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Abstract 

Advanced Traveler Information Systems (ATIS) usually offer information on travel 

times for specific paths or routes. They aim to impart timely information to road users 

and assist them in making route choices under uncertainties in the near future, 

especially in road networks with frequent adverse weather conditions. Recent research 

has explored the use of diverse traffic data sources for predicting path travel times in 

the current and future time intervals. These traffic data include both real-time and 

historical data from different sources, in which the former is collected on the current 

day, and the latter is gathered before the current day. There are three challenges 

integrating them and relevant weather information for path travel time prediction in 

the current and future time intervals.  

 

First, some traffic data are sampled at high frequency (say, once every 1 or 2 minutes) 

due to the requirement of practical applications in ATIS. Consequently, the sample size 

per time interval is insufficient to provide reliable information for removing outliers 

from real-time data. Moreover, ground truth on path travel times is difficult to collect 

with high cost and limited samples for field surveys (e.g., floating car surveys). 

Collecting these ground truths is more suitable for validation than model training.  

 

Second, existing ATIS generally disseminate the predicted average path travel times in 

the current time intervals for all vehicle classes in reality. However, the observed path 

travel times of a significant proportion of vehicles (i.e., private cars) may deviate 

substantially from the average path travel times. It is specifically true when many other 

vehicles (e.g., buses and goods vehicles) travel with private cars on the same road. 

There is a need to integrate traffic data to predict multi-class path travel times. 

Additionally, different traffic sensors may furnish heterogeneous traffic data (e.g., 

travel time, flow, speed, etc.), which complicates the path travel time prediction for 

different vehicle classes.  

 

Third, in cities with frequent rainfall, the rainfall intensity can significantly impact the 

accuracy of travel time predictions. Existing studies have used historical rainfall 

intensity data to predict path travel times. However, previous studies may not fully 
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consider the temporal relationships between rainfall intensity data and predicted path 

travel times. Moreover, less attention has been given to the weather forecast 

information, which can be further investigated as adverse weather can affect the travel 

behavior of road users (e.g., departure time and route choices). Addressing the usage 

of weather information is crucial for improving the performance of ATIS on path travel 

time prediction under varying traffic and weather conditions.  

 

Based on the above challenges, this thesis seeks to propose a unified framework for 

path travel time prediction in ATIS, offering the following three key contributions:  

 

Firstly, the proposed unsupervised algorithm is designed to filter limited real-time 

automatic vehicle identification (AVI) data without relying on ground truth for training. 

Real-time AVI data can be limited due to the high frequency of collection. 

Contrastingly, historical data contain adequate information on variations of path travel 

times on each time interval. This type of variation helps to indicate the typical traffic 

conditions by different time of day. Therefore, the proposed unsupervised algorithm 

goes beyond traditional filtering methods (relying purely on real-time AVI data) by 

incorporating day-to-day variations of path travel times. It consequently offers 

valuable insights for data filtering, particularly when real-time AVI data is limited.  

 

The second contribution involves the development of a novel model for multi-class 

path travel time prediction in the current time interval. The proposed prediction model 

effectively utilizes heterogeneous traffic data from various types of traffic sensors. 

This prediction model incorporates the temporal relationships of path travel times 

across different vehicle classes inferred from multi-source traffic data. It allows for the 

fusion of traffic information from diverse traffic data sources. As a result, the proposed 

prediction model can provide satisfactory predicted path travel times by vehicle class 

in the current time interval. 

 

The third contribution arises with a new model that considers weather information to 

predict path travel times in future time intervals. This thesis proposes a modeling 

framework to further capture the relationship between predicted path travel times and 

weather information. Therefore, the proposed modeling framework can help describe 
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the dynamics of predicted path travel times under future rainy conditions. Additionally, 

the proposed modeling framework distinguishes the effects of weather information 

under different traffic conditions and various rainfall categories. Hence, it can 

ultimately enhance the prediction accuracy. 

 

The empirical evidence from real-world traffic data in Hong Kong has demonstrated 

the effectiveness of the proposed unified framework for path travel time prediction. 

Three key contributions have been justified with corresponding case studies or 

numerical experiments in this thesis.  

 

Firstly, the case study conducts sensitivity tests using different sampling rates of AVI 

data. It reveals that the proposed unsupervised algorithm robustly surpasses the 

existing filtering algorithms without using ground truth for training.  

 

The second contribution is confirmed using multiple sources of traffic data gathered 

on an urban expressway in Hong Kong. It shows that the prediction accuracy of path 

travel times by vehicle class in the current time interval is significantly improved when 

a proper combination of data sources is selected for training. The proposed prediction 

model can output the multi-class path travel times with satisfactory performance.  

 

Lastly, the empirical tests illustrate that the proposed modeling framework, 

considering the weather information, achieves a higher accuracy of predicted path 

travel times in future time intervals. It outperforms the other benchmarks on a dataset 

collected in Hong Kong, a city with abundant rainfall throughout the year.  

 

These three significant contributions in this thesis are properly justified to support the 

proposed unified framework as a valuable platform for further research in the 

development of various ATIS. 
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𝑇𝑠𝐴(𝑑) Path travel time function from 𝑠𝐴 as function of day 𝑑 

𝜇𝑇𝑠𝐴(𝑑) Mean of path travel time function from 𝑠𝐴 as a function of day 𝑑 

𝑇𝑠𝐴(𝑡) Path travel time function from 𝑠𝐴 as function of time interval 𝑡 

𝜇𝑇𝑠𝐴(𝑡) Mean of path travel time function from 𝑠𝐴 as a function of time 

interval 𝑡 

𝐾𝑠𝐴,𝐷 Number of functional principal components from 𝑠𝐴  for |𝐷| days 

𝜙𝑘
𝑠𝐴 ,𝐷(𝑑) Eigenfunction of 𝑘th functional principal component from 𝑠𝐴 from 



XX 

 

set 𝐷 as a function of day 𝑑 

𝜉𝑘
𝑠𝐴,𝐷

 Score/weight of 𝑘th functional principal component from 𝑠𝐴 from 

set 𝐷 

𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗) Day-to-day covariance of path travel times at time interval 𝑡 from 

data source 𝑠𝐴 between day 𝑑𝑖 and 𝑑𝑗, for 𝑖, 𝑗 ∈ 𝐷 

𝜆𝑘
𝑠𝐴,𝐷

 Eigenvalue of 𝑘th functional principal component from 𝑠𝐴 from set 

𝐷 

𝑁𝑑,𝛿 Number of samples within the study horizon 𝛿 on day 𝑑 

𝜅𝑠𝐴
 Kernel function for calibrating covariance function of path travel 

time from data source 𝑠𝐴 

ℎ𝑠𝐴
 Bandwidth for calibrating covariance function of path travel time 

from data source 𝑠𝐴 

𝐷∗ Set of days after sample selection, indexed by 𝑑 = 1,2, … , |𝐷∗| 

𝐻∗ Maximal threshold of the path travel time covariance between 

different days used in sample selection 

𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏) Within-day covariance of path travel times on day 𝑑  from data 

source 𝑠𝐴 between time interval 𝑡𝑎 and 𝑡𝑏, for 𝑎, 𝑏 ∈ 𝛿 

𝜆𝑘
𝑠𝐴,𝛿

 Eigenvalue of 𝑘th functional principal component from 𝑠𝐴 during 

rolling horizon with length 𝛿, where traffic data on the current day 

are considered 

𝜙𝑘
𝑠𝐴,𝛿(𝑡) Eigenfunction of 𝑘 th functional principal component from 𝑠𝐴  at 

time interval 𝑡 during rolling horizon length 𝛿, where traffic data 

on the current day are considered 

𝜉𝑘
𝑠𝐴,𝛿

 Score/weight of 𝑘 th functional principal component from 𝑠𝐴 

during rolling horizon with length 𝛿,  where traffic data on the 

current day are considered 

𝐾𝑠𝐴,𝛿 Number of functional principal components from 𝑠𝐴  during  

rolling horizon  with length 𝛿, where traffic data on the current day 

are considered 

𝑇𝑠𝐺(𝑡) Ground truth on path travel time from data source 𝑠𝐺  at time 

interval 𝑡 

𝜇𝑇𝑠𝐺(𝑡) Mean of ground truth on path travel time from data source 𝑠𝐺 at 
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time interval 𝑡 

𝑉𝑎𝑟(𝜇𝑇𝑠𝐴(𝑑)) Variance of the predicted mean of path travel times by 2-minute 

intervals on day 𝑑 from data source 𝑠𝐴 

𝑉𝑎𝑟(𝜇𝑇𝑠𝐺(𝑑)) Variance of ground truth on the mean of path travel times by 2-

minute intervals on day 𝑑 from data source 𝑠𝐺 

𝛴𝑑
𝑠𝐺(𝑡𝑎, 𝑡𝑏) Covariance of ground truth on path travel times on day 𝑑  from 

data source  𝑠𝐺 between time intervals 𝑡𝑎 and 𝑡𝑏, for 𝑎, 𝑏 ∈ 𝛿 

𝜉𝑘
𝑠𝐺  Score/weight of 𝑘 th functional principal component from data 

source  𝑠𝐺 

𝜙𝑘
𝑠𝐺(𝑡) Eigenfunction of 𝑘 th functional principal component from data 

source  𝑠𝐺 at time interval 𝑡 

𝜆𝑘
𝑠𝐺 Eigenvalue of 𝑘 th functional principal component from data 

source  𝑠𝐺 

𝐾𝑠𝐺,𝛿 Number of functional principal components from data source  𝑠𝐺 

during rolling horizon with length 𝛿,  where traffic data on the 

current day are considered 

𝜅𝑠𝐺
 Kernel function for calibrating conditional function of ground 

truth on path travel time from data source 𝑠𝐺 

ℎ𝑠𝐺
 Bandwidth for calibrating conditional function of ground truth on 

path travel time from data source 𝑠𝐺 

𝑜𝑝 Origin of path  𝑝 

𝑑𝑝 Destination of path  𝑝 

𝑥𝑜𝑝 Location of the origin 𝑜𝑝 of path 𝑝 

𝑥𝑑𝑝 Location of the destination 𝑑𝑝 of path 𝑝 

𝑥𝑖,𝑝 Location of 𝑖-th nearby weather station or point sensor for path 𝑝 

𝑟𝑝(𝑥, 𝑡) The rainfall intensity data on location 𝑥  along path 𝑝  at time 

interval 𝑡  

�̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡) Forecasted rainfall amount for location 𝑥 at time interval 𝑡0 + 𝛥𝑡 

along path 𝑝 

𝛥𝑡 Time ahead of current time interval 𝑡0 (prediction horizon) 

𝐶�̂�𝑝(𝑥,𝑡0+𝛥𝑡) The correctness of FRA �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡), which is FRA for location 

𝑥 at time interval 𝑡0 + 𝛥𝑡 along path 𝑝 
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�̂�𝑝,𝑙(𝑥, 𝑡0

+ 𝛥𝑡) 

Probability of precipitation (POP) for forecasting rainfall category 

𝑙 for location 𝑥 along path 𝑝 at time interval 𝑡0 + 𝛥𝑡 

𝑜𝑝,𝑙(𝑥, 𝑡) Observed frequency of rainfall at rainfall category 𝑙 for location 𝑥 

along path 𝑝 at time interval 𝑡 

𝐶�̂�𝑝,𝑙(𝑥,𝑡0+𝛥𝑡) The correctness of POP �̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡) , which is POP for 

forecasting rainfall category 𝑙 for location 𝑥 along path 𝑝 at time 

interval 𝑡0 + 𝛥𝑡 

�̂�𝑡0+𝛥𝑡,𝑝 Predicted path travel times for path 𝑝 at time interval 𝑡0 + 𝛥𝑡 

�̃�𝑡+𝛥𝑡,𝑝 Offline predicted path travel times of path 𝑝 for 𝛥𝑡 ahead of time 

interval 𝑡 

𝑛𝑡0,𝑝 Sample size of individual path travel times collected at current 

time interval 𝑡0 for path 𝑝 from data source 𝑠𝐴 

𝑁𝑝 Number of nearby rainfall stations for path 𝑝  

𝜆𝑖,𝑝 Kriging weight for 𝑖 -th nearby rainfall station for path 𝑝  in the 

kriging model for 𝑟𝑝(𝑥, 𝑡)  (i.e., the rainfall intensity data on 

location 𝑥 along path 𝑝 at time interval 𝑡) 

𝐷(𝑥𝑖,𝑝) External drift for 𝑖 -th nearby rainfall station for path 𝑝  in the 

kriging model for 𝑟𝑝(𝑥, 𝑡)  (i.e., the rainfall intensity data on 

location 𝑥 along path 𝑝 at time interval 𝑡) 

𝜇1, 𝜇2 Lagrange parameters for spatial interpolation accounting for two 

constraints on 𝜆𝑖 in the kriging model for 𝑟𝑝(𝑥, 𝑡) (i.e., the rainfall 

intensity data on location 𝑥 along path 𝑝 at time interval 𝑡) 

𝛾 Similarity between rainfall intensity data of two locations in the 

kriging model for 𝑟𝑝(𝑥, 𝑡)  (i.e., the rainfall intensity data on 

location 𝑥 along path 𝑝 at time interval 𝑡) 

𝐿𝑂𝑆𝑖,𝑝 𝑖 -th level of service for describing the traffic conditions on the 

road, 𝐿𝑂𝑆𝑖,𝑝 ∈ 𝐿𝑂𝑆𝑝 for path 𝑝 

𝑣𝑓,𝑝 Free-flow travel speed for path 𝑝 

𝛿𝐿𝑂𝑆𝑖,𝑝
 The ratio between 𝑣𝑓,𝑝  (free-flow travel speed for path 𝑝 ) and 

𝑣𝐿𝑂𝑆𝑖,𝑝
 (the threshold of average path speed for 𝐿𝑂𝑆𝑖,𝑝 for path 𝑝) 

𝐴𝐶(𝑥, 𝑡) Rainwater accumulation at location 𝑥 at time interval 𝑡 
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𝑟𝑑(𝑥) Rate of rainwater drainage on location 𝑥 

𝐴𝐶0(𝑥) Threshold of rainwater accumulation at location 𝑥 

𝑆1 Data source of 𝑟𝑝(𝑥, 𝑡) for 𝑡 = 𝑡0 

�̃�1 Data source of 𝑟𝑝(𝑥, 𝑡) for 𝑡 < 𝑡0 

𝑆2 Data source of 𝑇𝑡,𝑝 for 𝑡 = 𝑡0 

�̃�2 Data source of 𝑇𝑡,𝑝 for 𝑡 < 𝑡0 

𝑆3 Data source of �̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡) for 𝑡 = 𝑡0 

𝑆4 Data source of �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡) for 𝑡 = 𝑡0 

𝑦𝑖,𝑑,𝑝
{𝑠𝐴,𝑠𝑊},1

 𝑖-th element of vectors of observed path travel times 𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 with 

vehicle class 1 from data sources 𝑠𝐴 and 𝑠𝑊 for path 𝑝 on day 𝑑 

𝐵𝐼𝐶𝑚𝑜𝑑𝑒𝑙 BIC value of the clustering model 

�̂�𝑚𝑜𝑑𝑒𝑙 The maximized value of the likelihood function for the clustering 

model 

𝑛 Sample size of multi-source traffic data used in the clustering 

model 

𝜋𝑚 Probability of the 𝑚  th category by traffic conditions (e.g., 

probability of free-flow condition when 𝑚 = 1) 

𝑣𝑥,𝑡 Average spot speed at location 𝑥  in time interval 𝑡  from data 

source 𝑠𝑐 

𝑧𝑖
𝑘(𝑡 + 𝑗𝛥𝑔) Trajectory of the 𝑖-th vehicle of class 𝑘: where 𝛥𝑔 is the sampling 

time interval of data source 𝑠𝐵 , 𝑗 = 1,2, … , 𝐽  is the index of 

sampling points for an individual vehicle trajectory within path 𝑝, 

with the corresponding location 𝑥𝑖,𝑗
𝑘 , speed measurement 𝑣𝑖,𝑗

𝑘  and 

timestamp 𝜏𝑖,𝑗
𝑘  

𝐵𝑆 Brier score used to measure the accuracy/correctness of 

probabilistic predictions (Wu et al., 2019; Zhu et al., 2022a) 

𝑃𝑖,𝑗,𝑝 Transitional probability from mode 𝑖 to 𝑗 for path 𝑝, 𝑖, 𝑗 ∈ 𝑀𝑝 

𝑤𝑡,𝑝
𝑖,𝑗

 Normalized probability for mode 𝑖 to 𝑗 for path 𝑝 at time interval 

𝑡, 𝑖, 𝑗 ∈ 𝑀𝑝 

𝑐𝑡,𝑝
𝑗

 Normalization factor for mode 𝑗 for path 𝑝 at time interval 𝑡, 𝑗 ∈

𝑀𝑝 
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�̂�𝑝,𝑙(𝑥, 𝑡0

+ 𝛥𝑡) 

The probability of precipitation for forecasting rainfall category 𝑙 

for location 𝑥  along path 𝑝  at time interval 𝑡0 + 𝛥𝑡  along path 𝑝 

with a certain probability of transition from mode 𝑖 to mode 𝑗 at 

time interval 𝑡0, 𝑖, 𝑗 ∈ 𝑀𝑝 

𝑟𝑝(𝑡) Average rainfall intensity for path 𝑝 at time interval 𝑡 

𝑇𝑝,𝑗
𝑠𝐴(𝑡) Historical path travel time for path 𝑝  from data source 𝑠𝐴  in 

function of time interval 𝑡 under mode 𝑗, 𝑗 ∈ 𝑀𝑝 

𝜇𝑝,𝑗 Expected rate of change of path travel times over time for path 𝑝 

under mode 𝑗, 𝑗 ∈ 𝑀𝑝 

𝜎𝑝,𝑗 The noise of path travel times for path 𝑝 under mode 𝑗, 𝑗 ∈ 𝑀𝑝 

𝜖𝑝 Relaxation rate to the historical mean of rainfall intensity for path 

𝑝 

𝜌
𝑝,𝑟

(𝑡) The normalized cross-correlation coefficient of path travel times 

and rainfall intensity data for path 𝑝  

𝜌
𝑝,�̂�

(𝑡) The normalized cross-correlation coefficient of path travel times 

and FRA for path 𝑝 

𝛽𝑚 Coefficient of the linear effect within category 𝑚 

Parameters 

𝜃 Frequency of rainfall intensity data (i.e., 2 minutes used in the 

thesis) 

𝑃
𝒀𝑝

{𝑠𝐴,𝑠𝑊}  Dimension of vector of observed path travel times 𝒀𝑝
{𝑠𝐴,𝑠𝑊}

  (with 

vehicle classification) for path 𝑝 from data sources 𝑠𝐴 and 𝑠𝑊 

𝐷
𝑻𝑝

{𝑠𝐴,𝑠𝑊}  Dimension of vector of predicted path travel time 𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 for path 

𝑝 based on data sources 𝑠𝐴 and 𝑠𝑊 

𝜌0 Threshold for 𝜌
𝑝,𝑟

(𝑡) (normalized cross-correlation coefficient of 

path travel times and rainfall intensity data for path 𝑝) 

𝑛𝑝𝑎𝑟𝑚𝑜𝑑𝑒𝑙 The number of parameters in the clustering model 

𝑣𝐿𝑂𝑆𝑖,𝑝
 The threshold of average path speed for 𝐿𝑂𝑆𝑖,𝑝 for path 𝑝 

Vectors and matrices 

𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 Vector of observed path travel times (with vehicle classification) 

for path 𝑝  from data sources 𝑠𝐴  and 𝑠𝑊  with dimension of 
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𝑃
𝑻𝑝

{𝑠𝐴,𝑠𝑊}  

𝒀𝑡,𝑝
{𝑠𝐴,𝑠𝑊}

 Vector of observed path travel times (with vehicle classification) 

for path 𝑝 from data sources 𝑠𝐴 and 𝑠𝑊 for time interval 𝑡 

𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 Vector of predicted path travel time for path 𝑝  based on data 

sources 𝑠𝐴 and 𝑠𝑊. 

𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

 Vector of predicted path travel time for path 𝑝  based on data 

sources 𝑠𝐴 and 𝑠𝑊. for time interval 𝑡 

𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} Mean of travel time measurements (with vehicle classification) 

𝒀𝑚,𝑝
{𝑠𝐴,𝑠𝑊}

 from set {𝑠𝐴, 𝑠𝑊} within category 𝑚 for path 𝑝 

𝜮
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} Covariance of travel time measurements (with vehicle 

classification) 𝒀𝑚,𝑝
{𝑠𝐴,𝑠𝑊}

  from set {𝑠𝐴, 𝑠𝑊}  within category 𝑚  for 

path 𝑝 

𝝁�̂�𝑚,𝑝
𝑆  Mean of predicted path travel time (with vehicle classification) 

�̂�𝑚,𝑝
𝑆  within category 𝑚 for path 𝑝 based on set 𝑆 

𝝋𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 Gaussian random vector with 𝑃
𝒀𝑝

{𝑠𝐴,𝑠𝑊}  variates 

𝝋𝐷
𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 Gaussian random vector with 𝐷
𝑻𝑝

{𝑠𝐴,𝑠𝑊}  variates 

𝑻𝑝
{𝑠𝐴,𝑠𝑊}

(𝑡) Vector of path travel times (with vehicle classification) at time 

interval 𝑡 for path 𝑝 from data sources 𝑠𝐴 and 𝑠𝑊 

𝑻𝑝
{𝑠𝐴,𝑠𝑊},+(𝑡) Vector of the posterior estimate (with vehicle classification) of the 

mean of path travel time at time interval 𝑡  for path 𝑝  from data 

sources 𝑠𝐴 and 𝑠𝑊 

𝑻𝑝
{𝑠𝐴,𝑠𝑊},−(𝑡) Vector of the prior estimate (with vehicle classification) of the 

mean of path travel time at time interval 𝑡  for path 𝑝  from data 

sources 𝑠𝐴 and 𝑠𝑊 

𝑷𝑝
{𝑠𝐴,𝑠𝑊},+

(𝑡)

/𝜮𝑝
{𝑠𝐴,𝑠𝑊},+

(𝑡) 

Matrix of the posterior estimate (with vehicle classification) of the 

within-day/day-to-day covariance at time interval 𝑡  for path 𝑝 

from data sources 𝑠𝐴 and 𝑠𝑊 

𝑷𝑝
{𝑠𝐴,𝑠𝑊},−

(𝑡)

/𝜮𝑝
{𝑠𝐴,𝑠𝑊},−

(𝑡) 

Matrix of the prior estimate (with vehicle classification) of the 

within-day/day-to-day covariance at time interval 𝑡  for path 𝑝 

from data sources 𝑠𝐴 and 𝑠𝑊 
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𝛴𝑡,𝑑
𝑠𝐴,+(𝑘, 𝑘′) Matrix of the posterior estimate of the covariance of observed path 

travel times between vehicle classes 𝑘 and 𝑘′ at time interval 𝑡 for 

path 𝑝 from data sources 𝑠𝐴  

𝛴𝑡,𝑑
𝑠𝐴,−(𝑘, 𝑘′) Matrix of the prior estimate of the covariance of observed path 

travel times between vehicle classes 𝑘 and 𝑘′ at time interval 𝑡 for 

path 𝑝 from data sources 𝑠𝐴  

𝑮1 Updating matrix of estimates of mean and covariance of path 

travel times (with vehicle classification) 

𝑮2 Updating matrix of estimates of within-day and day-to-day 

covariance of path travel times of the same vehicle class 

𝑮3 Updating matrix of estimates of covariance of path travel times 

between vehicle classes 

𝒙𝑝 State vector for �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡), 𝑟𝑝(𝑥, 𝑡0), and 𝑇𝑡0,𝑝 for path 𝑝 

𝝁𝑝 Vector of mean of state vector 𝒙𝒙 for path 𝑝 

𝑸𝑝 Covariance matrix of state vector 𝒙𝒙 for path 𝑝 

�̂�𝑡,𝑝
+0,𝑗

 Mixed initial vectors for state vector 𝒙𝒙  at time interval 𝑡  for 

mode 𝑗 for path 𝑝, 𝑗 ∈ 𝑀𝑝 

�̂�𝑡,𝑝
+𝑖  Mixed vectors for state vector 𝒙𝒙 at time interval 𝑡 for mode 𝑖 for 

path 𝑝, 𝑖 ∈ 𝑀𝑝 

�̂�𝑡,𝑝
+0,𝑗

 Mixed initial covariance matrix of state vector 𝒙𝒙 at time interval 

𝑡 for mode 𝑗 for path 𝑝, 𝑗 ∈ 𝑀𝑝 

𝑲 Kalman gain in the Kalman filter  

𝒛𝑡,𝑝 Observation vector for path travel times at time interval 𝑡 for path 

𝑝 

𝑯 Operator for updating vector and covariance matrix 

𝑹 Matrix for errors in the system 

𝝃
𝑇
𝑝,𝑗

𝑠𝐴(𝑡𝑖) 𝑖-th eigenfunction vector of 𝑇𝑝,𝑗
𝑠𝐴(𝑡), which is historical path travel 

time for path 𝑝 from data source 𝑠𝐴 in function of time interval 𝑡 

under mode 𝑗, 𝑗 ∈ 𝑀𝑝 

𝝃𝑟𝑝
(𝑡𝑖)  𝑖 -th eigenfunction vector of 𝑟𝑝(𝑡) , which is average rainfall 

intensity for path 𝑝 at time interval  𝑡 
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1. Introduction 

1.1 Background 

The rapid development of advanced traveler information systems (ATIS) assists 

travelers in understanding traffic conditions promptly to make better travel choices 

(Tam and Lam, 2008). Travel time plays a critical role in ATIS. It is used as a metric 

to evaluate the effectiveness and efficiency of transportation networks and 

disseminated through ATIS to travelers. Path travel time of vehicles is the focus of this 

thesis, where a path is defined as an alternating sequence of nodes and links connecting 

an origin and destination pair of interest in a road network. In order to help road users 

choose the best route for their travel, the ATIS could provide traffic information, such 

as the predicted path travel times in the current and/or future time intervals (Mori et 

al., 2015). 

 

There are two types of path travel times: experienced path travel times and 

instantaneous path travel times. The former is the sum of travel time on each segment 

along the path at the same time interval (Zhong et al., 2017). The latter is the actual 

travel time of a vehicle and cannot be measured until a traveler completes the trip. 

Figure 1.1 gives the trajectory of a vehicle and distinguishes these two terms.  

 

Experienced path travel time is the actual, realized travel time that a vehicle could 

experience along the path. In Figure 1.1, the experienced path travel time of the vehicle 

is 8 min. The instantaneous path travel time is the sum of travel time on each road 

segment at the same 2-minute interval. It is not the actual travel time of any vehicle 

traveling on the path. For example, the instantaneous path travel time at 8:30-8:32 is 

6.5 minutes, which is the sum of 2 minutes, 3 minutes, and 1.5 minutes on each road 

segment, respectively. It can be updated regularly (e.g., every 2 minutes) and is easier 

to disseminate via ATIS to road users. It is noted that the path travel times mentioned 

in this thesis are instantaneous path travel times for real-time ATIS applications (Tam 

et al., 2008; Tam and Lam, 2011). 
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Figure 1.1 Definitions of instantaneous path travel times and experienced path travel 

times 

 

Prediction of instantaneous path travel time can be focused on the current time interval 

(𝑡0) and future time intervals (𝑡1, 𝑡2, …). If 𝑡0 is 8:30-8:32 in Figure 1.1, the research 

output in this thesis is the predicted path travel time �̂�𝑡0,𝑝 on path 𝑝 in the current time 

interval 𝑡0, and predicted path travel time on path 𝑝 in the future time interval (e.g., 

�̂�𝑡1,𝑝 at the future time interval 𝑡1). The former should be close to 2+3+1.5=6.5 min, 

while the latter should be close to 2.1+3.4+1.5=7 min. These instantaneous path travel 

times are to be predicted in this thesis. 
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This thesis focuses on predicting instantaneous path travel time in the current and 

future time intervals. This topic has been studied by both academics (Chen et al., 2020; 

Zhong et al., 2017) and commercial companies such as Google (Derrow-Pinion et al., 

2021) as a state-of-practice method for providing instantaneous traffic information in 

ATIS (Chen and Rakha, 2014). However, the prediction accuracy still needs 

improvement, especially with different sources of traffic data (Bai et al., 2018; Liu et 

al., 2017; Xu and Liu, 2021; Sheng et al., 2023). 

 

Path travel times of vehicles are of paramount importance to both road users and 

transportation management authorities. For road users, accurate and reliable path travel 

times can benefit trip planning and route selection, estimating their arrival times, real-

time navigation, etc. From the perspective of transportation management authorities, 

it is crucial to understand the path travel times, as they are key components of traffic 

management, infrastructure planning, and policy-making. The path travel times can 

directly expose the bottlenecks and congested areas in the road networks. With the path 

travel time information, transportation management authorities could select measures 

and plan more proficiently to alleviate traffic congestion and improve the performance 

of road networks. 

 

In summary, predicting path travel times in the current and future time intervals is an 

essential task for ATIS and has been studied for over two decades (Yang and Qian, 

2019). They rely on collecting multi-source traffic data, including both real-time and 

historical data. The former is obtained on the current day, and the latter is collected 

before the current day. Both are to be integrated and utilized in this thesis. 

1.2 Problem Statement 

This thesis studies the instantaneous path travel time prediction problems for ATIS 

using multiple sources of traffic data and weather information. Three research 

problems are investigated here. The first one is effectively filtering traffic data to 

predict path travel times in current time intervals. The second problem is multi-class 

path travel time prediction in current time intervals. The third problem is integrating 

with weather information for path travel time prediction in future time intervals. The 
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following are detailed descriptions of each of these three problems. 

 

An efficient and effective filtering algorithm is urgently needed for path travel time 

prediction in the context of ATIS. When ATIS provide low-frequency predicted path 

travel time (say, per 30 minutes or 1 hour), the sample sizes of traffic data at 

comparatively low frequency should be sufficient for path travel time prediction.  

 

However, the traffic data may be insufficient when the frequency of traffic data is 

higher. It is reported (Dion and Rakha, 2006) that two or three observations of 

automatic vehicle identification (AVI) data could be collected every 2 minutes in the 

metropolitan area (i.e., San Antonio). For the case in Hong Kong, the sampling rate of 

AVI data per 2-minute interval is even lower. Only AVI data from commercial vehicles 

are allowed to be collected due to privacy issues in Hong Kong. Besides, low traffic 

demand during some periods (e.g., midnight) also contributes to a lower sample size. 

As outliers are to be removed, it is quite challenging to effectively filter out outliers 

and predict path travel times using limited AVI data. 

 

The predicted path travel time provided by existing ATIS is generally the average path 

travel times (or the mean) for the road users. However, a noticeable proportion of 

drivers (e.g., drivers of private cars) may experience another path travel time, which 

deviates significantly from the average path travel times. Therefore, it is demanding to 

predict path travel times by different vehicle classes. As single-source traffic data is 

inadequate for this challenging task, multi-source traffic data should be considered. 

Furthermore, vehicle class information is not always available for all traffic data 

sources at high frequency. Therefore, it is difficult to efficiently integrate these traffic 

data for multi-class path travel time prediction.  

 

The predicted path travel times are greatly needed by road users from ATIS. The typical 

models for travel time prediction analyze the traffic data collected in the present and 

past. However, non-traffic data should be further utilized to improve the prediction 

accuracy of existing prediction models. For areas with frequent rainfall, the weather 

information can be useful for path travel time prediction. It is worthwhile investigating 

the relationships between weather information and predicted path travel times. 
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1.3 Objectives and Scope of the Thesis 

This thesis endeavors to establish a comprehensive framework designed for predicting 

path travel times in the current and future time intervals. It integrates heterogeneous 

traffic data streams and meteorological information for ATIS, as depicted in Section 

1.1. For a path in the research problem presented in Section 1.2, the path travel times 

are correlated with relevant variables relating to time. 

 

The temporal correlation relationships include: 1) path travel times in different time 

intervals within the same day, 2) path travel times in the same time interval on different 

days, 3) path travel times by different vehicle classes, and 4) path travel times and 

weather information. The first three temporal correlation relationships are captured 

through temporal covariance in this thesis for predicting path travel times, while the 

fourth is modeled by introducing the cross-correlation coefficient.  

 

This thesis describes three types of temporal covariance of path travel times by 2-

minute intervals. Table 1.1 gives a summary of these types for clarification. The first 

one is the within-day covariance of path travel times (𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏), which is within-

day covariance of path travel times on day 𝑑 from data source 𝑠𝐴 between time interval 

𝑡𝑎 and 𝑡𝑏, for 𝑎, 𝑏 ∈ 𝛿). The second one is the day-to-day covariance of path travel 

times (𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗), which is day-to-day covariance of path travel times at time interval 

𝑡  from data source 𝑠𝐴  between day 𝑑𝑖  and 𝑑𝑗 , for 𝑖, 𝑗 ∈ 𝐷 ). The third one is the 

temporal covariance of path travel times between vehicle class ((𝛴𝑡,𝑑
𝑠𝐴 (𝑘, 𝑘′), which is 

temporal covariance of path travel times between vehicle class 𝑘  and 𝑘′  at time 

interval 𝑡 on day 𝑑 from data source 𝑠𝐴, for 𝑘, 𝑘′ ∈ 𝐾𝑠𝐴
 ).  

 

Considering the temporal covariance of path travel times by 2-minute intervals is 

essential because it provides a clear explanation for the variations in travel times with 

physical meanings. The temporal covariance can effectively capture the strong 

correlations between travel times under recurrent traffic conditions across specific 

periods (e.g., 8:00-8:02 am) but on different weekdays. 

 

 



1-6 

 

Table 1.1 Summary table of different types of temporal covariance of path travel 

times in this thesis 

Temporal covariance 

of path travel times* 
Notation Description 

1. within-day 

covariance 
𝛴𝑑

𝑠𝐴(𝑡𝑎, 𝑡𝑏) 

within-day covariance of path travel times 

on day 𝑑 from data source 𝑠𝐴 between time 

interval 𝑡𝑎 and 𝑡𝑏, for 𝑎, 𝑏 ∈ 𝛿 

2. day-to-day 

covariance 
𝛴𝑡

𝑠𝐴(𝑑𝑖, 𝑑𝑗) 

day-to-day covariance of path travel times 

at time interval 𝑡 from data source 𝑠𝐴 

between day 𝑑𝑖 and 𝑑𝑗, for 𝑖, 𝑗 ∈ 𝐷 

3. temporal 

covariance between 

vehicle class 

𝛴𝑡,𝑑
𝑠𝐴(𝑘, 𝑘′) 

temporal covariance of path travel times 

between vehicle class 𝑘 and 𝑘′ at time 

interval 𝑡 on day 𝑑 from data source 

𝑠𝐴, for 𝑘, 𝑘′ ∈ 𝐾𝑠𝐴
 

*The descriptions of 2-minute intervals are omitted for simplicity. 

 

These relationships indicate the interdependence and interactions between various 

traffic parameters and weather conditions that can significantly influence travel times. 

The thesis comprehensively considers these relationships for predicting path travel 

times in the current and future time intervals. The scope of this study fits in with the 

operational aspect in that the predicted travel times of the path studied at the current 

and future time intervals can be acquired for ATIS.  

 

The objectives of research in this thesis are: 

1. To effectively capture and model various temporal covariance of path travel 

times by 2-minute intervals, advanced statistical and machine learning 

techniques will be employed. A comprehensive framework is proposed to 

explore the potential of various modeling approaches to accurately represent 

the stochastic nature of path travel times. 

2. The integration of multi-source data presents a unique opportunity to enhance 

the granularity and robustness of path travel time prediction. Traffic data 

sources may include, but are not limited to, point sensors (referring to as video-
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based cameras in this thesis), navigation satellite system sensors (e.g., Global 

Positioning System (GPS) sensors), and AVI sensors. Concurrently, weather 

information, such as rainfall intensity data and weather forecasts, will be 

incorporated to account for their impact on traffic conditions. 

3. The temporal covariance of path travel times by 2-minute intervals listed in 

Objective 1 among these data sources given in Objective 2 will be meticulously 

analyzed to understand the extent to which each variable contributes to the 

variability in path travel times. By identifying and quantifying these 

relationships, the framework aims to improve the precision of path travel time 

predictions, particularly under varying traffic and weather conditions. 

4. The framework will provide timely and actionable information to traffic 

managers and road users through ATIS. The predicted travel time for a path of 

interest in the current time interval (studied in Chapters 3 and 4) and future 

time intervals (investigated in Chapter 5) can facilitate more efficient traffic 

management and enhance the travel experience through informed decision-

making. 

1.4 Thesis Organization 

This thesis consists of six chapters, the structure of which is shown in Figure 1.2. 

Chapter 1 provides a brief introduction and the objectives of the thesis. Chapter 2 

extensively reviews the previous literature on path travel times, traffic data, data 

filtering, and path travel time prediction models.  

 

The core of this thesis includes Chapters 3, 4, and 5. Firstly, traffic data should be 

filtered after collection. Chapter 3 investigates the filtering of limited AVI data and 

effectively uses them for path travel time prediction in the current time interval. 

Chapter 4 extensively considers the multi-source traffic data for predicting path travel 

times by vehicle class in the current time interval. In addition, Chapter 5 incorporates 

non-traffic data (i.e., weather information), including weather forecasts and historical 

rainfall intensity data, to predict path travel times in future time intervals. It integrates 

with non-traffic data sources to improve prediction accuracy. Finally, a conclusion and 

suggestions for further study are given in Chapter 6.  
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Figure 1.2 Thesis structure 

 

The interrelationships between these chapters are presented as follows. 

• Chapter 1 of this thesis lays the necessary background and context for the three 

research problems being addressed in this thesis. It outlines the research 

problem, objectives, and scope of the thesis, which will be illustrated in the 

subsequent chapters. Additionally, this chapter gives the structure and 

Part one. Introduction

Chapter 1

Introduction

Chapter 2

Literature Review

Part two. Filtering real -time travel time data
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Part five. Conclusions
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organization of the thesis to provide a better understanding of the remaining 

chapters. 

• In Chapter 2, a comprehensive overview of previous works related to Chapters 

3, 4, and 5 is shown through a comprehensive literature review. This review 

helps to identify the relevant research gaps and challenges in existing literature. 

It also highlights the motivation for the research that will be introduced in 

Chapters 3, 4, and 5. The contributions of Chapters 3, 4, and 5 are 

distinguished based on the literature review presented in Chapter 2. 

• In Chapter 3, a novel filtering algorithm is displayed for limited AVI data. This 

algorithm is essential during the data preprocessing stage for accurately 

predicting path travel time in the current time interval, as illustrated in Chapter 

4. 

• Chapter 4 demonstrates a modified model for predicting multi-class path travel 

time using multi-source data. The data used in Chapter 4 requires data 

preprocessing using the methodology explained in Chapter 3. The resulting 

predicted path travel times serve as the foundation for addressing the path 

travel time prediction in future time intervals considering weather information, 

which will be tackled in Chapter 5. 

• Chapter 5 focuses on using weather information to improve path travel time 

prediction in future time intervals. This prediction model is further extended 

based on the results obtained from Chapters 3 and 4. 

• Chapters 3, 4, and 5 model different types of temporal relationships of path 

travel times, including within-day and day-to-day covariance of path travel 

times and path travel time covariance between different vehicle classes. 

• Chapter 6 provides concluding remarks for the above chapters and summarizes 

the contributions of the core Chapters 3, 4, and 5. Finally, recommendations 

for further study related to Chapters 3, 4, and 5 are given in Chapter 6. 
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2. Literature  eview 

2.1 Basic Concept 

2.1.1 ATIS 

ATIS have been developed with technological advances in collecting and 

disseminating real-time traffic information (Mori et al., 2015). ATIS diffuse necessary 

messages to road users and administrators for decision-making. It disseminates real-

time information, including traffic and weather conditions, alternative paths or routes, 

temporary road works, on-street parking, etc. (Ng et al., 1995).  

 

Table 2.1 gives a summary of ATIS across the world. Table 2.1 shows that the 

deployment of ATIS is widespread, particularly for smart city development. Moreover, 

the predicted path travel times (instantaneous travel time) are key information 

available across all ATIS (Lee et al., 2006), as listed in Table 2.1. The existing 

prediction methods from commercial companies (e.g., Google) will also be compared 

with the proposed prediction model in Chapter 4. 

 

Appendix A further provides detailed information on typical ATIS across the world. In 

Appendix A, it is found that accurate predicted path travel times in the current and 

future time intervals are of urgent need for ATIS in terms of offering both route 

guidance and an overview of traffic conditions. This is one of the motivations behind 

this thesis. Besides, it is also observed that these ATIS only provide the average 

predicted path travel times while there is a research gap to predict multi-class path 

travel times, which will be further elaborated in Section 4.1.1. It is also seen that 

weather information is available in some ATIS (e.g., 511 Travel Information in the 

USA). It may be worthwhile integrating them to improve the performance of predicted 

path travel times, as explained in detail in Section 5.1.1. 

