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Abstract

Parabolic equations are essential in applications like heat conduction, diffusion processes, and financial
modeling. They describe how quantities such as temperature, concentration, or option prices evolve over
time, making them crucial in engineering, physics, and economics. This thesis aims to develop efficient
numerical methods for solving parabolic problems, particularly in phase-field models, ensuring high ac-
curacy while preserving maximum bound and energy decay properties.

In the first part of thesis, we consider the development and analysis of the structure preserving schemes
for solving Allen—Cahn equations, that represents an important application of parabolic equations. We
apply a k-th order single-step method in time, where the nonlinear term is linearized using multi-step ex-
trapolation. In space, we use a lumped mass finite element method with piecewise r-th order polynomials
and Gauss—Lobatto quadrature. At each time level, a cut-off post-processing technique is proposed to
eliminate values that violate the maximum bound principle at the finite element nodal points. As a result,
the numerical solution satisfies the maximum bound principle at all nodal points, and the optimal error
bound O(7% + h"+1) is theoretically proven. These time-stepping schemes include algebraically stable
collocation-type methods, which can achieve arbitrarily high order in both space and time. By combining
the cut-off strategy with the scalar auxiliary variable (SAV) technique, we develop a class of energy-stable
and maximum bound preserving schemes that are arbitrarily high-order in time.

In the second part, we present the development and analysis of a class of single-step implicit-explicit
schemes for approximately solving linear parabolic equations, which achieves long-time stability and arbi-
trarily high order in time. This involves splitting the linear operator into symmetric and skew-symmetric
components, evaluated implicitly and explicitly, respectively, using the Implicit-Explicit Runge—Kutta

Method (IMEX-RK). For the symmetric part, a diagonally implicit method (DIRK) is employed, while
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the discretization for skew-symmetric part is designed to satisfy the stage orders. This method is applicable
to semilinear problems, such as phase-field models, and our analysis is consistent with existing findings,
showing energy stability for certain IMEX-RK schemes. Our results reveal intersections up to at least
third order, leading to a scheme that preserves both the original energy decay properties and maximum
bound principles.

In the third part of the thesis, we study the parareal algorithm for solving parabolic equations,which
enables parallel-in-time computation and significantly accelerates the process. We prove that the parareal
method has a robust convergence rate of about 0.3, provided the ratio J of coarse to fine step size exceeds
a certain threshold J., and the fine propagator meets mild conditions. This convergence is robust even
with nonsmooth problem data and boundary condition incompatibilities. Qualified methods include all
absolutely stable single-step methods with a stability function satisfying |r(—o0)| < 1, allowing the fine
propagator to be of arbitrarily high order. Moreover, we examine popular high-order single-step methods,
such as the two-, three-, and four-stage Lobatto ITIIC methods, confirming that their corresponding parareal
algorithms converge linearly with a factor of 0.31, with a threshold .J, = 2.

Atthe end of each chapter, we present numerical results that support the theoretical findings and inspire

future investigations.
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Chapter 1

Introduction

1.1 Research Background

Parabolic differential equations are essential in various scientific fields, including physics, engineering,
and economics. In physics, they are used to describe heat conduction, diffusion processes, and the behavior
of semiconductors. In finance, they are used in the Black-Scholes model for option pricing. In biology,
they are used to model population dynamics and the spread of diseases. Additionally, the study of parabolic
differential equations has introduced many important mathematical concepts and techniques. The method
of separation of variables, commonly used to solve these equations, is a fundamental tool in mathematical
analysis. The theory also plays a crucial role in studying stochastic processes and Brownian motion.
Parabolic differential equations remain a central topic in mathematical analysis and applied mathematics.
They have a rich history and are still an active area of research, offering many challenging problems and
applications.

Phase field models are one of the most important applications of parabolic equations, which are math-
ematical tools widely used in physics, materials science, and other fields to describe the evolution of
complex microstructures. They are particularly useful for modeling phase transitions, such as the solidi-
fication of a liquid or the formation of crystals in a solution.

Introduced in the late 20th century, the phase field approach addresses challenges associated with

traditional methods for modeling phase transitions. Traditional methods often involve sharp interfaces
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between different phases, which can be difficult to handle both mathematically and computationally. In
contrast, the phase field approach treats interfaces as diffuse regions and describes the microstructure
using a continuous field variable, simplifying the mathematical and computational processes. Phase field
models have been applied to a wide range of phenomena, including crystal growth, grain boundary motion,
and pattern formation in alloys. They are also used in areas such as fluid dynamics, image processing,
and tumor growth modeling.

In a phase field model, the microstructure is represented by a phase field variable that varies continu-
ously between phases. The evolution of this phase field is governed by parabolic equations derived from
thermodynamic and kinetic principles. These equations are solved numerically using various computa-
tional methods.

Structure-preserving schemes are numerical methods used in computational mathematics and physics.
They are designed to maintain the inherent geometric or physical properties of the problem being solved.
Structure preservation is crucial in many scientific and engineering applications, such as molecular dy-
namics, fluid dynamics, and electromagnetism, where preserving properties like energy, momentum, or
symplectic structure is essential for the physical relevance and accuracy of the solution. These schemes
often provide more accurate and physically relevant solutions than traditional numerical methods, espe-
cially in long-term simulations and highly nonlinear problems.

For phase field models, researchers focus on developing numerical schemes that preserve energy
dissipation law and maximum bound principle, without strict constraints on time step and space mesh
sizes. For example, we focus on the development and analysis of high-order structure-preserving schemes

for solving the Allen—Cahn equation:

ur = Au+ f(u) in Qx(0,7),

u(z,t =0) =up(z) in Q x {0}, (1.1)
Ohu=0 on 90 x (0,T)
where (2 is a smooth domain in R? with the boundary 9. Here, f(u) = —F'(u) with a double-well

potential F that has two wells at =, for some known parameter o > 0. It is well-known that the Allen—
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Cahn equation (1.1) has the maximum bound principle [29]:
lup(2)| <a = |u(z,t)| <« forall (z,t) € Q x (0,T]. (1.2)
As a typical L? gradient flow associated with the following free energy:
B(u) = /Q%|Vu|2+F(u) da,

the nonlinear energy dissipation law holds:

d

gE(u) = —/Q lug|? dz < 0. (1.3)

We aim to develop high-order numerical schemes that preserve both conditions (1.2) and (1.3). Addi-
tionally, we will discuss efficient parallel-in-time algorithms for solving the (nonlinear) parabolic equa-

tions.

1.2 Literature Review

In this part, we briefly review the existing literature on structure-preserving schemes for solving parabolic
equations and phase-filed models.

The backward Euler time-stepping scheme, combined with the central finite difference method in
space, effectively preserves the maximum principle for linear parabolic equations [68, Chapter 9]. Addi-
tionally, using the backward Euler scheme with the lumped mass linear finite element method (FEM) and
simplicial triangulation with acute angles also maintains this principle. In two dimensions, this extends
to Delaunay-type triangulations, which is notably sharp [111]. However, without mass lumping, stan-
dard Galerkin FEMs generally do not preserve the maximum principle [111, 96]. These methods achieve
first-order accuracy in time and second-order accuracy in space.

The development and analysis of maximum bound preserving schemes for Allen-Cahn equations
have been intensively studied in existing references. It was proved in [109, 98] that the stabilized semi-
implicit Euler time-stepping scheme, with central difference method in space, preserves the maximum

principle unconditionally if the stabilizer satisfies certain restrictions. In [30], a stabilized exponential time
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differencing scheme was proposed for solving the (nonlocal) Allen—Cahn equation, and the scheme was
proved to be unconditionally MBP. See also [29] for the generalization to a class of semilinear parabolic
equations.

The development and analysis of maximum bound preserving schemes for Allen-Cahn equations
have been intensively studied in existing references. It was proved in [109, 98] that the stabilized semi-
implicit Euler time-stepping scheme, with central difference method in space, preserves the maximum
principle unconditionally if the stabilizer satisfies certain restrictions. In [30], a stabilized exponential time
differencing scheme was proposed for solving the (nonlocal) Allen—Cahn equation, and the scheme was
proved to be unconditionally MBP. See also [29] for the generalization to a class of semilinear parabolic
equations.

High-order strong stability preserving (SSP) time-stepping methods are widely used in the develop-
ment of MBP scheme for both parabolic equations and hyperbolic equations (see e.g., [46, 79, 47, 45, 78,
90, 119, 124]). Recently, an SSP integrating factor Runge—Kutta method of up to order four was proposed
and analyzed in [58] for semilinear hyperbolic and parabolic equations. For semilinear hyperbolic and
parabolic equations with strong stability (possibly in the maximum norm), the method can preserve this
property and can avoid the standard parabolic CFL condition 7 = O(h?), only requiring the stepsize T to
be smaller than some constant depending on the nonlinear source term, also referring to [62]. A nonlinear
constraint limiter was introduced in [113] for implicit time-stepping schemes without requiring CFL con-
ditions, which can preserve maximum principle at the discrete level with arbitrarily high-order methods
by solving a nonlinearly implicit system.

Very recently, a new class of high-order MBP methods was proposed in [73]. The method consists of a
kth-order multistep exponential integrator in time, and a lumped mass finite element method in space with
piecewise rth-order polynomials. At every time level, the extra values exceeding the maximum bound
are eliminated at the finite element nodal points by a cut-off operation. Then the numerical solution at all
nodal points satisfies the MBP, and an error bound of O(7* +h™) was proved. However, numerical results
in [73, Table 4.1] indicates that the error bound is not sharp in space, and how to improve the estimate it is
still open. Besides, the aforementioned scheme requires to evaluate some actions of exponential functions
of diffusion operators, which might be relatively expensive compared with solving poisson problems, and
the generalization to other time stepping schemes is a nontrivial task. Finally, the proposed scheme (with

relatively coarse step sizes) might produce a numerical solution with obviously increasing and oscillating
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energy. These motivate our current project.

There have been numerous studies focused on developing various numerical schemes that preserve the
energy dissipation law at a discrete level. Some notable and widely-used implicit time-stepping methods
include convex splitting methods [33, 103] and the Crank-Nicolson type scheme [37, 32]. The main
drawback of these methods is the high computational cost associated with solving a nonlinear system of
equations at each time step. In contrast, implicit-explicit (IMEX; also known as semi-implicit) methods
handle the nonlinear term explicitly and the linear term implicitly, requiring only the solution of a linear
system of equations at each time step. These methods can be traced back to the work of Chen and Shen [15]
in the context of phase-field models, and since then, many techniques and strategies have been developed
to design such schemes, as seen in [1, 20, 36, 48, 50, 74, 100, 102, 107]. Building on the concept of
the invariant energy quadratization (IEQ) method [120, 121]. [99, 100] proposed the scalar auxiliary
variable (SAV) method, which easily ensures the unconditional energy decay property. Recently, some
modified SAV methods have been developed [21, 55, 60, 108]. However, the energy considered in these
methods is modified from the original energy. In another direction, exponential time differencing (ETD)
methods for the Allen—Cahn equation and other semilinear parabolic equations have garnered significant
attention recently. Du et al. [30] demonstrated that ETD and ETDRK2 schemes unconditionally preserve
the maximum bound property (MBP) and energy stability (though not the dissipation law). Specifically,
[39] establishes the original energy stability for ETDRK2. For the thin film model (or MBE model),
interesting results regarding stability analysis and error estimates for the ETD schemes are presented in
[23, 28,61, 71, 118]. Additionally, [51] shows that fully implicit Runge-Kutta (RK) methods can reduce
the energy of gradient systems, but the existence and uniqueness of the solution remain unresolved issues.
Another class of implicit Runge-Kutta methods for phase-field models is based on the convex splitting
approach, which exhibits favorable stability properties [104].

Time-stepping schemes for solving parabolic equations traditionally require sequential computation,
which can be time-consuming. However, with modern computing power, parallel-in-time (PinT) methods
have become feasible, allowing simultaneous computation of multiple time steps. Originating from Niev-
ergelt’s work in 1964 [86], these methods have gained considerable interest. Among them, the parareal
method, introduced in 2001 [76], is particularly popular due to its simplicity and adaptability with single-
step integrators. It has been effectively applied in various fields such as turbulent plasma [93, 92], struc-

tural dynamics [22, 34], molecular dynamics [6], optimal control [80, 82], and fractional models [75, 117].
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For more comprehensive insights, readers can consult survey papers [40, 87] and references therein.

1.3 Our Contribution

In this thesis, we discuss the development, analysis, and implementation of structure-preserving single-
step integrators for solving parabolic equations, with applications to phase-field models like the Allen-—
Cahn equations. Single-step integrators often offer better stability properties than linear multistep meth-
ods, particularly for stiff problems, allowing for larger time steps and more efficient simulations. Ad-
ditionally, they provide superior error control, especially when using adaptive time steps. Compared to
linear multistep methods, single-step integrators are also more suitable for applying postprocessing tech-
niques to preserve certain structures, as we will explore in this thesis.

In the first part of thesis, we develop and analyze a class of maximum bound preserving schemes for
approximately solving Allen—Cahn equations. We apply a kth-order single-step scheme in time (where
the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in
space with piecewise rth-order polynomials and Gauss—Lobatto quadrature. At each time level, a cut-off
post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite
element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all
nodal points), and the optimal error bound O (7% + h™*+1) is theoretically proved for a certain class of
schemes. The proof is based on energy estimation. Since cut-off itself will not increase the total energy,
we just compare each step with its previous step, which is decoupled with postprocessing and complete
the proof. These time stepping schemes under consideration includes algebraically stable collocation-type
methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off
strategy with the scalar auxiliary value (SAV) technique, we also develop a class of energy-stable and
maximum bound preserving schemes, which is arbitrarily high-order in time.

In the second part of this thesis, we explore implicit-explicit Runge—Kutta methods for solving parabolic
equations. We begin by examining linear parabolic problems where the differential operator may be non-
selfadjoint, which is crucial in applications like Stokes—Darcy coupled systems [52, 85, 4]. These systems
are often used to model contaminant transport in karst aquifers, where fluid motion in porous media is
coupled with conduits. During floods, contaminants can enter the porous media and be released during

droughts. Accurate numerical schemes are essential for capturing the long-term retention and release of
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contaminants, as fluid motion in porous media is slower than in conduits.

To address this, we develop a class of implicit-explicit Runge—Kutta methods and prove their long-term
stability and error estimates. We split the differential operator into symmetric and skew-symmetric parts:
the skew-symmetric part and source term are evaluated explicitly, while the symmetric part is evaluated
implicitly. Our analysis uses spectral decomposition of the symmetric operator and energy estimation.
We establish a novel energy argument to demonstrate long-term stability and optimal error estimates,
choosing a special test function inspired by the backward Euler scheme.

This approach can be extended to nonlinear phase-field models. With cutoff postprocessing at each
step, we show that the method preserves the maximum bound and can achieve arbitrarily high order. In
[38], it was proven that IMEX-RK schemes can maintain energy dissipation laws under certain assump-
tions. Our assumptions align with theirs, and we have found a third-order scheme that meets all criteria,
allowing us to develop time-stepping schemes up to third order that preserve both the maximum bound
and original energy dissipation.

In the third part of thesis, we investigate the parareal algorithm for solving parabolic equations, which
enables parallel-in-time computation and significantly accelerates the process. For linear problems, we
analyzed the robust convergence of a class of parareal algorithms. The coarse propagator is fixed to
the backward Euler method and the fine propagator is a high-order single step integrator. Under some
conditions on the fine propagator, we show that there exists some critical .J,. such that t he parareal solver
converges linearly with a convergence rate near 0.3, provided that the ratio between the coarse time step
and fine time step named J satisfies J > J,. The convergence is robust even if the problem data is
nonsmooth and incompatible with boundary conditions. The qualified methods include all absolutely
stable single step methods, whose stability function satisfies |r(—o0)| < 1, and hence the fine propagator
could be arbitrarily high-order. Moreover, we examine some popular high-order single step methods, e.g.,
two-, three- and four-stage Lobatto IIIC methods, and verify that the corresponding parareal algorithms

converge linearly with a factor 0.31 and the threshold for these cases is J,. = 2.



Chapter 2

Arbitrarily High-order Maximum
Bound Preserving Schemes with

Cut-off Postprocessing

In this chapter, we develop and analyze a class of maximum bound preserving schemes for approximately
solving Allen—Cahn equations. We apply a single-step scheme in time with nonlinear term linearized, and
a lumped mass finite element method in space. At each time level, a cut-off post-processing is proposed
to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a
result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal
error bound is theoretically proved for a certain class of schemes. Moreover, combining the cut-off strategy
with the scalar auxiliary value (SAV) technique, we also develop a class of energy-stable and maximum
bound preserving schemes, which is arbitrarily high-order in time.

In Section 2.1 we discuss the time discretization problems and show its convergence. In Section 2.2
and 2.3 we discuss the fully-discrete scheme and prove its convergence. In Section 2.4 we combine our
scheme with Scalar Auxiliary Variable method and prove it preserves modified energy decay and arbitrary

high order in time.
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2.1 Temporal Semi-discrete Cut-off Runge—Kutta Scheme

To begin with, we consider the time discretization for the Allen—Cahn equation (1.1). To this end, we
split the interval (0,7) into N subintervals with the uniform mesh size 7 = T'/N, and set t" = nr,
n = 0,1,...,N. On the time interval [t"~! "], we approximate the nonlinear term f(u(s)) by the

extrapolation polynomial

k
Z Li(s)f(u"7), with known u""% ... "t

j=1

where L;(s) is the Lagrange basis polynomials of degree k£ — 1 in time, satisfying
Li(t" =6, i,j=1,...,k.
Thus, on [t"~1, "], the linearization of (1.1) states as
k
iy = A+ Li(s)f(u"™).
j=1
Following Duhamel’s principle yields
- k
a(t™) = e Put" ) + / eTTIAN L (" 4 5) f(u™ ) ds.
0 -
j=1

Then a framework of a single step scheme of approximating @(¢") reads:

m k

" = o(—TA" " 4 TZpA—TA)(ZLj(tm)f(u"_j)), foralln > k, 2.1

i=1 j=1

with " = t"~1 4 ¢;7. Here, o(\) and {p;(\)}/"; are rational functions and c; are distinct real numbers

in [0, 1]. For simplicity, we assume that the scheme (2.1) satisfies the following assumptions.

(P1) |o(N)| < land|p;(\)| < ¢, foralli =1,...,m,uniformly in 7 and A > 0. Besides, the numerator

of p;(A) is of lower degree than its denominator.
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(P2) The time stepping scheme (2.1) is accurate of order k in sense that
o(A) =e M+ O, as A — 0.

and, for0 < j <k

oo j I\ ‘
chpi()\)—(_;\y)'jﬂ<e_’\—z( 2) ) =0\, asA—0.

i=1 £=0

(P3) The time discretization scheme (2.1) is strictly accurate of order g in sense that

ZCZM(A)—&;M(U(A)—Z (_é/!\) ) =0, forall0<j<gqg-—1.

i=1

Remark 2.1.1. In practice, it is convenient to choose p;(\) that share the same denominator of o(X), for

instance:

o(A) = , and pi(\) = gl fori=1,2,...,m,

where a;(X) and g(\) are polynomials. Then the time stepping scheme (2.1) could be written as

m k
g(=TA)YI" = ag(—TA)u" T 4+ 7 Z a;(—TA) ( Z Lj(tm)f(u”_j)), Joralln > k.

i=1 j=1

See e.g. [110, pp. 131] for the construction of such rational functions satisfying the Assumptions (P1)-
(P3).

Unfortunately, the time stepping scheme (2.1) does not satisfy the maximum bound principle. There-

fore, at each time step, we apply the cut-off operation: for n > k, we find »™ such that

m k

@ = (A" S pi(—rA) (3 Ly (), 2.2)
i=1 j=1

u" = min(max (4", —a), a), 2.3)

where « is the maximum bound given in (1.2). The accuracy of this cut-off semi-discrete method is

guaranteed by the next theorem.
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Theorem 2.1.1. Suppose that the Assumptions (P1) and (P2) are fulfilled, and (P3) holds for ¢ = k.
Let u(t) be the solution to the Allen—Cahn equation, and u™ be the solution to the time stepping scheme
(2.2)-(2.3). Assume that |ug| < « and the maximum principle (1.2) holds, and assume that the starting

values u?, 7=0,...,k—1, are given and
|w/| < a, forall §=0,... k—1.
Then the semi-discrete solution given by (2.2)-(2.3) satisfies for alln > k
u"| < a,

and
k—1

[ = u(t™)]| < CT* +C Y [lu? —u(®)],

§=0

provided that f is locally Lipschitz continuous, Au € C*([0,T]; L%(Q)), u € C*T1([0, T]; L*(2)) and
f(u) € C*([0, T L*(Q2)).

Proof. Due to the cut-off operation (2.3), the discrete maximum bound principle follows immediately.
Then it suffices to show the error estimate.

Let e® = u™ — u(t"™) and €™ = 4™ — u(t™). Since the exact solution satisfies the maximum bound

(1.2), we have

le™ 2y < lle" ]2 -

Then it is easy to note that

where ¢ can be written as

m k
=l o) 3 e (S0
i=1 j=1
m k
S (S s - )

(= ult™) + oA"Y + 7Y pi—rA) (G — Au)(t™))

i=1
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=1+1I.

Then the bound of I follows from the approximation property of Lagrange interpolation, the maximum

bound of u"~7 and u(t"~7), j = 1,..., k, the locally Lipschitz continuity of f, and the Assumption (P1):

L2(Q)

m k
Illz2@) <73 Ipi(=m) 2@y naqe | D2 Lat™) ™)) = Flu(t™=" + )|
i=1 j=1

m k

+7 Z Ipi (=72 L2(2)—L2(2) Z L (") 1f (7)) = fult™ ) 2o

i=1 =1
k .

