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Abstract

Parabolic equations are essential in applications like heat conduction, diffusion processes, and financial

modeling. They describe how quantities such as temperature, concentration, or option prices evolve over

time, making them crucial in engineering, physics, and economics. This thesis aims to develop efficient

numerical methods for solving parabolic problems, particularly in phase-field models, ensuring high ac-

curacy while preserving maximum bound and energy decay properties.

In the first part of thesis, we consider the development and analysis of the structure preserving schemes

for solving Allen–Cahn equations, that represents an important application of parabolic equations. We

apply a k-th order single-step method in time, where the nonlinear term is linearized using multi-step ex-

trapolation. In space, we use a lumped mass finite element method with piecewise r-th order polynomials

and Gauss–Lobatto quadrature. At each time level, a cut-off post-processing technique is proposed to

eliminate values that violate the maximum bound principle at the finite element nodal points. As a result,

the numerical solution satisfies the maximum bound principle at all nodal points, and the optimal error

bound O(τk + hr+1) is theoretically proven. These time-stepping schemes include algebraically stable

collocation-type methods, which can achieve arbitrarily high order in both space and time. By combining

the cut-off strategy with the scalar auxiliary variable (SAV) technique, we develop a class of energy-stable

and maximum bound preserving schemes that are arbitrarily high-order in time.

In the second part, we present the development and analysis of a class of single-step implicit-explicit

schemes for approximately solving linear parabolic equations, which achieves long-time stability and arbi-

trarily high order in time. This involves splitting the linear operator into symmetric and skew-symmetric

components, evaluated implicitly and explicitly, respectively, using the Implicit-Explicit Runge–Kutta

Method (IMEX-RK). For the symmetric part, a diagonally implicit method (DIRK) is employed, while
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the discretization for skew-symmetric part is designed to satisfy the stage orders. Thismethod is applicable

to semilinear problems, such as phase-field models, and our analysis is consistent with existing findings,

showing energy stability for certain IMEX-RK schemes. Our results reveal intersections up to at least

third order, leading to a scheme that preserves both the original energy decay properties and maximum

bound principles.

In the third part of the thesis, we study the parareal algorithm for solving parabolic equations,which

enables parallel-in-time computation and significantly accelerates the process. We prove that the parareal

method has a robust convergence rate of about 0.3, provided the ratio J of coarse to fine step size exceeds

a certain threshold J∗, and the fine propagator meets mild conditions. This convergence is robust even

with nonsmooth problem data and boundary condition incompatibilities. Qualified methods include all

absolutely stable single-step methods with a stability function satisfying |r(−∞)| < 1, allowing the fine

propagator to be of arbitrarily high order. Moreover, we examine popular high-order single-step methods,

such as the two-, three-, and four-stage Lobatto IIICmethods, confirming that their corresponding parareal

algorithms converge linearly with a factor of 0.31, with a threshold J∗ = 2.

At the end of each chapter, we present numerical results that support the theoretical findings and inspire

future investigations.
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Chapter 1

Introduction

1.1 Research Background

Parabolic differential equations are essential in various scientific fields, including physics, engineering,

and economics. In physics, they are used to describe heat conduction, diffusion processes, and the behavior

of semiconductors. In finance, they are used in the Black-Scholes model for option pricing. In biology,

they are used tomodel population dynamics and the spread of diseases. Additionally, the study of parabolic

differential equations has introduced many important mathematical concepts and techniques. The method

of separation of variables, commonly used to solve these equations, is a fundamental tool in mathematical

analysis. The theory also plays a crucial role in studying stochastic processes and Brownian motion.

Parabolic differential equations remain a central topic in mathematical analysis and applied mathematics.

They have a rich history and are still an active area of research, offering many challenging problems and

applications.

Phase field models are one of the most important applications of parabolic equations, which are math-

ematical tools widely used in physics, materials science, and other fields to describe the evolution of

complex microstructures. They are particularly useful for modeling phase transitions, such as the solidi-

fication of a liquid or the formation of crystals in a solution.

Introduced in the late 20th century, the phase field approach addresses challenges associated with

traditional methods for modeling phase transitions. Traditional methods often involve sharp interfaces
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between different phases, which can be difficult to handle both mathematically and computationally. In

contrast, the phase field approach treats interfaces as diffuse regions and describes the microstructure

using a continuous field variable, simplifying the mathematical and computational processes. Phase field

models have been applied to a wide range of phenomena, including crystal growth, grain boundarymotion,

and pattern formation in alloys. They are also used in areas such as fluid dynamics, image processing,

and tumor growth modeling.

In a phase field model, the microstructure is represented by a phase field variable that varies continu-

ously between phases. The evolution of this phase field is governed by parabolic equations derived from

thermodynamic and kinetic principles. These equations are solved numerically using various computa-

tional methods.

Structure-preserving schemes are numerical methods used in computational mathematics and physics.

They are designed to maintain the inherent geometric or physical properties of the problem being solved.

Structure preservation is crucial in many scientific and engineering applications, such as molecular dy-

namics, fluid dynamics, and electromagnetism, where preserving properties like energy, momentum, or

symplectic structure is essential for the physical relevance and accuracy of the solution. These schemes

often provide more accurate and physically relevant solutions than traditional numerical methods, espe-

cially in long-term simulations and highly nonlinear problems.

For phase field models, researchers focus on developing numerical schemes that preserve energy

dissipation law and maximum bound principle, without strict constraints on time step and space mesh

sizes. For example, we focus on the development and analysis of high-order structure-preserving schemes

for solving the Allen–Cahn equation:


ut = ∆u+ f(u) in Ω× (0, T ),

u(x, t = 0) = u0(x) in Ω× {0},

∂nu = 0 on ∂Ω× (0, T )

(1.1)

where Ω is a smooth domain in Rd with the boundary ∂Ω. Here, f(u) = −F ′(u) with a double-well

potential F that has two wells at ±α, for some known parameter α > 0. It is well-known that the Allen–
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Cahn equation (1.1) has themaximum bound principle [29]:

|u0(x)| ≤ α ⇒ |u(x, t)| ≤ α for all (x, t) ∈ Ω× (0, T ]. (1.2)

As a typical L2 gradient flow associated with the following free energy:

E(u) =

∫
Ω

1

2
|∇u|2 + F (u) dx,

the nonlinear energy dissipation law holds:

d
dt
E(u) = −

∫
Ω

|ut|2 dx ≤ 0. (1.3)

We aim to develop high-order numerical schemes that preserve both conditions (1.2) and (1.3). Addi-

tionally, we will discuss efficient parallel-in-time algorithms for solving the (nonlinear) parabolic equa-

tions.

1.2 Literature Review

In this part, we briefly review the existing literature on structure-preserving schemes for solving parabolic

equations and phase-filed models.

The backward Euler time-stepping scheme, combined with the central finite difference method in

space, effectively preserves the maximum principle for linear parabolic equations [68, Chapter 9]. Addi-

tionally, using the backward Euler scheme with the lumped mass linear finite element method (FEM) and

simplicial triangulation with acute angles also maintains this principle. In two dimensions, this extends

to Delaunay-type triangulations, which is notably sharp [111]. However, without mass lumping, stan-

dard Galerkin FEMs generally do not preserve the maximum principle [111, 96]. These methods achieve

first-order accuracy in time and second-order accuracy in space.

The development and analysis of maximum bound preserving schemes for Allen–Cahn equations

have been intensively studied in existing references. It was proved in [109, 98] that the stabilized semi-

implicit Euler time-stepping scheme, with central difference method in space, preserves the maximum

principle unconditionally if the stabilizer satisfies certain restrictions. In [30], a stabilized exponential time
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differencing scheme was proposed for solving the (nonlocal) Allen–Cahn equation, and the scheme was

proved to be unconditionally MBP. See also [29] for the generalization to a class of semilinear parabolic

equations.

The development and analysis of maximum bound preserving schemes for Allen–Cahn equations

have been intensively studied in existing references. It was proved in [109, 98] that the stabilized semi-

implicit Euler time-stepping scheme, with central difference method in space, preserves the maximum

principle unconditionally if the stabilizer satisfies certain restrictions. In [30], a stabilized exponential time

differencing scheme was proposed for solving the (nonlocal) Allen–Cahn equation, and the scheme was

proved to be unconditionally MBP. See also [29] for the generalization to a class of semilinear parabolic

equations.

High-order strong stability preserving (SSP) time-stepping methods are widely used in the develop-

ment of MBP scheme for both parabolic equations and hyperbolic equations (see e.g., [46, 79, 47, 45, 78,

90, 119, 124]). Recently, an SSP integrating factor Runge–Kutta method of up to order four was proposed

and analyzed in [58] for semilinear hyperbolic and parabolic equations. For semilinear hyperbolic and

parabolic equations with strong stability (possibly in the maximum norm), the method can preserve this

property and can avoid the standard parabolic CFL condition τ = O(h2), only requiring the stepsize τ to

be smaller than some constant depending on the nonlinear source term, also referring to [62]. A nonlinear

constraint limiter was introduced in [113] for implicit time-stepping schemes without requiring CFL con-

ditions, which can preserve maximum principle at the discrete level with arbitrarily high-order methods

by solving a nonlinearly implicit system.

Very recently, a new class of high-order MBPmethods was proposed in [73]. The method consists of a

kth-order multistep exponential integrator in time, and a lumped mass finite element method in space with

piecewise rth-order polynomials. At every time level, the extra values exceeding the maximum bound

are eliminated at the finite element nodal points by a cut-off operation. Then the numerical solution at all

nodal points satisfies the MBP, and an error bound ofO(τk+hr)was proved. However, numerical results

in [73, Table 4.1] indicates that the error bound is not sharp in space, and how to improve the estimate it is

still open. Besides, the aforementioned scheme requires to evaluate some actions of exponential functions

of diffusion operators, which might be relatively expensive compared with solving poisson problems, and

the generalization to other time stepping schemes is a nontrivial task. Finally, the proposed scheme (with

relatively coarse step sizes) might produce a numerical solution with obviously increasing and oscillating
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energy. These motivate our current project.

There have been numerous studies focused on developing various numerical schemes that preserve the

energy dissipation law at a discrete level. Some notable and widely-used implicit time-stepping methods

include convex splitting methods [33, 103] and the Crank-Nicolson type scheme [37, 32]. The main

drawback of these methods is the high computational cost associated with solving a nonlinear system of

equations at each time step. In contrast, implicit-explicit (IMEX; also known as semi-implicit) methods

handle the nonlinear term explicitly and the linear term implicitly, requiring only the solution of a linear

system of equations at each time step. Thesemethods can be traced back to the work of Chen and Shen [15]

in the context of phase-field models, and since then, many techniques and strategies have been developed

to design such schemes, as seen in [1, 20, 36, 48, 50, 74, 100, 102, 107]. Building on the concept of

the invariant energy quadratization (IEQ) method [120, 121]. [99, 100] proposed the scalar auxiliary

variable (SAV) method, which easily ensures the unconditional energy decay property. Recently, some

modified SAV methods have been developed [21, 55, 60, 108]. However, the energy considered in these

methods is modified from the original energy. In another direction, exponential time differencing (ETD)

methods for the Allen–Cahn equation and other semilinear parabolic equations have garnered significant

attention recently. Du et al. [30] demonstrated that ETD and ETDRK2 schemes unconditionally preserve

the maximum bound property (MBP) and energy stability (though not the dissipation law). Specifically,

[39] establishes the original energy stability for ETDRK2. For the thin film model (or MBE model),

interesting results regarding stability analysis and error estimates for the ETD schemes are presented in

[23, 28, 61, 71, 118]. Additionally, [51] shows that fully implicit Runge-Kutta (RK) methods can reduce

the energy of gradient systems, but the existence and uniqueness of the solution remain unresolved issues.

Another class of implicit Runge-Kutta methods for phase-field models is based on the convex splitting

approach, which exhibits favorable stability properties [104].

Time-stepping schemes for solving parabolic equations traditionally require sequential computation,

which can be time-consuming. However, with modern computing power, parallel-in-time (PinT) methods

have become feasible, allowing simultaneous computation of multiple time steps. Originating from Niev-

ergelt’s work in 1964 [86], these methods have gained considerable interest. Among them, the parareal

method, introduced in 2001 [76], is particularly popular due to its simplicity and adaptability with single-

step integrators. It has been effectively applied in various fields such as turbulent plasma [93, 92], struc-

tural dynamics [22, 34], molecular dynamics [6], optimal control [80, 82], and fractional models [75, 117].
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For more comprehensive insights, readers can consult survey papers [40, 87] and references therein.

1.3 Our Contribution

In this thesis, we discuss the development, analysis, and implementation of structure-preserving single-

step integrators for solving parabolic equations, with applications to phase-field models like the Allen-–

Cahn equations. Single-step integrators often offer better stability properties than linear multistep meth-

ods, particularly for stiff problems, allowing for larger time steps and more efficient simulations. Ad-

ditionally, they provide superior error control, especially when using adaptive time steps. Compared to

linear multistep methods, single-step integrators are also more suitable for applying postprocessing tech-

niques to preserve certain structures, as we will explore in this thesis.

In the first part of thesis, we develop and analyze a class of maximum bound preserving schemes for

approximately solving Allen–Cahn equations. We apply a kth-order single-step scheme in time (where

the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in

space with piecewise rth-order polynomials and Gauss–Lobatto quadrature. At each time level, a cut-off

post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite

element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all

nodal points), and the optimal error bound O(τk + hr+1) is theoretically proved for a certain class of

schemes. The proof is based on energy estimation. Since cut-off itself will not increase the total energy,

we just compare each step with its previous step, which is decoupled with postprocessing and complete

the proof. These time stepping schemes under consideration includes algebraically stable collocation-type

methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off

strategy with the scalar auxiliary value (SAV) technique, we also develop a class of energy-stable and

maximum bound preserving schemes, which is arbitrarily high-order in time.

In the second part of this thesis, we explore implicit-explicit Runge–Kuttamethods for solving parabolic

equations. We begin by examining linear parabolic problems where the differential operator may be non-

selfadjoint, which is crucial in applications like Stokes–Darcy coupled systems [52, 85, 4]. These systems

are often used to model contaminant transport in karst aquifers, where fluid motion in porous media is

coupled with conduits. During floods, contaminants can enter the porous media and be released during

droughts. Accurate numerical schemes are essential for capturing the long-term retention and release of
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contaminants, as fluid motion in porous media is slower than in conduits.

To address this, we develop a class of implicit-explicit Runge–Kuttamethods and prove their long-term

stability and error estimates. We split the differential operator into symmetric and skew-symmetric parts:

the skew-symmetric part and source term are evaluated explicitly, while the symmetric part is evaluated

implicitly. Our analysis uses spectral decomposition of the symmetric operator and energy estimation.

We establish a novel energy argument to demonstrate long-term stability and optimal error estimates,

choosing a special test function inspired by the backward Euler scheme.

This approach can be extended to nonlinear phase-field models. With cutoff postprocessing at each

step, we show that the method preserves the maximum bound and can achieve arbitrarily high order. In

[38], it was proven that IMEX-RK schemes can maintain energy dissipation laws under certain assump-

tions. Our assumptions align with theirs, and we have found a third-order scheme that meets all criteria,

allowing us to develop time-stepping schemes up to third order that preserve both the maximum bound

and original energy dissipation.

In the third part of thesis, we investigate the parareal algorithm for solving parabolic equations, which

enables parallel-in-time computation and significantly accelerates the process. For linear problems, we

analyzed the robust convergence of a class of parareal algorithms. The coarse propagator is fixed to

the backward Euler method and the fine propagator is a high-order single step integrator. Under some

conditions on the fine propagator, we show that there exists some critical J∗ such that t he parareal solver

converges linearly with a convergence rate near 0.3, provided that the ratio between the coarse time step

and fine time step named J satisfies J ≥ J∗. The convergence is robust even if the problem data is

nonsmooth and incompatible with boundary conditions. The qualified methods include all absolutely

stable single step methods, whose stability function satisfies |r(−∞)| < 1, and hence the fine propagator

could be arbitrarily high-order. Moreover, we examine some popular high-order single step methods, e.g.,

two-, three- and four-stage Lobatto IIIC methods, and verify that the corresponding parareal algorithms

converge linearly with a factor 0.31 and the threshold for these cases is J∗ = 2.



Chapter 2

Arbitrarily High-order Maximum

Bound Preserving Schemes with

Cut-off Postprocessing

In this chapter, we develop and analyze a class of maximum bound preserving schemes for approximately

solving Allen–Cahn equations. We apply a single-step scheme in time with nonlinear term linearized, and

a lumped mass finite element method in space. At each time level, a cut-off post-processing is proposed

to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a

result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal

error bound is theoretically proved for a certain class of schemes. Moreover, combining the cut-off strategy

with the scalar auxiliary value (SAV) technique, we also develop a class of energy-stable and maximum

bound preserving schemes, which is arbitrarily high-order in time.

In Section 2.1 we discuss the time discretization problems and show its convergence. In Section 2.2

and 2.3 we discuss the fully-discrete scheme and prove its convergence. In Section 2.4 we combine our

scheme with Scalar Auxiliary Variable method and prove it preserves modified energy decay and arbitrary

high order in time.

9
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2.1 Temporal Semi-discrete Cut-off Runge–Kutta Scheme

To begin with, we consider the time discretization for the Allen–Cahn equation (1.1). To this end, we

split the interval (0, T ) into N subintervals with the uniform mesh size τ = T/N , and set tn = nτ ,

n = 0, 1, . . . , N . On the time interval [tn−1, tn], we approximate the nonlinear term f(u(s)) by the

extrapolation polynomial

k∑
j=1

Lj(s)f(u
n−j), with known un−k, . . . , un−1.

where Lj(s) is the Lagrange basis polynomials of degree k − 1 in time, satisfying

Lj(t
n−i) = δij , i, j = 1, . . . , k.

Thus, on [tn−1, tn], the linearization of (1.1) states as

ũt = ∆ũ+

k∑
j=1

Lj(s)f(u
n−j).

Following Duhamel’s principle yields

ũ(tn) = eτ∆u(tn−1) +

∫ τ

0

e(τ−s)∆
k∑

j=1

Lj(t
n−1 + s)f(un−j)ds.

Then a framework of a single step scheme of approximating ũ(tn) reads:

ũn = σ(−τ∆)un−1 + τ

m∑
i=1

pi(−τ∆)
( k∑

j=1

Lj(t
ni)f(un−j)

)
, for all n ≥ k, (2.1)

with tni = tn−1 + ciτ . Here, σ(λ) and {pi(λ)}mi=1 are rational functions and ci are distinct real numbers

in [0, 1]. For simplicity, we assume that the scheme (2.1) satisfies the following assumptions.

(P1) |σ(λ)| < 1 and |pi(λ)| ≤ c, for all i = 1, . . . ,m, uniformly in τ and λ > 0. Besides, the numerator

of pi(λ) is of lower degree than its denominator.
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(P2) The time stepping scheme (2.1) is accurate of order k in sense that

σ(λ) = e−λ +O(λk+1), as λ→ 0.

and, for 0 ≤ j ≤ k

m∑
i=1

cjipi(λ)−
j!

(−λ)j+1

(
e−λ −

j∑
ℓ=0

(−λ)ℓ

`!

)
= O(λk−j), as λ→ 0.

(P3) The time discretization scheme (2.1) is strictly accurate of order q in sense that

m∑
i=1

cjipi(λ)−
j!

(−λ)j+1

(
σ(λ)−

j∑
ℓ=0

(−λ)ℓ

`!

)
= 0, for all 0 ≤ j ≤ q − 1.

Remark 2.1.1. In practice, it is convenient to choose pi(λ) that share the same denominator of σ(λ), for

instance:

σ(λ) =
a0(λ)

g(λ)
, and pi(λ) =

ai(λ)

g(λ)
, for i = 1, 2, . . . ,m,

where ai(λ) and g(λ) are polynomials. Then the time stepping scheme (2.1) could be written as

g(−τ∆)ũn = a0(−τ∆)un−1 + τ

m∑
i=1

ai(−τ∆)
( k∑

j=1

Lj(t
ni)f(un−j)

)
, for all n ≥ k.

See e.g. [110, pp. 131] for the construction of such rational functions satisfying the Assumptions (P1)-

(P3).

Unfortunately, the time stepping scheme (2.1) does not satisfy the maximum bound principle. There-

fore, at each time step, we apply the cut-off operation: for n ≥ k, we find un such that

ûn = σ(−τ∆)un−1 + τ

m∑
i=1

pi(−τ∆)
( k∑

j=1

Lj(t
ni)f(un−j)

)
, (2.2)

un = min(max(ûn,−α), α), (2.3)

where α is the maximum bound given in (1.2). The accuracy of this cut-off semi-discrete method is

guaranteed by the next theorem.
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Theorem 2.1.1. Suppose that the Assumptions (P1) and (P2) are fulfilled, and (P3) holds for q = k.

Let u(t) be the solution to the Allen–Cahn equation, and un be the solution to the time stepping scheme

(2.2)-(2.3). Assume that |u0| ≤ α and the maximum principle (1.2) holds, and assume that the starting

values uj , j = 0, . . . , k − 1, are given and

|uj | ≤ α, for all j = 0, . . . , k − 1.

Then the semi-discrete solution given by (2.2)-(2.3) satisfies for all n ≥ k

|un| ≤ α,

and

‖un − u(tn)‖ ≤ Cτk + C

k−1∑
j=0

‖uj − u(tj)‖,

provided that f is locally Lipschitz continuous, ∆u ∈ Ck([0, T ];L2(Ω)), u ∈ Ck+1([0, T ];L2(Ω)) and

f(u) ∈ Ck([0, T ];L2(Ω)).

Proof. Due to the cut-off operation (2.3), the discrete maximum bound principle follows immediately.

Then it suffices to show the error estimate.

Let en = un − u(tn) and ên = ûn − u(tn). Since the exact solution satisfies the maximum bound

(1.2), we have

‖en‖L2(Ω) ≤ ‖ên‖L2(Ω).

Then it is easy to note that

ên = σ(−τ∆)en−1 + ϕn, n ≥ k.

where ϕn can be written as

ϕn = −u(tn) + σ(−τ∆)u(tn−1) + τ

m∑
i=1

pi(−τ∆)
( k∑

j=1

Lj(t
ni)f(un−j)

)

= τ

m∑
i=1

pi(−τ∆)
( k∑

j=1

Lj(t
ni)f(un−j)− f(tni))

)
+
(
− u(tn) + σ(−τ∆)u(tn−1) + τ

m∑
i=1

pi(−τ∆)(∂tu−∆u)(tni)
)
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=: I + II.

Then the bound of I follows from the approximation property of Lagrange interpolation, the maximum

bound of un−j and u(tn−j), j = 1, . . . , k, the locally Lipschitz continuity of f , and the Assumption (P1):

‖I‖L2(Ω) ≤ τ

m∑
i=1

‖pi(−τ∆)‖L2(Ω)→L2(Ω)

∥∥∥ k∑
j=1

Lj(t
ni)f(u(tn−j))− f(u(tn−1 + ciτ))

∥∥∥
L2(Ω)

+ τ

m∑
i=1

‖pi(−τ∆)‖L2(Ω)→L2(Ω)

k∑
j=1

|Lj(t
ni)| ‖f(un−j)− f(u(tn−j))‖L2(Ω)

≤ Cτk+1‖f(u)‖Ck([tn−k,tn];L2(Ω)) + Cτ

k∑
j=1

‖en−j‖L2(Ω).

Now we term to the second term II , which can be rewritten by Taylor’s expansion at tn−1

II = −
k∑

j=0

τ j

j!
u(j)(tn−1) + σ(−τ∆)u(tn−1)

+ τ

m∑
i=1

pi(−τ∆)

k−1∑
j=0

(ciτ)
j

j!
(u(j+1) −∆u(j))(tn−1) +R1 +R2.

where the remainders R1 and R2 are

R1 =

∫ tn

tn−1

(tn − s)k

k!
u(k+1)(s) ds and

R2 = τ

m∑
i=1

pi(−τ∆)

∫ tn−1+ciτ

tn−1

(tn−1 + ciτ − s)k−1

(k − 1)!
(u(k+1) −∆u(k))(s) ds

respectively. Hereafter, we use u(j) to denote the jth derivative in time. Then Assumption (P1) implies

‖R1 +R2‖L2(Ω) ≤ Cτk+1
(
‖u‖Ck+1([tn−1,tn];L2(Ω)) + ‖∆u‖Ck([tn−1,tn];L2(Ω))

)
.

Now we revisit the three leading terms of II . Note that

−
k∑

j=0

τ j

j!
u(j)(tn−1) + σ(−τ∆)u(tn−1) + τ

m∑
i=1

pi(−τ∆)

k−1∑
j=0

(ciτ)
j

j!
(u(j+1) −∆u(j))(tn−1)
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=
(
− I + σ(−τ∆)− τ

m∑
i=1

pi(−τ∆)∆
)
u(tn−1)

+

k−1∑
j=1

τ j

j!

(
− I + j

m∑
i=1

cj−1
i pi(−τ∆)− τ

m∑
i=1

cjipi(−τ∆)∆
)
u(j)(tn−1)

+
τk

k!

(
− I + k

m∑
i=1

ck−1
i pi(−τ∆)

)
u(k)(tn−1) =

3∑
ℓ=1

IIℓ.

Since the time stepping scheme is strictly accurate of order q = k (by Assumption (P3)), we have II1 =

II2 = 0. Meanwhile, we apply Assumption (P3) again to arrive at for λ > 0

−1 + k

m∑
i=1

ck−1
i pi(λ) = λ

k!

(−λ)k+1

(
σ(λ)−

k∑
ℓ=0

(−λ)ℓ

`!

)
=: λγ(λ).

