselines while providing an

appropriate level of privacy protection (with δ = 1).

4.6 Experiments

4.6.1 Experimental Setup

In this section, we will show all the experiment setups, including hyperparameter

settings, datasets, baselines, etc.

Dataset, Model & Machine Configurations. Based on prior work [64, 53], we

conduct our experiments on the following datasets: MNIST [50], Fashion-MNIST (F-

MNIST) [101], CIFAR-10 [49], and CIFAR-100. For the model structure on different

datasets, We use the same CNN architecture as in [64]. All our experiments are

run on the following machine configurations: CPU (i9-10900K) and GPU (one RTX

3090).

Baselines & Evaluation Metric. To assess the performance of pFedSV, we con-

duct a thorough evaluation by comparing it against several state-of-the-art PFL al-

gorithms. These algorithms include pFedMe [85], pFedHN [80], FedFomo [110], and

FedAMP [39]. Furthermore, to provide a comprehensive understanding of pFedSV’s
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performance, we compare it with classical single global model methods. These meth-

ods include FedAvg [63], FedAvg with fine-tuning (FedAvg+FT), FedProx [51], and

a simple separate local training approach denoted as ”separate.” In the ”separate”

method, each client independently trains its own model without collaboration. We

evaluate the performance of all algorithms using the mean testing accuracy (MTA),

which represents the average testing accuracy across all clients. Additionally, we re-

port the error range of the MTA after conducting five repeated experiments, denoted

by ±. This evaluation framework allows us to comprehensively assess the performance

of pFedSV in comparison to other federated learning approaches.

Figure 4.6: The visualization of Dirichlet data Non-IID setting on MNIST, where

x-axis indicates the client index, y-axis indicates the label index, and the size of

scattered points indicates the number of training samples owned by the client.

Non-IID Data Setting. In our evaluation, we consider two different Non-IID data

settings for each dataset. These settings are as follows: 1) Pathological Non-IID data

setting: In this setting, each client is randomly assigned two types of labels, and there

is no similarity in the private data between any two clients. The characteristics of this

setting are illustrated in the table presented in Figure 4.4. 2) Dirichlet Non-IID data

setting Dir(α): This setting employs different values of α to control the level of data
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heterogeneity. A small α value indicates high data heterogeneity, resulting in a more

biased distribution of labels among the clients. On the other hand, a larger α value

reduces the level of heterogeneity and leads to a more balanced label distribution

across the clients. The impact of different α values on the clients’ data heterogeneity

is visually represented in Figure 4.6, providing a clear understanding of this setting.

The visualization depicted in Figure 4.6 offers valuable insights into the influence

of varying α values on the distribution of labels within the Dirichlet Non-IID data

setting, thereby enhancing our understanding of the data heterogeneity present in

this setting.

Implementation details. We investigate two federated learning (FL) scenarios with

varying client scales: one involving a total of 10 clients with 100% participation and

another with a total of 100 clients with 10% participation. In both scenarios, we

employ a consistent training configuration, including 5 local epochs, an equal number

of communication rounds (20 rounds for the former and 100 rounds for the latter), and

specific learning rates (0.01 for MNIST and FMNIST, 0.1 for CIFAR-10) tailored to

each dataset. Regarding the hyper-parameters related to the SV (ShareVec) approach,

we set the number of Monte Carlo samples as R = 3|St
i,k|, where |St

i,k| represents the

number of model parameters downloaded for each round. Initially, we set k = 5 as

the number of parameters downloaded. However, it is important to note that the

value of k is dynamically adjusted based on the dynamic top-k download mechanism

outlined in the ”SV for domain relevance” section of our solution (Section 4.3.3).

4.6.2 Performance Analysis

This section aims to present a comprehensive performance evaluation of our proposed

pFedSV algorithm, comparing it against state-of-the-art benchmarks and providing a

detailed analysis of the experimental results. The objective is to showcase the superior

performance and efficacy of pFedSV in PFL.
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Table 4.1: The MTA with the pathological Non-IID data setting, where bold indicates

the best result among all methods. 10 clients with 100% and 100 clients with 10%

participation in each round.

Methods
MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 96.11± 0.28 93.27± 3.68 92.35± 0.43 91.42± 2.69 84.15± 2.13 75.57± 4.08 73.57± 5.13 68.57± 4.25

FedAvg 91.74± 1.68 78.46± 1.14 90.31± 2.49 75.63± 4.73 57.67± 4.16 44.64± 4.75 50.57± 3.71 43.16± 4.68

FedProx 90.12± 0.73 78.45± 1.83 90.16± 3.05 78.83± 3.49 55.68± 2.67 45.75± 4.39 49.21± 3.69 41.08± 5.27

IFCA 92.86± 1.57 86.73± 2.05 90.01± 2.38 82.63± 3.59 71.69± 3.25 60.23± 3.94 61.37± 4.16 52.44± 4.68

FedEM 93.05± 1.28 88.53± 1.87 91.27± 2.68 85.61± 4.07 77.38± 3.56 65.42± 5.07 66.39± 5.76 59.84± 4.28

FedAvg+FT 94.38± 1.06 90.51± 1.67 91.18± 3.54 89.49± 4.51 81.34± 3.24 70.13± 5.68 71.08± 5.14 64.38± 4.69

pFedMe 93.75± 1.34 86.57± 2.61 92.46± 1.72 85.39± 2.97 80.48± 4.59 70.15± 5.86 71.56± 4.79 60.85± 5.26

FedFomo 96.90± 0.87 93.71± 2.05 94.10± 0.65 92.78± 1.92 85.93± 3.02 74.36± 2.15 76.89± 3.54 69.21± 4.37

FedAMP 95.82± 1.37 92.59± 1.88 93.26± 2.14 91.46± 2.04 84.32± 3.69 72.91± 2.83 75.38± 3.19 67.02± 4.15

pFedHN 96.53± 0.84 94.16± 1.38 94.97± 0.86 93.69± 1.58 86.38± 2.72 76.62± 3.05 77.24± 3.86 70.58± 4.57

pFedSV(Ours) 98.01± 0.83 96.94± 1.75 96.16± 0.58 94.68± 2.36 89.64± 1.88 80.65± 3.78 80.57± 4.37 72.61± 4.73

Results on the different Non-IID data setting.

Table 4.1 provides an overview of the MTA achieved by various methods under the

pathological Non-IID data setting. In this setting, each client is assigned only two

types of labels, thereby simplifying the classification task for individual clients and

resulting in high performance for standalone models across all datasets. However, the

pathological Non-IID data setting poses a significant challenge for single global model

methods. We observe that FedAvg and FedProx experience considerable performance

degradation across all datasets. This degradation can be attributed to the inclusion of

models from domain-irrelevant clients during global aggregation, leading to instabil-

ity in the gradient optimization process [111]. On the other hand, the remaining PFL

methods, namely FedAvg+FT, pFedMe, FedFomo, FedAMP, pFedHN, and our pro-

posed pFedSV, demonstrate promising performance across all datasets. FedAvg+FT

incorporates several local fine-tuning steps to adapt the poor global model to the

local Non-IID data distribution. pFedMe introduces novel regularized loss functions

based on Moreau envelopes to decouple personalized optimization from global model
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Table 4.2: The MTA with the Dirichlet Non-IID data setting (α = 0.1) on different

datasets, where bold indicates the best result among all methods. 10 clients with

100% and 100 clients with 10% participation in each round.