CT" N f (W)l on ((en—r en)sr2 () + CTZ le™ |l L2(q)-

Jj=1

Now we term to the second term I1, which can be rewritten by Taylor’s expansion at t"

k

Tj ] n— n—
I=-%" ﬁu(])(t Y4 o(—mA)u(t" )
7=0
k—1 ( )
+ szz —7A) Z (w9t — Aub) (1) + Ry + Ro.
7=0

where the remainders R, and Rs are

t" ™ — k
R1:/ =9 i s) u* 1 (s)ds and
tn—1 .

m t 71-1-01'7 tn—l +eT—s k—1
Ry = szi(fTA)/t : (k—1)! E () — ) (5) ds
i=1 n '

respectively. Hereafter, we use u(?) to denote the jth derivative in time. Then Assumption (P1) implies

| Ry + Ra| 120y < CT*1 (||U||ck+1([tn—1,tn];m(sz)) + HAuHC’“([t“*l,tn];L?(Q)))-

Now we revisit the three leading terms of 7. Note that

k TJ m k:—l(
Z? " Y + o(=rA)u(t™ ) +7'sz TA)
=1

J=0
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:( —I+o(—7A) - Tipi(—TA)A)u(tn—l)

i=1

E

+ ; ( I—l—ch7 1p1 —TA) —TZC pi( TA)A)u(j)(t”_l)
j=1 " i=1 i=1
+kj( I+chk Lpi( TA)) ("1 ZHe
: i=1

Since the time stepping scheme is strictly accurate of order ¢ = k (by Assumption (P3)), we have I]; =

11, = 0. Meanwhile, we apply Assumption (P3) again to arrive at for A > 0

m k
—1+I<:Zcf1pi()\)=)\(k)kﬂ( Z 7 ) Av(N).

i=1

Note that |y(A)| = O(1) for A — 0 (by Assumption (P2)) and |y(\)| — 0 for A — +o0. Hence |y(A)| is

bounded uniformly in [0, c0). Then we arrive at
HII3HL2(Q) < CTk+1||Au(k)(tn_l)” < CTk+1||Au”C’lc([tn—l’tn];L2(Q)).
In conclusion, we obtain the following estimate

k
le™l 20y < llo(=TA)e™ |20y + CTFH + OTZ 1€ | L2(a)
j=1
Then the assumption (P1) leads to
k .
le™llz20) < llep Mz + CTF + 0T Jle" | L2(q).-

Jj=1

Finally, the desired assertion follows immediately by using discrete Gronwall’s inequality
el 12y < CeT* + Ce” Z e £2 (0
7=0

O

Remark 2.1.2. Theorem 2.1.1 implies that the cut-off operation preserves the maximum bound without
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losing global accuracy. However, the Assumption (P3) is restrictive. It is well-known that a single step
method with a given m € Z* could be accurate of order 2m (Gauss—Legendre method) [31, Section 2.2],
but at most strictly accurate of order m + 1 [9, Lemma 5]. In general, a collocation-type method is only
strictly accurate of order m + 1.

Without the assumption of strict accuracy, one may still show the error estimate, provided that f(u)

satisfies certain compatibility conditions, e.g.,
f(u) € CH[0,T); Dom(A*=%))  forall £=1,2,...k,

that requires O,AYf(u) = 0for ¢ = 1,2,. .., k—1. Unfortunately, those compatibility conditions cannot

be fulfilled in general for semilinear parabolic problems.

Remark 2.1.3. The same error estimate could be proved by assuming that the scheme satisfies the as-
sumption (P3) with ¢ = k — 1 and some additional conditions (see e.g. [110, Theorem 8.4] and [88]).
However, the proof is not directly applicable when we apply the cut-off operation at each time step. It

warrants further investigation to show the sharp convergence rate O(7*) with weaker assumptions.

2.2 Fully-discrete Cut-off Runge—Kutta Scheme

In this part, we discuss the fully discrete scheme. To illustrate the main idea, we consider the one-
dimensional case 2 = [a, b], and the argument could be straightforwardly extended to multi-dimensional
cases, see Remark 2.2.2. We denote by a = zg < 1 < --- < zp7, = b a partition of the domain with a
uniform mesh size h = x4 — x(;_1), = (b —a)/M, and denote by S}, the finite element space of degree
r>1,1e.,

Sy ={ve HY(Q) :v

I,;EPM i:17-~~aM}a

where I; = [x(;_1),, ;] and P, denotes the space of polynomials of degree < r.
Let 2(;_1)r4; and wj, j = 0,...,, be the quadrature points and weights of the (r + 1)-point Gauss—

Lobatto quadrature on the subinterval I;, and denote

wj for 1<j<r—1,
WiE—1)r+j =
2w; for j=0,r.
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Then we consider the piecewise Gauss—Lobatto quadrature approximation of the inner product, i.e.,

Mr

(fs9)n = ijf(xj)g(xj).

Jj=0

This discrete inner product induces a norm

Il folle =/ (fr fr)n Y fn € Sp.

Then we have the following lemma for norm equivalence. The proof follows directly from the posi-

tivity of Gauss—Lobatto quadrature weights [91, p. 426].

Lemma 2.2.1. The discrete norm || - ||, is equivalent to usual L* norm || - || 12y in sense that
Cillvnllzzy < llvnlln < Collvnllz2), Yo € Sy

where Cy and Cy are independent of h.

To develop the fully discrete scheme, we introduce the discrete Laplacian —Aj, : S; — S} such that

(—Ah’l}h,wh)h = (Vvh, th) for all vy, wy, € S}; 2.4)
Then at n-th time level, with given ]’ %, ... u}~* € S}, we find an intermediate solution @} € S, such
that
m k ' )
i =o(=TAR)up 7Y pi(—TAR) ( > L, f(u;;*])) (2.5)
i=1 j=1

where t" = t"~! + ¢;7, and I, : C(Q) — S is the Lagrange interpolation operator. In order to impose

the maximum bound, we apply the cut-off postprocessing: find uj € S} such that

uj(z;) = min (max (af (z;), —),a), j=0,...,Mr. (2.6)

It is equivalent to

ujy = 11, min ( max (4, —c), @).
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Essentially, the cut-off operation (2.6) only works on the finite element nodal points.
Next, we shall prove the optimal error estimate of the fully discrete scheme (2.5)-(2.6). To this end,

we need the following stability estimate of operators o(—7Ay) and p;(—7Ay).

Lemma 2.2.2. Let Ay, be the discrete Laplacian defined in (2.4), and o(\) and p;(\) are rational func-

tions satisfying the Assumption (P1). Then there holds that for all vy, € S},
IV (=mAp)vnlln < [[Vvnlln  and  [[VIpi(=TAp)onlln < C[[V0h]|n 2.7
withi=1,...,mand q = 0,1. Meanwhile,
T|VIARp: (—TAp)op||n < OVl i=1,...,m, ¢=0,1 (2.8)

Proof. Let {(}\;, c,o?)}j\ff’l be eigenpairs of —A},, where {cp? jwrlH forms an orthogonal basis of S} in

sense that (o7, @?)h = §; ;. Then by the Assumption (P1), we have for any v, € S} and ¢ = 0,1

Mr+1

V9 (=rAR)onlli = Y A)Uo ()l (vn, &) )al®
j=1
Mr+1

< 3 ) (0hy @ al? = 190013
j=1

This shows the first estimate. The estimate for p; follows analogously.
Moreover, the numerator of p;(A) is of lower degree than its denominator (by Assumption (P1)), and

hence there exists constants C7, Cy > 0 such that

C1
(AN < ——=—, forall A > 0.
PN < gy forall A>
Then we derive that for any v, € S} and ¢ = 0,1
Mr+1
TVIARpi (=T AR vallE =77 Y D2 () Pl (wn, 0
j=1

)T n 2

J

<Cr Z m“”h,@j)ﬂ
Jj=1 J
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Mr+1
<O Y AN Ion, @nl* = ClIV o0l
j=1
where the constant C' only depends on C and C5. This proves the assertion (2.8). O

Lemma 2.2.3. Let v € H?"2(Q) with the homogeneous Neumann boundary condition and ), € S&.

Then we have the following estimate
(IR Av — ARpITLv, p)p < Chrtt lv]] 2r+2 ||90hHH1(Q)-

Proof. Using the homogeneous Neumann boundary condition and (2.4), we obtain

(HhA’U — AhHh’U, (ph)h
= (I, Av, n)n — (ALY, ©p)n
= (A on)n = (Av.n) ) + ((Av,0n) = (Alliv,on)n)

= ((Af()7 on)n — (Av, @h)) + ((az'v, Oztpn) — (0:11pv, ax@h))

2.9)

Since the (r+1)-point Gauss—Lobatto quadrature on each subinterval I; is exact for polynomials of degree
2r — 1 [91, pp. 425], employing the Bramble—Hilbert lemma as well as the inverse inequality, we derive

that

r

(A, gn)n = (Av, 0n)] = | f (D wi(aven) @i 1rs) - / (Av)pn da)|

i=1 j=0 i
M M
S Ch2r Z ||A’Ug0h||W2r,1([i) S Ch2T Z ||'U||H27‘+2(Ii) (ph”Hr(Ii)
i=1 i=1
M

< O [ollzesacapllonllmny < O ol sy ol .

i=1

Similar argument also leads to the estimate for the second term in (2.9) for r» > 2:
M M
[(0z(v — II{v), Ouipn)| = ’ Z/ Oz (v — II{v) 0 op, dm‘ = ‘ Z/ (v— Hhv)é‘ggph dx’
i=1 71 i=1 71

M T
- ‘ Z/I vtﬁ@h dx — ij (v@iaph)(x(ifl)rﬂ.)‘
i=1 i =0
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M M
< Ch2r Z ch’)igthwzr,l(m < Ch2r Z H?)||H27-+2(Ii) (Ph”H'r(Ii)
i=1 i=1
M
<Oy ol ez lenllanay < O ollmzesz @) llon ]l o).
i=1

Finally, in case that r = 1, it is easy to observe that

M M
(0z(v — Ipv), Ozon) = Z/ Or (v — )0 do = — Z/ (v— Hhv)aﬁcph dz = 0.
i=171i i—1 Y1

O

To derive an error estimate for the fully discrete scheme (2.5)-(2.6). We need the following extra

assumptions on the rational function o (\).
(P4) The rational function o(\) satisfies |o(A)| — 0as A — oc.

Note that the Assumption (P4) immediately implies [110, eq. (7.37)]

lo(A)] < forany A\ >0,

1 + Co)\
with a generic constant ¢ > 0. This further implies

1—Jo(\)]7% < —2coA  forany A > 0.

Therefore, we have for any vj, € S},

Mr+1 Mr+1
lo(=rAn)onllh = > oA P, @i = llonlls + D (oA = 1) (vns )7
j=1 j=1
Mr+1
= llalli + Y (1= la(m2)[T)lo(7A) [ (vn, &)
j=1
Mr+1
<Hlvnlls = 2c0m D> Aila(TA) P (s @i = llvalli = 2¢07| Vo (=7An)on >,
j=1

Then we are ready to state following main theorem.
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Theorem 2.2.1. Suppose that the Assumptions (P1), (P2) and (P4) are fulfilled, and (P3) holds for ¢ = k.

Assume that |ug| < « and the maximum principle (1.2) holds, and assume that the starting values uﬁl

l=0,...,k—1, are given and
[l (z)| <, §=0,...,Mr, 1=0,....k—1.
Then the fully discrete solution given by (2.5)-(2.6) satisfies
lull(z;)| <o, §=0,...,Mr, n=k,...,N,

andforn==%k,...,N
k—1
[u(t) = upll2@) < CEF+ R+ C Y lult') = uj 20,

=0

provided that u € C*+1([0,T); C(Q)) N C*([0, T]; Dom(A)) N CH([0,T]; H**+%(Q)), f is locally Lip-
schitz continuous and f(u) € C*([0,T]; L*(Q2)) N C([0,T]; H>"+2(Q)).

Proof. In [t"~1 "], we note that I1,u satisfies
OITpu(t) — ApIpu(t) = My f(u(t)) + gn(t), t€ ("1 t"],  with Tu(t™ ") given,
and g (t) = (II,A — ApII;)u(t). Then we define its time stepping approximation wj, satisfying

wp = o(—r A" ) + 7Y pi(—7A) (nh Flu) + gh> (" + 7).
=1

Then the argument in Theorem 2.1.1 implies that

||Hhu(t")—wﬁ||h§CTk+1( sup  [ILu* D)l +  sup ||AhHhu(k)(t)Hh)-
tnflgtgtn tn—lgtgtn

The first term of the right hand side is bounded by [|u||cx+1 ([0, 77;¢c:(2))» While the second one is bounded
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as

(k)
AL u™ ()|, = sup (AnIlhut™ (), on)n

PrES] lonln
= Ssup (V(Hhu(k) (t) B u(k) (t))v v@h) + (vu(k) (t)v v‘ﬁh)
oneSy lonlln

< Ch YV (ILa® () = u® 0) 120 + 180P @) 20y < Cla® r20y.
Therefore, we conclude that
[Tpu(t™) — wplln < CTFH! <||uHC"'+1([t“*l,t”];C(Q)) + ||U||Ck([tn—l,tn];H?(Q)))~

Then the simple triangle inequality leads to

2
iy — ()2 < (Hag = witlln -+ g = Tau(e™) )

(2.10)
< (14 C7)||ag — w3 4+ Ok,
Let pj = 4} — w} and e} = u} — IT,u(t™), then p}! satisfies
Py =o(—TAp)er P+ I+ Iy (2.11)

where

n=r Zpi(_TAh)< Li(t" ™" + ) f (ug, ™) = Tn fu(t™ " + Cﬂ')))a
i=1 j=1
and I} = —7 Zpi(—TA;L)gh(t"71 +¢T).
i=1

Now take the discrete inner product between (2.11) and pj

lonlln = (o(=mAn)er ™" pp)n + (17, pi)n + (13, pi -
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Then first term, we apply the Assumption (P4) to obtain that

n— n 1 = 1 1
(o(=rAn)er ", i) < S llo(=ran)ep I + Sk I3

IN

1y oo _ 1
sllen I = corlVa(=rAn)es ™M I* + S llor 7

IN

1 n— n n n 1 n
sllen Ml = cor IV or, = It = LI + 11 + S llehll

IN

1 n— n n n
3 len i = corlIVoRl? = ot V(T + 1)1

1
+ 2007 (Vof, V(I + 13)) + 5 ok 2
Then applying the definition of Ay, we arrive at

1 1. .-
SRR < Slen I3 — corl| Vo

(2.12)
= 2cor(pp, A1 + I3)n + (T, p)n + (I3 o)

By using the approximation property of interpolation I, Lemma 2.2.2, and the fact that uZ*k, cee uzfl
satisfies the maximum bound, we bound the fourth term in (2.12) as

m k )

(il <730 (D0 i+ ) f (u(e 7)) = T f(u(t™ + ar),pi(—mn)pi) |
i=1 = j=1
730 |0 L + e (Waf (ult™ ™)) = T f (uf ), pil = 2)g ) |
i=1  j=1

m k
< oS Ipi=rAn)apln 3 I fu(t™=7)) = Taf (@7

i=1 j=1

m
4 Okt Z Hpi(_TAh)pZHh||th(u)||Ck([tn7k,t"];L2(Q))
i=1
k: .
< CTM L f ()| 2k (s gm0y + CTZ len 117 + Crllon 7
j=1
k: .
< C’rszrlHf(U)”?jk([tn*k,t"];C(Q)) + CTZ ||ezfj||i + CTHPZ”%
j=1
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The fifth term in (2.12) can be bounded by using lemmas 2.2.2 and 2.2.3, i.e.,

I3, ppnl < CT Y7 1gn ("t + 7)., pi(—TAR) P )]

i=1
<CTY WM u T 4 am)l eI (—TAR) R () (2.13)
i=1
CTh?r+2 "
< THUJHQC([t”*l,t"];H"’”‘+2(Q)) + CTn”ph”?{l(Q)'

For the third term in the right hand side of (2.12), we shall apply the preceding argument again, together

with the stability estimate (2.8), and obtain that

m k
(o, A} + I)n] < CT > N Anpi (AR Y I f (™)) = Ty f(u™ ) |n

i=1 j=1

+ CTR2N | Anpi (=7 A0) o T f ()| o ok )22 (2))

i=1

+CT2 Y R (" + )| eere ) | Anpi (T AR il () (214
i=1

k
< O F@) By + O S NEE 12 + Crllonl
j=1

CTh?r+2 "
+ THu||20([t"—1,t”];H2T+2(Q)) + CTWHP}LH%F(Q)'

Then by choosing n small, we arrive at
k .
(1= COlIARIE < Nl 17 + Cr D e 117 + Cr(r® + h2r+2).
j=1
This together with (2.10) and the property of the cut-off operation lead to

lerllf < llah = Mhu)ll; < (1+ Cr)llpplli + er®

k
<llep M IR +Cr Y _lleh™ I + Cr(r* + 7 +2),
j=1
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and hence we rearrange terms and obtain

H@ZH% - ||62_1H%L 2k 242 a n—j2
- <O +h )+CZH€h I%-
j=1

Then the discrete Gronwall’s inequality implies

k—1
lepl2 < CeT (72 + 12 +2) - CeT S le) |2,
§=0

and the desired error estimate follows from the equivalence of different norms by Lemma 2.2.1. O

Remark 2.2.1. In [73], an error estimate O(Tk + h"), which is suboptimal in space, was derived for the
multistep exponential integrator method by using energy argument. The loss of the optimal convergence
rate is due to the suboptimal estimate of the term (0, (Ilyu — w), Oyvy,) in [73, eq. (2.6) and (3.22)]. The
optimal rate could be also proved by using Lemma 2.2.3.

The Assumption (P4), called L-stability, is useful when solving stiff problems. It is also essential in the
proof of Theorem 2.2.1 to derive the optimal error estimate of the extrapolated cut-off single step scheme.

In particular, Assumption (P4) immediately leads to the estimate
lo(=7An)vnlly < llvally — 2e07[ Vo (=7 An)vn ],

where the second term in the right side is used to handle the term involving || p}.|| 1 () in (2.13) and (2.14).
Many single step methods, e.g., Lobatto IIIC and Radau IIA methods are L-stable [31, 114]. For both
classes, arbitrarily high-order methods can be constructed. Nevertheless, it is not clear how to remove

the restriction (P4) in general.

Remark 2.2.2. [t is straightforward to extend the argument to higher dimensional problems, e.g., Q) is a
multi-dimensional rectangular domain (a,b)? C RY, with d > 2. Then we can divide ) in to some small
sub-rectangles, called partition IC, and apply the tensor-product Lagrange finite elements on the partition
K. As aresult, Lemma 2.2.3 is still valid, which implies the desired error estimate. See more details about

the setting for multi-dimensional problems in [73, Section 2.2].
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2.3 Collocation-type Methods with the Cut-off Postprocessing

Note that the Assumption (P4) excludes some popular methods, e.g., Gauss—Legendre methods. This
motivates us to discuss the collocation-type schemes, which belong to implicit Runge—Kutta methods, and
derive error estimate without Assumption (P4). This class of time stepping methods is easy to implement,
and plays an essential role in the next section to develop an energy-stable scheme. For simplicity, we
only present the argument for one-dimensional case, and it can be extended to multi-dimensional cases

straightforwardly as mentioned in Remark 2.2.2.

ail A1m C1
Am1 Amm, Cm,
b . bm |

Table 2.1: Butcher tableau for Runge—Kutta scheme.

Now we consider an m-stage Runge—Kutta method, described by the Butcher tableau 2.1. Here
{¢;}1™, denotes m distinct quadrature points.
Definition 2.3.1. We call a Runge—Kutta method is algebraically stable if the method satisfies
(P5)(a) The matrix A = (a;5), withi,j =1,...,mis invertible;
(P5)(b) The coefficients b; satisfy b; > 0 fori =1,2,...,m;

(PS5)(c) The symmetric matrix M € R™*™ with entries m;j := b;a;; + bja;; — bibs, 4,5 = 1,...,m s

positive semidefinite.

Here we assume that the Runge—Kutta scheme described by Table 2.1 associates with a collocation

method, i.e., coefficients a;;, b;, ¢; satisfy

m

1

Zbic'li_l = 7 lzl? » Dy (215)
=1 !
Sapd =% i=1m, (2.16)
j=1

with some integers p > m. Two popular families of algebraically stable Runge—Kutta methods of collo-

cation type satisfying (2.6) of orders p = 2m and p = 2m — 1 are the Gauss—Legendre methods and the
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Radau ITA methods respectively. For both classes, arbitrarily high order methods can be constructed, and

both of them follow this analysis. Note that the Gauss—Legendre methods are not L-stable [114].

In particular, at level n, with given )%, ... u}’~' € S}, we find an intermediate solution @} € S}

such that

Wt = Apupt 4+ Lot 4 o) f(ul Y for i =1,2,...,m,
upt = up Y gy for i =1,2,...,m, 2.17)

sn _ ,n—1 m i
ay = w730 by

where k = min(p, m + 1), and IIj, : C(Q2) — S} is the Lagrange interpolation operator. Then we apply

the cut-off operation: find uj € Sj, such that
uy (z;) = min (max (ﬁﬁ(mj), —a),a), j=0,...,Mr. (2.18)

Remark 2.3.1. Note that the scheme (2.17) is equivalent to (2.5) with
m

(P1(N)s -y pm(A)) = (b1, .o b ) (I + AA) T, oA\ =1-— )\ijpj()\).

Then the Assumption (P5), and (2.15)-(2.16) imply Assumptions (P1), (P2) with order k = min(p, m+1)
and (P3) with order ¢ = min(p, m+1). Hence Theorem 2.2.1 indicates the temporal error O (r™™(Pm+1)),
This is the reason why we choose k-step extrapolation, where k = min(p, m + 1), in the time stepping

scheme (2.17).

Next, we shall derive an error estimate for the fully discrete scheme (2.17)-(2.18). To begin with, we

shall examine the local truncation error. We define the local truncation error 7,,; and 7,41 as

Wt = Au(t™) + S5 L) fu(t™t))  for i=1,2,...,m,
u(t™) = u(t™ ) + 7 a4 for i=1,2,...,m, (2.19)

w(t™) = u(E ) + 730 b+,

where t"* = "~ + ¢;7 and k = min(p,q + 1). Then the next lemma give an estimate for the local
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truncation error 7,,; and 7,,. We sketch the proof in Appendix for completeness.

