
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



CAUSALITY-CENTRIC NARRATIVES

REASONING

MU FEITENG

PhD

The Hong Kong Polytechnic University 

2025



The Hong Kong Polytechnic University

Department of Computing

Causality-centric Narratives Reasoning

Mu Feiteng

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

July 2024



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Mu Feiteng





Abstract

Narratives are one of the foundational concepts of human society. It is an account

of the development of human events, along with explanations of how and why these

events happened. Narrative events serve as mirrors reflecting the intricate causality

inherent in human activities, rendering them indispensable tools for comprehending

the complexities of social dynamics.

Recently, artificial intelligence (AI) has spurred a new era of advancement. However,

despite the crucial role narratives plays, a critical bottleneck confronting AI systems

lies in enabling machines to comprehend narrative events and leverage them for com-

monsense narrative reasoning. Specifically, we identify at least three key research

problems that must be addressed in this domain of commonsense reasoning within

narratives. Research Problem 1: How to automatically obtain diverse and high-

quality commonsense event knowledge to solve the knowledge bottleneck problem in

commonsense reasoning? Research Problem 2: How to e!ectively utilize narrative

knowledge for commonsense reasoning to mitigate low-quality issues like dullness and

repetition in AI-generated narrative texts, while ensuring the content aligns with hu-

man commonsense? More importantly,how to teach AI systems to grasp the causal

relationships within narrative events, enabling them to e!ectively address high-level

counterfactual questions? Research Problem 3: Given the fact that narrative co-

herence evaluation is a notoriously di”cult thing in the generation community, how

can we devise robust quantitative methods to evaluate the coherence of AI-generated
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narrative content, thereby furnishing valuable tools for the community?

To solve these challenges, we focus on developing comprehensive narrative reasoning

systems from the following three aspects: automatically causality mining, causal-

knowledge enhanced narrative reasoning, and hard-negatives mining for narrative

coherence learning. Overall, in this thesis, we organize our research works into the

following three parts.

In the first part (work 1 and work 2), we explore the research problem 1. Specifically,

we explore the rule-based causality extraction method and possible de-biasing ap-

proach to harvest causal knowledge from text. In work 1, we manually create causal

rules to extract cause-e!ect pairs from text. And we further construct the event

causality network and demonstrate its use in the task of narrative e!ect generation.

In addition, to mitigate the false-positive problem introduced by our rule-based sys-

tem, in work 2, we explore possible de-biasing approach to obtain high-quality causal

knowledge. We inaugurate counterfactual thinking for Event Causality Identification

(ECI) to solve the context-keywords bias and event pairs bias problems in existing

work. This allows us to obtain high-precision causal event pairs.

In the second part (work 3 and work 4), we explore the solution for research problem

2 with the aim of developing a causal knowledge enhanced reasoning system with

stronger causal perception capabilities. In work 3, we delve into causality centric nar-

rative reasoning and push forward the existing knowledge-aware narrative reasoning

to a new frontier. We thoroughly leverage multi-level causal knowledge for narra-

tive reasoning, employing a two-stage framework designed to fully exploit the unique

characteristics of knowledge across various granularities. Experimental results have

shown that our work is e!ective and can improve the quality of generated narrative

e!ect text. In work 4, we are trying to endow AI systems with more advanced coun-

terfactual reasoning capabilities. One major challenge of counterfactual narrative

reasoning is to maintain the causality between the counterfactual condition and the

generated counterfactual outcome. Previous works simply utilize supervised datasets
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to train conditional generation models, but face the risk of exploiting artifacts of the

dataset, instead of learning to robustly reason about counterfactuals. We propose a

basic variational approach for counterfactual narrative reasoning. We further intro-

duce a pre-trained classifier and external commonsense event causality to mitigate the

model collapse problem in the variational approach, and hence improve the causality

between the counterfactual condition and the generated counterfactual outcome. We

assess the e”cacy of our approach using real-world public benchmarks. Experimental

results demonstrate its e!ectiveness.

In the third part (work 5), we target research problem 3 and propose novel hard-

negatives mining strategies for self-supervised narrative coherence learning. Existing

works mainly follow the contrastive learning paradigm. However, the negative samples

in their methods can be easily distinguished, which makes their methods unsatisfac-

tory. We devise two strategies for mining hard negatives, including (1) crisscrossing

a narrative and its contrastive variants; and (2) event-level replacement. To obtain

contrastive variants, we utilize the Brownian Bridge process to guarantee the qual-

ity of generated contrastive narratives. We assess our model across multiple tasks,

confirming its e!ectiveness and demonstrating its applicability to various use cases.

To sum up, we conduct a comprehensive study on narrative reasoning. Through the

use of our proposed methods to real-world datasets, we have illustrated the significant

improvements that can be achieved in existing narrative reasoning models. We be-

lieve that our works will have a profound impact on the field of narrative reasoning.

Although this thesis presents novel methods for this topic, it still has many open

problems. We list some future research directions at the end of this thesis.
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Chapter 1

Introduction

1.1 Background

Causality, also referred to as causation, indicates a special semantic relation between

one process (the cause) with another process or state (the e!ect), where the cause is

partially responsible for the e!ect, and the e!ect is partially dependent on the cause

[43]. In the field of natural language processing (NLP), causality can be described

using structural causal model [89, 91, 92], or be expressed with text [119, 24, 23, 103].

For example, the text “Sara has a bad cold and she feels very uncomfortable.” contains

the causal relation “have a cold
cause↑↓ feel uncomfortable”.

Narratives are stories that describe a series of events that occur with causal logic.

Narratives is one of the foundational concepts of human society [10, 135]. It is an

account of the development of human events, along with explanations of how and

why these events happened [36]. Narrative events serve as mirrors reflecting the

intricate causality inherent in human activities, rendering them indispensable tools for

comprehending the complexities of social dynamics. For instance, here is a narrative

text: “Sara felt famished, prompting her visit to McDonald’s where she ordered a

hamburger. This particular type of cuisine brings her immense joy.”. This text
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Chapter 1. Introduction

distinctly illustrates the causal sequence of events: “feeling hungry
cause↑↓ eating food

cause↑↓ feeling happy”.

With the emergence of deep learning, artificial intelligence (AI) has catalyzed a new

era of advancement. The e!ectiveness of a large number of AI applications depends

on a profound understanding of causal logic in narrative events [55]. Using the e-

commerce scenario as an illustration, it’s imperative for machines to understand that

the “dating” event triggers a series of subsequent behaviors, such as “getting mar-

ried”, “traveling”, and “having children”, etc. This comprehension enables them to

precisely anticipate users’ future shopping patterns when they engage in ”dating”

activities, thereby facilitating precise product recommendations to the target user.

In conclusion, there is an urgent need for research in narrative-based reasoning, as it

will significantly drive the application and advancement of AI technology.

Narratives encapsulate complex contextual information, which is essential for un-

derstanding human experiences and behaviors. To fully engage with the world in

a manner akin to human interaction, AI systems need to e!ectively comprehend

and reason about narratives. However, despite the crucial role narratives plays, AI

systems still have huge trouble in comprehending narrative events due to the great

complexity of narratives. Humans can grasp narratives because they hold a vast

reservoir of background knowledge in their minds. Machines devoid of narrative logic

struggle to make analytical judgments that align with human expectations. This

challenge becomes particularly pronounced in scenarios where AI systems are tasked

with generating or interpreting narrative texts, such as storytelling [75, 143], dia-

logue generation [157, 39], causal explanation [27, 17], future prediction [103, 30],

counterfactual reasoning [98, 11], and so on. In these tasks, AI models must not

only generate informative, coherent, and engaging narratives but also ensure that the

generated content aligns with human commonsense and accurately reflects the causal

relationships inherent in the underlying events. Even more concerning is that in the

majority of existing works, AI systems exhibit notably weak narrative generation
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capabilities. They may even produce repetitive, hollow, and unengaging text.

To tackle these challenges, our focus lies in studying narrative reasoning from a causal

perspective. This is because substantial evidence [128, 127, 125] suggests that people’s

comprehension of narratives is significantly shaped by the causal relationships within

the narrative stories, highlighting causality as a crucial starting point for narrative

comprehension and reasoning. The objective of this thesis is to improve the capability

of narrative reasoning systems with causal strategies to break through the limitations

of existing approaches, so that developing comprehensive narrative reasoning systems

that can e!ectively understand, reason about, and generate narratives.

1.2 Research Problems and Motivations

Existing methods for narrative reasoning have trouble in generating high-quality and

satisfactory content. More specifically, these methods either generate uninformative,

repetitive, and unengaging content, or generate incoherent content that cannot re-

flect the causal relationships between narrative events. To handle these problems

and improve the narrative reasoning ability of AI systems, we have summarized the

following key research problems:

• Research Problem 1: How to automatically obtain diverse and high-quality

commonsense event knowledge to solve the knowledge bottleneck problem in

commonsense reasoning?

• Research Problem 2: How to e!ectively utilize narrative knowledge for com-

monsense reasoning to mitigate low-quality issues like dullness and repetition

in AI-generated narrative texts, while ensuring the content aligns with human

commonsense? More importantly,how to teach AI systems to grasp the causal

relationships within narrative events, enabling them to e!ectively address high-

level counterfactual questions?
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• Research Problem 3: Given the fact that narrative coherence evaluation is

a notoriously di”cult thing in the generation community, how can we devise

robust quantitative methods to evaluate the coherence of AI-generated narrative

content, thereby furnishing valuable tools for the community?

The first research problem targets the causality extraction. Cause and e!ect are

important components of narrative. Therefore, the premise of causal enhanced nar-

rative reasoning is to solve the problem of the source of causality. Since the cost of

manual annotation for obtaining causal knowledge is extremely high, the automated

causal extraction method has extremely high value. To address this issue, we have

designed a rule-based causal extraction method. We have manually designed a series

of causal extraction rules that can extract large-scale causal pairs from unstructured

text. To address this issue, we have designed a rule-based causal extraction method.

We have manually designed a series of causal extraction rules that can extract large-

scale causal pairs from unstructured text. Next, we designed a result generation task

to verify the e!ectiveness of the extracted causal pairs. However, the extraction rules

inevitably introduce noise. In order to reduce the impact of noise, we also explored

de-noising methods to improve the quality of causal extraction.

The second research problem targets knowledge-enhanced narrative reasoning. Ex-

isting methods often produce low-quality content due to the di”culty in learning

semantic interactions solely from training data [22] without a profound comprehen-

sion of the input context and background knowledge[157]. From this viewpoint, we

focus on utilizing causal knowledge to enhance narrative reasoning systems because

causality is a significant relationship for narrative understanding. Causal knowledge

in text mainly occurs at the sentence-level and the event-level, and di!erent levels

of causality have di!erent characteristics. For example, the sentence-level causali-

ties generally have complex sentence structures, and it is di”cult to locate the exact

range of causes and e!ects from them. On the contrary, event-level causalities have

simple structures and can be explicitly structuralized in knowledge bases. Though
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having di!erent forms, sentence-level, and event-level causalities are the embodiment

of causality in di!erent scenarios, and they complement each other. This requires

us to design a comprehensive approach to fully utilize multi-level causal knowledge.

Beyond the factual narrative reasoning, we also pay attention to the counterfactual

reasoning ability of narrative reasoning systems. Narratives contains a large number

of causal relationships, which puts a high demand on narrative reasoning systems for

understanding event causality. In other words, a qualified narrative reasoning system

should accurately capture the causal relationships between narrative events so that

answering the counterfactual questions, i.e., anticipating the causal shifts in forth-

coming events by applying a counterfactual condition to the original narrative event

sequence. This issue naturally lends itself to being framed within a causal mechanism

[94], which requires us to infer the posterior background knowledge that is compat-

ible with the counterfactual scenario. With the causal theory based on variational

Bayes [45], we are able to use the background compatible with the observed factual

narratives to approximate the posterior distribution of the counterfactual scenario.

Ultimately,we build the counterfactual narrative reasoning upon causal strategies.

The third research problem focuses on the challenge of e!ectively evaluating the

coherence of AI-generated narrative content, which constitutes a significant chal-

lenge within the realm of narrative reasoning. Existing generative models follow the

sequence-to-sequence [120] learning paradigm, but su!er from the issue of exposure

bias [4, 154]. These models occasionally generate incoherent content, e.g., violating

the causal consistency between input and output content. Therefore, tools like co-

herence evaluation models are crucial as they can be used to filter out incoherent

generation. Previous works follow the contrastive learning paradigm, where negative

samples are created by negative sampling. However, the negative samples in these

methods are generally coarse-grained and superficial, making their methods unsatis-

factory. To mine more qualified hard negatives, we conduct research on contrastive

narratives generation. By comparing the observed narrative with its contrastive vari-
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Figure 1.1: The overall framework of the thesis. We use our causality extraction ap-

proach to obtain causal knowledge, which are then used to improve narrative reason-

ing systems at the runtime stage. At the post-processing stage, we use our coherence

evaluator to select the most coherent candidate output.

ants, the model can learn what makes the narrative coherent. That is, the model can

learn what perturbations to the narrative would make it incoherent. This motivates

us to synthesize hard negatives for self-supervised narrative coherence learning.

1.3 Research Framework

The key challenge of narrative reasoning is how to generate high-quality and sat-

isfactory text, ensuring that the generated content conforms to commonsense and

satisfies causal consistency between narratives. As shown in the literature review,

some works have developed knowledge-enhanced approaches for narrative reason-

ing systems. However, these works primarily focus on utilizing low-level knowledge

or implicit knowledge in pre-trained models, but neglect the significance of causal

knowledge in narrative texts. In addition, existing works for counterfactual narrative

reasoning mainly fine-tune pre-trained models for counterfactual narrative reasoning,
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but face the risk of exploiting artifacts of the dataset, instead of learning to robustly

reason about counterfactuals. Furthermore, for narrative coherence evaluation, previ-

ous methods are mainly based on the contrastive learning framework, where negative

samples are obtained through negative sampling. However, negative samples are too

easy to be distinguished, making their methods ine!ective. As a result, the progress

in this field is still in its initial stage, leaving ample room for potential research.

In this thesis, we focus on causality-centric narrative reasoning. Specifically, we study

narrative reasoning from the following three aspects: the automatic causality extrac-

tion, the exploitation of causal knowledge for narrative reasoning, and coherence

learning with contrastive narrative generation. The overview of these works is de-

picted in Figure 1.1. Part 1 (Work 1 and 2) mainly solve the problem of causal

mining to provide knowledge ground for commonsense narrative reasoning. Part 2

(Work 3 and 4) utilizes causal knowledge to enhance the performance of narrative

reasoning systems, including factual and counterfactual reasoning. In Part 3 (Work

5), from the perspective of hard negatives mining, we present a technique for creat-

ing contrasting pairs using Brownian bridges, enabling the generation of high-quality

negative instances. A concise overview and the contributions of this research are

outlined as follows.

Part 1: Automatically Causality Mining and De-biasing

Causality, as an important component of narrative, frequently appears in texts linked

by casual connectives. To avoid the huge cost of manual annotation, we designed a

rule-based extraction system to obtain causal pairs. Meanwhile, in order to reduce

the noise introduced by rules, we also explored the de-noising approach of causal

extraction, taking event causality identification (ECI) as an instantiation.

Work 1: To scale-up causality mining, we devise rule-based systems to automatically

extract high-precision causal event pairs from free-form text. To demonstrate the
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e!ectiveness of rule-based extraction, we convert the extracted relations into a causal

event network. Finally, given an input cause sentence, a causal sub-graph is retrieved

and is encoded with the graph attention mechanism, in order to support narrative

e!ect generation.

Contribution: We have created extraction rules that can automatically obtain a large

number of causal relationships, avoiding the huge cost of manual annotation. In addi-

tion, we devise the causal-graph based method for causal-centric narrative reasoning.

Work 2: In order to reduce extraction noise, we have conducted research on existing

ECI works. Existing ECI methods focus on mining potential causal signals, including

causal context keywords [64] and causal event pairs [163], to enhance ECI. However,

due to the polysemy of language, causal signals are ambiguous. The occurrence of

those signals does not always indicate that causality is established. As a result, they

face the risk of amplifying the role of potential signals, resulting in context-keywords

bias and event-pairs bias in inference. To solve this issue, we propose the control test

that explicitly estimates the influence of context keywords and event pairs in training,

so that we are able to eliminate the biases in inference.

Contribution: We consider the spurious correlation problem in ECI, which may make

an ECI model overfit on ambiguous causal signals. To mitigate this problem, we

propose a counterfactual reasoning mechanism for ECI. To the best of our knowledge,

this is the first work that studies ECI from a counterfactual perspective.

Part 2: Utilizing Causal Knowledge for Factual and Counter-

factual Narrative Reasoning

Researchers have developed extensive methods, such as graph attention [157] or multi-

hop flow [39], to leverage word-level knowledge for improving the understanding of

the input background. In fact, for narrative reasoning, causality is a more e!ective
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semantic relationship because it can express richer semantics. In work 3, we have

elevated causal-knowledge enhanced narrative reasoning to a new level by considering

multi-level causalities. In work 4, We further consider counterfactual reasoning in

narratives (CRN), which is a direct verification of the causal perception ability of

narrative reasoning systems. Even though it is considered a crucial component of

intelligent systems [89, 92], only a few resources have been devoted to CRN. To

bridge this gap, we directly challenge counterfactual narrative reasoning to improve

the causal ability of AI systems.

Work 3: Causality mainly occurs at the sentence-level and the event-level in text.

Though having di!erent forms, sentence-level and event-level causalities are the em-

bodiment of causality in di!erent scenarios, and they complement each other. To

fully utilize the strengthen of multi-level causalities, we devise a two-stage approach

for narrative reasoning. In the first stage, we use pre-trained models to memorize

sentence-level causalities. In the second stage, we utilize event causalities. But, the

sparsity of events remains an obstacle. Therefore, we innovatively break down events

into multiple word components. The relations between word components capture the

interplays between di!erent events, and help mitigate the event sparsity. Based on the

event-level causalities and the word-level relations, we construct the novel hierarchical

knowledge graph (KG) and devised a KG-based reasoning method.

Contribution: We introduce a two-stage method. This method, designed in a generic

framework, proves applicable to a range of narrative understanding tasks. Through

the subdivision of events into multiple word components, we derive the hierarchi-

cal KG. This not only mitigates the challenge of event sparsity but also provides

additional word-level information to enhance narrative reasoning.

Work 4: Generally, CRN relies on the ability to find causality in narratives. This

issue naturally lends itself to being framed within a causal mechanism [91], which

requires us to infer the background knowledge that is compatible with the counter-

factual scenario. However, this is non-trivial as it involves estimating the posterior of
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the background knowledge. Luckily, with the variational technique [45], we are able

to use the background compatible with the observed narrative to approximate the

posterior distribution. In fact, the variational process provides an approximation of

the background, but it may face the problem of posterior collapse [106]. As a result,

the generated counterfactual output may not be the precise e!ect of the counterfac-

tual input. To mitigate this problem, we further propose two intuitive strategies,

which introduce a pre-trained classifier and commonsense causality, to enhance the

causality between the counterfactual input and output.

Contribution: We formulate CRN in a variational framework and introduce event

causality and a pre-trained classifier to further improve the causality between the

counterfactual input and output. Our method is a general approach that is applicable

to multiple tasks. To the best of our knowledge, this is the first work that explores

the CRN from a causal perspective. The experiment proves the e!ectiveness of our

method. We also study the practicality of the generated counterfactual narratives via

a data augmentation experiment.

Part 3: Hard Negatives Mining for Narrative Coherence Learn-

ing

A major challenge for narrative reasoning is to evaluate narrative coherence. Previous

works mainly devise self-supervised tasks, in which negative samples are created by

sampling-based strategies. The resulting negatives are less representative, and easily

distinguishable. Narrative coherence learning urgently requires more hard negative

samples. To mitigate this research gap, we propose to synthesize hard negatives with

contrastive narratives, in work 5.