Methods
MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 74.05± 2.11 59.81± 5.73 60.18± 6.42 58.22± 6.73 40.53± 7.20 36.15± 6.88 35.43± 3.87 30.05± 5.49

FedAvg 43.57± 3.75 30.15± 4.82 40.58± 4.16 36.49± 5.07 33.81± 5.07 26.82± 6.43 26.17± 4.27 20.33± 5.27

FedProx 47.49± 4.18 44.76± 5.49 43.09± 4.82 40.34± 4.72 35.76± 5.18 29.91± 5.58 29.62± 5.13 23.27± 4.69

IFCA 58.67± 2.69 54.58± 3.79 56.29± 4.16 51.04± 4.38 43.09± 4.88 40.67± 4.86 39.28± 4.11 31.89± 4.20

FedEM 66.53± 2.74 60.28± 4.05 61.79± 3.62 57.41± 4.28 51.09± 4.58 45.82± 5.07 41.39± 3.76 35.88± 4.61

FedAvg+FT 65.72± 3.84 55.57± 4.26 57.27± 4.13 52.83± 5.01 43.42± 5.29 40.05± 5.22 36.33± 3.86 32.55± 4.37

pFedMe 64.39± 4.08 58.02± 3.51 60.27± 3.59 56.81± 4.01 50.73± 4.29 44.21± 5.09 40.29± 3.57 34.94± 3.78

FedFomo 72.54± 2.18 63.07± 2.54 64.75± 3.42 60.49± 3.72 53.83± 4.57 48.35± 5.29 45.91± 3.06 37.51± 3.09

FedAMP 70.15± 3.02 60.28± 3.11 62.28± 2.53 58.94± 3.14 51.57± 4.03 46.05± 4.48 43.67± 3.55 36.40± 3.76

pFedHN 73.35± 2.04 62.57± 4.11 62.95± 3.44 59.55± 4.15 52.82± 3.88 47.19± 5.83 45.33± 3.45 37.38± 3.77

pFedSV(Ours) 78.17± 1.59 70.76± 2.41 71.47± 1.86 66.63± 2.03 61.18± 1.67 56.76± 1.85 50.46± 2.47 42.25± 3.13

learning. pFedHN generates personalized parameters for each client’s model through

an additional hypernetwork. FedFomo and FedAMP achieve good performance by

facilitating adaptive pairwise collaboration between clients with similar models to

create personalized models. Our pFedSV surpasses all other baseline methods by

considering multiwise influences among clients, thereby helping them identify their

domain-relevant coalition and generating personalized aggregation weights through

multiwise collaboration. This approach enables pFedSV to achieve superior perfor-

mance in personalized federated learning scenarios.

Table 4.2 showcases the MTA of all methods under the Dirichlet Non-IID data setting

with α = 0.1. As evident from the visualization presented in Figure 4.6, this setting

poses a greater challenge compared to the pathological Non-IID setting, resulting in a

significant performance reduction for all methods. However, even in this challenging

scenario, our pFedSV consistently outperforms all other baseline methods. It demon-

strates its superiority by achieving higher MTA compared to the other algorithms

evaluated. It is noteworthy that the lower accuracy observed in Table 4.2 for the case
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Figure 4.7: The left chart shows the client label distribution obtained from the om-

niscience perspective. Right side is the visualization of clients’ relevance matrix

ϕi, i ∈ N on different algorithms with the pathological MNIST Non-IID setting after

convergence. x-axis and y-axis is the client index.

with 100 clients is due to the fact that only 10% of the clients participate in each

round. This limited participation rate contributes to the decreased overall accuracy

in the evaluation.

Relevance score & Multiwise collaboration weights.

The superior performance of pFedSV in domain relevance identification can be at-

tributed to the desirable properties of SV. Figure 4.7 provides a visualization of the

relevance vector ϕi for each client after convergence, demonstrating the impact of

different algorithms. For instance, FedFomo utilizes model similarity-based weights

to update the relevance vector, whereas pFedSV leverages the computed SV from

its local model coalition game. To further illustrate the effectiveness of the pFedSV

algorithm, we include a visualization of the ground-truth client relevance obtained

from an omniscient perspective, based on the client label distribution table. From

the ground-truth visualization, it becomes apparent that symmetry is a crucial prop-

erty of the client relevance matrix. Our pFedSV algorithm excels at identifying all

domain-relevant clients and assigning aggregation weights through multiwise collab-

oration within the coalition. In contrast, FedFomo does not guarantee precise rele-

vance identification. The visualized results provide compelling evidence of pFedSV’s
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capability to accurately identify domain-relevant clients and leverage multiwise col-

laboration to assign appropriate aggregation weights. This contributes to its superior

performance in domain relevance identification compared to alternative methods like

FedFomo.

4.6.3 Communication Overhead & Model Privacy

Communication Overhead Reduction

We have two different mechanisms in this chapter to reduce the communication over-

head: dynamic top-k download mechanism and shared common feature extractor.

Therefore, to compare the communication overhead under different cases, we adopt

the following baselines:

1) pFedSV (D+C): It means we adopt both the Dynamic top-k download mech-

anism and Common feature extractor in pFedSV to reduce the communication

overhead.

2) pFedSV (D): It means we only adopt theDynamic top-k download mechanism

in the main content to reduce the communication overhead.

3) FedFomo: It downloads the whole model of other clients and performs person-

alization on the local side of each client [110].

4) FedAMP: it performs the personalization on the server side and directly dis-

tributes the personalized model to each client, whose communication overhead

is equal to FedAvg [39].

5) FedAvg: traditional FL algorithm that downloads one global model to each

client [63].
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All algorithms are implemented with the following setups: total 20 communication

rounds, 10 clients with 100% participation in each round, pathological Non-IID data

distribution. We use the number of model parameters that are required in upload

and download as the measurement metric for communication overhead.

Figure 4.8: LeNet-5: Communication overhead comparison on LeNet-5 with different

algorithms. The y-axis indicates the number of model parameters in the communi-

cation.

Figure 4.9: ResNet: Communication overhead comparison on ResNet-V1-34-

layer(Plain) with different algorithms. The y-axis indicates the number of model

parameters in the communication.

In Fig. 4.8, we show the communication overhead comparison of different baselines

on the LeNet-5 Model. Besides, to further illustrate the effectiveness of our Top-k
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Figure 4.10: VGG-19: Communication overhead comparison on VGG-19 with differ-

ent algorithms. The y-axis indicates the number of model parameters in the commu-

nication.

dynamic download mechanism and shared common feature extractor in communica-

tion overhead reduction, we also compute the communication overhead comparison on

other different models, including ResNet-V1-34-layer(Plain) in Fig. 4.9 and VGG-19

in Fig. 4.10.

You can find that the communication overhead of pFedSV at ResNet case is almost

the same as traditional FedAvg. The reason is that, as a powerful pre-trained model,

most model parameters in ResNet are the convolutional layer-based feature extrac-

tor, and the classifier-related parameters only account for 2.3% of the overall model

parameter number. Thus using a shared common feature extractor can significantly

save extensive communication overhead. In contrast, for traditional CNN model such

as LeNet-5, the classifier-related parameters can account for 49.57% of the overall

model parameter number. Therefore, with the help of shared feature extractor, the

additional communication can be significantly reduced in ResNet case. Moreover, the

results on VGG-19 are for your additional reference, where the classifier-related pa-

rameters can account for 89.74% of the overall model parameter number in VGG-19.

As expected, the communication overhead of FedFomo is much higher than other

algorithms. Our dynamic download mechanism can efficiently reduce it by rapidly
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identifying the domain-relevant clients and adjusting the model download number,

which is illustrated in the main content. Besides, the introduced common feature ex-

tractor can further reduce the communication overhead in the download part. Finally,

FedAMP has the same communication overhead as FedAvg. Although the commu-

nication overhead of our pFedSV (D+C) is not the lowest compared to FedAMP, we

can achieve higher personalized performance for each client, which is an acceptable

trade-off.

Table 4.3: The results of pFedSV with DP, which illustrates that we can maintain

the personalized accuracy with a reasonable privacy budget.