 

In addition, some ATIS have weather information (including rainfall intensity and 

weather forecast, as shown in Appendix A) that may help road users make their travel 
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choices properly. This indicates that non-traffic information, like adverse weather, can 

also affect traffic conditions and travel behavior. This thesis also considers the effects 

of weather information on path travel time prediction.
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Table 2.1 ATIS across the world 

Service 

providers 
Name of ATIS Related websites Features 

Technology 

used 
Coverage area 

USA 511 Travel Information 

https://ops.fhwa.dot.gov

/travelinfo/about/about5

11.htm 

Instantaneous path 

travel times, 

weather, route 

planning 

Telephone, Web, 

Mobile apps 

Nationwide, with 

regional 

variations 

Google 

company 
Google Maps 

https://www.google.co

m/maps/ 

Instantaneous path 

travel times, route 

planning 

Web, Mobile 

apps 
Worldwide 

Canada 
Traveler Information 

Services 

https://travel.gc.ca/trave

lling/advisories 

Traffic updates, 

border wait times, 

road conditions 

Web, Mobile 

apps 

Nationwide, with 

provincial 

systems 

South 

Korea 
Hi-pass 

https://www.hipass.co.k

r/main.do 

Toll collection, 

traffic information 

Radio-frequency 

identification, 

Mobile apps 

Nationwide 

Japan 

Vehicle Information 

and Communication 

System 

https://www.vics.or.jp/e

n/ 

Traffic congestion, 

accidents, parking 

Radio, Infrared 

beacons, 

navigation 

Major urban 

areas 

https://ops/
https://travel/
https://www/
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systems 

Australia 
Live Traffic NSW 

(New South Wales) 

https://www.livetraffic.

com/ 

Traffic incidents, 

live cameras 

Web, Mobile 

apps 
State-specific  

China eMapGo 
http://www.emapgo.co

m.cn/ 

Traffic conditions, 

route planning, 

navigation 

Web, Mobile 

apps 
Nationwide 

India iTraffic 

https://www.indiamart.c

om/itrafficexports/profil

e.html 

Traffic alerts, route 

planning, congestion 

maps 

Mobile apps, 

SMS 
Major cities 

Brazil 
Companhia de 

Engenharia de Tráfego 

https://www.cetsp.com.

br/ 

Traffic conditions, 

incidents 

Web, Mobile 

apps 

São Paulo and 

other major cities 

South 

Africa 

South African National 

Roads Agency Limited 
https://www.nra.co.za/ 

Traffic updates, road 

conditions, toll 

information 

Web, Mobile 

apps 
Nationwide 

Hong Kong 

Journey Time 

Indication System 

(JTIS) 

https://www.hkemobilit

y.gov.hk/en/traffic-

information/live/jt 

Instantaneous path 

travel times 

Roadside 

markers, web, 

mobile apps 

Major routes of 

the urban area 

https://www/
http://www/
https://www/
https://www/
https://www/
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Table 2.2 lists the common features of ATIS. Travel time is the most popular feature 

as it is intuitive and easily understood by road users. Adverse weather significantly 

affects traffic conditions and influences path travel times. Hence, weather information 

usually raises significant concerns among road users. The thesis mainly focuses on the 

methodology for travel time prediction, considering different issues in practice. The 

rest of the other variables are recommended for investigation in further study. 

 

Table 2.2 Common features in ATIS 

Features Description 

Path travel 

times 

Travel time of vehicles to traverse a path, which is an 

alternating sequence of nodes and links connecting an origin 

and destination pair of interest in a road network. 

Weather 

conditions 

Updates on weather patterns influencing the road network, such 

as fog, rain, snow, and ice. 

Traffic 

conditions 

Real-time data on traffic flow, congestion levels, and vehicle 

speeds on various road segments. 

Incident reports 
Information on accidents, road closures, construction work, and 

other events that may impact travel. 

Road conditions 
Status of the road surface, including potholes, ice, or debris that 

could alter traffic conditions. 

Route guidance 
Recommendations for the best routes to take, considering 

current traffic conditions and user preferences. 

Parking 

information 

Availability of parking spaces at destinations or along the route, 

including pricing and restrictions. 

Public transit 

information 

Schedules, routes, and service status for buses, trains, and other 

public transportation options. 

Toll 

information 
Locations of tolls, associated costs, and payment options. 

Fuel prices 
Information on fuel prices at different service stations along the 

route. 

Charging 

station locations 

For electric vehicles, the locations and availability of charging 

stations. 
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Rest areas and 

amenities 

Locations of rest areas, restaurants, restrooms, and other 

amenities along the route. 

Emergency 

services 

Information on the nearest hospitals, police stations, and 

roadside assistance services. 

Travel alerts 
Notifications about significant events that could impact travel, 

such as major public events or severe weather warnings. 

Multimodal 

options 

Information on alternative transportation modes, such as bike-

sharing or ride-hailing services. 

2.1.2 Travel time 

Travel time is a fundamental concept in the field of transportation, representing the 

duration required to move from one location to another. It serves as a critical metric 

for assessing the efficiency and performance of transportation systems, influencing 

both individual travel choices and broader transportation planning and policy decisions. 

Travel time is not only a key factor in the daily lives of commuters but also a crucial 

parameter for engineers, urban planners, and policymakers aiming to design, evaluate, 

and improve transportation networks. 

 

In road networks, the travel time of vehicles is also known as vehicular travel time. 

This measure is crucial for understanding and analyzing the efficiency and 

performance of road networks and planning and managing traffic flows. According to 

the purposes of different applications, there are three types of vehicular travel times to 

be distinguished, i.e., path travel times, link travel times, and network travel times.  

 

Table 2.3 gives detailed explanations of these travel times for clarification. In the 

context of negotiation systems and ATIS, path travel time is a better indicator for 

providing road users and authorities with the most updated and relevant traffic 

information on their chosen path. As introduced in Section 1.3, this thesis is intent on 

predicting path travel time using multiple sources of traffic data. 
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Table 2.3 Differences between path travel time, link travel time, and network travel 

time 

 Description Factors influencing it 
Typical application 

areas 

Path 

Travel 

Time 

The total time taken to 

travel from an origin to 

a destination along a 

specific route or path, 

including all links and 

intersections along the 

way. 

Traffic congestion, 

traffic control 

devices, road type, 

weather conditions, 

incidents, and driver 

behavior. 

Route planning, 

navigation systems, 

transportation 

modeling, and travel 

demand analysis. 

Link 

Travel 

Time 

The time required to 

travel from one end of 

a roadway segment or 

link to the other, not 

including the time 

spent at intersections 

or junctions. 

Link length, speed 

limits, link capacity, 

traffic density, 

presence of traffic 

signals or stop signs. 

Traffic simulation, 

network analysis, 

performance 

measurement, and 

congestion 

management. 

Network 

Travel 

Time 

The time to travel 

across a network from 

one point to another, 

considering all 

possible paths and the 

overall conditions of 

the network. 

Network topology, 

overall traffic 

conditions, 

distribution of 

congestion, 

incidents, and traffic 

management 

strategies. 

Network 

optimization, 

system-wide traffic 

studies, strategic 

planning, and 

emergency response 

planning. 

2.1.3 Covariance of travel time 

There are temporal and spatial covariance of travel times studied in the past decades 

(Chan et al., 2009; Tani et al., 2020; Fu et al., 2022). The former pertains to the 

variability of travel times across different periods for the same route or network. It 

captures how travel times fluctuate over time, reflecting the dynamic nature of traffic 

conditions. The latter one, on the other hand, deals with the correlation of travel times 
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across different routes or locations within a network. It provides insights into how 

travel times in one part of the network relate to those in another (Pan et al., 2013). 

 

Considering the spatial covariance of path travel times is advantageous for capturing 

the interdependencies between different routes and understanding congestion 

propagation. It can enhance the predictive accuracy of travel time in complex traffic 

networks. However, it can increase model complexity and data sparsity issues (Chan 

et al., 2009; Ma et al., 2018a). In contrast, temporal covariance is beneficial for short-

term forecasting and capturing dynamic traffic patterns over time, but it can overlook 

spatial factors (Li et al., 2012; Zhong et al., 2017). Generally, integrating both spatial 

and temporal covariances can provide a more holistic and precise approach to travel 

time prediction. 

 

As introduced in Section 1.3, three types of temporal covariance of path travel times 

are mainly used for predicting path travel times. In this thesis, the study paths are 

mainly trunk roads or expressways. They have fewer alternative routes compared to 

other road types. Hence, the spatial covariance of path travel times between alternative 

paths is insignificant and not the primary focus of this study. Some papers considered 

spatial covariance of link travel times frequently (Li et al., 2012; Stathopoulos and 

Karlaftis, 2001; Tam and Lam, 2011) instead of path travel times. The prediction of 

link travel times considering their spatial covariance is recommended for further study.  

2.2 Categories of Traffic Sensors for Data Collection 

Traffic sensors play an important role in ATIS for obtaining different types of traffic 

data. Multi-source traffic data are collected from various traffic sensors. Each of these 

traffic sensors may provide at least one data source for path travel time information. 

According to the categories of traffic sensors set by Mori et al. (2015), point-to-point 

sensors and point sensors are used to gather various traffic data. They are thus integral 

components of ATIS. Point-to-point, such as AVI and GPS (similarly Bei Dou) sensors 

measure the travel times of vehicles passing through a specific road section. In contrast, 

point sensors detect traffic conditions (e.g., spot speed and flow) at specific locations 

installed with the sensors.  
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There are several categories of traffic sensors. The difference in measurement type 

leads to various practical applications of these traffic sensors, as shown in Table 2.4. 

It should be noted in the following table that the traffic sensors are used in the thesis. 

The point sensor refers to the video-based cameras used to collect point speed data in 

the remaining contents of the thesis. 

 

Table 2.4 Various traffic sensors and their practical applications 

Categorization Traffic sensor Measurement type Practical application 

Automatic 

vehicle 

identification 

sensor 

 adio-

frequency 

identification 

Point-to-point 

information for 

identified vehicles 

(e.g., travel time 

and flow data). 

Tolling; vehicle tracking; 

access control (e.g., 

parking) 

Automatic 

license plate 

recognition 

Vehicle classification; 

traffic count estimation 

Point sensor 
Video-based 

camera 

Vehicle counts and 

point speed 

Detecting vehicles across 

multiple lanes, classifying 

them based on length, and 

providing data on vehicle 

presence, flow rate, 

occupancy, and speed for 

each vehicle class. 

Navigation 

satellite 

system sensor 

Global 

positioning 

system 

Semi trajectory of 

monitored vehicles 

(e.g., speed and 

location) 

Navigation; fleet tracking; 

traffic management; public 

transportation 

 

The details of the technology adopted for traffic sensors are as follows. 

2.2.1 AVI sensors 

There are various AVI sensors, such as radio-frequency identification (RFID) tag 

readers, automatic license plate recognition (ALPR) cameras, Bluetooth media access 

control (MAC) address readers, infrared sensors, barcode scanners, and dedicated 
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short-range communications (DSRC) sensors. The subsequent paragraph will illustrate 

the corresponding technology item by item.  

 

RFID technology utilizes radio waves to recognize and track objects of interest. It 

consists of a small chip or tag attached to the object of interest, and a reader emitting 

radio waves to communicate with the tag. When the tag comes within range of the 

reader, it transmits its unique identification information, allowing the reader to identify 

and track the object. The RFID tag readers to be mentioned in Chapter 3 are installed 

at the roadside, while the RFID tags are equipped at the front of vehicles. Therefore, 

vehicles with RFID tags can be tracked by RFID tag readers. 

 

RFID has four benefits. First, RFID systems can automatically detect and track items 

without manual scanning, leading to increased efficiency and reduced labor costs. 

Second, RFID technology provides accurate and reliable data capture, minimizing 

errors associated with manual data entry. Third, RFID tags can be attached to various 

objects, including assets, inventory, and vehicles, making the technology suitable for 

various industries and applications. Fourth, RFID systems can be integrated with 

access control systems to enhance security and prevent unauthorized access to 

restricted areas or assets. 

 

RFID technology has many applications, including automatic vehicle identification, 

inventory management, access control, and supply chain management. It offers several 

advantages, such as the ability to read multiple tags simultaneously, work in harsh 

environments, and track items without line-of-sight. Due to its efficiency and accuracy 

in tracking and recognizing objects, RFID technology has become increasingly 

popular in various industries.  

 

ALPR is a technology that uses optical character recognition to read and recognize 

images of license plates on vehicles automatically. It typically consists of cameras, 

software, and databases that work together to detect and track vehicles based on their 

license plate information.  

 

ALPR systems use specialized cameras to capture high-quality license plate images, 
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even in varying lighting and weather conditions. These cameras are often mounted on 

fixed structures such as poles or gantries. The captured images of license plates are 

processed using optical character recognition software. The software can recognize 

and extract the alphanumeric characters from the plate. This allows the system to 

convert the visual data into machine-readable text. The system can also be integrated 

with other databases to provide additional context, such as vehicle registration 

information. They are to be used in Chapters 4 and 5. 

 

ALPR technology has a wide range of applications, including law enforcement, toll 

collection, parking management, and traffic monitoring. It offers several benefits, such 

as the ability to read license plate data, automate the process of spotting vehicles, and 

enhance security and surveillance capabilities quickly and accurately. In law 

enforcement, ALPR technology can discover stolen vehicles, locate vehicles 

associated with criminal activity, and enforce traffic laws. In toll collection and parking 

management, ALPR systems can automate the detection and billing of vehicles, 

improving efficiency and reducing the need for manual intervention. 

 

Bluetooth technology is a wireless communication standard that allows electronic 

devices to link and exchange data over short distances. It operates on the 2.4 to 2.485 

GHz frequency band and is commonly used for connecting devices such as 

smartphones, tablets, laptops, and peripherals like keyboards, mice, and headphones. 

Bluetooth technology has evolved over the years, with the latest version being 

Bluetooth 5.2, offering improved range, speed, and data capacity. 

 

Bluetooth technology for AVI purposes involves using Bluetooth-enabled devices to 

recognize and track vehicles. Bluetooth is a wireless technology that enables short-

range communication between devices, making it suitable for AVI applications in 

various scenarios. Bluetooth sensors can detect Bluetooth-enabled vehicles by 

identifying vehicles’ MAC addresses. Bluetooth technology offers a balance between 

range and accuracy. Hence, it enables applications where vehicle identification is 

within a specific proximity. The range can be adjusted based on the specific 

requirements of the AVI system. 
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Bluetooth technology can be used for electronic toll collection, parking management, 

and access control systems. It allows for seamless vehicle identification and tracking 

without the need for physical interaction, enhancing the efficiency of AVI processes. 

 

Infrared technology is a wireless communication method that uses infrared light to 

transmit data between devices. Infrared light is a type of electromagnetic radiation with 

wavelengths longer than visible light but shorter than radio waves. Infrared technology 

has been widely used in various applications, including remote controls, data 

transmission, and sensing. Infrared sensors can be used to detect the presence of 

vehicles as they approach a specific point, such as a toll booth or a parking gate. When 

a vehicle interrupts the infrared beam, the sensor registers the presence of the vehicle, 

triggering the AVI system to capture and process the vehicle’s identification 

information. 

 

Infrared technology transmits data wirelessly between devices, such as remote controls 

for TVs, DVD players, and other consumer electronics. It can also be used for short-

range communication between devices, such as smartphones, tablets, and laptops. 

Infrared communication typically requires a direct line of sight between the 

transmitting and receiving devices. This means that obstacles such as walls or objects 

can block data transmission. However, some infrared systems use reflection or 

bouncing of the infrared signal to overcome this limitation. Infrared communication 

can offer a degree of security, as the signal is less likely to be intercepted by 

unauthorized devices outside the line of sight. However, it is still important to 

implement encryption and other security measures for sensitive data transmission. 

 

Infrared technology has been widely used in consumer electronics for remote control 

applications. It allows users to wirelessly control devices from a distance, making it a 

convenient and widely adopted technology for home entertainment systems and other 

appliances. While infrared technology offers advantages such as low power 

consumption and low cost, it has limitations related to its line-of-sight requirement and 

relatively short range compared to other wireless technologies like Bluetooth or Wi-

Fi. 
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Barcode scanning is a technology that involves using optical scanners or cameras to 

read and decode information stored in barcodes. Barcodes are visual representations 

of data consisting of parallel lines or geometric patterns, and they are widely used for 

product identification, inventory management, and various other applications. Barcode 

scanning can also be used for vehicle access control, parking management, and toll 

collection. Barcodes on vehicle permits or tickets can be scanned at entry and exit 

points to detect and track vehicles as they pass through AVI checkpoints. 

 

There are several barcodes, including linear barcodes (UPC and EAN codes) and two-

dimensional barcodes (QR codes and Data Matrix codes). Each type of barcode has its 

own structure and encoding method. Barcode scanning can be performed using 

dedicated handheld scanners, mobile devices with built-in cameras, or stationary 

scanners integrated into retail checkout counters, warehouses, and other locations. 

These devices capture the barcode image and use software to decode the information. 

When a barcode is scanned, the scanner captures the visual pattern of the barcode and 

converts it into a digital signal. The encoded data, such as product codes, serial 

numbers, or other information, is then extracted from the barcode and transmitted to a 

computer or database for processing. 

 

Barcode scanning is widely used in retail for inventory management, point-of-sale 

transactions, and product tracking. It is also used in logistics and supply chain 

management to track shipments and improve order accuracy. Additionally, barcodes 

are used in healthcare, ticketing, asset tracking, and other industries. Barcode scanning 

offers several advantages, including speed and accuracy in data capture, ease of 

implementation, and cost-effectiveness. It provides a standardized method for 

identifying and tracking items, reducing errors, and improving operational efficiency. 

 

However, barcodes require a direct line of sight between the barcode scanner and the 

barcode label. Moreover, barcodes can be affected by environmental factors such as 

dirt, damage, or weather conditions. Besides, traditional 1D barcodes have limited data 

capacity, which may not be sufficient for storing extensive vehicle identification 

information. While 2D barcodes can store more data, they still have limitations 

compared to other identification technologies, such as RFID or license plate 
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recognition. These limitations make them less suitable for high-speed, high-traffic, or 

challenging environmental conditions. 

 

DSRC is a wireless communication technology designed for vehicle-to-vehicle (V2V) 

and vehicle-to-infrastructure (V2I) communication. It operates in the 5.9 GHz band 

and is specifically developed for automotive and transportation applications. DSRC 

enables vehicles and roadside infrastructure to exchange information, such as safety 

warnings, traffic management data, and other relevant information to improve road 

safety and traffic efficiency. 

 

DSRC technology is subject to regulatory standards and requirements, with specific 

protocols and communication standards defined to ensure interoperability and 

compatibility across different vehicle and infrastructure implementations. Moreover, 

DSRC technology is expected to be deployed in autonomous vehicles, as it provides a 

means for vehicles to communicate with each other and infrastructure to support 

cooperative driving and decision-making. 

 

DSRC offers high-speed, low-latency communication with robust security features, 

making it well-suited for specific AVI applications. However, its limitations in range, 

line-of-sight requirements, and infrastructure costs should be carefully considered 

when evaluating its suitability for specific AVI deployments. 

 

Table 2.5 gives a description summary of these AVI sensors. In general, these 

technologies play a crucial role in modern traffic management systems, offering 

unique benefits for tracking, identifying, and analyzing vehicle movements. However, 

their effectiveness can vary based on the application, environmental conditions, and 

the existing infrastructure. Hence, the sample size and accuracy of AVI data are 

different for each technology. Appendix B gives photographs and weblinks for 

different AVI sensors for further information. 

 

 

 

 



2-15 

 

Table 2.5 Description summary of AVI sensors 

Technology Key Features Advantages Limitations 

 FID tag 

readers 

Use radio waves to 

read data from RFID 

tags attached to 

vehicles. 

-High read accuracy 

-Fast processing 

-Work in various 

weather conditions 

- Needs vehicles to 

have RFID tags 

- Limited read 

range 

ALP  

cameras 

Use optical character 

recognition on images 

to read vehicle 

registration plates. 

-Can track vehicles 

without requiring 

pre-installed tags 

-Useful for law 

enforcement and toll 

collection 

- Susceptible to 

errors due to poor 

lighting or 

obstructions 

- Privacy concerns 

Bluetooth 

MAC 

address 

readers 

Identify and record the 

MAC addresses of 

Bluetooth devices in 

passing vehicles. 

-Obtain travel times 

and traffic flow 

-Non-intrusive 

- Limited range 

- Privacy concerns 

regarding tracking 

Infrared 

sensors 

Detect vehicle 

presence and count 

vehicles by emitting 

and detecting infrared 

light. 

-Work in various 

lighting conditions 

-Low maintenance 

- Limited to 

presence detection 

and counting 

- Can be affected 

by environmental 

conditions 

Barcode 

scanners 

Read barcodes (e.g., on 

tickets or passes) for 

access control and 

payment processing. 

-Quick processing of 

vehicles with 

barcoded passes 

- Accurate 

- Demands vehicles 

to have a barcode 

- Limited to 

controlled access 

points 

DSRC 

sensors 

Enable communication 

between vehicles and 

roadside infrastructure 

using short-range radio 

signals. 

- Supports V2I 

communication 

- Can enhance safety 

and traffic efficiency 

- Requires DSRC 

equipment in 

vehicles and on 

infrastructure 

- Limited range 
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For identifiers that are installed at vehicles, the sample size of AVI data is constrained 

by the number of identifiers. For example, not all vehicles are installed with RFID tags, 

while all vehicles have license plates. Therefore, the sample size of AVI data collected 

by RFID technology can be less than ALPR technology. For identifiers that commonly 

appear in both vehicles and people (e.g., Bluetooth), the corresponding sensors can 

gather records from both vehicles and people. Hence, the sample size can be quite 

large, but only a small number belong to vehicles on the road. Therefore, the models 

for predicting path travel times fully consider this issue.  

 

The choice of AVI technology in ATIS often depends on the balance between the need 

for accuracy, privacy considerations, cost, and the specific traffic management or 

monitoring system requirements. Furthermore, it is worthy of mentioning RFID and 

ALPR technology in the existing AVI system of Hong Kong. This thesis mainly uses 

AVI data from these two technologies. RFID technology is applied in the JTIS and the 

current tolling system of urban road networks in Hong Kong. ALPR cameras are 

deployed in the Speed Map Panels System (SMPS) for data collection.  

 

Due to their properties, ALPR cameras can gather more data than RFID technology. It 

is noted that RFID technology is used in Chapters 3 and 5, while ALPR technology is 

adopted in Chapters 4 and 5. Both JTIS and SMPS provide the average predicted path 

travel time of all vehicles, and the predicted results have been validated to exhibit 

satisfactory performance (Tam and Lam, 2011b, 2013). Therefore, they are used for 

validation purposes in the thesis. 

 

2.2.2 Point sensors 

Point sensors are set in fixed points on roads and collect traffic variables for specific 

locations. Traditional point sensors are inductive loop sensors embedded in the road 

surface. They are designed to detect the presence of vehicles by measuring changes in 

inductance as a vehicle passes over the loop. 

 

The inductive loop sensor consists of a loop of wire embedded in the pavement, 

typically in a rectangular or diamond shape. When an alternating current is passed 
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through the loop, it generates a magnetic field. When a vehicle with a metal component, 

such as the body of the car, passes over the loop, it disrupts the magnetic field, causing 

a change in inductance. This change is then detected by the sensor, indicating the 

presence of a vehicle. 

 

Inductive loop sensors are known for their reliability and accuracy in detecting 

vehicles, making them a popular choice for traffic management systems. When 

properly installed and maintained, inductive loop sensors are durable and can 

withstand heavy traffic and harsh environmental conditions. Moreover, they are 

relatively cost-effective compared to other vehicle detection technologies, making 

them a practical choice for many traffic management systems. 

 

There are single-loop sensors and double-loop sensors (Mori et al., 2015). Single-loop 

inductive sensors consist of a single loop of wire embedded in the road surface. They 

are primarily used for essential vehicle detection, such as detecting the presence of a 

vehicle at a traffic signal or intersection. Single-loop sensors are typically used for 

simple vehicle presence detection and are not as effective in providing detailed 

information about the size or speed of the vehicle.  

 

Double-loop inductive sensors consist of two separate loops of wire embedded in the 

road surface, typically arranged in a rectangular or diamond shape. They are used for 

more advanced vehicle detection and can provide additional information such as 

vehicle length, speed, and direction of travel. Double loop sensors are often used for 

more complex traffic management systems, such as traffic signal control, vehicle 

classification, and traffic flow monitoring. 

 

Besides, acoustic sensors use sound waves to detect and monitor various physical 

phenomena. In the context of transportation and traffic management, acoustic sensors 

are used to discover and analyze vehicle presence, movement, and traffic patterns. 

These sensors operate by emitting sound waves and then analyzing the reflected waves 

to determine the presence and movement of vehicles. When a vehicle passes through 

the area monitored by the acoustic sensor, it creates disturbances in the sound waves, 

which are then detected and inspected to furnish information about the vehicle’s speed, 
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direction, and size. 

 

Acoustic sensors are commonly used in traffic management systems for applications 

such as traffic monitoring, vehicle counting, and speed measurement. They are often 

deployed in urban areas, highways, and tunnels to gather real-time traffic flow data 

and aid in traffic management and control. 

 

One of the advantages of acoustic sensors is their ability to impart accurate and reliable 

data in various weather conditions, including rain, fog, and snow, making them suitable 

for use in diverse environments. Additionally, acoustic sensors are non-intrusive and 

do not require physical contact with vehicles, which can be advantageous in specific 

traffic monitoring applications. 

 

Remote traffic microwave sensors (RTMS) are advanced traffic monitoring devices 

that utilize microwave technology to detect vehicles on roadways. These sensors are 

designed to provide real-time data on traffic volume and speed, making them valuable 

tools for traffic management and control. RTMS operate by emitting microwave pulses 

and analyzing the reflections to spot and monitor vehicles. When a vehicle passes 

through the monitored area, it causes a disturbance in the microwave signals, which 

can be analyzed to determine the vehicle’s speed, length, and presence. RTMS can also 

supply traffic density, occupancy, and flow patterns. 

 

RTMS are typically installed along highways, urban streets, and intersections, where 

they can gather comprehensive traffic data without physical contact with vehicles. 

RTMS devices are often used by transportation agencies and city planners to optimize 

traffic flow, improve safety, and make informed decisions regarding road infrastructure 

and traffic management. 

 

One of the key advantages of RTMS is its ability to furnish accurate and reliable traffic 

data in various weather conditions and lighting environments. Additionally, RTMS 

sensors are non-intrusive and do not need physical installation in the road surface, 

making them easier to deploy and maintain compared to traditional in-road sensors.  
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In recent years, video-based cameras have been used as point sensors. These cameras 

are equipped with sophisticated technology to read and evaluate real-time traffic data, 

providing valuable insights for traffic engineering, urban planning, and infrastructure 

management. The camera system typically consists of high-resolution cameras, image-

processing software, and communication interfaces. These cameras are strategically 

installed at intersections, highways, and urban roadways to capture video footage of 

traffic movements, vehicle counts, and other relevant data. 

 

The cameras use advanced image processing algorithms to detect and track vehicles, 

measure traffic flow, and analyze traffic patterns. Information on vehicle speed and 

occupancy, traffic violations, and incidents are stored in the database. The data 

collected by cameras is used to optimize traffic signal timing, improve traffic flow, and 

enhance roadway safety. 

 

One key advantage of these cameras is their ability to provide accurate and reliable 

traffic data. They are robust in various environmental conditions, including day and 

night, adverse weather, and varying light conditions. The cameras can capture high-

quality images and videos, allowing for detailed traffic behavior and pattern analysis. 

In this thesis, the point sensors deployed in JTIS and SMPS are video-based cameras.  

 

Table 2.6 summarizes the different technologies applied to point sensors. In practice, 

the choice of technology often depends on the specific requirements of the traffic 

monitoring project, including the level of detail needed, environmental conditions, 

installation and maintenance costs, and potential scalability. Appendix B provides 

photographs and weblinks for various point sensors for illustration. This thesis uses 

point sensor data from video-based cameras to predict path travel times.  

 

Though point sensor data have no vehicle class information, they can gather the 

average speed of all vehicles that pass through the locations of point sensors in a 

specific time interval. As shown in Table 2.6, the video-based cameras enable rich data 

collection, which supports multi-class path travel time prediction, as illustrated in 

Section 4.3.1. 

 



2-20 

 

Table 2.6 Summary of different technologies applied to point sensors with their 

advantages and limitations 

Technology Characteristics Advantages Limitations 

Single-loop 

sensors 

Consist of a single 

loop of wire 

embedded in the 

roadway surface, 

connected to a 

sensor.  

- Simple installation 

- Cost-effective 

- Reliable for vehicle 

detection 

- Limited data 

(primarily presence 

and count) 

- Can be damaged by 

roadway maintenance 

Double-

loop 

sensors 

Comprise two 

closely spaced 

loops of wire 

embedded in the 

roadway 

- Differentiate 

between vehicle 

classes 

- More accurate speed 

and length 

measurement 

- More expensive to 

install than single-

loop 

- Susceptible to 

similar physical 

damage 

Acoustic 

sensors 

Use microphones 

to detect sound 

waves generated 

by vehicles. 

- Non-intrusive 

installation 

- Perform well in a 

variety of weather 

conditions 

- Noise pollution can 

influence accuracy 

- May need calibration 

for different 

environments 

Remote 

traffic 

microwave 

sensors 

(RTMS) 

They can be 

mounted on poles 

or overhead 

structures. 

- Provide speed, 

volume, and 

occupancy 

- Non-intrusive and 

unaffected by lighting 

or weather conditions 

- More expensive than 

inductive loop sensors 

- Requires line-of-

sight to the target area 

Video-

based 

cameras 

(used in 

the thesis) 

Capture and 

analyze traffic 

video for vehicle 

detection using 

image processing. 

- Versatile and can 

collect counts, speed, 

and behavior analysis 

- Flexible installation 

options 

- Need significant 

processing power 

- Performance can be 

changed by lighting, 

weather, and 

occlusion 
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2.2.3 Navigation satellite system sensors 

GPS and BeiDou are popular satellite-based positioning systems. They provide 

accurate location and timing information for various applications, including navigation, 

mapping, and geospatial data collection. GPS is a satellite navigation system 

developed by the United States government. GPS sensors receive signals from a 

network of satellites orbiting the Earth. They use the timing and positioning 

information from these satellites to determine the receiver’s location, velocity, and 

time. GPS sensors are widely used in automotive navigation systems, smartphones, 

aviation, marine navigation, surveying, and other location-based applications (Jang et 

al., 2023). They capture accurate positioning information, typically with an accuracy 

of a few meters, and are essential for modern navigation and location-based services. 

 

BeiDou navigation satellite system is a global satellite navigation system established 

by China. Similar to GPS, BeiDou sensors receive signals from a constellation of 

satellites to determine the receiver’s position, velocity, and timing. The BeiDou system 

provides global coverage and is designed to offer high-precision positioning services. 

It is employed for various applications, including transportation, surveying, mapping, 

and timing synchronization. BeiDou sensors are widely used in China and other 

countries, which offers an alternative or complementary positioning solution to GPS. 

 

GPS and BeiDou sensors are crucial in providing accurate and reliable positioning and 

timing information. They contribute to a wide range of applications, including 

navigation, transportation, surveying, and location-based services. These satellite-

based positioning systems have become integral components of modern technology. 

They enable precise and efficient location determination across various industries and 

sectors. 

2.3 Types of Traffic Data for Path Travel Time Prediction 

Several types of traffic data are gathered from different categories of traffic sensors, 

as elaborated in Section 2.2. These traffic data can be used for path travel time 

prediction, which will be explained in this section.  
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2.3.1 Travel time data 

The timestamps of vehicles entering and leaving the study path can be collected from 

AVI sensors. The difference between these timestamps is the observed path travel time, 

as mentioned in Section 2.2.1. It is mostly used for path travel time prediction. Over 

the past two decades, AVI data has been increasingly explored for use in ATIS. 

Through AVI sensors, a vehicle passing an AVI sensor with its specific identifiers (e.g., 

RFID tags for RFID tag readers and license plate numbers for ALPR cameras) and the 

corresponding timestamp can be recorded. These data from successive AVI sensors are 

matched to the vehicle and used to calculate its travel time (Zhou and Mahmassani, 

2006; Ahmed and Abdel-Aty, 2012; Chow et al., 2014; Soriguera and Martinez-DIaz, 

2021), which is denoted as AVI data.  

 

AVI data contains the timestamps of vehicles entering and leaving a path equipped 

with AVI sensors at both ends. The observed path travel time is calculated as the 

difference between these two timestamps. Appendix C shows a sample data format of 

AVI data. Figure 2.1 in Section 2.3.4 will further give a graphical illustration of 

timestamps with symbols and their relationships with observed path travel times. The 

locations of AVI sensors are also called checkpoints, while travel time between 

adjacent checkpoints can be obtained from AVI data (Qi et al., 2024). The vehicle class 

information is also contained in AVI data. When travel time distribution varies by 

vehicle class, it is interesting to predict path travel times by vehicle class. 

2.3.2 Speed and flow data 

The speed and flow data collected from point sensors (also referred to as point sensor 

data in the thesis), as explained in Section 2.2.2, can be used to acquire the observed 

path travel times indirectly. Point sensor data are most widely used in ATIS (Mori et 

al., 2015) to provide traffic measurements regarding flow, occupancy, and speed. The 

spot speed as well as vehicular flow data have a wide application for ATIS, including 

traffic speed prediction, travel time prediction, modeling of travel time distribution, 

travel time prediction, incident detection, etc. (Han et al., 2010; Zhang, 2006; 

Chalumuri and Yasuo, 2014; Liu et al., 2005; Ye et al., 2011).   

 

From the perspective of path travel time prediction, owing to the many vehicles that 
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pass through at locations with point sensors, a database may store speed data and flow 

at an aggregate level (i.e., the average speed and flow in a fixed time interval). Point 

sensor data cannot track individual vehicles unless other data sources are used 

simultaneously (e.g., Hyun et al. (2017), which tracked the trunks with point sensor 

data and weigh-in-motion data). Vehicle class information is not always available for 

point sensor data in practice, although speed data are indirectly converted to the path 

travel time of vehicles for prediction (Soriguera and Martinez-Diaz, 2021; 

Yildirimoglu and Geroliminis, 2013). Appendix C gives a sample data format of point 

sensor data used in this thesis. 

2.3.3 Navigation satellite system data 

GPS data are the backbone of several location-based ATIS applications, such as route 

guidance and map services (Sharath et al., 2019). The trajectories of each probe vehicle 

that can be obtained from GPS sensors, which comprise data of the vehicle speed, 

acceleration, and location, are gathered every few seconds to every few minutes. A 

vehicle's trajectory can be tracked from its entry point to its exit point on a path or 

corridor, which determines the vehicle's path travel time.  

 

Owing to the uncertain sampling rate and the sparsely distributed sampling points, both 

the spot speeds reported by vehicles and the converted travel times of short segments 

require further investigation (Hofleitner et al., 2012; Ma et al., 2022; Moreira-Matias 

et al., 2016; Tang et al., 2018; Yin et al., 2015; Zhong et al., 2017). Vehicle class 

information is also available for GPS data as such data are generally collected among 

a particular class of vehicles. The sample data format of GPS data used in Chapter 4 is 

provided in Appendix C. 

 

Similar to GPS, BeiDou Navigation Satellite System is also one of the four largest 

Global Navigation Satellite Systems in the world. The license plate number, trajectory, 

vehicle class, and speeds can be acquired for vehicles installed with BeiDou 

Navigation Satellite System. Numerous types of research have been conducted using 

BeiDou data in the transportation field, including traffic prediction (Wei et al., 2019; 

Zhao et al., 2019), driving behavior analysis (Sun et al., 2016; Yang et al., 2021a), lane 

changing studies (Ma et al., 2021, 2022).  
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2.3.4 Summary of traffic sensors and traffic data 

The summary table of traffic sensors is given in Table 2.7. Both AVI and navigation 

satellite system data sensors directly gauge the travel times of vehicles between two 

specified locations. In contrast, point sensors indirectly provide the travel times of 

vehicles through speed measurements. The AVI data offers the experienced path travel 

times of vehicles with the vehicle class information at the stationary locations installed 

with AVI readers. However, as depicted in Section 2.3.1, the sample size of the AVI 

data per time interval used in the thesis (i.e., 2-minute) can be small for the prediction 

of path travel times in the current and future time intervals.  

 

Table 2.7 Summary of different types of traffic data 

Traffic data Data Advantages Disadvantages 

AVI data 

Timestamps 

of vehicles, 

vehicle 

class 

Experienced path travel 

time; vehicle class 

information of all 

vehicles (tolling purposes 

requiring vehicle class 

information) 

Low sampling rate, e.g., 

small sample size per 

time interval (Dion and 

Rakha, 2006) 

Point sensor 

data 

Spot speed, 

flow 

Average speed of 

vehicles 

No vehicle class 

information (Soriguera 

and Robusté, 2011a) 

Navigation 

satellite 

system data  

Timestamps 

of vehicles, 

vehicle 

class, speed 

Vehicle class information 

available for tracked 

vehicles 

Trajectories need more 

data processing 

procedures (Wang et 

al., 2021a) 

 

Navigation satellite system datasets consist of mobile data points compared to 

stationary AVI data. However, the trajectory of vehicles tracked with GPS data is not 

exactly the same as the selected path installed with AVI sensors at both ends. Point 

sensor data have accurate speed measurements for all vehicles passing through 

locations equipped with point sensors, but the spatial features of vehicle trajectories 

are unavailable from point sensors. Furthermore, vehicle class information is also 
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unobtainable from point sensor data. These three data sources should be fully utilized 

when performing multi-class path travel time prediction, which is to be illustrated in 

Section 4.3. 

 

Figure 2.1 presents a schematic example of various traffic sensing systems commonly 

used in ATIS. A GPS-equipped truck with an AVI identifier travels along path 𝑝 on day 

𝑑. A pair of AVI sensors is installed at origin 𝑥𝑜𝑝 and destination 𝑥𝑑𝑝 of path 𝑝. When 

this truck travels along this path, both AVI sensors and GPS sensors will track this 

truck with the identification number (say 10001 for AVI sensor and 18000 for GPS 

sensor).  

 

 

Figure 2.1 A schematic example of various traffic sensing systems commonly used in 

ATIS 

 

For the AVI sensor, the observed path travel time of vehicle 10001 (i.e., 19.2 min) can 

be obtained by the difference between these two timestamps. The timestamps of 

vehicle 10001 with vehicle class 2 (which represents truck) traversing path 𝑝 on day 

𝑑  at location 𝑥𝑜𝑝  and 𝑥𝑑𝑝  are collected from AVI sensors (i.e., 𝜏
10001,𝑑,𝑥𝑜𝑝 ,𝑝

𝑠𝐴,2   and 

𝜏
10001,𝑑,𝑥𝑑𝑝 ,𝑝

𝑠𝐴,2
) and shown in Figure 2.1. It should be noted that AVI sensors in this 

example are ALPR cameras. They will be used in numerical experiments in Chapter 4 

and empirical tests in Chapter 5 correspondingly. 
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For GPS sensors, three observed data points are allocated on path 𝑝, with the location, 

timestamp, vehicle ID by GPS sensors (i.e., 18000), and the instantaneous speed of 

vehicle 18000. The trajectory of vehicle 18000 captured by the GPS sensor can 

indirectly infer the experienced travel time of vehicle 18000 on path 𝑝. 

 

For point sensors (video-based cameras), in the studied time interval 𝑡 (i.e., 16:18:00-

16:20:00, indexed by 1), there are 29 and 33 vehicles pass through two point sensors, 

respectively. Their average speed is 67 km/h. Obviously, the studied truck is not 

measured by these two point sensors at time interval 𝑡 = 1. However, the predicted 

path travel time from point sensors at time interval 𝑡 = 1 can still provide a reference 

to verify the validity of observation 10001 in the database of AVI sensors and 

observation 18000 in the dataset from GPS sensors. 

 

In summary, the AVI data are sparse over time intervals, while they are regularly 

collected for the point sensor data. The GPS data are randomly distributed in time and 

space. In this thesis, all information will be integrated to predict path travel times. 

2.4  eview of Filtering Algorithms for Different Types of Traffic 

Data 

For different types of traffic data, invalid data or outliers are to be filtered out. It is 

essential as the amount of these invalid data or outliers can be significantly large. The 

predicted path travel times would be biased without removing these data. Fixed-value 

filters and float filters are designed for AVI data collected from different road types. 

The fixed-value filter is generally applied for point sensor data. The filtering process 

is relatively simple as no data identification problem is encountered. GPS data needs 

more spatial considerations as the locations of GPS sensors are dynamic compared 

with AVI and point sensors. Map-matching algorithms are applied with spatiotemporal 

constraints on GPS data. 

 

Data-filtering and outlier-detection algorithms have been developed for other traffic 

variables, including flow (Li et al., 2015) and speed (Chakraborty et al., 2019). These 
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algorithms assume that most data are valid, and hence, they remove only small portions 

of invalid data (Chen et al., 2010). However, a large proportion of invalid data can 

exist in practice. For example, for AVI data with low sampling rates, its distribution 

can be more scattered and varied. Thus, a large proportion of AVI data may be invalid. 

Furthermore, the occurrence of longer travel times by path is more frequent when 

traffic is congested. It is challenging to distinguish invalid data from comparatively 

long travel times by path under this scenario (Shang et al., 2022).  

2.4.1 Filtering algorithms for AVI data 

The filtering algorithms for various types of AVI data can be different. As Bluetooth 

sensors can also collect data from passengers in vehicles, Bluetooth data is less 

accurate with large sample sizes. On the contrary, RFID and ALPR data are more 

accurate with comparatively small sample sizes. Bluetooth and Wi-Fi data share 

similar filtering algorithms, as both have large sample sizes while the accuracy is 

relatively low (Pu et al., 2021; Ghavidel et al., 2022). 

 

For the RFID and ALPR data, generally, both fixed value and float filters can be 

applied for AVI data (Chen et al., 2022). The maximum and minimum speed limits can 

be used to derive the upper and lower bounds of path travel times. The mean, median, 

standard deviation, and percentiles of measured AVI data can also be used to construct 

the time window for filtering. The time window for selecting valid AVI data is called 

the validity window (Tam and Lam, 2008). These models have been evaluated 

respectively (Asqool et al., 2021). The related models will be introduced in detail in 

Section 3.1.1. 

 

As existing filtering algorithms only use real-time AVI data, the resultant validity 

windows lack rigorous mathematical guarantees, particularly for limited real-time AVI 

data with low sampling rates. Therefore, existing filtering algorithms for AVI data may 

not be effective. It should be noted that there are several reasons for the low sampling 

rates of real-time AVI data. First, real-time AVI data is collected at high frequency (e.g., 

gathered every two minutes). Second, only AVI data from commercial vehicles can be 

collected due to privacy issues in some cities. Third, the traffic demand during some 

periods (e.g., midnight) is low. The sample size of real-time AVI data may not be 
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sufficient for effectively selecting the outliers. 