Note that |γ(λ)| = O(1) for λ→ 0 (by Assumption (P2)) and |γ(λ)| → 0 for λ→ +∞. Hence |γ(λ)| is

bounded uniformly in [0,∞). Then we arrive at

‖II3‖L2(Ω) ≤ Cτk+1‖∆u(k)(tn−1)‖ ≤ Cτk+1‖∆u‖Ck([tn−1,tn];L2(Ω)).

In conclusion, we obtain the following estimate

‖en‖L2(Ω) ≤ ‖σ(−τ∆)en−1‖L2(Ω) + Cτk+1 + Cτ

k∑
j=1

‖en−j‖L2(Ω).

Then the assumption (P1) leads to

‖en‖L2(Ω) ≤ ‖en−1
h ‖L2(Ω) + Cτk+1 + Cτ

k∑
j=1

‖en−j‖L2(Ω).

Finally, the desired assertion follows immediately by using discrete Gronwall’s inequality

‖en‖L2(Ω) ≤ CecT τk + CecT
k−1∑
j=0

‖ej‖L2(Ω).

Remark 2.1.2. Theorem 2.1.1 implies that the cut-off operation preserves the maximum bound without
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losing global accuracy. However, the Assumption (P3) is restrictive. It is well-known that a single step

method with a givenm ∈ Z+ could be accurate of order 2m (Gauss–Legendre method) [31, Section 2.2],

but at most strictly accurate of orderm+ 1 [9, Lemma 5]. In general, a collocation-type method is only

strictly accurate of orderm+ 1.

Without the assumption of strict accuracy, one may still show the error estimate, provided that f(u)

satisfies certain compatibility conditions, e.g.,

f(u) ∈ Cℓ([0, T ];Dom(∆k−ℓ)) for all ` = 1, 2, . . . , k,

that requires ∂n∆qf(u) = 0 for ` = 1, 2, . . . , k−1. Unfortunately, those compatibility conditions cannot

be fulfilled in general for semilinear parabolic problems.

Remark 2.1.3. The same error estimate could be proved by assuming that the scheme satisfies the as-

sumption (P3) with q = k − 1 and some additional conditions (see e.g. [110, Theorem 8.4] and [88]).

However, the proof is not directly applicable when we apply the cut-off operation at each time step. It

warrants further investigation to show the sharp convergence rate O(τk) with weaker assumptions.

2.2 Fully-discrete Cut-off Runge–Kutta Scheme

In this part, we discuss the fully discrete scheme. To illustrate the main idea, we consider the one-

dimensional case Ω = [a, b], and the argument could be straightforwardly extended to multi-dimensional

cases, see Remark 2.2.2. We denote by a = x0 < x1 < · · · < xMr = b a partition of the domain with a

uniform mesh size h = xir − x(i−1)r = (b− a)/M , and denote by Sr
h the finite element space of degree

r ≥ 1, i.e.,

Sr
h = {v ∈ H1(Ω) : v|Ii ∈ Pr, i = 1, . . . ,M},

where Ii = [x(i−1)r, xir] and Pr denotes the space of polynomials of degree ≤ r.

Let x(i−1)r+j and ωj , j = 0, . . . , r, be the quadrature points and weights of the (r+1)-point Gauss–

Lobatto quadrature on the subinterval Ii, and denote

w(i−1)r+j =


ωj for 1 ≤ j ≤ r − 1,

2ωj for j = 0, r.
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Then we consider the piecewise Gauss–Lobatto quadrature approximation of the inner product, i.e.,

(f, g)h :=

Mr∑
j=0

wjf(xj)g(xj).

This discrete inner product induces a norm

‖fh‖h =
√
(fh, fh)h ∀ fh ∈ Sr

h.

Then we have the following lemma for norm equivalence. The proof follows directly from the posi-

tivity of Gauss–Lobatto quadrature weights [91, p. 426].

Lemma 2.2.1. The discrete norm ‖ · ‖h is equivalent to usual L2 norm ‖ · ‖L2(Ω) in sense that

C1‖vh‖L2(Ω) ≤ ‖vh‖h ≤ C2‖vh‖L2(Ω), ∀vh ∈ Sr
h.

where C1 and C2 are independent of h.

To develop the fully discrete scheme, we introduce the discrete Laplacian −∆h : Sr
h → Sr

h such that

(−∆hvh, wh)h = (∇vh,∇wh) for all vh, wh ∈ Sr
h. (2.4)

Then at n-th time level, with given un−k
h , . . . , un−1

h ∈ Sr
h, we find an intermediate solution ûnh ∈ Sr

h such

that

ûnh = σ(−τ∆h)u
n−1
h + τ

m∑
i=1

pi(−τ∆h)
( k∑

j=1

Lj(t
ni)Πhf(u

n−j
h )

)
(2.5)

where tni = tn−1 + ciτ , and Πh : C(Ω) → Sr
h is the Lagrange interpolation operator. In order to impose

the maximum bound, we apply the cut-off postprocessing: find unh ∈ Sr
h such that

unh(xj) = min
(
max

(
ûnh(xj),−α

)
, α
)
, j = 0, . . . ,Mr. (2.6)

It is equivalent to

unh = Πhmin
(
max

(
ûnh,−α

)
, α
)
.
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Essentially, the cut-off operation (2.6) only works on the finite element nodal points.

Next, we shall prove the optimal error estimate of the fully discrete scheme (2.5)-(2.6). To this end,

we need the following stability estimate of operators σ(−τ∆h) and pi(−τ∆h).

Lemma 2.2.2. Let ∆h be the discrete Laplacian defined in (2.4), and σ(λ) and pi(λ) are rational func-

tions satisfying the Assumption (P1). Then there holds that for all vh ∈ Sr
h

‖∇qσ(−τ∆h)vh‖h ≤ ‖∇qvh‖h and ‖∇qpi(−τ∆h)vh‖h ≤ C‖∇qvh‖h (2.7)

with i = 1, . . . ,m and q = 0, 1. Meanwhile,

τ‖∇q∆hpi(−τ∆h)vh‖h ≤ C‖∇qvh‖h i = 1, . . . ,m, q = 0, 1 (2.8)

Proof. Let {(λj , ϕh
j )}

Mr+1
j=1 be eigenpairs of −∆h, where {ϕh

j }
Mr+1
j=1 forms an orthogonal basis of Sr

h in

sense that (ϕh
i , ϕ

h
j )h = δi,j . Then by the Assumption (P1), we have for any vh ∈ Sr

h and q = 0, 1

‖∇qσ(−τ∆h)vh‖2h =

Mr+1∑
j=1

(λhj )
q|σ(τλj)|2|(vh, ϕh

j )h|2

≤
Mr+1∑
j=1

(λhj )
q|(vh, ϕh

j )h|2 = ‖∇qvh‖2h.

This shows the first estimate. The estimate for pi follows analogously.

Moreover, the numerator of pi(λ) is of lower degree than its denominator (by Assumption (P1)), and

hence there exists constants C1, C2 > 0 such that

|pi(λ)| ≤
C1

1 + C2λ
, for all λ > 0.

Then we derive that for any vh ∈ Sr
h and q = 0, 1

τ2‖∇q∆hpi(−τ∆h)vh‖2h = τ2
Mr+1∑
j=1

(λhj )
q+2|pi(τλj)|2|(vh, ϕh

j )h|2

≤ Cτ2
Mr+1∑
j=1

(λhj )
q+2

(1 + Cτλhj )
2
|(vh, ϕh

j )h|2
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≤ C

Mr+1∑
j=1

(λhj )
q|(vh, ϕh

j )h|2 = C‖∇qvh‖2h,

where the constant C only depends on C1 and C2. This proves the assertion (2.8).

Lemma 2.2.3. Let v ∈ H2r+2(Ω) with the homogeneous Neumann boundary condition and ϕh ∈ Sr
h.

Then we have the following estimate

(Πh∆v −∆hΠhv, ϕh)h ≤ Chr+1‖v‖H2r+2‖ϕh‖H1(Ω).

Proof. Using the homogeneous Neumann boundary condition and (2.4), we obtain

(Πh∆v −∆hΠhv, ϕh)h

= (Πh∆v, ϕh)h − (∆hΠhv, ϕh)h

=
(
(∆v, ϕh)h − (∆v, ϕh)

)
+
(
(∆v, ϕh)− (∆hΠhv, ϕh)h

)
=
(
(∆v, ϕh)h − (∆v, ϕh)

)
+
(
(∂xv, ∂xϕh)− (∂xΠhv, ∂xϕh)

)
(2.9)

Since the (r+1)-point Gauss–Lobatto quadrature on each subinterval Ii is exact for polynomials of degree

2r − 1 [91, pp. 425], employing the Bramble–Hilbert lemma as well as the inverse inequality, we derive

that

|(∆v, ϕh)h − (∆v, ϕh)| =
∣∣∣ M∑
i=1

( r∑
j=0

ωj(∆vϕh)(x(i−1)r+j)−
∫
Ii

(∆v)ϕh dx
)∣∣∣

≤ Ch2r
M∑
i=1

‖∆vϕh‖W 2r,1(Ii) ≤ Ch2r
M∑
i=1

‖v‖H2r+2(Ii)‖ϕh‖Hr(Ii)

≤ Chr+1
M∑
i=1

‖v‖H2r+2(Ii)‖ϕh‖H1(Ii) ≤ Chr+1‖v‖H2r+2(Ω)‖ϕh‖H1(Ω).

Similar argument also leads to the estimate for the second term in (2.9) for r ≥ 2:

|(∂x(v −Πhv), ∂xϕh)| =
∣∣∣ M∑
i=1

∫
Ii

∂x(v −Πhv)∂xϕh dx
∣∣∣ = ∣∣∣ M∑

i=1

∫
Ii

(v −Πhv)∂
2
xϕh dx

∣∣∣
=
∣∣∣ M∑
i=1

∫
Ii

v∂2xϕh dx−
r∑

j=0

ωj(v∂
2
xϕh)(x(i−1)r+j)

∣∣∣
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≤ Ch2r
M∑
i=1

‖v∂2xϕh‖W 2r,1(Ii) ≤ Ch2r
M∑
i=1

‖v‖H2r+2(Ii)‖ϕh‖Hr(Ii)

≤ Chr+1
M∑
i=1

‖v‖H2r+2(Ii)‖ϕh‖H1(Ii) ≤ Chr+1‖v‖H2r+2(Ω)‖ϕh‖H1(Ω).

Finally, in case that r = 1, it is easy to observe that

(∂x(v −Πhv), ∂xϕh) =

M∑
i=1

∫
Ii

∂x(v −Πhv)∂xϕh dx = −
M∑
i=1

∫
Ii

(v −Πhv)∂
2
xϕh dx = 0.

To derive an error estimate for the fully discrete scheme (2.5)-(2.6). We need the following extra

assumptions on the rational function σ(λ).

(P4) The rational function σ(λ) satisfies |σ(λ)| → 0 as λ→ ∞.

Note that the Assumption (P4) immediately implies [110, eq. (7.37)]

|σ(λ)| ≤ 1

1 + c0λ
for any λ ≥ 0,

with a generic constant c0 > 0. This further implies

1− |σ(λ)|−2 ≤ −2c0λ for any λ ≥ 0.

Therefore, we have for any vh ∈ Sr
h

‖σ(−τ∆h)vh‖2h =

Mr+1∑
j=1

|σ(τλj)|2(vh, ϕh
j )

2
h = ‖vh‖2h +

Mr+1∑
j=1

(|σ(τλj)|2 − 1)(vh, ϕ
h
j )

2
h

= ‖vh‖2h +

Mr+1∑
j=1

(1− |σ(τλj)|−2)|σ(τλj)|2(vh, ϕh
j )

2
h

≤ ‖vh‖2h − 2c0τ

Mr+1∑
j=1

λj |σ(τλj)|2(vh, ϕh
j )

2
h = ‖vh‖2h − 2c0τ‖∇σ(−τ∆h)vh‖2.

Then we are ready to state following main theorem.
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Theorem 2.2.1. Suppose that the Assumptions (P1), (P2) and (P4) are fulfilled, and (P3) holds for q = k.

Assume that |u0| ≤ α and the maximum principle (1.2) holds, and assume that the starting values ulh,

l = 0, . . . , k − 1, are given and

|ulh(xj)| ≤ α, j = 0, . . . ,Mr, l = 0, . . . , k − 1.

Then the fully discrete solution given by (2.5)-(2.6) satisfies

|unh(xj)| ≤ α, j = 0, . . . ,Mr, n = k, . . . , N,

and for n = k, . . . , N

‖u(tn)− unh‖L2(Ω) ≤ C(τk + hr+1) + C

k−1∑
l=0

‖u(tl)− ulh‖L2(Ω),

provided that u ∈ Ck+1([0, T ];C(Ω̄)) ∩ Ck([0, T ];Dom(∆)) ∩ C1([0, T ];H2r+2(Ω)), f is locally Lip-

schitz continuous and f(u) ∈ Ck([0, T ];L2(Ω)) ∩ C([0, T ];H2r+2(Ω)).

Proof. In [tn−1, tn], we note that Πhu satisfies

∂tΠhu(t)−∆hΠhu(t) = Πhf(u(t)) + gh(t), t ∈ (tn−1, tn], with Πhu(t
n−1) given,

and gh(t) = (Πh∆−∆hΠh)u(t). Then we define its time stepping approximation wn
h satisfying

wn
h = σ(−τ∆h)Πhu(t

n−1) + τ

m∑
i=1

pi(−τ∆h)
(
Πhf(u) + gh

)
(tn + ciτ).

Then the argument in Theorem 2.1.1 implies that

‖Πhu(t
n)− wn

h‖h ≤ Cτk+1
(

sup
tn−1≤t≤tn

‖Πhu
(k+1)(t)‖h + sup

tn−1≤t≤tn
‖∆hΠhu

(k)(t)‖h
)
.

The first term of the right hand side is bounded by ‖u‖Ck+1([0,T ];C(Ω̄)), while the second one is bounded
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as

‖∆hΠhu
(k)(t)‖h = sup

φh∈Sr
h

(∆hΠhu
(k)(t), ϕh)h

‖ϕh‖h

= sup
φh∈Sr

h

(∇(Πhu
(k)(t)− u(k)(t)),∇ϕh) + (∇u(k)(t),∇ϕh)

‖ϕh‖h

≤ Ch−1‖∇(Πhu
(k)(t)− u(k)(t))‖L2(Ω) + ‖∆u(k)(t)‖L2(Ω) ≤ C‖u(k)‖H2(Ω).

Therefore, we conclude that

‖Πhu(t
n)− wn

h‖h ≤ Cτk+1
(
‖u‖Ck+1([tn−1,tn];C(Ω̄)) + ‖u‖Ck([tn−1,tn];H2(Ω))

)
.

Then the simple triangle inequality leads to

‖ûnh −Πhu(t
n)‖2h ≤

(
‖ûnh − wn

h‖h + ‖wn
h −Πhu(t

n)‖h
)2

≤ (1 + Cτ)‖ûnh − wn
h‖2h + Cτ2k+1.

(2.10)

Let ρnh = ûnh − wn
h and enh = unh −Πhu(t

n), then ρnh satisfies

ρnh = σ(−τ∆h)e
n−1
h + In1 + In2 (2.11)

where

In1 = τ

m∑
i=1

pi(−τ∆h)
( k∑

j=1

Lj(t
n−1 + ciτ)Πhf(u

n−j
h )−Πhf(u(t

n−1 + ciτ))
)
,

and In2 = −τ
m∑
i=1

pi(−τ∆h)gh(t
n−1 + ciτ).

Now take the discrete inner product between (2.11) and ρnh

‖ρnh‖2h = (σ(−τ∆h)e
n−1
h , ρnh)h + (In1 , ρ

n
h)h + (In2 , ρ

n
h)h.
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Then first term, we apply the Assumption (P4) to obtain that

(σ(−τ∆h)e
n−1
h , ρnh) ≤

1

2
‖σ(−τ∆h)e

n−1
h ‖2h +

1

2
‖ρnh‖2h

≤ 1

2
‖en−1

h ‖2h − c0τ‖∇σ(−τ∆h)e
n−1
h ‖2 + 1

2
‖ρnh‖2h

≤ 1

2
‖en−1

h ‖2h − c0τ‖∇(ρnh − In1 − In2 )‖2 + ||+ 1

2
‖ρnh‖2h

≤ 1

2
‖en−1

h ‖2h − c0τ‖∇ρnh‖2 − c0τ‖∇(In1 + In2 )‖2

+ 2c0τ(∇ρnh,∇(In1 + In2 )) +
1

2
‖ρnh‖2

Then applying the definition of∆h, we arrive at

1

2
‖ρnh‖2h ≤ 1

2
‖en−1

h ‖2h − c0τ‖∇ρnh‖2

− 2c0τ(ρ
n
h,∆h(I

n
1 + In2 ))h + (In1 , ρ

n
h)h + (In2 , ρ

n
h)h.

(2.12)

By using the approximation property of interpolation Ikτ , Lemma 2.2.2, and the fact that u
n−k
h , . . . , un−1

h

satisfies the maximum bound, we bound the fourth term in (2.12) as

|(In1 , ρnh)h| ≤ τ

m∑
i=1

∣∣∣( k∑
j=1

Lj(t
n−1 + ciτ)Πhf(u(t

n−j))−Πhf(u(t
n−1 + ciτ), pi(−τ∆h)ρ

n
h

)
h

∣∣∣
+τ

m∑
i=1

∣∣∣( k∑
j=1

Lj(t
n−1 + ciτ)(Πhf(u(t

n−j))−Πhf(u
n−j
h )), pi(−τ∆)ρnh

)
h

∣∣∣
≤ Cτ

m∑
i=1

‖pi(−τ∆h)ρ
n
h‖h

k∑
j=1

‖Πhf(u(t
n−j))−Πhf(u

n−j)‖h

+ Cτk+1
m∑
i=1

‖pi(−τ∆h)ρ
n
h‖h‖Πhf(u)‖Ck([tn−k,tn];L2(Ω))

≤ Cτ2k+1‖Πhf(u)‖2Ck([tn−k,tn];L2(Ω)) + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ‖ρnh‖2h

≤ Cτ2k+1‖f(u)‖2Ck([tn−k,tn];C(Ω̄)) + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ‖ρnh‖2h.
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The fifth term in (2.12) can be bounded by using lemmas 2.2.2 and 2.2.3, i.e.,

|(In2 , ρnh)h| ≤ Cτ

m∑
i=1

|(gh(tn−1 + ciτ), pi(−τ∆h)ρ
n
h)h|

≤ Cτ

m∑
i=1

hr+1‖u(tn−1 + ciτ)‖H2r+2(Ω)‖pi(−τ∆h)ρ
n
h‖H1(Ω)

≤ Cτh2r+2

η
‖u‖2C([tn−1,tn];H2r+2(Ω)) + Cτη‖ρnh‖2H1(Ω).

(2.13)

For the third term in the right hand side of (2.12), we shall apply the preceding argument again, together

with the stability estimate (2.8), and obtain that

τ |(ρnh,∆h(I
n
1 + In2 ))h| ≤ Cτ2

m∑
i=1

‖∆hpi(−τ∆h)ρ
n
h‖h

k∑
j=1

‖Πhf(u(t
n−j))−Πhf(u

n−j)‖h

+ Cτk+2
m∑
i=1

‖∆hpi(−τ∆h)ρ
n
h‖h‖Πhf(u)‖Ck([tn−k,tn];L2(Ω))

+ Cτ2
m∑
i=1

hr+1‖u(tn−1 + ciτ)‖H2r+2(Ω)‖∆hpi(−τ∆h)ρ
n
h‖H1(Ω)

≤ Cτ2k+1‖f(u)‖2Ck([tn−k,tn];C(Ω̄)) + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ‖ρnh‖2h

+
Cτh2r+2

η
‖u‖2C([tn−1,tn];H2r+2(Ω)) + Cτη‖ρnh‖2H1(Ω).

(2.14)

Then by choosing η small, we arrive at

(1− Cτ)‖ρnh‖2h ≤ ‖en−1
h ‖2h + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ(τ2k + h2r+2).

This together with (2.10) and the property of the cut-off operation lead to

‖enh‖2h ≤ ‖ûnh −Πhu(t
n)‖2h ≤ (1 + Cτ)‖ρnh‖2h + cτ2k+1

≤ ‖en−1
h ‖2h + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ(τ2k + h2r+2),
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and hence we rearrange terms and obtain

‖enh‖2h − ‖en−1
h ‖2h

τ
≤ C(τ2k + h2r+2) + C

k∑
j=1

‖en−j
h ‖2h.

Then the discrete Gronwall’s inequality implies

‖enh‖2h ≤ CecT (τ2k + h2r+2) + CecT
k−1∑
j=0

‖ejh‖
2
h,

and the desired error estimate follows from the equivalence of different norms by Lemma 2.2.1.

Remark 2.2.1. In [73], an error estimate O(τk + hr), which is suboptimal in space, was derived for the

multistep exponential integrator method by using energy argument. The loss of the optimal convergence

rate is due to the suboptimal estimate of the term (∂x(Πhu− u), ∂xvh) in [73, eq. (2.6) and (3.22)]. The

optimal rate could be also proved by using Lemma 2.2.3.

The Assumption (P4) , called L-stability, is useful when solving stiff problems. It is also essential in the

proof of Theorem 2.2.1 to derive the optimal error estimate of the extrapolated cut-off single step scheme.

In particular, Assumption (P4) immediately leads to the estimate

‖σ(−τ∆h)vh‖2h ≤ ‖vh‖2h − 2c0τ‖∇σ(−τ∆h)vh‖2,

where the second term in the right side is used to handle the term involving ‖ρnh‖H1(Ω) in (2.13) and (2.14).

Many single step methods, e.g., Lobatto IIIC and Radau IIA methods are L-stable [31, 114]. For both

classes, arbitrarily high-order methods can be constructed. Nevertheless, it is not clear how to remove

the restriction (P4) in general.

Remark 2.2.2. It is straightforward to extend the argument to higher dimensional problems, e.g., Ω is a

multi-dimensional rectangular domain (a, b)d ⊂ Rd, with d ≥ 2. Then we can divide Ω in to some small

sub-rectangles, called partitionK, and apply the tensor-product Lagrange finite elements on the partition

K. As a result, Lemma 2.2.3 is still valid, which implies the desired error estimate. See more details about

the setting for multi-dimensional problems in [73, Section 2.2].
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2.3 Collocation-type Methods with the Cut-off Postprocessing

Note that the Assumption (P4) excludes some popular methods, e.g., Gauss–Legendre methods. This

motivates us to discuss the collocation-type schemes, which belong to implicit Runge–Kutta methods, and

derive error estimate without Assumption (P4). This class of time stepping methods is easy to implement,

and plays an essential role in the next section to develop an energy-stable scheme. For simplicity, we

only present the argument for one-dimensional case, and it can be extended to multi-dimensional cases

straightforwardly as mentioned in Remark 2.2.2.

a11 … a1m c1
...

...
...

am1 … amm cm
b1 … bm

Table 2.1: Butcher tableau for Runge–Kutta scheme.

Now we consider an m-stage Runge–Kutta method, described by the Butcher tableau 2.1. Here

{ci}mi=1 denotesm distinct quadrature points.

Definition 2.3.1. We call a Runge–Kutta method is algebraically stable if the method satisfies

(P5)(a) The matrix A = (aij), with i, j = 1, . . . ,m is invertible;

(P5)(b) The coefficients bi satisfy bi > 0 for i = 1, 2, . . . ,m;

(P5)(c) The symmetric matrix M ∈ Rm×m with entries mij := biaij + bjaji − bibj , i, j = 1, . . . ,m is

positive semidefinite.

Here we assume that the Runge–Kutta scheme described by Table 2.1 associates with a collocation

method, i.e., coefficients aij , bi, ci satisfy

m∑
i=1

bic
l−1
i =

1

l
, l = 1, · · · , p, (2.15)

m∑
j=1

aijc
l−1
j =

cli
l
, l = 1, · · · ,m, (2.16)

with some integers p ≥ m. Two popular families of algebraically stable Runge–Kutta methods of collo-

cation type satisfying (2.6) of orders p = 2m and p = 2m− 1 are the Gauss–Legendre methods and the
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Radau IIA methods respectively. For both classes, arbitrarily high order methods can be constructed, and

both of them follow this analysis. Note that the Gauss–Legendre methods are not L-stable [114].

In particular, at level n, with given un−k
h , . . . , un−1

h ∈ Sr
h, we find an intermediate solution ûnh ∈ Sr

h

such that 
u̇nih = ∆hu

ni
h +

∑k
ℓ=1 Lℓ(t

n−1 + ciτ)Πhf(u
n−ℓ
h ) for i = 1, 2, . . . ,m,

unih = un−1
h + τ

∑m
j=1 aij u̇

nj
h for i = 1, 2, . . . ,m,

ûnh = un−1
h + τ

∑m
i=1 biu̇

ni
h ,

(2.17)

where k = min(p,m+ 1), and Πh : C(Ω) → Sr
h is the Lagrange interpolation operator. Then we apply

the cut-off operation: find unh ∈ Sr
h such that

unh(xj) = min
(
max

(
ûnh(xj),−α

)
, α
)
, j = 0, . . . ,Mr. (2.18)

Remark 2.3.1. Note that the scheme (2.17) is equivalent to (2.5) with

(p1(λ), . . . , pm(λ)) = (b1, . . . , bm)(I + λA)−1, σ(λ) = 1− λ

m∑
j=1

bjpj(λ).

Then the Assumption (P5), and (2.15)-(2.16) imply Assumptions (P1), (P2) with order k = min(p,m+1)

and (P3) with order q = min(p,m+1). Hence Theorem 2.2.1 indicates the temporal errorO(τmin(p,m+1)).

This is the reason why we choose k-step extrapolation, where k = min(p,m + 1), in the time stepping

scheme (2.17).