Work 5: The ideal of hard negative samples should be that are similar to a real nar-

rative but actually less coherent. Starting from causality between the narrative prefix

and su”x, we innovatively introduce contrastive narratives for synthesizing hard neg-
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atives. Contrastive narratives are examples that are similar in content, but convey

di!erent semantics [69, 132]. By comparing the observed narrative with its contrastive

variants, the model can learn what perturbations to the narrative would make it in-

coherent. Due to this property, we can crisscross a narrative and its contrastive

variants to obtain hard negatives. To obtain contrastive narratives, we introduce the

Brownian Bridge process to guarantee the quality of generated contrastive narratives.

Then we create hard negatives for narrative coherence learning. The acquired model

is exclusively trained via self-supervised contrastive learning and is adaptable to an

extensive array of subsequent assignments.

Contribution: Based on the Brownian Bridge process, we generate high-quality con-

trastive narratives, which are used to synthesize hard negatives. We propose a new

coherence evaluator, which is enhanced by diverse and high-quality hard negatives.

We also conduct an in-depth analysis of our negative sample synthesis strategies.

1.4 Structure of Thesis

The thesis is organized as follows to give an overall picture.

• Chapter 1 first introduces the background of the research on narrative reason-

ing. This chapter also explains the three key problems, research overview, and

contribution of this thesis.

• Chapter 2 reviews existing work in narrative reasoning. This chapter first briefly

introduces recent advancements in the field of natural language process, includ-

ing the RNN-based, transformer-based, and pre-trained foundation model-based

technicals. Then, this chapter illustrates the related topics and existing methods

in the field of narrative reasoning.

• Chapter 3 introduces our rule-based extraction system. We scale up causal
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extraction with extraction rules and construct the event causalities network.

Then we demonstrate its use in the task of narrative e!ect generation.

• Chapter 4 introduces our works about ECI. This chapter focuses on developing

de-baising models to mitigate the noise in event causalities extraction. We

introduce the novel counterfactual thinking into ECI to mitigate the biased

inference problem in previous works.

• Chapter 5 introduces our works about making full use of multi-level causal

knowledge for factual narrative reasoning. We present a two-stage framework,

in which sentence-level causalities are utilized in the first stage, and event-level

causalities are leveraged in the second stage. We also present a novel mechanism

incorporating a hierarchical knowledge graph when mitigating the sparsity of

events.

• In chapter 6, we introduce our work for counterfactual reasoning in narratives

(CRN). We build CRN model on the variational Bayes theory, and propose two

additional strategies to alleviate the posterior collapse problem in the variational

process.

• Chapter 7 presents a novel narrative coherence learning method that introduces

contrastive narratives for hard negatives mining. To obtain contrastive narra-

tives, we use the Brownian Bridge process as the basis to ensure the quality of

generated contrastive narratives.

• Chapter 8 summarizes the proposed approaches, our findings, contributions as

well as suggestions for future work.
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Chapter 2

Literature Review

This chapter first provides a brief overview of canonical neural models frequently

employed in natural language processing. These include recurrent neural networks,

the transformer model, and transformer based pre-trained language models. These

models are necessary because some techniques are used in this thesis. Next, this

chapter reviews related datasets and works for narrative commonsense reasoning.

2.1 Canonical Neural Modeling in Natural Lan-

guage Process

Over the past decade, there has been a notable triumph in neural networks, estab-

lishing itself as the prevailing algorithm in various industries and finding widespread

application across domains like computer vision, speech processing, natural language

understanding, and more. In this segment, we provide a succinct overview of the

latest innovations and prevalent neural network architectures utilized by researchers

in NLP.
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Figure 2.1: The architecture of transformer model [130].

2.1.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) represent a prevalent computational framework

employed for handling sequential data. Broadly speaking, RNNs amalgamate the

input of the current temporal instance with the latent state from the antecedent tem-

poral instance to calculate the current temporal instance’s latent state and output.

One significant advantage of RNNs is their linear memory consumption, enabling

them to handle sequences of varying lengths. However, traditional RNNs encounter

challenges such as gradient vanishing and exploding. To mitigate these issues, two

RNN variants, namely Gated Recursive Unit (GRU) [13] and Long Short-Term Mem-
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ory (LSTM) [32] networks, were proposed and have found widespread application in

various domains.

2.1.2 Transformer Models

Recurrent architectures commonly distribute computation across the symbol posi-

tions of input and output sequences. By synchronizing positions with steps in com-

putational time, they produce a succession of hidden states ht, determined by the

antecedent hidden state ht↓1 and the input for position xt. This intrinsic sequential

characteristic obstructs parallelization within individual training instances, a factor of

increasing significance with extended sequence lengths due to memory constraints con-

straining batch processing across instances. [130]. [130] introduced the Transformer,

a paradigm that forsakes recurrence and relies solely on a self-attention mechanism

to apprehend comprehensive interdependencies between input and output, devoid of

sequence-aligned RNNs or convolutional layers. The architecture of transformers is

shown in Figure 2.1. They posited the multi-head attention layer, primed with three

vectors:the query, keys, and values.. The yield is calculated as a weighted summa-

tion of the values, wherein the weight to each value is derived through a concordance

algorithm of the query with its corresponding key, as shown in Equation 2.1.

Attention(Q,K, V ) = softmax(
QKT

↔
dk

)V (2.1)

Furthermore, they observed advantages in applying h linear projections to the queries,

keys, and values, enabling the model to collectively attend to diverse representation

subspaces across various positions. This process culminated in the formation of the

Multi-Head attention mechanism, as illustrated in Equation 2.2.

MultiHead(Q,K, V ) = Concat(head11, head2, · · · , headh)W
O

where headi = Attention(QWQ

i
, KWK

i
, V W V

i
)

(2.2)

The original transformer model [130] takes an encoder-decoder framework, and there

are three di!erent types of multi-head attention layers in the transformer model:
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• Within the encoder segment, each input token is scrutinized comprehensively,

with even initial tokens considered akin to subsequent ones. Thus, the self-

attention layers within the encoder adopt a bidirectional architecture, facilitat-

ing each position’s ability to attend to all input positions.

• On the contrary, in the decoder part, tokens are inputted one by one, and

the tokens inputted first cannot perceive the tokens that follow. To ensure

this feature, the self-attention layers of the decoder part require an additional

causal mask to ensure the autoregressive property, i.e., the current token can

only perceive the previous tokens.

• Additionally, transformer models feature cross-attention layers. These layers

entail setting the queries as the output of the preceding decoder layer, while

keys and values are established as the encoder outputs. Such a configuration

empowers each token within the decoder to attend comprehensively to all tokens

within the encoder.

2.1.3 Pre-trained Language Models

The key bottleneck of deep learning systems is the supervised dataset, which requires

human annotation. But this usually requires a huge cost. In order to avoid cost

consumption, researchers have turned to exploring self-supervised and unsupervised

training, where annotated information can be automatically constructed. Drawing

from self-supervised learning paradigms applied to vast corpora, they engage in train-

ing models to acquire a universal language representation. These training objectives

typically encompass:

• Language Modeling (LM): A quintessential endeavor in probabilistic density

estimation, often delineated by auto-regressive LM or unidirectional LM.
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• Masked Language Modeling (MLM): Encompassing a Cloze task where certain

tokens are masked for prediction.

• Permuted Language Modeling: An undertaking involving language modeling

on randomly permuted input sequences. Random permutations are sampled

from the entirety of possible permutations. Subsequently, specific tokens within

the permuted sequence are designated as targets, and the model is trained

to forecast these targets, leveraging the remaining tokens and their natural

positions.

Grounded in these pre-training endeavors, researchers have devised various pre-training

models, attaining cutting-edge performance across multiple NLP tasks. Broadly, these

models can be categorized into three main classes.

Pre-trained Models Based on Encoder-only Transformer

The Encoder-only Transformer model focuses on handling tasks that only input se-

quences without generating output sequences. Usually, this type of model is very

useful when dealing with natural language understanding tasks, such as text classifi-

cation, sentiment analysis, etc. Unlike traditional Transformer models, they do not

include a decoder section, making them lighter and more suitable for tasks that only

require encoding the input sequence.

BERT[15], proposed by Google in 2018, is the earliest encoder-only pre-trained trans-

formers. It acquires a universal language representation via unsupervised pre-training

on a vast corpus, subsequently amenable to fine-tuning across diverse downstream

tasks. BERT, for instance, leverages Masked Language Modeling (MLM) and Next

Sentence Prediction (NSP) during pre-training. MLM involves the model predicting

randomly masked segments within input sequences, fostering bidirectional language

comprehension. NSP tasks the model with discerning the continuity between two

sentences, augmenting its grasp of contextual interrelations.
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Based on BERT, researchers have proposed many variants, the most famous of which

is RoBERTa [66]. RoBERTa, an advancement over the BERT architecture, capitalizes

on a larger dataset and extended pre-training duration while discarding the NSP task.

These enhancements have propelled RoBERTa to outperform its predecessor across

a spectrum of downstream tasks. DistilBERT [110] is a lightweight variant of BERT

that achieves model compression through parameter compression and knowledge dis-

tillation. Although the model is smaller, it can still maintain high performance on

many tasks and has faster inference speed.

In sum, encoder-only transformer architectures have ushered in substantial break-

throughs and innovations within the domain of NLP, furnishing robust tools and

technical underpinnings for addressing diverse text-based challenges.

Pre-trained Models Based on Encoder-Decoder Transformer

This kind of pre-trained model includes both encoder and decoder parts and is suitable

for conditional language generation, such as text completion and machine translation.

So far, researchers have proposed many powerful encoder decoder pre-trained models.

BART [50], proposed by Facebook in 2019, combines the characteristics of bidirec-

tional and auto-regressive in its design, aiming to be suitable for multiple language

processing tasks such as text generation, text rewriting, and text summarization.

The pre-training objectives of BART include two main tasks: MLM and text recon-

struction. Similar to BERT, BART uses MLM tasks during the pre-training phase.

In addition, in order to learn and generate continuous text sequences, BART also

adopts a text reconstruction task. In this task, the model will be asked to remove

a randomly selected small portion from a sentence and attempt to reconstruct the

original sentence. This task helps the model learn the ability to generate and rewrite

sequences. Through these two pre-training tasks, BART can learn universal language

representations and achieve excellent performance on various downstream tasks.
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T5 [104] is a generation model proposed by Google in 2020. It converts all of NLP

problems into text-to-text conversion tasks and adopts a consistent input-output rep-

resentation to simplify model design and training processes. Their work demonstrated

that scaling up the pre-trained model as well as the training corpus can e!ectively

improve data diversity and the model’s memorization ability, thereby continuously

improving the model performance of various downstream tasks.

PEGASUS [150], proposed by Google in 2020, focuses on generative tasks such as text

summarization, article rewriting, etc. PEGASUS adopts the strategy of reverse Au-

toregressive to improve generation speed, and employs continuous text reconstructor

tasks in both pre-training and fine-tuning stages.

Pre-trained Models Based on Decoder-only Transformer

Decoder-only pre-trained model focuses on processing tasks that only output se-

quences and do not accept input sequences. Unlike traditional transformers, it only

includes a decoder section and is suitable for generative tasks such as dialogue.

The earliest decoder only pre trained model was GPT [101], proposed by OpenAI in

2018. It adopts a standard auto-regressive LM objective. With the large-scale pre-

training on BookCorpus data, it presents good performance on various tasks, such

as question answering, and text completion. Later, OpenAI develops more powerful

GPT-family models, including GPT2 [102] and GPT3 [6]. The pre-training data of

GPT2 includes large-scale web data collected from various sources on the Internet,

including news articles, web content, e-books, Wikipedia, etc. These data span vari-

ous themes and fields, making the model more widely applicable to di!erent language

comprehension tasks. Many experiments show that GPT2 has learned a large amount

of language knowledge and is able to generate a universal text representation, making

it perform well on vast NLP tasks.

The parameter count of GPT3 can reach 175B, making it one of the largest and
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most powerful language models to date, with high flexibility and wide application

capabilities. Compared to GPT2, GPT3 uses a wider and more diverse range of

training data, which enables the model to better understand and generate various

types of text. However, GPT3 has not yet been open-source, and its training corpus

and details have not been disclosed. In order to break the monopoly of OpenAI,

researchers have invested a lot of e!ort to replicate GPT3, and hence have developed

many excellent open-source models as a result, such as OPT [152], BLOOM [48],

LLAMA [124], GLM [148], etc. Although these pre-trained large models have good

zero-shot performance, there is a risk of generating harmful information when directly

using them for downstream tasks. To avoid this issue, [86] proposes reinforcement

learning from human feedback (RLHF). This enable large models to generate more

appropriate outputs with less toxicity information [86].

2.2 Narrative Commonsense Reasoning

Generally, narrative commonsense reasoning is a relatively large problem that is re-

lated to multiple sub-problems, such as commonsense causal reasoning, narrative

understanding and generation, event causalities identification from narrative text,

counterfactual story generation, narrative coherence learning, contrastive narratives

generation, etc. In this segment, we furnish an elaborate overview of the literature

pertinent to narrative commonsense reasoning.

2.2.1 Commonsense Causal Reasoning

Commonsense causal reasoning refers to the ability of people to infer causal rela-

tionships based on daily experience and commonsense. This ability is crucial for

understanding the world, making decisions, and solving problems. Existing common-

sense causal reasoning methods generally collect causal word pairs to construct causal
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estimators. [108] leverages personal stories as a source of causality and uses PMI be-

tween word pairs to identify the causal pairs with high correlation. [116, 140] create

causal embedding based on causal word pairs which are extracted using hand-crafted

causal rules. Then these methods use the constructed causal estimators to reason

causality. [59] proposes a guided beam-search technique to generate causes and ef-

fects based on the pre-constructed large-scale causal graph. However, these works

model causality in terms of word pairs and consequently they are of great limitation

in causal reasoning. Recently researchers begin to paid more attention to event-level

causal reasoning. [155] cluster the observed similar events together and connect these

clusters in event causality networks, based on which the future events are predicted.

[111] introduce ATOMIC, an compendium of everyday commonsense causal reason-

ing, structured around 877k textual descriptions of inferential knowledge. ATOMIC

centers on inferential knowledge categorized as typed if-then relationships. By train-

ing on ATOMIC, [37] proposes CoMeT, a generative neural model that can generate

cause or e!ect according to the input event. In chapter 3, we target event-centric

e!ect generation. By selecting the guided e!ect events, we further realize the pre-

dicted event skeletons into the full sentences to fill in the missing information in the

skeletons.

2.2.2 Event Causality Identification from Narrative Text

Event causality Identification (ECI) is a fundamental task in NLP because causality

between events can be used in many applications. Early works [155, 140, 59] typ-

ically employed rule-based methods to identify causal relationships between events.

Each rule follows the template <Pattern, Constraint, Priority>, where Pattern is

a regular expression containing the selected keywords, Constraint is a syntactic con-

straint on sentences that can apply the pattern, and Priority is the priority of the rule

when matching multiple rules. These rules have been carefully designed by humans,

demonstrating high extraction precision, but face the problem of insu”cient cover-
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age. Later, researchers turn to model-based recognition methods. They usually train

models based on supervised datasets. The models learn potential causal signals, i.e.,

causal patterns and causal event pairs, from data, thereby gaining the generalization

ability. Based on the basic supervised learning framework, researchers have proposed

di!erent incremental strategies. [64] advocates a mention masking generalization

mechanism for acquiring event-agnostic yet context-specific causal patterns. [162]

devises a self-supervised framework to glean context-specific causal patterns from ex-

ternal causal statements. From the perspective of data augmentation, [164, 163] use

possible causal event pairs to find potentially useful data from the external corpus.

[20, 93] propose graph-based methods for document-level ECI. Di!erent from these

works, we are the first to notice the biased inference problem in supervised ECI, and

we have proposed a corresponding de-bias method to improve the precision of ECI.

2.2.3 Narrative Understanding and Generation

Given the input text, narrative understanding and generation require models to pro-

duce fluent and coherent narrative output text under predefined conditions. Due

to the high demand for commonsense knowledge in narrative generation, researchers

have invested a lot of energy in knowledge-enhanced narrative generation. In terms of

knowledge utilization, some researchers have adopted a continuous training method

based on pre-trained models to inject knowledge into pre-trained models. Another

group of researchers has adopted explicit knowledge graphs based reasoning methods.

Injecting Domain Knowledge into Pre-trained Models

The recent development of PLMs, such as BERT[15] and BART [50], is seeing new-

found success in the NLP field. These pre-trained models demonstrate strong knowl-

edge extraction and memory capabilities. Therefore, researchers attempt to use pre-

trained models as carriers to carry commonsense knowledge. They designed di!erent
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continuous training tasks to inject common sense knowledge into pre-trained models.

For example, [33] injects external knowledge into language models for cause-e!ect

relation classification. [28] continually trains PLMs by predicting missing events in

temporal event sequences to focus on narrative event reasoning. Meanwhile, [63] uses

BART to reconstruct a temporally-disorganized event sequence to focus on narrative

event reasoning. [158] extracts eventuality knowledge by discourse connectives, then

uses the knowledge to train PLMs for event correlation reasoning. [57] injects causal

sentences into PLMs for commonsense causal reasoning tasks. In chapter 5, we ex-

tend the work of [57] by injecting sentence-level causalities into PLMs. In addition,

we also utilize event-level causalities for narrative generation.

Knowledge Graph Grounded Narrative Generation

Due to the lack of knowledge in neural networks, researchers focus on providing exter-

nal structural knowledge as background for narrative reasoning. Earlier works focus

on grounding reasoning on concepts or entities knowledge graphs. For example, [60]

leverages structural commonsense knowledge graphs to conduct interpretable reason-

ing for answering commonsense questions. [39] introduces explicit knowledge from

ConceptNet for narrative story generation. [123] enhances contextual word repre-

sentations using neighboring entities in knowledge graphs. These works prove that

external knowledge helps to enhance the performance of narrative generation systems.

However, these methods are all based on word or entity-level knowledge graphs, facing

the problem of semantic distortion when solving multi-word expressions, since word

or entity-level knowledge has low-level semantics and cannot express multi-word text

units. As the basic semantic unit of natural language, an event carries richer in-

formation than a single word, hence self-contained event knowledge might help the

narrative reasoning and generation. Therefore, recent works focus on utilizing struc-

tural event knowledge. For example, [88] encodes structured event knowledge with a

transformer-based model for narrative commonsense reasoning. [62] integrates event
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sequence knowledge for story writing. Although these methods have made progress,

they overlook the sparsity of events. Di!erent from these works, we propose to split

a coarse-grained event into fine-grained word components to obtain the hierarchical

knowledge graph, making it possible to mitigate the event sparsity problem.

2.2.4 Counterfactual Story Generation

Counterfactual reasoning in narratives (CRN) refers to the process of predicting po-

tential outcomes that could have arisen from alternative events, diverging from what

actually occurred [98, 2]. Existing works for counterfactual story generation mainly

include unsupervised methods or supervised fine-tuning.