2.4.2 Filtering algorithms for point sensor data 

The speed measurements are most widely used from point sensor data for path travel 

time prediction. The point speed data for specific locations can have fewer 

outliers/invalid data unless the sensor fails. A fixed threshold concerning the free-flow 

speed of the location of point sensors is usually applied to screen out extreme speed 

measurements. Moreover, some pieces of literature assume that there are no systemic 

errors in GPS data, as they are gathered from thousands of devices. On the contrary, 

the breakdown of point sensors can affect the accuracy of point sensor data for a long 

time. Therefore, GPS data can be regarded as ground truth and used to filter out 

obviously problematic point sensor data (Li et al., 2016).  

2.4.3 Filtering algorithms for navigation satellite system data 

As introduced in Section 2.3.3, various types of information are collected from 

navigation satellite system sensors. Therefore, each type of information can be used to 

filter out invalid records (e.g., location and speed). For individual speed measurements 

from navigation satellite system sensor data, the acceleration and deceleration speeds 

have been considered for screening out those valid speed measurements (Rim et al., 

2016). Speed changes exceeding the given maximum acceleration and deceleration 

speed can be regarded as outliers.  

 

Navigation satellite system data without valid location state, vehicle status, and vehicle 

identification number are filtered out (Chen et al., 2021). The map-matching 

algorithms identify the invalid vehicle locations that are out of the scope of the studied 

path travel times (Chen et al., 2021). The related path travel time measurements on 

these records are also removed. Moreover, as both AVI and GPS data enable the 

collection of direct travel times, the filtering algorithms for AVI data are sometimes 

applied to GPS data (Yuan et al., 2023). 

 

Similar to GPS/BeiDou data, mobile phones can also provide speed measurements of 

vehicles by detecting signals of passengers/drivers in the vehicles. There are ping-pong 

data resulting from overlapping base station signals (Wu et al., 2023). The density peak 
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clustering algorithm has been applied to filter out invalid mobile phone data (Wu et al., 

2023). 

2.   eview of Path Travel Time Prediction  odels 

After data filtering as described in Section 2.4, these traffic data can be used to predict 

the travel times of the desired path. Studies on the prediction of path travel times have 

focused on predicting the mean travel time of the whole path instead of the mean travel 

time of each individual road segment or link along the path (Sun et al., 2022a). 

Research on path travel time prediction can be categorized into those conducted at the 

strategic level and those performed at the operational level. 

 

The path travel time prediction at the strategic level obtains the travel time in an offline 

manner, focusing on the sensor location problem (Salari et al., 2019; Shao et al., 2021; 

Sun et al., 2022b) or sensor replacement problem (Manco et al., 2017; Zhu et al., 2017), 

where the path travel time is impacted by the constraints or objectives of the models 

used to determine the locations of different types of sensors. In contrast, path travel 

time prediction at the strategic level analyzes historical traffic data to predict the traffic 

states and travel time distributions on the road networks over the long term (Fu et al., 

2019; Laña et al., 2019; Nantes et al., 2015; Qin et al., 2020; Yun et al., 2019a).  

 

For freeways with no exits or entrances, traffic flow modeling the traffic conditions 

and derives the corresponding path travel times (Ngoduy et al., 2006; Celikoglu, 2013a; 

Nantes et al., 2015). For urban roads with exits and entrances along the path, the path 

flow is difficult to capture with a limited number of traffic sensors. Therefore, point 

sensors, which measure accurate flow, contribute less than point-to-point sensors like 

AVI and GPS sensors to the prediction of the path travel time.  

2. .1  eview of path travel time prediction models using AVI data 

As AVI data provide direct path travel time information for individual vehicles, they 

can be preprocessed to eliminate outliers and thus used to forecast travel times on 

monitored paths or road segments. Several algorithms have been developed and 

applied to predict travel times using AVI data, e.g., Dion and Rakha (2006), Mouskos 
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et al. (1998), Southwest Research Institute (1998), Tam and Lam (2008), and TranStar 

(2021) used RFID-based AVI data, Haghani et al. (2010) used Bluetooth-based AVI 

data, Park and Kim (2018) used dedicated short-range communication data, and Ma 

and Koutsopoulos (2010) used AVI data from ALPR cameras. It should be noted that 

the filtering algorithms mentioned in Section 2.4.1 usually present the predicted path 

travel time as they need to compare with ground truth for performance evaluation. 

 

The determination of a validity window for screening outliers has been continuously 

studied in the past two decades. The TransGuide algorithm (Southwest Research 

Institute, 1998) initially set the fixed threshold so that any observation with a 

percentage deviation larger than the fixed threshold would be filtered out. This is more 

appropriate for rural roads because there are fewer congestion cases on rural roads than 

on arterial roads. For arterial roads that have complicated traffic conditions, it is limited 

to capturing the characteristics of traffic conditions.  

 

Dion and Rakha (2006) further introduced the machisum by looking back at three 

consecutive outliers in the previous time intervals. If they increase or decrease with 

clear trends, the validity windows will be enlarged in case the traffic conditions change. 

This approach has been followed by Tam and Lam (2008) and Ma and Koutsopoulos 

(2010). Park and Kim (2018) further analyzed the distributions of path travel times 

collected from AVI data to improve the filtering performance further. However, these 

filtering algorithms for AVI data are less effective when real-time AVI data are limited. 

This will be further elaborated in Section 3.1.1. 

 

2. .2  eview of path travel time prediction models using navigation satellite 

system sensor data 

Some studies have investigated the use of GPS data for travel time prediction. As GPS 

data offer more vehicle location data than AVI data, predicted travel time can be more 

easily obtained from GPS data (after map-matching) than from AVI data (Gong et al., 

2015; Zhong et al., 2020). The trajectory-based model can be applied to GPS data to 

track vehicle trajectories with deep learning models (Zhu et al., 2022b). The traffic-

flow theory-based model can also be applied to GPS data once the road information 
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(e.g., signal timing) is known (Hiribarren and Herrera, 2014). 

 

Apart from filtering algorithms used for AVI data, map-matching algorithms designed 

for GPS data have been studied for decades. Simple geometric techniques are applied 

to complex models (Quddus et al., 2007). Others include geometrical algorithms, 

topological map-matching algorithms, Kalman filter-based algorithms, hidden Markov 

models, and Frechet distance-based algorithms. These algorithms have been compared 

and evaluated (Singh et al., 2023). It was found that topological algorithms 

outperformed the other algorithms. 

 

In this thesis, GPS data is mainly used to predict path travel times by vehicle class. 

The availability of vehicle class information, as depicted in Section 2.3.4, ensures that 

the temporal covariance of path travel times between vehicle classes by 2-minute 

intervals can be obtained from GPS data to improve prediction performance. 

2. .3  eview of path travel time prediction models using point sensor data 

On the one hand, Lighthill–Whitham–Richards theory can be applied when paths are 

controlled. Flow conservation equations and traffic dynamics are investigated using 

flow and speed data collected from point sensors (Celikoglu, 2013b). On the other 

hand, the speed interpolation models can be applied along the study path so that speed 

fields along the path can be generated. The path travel time prediction models using 

point sensor data from point sensors are illustrated in the following paragraphs.  

 

It has been pointed out that the kind of point speed data from point sensor data may 

not be suitable for quantifying the average speed of a road section (Soriguera and 

Robusté, 2011b). In view of this, various travel time prediction models based on spot 

speed data from point sensors have been proposed previously in a heuristic and 

practical manner. Since the spatial speed propagation of vehicles cannot be captured 

by point sensors, a constant or linear relationship of speeds along the road section 

between the two detectors is usually assumed.  

 

The most common approach is the instantaneous travel time prediction model, which 

simultaneously calculates the link travel times at these two adjacent point sensors. In 
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the past years, the time slice model, dynamic slice model, and linear model have been 

developed on the basis of different time intervals that are used for travel time 

prediction (Bajwa et al., 2003; Cortés et al., 2002; Lint and Zjipp, 2003). These 

existing approaches directly use the spot speed or point speed data to predict link travel 

times with different assumptions.  

 

Li et al. (2006) compared four categories of speed-based travel time prediction models, 

including the instantaneous model, time slice model, dynamic time slice model, and 

linear model. They concluded that the last two models provided better-predicted path 

travel times for cases when detectors are spaced at larger distances. They also found 

that the results of these four speed-based models would tend to underestimate the travel 

times on the measured road sections. 

 

For data-driven approaches based on spot speed data, some scholars discovered the 

relationship between speed measurements at both point sensors and travel times 

between AVI sensors through supervised learning techniques. Distance, speed 

measurement, flow, occupancy, and other parameters are used in data-driven 

approaches to investigate travel time prediction problems.  

 

Cherrett et al. (2002) applied a neural network using average loop-occupancy time per 

vehicle, average time gap between vehicles, and percentage occupancy as input for 

travel time prediction. Tang et al. (2016) applied an evolving fuzzy neural network to 

predict the link travel times between two adjacent detectors. The input variables for 

their neural network training are traffic volume, occupancy, and speed measured by 

the loop detectors. Recently, Lu et al. (2017) applied the clustering algorithm to find 

similar traffic patterns, followed by support vector regression to predict freeway travel 

times.  

 

In Chapter 4, the point sensor data is used to enrich the information on traffic 

conditions for path travel time prediction by different vehicle classes. Though point 

sensor data has no vehicle class information, it provides the average speed of all 

vehicles. Hence, the means of path travel times of all vehicles can be obtained from 

point sensor data. As the model choice of using point sensor data for path travel time 



2-33 

 

prediction is not the major contribution of this thesis, it is briefly introduced in Section 

4.3.1. 

2. .4  eview of path travel time prediction models using multi-source traffic 

data 

The traditional fusion model is a weighted average (Zhu et al., 2018), which gives 

different weightings/scores to each data source. It is straightforward, while the 

weighting scores are not flexible once they are determined by historical traffic data. A 

widely used fusion model is an extended generalized Treiber-Helbing filter, which can 

fuse different sources of traffic data for path travel time prediction. Jiang et al. (2017) 

fused GPS and point sensor data to forecast path travel times. Other data fusion models 

have been adopted for multi-source traffic data. Kalman filtering was used to combine 

GPS and point sensor data (Anusha et al., 2012). Zhu et al. (2018) connected GPS, 

mobile phone data, and point sensor data with ANN. Shi et al. (2017) fused point 

sensor data and AVI data using Dempster-Shafer's theory to foretell path travel times 

for urban roads. 

 

To categorize these fusion models, three levels of fusion can be concluded: data, 

feature, and decision. Based on these three levels, the Kalman filter, neural network, 

Dempster-Shafer, Fuzzy Logic, joint probabilistic data association, software agent, 

Bayesian, and hybrid algorithms have been developed to fuse these traffic data for path 

travel time prediction (Kashinath et al., 2021).  

 

As introduced in Section 2.3.4, this thesis aims to predict path travel times by vehicle 

class using multi-source traffic data. It is still a challenge to integrate these traffic data 

with different characteristics for path travel time prediction. 

2. .  Classification of path travel time prediction models 

There are statistical models and machine learning models for path travel time 

prediction. Table 2.8 lists their descriptions, advantages, and limitations. Table 2.8 

shows that these models can capture typical traffic patterns with relatively low 

computational costs. However, sometimes, the traffic conditions can suddenly change 

due to adverse weather, or the data amount is insufficient for traditional models to give 
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a clear picture of variations in path travel times.  

 

In recent years, more deep learning models have been applied in the area of path travel 

time prediction, which is summarized in Table 2.9. They further specified components 

within the neural works (e.g., understand traffic data as an image; extract features from 

time-series data) to have outperformance dealing with traffic data. However, the 

computational costs of these models are usually more expensive. Hence, there is a 

trade-off between accuracy and computation cost for model selection, depending on 

users’ preference for evaluating prediction models. Some commonly used deep 

learning models will be used as benchmarks for comparison in the later chapters, such 

as long short-term memory (LSTM) networks. The proposed models in the thesis 

ensure the accuracy and efficiency of predicted path travel times. 
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Table 2.8 Summary of traditional models for path travel time prediction 

Model Type Description Key Inputs Strengths Limitations 

Historical average models 

Use historical travel time data to 

predict future travel times, often 

assuming that traffic patterns are 

repetitive and consistent. 

Historical travel time 

data, time of day, day 

of week. 

Simple to implement, 

require minimal data 

processing. 

May not account for 

non-recurrent events 

or anomalies. 

Time-series analysis 

models 

Apply statistical methods to analyze 

and forecast travel times based on 

observed time-series data. 

Historical travel time 

data, temporal 

patterns, seasonality. 

Capture trends and 

seasonal variations. 

May not respond well 

to sudden changes in 

traffic conditions. 

Regression models 

Use statistical techniques to establish 

relationships between travel time and 

various influencing factors. 

Traffic volume, 

weather conditions, 

road incidents, time 

of day. 

Incorporate multiple 

variables affecting 

travel times. 

Needs accurate and 

comprehensive data 

for model calibration. 

Machine learning models 

Employ algorithms that learn from 

data to make predictions, including 

neural networks, support vector 

machines, and decision trees. 

Historical travel time 

data, traffic flow, 

weather conditions, 

and special events. 

Handle complex 

nonlinear 

relationships and 

interactions. 

May call for large 

datasets and 

significant 

computational 

resources. 
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Kalman filtering models 

Utilize recursive algorithms to 

forecast travel times by continuously 

updating predictions with real-time 

data. 

Real-time traffic data, 

historical travel time 

data, and traffic flow 

models. 

Adapt to real-time 

changes in traffic 

conditions. 

Complexity in 

implementation and 

tuning of the model 

parameters. 

Simulation-based models 

Create detailed representations of 

traffic flow to simulate and predict 

travel times under various scenarios. 

Road network 

characteristics, traffic 

demand, control 

strategies. 

Model specific 

scenarios and 

interventions. 

Computationally 

intensive and demand 

detailed input data. 

Hybrid models 

Combine features of different models 

to leverage their strengths and 

mitigate their weaknesses. 

Varies based on the 

combination of 

models used (e.g., 

machine learning with 

time-series analysis). 

Improve accuracy and 

reliability of 

predictions. 

May be complex to 

develop and require 

diverse datasets. 
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Table 2.9 Summary of traditional models for path travel time prediction 

Deep learning 

models 
Description Key inputs Strengths Limitations 

Recurrent neural 

network (RNN) 

Designed to handle sequential data, 

RNNs are particularly suited for time-

series prediction tasks. 

Historical travel time 

data, traffic flow, and 

temporal patterns. 

Good at capturing 

temporal dependencies 

in time-series data. 

Can struggle with long-

term dependencies due to 

vanishing gradient 

problems. 

Long short-term 

memory 

(LSTM) 

Networks 

A type of RNN that can learn long-

term dependencies using memory 

cells and gates. 

Historical travel time 

data, traffic flow, 

temporal patterns, and 

weather conditions. 

Better at capturing long-

term temporal 

relationships than 

standard RNN. 

More complex and 

computationally 

intensive than RNN. 

Gated recurrent 

units 

Similar to LSTMs but with a 

simplified structure, gated recurrent 

units are another type of RNN that 

can capture temporal dependencies. 

Historical travel time 

data, traffic flow, 

temporal patterns, and 

weather conditions. 

Require fewer 

parameters than LSTMs, 

making them faster to 

train. 

May be less expressive 

than LSTMs for specific 

tasks. 

Convolutional 

neural network 

(CNN) 

Typically used for image processing, 

CNN can also be applied to traffic 

data represented in grid-like 

structures. 

Spatial representation of 

traffic data. 

Good at capturing 

spatial dependencies in 

grid-like data 

representations. 

Not inherently designed 

for sequential time-series 

data. 
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Graph 

convolutional 

networks 

Extend CNNs to work with graph-

structured data, making them suitable 

for road network representations. 

Road network graph, 

traffic flow, historical 

travel time data. 

Attain spatial 

dependencies in non-

Euclidean data like road 

networks. 

May require significant 

domain knowledge to 

structure data 

appropriately. 

Deep belief 

network (DBN) 

A generative model composed of 

multiple layers of stochastic, latent 

variables. 

Historical travel time 

data, traffic flow, and 

other relevant features. 

Learn to represent 

complex distributions of 

data. 

Training can be 

challenging and time-

consuming. 

Autoencoders 

Used for unsupervised learning of 

efficient data encodings, 

autoencoders can help in feature 

extraction for travel time prediction. 

Historical travel time 

data, traffic flow, and 

other relevant features. 

Learn compressed 

representations of data, 

useful for feature 

extraction. 

Mainly used for 

dimensionality reduction 

rather than direct 

prediction. 

Ensemble 

models 

Combine predictions from multiple 

deep learning models to improve 

overall performance. 

Outputs from various 

deep learning models. 

Leverage the strengths 

of individual models to 

enhance prediction 

accuracy. 

Increased complexity and 

computational cost due to 

multiple models. 
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2.  Summary 

As discussed in the above sections of Chapter 2, ATIS urgently need accurate and 

reliable predicted path travel times in the current and future time intervals. Relevant 

existing works have made numerous contributions to this problem, applying various 

models and multiple sources of traffic data. However, some challenges remain to be 

tackled and will be studied in this thesis. 

 

First, AVI data are commonly used for path travel time prediction, as introduced in 

Section 2.3.1. There are existing filtering algorithms for extracting outliers from real-

time AVI data. However, their performance worsens when the real-time AVI data 

sampling rate is low, as explained in Section 1.2. On the one hand, historical traffic 

data can supplement the traffic information and help to improve the filtering 

performance. On the other hand, it can be difficult to collect sufficient ground truth in 

practice for model training. Thus, an unsupervised filtering algorithm for real-time AVI 

data without using ground truth for training is to be proposed in Chapter 3.  

 

Second, existing ATIS typically disseminate the average predicted path travel times 

for road users in Table 2.1. However, the observed path travel times of partial vehicles 

(e.g., private cars) can deviate significantly from the average path travel times, which 

is to be illustrated in Figure 4.3 in Section 4.1. There is a research gap to predict path 

travel times by vehicle class. Besides, there are various types of traffic data from 

different traffic sensors, as introduced in Sections 2.1.3 and 2.3. However, their data 

formats and the traffic information contained in each data source are heterogeneous, 

as shown in Appendix C. Hence, it is necessary to integrate them effectively and 

efficiently to forecast path travel times. Therefore, a novel prediction model for multi-

class path travel time prediction using multi-source traffic data is raised in Chapter 4.  

 

Third, weather information is noticeable to be provided in some ATIS, as mentioned 

in Table 2.1 and Table 2.2. For cities with frequent rainfall, it is important to 

incorporate rainfall-related weather information to enhance the performance of 

predicted path travel times. This information consists of rainfall intensity data 
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collected from the past and weather forecasts referring to future weather conditions. 

Therefore, existing prediction models can be further extended to a more 

comprehensive modeling framework, which ultimately utilizes rainfall-related 

weather information. To solve this problem, Chapter 5 proposes a modeling framework 

for forecasting path travel times in the future time intervals. It incorporates different 

sources of weather information for path travel time prediction. 
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3. Filtering Limited Automatic Vehicle Identification Data 

without Ground Truth on Path Travel Times 

3.1 Initial Considerations 

Section 2.4 has presented the importance of filtering out outliers/invalid data before 

path travel time prediction. The relevant data filtering algorithms for traffic data have 

also been illustrated in Section 2.4. However, in practice, the real-time AVI data can 

be limited for several reasons (e.g., technology and frequency used for data collection, 

privacy issues, periods of collection). Different from Bluetooth data, as mentioned in 

Section 2.4.1, RFID and ALPR data could provide high-quality but limited AVI data 

per time interval. Given the challenges of path travel time prediction with these limited 

high-quality AVI data in practice, this chapter investigates various data filtering 

algorithms. It develops a novel filtering algorithm for limited AVI data for path travel 

time prediction in the current time interval. 

 

The rest of this chapter is organized as follows. The background, motivation, and 

contributions of this chapter are presented in Section 3.1. The problem under 

investigation in this chapter is displayed in Section 3.2. A novel filtering algorithm is 

proposed in Section 3.3. The case studies are conducted to reveal the merits of the 

proposed filtering algorithm in Section 3.4. Finally, Section 3.5 provides the 

concluding remarks in this chapter.  

 

3.1.1 Background 

The AVI data has been categorized by the technology used for data collection in 

Section 2.3.1. There is an alternative classification criterion. According to the 

uniqueness of the identifier of each vehicle, there are two types of AVI data. On the 

one hand, Bluetooth sensors can gather numerous AVI data. However, the MAC 

address detected by Bluetooth sensors can be provided by either vehicles, passengers 

within the exact vehicle, or even pedestrians on the roadside through their mobile 
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devices. Therefore, the AVI data obtained in this case is invalid.  

 

On the other hand, for AVI technologies requiring identifier information (e.g., RFID 

technology uses electromagnetic fields to automatically recognize RFID tags; RFID-

tagged vehicles are detected when they pass RFID tag readers fixed at the roadside or 

under footbridges), AVI data are gathered accurately, but the sampling rate is very few 

in a relatively short time interval due to privacy issues.  

 

In this chapter, it is worthwhile to distinguish between accurate and valid AVI data. 

Under these circumstances, the observed path travel times derived from an AVI system 

can be outliers. The corresponding AVI data are regarded as invalid AVI data, which 

novel filtering algorithms must remove to extract valid AVI data for use in path travel 

time prediction. Figure 3.1 illustrates one scenario in which AVI data from an AVI 

system may be invalid. Vehicle B travels to a shopping mall after being detected by an 

AVI sensor at the origin. Hence, the experienced path travel time of vehicle B is much 

longer than that of vehicle A. Therefore, the AVI data from vehicle B (which contains 

the timestamps with a larger font size in Figure 3.1) is invalid.  

 

 

Figure 3.1 Example of invalid AVI data in an AVI system 

 

Accurate AVI data refers to data collected from AVI technologies with specific 

identifiers for vehicles (e.g., RFID and ALPR). The identifier for RFID technology is 
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the RFID tag, which is fixed at the front of each monitored vehicle. The license plate 

number of vehicles is used for ALPR. These two identifiers can ensure that observed 

path travel times from AVI data are from vehicles. On the contrary, Bluetooth MAC 

addresses are available for vehicles and passengers in the vehicles. Therefore, if one 

vehicle travels along the study with four passengers holding Bluetooth-enabled cell 

phones, Bluetooth sensors will obtain five records. It can be challenging to distinguish 

five vehicles and five Bluetooth devices. Therefore, this type of AVI data is inaccurate. 

 

The availability of identifier information in the database depends on the corresponding 

privacy issues concerned by different cities (Zhu et al., 2020; Xia et al., 2022). In Hong 

Kong, only AVI data on commercial vehicles are available for collection. The sampling 

rate is low without the collection of AVI data on private cars. Therefore, it is 

challenging to filter AVI data at relatively low sampling rates and use them to predict 

path travel times. 

 

Some AVI data from RFID tag readers and ALPR cameras may be inappropriate for 

path travel time prediction. Similar to the data cleaning process of GPS data that can 

accurately capture the trajectory of vehicles for travel time prediction (Correa and 

Ozbay, 2022; Gao et al., 2022; Wang et al., 2022; Wang et al., 2021a; Ye et al., 2022; 

Zhou et al., 2023; Zhu et al., 2022b), AVI data also need data preprocessing before 

path travel time prediction.  

 

As discussed by researchers such as Chow et al. (2014) and Robinson and Polak (2006), 

errors may arise from vehicles being misidentified, stopping en-route (e.g., see Figure 

3.1), or choosing unusually long routes (e.g., detours) between two locations that are 

equipped with AVI sensors. Thus, invalid data (or outliers) are most often obtained if 

AVI sensors (i) are far apart, implying that vehicle detours or stops are more frequent, 

or (ii) contain many short-spacing intersections and frequent frontage access (which 

explains why it can be more difficult to acquire valid AVI data from urban roads than 

from freeways).  

 

Apart from the categorization by different AVI technologies, as mentioned in Section 

2.3.1, AVI data can also be categorized as real-time AVI data or historical AVI data, 
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depending on when it is gathered. Real-time AVI data are obtained on the current day, 

while historical AVI data are collected on previous days. Both these two data categories 

comprise valid and invalid AVI data. As real-time AVI data are generally used for path 

travel time prediction (Kwong et al., 2009; Chen et al., 2017; Zhan et al., 2020), it is 

critically important to remove invalid real-time AVI data by novel filtering algorithms 

to enable path travel time prediction.  

 

Furthermore, for AVI technologies based on identified information in cities with 

privacy issues, the AVI data is accurate with fewer samples. It is more challenging to 

distinguish invalid real-time AVI data from limited, accurate real-time AVI data with a 

low sampling rate. Therefore, this chapter focuses more on the latter. 

 

There are some existing offline algorithms for the filtering of historical AVI data. These 

algorithms are devoted to the data clustering or modeling of travel time distributions 

using a large amount of historical AVI data (Kazagli and Koutsopoulos, 2013; Yun et 

al., 2019b; Duan et al., 2020; Qin et al., 2020; Washington et al., 2020). However, these 

algorithms lack sufficient computation time to generate validity windows for filtering 

real-time AVI data. Consequently, various data-filtering algorithms have been 

developed to screen out invalid real-time AVI data in various ATIS.  

 

Table 3.1 gives the summary of previous related studies for filtering AVI data in the 

path travel time prediction. First, it is observed in Table 3.1 that all online filtering 

algorithms can update in a high-frequency manner, with the updating interval (or 

rolling step to be introduced in Section 3.3.5) 𝛥 ranging from 2 to 15 minutes. Second, 

the sample size per updating interval 𝛥  is relatively small (e.g., 0-2 samples per 

updating interval 𝛥 in this chapter). A detailed description of the sampling size of these 

data will be given in Section 3.4.1. It is a challenge to provide reliable validity 

windows with insufficient AVI data. 

 

Third, the distance between successive AVI sensors is rather large. As a result, more 

outliers/invalid AVI data are collected. When this distance increases, the proportion of 

valid real-time AVI data is smaller, as depicted in Section 3.1.1. Based on the features 

of AVI data, the validity windows for data filtering are generated. They consist of a 
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center point and the width of the validity window in general. The dynamic validity 

windows are determined by the first-order (mean/median) and second-order (variance) 

properties of real-time AVI data in previous literature. The fixed threshold of ±20% 

from the mean of observed path travel times from AVI data is adopted by Southwest 

Research Institute (1998), Mouskos et al. (1998), and TranStar (2021).  

 

Besides, more parameters are introduced to control the center and width of validity 

windows, considering the weighting of data between previous time intervals (i.e., 𝑡 <

𝑡0 ) and current time interval 𝑡0  and factors allowing validity windows to be more 

flexible based on sample sizes. The parameters used in these models/algorithms need 

calibration from historical AVI data.  

 

Moreover, some previous algorithms (Dion and Rakha, 2006; Tam and Lam, 2008) 

have taken into account transition traffic conditions. The width of validity windows 

should be enlarged when the traffic is more congested especially. They checked 

previous successive time intervals to evaluate the trend of experienced path travel 

times. These algorithms generally perform well when AVI data is adequate. However, 

when real-time AVI data is rather limited within a relative short time interval, there 

may be insufficient real-time information to construct a satisfying dynamic validity 

window for covering most of the valid AVI data. It indicates that the performance of 

existing filtering algorithms depends largely on real-time AVI data, which means that 

their performance drastically decreases if real-time AVI data are limited. 

 

Therefore, there is a need for a novel filtering algorithm capable of effectively 

extracting real-time AVI data, especially when they are limited. The use of historical 

AVI data, including both valid and invalid AVI data collected in previous days, can be 

beneficial in this regard. This chapter extends to consider the variations of path travel 

time from historical AVI data into the algorithms so that the performance can still be 

maintained when real-time information is insufficient. 
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Table 3.1 Summary of previous related studies for filtering AVI data in the path travel time prediction 

Related studies 

Updating interval 

of validity 

window 𝛥 (min) 

Sample size 

per updating 

interval 

Distance between 

two AVI sensors 

(km) 

Type of AVI 

sensors 
Validity window  

Park and Kim (2018) 5 More than 10 0.9–3.7 
5.8 GHz 

DSRC sensors 

Distribution center of real-time 

data1 

Ma and Koutsopoulos (2010) 2 and 5 1-3 - ALPR cameras 

Mean and variance of real-time 

data and transition 

identification 

Tam and Lam (2008) 2 1-2 6.2 
RFID tag 

readers 

Dion and Rakha (2006) 2 2-3 4.0 and 1.9  
RFID tag 

readers 

Mouskos et al. (1998); 

Southwest Research Institute 

(1998); TranStar (2021) 

0.5, 2, and 15 - - 
RFID tag 

readers 

Mean of real-time data and 

fixed threshold of window 

width 

This chapter 2 0-2 
4.3, 4.5, and 

9.2 

RFID tag 

readers 

Conditional mean and variance 

of real-time and historical data 

 
1 The real-time data refers to the AVI data collected on the current day. 
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The effect of complex network structures in urban areas has not been investigated in 

most previous studies on filtering AVI data. Attention has been mainly given to 

freeways (Diaz et al., 2016), which have relatively simple network topologies and very 

few entries and exits between pairs of AVI sensors. Moreover, the numerous entries, 

exits, and bus stops along the urban study paths (as used in the case study) may indicate 

that valid real-time AVI data can be limited, which adversely affects the performance 

of existing filtering algorithms used for path travel time prediction.  

 

When valid real-time AVI data is limited, it is worthwhile to model temporal 

covariances of path travel times by 2-minute intervals at different time intervals and 

on different days from historical AVI data. They are significantly beneficial for 

filtering out invalid real-time AVI data and for path travel time prediction.  

 

A novel filtering algorithm is proposed to filter out invalid real-time AVI data for path 

travel time prediction without ground truth for training purposes. As no ground truth 

is used for training, it is also referred to as the proposed unsupervised algorithm in this 

chapter.  

 

The proposed unsupervised algorithm is particularly useful when privacy policies 

prohibit the availability of many valid AVI data from privately owned vehicles (e.g., 

Hong Kong only allows the collection of AVI data from commercial vehicles. These 

commercial vehicles include goods vehicles, non-franchised and franchised buses, and 

private cars owned by commercial companies, which account for approximately 19% 

of the total vehicle fleet in Hong Kong1) for utilization in the development of various 

ATIS. 

 

Furthermore, most existing filtering algorithms use simple first-order central tendency 

measures, such as observed mean or median values, of AVI data. In contrast, the 

proposed unsupervised algorithm considers both first- and second-order statistical 

properties of AVI data via a functional principal component analysis (FPCA). The 

mean and standard deviation of predicted path travel times by FPCA can help to 

 
1https://www.td.gov.hk/en/transport_in_hong_kong/transport_figures/index.html 
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construct a dynamic validity window for filtering out invalid real-time AVI data for 

path travel time prediction on urban arterials.  

 

FPCA is a statistical tool for functional data analysis that uses advanced feature 

approximation techniques. It has received increasing attention in recent related studies, 

as it can be used for analyzing highly stochastic data. For example, Chiou (2012) 

proposed an FPCA model to predict traffic flows, and Guardiola et al. (2014) and 

Wagner-Muns et al. (2018) used FPCA to identify and monitor traffic patterns. In 

addition, Chiou et al. (2021) applied FPCA to model the variability and reliability of 

freeway travel times. Furthermore, Chen and Müller (2014) performed FPCA of GPS 

data to forecast vehicle speed distributions. Moreover, Zhong et al. (2017) further 

highlighted the merits of FPCA on path travel time predictions under abnormal traffic 

conditions.  

 

The FPCA model regards the path travel time as a stochastic process (Celikoglu, 2013b; 

Zhong et al., 2017, 2020). In this chapter, the FPCA model has been extended to 

generate temporal covariances of path travel times by 2-minute intervals. These 

relationships are then used to develop the proposed unsupervised algorithm for 

filtering limited but accurate real-time AVI data, which enables the prediction of path 

travel times without ground truth for training purposes. 
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3.1.2 Contributions 

In general, the major contributions of this chapter are summarized into the following 

three categories. 

C3.1 A novel unsupervised algorithm is proposed, with the usage of historical AVI data 

without using historical ground truth for training purposes, for constructing dynamic 

validity windows to filter out invalid real-time AVI data from limited real-time AVI 

data.  

C3.2 A FPCA-based model is adapted to consider both the historical and real-time AVI 

data for modeling their temporal covariances of path travel times by 2-minute intervals 

at different time intervals and on different days. Both mean and standard deviation of 

the predicted path travel times are provided and used for improving of the filtering 

performance of real-time AVI data.  

C3.3 Sensitivity tests are conducted to examine the effects of different sampling rates 

of the real-time AVI data or the valid real-time AVI data only in order to verify the 

robustness of the proposed unsupervised algorithm without or with the use of the 

ground truth for training purposes. 

3.2 Problems under Investigation  

In this chapter, any given path 𝑝 with two AVI sensors at both ends is studied. As multi-

source traffic data and multi-class path travel times are to be mentioned in Chapter 4, 

the data source and vehicle class are also defined in this chapter to maintain 

consistency. In this setting, 𝑖-th observed path travel time for path 𝑝 of vehicle class 𝑘 

for from data source 𝑠𝐴 on day 𝑑 is denoted as 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

. 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

 is the timestamp of the 

𝑖-th observed path travel time at AVI sensor location 𝑑𝑝 for path 𝑝 of vehicle class 𝑘 

from data source 𝑠𝐴 on day 𝑑. The other symbols in this chapter omit the notation of 

vehicle class, as this chapter only considers the overall vehicles as one class. The set 
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of days with historical AVI data is denoted as 𝐷. The assignment of 𝑑 from set 𝐷. 

 

The proposed unsupervised algorithm aims to provide a dynamic validity window for 

screening out invalid real-time AVI data. The dynamic validity window consists of the 

upper bound 𝑈(𝑡) and the lower bound 𝐿(𝑡) for each time interval 𝑡. In the proposed 

unsupervised algorithm, the available data are the real-time AVI data before time 

interval 𝑡 on the current day and historical AVI data. 

3.3 Techniques for Filtering AVI Data 

3.3.1 Proposed unsupervised algorithm 

Figure 3.2 presents the framework of the proposed unsupervised algorithm. There are 

two stages: online filtering and offline training. In each of these two stages, there are 

five different steps in the proposed framework with the corresponding equation 

numbers shown at each of these five steps. The following paragraphs give detailed 

descriptions of these two stages and their corresponding five steps. 

 

Stage 1 involves offline training, which uses historical AVI data for the development 

of the trained FPCA. Stage 2 concerns the online filtering of real-time AVI data, in 

which the trained FPCA models are used to construct dynamic validity windows to 

screen out invalid real-time AVI data. 

 

As the backbone of the methodology framework, FPCA models are trained to map the 

predictor to the response (Zhong et al., 2017). Thus, the eigenfunctions and principal 

components must be trained for the predictor and the response. Then, the conditional 

distributions of the response based on the predictor can be obtained and represented 

by the trained eigenfunctions and principal components (Yao et al., 2005; Müller and 

Yao, 2008; Chen and Müller, 2014).  
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Figure 3.2 Framework of the proposed unsupervised algorithm 

 

In the proposed unsupervised algorithm, the historical AVI data is considered as the 

predictor, and the response is the offline predicted path travel time from sufficient 

historical AVI data using existing filtering algorithms, such as TransGuide algorithm 

Limited 

historical

AVI data 

Step 2: Selecting appropriate 

training set

(Chapter 3.3.2, Eqs. (3.1) - (3.8))

Step 3: Learning training set

(Chapter 3.3.3, Eqs. (3.9) - (3.16))

Step 4: Constructing dynamic 

validity window     ,   
(Chapter 3.3.4, Eqs. (3.17) - (3.26))

Limited real-time
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Step  : Constructing dynamic 

validity window    ,   
Eqs.((3.27) - (3.28))

Rolling horizon 

scheme (Chapter 3.3.5)
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Unsupervised

without 

ground truth

Step 1 Preliminary 

predicted travel 

time 

(Chapter 3.3.1)
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(Southwest Research Institute, 1998). They are preliminary predicted travel time 

shown in Step 1 without the use of ground truth. Therefore, the 𝑖 th preliminary 

predicted travel time is denoted as 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

. 

 

It is as shown in Section 3.3.2 that selecting appropriate training set is performed in 

Step 2 (shown in the orange box). It is based on the 𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗), which is the day-to-

day covariance of path travel times by 2-minute intervals at time interval 𝑡 from data 

source 𝑠𝐴 between day 𝑑𝑖 and 𝑑𝑗, for 𝑖, 𝑗 ∈ 𝐷. Afterward, the learning training sets are 

proceeded with modeling of the within-day covariance of path travel times by 2-minute 

intervals (𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏), which is within-day covariance of path travel times on day 𝑑 

from data source 𝑠𝐴 between time interval 𝑡𝑎 and 𝑡𝑏, for 𝑎, 𝑏 ∈ 𝛿) in Step 3. Dynamic 

validity windows are constructed based on the mean and standard deviation of the 

predicted path travel times by 2-minute intervals provided in Step 4. Dynamic validity 

windows can filter out invalid real-time AVI data in a rolling horizon scheme in Step 

5.  

 

An illustrative example is given for illustration of using 𝛴𝑡
𝑠𝐴(𝑑𝑖 , 𝑑𝑗) in Step 2 (in the 

orange box) based on AVI data collected at the selected path in 2017. For each 2-

minute interval, Step 2 is required to screen out some historical days that are less 

relevant to the specific traffic conditions on the current day. There is a total of 299 

historical weekdays with AVI data collected in 2017. However, after considering 

𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗), the number of historical days |𝐷∗| varies from 253 to 279 after Step 2 for 

each time interval 𝑡 due to different traffic conditions by time of day.  
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3.3.2 Selecting appropriate training set 

Historical AVI data may reflect different traffic patterns due to the changing traffic 

demand and network supply (e.g., incidents and sensor failures). If the traffic patterns 

are different from that of the current day, then those historical AVI data may provide 

little useful information for constructing the current day’s dynamic validity windows. 

Accordingly, historical AVI data that contain similar traffic patterns to the current day 

are selected for filtering real-time AVI data.  

 

To this end, the day-to-day covariances of path travel times by 2-minute intervals are 

modeled by FPCA to reflect the similarities of traffic patterns across multiple days. At 

timestamp 𝜏, historical AVI data at time 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

∈  𝜏 − 𝛿, 𝜏  is considered, where the 

𝛿 is the length of the study horizon and it is the unit for the rolling horizon scheme 

presented later.  

 

The observed path travel time is the sum of travel time and measurement error 𝜀𝑖,𝑑, 

and are given by Eq. (3.1):  

𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

= 𝜇𝑇𝑠𝐴(𝑑) + ∑ 𝜉𝑘
𝑠𝐴,𝐷

𝜙𝑘
𝑠𝐴,𝐷(𝑑)𝐾𝑠𝐴,𝐷

𝑘=1 + 𝜀𝑖,𝑑,𝑝
𝑠𝐴,𝑘

  (3.1) 

where 𝜇𝑇𝑠𝐴(𝑑) is the mean function of travel times from AVI data on day 𝑑, which is 

𝑇𝑑,𝑖
𝑠𝐴  ; 𝜉𝑘

𝑠𝐴,𝐷
  is the score of the 𝑘 th functional principal component; 𝜙𝑘

𝑠𝐴,𝐷(𝑑)  is the 

eigenfunction of the 𝑘th functional principal component from AVI data on day 𝑑 for 

|𝐷| days according to the Karhunen-Loève representation; and 𝐾𝑠𝐴,𝐷
 is the number of 

functional principal components from AVI data for |𝐷| days, where 𝜀𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 represents 

the measurement error of 𝑖-th observed path travel time for path 𝑝 of vehicle class 𝑘 

from data source 𝑠𝐴 (AVI data ) on day 𝑑. 

 

Eq. (3.2) assumes that the path travel time in  𝜏 − 𝛿, 𝜏  is continuous in 𝑑, and the 

corresponding path travel time function from the AVI data 𝑇𝑠𝐴(𝑑) is obtained from Eq. 
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(3.2): 

𝑇𝑠𝐴(𝑑) = 𝜇𝑇𝑠𝐴(𝑑) + ∑ 𝜉𝑘

𝑠𝐴,𝐷𝜙𝑘

𝑠𝐴,𝐷(𝑑)𝐾𝑠𝐴,𝐷

𝑘=1   (3.2) 

where the function 𝜇𝑇𝑠𝐴(𝑑) is expressed by 

𝜇𝑇𝑠𝐴(𝑑) = 𝐸(𝑇𝑠𝐴(𝑑))  (3.3) 

The day-to-day covariance of path travel times from 𝑠𝐴  between day 𝑑1  and 𝑑2  is 

denoted by 𝛴𝑡
𝑠𝐴(𝑑𝑖 , 𝑑𝑗) and is obtained by Eq. (3.4), as below: 

𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗) = ∑ 𝜆𝑘

𝑠𝐴,𝐷
𝜙𝑘

𝑠𝐴,𝐷(𝑑1)
𝐾𝑠𝐴,𝐷

𝑘=1 𝜙𝑘
𝑠𝐴,𝐷(𝑑2)  (3.4) 

where 𝜆𝑘
𝑠𝐴,𝐷

 is the eigenvalue of the 𝑘th functional principal component from AVI data. 