Next, we shall derive an error estimate for the fully discrete scheme (2.17)-(2.18). To begin with, we

shall examine the local truncation error. We define the local truncation error ηni and ηn+1 as
u̇ni∗ = ∆u(tni) +

∑k
ℓ=1 Lℓ(t

ni)f(u(tn−ℓ)) for i = 1, 2, . . . ,m,

u(tni) = u(tn−1) + τ
∑m

j=1 aij u̇
nj
∗ + ηni for i = 1, 2, . . . ,m,

u(tn) = u(tn−1) + τ
∑m

i=1 biu̇
ni
∗ + ηn

(2.19)

where tni = tn−1 + ciτ and k = min(p, q + 1). Then the next lemma give an estimate for the local
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truncation error ηni and ηn. We sketch the proof in Appendix for completeness.

Lemma 2.3.1. Suppose that the Assumption (P5), and relations (2.15) and (2.16) are valid. Then the

local truncation error ηni and ηn, given by (2.19), satisfy the estimate

‖ηn‖H1(Ω) + τ

m∑
i=1

‖ηni‖H1(Ω) ≤ Cτk+1.

with k = min(p, q + 1), provided that u ∈ Ck+1([0, T ];H1(Ω)) and f(u) ∈ Ck([0, T ];H1(Ω)).

Proof. We note that the second relation in equation (2.19) implies

u(tni)− u(tn−1)− τ

m∑
j=1

aiju
nj
t = τ

m∑
j=1

aij(u̇
nj
∗ − ut(t

nj)) + ηni for i = 1, 2, . . . ,m.

Then we substitute the first relation of (2.19) and derive that for i = 1, 2, . . . ,m

u(tni)− u(tn−1)− τ

m∑
j=1

aiju
nj
t = τ

m∑
j=1

aij

( k∑
ℓ=1

Lℓ(t
n−1 + cjτ)f(u(t

n−ℓ))− f(tnj)
)
+ ηni.

Define η̃ni as the left hand side of the above relation. Now we apply Taylor’s expansion at tn−1 and use

(2.16) to derive

η̃ni =

m∑
l=1

τ l

(l − 1)!

cli
l
−

m∑
j=1

aijc
l−1
j

u(ℓ)(tn) +
1

m!

∫ tni

tn−1

(tni − s)mu(m+1)(s)ds

+
τ

(m− 1)!

m∑
j=1

aij

∫ tnj

tn−1

(tnj − s)m−1u(m+1)(s)ds

=
1

m!

∫ tni

tn−1

(tn − s)mu(m+1)(s)ds+
τ

(m− 1)!

m∑
j=1

aij

∫ tnj

tn−1

(tnj − s)m−1u(m+1)(s)ds

Then we obtain the estimate for η̃ni, with i = 1, 2, . . . ,m, that

‖η̃ni‖H1(Ω) ≤ Cτm+1‖u(m+1)‖C([tn−1,tn];H1(Ω)).

This together with the approximation property of Lagrange interpolation lead to

‖ηni‖H1(Ω) ≤ C
(
τk+1‖f(u)‖Ck([tn−k,tn];H1(Ω)) + τm+1‖u‖C(m+1)([tn−1,tn];H1(Ω))

)
.
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for i = 1, 2, . . . ,m. Similarly, we have

u(tn)− u(tn−1)− τ

m∑
i=1

biu
ni
t = τ

m∑
i=1

bi

( k∑
ℓ=1

Lℓ(t
n−1 + ciτ)f(u(t

n−ℓ))− f(tni)
)
+ ηn.

Take the left hand side as η̃n. Then Taylor expansion and (2.15) imply

η̃n =
1

p!

∫ tn

tn−1

(tn − s)pu(p+1)(s)ds+
τ

(p− 1)!

m∑
i=1

bi

∫ tni

tn−1

(tni − s)p−1u(p+1)(s)ds.

This together with the approximation property of Lagrange interpolation leads to

‖ηni‖H1(Ω) ≤ C
(
τk+1‖f(u)‖Ck([tn−k,tn];H1(Ω)) + τp+1‖u‖Cp+1([tn−1,tn];H1(Ω))

)
.

Using the choice that k = min(p,m+ 1), we derive the desired result.

Then we are ready to present the following theorem, which gives the error estimate for the cut-off

Runge–Kutta scheme (2.17)-(2.18).

Theorem 2.3.1. Suppose that the Runge–Kutta method given by Table 2.1 satisfies Assumption (P5), and

relations (2.15) and (2.16) are valid. Assume that |u0| ≤ α and the maximum principle (1.2) holds, and

assume that the starting values unh , l = 0, . . . , k − 1, are given and

|ulh(xj)| ≤ α, j = 0, . . . ,Mr, l = 0, . . . , k − 1.

Then the fully discrete solution given by (2.17)-(2.18) satisfies

|unh(xj)| ≤ α, j = 0, . . . ,Mr, n = k, . . . , N,

and for n = k, . . . , N

‖u(tn)− unh‖L2(Ω) ≤ C(τk + hr+1) + C

k−1∑
l=0

‖u(tl)− ulh‖L2(Ω),

provided that u ∈ Ck+1([0, T ];H1(Ω)) ∩ C1([0, T ];H2r+2(Ω)), f is locally Lipschitz continuous and

f(u) ∈ Ck([0, T ];H1(Ω)) ∩ C([0, T ];H2r+2(Ω)).
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Proof. Due to the cut-off operation (2.3), the discrete maximum bound principle follows immediately.

With the notation

enih = Πhu(t
ni)− unih , ėnih = Πhu̇

ni
∗ − u̇nih , enh = Πhu(t

n)− unh, ênh = Πhu(t
n)− ûnh,

we derive the error equations


ėnih = ∆he

ni
h + (Πh∆−∆hΠh)u(t

ni) +
∑k

ℓ=1 Lℓ(t
ni)Πh(f(u(t

n−ℓ))− f(un−ℓ
h )) for i = 1, 2, . . . ,m,

enih = en−1
h + τ

∑m
j=1 aij ė

nj
h +Πhηni for i = 1, 2, . . . ,m,

ênh = en−1
h + τ

∑m
i=1 biė

ni
h +Πhηn.

(2.20)

Take the square of discrete L2 norm of both sides of the last relation of (2.20), we obtain

‖ênh‖2h = ‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h + 2(ηn, e

n−1
h + τ

m∑
i=1

biė
ni
h )h + ‖Πhηn‖2h. (2.21)

For the first term on the right hand side, we expand it and apply the second equation of (2.20) to obtain

‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h = ‖en−1

h ‖2h + 2τ

m∑
i=1

bi(ė
ni
h , e

ni
h − ηni)h − τ2

m∑
i,j=1

mij(ė
ni
h , ė

nj
h )h

≤ ‖en−1
h ‖2h + 2τ

m∑
i=1

bi(ė
ni
h , e

ni
h − ηni)h,

where in the last inequality we use the positive semi-definiteness of the matrixM in the Assumption (P5).

Next, we note that the first relation of (2.20) implies

(ėni
h , eni

h − ηni)h =
(
∆he

ni
h +

k∑
ℓ=1

Lℓ(t
ni)(f(u(tn−ℓ))− f(un−ℓ

h )) + (Πh∆−∆hΠh)u(t
n−1), eni

h − ηni

)
h

= −∥∇eni
h ∥2L2(Ω) + (∇eni

h ,∇Πhηni) +
( k∑

ℓ=1

Lℓ(t
ni)(f(u(tn−ℓ))− f(un−ℓ

h )), eni
h − ηni

)
h

+
(
(Πh∆−∆hΠh)u(t

n−1), eni
h − ηni

)
h
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The bound of second term of the right hand side can be derived via Cauchy-Schwarz inequality

|(∇enih ,∇Πhηni)| ≤
1

4
‖∇enih ‖2L2(Ω) + C‖ηni‖2H1(Ω).

Meanwhile, using the fact that f is locally Lipschitz and the fully disctete solutions satisfy maximum

bound principle at the Gauss–Lobatto points, the third term can be bounded as

( k∑
ℓ=1

Lℓ(t
ni)(f(u(tn−ℓ))− f(un−ℓ

h )), enih − ηni

)
h
≤ C

(
‖enih ‖2h + ‖ηni‖2H1(Ω) +

k∑
ℓ=1

‖en−ℓ
h ‖2h

)

The bound of the last term follows from Lemma 2.2.3

(
(Πh∆−∆hΠh)u(t

n−1), enih − ηni

)
h
≤ Chr+1‖enih −Πhηni‖H1(Ω)

≤ 1

4
‖∇enih ‖2L2(Ω) + C(‖enih ‖2h + ‖ηni‖2H1(Ω) + h2r+2).

Therefore, we arrive at

2(ėnih , e
ni
h − ηni)h ≤ −‖∇enih ‖2L2(Ω) + C

( k∑
j=1

‖en−j
h ‖2h + ‖enih ‖2h + ‖ηni‖2H1(Ω) + h2r+2

)
,

and hence by Lemma 2.3.1, we derive

‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h ≤ ‖en−1

h ‖2h − τ

m∑
i=1

bi‖∇enih ‖2L2(Ω) + Cτ

m∑
i=1

‖enih ‖2h

+ Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ(h2r+2 + τ2k).

In view of the first relation of the error equation (2.20), we have the estimate

(ηn, e
n−1
h + τ

m∑
i=1

biė
ni
h )h ≤ ‖ηn‖H1(Ω)

(
‖en−1

h ‖h + Cτ

m∑
i=1

bi

(
‖∇enih ‖h +

k∑
j=1

‖en−j
h ‖h + h2r+2

))

≤ Cτ(h2r+2 + τ2k) +
τ

4

m∑
i=1

bi‖∇enih ‖2h + Cτ

k∑
j=1

‖en−j
h ‖2h
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which gives a bound of the second term in (2.21). In conclusion, we obtain that

‖ênh‖2h +
τ

2

m∑
i=1

‖∇enih ‖2L2(Ω) ≤ Cτ(h4 + τ2k) + ‖en−1
h ‖2h + Cτ

m∑
i=1

‖enih ‖2h + Cτ

k∑
j=1

‖en−j
h ‖2h.

(2.22)

Next, we shall derive a bound for
∑m

i=1 ‖enih ‖2h on the right-hand side. To this end, we test the second

relation of (2.20) by enih . This yields

m∑
i=1

‖enih ‖2h ≤ C‖en−1
h ‖2h + Cτ

m∑
i,j=1

aij(ė
nj
h , enih )h + C

m∑
i=1

‖Πhηni‖2h

≤ C‖en−1
h ‖2h + Cτ

m∑
i,j=1

aij(ė
nj
h , enih )h + Cτ2k.

Then, we apply the first relation of (2.20) and Lemma 2.2.3 to derive

m∑
i,j=1

aij(ė
nj
h , enih )h = −

m∑
i,j=1

aij(∇enjh ,∇enih ) +

m∑
i,j=1

aij

( k∑
ℓ=1

Lℓ(t
ni)(f(u(tn−ℓ))− f(un−ℓ

h )), enih

)
h

+

m∑
i,j=1

aij((Πh∆−∆hΠh)u(t
n−1), enih )h

≤ C

m∑
i=1

(
‖∇enih ‖2L2(Ω) + ‖enih ‖2h

)
+ Ch2r+2 + C

k∑
ℓ=1

‖en−ℓ
h ‖2h.

Therefore, we obtain

m∑
i=1

‖enih ‖2h ≤ C(τh2r+2 + τ2k) + C‖en−1
h ‖2h + Cτ

k∑
ℓ=1

‖en−ℓ
h ‖2h + Cτ

m∑
i=1

(
‖∇enih ‖2L2(Ω) + ‖enih ‖2h

)
.

Then for sufficiently small τ , Cτ
∑m

i=1 ‖enih ‖2h on the right-hand side can be absorbed by the left-hand

side. Then, we obtain

m∑
i=1

‖enih ‖2h ≤ C(τh2r+2 + τ2k) + C‖en−1
h ‖2h + Cτ

k∑
ℓ=1

‖en−ℓ
h ‖2h + Cτ

m∑
i=1

‖∇enih ‖2L2(Ω).
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Now substituting the above estimate into (2.22), there holds for sufficiently small τ

‖ênh‖2h ≤Cτ(h2r+2 + τ2k) + ‖en−1
h ‖2h + Cτ

k∑
ℓ=1

‖en−ℓ
h ‖2h.

Noting that ‖enh‖h ≤ ‖ênh‖h and rearranging terms, we obtain

‖enh‖2h − ‖en−1
h ‖2h

τ
≤C(h2r+2 + τ2k) + C

k∑
ℓ=1

‖en−ℓ
h ‖2h.

Then the discrete Gronwall’s inequality implies

max
k≤n≤N

‖enh‖2h ≤C(h2r+2 + τ2k) + C

k−1∑
j=0

‖ejh‖
2
h.

This completes the proof of the theorem.

Remark 2.3.2. In Theroem 2.3.1, we discuss the algebraically stable collocation-type method with cut-off

technique. We still prove the optiaml error estimateO(τk+hr+1), without the L-stability, i.e. Assumption

(P4). Note that this class of methods includes Gauss–Legendre and Radau IIA methods [114, Theorem

12.9], while the first one is not L-stable [114, Table 5.13].

2.4 FullyDiscrete SchemeBased on ScalarAuxiliaryVariableMethod

In the preceding section, we develop and analyze a class of maximum bound preserving schemes. Unfor-

tunately, the proposed scheme (with relatively large time steps) might produce solutions with increasing

and oscillating energy, see Figure 2.2. This violates another essential property of the Allen–Cahn model,

say energy dissipation. The aim for this section is to develop a high-order time stepping schemes via

combining the cut-off strategy and the scalar auxiliary variable (SAV) method.

SAV method is a common-used method for gradient flow models. It was firstly developed in [101,

100] and have motived a sequence of interesting work on the development and analysis of high-order

energy-decayed time stepping scheme in recent years [1, 99, 44].

In particular, assuming thatE1(u(t)) =
∫
Ω
F (u(x, t))dx is globally bounded frombelow, i.e.,E1(u(t)) >
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−C0. we introduce the following scalar auxiliary variable [101]

z(t) =
√
E1(u(t)) + C0 and W (u) =

f(u)√
E1(u) + C0

(2.23)

Then the Allen–Cahn equation in (1.1) can be reformulated as


ut = ∆u+ z(t)W (u) in Ω× (0, T ),

u(x, t = 0) = u0(x) in Ω× {0},

∂nu = 0 on ∂Ω× (0, T )

(2.24)

and the scalar auxiliary variable z(t) satisfies


z′(t) = −1

2
(W (u(t)), ut(t)), in (0, T ),

z(0) =
√
E1(u0) + C0.

(2.25)

One can easily show that the coupled problem (2.24)-(2.25) is equivalent to the original equation (1.1).

Meanwhile, simple calculation leads to the SAV energy dissipation:

d
dt

(1
2
‖∇u‖2 + |z(t)|2

)
= −‖ut(t)‖2 ≤ 0. (2.26)

Inspired by [1], we discretize the coupled problem (2.24)-(2.25) by using the m-stage Runge–Kutta

method in time (described by Table 2.1) and lumped mass finite element method with r = 1 in space

discretization. Then the cut-off operation is applied in each time level to remove the value violating

the maximum bound principle (at nodal points). For simplicity, we only present the argument for one-

dimensional case, and it can be extended to multi-dimensional cases straightforwardly as mentioned in

Remark 2.2.2.

Here we assume that them-stage Runge–Kutta method (described by Table 2.1) satisfies the Assump-

tion (P5) and relations (2.15) and (2.16). Then at n-th time level, with known un−k
h , . . . , un−1

h ∈ Sr
h and
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zn−1 ∈ R, we find ûnh ∈ Sr
h and zn ∈ R such that


u̇nih = ∆hu

ni
h + zniWni

h for i = 1, 2, . . . ,m,

unih = un−1
h + τ

∑m
j=1 aij u̇

nj
h for i = 1, 2, . . . ,m,

ûnh = un−1
h + τ

∑m
i=1 biu̇

ni
h ,

(2.27)

and 
żni = −1

2
(Wni

h , u̇nih )h for i = 1, 2, . . . ,m,

zni = zn−1 + τ
∑m

j=1 aij ż
nj for i = 1, 2, . . . ,m,

zn = zn−1 + τ
∑m

i=1 biż
ni,

(2.28)

where Πh : C(Ω) → Sr
h is the Lagrange interpolation operator, and the linearized termWni is defined

by

Wni
h =

k∑
ℓ=1

Lℓ(t
n−1 + ciτ)ΠhW (un−j

h ), with k = min(p,m+ 1).

Then we apply the cut-off operation: find unh ∈ Sr
h such that

unh(xj) = min
(
max

(
ûnh(xj),−α

)
, α
)
, j = 0, . . . ,Mr. (2.29)

Lemma 2.4.1. For r = 1, the cut-off operation (2.29) indicates

‖∇unh‖L2(Ω) ≤ ‖∇ûnh‖L2(Ω). (2.30)

Proof. Since both ûnh and unh are piecewise linear, it is easy to see that

‖∇unh‖2L2(Ω) =
1

h

M∑
j=1

|unh(xj)− unh(xj−1)|2 , ‖ûnh‖2L2(Ω) =
1

h

M∑
j=1

|ûnh(xj)− ûnh(xj−1)|2 .

Obviously, the cut-off operation (2.29) derives

|unh(xj)− unh(xj−1)| ≤ |ûnh(xj)− ûnh(xj−1)| , for j = 1, 2 · · · ,M,
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which completes the proof.

The next theorem shows that the cut-off SAV-RK scheme (2.27)-(2.29) satisfies the energy decay

property and discrete maximum bound principle.

Theorem 2.4.1. Suppose that the Runge–Kutta method in Table 2.1 satisfies Assumption (P5), and we

apply the lumped mass finite element method with r = 1 in space discretization. Then, the time stepping

scheme (2.27)-(2.29) satisfies the energy decay property:

1

2
‖∇unh‖2L2(Ω) + |zn|2 ≤ 1

2
‖∇un−1

h ‖2L2(Ω) + |zn−1|2, for all n ≥ k. (2.31)

Meanwhile, the fully discrete solution (2.27)-(2.29) satisfies the maximum bound principle

max
k≤n≤N

|unh(x)| ≤ α, for all x ∈ Ω. (2.32)

Proof. Due to the cut-off operation in each time level, we know that

max
k≤n≤N

|unh(xj)| ≤ α, for all j = 0, 1, . . . ,M.

Since the finite element function is piecewise linear, then for any x ∈ (xj−1, xj)

|unh(x)| ≤ max (|unh(xj−1)|, |unh(xj)|) ≤ α.

Next, we turn to the energy decay property (2.31). According to the third relation of (2.27), we have

∇ûnh = ∇un−1
h + τ

m∑
i=1

bi∇u̇nih .

Squaring the discrete L2-norms of both sides, yields

‖∇ûnh‖2 = ‖∇un−1
h ‖2 + 2τ

m∑
i=1

bi(∇u̇nih ,∇un−1
h ) + τ2

m∑
i,j=1

bibj(∇u̇nih ,∇u̇
nj
h ).
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By the second relation in (2.27), we arrive at

‖∇ûnh‖2 = ‖∇un−1
h ‖2 + 2τ

m∑
i=1

bi(∇u̇nih ,∇unih − τ

m∑
j=1

aij∇u̇nih ) + τ2
m∑

i,j=1

bibj(∇u̇nih ,∇u̇
nj
h )

= ‖∇un−1
h ‖2 + 2τ

m∑
i=1

bi(∇u̇nih ,∇unih )− τ2
m∑

i,j=1

mij(∇u̇nih ,∇u̇
nj
h )

≤ ‖∇un−1
h ‖2 + 2τ

m∑
i=1

bi(∇u̇nih ,∇unih ),

where we apply the Assumption (P4) in the last inequality. Then we apply the first relation in (2.27) to

derive

‖∇ûnh‖2 = ‖∇un−1
h ‖2 − 2τ

m∑
i=1

bi‖u̇nih ‖2 + 2τ

m∑
i=1

biz
ni(u̇nih ,W

ni
h )h

On the other hand, the similar argument also leads to

|zn|2 ≤ |zn−1|2 − τ

m∑
i=1

biz
ni(u̇nih ,W

ni
h )h

Therefore we conclude that

1

2
‖∇ûnh‖2h + |zn|2 ≤ 1

2
‖∇un−1

h ‖2h + |zn−1|2 − τ

m∑
i=1

bi‖u̇nih ‖2h ≤ 1

2
‖∇un−1

h ‖2h + |zn−1|2.

which together with (2.30) implies the desired energy decay property immediately.

Remark 2.4.1. Note that the energy dissipation law holds valid only if r = 1, since in this case the cut-off

operation does not enlarge the H1 semi-norm, which is present as (2.30) in Lemma 2.4.1. This property

is not clear for finite element method with high degree polynomials. Hence, how to design an spatially

high-order (unconditionally) energy dissipative and maximum bound preserving scheme is still unclear

and warrants further investigation.

Next, we shall derive an error estimate for the fully discrete scheme (2.27)-(2.29). To begin with, we
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shall examine the local truncation error. We define the local truncation error ηni and ηn as


u̇ni∗ = ∆u(tni) + z(tni)Wni

∗ for i = 1, 2, . . . ,m,

u(tni) = u(tn−1) + τ
∑m

j=1 aij u̇
nj
∗ + ηni for i = 1, 2, . . . ,m,

u(tn) = u(tn−1) + τ
∑m

i=1 biu̇
ni
∗ + ηn

(2.33)

where tni = tn−1 + ciτ andWni
∗ denotes the extrapolation

Wni
∗ =

m∑
ℓ=1

Lℓ(t
n−1 + ciτ)W (u(tn−j)).

Similarly, we define dni and dn as


żni∗ = −1

2
(Wni

∗ , u̇ni∗ ) for i = 1, 2, . . . ,m,

z(tni) = z(tn−1) + τ
∑m

j=1 aij ż
nj
∗ + dni for i = 1, 2, . . . ,m,

z(tn) = z(tn−1) + τ
∑m

i=1 biż
ni
∗ + dn,

(2.34)

Provided the assumption (P5) and relations (2.15) and (2.16), the local truncation errors ηni, ηn, dni, dn

satisfy the estimate

‖ηn‖H1(Ω) + |dn|+ τ

m∑
i=1

(
‖ηni‖H1(Ω) + |dni|

)
≤ Cτk+1. (2.35)

We omit the proof, since it is similar to the one of Lemma 2.3.1, given in Appendix. See also [1, Lemma

3.1].

Theorem 2.4.2. Suppose that the Runge–Kutta method satisfies Assumption (P4) and the relations (2.15)

and (2.16). Assume that |u0| ≤ α and the maximum principle (1.2) holds, and assume that the starting

values ulh and zl, l = 0, . . . , k − 1, are given and

|ulh(xj)| ≤ α, j = 0, . . . ,M, l = 0, . . . , k − 1.
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Then the fully discrete solution given by (2.27)-(2.29) satisfies for n = k, . . . , N

‖u(tn)− unh‖L2(Ω) ≤ C(τk + h2) + C

k−1∑
l=0

‖u(tl)− ulh‖L2(Ω) + C|z(tk−1)− zk−1|, (2.36)

provided that u, f and f(u) are sufficiently smooth in both time and space variables.

Proof. Subtracting (2.27)-(2.28) from (2.33)-(2.34), and with the notation

enih = Πhu(t
ni)− unih , ėnih = Πhu̇

ni
∗ − u̇nih , enh = Πhu(t

n)− unh, ênh = Πhu(t
n)− ûnh,

ξni = z(tni)− zni, ξ̇ni = żni∗ − żni, ξn = z(tn)− zn .

we have the following error equations


ėnih = ∆he

ni
h + (z(tni)ΠhW

ni
∗ − zniWni

h ) + (Πh∆−∆hΠh)u(t
n−1) for i = 1, 2, . . . ,m,

enih = en−1
h + τ

∑m
j=1 aij ė

nj +Πhηni for i = 1, 2, . . . ,m,

ênh = en−1
h + τ

∑m
i=1 biė

ni
h +Πhηn

(2.37)

and 
ξ̇ni = −1

2
(Wni

∗ , u̇ni∗ ) +
1

2
(Wni

h , u̇nih )h for i = 1, 2, . . . ,m,

ξni = ξn−1 + τ
∑m

j=1 aij ξ̇
nj + dni for i = 1, 2, . . . ,m,

ξn = ξn−1 + τ
∑m

j=1 biξ̇
ni + dn,

(2.38)

Now, take the square of discrete L2 norm of both sides of the last relation of equation (2.37), we can

get

‖ênh‖2h = ‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h + 2(ηn, en−1

h + τ

m∑
i=1

biė
ni
h )h + ‖Πhη

n‖2h. (2.39)

For the first term on the right hand side, we expand it and apply the second equation of (2.37) to obtain

‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h = ‖en−1

h ‖2h + 2τ

m∑
i=1

bi(ė
ni
h , e

ni
h − ηni)h − τ2

m∑
i,j=1

mij(ė
ni
h , ė

nj
h )h
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≤ ‖en−1
h ‖2h + 2τ

m∑
i=1

bi(ėni, e
ni
h − ηni)h,

where in the last inequality we use the positive semi-definiteness of the matrix M in Assumption (P4).

Next, we note that the relation of (2.37) implies

(ėnih , e
ni
h − ηni)h =

(
∆he

ni
h + (z(tni)ΠhW

ni
∗ − zniWni

h ) + (Πh∆−∆hΠh)u(t
n−1), enih − ηni

)
h

= −‖∇enih ‖2L2(Ω) + (∇enih ,∇Πhηni) +
(
z(tni)ΠhW

ni
∗ − zniWni

h , enih − ηni

)
h

+
(
(Πh∆−∆hΠh)u(t

n−1), enih − ηni

)
h

The bound of second term of the right hand side can be derived via Cauchy-Schwarz inequality

|(∇enih ,∇Πhηni)| ≤
1

4
‖∇enih ‖2L2(Ω) + C‖ηni‖2H1(Ω).