The earliest several unsupervised methods was proposed by [98], In their original

paper, [98] proposed to first train the story generation models on story generation

datasets, then adapted the models on counterfactual story generation task in a zero-

shot manner. However, the performance of zero-shot evaluation is unsatisfactory. [99]

proposed DELOREAN, an unguided extrapolation technique adept at flexibly assim-

ilating antecedent and subsequent contexts utilizing solely o!-the-shelf, dexterous,

left-to-right linguistic models, devoid of any guiding oversight. This approach ingests

the narrative premise and counterfactual condition as input sans any form of dataset-

specific training. Subsequently, [12] introduced EDUCAT, an editing-centered un-

supervised technique tailored for counterfactual narrative rewriting. This method

encompasses a discernment mechanism for identifying target positions and a trans-

formative maneuver. [12] regards the problem as a controllable text generation task,

and adopted Metropolis-Hastings sampling for iteratively edit the original story end-

ing to expected counterfactual story ending. At each step, this method determines

whether to modify, including insert, delete, and replace actions, the token at the

current position. The decision is made by the probability of predefined evaluation

functions. After continuous iteration, the original ending will be modified to a coun-
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terfactual ending that is coherent to the counterfactual condition. Similar to [12],

[100] also treat the problem from a perspective of controllable text generation. They

advocate an energy-based constrained decoding methodology, drawing on insights

from [49] and incorporating Langevin dynamics as [134]. This approach harmonizes

constrained generation by delineating constraints via an energy function. However,

the decoding speed is very slow, which limits the e”ciency of their method.

Overall, unsupervised methods for counterfactual story generation have poor per-

formance, so some researchers have proposed several supervised learning methods.

[98] was an early proposer of supervised training methods, which simply finetuned

pretrained models using annotated data. Following, [12, 53] proposed two-stage ap-

proaches. Typically, during the initial phase, each token within the original story

conclusion undergoes scrutiny to ascertain whether modification is warranted. Sub-

sequently, in the subsequent stage, the earmarked terms are adjusted to harmonize

with the narrative logic prescribed by the counterfactual circumstance. However, the

two-stage methods are dataset-specific, it is di”cult to migrate this dataset-specific

framework to other datasets [2]. In addition, supervised methods face the risk of

exploiting artifacts of the dataset [98], making these methods sub-optimal.

Counterfactual reasoning targets to explore the causal relationships in the data [90,

144]. Recently, there has been a strong interest in equip the current text genera-

tion with counterfactual reasoning ability [91]. These works involve fields such as

dialogue generation [85], machine translation [65], style transferring [34], etc. Yet

there have been few works that apply causal perspective to counterfactual reasoning

in narratives. In chapter 6, we use the idea of counterfactual inference to alleviate

the spurious correlation issue in ECI. In addition, we propose additional strategies to

improve the causality between the counterfactual condition and the generated coun-

terfactual outcome. To the best of our knowledge, this is the first work which reviews

counterfactual narrative reasoning from a causal view. We believe that our work can

bring new insights to this field.
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2.2.5 Narrative Coherence Learning

Narrative coherence learning aims to evaluate the coherence between the (input, out-

put) narrative text pairs, which is a key challenge in the field of narrative reasoning.

Narrative coherence evaluation requires high generalization ability of neural models,

so supervised learning methods are not suitable for this task due to the fact that

supervised methods have di”culty in adapting to out-of-domain data. In order to

obtain models with good generalization, researchers mainly focus on self-supervised

contrastive learning methods. These methods generally devise self-supervised tasks,

in which positive samples are from large-scale real narratives [145, 75], and negative

samples are created by sampling-based strategies. For example, [138] presents three

self-supervised learning tasks aimed at transferring the narrative-level knowledge from

ROCStories into the backbone model, comprising vanilla BERT and the Multi-Choice

Head architecture. [158] randomly masks an event in the event sequences to create

negative samples. [7] also adopts event-masking strategy to create negative samples.

In addition, they propose the event-shu#ing strategy which randomly shu#e a or-

dered event sequence into the disordered sequence, then the disordered sequences

are treated as negative samples. [47] incorporates randomly sampled sequences and

model-completed [102, 6] sequences as negative samples. However, these strategies

are generally coarse-grained and superficial. The resulting negatives still face prob-

lems of low quality, such as being irrelevant or repetitive [47], making them less

representative, and easily distinguishable. To mine more-qualified negative exam-

ples, researchers are devoted to developing methods for mining hard negatives and

negative samples, which are more di”cult for neural models to distinguish, therefore

benefiting narrative coherence learning. For example, [40] retrieves hard negatives

from the corpus with a momentum encoder. [149, 41] proposes the Mixup strategy

that mixes di!erent negatives in latent space to create hard negatives. [151] mixes

multiple positive samples to produce hard negatives. These works motivate us to de-

velop more sophisticated method for mining hard negatives. In chapter 7, we propose
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to crisscross an observed narrative with its contrastive counterparts for synthesizing

hard negatives. Since the contrastive narratives are similar to the original ones, we

can obtain qualified negatives, which are similar to the real narrative but actually

less coherent.

2.2.6 Contrastive Narratives Generation

Contrastive examples are data points that are close in the hidden space, i.e., share

similar embedding representations, but the model produces di!erent predictive likeli-

hoods [69]. More specifically in the field of narrative reasoning, contrastive narratives

are examples that are similar in content, but convey di!erent semantics. For exam-

ple, the counterfactual variants [98] of an observed narrative story can be seen as a

kind of contrastive narrative. Due to the similarity between observational narratives

and their contrasting variants, we can use them to synthesize high-quality negative

samples. To obtain contrastive examples, researchers [69, 132, 1] have proposed dif-

ferent approaches. For example, [69] selects unlabeled data points from the data

pool, whose predicted likelihoods di!ers the most from their neighbors in the training

set. In the field of language, there has recently been a trend [137, 16, 109] towards

producing counterfactual explanations. These counterfactual explanations are simi-

lar in content but present di!erent labels, and therefore can be generally regarded as

contrastive examples. These methods generally produce textual outputs conditioned

on pre-defined control codes derived from semantic representations, allowing for flex-

ible perturbation strategies. However, these methods generate contrastive samples

based on the (example, label) paired data. Due to the emphasis on the relationships

between (prefix, su”x) pairs of narratives, these methods for obtaining contrastive

examples are no longer applicable. To solve these problem, we innovately adopt the

Brownian bridge process [133] for contrastive narratives generation because the Brow-

nian bridge allows for the smooth modeling of gradual changes between two narrative

states. Based on the simple constraint, we are able to generate coherent contrastive
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narratives, which are used to synthetic hard negatives.
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Part I

Automatically Causality Mining

and De-biasing
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Narrative causality is one of the core concepts of human society. The performance of

many artificial intelligence applications depends on a deep understanding of logical

knowledge. However, existing neural network models typically use annotated corpora

for training with maximum likelihood estimation and mechanically memorize frequent

patterns in the corpus, thus lacking a profound understanding of narrative logic and

making reasonable analysis and judgments. To solve this problem, it is necessary

to use external causal knowledge to assist the model. Due to the widespread occur-

rence of causality in narrative texts and its importance as the most important logical

relationship in human society, we take causality as the starting point and explore

narrative reasoning methods which are enhanced causal knowledge.

To obtain causal knowledge, we first investigate rule based system to extract causlity

automatically. We group event-level causalities into an event causality network and

demonstrate its use in the task of narrative e!ect generation (Chapter 3). Then, we

investigate the task of event causality identification (Chapter 4) to mitigate the noose

problem in causality extraction..
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Chapter 3

Narrative E!ect Generation Based

on Causal Reasoning

3.1 Introduction

In this chapter, we propose rule-based causality extraction system, and demonstrate

its use in the task of cause-to-e!ect narrative generation.

Causal reasoning is the process of observing an action and reasoning future scenarios

that may be potentially caused by it [103]. Its importance is reflected in e!ective

narrative reasoning, which places high demands on the understanding of causal re-

lationships. Earlier causal reasoning methods [108, 67] collect causally related word

pairs (e.g., earthquake↓tsunami) to build the statistical models of causality, and then

predict e!ects words for given cause words. Recently, [140] uses causal embedding

to predict possible e!ect words of the input causes. [59] proposed the lexically-

constrained beam-search to generate possible e!ects given provided word guidance.

However, all these methods tend to reason causalities at word-level.

Causalities between word pairs are not always self-contained (i.e., intelligible) when
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they are extracted without the context [30]). For example, “quarrel↓break” is not

self-contained since this is not intelligible without the context: “They always quar-

rel↓They break up”. Given the action “They always quarrel”, word-level causal

reasoning methods will give the e!ect of “break” conditioned ”quarrel”. In other

words, word-level causal reasoning may give inconsistent predictions about causality.

Considering this deficiency, a better way is to use causal events to enhance causal

reasoning [103, 155]. An event is a tuple containing a subject, a verb, a direct object,

and some additional disambiguation token(s) [141]. As the semantic unit of natural

language, an event carries richer information and describe a more specific scenario

than a single word, hence causal information between event pairs is self-contained,

which can maintain the causal consistency between the input and the inferred result.

For example, the agent can predict “They break up” according to the observed event

“They quarrel”. However, an observed causal event is very likely to appear only once,

which brings about huge sparsity to causalities and great di”culty to the event-level

causal reasoning. To solve this problem, we design lexicon based abstraction rules to

structuralize observed causal events into a hierarchical event causality network where

similar events are clustered together. This allows us to mitigate the sparsity of events.

As such, we are able to predict the most reasonable e!ect event based on the event

causality network. The predicted e!ect event contains the skeleton information, with

the detailed context information neglected in the event extraction process. So we

further use the predicted e!ect event as a template to generate an e!ect sentence in

order to fill in the missing information.

In this chapter, we propose a novel event-level reasoning method and demonstrate its

use in the task of narrative e!ect generation. First, given a cause sentence, a causal-

related event graph is extracted from the constructed event causality network and is

encoded with a graph attention mechanism in order to support better reasoning of

the potential e!ect. The most probable e!ect event is then retrieved from the causal

event graph and is used as template for the e!ect generation. Next, for the input
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cause sentence, we develop a e!ect generator to generate the corresponding e!ect

sentence. We use the retrieved e!ect event as a template for the generation process.

The problem now is that all tokens of the retrieved event should be contained in the

generated sentence. Otherwise, the part of causal information carried by the retrieved

event will be lost, leading to the incompleteness of the expected causal relation. Our

generator realizes the retrieved event into a sentence in a way analog to sentence

completion. Hence, our generator guarantees that the generated sentence retains all

tokens of the retrieved e!ect event.

To sum up, this paper makes the following contributions.

• we devise an e!ect generation method which is based on causal event reasoning

(EGCER) to generate e!ect sentences for given input cause sentences.

• We present a method to construct an event causality network, from which we can

obtain a causal subgraph to facilitate e!ect event retrieval and event-template-

based e!ect sentence realization.

• Empirical results on the widely used English Wikipedia and COPA corpora

show that our model achieves the best performance compared among various

well-designed baselines.

3.2 Event Causality Network Construction

In this paper, we use causal events to bridge the causalities between input sequences

and generated sequences. Hence, we must first collect su”cient cause-e!ect sentence

pairs so that from each sentence pair a cause-e!ect event pair can be eventified. In

this section, we explain how we construct the event causality network, including the

steps of causality mining and event structuralization.
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3.2.1 Causality Mining and Event Eventification

In Chapter 4, we develop the supervised method for identifying event causalities.

However, due to the small size of the datasets, our supervised method face di”culties

in scaling up event causalities extraction. To avoid this problem, we instread adopt

the rule-based extraction system. Following [67], we make use of a few high-precision

causal rules to extract cause-e!ect sentence pairs. Each rule follows the template of

(Pattern, Constraint, Priority), where Pattern is a regular expression containing a

selected connector, Constraint is a syntactic constraint on the sentence to which the

pattern can be applied, and Priority is the priority of a rule when there are more

than one rule matched. To ensure there is a causal event which can be eventified

from the matched causal sentence, only causal connective patterns are adopted, as

shown in Table 3.1. Then we extract causal event pairs from causal sentence pairs

based on dependency analysis. Specifically, we adopt the commonly used 4-tuple

event representation (s, v, o,m) [94] where v denotes the verb, s denotes the head

noun of the subject, o denotes the head noun of the direct object or the adjective,

and m denotes the head noun of the prepositional or indirect object. Any of these

components excluding the verb can be ↗, denoting the absence of the corresponding

component. We stipulate that the number of the valid components of an event must

be no less than two.

Adopted Causal Connectives

C, as a consequence E E, because C C, so that E

C, as a result E C, therefore E C, hence E

C, consequently E Because C, E C, thus E

Table 3.1: C denotes the cause, and E denotes the e!ect.
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3.2.2 Events Structuralization

Figure 3.1: Our hierarchical event causality network.

We structuralize the extracted causal event pairs with a hierarchical event causality

network, as illustrated in Figure 3.1, in which the specific causal events are generalized

to their abstract representations, and similar events in the specific layer are clustered

together in the abstract layer. Specifically, the verb in each event is generalized to

its class in VerbNet [115]. The other components are generalized by the WordNet

[72] synset two levels up in the inherited hypernym hierarchy. If a noun is a named

entity, it is replaced by its NER category. An event is represented in the abstract

layer by the frequent trigram tuple (FTT) of its abstract representation, where the

FTT of an event refers to the most frequent one among the abstract tuples of (s, v, o),

(s, v,m) and (v, o,m). The events that have the same FTT are merged into the same

abstract class. The edges in the abstract layer are generated corresponding to those

in the specific layer. As shown in Figure 3.1, since there is a causal relation from

(earthquake, strikes) to (houses, collapsed), an edge from (natural phenomenon.n.01,

hit-18.1-1) to (structure.n.01, other cos-45.4) is created.

In addition, we explicitly use the similarity-based inferring rule to extend causalities
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from the abstract layer to the specific layer. For example, if a causal relation holds

from (earthquake, strikes) to (houses, collapsed), and both (earthquake, strikes) and

(flood, hit) belong to the same abstract class, then it is most likely to conclude

that there may be a causal relation from (flood, hit) to (houses, collapsed). Such a

manipulation significantly reduces the sparsity of causalities at the specific-layer, and

hence supports better reasoning about the e!ect events.

3.3 E!ect Generation

Figure 3.2: The overview of EGCER.

3.3.1 Task Description

Given a cause sentence X = {x1x2 · · · xm}, the goal of e!ect generation is to generate

a proper sentence Y = y1y2 · · · yn that conforms to causality with X. To maintain

consistence of causality between X and Y , we decompose this task into two steps.

Given a sentence X, and a causal subgraph CG = {e1, e2, · · · , eNCG}, which consists

of a set of events {ej = (sj, vj, oj,mj)} (j = 1, · · · , NCG) as nodes, the task in the

first step is to retrieve an e!ect event eY from CG according to X. In the second

step, eY is used as the template to generate the Y , which is required to retain all
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tokens of eY . Essentially, the model estimates the probability of:

P (Y |X,CG) = P (Y |eY , X)P (eY |X,CG) = P (eY |X,CG)
n∏

t=1

P (yt|y<t, eY , X). (3.1)

The overview of the proposed EGCER is illustrated in Figure 3.2. EGCER takes a

cause sentence X and causal subgraph CG as the input to retrieve an event eY , which

has a causal relation with X. A graph-based reasoning mechanism is used to enhance

the event retrieval. Then EGCER realizes eY to the e!ect sentence Y by using eY as

the template that ensures Y contains all the tokens of eY .

3.3.2 Causality Aware E!ect Event Retriever

The causality-aware e!ect event retriever consists of a cause sequence encoder that

encodes X and a casual graph encoder that helps derive eY .

Cause Sequence Encoder

We implement the sequence encoder using a bidirectional GRU model [13]. It reads

the sequence X = {x1x2 · · · xm} from both directions and computes hidden states for

each token:
↑↓
hxi =

↑↑↑↓
GRU(

↑↑↑↓
hxi→1 , e(xi)),

↘↑
hxi =

↘↑↑↑
GRU(

↘↑↑
hxi+1 , e(xi)), (3.2)

where e(xi) ≃ Rd is the embedding of the word xi, d is the size of embeddings. The

final hidden representation of the i↑th token is hxi = [
↑↓
hxi ;

↘↑
hxi ], where [·; ·] denotes a

concatenation operation. The context vector of X is HX = {hx1 , · · · ,hxm}.

Causal Graph Encoder

The event causality network embodies thousands of nodes. Most of the nodes are

not relevant to a particular cause sentence. It is thus unrealistic to directly encode
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Chapter 3. Narrative E!ect Generation Based on Causal Reasoning

the whole event network with graph neural networks (GNNs) [46, 131]. Instead, we

merely retrieve a subgraph from the event network according to the cause sentence.

Specifically, we match the FTT of the cause sentence at abstract-layer. Once the

FTT is matched, its L-hop neighbors together with itself is preserved. The abstract

subgraph is the abstract representation of causalities, which is not enough to predict

real-world scenarios. So, we transfer the abstract subgraph to the specific layer to

obtain the specific causal subgraph CG. The weight of an edge in CG is derived by

the following rules:

• If the edge between the event pair (ei, ej) is extracted from the dataset, the

weight wij of this edge is wij = 1.

• If the edge of (ei, ej) is inferred based on the similarity between (ei, ek) and the

causal relation between (ek, ej), we have wij = sim(ei, ek), where sim(ei, ek),

calculated by the path-similarity measure in WordNet, is the similarity score

between ei and ek.

The causality graph is the key component of our reasoning framework. Given a causal

subgraph CG, a GNN module with the graph attention mechanism is used to model

the causal interactions among multi-hop neighbor nodes in order to reason the most

reasonable e!ect event with regard to X. Specifically, the causality GNN module

works as follows.

Learning Initial Event Representations The initial representation of an event

in CG is learned by composing word embedding of its verb and arguments. Given

an event ei = (si, vi, oi,mi) and the word embedding of its verb and arguments

{esi , evi , eoi , emi}, the initial representation of ei is represented by: hei = [esi ; evi ; eoi ; emi ].

Absent event arguments are represented by zero vectors.
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Updating Event Representations using a GNN The initial representation

of an event takes no account of causal relationships between events. However, the

neighborhood information in the CG represents the causality tendencies, which are

especially useful for reasoning the most reasonable e!ect event eY . We use a simple

GNN to capture the neighborhood information. The intuition of applying the GNN

to CG is (1) to contextually refine event vectors and (2) to capture multi-hop causal

relationships for generation. Specifically, on the first layer of the GNN, the hidden

vector of the event ei ≃ CG(i = 1, · · · , NCG) is initialized by its initial representation

(h0
ei
= hei). The l-th layer’s vectors of ei and its neighboring nodes are then pooled

to obtain the vector of ei on the (l + 1)-th layer with a non-linear activation ϑ:

z(l)
i

= W(l)h(l)
i
,

ϖ(l)
ij

= LeakyReLU(wij(z
(l)
i

· z(l)
j
))

ω(l)
ij

=
exp(ϖ(l)

ij
)

∑
NCG

k=1 exp(ϖ(l)
ik
)

h(l)
i

= ϑ(
NCG∑

j=1

ω(l)
ij
z(l)
j
),

(3.3)

where ϑ is defined to be ReLU, W(l) is a parameter, · denotes the inner product of

the two vectors, wij is the weight of the edge (ei, ej), and ωl

ij
can be deemed as the

l-th layer’s causal score between the graph nodes i and j. The final hidden vector

h(L)
i

(i = 1, · · · , NCG) of events are used to select the guided e!ect event eY .

Select Guided Event from Causal Graph Given the hidden state h(L)
i

of the

event ei (i ≃ [1, · · · , NCG]) and the hidden state HX = {hx1 , · · · ,hxm} of the cause

sentence X, the causal score between each candidate event h(L)
i

and X is calculated

by csi = h(L)
i

· hX , where hX = 1
m

∑
m

k=1 hxk
is the mean-pooling representation of X.

In the training phase, the ground-truth e!ect event eY is used as the guided event. In

the test phase we choose the guided event by eY = maxi csi, which has the maximum
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causal score in relation to the sequence X. The retrieved event will be used as a

template to generate the e!ect sentence.