 

It is assumed that the weighting or score of the functional principal component 𝜆𝑘
𝑠𝐴,𝐷

 

has the statistical properties given by Eqs. (3.5) and (3.6), as below:  

𝐸(𝜉𝑘
𝑠𝐴,𝐷

) = 0  (3.5) 

𝑉𝑎𝑟(𝜉𝑘
𝑠𝐴,𝐷

) = 𝜆𝑘
𝑠𝐴,𝐷

 (3.6) 

The covariance 𝛴𝑡
𝑠𝐴(𝑑𝑖 , 𝑑𝑗) is derived by solving the following minimization objective 

(3.7) for the AVI data:  

𝑚𝑖𝑛
𝛽0,𝛽1,𝛽2

∑ ∑ 𝜅𝐶 (
𝑑3 − 𝑑1

ℎ𝐶

) 𝜅𝐶 (
𝑑4 − 𝑑2

ℎ𝐶

)

𝑁𝑑,𝛿

𝑖=1

∙ (
𝐶𝑜�̂� (𝑇𝑑3,𝑖

𝑠𝐴 ,𝑇𝑑4,𝑖
𝑠𝐴 )−𝛽0 − 𝛽1(𝑑3 − 𝑑1)

−𝛽2(𝑑4 − 𝑑2)
)

2|𝐷|

1≤𝑑3≤𝑑4

 (3.7) 

where 𝐶𝑜�̂�(𝑇
𝑑3,𝑖
𝑠𝐴 , 𝑇

𝑑4,𝑖
𝑠𝐴) represents the predicted travel time covariance between day 𝑑3 

and 𝑑4, the estimates of the model coefficients 𝛽0, 𝛽1, 𝛽2 are dependent on days 𝑑1 and 

𝑑2 , and  𝑁𝑑,𝛿  is the number of samples within the study horizon 𝛿  on day 𝑑 . The 

estimates of 𝛽0 are denoted as �̂�0(𝑑1, 𝑑2) and an estimate of 𝛴𝑡
𝑠𝐴(𝑑1, 𝑑2) is obtained 

from �̂�𝑡
𝑠𝐴(𝑑1, 𝑑2) = �̂�0(𝑑1, 𝑑2). Moreover, 𝜅𝑠𝐴

 is a kernel function in which ℎ𝑠𝐴
 is the 

bandwidth that enables calibration of the covariance function. 

 

Referring to the covariance function of path travel times for different days �̂�𝑡
𝑠𝐴(𝑑1, 𝑑2), 
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the samples with larger covariance values are selected and used to calibrate the model. 

𝐷∗is the set of days after sample selection, which is determined by Eq. (3.8): 

𝐷∗ = {𝑑 ||�̂�𝑡
𝑠𝐴(𝑑1, 𝑑2)| ≥ 𝛴∗, 𝑑 ∈ 𝐷} (3.8) 

where 𝛴∗ is the threshold of the path travel time covariance between different days.  

 

3.3.3 Learning training set 

Two FPCA models are utilized to model temporal covariances of path travel times by 

2-minute intervals at different time intervals. The first FPCA model is based on the 

predictor (i.e., historical AVI data). The second FPCA model is based on the responses, 

which are preliminary predicted travel time in the proposed unsupervised algorithm. 

The historical AVI data 𝑥𝑖,𝑑 is modeled in Eq. (3.9), as follows: 

𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

= 𝜇𝑇𝑠𝐴(𝑡) + ∑ 𝜉𝑘
𝑠𝐴,𝛿

𝜙𝑘
𝑠𝐴,𝛿(𝑡)

𝐾𝑠𝐴,𝛿

𝑘=1

+ 𝜀𝑖,𝑑,𝑝
𝑠𝐴,𝑘

, 𝑑 ∈ 𝐷∗ (3.9) 

where 𝜇𝑇𝑠𝐴(𝑡) is the mean function of the observed path travel times at time interval 

𝑡 ; 𝜉𝑘
𝑠𝐴,𝛿

  represents the score/weight of the 𝑘 th functional principal component; 

𝜙𝑘
𝑠𝐴,𝛿

(𝑡𝑑,𝑖
𝑠𝐴) is the eigenfunction of the 𝑘th functional principal component from AVI 

data at time 𝑡𝑑,𝑖
𝑠𝐴; 𝐾𝑇 is the number of functional principal components from AVI data 

during study horizon 𝑇. 

 

Analogously, the path travel time function based on AVI data 𝑇𝑠𝐴(𝑡) can be described 

as Eq. (3.10): 

𝑇𝑠𝐴(𝑡) = 𝜇𝑇𝑠𝐴(𝑡) + ∑ 𝜉𝑘
𝑠𝐴,𝛿

𝜙𝑘
𝑠𝐴,𝛿

(𝑡𝑑,𝑖
𝑠𝐴)

𝐾𝑠𝐴,𝛿

𝑘=1

 (3.10) 

where 𝜇𝑇𝑠𝐴(𝑡) is given by Eq. (3.11), as below: 

𝜇𝑇𝑠𝐴(𝑡) = 𝐸(𝑇𝑠𝐴(𝑡)) (3.11) 
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𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏)  is denoted as the within-day covariance of path travel times from 𝑠𝐴 

between time 𝑡1 and 𝑡2 in Eq. (3.12), as below: 

𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏) = ∑ 𝜆𝑘

𝑠𝐴,𝛿
𝜙𝑘

𝑠𝐴,𝛿(𝑡1)

𝐾𝑠𝐴,𝛿

𝑘=1

𝜙𝑘
𝑠𝐴,𝛿(𝑡2) (3.12) 

Again, the weighting/score of functional principal components has the same statistical 

properties as shown in Eqs. (3.5) and (3.6). 

 

If a response 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

 is available at time interval 𝑡 on day 𝑑, Eq. (3.9) can be expressed 

as Eq. (3.13): 

𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

= 𝜇𝑇𝑠𝐺(𝑡) + ∑ 𝜉𝑘
𝑠𝐺𝜙𝑘

𝑠𝐺(𝑡)𝐾𝑠𝐺,𝛿

𝑘=1 , 𝑑 ∈ 𝐷∗ (3.13) 

where 𝜇𝑇𝑠𝐺(𝑡)  is the mean function of responses over study horizon 𝑇 ; 𝜉𝑘
𝑠𝐺  is the 

score/weight of the 𝑘th functional principal component of the responses; 𝜙𝑘
𝑠𝐺(𝑡) is the 

eigenfunction of the 𝑘 th functional principal component of the responses at time 

interval 𝑡; and 𝐾𝑠𝐺,𝛿 is the number of functional principal components of the responses 

during study horizon 𝛿. 

 

Correspondingly, the path travel time function based on the responses can be expressed 

as Eq. (3.14), in below: 

𝑇𝑠𝐺(𝑡) = 𝜇𝑇𝑠𝐺(𝑡) + ∑ 𝜉𝑘
𝑠𝐺𝜙𝑘

𝑠𝐺(𝑡)

𝐾𝑠𝐺,𝛿

𝑘=1

 (3.14) 

where 𝜇𝑇𝑠𝐺(𝑡) given by Eq. (3.15), as follows: 

𝜇𝑇𝑠𝐺(𝑡) = 𝐸(𝑇𝑠𝐺(𝑡)) (3.15) 

 

𝛴𝑑
𝑠𝐺(𝑡1, 𝑡2) is denoted as the within-day covariance of path travel times for responses 

between time 𝑡1 and 𝑡2 during study horizon 𝛿, as below: 



3-17 

 

𝛴𝑑
𝑠𝐺(𝑡1, 𝑡2) = ∑ 𝜆𝑘

𝑠𝐺𝜙𝑘
𝑠𝐺(𝑡1)

𝐾𝑠𝐺,𝛿

𝑘=1

𝜙𝑘
𝑠𝐺(𝑡2) (3.16) 

where 𝜆𝑘
𝑠𝐺 is the eigenvalue of the 𝑘th functional principal component of responses.  

 

The predictors 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

  and responses 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

  as shown in Section 3.3.1 can be used to 

calibrate the above-described FPCA-based models. The details of the procedure for 

calibrating mean functions, covariance functions, and functional principal components 

(including weighting/score and eigenfunctions) are available in the literature (Yao et 

al., 2005; Müller and Yao, 2008; Chen and Müller, 2014; Zhong et al., 2017). The 

number of functional principal components is generally determined by applying one 

of the following three methods: the fraction of variance explained, the Akaike 

information criterion, or the Bayesian information criterion.  

 

3.3.4 Constructing dynamic validity window 

The principal analysis by conditional expectation (PACE) is now formulated for the 

FPCA models presented in the previous section, for use in data filtering. The objective 

is to relate the models derived from the predictors and the responses via the method of 

additive models (Müller and Yao, 2008; Chen and Müller, 2014; Zhong et al., 2017). 

Specifically, the conditional distributions of the responses derived from the AVI data 

are adopted. The advantage of this PACE approach is its superiority over other 

approaches under the Gaussian assumption (Ji and Müller, 2017). 

 

Application of the functional additive model (Müller and Yao, 2008) provides the 

conditional model as below: 

𝐸(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) = 𝜇𝑇𝑠𝐺(𝑡) + ∑ ( ∑ 𝐸 (𝜉𝑞
𝑠𝐺,𝛿

|𝜉𝑘
𝑠𝐴,𝛿

)

𝐾𝑠𝐴,𝛿

𝑘=1

)

𝐾𝑠𝐺,𝛿

𝑞=1

𝜙𝑞
𝑠𝐺,𝛿(𝑡) (3.17) 
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Similar to the calibration procedure adopted in the general FPCA model, 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) =

𝐸 (𝜉𝑞
𝑠𝐺,𝛿

|𝜉𝑘
𝑠𝐴,𝛿

) on each day 𝑑, 𝑓𝑞𝑘(𝜉) can be obtained by minimizing the following 

expression with respect to 𝛾0 and 𝛾1: 

𝑚𝑖𝑛
𝛾0,𝛾1

∑ 𝜅𝑓 (
𝜉𝑘,𝑑

𝑠𝐴,𝛿
− 𝜉

ℎ𝑓
) [𝜉𝑘,𝑑

𝑠𝐺,𝛿
− 𝛾0 − 𝛾1(𝜉 − 𝜉𝑘,𝑑

𝑠𝐴,𝛿
)]

2

𝑑∈𝐷∗

 (3.18) 

where 𝜉𝑘,𝑑
𝑠𝐴,𝛿

 and 𝜉𝑘,𝑑
𝑠𝐺,𝛿

 are the estimated 𝜉𝑘
𝑠𝐴,𝛿

 and 𝜉𝑘
𝑠𝐺,𝛿

, respectively, on each day 𝑑. 

This leads to 𝑓𝑞𝑘(𝜉) = 𝛾0(𝜉) . Moreover, the conditional covariance function is 

acquired by Eq. (3.19): 

𝐶𝑜𝑣(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))

= ∑ var ( 𝜉𝑞
𝑠𝐺,𝛿

|𝑇𝑠𝐴(𝑡)) 𝜙𝑞
𝑠𝐺,𝛿(𝑡1)

𝐾𝑠𝐺,𝛿

𝑞=1

𝜙𝑞
𝑠𝐺,𝛿(𝑡2) 

(3.19) 

By using the property of variance, var ( 𝜉𝑞
𝑠𝐺,𝛿

|𝑇𝑠𝐴(𝑡)) can be further expanded such 

that Eq. (3.19) can be rewritten as Eq. (3.20): 

𝐶𝑜𝑣 (𝑇𝑠𝐺(𝑡1),𝑇𝑠𝐺(𝑡2)|𝑇𝑠𝐴(𝑡)) 

= ∑ [𝑣𝑎𝑟(𝜉𝑞
𝑠𝐺,𝛿

) + ∑ 𝐸 ((𝜉𝑞
𝑠𝐺,𝛿

)
2

− 𝑣𝑎𝑟(𝜉𝑞
𝑠𝐺,𝛿

)|𝜉𝑘
𝑠𝐴,𝛿

)

𝐾𝑠𝐴,𝛿

𝑘=1

−𝐸2(𝜉𝑞
𝑠𝐺,𝛿

| 𝜉𝑘
𝑠𝐴,𝛿

)]

𝐾𝑠𝐺,𝛿

𝑞=1

∙𝜙𝑞
𝑠𝐺,𝛿

(𝑡1)𝜙𝑞
𝑠𝐺,𝛿

(𝑡2) 

= 𝐻𝑠𝐺(𝑡1, 𝑡2) + ∑ ∑  𝑔𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

)

𝐾𝑠𝐴,𝛿

𝑘=1

−

𝐾𝑠𝐺,𝛿

𝑞=1

𝑓𝑞𝑘
2 (𝜉𝑘

𝑠𝐴,𝛿
) 𝜙𝑞

𝑠𝐺,𝛿
(𝑡1)𝜙𝑞

𝑠𝐺,𝛿
(𝑡2) 

= 𝐻𝑠𝐺(𝑡1, 𝑡2) + ∑ ∑  𝑔𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

)

𝐾𝑠𝐴,𝛿

𝑘=1

−

𝐾𝑠𝐺,𝛿

𝑞=1

𝑓𝑞𝑘
2 (𝜉𝑘

𝑠𝐴,𝛿
) 𝜙𝑞

𝑠𝐺,𝛿
(𝑡1)𝜙𝑞

𝑠𝐺,𝛿
(𝑡2) 

(3.20) 

where 𝑔𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) is given by Eq. (3.21), as follows: 

𝑔𝑞𝑘 (𝜉𝑘
𝑠𝐴,𝛿

) = 𝐸 [(𝜉𝑞
𝑠𝐺,𝛿

)
2

− var ( 𝜉𝑞
𝑠𝐺,𝛿

) |𝜉𝑘
𝑠𝐴,𝛿

] (3.21) 

By setting 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) = 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

), an estimate of 𝑔𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) can be further acquired 

by minimizing objective (3.22) with respect to 𝜂0 and 𝜂1: 



3-19 

 

𝑚𝑖𝑛
𝜂0,𝜂1

∑ 𝜅𝑔 (
𝜉𝑘,𝑑

𝑠𝐴,𝛿
− 𝜉𝑘

𝑠𝐴,𝛿

ℎ𝑔
) [𝜉𝑞,𝑑

𝑠𝐺,𝛿2
− var ( 𝜉𝑞,𝑑

𝑠𝐺,𝛿
) − 𝜂0

𝑑∈𝐷∗

− 𝜂1(𝜉𝑘
𝑠𝐴,𝛿

− 𝜉𝑘,𝑑
𝑠𝐴,𝛿

)]
2

 

(3.22) 

which leads to �̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) = �̂�0(𝜉𝑘
𝑠𝐴,𝛿

).  

 

The conditional mean of responses based on path travel times derived from AVI data 

and the conditional covariance of responses based on travel times from AVI data can 

be modeled as Eqs. (3.23) and (3.24), respectively:  

�̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) = 𝜇𝑇𝑠𝐺(𝑡) + ∑ (∑ 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

)𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 �̂�𝑞
𝑠𝐺,𝛿(𝑡)  (3.23) 

𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡)) = ∑ (var ( 𝜉𝑞
𝑠𝐺,𝛿

) +𝐾𝑠𝐺,𝛿

𝑞=1

∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘
2 (𝜉𝑘

𝑠𝐴,𝛿
))𝐾𝑠𝐴,𝛿

𝑘=1 ) �̂�𝑞
𝑠𝐺,𝛿(𝑡1)�̂�𝑞

𝑠𝐺,𝛿(𝑡2)  
(3.24) 

The conditional mean and covariance function of responses derived from path travel 

times determined from AVI data can be obtained from Eqs. (3.23) and (3.24) by 

learning from historical information on the predictors and responses. 

 

Proposition 3.1 presents the uniform convergence properties of the conditional model 

of path travel time prediction. The conditional mean and covariance of predicted path 

travel times are accurate when the number of observations of AVI data |𝐷∗| → +∞. If 

more principal components are considered (i.e., 𝐾𝑠𝐴,𝛿 , 𝐾𝑠𝐺,𝛿  is large), more data 

samples are required. 

 

Proposition 3.1. (The uniform convergence of the conditional modeling of path travel 

time) 

 

Suppose that the number of travel time data |𝐷∗| → +∞ and the path travel time on 

each day in 𝐷∗  are i.i.d., and that the mean �̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡))  and the covariance 
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𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))  in the calibrated conditional model of travel time in 

Eqs. (3.23) and (3.24) approximate the actual conditional mean and covariance with 

the error rate 𝑂𝑝 (
𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
) . Thus, mathematically Eqs. (3.25) and (3.26) are 

presented: 

𝑠𝑢𝑝
𝑡∈𝛿

|�̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) − 𝐸(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡))| = 𝑂𝑝 (
𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
) (3.25) 

𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡)) 

= 𝑠𝑢𝑝
𝑡∈𝛿

|(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡)) − 𝐶𝑜𝑣(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))|

= 𝑂𝑝 (
𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
) 

(3.26) 

It is straightforward to prove that the following (3.27) and (3.28) hold: 

𝑠𝑢𝑝
𝑡∈𝛿

|𝑓𝑞𝑘 (𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘 (𝜉𝑘
𝑠𝐴,𝛿

)| = 𝑂𝑃

(

 
1

√|𝐷∗
|
)

  (3.27) 

𝑠𝑢𝑝
𝑡∈𝛿

|�̂�𝑞𝑘 (𝜉𝑘
𝑠𝐴,𝛿

) − 𝑔𝑞𝑘 (𝜉𝑘
𝑠𝐴,𝛿

)| = 𝑂𝑃

(

 
1

√|𝐷∗
|
)

  (3.28) 

Then, for the conditional mean, it is derived that: 

𝑠𝑢𝑝
𝑡∈𝛿

|�̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) − 𝐸(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡))|  

= 𝑠𝑢𝑝
𝑡∈𝛿

|(�̂�𝑇𝑠𝐺(𝑡) + ∑ (∑ �̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

)𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 �̂�𝑞
𝑠𝐺,𝛿(𝑡)) − (𝜇𝑇𝑠𝐺(𝑡) + ∑ (∑ 𝑓𝑞𝑘(𝜉𝑘

𝑠𝐴,𝛿
)𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡))| =

𝑠𝑢𝑝
𝑡∈𝛿

|
(�̂�𝑇𝑠𝐺(𝑡) − 𝜇𝑇𝑠𝐺(𝑡)) + ∑ (∑ (�̂�𝑞𝑘(𝜉𝑘

𝑠𝐴,𝛿
))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 �̂�𝑞
𝑠𝐺,𝛿

(𝑡) − ∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿

(𝑡)

+∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡) − ∑ (∑ 𝑓𝑞𝑘(𝜉𝑘

𝑠𝐴,𝛿
)𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡)

| =

𝑠𝑢𝑝
𝑡∈𝛿

||

(�̂�𝑇𝑠𝐺(𝑡) − 𝜇𝑇𝑠𝐺(𝑡)) + ∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 (�̂�𝑞
𝑠𝐺,𝛿(𝑡) − 𝜙𝑞

𝑠𝐺,𝛿(𝑡))

+∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡) || 

 ≤ 𝑠𝑢𝑝
𝑡∈𝛿

|(�̂�𝑇𝑠𝐺(𝑡) − 𝜇𝑇𝑠𝐺(𝑡))| + 𝑠𝑢𝑝
𝑡∈𝛿

|∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 (�̂�𝑞
𝑠𝐺,𝛿(𝑡) − 𝜙𝑞

𝑠𝐺,𝛿(𝑡))|    

+𝑠𝑢𝑝
𝑡∈𝛿

|∑ (∑ (�̂�𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡)|  

 = 𝑂𝑝

(

 1

√|𝐷
∗
|
)

 + 𝑂𝑝

(

 𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷
∗
|

)

 + 𝑂𝑝

(

 𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷
∗
|

)

  = 𝑂𝑝

(

 𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷
∗
|

)

  

(3.29) 

By using the same decomposition techniques for the conditional covariance, it is obtained that: 

𝑠𝑢𝑝
𝑡∈𝛿

|𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡)) − 𝐶𝑜𝑣(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))|  

= 𝑠𝑢𝑝
𝑡∈𝛿

|
∑ (𝑣𝑎𝑟( 𝜉𝑘

𝑠𝐺,𝛿
) + ∑ (�̂�𝑞𝑘(𝜉𝑘

𝑠𝐴,𝛿
) − 𝑓𝑞𝑘

2 (𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 �̂�𝑞
𝑠𝐺,𝛿

(𝑡1)�̂�𝑞
𝑠𝐺,𝛿

(𝑡2)

− ∑ (𝑣𝑎𝑟( 𝜉𝑞
𝑠𝐺,𝛿

) − ∑ (𝑔
𝑞𝑘

(𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘
2 (𝜉𝑘

𝑠𝐴,𝛿
))𝐾𝑠𝐴,𝛿

𝑘=1 )𝐾𝑠𝐺,𝛿

𝑞=1 𝜙𝑞
𝑠𝐺,𝛿(𝑡1)𝜙𝑞

𝑠𝐺,𝛿(𝑡2)
|  

(3.30) 
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≤ 𝑠𝑢𝑝
𝑡∈𝛿

| ∑ 𝑣𝑎𝑟( 𝜉𝑘
𝑠𝐺,𝛿

)

𝐾𝑠𝐺,𝛿

𝑞=1

− ∑ 𝑣𝑎𝑟( 𝜉𝑞
𝑠𝐺,𝛿

)

𝐾𝑠𝐺,𝛿

𝑞=1

| 

+𝑠𝑢𝑝
𝑡∈𝛿

|
∑ ∑ (�̂�𝑞𝑘(𝜉𝑘

𝑠𝐴,𝛿
) − 𝑓𝑞𝑘

2 (𝜉𝑘
𝑠𝐴,𝛿

))𝐾𝑠𝐴,𝛿

𝑘=1
𝐾𝑠𝐺,𝛿

𝑞=1 �̂�𝑞
𝑠𝐺,𝛿

(𝑡1)�̂�𝑞
𝑠𝐺,𝛿

(𝑡2)

−∑ ∑ (𝑔𝑞𝑘(𝜉𝑘
𝑠𝐴,𝛿

) − 𝑓𝑞𝑘
2 (𝜉𝑘

𝑠𝐴,𝛿
))𝐾𝑠𝐴,𝛿

𝑘=1
𝐾𝑠𝐺,𝛿

𝑞=1 �̂�
𝑞

𝑠𝐺,𝛿
(𝑡1)�̂�𝑞

𝑠𝐺,𝛿
(𝑡2)

|  

≤ 𝑂𝑝 (
𝐾𝑠𝐺,𝛿

√|𝐷∗|
) + 𝑂𝑝 (

𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
) + 𝑂𝑝 (

𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
) + 𝑂𝑝 (

𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
)  

≤ 𝑂𝑝 (
𝐾𝑠𝐴,𝛿𝐾𝑠𝐺,𝛿

√|𝐷∗|
)   

Based on the conditional mean and covariance function of predicted path travel times, 

𝑈(𝑡) and 𝐿(𝑡) as upper and lower bounds the dynamic validity windows are from Eqs. 

(3.31) and (3.32): 

𝑈(𝑡) = �̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) + 𝑍𝛼
2

∙ 𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))
1
2 (3.31) 

𝐿(𝑡) = �̂�(𝑇𝑠𝐺(𝑡)|𝑇𝑠𝐴(𝑡)) − 𝑍𝛼
2

∙ 𝐶𝑜�̂�(𝑇𝑠𝐺(𝑡1), 𝑇
𝑠𝐺(𝑡2)|𝑇

𝑠𝐴(𝑡))
1
2 (3.32) 

The invalid real-time AVI data can then be filtered out if they are not falling within the 

dynamic validity window  𝐿(𝑡), 𝑈(𝑡) . At each time interval 𝑡, the validity window is 

updated based on the rolling horizon scheme to be introduced in the following Section 

3.3.5. 

3.3.   olling horizon scheme 

The rolling horizon scheme is adopted as previous real-time applications (Pan et al., 

2013; Zhong et al., 2017). The dynamic validity windows governed by 𝑈(𝑡) and 𝐿(𝑡) 

(which are determined from the proposed unsupervised algorithm) are updated in each 

time interval 𝑡∗, when these new real-time AVI data are streamed for filtering. The 

filtering framework generates the dynamic validity windows for each rolling step 𝛥 

(i.e., 2 min) using the flexible and adaptive rolling horizon (study horizon) 𝛿 . In 

contrast, most existing data filtering algorithms adopted a fixed rolling horizon for 

their applications (Pan et al., 2013; Zhong et al., 2017). 

 

There are three factors to be distinguished: prediction horizon 𝛥𝑡, which is the time 

range into the future that the model is predicting; rolling step 𝛥, which is the interval 
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at which the model updates its predictions; rolling horizon 𝛿, which the time range to 

consider real-time data for prediction. 

 

An illustrative example is given in Figure 3.3. The green box represents the chosen 

rolling horizon (10 min), the red box illustrates the pre-determined prediction horizon 

(10 min), and the blue box shows the selected rolling step (2 min). For path 1 (urban 

arterial) with free-flow travel time of 8.4 min, the upper and lower bounds of the 

dynamic validity window are 23.89 min and 12.96 min, respectively at 10:00-10:02 

(𝑡0) on January 10th, 2018 (Wednesday). However, for the next 2-minute interval (𝑡1). 

They change to 23.13 min and 12.54 min, respectively. The effects of the lengths of 

rolling step, prediction horizon, and rolling horizon on the prediction accuracy of the 

path travel times will be elaborated in the following paragraphs. 

 

 

Figure 3.3 An illustrative example on the rolling horizon scheme 

 

The following discussion is concerned with the impacts of these three factors on the 

prediction performance on the path travel times. 

 

A longer prediction horizon (𝛥𝑡) may lead to decreased accuracy due to the increasing 

likelihood of unforeseen events affecting the system state over time. This can include 

incidents, changes in weather, or other dynamic factors that are difficult to predict far 

Prediction 
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Rolling 
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Rolling 
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: 12.54 min

  

Current time interval: 

Current time interval: 
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in advance. Conversely, a shorter prediction horizon might limit the predictive model's 

ability to forecast future conditions effectively. 

 

A larger rolling step (𝛥) in the prediction model implies that the prediction will be 

updated less frequently, which can result in slower response to real-time changes in 

the traffic conditions. This delay can cause the predictions to become less accurate as 

they do not reflect the most current traffic condition. If the rolling step is too short, it 

would however increase the computational load. 

 

A longer rolling horizon (𝛿) can lead to accumulated errors in the predictions, as each 

successive prediction is based on the previous one, potentially magnifying any initial 

inaccuracies. On the contrary, A shorter rolling horizon might not fully utilize real-

time data on the current day for the predictions, resulting in less stable and potentially 

less accurate forecasts. 

3.4 Case Studies 

The proposed unsupervised algorithm is examined in case studies of two selected paths 

using real-world data collected from the Hong Kong urban road network.  

3.4.1 Traffic data  

The historical ground truth on path travel times is obtained from the Hong Kong JTIS, 

the predicted path travel time of which has been independently validated using floating 

car survey data (Tam and Lam, 2008, 2011a). The predicted path travel times provided 

by the JTIS are instantaneous travel times. Figure 3.4 depicts an example of the real-

time information supplied by the JTIS (Hong Kong Transport Department, 2023). It is 

seen in Figure 3.4 that the different traffic sensors have been deployed in JTIS to 

predict path travel times. They are regarded as ground truth in the case studies. 
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Figure 3.4 Illustration of the JTIS in Hong Kong 

 

The numbers shown in the digital signs are journey times (or path travel times) in 

minutes from the locations of these signs to the exits of the corresponding road tunnels 

crossing Victoria Harbor in Hong Kong. The colors of the digits in the display panel 

represent the congestion levels of each route: red digits indicate congested traffic (< 25 

km/h), yellow digits imply slow traffic (25 –50 km/h), and green digits reveal free-

flowing traffic (> 50 km/h). 

 

As there are a limited number of AVI sensors (RFID tag readers) in the JTIS, and the 

average distance between these sensors is relatively long, the rates at which AVI data 

are sampled in the JTIS are very low. Accordingly, some point sensors are also 

deployed in the JTIS to provide additional data at selected locations along major paths 

in urban areas. These point sensors collect the point speed data of vehicles traveling 

along the major paths.  

 

The combination of AVI and point sensor data enables the JTIS to generate updated 

predicted path travel time along major routes in Hong Kong urban areas once every 2 

Predicted path travel times by JTIS 

(ground truth)

Point sensor (video-based cameras)AVI sensor (RFID tag reader)
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min (Tam and Lam, 2011a). As reported, independent floating car surveys have 

confirmed the validity of JTIS path travel times (Tam and Lam, 2008, 2011a). Hence, 

they are regarded as the ground truth for this study. 

3.4.2 Set-ups in the case studies 

Case studies on two selected paths in the Hong Kong urban road network are 

performed using real-world data. Figure 3.5 and Table 3.2 show the locations and 

characteristics of these two selected paths, respectively.  

 

Study path 1 is 9.2 km long and connects the Island Eastern Corridor on Hong Kong 

Island to the Western Harbor Crossing in Kowloon; its free-flow path travel time is 8.4 

min. Study path 2 is 8.8 km long and links Gascoigne Road and the entry of the Eastern 

Harbor Crossing; its free-flow travel time is 7.9 min. It is seen in Figure 3.5 that study 

path 2 has 3 AVI sensors, compared with study path 1 with 2 AVI sensors. An additional 

AVI sensor 4 is installed in the middle of study path 2 to collect more AVI data in order 

to enable the prediction of path travel times.  

 

Figure 3.5 Overview of the two study paths in Hong Kong in Chapter 3 

Legend:
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Table 3.2 Summary of two study paths 

 Study path 1 Study path 2 

Number of AVI sensors Two Three 

Road type 

Urban arterials with 

21 bus stops and one 

signalized junction 

Urban arterials with 19 

bus stops only 

Path length (km) 9.2 8.8 

Number of bus stops 20 8 

Number of entries  13 13 

Number of exits  13 11 

Number of short-spacing 

intersections 
18 11 

Free-flow travel time (min) 8.4 7.9 

Speed limits (km/h) 
70 (31%), 50 (18%), 

60 (19%), 80 (32%) 

70 (58%), 50 (20%), 80 

(22%) 

Number of point sensors Seven Five 

 

These two study paths differ primarily in the number of AVI sensors and bus stops in 

Table 3.2. In addition, there is a signalized intersection on study path 1 but not on study 

path 2. The study paths contain several bus stops and frontage access with entries and 

exits. These site characteristics can lead to very few valid real-time AVI data available 

for path travel time prediction.  

 

Figure 3.6(a) shows the low sampling rates of valid real-time AVI data from both paths. 

Based on descriptions of Dion and Rakha (2006), low sampling rates refer to as 

representatively two or three AVI data per 2-minute interval. However, in the case 

studies, as shown in Figure 3.6(a), there are only 12% and 30% of 2-minute intervals 

with no less than two valid real-time AVI data on study paths 1 and 2, respectively.  
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(a) 

 

(b) 

Figure 3.6 Sampling rates of (a) valid real-time AVI data, and (b) real-time AVI 

data on both study paths 

 

It can be seen Figure 3.6(a) and Table 3.2 that the existence of signalized intersections 

and more bus stops on study path 1 further decreases the sampling rates of valid real-
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time AVI data. Moreover, there are more than 50% of 2-minute intervals without any 

valid real-time AVI data or real-time AVI data from Figure 3.6(a) and Figure 3.6(b). 

The latter consists of both valid and invalid AVI data.  

 

The AVI data and JTIS ground truth collected on all weekdays in 2017 and January 

2018 are used in these two case studies. Public holidays and days with adverse weather 

and incidents are excluded. Hence, data of 299 days in 2017 are employed for training. 

Data from January 8th to 12th in 2018 are adopted for testing and evaluation for the rest 

of the case studies unless other specifications. The chosen rolling step is 2 min, and 

the confidence level for the dynamic validity window is 90%. 

3.4.3  esults 

The performance of the proposed unsupervised filtering algorithm is compared with 

that of the three corresponding existing algorithms that are commonly used in practice 

for filtering real-time AVI data. The algorithm developed by Southwest Research 

Institute (1998) is used to generate preliminary predicted path travel time for historical 

AVI data.  

 

The proposed unsupervised algorithm is denoted as U1, and the other three 

corresponding existing algorithms are existing algorithms in practice for filtering real-

time AVI data, which have been used successfully for decades in various ATIS 

(Southwest Research Institute, 1998; Dion and Rakha, 2006; Ma and Koutsopoulos, 

2010). The algorithm of Dion and Rakha (2006) is denoted as U2, that of Ma and 

Koutsopoulos (2010) as U3, and that of Southwest Research Institute (1998) as U4. 

These existing algorithms use real-time AVI data, while U1 utilizes both real-time and 

historical AVI data. 

 

The mean absolute error (MAE) and the mean absolute percentage error (MAPE), 
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which are given by Eqs. (3.33) and (3.34), respectively, are used to evaluate the 

filtering performance of algorithms with respect to the JTIS ground truth.  

𝑀𝐴𝐸 =
1

𝑇
∑|𝑇𝑡 − �̂�𝑡|

𝑇

𝑡=1

 (3.33) 

𝑀𝐴𝑃𝐸 =
100

𝑇
∑

|𝑇𝑡 − �̂�𝑡|

𝑇𝑡

𝑇

𝑡=1

 (3.34) 

where 𝑇𝑡 are true values, and �̂�𝑡 are predicted values. 

 

Figure 3.7 illustrates the contribution of using historical AVI data for filtering out 

invalid real-time AVI data. It is observed in Figure 3.7 from the left black circle that 

when real-time AVI data is rather limited in the early morning, the filtering window of 

U1 is more appropriate than U2 as the variations of path travel times are not significant 

(traffic demand is low during early morning). Moreover, there is a chance that the 

transition between congestion and free-flow conditions can hardly be recognized 

properly by the existing filtering algorithms (e.g., U2, Dion’s algorithm, which has 

already considered the transition recognition of the real-time traffic conditions by 

looking back at real-time AVI data in consecutive preceding time intervals).  
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Figure 3.7 Filtering performance of U1 and U2 on study path 2 by time of day 

 

As shown in Figure 3.7, the right black circle indicates that U2 fails to select valid 

real-time AVI data. In contrast, U1 with the use of historical AVI data performs well in 

filtering the limited real-time AVI data. The day-to-day covariance of path travel times 

modeled in Eq. (3.4) can help to recognize traffic conditions by time of day. It is also 

observed that most of the relevant ground truth is captured within the dynamic validity 

windows resulting from U1 throughout the day. 

 

Table 3.3 compares the filtering performance of the proposed unsupervised algorithm 

with benchmarks with respect to the mean/standard deviation of predicted path travel 

times. U1 outperforms the other three existing unsupervised algorithms from both 

aspects. For the mean of path travel times, the MAPE of U1 is 19.3% for study path 1 

U1 has more appropriate
validity window.

U2 fails to capture the evening peak

U1 outperforms U2 with use of

historical AVI data

Historical AVI dataset: 48 Wedenesdays in 2017

Real-time AVI dataset: January 10th (Wednesday) 

in 2018
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and 16.1% for study path 2. For the standard deviation of path travel times, the MAE 

values of U1 are 0.61 min and 0.52 min for study paths 1 and 2, respectively. The 

comparison of results between U1 and the other three existing unsupervised algorithms 

provides evidence to support the contribution of making use of historical AVI data. 

 

Table 3.3 Comparison of prediction performance with respect to mean/standard 

deviation of predicted path travel times 

Algorithms 

Study path 1 Study path 2 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

U1 (proposed 

unsupervised 

algorithm) 

1 .3 2.94 15.6 0.61 1 .1 2.53 13.2 0.52 

U2 (Dion’s 

algorithm) 
20.2 3.14 19.3 0.67 18.2 2.74 16.9 0.56 

U3 (Median-

based filter) 
21.4 3.32 22.4 0.81 19.4 2.89 18.2 0.63 

U4 

(TransGuide) 
22.1 3.49 27.1 0.94 20.1 3.01 20.4 0.68 

3.4.4 Sensitivity analysis 

In the real world, historical ground truth data on path travel times are assumed to be 

available (e.g., existing path travel times obtained from existing ATIS and samples 

collected independently from floating car surveys). It is a special case of research 

problems when historical ground truth is ready for training purposes. Under this 

scenario, 𝑦
𝑖,𝑑,𝑝

𝑠𝑔,𝑘
 denotes the 𝑖th ground truth on path travel time in Step 1 of Figure 3.2. 
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With the use of historical ground truth for training purposes, S1 represents the 

proposed unsupervised algorithm under this scenario. Three existing advanced 

supervised learning algorithms are selected for benchmark comparison. The LSTM 

NN in Ouyang et al. (2020) is denoted as S2. The LSTM encoder-decoder model in 

Wang et al. (2021b) is denoted as S3. The attention-based periodic-temporal neural 

network (APTN) in Shi et al. (2021) is denoted as S4. It should be noted historical 

ground truth in 2017 (299 weekdays) is used for training. 

 

In contrast to other neural networks that have black-box procedures and non-

explanatory performance, the FPCA model explicitly describes the temporal 

covariances of path travel times by 2-minute intervals at different time intervals and 

on different days (Zhong et al., 2017). Moreover, as the FPCA model enables a better 

understanding of trends, it can be used to quantify the uncertainties of valid real-time 

AVI data with low sampling rates, particularly those data that are scattered and time-

varying. The input data used in the sensitivity analysis include historical AVI data, 

historical JTIS ground truth, and real-time AVI data. 

 

Table 3.4 gives the comparison results on the mean of predicted path travel times under 

this scenario. The MAPE of S1 is 11.4% for study path 1 and 5.1% for study path 2. It 

is found in Table 3.4 that S1 performs better than the other benchmarks. Besides, it 

should be noted that other benchmarks can only provide the mean of predicted travel 

times.  

 

However, S1 can also produce the corresponding results and the standard deviation of 

predicted path travel times. In the case study, the corresponding MAPE and MAE are 

12.7% and 0.5 min for study path 1 and 9.5% and 0.36 min for study path 2. These 

results can demonstrate the contribution of using FPCA to capture the temporal 

covariances of path travel times by 2-minute intervals at different time intervals and 
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on different days for data filtering and path travel time prediction.  

 

Table 3.4 Comparison of prediction performance on the mean of predicted path travel 

times when historical ground truth is used for training 

Algorithms 

Study path 1 Study path 2 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

S1 (proposed unsupervised 

algorithm with the use of historical 

ground truth) 

11.4 1.79  .1 0.81 

S2 (LSTM NN) 15.3 2.38 7.5 0.95 

S3 (encoder-decoder model) 14.1 2.21 6.6 0.88 

S4 (periodic-temporal NN) 12.5 1.96 6.4 0.87 

 

The average computational times of the proposed unsupervised and benchmarks 

without (U1-U4) and with (S1-S4) ground truth are provided. All case studies are 

conducted on a standard computer with an AMD Ryzen 5 5600X processor (3.7 GHz, 

six cores), as shown in Table 3.5. The average computational time for dynamic validity 

windows and predicted path travel time varies from 0.07 to 0.63 min. It is found in 

Table 3.5 that the U1 is applicable for online ATIS applications; that is, U1 can filter 

the real-time AVI data collected at about each 1.5-minute time interval and then rapidly 

(within 0.55 min) generate the predicted path travel times. 
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Table 3.5 The average computational time of different filtering algorithms 

Algorithms 

The average computational time for predicted travel 

time and filtering windows for each time interval 

(min) 

Study path 1 Study path 2 

Unsupervised 

algorithms 

U1 0.52 0.51 

U2 0.13 0.2 

U3 0.07 0.17 

U4 0.1 0.15 

Supervised 

algorithms 

S1 0.55 0.52 

S2 0.63 0.57 

S3 0.5 0.6 

S4 0.52 0.   

 

Table 3.3 gives the overall errors (in terms of MAPE and MAE) of predicted path 

travel times by the proposed unsupervised algorithm. However, the detailed prediction 

errors should be further elaborated as the sample sizes of real-time AVI data and 

historical AVI data can be varied under different traffic conditions. Therefore, an 

additional experiment has been conducted on study path 2 to show the performance on 

predicted path travel times from unsupervised algorithm under different traffic 

conditions. 

 

The set for levels of service for describing the traffic condition on path 𝑝 is denoted as 

𝐿𝑂𝑆𝑝. The threshold of average  speed for the 𝑖-th level of service 𝐿𝑂𝑆𝑖,𝑝 on path 𝑝 is 

𝑣𝐿𝑂𝑆𝑖,𝑝
, while the free-flow travel speed on path 𝑝 is 𝑣𝑓,𝑝, the corresponding ratio for 

𝐿𝑂𝑆𝑖,𝑝 on path 𝑝 is: 

𝛿𝐿𝑂𝑆𝑖,𝑝
=

𝑣𝑓,𝑝

𝑣𝐿𝑂𝑆𝑖,𝑝

 (3.35) 
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Table 3.6 presents the findings of this experiment and shows the sample sizes of both 

historical and real-time AVI data. The sample sizes of both historical and real-time AVI 

data are smallest under LOS A&B (0.6 and 1.1 for real-time and historical AVI data, 

respectively). As a result, the employment of historical AVI data yields the most 

significant enhancement in prediction accuracy, with a maximum reduction in MAPE 

of 7.9%. Moreover, the MAPE is reduced to 18.4%, which meets the requirement 

proposed by Tam and Lam (2008). It implies that though the sample size of historical 

data is also insufficient when traffic is light (i.e., LOS A&B), their influence on the 

accuracy of predicted path travel times can be significant. 