Lemma 2.3.1. Suppose that the Assumption (P5), and relations (2.15) and (2.16) are valid. Then the

local truncation error 1,; and 1, given by (2.19), satisfy the estimate

7l 2 ) + 73 Mmill () < CTFF
=1

with k = min(p, ¢ + 1), provided that u € C*T1([0, T]; H*(2)) and f(u) € C*([0,T]; H'()).

Proof. We note that the second relation in equation (2.19) implies
w(t™) —u(t" 1) TZaUut —TZGU ug(t")) +mpy for i =1,2,...,m

Then we substitute the first relation of (2.19) and derive that fori =1,2,...,m

u(t™y = u(t! —Tza”ut fTZa”(Z ("1 ) Fu(t™) = F(E)) +

{=1

Define 7,,; as the left hand side of the above relation. Now we apply Taylor’s expansion at t"~! and use

(2.16) to derive

m l m nl
ﬁni :Z 7( DY 72 Zaucl ! (é) tn ml / tnl - m (m+1)(5)d8
=1 : j=1
i
oD Zau = st sy
Lo i
= %/ 1(tn — s)mu(m+1)(s)ds + — )1 Z%/ (t" — S)m—lu(m-i-l)(s)ds
V' Jn—
Then we obtain the estimate for 7,,;, with ¢ = 1,2,...,m, that

inill 2 @y < CT™ ™ || o=t n), 111 (02 -
This together with the approximation property of Lagrange interpolation lead to

7l 22 () < C(TkH 1f )l ok (n—r em); 10 () + Tm+1||u||C(m+1)([t"*l,t”];Hl(Q)))'
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fors=1,2,..., m. Similarly, we have
m . m k ]
uWﬁ—uw%U—TE:m%”:TEZ@(E:Mﬁm4+qﬂfWQWﬂ)—ﬂﬂﬂ)+mv
=1 =1 =1

Take the left hand side as 17,,. Then Taylor expansion and (2.15) imply

tni

~ 1 /t" L m ) . .
Nn = t" — s pu(” ) s)ds + — E bl/ t" — s)P u(p ) s)ds.

p' n—1 n—1

This together with the approximation property of Lagrange interpolation leads to

1Mnill 71 (0) < C<7—k+1”f(u)HC’“([t"—’*‘,t"];Hl(Q)) + TerlHUHCP+1([t”*l,t"];Hl(Q)))'

Using the choice that k¥ = min(p, m + 1), we derive the desired result. O

Then we are ready to present the following theorem, which gives the error estimate for the cut-off

Runge—Kutta scheme (2.17)-(2.18).

Theorem 2.3.1. Suppose that the Runge—Kutta method given by Table 2.1 satisfies Assumption (P5), and
relations (2.15) and (2.16) are valid. Assume that |ug| < « and the maximum principle (1.2) holds, and

assume that the starting values u}, | = 0,...,k — 1, are given and
[l (z;)| <, j=0,...,Mr, 1=0,....k—1.
Then the fully discrete solution given by (2.17)-(2.18) satisfies
lup(z)|<ea, j=0,....Mr, n=k,...,N,

andforn==%k,... N

k—1
lu(™) = upllzz(@) < C(* + ™) + CZ lu(t") = uill L2 (),
1=0

provided that v € C*+1([0, T); H'(2)) N C([0, T]; H>t2(Q)), f is locally Lipschitz continuous and
f(w) € CH([0,T]; H (2)) N C([0, T]; H>+2(Q)).
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Proof. Due to the cut-off operation (2.3), the discrete maximum bound principle follows immediately.

With the notation
et = Tu(t™) —ult, eV =T,a" — o, e = Muu(t™) —uy, &7 = Iu(t™) — al,

we derive the error equations

et = Apel + (I, A — ApILy)u(t™) + 25:1 Lo(t™)I, (f (u(t™)) — flup™ o) for e =1,2,...

i n—1 m -nj -
eyt =€y + 71>l aigéy’ + Upng for i=1,2,...

e =ep —|—TZZ”1b et + Upmy,.
(2.20)

Take the square of discrete L? norm of both sides of the last relation of (2.20), we obtain

m

lepli = llen ™" + 7> bieh' |7 + 2(mm, e, +sz En )+ | anl[7- (221

=1 =1

For the first term on the right hand side, we expand it and apply the second equation of (2.20) to obtain

m m
Hezil + szle?"i = ||6271||i + 27—Zbi(éziaeh 77m h — 72 Z mij ezl’eh h

1,j=1

m
< llep™ i 427 ) bilénts e’ = i),

where in the last inequality we use the positive semi-definiteness of the matrix M in the Assumption (P5).

Next, we note that the first relation of (2.20) implies
(& e = madn = (Bnei + 30 Le@™) (™) = F(u ™) + (A — AuT)u(™ ™), € = i)

k
= VR Fagay + (Vek', ViIamai) + (32 L™ (Pt ™) = Flar™)seh’ = i)
(=1

+ ((HhA — ApIIp)u(™ 1Y), en’ — ﬂni)h
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The bound of second term of the right hand side can be derived via Cauchy-Schwarz inequality
ni 1 ni||2 2
|(Ver", VILn,)| < 1 [Ven ||L2(Q) + Cl[nni HHl(Q)'

Meanwhile, using the fact that f is locally Lipschitz and the fully disctete solutions satisfy maximum

bound principle at the Gauss—Lobatto points, the third term can be bounded as

k

Lo ) (F(t™™) = f (™)’ = mai) < C(IeiI7 + Il + D lei~I1)
=1

/N
~
1=
—_

The bound of the last term follows from Lemma 2.2.3

(1A = ApI)u(t™ =) e = i) < O et = il l1

1 , ,
< 1 IVerlizaio) + CUER IR + lmilli @) +h*+2).
Therefore, we arrive at
k .
2 ef = i < VR ey + C (X6 + 168+ il ) + 227 2).
j=1

and hence by Lemma 2.3.1, we derive

m m m

len ™"+ 7Y bienlln < lep N7 =7 bill Verlgzq) + O Y llenlln
i=1 i=1

i=1

k
+CT> °en I Nn 4+ Cr (R 7).

j=1
In view of the first relation of the error equation (2.20), we have the estimate
k

O™ 7 0 030 < il (e I+ O S (IV€R o+ 30 e~ o+ 12742 )
i=1

i=1 j=1

m k
T . .
< O + 1) + DY b Ve + O Y e
i=1 j=1
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which gives a bound of the second term in (2.21). In conclusion, we obtain that
5 T - ni — G n—
113 + 5 D IVer 3z < Crh® +7%) + e~ IR + O Y les I + OTZ i 1.
— ‘
(2.22)

Next, we shall derive a bound for ;" | [l€}?||? on the right-hand side. To this end, we test the second

relation of (2.20) by e}'’. This yields

m m . m
Slertllz < Cllep M7 +Cr > ai(én’ epyn +C > Iyl
i=1 i,j=1 i=1
m
<Clep i +Cr Y ai(én ep’)n + Cr7*.
i,j=1

Then, we apply the first relation of (2.20) and Lemma 2.2.3 to derive

Z aij (e, el = — Z aij(Vey Ve Z a”(ZLz ") (f (™) = flup™ 5)),€Zi>h
=1 ij=1 =1

ai; (IaA — ApIIp)u(t™ 1), ep')n

.+
.MS

7,7=1
m k
<Y (Ve Zaga + Ieit2) + ChZ 2+ € flep ™ 2.

i=1 (=1
Therefore, we obtain
m k m
Sl R < CrhP 2 4 7%) 4 Cllep M + Or Y llep™ 1 + O Y (Ve 3acay + leil3)-
i=1 (=1 i=1

Then for sufficiently small 7, C7 > | ||e*||? on the right-hand side can be absorbed by the left-hand

side. Then, we obtain

m k m
Do llertlln < CEr* 24722+ Cllep MR+ Cr Y llep™ N7 + Cm Y IVeR' (172

i=1 (=1 i=1
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Now substituting the above estimate into (2.22), there holds for sufficiently small 7

k
el <CT(R* 2 4+ 725) +llep MR+ CT Y ey "I
{=1

Noting that ||e}!||;, < ||é}||», and rearranging terms, we obtain

lex]2 — flep=Y)2 srin | ok A
- <O+ )+ O llen™ IR

Then the discrete Gronwall’s inequality implies

<C(R2+2 4 124 iz
kinax lexlli <C(h +7 +CZ”ehHh

This completes the proof of the theorem. O

Remark 2.3.2. In Theroem 2.3.1, we discuss the algebraically stable collocation-type method with cut-off
technique. We still prove the optiaml error estimate O (7 +h"+1), without the L-stability, i.e. Assumption
(P4). Note that this class of methods includes Gauss—Legendre and Radau 1A methods [114, Theorem
12.9], while the first one is not L-stable [114, Table 5.13].

2.4 Fully Discrete Scheme Based on Scalar Auxiliary Variable Method

In the preceding section, we develop and analyze a class of maximum bound preserving schemes. Unfor-
tunately, the proposed scheme (with relatively large time steps) might produce solutions with increasing
and oscillating energy, see Figure 2.2. This violates another essential property of the Allen-Cahn model,
say energy dissipation. The aim for this section is to develop a high-order time stepping schemes via
combining the cut-off strategy and the scalar auxiliary variable (SAV) method.

SAV method is a common-used method for gradient flow models. It was firstly developed in [101,
100] and have motived a sequence of interesting work on the development and analysis of high-order
energy-decayed time stepping scheme in recent years [1, 99, 44].

In particular, assuming that E'y (u(t)) = [, F(u(z,t))dz is globally bounded from below, i.e., E (u(t)) >
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—Cy. we introduce the following scalar auxiliary variable [101]

f(u)
2(t) =vVEi(ut)) +Cy and W(u) = ———= 2.23
(t) 1(u(t)) + Co (w) AR (2.23)
Then the Allen—Cahn equation in (1.1) can be reformulated as
ug = Au+ z(t)W(u) in Qx(0,7),
u(z,t =0) =up(z) in Qx {0}, (2.24)
Ohu=0 on 092 x (0,T)
and the scalar auxiliary variable z(¢) satisfies
, 1
z (t) = _§(W(u(t))7ut(t))7 m (OvT)v
(2.25)

One can easily show that the coupled problem (2.24)-(2.25) is equivalent to the original equation (1.1).
Meanwhile, simple calculation leads to the SAV energy dissipation:
d 1l 2 2 2
= (GIVul? + 120 ) = ~lu (@) <o. (2.26)
Inspired by [1], we discretize the coupled problem (2.24)-(2.25) by using the m-stage Runge—Kutta
method in time (described by Table 2.1) and lumped mass finite element method with » = 1 in space
discretization. Then the cut-off operation is applied in each time level to remove the value violating
the maximum bound principle (at nodal points). For simplicity, we only present the argument for one-
dimensional case, and it can be extended to multi-dimensional cases straightforwardly as mentioned in
Remark 2.2.2.

Here we assume that the m-stage Runge—Kutta method (described by Table 2.1) satisfies the Assump-

tion (P5) and relations (2.15) and (2.16). Then at n-th time level, with known uZ*k yeeny qul € S; and
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z""1 € R, we find 4} € S}, and 2" € R such that

Wt = Aput 4 MW for 1 =1,2,...,m,
T T Doy aigy’ for i=1,2,...,m, (2.27)
A __ ,m—1 m i
Up = Up + TZi:l biuh ’
and
Z ——5( U ) or i =1,2,...,m,

2 =" T Y agE for i =1,2,...,m, (2.28)

n _ ,n—1 nz
At =TT b,

where IIj, : C(2) — S} is the Lagrange interpolation operator, and the linearized term W™ is defined

by
k

= L(t" ' + o)W (uy?),  with k= min(p,m + 1).
=1

Then we apply the cut-off operation: find u}} € S} such that

uj(z;) = min (max (af (z;), —),a), j=0,...,Mr. (2.29)
Lemma 2.4.1. Forr = 1, the cut-off operation (2.29) indicates

[Vup L2 < IVagl 229 (2.30)

Proof. Since both 4} and uj}, are piecewise linear, it is easy to see that

1 1<

n n 2 ~n n 2
||Vuh||2L2(Q) = Z up (z5) — up(z-1)[" ||uh||2L2(Q) 7 Z apy () — ap (xj-1)]" -

Obviously, the cut-off operation (2.29) derives

lup (25) — up (zj-1)| < |ap (v5) — @y (vj-1)|, forj=1,2--- M,
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which completes the proof. O

The next theorem shows that the cut-off SAV-RK scheme (2.27)-(2.29) satisfies the energy decay

property and discrete maximum bound principle.

Theorem 2.4.1. Suppose that the Runge—Kutta method in Table 2.1 satisfies Assumption (P5), and we
apply the lumped mass finite element method with v = 1 in space discretization. Then, the time stepping

scheme (2.27)-(2.29) satisfies the energy decay property:

HVUZ*lH%Q(Q) + 12", forall n> k. (2.31)

DN | =

1 n n
§||V“h||%2(ﬂ) + "7 <
Meanwhile, the fully discrete solution (2.27)-(2.29) satisfies the maximum bound principle

> < . .
kg:Lang lup(z)| < «, forall x €Q (2.32)

Proof. Due to the cut-off operation in each time level, we know that

)] < forall 7=0,1,.... M.
k;nnanN|uh(a;J)|_a, orall j I

Since the finite element function is piecewise linear, then for any x € (z;_1,z;)
Jup, ()] < max (juj (1), [ug (25)]) < o
Next, we turn to the energy decay property (2.31). According to the third relation of (2.27), we have
m )
Vip = Vup 1y bV,
i=1

Squaring the discrete L?-norms of both sides, yields

IV = [ Vup = + zTZbi(w;;i, V=t + 72 Z bib; (Vi V).

i=1 i,j=1
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By the second relation in (2.27), we arrive at

Vg = [IVup M7 420> bi(Vap', Vup' — 7Y aVag') + 72 ) bibi (Vg Vi)
j=1

i=1 i,j=1

= [Vup P+ 20 Y bi(Vapt, Vupt) = 72y om (Vag', Vig? )
i=1 i,j=1

<[ Vup P+ 20 ) (Vg Vg,
=1

where we apply the Assumption (P4) in the last inequality. Then we apply the first relation in (2.27) to

derive
m m
IVaRII? = Va2 =20 Y bl +2r ) bi2™ (i, Wi
i=1 i=1
On the other hand, the similar argument also leads to
m
‘Zn|2 < |zn—1|2 - Z bizm(ufgz, W}’;”)h
i=1

Therefore we conclude that

N —

1 i . 1
§IIVﬂZHi + 2" < S IVup R+ 2 - szillﬂﬁllli < §||Vuﬁ‘1Hi + 2"
=1

which together with (2.30) implies the desired energy decay property immediately. O

Remark 2.4.1. Note that the energy dissipation law holds valid only if r = 1, since in this case the cut-off’
operation does not enlarge the H' semi-norm, which is present as (2.30) in Lemma 2.4.1. This property
is not clear for finite element method with high degree polynomials. Hence, how to design an spatially
high-order (unconditionally) energy dissipative and maximum bound preserving scheme is still unclear

and warrants further investigation.

Next, we shall derive an error estimate for the fully discrete scheme (2.27)-(2.29). To begin with, we
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shall examine the local truncation error. We define the local truncation error 7,,; and 7,, as

= Au(t™) + 2 ()W for i=1,2,...,m,
’U,(tni) = U(tn_l) +7 Z;n:l GU’U,;LJ + Mni for ¢ = 1a 2) s, My, (233)

w(t™) =u(@™ ) + 7Y b 4,

where t"" = t"~! + ¢;7 and W denotes the extrapolation
W =" Lo(t" ™ + em)W (u(t")).
(=1
Similarly, we define d,,; and d,, as

_ 1o
= = (W for i=1,2,...

2t) = 2" + T @A+ d for i =1,2,.,m, (2.39)

2(t") = 2(t" ) + 73 biEM + d,

Provided the assumption (P5) and relations (2.15) and (2.16), the local truncation errors 7,,;, 7, dni, dy

satisfy the estimate
Il (o) + 1l +7 Y (||nm-||H1(Q) T |dm-\) < orkHL, (2.35)
i=1
We omit the proof, since it is similar to the one of Lemma 2.3.1, given in Appendix. See also [1, Lemma

3.1].

Theorem 2.4.2. Suppose that the Runge—Kutta method satisfies Assumption (P4) and the relations (2.15)
and (2.16). Assume that |ug| < « and the maximum principle (1.2) holds, and assume that the starting

values ng and 2}, 1 =0, ...,k — 1, are given and

b (z;)| <, j=0,...,M, 1=0,....,k—1.
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Then the fully discrete solution given by (2.27)-(2.29) satisfies forn =k,..., N
k-1
[u(t™) = upllzz@) < CEF + 02 +C Y lu(t') = uhllr2(@) + Cl2(* 1) = 271, (2.36)
1=0

provided that u,  and f(u) are sufficiently smooth in both time and space variables.

Proof. Subtracting (2.27)-(2.28) from (2.33)-(2.34), and with the notation

ep' = Mpu(t™) —up', et =Mpal* —ap', e = Muu(t™) —uy, e = Myu(t™) —ay,
é-ni _ Z(tnz) _ Zni’ éni — Zlu _ éni, gn _ Z(tn) —_

we have the following error equations

eV = Aped + (2(t"HIL, WP — 2MWR) + (A — ApIL )u(t™ 1) for i=1,2,...,m,

eﬁi +TZ] 1 Gijé " 4 My for i=1,2,....m

eh - 62 ! + 7 Zzil blezz + thn
(2.37)

and

gni = —f(W’” i)+ Ry, for i =1,2,...,m,
gni = gn—l + TZ;nzl a’ljgn] + dni for ¢ = 1a 27 ceey M, (238)
gn = 'Snil + TZ;'nzl bzgnl + dna

Now, take the square of discrete L? norm of both sides of the last relation of equation (2.37), we can

get

1ER 117 = lleh™ +TZbe U+ 200" e Ty bl + T IR (2.39)

=1

For the first term on the right hand side, we expand it and apply the second equation of (2.37) to obtain

m
+7'Zb€ Hh_” ||i+27—zbi(é2i’eh nnz h_T Zmlj eh’eh h

1,j=1
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m
< lep R +2m > biénis el = nnidn,
i=1

where in the last inequality we use the positive semi-definiteness of the matrix M in Assumption (P4).
Next, we note that the relation of (2.37) implies
(ezz’ eZi - ’r]ni)h - (A}LeZi + (Z(tnl)Hthl - Zni };”) + (H}LA - A/LHh)u(tn71)7 ezi - nni)h
= VR sy + (TeRt, V) + (I — W e — i)

+ (A = ARt ), i = i)

The bound of second term of the right hand side can be derived via Cauchy-Schwarz inequality
(Ve ViTma)| < IVER s + Cllmailis o
Then the third term can be bounded as
(= — 2wyt et = ) < 2 (W = W et = o)+ €7 (WE e = i),

k
< C( DRI + leh 2 + ITumnill3e ) + €712).

j=1

The bound of the last term follows from Lemma 2.2.3

(1A = AT )u(E™ =) € = i) < O el = il o

1 ni ni
< ZHV% ||2L2(Q) + C(llep 117 + ||77ni|\i11(9) + )

Therefore, we arrive at
k .
2R e’ = midn < — Ve ey + C( D llen I3 + NeR 17 + 167 + lnaill3ra @y + %),
j=1
and hence
m

m m
e+ 73 bl < llep 7t — 7 >0 bV e + Or 3 (1672 + ef})
i=1 1=1

i=1
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k

+Cr Z ||ez_j||i + Cr(h* + 7).
=1

In view of the first relation of the error equation (2.37), we have the estimate
m m k .