3.3.3 Event Template based E!ect Generator

The e!ect event eY retrieved by the event retriever is the expected causality prediction

of the cause sentence. We should guarantee that all tokens of eY will be included

in the final output sequence to maintain the completeness of the expected causal

relation. Inspired by [76, 70], we propose to use retrieved e!ect events as templates

and expand these templates into more complete sentences. Specifically, given the

e!ect event template eY = (s, v, o,m), the resulting sentence would be [ s][ v][ o][ m],

where blanks indicate where words should be added in order to make a sentence

richer in content. In accordance with 4-tuple event representation, the generator

consists of 4 decoders. Taking the verb component as an example, the verb decoder

is responsible for filling in the blank before the event token v. At each decoding

time-step, the attention mechanism is adopted to attend to the context vector of X

when generating a new word. Specifically, for the verb decoder, the hidden state sv
t

at time-step t is

sv
t
= GRUv(sv

t↓1, [e(y
v

t↓1); c
v

t
])

cv
t
=

m∑

i=1

ωv

ti
hxi

ωv

ti
=

exp(ϱv

ti
)∑

m

j=1 exp(ϱ
v

tj
)

ϱv

ti
= v↔

ω
ϑ(Wω[s

v

t↓1;hxi ]),

(3.4)

where yv
t↓1 is the ground-truth word at time-step t↑ 1 for the verb decoder, cv

t
is the

attended context vector of the sequence X, vω and Wω are shared parameters among

4 decoders, ϑ is an activation function (tanh by default). The probability p(yv
t
) of
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generating a gold token yv
t
for the verb decoder at time step t is formulated as:

p(yv
t
|y<t) =

exp(s(yv
t
|sv

t
, cv

t
))∑

i
exp(s(yv

i
|svt , cvt ))

s(yv
t
|sv

t
, cv

t
) = w↔

n
tanh(Wo[s

v

t
; cv

t
])

(3.5)

where Wo,wn are the parameters shared among 4 decoders. The decoders of the

other event components work in the same way. To ascertain the model’s confidence

for each e!ect generation, we aggregate the loss incurred after the generation of each

token, normalizing it by the sentence length. Subsequently, the generated segments

are concatenated to yield the ultimate e!ect sentence.

3.3.4 Training Objective

The objective of the event retriever is to minimize the sum of the negative log-

likelihood (NLL) losses of all samples:

JR(ς) = ↑ log p(eY |X,CG)

= ↑ log
exp(cs↑)∑

NCG

j=1 exp(csj)
,

(3.6)

where ς denotes the model parameters, cs↑ denotes the causal score of the ground-

truth e!ect event eY with regarding the cause sentence X. For the generator, the

objective is to maximize the estimated probability of the ground-truth e!ect sequence.

We use the NLL of it as the loss function:

JG(ς) = P (Y |eY , X) =
∑

t

↑ log p(yt|y<t). (3.7)
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Statistics Training Validation Test

Count 79K 9.6K 9.8k

AvgSentLen 7.91 8.03 8.04

AveEventLen 2.86 3.01 3.01

Table 3.2: The statistics of the English Wikipedia. AvgSentLen and AveEventLen

mean the average sentence length and event length.

3.4 Experiments

3.4.1 Datasets

EnglishWikipedia1: We extract cause-e!ect sentence pairs from the English Wikipedia

corpus, split all pairs into training/validation/test, and tune hyper-parameters on the

validation data. The training data is used to construct the event causality network.

We retrieve 2-hop causal subgraphs according to input cause sentences. The percent-

age of the test samples whose gold e!ect events exist in the retrieved causal subgraphs

is 70.8%. The statistics is presented in Table 3.2.

COPA Benchmark: The Choice of Plausible Alternatives (COPA) [108] dataset

consists of 1,000 multiple-choice questions (500 for validation and 500 for testing)

requiring causal reasoning in order to answer correctly. Each question is composed of

a premise and two alternatives, and the task is to select a more plausible alternative

as a cause (or an e!ect) of the premise. We only use the most plausible alternative

and its premise to collect cause-e!ect sentence pairs, on which we can perform and

evaluate e!ect generation. We use the COPA causes to retrieve causal subgraphs

from our event causality network. Finally, 186 COPA pairs with their corresponding

causal subgraphs are obtained, leading to the average sentence length of 4.77 and the

1https://dumps.wikimedia.org/enwiki/20201020/enwiki-20201020-pages-articles.xml.bz2
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average event length of 2.83. The percentage of the samples whose gold e!ect events

exist in causal subgraphs is 11.2%. Because there is no released training data for the

COPA task, we train all models on Enwiki and evaluate them on COPA.

3.4.2 Implementation Details

Our retriever consists of a 2-layer bidirectional GRU for encoding input sequences and

a 2-layer GNN for updating event representations. The retriever and the generator

have their own separate parameters, and their hidden sizes are set to 512. The word

embedding size is 300. We use the Adam optimizer with the mini-batch size of 96.

The learning rate is 0.001.

3.4.3 Baselines

We compare our method with state-of-the-art text generation methods, including

GPT2 [102], BART[50], CopyNet[160] and CausalBERT[59]. We concat cause-e!ect

sentence pairs and finetune GPT2-base in a language model setting. BART-base is

finetuned with the encoder-decoder setting. Both GPT2 and BART are implemented

by transformers2. CopyNet employs the copy mechanism which either copies tokens

from the retrieved event or generates words from the vocabulary. CausalBERT em-

ploys the lexically-constrained beam-search to generate possible e!ects for provided

word guidance. ConceptNet[118] is used to retrieve causal relevant constraints for

CausalBERT.

3.4.4 Evaluation Metrics

For automatic evaluation, we use metrics including BLEU-4 [87], Distinct-n [54] to

evaluate the generated e!ect sentences. Abstraction-Matching (AbsMat) evaluates

2https://huggingface.co/
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the percentage of the generated e!ect sequences that have the same abstraction as

the corresponding gold e!ect sequences.

For the manual evaluation, we examine whether the generated sequence is a plausible

e!ect of the input, which is denoted as plausibility (Plau.). Specifically, 100 samples

are randomly selected from the Wikipedia test set and COPA, respectively, and dis-

tribute them to the two graduate students from the NLP field. Each student is asked

to give a score from {0, 0.5, 1} for the (input, generation) pair, given the following

guidelines. Assign 0 to the pair if the generation can never be considered as a possible

e!ect of the input, assign 0.5 to the pair if the generation is a possible e!ect of the

input but has certain grammatical errors and assign 1 to the pair if the generation is

a possible e!ect of the input and there is no grammatical error. We average scores

over the two annotators. The cohen’s kappa scores on Wikipedia and COPA are 0.65

and 0.63, respectively.

3.4.5 Result and Analysis

Result: The automatic evaluation result is shown in Table 3.3, where EGCER

achieves the best results. BART performs better than GPT2 due to the adopted

encoder-decoder architecture. Based on the event skeletons provided by the e!ect

event predictor, CopyNet and EGCER are aware of the topic which should be gen-

erated, and hence perform better than BART and GPT2. CopyNet performs worse

than EGCER because CopyNet cannot cover all tokens of the retrieved event, as a

result, the causal information in the generated sequence is incomplete. CausalBert

performs worse than EGCER because it is based on the word-level causal analysis,

which can also be found in Section 3.4.7. Given the e!ect event, EGCER sees a more

complete skeleton, hence generate a more reasonable e!ect sentence.

The result of the manual evaluation is also shown in Table 3.3. As for EGCER, we

find that it may sometimes generate negation expressions or grammatical errors, as
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English Wikipedia

Model BLEU-4 Distinct-1/2 AbsMat Plau.

GPT2 0.69 5.57/16.82 0.3 0.08

BART 1.28 8.23/24.83 1.7 0.11

CausalBERT 0.74 5.33/22.23 8.5 0.12

CopyNet 2.85 10.63/39.82 16.4 0.17

EGCER(ours) 4.90 13.99/43.58 26.4 0.27

COPA

Model BLEU-4 Distinct-1/2 AbsMat Plau.

GPT2 1.35 22.61/44.25 0.2 0.02

BART 1.22 22.37/43.71 0.5 0.04

CausalBERT 0.92 22.39/52.56 3.7 0.06

CopyNet 1.18 32.74/75.17 2.6 0.04

EGCER(ours) 1.74 48.08/83.97 5.3 0.07

Table 3.3: Automatic and manual evaluation results.

a result, the generated sequence is not a plausible e!ect even if the retrieved event

is plausible. The proportion of the generated sequences in this case is about 21%.

We speculate that the errors in data preprocessing and the insu”ciently powerful

generator are the possible reasons. In the future, we will further improve generators in

order to generate more high-quality e!ect sentences. It can also be found that EGCER

performs far worse on COPA than on Enwiki, this is because a great gap exists

between these two datasets. However, EGCER is still superior to any other model,

which demonstrates event-level causal reasoning contributes to the e!ect generation.
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3.4.6 Ablation Study

Models BLEU-4 Distinct-1/2 AbsMat Plau

Full model 4.90 13.99/43.58 26.4 0.27

w/o weights 4.37 14.10/42.86 23.3 0.24

w/o 2nd layer 3.89 13.15/41.56 20.6 0.21

w/o GNN 2.89 13.00/42.02 18.3 0.19

Table 3.4: Ablation study on the Enwiki testset.

To understand the importance of the key components of our approach, we perform

an ablation study by training multiple ablated versions of our model, including the

one without weights of edges in the retrieved causal subgraph, the one without the

2nd-layer of GNN, and the one without GNN. The results are provided in Table 3.4.

When the GNN module is gradually ablated, the performance of the model gradually

degrades. This demonstrates that all modules of our multi-layer GNN e!ectively

contribute to e!ect sentence generation.

3.4.7 Visualization

Input cause he encountered a heavy tra”c jam.

GPT2 the lighthouse was closed over three weeks.

BART he was delayed for over an hour.

CopyNet he missed missed the meeting.

CausalBert causing him to miss bus.

EGCER he missed the important meeting.

Table 3.5: A case with generations of di!erent models.
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(a) The causal scores calculated using the event

vectors on the first layer of GNN.

(b) The causal scores calculated using the event

vectors on the second layer of GNN.

Figure 3.3: The darker blue indicates the higher causal score.

Table 3.5 gives the generations of the di!erent models for the two examples that

have not been seen in the training data. CausalBERT generates “missing bus” given

“missing” as guidance. However, from the input we can see that this person may be in

a car, therefore the generated sequence is not an e!ect. That is CausalBERT, which is

based on the word-level analysis, generates causal inconsistent sequence. In contrast,

our method successfully predicts the expected e!ect event “(he,missed,meeting)”, and

generates the correct e!ect sentence.

We extract a part of CG according to the input cause, and visualize the causal scores

cs using event vectors on the first and second layers of GNN respectively, as shown in

Figure 3.3. In Figure 3.3a, the “(was, late, work)” receives the highest score, followed

by “(he, encountered, jam)” and “(was, late, meeting)” in one-hop reasoning. And,

the “(leader, scolded, him)” receives the lowest score. Noted that “(he, encountered,

jam)” is actually not an e!ect event. However, in Figure 3.3b, the “(he, missed,

meeting)” receives the highest score, followed by “(was, late, work)”, “(was, late,

meeting)” and “(leader, scolded, him)” in two-hop reasoning. The “(he, encountered,

jam)” and “(rain, is, heavy)” receive lower scores. This makes sense because they

are not e!ect events at all. This shows that the multi-layer GNN can well capture

multi-hop causal relationships and thus are able to select the plausible e!ect events.
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3.5 Discussion

We use the rule-based approach to extract causal events. Although the extraction

quantity can be increased by expanding the corpus size, rule-based methods still face

the problem of insu”cient coverage, and a large number of causal relationships are

still overlooked. We use event templates to guide the generation of result sentences.

Although it can ensure that all event components are retained in the generated sen-

tences, this approach brings additional drawbacks such as sentence rigidity and lack

of diversity. But this problem can be solved through additional rewriting, we leave

this in the future.

3.6 Chapter Summary

We present an event-level causal reasoning based e!ect generation method to generate

the plausible e!ect sentences for the input cause sentences. Experiments show that

our method performs better than competitors in capturing the causal semantics that

should be generated. In the future, we would like to develop more e!ective approaches

to enhance the e!ect event reasoning, and more powerful generators to generate the

e!ect sentences with higher quality.
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Enhancing Event Causality

Identification with Counterfactual

Reasoning

4.1 Introduction

Rule-based extraction may introduce false-positives. To improve the precision of

causality extraction, we make a preliminary exploration in the task of event causal

identification (ECI).

Formally, ECI aims to identify causal relations between event pairs. For example,

given the sentence “The earthquake generated a tsunami.”, an ECI system should

identify that a causal relation holds between the two mentioned events, i.e., earth-

quake
cause↑↓ tsunami. A good ECI system is able to discover a large number of causal

relations from text and hence supports lots of intelligence applications, such as com-

monsense causal reasoning [67], narrative story generation [75], and many others.

Existing methods focus on mining potential causal signals, including causal context
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keywords [64, 162] and causal event pairs [164, 163, 8], to enhance ECI. For example,

[64] masks mentioned events from an ECI sentence to mine event-agnostic causal

context patterns, e.g., “generate”. And [164, 163] utilize external knowledge to mine

causal event pairs, e.g., “(earthquake, tsunami)”. By mining potential causal signals,

these methods improve the coverage of unseen events and causal relations, which is

the reason for their success. However, they face the risk of amplifying the role of

potential signals, resulting in biased inference.

Sentence Label

A 6.1-magnitude earthquake which hit the Indonesian province of Aceh on

Tuesday killed at least one person, injured dozens and destroyed buildings,

sparking panic in a region devastated by the quake-triggered tsunami of 2004.

0

Table 4.1: The example comes from the development set of EventStroyLine [9].

Due to the polysemy of language, causal signals are ambiguous. The occurrence of

those signals does not always indicate that causality is established. That is, ambigu-

ous context keywords and event pairs may lead to the context-keywords bias and

the event-pairs bias in ECI. Specifically, in most cases, “(earthquake, tsunami)”

in the training set occurs as a causal event pair, but in the sentence which is from

the development set, as shown in Table 4.1, this event pair is not causal. Similarly,

ambiguous keywords, such as “generate”, do not always indicate causality [139, 140].

Relying heavily on those ambiguous signals may make an ECI model learn the spu-

rious correlation [89] between ambiguous signals and labels. In other words, existing

methods may overfit those ambiguous causal signals in training, and tends to predict

a causal relation once the ambiguous signals appear when inference.

Considering this problem, we aim to mitigate these spurious correlations to develop

a robust ECI model. Since the spurious correlations are caused by ambiguous causal

signals, we question whether it is possible to directly learn the influence of those
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ambiguous signals in training, so that we can mitigate those biases in inference.

Motivated by this idea and existing dataset-debiasing works [83, 122, 96], we introduce

factual and counterfactual reasoning for ECI. The factual reasoning takes the entire

samples as input, which captures the combined features between context keywords and

the event pairs, with the side-e!ect of learning features of biases. The counterfactual

reasoning considers the two situations where only context keywords or event pairs are

available. Intuitively, in counterfactual reasoning, a model can only make predictions

based on context keywords or event pairs, so that the biases can be identified. In

inference, we use counterfactual reasoning to estimate context-keywords bias and

event-pairs bias, then subtract the biases from the factual predictions. To achieve

this goal, we must locate the exact position of context keywords in a sentence1. But

this is di”cult because it requires extensive manual annotation. To avoid this, we

adopt a model-based strategy. Considering the powerful feature extraction ability

of pre-trained language models (PLMs), if we feed an event-removed sentence into

PLMs, PLMs should be able to pay the most attention to the important context

keywords. Based on this assumption, we split a sentence into two exclusive parts:

an event-masked context and an event pair. They are fed into the counterfactual

reasoning module to learn the context-keywords bias and event-pairs bias.

To summarize, the key contributions of this work are as follows.

• We consider the spurious correlation problem in ECI, which may make an ECI

model overfit on ambiguous causal signals. To mitigate this problem, we propose

a counterfactual reasoning mechanism for ECI. To the best of our knowledge,

this is the first work that studies ECI from a counterfactual perspective.

• We conduct extensive experiments on two benchmarks. The result shows that

our method is e!ective and achieves the new state-of-the-art results. Ablation

study demonstrates the e!ectiveness of main components in our method.

1The positions of event pairs are already annotated.
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4.2 Counterfactual ECI

Figure 4.1: In the upper part, we split a sample into an event pair and an event-

masked context. In the bottom part, we show the training and inference process of

our method.

Previous ECI methods may overfit the ambiguous context keywords and event pairs,

making biased inferences. We use counterfactual reasoning to eliminate this issue.

Our method is depicted in Figure 4.1, which consists of a factual reasoning module

and a counterfactual reasoning module.

4.2.1 Factual Reasoning Module

Factual reasoning learns the influence of entire ECI samples, following the traditional

ECI paradigm. Here we present two classical methods.

Fine-tuning PLMs For ECI

We first fine-tune PLMs as a basic backbone. Given a sentence with a mentioned event

pair (denoted as e1 and e2), we use PLMs, e.g., BERT [15], to encode the sentence

and the event pair. Then the embeddings of [CLS], e1 and e22 are concatenated and

2An event is annotated as a text span, so the average-pooling operation is applied to obtain the

event embedding.
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applied with a non-linear transformation to obtain the hidden representation of the

factual reasoning:

hECI = tanh(W↔
f
([h[CLS];he1 ;he2 ])), (4.1)

where W↔
f
≃ R3d↗d, hECI ≃ Rd, d is the hidden size of BERT. hECI is then projected

with a linear layer W↔
p
≃ Rd↗2 to make a binary classification:

PECI = softmax(W↔
p
hECI). (4.2)

Knowledge-Enhanced ECI

Existing works prove that knowledge is helpful for ECI. So we develop a knowledge-

enhanced backbone. Following [64], we leverage external knowledge to further im-

prove ECI. We use ConceptNet [117] as knowledge base. In ConceptNet, knowledge

is structured as graph, where each node corresponds a concept, and each edge cor-

responds to a semantic relation. For e1 and e2, we search their related knowledge,

i.e., matching an event with the tokens of concepts in ConceptNet. Events and con-

cepts are lemmatized with the Spacy 3 toolkit to improve the rate of matching. We

only consider 12 semantic relations that are potentially useful for ECI: CapableOf,

Causes, CausesDesire, UsedFor, HasSubevent, HasPrerequisite, Entails, ReceivesAc-

tion, UsedFor, CreatedBy, MadeOf, and Desires. For each relation, we retrieve at

most two knowledge relations according to the weights of relations.

Given (e1, e2), we retrieve the related knowledge tuples for e1 and e2 respectively,

namely Kei = {φ 1
ei
, φ 2

ei
, · · · , φNi

ei
}, where i = 1, 2 denotes the event index, φ = (h, t)

denotes a knowledge tuple (head, tail), N1 and N2 is the number of knowledge tuples.

We obtain the knowledge-enhanced features of e1 and e2 by average-pooling on the

embeddings of corresponding knowledge tuples:

hK

ei
=

1

Ni

Ni∑

j=1

W↔
k
[hj

ei
; tj

ei
], (4.3)

3https://spacy.io/
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where i = 1, 2, h and t denote the embeddings of a tuple (h, t), Wk ≃ R2d↗d is train-

able. Then the knowledge-enhanced event representations hK

e1
and hK

e2
are concate-

nated with hECI (Equation 4.1), and input into a MLP to make a binary classification:

PK

ECI = softmax(MLP([hECI;h
K

e1
;hK

e2
])). (4.4)

Finally, the cross-entropy loss is applied to PECI and PK

ECI to train the two backbones.

Factual reasoning learns combined features between the context and the event pair,

but biases may be entangled into the combined features. Next, we propose counter-

factual reasoning to capture the entangled biases.

4.2.2 Counterfactual Reasoning Module

To estimate the context-keywords bias and the event-pairs bias in training, we split

a sentence into two exclusive parts: an event-masked context and an event pair. For

each part, we use counterfactual reasoning to estimate the corresponding bias.