Methods δ σ
CIFAR-10 CIFAR-100

ϵ Accuracy ϵ Accuracy

FedAvg 1× 10−5 0 ∞ 19.68± 1.76 ∞ 5.21± 0.41

FedAvg 1× 10−5 1 11.28± 0.32 17.54± 1.37 8.47± 0.67 5.03± 0.24

FedAvg 1× 10−5 2 3.64± 0.13 15.97± 1.53 2.56± 0.19 4.37± 0.19

pFedSV 1× 10−5 0 ∞ 84.73± 1.67 ∞ 31.07± 1.22

pFedSV 1× 10−5 1 5.97± 0.11 82.16± 1.55 8.42± 0.71 30.59± 1.06

pFedSV 1× 10−5 2 1.82± 0.05 78.29± 1.63 1.80± 0.16 23.44± 0.89

Model Privacy Protection

In our experiments, we consider a task with the pathological Non-IID data setting

on the CIFAR-10 and CIFAR-100 datasets. We utilize 10 clients with 100% partici-

pation in each round. The objective is to compare the performance of pFedSV with

FedAvg under varying levels of Gaussian noise (σ), while keeping all other parame-

ters fixed. The results presented in Table 4.3 demonstrate that increasing σ enhances

privacy (lower ϵ values) at the expense of decreased performance (indicated in bold

in the table). Furthermore, the experimental findings in Table 4.3 indicate that in-

troducing aggressive noise leads to a reduction in accuracy (from 84.73% to 78.29%).

However, by adopting an appropriate level of noise (δ = 1), model privacy can be
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Table 4.4: The MTA comparison of pFedSV with DP-based noise addition and some

selected baselines (other omitted baselines can refer to Table 4.2). The experiments

are conducted with Dirichlet Non-IID data setting (α = 0.1). 10 clients with 100% and

100 clients with 10% participation. We emphasize our pFedSV and the pFedSV+DP

in bold.

Methods
MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 74.05± 2.11 59.81± 5.73 60.18± 6.42 58.22± 6.73 40.53± 7.20 36.15± 6.88 35.43± 3.87 30.05± 5.49

FedAvg 43.57± 3.75 30.15± 4.82 40.58± 4.16 36.49± 5.07 33.81± 5.07 26.82± 6.43 26.17± 4.27 20.33± 5.27

FedFomo 72.54± 2.18 63.07± 2.54 64.75± 3.42 60.49± 3.72 53.83± 4.57 48.35± 5.29 45.91± 3.06 37.51± 3.09

FedAMP 70.15± 3.02 60.28± 3.11 62.28± 2.53 58.94± 3.14 51.57± 4.03 46.05± 4.48 43.67± 3.55 36.40± 3.76

pFedSV(Ours) 78.17± 1.59 70.76± 2.41 71.47± 1.86 66.63± 2.03 61.18± 1.67 56.76± 1.85 50.46± 2.47 42.25± 3.13

pFedSV+DP 76.58± 1.32 68.43± 1.86 69.24± 2.07 65.31± 1.95 57.94± 2.53 53.28± 1.66 48.37± 2.51 40.79± 2.84

protected while only causing a minor impact on accuracy (from 84.73% to 82.16%).

To further validate the effectiveness of DP-based methods in addressing privacy con-

cerns, we conduct additional experiments. Specifically, we compare the performance

of our pFedSV+DP with other personalized baselines under an appropriate noise level

(δ = 1), as shown in Table 4.4. The results reinforce that DP-based methods remain

effective in addressing privacy issues, and our pFedSV+DP outperforms other per-

sonalized baselines. Overall, the experimental results highlight that increasing the

level of noise improves privacy while sacrificing performance. However, by carefully

selecting an appropriate noise level, such as δ = 1, model privacy can be protected

with only a minimal impact on accuracy. Furthermore, DP-based methods, including

our pFedSV+DP, continue to demonstrate their effectiveness in addressing privacy

concerns, as validated by numerous studies in the field.

Besides, the key privacy issue concern of our pFedSV algorithm comes from the fact

that the local model of each client will be downloaded to other clients, since the

recent research [112] on model inversion attacks shows that malicious attackers can

recover the raw training data from the model through the gradients only. Therefore,

to further demonstrate the effectiveness of our DP-based noise addition on privacy
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Figure 4.11: The model inversion attack results on the original model and the model

with DP noise addition (δ = 1) on the CIFAR-10 dataset. The top column is the

original model, where the attacker can recover the raw training data with the shared

model parameters. The bottom column is the model with DP noise addition, where

the attack failed.

protection, we conduct an extra experiment with model inversion attack on both the

original local model and the model with DP-based noise addition, where the results

are illustrated in Fig. 4.11. We can see that the attacker cannot recover the raw

training data after we add the DP-based noise into the original model.

4.7 Remarks

In this chapter, we focus on the model personalization of clients with heterogeneous

domains in an agnostic federated learning system. we propose pFedSV, a novel person-

alized FL algorithm that incorporates the Shapley value from coalition game theory to

assess intricate, multi-faceted influences by quantifying the individual contributions

of each client. We provide a complex analysis by formulating the model aggregation

process as a coalition game, which not only helps form the personalized domain-

relevant coalition but also serves as personalized aggregation weights for each client.

Extensive experiments are conducted to demonstrate the effectiveness of pFedSV and

the results empirically illustrate its superiority through the significant improvement
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on personalized accuracy. Furthermore, regarding the communication overhead and

model privacy issues raised by the local model download mechanism in pFedSV, we

introduce the shared common feature extractor and the DP-based noise addition,

respectively.

4.8 Discussion

In the chapter, we introduce the concept of SV from the cooperation game theory

and design a personalized federated learning algorithm based on it. Although we

achieve a good personalized model performance, it comes with a relative high compu-

tational cost from the calculation of SV. And this computational cost is not negligible

after applying the Monte-Carlo sampling technique to reduce the calculation times.

Therefore, we expect the following future work can find novel optimization directions

from two aspects: 1) propose a more efficient way for SV calculation to reduce the

computation cost. 2) using the advanced ML technique to directly predict the SV

based on the historical information.
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Chapter 5

Federated Unlearning: Guarantee

the Right of Clients to Forget

The Right to be Forgotten encompasses the entitlement of a data proprietor to with-

draw their data from an entity that stores it. Within the domain of federated learning,

adherence to the Right to be Forgotten necessitates the eradication not only of the

data itself but also of any influence exerted by said data on the federated learning

(FL) model. We refer to this process as federated unlearning. The most direct and

legitimate approach to implementing federated unlearning involves the removal of

the revoked data, followed by the complete retraining of the FL model. However,

the computational and temporal burdens associated with fully retraining FL models

can prove to be excessively costly. This research paper represents an initial endeavor

towards a comprehensive exploration of the unlearning paradigm within the context

of federated learning. Initially, we define the problem of efficient federated unlearn-

ing, outlining its challenges and objectives. Additionally, we identify three prevalent

types of federated unlearning requests, specifically class unlearning, client unlearning,

and sample unlearning. Drawing upon the aforementioned challenges and objectives,

we propose a general pipeline for federated unlearning that addresses the aforemen-
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tioned types of requests. Furthermore, we reexamine the manner in which training

data influences the performance of the final FL model. Consequently, we enhance the

proposed framework by incorporating reverse stochastic gradient ascent (SGA) and

elastic weight consolidation (EWC). To validate the efficacy and efficiency of the pro-

posed method, we conduct various experiments that assess its performance in terms

of unlearning. The results obtained from these experiments affirm the effectiveness

of the proposed approach. We anticipate that the proposed method will serve as an

indispensable component within future machine unlearning systems.

5.1 Introduction

Edge computing is facilitating the convergence of mobile phones and Internet of

Things (IoT) devices, leading to a transformation of the prevailing computing plat-

form. This shift is paving the way for the emergence of next-generation intelligent

services that rely on machine learning techniques. In this context, Google has recently

introduced Federated Learning (FL) [63], an innovative distributed machine learning

paradigm. FL encourages clients to collectively train a shared global model, while

also leveraging the capabilities of edge devices to address concerns related to privacy,

security, and regulatory compliance [113].