Then the third term can be bounded as

(
z(tni)ΠhW

ni
∗ − zniWni

h , enih − ηni

)
h
≤ z(tni)

(
ΠhW

ni
∗ −Wni

h , enih − ηni

)
h
+ ξni

(
Wni

h , enih − ηni

)
h

≤ C
( k∑

j=1

‖en−j
h ‖2h + ‖enih ‖2h + ‖Πhηni‖2L2(Ω) + |ξni|2

)
.

The bound of the last term follows from Lemma 2.2.3

(
(Πh∆−∆hΠh)u(t

n−1), enih − ηni

)
h
≤ Ch2‖enih − ηni‖H1(Ω)

≤ 1

4
‖∇enih ‖2L2(Ω) + C(‖enih ‖2h + ‖ηni‖2H1(Ω) + h4)

Therefore, we arrive at

2(ėnih , e
ni
h − ηni)h ≤ −‖∇enih ‖2L2(Ω) + C

( k∑
j=1

‖en−j
h ‖2h + ‖enih ‖2h + |ξni|2 + ‖ηni‖2H1(Ω) + h2

)
,

and hence

‖en−1
h + τ

m∑
i=1

biė
ni
h ‖2h ≤ ‖en−1

h ‖2h − τ

m∑
i=1

bi‖∇enih ‖2L2(Ω) + Cτ

m∑
i=1

(
|ξni|2 + ‖enih ‖2h

)
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+ Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ(h4 + τ2k).

In view of the first relation of the error equation (2.37), we have the estimate

(ηn, en−1
h + τ

m∑
i=1

biė
ni
h )h ≤ ‖ηn‖h‖en−1

h ‖h + Cτ‖ηn‖H1(Ω)

m∑
i=1

bi

(
‖∇enih ‖h +

k∑
j=1

‖en−j
h ‖h + |ξni|+ h2

)

≤ Cτ(h4 + τ2k) +
τ

4

m∑
i=1

bi

(
‖∇enih ‖2h + |ξni|2

)
+ Cτ

k∑
j=1

‖en−j
h ‖2h

which gives a bound of the second term in (2.39). In conclusion, we obtain that

‖ênh‖2h +
τ

2

m∑
i=1

‖∇enih ‖2L2(Ω) ≤ Cτ(h4 + τ2k) + ‖en−1
h ‖2h

+ Cτ

m∑
i=1

(
‖enih ‖2h + |ξni|2

)
+ Cτ

k∑
j=1

‖en−j
h ‖2h.

(2.40)

Similarly, from (2.38) and (2.35) we can derive

|ξn|2 ≤ Cτ(h4 + τ2k) + (1 + cτ)|ξn−1|2 + τ

4

m∑
i=1

‖∇enih ‖2L2(Ω)

+ Cτ

m∑
i=1

(
‖enih ‖2h + |ξni|2

)
+ Cτ

k∑
j=1

‖en−j
h ‖2h,

where we use the estimate that

(Wni
∗ , u̇ni∗ )− (Wni

h , u̇nih )h = (Wni
∗ , u̇ni∗ )− (Wni

∗ , u̇ni∗ )h + (Wni
∗ −Wni

h , u̇ni∗ )h + (Wni
h , ėnih )h

≤ Ch2 + C

k∑
j=1

‖en−j
h ‖h‖Πhu̇

ni
∗ ‖h + (∇Wni

h ,∇enih )h

+ (Wni
h , z(tni)ΠhW

ni
∗ − zniWni

h )h + (Wni
h , (Πh∆−∆hΠh)u(t

n−1))h

≤ Ch2 + C

k∑
j=1

‖en−j
h ‖h + C‖∇enih ‖+ C|ξni|,



2.4. FULLY DISCRETE SCHEME BASED ON SCALAR AUXILIARY VARIABLE METHOD 41

where we use the fact that ‖∇unh‖ ≤ C (by Theorem 2.4.1) in the last inequality. To sum up, we arrive at

‖ênh‖2h + |ξn|2 + τ

4

m∑
i=1

‖∇enih ‖2L2(Ω) ≤Cτ(h
4 + τ2k) + ‖en−1

h ‖2h + (1 + cτ)|ξn−1|2

+ Cτ

m∑
i=1

(
‖enih ‖2h + |ξni|2

)
+ Cτ

k∑
j=1

‖en−j
h ‖2h.

Note that |enh(xj)| ≤ |ênh(xj)| for all j = 0, 1, . . . ,M , which implies

‖enh‖2h + |ξn|2 + τ

4

m∑
i=1

‖∇enih ‖2L2(Ω) ≤Cτ(h
4 + τ2k) + ‖en−1

h ‖2h + (1 + cτ)|ξn−1|2

+ Cτ

m∑
i=1

(
‖enih ‖2h + |ξni|2

)
+ Cτ

k∑
j=1

‖en−j
h ‖2h.

(2.41)

Next, we shall derive a bound for
∑m

i=1

(
‖enih ‖2h + |ξni|2

)
on the right-hand side. To this end, we

test the second relation of (2.37) by enih . This yields

m∑
i=1

‖enih ‖2h ≤ C‖en−1
h ‖2h + Cτ

m∑
i,j=1

aij(ė
nj
h , enih ) + C

m∑
i=1

‖Πhηni‖2h

≤ C‖en−1
h ‖2h + Cτ

m∑
i,j=1

aij(ė
nj
h , enih )h + Cτ2k.

Then, we apply the first relation of (2.37) and Lemma 2.2.3 to derive

m∑
i,j=1

aij(ė
nj
h , enih )h = −

m∑
i,j=1

aij(∇enjh ,∇enih ) +

m∑
i,j=1

aij(z(t
ni)ΠhW

ni
∗ − zniWni

h , enih )h

+

m∑
i,j=1

aij((Πh∆−∆hΠh)u(t
n−1), enih )h

≤ C

m∑
i=1

(
‖∇enih ‖2L2(Ω) + ‖enih ‖2h + |ξni|2

)
+ Ch4 + C

k∑
j=1

‖en−j
h ‖2h.

Therefore, we obtain

m∑
i=1

‖enih ‖2h ≤ C(τh4 + τ2k) + C‖en−1
h ‖2h + Cτ

k∑
j=1

‖en−j
h ‖2h+
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Cτ

m∑
i=1

(
‖∇enih ‖2L2(Ω) + ‖enih ‖2h + |ξni|2

)
.

Similarly, from (2.38) we can derive

m∑
i=1

|ξni|2 ≤ C|ξn−1|2 + Cτ

m∑
i,j=1

aij ξ̇
njξni + C

m∑
i=1

|dni|2

≤ C(τh4 + τ2k) + C|ξn−1|2 + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ

m∑
i=1

(
‖∇enih ‖2L2(Ω) + ‖enih ‖2h + |ξni|2

)

Sum up these two estimates and note that, for sufficiently small τ ,

m∑
i=1

(
‖enih ‖2h + |ξni|2

)
≤ C(τh4 + τ2k) + C|ξn−1|2 + Cτ

k∑
j=1

‖en−j
h ‖2h + Cτ

m∑
i=1

‖∇enih ‖2L2(Ω).

Now substituting the above estimate into (2.41), we have

‖enh‖2h + |ξn|2 + τ

4

m∑
i=1

‖∇enih ‖2L2(Ω) ≤Cτ(h
4 + τ2k) + ‖en−1

h ‖2h + (1 + Cτ)|ξn−1|2

+ Cτ2
m∑
i=1

‖∇enih ‖2L2(Ω) + Cτ

k∑
j=1

‖en−j
h ‖2h.

Then for sufficiently small τ , there holds

‖enh‖2h + |ξn|2 ≤Cτ(h4 + τ2k) + ‖en−1
h ‖2h + (1 + Cτ)|ξn−1|2 + Cτ

k∑
j=1

‖en−j
h ‖2h.

Rearranging terms, we obtain

(‖enh‖2h + |ξn|2)− (‖en−1
h ‖2h + |ξn−1|2)

τ
≤C(h4 + τ2k) + C|ξn−1|2 + C

k∑
j=1

‖en−j
h ‖2h.

Then the discrete Gronwall’s inequality implies

max
k≤n≤N

(
‖enh‖2h + |ξn|2

)
≤C(h4 + τ2k) + C|ξk−1|2 + C

k−1∑
j=0

‖ejh‖
2
h.

This completes the proof of the theorem.
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2.5 Numerical Results

In this section, we present numerical results to illustrate the the theoretical results with a one-dimensional

example: 
∂tu = ∂xxu+ f(u), in Ω× (0, T ],

∂xu = 0, on ∂Ω× (0, T ]

u(x, t = 0) = u0(x) in Ω,

(2.42)

where Ω = (0, 2) and f(u) = ε−2(u − u3) with ε = 0.1 is the Ginzburg-Landau double-well potential.

The initial value satisfies the maximum principle given by

u0(x) =


1, if 0 < x < 1/2,

cos
(
2
3π
(
x+ 1

2

))
, if 1/2 ≤ x < 2.

(2.43)

The smooth initial value is chosen to satisfy the Neumann boundary condition.

We solve the problem (2.42) with spatial mesh size h = 2/Nx and temporal mesh size τ = T/Nt, with

T = ε2 and 5ε2. Throughout the section, we shall apply the Gauss–Legendre methods with m = 1, 2, 3

and hence k = 2, 3, 4. We compute the numerical solution at the first k−1 time levels by using the three-

stage Gauss–Legendre Runge–Kutta method [114, Table 5.2], that are sufficiently accurate to achieve the

optimal convergence rate. Cutting off the numerical solutions at the first k− 1 time levels does not affect

the global accuracy.

Since the closed form of exact solution is unavailable, we compare our numerical solution with a

reference solution computed by a high-order method (i.e. cut-off RK method with r = 3, m = 3)

with small mesh sizes. In particular, the temporal error eτ is computed by fixing the spatial mesh size

h = 2/400 and comparing the numerical solution with a reference solution (with τ = T/1000). Similarly,

the spatial error eh is computed to by fixing the temporal step size τ = T/1000 and comparing the

numerical solutions with a reference solution (with h = 2/400).

In Table 2.2, we present the spatial errors of both cut-off RK schemes (2.17)-(2.18) with r = 1, 2, 3 and

the cut-off SAV-RK scheme (2.27)-(2.29) with r = 1. Numerical results show the optimal rate O(hr+1),

which fully supports our theoretical results in Theorems 2.3.1 and 2.4.2. Temporal errors are presented

in 2.3 and 2.4, both of which show the empirical convergence rate O(τm+1) and hence coincidence to
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Theorems 2.3.1 and 2.4.2.

Table 2.2: eh of cut-off RK (2.17)-(2.18) and cut-off SAV-RK (2.27)-(2.29).
r\Nx T 10 20 40 80 160 rate
RK 0.01 3.03e-2 7.42e-3 1.84e-3 4.60e-4 1.14e-4 ≈ 2.00 (2.00)
(r=1) 0.05 1.49e-1 1.03e-2 2.32e-3 5.71e-4 1.43e-4 ≈ 2.01 (2.00)
RK 0.01 4.37e-3 4.99e-4 5.90e-5 7.27e-6 9.05e-7 ≈ 3.01 (3.00)
(r=2) 0.05 6.15e-2 1.64e-3 1.73e-4 2.09e-5 2.60e-6 ≈ 3.03 (3.00)
RK 0.01 5.10e-4 3.19e-5 1.99e-6 1.23e-7 7.74e-9 ≈ 4.00 (4.00)
(r=3) 0.05 5.89e-3 1.21e-4 8.12e-6 5.03e-7 3.14e-8 ≈ 4.01 (4.00)

SAV-RK 0.01 3.03e-2 7.42e-3 1.84e-2 4.62e-4 1.17e-4 ≈ 2.00 (2.00)
(r=1) 0.05 1.49e-1 1.03e-2 2.34e-3 5.85e-4 1.56e-4 ≈ 2.01 (2.00)

Table 2.3: eτ of cut-off RK scheme (2.17)-(2.18), with τ = T/Nt.
m\Nt T 10 20 40 80 160 320 rate
1 0.01 3.76e-4 9.61e-5 2.43e-5 6.10e-5 1.53e-6 3.82e-7 ≈ 1.99 (2.00)

0.05 8.01e-4 5.36e-5 1.16e-5 2.71e-6 6.56e-7 1.61e-7 ≈ 2.06(2.00)
2 0.01 4.92e-5 6.20e-6 7.74e-7 9.65e-8 1.21e-8 1.51e-9 ≈ 3.00 (3.00)

0.05 1.73e-2 3.60e-5 1.78e-6 2.08e-7 2.51e-8 3.08e-9 ≈ 3.06 (3.00)
3 0.01 1.05e-5 6.83e-7 4.31e-8 2.71e-9 1.69e-10 1.05e-11 ≈ 4.00 (4.00)

0.05 2.88e-2 3.66e-3 3.82e-7 1.56e-8 9.61e-10 6.06e-11 ≈ 4.21 (4.00)

Table 2.4: eτ of cut-off SAV-RK scheme (2.27)-(2.29), with τ = T/Nt.
m\Nt T 10 20 40 80 160 320 rate
1 0.01 8.08e-3 2.23e-3 5.96e-4 1.53e-4 3.79e-5 8.78e-6 ≈ 2.03 (2.00)

0.05 7.94e-4 1.79e-4 4.80e-5 1.24e-5 3.09e-6 7.17e-7 ≈ 2.00 (2.00)
2 0.01 5.56e-9 5.95e-4 8.82e-5 1.11e-5 1.37e-6 1.65e-7 ≈ 3.02 (3.00)

0.05 1.47e-2 5.17e-5 7.17e-6 1.00e-6 1.31e-7 1.63e-8 ≈ 2.97 (3.00)
3 0.01 6.97e-11 2.56e-4 2.47e-5 1.66e-6 1.06e-7 6.60e-9 ≈ 3.95 (4.00)

0.05 2.45e-2 2.86e-3 7.73e-7 6.16e-8 4.38e-9 2.93e-10 ≈ 3.79 (4.00)

In Figure 4.1, we plot the maximal cut-off value at each step

ρn = max
0≤j≤Mr+1

|unh(xj)− ûnh(xj)|

and the error of the numerical solution e(x) = uNh (x) − u(x, T ). Our numerical results show that the

cut-off operation is active in the computation. Meanwhile, we observe that a coarse step mesh will result

in a larger cut-off value, without affecting the convergence rate.

Finally, we test the numerical results in case of relatively large time steps, and compare the numerical

solutions of extrapolated RK, cut-off RK (2.17)-(2.18), and cut-off SAV-RK schemes (2.27)-(2.29), with
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Figure 2.1: Error at T = 0.01 and maximal cut-off value at each time level.

r = 1, see Figure 2.2. Without the cut-off postprocessing, the numerical solutions of RK scheme signif-

icantly exceed the maximum bound, and present oscillating solution profiles. With the cut-off operation

at each time step, the numerical solutions satisfy the maximum bound, and present reasonable solution

profiles. However, numerical results show that the cut-off RK scheme might produce a solution with a

obviously increasing and oscillating energy curve. This issue could be significantly improved by apply-

ing the cut-off SAV-RK method, whose solution satisfy the maximum bound and the numerical energy is

more stable. Moreover, the numerical results show that the cut-off SAV-RK scheme will produce a more

regular numerical solution and smaller cut-off values, compared with the cut-off RK scheme.

2.6 Conclusion and Comments

In this chapter, we discuss the cut-off postprocessing on a series of single step methods, for Allen–Cahn

equationwith the nonlinear term linearized. We prove that our scheme can be arbitrarily high order for time

discretized problem, and be arbitrarily high order for both space and time for fully discretized problem. A

lot of famous schemes are included in our analysis. Combining this strategy with SAV technique, we also

develop a class of schemes, which preserve both maximum bound and energy stable. Related numerical

are also given to corroborate our analysis.
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(a) m = 1, ε = 0.1, T = 2, τ = 1/150

(b) m = 2, ε = 0.1, T = 2, τ = 1/250

Figure 2.2: Left: solution profiles of numerical solutions of RK, cut-off RK and cut-off SAV-RK scheme.
Middle: solution energy of cut-off RK and cut-off SAV-RK scheme. Right: cut-off values of cut-off RK
and cut-off SAV-RK scheme.



Chapter 3

High-order Implicit-Explicit

Runge-Kutta Methods for Parabolic

Equations

In this chapter, we will develop and study Implicit-Explicit Runge–Kutta method (IMEX-RK) for linear

and semilinear parabolic equations. To begin with, we will focus on linear non-selfadjoint equations. It

is more than a easier case but itself is also a interesting question and related to some physics problems.

In Section 3.5, we will give a brief introduction to the linear problem and its related background. In

Section 3.2 build the IMEX-RK method for linear problem and give its long time error convergence in

Section 3.3. In Section 3.4, we extend the analysis to semilinear problem and show it can keep both

maximum bound preserving and original energy decay for up to third order. The schemes of this chapter

is listed in Section 3.5 which meet all our requirements for the convergence.

3.1 Introduction

In this work, we investigate a numerical approach to solve the following problem. Let V ⊂ H = H ′ ⊂ V ′

be a Gelfand triple of Hilbert spaces, where the superscript ’ denotes the dual. Namely, the embedding

47
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V ↪→H is continuous and dense, and

(u, v)V,V ′ = (u, v)H ∀u ∈ H↪→V ′, v ∈ V ↪→H,

where (·, ·)V,V ′ is the duality pairing between V ′ and V , and (·, ·)H is the inner product on H .

We consider an abstract parabolic initial value problem: find

u ∈ L2((0, T );V ) ⊂ H1((0, T );V ′)↪→C([0, T ];H)

such that 
∂tu = Au+ f(t) 0 < t < T,

u(0) = u0 ∈ H

(3.1)

where A : V → V ′ is a bounded linear operator (possibly non-selfadjoint) with the following property

that:

β−1‖u‖2V ≤ −(Du, u) ≤ β‖u‖2V ∀u ∈ V, (3.2)

|(Lu, v)| ≤ C‖u‖V ‖v‖H , ∀u ∈ V, v ∈ H,

where D = (A + A∗)/2,L = (A − A∗)/2 are the symmetric and skew-symmetric part of the operator

A. Furthermore, D is negative definite.

The Stokes-Darcy system

As a multiphysics system, the Stokes-Darcy system is considered in this work which describes a moving

fluid governed by the Stokes equations in a free-flow regionΩS ⊂ Rd and a flow in a neighboring porous

media region ΩD ⊂ Rd. Darcy flow and Stokes flow interact through an interface denoted by Γ as shown

in Figure 3.1. Applications of such a coupled system are ubiquitous in nature, including groundwater

system [54, 56, 69], petroleum extraction [14], and so on.
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ΩS

ΩD

Γ

n

Figure 3.1: Computational domain of the Stokes–Darcy system

This model consists of a parabolic equation



∂tφ−∇ · (κ∇φ) = fD in ΩD × (0, T ],

φ = 0 on ∂ΩD\Γ× (0, T ],

−κ∇φ · n = u · n on Γ× (0, T ],

φ(0) = φ0 in ΩD,

(3.3)

which describes the Darcy flow in the porous media region ΩD through the unknown hydraulic head φ,

and an evolving Stokes equation



∂tu−∇ · T(u, p) = fS in ΩS × (0, T ],

∇ · u = 0 in ΩS × (0, T ],

u = 0 on ∂ΩS\Γ× (0, T ],

−T(u, p)n = gφn+ µ(u− (u · n)n) on Γ× (0, T ],

u(0) = u0 in ΩS ,

(3.4)

which describes free flow in the region ΩS through the fluid velocity u, where T(u, p) = 2νD(u) − pI

denotes the stress tensor, in which D(u) = 1
2 (∇u+ (∇u)⊤) is the deformation tensor and I is the d× d

identity matrix. The physical parameters κ, g, µ and ν in this model are positive constants, and fD and

fS are given source terms.

Homogeneous Dirichlet boundary conditions will be imposed on outer boundaries separately, i.e., on

∂ΩD\Γ and ∂ΩS\Γ. The interface conditions on Γ in (3.3) and (3.4) represent conservation of mass and
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balance of force, respectively, where n denotes the unit normal vector on ∂ΩS as shown in Figure 3.1.

For the ease of error estimate, we will rewrite the Stokes-Darcy system as an equivalent abstract

problem.

Let H = L2(ΩD)× L2(ΩS)
d and V = H1

Γ(ΩD)×H1
Γ(ΩS ; div0), where

H1
Γ(ΩD) = {ϕ ∈ H1(ΩD) : ϕ = 0 on ∂ΩD\Γ},

H1
Γ(ΩS ; div0) = {v ∈ H1(ΩS)

d : ∇ · v = 0 in ΩS and v = 0 on ∂ΩS\Γ}.

The weak formulation of (3.3)-(3.4) reads: find (φ, u) ∈ L2((0, T );V )∩H1((0, T );V ′) ↪→ C([0, T ];H)

satisfying the following equations for all test functions (ϕ, v) ∈ L2((0, T );V ):

(∂tφ, ϕ)D + (κ∇φ,∇ϕ)D − (u · n, ϕ)Γ = (fD, ϕ) (3.5)

(∂tu, v)S + (2νD(u),D(v))S + (gφ, v · n)Γ + µ(u− (u · n)n, v− (v · n)n)Γ (3.6)

= (fS , v),

where (·, ·)D is the pairing betweenH1
Γ(ΩD)′ andH1

Γ(ΩD), (·, ·)S is the pairing between H1
Γ(ΩS ; div0)′

and H1
Γ(ΩS ; div0), and (·, ·)Γ is the inner product on L2(Γ).

Let the operatorsA1 : H1
Γ(ΩD) → H1

Γ(ΩD)′,A2 : H1
Γ(ΩS ; div0) → H1

Γ(ΩS ; div0)′,B : H1
Γ(ΩS ; div0) →

H1
Γ(ΩD)′ and B∗ : H1

Γ(ΩD) → H1
Γ(Ω1; div0)′ be defined via duality by

(A1φ, ϕ)D = (κ∇φ,∇ϕ)D ∀φ, ϕ ∈ H1
Γ(ΩD),

(A2u, v)S = (2νD(u),D(v))S+µ(u−(u · n)n, v−(v · n)n)Γ ∀ u, v ∈ H1
Γ(ΩS ; div0),

(Bu, ϕ)D = (u · n, ϕ)Γ ∀ u ∈ H1
Γ(ΩS ; div0) ↪→ L2(Γ), ∀ϕ ∈ H1

Γ(ΩD) ↪→ L2(Γ),

(B∗φ, v)D = (φ, v · n)Γ ∀φ ∈ H1
Γ(ΩD) ↪→ L2(Γ), ∀ v ∈ H1

Γ(ΩS ; div0) ↪→ L2(Γ).

Then the weak formulation (3.5)-(3.6) can be written as

∂tφ+A1φ−Bu = fD, (3.7)

∂tu+A2u+ gB∗φ = fS . (3.8)
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By defining notations

u =

 φ

g−
1
2 u

 , f =

 fD

g−
1
2 fS

 and A = −

 A1 −g 1
2B

g
1
2B∗ A2

 , (3.9)

equations (3.7)-(3.8) are equivalently reformulated to the abstract parabolic initial value problem (3.1).

Due to the various applications of Stokes-Darcy system, many different numerical methods are de-

veloped and analyzed, including domain decomposition methods [25, 8, 13, 17, 24, 26, 35, 49, 112, 89],

Lagrange multiplier methods [70, 5, 42, 57], discontinuous Galerkin methods [63, 77, 94, 95], multigrid

methods [4, 83], partitioned time-stepping methods [66, 84, 97, 123], coupled finite element methods [12,

11, 65, 81] and many others [18, 19, 43, 53]. In particular, Kubacki et al [67] presented an overview of

non-iterative partitioned methods for such a system. With a time-step restriction for stability, numerical

schemes of both first-order and high-order partitioned methods were presented. Gunzburger et al in [49]

analyzed a parallel, non iterative, multiphysics domain decomposition method for decoupling the Stokes-

Darcymodel with multistep backward difference formula (BDF) for the time discretization. Optimal order

O(τk) for the k-step BDF scheme were established in a general framework for any k ≤ 5. Chen et al

in [19] proposed two second-order-in-time implicit-explicit methods including 2-step BDF and second-

order Adams-Moulton-Bashforth method (AME2) in which coupling term in the interface conditions was

treated explicitly and established for both schemes the unconditional and uniform-in-time stability. Error

bound was derived with O(τ2). An improvement of this work was presented in [18], in which a third-

order in time AME algorithm was studied and uniform-in-time error estimate was derived. Recently,

authors in [72] presented an implicit-explicit (IMEX) scheme with k-step BDF in time and finite element

discretization in space. In that paper, the spatial differential operatorAwas split into a symmetric part and

an anti-symmetric part on which implicit and explicit schemes were applied respectively. A symmetrized

and decoupled temporal k-step BDF scheme was presented and optimal long-time error boundO(τk+h2)

was derived.

We notice that aforementioned high-order-in-timeworks are conducted withmulti-stepmethods and to

our knowledge there is no temporal high-order single-step methods adopted for the coupled Stokes-Darcy

system in the literature. This motivates us to apply IMEX Runge-Kutta method on the Stokes-Darcy

equations aiming to achieve high-order convergence in time.
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c1 a11 0 . . . 0 â11 0 . . . 0
c2 a21 a22 . . . 0 â21 â22 . . . 0
...

...
...

. . .
...

...
...

. . .
...

cm am1 am2 . . . amm âm1 âm2 . . . âmm

b1 b2 . . . bm b̂1 b̂2 . . . b̂m

Table 3.1: Butcher tableau for Runge–Kutta scheme.