O ey 47 300 < nlalle ™ I+ Crllmllam ey D b (IVepll + 3 llep ™ I+ I€™] + 12)
i i=1 j—l

m
T ni nz n—
< Crlht+ 7%+ T3 n(IVeh +167) + CTZ eI
which gives a bound of the second term in (2.39). In conclusion, we obtain that

~ T il ni _
lenlls + 3 Z IVer' 72 < Cr(h* +77%) + lep
N (2.40)

+or Y (lerz + k™) +OTZ ler 13-

=1

Similarly, from (2.38) and (2.35) we can derive

€72 < Cr(ht + %) + (1 er)lgn P + ZHVewnp@
+ 01> (lleh Il + 161 + CTZ ler 113

i=1

where we use the estimate that

(W) — (Wit gt ) = (W Ay — (W alh ), + (W = Wi ail ), + (Wi éqt)n

k
SCR?+CY lep ™ nl il + (VW3 Vert),
j=1

+ (WP 2(t") I W — 2™ W), 4 (WP (T A — AT )u(t™ 1),

k
<CR2+CY _lep ™ |In+ ClIVer'|| + ClE™|,
j=1
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where we use the fact that || Vu}!|| < C (by Theorem 2.4.1) in the last inequality. To sum up, we arrive at

m

5N n T ni n— n—
R l7 + 16" + 5 D IVer' () SCr(h* +72) + flep ™ 17 + (1 + er)|e" 2
=1

m

k
+0r Y (leIE +1€™ ) + Cr Y llen I
j=1

i=1

Note that |} (x;)| < |é}(x;)| forall j =0,1,..., M, which implies

m
n n T 'rLZ n— n—
lenlls + 1€ \2+ZZ||V€ 1720y SCT(h* +725) + [lep 7 + (1 +er)|e" P
= 2.41)

m k

+0r Y (e 7 +1€™ ) + Cr Y llen 1.

i=1 j=1

Next, we shall derive a bound for y_." (HeZZH,% + |§”i|2) on the right-hand side. To this end, we
test the second relation of (2.37) by e}*. This yields

m m . m
Sollertlln < Cliep M in +Cr > as(én?, ep’) + C > I Tummill
i=1 i,j=1 i=1
m .
<Clep r+Cr > (e en)n + CT?.
i,j=1

Then, we apply the first relation of (2.37) and Lemma 2.2.3 to derive

m m

m
Z Qij eh 7621 = - Z aij(VeZ],Ve Z ” t”7'>H W"l _ "ZWn/L nz)

Jj=1 4 1 j=1

<.
Il

'—l-

aij((HhA - AhHh)u(tn_l), ezi)h

=

<
Il
—

k
(Ve 32y + IRl + 1€712) + O+ C > llep |-
j=1

IN
Q
.MS

s
Il
-

Therefore, we obtain

m k
Do llerills < Crh* + %) + Cllep M+ Cr > llen [+
— =
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ey (IVer3e@ + e I7 +1€™12)-

i=1
Similarly, from (2.38) we can derive
Z |£ni|2 < C|§n_1‘2 +Cr Z Uuijénjfm +CZ ‘dni|2
i=1 i,j=1 =1

k ] m 4 ) )
< C(rht +7%5) + I P+ Or Y NI+ Cr Y (I9eR Waqy + e lE + 167 12)
j=1 i=1

Sum up these two estimates and note that, for sufficiently small 7,
m k . m
> (leh'lls + 167 ) < Clrht + 72+ Cle™ 2+ Cr Y lep 77+ C7 D IVep 32a)-
i=1 j=1 i=1
Now substituting the above estimate into (2.41), we have

n n T - ni n— n—
lekllz + 16" + 5 > IVerillza() <Cm(h* +725) + lep i + L+ Cr)le" P
i=1

m k
+Cr° Z IVer |20 + CT Z llen ™ 1I7-

i=1 j=1

Then for sufficiently small 7, there holds

k
lef I + 167> <CT(h* +72%) + [l "M i + 1+ CT)IE P+ CT Y ey |-
j=1

Rearranging terms, we obtain

(lepllz +1€*) = Ulep"lI7 + 1€"~1%)
T

k
<C(h* + 1)+ ClE" P+ C Y ller 17

j=1
Then the discrete Gronwall’s inequality implies
k=1
max (Heﬁlli + \S"IQ) <C(h + 7)) + Ol 2+ 0N |ledIf3-
<n< =

This completes the proof of the theorem. O
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2.5 Numerical Results

In this section, we present numerical results to illustrate the the theoretical results with a one-dimensional
example:

O = Oz + f(u), in§2x (0,77,
Ozu =0, on 9 x (0,7 (2.42)
u(z,t =0) =up(z) inQ,

where Q = (0,2) and f(u) = e~?(u — u?) with ¢ = 0.1 is the Ginzburg-Landau double-well potential.

The initial value satisfies the maximum principle given by

1, if0 <z <1/2
up(z) = (2.43)

cos (2m(z+3)), if1/2<z<2.

The smooth initial value is chosen to satisfy the Neumann boundary condition.

We solve the problem (2.42) with spatial mesh size h = 2/ N, and temporal mesh size 7 = T'/ Ny, with
T = £2 and 5¢2. Throughout the section, we shall apply the Gauss—Legendre methods with m = 1,2,3
and hence k = 2, 3,4. We compute the numerical solution at the first £ — 1 time levels by using the three-
stage Gauss—Legendre Runge—Kutta method [114, Table 5.2], that are sufficiently accurate to achieve the
optimal convergence rate. Cutting off the numerical solutions at the first £ — 1 time levels does not affect
the global accuracy.

Since the closed form of exact solution is unavailable, we compare our numerical solution with a
reference solution computed by a high-order method (i.e. cut-off RK method with r = 3, m = 3)
with small mesh sizes. In particular, the temporal error e, is computed by fixing the spatial mesh size
h = 2/400 and comparing the numerical solution with a reference solution (with 7 = 7'/1000). Similarly,
the spatial error e, is computed to by fixing the temporal step size 7 = 7'/1000 and comparing the
numerical solutions with a reference solution (with h = 2/400).

In Table 2.2, we present the spatial errors of both cut-off RK schemes (2.17)-(2.18) withr = 1, 2, 3 and
the cut-off SAV-RK scheme (2.27)-(2.29) with 7 = 1. Numerical results show the optimal rate O(h" 1),
which fully supports our theoretical results in Theorems 2.3.1 and 2.4.2. Temporal errors are presented

in 2.3 and 2.4, both of which show the empirical convergence rate O(7™*!) and hence coincidence to
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Theorems 2.3.1 and 2.4.2.

Table 2.2: ey, of cut-off RK (2.17)(2.18) and cut-off SAV-RK (2.27)-(2.29).

"N, | T 10 20 40 80 160 rate
RK | 0.0 | 3.03c2 7.42¢-3 1.84c3 4.60e4 1.14e-4 | ~ 2.00 (2.00)
(=1) | 0.05 | 1.49e-1 1.03e-2 2.32e-3 5.7le-d 1.43e-4 | ~2.01 (2.00)
RK | 0.0 | 437¢-3 4.99¢4 5.90e-5 7.27¢-6 9.05¢-7 | ~ 3.01 (3.00)
(=2) | 0.05| 6.15e2 1.64e-3 1.73e-4 2.09¢-5 2.60e-6 | ~ 3.03 (3.00)
RK | 0.01 | 5.10e-4 3.19¢-5 1.99¢-6 123e-7 7.74e-9 | ~ 4.00 (4.00)
(=3) | 0.05| 5893 12le4 8.12e-6 5.03¢-7 3.14e-8 | ~ 4.01 (4.00)
SAVRK | 0.01 | 3.03e2 7.42¢-3 184e2 4.62¢4 1.17e-4 | ~2.00(2.00)
(=1) | 0.05 | 1.49e-1 1.03e-2 2.34e-3 5.85e-4 1.56e-4 | ~ 2.01 (2.00)

Table 2.3: e, of cut-off RK scheme (2.17)-(2.18), with 7 = T'/ N;.

m\ Ny T 10 20 40 80 160 320 rate

1 0.01 | 3.76e-4 9.6le-5 2.43e-5 6.10e-5 1.53e-6  3.82e-7 | =~ 1.99 (2.00)
0.05 | 8.0le-4 5.36e-5 1.16e-5 2.71e-6 6.56e-7 1.6le-7 | ~2.06(2.00)
2 0.01 | 4.92e-5 6.20e-6 7.74e-7 9.65e-8 1.21e-8 1.51e-9 | ~3.00 (3.00)
0.05 | 1.73e-2  3.60e-5 1.78e-6 2.08e-7 2.51e-8  3.08e-9 | = 3.06(3.00)
3 0.01 | 1.05e-5 6.83e-7 4.31e-8 2.71e-9 1.69¢e-10 1.05e-11 | = 4.00 (4.00)
0.05 | 2.88e-2 3.66e-3 3.82e-7 1.56e-8 9.61le-10 6.06e-11 | =~ 4.21 (4.00)

Table 2.4: e, of cut-off SAV-RK scheme (2.27)-(2.29), with 7 = T/ N,.

m\ Ny T 10 20 40 80 160 320 rate

1 0.01 | 8.08e-3 2.23e-3 5.96e-4 1.53e-4 3.79¢-5 8.78e-6 | = 2.03(2.00)
0.05 | 7.94e-4 1.79e-4 4.80e-5 1.24e-5 3.09¢-6 7.17e-7 | = 2.00(2.00)
2 0.01 | 5.56e-9 5.95e-4 8.82e-5 1.11e-5 1.37e-6 1.65e-7 | = 3.02(3.00)
0.05 | 1.47e-2 5.17e-5 7.17e-6 1.00e-6 1.31e-7 1.63e-8 | = 2.97(3.00)
3 0.01 | 6.97e-11 2.56e-4 2.47e-5 1.66e-6 1.06e-7 6.60e-9 | = 3.95(4.00)
0.05 | 2.45e-2 2.86e-3 7.73e-7 6.16e-8 4.38¢-9 2.93e-10 | = 3.79 (4.00)

In Figure 4.1, we plot the maximal cut-off value at each step

n o __ n i _ ~ M .
= max lup (25) — g ()]

and the error of the numerical solution e(z) = ul (z) — u(x,T). Our numerical results show that the
cut-off operation is active in the computation. Meanwhile, we observe that a coarse step mesh will result
in a larger cut-off value, without affecting the convergence rate.

Finally, we test the numerical results in case of relatively large time steps, and compare the numerical

solutions of extrapolated RK, cut-off RK (2.17)-(2.18), and cut-off SAV-RK schemes (2.27)-(2.29), with
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Figure 2.1: Error at 7' = 0.01 and maximal cut-off value at each time level.

r = 1, see Figure 2.2. Without the cut-off postprocessing, the numerical solutions of RK scheme signif-
icantly exceed the maximum bound, and present oscillating solution profiles. With the cut-off operation
at each time step, the numerical solutions satisfy the maximum bound, and present reasonable solution
profiles. However, numerical results show that the cut-off RK scheme might produce a solution with a
obviously increasing and oscillating energy curve. This issue could be significantly improved by apply-
ing the cut-oftf SAV-RK method, whose solution satisfy the maximum bound and the numerical energy is
more stable. Moreover, the numerical results show that the cut-off SAV-RK scheme will produce a more

regular numerical solution and smaller cut-off values, compared with the cut-off RK scheme.

2.6 Conclusion and Comments

In this chapter, we discuss the cut-off postprocessing on a series of single step methods, for Allen—Cahn
equation with the nonlinear term linearized. We prove that our scheme can be arbitrarily high order for time
discretized problem, and be arbitrarily high order for both space and time for fully discretized problem. A
lot of famous schemes are included in our analysis. Combining this strategy with SAV technique, we also
develop a class of schemes, which preserve both maximum bound and energy stable. Related numerical

are also given to corroborate our analysis.
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Figure 2.2: Left: solution profiles of numerical solutions of RK, cut-off RK and cut-off SAV-RK scheme.
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Chapter 3

High-order Implicit-Explicit
Runge-Kutta Methods for Parabolic

Equations

In this chapter, we will develop and study Implicit-Explicit Runge—Kutta method (IMEX-RK) for linear
and semilinear parabolic equations. To begin with, we will focus on linear non-selfadjoint equations. It
is more than a easier case but itself is also a interesting question and related to some physics problems.
In Section 3.5, we will give a brief introduction to the linear problem and its related background. In
Section 3.2 build the IMEX-RK method for linear problem and give its long time error convergence in
Section 3.3. In Section 3.4, we extend the analysis to semilinear problem and show it can keep both
maximum bound preserving and original energy decay for up to third order. The schemes of this chapter

is listed in Section 3.5 which meet all our requirements for the convergence.

3.1 Introduction

In this work, we investigate a numerical approach to solve the following problem. LetV ¢ H = H' Cc V'

be a Gelfand triple of Hilbert spaces, where the superscript > denotes the dual. Namely, the embedding

47
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V< H is continuous and dense, and

(u,v)yyr = (u,v)g Yu € H=V' v € Ve—H,

where (-, -)y,y is the duality pairing between V' and V, and (-, -) i is the inner product on H.

We consider an abstract parabolic initial value problem: find

w e L2((0,T);V) c H'((0,T); V) —C([0,T]; H)

such that
Ou=Au+ f(t) 0<t<T,
3.1)
u(0) =up € H
where A : V' — V' is a bounded linear operator (possibly non-selfadjoint) with the following property

that:

B Hully < —(Du,u) < Bllulli; VueV, (3.2)
|(Lu,v)| < C|lullv||v||a, Yu € Vv € H,

where D = (A + A*)/2,L = (A — A*)/2 are the symmetric and skew-symmetric part of the operator

A. Furthermore, D is negative definite.

The Stokes-Darcy system

As a multiphysics system, the Stokes-Darcy system is considered in this work which describes a moving
fluid governed by the Stokes equations in a free-flow region Q25 C R? and a flow in a neighboring porous
media region Qp C R?. Darcy flow and Stokes flow interact through an interface denoted by I as shown
in Figure 3.1. Applications of such a coupled system are ubiquitous in nature, including groundwater

system [54, 56, 69], petroleum extraction [14], and so on.
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Qg

Figure 3.1: Computational domain of the Stokes—Darcy system

This model consists of a parabolic equation

Oip — V- (kVe) = fp in Qp x (0,7T],
¢=0 on dQp\I' x (0,77,
(3.3)
—kVo-n=u-n on I' x (0,7,
#(0) = ¢o in Qp,

which describes the Darcy flow in the porous media region 2p through the unknown hydraulic head ¢,

and an evolving Stokes equation

8tu—V-TI‘(u7p) :fS in QS X (O,T],
V-u=0 in Qg x (0,7,
u=20 on 9Qs\I x (0,7, G4

—T(u,p)n = g¢n + p(u — (u-n)n) on I' x (0,77,

ll(O) = Up in Qs,

which describes free flow in the region Qg through the fluid velocity u, where T(u, p) = 2vD(u) — pl
denotes the stress tensor, in which D(u) = (Vu + (Vu) ") is the deformation tensor and I is the d x d
identity matrix. The physical parameters x, g, ¢ and v in this model are positive constants, and fp and
fs are given source terms.

Homogeneous Dirichlet boundary conditions will be imposed on outer boundaries separately, i.e., on

O0p\I' and 9Qs\T'. The interface conditions on I in (3.3) and (3.4) represent conservation of mass and
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balance of force, respectively, where n denotes the unit normal vector on 925 as shown in Figure 3.1.
For the ease of error estimate, we will rewrite the Stokes-Darcy system as an equivalent abstract
problem.

Let H = L*(Qp) x L?(Qs)% and V = HL(Qp) x HL(Qs; divy), where

HL(Qp) ={p € H(Qp) : o =0 on INp\T'},

H}:(Qg;divg) = {ve H (Qs)?: V-v=0in Qg and v = 0 on 9Qg\T'}.

The weak formulation of (3.3)-(3.4) reads: find (¢, u) € L*((0,7); V)NH*((0,T); V') — C([0,T]; H)

satisfying the following equations for all test functions (p,v) € L2((0,T);V):

(0rd,0)p + (kV ), Vo)p — (w-n,0)r = (fp, ) (3.5)
(0w, v)s + (2vD(u),D(v))s + (96, V- m)r + p(u — (w-n)n,v — (v-n)n)r (3.6)
= (f5'7 V)a

where (-, -) p is the pairing between H}:(Qp)" and HE(Qp), (-, +)s is the pairing between H:(Qg; divo)’
and H}:(Qg; divo), and (-, -)r is the inner product on L?(T').

Let the operators A; : HL(Qp) — HE(2p)', Az : HE(Qs; dive) — HE(Qs; dive), B : HR(Qg; divey) —
HL(Qp) and B* : H:(2p) — HE(21;divy)’ be defined via duality by

(A1¢,9)p = (kV,V)p Vo, € Hr(Qp),

(Aou,v)s = (2vD(u), D(v))s+pu(u—(u-n)n,v—(v-n)n)r Vu,v € HE(Qs;divo),
(Bu,@)p = (-0, ¢p)r Yu € Hp(Qg; divg) = L*(T), Yo € HA(Qp) < L*(I),

(B*¢,v)p = (¢,V-0)r V¢ € H(Qp) — L*(T), Vv € HL(Qs;dive) < L*(T).

Then the weak formulation (3.5)-(3.6) can be written as

¢+ A1¢ — Bu = fp, 3.7

oyu+ Asu+ gB* ¢ = fs. (3.8)
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By defining notations

A —g2B
PP O R and A= — vy : (3.9)

g *u g s g2B° A

equations (3.7)-(3.8) are equivalently reformulated to the abstract parabolic initial value problem (3.1).

Due to the various applications of Stokes-Darcy system, many different numerical methods are de-
veloped and analyzed, including domain decomposition methods [25, 8, 13, 17, 24, 26, 35, 49, 112, 89],
Lagrange multiplier methods [70, 5, 42, 57], discontinuous Galerkin methods [63, 77, 94, 95], multigrid
methods [4, 83], partitioned time-stepping methods [66, 84, 97, 123], coupled finite element methods [12,
11, 65, 81] and many others [18, 19, 43, 53]. In particular, Kubacki et al [67] presented an overview of
non-iterative partitioned methods for such a system. With a time-step restriction for stability, numerical
schemes of both first-order and high-order partitioned methods were presented. Gunzburger et al in [49]
analyzed a parallel, non iterative, multiphysics domain decomposition method for decoupling the Stokes-
Darcy model with multistep backward difference formula (BDF) for the time discretization. Optimal order
O(7%) for the k-step BDF scheme were established in a general framework for any k < 5. Chen et al
in [19] proposed two second-order-in-time implicit-explicit methods including 2-step BDF and second-
order Adams-Moulton-Bashforth method (AMEZ2) in which coupling term in the interface conditions was
treated explicitly and established for both schemes the unconditional and uniform-in-time stability. Error
bound was derived with O(72). An improvement of this work was presented in [18], in which a third-
order in time AME algorithm was studied and uniform-in-time error estimate was derived. Recently,
authors in [72] presented an implicit-explicit (IMEX) scheme with k-step BDF in time and finite element
discretization in space. In that paper, the spatial differential operator A was split into a symmetric part and
an anti-symmetric part on which implicit and explicit schemes were applied respectively. A symmetrized
and decoupled temporal k-step BDF scheme was presented and optimal long-time error bound O (7% +h?)
was derived.

We notice that aforementioned high-order-in-time works are conducted with multi-step methods and to
our knowledge there is no temporal high-order single-step methods adopted for the coupled Stokes-Darcy
system in the literature. This motivates us to apply IMEX Runge-Kutta method on the Stokes-Darcy

equations aiming to achieve high-order convergence in time.
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C1 ail 0 PN 0 dll 0 “e 0

C2 a1 a2 [N 0 a1 a22 NN 0

Cm, Am1 Am?2 N Amm, Am1 Am2 cee Amm
b1 by ... bm b1 by ... b,

Table 3.1: Butcher tableau for Runge—Kutta scheme.

3.2 Implicit-Explicit Runge-Kutta Methods

In this section, we shall propose the time stepping scheme for solving the Stokes—Darcy system (3.3)-
(3.4) by using the IMEX Runge—Kutta method. To this end, we split the interval [0, T into a sequence of
subintervals [t¢, #**1], fori = 0,1,2,..., N — 1. with time levels 0 = t° < t! < ... <" = T. The
mesh size is denoted by 7 := max;<;<, ; with 7; = t* — ¢'=1. To simplify the presentation, we will
proceed under the assumption that the step size is uniform, i.e., 7; = 7 for ¢ = 1,..., n. Nevertheless, it
is important to note that the analysis applies to nonuniform meshes as well, since the proposed schemes
are single-step.

For the symmetric part, we consider a m-stage diagonally implicit Runge—Kutta (DIRK) scheme with
coefficient A = {ai; }mxm, b = {b;}}2; and ¢ = {¢;}];. For the skew-symmetric part, we make use
of a m-stage explicit scheme with coefficients A = {di; }rmxm, b={b}, andé = ¢ = {¢;}7,. It
is important to note that the implicit scheme and explicit scheme share the same internal nodes ¢ =
t"™ + ¢;7,. The IMEX Runge—Kutta schemes can be determined by the following Butcher tabular

Throughout, we assume that the scheme is stiffly accurate:

Assumption (P1) Assume that b; and lA)l are the last columns of A and fl, respectively, which means:
bl =274, b =2TA (3.10)

where z = (0,...,0,1)7.

Remark 3.2.1. The condition (P1) is a common assumption that improves stability when dealing with
stiff problems, ensuring that the method can take larger time steps without losing accuracy. See some

useful properties in Proposition 3.2.1 and Corollary 3.2.1.

Let u", u™" be approximations to u(¢") and u(t"™*), respectively, and f™% = f(¢™'). Then the IMEX



3.2. IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS 53

Runge—Kutta scheme for solving the parabolic problem (4.1) can be written as

un,O = "

ut =y + 13 a Du™ 47 Y 4y (Lu™IT 4 Ty =100 m (3.11)

Jj=1 j=1

ut = 7 3 b DU 7 Y by (LuI T 4 fredT ),
j=1 j=1

Alternatively, we let U™ = (u™")™ | V" = (v, = (Lu™ =L+ fi=1)™ Then the scheme (3.11)

could be written in vector form as

U™ = 1u™ 4+ TADU™ + TAV™,

(3.12)
u Tt =" + 70 TDU £ 7TV,
Note that the first relation in (3.12) leads to
U™ = (I —7AD) Y (1u" + TAV").
This together with the second relation in (3.12) and Assumption (P1) yields
utt =2 TU" = 2T (I — 7AD) M1 + 72 (I — 7AD) LAV (3.13)

where z = (0,...,0,1)T. Let o(s) = 2z (I + sA)~'1, and p;(s) be the i-th entry of 2T (I + sA)~' A

for s > 0. Then the scheme (3.13) can be written as the following equivalent form
u" ™t = o (=1, D)u" + 7, Zpi(—TnD)(ﬁu"’i + . (3.14)
i=1

Here o(s) and {p;(s)}/", are rational functions.

To guarantee long-time stability, we need the following assumption on the rational function o.

Assumption (P2): We assume that 0 < o(s) < 1 for all s € (0, 00).

Remark 3.2.2. The bound |o(s)| < 1 is typically required for stability. However, we need a stronger

assumption, o(s) > 0, to ensure that o(—7D) is invertible. This is crucial because we use the test
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function o(—7D) " u"T in the proof of long-time stability (see Theorem 3.3.1). For the backward Euler
scheme, o(—7D) ™1 = (Z—71D) is well-defined, but the invertibility of o (—7D) is not always guaranteed

for higher-order Runge—Kutta methods.
Later on, we will show some properties of o and p;, which will benefit our further analysis.

Proposition 3.2.1. Assume that (P1) is valid. Then o and p; possess a common denominator with a degree

of m, while the degree of their numerators does not exceed m — 1.