Numerous applications of federated learning entail the analysis of data generated by

individuals on their respective local devices. This data frequently comprises sensitive

information, encompassing but not limited to diagnostic records, bank statements,

and facial images. Furthermore, federated learning operates on dynamic local data,

which undergoes continuous changes throughout the training process for each client.

New data is regularly generated and incrementally utilized to refine existing models,

aligning with the principles of lifelong learning [102].

Conversely, there are instances where data may need to be deleted as per require-
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ments. Recent privacy regulations, such as the General Data Protection Regulation

(GDPR) implemented by the European Union and the former Right to be Forgotten,

grant clients the right to remove specific data from trained models. Apart from com-

pliance with the Right to be Forgotten, data removal from federated learning (FL)

models is also advantageous when certain training data becomes obsolete over time.

These practical requirements have given rise to the need for efficient techniques that

allow FL models to unlearn or forget the knowledge acquired from data that needs

to be eliminated. These techniques, known as Machine Unlearning, have gained sig-

nificant attention both in academic research and industry applications [30, 28, 8].

The most legitimate approach to implementing machine unlearning involves the re-

moval of the requested data and subsequently retraining the federated learning (FL)

model from the beginning. However, it is important to note that the computational

and time costs associated with fully retraining FL models in response to the erasure

of training data can be excessively burdensome and may pose practical challenges.

This chapter delves into the efficient implementation of machine unlearning within

the framework of federated learning, which is referred to as Federated Unlearning.

Initially, the problem of federated unlearning is defined by highlighting the associ-

ated challenges and goals. These challenges specifically pertain to iterative learn-

ing, stochastic training, and data isolation within the context of federated learning.

Based on these challenges, the goals of the federated unlearning problem revolve

around accuracy, unlearning privacy, model agnosticism, and unlearning efficiency.

Furthermore, three common types of federated unlearning requests are identified in

the context of federated learning: class unlearning, client unlearning, and sample un-

learning. To address these diverse unlearning requests using a unified framework, we

reexamine how training data impacts the performance of the final federated learning

model in a conventional training process based on gradient descent. This analysis

provides a deeper understanding of the dominant factors involved in the federated

unlearning process. Consequently, a general federated unlearning framework based
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on reverse stochastic gradient ascent (SGA) is proposed to effectively eliminate the

influence of specific training data.

The initial version of the reverse stochastic gradient ascent (SGA) demonstrates sat-

isfactory performance when addressing class unlearning requests. However, for client

unlearning and sample unlearning requests, we integrate the capabilities of elastic

weight consolidation (EWC) with the basic SGA. This integration gives rise to the

SGA-EWC-based federated unlearning framework [46]. To evaluate the effectiveness

of our proposed method, experiments are conducted using the widely adopted fed-

erated learning setting called FedAvg. The results obtained from these experiments

indicate that our method achieves strong performance in terms of both unlearning

efficacy and efficiency.

The main contributions of this chapter are summarized as:

• We take an early step in thoroughly exploring the machine unlearning paradigm

within the context of federated learning. It achieves this by defining the problem

of efficient federated unlearning, encompassing the various requests, challenges,

and goals involved.

• We propose a general pipeline for federated unlearning that addresses three

distinct types of requests: class unlearning, client unlearning, and sample un-

learning. By revisiting how training data influences the final federated learning

model’s performance, the pipeline is designed to effectively tackle these different

types of unlearning requests.

• Various experiments are conducted to validate the effectiveness of the proposed

method. These experiments assess the unlearning efficacy and efficiency of the

method, providing empirical evidence of its performance.
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5.2 Background of Machine Unlearning and Fed-

erated Learning

5.2.1 Machine Unlearning

Indeed, in various domains such as healthcare, movie recommendation, and other ap-

plications, enterprises and organizations collect clients’ data to train machine learning

models. While these technologies offer convenience and promising outcomes, they also

raise concerns about the potential leakage of personal information. As a result, as

data privacy gains increased attention, clients often seek to delete or conceal their per-

sonal data once the service is no longer required. The most straightforward approach

in such cases is to delete the data of specific clients from the dataset and retrain a

new model from scratch using the remaining data. However, this approach is im-

practical due to the high cost associated with retraining models after every deletion

request, both in terms of time and resources. To address this issue, machine unlearn-

ing has been proposed as a solution. Machine unlearning techniques aim to remove

the knowledge acquired from the data that needs to be deleted from the model, with-

out requiring the costly process of retraining the model from scratch. By selectively

unlearning specific data, machine unlearning provides an efficient alternative to fully

retraining models in response to data deletion requests.

In order to minimize the cost of unlearning and maintain model performance, several

strategies have been developed for data deletion from machine learning models. One

approach involves post-processing the trained model to ensure that the results of

the unlearning algorithm are statistically similar to those of a retrained model [30,

28]. This can be achieved by updating the model to minimize the empirical loss

on the remaining data. Another approach is to develop new training algorithms

that reduce the need for complete retraining. A critical technique in this regard is

ensemble learning, where the entire dataset is divided into multiple shards, and a
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separate sub-model is trained on each shard [77]. The unlearning process can then

be accomplished by retraining these sub-models, including the revoked data, which

significantly reduces the computational resource and memory storage requirements

[8]. In this chapter, the focus is on extending machine unlearning to distributed

scenarios, where the data points that need to be deleted are distributed across multiple

devices. This distributed setting introduces additional challenges and considerations

for unlearning techniques.
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Figure 5.1: Comparison of centralized machine learning and federated learning.

5.2.2 Federated Learning

Federated Learning has emerged as an efficient paradigm for training machine learning

models collaboratively among multiple clients while preserving the privacy of their

local raw data [63, 109]. In federated learning, the traditional centralized approach

of training a machine learning model on a central server is replaced by a distributed

approach. Fig. 5.1 provides an illustration of the detailed workflow of federated

learning compared to centralized machine learning.

In a typical federated learning (FL) algorithm, such as FedAvg [63], the training

process proceeds iteratively in rounds. Initially, the model is initialized on the server.

Subsequently, in each communication round, the server randomly selects a subset of
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clients from the available pool. The latest global model is then distributed to the

selected clients. These clients perform local model updates on their respective data

using the stochastic gradient descent (SGD) algorithm for multiple epochs. After

completing the local update, the clients transmit their local model parameters back

to the server. The server aggregates these parameters to obtain a new global model

by means of averaging. The updated global model is subsequently distributed to the

clients for the next round of training. This iterative process continues until the global

model achieves convergence or satisfies other specific requirements.

In contrast to traditional distributed machine learning approaches that involve sharing

potentially sensitive client information, Federated learning overcomes data barriers

while ensuring privacy preservation. Its ability to amalgamate client contributions

has made federated learning widely adopted in diverse real-world applications, such

as keyboard prediction [35] and healthcare [10]. However, challenges persist in the

context of federated learning, particularly concerning non-independent and identically

distributed (Non-IID) data and the significant communication overhead imposed by

a massive number of distributed clients. Addressing these challenges and devising

effective solutions to enhance client data privacy and enhance training model per-

formance through enabling technologies represent promising directions in distributed

scenarios.

5.3 From Machine Unlearning to Federated Un-

learning

5.3.1 What is Federated Unlearning?

Federated unlearning focuses on a federated learning (FL) scenario where clients

collaborate with an FL server to train and maintain a global model. However, cer-

111



Chapter 5. Federated Unlearning: Guarantee the Right of Clients to Forget

Learning Unlearning

≈

Re-training

0 1 2 3 … 9

0 A A A C C C

1 A A A C C C

2 A A A C C C

… B B B B D D

n B B B B D D

Label index

S
a

m
p

le
 i

n
d

e
x

Client 

unlearning

Class 

unlearning

Three levels of federated unlearning

Objective
Sample 

unlearning

Objective of federated unlearning

…1 𝑛2

Unlearning 

Request

𝐴 𝐶𝐵

Federated unlearning framework

𝐷

Clients

𝑀𝑢

𝑀𝑔𝑙𝑜𝑏𝑎𝑙FL server

𝑀𝑟

𝑀𝑢

𝑀𝑔𝑙𝑜𝑏𝑎𝑙

Unlearning 

data 𝑥∗

Figure 5.2: Overall architecture of federated unlearning.

tain clients may subsequently request the removal of privacy-sensitive or illegal data

contributions from the global model to safeguard privacy or mitigate legal risks. Con-

sequently, the server needs to update the model so that it appears as if the deleted

data never participated in the FL training process. For instance, as depicted in Fig.