3.2 Implicit-Explicit Runge-Kutta Methods

In this section, we shall propose the time stepping scheme for solving the Stokes–Darcy system (3.3)-

(3.4) by using the IMEX Runge–Kutta method. To this end, we split the interval [0, T ] into a sequence of

subintervals [ti, ti+1], for i = 0, 1, 2, . . . , N − 1. with time levels 0 = t0 < t1 < · · · < tn = T . The

mesh size is denoted by τ := max1≤i≤n τi with τi = ti − ti−1. To simplify the presentation, we will

proceed under the assumption that the step size is uniform, i.e., τi = τ for i = 1, . . . , n. Nevertheless, it

is important to note that the analysis applies to nonuniform meshes as well, since the proposed schemes

are single-step.

For the symmetric part, we consider am-stage diagonally implicit Runge–Kutta (DIRK) scheme with

coefficient A = {aij}m×m, b = {bi}mi=1 and c = {ci}mi=1. For the skew-symmetric part, we make use

of a m-stage explicit scheme with coefficients Â = {âij}m×m, b̂ = {b̂i}mi=1 and ĉ = c = {ci}mi=1. It

is important to note that the implicit scheme and explicit scheme share the same internal nodes tn,i =

tn + ciτn. The IMEX Runge–Kutta schemes can be determined by the following Butcher tabular

Throughout, we assume that the scheme is stiffly accurate:

Assumption (P1) Assume that bi and b̂i are the last columns of A and Â, respectively, which means:

b⊤ = z⊤A, b̂⊤ = z⊤Â (3.10)

where z = (0, . . . , 0, 1)⊤.

Remark 3.2.1. The condition (P1) is a common assumption that improves stability when dealing with

stiff problems, ensuring that the method can take larger time steps without losing accuracy. See some

useful properties in Proposition 3.2.1 and Corollary 3.2.1.

Let un, un,i be approximations to u(tn) and u(tn,i), respectively, and fn,i = f(tn,i). Then the IMEX
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Runge–Kutta scheme for solving the parabolic problem (4.1) can be written as



un,0 = un

un,i = un + τ
i∑

j=1

aijDun,j + τ
i∑

j=1

âij(Lun,j−1 + fn,j−1) i = 1, . . . ,m

un+1 = un + τ
m∑
j=1

bjDun,j + τ
m∑
j=1

b̂j(Lun,j−1 + fn,j−1).

(3.11)

Alternatively, we letUn = (un,i)mi=1, V n = (vn,i)mi=1 = (Lun,i−1+fn,i−1)mi=1. Then the scheme (3.11)

could be written in vector form as
Un = 1un + τADUn + τÂV n,

un+1 = un + τb⊤DUn + τb⊤V n.

(3.12)

Note that the first relation in (3.12) leads to

Un = (I − τAD)−1(1un + τÂV n).

This together with the second relation in (3.12) and Assumption (P1) yields

un+1 = z⊤Un = z⊤(I − τAD)−1
1un + τz⊤(I − τAD)−1ÂV n (3.13)

where z = (0, . . . , 0, 1)⊤. Let σ(s) = z⊤(I + sA)−1
1, and pi(s) be the i-th entry of z⊤(I + sA)−1Â

for s > 0. Then the scheme (3.13) can be written as the following equivalent form

un+1 = σ(−τnD)un + τn

m∑
i=1

pi(−τnD)(Lun,i + fn,i). (3.14)

Here σ(s) and {pi(s)}mi=1 are rational functions.

To guarantee long-time stability, we need the following assumption on the rational function σ.

Assumption (P2): We assume that 0 < σ(s) < 1 for all s ∈ (0,∞).

Remark 3.2.2. The bound |σ(s)| ≤ 1 is typically required for stability. However, we need a stronger

assumption, σ(s) > 0, to ensure that σ(−τD) is invertible. This is crucial because we use the test
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function σ(−τD)−1un+1 in the proof of long-time stability (see Theorem 3.3.1). For the backward Euler

scheme, σ(−τD)−1 = (I−τD) is well-defined, but the invertibility of σ(−τD) is not always guaranteed

for higher-order Runge–Kutta methods.

Later on, we will show some properties of σ and pi, which will benefit our further analysis.

Proposition 3.2.1. Assume that (P1) is valid. Then σ and pi possess a common denominator with a degree

ofm, while the degree of their numerators does not exceedm− 1.

Proof. Note that (I + sA)−1 = (det(I + sA))−1(I + sA)∗, where the star here denotes the cofactor

matrix. Since σ(s) = z⊤(I + sA)−1
1 and pi(s) are the i-th entry of z⊤(I + sA)−1Â, we observe that

σ and pi share the same denominator det(I + sA), a polynomial of degreem. Also, we conclude that all

entries of the cofactor matrix are polynomials with degree not exceedingm−1. It follows that numerators

of the polynomials pi and σ also have a degree ofm− 1.

As a direct result of Proposition 3.2.1, we have the following estimates for the rational functions σ

and pi.

Corollary 3.2.1. Let Assumptions (P1) and (P2) be valid. Then there exist positive constants c0, c1 and

c2 such that for all s ≥ 0, the following holds:

σ(s) <
1

1 + c0s
, sσ(s) < c1 and

∣∣∣∣pi(s)σ(s)

∣∣∣∣ < c2.

Proof. In the first estimate, (1 + cs)σ(s) is a rational function with equal numerator and denominator,

finite on (0,∞). It has finite local maxima on this interval. For c = 0, all maxima are less than one, so

there exists a small c0 near zero such that (1 + cs)σ(s) < 1.

In the second estimate, sσ(s) is a rational function where the numerator equals the denominator,

making it finite on (0,∞). Therefore, lims→+∞ sσ(s) is finite, and sσ(s) remains finite on (0,∞).

In the third estimate, pi/σ is a rational function where the numerator equals the denominator, ensuring

it is finite on (0,∞) and remains finite throughout.

To illustrate the order condition of our scheme, we need to make the third assumption:
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Assumption (P3) Here we define

A+ =

0 0

0 A

 , Â+ =

0 0

Â 0

 , c+ =

0

c

 .

We assume that, for a given positive integer k, the following properties hold valid

z⊤(A∗)
r+1cl+ =

l!

(l + r + 1)!
, ∀l ≥ 0, r ≥ 0, l + r ≤ k − 1, (3.15)

where, each appearance of A∗ during the multiplication is either A+ or Â+.

We say a scheme is accurate of order k, if

σ(λ) = e−λ +O(λk+1) as λ→ 0, (3.16a)

and, for any 0 ≤ l ≤ k,

m∑
i=0

clipi(λ) =
l!

(−λ)l+1

(
e−λ −

j∑
l=0

(−λ)l

l!

)
+O(λk−l) as λ→ 0. (3.16b)

To achieve k-th order accuracy, the following theorem provides the necessary and sufficient conditions

for the Butcher tableau.

Theorem 3.2.1. The scheme is accurate of order k for linear symmetric problem if Assumption (P3) is

valid.

Proof. Let A = D and denote Un = {un,i}mi=0 and Fn = {f(tn,i)}mi=0. Then scheme reads

Un = 1un + τA+DUn + τÂ+F
n and un+1 = un + τb+

⊤DU + τb+
⊤F. (3.17)

The first relation of (3.17) gives

Un = (I − τA+D)−1
1un + τ(I − τA+D)−1Â+F

n.

The equation (3.10) guarantees that the last element of Un happens to be un+1 itself, so finally we can
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get

un+1 = σ(−τD)un + τ

m∑
i=0

pi(−τD)f(tn,i),

where σ(λ) = z⊤(1+λA+)
−1
1, {pi(λ)}⊤ = z⊤(1+λA+)

−1Â+ for λ ≥ 0. We know the rational real

function on the operatorD is well-defined sinceD is negative definite such that−τD is positive definite.

To derive (3.16a), since the rational functions and exponential functions are sufficiently smooth and

analytic, we can just take the derivative and test whether they are the same at zero.

(
d
dλ

)l

σ = z⊤

((
d
dλ

)l

(1 + λA+)
−1

)
1 = (−1)ll!z⊤(1 + λA+)

−(l+1)A+
l
1.

Therefore, (3.16a) is true if and only of

(
d
dλ

)l

σ(0) = (−1)ll!z⊤A+
l
1 = (−1)l, ∀0 ≤ l ≤ k,

which means

z⊤A+
l
1 =

1

l!
, ∀0 ≤ l ≤ k.

To evaluate (3.16b), we need some simplification. The equation (3.16b) is equivalent to

(−λ)l+1
m∑
i=0

clipi(λ) = l!
(
e−λ −

j∑
l=0

(−λ)l

l!

)
+O(λk+1), as λ→ 0. (3.18)

Similarly, we only need to compare their derivatives at zero. Let

LHS = (−λ)l+1
m∑
i=0

clipi(λ), RHS = l!
(
e−λ −

j∑
l=0

(−λ)l

l!

)
.

It is obviously that LHS has a λl+1 factor so it is zero for no more than l-th order derivative. So does

RHS because it is the Taylor’s expansion. Thus we only need to test their derivatives with order more

than l.

Let r ≥ 0 and l + 1 + r = k. Taking the (l + 1 + r)-th order derivative on LHS, with the Leibniz
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product rule, we can derive that

(
d
dλ

)l+1+r

LHS(0) = Cr
l+1+r

(
d
dλ

)l+1

(−λ)l+1

(
d
dλ

)r m∑
i=0

clipi(λ)

=
(l + 1 + r)!

(l + 1)!r!
(−1)l+1(l + 1)! · z⊤(−1)rr!(1 + 0 ·A+)

−(r+1)A+
rÂ+c

l

= (−1)l+1+r(l + 1 + r)!z⊤A+
rÂ+c

l.

Therefore, (3.16b) is true if and only if

(−1)l+1+r(l + 1 + r)!z⊤A+
rÂ+c

l = (−1)l+1+r(l)!, ∀l ≥ 0, r ≥ 0, l + r ≤ k − 1,

which means

z⊤A+
rÂ+c

l =
l!

(l + r + 1)!
, ∀l ≥ 0, r ≥ 0, l + r ≤ k − 1.

That is guaranteed by the assumption.

Remark 3.2.3. If the source term is partially or fully computed implicitly, then an additional requirement

z⊤A+
rA+c

l =
l!

(l + r + 1)!
, ∀l ≥ 0, r ≥ 0, l + r ≤ k − 1

should be added. The proof is a line-by-line copy of the previous one.

3.3 Implicit-Explicit Runge–Kutta Methods for Linear Problems

Before we illustrate the stability theorem, we will show a stability lemma for the stages, which may be

used in the later theorem.

Lemma 3.3.1. If a series of solutions satisfy

ψ = φ+ c0τDψ + τ

m∑
i=1

aiDv
i + τ

m∑
i=1

âiLvi,
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for some constant c0 > 0, then there exists a constant C such that

‖ψ‖H ≤ C
(
‖φ‖H +

m∑
i=1

‖vi‖H
)

and ‖ψ‖V ≤ C
(
‖φ‖V +

m∑
i=1

‖vi‖V
)
,

Proof. Take the inverse of (I − c0τD), we can get

ψ = (I − c0τD)−1
(
φ+ τ

m∑
i=1

aiDvi
)
+ τ

m∑
i=1

âi(I − c0τD)−1Lvi.

Test with ψ and we can get

‖ψ‖2H ≤ C‖ψ‖H
(
‖φ‖H +

m∑
i=1

‖vi‖H
)
+ τ

m∑
i=1

âi

(
Lvi, (I − c0τD)−1ψ

)

and

τ
(
Lvi, (I − c0τD)−1ψ

)
≤ Cτ‖vi‖H‖(I − c0τD)−1ψ‖V ≤ C‖vi‖H‖ψ‖H .

which gives us the first relation.

To get the second relation, instead of test ψ, we will now test −Dψ to the above equation. It turns to

be

‖ψ‖2V ≤ C‖ψ‖V
(
‖φ‖V +

m∑
i=1

‖vi‖V
)
− τ

m∑
i=1

âi

(
Lvi,D(I − c0τD)−1ψ

)
and

τ
(
Lvi,D(I − c0τD)−1ψ

)
≤ Cτ‖vi‖V ‖D(I − c0τD)−1ψ‖H ≤ C‖vi‖V ‖ψ‖V .

which gives us the second relation.

Theorem 3.3.1. If ui and un,i are the solutions generated by 3.11, with f = 0, and the Assumption (P1)

(P2) hold, then

‖un‖2H ≤ ‖un−1‖2H , ∀n > 1

when τ ≤ τ∗, where the constant τ∗ is only related to the scheme and β in equation (3.2), and not related

to u or un.

Proof. Test equation 3.14 with σ−1(−τD)un, we can get
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(
un, σ−1un

)
=
(
σun−1, σ−1un

)
+ τ

m∑
i=1

(
piLun,i−1, σ−1un

)
Due to the symmetry of D, all the rational combinations are symmetric and commutable, so

(
un, σ−1un

)
=
(
un−1, un

)
+ τ

m∑
i=1

(
Lun,i−1, piσ

−1un
)

Since L is skew-symmetric, (αLw,w) = α(Lw,w) = −α(w,Lw) = 0 for all α,w, so

(
un, σ−1un

)
=
(
un−1, un

)
+ τ

m∑
i=1

(
L
(
un,i−1 − pi(0)

−1piσ
−1un

)
, piσ

−1un
)
.

For our assumption, there exist an c′0 = c0/β s.t. 0 < σ(s) < 1/(1 + c′0βs), so the LHS of the above

equation can be bounded by

(
un, σ−1un

)
>
∥∥un∥∥2

H
+ c′0τ

∥∥un∥∥2
V

and (
un−1, un

)
=

1

2

∥∥un∥∥2
H
+

1

2

∥∥un−1
∥∥2
H
− 1

2

∥∥un − un−1
∥∥2
H
.

For the second term on the RHS, use the property of L, we can get

m∑
i=1

(
L
(
un,i−1 − pi(0)

−1piσ
−1un

)
, piσ

−1un
)

≤ ε

m∑
i=1

∥∥piσ−1un
∥∥2
V
+ Cε

m∑
i=1

∥∥un,i−1 − pi(0)
−1piσ

−1un
∥∥2
H

≤ ε

m∑
i=1

∥∥piσ−1un
∥∥2
V
+ 2Cε

m∑
i=1

∥∥un,i−1 − un
∥∥2
H
+ 2Cε

m∑
i=1

∥∥un − pi(0)
−1piσ

−1un
∥∥2
H

= I1 + I2 + I3

By corollary 3.2.1, we can get

I1 = ε

m∑
i=1

∥∥piσ−1un
∥∥2
V
< ε1C

∥∥un∥∥2
V
.
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Then we are going to estimate I2. The second relation in 3.11 gives us

un,i − un = (un−1 − un) + τ

i∑
j=1

aijD(un,j − un) + τ

i∑
j=1

âijL(un,j−1 − un) + τci(D + L)un.

Define wn,i = un,i − un, so

wn,i = wn,0 + τ

i∑
j=1

aijDwn,j + τ

i∑
j=1

âijLwn,j−1 + τci(D + L)un.

Similar with Lemma 3.3.1, taking the inverse of
(
I − aiiτD

)
, we can derive that

wn,i = τ

i−1∑
j=1

aij
(
I − aiiτD

)−1Dwn,j + τ

i∑
j=1

âij
(
I − aiiτD

)−1Lwn,j−1

+
(
I − aiiτD

)−1
wn,0 + τci

(
I − aiiτD

)−1Dun + τci
(
I − aiiτD

)−1Lun.

Test with wn,i, we can derive that

‖wn,i‖2H ≤ C

i−1∑
j=1

aij‖wn,j‖2H + τ

i∑
j=1

âij
(
Lwn,j−1,

(
I − aiiτD

)−1
wn,i

)
+ ‖wn,0‖H‖wn,i‖H + Cτ1/2‖un‖V ‖wn,i‖H + τci

(
Lun,

(
I − aiiτD

)−1
wn,i

)
,

and (
Lφ,

(
I − aiiτD

)−1
χ
)
≤ C‖φ‖H‖

(
I − aiiτD

)−1
χ‖V ≤ C‖φ‖H‖χ‖H ,

for any φ, χ. Therefore

‖wn,i‖H ≤ C‖wn,0‖H + C

i−1∑
j=1

aij‖wn,j‖H + Cτ1/2‖un‖V .

Accumulate from 1 to i, we can derive that

‖wn,i‖H ≤ C‖wn,0‖H + Cτ1/2‖un‖V ,
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which means that

‖un,i − un‖2H ≤ C‖un−1 − un‖2H + Cτ‖un‖2V .

For I3, since piσ−1 is bounded, we know that
(
1− pi(s)

pi(0)σ(s)

)2
is also bounded for s ≥ 0. Further, it

is a rational function with value 0 when s = 0, so

(
1− pi(s)

pi(0)σ(s)

)2

≤ Cs, ∀s ≥ 0.

which means that

I3 ≤ Cετ
∥∥un∥∥2

V
.

Now, we can get that

∥∥un∥∥2
H

=− c0τ
∥∥un∥∥2

V
+

1

2

∥∥un∥∥
H
+

1

2

∥∥un−1
∥∥2
H
− 1

2

∥∥un − un−1
∥∥2
H

+ τεC

m∑
i=1

∥∥un∥∥2
V
+ Cετ‖un−1 − un‖2H + Cετ

2‖un‖2V

+ Cετ
2
∥∥un∥∥2

V

For a given IMEX–RK scheme, ε can be fixed so that Cε is also a fixed value, which is non-related

to the time step τ and solution u. Then a small τ can guarantee that Cετ‖un−1 − un‖2H and Cετ
2
∥∥un∥∥2

V

are bounded by the negative terms. So finally we find

∥∥un∥∥2
H

≤
∥∥un−1

∥∥2
H
,

which agrees with our claimant.

Next, we shall derive an error estimate for the scheme.

Theorem 3.3.2. Suppose that Assumptions (P1)-(P3) are valid, u is the solution of 3.1, and un is the

solution of 3.11. We can then derive the following error estimate:

‖u(tn)−un‖H ≤ Cτk

(∫ tn

0

‖Ak+1u(s)‖H + ‖u(k+1)(s)‖H + ‖Ak+1u′(s)‖H ds+
k−1∑
l=0

∫ tn

0

‖Alf (k−l)(s)‖H ds

)
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when τ ≤ τ∗, where the constant τ∗ is related only to the scheme and β in equation (3.2), and not to u or

un.

Proof. To begin with, we shall examine the truncation error for our scheme. Let Un
∗ = {u(tn,i}mi=0 be

the exact solution. We define the local truncation error Rn as

Un
∗ = 1u(tn) + τA+DUn

∗ + τÂ+(LUn
∗ + Fn) +Rn. (3.19)

together with

Un = 1un + τA+DUn + τÂ+(LUn + Fn). (3.20)

Define en,i = u(tn,i)− un,i, and vector En be consisted with en,i. we can get

En = 1en + τA+DEn + τÂ+LEn +Rn.

Divide En into two vectors, such that

En
1 = 1en + τA+DEn

1 + τÂ+LEn
1 ,

En
2 = τA+DEn

2 + τÂ+LEn
2 +Rn.

Obviously En = En
1 + En

2 , and ‖z⊤En
1 ‖H ≤ ‖en‖H when τ < τ∗ by Theorem 3.3.1.

From equation (3.19), we can get

Rn = (I − τA+D − τÂ+L)Un
∗ − 1u(tn)− τÂ+F

n.

Substitute this into the relation of E2, we can get

En
2 = Un

∗ − (I − τA+D − τÂ+L)−1(1u(tn) + τÂ+F
n).

The Taylor expansion gives us that

Un
∗ = 1u(tn) +

k∑
l=1

1

l!
τ lclu(l)(tn) +O(τk+1).
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and

u(l)(tn) = (D + L)u(l−1)(tn) + f (l−1)(tn) = . . .

= (D + L)lu(tn) +
l−1∑
p=0

(D + L)l−1−pf (p)(tn).

Although A+D + Â+L can be non-self-adjoint and unbounded, the laws of finite products hold, so that

(I −X)−1 = (I +X + · · ·+Xk) + (I −X)−1Xk+1

where X can be (τA+D + τÂ+L).

Finally, the Taylor expansion of F is given by:

Fn = 1f(tn) +

k−1∑
l=1

1

l!
τ lclf (l)(tn) +O(τk).

Note that we only need the last element of E2, and the Assumptions (P3) guarantee that:

z⊤(A+D + Â+L)l1 =
1

l!
(D + L)l = 1

l!
Al

and

z⊤(A+D + Â+L)rÂ+c
l =

l!

(l + 1 + r)!
(D + L)r =

l!

(l + 1 + r)!
Ar.

Combining all the above equations, we observe that all the lower-order terms are canceled, so

z⊤E2 = Cτk+1

and

‖en+1‖ ≤‖en‖+ Cτk+1‖Ak+1u(tn)‖H + Cτk
∫ tn+1

tn
‖u(k+1)‖H ds

+ Cτk
k−1∑
l=0

∫ tn+1

tn
‖Alf (k−l)‖H ds,

where the constant C is related only to the scheme itself.
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Furthermore, we have

τ‖Ak+1u(tn)‖H =

∫ tn+1

tn
‖Ak+1u(s)‖Hds

+

∫ tn+1

tn
‖Ak+1u(tn)‖H − ‖Ak+1u(s)‖Hds

≤
∫ tn+1

tn
‖Ak+1u(s)‖Hds+ τ

∫ tn+1

tn
‖Ak+1u′(s)‖Hds.

As a result, if τ ≤ τ∗ which is introduced in Theorem 3.3.1, we can get

‖en‖ ≤‖e0‖+ Cτk
∫ tn

0

‖Ak+1u(s)‖Hds+ Cτk+1

∫ tn

0

‖Ak+1u′(s)‖Hds

+ Cτk
∫ tn

0

‖u(k+1)‖Hds+ Cτk
k−1∑
l=0

∫ tn

0

‖Alf (k−l)‖Hds.

If the exact solution and source term is bounded in (0,∞), then we can get the long time error estimate.

Here the constant C is only related to the scheme, and τ∗ is only related to the scheme and β in equation

(3.2). Neither of them are related to the source term f , the exact solution u, the numerical solution un, or

the mesh size τ .

Remark 3.3.1. Note that each possible combination of Assumption (P3) has appeared in the above proof

during the Taylor’s expansion, so the stage order Assumption (P3) is also necessary conditions.

3.4 Implicit-Explicit Runge–Kutta Methods for Semilinear Prob-

lems

In this section, we will extend IMEX-RK method to equation (1.1). Unlike the simple cut-off post-

processing used before, we first perform a modification on the potential term to ensure their solvability

on the stages, and then apply cut-off post-processing at the final stage of each step. Combined with [38],

we can show that IMEX-RK can preserve both the maximum bound and the original energy dissipation.
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To solve the Allen-Cahn equation (1.1), we begin with defining a modification nonlinear term f̂ as

f̂(v) =


f(v), if |v| ≤ α,

f ′(α)(v − α), if v > α,

f ′(−α)(v + α), if v < −α,

(3.21)

and consider the modified model

ut = ∆u+ f̂(u). (3.22)

Note that f(u) = f̂(u) for |u| ≤ α, thus the equation (1.1) and (3.22) share the same exact solution.

Moreover, since the modification is tangent cutoff of the original function, we can know that f ∈ H2(R).

The IMEX-RK method for solving equation (3.22) is


uni = un−1 + τ

∑m
j=0 aij∆u

nj + τ
∑m

j=0 âij f̂(u
nj) for i = 1, 2, . . . ,m,

E(τ)un−1 = un−1 + τ
∑m

i=0 bi∆u
ni + τ

∑m
i=0 b̂if̂(u

ni),

un = E(τ)un−1.

(3.23)

This scheme naturally defines a solution map E(τ) : un−1 7→ un. The map E(τ) satisfies the following

Lipschitz condition.

Theorem 3.4.1. The operator E(τ) defined in equation (3.23) satisfies that

‖E(τ)v − E(τ)w‖ ≤ (1 + Cτ)‖v − w‖

for all v, w ∈ L2(Ω). Here ‖ · ‖ refers to L2 norm.

Proof. Define ei as the vector with the (i+1)-th entry as 1 and others as 0. Let Un = [un,0, un,1, . . . ]⊤,

where un,i = e⊤i Un, and f̂(Un) = [f̂(un,0), f̂(un,1), . . . ]⊤. In vector form, we have:

Un = 1un−1 + τA∆Un + τÂf(Un),

and hence,

Un = (I − τA∆)−1
1un−1 + τ(I − τA∆)−1Âf̂(Un).
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Test the above realtion with ei, similar to the linear case we can get

uni = e⊤i (I − τA∆)−1
1un−1 + τe⊤i (I − τA∆)−1Âf̂(Un),

=: σi(−τ∆)un−1 + τ

i−1∑
j=0

pij(−τ∆)f̂(unj).

Define vi and wi as the stages corresponding to v and w. Similar to the linear case, σi and pij are also

bounded operators. We have the inequality

|vi − wi| ≤ |σi(v − w)|+ τ

i−1∑
j=0

∣∣∣pij (f̂(vj)− f̂(wj)
)∣∣∣ ≤ |v − w|+ CLτ

i−1∑
j=0

∣∣vj − wj
∣∣

Combining these inequalities for all i and tracing back to the first stage, we conclude:

‖E(τ)(v − w)‖ ≤ (1 + Cτ)‖v − w‖,

where the constant C is related to the scheme and Lipschitz constant of the source term.

Later we will show the consistency error of semilinear IMEX-RK method.