Estimating Context-Keywords Bias

We consider the counterfactual situation where only the event-masked context is

available. We input the context into PLMs, and let PLMs automatically attend to

the important context keywords. The [CLS] token embedding h[CLS] is used as the

representation of the event-masked context. Note that h[CLS] is di!erent from h[CLS]

(Equation 4.1) because the event pair is removed in the current situation. We obtain

the hidden state of the current situation by:

hC = tanh(W↔
f
([h[CLS];”E;”E])), (4.5)

where Wf is the shared parameter (Equation 4.1), ”E ≃ Rd is a learnable constant,

and represents the void input events. The insight of this setting is that if we have no
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information about the event pair, we would like to make inferences by random guess.

Then hC is projected to make binary classification:

PC = softmax(W↔
C
hC), (4.6)

where WC is trainable, PC estimates the influence of the context-keywords bias.

Estimating Event-Pairs Bias

Next, we consider the counterfactual situation where only the event pair (e1, e2) is

available. Through PLMs, we get the event embeddings of he1 and he2 . Note that he1

and he2 is di!erent from he1 and he2 (Equation 4.1) because the context is invisible

in the current situation. We obtain the hidden state of the current situation by:

hE = tanh(W↔
f
([”C ;he1 ;he2 ])), (4.7)

where ”C is a learnable constant, and represents the void input context. Then hE is

projected with a linear layer to make binary classification:

PE = softmax(W↔
E
hE), (4.8)

where WE is trainable, PE estimates the influence of the event-pairs bias.

4.2.3 Training and De-biased Inference

We jointly train the factual and counterfactual reasoning modules, the final loss is:

Loss = LossFactual + ωLossC + ϱLossE. (4.9)

LossFactual is over PECI or PK

ECI. LossC is over PC and LossE is over PE. ω and ϱ are

two trade-o! coe”cients that balance the two types of biases. Note that we share the

encoding process (Equation 4.1) between factual and counterfactual modules, but we

do not backpropagate LossC and LossE to the encoder, as shown in Figure 4.1. This
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is because we require the counterfactual reasoning module to make predictions only

based on the event-masked context or the event pair, and has no information about

the missing part.

After training, the counterfactual reasoning module will learn the bias-estimation

mechanism. Therefore, we can make de-biased inference by:

y ↘ argmax
y
(PFactual ↑ ωPC ↑ ϱPE), (4.10)

where PFactual can be PECI or PK

ECI
.

4.3 Experiment

4.3.1 Datasets

Datasets include EventStoryLine [9] and Causal-TimeBank [73]. These two bench-

marks have been widely used by previous methods as standard datasets for ECI.

EventStoryLine contains 22 topics, and 1770 of 7805 event pairs are causally related.

Causal-TimeBank contains 184 documents, and 318 of 7608 event pairs are causally

related. We conduct the 5-fold and 10-fold cross-validation on EventStoryLine and

Causal-TimeBank respectively. The last two topics of EventStoryLine are used as the

development set for two tasks. All of this is the same as previous works for fairness.

Evaluation metrics are Precision (P), Recall (R) and F1-score (F1).

4.3.2 Baselines

We compare our method with following baselines:

• KMMG [64], which proposes a mention masking generalization method and also

utilizes the external knowledge.
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• KnowDis [164], a data-augmentation method that utilizes the distantly labeled

training data.

• LearnDA [163], a data-augmentation method with iteratively generating new

examples and classifying event causality in a dual learning framework.

• LSIN [8], a latent-structure induction network to leverage the external knowl-

edge;.

• CauSeRL [162], a self-supervised framework to learn context-specific causal pat-

terns from external causal corpora.

4.3.3 Experimental Settings

When implementing our factual reasoning models, we adopt BERT(base), which is

same as previous methods. We denote our two factual backbones as BERT and

BERTK . All parameters are searched according to the F1 on the Dev set.

Due to the data imbalance problem, we adopt a over-sampling strategy for training.

The early-stop is used due to the small scale of datasets. We use the Adam optimizer

and linearly decrease learning rate to zero with no warmup. We use PyTorch toolkit

to conduct all experiments on the Arch Linux with RTX3090 GPU. All the hyperpa-

rameter for two tasks are searched according to the F1 score on the development set.

For reproduction, we set the random seed to 42 for all experiments. The searched

parameters for two datasets are shown in Table 4.2.

4.3.4 Overall Result and Ablation Study

The overall result is shown in Table 4.3. We have the following observations.

• BERTK has a similar result with compared baselines, and performs better than

BERT. This coincides with previous works that knowledge is helpful for ECI.
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Parameters ESL CTB

Batch Size 32 32

Learning Rate 5e-5 5e-5

Drop-rate 0.3 0.2

ω 0.15 0.25

ϱ 0.35 0.25

Table 4.2: The used hyperparameters for two datasets.

• Our CF-ECI method achieves consistent improvement when deployed on BERT

or BERTK . This shows the e!ectiveness of our method.

• Compared with the previous methods, our method has a higher precision score.

This is because we make a de-biased inference, which is able to reduce the

false-positive predictions, hence improve the precision.

• Utilizing knowledge may reduce the precision score, because irrelevant knowl-

edge may be introduced. This coincides with LSIN [162].

Ablation Study We conduct ablation study to investigate the influence of context-

keywords de-biasing (§ 4.2.2) and event-pairs de-biasing (§ 4.2.2). We develop two

ablated variants: (1) “w/o EPB” denotes that we ablate the event-pairs de-biasing

module; (2) “w/o CKB” denotes that we ablate the context-keywords de-biasing

module. The result is shown in Table 4.3. We have following observations.

• No matter what backbone (BERT or BERTK) is used, after ablating “EPB”

or “CKB”, the ablated variant has a performance drop. This indicates that

ambiguous context-keywords and event-pairs have adversely influence of ECI.

By making de-biased inference, our CF-ECI achieves the best performance.

• In addition, we observe that the context-keywords bias is more severe than the
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Figure 4.2: F1 scores (%) of identifying unseen events.

event-pairs bias, which indicates that the trained models tend to use superfi-

cially keywords for inference. The possible reason is that this strategy inevitably

leverages ambiguous keywords that are potential biases, though it can capture

some causal keywords as good evidence.

4.3.5 Further Discussion

Bias Analysis

Previous works [121, 96] point out that the unfairness of a trained model can be mea-

sured by the imbalance of the predictions produced by the model. Following [96], we

use the metric imbalance divergence (ID) to evaluate whether a predicted distribu-

tion P is unfair: ID(P, U) = JS(P ||U), where JS(·) denotes the JS divergence of P

and the uniform distribution U . To evaluate the unfairness of a trained model M , we

calculate its ID over all dev or test samples: ID(M) = 1
|D|

∑
x↘D JS(P (x), U), where

P (x) can be the output distribution of a factual (§ 4.2.1) or counterfactual (§ 4.2.2)

model. As shown in Table 4.4, when deployed on di!erent backbones, our method

can obviously and consistently reduce the ID metric. This indicates that our method

is helpful to eliminate two kinds of biases.
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Models
ESL CTB

P(%) R(%) F1(%) P(%) R(%) F1(%)

KMMG 41.9 62.5 50.1 36.6 55.6 44.1

KnowDis 39.7 66.5 49.7 42.3 60.5 49.8

LearnDA 42.2 69.8 52.6 41.9 68.0 51.9

CauSeRL 41.9 69.0 52.1 43.6 68.1 53.2

LSIN 47.9 58.1 52.5 51.5 56.2 52.9

This Paper

BERT 45.8 57.4 50.9 49.8 50.3 50.1

BERTK 43.2 65.8 52.2 48.3 54.5 51.2

CF-ECIBERT 48.7 59.0 53.4↑ 54.1 53.0 53.5↑

CF-ECIBERTK 47.1 66.4 55.1↑ 50.5 59.9 54.8

Ablation Experiment

CF-ECIBERT

: w/o EPB 47.7 57.6 52.2 51.7 53.6 52.6

: w/o CKB 48.0 56.7 52.0 51.1 52.5 51.8

CF-ECIBERTK

: w/o EPB 46.8 63.8 54.0 50.8 56.4 53.4

: w/o CKB 47.0 62.6 53.7 50.2 56.3 53.1

Table 4.3: The overall and ablation-study result. Scores with bold denotes the best

results. ↑: the significant test is conducted using paired t-test between our method

and the used backbones, with the level of p = 0.05. “CKB” denotes the context-

keywords de-biasing. “EPB” denotes the event-pairs de-biasing.

Identifying Unseen Events

We explore the ability of our method to identify unseen events. We first randomly

select 1/3 of ESL documents as the training set, then divide the remaining documents
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Methods
ESL CTB

Dev Test Dev Test

BERT 17.75 16.71 20.47 21.02

CF-ECIBERT 02.40 02.09 02.71 02.64

BERTK 17.08 15.70 20.46 21.04

CF-ECIBERTK 02.44 02.25 02.81 02.77

Table 4.4: The model unfairness result (lower is better) on the dev-set and test-set

of ESL and CTB.

Figure 4.3: The heatmaps of the predictions by BERT and CF-ECIBERT respectively.

Text with the dotted line denotes the annotated events.

into (1) “Both Seen”, where two events of a sample appear in training data; (2) “One

Unseen”, where only one event of a sample exists in training data; (3) “Both Unseen”,

where both events are unobserved during training. From Figure 4.2, we have following

observations. (1) CF-ECI has a significant improvement on the “Both Unseen” set,

compared with BERT. (2) CF-ECIBERTK performs better than CF-ECIBERT on the

“Both Seen” set.
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Visualization

We depict the heatmaps of predictions by BERT and CF-ECIBERT respectively, in

Figure 4.3. BERT pays the most attention to the words: “eqrthquake, spark, quake,

tsunami”, and gives a causal prediction with the 97.9% probability. In contrast,

CF-ECIBERT dispersedly attends to words and does not find enough causal evidence,

hence it gives a non-causal prediction.

4.4 Discussion

First, we only access limited computation resources and perform continual pre-training

from BERT [15], which is not general enough for every event-related reasoning task.

Second, counterfactual reasoning makes our approach conservative in identifying

causal relationships, so our method has a higher precision. However, some poten-

tial causal relationships will be discarded. How to achieve a good trade-o! between

precision and coverage is a problem. In addition, the way we utilize knowledge is

relatively simple, and it is very likely that we have not made full use of knowledge.

Designing more complex knowledge-enhanced methods may lead to better results.

4.5 Chapter Summary

We discuss the issue of context-keywords and event-pairs biases in ECI. To mitigate

this problem, we propose the counterfactual reasoning which explicitly estimates the

influence of the biases, so that we can make a de-biased inference. Experimental

results demonstrate the significant superiority of our method. The robustness and

explainability of our method are also verified by further studies.
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Chapter 5

Enhancing Narrative

Commonsense Reasoning With

Multilevel Causal Knowledge.

5.1 Introduction

In Chapter 3 and 4, we explore the method of causality mining and de-baising, so, in

this chapter, we investigate the causality enhanced factual reasoning in narratives.

In recent years, narrative reasoning has attracted much attention. It provokes a

variety of intelligent systems, including commonsense causal reasoning [108, 27, 67],

abductive reasoning [5], narrative story generation [75], and so on. Extensive evidence

[128, 127, 125] shows that the way in which people comprehend narratives is heavily

influenced by the causal relations among narrative stories, which implies that causal

relations are an essential component of narrative text. However, neural models usually

lack causal background knowledge [31, 57], and have a very limited ability for narrative

reasoning. In order to make up for this deficiency, researchers focus on providing

causal knowledge to neural models to enhance their narrative reasoning ability.
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Because causality mainly occurs at the sentence-level and the event-level in text,

existing works can be divided into two groups. (1) The sentence-level causalities

generally have complex sentence structures, and it is di”cult to locate the exact

range of causes and e!ects from them. To solve this problem, the first group of

works uses sentence-level causalities to design training tasks and continues to train

pre-trained language models (PLMs) [57, 156]. In this way, these works utilize the

powerful feature-extracting ability of PLMs, and implicitly inject causal features into

PLMs. As the carrier of sentence-level causalities, causal-enhanced PLMs can be eas-

ily transferred to downstream narrative reasoning tasks. (2) The other group of works

focuses on utilizing event-level causalities. Di!erent from sentence-level causalities,

event-level causalities have simple structures and can be explicitly structuralized in

knowledge bases. Therefore, these works [58, 88, 82] typically exploit graph-based

neural networks (GNNs) [131, 46] to learn structural information from causal event

graphs for narrative reasoning. Both two groups of works have made some achieve-

ments in narrative reasoning, however, they still face the following deficiencies:

• In the first group of methods, although PLMs have very large-scale parameters,

it is di”cult for PLMs to remember all sentence-level causal knowledge. When

transferred to downstream narrative reasoning tasks, causal-enhanced PLMs

may forget some background causal knowledge.

• The second group of works usually uses GNNs to encode causal event graphs.

However, causal event graphs are generally extracted by rule-based methods

[103, 155] or human annotations [111], therefore the scale of event-level causal-

ities is limited. In addition, an event generally contains a sequence of words,

which makes events too unique from each other. These two facts make it di”-

cult to find a su”cient number of relations between event pairs. In other words,

event knowledge is very sparse. Event sparsity brings di”culty to GNNs when

learning useful event representations and capturing meaningful causal seman-

tics.
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Though having di!erent forms, sentence-level and event-level causalities are the em-

bodiment of causality in di!erent scenarios, and they complement each other. On the

one hand, if we provide event-level causalities, i.e., causal event graphs, as explicit

knowledge ground when using causal-enhanced PLMs, it is promising to mitigate the

forgetting problem. On the other hand, if we combine the two levels of causalities, we

can reduce the number of unseen relationships, thus improving the coverage of neural

models to causal relations. That is, it is reasonable and necessary to use both of them

for narrative reasoning. However, previous works study either sentence-level or event-

level causalities. This motivates us to e!ectively organize the two levels of causalities.

In addition, we make a step towards reducing the sparsity in event causalities. We

notice that an event usually contains several word components. The component of

an event can interact with the component of another event, although there may be

no relationship between the two events. This motivates us to divide an event into

several word components, so that the word-word relations between event components

can be retrieved. Since word-word relations capture the interplays between event

components, it is possible to alleviate the event sparsity problem.

In this chapter, we make full use of multi-level causalities and present a two-stage

narrative reasoning method. In the first stage, we devise post-training tasks to inject

sentence-level causalities into PLMs. We design di!erent training tasks for narrative

understanding and generating scenarios. For narrative understanding, we use causal

sentence pairs as positive examples, and negatively sample non-causal sentence pairs

as negative examples. Then we train PLMs, e.g., BERT [15] and RoBERTa [66], to

rank positives upon negatives. For narrative generation, we input cause (or e!ect)

sentences into PLMs, e.g., BART [50], and train PLMs to generate the corresponding

e!ect (or cause) sentences. After post-training, we obtain causal-enhanced PLMs,

which carry sentence-level causalities. The causal-enhanced PLMs are used as the

backbones in the next stage. In the second stage, we exploit event-level causalities,

and ground narrative reasoning on structural knowledge graph. Specifically, we break
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an event into word components, so that we are able to construct the hierarchical two-

level knowledge graph (KG), which consists of an event-level graph and a word-level

graph. The event-level graph contains event-level causalities, which are typical nar-

rative processes related to the given context. The word-level graph contains relations

between event components as well as word-level commonsense knowledge. The word-

level graph captures the interactions between event components, making it possible

to mitigate event sparsity. Based on the hierarchical KG, we devise a novel KG-

based reasoning process, which leverages useful knowledge from the KG for narrative

reasoning. In summary, we make the following contributions:

• We introduce a two-stage method known as Multi-Level Causal-Knowledge for

Narrative Reasoning (MCNR). This method, designed in a generic framework,

proves applicable to a range of narrative understanding and generation tasks.

• Through the subdivision of events into multiple word components, we derive

the hierarchical knowledge graph. This not only mitigates the challenge of

event sparsity but also provides additional word-level information to enhance

narrative reasoning.

• Our method undergoes validation on narrative understanding and generation

tasks. Experimental results prove its superiority over compared baselines. De-

tailed ablation studies further confirm the e!ectiveness of our approach.

5.2 Method

The overall framework of our method is shown in Figure 5.1. Our method consists

of two stages. In the first stage (Section 5.2.1), we design post-training tasks to

inject sentence-level causalities into PLMs. At last, we obtain causal-enhanced PLMs,

which carries sentence-level causalities and can be adapted to downstream tasks. In
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Figure 5.1: The overall framework of our method. In the first stage, we extract

sentence-level causalities which are injected into PLMs via post-training tasks. Fi-

nally, we obtain causal-enhanced PLMs. In the second stage, we use causal-enhanced

PLMs as backbone, and utilize structural knowledge for narrative reasoning. The

construction process of two-level KG is in Section 5.2.2.

the second stage (Section 5.2.2), by using causal-enhanced PLMs as the backbone,

we additionally exploit our two-level KG for narrative reasoning.

5.2.1 Sentence-level Causalities Enhanced Post-training

To obtain sentence-level causalities, we pre-define causal extraction rules to extract

sentence-level causalities from the large-scale unlabeled corpus. Then we devise post-

training tasks to inject sentence-level causalities into PLMs.

Sentence-level Causalities Extraction

We leverage BookCorpus [161] as our data source. There are several widely used data

corpora, such as WIKIPEDIA and web-crawl [25], but these corpora are generally very

noisy. Di!erently, BookCorpus mainly contains books, is a relatively clean corpus, and

is widely used for academic research. In particular, BookCorpus contains 11K books

in various subgenres (e.g., historical) and is likely to contain rich causal knowledge. To

extract sentence-level causalities from BookCorpus, we collect some causal discourse
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markers from PDTB [95]. These markers are: Thus, Therefore, So, because, Thereby,

Hence, As a result, Consequently. For each causal marker, we match text like “Arg1

Marker Arg2” to extract causal sentence pairs, where “Arg1” and “Arg2” denote the

matched sentence pair. There may be some poor-quality causal sentences, so we

design several heuristic rules to filter them out. For example, we discard sentences

that contain no more than 10 words, or contain less than two content words, or contain

special symbols. Considering the directionality of causality, we balance the number of

cause-to-e!ect and e!ect-to-cause sentence pairs to avoid the data-imbalance problem.

Finally, we obtain about 180K causal sentence pairs.

To inject the extracted sentence-level causalities into PLMs, we design di!erent post-

training tasks for narrative understanding and narrative generation scenarios. Next,

we introduce our post-training tasks.

Post-training Tasks

We devise post-training tasks to further train PLMs based on sentence-level causal-

ities, so that PLMs can serve as the carrier of sentence-level causalities. Narrative

reasoning generally involves two di!erent scenarios: narrative understanding and nar-

rative generation, therefore we separately devise post-training tasks for each scenario.

For narrative understanding, we design the task of causal/non-causal sentence pairs

ranking (Section 5.2.1). For narrative generation, we design the task of causal text

generation (Section 5.2.1).