5.2, four clients with distinct local data (represented by different colors) participate

in FL training. Once a well-trained global model, denoted as Mglobal, is obtained,

Client B submits an unlearning request to eliminate its data contribution from the

global model. To fulfill this request, the FL server must provide the clients with a

new model, denoted as Mu, which remains unaffected by any of Client B’s data. A

straightforward approach would involve deleting the requested data and retraining a

new model from scratch using only the remaining data. However, the computational

and time overhead associated with retraining can be prohibitively expensive and unac-

ceptable. Hence, there is an urgent need for a precise and efficient method to meet the

unlearning objective, as illustrated in the middle of Fig. 5.2. Such a method should

enable the removal of specific client data from the global model without necessitat-

ing complete retraining, thereby minimizing the computational and time overheads

involved.

Federated unlearning holds potential for various FL applications that prioritize data

ownership. For instance, in a healthcare application where multiple hospitals collabo-

rate to develop a diagnostic predictive model using FL, a hospital may need to remove
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specific data from the model if a patient decides to withdraw from data sharing and

no longer provides their data. Similarly, in the field of finance, banks can collectively

train an FL model for the detection of financial crimes. If a client requests to close

their account, a bank may need to remove the corresponding client’s data from the

model.

5.3.2 Goals of Federated Unlearning

The goals of federated unlearning is described as follows.

Goal 1. Zero contribution. The primary objective of federated unlearning is to

achieve ”zero contribution”, which denotes that the removal of data should result

in no influence on the unlearned model’s parameters. Specifically, the deleted data

should have no impact on the model’s parameters, ensuring that the model’s predic-

tions on the deleted data remain consistent with those of a model that was not trained

using the deleted data.

Goal 2. Accuracy. The concept of ”accuracy” in federated unlearning refers to the

objective of minimizing the accuracy gap between the unlearned model and the baseline

model, regardless of the number of data points that are unlearned. The goal is to ensure

that the unlearned model does not experience significant degradation in accuracy when

applied to other data, thereby maintaining a high level of predictive performance.

Goal 3. Unlearning privacy. The notion of ”unlearning privacy” in federated un-

learning pertains to the requirement that the unlearning process should not lead to

any privacy breaches. Specifically, it ensures that the deleted data of clients remains

protected and cannot be recovered by potential attackers, even in the presence of gradi-

ent leakage attacks during the unlearning process. This objective aims to safeguard the

privacy of client data and prevent any unauthorized access or disclosure of sensitive

information.
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Goal 4. Model Agnostic. The principle of ”Model Agnostic” in the context of feder-

ated unlearning postulates that the proposed technology should be applicable to various

federated learning (FL) models, irrespective of their diverse characteristics and com-

plexities. In essence, it necessitates the capability of the unlearning methodology to be

universally employed across FL models, without being constrained by their specific na-

ture or intricacy. This quality ensures the versatility and adaptability of the federated

unlearning technology, enabling its seamless integration into different FL scenarios

and accommodating the specific requirements and nuances of various FL models.

Goal 5. Unlearning efficiency. The concept of ”Unlearning efficiency” in federated

unlearning refers to the objective of developing a technology that is more efficient than

the retraining baseline, regardless of the amount of data that needs to be forgotten. The

goal is to minimize the computational resources and time required for the unlearning

process, striving to achieve a higher level of efficiency compared to the traditional

retraining approach. This efficiency objective is crucial in order to make the federated

unlearning technology practical and feasible, enabling seamless and effective removal

of data from the model without incurring excessive computational or time costs.

5.3.3 Why is Federated Unlearning Challenging?

While many of the goals in federated unlearning align with those in traditional ma-

chine learning, the existing technologies for machine unlearning cannot be directly

applied in the context of federated learning (FL) for three primary reasons, as dis-

cussed in Section 5.2.

Iterative Learning. The iterative learning process in FL poses a fundamental

challenge for federated unlearning. In FL, each client’s initial model for a training

round is derived from the aggregation of models from all clients in the previous

round. This interdependence and intertwining of clients’ information make it difficult
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to isolate and remove specific data contributions during the unlearning process. The

iterative nature of FL necessitates novel approaches and techniques for unlearning

that can effectively address this challenge and ensure the successful removal of data

while maintaining the integrity and accuracy of the global model.

Stochastic Training. The stochastic nature of FL training poses another signif-

icant hurdle for federated unlearning. Unlike centralized machine learning, the FL

training process is highly non-deterministic. In each training round, the FL server

randomly selects clients for global model aggregation, and each client independently

and randomly selects and orders batches of data for local training. This inherent

randomness introduces challenges in unlearning as the exact data contributions from

specific clients or batches become difficult to trace or isolate. Unlearning techniques

in FL must account for this stochasticity and develop strategies to accurately iden-

tify and remove the desired data contributions while preserving the integrity and

performance of the global model.

Data Isolation. Client data is protected for privacy reasons in FL, and the FL

server lacks direct access to individual client data. Each client retains its own data

samples and conducts local model training. However, employing a data splitting-

based machine unlearning approach poses significant challenges in FL due to the

distributed nature of data and privacy concerns. Such an approach would necessitate

substantial storage space, placing a considerable burden on all clients within the

system [8].

5.3.4 Possible Research Directions of Federated Unlearning

Consider the data samples illustrated in the right portion of Fig. 5.2. The cell contents

indicate both the client to which each data sample belongs and the corresponding
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label. In accordance with the desired level of forgotten data specified by the clients,

research directions for federated unlearning can be categorized into the following three

levels:

Class Unlearning. Clients aim to eliminate specific classes of data from the trained

model. For instance, as depicted in Fig. 5.2, Clients C and D choose to unlearn all

data samples associated with the class label 9.

Client Unlearning. A client intends to remove all of its data from the trained

model. As shown in Fig. 5.2, Client B decides to unlearn all of its data samples.

Sample Unlearning. A client seeks to remove a subset of its data from the trained

model, which is a more fine-grained and challenging task compared to client unlearn-

ing. For example, as indicated in Fig. 5.2, Client A selects a subset of its data samples

for unlearning.

5.4 A General SGA-based Federated Unlearning

Framework for Different Levels

In this paper, we examine the impact of training data on model performance and

propose a federated unlearning framework based on reverse stochastic gradient as-

cent (SGA) to eliminate the influence of specific training data. Our framework ef-

fectively counters the effects of individual data points by iteratively adjusting model

parameters in the opposite direction of the gradients computed from the data. This

unlearning approach improves model generalization and contributes to enhanced pri-

vacy, accuracy, and efficiency in federated learning.
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Figure 5.3: The visual representation showcases the alteration of the model’s gen-

eralization boundary during both the learning and unlearning stages. Distinct colors

denote various labeled data points, while black circles delineate the model’s gener-

alization boundary, with solid and dashed lines denoting the boundary’s state post-

update and pre-update, respectively. Additionally, arrows depict the corresponding

gradients. Notably, black dots labeled with x∗ signify unlearning data points.

5.4.1 Framework Overview

The prevailing model training methods in machine learning, largely rooted in gradient

descent, commonly employ mini batch-based stochastic gradient descent (SGD) as

the preferred approach [6]. For instance, in the task of image classification using the

MNIST dataset, the objective is to develop a model capable of accurately classifying

handwritten numeric images ranging from 0 to 9. In this context, gradient descent

can be viewed as a learning process where the model progressively acquires knowledge

about the shared characteristics within each class and the distinguishing features

across different classes present in the training dataset. Consequently, the model’s

generalization boundary expands to encompass more data, signifying its ability to

classify the included instances.