Theorem 3.4.2. Suppose that the Assumption (P1)-(P3) are valid for k ≥ 3, u is sufficiently smooth on

both space and time, then the operator E(τ) defined in equation (3.23) satisfies that

‖E(τ)u(tn−1)− u(tn)‖ ≤ Cτk+1, k = 1, 2, 3 (3.24)

for all n ≥ 1. Here ‖ · ‖ refers to L2 norm. Furthermore, in condition that

(b∗ · c)⊤A∗c =
1

8

works for all A∗ ∈ {A+, Â+}, b∗ ∈ {b+, b̂+}, equation (3.24) hold for k = 4. Here v · w means the

multiplication elementwisely.
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Proof. Equation (3.4) gives us that

Un − 1u(tn−1) = τA∆Un + τÂf̂(Un) = O(τ). (3.25)

and
Un − 1u(tn−1) = τ

(
A1∆u(tn−1) + Â1f̂(u(tn−1))

)
+ τA∆

(
Un − 1u(tn−1)

)
+ τÂ

(
f̂(Un)− 1f̂(u(tn−1))

)
= τu0t +O(τ2),

(3.26)

where u0t = A∆1u(tn−1) + Â1f(u(tn−1)).

Substitute equation (3.26) into itself again, we can derive that

Un − 1u(tn−1) = τ
(
A1∆u(tn−1) + Â1f̂(u(tn−1))

)
+ τA∆

(
Un − 1u(tn−1)

)
+ τÂ

(
f̂u
(
Un − 1u(tn−1)

)
+O(τ2)

)
= τu0t + τA∆ · τu0t + τÂf̂u · τu0t +O(τ3)

= τu0t + τ2u0tt +O(τ3),

(3.27)

where u0tt = A∆u0t + Âf̂uu
0
t .

Denote v·i as the i-th power elementwisely and pointwisely, then

Un − 1u(tn−1) = τ
(
A1∆u(tn−1) + Â1f̂(u(tn−1))

)
+ τA∆

(
Un − 1u(tn−1)

)
+ τÂ

(
f̂u
(
Un − 1u(tn−1)

)
+

1

2
f̂uu

(
Un − 1u(tn−1)

)·2
+O(τ3)

)
= τu0t + τA∆ ·

(
τu0t + τ2u0tt

)
+ τÂf̂u ·

(
τu0t + τ2u0tt

)
+ τÂ

1

2
f̂uu(τu

0
t )

·2 +O(τ4)

= τu0t + τ2u0tt + τ3u0ttt +O(τ4),

(3.28)
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where u0ttt = A∆u0tt + Âf̂uu
0
tt +

1
2 Âf̂uu(u

0
t )

·2. Similarily, we reached that

Un − 1u(tn−1) = τu0t + τ2u0tt + τ3u0ttt + τ4u0tttt +O(τ5), (3.29)

where u0tttt = A∆u0ttt + Âf̂uu
0
ttt + Âf̂uuu

0
t · u0tt + 1

6 Â(u
0
t )

·3. Test the above equations with em, and we

can get

E(τ)u(tn−1) = u(tn−1) + e⊤m
(
τu0t + τ2u0tt + τ3u0ttt + τ4u0tttt

)
+O(τ5),

where the RHS is only depend on u(tn−1). Assume that the exact solution u is smooth enough, and

compare it with the Taylor’s expansion, we can find that all the low-order terms disappeared, thus the

theorem is proved.

After proving consistency, the final convergence result follows naturally.

Corollary 3.4.1. Suppose that the Assumption (P1), (P2) and (P3) are valid for k ≥ 4, and (b∗ ·c)⊤A∗c =

1
8 works for all A∗ ∈ {Aσ, Âσ}, b∗ ∈ {bσ, b̂σ} if k = 4. The exace solution u of equation (1.1) is

sufficiently smooth on both space and time un is the solution of (3.23), then

‖un − u(tn)‖ ≤ Cτk. (3.30)

Proof. Combining the estimate of consistency error in Theorem 3.4.2 and the stability estimate in Theorem

3.4.1, we derive

‖un − u(tn)‖ = ‖E(τ)un−1 − u(tn)‖

≤ ‖E(τ)un−1 − E(τ)u(tn−1)‖+ ‖E(τ)u(tn−1)− u(tn)‖

≤ (1 + Cτ)‖un−1 − u(tn−1)‖+ Cτk+1.

(3.31)

This estimate, along with Grönwall’s inequality, completes the proof.

Remark 3.4.1. Since this is a single-step method, as what we have done in equation (2.3), we can build

a scheme that

un = min(max(E(τ)un−1,−α), α), (3.32)
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The exact solution will always meet the maximum bound condition, so

‖un − u(tn)‖ ≤ ‖E(τ)un−1 − u(tn)‖.

The rest part of the proof is the same to (3.31).

Remark 3.4.2. This analysis is consistent with the work by Fu and Yang [38], where they prove that

certain IMEX-RK schemes can maintain the energy dissipation law using a stabilizer. We have identified

schemes of first, second, and third order, demonstrating that a third-order IMEX-RK scheme can preserve

both the maximum bound principle and the energy dissipation law.

3.5 Construction andList of Implicit-Explicit Runge–Kutta Schemes

In this part we make a short introduction to how we find the table of IMEX-RK and list some qualified

IMEX-RK schemes.

In this section, we first provide a brief introduction to searching the IMEX Runge–Kutta table, fol-

lowed by some typical examples of IMEX Runge–Kutta schemes that satisfy Assumptions (P1)-(P3).

Our searching algorithm is based on undetermined coefficient method. The algorithm is also listed in

Algorithm 1. We aim to find a k-th order scheme in this subsection.

We note that for am-stage IMEX Runge–Kutta table, the total degree of freedoms is aboutm2, but the

number of equations is about 2k. Because the all possibilities of combination from b, b̂ and A, Â should

keep the relations. The number of stages will be far more than the scheme order.

However, when we focus on the implicit table A itself, the scheme is reduced to a DIRK scheme, and

the total number of relations is algebraic to k. In this case we choose a smallm fixed and find a candidate

A to the DIRK scheme, which is not difficult to achieve.

In fact, plenty of degree of freedoms are available in the DIRK table searching. Since ci is high order

in the stage order requirements, In Line 1 we fix it at the beginning. Then we solve A and b in Line 2 and

6. If there are other requirements on A, like σ(λ) > 0, we will test it here in Line 10.

What follows is to solve Â once A is generated in a small size. The current number of stages may not

be enough fulfill all requirements of the stages orders, so additional stages are necessary. Note that since

the number of stages is always far more than the scheme order for high order schemes, it is reasonable to
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add more stages.

To add more stages, we only need to repeat the last stage in the implicit table A. The scheme in Table

3.9 is an example for what we should do to add a stage. If we only focus on the implicit part, literally

we did nothing and all the stages order conditions and requirements on σ will not change, so we do not

need to retest any former conditions for they will be kept naturally, which is what we are doing in Line

19 and 24. However extra stages give us extra degree of freedoms so we can solve a larger system, the

unsolvable equations may turn to be solvable.

Last step is to is to search â which can be accessed by undetermined coefficient method, in Line 22.

Since we can always add extra stages, which will provide more degree of freedoms for solving, but will

not raise the requirements, it is reasonable to make a conjecture that there exist arbitrary high order IMEX

Runge–Kutta schemes.

The followings are some IMEX-RK schemes that satisfy our Assumption (P1)-(P3).

(i) First-order scheme The following Butcher tableau Tab.3.2 gives us a first order IMEXRK scheme.

This scheme agrees with Remark 3.4.2. In this example,

σ(λ) =
1

1 + λ
, ∀λ > 0.

(ii) Second-order scheme The following Butcher tableau Tab.3.3 gives us a second order IMEX RK

scheme.

in which γ = 1 +
√
2
2 , δ = 1− 1

2γ . This scheme agrees with Remark 3.4.2. In this example,

σ(λ) =
1 + (1 +

√
2)λ

(1 + (1 +
√
2/2)λ)2

, ∀λ > 0

(iii) Third-order scheme The following Butcher tableau Tab.3.4 gives us a third order IMEX Runge–

Kutta scheme.

This scheme does not agree with Remark 3.4.2. In this scheme,

σ(λ) =
16(48− 6λ2 + λ3)

3(4 + λ)4
, ∀λ > 0.
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Algorithm 1: Searching Algorithm for Qualified IMEX-RK Schemes
Input : Given order k
Output: A, Â, b, b̂, c

1 Choose one possible c withm = len(c), which is the number of the stages;
2 Try to solve b from b⊤cl = 1

l+1 ;
3 if b is not solvable then
4 m = m+ 1; Goto Line 1 for a new c;
5 end
6 Solve A from z⊤Ar+1cl = l!

(l+r+1)! with z
⊤A = b⊤ ;

7 if A is not solvable then
8 m = m+ 1; Goto Line 1 for a new c;
9 end
10 Evaluate σ(λ) = z⊤(1 + λA+)

−1
1;

11 if 0 < σ < 1 fails then
12 if 0 < σ < 1 fails too many times then // Ususlly, we do not need it
13 m = m+ 1;
14 end
15 Goto Line 1 for a new c;
16 end
17 Solve b̂ from the order relations with b̂⊤ = z⊤Â. ;
18 if b̂ is not solvable then
19 m = m+ 1; Duplicate the final stage of A and c; Insert a 0 before the last element of b;
20 Goto Line 17.
21 end
22 Solve Â from the order relations with b̂⊤ = z⊤Â. ;
23 if Â is not solvable then
24 m = m+ 1; Duplicate the final stage of A and c; Insert a 0 before the last element of b;
25 Goto Line 17.
26 end
27 Print A, Â, b, b̂, c
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1 1 1
1 1

Table 3.2: Butcher tableau for first order IMEX-RK

γ γ γ
1 1− γ γ δ 1− δ

1− γ γ δ 1− δ

Table 3.3: Butcher tableau for second order IMEX-RK

Although there are some negative coefficients in the numerator, it is still positive for all λ ≥ 0.

(iv) Third-order energy diminishing scheme

The following Butcher tableau Tab.3.5 gives us a third order IMEXRK scheme.

This scheme agrees with Remark 3.4.2. In this example,

σ(λ) =
1228800 + 33778560λ+ 55256268λ2 + 5250325λ3

1228800 + 35007360λ+ 89649228λ2 + 77600673λ3 + 21689019λ4
, ∀λ > 0

(v) Forth-order scheme for linear problem

The following Butcher tableau Tab.3.6 gives us an IMEXRK scheme which is fourth order for linear

problem and third order for semilinear problem.

This scheme does not agree with Remark 3.4.2. In this example,

σ(λ) =
75000− 7500λ2 + 1000λ3 + 225λ4

24(5 + λ)5
, ∀λ > 0.

Although there are some negative coefficients in the numerator, it is still positive for all λ ≥ 0.

(vi) Forth-order IMEX scheme for linear and semilinear problem

The following Butcher tableau Tab.3.7 gives us an IMEXRK scheme which is fourth order for linear

and semilinear problem.

Related coefficients are listed in Table 27. This scheme does not agree with Remark 3.4.2. In this

example,

σ(λ) =−
(
− 18533185137819λ5 + 245682733504208λ4 − 1917903570331840λ3
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1/4 1/4
1/2 1/4 1/4
3/4 −4/5 7/4 1/4
1 5/12 5/12 −1/12 1/4

5/12 5/12 −1/12 1/4

1/4 1/4
1/2 1/4 1/4
3/4 1 1/4 −1/2
1 5/6 −11/6 13/6 −1/6

5/6 −11/6 13/6 −1/6

Table 3.4: Butcher tableau for four-stage third-order IMEX Runge–Kutta scheme

3/5 3/5
3/2 15/32 33/32

19/20 2/5 −357/640 709/640
1 2825/756 −232/297 −6400/231 103/4

2825/756 −232/297 −6400/231 103/4

3/5 3/5
3/2 51/64 45/64
19/20 2/5 4841/11520 299/2304

1 103/342 125/378 −26/297 2000/4389
103/342 125/378 −26/297 2000/4389

Table 3.5: Butcher tableau for third order IMEX-RK

+ 4891758175886400λ2 + 9437315024592000λ− 61167782566800000
)

/
(
14794928512(9λ+ 25)(λ+ 7)2(λ+ 15)3

)
, ∀λ > 0.

Although there are some negative coefficients in the numerator, it is still positive for all λ ≥ 0.

3.6 Numerical Result

We consider the Stokes-Darcy coupled system described by Eqs. (3.3)-(3.4) in this example. Numerical

scheme (3.11) applied on this system is formulated as follows:



φn,0 = φn−1

φn,i = φn,0 + τ

i∑
j=1

aij(−A1)φn,j + τ

i∑
j=1

âij(Bun,j−1 + fD(tn,j−1)), i = 1, 2, · · · , s

φn = φn,s

(3.33)
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1
5

1
5

2
5

1
5

1
5

3
5

7
5 −1 1

5
4
5

3989
1025 − 3343

1025 − 31
1025

1
5

1 79
120 − 91

120
149
120 − 41

120
1
5

1 79
120 − 91

120
149
120 − 41

120 0 1
5

79
120 − 91

120
149
120 − 41

120 0 1
5

1
5

1
5

2
5

5299
30120

1357
6042

3
5

8681383
58516770

5413353
9752795 − 6051439

58516770
4
5 0 25905769

16101930 − 9808291
16101930 − 10113

50635
1 0 79

120 − 55873
32520

96299
32520 − 5863

6504
1 0 79

120 − 91
120

149
120 − 41

120
1
5

0 79
120 − 91

120
149
120 − 41

120
1
5

Table 3.6: Butcher tableau for fourth order IMEX-RK



un,0 = un−1

un,i = un,0 + τ

i∑
j=1

aij(−A2)un,j + τ

i∑
j=1

âij(−gB∗φn,j−1 + fS(tn,j−1)), i = 1, 2, · · · , s

un = un,s

(3.34)

which is a decoupled and linear scheme. We test temporal convergence of numerical schemes aforemen-

tioned.

Parameters are set ν = µ = κ = g = 1 for simplicity. Problem domain is set to be a unit square

centered at the origin. Darcy flow and Stokes flow occupy the upper half and lower half domain as shown

in Fig.3.1. To verify the temporal convergence order, we fix the spatial step size h = 1/100 and calculate

numerical solutions (φτn, uτn) with various τ and the convergence order is obtained as

order = log

(
‖wτ

n − w
τ/2
n ‖

‖wτ/2
n − w

τ/4
n ‖

)/
log(2) (3.35)

where w denotes either φ or u. In addition to second-order scheme described in Tab.3.3, we numeri-

cally test convergence order for four-stage third-order scheme and six-stage fourth-order scheme as well

described in Tab.3.9.
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1
7

1
7

2
7

1
7

1
7

11
25

1354
4375 − 104

4375
27
175

4
5 a41 a42 a43

9
25

13
15 a51 a52 a53 1 1

15
14
15 − 14605

25536 1 1
2

1
3 − 50399

127680
1
15

1 a71 a72 a73 a74 0 1
15

1
15

a71 a72 a73 a74 0 1
15

1
15

1
7

1
7

2
7

1
7

1
7

11
25 − 3229

8750 1 − 1671
8750

4
5 −1 â41 â42 â43
13
15 1 â51 â52 â53 â54
14
15 1 1

2
1
3 â63 â64 â65

1 â70 â71 â72 â73 â74 â75 â76
â70 â71 â72 â73 â74 â75 â76

Table 3.7: Butcher tableau for fourth order IMEX-RK

where the coefficients

â21 = 0.112.897320084 â22 = 0.2212436013249

â31 = 0.0875607487880 â32 = 0.3795156599067 â33 = 0.0329235913053

â41 = −0.0166666666667 â42 = 4.5354817628720

â43 = −7.3386840918385 â44 = 3.4865356622999

â51 = 15.0076923076923 â52 = −151.6742055202485

â53 = 266.9663261813719 â54 = −137.6176704347547 â55 = 8.1178574659391

â61 = −1.0372960372960 â62 = 4.4428904428904 â63 = −5.9195804195804

â64 = 4.0093240093240 â65 = −0.9324009324009 â66 = 4.370629370629

Results are shown in Tab.3.10 for the two-stage second-order scheme described in Tab.3.3 at tn =

0.08, and in Tables 3.12 and 3.13 for the four-stage third-order scheme Tab.3.4 at tn = 0.08 and six-stage

fourth-order scheme Tab.3.9 at tn− = 0.008, respectively. To verify the long-time convergence, we test

with the second-order schemes at tn = 10 and the results are shown in Table 3.11. Numerical experiments

confirm the proposed theorem.
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a41 24058589213/79084733000
a42 299597908/760430125
a43 −23336559/90382552
a51 −419174425120649204186119/79218920548212919110000
a52 477902525326525491346619/41132901053879784922500
a53 −558440160387285872007719/85556434192069952638800
a71 4922197/9687600
a72 −2268847/3936600
a73 3238175/4094064
a73 869063/6036120
â41 55740853326839983334621/27520768939834456977600
â42 −11060173572755944147541/14289630026452506507600
â43 2329344893911909455707/4246061493574459076544
â51 −71186087675929044223656193931944384573278473/3438510885083184524462404153200164172975000

â52 14268306999047363197901818351205461479990553/399215549486485350905095178799636834225000

â53 −164196843957237023227423093901438282094053/11625156801046453418356371606645424612632

â54 −2777877807409624755035963389/2652337211701823798398155000
â63 −1478910748534537278959/506708836650241118208
â64 29121578321788444001/11310465103800024960
â65 −10436070861733408099/18766993950008930304
â70 −12432250836521654063395/85826994234468729923442
â71 8194496564065915317284063497/9238417659398214088959296880
â72 −2996905844557888599918137227/3754072727815662246851353080
â73 13920174158309482913767468375/19521178184641443683627036016
â74 1389846140555607156290661143/5756244849317348778505408056
â75 84635598876295853750/14304499039078121653907
â76 1369093183594155319761/14304499039078121653907

Table 3.8: related coefficients in Table 3.7

3.7 Conclusion and Comments

In this chapter, we discuss the IMEX-RK schemes on linear and semilinear equations. We divide the oper-

ator into implicit part and explicit part, which can benifit us for both linear or semilianer cases. For linear

problem, like Stokes-Darcy equations, the division can decouple the system. By spectral decomposition,

we prove that the schemes have long time stability and give its convergence. In semilinear case, IMEX-

RK schemes avoid solving nonlinear systems. Combining existence analysis, we can build a framework

to build such schemes that hold both maximum bound preserving and original energy decay up to third

order.



3.7. CONCLUSION AND COMMENTS 77

1/6 1/6
1/3 1/6 1/6
1/2 3/10 1/30 1/6
2/3 47/30 −12/5 4/3 1/6
4/5 1/2 −1 4/3 −1/6 2/15
1 4/5 −3/2 2 −1/2 0 1/5

4/5 −3/2 2 −1/2 0 1/5

1/6 1/6
1/3 â21 â22
1/2 â31 â32 â33
2/3 â41 â42 â43 â44
4/5 â51 â52 â53 â54 â55
1 â61 â62 â63 â64 â65 â66

â61 â62 â63 â64 â65 â66

Table 3.9: Butcher tableau for six-stage fourth-order IMEX-RK

Table 3.10: Errors and convergence rates at tn = 0.08with h = 1/100 for two-stage second-order scheme
described in Tab.3.3.

τ ‖φτ − φτ/2‖ order ‖uτ − uτ/2‖ order
1/800 7.51e-07 - 6.35e-05 -
1/1600 2.05e-07 1.87 1.74e-05 1.87
1/3200 5.38e-08 1.93 4.57e-06 1.93
1/6400 1.38e-08 1.96 1.17e-06 1.96

Table 3.11: Errors and convergence rates at tn = 10.0with h = 1/100 for two-stage second-order scheme
described in Tab.3.3.

τ ‖φτ − φτ/2‖ order ‖uτ − uτ/2‖ order
1/400 5.23e-08 - 1.99e-08 -
1/800 1.42e-08 1.89 5.85e-09 1.77
1/1600 3.70e-09 1.94 1.60e-09 1.87
1/3200 9.45e-10 1.97 4.20e-10 1.93

Table 3.12: Errors and convergence rates at tn = 0.08 with h = 1/100 for four-stage third-order scheme
described in Tab.3.4.

τ ‖φτ − φτ/2‖ order ‖uτ − uτ/2‖ order
1/100 7.19e-08 - 6.27e-06 -
1/200 1.01e-08 2.84 8.78e-07 2.84
1/400 1.33e-09 2.92 1.16e-07 2.91
1/800 1.72e-10 2.96 1.50e-08 2.96

Table 3.13: Errors and convergence rates at tn = 0.008with h = 1/100 for six-stage fourth-order scheme
described in Tab.3.9

τ ‖φτ − φτ/2‖ order ‖uτ − uτ/2‖ order
1/250 1.33e-07 - 1.21e-04 -
1/500 5.58e-09 4.58 1.96e-06 5.95
1/1000 3.40e-10 4.04 1.15e-07 4.09
1/2000 2.12e-11 4.00 7.17e-09 4.01



Chapter 4

Robust Convergence of Parareal

Algorithms with Arbitrarily

High-order Fine Propagators

The main focus of this part is to study the convergence of a class of parareal solver for the parabolic

problems. Specifically, we let T > 0, u0 ∈ H, and consider the initial value problem of seeking u ∈

C((0, T ];D(A)) ∩ C([0, T ];H) satisfying


u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = u0,

(4.1)

whereA is a positive definite, selfadjoint, linear operator with a compact inverse, defined in Hilbert space

(H, (·, ·)) with domain D(A) dense in H . Here u0 ∈ H is a given initial condition and f : [0, T ] → H

is a given forcing term. Throughout this part, ‖ · ‖ denotes the norm of the spaceH .

The parareal algorithm is defined by using two time propagators, G and F , associated with the large

step size ∆T and the small step size ∆t respectively, where we assume that the ratio J = ∆T/∆t is

an integer greater than 1. The fine time propagator F is operated with small step size ∆t in each coarse

sub-interval parallelly, after which the coarse time propagator G is operated with large step size ∆T se-
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quentially for corrections. In general, the coarse propagator G is assumed to be much cheaper than the

fine propagator F . Therefore, throughout this part, we fix G to the backward-Euler method and study

the choices of F . Then a natural question arises related to convergence of the parareal algorithm. For

parabolic type problems, in the pioneer work [7], Bal proved a fast convergence of the parareal method

with a strongly stable coarse propagator and the exact fine propagator, provided some regularity assump-

tions on the problem data. The analysis works for both linear and nonlinear problems. This convergence

behavior is clearly observed in numerical experiments, see e.g. Figure 4.2. However, without those reg-

ularity assumptions, the convergence observed from the empirical experiments will be much slower than

expected, cf. Figure 4.3. See also some rigorous analysis in [27, 105, 37].

This interesting phenomenon motivates the current work, where we aim to study the convergence

of parareal algorithm which is expected to be robust in the case of nonsmooth / incompatible problem

data, that is related to various applications, e.g., optimal control, inverse problems, and stochastic models.

There have existed some case studies. In [82], Mathew, Sarkis and Schaerer considered the backward

Euler method as the fine propagator and proved the robust convergence of the parareal algorithm with a

convergence factor 0.298 (for all J ≥ 2); see also [41, 106] for some related discussion. In [115], Wu

showed that the convergence factors for the second-order diagonal implicit Runge–Kutta method and a

single step TR/BDF2 method (i.e., the ode23tb solver for ODEs in MATLAB) are 0.316 (with J ≥ 2) and

0.333 (with J ≥ 2), respectively. These error bounds might be slightly improved by increasing J∗. See

also [116] for the analysis for a third-order diagonal implicit Runge–Kutta method with a convergence

factor 0.333 (J∗ = 4). For fourth-order Gauss–Runge–Kutta integrator, in [116] Wu and Zhou showed

that the threshold depends on both the largest eigenvalue of operator A and the step size ∆t. Note that

the eigenvalues of A may approach infinity, e.g. A = −∆ with homogeneous boundary conditions.

Therefore, this kind of integrators might not be suitable for the parareal algorithm.

Then a natural question arises: in what case there exists a threshold J∗ > 0 (independent of step

sizes ∆T , ∆t, terminal time T , problem data u0 and f , as well as the distribution of spectrum of the

elliptic operator A), such that for any J ≥ J∗, the parareal algorithm for solving the parabolic equation

(4.1) converges robustly? Our study provides a positive answer to this question: if the fine propagator is

strongly stable, in sense that the stability function satisfies |r(−∞)| ∈ [0, 1), then there must exist such

a positive threshold J∗ so that for all J ≥ J∗ the parareal algorithm converges linearly with convergence

factor close to 0.3. The convergence is robust even if the initial data is nonsmooth or incompatible with
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boundary conditions. Noting that all L-stable Runge–Kutta schemes satisfy that condition, so the fine

propagator can be arbitrarily high-order. As examples, we analyzed three popular L-stable schemes, i.e.,

two-, three-, four-stage Lobatto IIIC schemes. We show that for all these cases the parareal algorithm

converges linearly with factor less than 0.31 and J∗ = 2. Our theoretical results are fully supported by

numerical experiments.

The rest of the chapter is organized as follows. In Section 4.1, we introduce singe step integrators and

parareal algorithms for solving the parabolic problem. Then we show the convergence of the algorithm in

Section 4.2 by using the spectrum decomposition. Moreover, in Section 4.3, we present case studies on

three popular L-stable Runge–Kutta schemes, and show a sharper estimate for the threshold J∗. Finally,

in Section 4.4, we present some numerical results to illustrate and complement the theoretical analysis.

4.1 Single-Step Methods and Parareal Algorithm

In this section, we present the basic setting of the single step time stepping methods for solving the

parabolic equation (4.1) and the parareal algorithm. See more detailed discussion in the monograph [110,

Chapter 7-9] and the comprehensive survey paper [40].

4.1.1 Single-Step Integrators for Solving Parabolic Equations

To begin with, we consider the time discretization for the parabolic equation (4.1). We split the interval

(0, T ) into N subintervals with the uniform mesh size ∆t = T/N , and set tn = n∆t, n = 0, 1, . . . , N .

Then a framework of a single step scheme approximating u(tn) reads:

un+1 = r(−∆tA)un +∆t

m∑
i=1

pi(−∆tA)f(tn + ci∆t), for all 0 ≤ n ≤ N − 1, (4.2)

Here, r(λ) and {pi(λ)}mi=1 are rational functions and ci are distinct real numbers in [0, 1]. Throughout

this thesis, we assume that the scheme (4.2) satisfies the following assumptions.