Causal/Non-causal Sentence Pairs Ranking for Narrative Understanding

This task is devised for the narrative understanding scenario, in which a model usually

takes an input premise, and is required to select the most reasonable hypothesis from

several alternatives. To make our method applicable to this setting, we devise a

contrastive ranking task that requires PLMs to rank causal sentence pairs above
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non-causal sentence pairs. Specifically, we regard causal sentence pairs as positive

examples. Given a cause-to-e!ect sentence pair (c, e), where c denotes the cause and

e denotes the e!ect, we fix the cause c, and randomly sample several sentences from

the e!ect set to generate the negative examples (c, e→)1. We also fix the e!ect e and

randomly sample several sentences from the cause set to get (c→, e). For simplicity,

we denote the positive sample (c, e) as x, and denote the negative samples (c, e→) and

(c→, e) as xi, where i = {1, · · · , N} and N is the amount of negative samples. By

default, for a (c, e)2, we sample one (c, e→) and one (c→, e), so N = 2. Next, we use

bi-directional PLMs, e.g. BERT [15] and RoBERTa [66], to obtain sentence-level

representations of training examples:

hx = PLMs(x) and hxi = PLMs(xi). (5.1)

Next, sentence-level representations are passed into a linear layer to derive the causal

scores (cs) carried by training examples:

cs = Linear(hx; ς
(cs)) and csi = Linear(hxi ; ς(cs)), (5.2)

where ς(cs) denotes the parameters of the used linear layer. Lastly, to distinguish the

true causal pair from the corrupted sentence pairs, we use the contrastive ranking

object to distinguish the positive example from the negatives:

Lrank = ↑ 1

|D|
∑

x↘D

logP (x|x, {xi}N
i=1)

= ↑ 1

|D|
∑

x↘D

log
exp(cs)

exp(cs) +
∑

N

i=1 cs
i
,

(5.3)

where D denotes the set of causal sentence pairs. After convergence, we obtain causal-

BERT or causal-RoBERTa, which carries abundant sentence-level causalities, and are

applicable to narrative understanding tasks. Next, we introduce the post-training task

for narrative understanding.

1Causal markers are removed when training.
2Note that for e!ect-to-cause relations (e, c), we use the same process to obtain negative samples

(e, c→) and (e→, c).
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Causal Text Generation for Narrative Generation This task is devised for

the narrative generation. In this setting, a model usually takes a text as input and is

required to generate a semantic-related output text. To inject sentence-level causal

knowledge into generative PLMs, e.g. T5 [104] and BART [50], we devise a causal text

generation task. Specifically, for a cause tuple “(Arg1,Marker, Arg2)”, we merge Arg1

and Marker as input X = [Arg1;Marker] = {x1, x2, · · · , xm} which has m tokens,

and regard Arg2 as the gold output Y = {y1, y2, · · · , yn} which has n tokens. We use

Marker as the prompt to indicate the direction of causality when generation, which

preserves flexibility when adapting to downstream tasks. This is because there are

di!erent semantic relationships between input and output in di!erent downstream

tasks. For example, in the story generation task [75], the output is usually the e!ect

of the input. But in the abductive reasoning [5] task, the output should be the cause

of the partial input. We firstly use the generative PLM to encode the input X:

HX = PLM-Encoder(X), (5.4)

where HX ≃ Rm↗d is the embeddings of X, d is the hidden size. Then, we use the

decoder of the PLM to obtain the token distribution of the target sequence at the

time-step t:

hyt = PLM-Decoder(Y<t,HX),

P (yt|Y<t, X) = softmaxV (Wvhyt + b).
(5.5)

The training goal is to maximize the likelihood of generating the gold Y for the input

X, and we adopt the auto-regressive language model loss as the loss function:

Lg = ↑ 1

|D|
∑

(X,Y )↘D

1

n

n∑

i=1

logP (ygold
i

|Y gold
<i

, X). (5.6)

The causal-enhanced PLMs, e.g., causal-T5 or causal-BART, are obtained after con-

vergence, which are applicable to narrative generation tasks.

Actually, in the first stage, we use PLMs to extract causal feature in unstructured

sentence-level causalities, so that the causal knowledge can be saved in PLMs and
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can be transferred to real-world applications. And it is straightforward to transfer

our causal-enhanced PLMs to downstream tasks. Either supervised fine-tuning or

zero-shot inference can be used to achieve the transfer process.

Next, we introduce our second stage, which combines the causal-enhanced PLMs and

external structural knowledge to further improve narrative reasoning.

5.2.2 Combining Event Causalities for Narrative Reasoning

Though causal-enhanced PLMs carry abundant causal knowledge, they may face the

forgetting problem when adapting to downstream tasks. To solve this problem, it

is intuitive to combine event causalities, i.e., grounding reasoning on causal event

graphs. The advantage of this solution is that diverse knowledge provides more com-

prehensive background for reasoning. In addition, explicit knowledge graphs allow us

to explain the prediction of a model by tracking the knowledge used in the reasoning

process. However, the sparsity of events impedes a model to learn useful event rep-

resentations. To alleviate this issue, we construct the hierarchical two-level KG by

dividing an event into several word components. Next, we introduce how to construct

the two-level KG, and how to apply the two-level KG to downstream reasoning tasks.

Constructing Two-Level KG

Given an input context, we first retrieve the context-related event-level causalities.

We use COMeT [37] as the knowledge base of event causalities. COMeT is a BART-

based [50] model, which is fine-tuned on the manually annotated if-then relationship

dataset ATOMIC [111]. Nine di!erent types of inferential relations about events can

be produced using COMeT. Details about these relations can be seen in [37]. In this

article, we use the following relations to generate event causalities: xWant, oWant,

xE!ect, oE!ect, HasSubevent, xIntent, xNeed, Causes.
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Figure 5.2: An illustration of building the two-level KG for the input context.

Given the input context, we use the Spacy dependency parser to extract context

events (called central events). By feeding central events into COMeT, we obtain one-

hop events, which are then fed into COMeT to produce two-hop events. Finally, a

large number of causal event chains are produced. There may be some low-quality

chains, so we design several heuristic rules to filter them. For instance, a chain will be

filtered if any event in the chain consists of fewer than two words. There are still many

event chains, we randomly keep no more than 80 chains for each input. Next, for each

input, we convert the kept event chains to a causal event graph. However, due to the

sparsity of events, there are a very small number of edges in the graphs. Specifically,

the average in-degree of nodes is less than 1.5. The sparsity of events brings di”culties

to learning event representations. So, we divide each event into a sequence of words.

For each word, we retrieve three connected words from ConceptNet [118] according to

the weights of connections. Next, we discover the relations between each pair of words.

This helps to alleviate the issue of event sparsity by allowing previously unconnected

events to interact through relations between event components. A detailed example

of constructing a two-level knowledge graph is depicted in Figure 5.2.

Generally, a two-level KG G contains two types of nodes: event nodes Ve and word

nodes Vw. An event ei ≃ Ve is a sequence of words ei = {wi1, · · · , wik}, where

wi1, · · · , wik ≃ Vw. Additionally, G has two kinds of edges. An event-event edge
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Figure 5.3: Our two-level KG-based reasoning method for narrative understand. By

combining causal-RoBERTa with the two-level KG, we make full use of multi-level

knowledge for narrative understanding.

(he, re, te) denotes that an event-level relation re exists between the head event he and

the tail event te. A word-word edge (hw, rw, tw) denotes that a word-word relation rw

exists between the head word hw and the tail word tw, where hw and tw may exist in

di!erent events.

Next, we combine causal-enhanced PLMs and our two-level KG to improve narrative

reasoning. Because narrative understanding and narrative generation have di!erent

input-output formats, we design di!erent network structures for the two scenarios.

We first introduce our method for narrative understanding (5.2.2), then introduce our

method for narrative generation (5.2.2).

KG-Enhanced Narrative Understanding

Task Definition In this setting, a model usually takes an input text P as the

premise, and is asked to choose the most reasonable hypothesis from several alterna-

tives H = {Hi}, (i = 1, · · · , I), where I is the number of alternatives. To enhance this

reasoning process, according to P , we extract a relevant two-level KG G as knowledge

ground. In the training stage, we aim to maximize the following probability:

P (HY |P,G), (5.7)
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where HY is the gold hypothesis. In inference, we select the hypothesis that has

the highest probability. Our method is shown in Figure 5.3, which mainly consists

of three modules: (1) the context encoding module which encodes input texts into

hidden states, (2) the knowledge encoding module consists of stacked graph atten-

tion networks, (3) the knowledge-integrated reasoning module consists of transformer

blocks that jointly attend to the input and the encoded knowledge.

Context Encoding Module We concatenate the premise P and each hypothesis

Hi as a sequence of tokens:

Xi = [CLS]P [SEP]Hi[SEP], (5.8)

where [CLS] and [SEP] are special tokens of PLMs. [CLS] denotes the start token of a

sequence. [SEP] is the separator token between di!erent sentences. We compute the

contextualized representations of Xi with our causal-enhanced PLMs, e.g., causal-

RoBERTa, and obtain the sequence-level vector (the vector of [CLS]) and the token-

level vectors:

{HXi ,h
cls

Xi
} = Causal-RoBERTa(Xi), (5.9)

where HXi ≃ RM↗d is the token vectors, hcls

Xi
≃ Rd is the sequence-level vector, d is

the hidden size, M is the number of tokens in Xi. We can also choose other encoders.

For example, we can replace our causal-RoBERTa with o!-the-shelf RoBERTa to

validate the e!ectiveness of sentence-level causalities, as shown in the ablation study.

Knowledge Encoding Module Relational Graph Convolutional Network (RGCN)

[114] is used to encode a two-level KG so that we are able to use structural graph

information to improve the representations of events and words. The RGCN contains

stacked L layers. Initially, we obtain word embeddings via the used causal-RoBERTa,

and randomly initialize embeddings of word-level relations. Then, for a word tw ≃ Vw,

we gather the neighbors N (tw) of tw, involving in the connected (head word, word-
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level relation) pairs, to renew its embedding at the l + 1-th layer:

ht+1
tw

= ϑ(
1

|N (tw)|
∑

(hw,rw)↘
N (tw)

Wl

a
(hl

hw
↑ hl

rw
) +Wl

s
hl

tw
), (5.10)

where ϑ is the ReLU function, the parameters Wl

s
and Wl

a
are particular to the

l-th layer. Another linear transition is used to renew the embeddings of word-level

relations at the l-th layer: ht+1
rw

= Wl

r
hl

rw
. Finally, words embeddings hL

hw
, hL

tw
at

the L-th layer are obtained. We then use the average-pooling operation to get event

embeddings:

hei = average-pooling(hL

wi1
, · · · ,hL

wik
), (5.11)

where {wi1, · · · , wik} are word components of the event ei. This process actually

integrates word-level knowledge into event embeddings, which makes it possible to

mitigate the event sparsity problem. For a event-level triple (he, re, te), we concatenate

the embeddings of (he, re, te) to obtain embeddings of the event triple:

h(he,re,te) = W↔
e
[hhe ;hre ;hte ], (5.12)

where We ≃ R3d↗d is a trainable parameter, the event relation embedding hre is

initialized by randomly. The hidden representations of all event-level triples can be

denoted as:

Het = {hi

(he,re,te)}
Zet
i=1, (5.13)

where hi

(he,re,te)
is the embedding of i-th event triple, Zet is the number of event-level

triples, and Het ≃ RZet↗d will be used to enhance the later reasoning process.

Knowledge-Integrated Reasoning Module Event triples contain the possible

causes or e!ects of the input, which are useful for narrative understanding. That is,

by attending to the knowledge embeddings, the model should be able to refine the

context embeddings to make a more reasonable reasoning process. Our reasoner is

a multi-layer Transformer, where each layer is a multi-head self-attention [130] mod-

ule. The reasoner continually executes self-attention over the context and knowledge
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embeddings, and thus can iteratively refine the context embeddings. There are three

inputs of the multi-head self-attention: a query Q (context embeddings), key K,

and value V (both embeddings of knowledge triples). It relies on scaled dot-product

attention to obtain knowledge-enhanced representations for Xi:

Hkg

Xi
= Attention(Q,K, V ) = softmax(

QK↔
↔
d

)V, (5.14)

where Q = HXi , K = V = Het, H
kg

Xi
≃ RM↗d. We finally apply the average-pooling

operation on the output of the reasoner to obtain knowledge enhanced feature for Xi:

hkg

Xi
= average-pooling(Hkg

Xi
), (5.15)

where hkg

Xi
≃ Rd. The final hidden representation of Xi is obtained by concatenating

hcls

Xi
and hkg

Xi
:

hXi = concatenate(hcls

Xi
,hkg

Xi
). (5.16)

We next project the hidden representations of all inputs, i.e., {hXi}Ii=1, into logit(s) of

size I. In the training process, we maximize the likelihood of the gold hypothesis. In

the inference process, we select the hypothesis with the max logit, i.e. y = maxi(si)Ii=1,

as the model prediction.

The above is our second stage for narrative understanding. Next, we introduce our

second stage for narrative generation.

KG-Enhanced Narrative Generation

Task Definition In this setting, the input X is a text sequence that may consist

of several sentences, and we aim to generate another text sequence Y . We extract a

relevant two-level KG G in accordance with X to facilitate the reasoning process. The

task of narrative generation is then divided into two steps. In the first step, under the

condition X, we make a content-planning based on G, i.e., selecting reasonable event

sketches Ek. Ek is used as guidance of the later generation process. In the second
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Figure 5.4: Our two-level KG-based reasoning method for narrative generation. In

(a), we iteratively calculate the causal scores of one-hop and two-hop events. Color

intensity reveals the strength of the scores. In each iteration, we use black arrows to

present the used edges, whereas use grey arrows to indicate unused edges. In (b), we

combine word-level knowledge to generate text. The process is similar to (a).

step, based on X and Ek, we make full use of word-level knowledge to generate text.

Our objective is to maximize the following probability:

P (Y |X,G) ⇐ P (Ek|X,G) · P (Y |X,G,Ek). (5.17)

The overall process is shown in Figure 5.4, where we first select guided events (5.2.2),

and then combine event guidance and word-level knowledge for generation (5.2.2).

Selecting Event Guidance via Event-level Reasoning Given the input X =

(x1, x2, · · · , xM), we first use our Causal-BART to encode it into a hidden state hX :

{hxm}Mm=1 = Causal-BARTEncoder(X)

hX = max-pooling
m
({hxm}Mm=1),

(5.18)

where hxm is the embedding of xm, hX ≃ Rd, d is the hidden size. Then, RGCN

is used to encode G to learn the structure-enhanced representations of events and

words, as shown in Equation 5.10.

Next, we select guided events by conducting event-level reasoning. Since we are not

concerned with how to implement reasoning on the knowledge graph, we directly
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take the existing technique: multi-hop reasoning in [39]. As drawn in Figure 5.4

(a), the causal scores of one-hop and two-hop events with regard to X are iteratively

calculated, so that we can select reasonable events according to the causal scores

of events. In each iteration, the causal scores of same-hop events are concurrently

calculated. For an event te ≃ Ve, we gather the neighbors Nte of te, involving in the

connected (head event, event-level relation) pairs, to calculate the causal score s(te)

between te and X:

s(te) =
1

|Nte |
∑

(he,re)↘Nte

(ϖ · s(he) +R(he, re, te)), (5.19)

where ϖ (0.5 by default) determines the strength of the causal scores flow from the

preceding hop. At first, we assign zero-hop events (central events) with a score of 1,

while giving a score of 0 to all other events. R(·) denotes the score of the event tuple

(he, re, te) with respect to X in the current iteration, which is obtained via:

R(he, re, te) = sigmoid(tanh(h↔
X
Wcs) · h(he,re,te))

h(he,re,te) = W↔
e
[hhe ;hre ;hte ],

(5.20)

where Wcs ≃ Rd↗3d is a parameter. Finally, we obtain the s(·) of all events, the

top-ranked events are chosen as guidance: Ek = top-k
i
(s(ei)), where k denotes the

number of selected events. The influence of k is investigated in our experiment.

Text Generation via Combining Event Guidance and Word-Level Knowl-

edge Ek are used as guidance for generating text. To fully utilize knowledge, word-

level relations are also considered. Particularly, X and Ek are first concatenated and

encoded to get the guided context representations:

HC = Causal-BARTEncoder([X;Ek]), (5.21)

where HC ≃ Rc↗d, c is the number of tokens in [X;Ek].

Then, we use the decoder of Causal-BART to obtain the hidden state of the target
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sequence hyt at the time-step t:

hyt = Causal-BARTDecoder(Y<t,HC). (5.22)

In time-step t, the token distribution over the vocabulary V is:

P (yt|Y<t, X,Ek) = softmaxV (Wvhyt + b). (5.23)

To utilize word-level knowledge, we compute the relevance scores of all words accord-

ing to the current decoder state hyt , as shown in 5.4 (b). Specifically, for a word tw,

we gather the neighbors Ntw of tw, involving in the connected (head, relation) pairs,

to calculate the relevance score s(tw) between tw and the current decoder state hyt :

s(tw) =
1

|Ntw |
∑

(hw,rw)↘
N (tw)

(ϖ · s(hw) +R(hw, rw, tw)), (5.24)

where R(·) is the score of the word-level relation (hw, rw, tw) in accordance to hyt ,

which is calculated via:

R(hw, rw, tw) = sigmoid(h↔
yt
h(hw,rw,tw))

h(hw,rw,tw) = W↔
wv
[hL

hw
;hL

rw
;hL

tw
].

(5.25)

At the beginning, we assign zero-hop words (existed in X) with a score of 1, while

giving a score of 0 to all other words. Finally, we obtain the relevance scores of all

words, the token distribution over all words in Vw is:

P (yw
t
|Y<t, X,Ek, G) = softmaxVw(s(tw)), (5.26)

where yw
t
≃ Vw. We combine the distribution over the vocabulary and the distribution

over Vw with a soft gate, to get the final token distribution:

P (yt|Y<t, X,Ek, G) = (1↑ gt) · P (yt|Y<t, X,Ek)

+ gt · P (yw
t
|Y<t, X,Ek, G),

(5.27)

where gt = sigmoid(Wghyt) is the soft gate, which controls whether to copy words

from Vw when generation.

80



5.2. Method

Model Training We need supervised labels to train the event selection module and

the soft gate. But it is impractical to manually annotate labels. Instead, heuristic

strategy, i.e., word overlap, is used to obtain supervision. Specifically, we label a

word as positive if it exists in the gold sequence. And we label an event as positive

if 70% of its component words exist in the gold sequence. The intuition is that an

event is good guidance if there is a large word overlap between the event and the gold

sequence. We use event labels to train our event selection module (5.2.2), and use

word labels to train the soft gate (5.2.2) in decoding.

We adopt the cross-entropy loss of choosing positive events to train the event selection

module:

JP =
1

|Ve|
∑

i

↑li · logp(ei)↑ (1↑ li) · log(1↑ p(ei)), (5.28)

where li is the event label, p(ei) = sigmoid(s(ei)) represents the probability that the

event ei gains. We adopt the NLL loss of producing the gold sequence to train the

decoder:

JNLL =
1

|Y gold|

N∑

t=1

↑logP (ygoldt |Y gold
<t , X,Ek, G). (5.29)

We additionally add the gate loss Jg to supervise the training of the gate gt, the loss

takes the form of binary cross-entropy:

Jg =
1

|Y gold|

N∑

t=1

↑(1↑ l
y
gold
t

) · log(1↑ gt)↑ l
y
gold
t

· log gt, (5.30)

where l
y
gold
t

is the label for the gold token ygoldt . If ygoldt exists in the two-level KG,

i.e., ygoldt ≃ Vw, lygoldt
= 1. Otherwise, l

y
gold
t

= 0.

The total loss is J = JNLL + ωJg + JP , where ω is set to 0.5 by default. We jointly

train the event selection module and the text generator.
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Datasets Train Validation Test

COPA 500 N/A 500

BCOPA 500 N/A 500

ωNLG 50481 7252 14313

SEG 78530 9816 9816

Table 5.1: The statistics of the used datasets.

5.3 Experiments

5.3.1 Datasets

We evaluate our method on two multi-choice datasets and two text-generation datasets.

These datasets are independent of BookCorpus. They are:

• Choice of Plausible Alternatives (COPA) is a commonsense reasoning dataset in

the domain of causality. In this dataset, a system sees a premise sentence and is

required to select the reasonable cause or e!ect of the premise from two hypotheses.