Alternatively, gradient descent can be seen as a form of learning, and reverse gradient

ascent can be understood as an opposing process that contracts the generalization

boundary, effectively eliminating the model’s capacity to classify specific data points.
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Figure 1 provides an illustration of the changes in the model’s generalization boundary

during the SGD learning and SGA unlearning processes. Removing a data point,

denoted as x∗ (represented by black dots), from the generalization boundary implies

that the model discards all prior knowledge of x∗ and loses its ability to classify it.

This concept of unlearning is central to our proposed federated unlearning framework

based on SGA. By performing a few SGA iterations using the unlearning data x∗ on

the global model Mglobal, our framework efficiently achieves unlearning, yielding an

unlearning model Mu in a rapid and effective manner.

Finally, the SGA-based unlearning framework comprises two stages: 1) Learning

stage: The standard federated learning (FedAvg) process is executed until model

convergence, resulting in a global model denoted as Mglobal. 2) Unlearning stage:

SGA-based unlearning is then performed to derive the unlearning model Mu. In

the learning stage, FedAvg is employed for model training until convergence. Subse-

quently, in the unlearning stage, SGA is utilized to eliminate specific training data

effects and obtain the unlearning model.

5.4.2 Methodology for Class Unlearning

In class-level federated unlearning, the objective is to exclude a specific class from the

model’s generalization boundary, thereby rendering the global model distributed to

all clients incapable of classifying that particular class. To achieve this goal, a simple

SGA-based unlearning approach is sufficient to control the model’s generalization

boundary. In the traditional federated learning scenario, there is typically a testing

dataset available on the server-side, consisting of labeled data from all classes. This

testing dataset can be utilized to implement SGA-based unlearning. This assumption

is reasonable because, even in the absence of the testing dataset, previous research has

demonstrated the generation of synthetic data with similar features on the server-side

using techniques like Generative Adversarial Networks (GANs) [29]. In the end, SGA-
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based unlearning is applied to eliminate the classification capability of the specific

class from the global model. The ”unlearning data” x∗ refers to the data with a

specified unlearning label, which can be either real data or synthetic data generated

on the server-side.

5.4.3 Methodology for Client Unlearning

In client-level federated unlearning, the objective is to remove the previously acquired

knowledge of the global model from a specific client referred to as the ”unlearning

client” Cu. This entails eliminating the influence of the unlearning client’s local data,

denoted as the ”unlearning data” x∗.

Why simple SGA fails in client unlearning. In extreme non-IID cases, where the

unlearning client (Cu) exclusively possesses all the data of a specific class, client un-

learning can be considered equivalent to class unlearning, and simple SGA (Stochastic

Gradient Ascent) is sufficient for achieving the unlearning objective. However, practi-

cal scenarios typically involve non-IID data distributions that are not highly skewed.

In such scenarios, where multiple clients share a certain class of data, simple SGA-

based unlearning is inadequate to meet the requirements of client unlearning. This is

due to the following reasons: Firstly, the performance of a well-trained global model

relies on its ability to generalize well, irrespective of the source of the data. Conse-

quently, it is not possible to obtain a model that exhibits poor accuracy on label 9

data from client A, while simultaneously achieving good accuracy on the same label

9 data from client B. Such a scenario would indicate an extreme case of overfitting.

Secondly, the proportion of data plays a significant role in the context of client un-

learning. When the unlearning client (Cu) possesses only a small portion (e.g., 10%)

of the label 9 data, excluding this client directly from the federated learning (FL)

training process would have a negligible impact on the model’s performance for label

9. This implies that the absence of a small portion of data belonging to a specific
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class does not significantly affect the model’s ability to generalize to that class. This

observation is supported by a comparison between the retraining baseline and the

SGA-based unlearning approach, where the retraining model (Mr) achieves 94.36%

accuracy on label 9 data, while the unlearning model (Mu) only achieves 61.53%

accuracy. Therefore, employing the simple SGA-based unlearning approach is inef-

fective in scenarios involving normal non-IID data distributions for client unlearning.

This is evident from the observed results in Fig. 5.4, which clearly demonstrate that

the approach excessively corrupts the model’s generalization boundary, resulting in a

rapid reduction in accuracy to 0% within just two steps.

Previous memory protection with continual learning. The preceding analysis

highlights the need for a protection strategy to safeguard the model’s generalization

boundary during the SGA-based unlearning process. Drawing inspiration from stud-

ies on continual learning [46, 2], which have identified catastrophic forgetting as a

consequence of training models on sequentially different datasets, we can draw paral-

lels between SGA-based unlearning and catastrophic forgetting. In both cases, when

a model is trained on new data, it adjusts the parameters learned from previous data

to accommodate the new data, resulting in the loss of knowledge acquired from the

old data. To address this issue, we can adopt a typical approach from continual learn-

ing known as Elastic Weight Consolidation (EWC). The fundamental concept behind

EWC is to restrict the magnitude of updates to different parameters through the

inclusion of regularization terms. By doing so, parameters that were more important

for the previous data are changed minimally during training on new data. In other

words, if certain parameters were deemed significant for previous tasks, they should

undergo minimal changes during the learning process of new tasks.

Combined EWC-SGA-based unlearning Based on the aforementioned insights,

we propose an EWC-SGA-based unlearning framework. The framework consists of

the following steps:

1) Calculation of Importance Factors: Firstly, the importance factor of each param-
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eter in the model is computed using the Fisher Information matrix. This factor is

determined by the squared difference between the local parameter θi and the corre-

sponding global parameter θglobal,i. Mathematically, it can be expressed as:

Fi(θi − θglobal,i)
2 (5.1)

2) Incorporation of Importance Factors: The importance factors are then integrated

into the traditional cross-entropy loss as a regularization term. This additional term

restricts the magnitude of parameter updates during the unlearning process. Param-

eters with higher importance factors are more resistant to updates. The resulting

loss, termed the ”unlearning loss,” is given by:

Lu(θ) = Lce(θ) +
λ

2

∑
i

Fi(θi − θglobal,i)
2 (5.2)

, where λ represents the strength of the regularization and Lce(·) denotes the cross-

entropy loss.

3) SGA-Based Unlearning: Finally, the SGA-based unlearning algorithm is applied

using the unlearning loss. This approach effectively controls the model’s general-

ization boundary and safeguards the remaining clients from being adversely affected

during the unlearning process.

5.4.4 Methodology for Sample Unlearning

Sample-level federated unlearning aims to remove the knowledge acquired from a

specific portion of client data from the global model, while client unlearning involves

eliminating knowledge from the entire client data. In this context, the EWC-SGA-

based unlearning framework remains effective for sample unlearning. Furthermore,

federated learning inherently ensures data privacy, resulting in the unlearning data

(x∗) for both client-level and sample-level residing solely on the local client-side.

Consequently, the unlearning process is executed exclusively on the client-side. To

121



Chapter 5. Federated Unlearning: Guarantee the Right of Clients to Forget

accomplish the objective, the current global model is initially downloaded to the des-

ignated unlearning client. Subsequently, the EWC-SGA-based framework is applied

to derive the unlearning model (Mu). Ultimately, the unlearning model is uploaded

to the server-side, replacing the previous global model, denoted as Mnew
global.

5.5 Performance Evaluation

In this section, a series of experiments is performed to validate the efficacy of the

SGA-based unlearning framework and its integration with the Elastic Weight Con-

solidation (EWC) technique. To provide a comprehensive comparison, the baseline

approach of retraining is employed, wherein the model is trained anew using only the

remaining client data (x/x∗). This approach serves as an exact unlearning method

as it entirely excludes the unlearning data (x∗) from the training process. By includ-

ing this baseline, we aim to highlight the advantages of our unlearning framework in

terms of knowledge elimination.