 

However, when levels of service are C&D, the prediction accuracy with and without 

the incorporation of historical AVI data in the offline training stage is nearly identical, 

with a minimal MAPE difference of 0.7% in Table 3.6. This is because the sample size 

of real-time AVI data is relatively sufficient (2.9). These observations underscore the 

critical role of historical AVI data in enhancing performance on predicted path travel 

times, particularly during uncongested traffic conditions (i.e., LOS A&B). 
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Table 3.6 The prediction performance of the proposed unsupervised algorithm on 

study path 2 under different traffic conditions 

Traffic 

condition 

Sample size of 

AVI data per 2-

minute interval 

With historical 

AVI data in 

the offline 

training stage 

Without 

historical AVI 

data in the 

offline training 

stage 

Performance 

improvement 

after 

considering 

historical AVI 

data 

Real-

time 

AVI 

data 

Historical 

AVI data 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

MAPE 

(%) 

MAE 

(min) 

LOS 

A&B 
0.  1.1 18.4 2.76 26.3 3.38  .  0.62 

LOS 

C&D 
2.9 3.2 14.5 2.35 15.2 2.42 0.7 0.07 

LOS 

E&F 
1.4 1.7 15.3 2.44 18.9 2.81 3.6 0.37 

Overall 1.2 1.4 16.1 2.53 20.1 3.01 4.0 0.48 

 

Therefore, further sensitivity tests with pre-determined and fixed sample sizes are 

carried out to investigate the effects of traffic conditions on the performance of 

predicted path travel times. As traffic data under LOS A&B have the smallest sample 

sizes, the sample sizes of real-time AVI data for path travel time prediction under other 

traffic conditions are also reduced to 0.6 per 2-minute interval. Moreover, the 

comparison excludes the involvement of historical AVI data to eliminate their 

complicated impact. The results of these further sensitivity tests are shown in Table 

3.7.  
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Table 3.7 The prediction performance of the proposed unsupervised algorithm with a 

fixed sample size of real-time AVI data 

Traffic condition MAPE (%) MAE (min) 

LOS A&B 2 .3 3.38 

LOS C&D 36.4 4.01 

LOS E&F 30.1 3.86 

 

It is found that the prediction performance under LOS A&B (which is the worst in 

Table 3.6) is the best. This is due to the relatively low variability of path travel times 

under uncongested LOS A&B conditions. However, the prediction performance under 

all traffic conditions ranging from LOS A to LOS F is unsatisfactory, with MAPE being 

over 20% if the real-time AVI data is only 0.6 sample per 2-minute interval. This 

finding highlights the importance of considering historical data in the offline training 

stage when the real-time AVI data is insufficient.  

 

Furthermore, as both study paths in Table 3.2 have different numbers of short-spacing 

intersections and frontage access, their impact on the travel time calculation process 

can be evaluated. AVI data of these study paths with similar weather and traffic 

conditions are selected. The widths of their validity windows are to be compared. 

However, the difference in path distance may have a significant impact on their results. 

Therefore, the metric is the ratio between the number of short-spacing intersections 

and path distance, which compares two study paths. Similarly, the ratio between the 

number of frontage accesses (entries and exits) and path distance is calculated. The 

results are given in Table 3.8 below. 
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Table 3.8 The effects of short-spacing intersections and frontage access on predicted 

path travel times 

Study paths 

Number of 

short-spacing 

intersections 

per kilometer 

Frequent 

frontage 

access per 

kilometer 

MAPE of the 

predicted 

mean of path 

travel times 

(%) 

Average width 

of validity 

window (min) 

1 2.0 2.8 19.3 5.1 

2 1.3 2.7 16.1 4.6 

 

It is found in Table 3.8 that study path 1 has more short-spacing intersections per 

kilometer than study path 2. Consequently, study path 1 has a lower prediction 

accuracy and wider validity window than study path 2. The risk of identifying wrong 

valid AVI data may be higher for paths with many short-spacing intersections (Ban et 

al., 2010; Van Hinsbergen et al., 2012; Elfar et al., 2018). However, further study 

should be carried out on various study paths with different road types in urban areas 

to investigate the effects of frequent frontage access on path travel time prediction. 

 

Another sensitivity analysis is conducted to examine the effect of sampling rates of 

real-time AVI data on the performance of the proposed unsupervised algorithm. As 

study path 2 has more AVI sensors than study path 1, the range of sampling rate for 

study path 1 is greater. Moreover, it can be used to investigate the problem of filtering 

AVI data under different sensor failure scenarios for further study. Therefore, study 

path 2 is used for sensitivity analysis to examine the effects of sampling rates. The 

results are shown in Figure 3.8. 
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Figure 3.8 Sensitivity test with various sampling rates of real-time AVI data on study 

path 2 

 

There are two observations in Figure 3.8, Firstly, U1 differs from U2-U4 in that it 

incorporates the day-to-day covariance of path travel times by 2-minute intervals 

𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗). U1 enables the identification of traffic condition patterns, such as regular 

periods of congestion at certain times of the day or on specific days from the historical 

AVI data. The consideration of 𝛴𝑡
𝑠𝐴(𝑑𝑖, 𝑑𝑗)  can improve the prediction accuracy of 
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path travel times. 

 

Secondly, while U2, U3, and U4 rely only on real-time AVI data as their input, U1 

makes full use of both the real-time and historical AVI data. When real-time AVI data 

is insufficient to construct the dynamic validity window (e.g., particularly when there 

is either 0 or 1 sample per 2-minute interval), historical AVI data can contribute 

significantly to U1 for improving the prediction accuracy of the path travel times. 

 

To further investigate the effects of sampling rates of valid real-time AVI data on the 

proposed unsupervised algorithm, another sensitivity test is carried out. 30 out of 299 

weekdays in 2017 are randomly segregated from the original training set and used as 

the new validation set. The performance of the proposed unsupervised algorithm on 

both study paths is provided in Figure 3.9.  

 

 

Figure 3.9 Sensitivity test of sampling rates of valid real-time AVI data on U1 

for study path 1 (left) and study path 2 (right) 

 

It is noted in Figure 3.9 that when the sampling rate of valid real-time AVI data is no 

less than two valid AVI data per 2-minute interval, the performance of U1 is similar 
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on different datasets (95% of the absolute percentage errors less than 15.2% and 14.9% 

for study paths 1 and 2, respectively). It demonstrates the generality and robustness of 

the proposed unsupervised algorithm. In general, it is found in Figure 3.9 that 95% of 

the absolute percentage errors of the predicted results are less than 20%. 

 

Additionally, as shown in Figure 3.6(a), study path 2 with more AVI sensors would 

have a higher percentage of 2-minute intervals with no less than two valid data than 

that of study path 1. Hence, the performance of both S1 and U1 for study path 2 is 

better than that of study path 1, as shown in Table 3.3 and Table 3.4. The same finding 

can also be obtained in Figure 3.9, even though the validation dataset is different in 

Figure 3.9, Table 3.3, and Table 3.4. 

 

As the case study is carried out using accurate but limited real-time AVI data, it is 

worthwhile to discuss the performance of U1 on inaccurate real-time AVI data with 

more samples (e.g., Bluetooth data). It is assumed that this type of AVI data has a much 

lower percentage of valid real-time AVI data. Therefore, the performance will 

deteriorate due to the extremely low sampling rate of valid real-time AVI data for U1. 

Further study should be conducted in the future if this type of AVI data is available. 

 

A sensitivity test is performed to assess the effect of historical ground truth data by 

reducing the number of days with historical ground truth data. A percentage varying 

from 0% to 100% of historical ground truth data is available for training to evaluate 

the performance of S1. The result is displayed in Table 3.9. When there is no ground 

truth available for training, U1 has better performance (83%, as indicated in Figure 3.8) 

than S1 (71%). Furthermore, the percentage of absolute percentage errors less than 

20% is reduced to 83% or lower if less than 50% of the historical ground truth is used 

for training purposes. This implies that U1 is better than S1 in practice, particularly 

when less than half of the historical ground truth on path travel time is available to 
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filter real-time AVI data and path travel time prediction. 

 

Table 3.9 Sensitivity test with different percentages of historical ground truth 

removed in 2017 data on study path 2 

Percentage of historical ground truth 

available in 2017 data (%) 

Percentage of absolute percentage 

errors less than 20% (%) 

0  1 

10 76 

30 78 

50  3 

70 86 

90 90 

100 93 

 

With reference to the above Eq. (3.8), the sensitivity test of threshold 𝛴∗ is conducted. 

The relevant results are given in Table 3.10, in which the optimum thresholds of 𝛴∗ for 

study paths 1 and 2 are 10.8 and 9.6 min2, respectively.  

Table 3.10 Sensitivity test of the percentage deviation of the results of S1 from the 

optimum threshold 

 

Percentage of deviation from 

optimum threshold (%) 

0 10 20 

Value of threshold 

(𝑚𝑖𝑛2) 

Study path 1 10.8 11.9 13 

Study path 2  .  10.6 11.5 

MAPE (%) 
Study path 1 11.4 12.6 13.4 

Study path 2 5.1 7.8 9.5 

Percentage of absolute 

percentage errors less 

than 20% (%) 

Study path 1 83 78  4 

Study path 2 93 86 82 



3-43 

 

For study path 1, only 74% of absolute percentage errors are less than 20% when there 

is a 20% deviation from the optimum threshold. 𝛴∗  can also be an annual average 

figure, as it is based on weekday data in 2017 (excluding public holidays and days with 

adverse weather and incidents) to capture the seasonal variation of path travel times. 

Moreover, the optimum threshold is based on the current dataset, but 𝛴∗ may deviate 

from the actual optimum threshold, as the latter will depend on the updated dataset.  

 

Previous contents have validated the mean of path travel times by 2-minute intervals. 

Figure 3.10 compares the day-to-day variance of the mean of predicted path travel 

times obtained from the proposed model using AVI data (𝑉𝑎𝑟(𝜇𝑇𝑠𝐴(𝑑)), 𝑑 ∈ 𝐷, which 

is the variance of the predicted mean of path travel times by 2-minute intervals on day 

𝑑 from data source 𝑠𝐴) against day-to-day variance of ground truth on mean of path 

travel times (𝑉𝑎𝑟(𝜇𝑇𝑠𝐺(𝑑)), 𝑑 ∈ 𝐷, which is the variance of ground truth on mean of 

path travel times by 2-minute interval on day 𝑑 from data source 𝑠𝐺) on the study path 

1.  

 

In general, it is found in Figure 3.10 that the latter one is smaller than the former one. 

The 90 percentiles of day-to-day variance of mean of path travel times by 2-minute 

intervals are 28.1𝑚𝑖𝑛2 and 37 𝑚𝑖𝑛2 for predicted sample mean and ground truth of 

population mean, respectively. This is because the former regards variations of the 

population mean, while the latter refers to variations of the sample mean based on AVI 

data. The variations of sample mean should include variations of population mean, as 

AVI sensors only collect timestamps of commercial vehicles. Detailed validation 

requires the collection of ground truth of this covariance for further study. 
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Figure 3.10 Comparison of day-to-day variance of the mean of predicted path travel 

times from the proposed model using AVI data 𝑉𝑎𝑟(𝜇𝑇𝑠𝐴(𝑑)) against day-to-day 

variance of ground truth on mean of path travel times 𝑉𝑎𝑟(𝜇𝑇𝑠𝐺(𝑑)) by 2-minute 

intervals on the study path 1 

 

Different combinations of 𝛥𝑡 , 𝛥 , and 𝛿  are implemented in a sensitivity test to 

investigate their impacts on the accuracy of predicted path travel times. The values of 

𝛥 are 2 min, 10 min, 30 min, and 60 min, while the values of 𝛥𝑡 and 𝛿 are 10 min, 30 

min, and 60 min. There is a constraint regarding real-time implementation of 

prediction models, i.e., 𝛥𝑡 ≥ 𝛥.  For each combination, these three factors are fixed 

during the prediction process. The tests are conducted on study path 2. Table 3.11 gives 

the corresponding results. 
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Table 3.11 Impacts of prediction horizon (𝛥𝑡), rolling horizon (𝛿), and rolling step 

(𝛥) on prediction accuracy (in terms of MAPE%) for the study path 2 

Rolling step 

𝛥 (min) 
Category 

Rolling horizon 

𝛿 (min) 

Prediction 

horizon 𝛥𝑡 (min) 
MAPE (%) 

2 

𝛿 = 𝛥𝑡 

30 30 1 .2 

60 60 18.4 

10 10 21.5 

𝛿 < 𝛥𝑡 

30 60 17.9 

10 60 20.1 

10 30 20.8 

𝛿 > 𝛥𝑡 

60 30 17.6 

60 10 18.9 

30 10 19.2 

10 

𝛿 = 𝛥𝑡 

30 30 26.8 

60 60 28.7 

10 10 33.5 

𝛿 < 𝛥𝑡 

30 60 27.9 

10 60 31.4 

10 30 32.4 

𝛿 > 𝛥𝑡 

60 30 27.5 

60 10 29.5 

30 10 30.0 

30 

𝛿 = 𝛥𝑡 
30 30 34.9 

60 60 37.3 

𝛿 < 𝛥𝑡 

30 60 36.3 

10 60 40.8 

10 30 42.2 

𝛿 > 𝛥𝑡 60 30 35.7 

60 

𝛿 = 𝛥𝑡 60 60 4 .  

𝛿 < 𝛥𝑡 
30 60 48.2 

60 60  3.1 
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It is seen in Table 3.11 that the best accuracy of predicted path travel times is achieved 

when 𝛥𝑡, 𝛿, and 𝛥 are 30 min, 30 min, and 2 min (MAPE=17.2%). On the contrary, 

the largest MAPE appears when all three factors are 60 min (MAPE=53.1%). It is also 

found that MAPEs are 26.8%, 34.9%, and 48.5% when values of 𝛥 are 10 min, 30, and 

60 min, respectively. It implies that the detrimental effect on the prediction accuracy 

is greater for longer 𝛥 . Moreover, it is observed in Table 3.11 that the accuracy is 

highest under the category when 𝛿 = 𝛥𝑡. It suggests that the values of 𝛿 and 𝛥𝑡 should 

be the same for the prediction of path travel times in further study. 

 

Further analysis is carried out to investigate the effects of missing data on filtering 

performance. Five scenarios are generated by extracting varying proportions of online 

and historical AVI data. They are (i) 50% of data missing in the collected online AVI 

data at the certain time interval; (ii) all data missing at the certain time interval; (iii) 

50% of data missing in the collected historical AVI data at the certain time interval; 

(iv) all data missing in the collected historical AVI data at the certain time interval; (v) 

full data (without deduction of sample size). 30 2-minute intervals from congested and 

uncongested periods are selected for investigation of the effects of missing data on 

filtering performance, respectively. The prediction performance of path travel times 

under these five scenarios on study path 1 is summarized in Table 3.12.  

 

It is found in Table 3.12 that Scenario (i) has the least adverse impact on prediction 

accuracy (MAPE=12.4%) compared with the full data scenario (v) (MAPE=10.8%). 

Furthermore, as the original dataset has limited online AVI data, the missing data issue 

of online AVI data has less impact on prediction accuracy than that of historical AVI 

data. Moreover, when all historical data are missing in Scenario (iv), the resulting 

MAPE is 22.4%, which is unsatisfactory and motivates the need to collect more ground 

truth data for training purposes. 
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Table 3.12 Prediction performance of the proposed unsupervised algorithm (in terms 

of MAPE (%)/MAE (min)) 

Scenarios MAPE (%) MAE (min) RMSE (min) 

(i) 12.4 1.9 2.1 

(ii) 14.3 2.3 2.6 

(iii) 17.7 2.7 2.9 

(iv) 22.4 3.5 3.7 

(v) 10.  1.5 1.7 

 (i) 50% of data missing in the collected online AVI data at a certain time interval; (ii) 

all data missing at a certain time interval; (iii) 50% of data missing in the collected 

historical AVI data at a certain time interval; (iv) all data missing in the collected 

historical AVI data at the certain time interval; and (v) full data. 

 

Traffic accidents can increase path travel times significantly. To investigate the impacts 

of traffic accidents on the filtering performance for path travel time prediction, AVI 

data on days with accidents in 2018 are further analyzed. It is found that the increment 

of path travel times varies from 3% to 15% after filtering. Regarding outliers filtered 

out by the proposed unsupervised algorithm, they may be affected by accidents or 

detours of vehicles. These outliers need to be further distinguished with detailed 

trajectories of accident vehicles in further study. 

3.  Concluding  emarks 

This chapter proposes a novel unsupervised algorithm (U1) for filtering limited but 

accurate real-time AVI data without ground truth for training. Instead, it makes use of 

real-time AVI data gathered on the current day and historical AVI data collected on 

previous days. The temporal covariances of path travel times by 2-minute intervals at 

different time intervals and on different days are explicit. Both mean and standard 
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deviation of the predicted path travel times are provided and used for constructing the 

validity window for filtering real-time AVI data.  

 

As FPCA can effectively reduce the dimension of high-variability data, the 

corresponding PACE approach is used to construct the dynamic validity windows in 

the proposed unsupervised algorithm. The real-time dynamic validity windows are 

generated via a rolling horizon scheme. Furthermore, the asymptotic properties of U1 

have been theoretically proven to confirm their ability to generate reliable dynamic 

validity windows for real-time AVI data filtering and path travel time prediction.  

 

The performance of U1 is compared respectively with three existing data filtering 

algorithms in the case studies using real-world data collected from two selected paths 

in the Hong Kong urban road network. The comparison between U1 and U2 on 

filtering performance by time of day demonstrates the merit of using historical AVI 

data. It is also found that U1 surpasses the existing algorithms in terms of both mean 

and standard deviation of predicted path travel times.  

 

A sensitivity analysis is conducted for a special case where ground truth is available 

for training. The proposed unsupervised algorithm with ground truth for training 

(namely S1) outperforms other benchmarks in terms of both mean and standard 

deviation of predicted path travel times. It illustrates the merit of using FPCA for 

modeling temporal covariances of path travel times by 2-minute intervals at different 

time intervals and on different days. Another sensitivity test is also performed to reveal 

the merits of using historical AVI data when real-time AVI data is sampled at a very 

low rate. U1 performs much better than the other three benchmarks in terms of the 

probabilities of absolute percentage errors of the predicted results, which are less than 

20% (i.e., 83% against 56%-60%).  
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The sensitivity test on sampling rates of valid real-time AVI data demonstrates the 

generality and robustness of the proposed unsupervised algorithm. When there are no 

less than two valid real-time AVI data per 2-minute interval, there is a 95% probability 

of generating absolute percentage errors of less than 20%. Moreover, the performance 

of U1 on different study paths is similar under this scenario, which implies that U1 is 

generalized with robust performance. The expected worsened performance on 

inaccurate real-time AVI data with more samples (e.g., Bluetooth) is also discussed 

with the assumed lower sampling rate of valid real-time AVI data. Filtering of this type 

of AVI data is suggested for further study if this dataset is available. 

 

Moreover, an additional sensitivity test is carried out to show the advantage of U1. The 

percentage of absolute percentage errors less than 20% is reduced to 83% or lower if 

less than 50% of the historical ground truth is used for training purposes. It implies 

that U1 is better than S1 in reality when less than half of the historical ground truth on 

path travel time is available for filtering real-time AVI data and path travel time 

prediction. 

 

In this chapter, only a single traffic data source (i.e., AVI data) has been considered for 

path travel time prediction. However, there can be several traffic sensors allocated on 

the road networks in practice with various travel time data, as presented in Figure 2.1. 

Moreover, vehicle type information is available for AVI data, but this chapter has not 

addressed this issue, as mentioned in Section 3.2. It is worthwhile to make full use of 

AVI data, together with other traffic data sources, for multi-class path travel time 

prediction in the following Chapter 4.  

 

Chapter 3 mainly focuses on limited AVI data with high accuracy for capturing 

vehicular travel times (e.g., RFID and ALPR data). For AVI data with less accuracy 

but much more sample sizes (e.g., Bluetooth data), the filtering algorithms can be 
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further studied in the future. 

 

In addition, U1 could benefit from the integration of various traffic-related data types 

to enhance its data filtering capabilities. These data types include weather conditions, 

traffic accidents, and the schedule of construction works. Furthermore, vehicular flow 

data, bus frequencies, signal timing, short spacing between intersections, the number 

of frequent frontage access points (i.e., entries and exits), and road types could also be 

incorporated into U1. 

 

The weather information (e.g., historical rainfall intensity and weather forecast) has 

been investigated in Chapter 5 to improve the prediction performance of path travel 

times. It is interesting to study whether it will affect filtering performance. As both 

AVI sensors and point sensors are deployed in the JTIS, it is interesting to explore the 

sensor-location problems and trade-offs of these two categories of traffic sensors. 

Similarly, it is also interesting to extend U1 to examine the effects of sensor failure on 

data from multiple AVI sensors at urban road corridors by considering network 

topology and measurement errors. 

 

As mentioned in Section 2.4, after filtering outliers/invalid data, path travel time 

prediction can be carried out using valid AVI data. In the following Chapter 4, the 

output of this chapter (i.e., the filtered real-time AVI data) will be the input for path 

travel time prediction by vehicle class. The vehicle type information is available from 

AVI data, as illustrated in Section 2.2. This information will be critical for the 

following chapter, as Chapter 4 aims to predict path travel times by different vehicle 

classes. The evidence of distinct distributions of path travel times by vehicle class 

relies on the availability of AVI data after the filtering process. Furthermore, the 

filtered AVI data will also be used for path travel time prediction in Chapter 5.
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4. Prediction of  ulti-class Path Travel Times Using  ulti-

source Traffic Data 

4.1 General 

After data filtering described in Chapter 3, the filtered traffic data can be used to 

predict path travel times for ATIS. In practice, most of the ATIS provide average travel 

times (i.e., mean of path travel times) of all vehicles on selected paths in real time on 

a regular basis. These predicted path travel times have been validated with ground truth 

in the literature, as shown in Section 2.5. However, the path travel times of different 

vehicles could vary widely under different traffic conditions. There is a need to 

consider the differences in vehicle classes for path travel time prediction.  

 

This chapter proposes a novel prediction model that models temporal covariances of 

path travel times between vehicle classes by 2-minute intervals for predicting multi-

class path travel times. It uses multi-source traffic data collected from various types of 

sensors. The proposed prediction model is examined with numerical experiments of a 

selected urban expressway in Hong Kong with data obtained from multiple sources. 

The predicted path travel times by vehicle class in the experiments demonstrate the 

merits and performance of the proposed prediction model. 

 

The rest of this chapter is organized as follows. Section 4.1 starts with the basic 

information and the motivation, together with the constructive contributions of this 

chapter. The research problems are presented in Section 4.2. Section 4.3 provides the 

details of the proposed prediction model for multi-class path travel time prediction. 

The results of numerical experiments are shown in Section 4.4. Finally, the findings of 

the research in this chapter are given in Section 4.5.  
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4.1.1 Basic information 

The traffic conditions on a path, which can be defined as an alternating sequence of 

nodes and links connecting an origin and destination pair, as mentioned in Section 1.1, 

have received much attention in the field of transportation research. The travel times 

spent by vehicles on their designated path are referred to as path travel times in this 

thesis. Path travel time information can assist road users in route selection. The 

information can also help road authorities manage traffic conditions on roads, 

especially urban roads. However, the path travel times change over time owing to 

variations in traffic demand and supply on the roads (Shao et al., 2013; Han et al., 

2018). It is thus necessary to accurately predict the path travel times using traffic 

information gathered on road networks. 

 

As exhibited in Figure 4.1, a selected expressway is used to illustrate different sensors 

along the study. It is a major route from Tuen Mun New Town to Tsuen Wan New 

Town. Table 4.1 gives the detailed traffic characteristics of the study path. The chosen 

path is 1 .  km long and has a free-flow path travel time of 14.3 min. It can be 

observed that the study path is a representative route in Hong Kong, with many bus 

stops, entries, and exits along the path. The speed limits vary between 70 km/h and 80 

km/h on the study path.  

 

ALPR technology introduced in Section 2.2.1 is adopted for the collection of traffic 

data on the study path. Compared with the RFID technology used in Chapter 3, ALPR 

can assemble more AVI data. Video-based cameras as point sensors are installed along 

the path. Figure 4.1 presents an example of data obtained for one vehicle. If a truck is 

identified by both AVI and GPS sensors, the trajectories are constructed using the 

corresponding AVI and GPS data.  
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Figure 4.1 Overview of the study path and example of data for one vehicle in 

Chapter 4 

 

There are four remarks worth making in Figure 4.1. First, the identification numbers 

in the AVI system and GPS are non-identical for the same vehicle. Second, the 

trajectory of the truck from GPS data required extrapolation as there are not necessarily 

GPS data corresponding exactly to both the origin and destination. Third, there are two 

constructed trajectories for the same vehicle with contrasting observed path travel 

times. They are 19.2 min and 18.8 min from AVI and GPS data, respectively. This 

indicates that AVI and GPS data cannot be used simultaneously owing to the double-

counting problem. Fourth, point sensor data are not shown in Figure 4.1 as they are 

aggregated at 2-minute intervals, as presented in Figure 2.1. The individual speeds of 

a truck captured by point sensors are not stored in the point sensor system.  
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Table 4.1 Traffic characteristics of the study path 

Road type Expressway 

Path length (km) 17.8 

Number of bus stops 20 

Number of entries along the study path 

(e.g., slip road and frontage access) 
1  

Number of exits along the study path 

(e.g., slip road and frontage access) 
1  

Free-flow travel time (min) 14.3 

Speed limits (km/h) 70 (47%), 80 (53%) 

 

Given the features of different traffic sensors introduced in Section 2.3.4, there are 

three challenges in dealing with multi-source data in this study. First, there is limited 

data for valid AVI and GPS data for path travel time prediction. Figure 4.2 illustrates 

the cumulative distribution function (CDF) plots of the sample sizes of the valid AVI 

and GPS data after data filtering from the study path. It is noted that GPS data are 

generally processed on several short links so that the allocation of data can be more 

accurate (Zhong et al., 2017). There are 67 links along the study path. Therefore, the 

sample size of GPS data is counted per link. 
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(a) CDF of the sample size of valid AVI data 

 

(b) CDF of the sample size of valid GPS data 

Figure 4.2 CDF of the sample size of valid AVI and GPS data used in Chapter 4 
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It can be seen in Figure 4.2(a) that over 55% of the 2-minute intervals had no valid 

AVI data, and 80% of the 2-minute intervals had no more than two samples of all 

vehicles. Figure 4.2(b) shows that 64% of 2-minute intervals had no more than two 

samples per link (67 links for the study path). It was reported in the literature (Dion 

and Rakha, 2006) that two or three observations per 2-minute interval were considered 

a low sampling rate with limited valid AVI or GPS data for path travel time prediction. 

 

Second, there are difficulties in predicting path travel times by vehicle class. The 

sample size is rather limited for each vehicle class. For vehicle classes with extremely 

low sample sizes, there is a need to combine them into a new class for model training. 

Moreover, from Table 2.7 in Section 2.3.4, it is noted that not all traffic sensors (such 

as point sensors in this study) cover vehicle class information of all vehicle classes. 

Third, due to the limited data and incomplete vehicle class information, it is difficult 

to consider the covariance of path travel times between vehicle classes. 

 

Apart from variations of path travel times over time, as shown in Figure 3.7 and 

explained in Section 3.4.3, the path travel times can be distinct by vehicle class. Figure 

4.3 gives the CDF plots of observed travel times on the study path by vehicle class 

from AVI data. In the dataset used for analysis, the percentages for private cars, goods 

vehicles, and other vehicles (such as buses and coaches) are 24.8%, 56.1%, and 19.1%, 

respectively.  
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Figure 4.3 CDF plot of path travel times by vehicle class using AVI data 

 

It is noted in Figure 4.3 that 50% of path travel times are less than 13.8 min, 15.1 min, 

16.6 min and 15.0 min for private cars, goods vehicles, other vehicles, and all vehicles 

respectively. Thus, over 50% (56.1%) of drivers (i.e., drivers of goods vehicles) 

receive an underestimated path travel times with 10.7% deviation from observed path 

travel times. The majority of drivers hence should receive more accurate predicted path 

travel time. 

 

Moreover, private cars are comparatively faster than good vehicles and much faster 

than other vehicles as over 95% of other vehicles are regular buses which need to stop 

at stops along the study path. Moreover, the standard deviation of path travel times by 

vehicle class should be different inferred from Figure 4.3. As this chapter mainly 

studies the mean of path travel times by vehicle class, the deviation of multi-class path 

travel times should be further investigated in the future. 
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Table 4.2 presents the p-value of the Kolmogorov–Smirnov test at the 5% significance 

level. As all p-values between vehicle classes (with the percentage of samples) are 

much less than 0.05, the path travel time distributions of these vehicle classes are 

significantly different. Hence, the empirical evidence supports that there is a need to 

predict path travel times by vehicle class for ATIS development.  

 

Table 4.2 P-values of the Kolmogorov–Smirnov test on path travel times by vehicle 

class (𝛼 = 0.05) 

Vehicle 

classes 

Vehicle classes 

Private cars 

(24.8%) 

Goods 

vehicles 

(56.1%) 

Other vehicles 

(19.1%) 

All vehicles 

(100%) 

Private cars 1 7.2×10-17 1.4×10-199 1.72×10-33 

Goods 

vehicles 
7.2×10-17 1 2.8×10-109 2.3×10-1  

Other vehicles 1.4×10-199 2.8×10-109 1 3.9×10-184 

All vehicles 1.72×10-33 2.3×10-1  3.9×10-184 1 

 

However, the path travel time information is usually provided for all vehicles as a 

single class (average path travel times for all vehicles) instead of a multi-class 

(multiple vehicle classes). Previous studies predicted the path travel times of all 

vehicles using data from either AVI sensors or point sensors, as presented in Sections 

2.5.1 and 2.5.3. The sample size of a single traffic data source may only afford to 

predict path travel time for a single class. The relatively low sampling rates of the 

single source of traffic data (as shown in Figure 4.2) motivated the use of multi-source 
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data, especially for multi-class travel time prediction. Furthermore, although the point 

sensor dataset had no information on the vehicle class, it enriches the data amount 

which would help to improve the prediction accuracy. 

 

Besides, current path travel time prediction models based on AVI data have only 

provided the average path travel times of all vehicles. As AVI sensors are more 

expensive than point sensors, AVI sensors are spaced at greater intervals than point 

sensors. Hence, for each 2-minute interval, fewer than three samples are usually 

collected from an AVI system. After removing outliers using outlier detection 

algorithms (Chen et al., 2010), the size of valid samples is smaller. Therefore, the 

combined application of AVI, GPS, and point sensor data is attractive for multi-class 

path travel time prediction. Either AVI or GPS data, together with point sensor data, 

are used to enrich the information on traffic conditions on an urban road for this 

problem. 

 

Hence, there are three major challenges to be tackled. First, considering the different 

features of the three types of traffic data, it is a challenge to evaluate the appropriate 

usage of each data source for predicting path travel times. The simultaneous use of 

AVI and GPS data may cause a double-counting problem. It can lead to an inaccurate 

path travel time distribution and should be avoided.  

 

Second, as the availability of vehicle class information varies, it is a challenging task 

to predict path travel times by vehicle class using a unified modeling framework, 

instead of providing the average path travel times for all vehicles. Third, it is 

challenging to model various types of temporal covariance of path travel times 

(especially the temporal covariance of path travel times between vehicle classes) to 

improve the prediction accuracy of the modeling framework. 
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The Gaussian mixture model (GMM) is a powerful tool that has been widely used in 

analyzing the temporal covariance of path travel times. Recent studies have adopted 

the GMM for travel time prediction using one or multiple sources of traffic data, as 

shown in Table 4.3. These studies clustered data by traffic conditions without 

considering vehicle classes due to the limited availability of vehicle class information. 

The modified GMM presented in this chapter extends to taking into account the 

temporal covariance of path travel times between vehicle classes to enhance the 

prediction accuracy of path travel times by vehicle class. 

 

Table 4.3 Recent related studies using the GMM 

Related studies Data  Categories (clusters) 

Yang et al. (2018) 
AVI data 

(Bluetooth data) 

Free-flow, saturated, or 

oversaturated 

Ramezani and 

Geroliminis (2012) 
Probe vehicle data No more than three clusters 

Wang et al. (2021b) 
AVI data  

(ALPR data) 

Two or three components decided 

by the data 

Mil and 

Piantanakulchai 

(2018) 

Loop detector, AVI, 

and GPS data 
Free-flow; congestion; transition 

This chapter 
AVI, GPS, and 

point sensor data 

Clustering using Bayesian 

Information Criterion (BIC) by 

vehicle class 

 

Other machine-learning models have also frequently been applied to transportation 

problems. Two of them are introduced as benchmarks and compared against GMM in 

numerical experiments. The first is the LSTM model, which is one of the hot 
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technologies in deep learning. It belongs to recurrent neural networks (Du et al., 2022a). 

The special design of the memory block solves the problem of long-term dependence 

compared to traditional recurrent neural networks (Du et al., 2022b). The LSTM is 

commonly used in traffic prediction problems (Ku et al., 2021; Yang et al., 2021b; 

Ouyang et al., 2020; Zhao et al., 2019). 

 

The second is the attention-based periodic-temporal neural network (APTN), which is 

a branch of encoder-decoder networks. The attention mechanism is proposed to solve 

the problem of unsatisfactory performance of traditional encoder-decoder networks 

when the input sequence is too long. The temporal attention selects the most relevant 

input features while the spatial attention correlates the local node to the entire graph 

(Shi et al., 2021). 

4.1.2 Constructive contributions of this chapter 

This chapter studies multi-class path travel time prediction with the use of either AVI 

or GPS data, together with point sensor data. The proposed prediction model in this 

chapter extends existing works by providing the following constructive contributions. 

 

C4.1 The proposed prediction model can predict the path travel times of different 

vehicle classes using the appropriate combination of traffic sensor data with 

satisfactory performance. 

 

C4.2 The proposed prediction model improves prediction accuracy by studying 

various types of temporal covariances of path travel times by 2-minute intervals, 

especially the temporal covariance of path travel times between vehicle classes by 2-

minute intervals. 

 

C4.3 The robustness of the proposed prediction model is tested independently in a real-
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world numerical experiment and shown to be satisfactory. 

4.2  esearch Problems  

Consider a path 𝑝 with a pair of AVI sensors installed at both ends. The travel time of 

road corridors between two sensors 𝑜𝑝 and 𝑑𝑝 can be available from a set of multi-

source traffic data 𝑆, which consists of AVI, GPS, and point sensor data (defined as 

multi-sources 𝑠𝐴 , 𝑠𝐵 , and 𝑠𝑊 , respectively). The observed path travel times can be 

extracted from AVI data directly, whereas it is necessary to preprocess the GPS and 

point sensor data to obtain path travel times indirectly.  

 

Vehicle class information can be available from the AVI and GPS data. Vehicle class 

information for all vehicles is available in AVI data. 𝐾𝑠𝐴
 denotes the set of vehicle 

classes that can be available from data source 𝑠𝐴 (AVI sensors). The GPS sensors only 

cover the partial vehicle class information of commercial vehicles; i.e., mainly goods 

vehicles. The set of vehicle classes available from data source 𝑠𝐵  (GPS sensors) is 

denoted 𝐾𝑠𝐵
 (𝐾𝑠𝐵

⊆ 𝐾𝑠𝐴
). Point sensors have no information on vehicle class but with 

traffic flow and speed data for all vehicles. 

 

The available data are 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 , which is 𝑖 -th observed path travel time for path 𝑝  of 

vehicle class 𝑘 for from data source 𝑠𝐴 on day 𝑑. It is consistent with the observed path 

travel time denoted in Section 3.2. Moreover, the observed path travel time from point 

sensors and GPS sensors rely on the average spot speed at location 𝑥 in time interval 

𝑡 (𝑣𝑥,𝑡), and trajectory of vehicle 𝑖 of vehicle class 𝑘 (𝑧𝑖
𝑘(𝑡 + 𝑗𝛥𝑔)), where 𝛥𝑔 is the 

sampling time interval of the data source 𝑠𝐵  (GPS) and 𝑗 = 1, … , 𝐽  is the index of 

sampling points for an individual vehicle trajectory within path 𝑝 , with the 

corresponding location 𝑥𝑖,𝑗
𝑘 , speed measurement 𝑣𝑖,𝑗

𝑘 , and timestamp 𝜏𝑖,𝑗
𝑘 . This chapter 



4-13 

 

predicts the path travel times for different vehicle classes with the proper usage of the 

three types of traffic sensor data. 

4.3 Prediction of  ulti-class Path Travel Times 

The multi-source data used in this study are presented as follows. Three types of traffic 

sensor data are used: AVI (using ALPR technology), GPS, and point sensor data. For 

privacy reasons, path travel time with vehicle class information is automatically saved 

in an AVI dataset without vehicle identity information. GPS data only covers a limited 

number of vehicle classes. In the setting, only AVI data are collected and updated. 

 

Based on these traffic sensor data, there are three reasons for classifying vehicles in 

the methodology. First, there is a need to distinguish predicted path travel time by 

vehicle class as they distribute significantly distinctly, as shown in Figure 4.3. Second, 

the vehicle classification design can help to improve the prediction accuracy of path 

travel time, which will be introduced later. Third, the proposed prediction model can 

be generalized to predict path travel times by vehicle classes, while the existing 

approach for predicting the average travel times for all vehicles on the selected path 

can be viewed as a special case of this study.  

 

Based on the three types of data sources considered in this study, the modeling 

framework for multi-class travel time prediction on the selected path consists of an 

offline prediction stage and an online prediction stage to satisfy the needs of various 

ATIS. Figure 4.4 presents the framework of the proposed prediction model for the 

prediction of multi-class path travel times. In the offline prediction stage, the predicted 

path travel times and the various types of temporal covariance of path travel times (in 

matrix format) by vehicle class are obtained using the modified GMM (which is shown 

later).  
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Figure 4.4 The framework of the proposed prediction model 

 

There are three types of temporal covariance of path travel times in this chapter. The 

first is the within-day covariance of path travel times, which takes into account the 

variations in the path travel times within a day. The second is the day-to-day covariance 

of path travel times, which is based on the variations between the path travel times in 

a certain time interval on different days. These two types of temporal covariance 

functions of path travel times by 2-minute intervals have been considered in the 

proposed filtering algorithm in Section 3.3. The third is the covariance of path travel 

times between vehicle classes in a specific time interval. In contrast to the previous 

models, the consideration of these three types of covariance relationships allows for 

more explicit modeling of path travel times over time by vehicle class. 

 

In the online prediction stage, the mean and temporal covariance of path travel times 

by vehicle class obtained in offline prediction can be regarded as prior information. 

Prior information is updated when real-time AVI data are gathered and uploaded to the 

system database. The posterior of predicted path travel time for multiple vehicle 
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classes is the output of the model that is disseminated to road users and transportation 

management authorities. 

4.3.1 Offline prediction 

Based on the distinct features of traffic data, the travel time must be collected either 

directly or indirectly from various data sources. The 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

, 𝑖-th observed path travel 

time for path 𝑝 of vehicle class 𝑘 for from data source 𝑠𝑎 on day 𝑑 is defined as the 

difference between the timestamps of this vehicle entering and leaving the path: 

𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

= 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

− 𝜏𝑖,𝑑,𝑜𝑝,𝑝
𝑠𝐴,𝑘

 (4.1) 

where 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

 and 𝜏𝑖,𝑑,𝑜𝑝,𝑝
𝑠𝐴,𝑘

 are the timestamps of 𝑖-th observed path travel time at AVI 

sensor location 𝑑𝑝 (detestation) and 𝑜𝑝 (origin) for path 𝑝 of vehicle class 𝑘 from data 

source 𝑠𝐴 on day 𝑑. 

 

Point sensor data contain the average spot speed of vehicles at different locations along 

path 𝑝. The speed-based model (Li et al., 2006) is adopted to convert spot speed data 

to the path travel time as follows: 

𝑦𝑖,𝑑,𝑝
𝑠𝑊,0

= ∑
2(𝑥𝑖+1,𝑝 − 𝑥𝑖,𝑝)

𝑣𝑥𝑖+1,𝑝,𝑡 + 𝑣𝑥𝑖,𝑝,𝑡
 (4.2) 

where 𝑥𝑖,𝑝  is the location of 𝑖-th point sensor ordered along the study path 𝑝. As point 

sensor data have no vehicle class information. Vehicle class 𝑘  equals 0, which 

represents the overall vehicle class. 

 

GPS sensors provide the trajectory of the 𝑖-th vehicle of class 𝑘: 𝑧𝑖
𝑘(𝑡 + 𝑗𝛥𝑔). As the 

captured trajectories may not cover all of the target path, extrapolation is conducted 

using: 

𝑦𝑖,𝑑,𝑝
𝑠𝐵,𝑘

=
(∑ 𝑡𝑖,𝑗+1

𝑘 − 𝑡𝑖,𝑗
𝑘𝐽−1

𝑗=1 )(𝑥𝑑𝑝 − 𝑥𝑜𝑝)

∑ 𝑥𝑖,𝑗+1
𝑘 − 𝑥𝑖,𝑗

𝑘𝐽−1
𝑗=1

 (4.3) 
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where 𝑥𝑑𝑝 − 𝑥𝑜𝑝 is the distance between the origin and destination of the path 𝑝. 

 

It is assumed that observed path travel times from different sources, such as AVI 

sensors, point sensors, and GPS sensors, can be partitioned into 𝑀 categories by traffic 

conditions: 

𝑆 = 𝛺1 ∪ …∪ 𝛺𝑀  (4.4) 

where the set of travel time data is denoted 𝛺. For any two categories 𝑚 and 𝑚′,  

𝛺𝑚 ∩ 𝛺𝑚′ = ∅ (4.5) 

 

The value of 𝑀 categories is determined by the statistical distributions of observed 

path travel times. The distributions of path travel times consist of different traffic 

conditions. The category for each traffic condition can be determined by clustering 

data with similar path travel time measurements. Some related papers directly selected 

the value of 𝑀 by observing traffic conditions (Mil and Piantanakulchai, 2018; Yang 

et al., 2018). There are speed or travel time thresholds to partition traffic conditions. 

However, It can be observed that the number of components within a multimodal path 

travel time distribution can be distinct for various paths in the empirical study of Wang 

et al. (2021b). Therefore, it is worthwhile to generalize the model by clarifying the 

principles for setting the number of categories.  

 

In this chapter, the value of 𝑀 is decided by applying BIC (Schwarz, 1978), which has 

been commonly employed for model selection (Ma et al., 2018; Zhong et al., 2017). 