(P1) |r(−λ)| < 1 and |pi(−λ)| ≤ c, for all i = 1, . . . ,m, uniformly in ∆t and λ > 0. Besides, the

numerator of pi(λ) is of lower degree than its denominator.
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(P2) The time stepping scheme (4.2) is accurate of order q in sense that

r(−λ) = e−λ +O(λq+1), as λ→ 0.

and for 0 ≤ j ≤ q

m∑
i=1

cjipi(−λ)−
j!

(−λ)j+1

(
e−λ −

j∑
ℓ=0

(−λ)ℓ

`!

)
= O(λq−j), as λ→ 0.

(P3) The rational function r(λ) is strongly stable in sense that |r(−∞)| < 1.

Remark 4.1.1. Condition (P3) is essential for the convergence of parareal iteration. If |r(∞)| = 1, e.g.,

Crank-Nicolson method and implicit Runge-Kutta methods of Gauss type, the parareal method converges

only if the eigenvalues of A is bounded from above (which is not true for parabolic equations) and the

ratio between the coarse step size and the fine step size is sufficiently large (depending on the upper bound

of eigenvalues of A). Besides, this condition is also important in case that problem data is nonsmooth,

e.g., u0 ∈ H . Time stepping schemes violating this condition may lose the optimal convergence rate in

the nonsmooth data case [110, Chapter 8].

Practically, it is convenient to choose pi(λ) that share the same denominator of r(λ):

r(λ) =
a0(λ)

g(λ)
, and pi(λ) =

ai(λ)

g(λ)
, for i = 1, 2, . . . ,m,

where ai(λ) and g(λ) are polynomials. Then the integrator (4.2) could be written as

g(−∆tA)un+1 = a0(−∆tA)un +∆t

m∑
i=1

ai(−∆tA)f(tn + ci∆t), for all 1 ≤ n ≤ N.

See e.g. [110, pp. 131] for the construction of such rational functions satisfying (P1)-(P3).

Under those conditions, there holds the following error estimate for the time stepping scheme (4.2).

The proof is given in [110, Theorems 7.2 and 8.3].

Lemma 4.1.1. Suppose that the Conditions (P1)-(P3) are fulfilled. Let u(t) be the solution to parabolic
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equation (4.1), and un be the solution to the time stepping scheme (4.2). Then there holds

‖un − u(tn)‖ ≤ c (∆t)q
(
(tn)

−q‖u0‖+ tn
q−1∑
ℓ=0

sup
s≤tn

‖Aq−ℓf (ℓ)(s)‖+
∫ tn

0

‖f (q)(s)‖ ds
)
,

provided that v ∈ H , f (ℓ) ∈ C([0, T ];Dom(Aq−ℓ) with 0 ≤ ` ≤ q − 1 and f (q) ∈ L1(0, T ;H) for all

` < q.

Remark 4.1.2. Lemma 4.1.1 indicates that, under Conditions (P1)-(P3), the solution of the time stepping

scheme (4.2) converges to the exact solution with order q provided that the source term f and initial

condition u0 satisfy certain compatibility conditions. For example, if we consider the parabolic equation

where A = −∆ with homogeneous Dirichlet boundary condition, it requires (−∆)ℓf (q−ℓ) = 0 on the

boundary ∂Ω for 0 ≤ ` ≤ q. In order to avoid the restrictive compatibility conditions, we shall assume

that the time discretization scheme (4.2) is strictly accurate of order q in sense that

m∑
i=1

cjipi(−λ)−
j!

(−λ)j+1

(
r(−λ)−

j∑
ℓ=0

(−λ)ℓ

`!

)
= 0, for all 0 ≤ j ≤ q − 1.

It is well-known that a single step method with a givenm ∈ Z+ could be accurate of order 2m (Gauss–

Legendre method) [31, Section 2.2], but at most strictly accurate of orderm+ 1 [9, Lemma 5].

Remark 4.1.3. The error estimate in Lemma 4.1.1 could be slightly improved if the time integrator is

L-stable, i.e. r(−∞) = 0; see e.g., [110, Theorem 7.2].

4.1.2 Parareal Algorithm

Next, we state the parareal solver for the single step scheme (4.2). Let∆T = J∆t, with a positive integer

J ≥ 2, be the coarse step size. Without loss of generality, we assume thatNc = T/∆T is an integer, and

let Tn = n∆T Then, two numerical propagators G and F are assigned to the coarse and fine time grids,

where G is usually a low-order and inexpensive numerical method (such as backward Euler scheme), and

F is given by the single step integrator (4.2). Specifically, for v ∈ H and f ∈ C([0, T ];H), letting I

denote the identity operator, we define the coarse and finer propagator as

G(Tn,∆T, v, f) = (I +∆TA)−1(v +∆Tf(Tn)).
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and

F(tn,∆t, v, f) = r(−∆tA)v +∆t

m∑
i=1

pi(−∆tA)f(tn + ci∆t).

respectively. Then, the parareal solver is described in Algorithm 2.

Algorithm 2: Parareal solver for the single step scheme (4.2)
Input : u0, F , G,K, Nc, J
Output: Un

K

1 U0
0 = u0;

2 for n = 0, 1, ..., Nc − 1 do
3 Un+1

0 = G(Tn,∆T, Un
0 , f);

4 end
5 for k = 0, 1, . . . ,K − 1 do
6 for n = 0, 1, ..., Nc − 1 do parallel
7 for j = 0, 1, 2, . . . , J − 1 do
8 Ũn,j+1 = F(Tn + j∆t,∆t, Ũn,j , f) with initial value Ũn,0 = Un

k ;
9 end
10 Ũn+1 = Ũn,J ;
11 end
12 for n = 0, 1, ..., Nc − 1 do
13 Un+1

k+1 = G(Tn,∆T, Un
k+1, f) + Ũn+1 − G(Tn,∆T,Un

k , f)

14 end
15 end

The aim of this chapter is to show that the iterative solution Un
k , generated by the parareal algorithm,

linearly converges to the exact time stepping solution unJ of the single step integrator (4.2) with fine time

step∆t, i.e.,

max
1≤n≤N

‖Un
k − unJ‖ ≤ c γk, (4.3)

with some convergence factor γ strictly smaller than 1. We shall prove that there exists a positive threshold

J∗, independent of ∆T , ∆t and the upper bound of spectrum of A, such that if J ≥ J∗, then (4.3) is true

with γ ≈ 0.3, under conditions (P1)-(P3).
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4.2 Convergence Analysis

Next, we briefly test the convergence factor of parareal iteration. Taking comparision with the exact time

stepping solution in (4.2), we arrive at

Un+1
k+1 − u(n+1)J = (I +∆TA)−1

[
(Un

k+1 − unJ)− (Un
k − unJ)

]
+ F (Tn + (J − 1)∆t,∆t, Ũn,J−1, f)− F (Tn + (J − 1)∆t,∆t, unJ−1, f))

= (I +∆TA)−1
[
(Un

k+1 − unJ)− (Un
k − unJ)

]
+ r(−∆tA)(Ũn,J−1 − u(n+1)J−1)

= · · ·

= (I +∆TA)−1
[
(Un

k+1 − unJ)− (Un
k − unJ)

]
+ r(−∆tA)J(Ũn,0 − unJ)

= (I +∆TA)−1
[
(Un

k+1 − unJ)− (Un
k − unJ)

]
+ r(−∆tA)J(Un

k − unJ),

For the sake of simplicity, we define En
k = Un

k − unJ and rewrite the above equation as

En+1
k+1 = (I +∆TA)−1(En

k+1 − En
k ) + r(−∆tA)JEn

k

Recall that the operatorA is a positive definite, selfadjoint, linear operator with a compact inverse, de-

fined in Hilbert space (H, (·, ·)). Then by the spectral theory, A has positive eigenvalues {λj}∞j=1, where

0 < λ1 ≤ λ2 ≤ . . . and λj → ∞, and the corresponding eigenfunctions {φj}∞j=1 form an orthonormal

basis of the Hilbert space H . Then, letting enk,j = (En
k , φj), by means of spectrum decomposition, we

derive

en+1
k+1,j =

enk+1,j − enk,j
1 + ∆Tλj

+ r(−∆tλj)
Jenk,j .

By letting dj = ∆Tλj , we have

en+1
k+1,j = (1 + dj)

−1enk+1,j + (r(−dj/J)J − (1 + dj)
−1)enk,j .
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We apply the recursion and use the fact that e0k+1,j = 0, and hence obtain

en+1
k+1,j = (r(−dj/J)J − (1 + dj)

−1)enk,j + (1 + dj)
−1enk+1,j

= (r(−dj/J)J − (1 + dj)
−1)
(
enk,j + (1 + dj)

−1en−1
k,j

)
+ (1 + dj)

−2en−1
k+1,j

= . . .

= (r(−dj/J)J − (1 + dj)
−1)
(
enk,j + (1 + dj)

−1en−1
k,j + · · ·+ (1 + dj)

−(n−1)e1k,j

)
.

Now taking the absolute value on the both sides yields

|en+1
k+1,j | ≤|r(−dj/J)J − (1 + dj)

−1| · (1 + (1 + dj)
−1 + · · ·+ (1 + dj)

−(n−1)) max
1≤n≤N

|enk,j |

≤ |r(−dj/J)J − (1 + dj)
−1|

1− (1 + dj)−1
max

1≤n≤N
|enk,j |

=

∣∣∣∣ (1 + dj)r(−dj/J)J − 1

dj

∣∣∣∣ max
1≤n≤N

|enk,j |

≤ sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ max
1≤n≤N

|enk,j |.

(4.4)

If the the leading factor is strictly smaller than one, i.e.,

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ γ < 1, (4.5)

then enk converges to zero linearly with a factor (smaller than) γ, and hence the parareal iteration converges

linearly to the time stepping solution (4.2) in sense of (4.3).

Our convergence analysis in this and next sections heavily depend on the constant κα defined by

κα := sup
s∈(0,∞)

∣∣∣∣ (1 + s)e−αs − 1

s

∣∣∣∣ , for α ∈ [0, 2]. (4.6)

To begin with, we establish a simple upper bound for the constant κα.

Lemma 4.2.1. Let α ∈ [0, 2], and κα be the constant defined in (4.6). Then there holds

κα ≤


eα−2, α ∈ [1, 2];

max(eα−2, 1− α), α ∈ [0, 1).
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Proof. First of all, we show the claim that

(1 + s)e−αs − 1

s
≥ −eα−2. (4.7)

To this end, we define the auxiliary function

g(s) = (1 + s)e−αs + eα−2s.

Then a simple computation yields

g′(s) = (1− α− αs)e−αs + eα−2 and g′′(s) = (α2 + α2s− 2α)e−αs.

It is easy to observe that g′′(s) admits a single root at s = (2− α)/α, and

g′(x) ≥ g′((2− α)/α) = 0.

Therefore g(s) is increasing in [0,∞). As a result, g(s) ≥ g(0) = 1, and hence

(1 + s)e−αs − 1 ≥ −eα−2s ∀ s ≥ 0,

which implies (4.7). Moreover, for α ≥ 1, we observe that

1 + s ≤ es ≤ eαs ∀s ≥ 0,

which immediately leads to (1 + s)e−αs − 1 ≤ 0 for all s ≥ 0. This completes the proof for the desired

results in case that α ∈ [1, 2].

Now we turn to the case that α ∈ [0, 1). Let κ∗α = max{eα−2, 1− α} and define

g(x) = (1 + s)e−αs − κ∗αs.
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Then the simple computation yields

g′(s) = (1− α− αs)e−αs − κ∗α and g′′(s) = (α2 + α2s− 2α)e−αs.

Noting that g′(0) = 1−α− κ∗α ≤ 0, g′(∞) = −κ∗α < 0 and g′((2−α)/α) ≤ 0. These imply g′(s) ≤ 0

and hence g is decreasing function in [0,∞). Therefore g(s) ≤ g(0) = 1, which further implies

(1 + s)e−αs − κ∗αs ≤ 1.

This leads to the desired assertion for the case that α ∈ [0, 1).

Lemma 4.2.1 only provides a rough upper bound for κα. In fact, for a fixed α we can further improve

the upper bound via a more careful computation. In Figure 4.1, we numerically compute the constant κα

for α ∈ [0, 2] and plot those values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

exact 

upper bound in Lemma 3.1

Figure 4.1: Plot of κα defined in lemma 4.2.1.

The next lemma provides a sharper estimate for κ1.

Lemma 4.2.2. Let κα be the constant defined in (4.6). Then κ1 ≈ 0.2984.

Proof. To show the sharp estimate, we note that for g(s) = 1− (1+s)e−s, there holds g′(s) = se−s ≥ 0

and g(0) = 1. Therefore g(s) ≥ 0 for all s ∈ (0,∞). This further implies ψ(s) = (1−(1+s)e−s)/s ≥ 0

for s ∈ (0,∞).

Meanwhile, we note that

ϕ(s) := s2esψ′(s) = s2 + s+ 1− es.

By checking the monotonicity, it is easy to verify that ϕ(s) has a unique root, denoted by s∗, in (0,∞).
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It further implies the function ψ(s) achieves its maximum at s∗, i.e., κ1 = ψ(s∗). Finally, the fixed-point

iteration sk+1 = ln(s2k+sk+1) and the contraction mapping theorem for s ∈ [1.5, 2] provide s∗ ≈ 1.793,

and hence κ1 ≈ 0.2984.

Now we state our main theorem which verifies the desired result (4.5) with γ ≈ 0.3.

Theorem 4.2.1. Let conditions (P1)-(P3) hold valid. Then there exists a threshold J∗ > 0 such that for

all J ≥ J∗

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.3,

Proof. First of all, we aim to show that

lim
J→∞

sup
s≥0

(1 + s)

s

∣∣r(−s/J)J − e−s
∣∣ = 0. (4.8)

For a given δ > 0, for any s > δ, it is obvious that (1 + s)/s is bounded by a constant C(δ). Meanwhile,

note that conditions (P1)-(P3) are fullfilled. Then by means of the nonsmooth data error estimate [110,

Theorem 7.2], there holds ∣∣r(−s/J)J − e−s
∣∣ ≤ cJ−q,

where c is independent of s. Then we derive

lim
J→∞

sup
s>δ

(1 + s)

s

∣∣r(−s/J)J − e−s
∣∣ = 0.

For 0 < s ≤ δ, conditions (P1) and (P2) imply

(1 + s)

s

∣∣r(−s/J)J − e−s
∣∣

=
(1 + s)

s
|r(−s/J)− e−s/J |

∣∣∣∣∣
J−1∑
i=0

r(−s/J)ie−(J−1−i)s/J

∣∣∣∣∣
≤ (1 + s)

s
· C(α, δ)

( s
J

)q+1

· J

≤ C(α, δ)J−q.

Therefore we arrive at

lim
J→∞

sup
0<s≤δ

(1 + s)

s

∣∣r(−s/J)J − e−s
∣∣ = 0,
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which completes the proof of the (4.8). This together with Lemma 4.2.2 implies that

lim
J→∞

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ = κ1 < 0.3,

which completes the proof of the lemma.

Next, using Theorem 4.2.1, we are able to show the linear convergence of the parareal iteration 2.

Theorem 4.2.2. Let conditions (P1)-(P3) be fullfilled and the data regularity in Lemma 4.1.1 hold valid.

Let un be the solution to the time stepping scheme (4.2), andUn
k be the solution obtained from the parareal

algorithm 2. Then there exists a threshold J∗ > 0 such that for all J ≥ J∗, we have

max
1≤n≤Nc

‖Un
k − unJ‖ ≤ cγk with γ = 0.3.

Proof. In Algorithm 2, the initial guess Un
0 is obtained by the coarse propagator, i.e., the backward Euler

scheme. Then Lemma 4.1.1 (with q = 1) implies the estimate

‖Un
0 − unJ‖ ≤ ‖Un

0 − u(Tn)‖+ ‖u(Tn)− unJ‖

≤ c
(
(∆T )(Tn)

−1
+ (∆t)(tnJ)

−1) ≤ cn−1.

(4.9)

Let En
k = Un

k − unJ and enk,j = (En
k , φj). The the relation (4.4) and Theorem 4.2.1 imply

sup
1≤n≤Nc

‖En
k ‖2 ≤

∞∑
j=1

sup
1≤n≤Nc

|enk,j |2 ≤ γ2
∞∑
j=1

sup
1≤n≤Nc

|enk−1,j |2

≤ · · · ≤ γ2k
∞∑
j=1

sup
1≤n≤Nc

|en0,j |2

with γ = 0.3. This together with the estimate sup1≤n≤Nc
|en0,j |2 ≤

∑Nc

n=1 |en0,j |2 leads to

sup
1≤n≤Nc

‖En
k ‖2 ≤ cγ2k

∞∑
j=1

Nc∑
n=1

|en0,j |2 ≤ cγ2k
Nc∑
n=1

‖En
0 ‖2 ≤ cγ2k

Nc∑
n=1

n−2 ≤ cγ2k,

where in the second last inequality we apply the estimate (4.9). This completes the proof of the theorem.
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Remark 4.2.1. Theorem 4.2.2 provides an useful upper bound of the convergence factor for all single

step integrators (satisfying (P1)-(P3)), which might not be sharp for specific one. For example, in [82,

Lemma 4.3], Mathew, Sarkis and Schaerer considered the backward Euler method and proved that the

convergence factor of the Parareal algorithm is around 0.298 (with J∗ = 2). In [115], Wu showed that

convergence factors are 0.316 (with J∗ = 2) and 0.333 (with J∗ = 2) for the second-order diagonal

implicit Runge–Kutta method and a single step TR/BDF2 method (i.e., the ode23tb solver for ODEs in

MATLAB), respectively. These error bounds might be slightly improved by increasing J∗. See also [116]

for the analysis for a third-order diagonal implicit Runge–Kutta method with a convergence factor 0.333

and J∗ = 4.

Remark 4.2.2. Theorem 4.2.2 only provides the existence of the threshold J∗ without any upper bound

estimate. It is obvious that a huge J∗ may destroy the parallelism of the algorithm. Then a question arise

naturally: is it possible to find J∗ for a given scheme satisfying conditions (P1)-(P3)? This is the focus of

Section 4.3.

4.3 Case Studies for Several High-Order Single-Step Integrators

In this section, we shall study some popular single step methods. As we mentioned in Remark 4.2.2,

Theorem 4.2.2 did not provide a sharp estimate for the threshold J∗. In fact, there is no universal estimate

for all single step methods. Fortunately, for any given single step integrator satisfying conditions (P1)-

(P3) and fixed convergence rate γ > 0.2984, we have a regular routine to find a sharper estimate for

J∗.

We consider three time-stepping methods, namely the the two-, three-, four-stage Lobatto IIIC meth-

ods, which are respectively second-, fourth- and sixth-order accurate, to the initial and boundary value

problem (4.1). For the reader’s convenience, we present the Butcher tableaus of the two-, three-, four-stage

Lobatto IIIC methods, respectively,

1
2 − 1

2 0

1
2

1
2 1

1
2

1
2

=:
Oι c

b⊤
(4.10)
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,

1
6 − 3

1
1
6 0

1
6

5
12 − 1

12
1
2

1
6

2
3

1
6 1

1
6

2
3

1
6

=:
Oι c

b⊤
(4.11)

and
1
12 −

√
5

12

√
5

12 − 1
12 0

1
12

1
4

10−7
√
5

60

√
5

60
1
2 −

√
5

10

1
12

10+7
√
5

60
1
4 −

√
5

60
1
2 +

√
5

10

1
12

5
12

5
12

1
12 1

1
12

5
12

5
12

1
12

=:
Oι c

b⊤
. (4.12)

Let us also briefly recall some well-known facts about Lobatto IIIC; for details we refer to [114].

Thesemethods can be viewed as discontinuous collocationmethods. The order of them-stage Lobatto

IIIC methods is q = 2m− 2. In particular, the methods are algebraically stable and L-stable, that makes

them suitable for stiff problems. The stability functions r,

r(z) := 1 + zb⊤(I − zOι)−1
1 with 1 := (1, . . . , 1)⊤ ∈ Rq,

is given by the (m−2,m)-Padé approximation to ez and vanishes at infinity, i.e., r(∞) = 1−bTOι−1
1 =

0.Note that the computational cost of implicit Runge-Kutta methods increases fast with the stage number,

and we refer to [10, 64, 59] and the reference therein for some efficient implementations.

The following argument highly depends on the upper bound for the constant κα defined in (4.6). From

Figure 4.1, we observe that Lemma 4.2.1 gives an sharp estimate for κα for α < 0.7, while the estimate

for α > 1 could be further improved. The next lemma provides an estimate for α = 1.02, which is useful

in the analysis of convergence rate.

Lemma 4.3.1. Let κα be the constant defined in (4.6). Then κ1.02 ≈ 0.3078 < 0.31.

Proof. With β = 1.02 ≥ 1 and ψ(s) = (1+s)e−βs−1
s , we observe that ψ(0+) = 1 − β and ψ(∞) = 0.

Meanwhile, since e−βs ≤ e−s ≤ (1 + s)−1 for s ≥ 0, we derive that ψ(s) ≤ 0. Now we intend to show
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that ψ′(s) admits a unique root in (0,∞), denoted as x∗. Then κβ = ψ(x∗). Noting that

ψ′(s) =
1− (1 + βs+ βs2)e−βs

s2
,

it suffices to show that g(s) = 1− (1 + βs+ βs2)e−βs has a unique root in (0,∞). It is straightforward

to see that the function

g′(s) = (−2 + β + βs)βse−βs

admits a unique root in (0,∞). Then by the fact that g(0) = 0 and Rolle’s theorem, we conclude that g

has at most one root in (0,∞). Meanwhile, we observe ψ′(1) = 1 − (1 + 2β)e−β ≈ −0.0962 < 0 and

ψ′(2) = 1−(1+6β)e−2β

4 ≈ 0.01855 > 0. Therefore, there exists a unique root of ψ′ in (0,∞), named as

x∗, which lies in (1, 2). Then the fixed-point iteration sk+1 = ln(βs2k + βsk + 1)/β and the contraction

mapping theorem for s ∈ [1.5, 2] provide s∗ ≈ 1.715, and hence κβ = f(x∗) ≈ 0.3078 ≤ 0.31.

Proposition 4.3.1. Let un be the solution to the time stepping scheme (4.2) using the two-stage Lobatto

IIIC method (4.10), and Un
k be the solution obtained from the parareal algorithm 2. Then for all J ≥ 2,

there holds

max
1≤n≤Nc

‖Un
k − un‖ ≤ cγk with γ = 0.31.

Proof. It suffices to show that for any J ≥ 2, there holds

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31, where r(−s) = 2

s2 + 2s+ 2
. (4.13)

To this end, we define α = 0.69 and β = 1.02. Then Lemma 4.2.1 implies that κα ≤ 1 − 0.69 = 0.31,

and meanwhile Lemma 4.3.1 indicates κβ ≤ 0.31.

Next, we aim to show that e−βs ≤ r(−s) ≤ e−αs for all s ∈ (0, s∗) with s∗ = 3.2. First of all, using

the fact that 2
s2+2s+2 ≥ e−s ≥ e−βs for all s > 0, we derive the first inequality e−βs ≤ r(−s). Then we

turn to the second inequality r(−s) ≤ e−αs, equivalent to g(s) := 2eαs − (s2 + 2s+ 2) ≤ 0 in (0, s∗).

Noting that g′′(s) = 2α2eαs − 2, which admits a unique root at − 2 lnα
α . Meanwhile, we observe that

g′′(s) < 0 in (0,− 2 lnα
α ), and g′′(s) > 0 in (− 2 lnα

α ,∞). Besides, since g′
(
− 2 lnα

α

)
= 4 lnα+2−2α

α < 0

and g′(0) = 2α − 2 < 0, we conclude that g′(s) < 0 in (0,− 2 lnα
α ), and g′(s) has a unique root in

(− 2 lnα
α ,∞). Moreover, the facts g′(2) ≈ −0.5 < 0 and g′(3) ≈ 2.9 > 0 implies that there exists a
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constant s1 ∈ (2, 3), s.t. g′(s1) = 0, and g′(s) < 0 in (0, s1), g′(s) > 0 in (s1,∞). Then we note that

g(s∗) = −0.445 < 0 and conclude that g(s) := 2eαs − (s2 + 2s + 2) ≤ 0 in (0, s∗), which implies

r(s) ≤ e−αs in (0, s∗). As a result, we arrive at e−βs ≤ r(−s/J)J ≤ e−αs for all s ∈ (0, Js∗) which

implies

sup
s∈(0,Js∗)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31.

Besides, we observe the fact that

sup
(s∗,∞)

∣∣∣ 2

s2 + 2s+ 2

∣∣∣ = ∣∣∣ 2

s2∗ + 2s∗ + 2

∣∣∣ ≈ 0.1073 < 0.11.

Then we derive for s ∈ (Js∗,∞) and J ≥ 2

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 1 + s

s
|r(−s/J)J |+ s−1 ≤ 1 + Js∗

Js∗
(0.11)J + (Js∗)

−1

≤ 1 + 6.4

6.4
(0.11)2 + (2× 3.2)−1 ≈ 0.1702 ≤ 0.31.

This completes the proof of (4.13).

The argument could be further extended to the high-order time stepping scheme, e.g., 3- or 4-stage

Lobatto IIIC method. This result is given in the following proposition.

Proposition 4.3.2. Let un be the solution to the time stepping scheme (4.2) using the three-stage Lobatto

IIIC method (4.11) or the four-stage Lobatto IIIC method (4.12), and Un
k be the solution obtained from

the parareal algorithm 2. Then for all J ≥ 2, there holds

max
1≤n≤Nc

‖Un
k − un‖ ≤ cγk with γ = 0.31.