Proof. Note that (I + sA)~t = (det(I + sA))~(I + sA)*, where the star here denotes the cofactor
matrix. Since o(s) = 2z (I + sA)~'1 and p;(s) are the i-th entry of 2T (I + sA)~ ' A, we observe that
o and p; share the same denominator det(I 4+ sA), a polynomial of degree m. Also, we conclude that all
entries of the cofactor matrix are polynomials with degree not exceeding m — 1. It follows that numerators

of the polynomials p; and o also have a degree of m — 1. O

As a direct result of Proposition 3.2.1, we have the following estimates for the rational functions o

and p;.

Corollary 3.2.1. Let Assumptions (P1) and (P2) be valid. Then there exist positive constants cy, ¢c1 and

co such that for all s > 0, the following holds:

1
14 cos’

pi(s)
o(s)

o(s) <

so(s) <cy and < co.

Proof. In the first estimate, (1 4+ ¢s)o(s) is a rational function with equal numerator and denominator,
finite on (0, 0o). It has finite local maxima on this interval. For ¢ = 0, all maxima are less than one, so
there exists a small ¢y near zero such that (1 + cs)o(s) < 1.

In the second estimate, so(s) is a rational function where the numerator equals the denominator,
making it finite on (0, co). Therefore, lim,_, o so(s) is finite, and so(s) remains finite on (0, c0).

In the third estimate, p; /o is a rational function where the numerator equals the denominator, ensuring

it is finite on (0, co) and remains finite throughout.

To illustrate the order condition of our scheme, we need to make the third assumption:
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Assumption (P3) Here we define

We assume that, for a given positive integer k, the following properties hold valid

I
T l
2T (A, )r+1c+:m, VI>0,r>0,0+r<k—1, (3.15)

where, each appearance of A, during the multiplication is either A or /Lr.

We say a scheme is accurate of order k, if
o\ =e*+ 0N as A — 0, (3.16a)

and, forany 0 <[ < k,

)+O (A1) as A = 0. (3.16b)

Z Cépi()\) = 7[4&( Z
i=0

=0

To achieve k-th order accuracy, the following theorem provides the necessary and sufficient conditions

for the Butcher tableau.

Theorem 3.2.1. The scheme is accurate of order k for linear symmetric problem if Assumption (P3) is

valid.

Proof. Let A = D and denote U™ = {u™"}™  and F™ = {f(t"™*)}™ . Then scheme reads
U =1u" +7A DU+ 7A,F" and u"*'=u"+7b, DU +7b, F. (3.17)
The first relation of (3.17) gives
U'=(I-7AD) 1™ +7(I —7A D)t A F".

The equation (3.10) guarantees that the last element of U™ happens to be ™! itself, so finally we can
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get

u"t = o(—tD)u" + 1 Zpi(—TD)f(tn’i)y
i=0

where o(A) = 2T (14 M) 1L, {pi(\)} T = 2T (1 4+ XA, )T A, for A > 0. We know the rational real
function on the operator D is well-defined since D is negative definite such that —7D is positive definite.
To derive (3.16a), since the rational functions and exponential functions are sufficiently smooth and

analytic, we can just take the derivative and test whether they are the same at zero.

1 l
<G&> =27 ((5) (1+>\A+)1> 1= (=D)2T (1 4+ 24,) A",

Therefore, (3.16a) is true if and only of

l
(ddA) o(0) = (-DzTA' 1 = (-1}, Yo<I<E,

which means

2TA = Tll YO <1<k

To evaluate (3.16b), we need some simplification. The equation (3.16b) is equivalent to

(=)'
l

I+1 = ! _ -2 k+1
(=N ;cmi(k) —l!(e 0 )+O(A 1), as A= 0. (3.18)

J
=0

Similarly, we only need to compare their derivatives at zero. Let

(=)'
I

).

It is obviously that LH S has a A'*! factor so it is zero for no more than [-th order derivative. So does

m J
LHS = (-0 elpi(n), RHS = u(e—A .
=0 1=0

RHS because it is the Taylor’s expansion. Thus we only need to test their derivatives with order more
than /.

Letr > O0and ! + 1 4 r = k. Taking the (I + 1 + r)-th order derivative on LH S, with the Leibniz
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product rule, we can derive that

d I4+1+4r d I+1 . d\" .
v —_ T - N2 Y e o9
<d>\> LHS(0) C””’“(dA) =3 (dA) 2 cinil)

I+1+7)! - —(r .o
= W(—l)l+1(1+ ].)' ZT(—l) 7"'(1 +0 . A+) ( +1)A+ A+Cl

= (=) 14 r)2TATAL
Therefore, (3.16b) is true if and only if
(D)0 14m)2TA A d = (D)), V> 0,0 > 0,0+ <k—1,

which means
!

TA ’I“A I _
S { pueEE S TR

Vi>0,r>0,l4+r<k-—1.
That is guaranteed by the assumption. O

Remark 3.2.3. [fthe source term is partially or fully computed implicitly, then an additional requirement

!

TA TA l:
S ( B DT

VI>0,r>0,0+r<k—1

should be added. The proofis a line-by-line copy of the previous one.

3.3 Implicit-Explicit Runge—Kutta Methods for Linear Problems

Before we illustrate the stability theorem, we will show a stability lemma for the stages, which may be

used in the later theorem.

Lemma 3.3.1. Ifa series of solutions satisfy

Y =¢+cotDY + TZaiDvi + TZ&iﬁvi,
i=1 i=1
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for some constant cq > 0, then there exists a constant C such that

Il < C(I6ln+ 3 ) and el < C (sl + 3 il ).

i=1 =1

Proof. Take the inverse of (I — ¢q7D), we can get

Y= (I—corD)* (¢ +7 i aﬂ)vi) +7 i a;i(I — coD) " Lo’

i=1 i=1

Test with ¢ and we can get

m m

lli3 < Clela (9l + D lloilla) +7 3 ai(£0', (= corD) ™)

i=1 i=1

and

T(ﬁvi’ (- COTD)_1¢) < Cr|v'|lull = comD) " ||y < Cllo’ || l|¥] a-

which gives us the first relation.

To get the second relation, instead of test 1/, we will now test — D1 to the above equation. It turns to

be
m m ]
lelly < Cllelly (Iollv + 3 loillv ) =7 3 i (£, DU = corD) 1)
i=1 i=1
and
r(£0, DU = D) 1) < Ol v DU = corD) Yl < Clf vl
which gives us the second relation. O

Theorem 3.3.1. Ifu’ and u™* are the solutions generated by 3.11, with f = 0, and the Assumption (P1)
(P2) hold, then

lu™ 1 < llu™ =7, ¥n > 1

when T < 7%, where the constant T is only related to the scheme and 3 in equation (3.2), and not related

tou oru”.

Proof. Test equation 3.14 with o ~!(—7D)u", we can get
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m
(un7U—1un) — (O"LLn_l,U_lun) + TZ (picun,i—l, O_—lun)
i=1
Due to the symmetry of D, all the rational combinations are symmetric and commutable, so

m
(un’ U*lun> — (un717un) + TZ (Lun,ifl’pia_flun)

=1

Since £ is skew-symmetric, (aLw, w) = a(Lw,w) = —a(w, Lw) = 0 for all o, w, so
(u",a‘lu”) )+ TZ ( ™t — (O)_lpia_lu”),pia_lu")

For our assumption, there exist an ¢, = c¢o/B s.t. 0 < o(s) < 1/(1+ ¢(5s), so the LHS of the above

equation can be bounded by

P L

(u", 0~ u)>’|un”H

and
_ 1 2 1 12 1 112
() = Hr+ Sl = 2 =

For the second term on the RHS, use the property of L, we can get

m
Z (c(“n’i_l _pi(o)_lpw_lu"),pm_lu”>
a - 2 " ,
<X lpio %+ € [Jumi Tt = pi(0) o |,
i=1 i=1

m

m m
<X o w4200 3 w4203 0 o
=1

i=1 =1

=hL+1,+ I3
By corollary 3.2.1, we can get

m
I = EZ Hpm_lu”Hi < ElCHu"H;

i=1
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Then we are going to estimate I». The second relation in 3.11 gives us
u™t — " = (" — ) + TZ a;;D(u™ —u") + 7 Z ai L™~ —u™) + 7 (D + L)u™.
j=1 j=1
Define w™* = u™* — u™, so
i i
w™t = wn,O + 7 Z aiij”J +T Z dijﬁwmj*l + TCZ'(D + ﬁ)u”
j=1 j=1

Similar with Lemma 3.3.1, taking the inverse of (I — am’D), we can derive that

i—1 7
w™t = TZaij (I- aiiTD)_lDw"’j + TZ&U (I - aiiTD)_lL’w"’j_l
i=1

J=1

+ (I — aii'rD)ilw”’O + T¢; (I — a“‘TD)leu" + T¢; (I — am’D)ilﬁu".

Test with w™*, we can derive that

i—1 i
lom 3 < C D aillw™ 3 +7 > i (Lw™ 1 (I = ayrD) ™ w™)
j=1 j=1

1/2 H+TC; (Cun, (I — aiﬂD)ilw”’i),

+ ™ llw™ g + CT2 " v |lw™

and
—1 -1
(Lo, (I = autD) x) < Clléllull(I - aurP) xllv < Cléllmlxln.
for any ¢, x. Therefore
i—1
[w™ |l < Clw™|lm +C Y agllw™[lu + C'/2|[u ||y

=1

Accumulate from 1 to ¢, we can derive that

Jw™ g < Cllw™ g + CT2u™v,
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which means that

lu™* — w7 < Cllu" " —u |G + O[5

2
For I3, since p;o ! is bounded, we know that (1 — pifé)(j)(s)> is also bounded for s > 0. Further, it

is a rational function with value 0 when s = 0, so

which means that

Now, we can get that

1 1 _ 1
a1 = = corlla™ [y + Sl + 51l = 5

=

m
+7eC Y [Jut [y + Cerllun ™ — wlf + Cer?||u”||3
=1

+Cer? [l

For a given IMEX—RK scheme, ¢ can be fixed so that C. is also a fixed value, which is non-related
. ‘ 2
to the time step 7 and solution v. Then a small T can guarantee that C.7[u"~* — ™% and C.72||u" |||,

are bounded by the negative terms. So finally we find

n||2 n—1[|2
[ [ < ™
which agrees with our claimant. O
Next, we shall derive an error estimate for the scheme.

Theorem 3.3.2. Suppose that Assumptions (P1)-(P3) are valid, u is the solution of 3.1, and u™ is the

solution of 3.11. We can then derive the following error estimate:

" k—1 4
lu(t™) "]z < CT* </ A ()l + [[u® D ()l + 1A (5) ] d5+2/ 1A' S ED ()] dS)
0 1—0 70
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when T < 7%, where the constant T* is related only to the scheme and (3 in equation (3.2), and not to u or

u’ﬂ

Proof. To begin with, we shall examine the truncation error for our scheme. Let U? = {u(t™*}™ , be

the exact solution. We define the local truncation error R" as

UP = 1u(t") + TA, DUT 4+ 7A, (LUT + F™) + R". (3.19)

together with

U™ = 1u" + 1A DU + 7A (LU™ + F™). (3.20)

Define e™¢ = u(t™") — u™?, and vector E™ be consisted with e™*. we can get

E" =1e" +7A, DE" + TA,LE" + R".

Divide E™ into two vectors, such that

EP =1e¢"+ 1A, DE} + 7A LET,
E} = TA,DEY + 7A,LE}Y + R™.

Obviously E" = E? + EZ, and ||z " E?||i < ||e"|| when 7 < 7* by Theorem 3.3.1.

From equation (3.19), we can get
R" = (I —7AD—71A L)U" — 1u(t") — TA, F™.
Substitute this into the relation of E2, we can get
Ey =U" — (I —7A.D —7ALL)  (1u(t™) + TALF™).
The Taylor expansion gives us that

k
1
Ul = Tu(t") + E ﬁrlclu(l)(t") + O(Tk+1).
=1
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and

uD (™) = (D + L)u=V () + fEV ) = .
-1
= (D+L)'ut") +> (D + L)~ P fP ().
p=0

Although A, D + A, L can be non-self-adjoint and unbounded, the laws of finite products hold, so that
I-X)'=(+X+ - +X")+T-X) X+

where X canbe (TA, D+ 1A, L).

Finally, the Taylor expansion of F' is given by:

k—1
1 ,
Fr=1f@1")+ Z ﬁTlclf(l)(t”) + O(7%).
1=1

Note that we only need the last element of F5, and the Assumptions (P3) guarantee that:

_ !

T(AD+ AL 0

(D+ L) = %Al

and
I DLy no
(l+1+7")!( +£) (147

T

ZT (A+D + A+L)TA+CI =

Combining all the above equations, we observe that all the lower-order terms are canceled, so
2T By = 7P+

and
t'n. +1

e <l + CrH A e+ O [ D ds

tn

tn+1

k—1
sort S [ Ay,
l:O t"L

where the constant C' is related only to the scheme itself.
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Furthermore, we have

T A ()|

gt
= [ 1A ) s
tn tn+1
[ A A () s
t"tfl gt

g/ ||Ak+1u(s)||Hds+T/ | A*F 10! ()| grds.
tn tn

As aresult, if 7 < 7 which is introduced in Theorem 3.3.1, we can get

t’Vl t’VL
len]l <[l + / AR u(s) | srds + Ok / AR ()] rds
0 0

+CT’€/ [[u*+Y) ||Hds+CT’“Z/ | A" F*0 | rds.
0

64

If the exact solution and source term is bounded in (0, 00), then we can get the long time error estimate.

Here the constant C' is only related to the scheme, and 7* is only related to the scheme and [ in equation

(3.2). Neither of them are related to the source term f, the exact solution u, the numerical solution u™, or

the mesh size 7.

O

Remark 3.3.1. Note that each possible combination of Assumption (P3) has appeared in the above proof

during the Taylors expansion, so the stage order Assumption (P3) is also necessary conditions.

3.4 Implicit-Explicit Runge—Kutta Methods for Semilinear Prob-

lems

In this section, we will extend IMEX-RK method to equation (1.1). Unlike the simple cut-off post-

processing used before, we first perform a modification on the potential term to ensure their solvability

on the stages, and then apply cut-off post-processing at the final stage of each step. Combined with [38],

we can show that IMEX-RK can preserve both the maximum bound and the original energy dissipation.
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To solve the Allen-Cahn equation (1.1), we begin with defining a modification nonlinear term f as

f(v), if v] < «,
fW) =4 fla)(v-a), ifv>a, (3.21)
fl(—a)(v+a), ifv<—a,

and consider the modified model

u = Au+ f(u). (3.22)

Note that f(u) = f(u) for |u| < «, thus the equation (1.1) and (3.22) share the same exact solution.
Moreover, since the modification is tangent cutoff of the original function, we can know that f € H?(R).

The IMEX-RK method for solving equation (3.22) is

u™ ="t T e Au T3 g f(um) for i =1,2,...,m,

E(T)un—l — 1 47 EZZO bzAum + TZ;ZO i)if(uni)7 (3.23)

This scheme naturally defines a solution map F(7) : u"~! + u™. The map E(7) satisfies the following

Lipschitz condition.

Theorem 3.4.1. The operator E(T) defined in equation (3.23) satisfies that
[E(m)v — E(T)w| < (1+ C7)|lv —w]|

forallv,w € L*(SY). Here | - || refers to L? norm.

Proof. Define e; as the vector with the (i 4 1)-th entry as 1 and others as 0. Let U™ = [u™0, u™!, ... ]T,

where u™ = e] U™, and f(U™) = [f(u™?), f(u™"),...]T. In vector form, we have:
U™ = 1u"" ' + TAAU" + TAf(U™),

and hence,

U™ = (I —7AA) ' 1u Y 4+ 7(I — TAA)TLAF(U™).
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Test the above realtion with e;, similar to the linear case we can get

u" = el (I —TAA) 1wt 4 el (I — TAA)TTAF(UM),
i—1

= oi(—TA)u" T 4T Zpij(—TA)f(u”j).
§=0
Define v* and w’ as the stages corresponding to v and w. Similar to the linear case, o; and p;; are also

bounded operators. We have the inequality

Dij (f(”j) - f(wj))‘ < v —wl +CLT§ |“j _wj|

i—1
[vf — w| < |oi(v —w)] +TZ
§=0 j=0

Combining these inequalities for all ¢ and tracing back to the first stage, we conclude:
[E(T) (v —w)[ <1+ C7)|lv —wl],

where the constant C' is related to the scheme and Lipschitz constant of the source term.

Later we will show the consistency error of semilinear IMEX-RK method.

Theorem 3.4.2. Suppose that the Assumption (P1)-(P3) are valid for k > 3, wu is sufficiently smooth on

both space and time, then the operator E (1) defined in equation (3.23) satisfies that
|E(r)u™ ) —u@™)| < CrF*, k=1,2,3 (3.24)
foralln > 1. Here || - || refers to L? norm. Furthermore, in condition that
(by-c)T Aye = é

works for all A, € {AL, AL}, b, € {by, by}, equation (3.24) hold for k = 4. Here v - w means the

multiplication elementwisely.
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Proof. Equation (3.4) gives us that
U™ — 1u(t™ 1) = TAAU™ + TAf(U™) = O(7). (3.25)
and
U" — Tu(t" Y = 7 (A]lAu(t”’l) n Aﬂf(u(tnfl)))
+TAA (U™ — Tu(t" 1)) + 1A (f(U") - ]lf(u(t”_l))) (3.26)
= rul + O(7?),

where uf = AATu(t"~1) + ALf(u(t""1)).

Substitute equation (3.26) into itself again, we can derive that

Ut = 1u(t" ) = (A1Au(h) + ALf(u(er)))
+ TAA (U" - ]lu(t"_l))
+ A (fu (U = 1u(@"™Y) + O(2)) (3.27)

Tud + TAA - Tud + TAf, - Tu) + O(7%)

Ty + 7P+ O(7%),

where uf, = AAUY + Af,uf.

Denote v'* as the i-th power elementwisely and pointwisely, then

Um — Tu(t" Y = 7 (A]lAu(t”_l) + A1 f(u(t"_l)))
+7AA (U™ = LTu(t™ 1))

+7A (fu (U” - ]lu(t"il)) + %fuu (U" — ]lu(t”fl))‘2 + 0(7'3)>
(3.28)

Tud + TAA - (Tu,? + 7'2u?t)
A A ~1
+TAf, - (Tu? + Tzu?t) + TAifuu(Tu?)'2 + 0(74)

0 2.0 3,0 4
TUp + T Uy + T Uy + O(T7),
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where w0, = AAUY, + Af,ul, + 3 Afy.(u?)?. Similarily, we reached that
U™ = Tu(t"™") = rug + g, + mougy + 7 g, + O(7), (3.29)

where uly,;, = AAUY,, + Afyuly, + Afyuu -ud, + L A(uf) 3. Test the above equations with e,,, and we
can get

E(T)U(tnil) = U(tnil) + eyTn (Tu(t) + TZU(t)t + TSU?tt + T4U?ttt) + 0(75)’

where the RHS is only depend on u(t"~!). Assume that the exact solution u is smooth enough, and
compare it with the Taylor’s expansion, we can find that all the low-order terms disappeared, thus the

theorem is proved. O
After proving consistency, the final convergence result follows naturally.

Corollary 3.4.1. Suppose that the Assumption (P1), (P2) and (P3) are valid for k > 4, and (b, -c)" A,c =
% works for all A, € {As, ALY, by, € {by,bs} if k = 4. The exace solution u of equation (1.1) is

sufficiently smooth on both space and time u'™ is the solution of (3.23), then
u™ —u(t™)| < CTF. (3.30)

Proof. Combining the estimate of consistency error in Theorem 3.4.2 and the stability estimate in Theorem

3.4.1, we derive

lu™ = u(@™)|| = | E(r)u" =" = u(t™)]
< B~ = E@u )| + | E(r)ut"™") —u(t™)] (3.31)

< (14 Cr)|Jut —u(t™H|| + Corktt,

This estimate, along with Gronwall’s inequality, completes the proof.

O

Remark 3.4.1. Since this is a single-step method, as what we have done in equation (2.3), we can build
a scheme that

u" = min(max(E(1)u" !, —a), a), (3.32)
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The exact solution will always meet the maximum bound condition, so
[ = u(t™)| < [|B(r)u"" — u(t™)]].

The rest part of the proof is the same to (3.31).

Remark 3.4.2. This analysis is consistent with the work by Fu and Yang [38], where they prove that
certain IMEX-RK schemes can maintain the energy dissipation law using a stabilizer. We have identified
schemes of first, second, and third order, demonstrating that a third-order IMEX-RK scheme can preserve

both the maximum bound principle and the energy dissipation law.

3.5 Construction and List of Implicit-Explicit Runge—Kutta Schemes

In this part we make a short introduction to how we find the table of IMEX-RK and list some qualified
IMEX-RK schemes.

In this section, we first provide a brief introduction to searching the IMEX Runge—Kutta table, fol-
lowed by some typical examples of IMEX Runge—Kutta schemes that satisfy Assumptions (P1)-(P3).

Our searching algorithm is based on undetermined coefficient method. The algorithm is also listed in
Algorithm 1. We aim to find a k-th order scheme in this subsection.

We note that for a m-stage IMEX Runge—Kutta table, the total degree of freedoms is about m?, but the
number of equations is about 2¥. Because the all possibilities of combination from b, b and A, A should
keep the relations. The number of stages will be far more than the scheme order.

However, when we focus on the implicit table A itself, the scheme is reduced to a DIRK scheme, and
the total number of relations is algebraic to k. In this case we choose a small m fixed and find a candidate
A to the DIRK scheme, which is not difficult to achieve.

In fact, plenty of degree of freedoms are available in the DIRK table searching. Since c; is high order
in the stage order requirements, In Line 1 we fix it at the beginning. Then we solve A and b in Line 2 and
6. If there are other requirements on A, like o(A) > 0, we will test it here in Line 10.