The BIC can be obtained by 𝐵𝐼𝐶𝑚𝑜𝑑𝑒𝑙 = −2 ln �̂�𝑚𝑜𝑑𝑒𝑙 + 𝑛𝑝𝑎𝑟𝑚𝑜𝑑𝑒𝑙 ln 𝑛 . �̂�𝑚𝑜𝑑𝑒𝑙  is 

the maximized value of the likelihood function for the clustering model. 𝑛𝑝𝑎𝑟𝑚𝑜𝑑𝑒𝑙 

denotes the number of parameters in the clustering model. 𝑛 represents the sample size 

used in the clustering model. For a series of candidate clustering models with different 

values of 𝑀, the one with the minimum value of 𝐵𝐼𝐶𝑚𝑜𝑑𝑒𝑙 is preferred.  
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As there are multiple data sources (set 𝑆) providing travel time data, the vectors of 

observed path travel times 𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 for path 𝑝 are denoted as: 

𝒀𝑝
{𝑠𝐴,𝑠𝑊}

= {𝑦𝑖,𝑑,𝑝
𝑠𝐴,1

, 𝑦𝑖,𝑑,𝑝
𝑠𝐴,2

, … , 𝑦
𝑖,𝑑,𝑝

𝑠𝐴,|𝐾𝑠𝐴
|
, 𝑦𝑖,𝑑,𝑝

𝑠𝑊,0
}

𝑇

 (4.6) 

if both AVI data and point sensor data are used simultaneously. 𝑦𝑖,𝑑,𝑝
{𝑠𝐴,𝑠𝑊},1

  is 𝑖 -th 

element of observed path travel times 𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 with vehicle class 1 from data sources 

𝑠𝐴 and 𝑠𝑊 for path 𝑝 on day 𝑑. The dimension 𝑃
𝒀𝑝

{𝑠𝐴,𝑠𝑊}  of 𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 is: 

𝑃
𝒀𝑝

{𝑠𝐴,𝑠𝑊} = |𝐾𝑠𝐴
| + 1 (4.7) 

where |𝐾𝑠𝐴
| is the number of vehicle classes that can be available from data source 𝑠𝐴 

(AVI sensors). It should be noted that the value of |𝐾𝑠𝐴
| should be determined after 

balancing the number of vehicle classes and the sample size within each vehicle class. 

The sample size checking for each vehicle class in Tam and Lam (2011b) is followed. 

On the one hand, the classes with insufficient sample sizes should be merged into one 

class for model training. On the other hand, the significance tests (e.g., Kolmogorov–

Smirnov test) can be applied to ensure there are significant differences between vehicle 

classes, as shown in Table 4.2.  

 

The observed path travel time 𝒀𝑝
{𝑠𝐵,𝑠𝑊}

 for path 𝑝 are expressed as: 

𝒀𝑝
{𝑠𝐵,𝑠𝑊}

= {𝑦𝑖,𝑑,𝑝
𝑠𝐵,1

, 𝑦𝑖,𝑑,𝑝
𝑠𝐵,2

, … , 𝑦
𝑖,𝑑,𝑝

𝑠𝐵,|𝐾𝑠𝐵
|
, 𝑦𝑖,𝑑,𝑝

𝑠𝑊,0
}
𝑇

 (4.8) 

if both GPS data and point sensor data are adopted simultaneously. The dimension 

𝑃
𝒀𝑝

{𝑠𝐵,𝑠𝑊} of 𝒀𝑝
{𝑠𝐵,𝑠𝑊}

 is: 

𝑃
𝒀𝑝

{𝑠𝐵,𝑠𝑊} = |𝐾𝑠𝐵
| + 1 (4.9) 

where |𝐾𝑠𝐵
| is the number of vehicle classes that can be available from data source 𝑠𝑏 

(GPS sensors). The determination of |𝐾𝑠𝐵
| is the same as that of |𝐾𝑠𝐴

|. It should be 
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noted that the dimension of input is decided by the most appropriate scheme for data 

usage with consideration of double-counting problems instead of a simple summation 

of the number of unique vehicle classes monitored by all data sources.  

 

The data sources 𝑠𝐴 and 𝑠𝑊 are used as an example to illustrate the usage of multi-

source data (same procedure can be applied for data sources 𝑠𝐵  and 𝑠𝑊 ) in the 

following modeling framework. 𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 is denoted as the predicted path travel time 

for path 𝑝 based on data sources 𝑠𝐴 and 𝑠𝑊. The dimension of 𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 is 𝐷
𝑻𝑝

{𝑠𝐴,𝑠𝑊} .  

 

For each time interval 𝑡, the probability density function (p.d.f.) of (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

) 

is: 

𝑓 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

)

= ∑ 𝜋𝑚 𝑓 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝛺𝑚) 𝑓 (𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝛺𝑚)

𝑀

𝑚=1

 

(4.10) 

where 𝜋𝑚 is the probability of the m-th category of traffic condition, 𝑓 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝛺𝑚) 

is the p.d.f of 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

  in category m from data sources 𝑠𝐴  and 𝑠𝑊 , and 

𝑓 (𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝛺𝑚)   is the conditional p.d.f. of 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

  given 

𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

  in category m. It is assumed that 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝛺𝑚  follows a 𝑃 -variate normal 

distribution, with mean vector 𝝁
𝒀𝑝,𝑡

{𝑠𝐴,𝑠𝑊}  and covariance matrix 𝜮
𝒀𝑝,𝑡

{𝑠𝐴,𝑠𝑊}  , for 𝑚 =

1, … ,𝑀. 

 

Assuming linear effects on 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

  in the m-th category with the vector of linear 

effects 𝛽𝑚, it can be written as: 

𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝛽𝑚) = 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

𝛽𝑚 (4.11) 
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where 𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝛽𝑚) is the conditional expectation of 𝑻𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

=

𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝛺𝑚 . It is noted that the value of 𝛽𝑚 varies for diverse traffic 

conditions. Hence, the p.d.f. in Eq. (4.10) is written as: 

𝑓 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝝍)

= ∑

𝜋𝑚 𝝋𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

(𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} , 𝜮
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊})

𝝋𝐷
𝑻𝑝
{𝑠𝐴,𝑠𝑊}

(𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

𝛽𝑚, 𝜮
𝑻𝑚,𝑝

{𝑠𝐴,𝑠𝑊})

𝑀

𝑚=1

 

(4.12) 

where 𝝍 denotes the set of parameters in the GMM. Furthermore, both 𝝋𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

 and 

𝝋𝐷
𝑻𝑝
{𝑠𝐴,𝑠𝑊}

 are Gaussian random vectors with 𝑃
𝒀𝑝

{𝑠𝐴,𝑠𝑊}  and 𝐷
𝑻𝑝

{𝑠𝐴,𝑠𝑊} variates. As it is 

assumed that 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝛺𝑚 ~ 𝑁𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

(𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} , 𝜮
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊}), for 𝑚 = 1,… ,𝑀 , if the 

p.d.f. of 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝛺𝑚  is not dependent on category 𝑚  (which means that 

𝝋𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

(𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝝁
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊} , 𝜮
𝒀𝑚,𝑝

{𝑠𝐴,𝑠𝑊}) = 𝝋𝑃
𝒀𝑝
{𝑠𝐴,𝑠𝑊}

(𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝝁
𝒀𝑝

{𝑠𝐴,𝑠𝑊} , 𝜮
𝒀𝑝

{𝑠𝐴,𝑠𝑊}) 

for 𝑚 = 1,… ,𝑀), Eq. (4.12) can be rewritten as: 

𝑓 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

, 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

;𝝍) = 𝝋𝑃 (𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝝁
𝒀𝑝

{𝑠𝐴,𝑠𝑊} , 𝜮
𝒀𝑝

{𝑠𝐴,𝑠𝑊}) 

∏ ∑ 𝜋𝑚𝑑
 𝝋𝑚𝑑

(𝑇𝑖,𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

; 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

𝛽𝑚𝑑𝑑, 𝜎𝑚𝑑𝑑
2 )

𝑀𝑑

𝑚𝑑=1

𝐷

𝑑=1

 

(4.13) 

where 𝑇𝑖,𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

 is the 𝑖-th element of 𝑻𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

. Moreover, the conditional distribution 

of 𝑇𝑖,𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

|𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

= 𝒀𝑝,𝑡
{𝑠𝐴,𝑠𝑊}

) varies among 𝑀𝑑 disjoint categories. 

 

In the real world, the sample size of traffic data for a specific vehicle class can be 

limited, as shown in Figure 4.2, especially when the frequency of the time interval is 

high (e.g., 2-minute interval). For vehicle classes with an insufficient sample size of 

real-time traffic data, the covariance of path travel times between vehicle classes can 
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be considered. The modeling of this type of covariance connects the vehicle classes 

with and without enough sample size. It can contribute to the improvement of the 

prediction accuracy of the model. For any two vehicle classes 𝑘  and 𝑘′  (𝑘 ≠ 𝑘′

), the covariance of path travel times is modeled as: 

𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}

(𝑘, 𝑘′) = 𝐶𝑜𝑣 (𝑌𝑝,𝑡
{𝑠𝐴,𝑠𝑊},𝑘

, 𝑌𝑝,𝑡
{𝑠𝐴,𝑠𝑊},𝑘′

) 

= ∑ 𝜋𝑚  (𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}

(𝑘, 𝑘′) + 𝜇
𝑌𝑝,𝑡

{𝑠𝐴,𝑠𝑊},𝑘𝜇
𝑌𝑝,𝑡

{𝑠𝐴,𝑠𝑊},𝑘′)

𝑀

𝑚=1

− ∑ 𝜋𝑚 𝜇
𝑌𝑝,𝑡

{𝑠𝐴,𝑠𝑊},𝑘

𝑀

𝑚=1

∑ 𝜋𝑚 𝜇
𝑌𝑝,𝑡

{𝑠𝐴,𝑠𝑊},𝑘′

𝑀

𝑚=1

 

(4.14) 

4.3.2 Online prediction 

After training the proposed GMM, the offline predicted mean and various types of 

covariance of the path travel time by vehicle class are used for online prediction, where 

𝑻𝑝
{𝑠𝐴,𝑠𝑊}−(𝑡) = 𝐸(𝒀𝑝,𝑡

{𝑠𝐴,𝑠𝑊}
), 𝜮𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡), and 𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}−(𝑘, 𝑘′) are obtained from Eqs. 

(4.13) and (4.14). The superscript “–” indicates offline predicted path travel times 

based on Eqs. (4.1)-(4.14). With the updated observations from AVI and point sensor 

data, an online prediction using the Kalman Filter is performed as shown in Eqs. 

(4.15)-(4.17). The updated predicted path travel time are: 

𝑻𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡) = 𝑻𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡) + 𝑮1 (𝒀𝑝
𝑠𝑨(𝑡) − 𝑯𝑻𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡)) (4.15) 

where 𝑮1 is the updating matrix in the Kalman Filter, 𝒀𝑝
𝑠𝐴(𝑡) is the vector of real-time 

measurements of path travel times at time interval 𝑡 from data source 𝑠𝐴 for path 𝑝, 𝑯 

is the mapping matrix that connects 𝒀𝑝
𝑠𝐴(𝑡) and 𝑻𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡), and 𝑻𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡) is the 

vector of updated predicted path travel time based on data sources 𝑠𝐴  and 𝑠𝑊 , 

containing path travel times by vehicle class at time interval 𝑡.  

 

The updated covariance matrix of path travel times is: 
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𝑷𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡) = 𝑷𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡) + 𝑮1𝑯𝑷𝑝
{𝑠𝐴,𝑠𝑊}−(𝑡) (4.16) 

where 𝑷𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡) is the updated covariance of predicted path travel time for path 𝑝, 

which will be further detailed in the form of within-day temporal covariance matrices 

𝜮𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡)  and the covariance of path travel times between vehicle classes  

𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}+(𝑘, 𝑘′). The updating matrix in the updating process is: 

𝑮1 = 𝑷𝑝
{𝑠𝐴,𝑠𝑊}−(𝑡)𝑯𝑻 (𝑯𝑷𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡)𝑯𝑻 + 𝑹)
−1

 (4.17) 

where 𝑹 is the covariance matrix of error. The different covariance matrices in Eqs. 

(4.16) and (4.17) are described in Eqs.(4.18)-(4.21) in detail. The various types of 

temporal covariance of path travel times need to be updated when new data are 

collected. For within-day and day-to-day covariance of path travel times of the same 

vehicle class: 

𝑮2 = 𝜮𝑝
{𝑠𝐴,𝑠𝑊}−(𝑡)𝑯𝑻 (𝑯𝜮𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡)𝑯𝑻 + 𝑹)
−1

 (4.18) 

where the within-day and day-to-day covariance matrices are updated according to 

𝜮𝑝
{𝑠𝐴,𝑠𝑊}+(𝑡) = 𝜮𝑝

{𝑠𝐴,𝑠𝑊}−(𝑡) + 𝑮2𝑯𝜮𝑝
{𝑠𝐴,𝑠𝑊}−(𝑡) (4.19) 

 

As both types of temporal covariance matrices are updated using Eqs. (4.18) and (4.19), 

the model trained in an offline manner can be used to update the covariance 

relationships in online prediction. Similarly, for the covariance of the path travel times 

between vehicle classes, 

𝑮3 = 𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}−(𝑘, 𝑘′)𝑯𝑻 (𝑯𝛴𝑡,𝑑

{𝑠𝐴,𝑠𝑊}−(𝑘, 𝑘′)𝑯𝑻 + 𝑹)
−1

 (4.20) 

where the temporal covariance of path travel times between vehicle classes by 2-

minute intervals are updated according to 

𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊}+(𝑘, 𝑘′) = 𝛴𝑡,𝑑

{𝑠𝐴,𝑠𝑊}−(𝑘, 𝑘′) + 𝑮3𝑯𝛴𝑡,𝑑
{𝑠𝐴,𝑠𝑊},−(𝑘, 𝑘′) (4.21) 

With the application of Eqs. (4.20) and (4.21)the covariance of the path travel time 

between vehicle classes is updated using real-time AVI data. Hence, the predicted path 

travel times by vehicle classes are updated using Eq. (4.15) and provided to road users 
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and transportation management authorities.  

4.4 Numerical Experiments 

Numerical experiments using actual data collected from Hong Kong roads are 

conducted to evaluate the accuracy of the proposed prediction model, and to perform 

a sensitivity analysis for assessing the impacts of using different amount of data from 

the three data sources considered in this chapter. 

4.4.1 Introduction of study sites 

Various sources of traffic data have been preprocessed before training in the proposed 

prediction model. The outliers that are extremely large observed path travel times due 

to measurement errors or alternative path selection are removed using a modified 

algorithm based on the filtering algorithm of Dion and Rakha (2006). The map-

matching algorithm is applied for GPS data to identify vehicles on the study path and 

remove the outliers. The speed from point sensor data is also smoothed. The extreme 

values of speed that exceed the speed limit too much are eliminated as well for a better 

prediction performance of the proposed prediction model. 

 

As the study path is a major route in Hong Kong’s road network, the predicted path 

travel time of all vehicles (without vehicle classification) could be obtained from the 

SMPS, which provides the instantaneous path travel times of several major routes in 

Hong Kong.  

 

The weekday AVI, GPS, and point sensor data from May to July 2018, excluding 

public holidays, are used in numerical experiments. The data of the last five weekdays 

in July 2018 (i.e., July 25, 26, 27, 30, and 31, 2018) are selected for validation of the 

predicted path travel time. The data of remaining weekdays in May to July 2018 are 
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trained for offline prediction. The MAPE and MAE are adopted for model evaluation. 

4.4.2 Performance evaluation 

In this numerical experiment, the vehicles are divided into four classes: (1) an overall 

class (vehicles of all classes), (2) private cars, (3) goods vehicles (vehicles that can be 

identified by GPS sensors), and (4) other vehicles. These four classes have distinct 

distributions, as shown in Figure 4.3. Table 4.4 provides a summary of input and output 

in the following experiments to avoid confusion. In summary, Figure 4.5 compares the 

results of predicted path travel time by vehicle class, as no ground truth by vehicle 

class is available. The predictions from Dion and Rakha (2006) using AVI data are 

compared. The other figures and tables show the validation predicted results on overall 

path travel time.
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Table 4.4 Summary of input and output in the experiments of Section 4.4.2 

Results 

(by the presenting 

order) 

Input set Output vehicle class of path travel time 
Validation 

set  

Comparison 

set  A G P Overall Private cars Goods vehicles 
Other 

vehicles 

Table 4.5 √ √ √ √ - - - √ - 

Table 4.6 √ - √ √ √ √ √ - √ 

Figure 4.5(a) √ - √ - √ - - - √ 

Figure 4.5(b) √ √ √ - - √ - - √ 

Figure 4.5(c) √ - √ - - - √ - √ 

Figure 4.5(d) √ - √ √ - - - - √ 

Figure 4.6, Figure 

4.7, Table 4.7, 

Table 4.8, Table 

4.9  

√ - √ √ - - - √ - 

Table 4.10 - √ √ √ - - - √ - 

1. A denotes AVI data (𝑆𝐴); 2. P is point sensor data (𝑆𝐶); 3. G is short for GPS data (𝑆𝐵). 4. Validation set refers to path travel times from the 

SMPS 5. Comparison set contains predicted results based on A.
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Although the proposed prediction model can fuse different types of traffic data in a 

vector form, the sample sizes across these traffic data are different. Thus, the implicit 

weightings on these data sources can be varied. AVI sensors can collect the path travel 

times of vehicles when the vehicle journey (along this path) is completed. Similar path 

travel times can be obtained by analyzing the trajectories of vehicles (point speed and 

location) from GPS data.  

 

Therefore, a comparison can be made on the number of vehicles per 2-minute interval 

(defined as average sample size) from different traffic data, as shown in Table 4.5. It 

is observed in Table 4.5 that the average sample size of point sensor data is the largest 

(21.2 per 2-minute interval). Consequently, the combination of AVI and point sensor 

data demonstrates optimal performance on predicted path travel times (MAPE=6.9%), 

as depicted in Table 4.5.  

 

Table 4.5 Path travel time prediction of the overall class using various data sources 

Data 

*Average sample 

size per 2-minute 

interval 

MAPE (%) MAE (min) 

AVI data 1.2 9.4 1.5 

GPS data 0.2 12.8 2.1 

AVI + point sensor 

data *21.2 
 .  1.0 

GPS + point 

sensor data 
11.3 1.9 

*The column of average sample size shows the number of vehicles per 2-minute interval 

observed from different traffic data. 

**Average sample size per 2-minute interval of point sensor data is presented here.  

 

Apart from the impacts of sample size, the coverage of different vehicle types can 

contribute to the prediction accuracy of path travel times. AVI data have path travel 

times of all vehicle types, while GPS data in this study are mainly obtained from goods 
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vehicles of commercial companies. As a result, it is found in Table 4.5 that AVI data 

weighs much more than GPS and point sensor data. The MAPEs are 9.4% for using 

AVI data and 11.3% for using GPS data and point sensor data simultaneously. However, 

the concurrent use of AVI and GPS data can lead to a double-counting issue, as 

discussed in Section 4.1. As a result, utilizing all AVI, GPS and point sensor data 

together only achieves an MAPE of 9.1% and an MAE of 1.4 minutes. 

 

The differing results between AVI and GPS technologies are primarily raised by the 

difference in percentages of shares of vehicles (Deng et al., 2013). In Chapter 4, the 

AVI technology used for the case study is the ALPR technology, which can identify all 

commercial vehicles by their license plates, while the private car data cannot be used 

in this study due to privacy issues (the number of vehicles per 2-minute interval by 

AVI data is 1.2 in Table 4.5).  

 

On the contrary, GPS data are only obtained from several specific commercial 

companies who are willing to share the data for this study. As a result, the number of 

vehicles per 2-minute interval by GPS data is 0.2 in Table 4.5. Only path travel times 

of goods vehicles are available from GPS data. Therefore, there is a significant gap in 

the percentages of shares of vehicles between AVI and GPS technologies used in the 

case study of Chapter 4. 

 

For the predicted path travel times by vehicle class, a comparison is conducted to 

evaluate the difference between the predicted results from the proposed prediction 

model and predicted path travel times from AVI data using the previous prediction 

model. The results are shown in Table 4.6. The MAPEs for different vehicle classes 

are within 10%. The results of these two models are closest for predicting the path 

travel times of private cars (MAPE = 5.8% and MAE = 0.8 min).  
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In Table 4.6, the proposed prediction model's performance is most closely aligned with 

the estimates based on AVI data for predicting path travel times of private cars. This is 

attributed to the fact that the variability in path travel times for private cars is lower as 

compared to that for goods vehicles and other vehicle classes. Unlike private cars, 

goods vehicles and other classes encompass a diverse range of vehicles, including 

heavy trucks, concrete mix trucks, light goods vans, and ambulances. The prediction 

of their path travel times is inherently more challenging due to this diversity and 

complexity. 

 

Table 4.6 Comparison of predicted path travel time by vehicle class 

Vehicle Class MAPE (%) MAE (min) 

Overall (100%) 7.2 1.1 

Private cars (24.8%)  .  0.  
Goods vehicles (56.1%) 8.9 1.5 

Others (19.1%) 9.5 1.7 

 

The CDF plots of the prediction errors are given in Figure 4.5, with the prediction 

errors for private cars, goods vehicles, other vehicles, and all vehicles presented in 

Figure 4.5(a), Figure 4.5(b), Figure 4.5(c), and Figure 4.5(d), respectively. Figure 4.5(a) 

and Figure 4.5(c) show the distributions of absolute percentage errors in the predicted 

path travel time for private cars and other vehicles. The median and 95% of MAPE are 

7.8% and 15.7% for private cars and 8.1% and 17.1% for other vehicles. 
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(c) Other vehicles 

 

(d) All vehicles 

1. A denotes AVI data; 2. P is point sensor data; 3. G is short for GPS data 

Figure 4.5 CDF plots of prediction errors for (a) private cars, (b) goods vehicles, (c) 

other vehicles, and (d) all vehicles 
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For goods vehicles, the results from the AVI and point sensor data and those obtained 

with GPS and point sensor data using the proposed prediction model are compared 

with the results acquired from the AVI data using the previous prediction model. In 

Figure 4.5(b), the median and 95% of MAPE are 7.4% and 17.1% if AVI and point 

sensor data are utilized (against 10.3% and 25% using GPS and point sensor data). 

𝑇𝑝,𝑡
{𝑠𝐴,𝑠𝑊},2

  using AVI and point sensor data are closer to �̂�𝑝,𝑡
𝑠𝐴,2

  using AVI data than 

�̂�𝑝,𝑡
{𝑠𝐵,𝑠𝑊},2

 based on GPS and point sensor data. 

 

The CDF plot for all vehicles is demonstrated in Figure 4.5(d). Different from the other 

three figures, the validation results are shown using SMPS data as ground truth. The 

median and 95% of MAPE are 8.3% and 17.9%. Additionally, Figure 4.6 presents a 

comparison between the predicted path travel times and the actual data for five specific 

weekdays in 2018: July 25, 26, 27, 30, and 31. They are five typical weekdays with 

significant rainfall. Therefore, the impacts of rainfall on the accuracy of predicted path 

travel times can be evaluated.  

 

The R-squared value for this analysis is determined to be 0.77, indicating a strong fit. 

A substantial 96.7% of the predicted travel times have absolute percentage errors 

below 20%, surpassing the benchmark set by Tam and Lam (2011b, 2013), who 

stipulated that at least 95% of predictions should fall within this error margin. The 

visual assessment of Figure 4.6 confirms that the predictive performance is satisfactory, 

aligning with the established requirements. 
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Figure 4.6 The comparison between predicted path travel times for overall vehicle 

class against ground truth on path travel times 

 

To test the effects of covariance of path travel times between vehicle classes, the 

performances of the proposed prediction model with and without consideration of path 

travel times between vehicle classes are compared. For the former case, the MAPE 

and MAE for predicted path travel time for all vehicles are 6.9% and 1.0 min, 

respectively. For the latter case, the MAPE and MAE are 10.1% and 1.6 min, 

respectively. The corresponding CDF plots are given in Figure 4.7. The median and 

95% of MAPE are 4.8% and 12.9% against 8.5% and 17.4% with/without considering 

the covariance of path travel times between vehicle classes. The median of errors is 

reduced to 56% (4.8%/8.5%) of the original one after considering this covariance. 

Thus, it can improve the prediction accuracy of path travel times. 
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Figure 4.7 CDFs of prediction errors for all vehicles with and without considering 

the covariance of path travel times between vehicle classes 

 

Furthermore, recent machine-learning models are selected as benchmarks for 

comparison; i.e., the GMM proposed by Mil and Piantanakulchai (2018), the APTN 

proposed by Shi et al. (2021), the LSTM model proposed by Yang et al. (2021b), and 

the methods from Google Maps (Derrow-Pinion et al., 2021). These machine-learning 

models are recently popular with encouraging performance in the field of travel time 

prediction problems. They are the most updated and related to the research in this 

chapter.  

 

Furthermore, these path travel time prediction models have been evaluated and 
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et al., 2022). Additionally, the existing prediction method adopted by Google Maps 

has been compared (Derrow-Pinion et al., 2021). They are chosen as both 𝛴𝑑
𝑠𝐴(𝑡𝑎, 𝑡𝑏) 

and 𝛴𝑡
𝑠𝐴(𝑑𝑖 , 𝑑𝑗) are implicitly considered in their designed neural networks. The best 

combination of data sources (i.e., AVI + point sensor data) available in this study is 

selected for comparison. Table 4.7 gives their performance results on path travel time 

prediction for the overall class. The proposed prediction model (MAPE = 6.9% and 

MAE = 1.0 min) outperformed the other benchmark models, including the one recently 

adopted by Google Maps (MAPE = 9.4% and MAE = 1.5 min). 

 

Table 4.7 Benchmark comparison of path travel time prediction models of the overall 

class 

Models MAPE (%) MAE (min) 

Proposed prediction model 

(1)  .  1.0 

GMM (2) 9.1 1.4 

APTN (3) 10.6 1.7 

LSTM (4) 12.1 2.0 

Google Maps (5) 9.4 1.5 

(1) Proposed prediction model; (2) Mil and Piantanakulchai (2018); (3) Shi et al. 

(2021); (4) Yang et al. (2021b); (5) Derrow-Pinion et al. (2021). 

 

Table 4.8 presents the performance of various models in predicting path travel times 

for different vehicle types. It is important to clarify that the term "performance" here 

denotes the validation results for the overall vehicle class, as well as comparative 

results for other vehicle classes. This is because ground truth data is only available for 

the path travel times of all vehicles (i.e. overall vehicle class), which is used for 

validation purposes. 
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Table 4.8 Prediction performance of different models on predicted path travel times 

by vehicle types 

Prediction 

models 

All vehicles 

(Overall) 

(100%) 

(Validation) 

Private cars 

(24.8%) 

(Comparison) 

Goods 

vehicles 

(56.1%) 

(Comparison) 

Other vehicles 

(19.1%) 

(Comparison) 

Proposed 

prediction 

model (1) 

 .  5.8 8.9 9.5 

GMM (2) 9.1 8.3 13.2 12.6 

APTN (3) 10.6 10.2 11.0 13.8 

LSTM (4) 12.1 11.5 12.9 14.4 

Google 

Maps (5) 
9.4 8.5 11.3 12.9 

(1) Proposed prediction model; (2) Mil and Piantanakulchai (2018); (3) Shi et al. 

(2021); (4) Yang et al. (2021b); (5) Derrow-Pinion et al. (2021). 

 

As observed in Table 4.8, the proposed prediction model demonstrates superior 

performance compared to the other models, both in terms of the overall vehicle class 

(MAPE of 6.9%) and the specific vehicle classes (5.8%, 8.9%, 9.5% for private cars, 

goods vehicles, and other vehicles, respectively). It is also found in Table 4.8 that 

private cars have the best comparison results, which is consistent with the results 

provided in Table 4.6. This is because the variability in path travel times for private 

cars is the lowest, as explained in Table 4.6. 
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Furthermore, the robustness of the proposed prediction model is tested with additional 

independent datasets collected from AVI, GPS, and point sensors during weekends 

from May to July 2018 (26 days). Other models are also compared. The results are 

given in Table 4.9. The proposed prediction model is robust and had the best 

performance (MAPE = 8.4% and MAE = 1.3 min) among the models. 

 

Table 4.9 Benchmark comparison of path travel time prediction models of overall 

class on weekends 

Models MAPE (%) MAE (min) 

Proposed prediction 

model (1) 
 .4 1.3 

GMM (2) 10.4 1.7 

APTN (3) 16.2 2.5 

LSTM (4) 18.1 2.8 

Google Maps (5) 13.2 2.0 

(1) Proposed prediction model; (2) Mil and Piantanakulchai (2018); (3) Shi et al. 

(2021); (4) Yang et al. (2021b); (5) Derrow-Pinion et al. (2021). 

 

The sensitivity test on the proportion of data used in model training is conducted to 

evaluate the robustness of the proposed prediction model. Its effectiveness can be 

verified under scenarios when some traffic data are missing. On the one hand, the 

sample size of data may be less than expected for several reasons, including paths 

equipped with fewer sensors, sensor failure, accidents, bad weather conditions, etc. 

This test can verify the generality of the proposed prediction model under various 

scenarios.  

 

On the other hand, prediction accuracy is usually required for ATIS in practice. This 

test can prove the robustness of the proposed prediction model with the expected 
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prediction accuracy when the amount of data is reduced. Moreover, as multiple data 

sources may have distinct effects on prediction accuracy, this test can identify the 

sensitivity of prediction accuracy to different data sources. 

 

As the sample size of different data sources is shown in Figure 4.2, the effect of the 

data volume on prediction accuracy can also be examined. This analysis systematically 

eliminated varying proportions (ranging from 50% to 100%) of AVI, GPS, and point 

sensor data for model training purposes. The resulting accuracy of the predicted path 

travel times, quantified by MAPE, is detailed in Table 4.10. It is found that the 

predictive accuracy of path travel times declines more rapidly with the volume 

reduction of AVI data compared to the volume reduction of point sensor data. 

 

Table 4.10 Effects of the proportions of AVI, GPS, and point sensor data used for 

training on prediction performance of path travel times (in terms of MAPE). 

Percentage of 

point sensor data 

Percentage of AVI data Percentage of GPS data 

100% 50% 100% 50% 

100%  .   30.7% 11.3% 34.7% 

50% 8.7% 25.2% 14.1% 41.4% 

 

For example, it can be seen in Table 4.10 that reducing 50% of AVI data and point 

sensor data for training purposes results in respective MAPE of 25.2% and 8.7%. The 

rates of change of MAPEs are 0.37 and 0.04 for AVI and point sensor data, respectively. 

The accuracy of predicted path travel times is thus more sensitive to AVI data than 

point sensor data.  

 

Similarly, the MAPEs are 34.7% and 14.1%, by 50% of reduction on the GPS data and 

point sensor data for training. The rates of change of MAPE are 0.47 and 0.06 for GPS 

and point sensor data, respectively. It is concluded that the accuracy of predicted path 
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travel times is more sensitive to GPS data than to point sensor data. Furthermore, 

regarding the rates of change of MAPE for AVI and GPS data (0.37 and 0.47), it 

illustrated that the accuracy of predicted path travel times is more sensitive to GPS 

data than AVI data. 

4.  Findings 

Considering the temporal covariance of the path travel times by vehicle class, this 

chapter proposes a novel prediction model to use multi-source traffic data for the 

prediction of multi-class path travel times. The AVI data and GPS data are combined 

with point sensor data for predicting path travel times for different vehicle classes. The 

proposed prediction model includes various types of temporal covariance of the path 

travel times (especially the covariance of path travel times between vehicle classes) to 

improve the prediction accuracy of the path travel times by vehicle class. 

 

The proposed prediction model is validated using multi-source traffic data in Hong 

Kong. For validation, the results of the proposed prediction model are compared with 

those using four existing machine-learning models. The proposed prediction model 

outperforms the benchmark models in the prediction of the path travel times. The 

proposed prediction model has a MAPE of 6.9%, whereas the worst performing 

benchmark model has a MAPE of 14.1%.  

 

Moreover, the predicted path travel times for four vehicle classes, namely all vehicles, 

private cars, goods vehicles, and others, are provided. The predicted travel times of 

private cars are closest to the predicted results obtained using the previous AVI data-

based prediction model (MAPE = 5.8%). The experiments also indicate that 

consideration of the covariance of path travel times between vehicle classes can 

improve the prediction accuracy. (MAPE reduces from 10.1% to 6.9%, and MAE 
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drops from 1.6 min to 1.0 min). 

 

The comparison of the distributions of the prediction errors by vehicle class highlights 

that the error distributions vary appreciably. It demonstrates the necessity of multi-

class path travel time prediction. The MAPE values at the 95 percentiles vary from 

15.7% (private cars) to 25% (goods vehicles). Additionally, the satisfactory 

performance of the predicted path travel time of the overall vehicle class confirms the 

ability of the proposed prediction model to predict the overall average path travel times. 

The validation results based on different independent datasets demonstrate the 

robustness of the proposed prediction model.  

 

The proposed prediction model had a MAPE of less than 10% with another dataset, 

whereas the MAPEs of the benchmark models exceeded 10%. A sensitivity test on the 

proportion of data used in model training shows the importance of using various data 

sources. For experiments with AVI and point sensor data, the rates of change of MAPE 

for AVI data and point sensor are 0.37 and 0.04, respectively.  

 

For experiments with GPS and point sensor data, the rates of change of MAPE for 

GPS data and point sensor are 0.47 and 0.06, respectively. The prediction accuracy of 

the overall path travel times is thus more sensitive to AVI or GPS data than to point 

sensor data. Furthermore, by comparing the rates of change of MAPE for AVI and GPS 

data, the prediction accuracy of the overall path travel times is more sensitive to GPS 

data than to AVI data. 

 

To further enhance the accuracy of the prediction by vehicle class under non-recurrent 

conditions, other data sources, such as weather and accident data, should be considered. 

Moreover, more advanced models for the preprocessing of multiple data sources could 

be developed and applied. More large-scale road networks can be further studied with 
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other types of traffic data sources. An efficient solution model should be further 

proposed to enable the prediction of multi-class travel times on various road links 

along different paths within the same network. Finally, the deviation of multi-class 

path travel times should be further investigated to improve path travel time prediction 

in the future. 

 

As mentioned in Section 4.1, the predicted path travel times based on AVI data are 

obtained from Chapter 3 after data filtering. In the following Chapter 5, the output of 

this chapter (i.e., the predicted path travel times in the current time interval) will be 

the input for path travel time prediction in future time intervals.  
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 . Prediction of Path Travel Times Using  eather Forecast 

and Historical  ainfall Intensity 

 .1 Preliminary Overview 

 .1.1 Background information 

Chapter 3 filters traffic data with the proposed unsupervised algorithm. Chapter 4 

conducts multi-class path travel time prediction in the current time interval using the 

filtered traffic data. This chapter extends to predict path travel times in the future time 

intervals. For pluvial cities, the impacts of rainfall have been considered in previous 

studies on path travel time prediction. However, the effects are analyzed from the 

collected historical rainfall intensity data. For predicting path travel times in future 

time intervals, it is worthwhile utilizing the rainfall conditions in the near future (i.e., 

weather forecast) to improve the prediction performance. 

 

Weather forecast information, particularly to cities with abundant precipitation, plays 

an important role for road users to make selections on their departure times and/or 

transportation modes etc. The probability of precipitation (POP) provides the 

likelihood of measurable precipitation at a specific location within a specified period. 

The forecasted rainfall amount (FRA) is the quantity of rainfall to occur at a specific 

location within a specified period. It is noted that the weather forecasts in this chapter 

refer to POP and/or FRA. Both inform road users of possible future road conditions. 

Similarly, weather forecasts should be considered to improve the accuracy of predicted 

path travel times. 

 

However, the correctness of weather forecast information can be a concern, especially 
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for metropolitan cities with frequent rainfall (e.g., Hong Kong). Hong Kong has the 

highest average annual rainfall of 2431 mm among major Pacific Rim cities, as shown 

in Figure 5.1. Furthermore, there are around 140 rainy days per year in Hong Kong 

(from the World Weather Information Services (http://www.worldweather.org/)). 

Under these circumstances, inaccurate weather forecasts may cause adverse impacts 

(e.g., untimely weather signals during rainy days can even lead to casualties). Hence, 

there is a research gap to examine the effect of weather forecast correctness on the 

accuracy of path travel time prediction.  

 

 

Figure 5.1 Average annual rainfall (mm) in major Pacific Rim cities 

 

Apart from using weather forecasts, it is vital to fully investigate the effects of rainfall 

intensity data on path travel times. Due to the limitations of collecting and storage 

technology, previous studies mainly use hourly rainfall intensity to analyze these 

effects. However, the amount of rainfall intensity can be biased when the frequency 

for predicted path travel times is less than 1 hour. Figure 5.2 gives the CDF of 2-min 

and hourly rainfall intensity data. With the result of the K-S test, it is evident that the 
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rainfall intensity data with 2-min and hourly frequency have statistically different 

distributions. As this chapter aims to predict path travel times every 2 minutes, there 

is a research gap in incorporating high-frequency rainfall intensity data into the 

prediction model. 

 

 

Figure 5.2 CDF of 2-min and hourly rainfall intensity data in 2018 

 

The effects of rainfall on path travel times can also depend on traffic conditions. In this 

chapter, the traffic condition is described by the level of service (LOS). The LOS is 

defined by the Highway Capacity Manual (HCM, 2016) using letters A through F to 

represent different traffic conditions on the road. The LOS A stands for free-flow 

condition (best), while the LOS F is referred to as congested (worst) condition. This 

chapter also investigates the prediction accuracy under different levels of service.  

 

Previous works attempted to use rainfall intensity/weather forecast for travel time 
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prediction in the near future. They generally considered weather data (e.g., rainfall 

intensity, weather condition (cloudy, sunny, snowy, rainy) (Qiao et al., 2016; Li, Wang, 

and Xiong, 2021), temperature, humidity, visibility, and wind speed (Yang and Qian, 

2019; Walch, Neubauer, and Schildorfer, 2023)) as one variable (Yang et al., 2013; Qiu 

et al., 2016; Gazder and Ratrout, 2018; Wang et al., 2018; Wirtgen et al., 2022) or 

feature (Yu et al., 2010; Thakuriah and Tilahun, 2013; Nair et al., 2019; Sadeghi-

Niaraki et al., 2020; Xue et al., 2020; Petelin, Hribar, and Papa, 2023) in their models. 

Table 5.1 summarizes the previous related studies utilizing rainfall intensity/weather 

forecast data for travel time prediction. 

 

Table 5.1 Related studies utilizing rainfall intensity/weather forecast data for travel 

time prediction 

Related 

studies 

Role of weather 

forecast (if any) 

Frequency of 

rainfall 

intensity data 

𝜃 (if any) 

Prediction 

model 

Prediction 

horizon  

𝛥𝑡 

Prediction 

step 

𝛥 

Thakuriah 

and Tilahu 

(2013) 

Probability of each 

weather condition 

as a feature 

1 hour 
Support vector 

regression 
30 min 5 min 

Zhang et al. 

(2018) 

Distinguish 

between rainfall 

and normal days 

15 min 

Weather-

correction 

model 

15 min 15 min 

Harper, Qian, 

and Samaras 

(2021) 

- 15 min 

LASSO linear 

regression, 

support vector 

regression, 

random forest 

15~30 

min 
15 min 

This chapter 
Correlate with 

path travel times 
2 min 

Two-stage 

modeling 

framework 

1 hour/1 

day/1 

week 

2 min 
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There are several findings from Table 5.1. First, a few papers use weather forecasts for 

travel time prediction, as it can be a good supplement for travel time prediction, 

especially in pluvial cities. However, these papers regard weather forecasts as a 

variable in the machine-learning model (Thakuriah and Tilahu, 2013) or an indicator 

of rainy days (Zhang et al., 2018). The relationship between weather forecasts and 

predicted path travel times can be further investigated to enhance prediction precision. 

 

Second, the frequency of rainfall intensity data (which is denoted as 𝜃) is 1 hour (low 

frequency) in some of previous papers (i.e., only hourly rainfall amount per hour is 

available). To predict traffic speeds once every 2 minutes (at higher frequency), it was 

assumed implicitly that the rainfall intensity is constant and uniform for all time 

intervals during each hour (Jia et al., 2017). The assumption can be relaxed when 2-

minute rainfall intensity data is available.  

 

Though different types of prediction models are adopted for travel time prediction 

using rainfall intensity/weather forecast data, the inappropriate use of weather data can 

worsen the prediction accuracy. It was found that additional rainfall input adversely 

affected the accuracy of typical models (e.g., ARIMA), as they were less effective to 

find the relationships between speed and rainfall intensity data (Jia et al., 2017). 

Therefore, it is vital to propose a modeling framework which fully utilizes weather 

data to enhance the prediction accuracy.  

 

Third, the prediction horizon in previous studies varies from 2 minutes to 1 week with 

corresponding prediction steps (between 2 minutes and 1 hour), this chapter predicts 

path travel times one-hour/one-day/one-week ahead once every 2 minutes. 

 .1.2 Contributions 

In summary, the proposed modeling framework in this chapter extends the previous 
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related work by providing the four key contributions below: 

 

C5.1 A novel two-stage modeling framework is proposed for predicting path travel 

times in the near future. Real-time weather forecasts are used to update the offline 

predicted path travel times based on historical rainfall intensity data.  

 

C5.2 In the online updating stage, a modified Kalman filter is proposed to update the 

offline predicted path travel times with consideration of the normalized cross-

correlation coefficient between the real-time weather forecasts and predicted path 

travel times, which outperforms the other benchmark updating models. Besides, the 

variations of this normalized cross-correlation coefficient under different levels of 

service are established. The effects of weather forecast correctness on prediction 

accuracy are also examined. 

 

C5.3 In the offline prediction stage, an improved offline training model is proposed to 

use high-frequency rainfall intensity data, considering the normalized cross-

correlation coefficient of path travel times and rainfall intensity data under different 

levels of service. It can output the offline predicted path travel times with higher 

quality before online updating compared with the one from the other benchmark 

offline training models. In addition, the variations of this normalized cross-correlation 

coefficient under different levels of service are also studied. The advantages of using 

these high-frequency data are presented and discussed. 

 

C5.4 The real-world dataset in Hong Kong is used to validate the proposed modeling 

framework. The effects of rainfall categories and levels of service on the accuracy of 

predicted path travel times are also assessed. Furthermore, its applicability is verified 

with and without using the ground truth on path travel times as input for the proposed 

modeling framework. 