Proof for the 3-stage Lobatto IIIC scheme (4.11):

Similar to the proof of proposition 4.3.1, we aim to show that for any J ≥ 2

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31, where r(−s) = 24− 6s

s3 + 6s2 + 18s+ 24
. (4.14)

Letting α = 0.69 and β = 1.02, Lemmas 4.2.1 and 4.3.1 implies that κα ≤ 1 − 0.69 = 0.31 and

κβ ≤ 0.31, respectively.
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Next, we show the claim that e−βs ≤ r(−s) ≤ e−αs for all s ∈ (0, s∗) with s∗ = 2. To begin with,

we shall prove that r(−s) > e−βs for all s ∈ (0,∞), which is equivalent to

ψ(s) = eβs(−6s+ 24)− (s3 + 6s2 + 18s+ 24) > 0 ∀ s ∈ (0, s∗).

We note that

ψ(4)(s) = 6β3eβs(−βs+ 4β − 4).

has a unique root in (0,∞), namely s0 = 4β−4
β ≈ 0.0784, and hence ψ(4)(s) > 0 for all s ∈ (0, s0).

Besides, we observe that ψ(3)(0) = 0.742 > 0, ψ(3)(s0) ≈ 0.762 > 0. Therefore ψ(3)(s) has a unique

root in (s0,+∞), denoted as s1. By means of the fixed point iteration, we know that s1 ≈ 0.4832.

Similarly, since ψ′′(0) = 0.730 > 0 and ψ′′(s1) = 1.00 > 0, we conclude that ψ′′(s) is always positive

in [0, s1] and it has a unique root s2 ∈ (s1,∞), and we find s2 ≈ 0.9980. Repeating the argument, we

are able to show that ψ′(s) keeps positive in [0, s2] and the unique root in (s2,∞) locates at s3 ≈ 1.5344.

Finally, we observe that ψ(0) = 0 and ψ(s3) ≈ 1.401 > 0, so ψ is positive in (0, s3] and it admits a

unique root at s4 ∈ (s3,∞). Noting that ψ(s∗) ≈ 0.2873 > 0, we conclude that r(−s) > e−βs for all

s ∈ (0, s0).

Next we will show that r(−s) < e−αs in (0, s∗), which is equivalent to show

ϕ(s) = eαs(−6s+ 24)− (s3 + 6s2 + 18s+ 24) < 0 for all s ∈ (0, s∗).

We note the fact that

ϕ(4)(s) = 6α3eαs(−αs+ 4α− 4) < 0 for all s ∈ (0,∞).

Meanwhile, we have ϕ(4)(0) < 0, ϕ(3)(0) < 0, ϕ′′(0) < 0, ϕ′(0) < 0, and ϕ(0) < 0. Those together

imply ϕ(s) < 0 for any s ∈ (0,∞). Therefore r(−s) < e−αs.

As a result, for any J ≥ 2, we arrive at e−βs ≤ r(−s/J)J ≤ e−αs for all s ∈ (0, Js∗), that further

implies the estimate

sup
s∈(0,Js∗)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31.
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Next, we aim to prove the claim that

sup
(s∗,∞)

∣∣r(−s)∣∣ = sup
(s∗,∞)

∣∣∣ 24− 6s

s3 + 6s2 + 18s+ 24

∣∣∣ ≤ 0.15. (4.15)

To begin with, we show that d
dsr(−s) admits a unique root in (2,∞). We note that

d
ds
r(−s) = 12(s3 − 3s2 − 24s− 48)

(s3 + 6s2 + 18s+ 24)2
.

and hence it is sufficient to show that η(s) = s3−3s2−24s−48 has a unique root in (2,∞). Since η′(s)

has two roots, −2 and 4, and η(−2) = −20 < 0, η(4) = −128 < 0, we conclude that η(s) < 0 for all

s ∈ [−2, 4], and η(s) admits a unique root in (4,∞), namely s5 ≈ 7.235. Therefore r(−s) is decreasing

in (s∗, s5) and increasing in [s5,∞). Noting that fact that r(−s∗) ≈ 0.130, r(−s5) ≈ −0.0229 and

r(−∞) = 0, we obtian sup
(s∗,∞)

∣∣r(−s)∣∣ = ∣∣r(−s∗)∣∣ ≤ 0.15.

Therefore, we derive for s ∈ (Js∗,∞) and J ≥ 2

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 1 + s

s
|r(−s/J)J |+ s−1 ≤ 1 + Js∗

Js∗
(0.15)J + (Js∗)

−1

≤ 5

4
(0.02)2 + 4−1 ≈ 0.251 ≤ 0.31.

This completes the proof of (4.14) as well as the proposition.

Proof for the 4-stage Lobatto IIIC scheme (4.12): Similar to the proof of Proposition 4.3.1, we aim to

show that for any J ≥ 2

sup
s∈(0,∞)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31, where r(−s) = 12s2 − 120s+ 360

s4 + 12s3 + 72s2 + 240s+ 360
. (4.16)

Letting α = 0.69 and β = 1.02, Lemmas 4.2.1 and 4.3.1 implies that κα ≤ 1 − 0.69 = 0.31 and

κβ ≤ 0.31, respectively. Next, we show the claim that

e−βs ≤ r(−s) ≤ e−αs for all s ∈ (0, s∗) with s∗ = 6.8. (4.17)
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To begin with, we show that, for s ∈ (0,∞), r(−s) ≥ e−βs, which is equivalent to

ψ(s) = (12s2 − 120s+ 360)eβs − (s4 + 12s3 + 72s2 + 240s+ 360) ≥ 0.

Define h(s) = β2s2 + (10β − 10β2)s+ (30β2 − 50β + 20), then we have

ψ(5)(s) = 12β3eβs
[
β2s2 + (10β − 10β2)s+ (30β2 − 50β + 20)

]
= 12β3eβsh(s).

Here h(s) is a quadratic polynomial, whose minimum locates at 5β−5
β . Therefore h(s) ≥ h( 5β−5

β ) > 0.

Then ψ(5)(s) = 12β2eβxh(s)− 24 > 12× 2− 24 > 0. Meanwhile, simple computation yields

ψ(0) = 0 and ψ(k)(0) > 0 with 1 ≤ k ≤ 5.

Then we conclude that ψ(s) > 0 for all s ∈ (0,∞), and hence r(−s) ≥ e−βs in (0,∞).

Next we show the bound that r(s) ≤ e−αs for s ∈ (0, s∗), which is equivalent to show

ϕ(s) = (12s2 − 120s+ 360)eαs − (s4 + 12s3 + 72s2 + 240s+ 360) ≤ 0 ∀ s ∈ (0, s∗).

Similar to the preceding argument, let g(s) = (20− 50α+ 30α2 + 10αs− 10α2s+ α2s2). Then

ϕ(5)(s) = 12α3eαs(20− 50α+ 30α2 + 10αs− 10α2s+ α2s2) = 12α3eαsg(s).

Here g is a quadratic polynomial with minimum at 5α−5
α . Therefore, g(s) ≥ g( 5α−5

α ) ≈ −2.62. Mean-

while, we observe that g(0) = −0.217 < 0, so there is a unique root of g in (0,∞). It is easy to find

that, by means of the fixed point iteration, that root locates at s0 ≈ 0.0993. Then ϕ(5)(s) ≤ 0 for all

s ∈ [0, s0] and ϕ(5)(s) ≥ 0 for s ∈ (s0,∞). Noting that ϕ(4)(s0) < 0 and ϕ(4)(0) < 0, so ϕ(4)(s) < 0

in [0, s0] and ϕ(4) admits a unique root in (s0,∞), named as s1. Then the fixed point iteration implies

s1 ≈ 1.6849. Repeating this argument, we are able to show that ϕ(3)(s) < 0 in [0, s1] and ϕ(3) has a

unique root (s1,∞), namely s2 ≈ 3.0558. Then we derive that ϕ′′(s) < 0 in [0, s2] and ϕ′′(s) has a

unique root in (s2,∞), denoted as s3 ≈ 4.3640. Similarly, ϕ′(s) < 0 in [0, s3] and ϕ′(s) has a unique

root in (s3,∞), named as s4 ≈ 5.6285. Finally, since ψ(0) = 0 and ϕ(s4) < 0, we conclude that
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ϕ(s) < 0 in (0, s4], and ϕ(s) has a unique root in (s4,∞). Then the fact that ϕ(s∗) ≈ −447.65 < 0

implies ϕ(s) < 0 in (0, s∗). This completes the proof of the claim (4.17). As a result, for any J ≥ 2, we

arrive at e−βs ≤ r(−s/J)J ≤ e−αs for all s ∈ (0, Js∗) which implies

sup
s∈(0,Js∗)

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 0.31.

Next, we intend to show the claim that

sup
(s∗,∞)

∣∣r(−s)∣∣ = sup
(s∗,∞)

∣∣ 12s2 − 120s+ 360

s4 + 12s3 + 72s2 + 240s+ 360

∣∣∣ ≤ 0.02. (4.18)

In order to establish a bound for the supremum, we note

d

ds
r(−s) = −24s5 + 216s4 + 1440s3 − 1440s2 − 43200s− 129600

(s4 + 12s3 + 72s2 + 240s+ 360)2
,

and we will show that it admits a unique root in (s∗,∞), denoted by s5. Noting that, with µ(s) =

−s5 + 9s4 + 60s3 − 60s2 − 1800s− 5400, we have

d

ds
r(−s) = 24µ(s)

(s4 + 12s3 + 72s2 + 240s+ 360)2
.

So it suffices to show that µ(s) admits a unique root in (s∗,∞). Since µ(3)(s) = −60s2 + 216s + 360,

being a quadratic polynomial, it gains the maximum at 1.8 where µ(3)(1.8) = 554.4 > 0. Noting that

s∗ > 1.8 and µ(3)(s∗) = −945.6 < 0, we conclude that µ(3)(s) < 0 for all s ∈ (s∗,∞). Moreover,

since µ′′(s∗) ≈ 1033.3 > 0 and µ′′(∞) = −∞, µ′′(s) admits a unique root s6 ≈ 7.6503 ∈ (s∗,∞).

Then we know that µ′′(s) > 0 in (s∗, s6) and µ′′(s) < 0 in (s6,∞). Similarly, we have µ′(s∗) > 0

and µ′(s6) > 0, so µ′(s) > 0 in [s∗, s6]. This together with the fact µ′(∞) < 0 implies that µ′(s) has

a unique root s7 ≈ 10.166 ∈ (s6,∞). Finally, using the facts that µ(s∗) > 0 and µ(s7) > 0, we know

µ(s) > 0 in (s∗, s7) and µ(s) has a unique root s8 ≈ 12.28 ∈ (s7,∞). Therefore r(−s) is increasing in

(s∗, s8), and decreasing in (s8,∞). Noting that r(−s) ≈ 0.0088, r(−s8) ≈ 0.0118, and r(−∞) = 0,

we arrive at sup
(s∗,∞)

∣∣r(−s)∣∣ ≤ 0.02.
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As a result, the estimate (4.18) implies that for s ∈ (Js∗,∞) and J ≥ 2

∣∣∣∣ (1 + s)r(−s/J)J − 1

s

∣∣∣∣ ≤ 1 + s

s
|r(−s/J)J |+ s−1 ≤ 1 + Js∗

Js∗
(0.02)J + (Js∗)

−1

≤ 14.6

13.6
(0.02)2 + 13.6−1 ≈ 0.074 ≤ 0.31.

This completes the proof of (4.16) as well as the proposition.

Remark 4.3.1. Propositions 4.3.1 and 4.3.2 show that, for two-, three-, four-stage Lobbatto IIIC schemes,

the convergence factor is (at worst) 0.31, and there is no restriction on the ratio between the coarse time

step and fine time step. It is still possible to improve those estimations, by means of Theorem 4.2.1. For

example, one may obtain a smaller convergence factor γ by choosing a bigger α and a smaller β, which

might not affect the threshold J∗ = 2.

Remark 4.3.2. In the proof of Propositions 4.3.1 and 4.3.2, we employ the L-stability (r(−∞) = 0) of

the two-, three-, four-stage Lobbatto IIIC schemes. If the r(−∞) ∈ (0, 1), the analysis might be more

technical, and the convergence might be slow for small step ratio J; see e.g. Figure 4.3 for the Calahan

scheme (4.20)–(4.21). However, Theorem 4.2.1 guarantees the existence of the threshold J∗ such that for

any J ≥ J∗ the convergence factor is close to 0.3.

Remark 4.3.3. The previous analysis shows that different J lead to almost the same convergence rate.

For a smaller J , or more corase intervals, the algorithm will be guaranteed a higher parallel ability and

takes less CPU time if we have plenty CPU cores.

4.4 Numerical Results

In this section, we shall present some numerical examples to illustrate and complement our theoretical

results. To begin with, we use the one-dimensional diffusion models to show the sharpness of our con-

vergence analysis in Sections 4.2 and 4.3.
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Example 1. Linear Diffusion Models We consider the following initial-boundary value problem of

parabolic equations


∂tu(x, t)− ∂xxu(x, t) = f(x, t), 0 < t < T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω.

(4.19)

where Ω = (0, π) and T = 1. We consider the following two sets of problem data

(a) u0(x) = x5(1− x)5/(π/2)10 and f ≡ 0;

(b) u0(x) = χ(0,π2 )(x) and f = cos(t) sin(x), where χ(0,π2 )(x) denotes the step function:

χ(0,π/2)(x) =


1, x ∈ (0, π/2),

0, elsewise.

In the computation, we divided the domain Ω into withM equal subintervals of length h = π/M and

apply the Galerkin finite element with piesewise linear polynomials to discretize in space. We examine

the error between the parareal iterative solution Un
k and the exact time stepping solution Un, i.e.,

error = max
1≤n≤Nc

‖Un
k − unJ‖L2(Ω).

In our computation, we fixed spatial mesh size h = π/1000, and choose the initial guess Un
0 = u0 for

all n = 0, . . . , N .

In example (a), the data is sufficiently smooth and compatible to the homogeneous Dirichlet boundary

condition. In fact, it is easy to show show that u0 ∈ Dom((−∆)3+ε) with ε ∈ (0, 1/4) (see e.g. Lemma

[110, Lemma 3.1]). For this case of regular data, Bal showed that the first several parareal iterations

converge linearly with the rate O(∆T ); see cf. [7]. This is fully supported by the numerical results

presented in Figure 4.2, where we show the convergence of parareal algorithm for 2- and 3-stage Lobatto

IIIC methods with fixed J = 10 and ∆T = 1/100, 1/300, 1/600 (and correspondingly ∆t = 1/1000,

1/3000, 1/6000). We observe that the convergence of the first several iterations is faster for smaller coarse

step size, but the convergence then deteriorates for the later iterations.
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Figure 4.2: Example 1 (a): smooth data. Convergence of the parareal algorithm for 2- and 3-stage Lobatto
IIIC methods with fixed mesh ratio J = 10 and various coarse step sizes 1/N , N = 100, 300, 600.

In Figure 4.3, we show the convergence of parareal algorithm for 2-, 3-, 4-stage Lobatto IIIC methods

solving parabolic equation with nonsmooth initial data, i.e. Example 1 (b). We fixed the fine step size

∆t = 1/3000 and use different step ratios J = 2, 3 and 10. The numerical experiments clearly show

that the parareal iterations converge linearly with convergence factor near 0.3 for all J ≥ 2. Meanwhile,

we observe that the convergence factor is independent of the ratio between coarse and find step sizes.

These phenomenon fully support our theoretical findings in Propositions 4.3.1 and 4.3.2. Moreover, we

test another time integrator, called Calahan scheme [125, eq. (1.9)], defined by

r(−s) = 1− s

1 + bs
−

√
3

6

( s

1 + bs

)2
, with b =

1

2

(
1 +

√
3

3

)
(4.20)

and

c1 =
1

3
, p1(−s) =

(1/2 +
√
3) + (

√
3/2)s

(1 + bs)2
;

c2 =
2

3
, p2(−s) =

(1/2−
√
3) + (1/2−

√
3/2)s

(1 + bs)2
.

(4.21)

The Butcher tableau is given by

1
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3− 1

3
1
3

− 1
6

√
3 + 1

3
1
6

√
3 + 1

3
2
3

1
2

1
2

=:
Oι c

b⊤
(4.22)
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It is easy to see that r(−s) is a decreasing function on (0,∞) and r(−∞) = 1 −
√
3 ∈ (−1, 0), so

it is A-stable, but not L-stable. Besides, the scheme is accurate of order k = 3. Therefore, the Calahan

scheme satisfies Conditions (P1)–(P3). Numerical results show that the converegnce of the corresponding

parareal iterations is much slower than 0.3 for small J . This might be due to the fact that |r(−∞)| > 0;

see Remark 4.3.2. However, for large J , the numerical results indicate a convergence rate close to 0.3, as

predicted by Theorem 4.2.2.
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Figure 4.3: Example 1 (b): nonsmooth data. Convergence of the parareal algorithm for 2-, 3-, 4-stage
Lobatto IIIC methods and Calahan method with fixed fine step size ∆t = 1/3000 and various ratios of
coarse step size and fine step size.
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Example 2. Semilinear Parabolic Equations In this part, we shall examine the convergence of parareal

algorithm for solving the initial-boundary value problem of the semilinear parabolic equations


∂tu− ∂xxu =

1

ε2
(u− u3) =: f(u), for all x ∈ Ω, t ∈ (0, T ],

∂xu(x, t) = 0, for all x ∈ {0, π}, t ∈ (0, T ],

u(x, 0) = u0(x), for all x ∈ Ω.

(4.23)

The model (4.23), called Allen–Cahn equation, was originally introduced by Allen and Cahn in [2] to

describe the motion of anti-phase boundaries in crystalline solids. In the context, u represents the concen-

tration of one of the two metallic components of the alloy and the parameter ε involved in the nonlinear

term represents the width of interface. Recent decades, the Allen–Cahn equation has become one of basic

phase-field equations, which has been widely applied to many complicated moving interface problems in

materials science and fluid dynamics [3, 16, 122].

In our numerical scheme, the coarse propagator is the semli-implicit backward Euler scheme: for

given un, look for un+1 such that for all φ ∈ H1(0, π)

(un+1, φ) + ∆T (∂xu
n+1, ∂xφ) = (un, φ) + ∆T (f(un), φ),

which is uniquely solvable and first-order accurate, see e.g. [110, Theorem 14.7]. Meanwhile, the fine

propagator is an arbitrary fully implicit high-order single step integrator (such as the Lobatto IIIC schemes

or the fully implicit Calahan scheme): for given un, look for un+1 such that for all φ ∈ H1(0, π)


(uni, φ) = (un−1, φ) + ∆t

m∑
j=1

aij

(
− (∂xu

nj , ∂xφ) + (f(unj), φ)
)
for 1 ≤ i ≤ q,

(un, φ) = (un−1, φ) + ∆t

m∑
i=1

bi

(
− (∂xu

ni, ∂xφ) + (f(uni), φ)
)
,

(4.24)

where the nonlinear system is uniquely solvable for sufficiently small step size, and we solve it by use

Newton’s algorithm. Note that the fine propagator is fully nonlinear and hence time consuming where

the coarse propagator is a linear scheme, so the application of parareal algorithm is able to significantly

improve the efficiency.

In Figure 4.4, we show the convergence of parareal algorithm for 2-, 3-, 4-stage Lobatto IIIC methods
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Figure 4.4: Example 2. Convergence of the parareal algorithm for 2-, 3-, 4-stage Lobatto IIIC methods
and Calahan method with fine step size∆t = 1/600 and various step ratios J = 2, 3, 10.
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and the Calahan method solving the semilinear parabolic equation (1.1) with ε = 1 and T = 0.1. The

fine step size is fixed and we examine the convergence for different step ratios. Similar to the linear

problem, for Lobatto IIIC methods, the numerical experiments clearly show that the parareal iterations

converge linearly with convergence factor near 0.3 for all J ≥ 2, while for the Calahan method the

parareal iterations converge slowly for a small J . The convergence analysis for the nonlinear problem

warrants further investigation in our future studies.

4.5 Conclusion and Comments

In this chapter, we study a parallel-in-time algorithm, named parareal algorithm, to speed up our simula-

tion. We will first start on linear equations. The prove is based on spectrum decomposition. We prove

that, for a fixed coarse propagator (Implicit Euler Method), for any single step method fine propagator,

as long as the scheme satisfy the given assumptions, we can always find a threshold J∗, such that if the

mesh ratio J ≥ J∗, the convergence rate for the iteration is bounded by a given constant about 0.3. A lot

of famous schemes agree with our assumptions. We also tested Allen-Cahn equation and it also works on

it.



Chapter 5

Conclusions and Future Work

This thesis aims to develop efficient single-step methods for solving parabolic problems, particularly in

phase-field models, and ensure high accuracy while preserving maximum bound and energy dissipation.

In the first part of the thesis, we focus on the development and analysis of structure-preserving schemes

for solving Allen–Cahn equations, a significant application of parabolic equations. We employ a k-th or-

der single-step method in time, linearizing the nonlinear term using multi-step extrapolation. In space,

we use a lumped mass finite element method with piecewise r-th order polynomials and Gauss–Lobatto

quadrature. A cut-off post-processing technique is proposed at each time level to eliminate values violat-

ing the maximum bound principle at finite element nodal points. Consequently, the numerical solution

adheres to the maximum bound principle at all nodal points, and the optimal error boundO(τk+hr+1) is

theoretically proven. These time-stepping schemes include algebraically stable collocation-type methods,

achieving high order in both space and time. By integrating the cut-off strategy with the scalar auxiliary

variable (SAV) technique, we develop energy-stable and maximum bound preserving schemes of arbitrar-

ily high order in time.

In the second part, we start to develop and analyze a class of single-step implicit-explicit schemes for

approximately solving linear parabolic equations, achieving long-time stability and arbitrarily high order

in time. This approach involves splitting the linear operator into symmetric and skew-symmetric com-

ponents, which are evaluated implicitly and explicitly respectively using IMEX-RK. For the symmetric

part, a diagonally implicit method is employed, while the discretization for the skew-symmetric part is
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designed to satisfy the stage orders. This method is applicable to semilinear problems, such as phase-field

models, and our analysis aligns with existing findings, demonstrating energy stability for certain IMEX-

RK schemes. Our results reveal intersections up to at least third order, leading to a scheme that preserves

both the original energy decay properties and maximum bound principles.

In the third part of the thesis, we study the parareal algorithm for solving parabolic equations, enabling

parallel-in-time computation and significantly accelerating the process. We prove that the parareal method

has a robust convergence rate of about 0.3, provided the ratio J of coarse to fine step size exceeds a certain

threshold J∗, and the fine propagator meets mild conditions. This convergence holds evenwith nonsmooth

problem data and boundary condition incompatibilities. Qualified methods include all absolutely stable

single-step methods with a stability function satisfying |r(−∞)| < 1, allowing the fine propagator to be of

arbitrarily high order. We also examine popular high-order single-step methods, such as the two-, three-,

and four-stage Lobatto IIIC methods, confirming that their corresponding parareal algorithms converge

linearly with a factor of 0.31 and a threshold J∗ = 2. At the end of each chapter, we present numerical

results that support the theoretical findings and inspire future investigations.

Next we list several perspectives for the future research:

1. Cut-off postprocessing can naturally ensure maximum bound preservation and maintain energy de-

cay when the function is continuous in space or uses piecewise linear FEM. However, for higher-

order finite elements, like P 2(I) for I ⊂ R1, a simple cut-off on u may increase |∇u|, causing our

analysis to fail. Thus, for both cut-off RK-SAV, which preserves maximum bounds and modified

energy decay, and cut-off IMEX-RK, which preserves maximum bounds and original energy de-

cay, we achieve at most second-order spatial accuracy in fully discretized problems. We need to

explore alternativemethods, such as enhanced cut-off or other postprocessing techniques, to achieve

higher-order spatial convergence, requiring further study.

2. In the proof of long-time error estimate for linear implicit-explicit Runge-Kutta methods, we assume

0 < σ(λ) < 1, which is equivalent to |σ| < 1 and σ > 0. We require σ > 0 to ensure the inverse

operator and norms arewell-posed. Although this condition seems redundant, the proof fails without

it. We hope to address this issue in the future.

3. We use the undetermined coefficients method to explore implicit-explicit Runge-Kutta schemes.

Although there are more degrees of freedom than equations, we have not shown that these schemes
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can achieve arbitrarily high order. Unlike the usual Runge-Kutta method, where high-order schemes

can be systematically built, this approach does not work for implicit-explicit Runge-Kutta. De-

veloping an algorithm to construct high-order implicit-explicit Runge-Kutta schemes, rather than

searching for them, could be beneficial.

4. When applying IMEX-RK schemes to solve gradient flowmodels, preserving the energy dissipation

property is crucial. Unfortunately, this requires strict conditions, including the positive-definiteness

of coefficient matrices, which are more complex than algebraic stage-order conditions. Conse-

quently, our strategy fails to ensure the energy dissipation property for high-order schemes. While

we have not ruled out the possibility of IMEX-RK achieving higher order for original energy de-

cay, we have only found first, second, and third-order results. Discovering fourth or higher-order

schemes would be both important and interesting.

5. We established the robust convergence rate for the parareal method using a single-step approach.

Extending this work to multi-step methods, such as BDF, is intriguing. Developing the coarse

propagator carefully is crucial to prevent algorithm instability. Understanding the conditions for

convergence and creating a suitable coarse propagator is essential for applying the parareal method

to a wider range of scenarios.

6. Although we have only proven robust convergence for the parareal method on linear equations,

numerical experiments indicate it also performs well on nonlinear models, such as the Allen-Cahn

equations, with similar convergence behavior. Various coarse propagators can be used, each be-

having differently, and some achieving excellent convergence. Developing the theory and analysis

for the parareal method on semilinear equations with nonsmooth data is needed.
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