What follows is to solve A once A is generated in a small size. The current number of stages may not
be enough fulfill all requirements of the stages orders, so additional stages are necessary. Note that since

the number of stages is always far more than the scheme order for high order schemes, it is reasonable to
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add more stages.

To add more stages, we only need to repeat the last stage in the implicit table A. The scheme in Table
3.9 is an example for what we should do to add a stage. If we only focus on the implicit part, literally
we did nothing and all the stages order conditions and requirements on o will not change, so we do not
need to retest any former conditions for they will be kept naturally, which is what we are doing in Line
19 and 24. However extra stages give us extra degree of freedoms so we can solve a larger system, the
unsolvable equations may turn to be solvable.

Last step is to is to search a which can be accessed by undetermined coefficient method, in Line 22.
Since we can always add extra stages, which will provide more degree of freedoms for solving, but will
not raise the requirements, it is reasonable to make a conjecture that there exist arbitrary high order IMEX
Runge—Kutta schemes.

The followings are some IMEX-RK schemes that satisfy our Assumption (P1)-(P3).

(1) First-order scheme The following Butcher tableau Tab.3.2 gives us a first order IMEX RK scheme.

This scheme agrees with Remark 3.4.2. In this example,

1
A)=——,VA>0.
"N =133
(ii) Second-order scheme The following Butcher tableau Tab.3.3 gives us a second order IMEX RK

scheme.

inwhichy =1+ ?, 0=1- % This scheme agrees with Remark 3.4.2. In this example,

I+ (1+V2)A
V= i v

(iii) Third-order scheme The following Butcher tableau Tab.3.4 gives us a third order IMEX Runge—

Kutta scheme.

This scheme does not agree with Remark 3.4.2. In this scheme,

_16(48 — 6A% + \?)
W= —=a

L VA > 0.
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Algorithm 1: Searching Algorithm for Qualified IMEX-RK Schemes

Input : Given order &
Output: A, A, b, b, c
1 Choose one possible ¢ with m = len(c), which is the number of the stages;

T _ 1 .
Try to solve b from b ' ¢ =70

~

if b is not solvable then
‘ m = m + 1; Goto Line 1 for a new c;

end

Solve A from 2T A"l =

if A is not solvable then

8 ‘ m = m + 1; Goto Line 1 for a new c;
9 end

10 Bvaluate o(\) = 2T (1 + AA4 )11

n if 0 < o < 1 fails then

N U s W

T With 2T A =0T

;N

12 if 0 < o < 1 fails too many times then // Ususlly, we do not need it
13 | m=m+1;

14 end

15 Goto Line 1 for a new c;

16 end

17 Solve b from the order relations with b7 = 2T A. ;

18 if b is not solvable then

19 m = m + 1; Duplicate the final stage of A and ¢; Insert a 0 before the last element of b;
20 Goto Line 17.

21 end

22 Solve A from the order relations with b7 = 2T A. ;

23 if A is not solvable then

24 m = m + 1; Duplicate the final stage of A and c; Insert a 0 before the last element of b;
25 Goto Line 17.

26 end

27 Print 4, A, b, b, ¢
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(iv)

™)

(vi)

1711
111

Table 3.2: Butcher tableau for first order IMEX-RK
Y Y Y

11—y ~v]6 1-=9

‘ 11—y |6 1-9

Table 3.3: Butcher tableau for second order IMEX-RK

Although there are some negative coefficients in the numerator, it is still positive for all A > 0.

Third-order energy diminishing scheme
The following Butcher tableau Tab.3.5 gives us a third order IMEXRK scheme.

This scheme agrees with Remark 3.4.2. In this example,

1228800 + 33778560\ + 55256268A% + 52503253

\) = VA >0
(V) = 1358800 1 35007360 1 S9649298)% 1 776006737 1 216890190

Forth-order scheme for linear problem

The following Butcher tableau Tab.3.6 gives us an IMEXRK scheme which is fourth order for linear

problem and third order for semilinear problem.

This scheme does not agree with Remark 3.4.2. In this example,

75000 — 7500A% 4 1000A% 4 225\
B 24(5 + \)°

a(N) ,VA > 0.

Although there are some negative coefficients in the numerator, it is still positive for all A > 0.

Forth-order IMEX scheme for linear and semilinear problem

The following Butcher tableau Tab.3.7 gives us an IMEXRK scheme which is fourth order for linear

and semilinear problem.

Related coefficients are listed in Table 27. This scheme does not agree with Remark 3.4.2. In this

example,

o(A) =— ( — 18533185137819\° + 245682733504208\* — 1917903570331840\3



3.6. NUMERICAL RESULT 73

1/4 | 1/4 1/4 | 1/4

12| 1/4  1/4 1/2 | 1/4  1/4

3/4 | —4/5 7/4 1/4 341 1 1/4  —1/2

1 | 5/12 5/12 —1/12 1/4 1 |5/6 —11/6 13/6 —1/6
5/12 5/12 —1/12 1/4 5/6 —11/6 13/6 —1/6

Table 3.4: Butcher tableau for four-stage third-order IMEX Runge—Kutta scheme

3/5 3/5
3/2 15/32 33/32
19/20 | 2/5 —357/640  709/640

1 | 2825/756 —232/297 —6400/231 103/4
2825/756 —232/297 —6400/231 103/4

3/5 3/5

3/2 | 51/64 45/64

19/20 | 2/5  4841/11520 299/2304

1 | 103/342  125/378  —26/297  2000/4389
103/342  125/378  —26/207 2000/4389

Table 3.5: Butcher tableau for third order IMEX-RK

+ 4891758175886400\7 + 9437315024592000\ — 61167782566800000)

/(14794928512(9)\ F25) A+ T2\ + 15)3),V)\ > 0.

Although there are some negative coefficients in the numerator, it is still positive for all A > 0.

3.6 Numerical Result

We consider the Stokes-Darcy coupled system described by Eqs. (3.3)-(3.4) in this example. Numerical

scheme (3.11) applied on this system is formulated as follows:

¢n,0 = (bn_l

Pn,i = Pno + Tzaij(_A1)¢n,j + Tzdij(Bun,j—l + o), i=1,2,--- .5 (3.33)

j=1 j=1

¢” = ¢n,s
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1 1
501 1
3| 2 1 1
1|3k _s33 _ % 1
S T A O A VRN
PO . GOt R s (- BT
— A3
120 ~120 120 130 O 5
1 1
3 s 1357
g 88%%%%3 5413%%)3 6051439
z 585 106 770 2 5%50257?65 9 598850186279710 _ 10113
: 0 16104930 TGIOIA30  ROG35  og6n
1 0 itk S0 30 %39t 4
— R
0 120 ~120 20 10 5

Table 3.6: Butcher tableau for fourth order IMEX-RK

Up o0 = un—l

Ui = U0 +7 ) g (=A2)Up; +7 Y iy (—gB dnjo1 +Es(t™ 7)), i=1,2,--- s
j=1

j=1

u" =u,

(3.34)

which is a decoupled and linear scheme. We test temporal convergence of numerical schemes aforemen-
tioned.

Parameters are set v = 4 = k = g = 1 for simplicity. Problem domain is set to be a unit square
centered at the origin. Darcy flow and Stokes flow occupy the upper half and lower half domain as shown
in Fig.3.1. To verify the temporal convergence order, we fix the spatial step size h = 1/100 and calculate

numerical solutions (¢7, u”,) with various 7 and the convergence order is obtained as

g, — wi|
order = log i 7/2 T/4H /log (3.39)
wil? —

where w denotes either ¢ or u. In addition to second-order scheme described in Tab.3.3, we numeri-
cally test convergence order for four-stage third-order scheme and six-stage fourth-order scheme as well

described in Tab.3.9.
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1 1
% 1 1
11 1354 foa 27
% 1375 1375 175
9
= a41 Qaq2 aq3 35
i3 1
T as asy  asz 1 it
12 | 14605 1 1 1 stBoo 1
15 25536 2 3 127630 15,
1 ar ary  arz  ar4 0 T i
Tt
ar ary  ary a4 0 T 15
1 1
i1 1
11 5h29 I 1671
2% 8750 8750
H -1 an  as2 Q4
i3 N ~ N ~
IH 1 as1  Gs2 (53 G54
1 1 N N N
= 1 5 3 ag3  Qea Qg5
1 aro  Gmi drp Qrg Grq A5 Qre
daro 471 Gra  Grz  Gpa  drs  are

Table 3.7: Butcher tableau for fourth order IMEX-RK

where the coefficients

a21 = 0.112.897320084
as1 = 0.0875607487880
aq1 = —0.0166666666667
G43 = —7.3386840918385
as1 = 15.0076923076923
a53 = 266.9663261813719
as1 = —1.0372960372960

aes4 = 4.0093240093240

G2 = 0.2212436013249
az2 = 0.3795156599067
(42 = 4.5354817628720

G44 = 3.4865356622999

as2 = —151.6742055202485

G54 = —137.6176704347547

(g2 = 4.4428904428904

aes = —0.9324009324009

ass = 0.0329235913053

G55 = 8.1178574659391
Ge3 = —5.9195804195804

aes = 4.370629370629

Results are shown in Tab.3.10 for the two-stage second-order scheme described in Tab.3.3 at t" =

0.08, and in Tables 3.12 and 3.13 for the four-stage third-order scheme Tab.3.4 at ¢ = 0.08 and six-stage

fourth-order scheme Tab.3.9 at t" — = 0.008, respectively. To verify the long-time convergence, we test

with the second-order schemes at t™ = 10 and the results are shown in Table 3.11. Numerical experiments

confirm the proposed theorem.
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a41 24058589213 /79084733000

a42 299597908/760430125

a43 —23336559/90382552

as1 —419174425120649204186119/79218920548212919110000

as2 477902525326525491346619/41132901053879784922500

as3 —558440160387285872007719/85556434192069952638800

arn 4922197/9687600

ara —2268847,/3936600

ars3 3238175/4094064

ar3 869063,/6036120

Qa1 55740853326839983334621/27520768939834456977600

Qa2 —11060173572755944147541/14289630026452506507600

Q43 2329344893911909455707 /4246061493574459076544

Q51 | —71186087675929044223656193931944384573278473/3438510885083184524462404153200164172975000
as2 14268306999047363197901818351205461479990553 /399215549486485350905095178799636834225000
as3 —164196843957237023227423093901438282094053/11625156801046453418356371606645424612632
Q54 —2777877807409624755035963389,/2652337211701823798398155000

Q63 —1478910748534537278959/506708836650241118208

Q64 29121578321788444001/11310465103800024960

aes —10436070861733408099/18766993950008930304

aro —12432250836521654063395/85826994234468729923442

an 8194496564065915317284063497/9238417659398214088959296830

ara —2996905844557888599918137227/3754072727815662246851353080

ars 13920174158309482913767468375/19521178184641443683627036016

Q74 1389846140555607156290661143 /5756244849317348778505408056

ars 84635598876295853750,/14304499039078121653907

are 1369093183594155319761/14304499039078121653907

Table 3.8: related coefficients in Table 3.7

3.7 Conclusion and Comments

76

In this chapter, we discuss the IMEX-RK schemes on linear and semilinear equations. We divide the oper-

ator into implicit part and explicit part, which can benifit us for both linear or semilianer cases. For linear

problem, like Stokes-Darcy equations, the division can decouple the system. By spectral decomposition,

we prove that the schemes have long time stability and give its convergence. In semilinear case, IMEX-

RK schemes avoid solving nonlinear systems. Combining existence analysis, we can build a framework

to build such schemes that hold both maximum bound preserving and original energy decay up to third

order.
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1/6 | 1/6 1/6 | 1/6
13| 1/6  1/6 1/3 | as1 s
1/2| 3/10 1/30 1/6 1/2 | a1 asy ass
2/3 | 47/30 —12/5 4/3 1/6 2/3 | G4y Gap s Gaa
4/5 1/2 -1 4/3 —1/6 2/15 4/5 as1 asy Q53  Gs4 G55
1 4/5 —3/2 2 —1/2 0 1/5 1 a61 aga Qg3 Gga (g5 Geg

Table 3.9: Butcher tableau for six-stage fourth-order IMEX-RK

Table 3.10: Errors and convergence rates at t™ = 0.08 with & = 1,/100 for two-stage second-order scheme
described in Tab.3.3.

> o™ — ¢™/2|| | order | |[u”™ —u/?|| | order
1/800 7.51e-07 - 6.35e-05 -
1/1600 2.05e-07 1.87 1.74e-05 1.87
1/3200 5.38e-08 1.93 4.57e-06 1.93
1/6400 1.38e-08 1.96 1.17e-06 1.96

Table 3.11: Errors and convergence rates at t" = 10.0 with h = 1/100 for two-stage second-order scheme
described in Tab.3.3.

7 ¢7 — ¢7/?|| | order | ||u” —u"/2|| | order
1/400 5.23e-08 - 1.99¢-08 -
1/800 1.42e-08 1.89 5.85e-09 1.77
1/1600 3.70e-09 1.94 1.60e-09 1.87
1/3200 9.45¢-10 1.97 4.20e-10 1.93

Table 3.12: Errors and convergence rates at t"* = 0.08 with 4 = 1/100 for four-stage third-order scheme
described in Tab.3.4.

> |7 — ¢7/?|| | order | [lu” —u7/?| | order
1/100 7.19¢-08 - 6.27e-06 -

1/200 1.01e-08 2.84 8.78e-07 2.84
1/400 1.33e-09 2.92 1.16e-07 291
1/800 1.72e-10 2.96 1.50e-08 2.96

Table 3.13: Errors and convergence rates at " = 0.008 with h = 1/100 for six-stage fourth-order scheme
described in Tab.3.9

> o7 — ¢™/2|| | order | |[u”™ —u"/?|| | order
1/250 1.33e-07 - 1.21e-04 -
1/500 5.58e-09 4.58 1.96e-06 5.95
1/1000 3.40e-10 4.04 1.15e-07 4.09
1/2000 2.12e-11 4.00 7.17e-09 4.01




Chapter 4

Robust Convergence of Parareal
Algorithms with Arbitrarily

High-order Fine Propagators

The main focus of this part is to study the convergence of a class of parareal solver for the parabolic
problems. Specifically, we let T > 0,u° € H, and consider the initial value problem of seeking u €

C((0,T); D(A)) N C(]0,T]; H) satisfying

u(t)+ Au(t) = f(t), 0<t<T,
4.1)
u(0) = u°,
where A is a positive definite, selfadjoint, linear operator with a compact inverse, defined in Hilbert space
(H, (+,-)) with domain D(A) dense in H. Here u® € H is a given initial condition and f : [0,T] — H
is a given forcing term. Throughout this part, || - || denotes the norm of the space H.
The parareal algorithm is defined by using two time propagators, G and F, associated with the large
step size AT and the small step size At respectively, where we assume that the ratio J = AT /At is
an integer greater than 1. The fine time propagator F is operated with small step size At in each coarse

sub-interval parallelly, after which the coarse time propagator G is operated with large step size AT se-

78
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quentially for corrections. In general, the coarse propagator G is assumed to be much cheaper than the
fine propagator F. Therefore, throughout this part, we fix G to the backward-Euler method and study
the choices of F. Then a natural question arises related to convergence of the parareal algorithm. For
parabolic type problems, in the pioneer work [7], Bal proved a fast convergence of the parareal method
with a strongly stable coarse propagator and the exact fine propagator, provided some regularity assump-
tions on the problem data. The analysis works for both linear and nonlinear problems. This convergence
behavior is clearly observed in numerical experiments, see e.g. Figure 4.2. However, without those reg-
ularity assumptions, the convergence observed from the empirical experiments will be much slower than
expected, cf. Figure 4.3. See also some rigorous analysis in [27, 105, 37].

This interesting phenomenon motivates the current work, where we aim to study the convergence
of parareal algorithm which is expected to be robust in the case of nonsmooth / incompatible problem
data, that is related to various applications, e.g., optimal control, inverse problems, and stochastic models.
There have existed some case studies. In [82], Mathew, Sarkis and Schaerer considered the backward
Euler method as the fine propagator and proved the robust convergence of the parareal algorithm with a
convergence factor 0.298 (for all J > 2); see also [41, 106] for some related discussion. In [115], Wu
showed that the convergence factors for the second-order diagonal implicit Runge—Kutta method and a
single step TR/BDF2 method (i.e., the ode23tb solver for ODEs in MATLAB) are 0.316 (with J > 2) and
0.333 (with J > 2), respectively. These error bounds might be slightly improved by increasing J,. See
also [116] for the analysis for a third-order diagonal implicit Runge—Kutta method with a convergence
factor 0.333 (J, = 4). For fourth-order Gauss—Runge—Kutta integrator, in [116] Wu and Zhou showed
that the threshold depends on both the largest eigenvalue of operator A and the step size At. Note that
the eigenvalues of A may approach infinity, e.g. A = —A with homogeneous boundary conditions.
Therefore, this kind of integrators might not be suitable for the parareal algorithm.

Then a natural question arises: in what case there exists a threshold J. > 0 (independent of step
sizes AT, At, terminal time T, problem data v° and f, as well as the distribution of spectrum of the
elliptic operator A), such that for any J > J,, the parareal algorithm for solving the parabolic equation
(4.1) converges robustly? Our study provides a positive answer to this question: if the fine propagator is
strongly stable, in sense that the stability function satisfies |r(—o0)| € [0, 1), then there must exist such
a positive threshold J, so that for all J > J, the parareal algorithm converges linearly with convergence

factor close to 0.3. The convergence is robust even if the initial data is nonsmooth or incompatible with
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boundary conditions. Noting that all L-stable Runge—Kutta schemes satisfy that condition, so the fine
propagator can be arbitrarily high-order. As examples, we analyzed three popular L-stable schemes, i.e.,
two-, three-, four-stage Lobatto IIIC schemes. We show that for all these cases the parareal algorithm
converges linearly with factor less than 0.31 and J,. = 2. Our theoretical results are fully supported by
numerical experiments.

The rest of the chapter is organized as follows. In Section 4.1, we introduce singe step integrators and
parareal algorithms for solving the parabolic problem. Then we show the convergence of the algorithm in
Section 4.2 by using the spectrum decomposition. Moreover, in Section 4.3, we present case studies on
three popular L-stable Runge—Kutta schemes, and show a sharper estimate for the threshold .J,.. Finally,

in Section 4.4, we present some numerical results to illustrate and complement the theoretical analysis.

4.1 Single-Step Methods and Parareal Algorithm

In this section, we present the basic setting of the single step time stepping methods for solving the
parabolic equation (4.1) and the parareal algorithm. See more detailed discussion in the monograph [110,

Chapter 7-9] and the comprehensive survey paper [40].

4.1.1 Single-Step Integrators for Solving Parabolic Equations

To begin with, we consider the time discretization for the parabolic equation (4.1). We split the interval

(0,T) into N subintervals with the uniform mesh size At = T//N, and set t" = nAt,n =0,1,..., N.

)

Then a framework of a single step scheme approximating u(t") reads:

u" = (= AtA" + ALY pi(—ALA)f(t" + ¢;At), forall0 <n < N -1, 4.2)
i=1

Here, r(X) and {p;(\)}™, are rational functions and ¢; are distinct real numbers in [0, 1]. Throughout

this thesis, we assume that the scheme (4.2) satisfies the following assumptions.

P1) |r(—A)| < 1land [p;(—N)| < ¢, foralli = 1,...,m, uniformly in At and A > 0. Besides, the

numerator of p; () is of lower degree than its denominator.
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(P2) The time stepping scheme (4.2) is accurate of order ¢ in sense that

r(=\) = e *+ 0\, as A — 0.

and for0 < j <gq

m 1 - 7 _)\g B
i—1cgpi(_/\)_(_){)j+l(e /\—Z( )):O()\q 7), asA—0.

(P3) The rational function r(A) is strongly stable in sense that |r(—o0)| < 1.

Remark 4.1.1. Condition (P3) is essential for the convergence of parareal iteration. If |r(c0)| = 1, e.g.,
Crank-Nicolson method and implicit Runge-Kutta methods of Gauss type, the parareal method converges
only if the eigenvalues of A is bounded from above (which is not true for parabolic equations) and the
ratio between the coarse step size and the fine step size is sufficiently large (depending on the upper bound
of eigenvalues of A). Besides, this condition is also important in case that problem data is nonsmooth,
e.g., u’ € H. Time stepping schemes violating this condition may lose the optimal convergence rate in

the nonsmooth data case [110, Chapter §].

Practically, it is convenient to choose p;(\) that share the same denominator of (\):

where a;(\) and g(\) are polynomials. Then the integrator (4.2) could be written as
g(—=AtA) " = ao(—AtA)™ + At Z a;(—AtA)f(t" + ¢;At), foralll <n < N.
i=1
See e.g. [110, pp. 131] for the construction of such rational functions satisfying (P1)-(P3).

Under those conditions, there holds the following error estimate for the time stepping scheme (4.2).

The proof'is given in [110, Theorems 7.2 and 8.3].

Lemma 4.1.1. Suppose that the Conditions (P1)-(P3) are fulfilled. Let u(t) be the solution to parabolic
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equation (4.1), and u™ be the solution to the time stepping scheme (4.2). Then there holds

q—1

o = () < (A0 () +47 3 sup 47RO+ [ 1795 as)
¢=0 5SS

provided that v € H, ) € C([0,T]; Dom(AI=*) with0 < £ < q — 1 and f9 € L'(0,T; H) for all

{<q.

Remark 4.1.2. Lemma 4.1.1 indicates that, under Conditions (P1)-(P3), the solution of the time stepping
scheme (4.2) converges to the exact solution with order q provided that the source term f and initial
condition ug satisfy certain compatibility conditions. For example, if we consider the parabolic equation
where A = — A with homogeneous Dirichlet boundary condition, it requires (—A)¢f9=9) = 0 on the
boundary 0N) for 0 < £ < q. In order to avoid the restrictive compatibility conditions, we shall assume

that the time discretization scheme (4.2) is strictly accurate of order q in sense that

m . J _ W
api(=A) — (_}\7;]“(7“()\) - Z ( Z,\) ) =0, forall0<j<gq-—1
= £=0 )

i=1

1t is well-known that a single step method with a given m € Z could be accurate of order 2m (Gauss—

Legendre method) [31, Section 2.2], but at most strictly accurate of order m + 1 [9, Lemma 5].