5.5.1 Results on class unlearning

In order to demonstrate the efficacy of the SGA approach in controlling the model’s

generalization boundary, an experiment is conducted in the context of traditional

FL using the FedAvg algorithm with the MNIST dataset. In this experiment, the

label ”9” is designated as the unlearning class, and the data associated with this

label in the server-side is considered the unlearning data (x∗). These unlearning data

can also be synthetic data generated using Generative Adversarial Networks (GANs).

The training process is divided into a ”learning stage” consisting of 20 rounds and an

”unlearning stage” comprising 2 rounds.

As depicted in Fig. 5.4, the global model accuracy steadily increases during the

normal training process and converges during the ”learning stage.” Subsequently,
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Figure 5.4: Experiment of SGA-based class unlearning on MNIST dataset.

during the ”unlearning stage,” the model accuracy on the data with the label ”9”

(represented by the black line) experiences a sharp decline, reaching 0% accuracy

in the following 2 rounds. This indicates that the model successfully eliminates its

classification capability for the label ”9” that was learned previously. Simultaneously,

the accuracy of the model on the remaining labels (represented by the golden line)

remains largely unaffected, with a slight decrease from 95.05% to 92.68%. This result

illustrates that SGA-based unlearning can achieve the target of eliminating model

knowledge and controlling model generalization boundary for specified classes, which

is consistent with the demonstration in Fig. 5.3. The observed results validate that

the SGA-based unlearning approach effectively achieves the objective of eliminating

specific class knowledge from the model and controlling the model’s generalization

boundary, which align with the demonstrated outcomes in Fig. 5.3.

5.5.2 Results on client unlearning

To investigate client-level unlearning, a series of experiments is conducted on a total of

10 clients using pathological data with a non-IID distribution. Each client is randomly

assigned three classes out of a total of 10 classes [64]. The 10-th client is designated as

the unlearning client, and its local data corresponds to the unlearning data (x10 = x∗).

Since achieving convergence in federated learning with pathological data and non-IID
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Figure 5.5: Experiment of EWC-SGA-based client unlearning on MNIST dataset.

distributions can be challenging, the training process in the ”learning stage” is set to

100 rounds, followed by 2 rounds in the subsequent ”unlearning stage.” It is important

to note that the client unlearning phase incorporates the EWC-SGA-based approach,

rather than a simplified method. Furthermore, experiments are conducted using

different datasets, and the results obtained from the MNIST dataset are presented in

Fig. 5.5. During the ”learning stage,” the model performance for all clients exhibits

a steady increase until convergence. However, in the subsequent ”unlearning stage”

utilizing the EWC-SGA-based approach, the model performance on the unlearning

client (represented by the black line) experiences a significant decline from96.61% to

3.81%. Conversely, the model performance on the remaining clients (represented by

the other colorful lines) remains relatively unaffected, with an average decrease of

only 2.34%. To provide a more detailed visualization of the unlearning process, the

image from the 97-th to the 102-nd round, corresponding to the ”unlearning stage,”

is magnified. These results demonstrate the effectiveness of our methods in achieving

the objective of eliminating the model’s classification capability for the specified 10-th

client while maintaining the model performance on the remaining clients.
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5.5.3 Results on Sample unlearning

The experimental setup for sample unlearning is identical to that of class unlearning.

However, in sample unlearning, the unlearning client is required to eliminate only a

portion of its data contribution to the global model. This is achieved by introducing a

hyperparameter called the ”unlearning data proportion,” denoted as α = x∗

xi
∈ (0, 1].

Here, α = 1 corresponds to client unlearning, and in our experiments, we set α = 0.3.

The results of the sample unlearning experiments align with the conclusions drawn

from the client unlearning experiments. Our methods effectively eliminate the knowl-

edge contributed by the unlearning data x∗ from the global model. Moreover, since

only a portion of data is unlearned from the unlearning client, and the remaining

data xi/x
∗ still exist in the federated learning system, the model’s performance on

the unlearning client does not drop to almost 0% as observed previously. Instead, it

retains some level of classification capability during subsequent training.

5.5.4 Efficiency and Convergence Analysis

As depicted in Figure 5.5, the efficiency and convergence of our SGA-based frame-

work are analyzed. The unlearning process using our framework requires only 2

rounds, while the retraining baseline takes approximately 100 rounds to achieve con-

vergence, which is comparable to the previous training process. This substantial

difference, nearly 50 times faster, demonstrates the significant efficiency of our frame-

work. Moreover, considering that the learning task in this study employs the simple

MNIST dataset, the efficiency gap is expected to beeven wider for more challeng-

ing tasks. Additionally, the experiment results presented in both Figure 5.4 and

Figure 5.5 illustrate that our method successfully achieves the unlearning objective

within a short period of approximately 2 rounds. Furthermore, we conduct tests un-

der various experimental conditions listed in Table. 5.1, and in all cases, the methods

empirically converge.
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Table 5.1: The experiments summary of different levels unlearning. SGA and

RE is the (EWC-)SGA-based unlearning framework and the retraining baseline, re-

spectively. G-/U-/R-Acc denote the accuracy of Global model, Unlearning client

and Remaining clients average, respectively. LS/US denote Learning Stage and

Unlearning Stage, respectively.

Level Class Unlearning Client Unlearning Sample Unlearning

Dataset MNIST CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10

Stage LS US LS US LS US LS US LS US LS US

SGA

G-Acc 94.80 83.33 67.83 59.07 94.18 86.56 58.43 51.76 95.63 91.44 58.36 52.81

U-Acc 92.56 0.00 65.54 0.00 93.37 5.01 57.29 4.38 94.71 63.54 58.21 39.67

R-Acc 95.05 92.68 68.77 64.14 96.61 90.45 59.69 54.27 95.87 92.17 59.57 56.79

RE

G-Acc 94.80 87.64 67.83 61.06 94.18 88.75 58.43 53.06 95.63 91.03 58.36 53.69

U-Acc 92.56 0.00 65.54 0.00 93.37 8.65 57.29 7.53 94.71 65.27 58.21 41.05

R-Acc 95.05 92.84 68.77 63.31 96.61 91.87 59.69 55.73 95.87 93.16 59.57 57.24

5.5.5 Table Summary of All Experiments

The effectiveness of the SGA-based unlearning framework in different stages of the

dynamic model performance change is demonstrated in Fig. 5.4 and 5.5. To com-

prehensively evaluate our approach, extensive experiments are conducted on various

datasets, comparing the results with the retraining baseline. A summary of all exper-

iment results is presented in Table. 5.1. For instance, let’s consider the experiment

conducted on the MNIST dataset with client unlearning. Firstly, the typical FL algo-

rithm is employed to train a well-trained global model, which represents the learning

stage (LS) in our study. The model’s performance is evaluated by measuring the

global accuracy (G-Acc) and the local accuracy of all clients. Specifically, the local

accuracy of the targeted unlearning client is denoted as U-Acc in the table, while the

average local accuracy of the remaining clients (excluding the unlearning client) is rep-

resented as R-Acc. Secondly, the unlearning algorithm is applied to the well-trained

global model, representing the unlearning stage (US). The resulting global accuracy,
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unlearning client accuracy, and remaining client accuracy after the unlearning stage

are denoted as G-Acc, U-Acc, and R-Acc, respectively. The SGA and RE nota-

tions indicate different unlearning approaches, with RE representing the retraining

baseline.

5.6 Remarks

This charpter delves into the concept of machine unlearning within the context of

federated learning, elucidating its architecture, challenges, and objectives. We ex-

plore the impact of training data on the performance of federated learning models

and propose a comprehensive framework to address unlearning requests across mul-

tiple levels—class, client, and sample. Through extensive experiments conducted on

diverse datasets, we validate the efficacy of our approach.

Furthermore, we identify several intriguing open issues in this domain:

• Knowledge Identification: In federated learning, knowledge accumulation occurs

implicitly through the model aggregation process. Effectively discerning and

attributing knowledge contributions from different clients remains a challenge.