There are 1000 manually annotated examples in total, in which 500 for training

and 500 for test. Balanced COPA (B-COPA) extends COPA by adding a mirrored

example for each COPA training case, resulting in additional 500 training cases.

For each COPA training case, B-COPA retains the two hypotheses, but creates a

new premise that matches the wrong hypothesis. B-COPA aims to mitigate the

superficial cues in COPA that may be utilized by PLMs like BERT, to improve the

robustness of the dataset.

• Story Ending Generation (SEG) aims to produce a reasonable story ending for

an input four-sentence context. The stories originate from ROCStories [75], which

contains a wide range of commonsense relationships in human daily life. Conse-

quently, they serve as a useful resource for narrative reasoning. Same as [143], we
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randomly divide these stories into the ratio of 8:1:1 for training/validation/test.

• Abductive Natural Language Genration (ωNLG) is a abductive commonsense rea-

soning dataset. In this dataset, a system sees two observations: O1 and O2, and

is asked to produce an explanation to make O1 and O2 be the cause and conse-

quence of the explanation, respectively. The o”cial data partition [5] is adopted

for training/validation/test.

The statistics of the used datasets are shown in Table 5.1. For COPA and B-COPA,

we use the given premise to retrieve the two-level knowledge graph. For ωNLG and

SEG, we use the two observations and the four-sentence story context to retrieve

the two-level knowledge graph, respectively. The statistics of the retrieved two-level

knowledge graphs are shown in Table 5.2. #AvgEventNode and#AvgEventRel denote

the average number of event-level nodes and relations, respectively. #AvgWordNode

and #AvgWordRel denote the average number of word-level nodes and relations,

respectively.

Graph Statistics COPA B-COPA SEG ωNLG

#AvgEventNode 36 24 79 73

#AvgEventRel 43 29 82 78

#AvgWordNode 126 84 211 204

#AvgWordRel 253 202 741 639

Table 5.2: Statistics of retrieved multi-level knowledge graphs.
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5.3.2 Baselines and Experimental Setting

Baselines

For COPA and B-COPA, we consider the two recent PLMs: BERT [15] andRoBERTa

[66]. We evaluate BERT and RoBERTa, including both the base and large versions,

on the COPA and B-COPA. For ωNLG and SEG, we consider the following baselines:

• GPT2-FT which is a fine-tuned GPT2 by [39].

• Pre-trained models T5[104] and BART[50]. We fine-tune them two and denote

them as T5-FT and BART-FT.

• GPT2-OMCS [39] is a knowledge-enhanced GPT-2 which first post-trained

on Open Mind Commonsense (OMCS) 3, then fine-tuned on ωNLG and SEG.

• GRF [39] is a GPT2 based model which grounds reasoning on commonsense

knowledge graphs. We additionally use BART as the backbone to reproduce

GRF to evaluate its performance under di!erent PLMs. We denote this model

as GRF-BART.

Experimental Setting

In the first stage, we search hyper-parameters according to the performance on the

training set of COPA and BCOPA, and the validation set of SEG and ωNLG. In

the second stage, we perform 10-fold cross-validation on the training set of COPA

and B-COPA to find the best parameters, which is the same as [56]. And we use

BLEU-2 on the validation set of SEG and ωNLG to select the best parameters. The

some of parameters, including learning-rate, batch-size, and num-epoch, are shown

in Table 5.3. In addition, in KG-enhanced multi-choice inference, we select a 2 layers

3http://openmind.media.mit.edu

84



5.3. Experiments

Setting Learning Rate Batch Size Num Epoch

Stage1
Multi-Choice 5e-6 4 2

Text Generation 5e-6 16 5

Stage2
Multi-Choice 5e-6 4 10

Text Generation 1e-5 16 10

Table 5.3: The some of searched parameters in our experiment.

transformer, where each layer has 4 heads. We adopt a 2-layer RGCN module in the

second stage, and adopt the Adam optimizer with a linearly-decreased learning rate

in our experiment. In the text generation setting, the beam search strategy with a

beam size of 3 is adopted by our approach and all baselines we create.

5.3.3 Results on Multi-Choice Tasks

We evaluate our method under two settings: (1) the zero-shot setting that we directly

evaluate our causal-enhanced PLMs on COPA and B-COPA testset; (2) the fine-

tuning setting that we fine-tunes our method on the training set and then evaluate

on the test set. Table 5.4 presents the result under the fine-tuning setting. We have

following observations.

• As shown in Line #6, the causal-RoBERTa-large achieves the 90.3%/90.0%

accuracy by using COPA and B-COPA training set, respectively, obtains

0.6%/0.8% increase compared with RoBERTa-large (Line #4). This indicates

that sentence-level causalities are helpful for commonsense causal reasoning.

• After combining sentence-level causalities and two-level knowledge graph, our

MCNRRoBERTa-large (Line #7) achieves a 91.2%/91.5% accuracy, a further

0.9%/1.5% improvement on the basis of causal-RoBERTa-large (Line # 6). This

85



Chapter 5. Enhancing Narrative Commonsense Reasoning With Multilevel Causal
Knowledge.

demonstrates the e!ectiveness of grounding reasoning on the explicit two-level

knowledge graph.

We additionally perform the ablation study to verify the modules in the two-level

KG-based reasoning process.

• As shown in Line #8, we ablate sentence-level causalities. In other words, we use

the o!-the-shelf RoBERTa-large as the basis and utilize two-level KGs for reasoning.

We find that this variant has a better performance than causal-RoBERTa-large

(Line #6). This shows that grounding reasoning on explicit knowledge graphs is

better than injecting sentence-level causalities into PLMs. The possible reasons lies

in two aspects: (1) in the fine-tuning process, the model may gradually forget the

sentence-level causal knowledge which is related to the input context, and (2) the

two-level KG may provide background causal knowledge which is more related to

the input.

• On the basis of the variant in Line #8, we further remove word-level knowledge.

That is, we only utilize event causalities. As shown in Line #9, this variant leads

to a 0.2%/0.4% performance drop. This demonstrates that word-level knowledge

can be complementary to event causalities. The possible reason is that word-level

knowledge helps to mitigate the sparsity of events, as well as provides additional

knowledge for narrative understanding.

Table 5.5 presents the result of our causal-enhanced PLMs under the zeroshot set-

ting. Our causal-RoBERTa-large obtains 78.4% accuracy on the COPA testset, which

performs better than some fine-tuned PLMs[56]. This further demonstrates that

sentence-level causalities are helpful to narrative commonsense reasoning.
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Line Methods COPA B-COPA

BERT-base [57] 74.5 76.3

BERT-large [112] 75.0 N/A

BERT-large [44] 76.5 74.5

BERT-large [57] 77.8 80.0

RoBERTa-base [57] 80.5 81.3

RoBERTa-large [44] 87.7 89.0

RoBERTa-large [57] 90.3 90.2

#1 BERT-base (Ours) 74.6±0.7 75.0±1.1

#2 BERT-large (Ours) 77.0±1.1 78.7±1.0

#3 RoBERTa-base (Ours) 80.2±0.6 79.4±0.8

#4 RoBERTa-large (Ours) 89.7±0.5 89.2±1.1

#5 Causal-BERT-large (Ours) 78.1±0.7 79.6±0.9

#6 Causal-RoBERTa-large (Ours) 90.3±1.0 90.0±0.6

#7 MCNRRoBERTa-large (Ours) 91.2±0.6 91.5±0.5

Ablation Study

#8 w/o 1 (Ours) 90.9±0.8 91.0±0.6

#9 w/o 1,2 (Ours) 90.7±0.5 90.6±0.8

Each result is reported as the mean of five models trained

with random seeds, with the standard deviation.

1: sentence-level causalities. 2: word-level knowledge.

Table 5.4: Accuracy (%) on COPA and B-COPA testset under the fine-tuning setting.

Scores with bold denote the best results.
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Methods COPA (train) B-COPA (train) COPA (test)

BigramPMI [26] N/A N/A 63.4

PMI [26] N/A N/A 65.4

CausalNet+PMI [67] N/A N/A 70.2

Multiword+PMI [113] N/A N/A 71.4

This article

Causal-BERT-base 59.0 62.1 67.8

Causal-BERT-large 64.4 65.6 70.8

Causal-RoBERTa-base 62.6 65.2 70.8

Causal-RoBERTa-large 80.4 78.8 78.4

Table 5.5: Accuracy on COPA and B-COPA under zero-shot setting.

5.3.4 Results on Text Generation Tasks

Evaluation Metrics

The textual-overlap based metrics, including BLEU-n [87], METEOR [3] and ROUGE-

L [61], are used to automatically evaluate the similarity between a generated text and

a collection of references o!ered by the datasets. These precise string-matching met-

rics might not e!ectively identify paraphrases and capture crucial semantic ordering

alterations [98]. So we additionally use model-based metrics, e.g. BertScore [153],

to evaluate the quality of the generated text. We also report Distinct [54] score to

measure the diversity of generated sequences.

Zero-shot Evaluation

We first present the zero-shot evaluation results of causal-T5 and causal-BART, by

comparing them with o!-the-shelf T5 and BART. As shown in Table 5.6, whether
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Datasets
ωNLG SEG

BLEU-2/4 ROUGE-L BLEU-1/2 ROUGE-L

T5 6.41/1.31 13.32 9.70/3.62 13.32

Causal-T5 7.59/1.23 16.94 17.17/5.15 17.09

BART 6.70/1.40 15.33 10.92/4.12 13.28

Causal-BART 10.62/1.77 17.01 19.59/6.10 20.70

Table 5.6: Zero-shot evaluation results on the testsets of SEG and ωNLG.

based on T5 or BART, the causal-enhanced model has achieved consistent improve-

ment, which shows the e!ectiveness of sentence-level causal knowledge.

Our method vs. Previous methods

The results on the testsets of ωNLG and SEG are shown in Table 5.7. We have the

following observations.

• BART-FT outperforms GPT2-FT, and T5-F, so we replicate GRF [39] based

on BART. In addition, we observe that the result of GRF-BART is superior to

the original one [39]; BART is the reason for this improvement.

• Causal-T5 and causal-BART, perform better than T5-FT and BART-FT, re-

spectively, which shows that sentence-level causalities are useful for common-

sense text generation.

• The result of GPT2-MOCS is not significantly better than that of GPT2-FT. On

the contrary, GRF-BART performs better than BART-FT by a large margin.

The possible reason is that explicit knowledge graphs benefit commonsense

reasoning tasks that emphasize reasoning and explanation. This suggests that
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ωNLG

Models BLEU-4 METEOR ROUGE-L Distinct-3 BERTScore

GPT2-FT† 9.80 25.82 32.90 N/A N/A

GPT2-OMCS† 9.62 25.83 32.88 N/A N/A

GRF† 11.62 27.76 34.62 N/A N/A

T5-FT 12.62±0.07 28.97±0.17 35.54±0.10 16.36±0.06 55.70±0.05

BART-FT 12.99±0.07 29.77±0.23 34.25±0.18 16.35±0.27 55.45±0.09

GRF-BART 14.82±0.06 31.70±0.10 36.04±0.14 16.41±0.21 56.20±0.05

Causal-T5 12.91±0.06 29.39±0.07 35.84±0.10 16.31±0.09 55.76±0.04

Causal-BART 13.15±0.02 30.21±0.06 34.59±0.09 16.88±0.21 55.54±0.04

MCNRBART 16.06±0.01 33.14±0.09 37.23±0.09 27.54±0.31 56.61±0.02

SEG

Models BLEU-2 METEOR ROUGE-L Distinct-3 BERTScore

GPT2-FT† 10.20 N/A N/A N/A N/A

GPT2-OMCS† 10.40 N/A N/A N/A N/A

GRF† 11.00 N/A N/A N/A N/A

T5-FT 9.40±0.05 17.52±0.07 25.32±0.02 42.95±0.48 48.34±0.03

BART-FT 10.35±0.00 18.78±0.02 26.25±0.04 47.09±0.28 49.04±0.03

GRF-BART 11.23±0.02 19.66±0.03 26.95±0.02 52.42±0.27 49.76±0.02

Causal-T5 9.55±0.02 17.69±0.02 25.40±0.05 43.41±0.15 48.43±0.01

Causal-BART 10.57±0.03 19.04±0.04 26.46±0.02 48.68±0.09 49.15±0.02

MCNRBART 13.03±0.02 21.81±0.02 28.98±0.02 55.18±0.32 51.05±0.02

Table 5.7: The results of automatic evaluation on the testsets of ωNLG and SEG.

Each result is reported as the mean of five models trained with random seeds, with

the standard deviation. Values with † denote the values are

borrowed from [39]. Scores with bold denote the best results.
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grounding reasoning on explicit KG is more e”cient than implicitly injecting

knowledge into PLMs.

• Our MCNRBART shows a substantial improvement over GRF-BART. This is

due to the fact that GRF-BART only uses word-level knowledge, whereas our

method uses sentence-level and event-level causalities. This shows that our

framework is e!ective for narrative text generation.

• We find that our method has a better performance on the Distinct score. The

possible reason is that multi-level knowledge provides a more relevant back-

ground to the input context, which prevents a model from generating generic

text, and hence improves the text diversity.

The overall result demonstrates the superiority of our framework over compared base-

lines.

Ablation Study

We further perform the ablation study to explore the impact of di!erent components

of our method on narrative text generation. We divide our full method into the

following components: (1) “SC” denotes the sentence-level causalities enhanced post-

training (5.2.1); (2) “TKE” denotes the two-level knowledge graph encoding module;

(3) “EPS” denotes the event prompts selection module (5.2.2); (4) “GWK” denotes

the module which generates text with word-level knowledge (5.2.2). We also validate

whether the heuristically obtained event labels are helpful for selecting reasonable

event guidance by ablating Jp (Equation 5.28).

Starting from our full model, we gradually ablate di!erent modules to explore their

impact. The results are shown in Table 5.8. The following are our observations.

• “w/o 1”: ablating sentence-level causalities leads to performance drop, e.g. the

BLEU-4 drops about 0.24 on the ωNLG test set. This shows that injecting
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ωNLG

Models BLEU-4 METEOR ROUGE-L Distinct-3 BERTScore

MCNRBART 16.06±0.01 33.14±0.09 37.23±0.09 27.54±0.31 56.61±0.02

w/o 1 15.82±0.05 32.81±0.18 36.87±0.16 27.54±0.36 56.53±0.06

w/o 1,4 15.46±0.09 32.48±0.26 36.67±0.14 25.81±0.70 56.49±0.08

w/o 1,4,2 15.27±0.02 32.43±0.19 36.57±0.16 22.04±0.81 56.38±0.09

w/o 1,2,3 14.78±0.07 31.85±0.15 36.08±0.05 16.45±0.37 56.23±0.02

w/o Jp 15.24±0.08 32.32±0.26 36.48±0.22 21.18±3.59 56.34±0.10

SEG

Models BLEU-2 METEOR ROUGE-L Distinct-3 BERTScore

MCNRBART 13.03±0.02 21.81±0.02 28.98±0.02 55.18±0.32 51.05±0.02

w/o 1 12.86±0.04 21.42±0.04 28.73±0.05 53.53±0.80 50.86±0.05

w/o 1,4 12.54±0.04 21.13±0.07 28.60±0.04 50.66±0.23 50.75±0.04

w/o 1,4,2 12.41±0.04 20.98±0.03 28.47±0.02 50.56±0.11 50.65±0.02

w/o 1,2,3 10.98±0.08 19.32±0.15 26.67±0.20 49.48±1.37 49.57±0.08

w/o Jp 11.52±0.09 19.83±0.14 27.50±0.16 46.29±0.34 49.94±0.14

Table 5.8: Each result is reported as the mean of five models trained with random

seeds, with the standard deviation. 1: SC. 2: TKE. 3: EPS. 4: GWK.

sentence-level causalities into BART helps these two tasks. In other words,

ωNLG and SEG tasks need causal knowledge.

• “w/o 1,4”: we do not utilize word-level knowledge in the decoding process.

Compared with the result in “w/o 1”, this variant leads to a performance drop.

This indicates that word-level knowledge can provide additional evidence in the

generation process.

• “w/o 1,4,2”: Based on the variant in “w/o 1,4”, we keep removing the “TKE”

module and obtain the event embeddings through the embedding layer of BART.
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As shown in “w/o 1,4”, the result of this variant decreases. The possible reason

is that utilizing the “TKE” module is helpful for selecting more reasonable

event guidance. This shows that the “TKE” module can integrate word-level

relationships into event embeddings, thus reducing the sparsity of events.

• “w/o 1,2,3”: we ablate event-level causalities, and only utilize word-level knowl-

edge for text generation. In this case, this variant has degraded to GRF-BART.

The slight result gap between this variant and GRF-BART may be caused by

the di!erence in data pre-processing, e.g. the di!erent number of word-level re-

lations. After removing event-level knowledge, the result decreases significantly.

This shows that event-level knowledge is essential for text generation.

• “w/o Jp” leads to a large drop. This is consistent with humans that event labels

are helpful for selecting more reasonable guided events.

• By comparing the results between line “w/o 1,4,2” and line “w/o 1,2,3”, we

observe that removing event-level causalities leads to a larger result drop than

removing word-level knowledge. This suggests that event-level causalities are

more beneficial than word-level knowledge. This is reasonable because event-

level knowledge contains richer information than word-level knowledge. And

guided events can provide the skeleton information for narrative text generation.

• The result of combining event causalities and word-level knowledge is better

than using only one kind of them. This shows that word-level knowledge com-

plements event causalities. The reasons are two-fold: (1) word-level knowledge

captures the interaction between event components, which is helpful for choos-

ing reasonable event guidance; (2) two-level knowledge provides more related

background to input context, which helps to generate high-quality text.

The ablation study result demonstrates that each component contributes to narrative

text generation.
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Datasets Models
Informativeness Reasonability

W(%) L(%) W(%) L(%)

ωNLG

vs. BART-FT 19.33 10.33 26.33 12.33

vs. GRF-BART 19.33 12.67 24.00 10.67

vs. w/o 1,2,3 22.00 14.67 27.67 17.67

vs. w/o 1.4 15.33 7.67 18.00 9.33

SEG

vs. BART-FT 18.57 8.67 25.00 10.33

vs. GRF-BART 17.67 11.00 25.67 15.33

vs. w/o 1,2,3 17.00 9.00 28.67 11.67

vs. w/o 1,4 17.67 9.33 20.33 11.67

Table 5.9: Manual evaluation results on two datasets. Scores indicate the percentage

of Win (W) and Lose (L).

Manual Evaluation

We perform the manual evaluation to manually judge the performance of our method

under narrative text generation. Informativeness and reasonability are evaluation

criteria. The informativeness of the generated text denotes whether it contains non-

genetic information that is related to the input sequence. The reasonability of the

generated text denotes whether it is causal and temporal related to the input context.

BART-FT, GRF-BART, “w/o 1,2,3” and “w/o 1,4” are respectively compared with

our MCNRBART. 100 test cases as well as the text generated by each model are

randomly sampled from SEG and ωNLG, respectively. Given the input context in

each test case, three annotators are asked to make a judgment among “win”, “lose”

and “tie” between a pair of sequences generated by MCNRBART and a compared

baseline. To ensure a fair judgment of employed metrics, the annotators are restricted

to students who have research experience in text generation. The manual evaluation
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result is presented in Table 5.9. MCNRBART is superior to all compared models.

Fleiss’s kappa coe”cient is computed to assess the inter-rater agreement. For SEG,

the coe”cient of informativeness and reasonability is 0.419 and 0.501. For ωNLG,

the two values are 0.486 and 0.462, respectively. This indicates that the inter-rater

agreement shows a moderate (0.4 ⇒ ↼ < 0.6) agreement. We notice that in the

pairwise comparisons, annotators gave a tie result for the most of compared pairs.