5-7 

 

 .2  esearch Questions 

Consider a path 𝑝 with a pair of AVI sensors installed at both ends (i.e., 𝑜𝑝 and 𝑑𝑝). 

The 𝑖-th observed path travel time for path 𝑝 of vehicle class 𝑘 for from data source 

𝑠𝐴 on day 𝑑 is denoted as 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

, which is consistent with Sections 3.2 and 4.2. For the 

prediction of path travel times at the current time interval 𝑡0, there are different types 

of input for the proposed modeling framework.  

 

First, the rainfall intensity data on location 𝑥  along path 𝑝  at time interval 𝑡  can be 

represented by 𝑟𝑝(𝑥, 𝑡)  and is available for 𝑡 ≤ 𝑡0 , with the frequency of 𝜃  (𝜃 = 2 

minutes in this chapter). Second, the FRA for location 𝑥 along path 𝑝 at time interval 

𝑡0 + 𝛥𝑡  is �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡) , where 𝛥𝑡  is the time ahead of current time interval 𝑡0 

(prediction horizon). Third, assuming that the set for rainfall categories is 𝐿, the POP 

for forecasting rainfall category 𝑙 for location 𝑥 along path 𝑝 at time interval 𝑡0 + 𝛥𝑡 

along path 𝑝 is denoted as �̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡), for 𝑙 ∈ 𝐿.  

 

As the weather forecasts are not 100% correct, the accuracy or correctness of weather 

forecasts is also considered in the proposed modeling framework. There are two types 

of weather forecast correctness. They are used to describe the accuracy of received 

weather forecast (i.e., the correctness of POP for forecasting rainfall category 𝑙  for 

location 𝑥  along path 𝑝  at time interval 𝑡0 + 𝛥𝑡  is 𝐶�̂�𝑝,𝑙(𝑥,𝑡+𝛥𝑡).  The correctness of 

FRA for location 𝑥 along path 𝑝 at time interval 𝑡0 + 𝛥𝑡 is 𝐶�̂�𝑝(𝑥,𝑡)). The equations for 

obtaining 𝐶�̂�𝑝,𝑙(𝑥,𝑡+𝛥𝑡) and 𝐶�̂�𝑝(𝑥,𝑡) are given as follows: 

𝐶�̂�𝑝,𝑙(𝑥,𝑡) =
100%

𝛥𝑡
∑(1 −

|�̂�𝑝,𝑙(𝑥, 𝑡)−𝑜𝑝,𝑙(𝑥, 𝑡)|

𝑜𝑝,𝑙(𝑥, 𝑡)
)

𝛥𝑡

𝑡=1

 (5.1) 
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𝐶�̂�𝑝(𝑥,𝑡) =
100%

𝛥𝑡
∑(1 −

|�̂�𝑝(𝑥, 𝑡)−𝑟𝑝(𝑥, 𝑡)|

𝑟𝑝(𝑥, 𝑡)
)

𝛥𝑡

𝑡=1

 (5.2) 

where 𝑜𝑝,𝑙(𝑥, 𝑡) and 𝑟𝑝(𝑥, 𝑡) are the observed frequency of rainfall at rainfall category 

𝑙 , and observed rainfall amount for location 𝑥  along path 𝑝  at time interval 𝑡 , 

respectively. 𝛥𝑡 is the prediction horizon to be assessed.  

 

For example, when there are 30 2-minute intervals with weather forecast to be 

evaluated, 𝛥𝑡 = 30. There are 30 values of �̂�𝑝,𝑙(𝑥, 𝑡) (for each rainfall category 𝑙) and 

�̂�𝑝(𝑥, 𝑡)  with the observed 𝑟𝑝(𝑥, 𝑡)  and 𝑜𝑝,𝑙(𝑥, 𝑡)  (for each rainfall category 𝑙 ). The 

correctness can be calculated correspondingly. 𝐶�̂�𝑝(𝑥,𝑡) represents the accuracy of FRA, 

while 𝐶�̂�𝑝,𝑙(𝑥,𝑡) measures the accuracy of POP under each rainfall category. 

 

In this chapter, both 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 and 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

 are available as studies in Chapters 3 and 4. With 

these available data, the proposed modeling framework is going to predict path travel 

times for path 𝑝 at time interval 𝑡0 + 𝛥𝑡 (i.e., �̂�𝑡0+𝛥𝑡,𝑝), with the prediction step of 𝛥 

(𝛥 =2 minutes in this chapter). 

 .3  ethodology 

Compared with previous studies, this chapter extends to using the weather forecast in 

predicting path travel times. Therefore, an online updating stage is needed for updating 

the predicted path travel times obtained from the relationships between rainfall 

intensity data and path travel times. It is therefore a two-stage prediction model 

presented in this chapter. 

 .3.1 Proposed modeling framework 
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Figure 5.3 gives the modeling framework for predicting path travel times. For the 

current time interval 𝑡0, there are two stages. In stage 1, four types of real-time data 

are involved in online updating. The first is the rainfall intensity data collected at 𝑡0 

including 𝑟𝑝(𝑥, 𝑡0) (from data source 𝑆1). The second is the observed path travel time 

from AVI sensors 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

  (from data source 𝑆2 ). The third is the POP for 𝛥𝑡  ahead, 

�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡) (from data source 𝑆3) and the fourth is the FRA �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡) (from 

data source 𝑆4) for 𝛥𝑡 ahead. With input of these four real-time data and results from 

Stage 2, this stage can provide the final output �̂�𝑡+𝛥𝑡,𝑝. Both the prediction on within-

day (𝛥𝑡 ≤ 24ℎ) and day-to-day (𝛥𝑡 > 24ℎ) path travel times are the output.  

 

 

Figure 5.3 The proposed modeling framework for path travel time prediction in the 

near future 
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In stage 2, the proposed offline training model uses historical data 𝑟𝑝(𝑥, 𝑡) (from data 

source 𝑆1) and 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 for 𝑡 < 𝑡0 (from data source 𝑆2) for calibration and/or training. 

Regarding the observed path travel time  𝑇𝑝
𝑠𝐴(𝑡) , the normalized cross-correlation 

coefficient of 𝑟𝑝(𝑥, 𝑡)  and 𝑇𝑝
𝑠𝐴(𝑡)  is explicitly modeled for better quality of offline 

predicted travel times �̃�𝑡+𝛥𝑡,𝑝 on path 𝑝 for 𝛥𝑡 ahead of time interval 𝑡. 

 .3.2 Online updating 

 .3.2.1  eal-time data 

The real-time data refers to the available data collected on the current day, including 

both real-time traffic data and real-time rainfall intensity data, and the real-time 

weather forecast available on 𝑡0. The latter consists of real-time FRA and real-time 

POP. The observed path travel time 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

  is defined as the difference between the 

arrival and departure times of the 𝑖-th vehicle for path 𝑝: 

𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

= 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

− 𝜏𝑖,𝑑,𝑜𝑝,𝑝
𝑠𝐴,𝑘

 (5.3) 

where 𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

  and 𝜏𝑖,𝑑,𝑜𝑝,𝑝
𝑠𝐴,𝑘

  are the arrival and departure time of the 𝑖 -th vehicle of 

vehicle class 𝑘  for path 𝑝  from data source 𝑠𝐴  on day 𝑑 . As vehicle class is not the 

main contribution of this study, 𝑘 = 0 (represents overall vehicle class) in this chapter. 

 

The value of 𝑇𝑝,𝑡
𝑠𝐴  is available in the AVI system at current time interval 𝑡0 for 𝑡0 − 1 ≤

𝜏𝑖,𝑑,𝑑𝑝,𝑝
𝑠𝐴,𝑘

≤ 𝑡0. The path travel time from data source 𝑠𝐴 can be calculated as: 

𝑇𝑝,𝑡0

𝑠𝐴 =
∑ 𝑦𝑖,𝑑,𝑝

𝑠𝐴,𝑘𝑛𝑡0

𝑖=1

𝑛𝑝,𝑡0

 (5.4) 

where 𝑛𝑝,𝑡0 is sample size of individual path travel times for path 𝑝 collected at current 

time interval 𝑡0 from data source 𝑠𝐴. 
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The impact of actual rainfall intensity on the travel time of path 𝑝 is investigated and 

modeled in this chapter. Along the study path 𝑝, there can be several nearby rainfall 

stations that provide the actual rainfall intensity data, 𝑟𝑝(𝑥, 𝑡0) can be obtained using 

external drift kriging (Kebaili Bargaoui and Chebbi, 2009; Shehu et al., 2023) as 

follows: 

𝑟𝑝(𝑥, 𝑡0) = ∑𝜆𝑖,𝑝𝑟𝑝(𝑥𝑖,𝑝, 𝑡0)

𝑁𝑝

𝑖=1

 (5.5) 

where 𝑁𝑝  is the number of nearby rainfall stations and 𝑥𝑖,𝑝  is the location of 𝑖 -th 

nearby rainfall station, with the corresponding kriging weight 𝜆𝑖,𝑝 for path 𝑝.  

 

To determine the value of 𝜆𝑖, the external drift 𝐷(𝑥𝑖,𝑝) is introduced in the kriging 

system as: 

∑𝜆𝑗,𝑝𝛾(𝑥𝑗,𝑝 − 𝑥𝑖,𝑝) + 𝜇1 + 𝜇2

𝑁𝑝

𝑖=1

𝐷(𝑥𝑗,𝑝) = 𝛾(𝑥𝑗,𝑝 − 𝑥), 𝑗 = 1,… ,𝑁𝑛𝑏,𝑝 (5.6) 

∑𝜆𝑖,𝑝 = 1

𝑁𝑝

𝑖=1

 (5.7) 

∑𝜆𝑖,𝑝𝑌(𝑥𝑖,𝑝) = 𝑌(𝑥)

𝑁𝑝

𝑖=1

 

(5.8) 

where 𝜇1 and 𝜇2 are Lagrange parameters for spatial interpolation accounting for two 

constraints on 𝜆𝑖,𝑝.  

The kriging variance is then derived as: 

𝜎2 = 𝛾(0) − ∑𝜆𝑗,𝑝𝛾(𝑥𝑗,𝑝 − 𝑥𝑖,𝑝) − 𝜇1 − 𝜇2

𝑁𝑝

𝑖=1

𝑌(𝑥) (5.9) 

 

The variogram is adopted to evaluate the covariance, which involves fitting a 

mathematical model to the empirical semivariogram of both the primary and external 

drift variables. It is: 
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𝛾𝛿(ℎ) = 𝑤(𝛿) ∗  1.5 ∗ (
ℎ

𝑎(𝛿)
) − 0.5 ∗ (

ℎ

𝑎(𝛿)
)
3

 (5.10) 

where 𝛿  is the duration of rainfall and 𝑤(𝛿)  is the highest variance with provided 

rainfall intensity data. 𝑎(𝛿) refers to the distance over which the data are correlated.  

The least square method to fit the variogram and hence obtain the kriging weight 𝜆𝑖. 

 .3.2.2  eather forecast and correctness 

Weather forecasts should not be generated if they have been backed up. Actual weather 

forecasts have only been used for indication of normal and rainfall days (Zhang et al., 

2018). In general, it is available at the current time interval on the current day. 

Unfortunately, the weather forecasts for historical days have not been stored by the 

Hong Kong Observatory. Traffic data and rainfall intensity data in 2018 are available 

in the dataset. However, forecast data in 2018 is unavailable. Hence, the weather 

forecast data from HK Observatory in September 2023 are extracted to acquire its 

correctness for generating weather forecasts in 2018.  

 

The weather forecast downloaded from HK Observatory in September 2023 is used to 

work out the weather forecast correctness. It is then compared with results from 

previous literature. It is found that the weather forecast accuracy is similar as reported 

in other previous related studies (Wu et al., 2019; Zhu et al., 2022a). The average 

values of the Brier score (BS) range from 0.20 to 0.28. BS (denoted as 𝐵𝑆) can be 

obtained from:  

𝐵𝑆 =
1

𝛥𝑡
∑(�̂�𝑝,𝑙(𝑥, 𝑡) − 𝑜𝑝,𝑙(𝑥, 𝑡))

𝛥𝑡

𝑡=1

 (5.11) 

where 𝑜𝑝,𝑙(𝑥, 𝑡) is the observed frequency of rainfall at rainfall category 𝑙 for location 

𝑥 along path 𝑝 at time interval 𝑡. 𝛥𝑡 is the prediction horizon to be evaluated.  

 

The proposed updating model extends to consider the weather forecast to improve the 

prediction accuracy of path travel times. With relevant findings from previous papers 
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(Sun et al., 2023; Lyu et al., 2023), it is worthwhile to examine the effects of weather 

forecast and their correctness on the accuracy of predicted path travel times.  

 

Moreover, the effects of weather forecasts can be varied under different levels of 

service on the study path. The criterion for level of service includes density, speed, 

maximum volume/capacity ratio, and maximum service flow rate. Inspired by the 

approach of Wilby et al. (2022), the thresholds of average speeds for distinguishing 

different levels of service together with free-flow travel speed are taken to obtain the 

ratio between these two variables. 𝐿𝑂𝑆𝑝 obtained by Eq. (3.35) is also used in this 

chapter. 

 .3.2.3 Hybrid model 

A hybrid model combining the interacting multiple model and cubature Kalman filter 

has been proposed to update the offline predicted path travel times. Previous research 

has studied the impacts of rainfall intensity by different rainfall categories (Lam et al., 

2008; Li et al., 2016). It can be extended to assume that the effects of rainfall intensity 

on traffic are distinguished under different modes of rainfall categories and levels of 

service. Therefore, for each combination of the specific rainfall category and level of 

service, there is a corresponding mode for modeling the concrete impacts. The rainfall 

category and level of service function as the boundary conditions of these effects.  

 

There are different modes regarding levels of service and rainfall categories. The set 

of these modes with the rainfall effects on travel times of path 𝑝 is denoted as 𝑀𝑝. 

Therefore, there are |𝑀𝑝 | modes of distinct rainfall effects in the proposed modeling 

framework. Due to the uncertainties of weather forecast and path travel times, the 

transitional probability from mode 𝑖  to mode 𝑗  for path 𝑝  exists for 𝑖, 𝑗 ∈ 𝑀𝑝 . It is 

denoted as 𝑃𝑖,𝑗,𝑝. For each time interval 𝑡, the normalized probability 𝑤𝑡,𝑝
𝑖,𝑗

 for mode 𝑖 

to 𝑗 is: 
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𝑤𝑡,𝑝
𝑖,𝑗

=
1

𝑐𝑡,𝑝
𝑗

𝑤𝑡
𝑖𝑃𝑖,𝑗,𝑝, 𝑖, 𝑗 ∈ 𝑀𝑝 (5.12) 

where 𝑐𝑡,𝑝
𝑗

 is the normalization factor which can be obtained by: 

𝑐𝑡,𝑝
𝑗

= ∑ 𝑤𝑡,𝑝
𝑖 𝑃𝑖,𝑗,𝑝

|𝑀𝑝|

𝑖=1

 (5.13) 

 

Although the FRA is more informative than POP, it is worthwhile to integrate both of 

them to improve predicted path travel times. With the use of the Bayes’ theorem, the 

following equation holds: 

𝑤𝑡0

(𝑖, 𝑗|�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡))

=
(𝐶�̂�𝑝,𝑙(𝑥,𝑡0+𝛥𝑡)�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡)|𝑖, 𝑗𝑤𝑡0−1

𝑖,𝑗
)

𝐶�̂�𝑝,𝑙(𝑥,𝑡0+𝛥𝑡)�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡)
 (5.14) 

where the POP for forecasting rainfall category 𝑙 for location 𝑥 along path 𝑝 at time 

interval 𝑡0 + 𝛥𝑡 along path 𝑝 with a certain probability of transition from mode 𝑖 to 

mode 𝑗 at time interval 𝑡0 is �̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡)|𝑖, 𝑗. It can be identified at time interval 𝑡0.  

 

It is assumed that the state vector 𝒙𝑝 includes 𝑚 variables (e.g., 𝑚 = 3 in the proposed 

updating model including �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡), 𝑟𝑝(𝑥, 𝑡0),  and 𝑇𝑡0,𝑝,𝑠𝐴
 for path 𝑝)  in the 

system, where multivariate Gaussian distribution is presumed for these 𝑚 variables. 

Therefore, 𝒙𝑝~𝑵(𝝁𝑝, 𝑸𝑝), where 𝝁𝑝 is the vector of mean and 𝑸𝑝 is the covariance 

matrix of these 𝑚 variables for path 𝑝. With distinguished effects of different FRA and 

POP, the mixed initial state is: 

𝒙𝑡0+𝛥𝑡,𝑝
+0,𝑗

= ∑ 𝑤𝑡0

(𝑖, 𝑗|�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡))�̂�𝑡0+𝛥𝑡,𝑝
+𝑖

|𝑀𝑝|

𝑖=1

 (5.15) 

where 𝒙𝑡0,𝑝
+0,𝑗

  is the updated initial state for mode 𝑗  at time interval 𝑡0  for path 𝑝 . 

Correspondingly, the updated covariance matrix �̂�𝑡,𝑝
+0,𝑗

 for mode 𝑗 is: 



5-15 

 

�̂�𝑡0+𝛥𝑡,𝑝
+0,𝑗

= ∑ 𝑤𝑡0

(𝑖, 𝑗|�̂�𝑝,𝑙(𝑥, 𝑡0 + 𝛥𝑡))[�̂�𝑡0+𝛥𝑡,𝑝
+𝑗

+(�̂�𝑡0+𝛥𝑡,𝑝
+𝑖 −�̂�𝑡0+𝛥𝑡,𝑝

+0,𝑗
)(�̂�𝑡0+𝛥𝑡,𝑝

+𝑖 −�̂�𝑡0+𝛥𝑡,𝑝
+0,𝑗

)
𝑇
]

|𝑀𝑝|

𝑖=1

 

(5.16) 

 

In general, the Kalman filter corrects or updates the state after observation is collected. 

When observation vector 𝒛𝑡0,𝑝 = [ 𝐶�̂�𝑝(𝑥,𝑡0+𝛥𝑡), �̂�𝑝(𝑥, 𝑡0 + 𝛥𝑡), 𝑟𝑝(𝑥, 𝑡0), 𝑇𝑡0,𝑝,𝑠𝑎
]
𝑇

  is 

available, an observation operator 𝑯 is applied as follows. 

�̂�𝑡0+𝛥𝑡,𝑝
+𝑗

= �̂�𝑡0−1+𝛥𝑡,𝑝
+0,𝑗

+ 𝑲(𝒛𝑡0,𝑝 − 𝑯�̂�𝑡0−1+𝛥𝑡,𝑝
+0,𝑗

) (5.17) 

where 𝑲 denotes the Kalman gain. It should be noted that the offline predicted path 

travel times �̃�𝑡+𝛥𝑡,𝑝  is an element in �̂�𝑡0−1+𝛥𝑡,𝑝
+0,𝑗

  while the predicted path travel time 

�̂�𝑡+𝛥𝑡,𝑝 is an element in 𝒙𝑡0+𝛥𝑡,𝑝
+𝑗

 after updating. The state covariance matrix �̂�𝑡,𝑝
+0,𝑗,𝑝𝑜𝑠𝑡

 

can also be updated below: 

�̂�𝑡0+𝛥𝑡,𝑝
+𝑗

= (𝑰 − 𝑲𝑯)�̂�𝑡0+𝛥𝑡−1,𝑝
+0,𝑗

 (5.18) 

where 𝑰 is the identity matrix. The 𝑲 can be obtained using Eq. (5.19) below: 

𝑲 = �̂�𝑡0+𝛥𝑡
+0,𝑗

𝑯T(𝑯�̂�𝑡0+𝛥𝑡
+0,𝑗

𝑯T + 𝑹)
−1

 (5.19) 

The error covariance matrix 𝑹 is supposed to be unbiased.  

 .3.3 Offline training 

 .3.3.1 Proposed offline training model 

The historical observed path travel time 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 is modeled as a function of time interval 

𝑡, i.e., 𝑇𝑝
𝑠𝐴(𝑡). Moreover, it is assumed that the effects of rainfall intensity on path 

travel times by different rainfall categories and levels of service are similar in the 

online updating stage. 

 

For each mode 𝑗 ∈ 𝑀𝑝 , the Geometric Brownian Motion model is introduced to 
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represent the evolution of path travel times. 

𝑑𝑇𝑝,𝑗
𝑠𝐴(𝑡) = 𝑇𝑝,𝑗

𝑠𝐴(𝑡)𝜇𝑝,𝑗𝑑𝑡 + 𝑇𝑝,𝑗
𝑠𝐴(𝑡)𝜎𝑝,𝑗𝑑𝑊(𝑡) (5.20) 

where 𝜇𝑝,𝑗  is the expected rate of change of path travel times over time for path 𝑝 

under mode 𝑗. 𝜎𝑝,𝑗 is the noise of path travel times for path 𝑝 under mode 𝑗. 𝑑𝑊(𝑡) is 

the infinitesimal Wiener Process. The path travel times 𝑇𝑝,𝑗
𝑠𝐴(𝑡) under mode 𝑗  is further 

modeled to distinguish the various effects of rainfall intensity under different rainfall 

categories and levels of service. 

 

The interpolated rainfall intensity data 𝑟𝑝(𝑥, 𝑡) is available for any given location 𝑥 

from Eqs. (5.3)-(5.10). To correlate the path travel times, the average rainfall intensity 

for the path 𝑝 can be derived as: 

𝑟𝑝(𝑡) =
1

𝑥𝑑𝑝 − 𝑥𝑜𝑝
∫ 𝑟𝑝(𝑥, 𝑡)𝑑𝑥

𝑥𝑑𝑝

𝑥𝑜𝑝

 (5.21) 

The exponential Ornstein-Uhlenbeck process has been used to describe the evolution 

of rainfall intensity data with high frequency (i.e., 2 minutes). 

𝑑𝑟𝑝(𝑡) = 𝑟𝑝(𝑡)𝜖𝑝 (𝜃 − ln𝑟𝑝(𝑡)) 𝑑𝑡 + 𝑟𝑝(𝑡)𝜎𝑑𝑊(𝑡) (5.22) 

where 𝜖𝑝 is the relaxation rate to the historical mean of rainfall intensity for path 𝑝. It 

is assumed that there should be a normalized cross-correlation coefficient between 

rainfall intensity and path travel times 𝜌
𝑝,𝑟

(𝑡). It is used to identify the time periods 

when path travel times are affected by rainfall. The following equation can be written 

as: 

𝜌
𝑝,𝑟

(𝑡) =
𝐸 [(𝑇𝑝

𝑠𝐴(𝑡) − 𝜇 (𝑇𝑝
𝑠𝐴(𝑡))) (𝑟𝑝(𝑡) − 𝜇 (𝑟𝑝(𝑡)))]

𝜎 (𝑇𝑝
𝑠𝐴(𝑡)) 𝜎 (𝑟𝑝(𝑡))

 (5.23) 

where 𝜌
𝑝,𝑟

(𝑡) is normalized cross-correlation coefficient between rainfall intensity and 

path travel times at time interval 𝑡 . Similarly, the normalized cross-correlation 

coefficient between FRA and path travel times can be obtained by: 
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𝜌
𝑝,�̂�

(𝑡) =
𝐸 [(𝑇𝑝

𝑠𝐴(𝑡) − 𝜇 (𝑇𝑝
𝑠𝐴(𝑡))) (�̂�𝑝(𝑡) − 𝜇 (�̂�𝑝(𝑡)))]

𝜎 (𝑇𝑝
𝑠𝐴(𝑡)) 𝜎 (�̂�𝑝(𝑡))

 (5.24) 

where 𝜌
𝑝,�̂�

(𝑡) is normalized cross-correlation coefficient between FRA and path travel 

times at time interval 𝑡. 

 

Due to the unavailability of high frequency data on rainfall intensity, the hourly-based 

rainfall intensity data is usually studied and used for modeling their effects on traffic 

state variables in the previous related works (Shao et al., 2008; Ryu, Kim, and Kim, 

2020) and Table 5.1. The temporal evolution of rainfall in this situation can hardly be 

captured using low frequency rainfall intensity data.  

 

Both duration and temporal evolution of rainfall affect rainwater accumulation on the 

road, which causes a reduction in road capacity and vehicular speed (especially speed 

at capacity). Hence, high-frequency rainfall intensity data can help to model the effect 

of rainfall intensity on path travel time prediction in the near future. If rainfall begins 

at 𝑡1  and ends at 𝑡2  on location 𝑥 , with rainfall intensity 𝑟𝑝(𝑥, 𝑡) , the rainwater 

accumulation 𝐴𝐶(𝑥, 𝑡) can be obtained by: 

𝐴𝐶(𝑥, 𝑡) = ∫ |𝑟𝑝(𝑥, 𝑡) − 𝑟𝑝𝑑(𝑥)|𝑑𝑡
𝑡2

𝑡1

 
(5.25) 

where 𝑟𝑝𝑑(𝑥) is the rate of rainwater drainage at path 𝑝 on location 𝑥.  

 

It is assumed that only rainfall intensities with significant rainwater accumulation on 

the road have impacts on the speed of vehicles. Therefore, path travel times during 

time intervals with significant rainwater accumulation (which is larger than the 

threshold 𝐴0(𝑥)) are affected by rainfall intensities. 

𝑡 ∈ {𝑡∗|𝐴𝐶(𝑥, 𝑡∗) ≥ 𝐴𝐶0(𝑥)} (5.26) 

 

With the above consideration, there should be a threshold normalized cross-correlation 
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coefficient 𝜌0 . Any time interval with a significant normalized cross-correlation 

coefficient between its rainfall intensity and path travel time should be considered as 

follows: 

𝑡 ∈ {𝑡∗|𝜌𝑝,𝑟(𝑡
∗) ≥ 𝜌0} (5.27) 

Therefore, the offline predicted path travel times for time interval 𝑡 + 𝛥𝑡 should be: 

�̃�𝑡+𝛥𝑡,𝑝 = 𝑇𝑝,𝑗
𝑠𝐴(𝑡 + 𝛥𝑡), 𝑗 ∈ 𝑀𝑝 (5.28) 

 .3.3.2 Historical data 

The historical data used in Section 5.3.3.1 above refers to the available data collected 

before the current day, including both historical rainfall intensity data 𝑟𝑝(𝑥, 𝑡)  and 

historical observed path travel time 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

. The derivations for real-time data in Section 

5.3.2.1 can be applied to acquire historical data with Eqs. (5.3)-(5.10).  

 .4  odel Validation 

Four empirical tests on two selected expressways are conducted for model validation. 

The first test aims to highlight the advantages of using both the weather forecast and 

historical rainfall intensity data for path travel time prediction, as claimed in 

contribution 1. The second test shows the superiority of the online updating stage over 

other benchmarks with consideration of the normalized cross-correlation coefficient 

between the weather forecasts and predicted path travel times under different levels of 

service. It justifies contribution 2 in the online updating.  

 

The third test is conducted to illustrate the merits of considering various effects of 

rainfall intensity on path travel times by different rainfall categories and levels of 

service, as well as the usage of high-frequency rainfall intensity data. Contribution 3 

is presented through this test. The fourth test verifies the applicability of the proposed 

modeling framework without ground truth on path travel times as input. Contribution 
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4 has been demonstrated in this test. 

 .4.1 Dataset description and preprocessing  

The empirical tests are carried out on two selected expressways with nearby weather 

stations in Hong Kong (Figure 5.4). Study path 1 is a major route from Tuen Mun New 

Town to Tsuen Wan New Town. The chosen study path is 17.8 km long with a free-

flow path travel time (based on the free-flow travel speed of 75 km/h) of 14.3 min. 

Study path 2 is 9.2 km long. It connects the Island Eastern Corridor on Hong Kong 

Island to the Western Harbor Crossing in Kowloon. The length of study path 2 is 9.2 

km, and the corresponding free-flow path travel time is 8.8 min. It is noted that study 

path 2 has a signal near the destination while study path 1 has no signals. 

 

Figure 5.4 The selected path for the empirical tests 

 

As both study paths are major routes in Hong Kong’s road network, the predicted path 

travel times have been worked out in the existing ATIS allocated in Hong Kong. The 

predicted path travel time for study paths 1 and 2 can be obtained from the SMPS and 

JTIS, respectively. Both SMPS and JTIS have been validated with satisfactory results 
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(Tam and Lam, 2013). Hence, in this chapter, it is regarded as ground truth for path 

travel times, which is 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

 for 𝑘 = 0 as used in Chapter 3. 

 

There are three weather stations3  nearby each of both study paths in Hong Kong 

(𝑁𝑛𝑏,𝑝 = 3). The rainfall intensity data collected from these three weather stations are 

analyzed in this chapter. The graduation of rainfall intensity of three weather stations 

has been unified to be 0.5mm/h after data processing. The observed path travel times 

and rainfall intensity data of weekdays in 2018, excluding public holidays (i.e., 214 

weekdays for the whole year of 2018), are used in this test. Five rainy weekdays out 

of the 214 weekdays (from Monday to Friday) in 2018 are selected for validation of 

the path travel time prediction according to the representative rainfall amount and 

traffic conditions.  

 

As the historical weather forecast data in 2018 is unavailable, they are generated with 

the following two assumptions: A1: It is assumed that the distribution of weather 

forecast correctness in September 2023 remains the same as in 2018. A2: The 

relationship between the level of service and weather forecast correctness in 

September 2023 stays the same as in 2018. For example, when level of service C is 

matching to the weather forecast correctness of 85% obtained in 2023, a value of 85% 

as weather forecast correctness is assumed for periods in 2018 when the traffic 

condition is at level of service C. 

 

The data on the level of service and weather forecast correctness collected in 

September 2023 are used in the artificial neural network to calibrate their relationship. 

80% of data in September 2023 are used for calibration, with the remaining for testing. 

The relationship is verified using the testing data with satisfactory simulation 

 

3 https://www.hko.gov.hk/en/cis/stn.htm  
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performance. This relationship is then applied with reference to the level of service 

data in 2018 to generate the weather forecast correctness in 2018 by time of day. The 

correctness and BS of POP and FRA during September 2023 are shown in Figure 5.5. 

The medians for correctness and BS of POP and FRA are 85% and 0.14, as well as 

79% and 0.19, respectively.  

 

Figure 5.5 CDF of correctness and BS of the weather forecast 

 

The remaining 218 weekdays in 2018 are used as training sets. The MAPE, MAE, and 

root mean square error (RMSE) are adopted for evaluation of prediction performance. 

The results on MAPE, MAE and RMSE are obtained using: 

MAPE =
1

𝛥𝑡
∑|

�̂�𝑡0+𝑖,𝑝 − 𝑇𝑡0+𝑖,𝑝
𝑠𝐺

𝑇𝑡0+𝑖,𝑝
𝑠𝐺

|

𝛥𝑡

𝑖=1

 

(5.29) 

MAE =
1

𝛥𝑡
∑|�̂�𝑡0+𝑖,𝑝 − 𝑇𝑡0+𝑖,𝑝

𝑠𝐺 |

𝛥𝑡

𝑖=1

 

(5.30) 
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RMSE = √
1

𝛥𝑡
∑(�̂�𝑡0+𝑖,𝑝 − 𝑇𝑡0+𝑖,𝑝

𝑠𝐺 )
2

𝛥𝑡

𝑖=1

 

(5.31) 

where three values of 𝛥𝑡 are selected to evaluate the proposed modeling framework 

under different prediction horizons. They are in terms of the number of intervals in 

each of these three prediction horizons; namely 30 intervals for 1-hour ahead, 720 and 

5040 intervals for 1-day ahead and 1-week ahead, respectively. 

 

Besides, the maximum errors are observed to assess the worst performance of the 

proposed modeling framework. The maximum absolute percentage error (MaxAPE) 

and maximum absolute error (MaxAE) are used as follows: 

MaxAPE = {𝑀𝑎𝑥 |
�̂�𝑡0+𝑖,𝑝 − 𝑇𝑡0+𝑖,𝑝

𝑠𝐺

𝑇𝑡0+𝑖,𝑝,𝑠𝑔

| |𝑖 = 1,… , 𝛥𝑡} 
(5.32) 

MaxAE = {𝑀𝑎𝑥 |�̂�𝑡0+𝑖,𝑝 − 𝑇𝑡0+𝑖,𝑝
𝑠𝐺 | |𝑖 = 1,… , 𝛥𝑡} (5.33) 

 .4.2 Performance of the proposed modeling framework 

Different input data (denoted as 𝑐1, 𝑐2, 𝑐3, 𝑐4, and 𝑐5) are prepared to investigate the 

effects of these data on the accuracy of predicted path travel times. The availability of 

these input data is shown in Table 5.2.  

 

Table 5.3 presents the prediction performance of the proposed modeling framework 

using these data. It is observed in Table 5.3 that 𝑐1  has the best performance for 

predicting 1-hour ahead on path travel times (MAPE is 6.9% and 6.1% for study path 

1 and 2, respectively) while 𝑐5  has the worst performance of predicted path travel 

times 1-week ahead (MAPE is 20.6% and 15.7% for study path 1 and 2, respectively).  
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Table 5.2 Availability of different input data 

Input 

Real-time data Historical data 

Rainfall 

intensity 

data 

𝑟𝑝(𝑥, 𝑡0) 

Observed 

path travel 

time 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 

FRA 

�̂�𝑝(𝑥, 𝑡0 +

𝛥𝑡) 

POP 

�̂�𝑝,𝑙(𝑥, 𝑡0

+ 𝛥𝑡) 

Number 

of data 

sources 

Rainfall 

intensity 

data 

𝑟𝑝(𝑥, 𝑡) 

Observed 

path travel 

time 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 

𝑐1 √ √ √ √ 4 

All available 

𝑐2 √ √ √  3 

𝑐3 √ √  √ 3 

𝑐4 √ √   2 

𝑐5  √   1 

 

Table 5.3 Prediction performance of the proposed modeling framework with different 

input data 

Path Input data 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

Study 

path 1 

𝑐1  .  0.7 1.0 10.3 1.8 1.9 14.6 2.8 2.8 

𝑐2 9.8 1.7 1.8 12.9 2.4 2.5 16.1 3 3.2 

𝑐3 11.8 2.1 2.2 14.1 2.7 2.8 16.7 3 3.4 

𝑐4 12.2 2.3 2.5 15.4 2.8 3.1 18.5 3.9 4.0 

𝑐5 1 .2 2.8 3.1 17.8 3.8 3.9 20.6 4.3 4.7 

Study 

path 2 

𝑐1 6.1 0.5 0.6 7.7 1.3 1.3 11.1 1.9 2 

𝑐2 7.4 1.2 1.3 9.9 1.7 1.9 11.7 2 2.1 

𝑐3 9.1 1.5 1.7 10.4 1.8 2 11.9 2.1 2.2 

𝑐4 9.5 1.6 1.8 10.9 1.9 2 13.4 2.6 2.7 

𝑐5 10.7 1.9 2 13 2.5 2.6 15.7 2.8 3.2 
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With reference to performance on study path 1, there are several observations. 

Comparing 𝑐1 and 𝑐5, both types of weather forecast information (including FRA and 

POP) and historical rainfall intensity data can significantly achieve better performance 

of predicted path travel times in the near future (MAPE reduced from 15.2% to 6.9% 

for 1-hour ahead prediction of path travel times, which is an accuracy improvement of 

15.2%−6.9%

15.2%
=55%).  

 

Comparing results from 𝑐2 and 𝑐3, it is found in Table 5.3 that the FRA is more useful 

than POP for enhancing the accuracy of predicted path travel times. It should also be 

noted that historical rainfall intensity data plays an important role in improving the 

offline prediction accuracy by modeling the normalized cross-correlation coefficient 

between rainfall intensity and path travel times from results of 𝑐4 and 𝑐5.  

 

Figure 5.6 presents the CDF plots of MAPE for predicting 1-hour ahead on path travel 

times for study path 1. The significant difference in median of error distributions 

between 𝑐1 and 𝑐5 (i.e., 15.4%-7.8%=7.6%) again emphasizes the advantage of using 

both weather forecast information and historical rainfall intensity data. Hence, the 

subsequent tests select 𝑐1 as input data unless further specification. 
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Figure 5.6 CDF of MAPE for predicting path travel times 1-hour ahead for study 

path 1 using different input data  

 

Furthermore, the CDF of 𝑐1 has a shorter tail (i.e., less extreme errors) than that of 𝑐5. 

It illustrates the stable performance of the proposed modeling framework with the use 

of both weather forecast and historical rainfall intensity data. The normalized cross-

correlation coefficient between path travel times and weather forecasts (modeled in the 

online updating stage) and rainfall intensity (modeled in the offline training stage) by 

different levels of service ensures stable performance. These two types of cross-

correlation coefficients will be discussed in the following tests.  

 

R1 is used to represent online updating in the proposed modeling framework. The 

performance of R1 is compared with the other benchmark updating models using data 

collected from study path 1. There are three benchmarks. The first is the Extended 
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fractional singular KF (EFSKF, R2 stands for this model). The second is the Unscented 

Kalman filter (UKF, signified as R3), and the third is the Ensemble Kalman filter (EKF, 

represented by R4). They are also compared in Table 5.4 and Table 5.5 (Nerini et al., 

2019; Trinh et al., 2022; Nosrati et al., 2023).  

 

Table 5.4 Online updating performance of different updating models on study path 1 

Updating 

models 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

R1  .  0.7 1.0 10.3 1.8 1.9 14.6 2.8 2.8 

R2 10.1 1.8 1.9 12.9 2.4 2.5 15.7 2.9 3.1 

R3 11.0 1.9 2.0 14.3 2.7 2.8 16.9 3.1 3.5 

R4 11.9 2.3 2.4 15.0 2.8 3.0 18.4 3.9 4.0 

R1: online updating of proposed modeling framework; R2: EFSKF; R3: UKF; R4: 

EKF  

 

Table 5.5 Maximum errors of online updating performance of different updating 

models on study path 1 

Updating 

models 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

R1 10.4 1.8 15.5 2.8 21.9 4.5 

R2 16.2 3.0 20.6 4.3 25.1 4.9 

R3 18.7 3.9 24.3 4.8 28.7 5.5 

R4 17.9 3.8 22.5 4.5 27.6 5.2 

R1: online updating of proposed modeling framework; R2: EFSKF; R3: UKF; R4: 

EKF  
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The proposed modeling framework achieves the best performance on updating 

(MAPE=6.9% in Table 5.4 and MaxAPE=10.4% in Table 5.5), with its superiority in 

dealing with non-linear systems. Besides, the normalized cross-correlation coefficient 

between predicted path travel times and the weather forecast is captured in the online 

updating stage and contributes to the prediction accuracy. 

 

The normalized cross-correlation coefficient 𝜌
𝑝,𝑟

(𝑡)  (or 𝜌
𝑝,�̂�

(𝑡) ) of path travel times 

and rainfall intensity data (or FRA) at time interval 𝑡 can identify the time periods 

when path travel times are affected by rainfall. Figure 5.7 compares 𝜌
𝑝,𝑟

(𝑡) and 𝜌
𝑝,�̂�

(𝑡) 

under different traffic conditions in Figure 5.7(a) and Figure 5.7(b), respectively.  

 

 

Figure 5.7 Comparison of normalized cross-correlation coefficient of (a) rainfall 

intensity data and path travel times (𝜌
𝑝,𝑟

(𝑡)); (b) FRA and path travel times (𝜌
𝑝,�̂�

(𝑡)) 

 

There are two observations from two figures. First, both 𝜌
𝑝,𝑟

(𝑡) and 𝜌
𝑝,�̂�

(𝑡) are larger 

when the traffic condition is more congested. It is seen that the values are the largest 

when LOS is E&F in Figure 5.7(a) and 5.8(b). Second, the magnitude of 𝜌
𝑝,𝑟

(𝑡) in 

Figure 5.7(a) is larger than 𝜌
𝑝,�̂�

(𝑡) in Figure 5.7(b). The maximum value is 0.93 in 
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Figure 5.7(a) and 0.62 in Figure 5.7(b). This implies that rainfall intensity data has a 

greater impact on predicted path travel times. The use of rainfall intensity data is more 

essential to path travel time prediction. 

 

This is because the impacts on rainfall under congested traffic are more severe than in 

uncongested traffic. Lam et al. (2013) also pointed out that the percentage of reduction 

on speed at capacity is larger than that on free-flow speed under rainfall. The variations 

of the normalized cross-correlation coefficient between path travel times and weather 

forecast/historical rainfall intensity have been captured and modeled in Eqs. (12)-(16) 

and (23). This normalized cross-correlation coefficient distinguished by different 

levels of service helps to improve prediction accuracy. 

 

The weather forecast correctness plays a crucial role in the quality of traffic prediction. 

This is because weather forecasts may not always be completely accurate (Thakuriah 

and Tilahun, 2013). Hence, the effects of weather forecast correctness on path travel 

time prediction accuracy are examined in this chapter using different percentages of 

reduction on the correctness of weather forecast based on 𝑐1. Figure 5.8 illustrates the 

effects of weather forecast correctness on the prediction accuracy (in terms of MAPE) 

of path travel times by 2-minute intervals in the next hour.  
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Figure 5.8 The effects of weather forecast correctness on the prediction accuracy (in 

terms of MAPE) of path travel times by 2-minute intervals in the next hour 

 

There are two observations in Figure 5.8. First, there is a distinct difference between 

maximum point 𝒜 (22.3% when the medians of correctness for FRA and POP are 51% 

and 47%) and minimum point ℬ (6.9% for data combination 𝑐1 without reduction on 

weather forecast correctness) of MAPE in Figure 5.8 (22.3%-6.9%=15.4%). It shows 

that weather forecast correctness significantly affects the accuracy of predicted path 

travel times.  

 

When weather forecasts are inaccurate (e.g., the medians of correctness for FRA and 

POP are 51% and 47% when 40% of correctness for FRA and POP are reduced), the 

performance is even worse than data combination 𝑐5 (MAPE=15.2%) when only path 

travel time observations are used for prediction.  
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Second, the rate of change for correctness of POP (1.2) is much higher than that of 

FRA (0.4). It indicates that the prediction accuracy is more sensitive to the correctness 

of POP than that of FRA. As the effects of rainfall are modeled by different rainfall 

categories, the inaccurate POP has a higher chance of leading to a wrong rainfall 

category with mismatched relationships on the actual conditions. Therefore, the 

prediction accuracy is more sensitive to the correctness of POP.  