• Feature-Level Unlearning: In vertical federated learning, clients possess distinct

features of the same data sample. Extending the unlearning process to the

feature level poses a significant research question.

• Evaluation Metrics: Presently, the assessment of unlearning effectiveness pri-

marily relies on indirect comparisons with retraining. Designing comprehensive

evaluation criteria to provide a clearer assessment of the unlearning effect is

imperative.

These open issues serve as promising directions for further research and development

in the realm of federated unlearning.
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5.7 Discussion

In this chapter, we design a general federated unlearning framework based on SGA

and achieve good unlearning performance. However, our work is in the very early

beginnings of the current federated unlearning field. We expect there will be more

promising follow-up works in the future. Besides, we also find that the unlearning

metric is an open challenge in this field, i.e., how to evaluate whether the unlearning

algorithm truly remove the specific target knowledge while keeping the knowledge of

remaining data. We believe that this issue will become a hot research point in the

near future.
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Conclusions and Future Work

6.1 Conclusion

This thesis explores the complex cooperation and competition relationships that coex-

ist among heterogeneous clients in the FL system and then utilize these relationships

to design effective mechanisms to improve the performance of FL in different aspects.

First, we consider the competition relationship among heterogeneous clients in the FL

system, where the server only has limited rewards to motivate client participation. To

achieve the long-term sustainability of FL, we extend the crucial economic properties

of mechanism to a long-term form to fit the successive FL process. Then, we present a

long-term online VCG auction mechanism for FL that employs an experience-driven

deep reinforcement learning algorithm to directly obtain the long-term optimal strat-

egy. Second, we rethink the nature of client collaboration in FL, where the local

model aggregation process is essentially a coalition game among clients. Thus, we

introduce the “Shapley Value” concept from the coalition game theory, which can

accurately identify the domain relevance among heterogeneous clients. The domain

relevance identification promote each client to form their respective personalized coali-

tions, while the Shapley Value can further serve as personalized aggregation weights
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to achieve model customization for each client. Third, we take the first step to derive

the “Machine Unlearning” concept to the FL context, which is referred to as “Feder-

ated Unlearning” (FU), and define different types of unlearning requests in FU. Then,

we propose a general pipeline to enable model knowledge unlearning with the client

collaboration in FL, where we revisit the nature of how the training data affects the

FL model during the learning process and thereby empower the proposed pipeline

with the reverse stochastic gradient ascent (SGA).

6.2 Future Work

This thesis is an initial exploration of the cooperation and competition relationships

that coexist among heterogeneous clients in the current FL systems. Our work demon-

strates that these complex relationships are a double-edged sword. While they pose

various challenges for FL systems, they can also be well utilized to design more effec-

tive mechanisms to improve the performance of FL in various aspects. In the future,

we can further develop our research from the following potential perspectives. First,

we will continue to investigate and design in-depth incentive mechanisms that further

take into account the dynamic nature of clients in FL systems. Besides, the current

designs rarely consider the local data value of client as a factor, which is actually

very important in FL incentive mechanism designs. How to accurately define the

data value for each client regarding the FL global learning task is a potential research

direction. Second, we will investigate more general and efficient personalized FL al-

gorithms. While the current pFedSV shows significant performance improvement, it

raises challenges on the computation and communication overhead from the SV es-

timation. Moreover, how to generate personalized models for those “unseen” clients

that newly participate in the FL system is also a critical future direction. Third, we

will keep designing more efficient federated unlearning algorithms and taking good

utilization of client collaboration. Since the current SGA-based federated unlearning
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algorithm still requires some computation to generate reverse gradient for knowledge

unlearning, a potential research direction is to adapt the data distillation techniques

that can reproduce the gradient with a tiny amount of distilled data. Furthermore,

the current learning and unlearning techniques in FL are independently developed,

how to design a general model knowledge editing technique that can simultaneously

achieve learning and unlearning is a potential research direction.

131



Chapter 7

List of Publications

* indicates equal contribution (co-first authors)

7.1 Published

1. Leijie Wu, Yaohong Ding, Akash Dhasade, Martijn De Vos, Anne-Marie Ker-

marrec, Song Guo. “QuickDrop: Efficient Federated Unlearning via Synthetic

Data Generation”. The 25th ACM/IFIP International Middleware Conference,

2024.

2. Leijie Wu, Song Guo, Yaohong Ding, Yufeng Zhan, and Jie Zhang. “Rethinking

Personalized User Collaboration when Facing An Agnostic Federated Learning

System”. IEEE Transactions on Mobile Computing (TMC) (CCF-A), 2024.

3. Leijie Wu, Song Guo, Yi Liu, Zicong Hong, Yufeng Zhan, and Wenchao Xu.

“Long-term Adaptive VCG Auction Mechanism for Sustainable Federated Learn-

ing with Periodical Client Shifting”. IEEE Transactions on Mobile Computing

(TMC) (CCF-A), 2023.

4. Leijie Wu, Song Guo, Yi Liu, Zicong Hong, Yufen Zhan, and Wenchao Xu.

132



7.2. Under Review

“Sustainable Federated Learning with Long-term Online VCG Auction Mecha-

nism”. IEEE 42nd International Conference on Distributed Computing Systems

(ICDCS)(CCF-B), 2022.

5. Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Yaohong

Ding. “Federated Unlearning: Guarantee the Right of Clients to Forget”. IEEE

Network (JCR-Q1), 2022.

6. Yi Liu*, Leijie Wu*, Yufeng Zhan, Song Guo, and Zicong Hong (*Co-first

author). “Incentive-Driven Long-term Optimization for Edge Learning by Hi-

erarchical Reinforcement Mechanism”. IEEE 41st International Conference on

Distributed Computing Systems (ICDCS) (CCF-B), 2021.

7. Yi Liu, Song Guo, Yufeng Zhan, Leijie Wu, Zicong Hong, and Qihua Zhou.

“Chiron: A Robustness-aware Incentive Scheme for Edge Learning via Hier-

archical Reinforcement Learning”. IEEE Transactions on Mobile Computing

(TMC) (CCF-A), 2023.

8. Yufeng Zhan, Peng Li, Leijie Wu, and Song Guo. “L4L: Experience-driven

computational resource control in federated learning”. IEEE Transactions on

Computers (TC)(CCF-A), 2021.

9. Yufeng Zhan, Jie Zhang, Zicong Hong, Leijie Wu, Peng Li, and Song Guo, ”A

Survey of Incentive Mechanism Design for Federated Learning”. IEEE Trans-

actions on Emerging Topics in Computing (TETC) (JCR Q1), 2021.

7.2 Under Review

1. Leijie Wu, Song Guo, Yaohong Ding, Junxiao Wang, Wenchao Xu, Jie Zhang,

and Richard Yida Xu. “Demystify Self-Attention in Vision Transformers from a

Semantic Perspective: Analysis and Application”. submitted and under review.

133



Chapter 7. List of Publications

2. Leijie Wu, Song Guo, Yaohong Ding, and Junxiao Wang. “Waiting for Oppor-

tunity: Online Lazy Machine Unlearning by Uncertainty-based OOD Detection”.

submitted and under review.

3. Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Jingren

Zhou. “On Knowledge Editing in Federated Learning: Perspectives, Challenges,

and Future Directions”. submitted and under review.

134



References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceed-

ings of the 2016 ACM SIGSAC conference on computer and communications

security, pages 308–318, 2016.

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual

learning. In Proceedings of IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2019.

[3] Geir B Asheim, Tapan Mitra, and Bertil Tungodden. Sustainable recursive

social welfare functions. In The Economics of the Global Environment, pages

165–190. Springer, 2016.

[4] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,

and Jennifer Wortman Vaughan. A theory of learning from different domains.

Machine learning, 79(1):151–175, 2010.

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysaw

Dbiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint

arXiv:1912.06680, 2019.

135



References
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