Remark 4.1.3. The error estimate in Lemma 4.1.1 could be slightly improved if the time integrator is

L-stable, i.e. r(—o0) = 0; see e.g., [110, Theorem 7.2].

4.1.2 Parareal Algorithm

Next, we state the parareal solver for the single step scheme (4.2). Let AT = JAt, with a positive integer
J > 2, be the coarse step size. Without loss of generality, we assume that N. = T'/AT is an integer, and
let 7" = nAT Then, two numerical propagators G and F are assigned to the coarse and fine time grids,
where G is usually a low-order and inexpensive numerical method (such as backward Euler scheme), and
F is given by the single step integrator (4.2). Specifically, for v € H and f € C([0,T]; H), letting I

denote the identity operator, we define the coarse and finer propagator as

G(T",AT,v, f) = (I + ATA) (v + AT f(T™)).
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and

Ft", At,v, f) = r(—AtA)v + At ipi(—AtA)f(t” +eiAt).

i=1

respectively. Then, the parareal solver is described in Algorithm 2.

Algorithm 2: Parareal solver for the single step scheme (4.2)
Input :u° F, G, K, N, J
Output: Uz

1 U9 =Y

2 for n=0,1,..., N. — 1do

s | Uptt =g, AT UG )

4 end

5 fork=0,1,..., K —1do

6 forn=20,1,..., N, — 1 do parallel

7 forj =0,1,2,....,J —1do

8 Umith = F(T™ + jAt, At, U™, f) with initial value U™ = U};
9 end

10 ﬁn+1 — ﬁn,‘l;

1 end

12 forn=0,1,..., N.—1do

13 Uil = G(T", AT, UL, f) + U™ — G(T™, AT, UY, f)
14 end

15 end

The aim of this chapter is to show that the iterative solution U}, generated by the parareal algorithm,
linearly converges to the exact time stepping solution u™” of the single step integrator (4.2) with fine time
step At, i.e.,

Un_ nJ < k 43
1g§§xNH g u < eyt (4.3)

with some convergence factor + strictly smaller than 1. We shall prove that there exists a positive threshold
J., independent of AT, At and the upper bound of spectrum of A, such that if J > J,, then (4.3) is true
with v = 0.3, under conditions (P1)-(P3).



4.2. CONVERGENCE ANALYSIS 84

4.2 Convergence Analysis

Next, we briefly test the convergence factor of parareal iteration. Taking comparision with the exact time

stepping solution in (4.2), we arrive at

Ul?ill (DI I+ ATA)—I :(Ul?Jrl _ unJ) —(up - unJ)
+ F(T" + (J = DA AL U™ 7L f) = F(T™ + (] — DAL At,u™ 71 f))

= (I +ATA)[(UP,, —um) — (U — um)| + r(—ALtA) (U1 — 4 +DT-1)

= (I + ATA)(Up,, —um) — U — um)| + r(—AtA) (T — un))

= (I + ATA) (U1 — u™) — (UF —u™)| + (-~ AtA) (U —u™),

For the sake of simplicity, we define Ef' = U}* — u™”/ and rewrite the above equation as

Epfl = (I+ATA) Y (Epy, — Ep) +r(—AtA) B}

Recall that the operator A is a positive definite, selfadjoint, linear operator with a compact inverse, de-
fined in Hilbert space (H, (-, -)). Then by the spectral theory, A has positive eigenvalues {\;} 22, where
0 <A <Xg <...and \j — o0, and the corresponding eigenfunctions {¢;} 22, form an orthonormal
basis of the Hilbert space H. Then, letting ¢} ; = (E}, ¢;), by means of spectrum decomposition, we
derive

ntl _ Chilg €k AN o7
€ht1j = 1+ ATY, +r(=AtA;) e ;-

By letting d; = AT'A;, we have

epti; = (L+dy) e+ (r(=d; /D) — (1 4+ dj) "R ;.
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We apply the recursion and use the fact that e% +1,; = 0, and hence obtain
GZI%J. = (’r‘(—dj/J)J — (1 + dj>_1)62’j + (1 + dj)_leZH’j

= (r(=d;/J)" = (1+dy)~") (BZ,j +(1+ dj)*lez,gl) +(1+dy) ey

= (r(=di /) = (1 dy) ) (e + (L4 dg) T repy 4o (L)~ e ).

Now taking the absolute value on the both sides yields

ety <lr(=di/ D)7 = (A4 dy) - (L (L dy) ™ 4+ (L dy) ™) max ef |

1<n<N
< r(=d;/J) = (1 +d;)7"

- 1—(1+4d;) ! 1gflng‘ek’j|
(Lt dp)r(=d;/T)” ~1 , @9
= max e /|
d; 1<n<N @
1 — J_1
< sup ‘( +s)r(=s/J) max e ;.
s€(0,00) s 1<n<N ’
If the the leading factor is strictly smaller than one, i.e.,
1 —s/J)7 —1
sup ‘ (L+5)r(=s/J) ’ <y <, (4.5)
s€(0,00) $

then e} converges to zero linearly with a factor (smaller than) -y, and hence the parareal iteration converges
linearly to the time stepping solution (4.2) in sense of (4.3).
Our convergence analysis in this and next sections heavily depend on the constant «,, defined by

(I+s)e -1

S , for a € [0, 2]. (4.6)

Ko = Sup ‘
s€(0,00)

To begin with, we establish a simple upper bound for the constant .

Lemma 4.2.1. Let o € [0,2], and k, be the constant defined in (4.6). Then there holds

€2, ael,2;
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Proof. First of all, we show the claim that

w 2, 4.7)

s

To this end, we define the auxiliary function

g(s) = (1 +8)e™™ 4+ e 2.
Then a simple computation yields

J8) =1 —-—a—as)e ®+e*2 and g¢"(s) = (a® + a’s — 2a)e™ .

It is easy to observe that ¢”(s) admits a single root at s = (2 — &)/« and

g'(x) > g'((2-a)/a) =0.
Therefore g(s) is increasing in [0, 00). As a result, g(s) > ¢(0) = 1, and hence

(I+s)e*®—-1> —e* 25 vV s>0,

which implies (4.7). Moreover, for a > 1, we observe that

1+s<e® <e* Vs >0,

which immediately leads to (1 + s)e”** — 1 < 0 for all s > 0. This completes the proof for the desired
results in case that o € [1, 2].

Now we turn to the case that o € [0, 1). Let %, = max{e* 2,1 — a} and define

g(z) = (14 s)e”* — KLs.
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Then the simple computation yields

Jd8) =1 —a—as)e -k and ¢"(s) = (a® + a’s — 2a)e .

Noting that ¢’(0) = 1 —a — &% <0, ¢'(00) = =k} < 0and ¢'((2 — &) /) < 0. These imply ¢'(s) <0

and hence g is decreasing function in [0, 00). Therefore g(s) < ¢g(0) = 1, which further implies

(1+s)e ™ —kis <1

This leads to the desired assertion for the case that o € [0, 1). O

Lemma 4.2.1 only provides a rough upper bound for x,,. In fact, for a fixed @ we can further improve
the upper bound via a more careful computation. In Figure 4.1, we numerically compute the constant x,,

for a € [0, 2] and plot those values.

02r

exact x|
— — — — upper bound in Lemma 3.1

0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
a

Figure 4.1: Plot of x, defined in lemma 4.2.1.

The next lemma provides a sharper estimate for 1.
Lemma 4.2.2. Let k,, be the constant defined in (4.6). Then 1 ~= 0.2984.

Proof. To show the sharp estimate, we note that for g(s) = 1 — (14 s)e~?, there holds ¢’(s) = se=®* > 0
and g(0) = 1. Therefore g(s) > 0 forall s € (0, 00). This further implies ¢)(s) = (1—(1+s)e™*)/s > 0
for s € (0, c0).

Meanwhile, we note that

o(s) = s%e*Y'(s) = s> +s+1— e

By checking the monotonicity, it is easy to verify that ¢(s) has a unique root, denoted by s., in (0, c0).
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It further implies the function ¢ (s) achieves its maximum at s*, i.e., k1 = ¥ (s.). Finally, the fixed-point
iteration ;1 = In(s? 4 s, + 1) and the contraction mapping theorem for s € [1.5, 2] provide s* ~ 1.793,

and hence k1 ~ 0.2984. O
Now we state our main theorem which verifies the desired result (4.5) with v ~ 0.3.

Theorem 4.2.1. Let conditions (P1)-(P3) hold valid. Then there exists a threshold J, > 0 such that for

all J > J,
_ J _
sup (1+s)r(—s/J) 1 <03,
s€(0,00) S

Proof. First of all, we aim to show that

lim sup
J—=005>0

1
( js) |r(—s/J)? —e~*| = 0. 4.8)
For a given § > 0, for any s > §, it is obvious that (1 4 s)/s is bounded by a constant C'(§). Meanwhile,
note that conditions (P1)-(P3) are fullfilled. Then by means of the nonsmooth data error estimate [110,
Theorem 7.2], there holds
’r(—s/J)J — e_s‘ <ecJ 7Y

where c is independent of s. Then we derive

lim sup
J—00 558

(115) ’r(—s/J)'] — efs| =0.

For 0 < s < 4, conditions (P1) and (P2) imply

o J __ _—s
. |7"( s/J) e ’
J—1
:(1+3)|( S/J 78/]‘ T’ S/szle)s/J
s
=0
(1+s) q+1
< . — .
- s C(a’é)(.]) J
< Cla,0)J 1.
Therefore we arrive at
1
lim  sup (1+s) [r(=s/J) —e™*| =0,

J—o00 0<s<s S
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which completes the proof of the (4.8). This together with Lemma 4.2.2 implies that

1 — T 1
lim  sup (1 +s)r(=s/J) =r; < 0.3,
J—o0 s€(0,00) S

which completes the proof of the lemma. O
Next, using Theorem 4.2.1, we are able to show the linear convergence of the parareal iteration 2.

Theorem 4.2.2. Let conditions (P1)-(P3) be fullfilled and the data regularity in Lemma 4.1.1 hold valid.
Let u™ be the solution to the time stepping scheme (4.2), and U]} be the solution obtained from the parareal
algorithm 2. Then there exists a threshold J, > 0 such that for all J > J,, we have

Upr —u™|| <ey® with ~=0.3.
(Jnax U — ™ < et with oy

Proof. In Algorithm 2, the initial guess U is obtained by the coarse propagator, i.e., the backward Euler

scheme. Then Lemma 4.1.1 (with ¢ = 1) implies the estimate

1Ug =™ || < |Ug = u(T™)|| + [[(T") = u™|
(4.9)
< c((ATYT) ™ + (A E) ) < en .

Let B = U — u™/ and ey j = (B}, ¢;). The the relation (4.4) and Theorem 4.2.1 imply

oo oo
sup || ER|* < Z sup [ej ;|* < ’YQZ sup ey ;17
1<n<N. perEE A perREE A

o0
2k n |2
< <7 E sup  leg
io1<n<A.

with v = 0.3. This together with the estimate sup, ., - leg ;|* < SN leg ;|? leads to

oo N, N, N
sup [IERIZ < ey DN Clep P < e D IERIP < ey Y n? < ey,
n=1 n=1

1<n<Ne i=1n=1

where in the second last inequality we apply the estimate (4.9). This completes the proof of the theorem.

O
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Remark 4.2.1. Theorem 4.2.2 provides an useful upper bound of the convergence factor for all single
step integrators (satisfying (P1)-(P3)), which might not be sharp for specific one. For example, in [82,
Lemma 4.3], Mathew, Sarkis and Schaerer considered the backward Euler method and proved that the
convergence factor of the Parareal algorithm is around 0.298 (with J, = 2). In [115], Wu showed that
convergence factors are 0.316 (with J, = 2) and 0.333 (with J, = 2) for the second-order diagonal
implicit Runge—Kutta method and a single step TR/BDF2 method (i.e., the ode23tb solver for ODEs in
MATLAB), respectively. These error bounds might be slightly improved by increasing J.. See also [116]
for the analysis for a third-order diagonal implicit Runge—Kutta method with a convergence factor 0.333

and J, = 4.

Remark 4.2.2. Theorem 4.2.2 only provides the existence of the threshold J,. without any upper bound
estimate. It is obvious that a huge J, may destroy the parallelism of the algorithm. Then a question arise
naturally: is it possible to find J, for a given scheme satisfying conditions (P1)-(P3)? This is the focus of

Section 4.3.

4.3 Case Studies for Several High-Order Single-Step Integrators

In this section, we shall study some popular single step methods. As we mentioned in Remark 4.2.2,
Theorem 4.2.2 did not provide a sharp estimate for the threshold J,. In fact, there is no universal estimate
for all single step methods. Fortunately, for any given single step integrator satisfying conditions (P1)-
(P3) and fixed convergence rate v > 0.2984, we have a regular routine to find a sharper estimate for
Je.

We consider three time-stepping methods, namely the the two-, three-, four-stage Lobatto IIIC meth-
ods, which are respectively second-, fourth- and sixth-order accurate, to the initial and boundary value
problem (4.1). For the reader’s convenience, we present the Butcher tableaus of the two-, three-, four-stage

Lobatto IIIC methods, respectively,

— (4.10)
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1 3 1
§ "1 5 |0
1 5 1 1
§ 12 12 |2 Q|c
= (4.11)
1 2 1 T
6 3 6 1 b
1 2 1
6 3 6
and
1 V5 V5 _1 0
12 12 12 12
1 1 10-7v6 5 1 _ V5
12 4 60 60 2 10
Q | c
1 1047V5 1 EESVA S G VA S (4.12)
12 60 4 60 2 10 . . :
bT
1 5 1 1
12 12 12 12
1 5 5 1
12 12 12 12

Let us also briefly recall some well-known facts about Lobatto ITIC; for details we refer to [114].
These methods can be viewed as discontinuous collocation methods. The order of the m-stage Lobatto
IIIC methods is ¢ = 2m — 2. In particular, the methods are algebraically stable and L-stable, that makes

them suitable for stiff problems. The stability functions r,
r(z):=142b" (I —2Q)7'1 with 1:=(1,...,1)" € RY,

is given by the (m —2, m)-Padé approximation to e* and vanishes at infinity, i.e., 7(c0) = 1 -7 Q" '1 =
0. Note that the computational cost of implicit Runge-Kutta methods increases fast with the stage number,
and we refer to [10, 64, 59] and the reference therein for some efficient implementations.

The following argument highly depends on the upper bound for the constant x,, defined in (4.6). From
Figure 4.1, we observe that Lemma 4.2.1 gives an sharp estimate for ,, for a < 0.7, while the estimate
for a > 1 could be further improved. The next lemma provides an estimate for « = 1.02, which is useful

in the analysis of convergence rate.
Lemma 4.3.1. Let k,, be the constant defined in (4.6). Then k1 o2 ~ 0.3078 < 0.31.

Proof. With 8 = 1.02 > 1 and ¢(s) = w, we observe that )(0+) = 1 — 8 and ¥(c0) = 0.

S

Meanwhile, since e %% < e™* < (1 + s)~! for s > 0, we derive that ¢)(s) < 0. Now we intend to show
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that ¢’ (s) admits a unique root in (0, 00), denoted as x... Then kg = 1(x.). Noting that

1—(1+ Bs+ Bs?)e P

2 9

W'(s) =

S

it suffices to show that g(s) = 1 — (1 + Bs + 5%)e~?* has a unique root in (0, 00). It is straightforward

to see that the function

g'(s) = (=2 + B+ Bs)Bse "

admits a unique root in (0, co). Then by the fact that g(0) = 0 and Rolle’s theorem, we conclude that g
has at most one root in (0, c0). Meanwhile, we observe ¢'(1) = 1 — (1 4+ 28)e™? ~ —0.0962 < 0 and
P'(2) = M ~ 0.01855 > 0. Therefore, there exists a unique root of ¢’ in (0, c0), named as
., which lies in (1, 2). Then the fixed-point iteration sj+1 = In(8s? + Bs), + 1)/ and the contraction

mapping theorem for s € [1.5, 2] provide s, ~ 1.715, and hence kg = f(x.) ~ 0.3078 < 0.31. O

Proposition 4.3.1. Let u™ be the solution to the time stepping scheme (4.2) using the two-stage Lobatto
1IIC method (4.10), and U]} be the solution obtained from the parareal algorithm 2. Then for all J > 2,
there holds

Up —u"|| <ey® with ~=0.31.
lgrgegvcllk ut| < eyt owith v

Proof. 1Tt suffices to show that for any J > 2, there holds

1 — 71 2
sup 1+ s)r(=s/J) <0.31, where r(—=s) = 5——.
sE(O,oo) S S + 28 —|— 2

(4.13)

To this end, we define & = 0.69 and 3 = 1.02. Then Lemma 4.2.1 implies that k, < 1 — 0.69 = 0.31,
and meanwhile Lemma 4.3.1 indicates xg < 0.31.
Next, we aim to show that e 7% < r(—s) < e~ forall s € (0, s,) with s, = 3.2. First of all, using

the fact that > e~ > e P forall s > 0, we derive the first inequality e =#* < r(—s). Then we

2
$2+425+2
turn to the second inequality 7(—s) < e~%%, equivalent to g(s) := 2% — (52 + 25+ 2) < 0in (0, 5,).

2Ina

Noting that g”(s) = 2a2e® — 2, which admits a unique root at — . Meanwhile, we observe that

g"(s) < 0in (0,—222) and ¢”(s) > 0in (—2% o0). Besides, since g’ (—22e) = dhat2=2a g

[e3% [e3%

and ¢'(0) = 2o — 2 < 0, we conclude that ¢’(s) < 0 in (0,—222) and ¢'(s) has a unique root in

21
(—=a*

,00). Moreover, the facts ¢’(2) ~ —0.5 < 0 and ¢'(3) = 2.9 > 0 implies that there exists a
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constant s1 € (2,3), s.t. ¢'(s1) = 0, and ¢'(s) < 01in (0, 1), ¢’(s) > 0in (s1,00). Then we note that
g(s«) = —0.445 < 0 and conclude that g(s) := 2e“* — (s> + 25 + 2) < 0 in (0, s.), which implies
r(s) < e~ in (0,s,). As aresult, we arrive at e=7* < r(—s/J)’ < e~ forall s € (0, Js,) which

implies
(1+ s)r(—s/J)” —
s

sup
s€(0,Js4)

! ‘ < 0.31.

Besides, we observe the fact that

(SS:?EO) s2+2s + 2’ B

~ 0.1073 < 0.11.
52+25*+2’

Then we derive for s € (Js,,00) and J > 2

(0.11)7 + (Js,) ™

1 —s/J)? —1] 1 1 .
(—l—s)r(ss/J) ‘S ::S|r(—s/J)‘]|+s_1§ ;Js

< 1+64
- 64

*

(0.11)% + (2 x 3.2)71 ~ 0.1702 < 0.31.

This completes the proof of (4.13). O

The argument could be further extended to the high-order time stepping scheme, e.g., 3- or 4-stage

Lobatto IIIC method. This result is given in the following proposition.

Proposition 4.3.2. Let u™ be the solution to the time stepping scheme (4.2) using the three-stage Lobatto
1IIC method (4.11) or the four-stage Lobatto IIIC method (4.12), and U;} be the solution obtained from
the parareal algorithm 2. Then for all J > 2, there holds

—u"| < ] = 0.31.
1<me¥§v (U7 —u™|| < cey® with v =0.31

Proof for the 3-stage Lobatto IIIC scheme (4.11):

Similar to the proof of proposition 4.3.1, we aim to show that for any J > 2

(1+s)r(—s/J)” —1 24 — 6s
<0.31, where r(—s) = . 4.14
s lone) s < 031, where r(=s) = G TR T o (“414)

Letting @ = 0.69 and 8 = 1.02, Lemmas 4.2.1 and 4.3.1 implies that k, < 1 — 0.69 = 0.31 and

kg < 0.31, respectively.
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Next, we show the claim that e™#* < r(—s) < e~ forall s € (0, s,.) with s, = 2. To begin with,

we shall prove that r(—s) > e~#* for all s € (0, 00), which is equivalent to

Y(s) = (65 +24) — (55 + 652 +185+24) >0 Vs € (0,s,).

We note that
W (s) = 68%*(—Bs + 45 — 4).
has a unique root in (0, c0), namely sy = % ~ 0.0784, and hence ¢ (s) > 0 for all s € (0, s¢).

Besides, we observe that ¢)(3) (0) = 0.742 > 0, 1)®(s) ~ 0.762 > 0. Therefore ¢)(*) (s) has a unique
root in (sg, +00), denoted as s;. By means of the fixed point iteration, we know that s; ~ 0.4832.
Similarly, since ¢”'(0) = 0.730 > 0 and ¢)"(s1) = 1.00 > 0, we conclude that ¢ (s) is always positive
in [0, s1] and it has a unique root s2 € (s1,00), and we find sy =~ 0.9980. Repeating the argument, we
are able to show that ¢’ (s) keeps positive in [0, s2] and the unique root in (s2, 00) locates at s3 ~ 1.5344.
Finally, we observe that ¢(0) = 0 and ¢(s3) =~ 1.401 > 0, so ¢ is positive in (0, s3] and it admits a
unique root at s4 € (s3,00). Noting that ¢(s,) &~ 0.2873 > 0, we conclude that r(—s) > e~7* for all
s € (0, sg).

Next we will show that (—s) < e~ *® in (0, s.), which is equivalent to show

©(s) = e (=65 +24) — (s® + 65> + 185 +24) < 0 forall s € (0, s,).

We note the fact that

e (s) = 60°e**(—as +4a—4) <0 forall s € (0,00).