 

Two strategies for simulation of weather forecast data are adopted by Thakuriah and 

Tilahun (2013) to regenerate the POP. The simulated FRA is then obtained from the 

mean value of each category corresponding to POP. Strategy (𝔸) assumes the equal 

chance of weather condition for each time interval, while strategy (𝔹 ) derives the 

conditional probability of each weather condition based on progression of historical 

data. Both strategies can be applied to the dataset used in this chapter for comparison.  

 

Strategy (𝔸) assumes an equal chance of occurrence of weather events as the weather 

forecast. If there are 𝑁 events, the resultant POP is: 

𝑃𝑂𝑃 =
1

𝑁
 

(5.34) 

Two counts are considered for strategy (𝔹); the first is counting the instances when 𝑖 

occurs at time interval 𝑡 and 𝑗 occurs at time 𝑡 + 𝛥𝑡 (call it 𝑓1). The second is the count 

when 𝑖 occurs at time interval 𝑡 but without followed by 𝑗 at 𝑡 + 𝛥𝑡 (call it 𝑓2). Then 

the probability of occurrence of 𝑗 when 𝑖 occurs can be obtained by: 

𝑃𝑂𝑃𝑖,𝑗 =
𝑓1

𝑓1 + 𝑓2
 

(5.35) 

 

Strategy (𝔸) employs an equal probability distribution for each rainfall category and 

calculates the average FRA in the dataset. This approach assumes that each category 

has an equal likelihood of occurring. Strategy (𝔹), on the other hand, incorporates 
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conditional probability to update both the POP and the FRA. This means that the 

forecast is adjusted based on the likelihood of specific conditions leading to certain 

rainfall categories.  

 

The comparison of the correctness of the POP and FRA between strategy (𝔸 ) and 

strategy (𝔹) is presented in Figure 5.8. The MAPEs for strategy (𝔸) and strategy (𝔹) 

are 13.4% and 8.1% respectively. This indicates that strategy (𝔹) exhibits superior 

performance compared to strategy (𝔸 ), which is consistent with the observation 

reported by Thakuriah and Tilahun (2013).  

 

However, it is important to note that the prediction performance can be further 

enhanced by increasing the correctness of the weather forecast. This can be achieved 

by collecting weather forecast data either manually or automatically and following the 

assumptions outlined in Section 5.4.1. By considering this additional information and 

adhering to the specified assumptions, the accuracy of the weather forecast data is 

further improved from 8.1% (strategy (𝔹)) to 6.9% (strategy in this chapter). It is also 

recommended to update the strategies for generating weather forecast data in further 

study. 

 

Three of the most commonly-used machine-learning models are selected in the offline 

training as benchmarks for comparing with offline training model in the proposed 

modeling framework (O1); i.e., APTN proposed by Shi et al. (2021) (listed as O2), 

CNN model (Dunne and Ghosh, 2013) (represented as O3) and the LSTM model 

proposed by Yang et al. (2021b), (denoted as O4) used for traffic state prediction.  

 

The average performance of the proposed prediction model in path travel time 

prediction is given in Table 5.6 and Table 5.7. The proposed modeling framework 

outperforms the other offline training models in terms of offline prediction 
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(MAPE=12.8% in Table 5.6 and MaxAPE=19.2% in Table 5.7). It is because of the 

consideration of normalized cross-correlation coefficient between path travel times 

and rainfall intensity data by different levels of service as presented in Figure 5.7.  

 

Table 5.6 Offline training performance of different offline training models on study 

path 1 

Offline 

training 

model 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

O1 12.  2.4 2.5 15.4 2.8 3.1 18.9 4.0 4.1 

O2 13.7 2.6 2.7 16.2 3 3.2 19.8 4.1 4.4 

O3 13.9 2.6 2.7 16.5 3 3.3 20.1 4.2 4.5 

O4 14.1 2.7 2.8 16.9 3.1 3.5 20.2 4.2 4.5 

O1: offline training in the proposed modeling framework; O2: APTN; O3: CNN; O4: 

LSTM 

 

Table 5.7 Maximum errors of offline training performance of different offline 

training models on study path 1 

Offline 

training 

model 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

O1 1 .2 4.0 23.1 4.6 28.4 5.4 

O2 21.2 4.4 25.4 4.9 30.3 5.7 

O3 21.9 4.5 25.9 5.0 31.7 5.9 

O4 23.6 4.7 28.1 5.3 34.2 7.2 

O1: offline training in the proposed modeling framework; O2: APTN; O3: CNN; O4: 

LSTM 
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The usage of high-frequency rainfall intensity data is a prerequisite for uncovering the 

normalized cross-correlation coefficient shown in Table 5.8 and Table 5.9. A range of 

frequency from 2 minutes (high frequency) to 1 hour (low frequency) for rainfall 

intensity data has been used as input for the proposed offline training model. The high-

frequency rainfall intensity data as input can lead to higher prediction accuracy 

(MAPE=12.8% in Table 5.8 and MaxAPE=19.2% in Table 5.9 for the proposed offline 

training model) compared with low-frequency data (i.e., MAPE=21.7% in Table 5.8 

and MaxAPE=27.6% in Table 5.9). It is consistent with the findings in Harper, Qian, 

and Samaras (2021) and highlights the merit of using high-frequency rainfall intensity 

data. 

 

Table 5.8 Offline training performance of proposed offline training model using 

rainfall intensity data with different frequencies for study path 1 

Frequency 

of rainfall 

intensity 

data (min) 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

2  12.  2.4 2.5 15.4 2.8 3.1 18.9 4.0 4.1 

10 15.2 2.7 2.9 22.5 4.4 18.5 3.9 4.1 23.8 

30 18.5 3.9 4.0 20.8 4.4 4.8 23.4 4.7 5.1 

60 21.  4.5 4.9 23.1 4.6 5.1 25.3 4.9 5.3 
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Table 5.9 Maximum errors of proposed offline training model using rainfall intensity 

data with different frequencies for study path 1 

Offline training 

model 

𝛥𝑡 (time intervals) 

1-hour ahead (30) 1-day ahead (720) 1-week ahead (5040) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

2 minutes 1 .2 4.0 23.1 4.6 28.4 5.4 

30 minutes 25.3 4.9 29.4 5.6 32.3 6.9 

1 hour 2 .  5.2 33.8 7.0 38.4 7.6 

 

It is also found that the prediction errors changed over different rainfall categories and 

levels of service. Regarding different rainfall categories, the categorization is based on 

historical rainfall intensity data, and the boundaries for distinguishing light rain, 

moderate rain, and heavy rain are 0.8mm/h and 6.5mm/h, which is similar to the 

boundaries set by the previous studies on the effects of rainfall on speed and capacity 

reduction (Lam et al., 2013). Besides, it has been indicated that travel demand may be 

affected by the traffic environment under different weather conditions (Lam et al., 

2008). Similarly, the predicted path travel times can also be influenced by different 

levels of service under various rainfall categories.  

 

Weather conditions, particularly the distinction between rainy and non-rainy 

conditions, significantly impact on the predicted path travel times. Subsequently, 

traffic conditions, assessed in terms of levels of service, also play a crucial role in 

affecting these travel times. Moreover, initiation and termination of rainfall may cause 

significant impacts on predicted path travel times.  

 

Therefore, four scenarios are investigated for predicting path travel times of study path 

1 at time interval 𝑡 + 1  depending on the rainy or non-rainy condition during two 

successive time intervals 𝑡 and 𝑡 + 1. They are: (a) no rain at time interval 𝑡, rain at 
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time interval 𝑡 + 1; (b) rain at time interval 𝑡, no rain at time interval 𝑡 + 1; (c) rain at 

time intervals 𝑡 and 𝑡 + 1; (d) no rain at time intervals 𝑡 and 𝑡 + 1. Table 5.10 provides 

detailed information on four scenarios.  

 

Table 5.10 Detailed information of four scenarios 

Scenarios 
Time interval 𝒕 Time interval 𝒕 + 𝟏 

Rain No rain Rain No rain 

(a)  √ √  

(b) √   √ 

(c) √  √  

(d)  √  √ 

 

Data combination of 𝑐1 (using AVI data, rainfall intensity data, and real-time weather 

forecasts as input) are used for four scenarios. Table 5.11 gives the results of four 

scenarios regarding the accuracy of predicted path travel times (in terms of mean 

relative percentage error (MRPE)).  

 

Table 5.11 Prediction performance of the proposed modeling framework on study 

path 1 at the time interval 𝑡 + 1 using 𝑐1. (in terms of MRPE (%)) 

Scenario 

Weather condition at Traffic condition 

Time 

interval 𝑡 

Time interval 

𝑡 + 1 
LOS A&B LOS C&D LOS E&F 

(a) No rain Rain 3.7 2.1 4.3 

(b) Rain No rain 6.1 5.3  .  

(c) Rain Rain 4.1 3.4 5.2 

(d) No rain No rain 5.3 4.5 5.9 

 

First, it is noted in Table 5.11 that all MRPEs are positive, which indicates that the 
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proposed modeling framework overestimates the path travel times than the actual path 

travel times from SMPS. It is because the consideration of 𝛴𝑑
𝑠𝑎(𝑡𝑎, 𝑡𝑏) and 𝛴𝑡

𝑠𝑎(𝑑𝑖, 𝑑𝑗) 

may contain some intervals that are less relevant to study time intervals. Consequently, 

the usage of abundant data may cause overfitting problems in the path travel time 

prediction (Ricard et al., 2022). Therefore, the results are overestimated. Second, the 

MRPE is smallest (2.1%) under LOS C&D for Scenario (a) and largest (6.8%) under 

LOS E&F for Scenario (b). The differences in the overestimation results imply that it 

is worthwhile investigating the impact of rainfall on driver behavior in further study. 

 

Further sensitivity tests with pre-determined and fixed sample sizes are also conducted 

to assess the effects of traffic conditions on the performance of predicted path travel 

times, as investigated in Section 3.4. For each scenario with different weather 

conditions at two successive 2-minute intervals, the sample size of real-time AVI data 

is reduced to that under LOS A&B (i.e. smallest sample size under uncongested 

condition). The results are provided in Table 5.12.  

 

It can be seen in Table 5.12 that when the weather conditions at two successive 2-

minute intervals 𝑡 and 𝑡 + 1 are fixed, predicted path travel times under LOS A&B 

have the smallest MRPE (3.7%). Hence, it is easier to predict path travel times under 

LOS A&B, which is consistent with the findings shown in Table 3.7 (due to the 

relatively low variability of path travel times under LOS A&B) in Section 3.4.  
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Table 5.12 The prediction performance of the proposed modeling framework with a 

fixed sample size of real-time AVI data 

Scenario 

Weather condition at Traffic condition 

Time 

interval t 

Time 

interval t+1 
LOS A&B LOS C&D LOS E&F 

(a) No rain Rain 3.  4.8 6.1 

(b) Rain No rain 6.1 7.6 8.8 

(c) Rain Rain 4.1 5.8 6.5 

(d) No rain No rain 5.3 7.3 6.8 

 

The preceding experiments presupposed the availability of POP and FRA data every 2 

minutes. However, for daily or weekly forecasts, the frequency may not be as frequent 

as assumed in this study, with hourly POP/FRA data being the norm.  

 

To address this discrepancy, three strategies have been implemented to increase the 

frequency of POP/FRA data: first, the standard practice of evenly distributing hourly 

POP/FRA data across minutely intervals was adopted, a common approach when 

rainfall intensity data is less frequent than desired (Jia et al., 2017). Second, linear 

interpolation was applied to the hourly POP/FRA data to trace the rainfall amount trend 

between two consecutive hourly intervals. Third, machine learning algorithms were 

employed to reveal the underlying correlations (Shi et al., 2022; Wang et al., 2018; 

Yang et al., 2018) between hourly and minutely FRA, offering a more detailed insight 

into the effects of various rainfall categories. 

 

Consequently, it is pertinent to examine the performance of the proposed modeling 

framework for predicting path travel times 1-hour ahead when only hourly FRA data 

is accessible. Table 5.13 presents the framework's performance in predicting 1-day 

ahead path travel times using hourly FRA and POP data. It is observed in Table 5.13 

that the poorest performance on predicted path travel times occurs under the 
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assumption of a uniform distribution of hourly FRA/POP data, with a MAPE of 17.1%, 

which still remains within an acceptable range of 20% error. This result supports the 

adaptability of the proposed modeling framework for varying frequencies of weather 

forecast data. 

 

Table 5.13 Performance of the proposed modeling framework for predicting path 

travel times 1-hour ahead using hourly FRA and POP data with different strategies 

Strategies MAPE (%) MAE (min) 
RMSE 

(min) 

MaxAPE 

(%) 

MaxAE 

(min) 

1. Uniform 1 .1  3.2 3.5 30.1 5.6 

2. Linear 16.3% 3.1 3.1 28.6 5.5 

3. Machine 

learning 
13.1% 2.5 2.6 20.4 4.1 

 

The modes on effects of rainfall on path travel times are defined in Table 5.14. With 

this reference, Table 5.15 displays the prediction performance of the proposed 

modeling framework under different rainfall categories and levels of service for both 

study paths.  It is observed in Table 5.15 that the proposed modeling framework 

performs better during heavy rain than light and moderate rain while having the highest 

prediction accuracy in the dry condition.  

 

It is also noted in Table 5.15 that the proposed modeling framework has smallest errors 

under unstable operation or congestion (MAPE=5.9% under dry condition) and free-

flow/unimpeded (MAPE=5.8% under dry condition) for study paths 1 and 2, 

respectively. The largest errors occur under stable or approaching unstable operation 

under moderate rain (MAPE=9.4% for study path 1 and MAPE=8.9% for study path 

2) for predicting path travel times 1-hour ahead. 
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Table 5.14 Different modes on effects of rainfall on path travel times 

Rainfall 

categories 

Level of service 

A&B (Free-

flow/unimpeded) 

𝛿𝐿𝑂𝑆𝑖,𝑝
≤149% 

C&D (Stable/approaching 

unstable) 

14 % < 𝛿𝐿𝑂𝑆𝑖,𝑝
≤250% 

E&F 

(Unstable/congestion

) 

𝛿𝐿𝑂𝑆𝑖,𝑝
> 250% 

Dry D1 D2 D3 

Light rain L1 L2 L3 

Moderate rain M1 M2 M3 

Heavy rain H1 H2 H3 

 

Table 5.15 Online updating performance of proposed modeling framework under 

different rainfall categories and levels of service for study paths 1 and 2 

Modes 

Study path 1 Study path 2 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

MAPE 

(%) 

MAE 

(min) 

RMSE 

(min) 

D1 6.1 0.5 0.7  .  0.4 0.5 

D2 7.5 0.7 1.0 7.1 0.8 0.9 

D3 5.9 0.5 0.6 6.1 0.5 0.6 

L1 7.4 0.7 1.0 6.4 0.6 0.7 

L2 8.6 1.0 1.3 8.2 1.4 1.5 

L2 7.3 0.7 1 6.8 0.7 0.8 

M1 7.6 0.7 1.1 6.8 0.7 0.9 

M2  .4 1.6 1.7 8.9 1.5 1.6 

M3 7.8 0.7 1.1 7.2 1 1.1 

H1 7.2 0.7 0.9 6.2 0.5 0.7 

H2 8.1 0.8 1.2 7.5 1.2 1.3 

H3 6.9 0.7 1.1 6.5 0.6 0.7 

 

The limited AVI data (from ALPR) are used as the input in the previous tests. The 
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filtering of AVI data described in Li et al. (2023) and Li et al. (2024) has been adopted. 

To test the effectiveness of the filtering algorithms, both 𝑦𝑖,𝑑,𝑝
𝑠𝐴,𝑘

 and 𝑦𝑖,𝑑,𝑝
𝑠𝐺,𝑘

 are used as 

input for predicting path travel times 1-hour ahead. Figure 5.9 presents the comparison 

of CDF plots for study path 1. It is observed in Figure 5.9 that over 90% of predicted 

path travel times have less than 16.7% of absolute percentage errors provided by the 

proposed modeling framework. It is satisfactory without using SMPS data (ground 

truth) as input, which verifies the applicability of the proposed modeling framework. 

 

 

Figure 5.9 CDF of MAPE for predicting 1-hour ahead on path travel times using 

different sources of traffic data as input for study path 1 

 .  Discussions 

A novel two-stage modeling framework is proposed for the prediction of path travel 

times in the near future using both the weather forecast and historical rainfall intensity 

data. Traditionally, only the weather data (mainly rainfall intensity data) is used as an 
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explanatory variable or feature in the traffic prediction models. However, weather 

forecasts at the current time interval can be a good supplement for predicting path 

travel times.  

 

Both FRA and POP are utilized and integrated into the proposed modeling framework. 

The offline training stage uses historical rainfall intensity data to provide offline 

predicted path travel times. Afterwards, the online updating stage performs the 

prediction of path travel times with consideration of weather forecast correctness and 

different levels of service.  

 

The proposed modeling framework is validated in the empirical tests with independent 

data collected on two selected major expressways in Hong Kong. First, the results of 

𝑐5 (path travel times with both weather forecasts and rainfall intensity data as input) 

outperform that of 𝑐1 (only path travel times as input) significantly for study path 1, 

with an accuracy improvement of 55% as shown in Table 5.3. It shows the contribution 

of using both weather forecasts and historical rainfall intensity data that would notably 

enhance the accuracy of predicted path travel times. 

 

Second, it is found in Figure 5.7 that the normalized cross-correlation coefficient 

between weather forecast/historical rainfall intensity and path travel times is distinct 

by different levels of service. The values of the normalized cross-correlation 

coefficient are larger when traffic is more congested. With this consideration, the 

proposed online updating stage surpasses other online updating models. 

 

As the weather forecast correctness is of importance to prediction accuracy, the 

sensitivity test on weather forecast correctness has been conducted. It is observed in 

Figure 5.8 that a reduction of 40% on weather forecast correctness can increase the 

MAPE from 6.9% to 22.3% during online updating stage. It provides empirical 



5-42 

 

evidence to illustrate the significant impacts of weather forecast correctness on 

prediction accuracy.  

 

Third, the offline training stage of the proposed modeling framework yields the best 

performance (MAPE=12.8% and MaxAPE=19.2% for study path 1) compared with 

other offline training models in Tables 5.6 and 5.7. The offline training stage considers 

the normalized cross-correlation coefficient between path travel times and historical 

rainfall intensity data by different levels of service. Hence, it has the best quality of 

offline predicted path travel times, with the usage of historical rainfall intensity data. 

Furthermore, the sensitivity test on the frequency of rainfall intensity data reveals the 

merits of using high-frequency rainfall intensity data. The MAPE of predicted path 

travel times at the offline training stage reduces from 21.7% to 12.8% in Table 5.8 

when the frequency of rainfall intensity data is changed from 1 hour to 2 minutes. 

 

Fourth, the proposed modeling framework performs the best under unstable operation 

or congestion and dry condition for study path 1 (mode D3 with MAPE=5.9%) and 

free-flow/unimpeded and dry condition for study path 2 (mode D1 with MAPE=5.8%) 

and has largest errors under stable or approaching unstable operation (mode M2 with 

MAPE=9.4% for study path 1 and MAPE=8.9% for study path 2) for predicting path 

travel times 1-hour ahead in Table 5.15. It indicates that the accuracy of predicted path 

travel times varies under different rainfall categories and levels of service. It motivates 

further study on the improvement of predicted path travel times under each mode.  

 

Over 90% of predicted path travel times has less than 16.7% of absolute percentage 

errors, without using SMPS data as input for study path 1 in Figure 5.9. Hence, the 

applicability of proposed modeling framework can be verified with and without using 

ground truth of path travel times as input for the proposed modeling framework. 
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To further improve the accuracy of the prediction results under non-recurrent 

conditions, other data sources, such as accident data, should be considered. Traffic 

accidents on the study path can increase the path travel times significantly (Mil and 

Piantanakulchai, 2018; Ma et al., 2019; Zhong et al., 2020). To investigate the impact 

of traffic accidents on the filtering performance for path travel time prediction, AVI 

data on days with accidents in 2018 are further analyzed. For example, the path travel 

time during 9:00-10:00 on March 18th, 2018 (Tuesday, with accident data) is compared 

with the same time period on previous Tuesdays. 

 

It is found that the increment of path travel times is 5.3% after filtering. Regarding 

outliers filtered out by the proposed unsupervised algorithm, they may be affected by 

accidents or detours of vehicles. These outliers need to be further distinguished with 

detailed trajectories of accident vehicles in further study. Furthermore, as the impacts 

of rainfall can be various for different road types (Zhang et al., 2018), it is worthwhile 

to identify their distinguished effects by different road types in the further study.  

 

Additionally, travel behaviors (such as departure time and route choices) can change 

after receiving the predicted path travel times. The corresponding impacts would 

adversely adjust the path travel times under each scenario with the specific rainfall 

category and level of service. They should be modeled in further study. Moreover, the 

modeling framework proposed in this chapter only uses AVI data. Multi-source traffic 

data could be integrated to predict path travel times in future time intervals by vehicle 

class, as presented in Chapter 4. The link travel times along the study path can also be 

predicted in future studies.  
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 . Conclusions and Further Studies 

This thesis conducts an in-depth exploration of the instantaneous path travel time 

prediction problems, utilizing heterogeneous traffic data and weather information 

(including historical weather data and updated weather forecasts). It primarily 

encompasses three key areas of study. The first area of focus is the filtering of AVI 

data, particularly when the ground truth is always unavailable for training purposes in 

practice. The proposed unsupervised algorithm is impactful as it offers a novel 

perspective on data filtration, confronting the challenge of lacking ground truth for 

training (as detailed in Section 3.1.1). 

 

The second area of study involves multi-class path travel time prediction. This research 

area is crucial as the existing advanced traveler information systems (ATIS) only 

provide the average path travel times of all vehicles. However, the path travel times of 

certain vehicle types (e.g., private cars), which account for a significant proportion, 

may differ greatly from the average path travel times of all vehicles (see Figure 4.3 for 

detailed illustration) under some circumstances. The proposed prediction model fills 

the research gap by providing a comprehensive understanding of multi-class path 

travel times. 

 

The third area of research in this thesis is the prediction of path travel times in the near 

future, using weather forecast data to update the offline predicted path travel times. 

This research area is specifically pertinent given the increasing impacts of weather 

information in path travel time prediction. It is because the path travel times are 

affected by rainfall from both demand (travel behavior of road users) and supply (road 

capacity and free flow speed/speed at capacity) aspects (as explained in Section 5.1.1).  

 

For cities with frequent rainfall, weather forecasts can be beneficial for predicting path 
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travel times. The weather forecasts on rainfall considered in this study can further 

contribute to improving the prediction accuracy of path travel time prediction in future 

time intervals. 

 .1 Highlights of  ain Contributions of the Thesis 

The highlights of main contributions of Chapter 3 are listed below: 

 

In connection with C3.1 in Section 3.1.2, in order to effectively filter limited real-time 

AVI data, the proposed unsupervised algorithm uses collected historical AVI data as 

supplementary information. It helps to improve the filtering performance of limited 

real-time AVI data without using ground truth for training purposes.  

 

Regarding C3.2 in Section 3.1.2, a comprehensive dynamic validity window should 

be determined by not only the within-day covariance of path travel times but also the 

day-to-day covariance of path travel times. Hence, historical AVI data offers 

substantial contributory assistance in acquiring the latter. The proposed unsupervised 

algorithm adapts FPCA to capture both with-day and day-to-day covariance of path 

travel times (as illustrated in Sections 3.3.2 and 3.3.3). Both the mean and standard 

deviation of the path travel times are predicted and used to construct the dynamic 

validity window. It has been validated to outperform the existing filtering algorithms 

in filtering the limited real-time AVI data.  

 

In relation to C3.3 in Section 3.1.2, the applicability of the proposed unsupervised 

algorithm is examined with different sample sizes of real-time AVI data with different 

AVI sensors along different paths in urban areas. Chapter 3 also studies the effects of 

different sampling rates of the real-time AVI data on the performance of data filtering 

in Section 3.4.4. They are used to verify the robustness of the proposed unsupervised 
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algorithm.  

 

The highlights of three major contributions in Chapter 4 are presented in the following: 

 

With respect to C4.1 in Section 4.1.2, the proposed prediction model predicts path 

travel times by different vehicle classes with satisfactory performance. The proposed 

prediction model makes proper use of multi-source traffic data from AVI, GPS, and 

point sensors to solve this problem.  

 

In light of C4.2 in Section 4.1.2, with multi-source traffic data, the proposed prediction 

model extends to consider the temporal covariance of path travel time between vehicle 

classes (modeled in Section 4.3). This covariance can help enhance the prediction 

accuracy when real-time traffic data is insufficient for path travel time prediction of a 

specific vehicle class.  

 

With reference to C4.3 in Section 4.1.2, robustness is a key indicator for accessing the 

path travel time prediction model. Experiments are conducted to verify the robustness 

of the proposed prediction model using data collected from a major expressway in 

Hong Kong. The satisfactory results demonstrate its robustness (in Section 4.4.2). 

 

The following paragraphs summarize the highlights of main contributions of Chapter 

5: 

 

Regarding C5.1 in Section 5.1.2, in order to improve the prediction of path travel times, 

this study extends to investigating real-time weather forecasts and historical rainfall 

intensity data. The latter is used to provide the offline predicted path travel times before 

updating with weather forecasts and real-time traffic data. Both online updating and 

offline prediction stages are considered in the proposed modeling framework 
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(introduced in Section 5.1.1).  

 

In connection with C5.2 in Section 5.1.2, the impacts of rainfall on path travel times 

can be distinct under different rainfall categories and traffic conditions. In the online 

updating stage, these boundary conditions (or modes in section and/or equation 

numbers) distinguished impacts are modeled in the modified Kalman filter (in Section 

5.3.2). It models the normalized cross-correlation coefficient between real-time 

weather forecasts and predicted path travel times under different rainfall categories 

and traffic conditions. The effects of weather forecast correctness on prediction 

accuracy are also examined. 

 

With respect to C5.3 in Section 5.1.2, a higher frequency of rainfall intensity data (say, 

once every 2 minutes) helps to capture the detailed impacts of rainfall on path travel 

time prediction, as claimed in C5.2. The offline prediction stage captures the 

normalized cross-correlation coefficient between path travel times and rainfall 

intensity data. With this information, it can predict offline path travel times with higher 

quality. This normalized cross-correlation coefficient is tested under different levels of 

service in Section 5.4.2. The merits of using high-frequency rainfall intensity data are 

also illustrated in the numerical examples (see Table 5.8). 

 

In regards to C5.4 in Section 5.1.2, the proposed modeling framework is examined on 

the real-world dataset in Hong Kong. It presents the impacts on the prediction accuracy 

by different rainfall categories and levels of service (traffic conditions). The 

applicability of the proposed modeling framework is also demonstrated with different 

types of input (with and without ground truth on path travel times). 
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 .2 Discussions on Key Findings 

The three major findings for each of Chapters 3, 4, and 5 are summarized respectively 

with reference to their corresponding key contributions: 

 

F3.1: In relation to C3.1, the proposed unsupervised algorithm (U1) is compared with 

other existing filtering algorithms. It is found in Figure 3.8 that U1 has 83% of absolute 

percentage errors of predicted results less than 20%, while the statistic varies from 56% 

to 60% for other benchmarks. It demonstrates the advantages of using historical AVI 

data but without the ground truth. 

 

F3.2: In connection with C3.2, if the partial or complete set of ground truth can be 

obtained by surveys, U1 can be extended to a supervised algorithm with ground truth 

for training (S1). However, it is observed in Table 3.9 that the percentage of absolute 

percentage errors less than 20% is reduced to 83% or lower if less than 50% of the 

historical ground truth is used for training purposes. It suggests that when there is 

inadequate historical ground truth collected (i.e., less than 50%), U1 is still better than 

S1 in practice for filtering real-time AVI data and path travel time prediction. 

 

F3.3: With reference to C3.3, it is noted in Figure 3.9 that when the sampling rate of 

real-time AVI data within the validity window is no less than two valid AVI data per 

2-minute interval, U1 is tested to be robust on different paths (15.2% and 14.9% of 95 

percentile of absolute percentage errors for study paths 1 and 2, respectively). It 

verifies the robustness of U1. 

 

F4.1: The proposed prediction model outperforms other benchmark prediction models 

in terms of MAPE of overall predicted path travel time (i.e., 6.9% of the proposed 

prediction model against 9.1%-14.1% of others) in Table 4.7. 
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F4.2: The use of muti-source traffic data is proved to improve the prediction accuracy 

in terms of MAPE of overall predicted path travel time (i.e., 6.9% of using AVI and 

point sensor data against 12.8% of using GPS data) in Table 4.5. 

 

F4.3: The trade-off of using different traffic data has been investigated. The accuracy 

of predicted path travel time is more sensitive to AVI or GPS data than point sensor 

data, as shown in Table 4.10. Compared with point sensor data, the cost of collecting 

AVI or GPS data is larger. However, they contribute more to the prediction accuracy. 

Therefore, it is a trade-off between cost and accuracy for planners to allocate traffic 

sensors on the road network. 

 

F5.1: The prediction accuracy is significantly enhanced after considering weather 

forecast and rainfall intensity data in Hong Kong (i.e., MAPE for predicted path travel 

times for 1-hour ahead reduced from 15.2% to 6.9%) in Table 5.3.  

 

F5.2: The usage of high-frequency rainfall intensity data improves the prediction 

accuracy in terms of MAPE for predicted path travel times for 1-hour ahead (i.e., 12.8% 

for 2-minute rainfall intensity data against 21.7% for hourly rainfall intensity data in 

the offline prediction stage) in Table 5.8. 

 

F5.3: The applicability of the proposed modeling framework has been verified. It is 

observed in Figure 5.9 that over 90% of predicted path travel times has less than 16.7% 

of absolute percentage errors without input of the SMPS data as the ground truth. 

 .3  ecommendations for Future  esearch 

In Chapter 3, the ground truth is not used in the proposed unsupervised algorithm for 
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training as it is usually unavailable in practice. If it can be obtained partially by 

observation surveys, it is worthwhile developing a strategy for collecting the 

representative ground truth with limited budgets. Moreover, this chapter only 

considered the limited, highly accurate AVI data for predicting path travel times. 

However, in reality, there are multiple traffic sensors deployed on road networks, 

providing various travel time data that should be utilized in the future. It is also 

interesting to explore the sensor-location problems and trade-offs of different types of 

traffic sensors in the multi-modal transport networks.  

 

Additionally, other AVI data with larger sample sizes but lower accuracy (e.g., 

Bluetooth data) could be further investigated. Furthermore, other types of traffic-

related data, including the built environment, other weather information (e.g., wind 

speed), traffic accidents, construction works, vehicular flow data, bus frequencies, 

signal timing, and road types, etc., could be integrated into the proposed unsupervised 

algorithm to improve the performance of data filtering. 

 

Likewise, it is interesting to expand the proposed unsupervised algorithm to study the 

impact of sensor failures on data from multiple AVI sensors in urban road corridors, 

taking into account network topology and measurement errors. 

 

In Chapter 4, there is potential for the exploration of larger-scale road networks with 

diverse types of traffic data sources. It is also recommended to consider additional data 

sources such as weather and accident data. Besides, the application of more advanced 

prediction models for preprocessing multiple data sources could significantly enhance 

the accuracy of predictions. It is also crucial to develop an efficient solution method 

that enables the prediction of multi-class travel times on various road links along 

different paths within the same network. 

 



6-8 

 

In Chapter 5, it is recommended to retain historical weather forecasts for validation of 

their impact on path travel time prediction purposes. It is also advisable to incorporate 

additional traffic data sources and non-traffic data, such as incident data, into the 

proposed modeling framework. Furthermore, given the varying impacts of rainfall on 

different road types (Zhang et al., 2018), it would be valuable to investigate and 

differentiate their effects in further studies.  

 

Moreover, the empirical studies presented in Chapters 3, 4, and 5 are based on traffic 

data collected in Hong Kong. When contrasted with the rich data amount available in 

other cities or countries such as Singapore, the accessibility of traffic data in Hong 

Kong is however constrained by privacy concerns. Consequently, the sample size of 

the traffic data for ATIS development in Hong Kong is notably smaller compared to 

datasets from other places. It would be insightful to conduct future research that 

benchmarks the Hong Kong dataset with those from other cities with rich data amounts 

for path travel time prediction. 

 

Additionally, the proposed modeling framework could be further extended to facilitate 

the prediction of path travel times for different vehicle classes. Moreover, travel 

behaviors (such as departure time and route choices) can also be affected by the 

predicted path travel times. The interactions between predicted path travel times and 

travel behaviors under different weather and traffic conditions should be further 

studied. 
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Appendix A  

Typical ATIS across the  orld  

In this appendix, three typical ATIS are presented, including 511 Travel Information 

(USA), Google Maps (Google company), and JTIS (Hong Kong), as indicated in Table 

2.1. It is worthwhile mentioning that all these ATIS provide instantaneous travel time. 

Overall, they identify a critical need for accurate predictions of path travel times in 

both current and future time intervals within ATIS. It serves to enhance route guidance 

and provides a comprehensive overview of traffic conditions. This requirement forms 

a primary motivation for the research presented in this thesis. 

 

Furthermore, it is noted that existing ATIS predominantly offer predicted average path 

travel times, revealing a research gap in the predicting multi-class path travel times. 

This gap will be extensively discussed in Section 4.1.1. Additionally, the availability 

of weather information in certain ATIS (e.g., the 511 Travel Information system in the 

USA) suggests a potential avenue for enhancing the accuracy of path travel time 

predictions. The integration of weather data and its implications for improving the 

performance of travel time predictions will be thoroughly examined in Section 5.1.1. 

 

Figure A.1 gives the interface of 511 Travel Information. It is a nationwide program in 

USA. It is seen in Figure A.1 that both path distance and predicted path travel times in 

the current time interval are given. Detailed route guidance based on predicted path 

travel times is also available. It confirms that the predicted path travel time plays an 

important role in ATIS.  

 



A-2 

 

 

Figure A.1 511 Travel Information (USA) 

https://ops.fhwa.dot.gov/travelinfo/about/about511.htm 

 

Apart from path travel time information, both rainfall intensity data and weather 

forecast (in terms of weather conditions for 1-week ahead) are given by 511 Travel 

Information in Figure A.1. As adverse weather can influence travel behavior, weather 

information should be fully investigated for improving the performance of predicted 

path travel times. It motivates the study in Chapter 5. 

 

Figure A.2 provides two cases using Google Maps. It presents the path distance (5.3 

km in this example). Besides, it will provide the predicted path travel times in the 

current travel time if the option is to leave now (e.g., 10 minutes in the example). It 

will display predicted path travel times in future time intervals if the option is 

scheduling a trip in the future (e.g., 8-18 minutes, shown in Figure A.2). It is concluded 

path distance (13.3 miles), route guidance,

predicted path travel time in the current time interval (21 minutes) 

Origin

Destination

 ainfall 

intensity

 eather 

forecast
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that predicted path travel times in both current and future time intervals are needed in 

ATIS, which motives this thesis. 

 

 

Figure A.2 Google Maps (Google company) 

https://www.google.com/maps/ 

 

de A.3 shows the predicted path travel times in the current time intervals of major 

routes provided by JTIS. They are updated every 2 minutes. Details of JTIS are 

presented in Section 3.4.1. 
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Path distance (5.3 km), predicted 
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Leave now: current time interval Schedule a trip: future time intervals

Origin

Destination

Path distance (5.3 km), predicted 

path travel time in the future time 

interval (8-18 minutes)



A-4 

 

 

Figure A.3 JTIS (Hong Kong) 

https://www.td.gov.hk/en/transport_in_hong_kong/its/its_achievements/journey_time

_indication_system_/index.html  

Journey time 

indicator

Predicted path travel times in the 

current time interval
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Appendix B  

Photographs and  eblinks on Various Traffic Sensors 

This appendix is an extension of Tables 2.5 and 2.6. Table B.1 further shows 

photographs and weblinks for different AVI and point sensors. With the use of various 

traffic sensors, the traffic data are heterogeneous and hence need to be integrated 

effectively, as illustrated in detail in Section 4.1. 

 

Table B.1 Photographs and weblinks for different AVI and point sensors 

Traffic sensors Photographs Weblinks 

AVI 

sensors 

 FID tag 

readers 
 

https://www.hk-

rfid.com/passive-rfid-

reader 

ALP  cameras 

 https://sls.eff.org/techno

logies/automated-

license-plate-readers-

alprs 

Bluetooth MAC 

address readers 

 

https://www.elefinetech

.com/long-range-rfid-

bluetooth-reader-with-

stickers-for-parking-

access-control-system/ 

Infrared sensors 

 

https://blog.iceslicer.co

m/road-surface-

temperature-sensors 
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AVI 

sensors 

Barcode 

scanners 

 

https://www.barcodehq.

com/vinbarcode.html 

DSRC sensors 

 

https://www.grs.com.nl/

dsrc-remote-

tachograph-monitoring-

systems 

Point 

sensors 

Single-loop 

sensors 

 

https://www.proconel.c

om/products/single-

channel-loop-detectors-

parking/ 

Double-loop 

sensors 

 

https://www.nobleled.c

om/vehicl-loop-

detector/dual-channel-

loop-

detector/NBLD206.htm

l 
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Point 

sensors 

Acoustic sensors 

 

https://hackernoon.com/

survey-on-acoustic-

sensors-in-self-driving-

cars 

RTMS 

 

http://www.invisiblebox

es.info/remote-traffic-

microwave-radar/ 

Video-based 

cameras 

 

https://www.econolite.c

om/solutions/sensors/au

toscope/ 
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Appendix C  

Sample Data Format of Traffic Data  

The sample data formats for AVI data, point sensor data, GPS data, and JTIS/SMPS 

data are given in this appendix. Though there are two sources of AVI data including 

ALPR cameras (used in Chapters 4 and 5) and RFID tag readers (adopted in Chapters 

3 and 5), the data format for AVI data is the same.  

 

It is seen in Figure C.1 that timestamps of vehicles at origin and destination are 

available. The collected AVI data has no vehicle ID due to privacy issues in Hong 

Kong. More details on privacy issues in Hong Kong can be found in Section 3.1.1. 

Contrastingly, the observed path travel time (in the unit of seconds) is given directly 

in the AVI data (Column 6). It is obtained by the difference between arrival time 

(Column 2) and departure time (Column 1). For example, the first record in Figure C.1 

provides the observed path travel times of 1514s, which is the difference between two 

timestamps, 2018/1/1 0:00 and 2017/12/31 23:34. 

 

Besides, the vehicle class ID presents the vehicle class information in Column 7 in 

Figure C.1. For example, the vehicle class ID for the first record is 7, representing it 

as a public light bus. Vehicle class information is to be used in Section 4.4 for 

predicting path travel times by vehicle class. 

 

 

Figure C.1 Data format for AVI data 

Timestamp of arrival AVI sensor ID 

at origin

Timestamp of departure AVI sensor ID 

at destination
Path ID Observed 

path travel 

time

Vehicle class 

ID

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
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Figure C.2 shows the data format for point sensor data. The record is available once 

every 2 minutes. The sample size of detected vehicles by point sensors (video-based 

cameras) is given. Both time mean speed and space mean speed of vehicles in the past 

2-minute interval are available (both in the unit of km/h). For example, the 2-minute 

interval of the first record in the following photograph is 00:00:10-00:02:10 on January 

1, 2018 (Column 5). There are 10 vehicles captured by point sensors (Column 4). The 

arithmetic mean of spot speeds of these 10 is 99 km/h (time mean speed). As they are 

originally used to provide the link travel time, they are converted to space mean speed, 

which is 98.2 km/h (Column 3). As point sensor data are stored at an aggregated level, 

the individual speed of each vehicle is unavailable in the dataset.  

 

 

Figure C.2 Data format for point sensor data 

 

In Figure C.3, each record of GPS data contains the vehicle ID (Column 1), position 

of the vehicle (Columns 2 and 3), spot speed of the vehicle in units of km/h (Column 

4), as well as the timestamp of this record (Column 5). For example, the first record 

measures vehicle 90542 (Column 1) has a spot speed of 13 km/h at location (815727.1, 

828082.2) with a timestamp of 00:00:22 May 2, 2018. Moreover, there are no direct 

relationships between two consecutive records in GPS data. For example, two records 

in Figure C.3 have different vehicle IDs (90542 and 111757). Thus, the map-matching 

and reidentification are necessary for GPS data. As GPS data used in Chapter 4 are 

Point sensor ID Time mean 

speed 

Space mean 

speed 
Sample size of 

detected vehicles

per time interval

Time interval

Column 1 Column 2 Column 3 Column 4 Column 5
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purchased from commercial companies and captured from goods vehicles, the vehicle 

class information for these GPS data is also available. 

 

 

Figure C.3 Data format for GPS data 

 

Predicted path travel times provided by either JTIS or SMPS are regarded as ground 

truth in this thesis. Similar to point sensor data, they provide predicted path travel times 

(in units of minutes) in the current time interval every 2 minutes. After identification 

of the studied path, these predicted path travel times can be used directly for validation 

in Section 3.4, Section 4.4, and Section 5.4. Figure C.4 gives the corresponding data 

format. Take the first record in Figure C.4 as an example; for a path with id SJ5-TWTM 

(Column 1), the predicted path travel time for the current time interval 0:00-0:02 

January 1, 2018 (Column 3) is 13.87 minutes. 

 

Vehicle ID Latitude of 

vehicle
Spot speed 

of vehicle

Timestamp of 

record

Longitude of 

vehicle

Column 1 Column 2 Column 3 Column 4 Column 5
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Figure C.4 Data format for JTIS/SMPS data 

Path ID Predicted path travel times

in the current time interval 

by JTIS or SMP

Timestamp 

of record

Column 1 Column 2 Column 3
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