Meanwhile, we have ¢4 (0) < 0, ) (0) < 0, ¢"(0) < 0, ¢’(0) < 0, and (0) < 0. Those together
imply ¢(s) < 0 for any s € (0, c0). Therefore r(—s) < e™*%.
As aresult, for any J > 2, we arrive at e™#* < r(—s/J)7 < e7® forall s € (0, Js,), that further
implies the estimate
1+ s)r(=s/J)” —1

sup < 0.31.
s€(0,Js4) s
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Next, we aim to prove the claim that

sup |r(—s)| = sup
(8x,00) (8x,00)

24 — 6s
< 0.15. 4.15
‘83—1—6524-1854-24 <015 (4.15)

To begin with, we show that 17 (—s) admits a unique root in (2, co). We note that

ir(fs) _12(s3 — 352 — 245 — 48)
© (8346824 185 +24)2

ds

and hence it is sufficient to show that 77(s) = s® — 352 — 245 — 48 has a unique root in (2, 00). Since 7/ (s)
has two roots, —2 and 4, and n(—2) = —20 < 0, n(4) = —128 < 0, we conclude that n(s) < 0 for all
s € [—2,4], and n(s) admits a unique root in (4, c0), namely s5 & 7.235. Therefore r(—s) is decreasing
in (sx, s5) and increasing in [s5, 00). Noting that fact that r(—s,) &~ 0.130, r(—s5) ~ —0.0229 and

r(—o0) = 0, we obtian sup ’r(—s)‘ = |r(—s*) <0.15.

(s4,00)
Therefore, we derive for s € (Js,,00) and J > 2

1 - T -1 1 1 .
( +5)T( 5/‘]) < +S|T’(*S/J)J|+Sil < +Js (0'15)‘14»(]5*)71
S S J Sy
< 2(0.02)2 +471 ~0.251 < 0.31.
This completes the proof of (4.14) as well as the proposition. O

Proof for the 4-stage Lobatto IIIC scheme (4.12): Similar to the proof of Proposition 4.3.1, we aim to
show that for any J > 2
1+ s)r(=s/J)” —1 1252 — 1205 + 360

<0.31, where r(—s) = ,
sel0oe) s = 031, where r(=s) = G 3 1 2105 7 360

(4.16)

Letting « = 0.69 and § = 1.02, Lemmas 4.2.1 and 4.3.1 implies that x, < 1 — 0.69 = 0.31 and

kg < 0.31, respectively. Next, we show the claim that

e P < r(—s) <e * forall s € (0,s,) withs, =6.8. 4.17)
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To begin with, we show that, for s € (0, 00), r(—s) > e~#*, which is equivalent to
P(s) = (125% — 120s + 360)e”® — (s* 4 125 + 725% 4 2405 + 360) > 0.
Define h(s) = 3%s? + (108 — 103?)s + (3082 — 50 + 20), then we have
PO (s) = 128%* (325 + (108 — 108%)s + (3082 — 508 + 20)]| = 128%e *h(s).

Here h(s) is a quadratic polynomial, whose minimum locates at E’ﬁ% Therefore h(s) > h(‘r’ﬁTf‘r’) > 0.

Then ¥(®) (s) = 128%e/%h(s) — 24 > 12 x 2 — 24 > 0. Meanwhile, simple computation yields
Y(0)=0 and P®(0)>0 with 1<k<5.

Then we conclude that 1(s) > 0 for all s € (0,00), and hence r(—s) > =% in (0, c0).

Next we show the bound that r(s) < e~ for s € (0, s.), which is equivalent to show
©(s) = (1252 — 1205 + 360)e®® — (s* + 125 + 725> + 2405 +360) <0 Vs € (0, s,).
Similar to the preceding argument, let g(s) = (20 — 50c + 30a? + 10as — 10a2s + «%s?). Then
e (s) = 120%(20 — 50a + 300 + 10as — 10a%s + a?s?) = 12a3e**g(s).

Here g is a quadratic polynomial with minimum at 52=5_ Therefore, g(s) > g(5%-5) ~ —2.62. Mean-
while, we observe that g(0) = —0.217 < 0, so there is a unique root of g in (0, 00). It is easy to find
that, by means of the fixed point iteration, that root locates at so ~ 0.0993. Then ¢(®)(s) < 0 for all
s € [0,s0] and ¢®)(s) > 0 for s € (s0,00). Noting that o (s9) < 0and ¢®* (0) < 0, so ¥ (s) < 0
in [0, so] and ®*) admits a unique root in (sg, o), named as s;. Then the fixed point iteration implies
51 ~ 1.6849. Repeating this argument, we are able to show that ©(®)(s) < 0in [0, s;] and »®) has a
unique root (s1,00), namely s2 &~ 3.0558. Then we derive that ¢ (s) < 01in [0, so] and ¢ (s) has a
unique root in (s3, 00), denoted as sz &~ 4.3640. Similarly, ¢’(s) < 01in [0, s3] and ¢’(s) has a unique

root in (s3,00), named as s4 ~ 5.6285. Finally, since ¥(0) = 0 and ¢(s4) < 0, we conclude that
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©(8) < 01in (0, s4], and ©(s) has a unique root in (s4,00). Then the fact that p(s.) ~ —447.65 < 0
implies ¢(s) < 01n (0, s.). This completes the proof of the claim (4.17). As a result, for any J > 2, we
arrive at e#* < r(—s/J)” < e~ forall s € (0, Js.) which implies

1+ s)r(—s/J)” —1

sup ‘ < 0.31.
s€(0,Js4) S

Next, we intend to show the claim that

1252 — 1205 + 360
—s)| = <0.02. 4.18
— [r(=s)| oo VT 1268 4 7257 + 2405 + 360 | 19

In order to establish a bound for the supremum, we note

Ay Z257 421658 144057~ 14405° — 482005 — 129600
ds " (57 + 1253 + 7252 + 2405 + 360)? ’

and we will show that it admits a unique root in (s.,00), denoted by s5. Noting that, with p(s) =

—s% 4+ 9s5* + 6053 — 605 — 1800s — 5400, we have

gr(_s) _ 24p(s)
ds (5% 1283 + 7252 + 2405 + 360)2°

So it suffices to show that 1(s) admits a unique root in (s.,00). Since 1) (s) = —60s% + 2165 + 360,
being a quadratic polynomial, it gains the maximum at 1.8 where (3 (1.8) = 554.4 > 0. Noting that
s, > 1.8 and u®(s,) = —945.6 < 0, we conclude that u(®)(s) < 0 for all s € (s,,00). Moreover,
since p'’(s,) = 1033.3 > 0 and p’(00) = —o0, 1" (s) admits a unique root s¢ ~ 7.6503 € (s, 0).
Then we know that 1/ (s) > 0 in (ss, se) and p”’(s) < 0in (sg,00). Similarly, we have p/(s.) > 0
and p/(se) > 0, so p/(s) > 0in [ss, s¢]. This together with the fact 1/ (c0) < 0 implies that ¢/ (s) has
a unique root s7 =~ 10.166 € (sg,00). Finally, using the facts that ;(s,) > 0 and p(s7) > 0, we know
u(s) > 01in (s, s7) and p(s) has a unique root sg ~ 12.28 € (s7,00). Therefore r(—s) is increasing in
(84, 58), and decreasing in (ss,00). Noting that (—s) ~ 0.0088, r(—sg) ~ 0.0118, and r(—o0) = 0,

wearrive at sup |r(—s)| < 0.02.
(S*,OO)
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As aresult, the estimate (4.18) implies that for s € (Js,,00) and J > 2

(14 s)r(=s/J)” —1 1+s 1+ Jss

|r(—s/J)J| +s < (0.02)‘]—1—(J$*)_1

S - s J 54
14.6
< ——(0.02)? +13.6"! ~ 0.074 < 0.31.
13.6
This completes the proof of (4.16) as well as the proposition. O

Remark 4.3.1. Propositions 4.3.1 and 4.3.2 show that, for two-, three-, four-stage Lobbatto IIIC schemes,
the convergence factor is (at worst) 0.31, and there is no restriction on the ratio between the coarse time
step and fine time step. It is still possible to improve those estimations, by means of Theorem 4.2.1. For
example, one may obtain a smaller convergence factor v by choosing a bigger a and a smaller (3, which

might not affect the threshold J, = 2.

Remark 4.3.2. In the proof of Propositions 4.3.1 and 4.3.2, we employ the L-stability (r(—oc) = 0) of
the two-, three-, four-stage Lobbatto IIIC schemes. If the r(—oo) € (0,1), the analysis might be more
technical, and the convergence might be slow for small step ratio J; see e.g. Figure 4.3 for the Calahan
scheme (4.20)—(4.21). However, Theorem 4.2.1 guarantees the existence of the threshold J, such that for

any J > J, the convergence factor is close to 0.3.

Remark 4.3.3. The previous analysis shows that different J lead to almost the same convergence rate.
For a smaller J, or more corase intervals, the algorithm will be guaranteed a higher parallel ability and

takes less CPU time if we have plenty CPU cores.

4.4 Numerical Results

In this section, we shall present some numerical examples to illustrate and complement our theoretical
results. To begin with, we use the one-dimensional diffusion models to show the sharpness of our con-

vergence analysis in Sections 4.2 and 4.3.
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Example 1. Linear Diffusion Models We consider the following initial-boundary value problem of

parabolic equations

du(a,t) — Oppu(z,t) = f(a,t), 0<t<T,
u(z,t) =0, 10N, 0<t<T, (4.19)

u(z,0) = u’(z), x €.
where Q = (0,7) and T = 1. We consider the following two sets of problem data
(@) u(x) =251 —2)5%/(x/2)% and f = 0;

(b) u’(z) = X(0,z)(z) and f = cos(t) sin(z), where x (o, z)(z) denotes the step function:

1, ze€(0,7/2),
X(0,7/2)(T) =
0, elsewise.

In the computation, we divided the domain €2 into with M equal subintervals of length h = 7/ M and
apply the Galerkin finite element with piesewise linear polynomials to discretize in space. We examine

the error between the parareal iterative solution U;! and the exact time stepping solution U", i.e.,

error = x UE—u™ || 22(0)-

151221\/

In our computation, we fixed spatial mesh size h = /1000, and choose the initial guess U5 = u° for
alln=0,...,N.

In example (a), the data is sufficiently smooth and compatible to the homogeneous Dirichlet boundary
condition. In fact, it is easy to show show that u® € Dom((—A)3+¢) with e € (0,1/4) (see e.g. Lemma
[110, Lemma 3.1]). For this case of regular data, Bal showed that the first several parareal iterations
converge linearly with the rate O(AT); see cf. [7]. This is fully supported by the numerical results
presented in Figure 4.2, where we show the convergence of parareal algorithm for 2- and 3-stage Lobatto
IIC methods with fixed J = 10 and AT = 1/100, 1/300, 1/600 (and correspondingly At = 1/1000,
1/3000, 1/6000). We observe that the convergence of the first several iterations is faster for smaller coarse

step size, but the convergence then deteriorates for the later iterations.
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Figure 4.2: Example 1 (a): smooth data. Convergence of the parareal algorithm for 2- and 3-stage Lobatto
IIC methods with fixed mesh ratio J = 10 and various coarse step sizes 1/N, N = 100, 300, 600.

In Figure 4.3, we show the convergence of parareal algorithm for 2-, 3-, 4-stage Lobatto ITIIC methods
solving parabolic equation with nonsmooth initial data, i.e. Example 1 (b). We fixed the fine step size
At = 1/3000 and use different step ratios J = 2, 3 and 10. The numerical experiments clearly show
that the parareal iterations converge linearly with convergence factor near 0.3 for all J > 2. Meanwhile,
we observe that the convergence factor is independent of the ratio between coarse and find step sizes.
These phenomenon fully support our theoretical findings in Propositions 4.3.1 and 4.3.2. Moreover, we

test another time integrator, called Calahan scheme [125, eq. (1.9)], defined by

S V3 s 2 . 1 V3
—s)=1-— - — hb=—-(14+— 4.20
r(=s) Fon 6 ge) 0 wio=5 (1) (4.20)
and
1 (1/2+3) + (vV3/2)s
1= 75 pl(_s) = 2 5
3 (1+bs)
(4.21)
2 oy~ (2=VB) 4 (1/2 = V3/2)s
2Ty R (1+ bs)? '
The Butcher tableau is given by
sV3+E —5VB-3 |3
1 1 1 1 2 ajc
_g\/§+§ E\/§+§ 2 = - (4.22)
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It is easy to see that 7(—s) is a decreasing function on (0, 00) and 7(—00) = 1 — /3 € (—1,0), so
it is A-stable, but not L-stable. Besides, the scheme is accurate of order k¥ = 3. Therefore, the Calahan
scheme satisfies Conditions (P1)—(P3). Numerical results show that the converegnce of the corresponding
parareal iterations is much slower than 0.3 for small J. This might be due to the fact that |r(—o0)| > 0;
see Remark 4.3.2. However, for large J, the numerical results indicate a convergence rate close to 0.3, as

predicted by Theorem 4.2.2.

Lobatto IlIC, 2 stage Lobatto IlIC, 3 stage
10° 10°
(:S\ N ——J=2 ’},&\ N ——J=2
S@ \\ N —6—3=3 &S N o 3=3
. S J=10 Se < J=10
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S 5 (STRN
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5} 7} Sq
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5 10 15 20 25 30 5 10 15 20 25 30
iteration iteration
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Figure 4.3: Example 1 (b): nonsmooth data. Convergence of the parareal algorithm for 2-, 3-, 4-stage
Lobatto IIIC methods and Calahan method with fixed fine step size At = 1/3000 and various ratios of
coarse step size and fine step size.
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Example 2. Semilinear Parabolic Equations In this part, we shall examine the convergence of parareal

algorithm for solving the initial-boundary value problem of the semilinear parabolic equations

Oyt — Ozt = 8%(u —u®) =: f(u), forall z € Q,te (0,T],
dpu(w,t) =0, forall = € {0,7},t € (0,7), (4.23)

u(z,0) = u’(z), forall = € Q.

The model (4.23), called Allen—Cahn equation, was originally introduced by Allen and Cahn in [2] to
describe the motion of anti-phase boundaries in crystalline solids. In the context, u represents the concen-
tration of one of the two metallic components of the alloy and the parameter ¢ involved in the nonlinear
term represents the width of interface. Recent decades, the Allen—Cahn equation has become one of basic
phase-field equations, which has been widely applied to many complicated moving interface problems in
materials science and fluid dynamics [3, 16, 122].

In our numerical scheme, the coarse propagator is the semli-implicit backward Euler scheme: for

given u", look for u™*! such that for all ¢ € H*(0, )
(", ) + AT (9,u" ™, 0,9) = (u", ¢) + AT(f(u"), ),

which is uniquely solvable and first-order accurate, see e.g. [110, Theorem 14.7]. Meanwhile, the fine
propagator is an arbitrary fully implicit high-order single step integrator (such as the Lobatto IIIC schemes

or the fully implicit Calahan scheme): for given u", look for u™*? such that for all ¢ € H' (0, )

(", 0) = (', 0) + At Y ai; (= (@, 0,6) + (f(u),0)) forl <i<q,
7 (4.24)
(u",6) = ("1, 0) + ALY bi( = (O™, 820) + (F(u™), 0) ),
=1

where the nonlinear system is uniquely solvable for sufficiently small step size, and we solve it by use
Newton’s algorithm. Note that the fine propagator is fully nonlinear and hence time consuming where
the coarse propagator is a linear scheme, so the application of parareal algorithm is able to significantly
improve the efficiency.

In Figure 4.4, we show the convergence of parareal algorithm for 2-, 3-, 4-stage Lobatto IIIC methods
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Lobatto IlIC, 3 stages
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Figure 4.4: Example 2. Convergence of the parareal algorithm for 2-, 3-, 4-stage Lobatto IIIC methods
and Calahan method with fine step size At = 1/600 and various step ratios J = 2, 3, 10.
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and the Calahan method solving the semilinear parabolic equation (1.1) withe = 1 and T' = 0.1. The
fine step size is fixed and we examine the convergence for different step ratios. Similar to the linear
problem, for Lobatto IIIC methods, the numerical experiments clearly show that the parareal iterations
converge linearly with convergence factor near 0.3 for all J > 2, while for the Calahan method the
parareal iterations converge slowly for a small J. The convergence analysis for the nonlinear problem

warrants further investigation in our future studies.

4.5 Conclusion and Comments

In this chapter, we study a parallel-in-time algorithm, named parareal algorithm, to speed up our simula-
tion. We will first start on linear equations. The prove is based on spectrum decomposition. We prove
that, for a fixed coarse propagator (Implicit Euler Method), for any single step method fine propagator,
as long as the scheme satisfy the given assumptions, we can always find a threshold J,, such that if the
mesh ratio J > J,, the convergence rate for the iteration is bounded by a given constant about 0.3. A lot
of famous schemes agree with our assumptions. We also tested Allen-Cahn equation and it also works on

it.



Chapter 5

Conclusions and Future Work

This thesis aims to develop efficient single-step methods for solving parabolic problems, particularly in
phase-field models, and ensure high accuracy while preserving maximum bound and energy dissipation.

In the first part of the thesis, we focus on the development and analysis of structure-preserving schemes
for solving Allen—Cahn equations, a significant application of parabolic equations. We employ a k-th or-
der single-step method in time, linearizing the nonlinear term using multi-step extrapolation. In space,
we use a lumped mass finite element method with piecewise r-th order polynomials and Gauss—Lobatto
quadrature. A cut-off post-processing technique is proposed at each time level to eliminate values violat-
ing the maximum bound principle at finite element nodal points. Consequently, the numerical solution
adheres to the maximum bound principle at all nodal points, and the optimal error bound O (7% 4 h"*1) is
theoretically proven. These time-stepping schemes include algebraically stable collocation-type methods,
achieving high order in both space and time. By integrating the cut-off strategy with the scalar auxiliary
variable (SAV) technique, we develop energy-stable and maximum bound preserving schemes of arbitrar-
ily high order in time.

In the second part, we start to develop and analyze a class of single-step implicit-explicit schemes for
approximately solving linear parabolic equations, achieving long-time stability and arbitrarily high order
in time. This approach involves splitting the linear operator into symmetric and skew-symmetric com-
ponents, which are evaluated implicitly and explicitly respectively using IMEX-RK. For the symmetric

part, a diagonally implicit method is employed, while the discretization for the skew-symmetric part is
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designed to satisfy the stage orders. This method is applicable to semilinear problems, such as phase-field
models, and our analysis aligns with existing findings, demonstrating energy stability for certain IMEX-
RK schemes. Our results reveal intersections up to at least third order, leading to a scheme that preserves
both the original energy decay properties and maximum bound principles.

In the third part of the thesis, we study the parareal algorithm for solving parabolic equations, enabling
parallel-in-time computation and significantly accelerating the process. We prove that the parareal method
has a robust convergence rate of about 0.3, provided the ratio .J of coarse to fine step size exceeds a certain
threshold J,., and the fine propagator meets mild conditions. This convergence holds even with nonsmooth
problem data and boundary condition incompatibilities. Qualified methods include all absolutely stable
single-step methods with a stability function satisfying |r(—o00)| < 1, allowing the fine propagator to be of
arbitrarily high order. We also examine popular high-order single-step methods, such as the two-, three-,
and four-stage Lobatto IIIC methods, confirming that their corresponding parareal algorithms converge
linearly with a factor of 0.31 and a threshold J, = 2. At the end of each chapter, we present numerical
results that support the theoretical findings and inspire future investigations.

Next we list several perspectives for the future research:

1. Cut-off postprocessing can naturally ensure maximum bound preservation and maintain energy de-
cay when the function is continuous in space or uses piecewise linear FEM. However, for higher-
order finite elements, like P2(I) for I C R, a simple cut-off on u may increase |Vu/, causing our
analysis to fail. Thus, for both cut-off RK-SAV, which preserves maximum bounds and modified
energy decay, and cut-off IMEX-RK, which preserves maximum bounds and original energy de-
cay, we achieve at most second-order spatial accuracy in fully discretized problems. We need to
explore alternative methods, such as enhanced cut-off or other postprocessing techniques, to achieve

higher-order spatial convergence, requiring further study.

2. Inthe proof of long-time error estimate for linear implicit-explicit Runge-Kutta methods, we assume
0 < o(A) < 1, which is equivalent to |o| < 1 and ¢ > 0. We require ¢ > 0 to ensure the inverse
operator and norms are well-posed. Although this condition seems redundant, the proof fails without

it. We hope to address this issue in the future.

3. We use the undetermined coefficients method to explore implicit-explicit Runge-Kutta schemes.

Although there are more degrees of freedom than equations, we have not shown that these schemes
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can achieve arbitrarily high order. Unlike the usual Runge-Kutta method, where high-order schemes
can be systematically built, this approach does not work for implicit-explicit Runge-Kutta. De-
veloping an algorithm to construct high-order implicit-explicit Runge-Kutta schemes, rather than

searching for them, could be beneficial.

. When applying IMEX-RK schemes to solve gradient flow models, preserving the energy dissipation
property is crucial. Unfortunately, this requires strict conditions, including the positive-definiteness
of coefficient matrices, which are more complex than algebraic stage-order conditions. Conse-
quently, our strategy fails to ensure the energy dissipation property for high-order schemes. While
we have not ruled out the possibility of IMEX-RK achieving higher order for original energy de-
cay, we have only found first, second, and third-order results. Discovering fourth or higher-order

schemes would be both important and interesting.

. We established the robust convergence rate for the parareal method using a single-step approach.
Extending this work to multi-step methods, such as BDF, is intriguing. Developing the coarse
propagator carefully is crucial to prevent algorithm instability. Understanding the conditions for
convergence and creating a suitable coarse propagator is essential for applying the parareal method

to a wider range of scenarios.

. Although we have only proven robust convergence for the parareal method on linear equations,
numerical experiments indicate it also performs well on nonlinear models, such as the Allen-Cahn
equations, with similar convergence behavior. Various coarse propagators can be used, each be-
having differently, and some achieving excellent convergence. Developing the theory and analysis

for the parareal method on semilinear equations with nonsmooth data is needed.
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