After checking the generated text of compared models, we find that these models

generate text with good quality. This may be because these models are all based on

BART, which has a powerful ability in text generation. Our method further enhances

the quality of generated text on the basis of BART, and exhibits superior performance

compared to others, underscoring the e!ectiveness of our approach.

5.3.5 Additional Analyses

Deeper Investigation of Two-Level KG

we conduct a preliminary study on the SEG testset to explore how word-level knowl-

edge complements event causalities, The compared models include: (1) “w/o 1,2,4”

which only utilizes event-level causalities, (2) “w/o 1,2,3” which only utilizes word-

level knowledge and (3) “w/o 1” which utilizes the two-level knowledge. On the basis

of whether the two-level KG of a test case has at least a positive event or a positive

word4, we separate the test samples as well as the texts generated by selected models

into four classes. The amount of test cases in each class is (A) 434, (B) 1417, (C)

1500, and (D) 6467. We compute BLEU-2 of texts generated by di!erent models in

each class. Figure 5.5 presents the result, from which we find:

• In A and B, “w/o 1,2,4” may succeed in choosing a supporting event for text

4Positively-labeled events or words are denoted as supporting events or words for the sake of

simplicity.
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Figure 5.5: In A, each two-level KG has at least one supporting word and one sup-

porting event. In B, each two-level KG has at least one supporting event, but no

supporting words.

generation, therefore “w/o 1,2,4” has a far better performance than “w/o 1,2,3”.

• The result di!erence between ”w/o 1,2,3” and ”w/o 1,2,4” in class C is the most

minor. Note that “w/o 1,2,3” may choose supporting words but “w/o 1,2,4”

can never choose any supporting event. Hence, the resulting gap between the

two models is narrowed. In other words, even if a two-level KG lacks supporting

events, it may still have supporting words that are helpful for text generation.

This illustrates how word-level knowledge complements event causalities.

• The best performance is achieved when combining two-level knowledge. That

is, being aware of more supporting knowledge, our method is able to generate

high-quality text.

Influence of the number of selected events

We explore the influence of the number of guided events Ek on the SEG testset.

Figure 5.6 presents the result. The majority of metrics experience an initial increase,

reaching their peak at k = 3, followed by a subsequent decline. One contributing

factor is that as k increases, the likelihood of selecting a supporting event also rises.

On another note, an increased number of chosen events enhances the probability
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Figure 5.6: The influence of the number of selected guided events. The results of

di!erent metrics are normalized to 0-1.

of selecting irrelevant events. We set k to 3 by default since the two aspects are

well-balanced in this case.

Performance under the low-resource scenario

Figure 5.7: Performance under the low-resource scenario.

We systematically reduce the amount of training data and subsequently evaluate

our model on the test sets of SEG and ωNLG. The results, depicted in Figure 5.7,

highlight the outcomes. Our method consistently demonstrates improvements, even

when trained with minimal data (1%). In contrast, both BART and GRF-BART

experience more pronounced performance declines. This emphasizes the robustness

of our approach, attributed to the integration of multi-level knowledge.
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Case Study

#1

O1 It was a bright, warm day.

O2 Joe regret going outside.

BART-FT Joe went outside to play.

GRF-BART Joe went outside and it started to rain.

MCNRBART Joe got sunburned.

#2

Story Context

Lisa had a job interview in three days .

She was nervous and unprepared.

Lisa decided to study for the interview.

She practiced for nine hours every day.

BART-FT Lisa got the job.

GRF-BART Lisa got the job.

MCNRBART Lisa did well at the interview and was hired.

#3

Premise The man urgently leaped out of bed.

Hypothesis1 He wanted to shut o! the alarm clock. (↭)

Hypothesis2 He wanted to iron his pants before work.

Ask-for Cause

Knowledge
leaped out of bed

Causes↘↑ alarm clock went o!

alarm clock went o!
xWant↑↓ to turn o!

#1 is from the ωNLG testset. #2 is from the SEG testset.

#3 is from the COPA testset.

Table 5.10: Case study.

Table 5.10 presents some cases as well as predictions of our method and compared

baselines. Compared with BART-FT and GRF-BART, we observe from #1 and

#2 that our method can produce more informative and reasonable text. In #3,
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Figure 5.8: The event-level subgraph of case #1. The darker color indicates the

higher relevance score (Equation 5.19).

our framework gives the correct prediction, but RoBERTa-large fails. We visualize

some related event-level causalities, which supports our method to give the correct

prediction. In Figure 5.8, we present a sub-graph of the event causalities related to

case #1. The event “get sunburned” gains the largest causal score, and is selected

as guidance for generating “Joe got sunburned.”. These findings indicate that our

method has good explainability.

Error Analysis

We conduct an error analysis to investigate the limitations of our method. As shown

in Table 5.11, all models, including ours, generate unreasonable text. For instance,

in case #1, the context involves implicit negation, yet all models struggle to discern

this nuance, leading to incorrect endings. In case #2, O2 suggests that Fred does not

succeed in losing weight, but all models fail to understand this implication. These

instances highlight the models’ inability to handle these implicit cases, emphasizing

the ongoing research value in the domain of narrative reasoning.
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#1

Original Story

Todd wanted to buy a mouse for PC

gaming. He found that most options

were expensive and gimmicky. There

were a few reasonable-looking and

high-quality options. But these were

outside of his budget.

BART-FT
Todd decided to buy a mouse for

his gaming console.

GRF-BART
Todd bought the mouse and was

happy with his purchase.

MCNRBART

Todd bought the mouse and enjoyed

his PC gaming experience.

#2

O1

Fred made a bet with Sam over who

could lose more weight in a month.

O2

Fred cancelled the bet at the end

of the month.

BART-FT Fred lost the bet and Sam lost.

GRF-BART Fred lost a lot of weight.

MCNRBART Fred lost a lot of weight.

#1 is from the SEG testset. #2 is from the ωNLG testset.

Table 5.11: Error Analysis.

5.4 Discussion

Our research provides a comprehensive method that utilizes multi-level knowledge,

which has important influence for narrative reasoning. The novel hierarchical KG
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provides an intuitive and structured way for communities to understand complex

relationships. This directly promotes the research progress of KG-based narrative

reasoning. By combining hierarchical knowledge graphs with knowledge-enhanced

PLMs, we make full use of diverse knowledge and achieve significant improvements

in narrative reasoning. Researchers can use this technology to accurately understand

and solve problems, and promote research progress in various fields.

Our method is a general approach that can be applied to diverse real-world ap-

plications, such as question-answering, dialogue systems, story generation, causal

prediction, and so on. Our method also has enlightening implications for retrieval

augmented generation (RAG). In RAG, it is often necessary to use queries of di!er-

ent granularities to retrieve diverse evidence. How to e!ectively utilize evidence of

di!erent granularities has become a problem. Our method has e!ectively organized

and utilized multi-level knowledge. This provides a case for the RAG system.

5.5 Chapter Summary

We present a two-stage framework that utilizes sentence-level and event-level causal-

ities for narrative commonsense reasoning. In the first stage, we utilize sentence-level

causalities to enhance PLMs. As the carrier of sentence-level causalities, causal-

enhanced PLMs can be easily transferred to downstream tasks. In the second stage,

we propose the hierarchical two-level knowledge graph to mitigate the event sparsity

problem. Then we ground narrative reasoning on the hierarchical knowledge graph.

Numerous experiments illustrate the e!ectiveness of our framework. We also notice

that temporal relation, a significant discourse relation, plays an important role in

our daily life. It should be useful for understanding narratives. Future research can

consider integrating our method with temporal relationships to further expand the di-

mensions of knowledge. This development will enable communities to understand and

utilize information more comprehensively and diversely, providing stronger support
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for narrative commonsense reasoning.
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Chapter 6

A Causal Approach for

Counterfactual Reasoning in

Narratives

Beyond factual reasoning, another important problem in narrative reasoning is coun-

terfactual reasoning, since it is a direct verification of the causal perception ability of

narrative reasoning systems.

6.1 Introduction

Counterfactual reasoning in narratives (CRN) refers to the prediction of alternative

events and their potential outcomes, diverging from what actually occurred [98, 2].

Specifically, given the observed narrative S = (c, x, y), where c, x, and y denote

the context, condition, and outcome, respectively, CRN considers how y→ would be

if keeping the context c unchanged while perturbing x to a similar but di!erent x→.

Figure 6.1 presents a case of CRN.
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Figure 6.1: An example of counterfactual reasoning in narratives. The example comes

from TimeTravel [98]. The colored text in the counterfactual outcome denotes the

modified parts.

Even though it is considered a crucial component of intelligent systems [90, 92], only

a few resources have been devoted to CRN. Some of the works [29, 12, 53] design

dataset-specific heuristic methods, but they are actually abusing unique patterns,

i.e., the feature of minimum editing, in the dataset, which limits the generality of

their methods. Other works [98, 159] take advantage of the progress of pre-trained

language models (PLMs), and fine-tune PLMs for CRN, i.e., learning the conditional

distribution p(y→|c,x→,S). Despite the success of simulating real examples, the con-

ditional distribution is notorious for being susceptible to exploiting artifacts of the

dataset, instead of learning to robustly reason about counterfactuals [98]. For exam-

ple, the models often directly copy the original y or learn to paraphrase y without

acknowledging the counterfactual condition [98, 29]. As a result, the predicted coun-

terfactual outcome y→ usually conflicts with the counterfactual condition x→.

Generally, CRN relies on the ability to find causality in narratives [12], i.e., y→ should

express a clear causal relation to x→ to make it clear how the perturbation makes

the observed outcome change. This issue naturally lends itself to formulation using

causal mechanisms [91], which requires us to infer the background knowledge that is

compatible with (c, x→, y→). However, this is non-trivial as it involves estimating the

posterior of the background knowledge. Luckily, with the variational technique [45],

we are able to use the background compatible with the observed S to approximate the
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posterior distribution. In fact, the variational process provides an approximation of

the background of (c, x→, y→), but it may face the problem of model collapse [106]. As a

result, the generated y→ may not be the precise e!ect of x→, and the resulting model may

be sub-optimal. To mitigate this problem, we further propose two intuitive strategies,

which introduce a pre-trained classifier and commonsense causality, to enhance the

causality between (c, x→) and the generated y→.

In this work, we propose a causal approach for CRN. We utilize the variational process

to approximate the implicit background of counterfactual scenarios. In addition,

we devise two strategies to alleviate the model collapse problem in this variational

process. First, inspired by research on natural language inference [42, 19], we want to

ensure that the generated y→ entails its true condition x→. In other words, the model

should correctly learn the influence of the condition on the outcome. Therefore,

we introduce a pre-trained classifier that estimates the likelihood of a text y entails

an input (c, x). We use the Gumbel-softmax technique [38, 34] to enable gradient

back-propagation. Second, we exploit COMeT [37] to retrieve diverse event causality

tailored for (c, x→), which allows for deducing plausible event sequences and provides

an explicit background for the unobserved counterfactual outcome y→.

To summarize, we formulate CRN in a variational framework and introduce event

causality and a pre-trained classifier to further improve the causality between x→ and

the generated y→. Our method is a general approach that is applicable to multi-

ple tasks. The experiment proves the e!ectiveness of our method. We also study

the practicality of the generated counterfactual narratives via a data augmentation

experiment.
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Figure 6.2: The proposed structural causal model. The dashed circle indicates that

the variable is latent, while the solid circle indicates that the variable is observed.

6.2 Methods

6.2.1 Problem Setting with Causal Mechanism

Given a narrative S = (c, x, y), we perturb x into a counterfactual condition x→ and

want to predict the new outcome y→. To solve this problem, we need to speculate

on the background knowledge compatible with (c, x→, y→), which allows us to predict

the precise e!ect of x→. This problem is naturally suitable to be expressed with a

causal mechanism. Figure 6.2 shows the structural causal model (SCM) [90] that

describes the generation process of narratives. Here the latent variable z denotes the

unobserved background knowledge. The SCM thus defines a joint distribution:

p(y,x, c, z) = p(y|x, c, z)p(x, c|z)p(z), (6.1)

where p(z) is a standard Gaussian distribution following common practices. Similarly,

conditioned on the observed S, the joint distribution of the counterfactual scenario is

defined as:

p(y→,x→, c, z|S) = p(y→|x→, c, z,S)p(x→, c|z,S)p(z|S), (6.2)

where p(y→|x→, c, z,S) is the decoder model requiring us to infer z from all (S, c, x→, y→)

data. However, the inference of z involves estimating the posterior distribution of the

knowledge, i.e., p(z|c,x→,y→,S). We next introduce our basic variational process to
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approximate the distribution.

6.2.2 The Basic Variational Objective

Variational Inference

Our basic objective follows the common VAE approach [45]. By introducing the

approximate network q(z|c,x→,y→,S), a lower bound of the model’s marginal log-

likelihood (that marginalizes out z) is:

log p(y→|c,x→,S) = log

∫

z

p(y→, z|c,x→,S)

⇑ ELBO = Ez≃q(z|c,x↑,y↑,S) log
p(y→, z|c,x→,S)

q(z|c,x→,y→,S)
.

(6.3)

For simplicity, we denote q(z|c,x→,y→,S) as q(z|·). Then, according to Equation 6.2,

we have:

ELBO = Ez≃q(z|·)[log
p(y→, z, c,x→|S)

q(z|·) ↑ log p(c,x→|S)]

⇓ Ez≃q(z|·)[log p(y
→|z, c,x→,S) + log p(c,x→|z,S)]

↑KL[q(z|·)||p(z|S)],

(6.4)

where p(c,x→|S) is a constant for the given dataset and independent of the parameter-

ized model. Hence, given the labeled set D which contains all (S, c, x→, y→) examples,

our basic objective is:

LVAE = ↑ 1

|D|
∑

D

Ez≃q(z|·)[log p(y
→|z, c,x→,S)

+ ↽x log p(c,x
→|z,S) + ↽kKL[q(z|·)||p(z|S)].

(6.5)

↽x and ↽k are hyper-parameters. We use the cyclic schedule [51] to anneal ↽k from 0

to 1 to avoid excessive regularization of the KL term.
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p(y→|z, c,x→,S) vs. p(y→|c,x→,S)

Current generative models follow the auto-regressive paradigm, but su!er from ex-

posure bias. Note that (c, x, y) and (c, x→, y→) have similar content. When inference,

given the input (S, c, x→), p(y→|c,x→,S) have no information about the gold y→, so it

may paraphrase y. Di!erently, we encode y→ into q(z|·), and use the KL term to bridge

the gap between q(z|·) and p(z|S). When inference, we sample z → p(z|S) and feed

it into p(y→|z, c,x→,S). This can somewhat alleviate the issue of exposure bias and

mitigate the problem of paraphrasing y.

Model Implementation

We use PLMs, e.g., BART [50], as backbone to implement p(y→|z, c,x→,S). We first

encode the input part (S, c, x→) into the context vectors HC = BARTEncoder(S, c, x→),

where HC ≃ Rl↗d, l is the total length of [S; c, x→], d is the hidden size. To fuse

z → q(z|·) into PLMs, as suggested in [51], we concatenate z with HC , and pass it

into the decoder for autoregressive learning. The hidden state of t-th time step of the

target sequence hyt is computed by:

hyt = BARTDecoder(Y<t, [HC ; z]). (6.6)

The word distribution of t-th time-step over the standard vocabulary V is:

P (yt|Y<t) = softmaxV (Wvhyt + b). (6.7)

To implement q(z|·) and p(z|S), we approximate them to Gaussian distributions.

We use the pre-trained BARTEncoder to initialize di!erent text encoders, which are

used to encode S and (c, x→, y→, S). Following several linear layers, we obtain the mean

and log-variance of two distributions, which are used to calculate the KL loss. To

implement P (c,x→|z,S), we adopt the in-batch contrastive learning. For the positive

example (c, x→, z, S), we collect di!erent x̄→ from the mini-batch and regard (c, x̄→, z, S)
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as negative examples. Then the representations of examples are projected into scalar

values for binary classification.

Training with the above base objective alone can lead to model collapse, i.e., the

KL term tends to be zero. As a result, the decoder will ignore the information from

q(z|·), and the generated text is not the precise result of x→. We next introduce our

two strategies, which introduce the pre-trained classifier and external event causality

to improve the causality between (c, x→) and the generated y→.

6.2.3 Introducing the Pre-trained Classifier

Intuitively, we expect that the generated y→ truly entails its condition x→. To achieve

this goal, we pre-train a classifier f([c, x, y]) that estimates the likelihood of the input

(c, x) entailed by the output y. Motivated by [12], we use the training set of the

used datasets to obtain positive and negative examples. For example, given the

example (c, x, y, x→, y→), (c, x→) should entail by y→ but contradict with y, and (c, x)

should entail by y but contradict with y→. That is, (c, x, y) and (c, x→, y→) are positive,

and (c, x→, y) and (c, x, y→) are negative. We initialize f(·) with BARTEncoder to keep

the embedding space the same as the generator.

Then, we train the generator so that its predicted outcome entails the corresponding

condition with a high likelihood measured by the classifier:

LCla = ↑ 1

|D|
∑

D

Ez≃q(z|·),ỹ≃p(y|z,c,x,S↑)[log f([c, x, ỹ]) + log(1↑ f([c, x→, ỹ]))], (6.8)

where S → = (c, x→, y→) and p(y|z, c,x,S→) is the mirror of p(y→|z, c,x→,S). Here, we

consider p(y|z, c,x,S→) rather than p(y→|z, c,x→,S) because it has been optimized in

Equation 6.4. In fact, we use the classifier to restrict the generated ỹ entails its true

condition x but contradicts with x→. As in [35, 34], we use Gumbel-softmax technique

to enable gradient backpropagation for the discrete text.
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6.2.4 Utilizing External Event Causalities

The variational process provides an implicit background for unobserved counterfac-

tual outcomes, this further motivates us to utilize external event causalities which

allows for introducing diverse event commonsense and providing an explicit back-

ground for generating counterfactual outcomes.

Retrieving Event Causality

We use COMeT [37] as the event knowledge base. We first feed the zero-hop events

(c, x→) into COMeT to generate one-hop events with corresponding relations. The

one-hop events are then fed into COMeT to generate two-hop events. The details

are same as in Chapter 5. We next organize the retrieved knowledge into an event

graph G = (V,E) where V denotes the node set and E denotes the edge set. Each

node e ≃ V is an event which is a word sequence. Each edge in E is a tuple (eh, r, et)

containing a head event eh, a relation r, and a tail event et. Then, we perform

reasoning on G to select guided events, which are the possible e!ects of (c, x→). We

use the selected events as guidance for generating y→.

Selecting Guided Events

Motivated by [39, 77], we perform multi-hop reasoning on G to select important event

nodes. We iteratively compute the relevance scores of multi-hop events with respect

to (c, x→), as shown in Figure 6.3(a). In each iteration, we parallelly calculate the

scores of events in the same hop. For the tail event et, the score s(et) is calculated

by polymerizing information from its neighbors Net including pairs of (eh, r):

s(et) =
1

|Net |
∑

(eh,r)↘Net

(s(eh) +R(eh, r, et)). (6.9)

At the beginning, zero-hop events, i.e., (c, x→), are assigned a score of 1, e.g., s(c) =

s(x→) = 1, while other events are assigned a score of 0. R(·) is the relevance of the
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Figure 6.3: (a) The scores of one-hop and two-hop events are parallelly calculated in

each iteration. Color intensity indicates the score di!erence. In each iteration, the

black arrows denote used edges, while the grey arrows denote unused edges. (b) We

concatenate Ek with (S, c, x→) for the auto-regressive decoding.

edge (eh, r, et) with respect to the (c, x→), which is calculated by:

R(eh, r, et) = ϑ(hT

(c,x↑)Wk · [heh
;hr;het ]), (6.10)

where Wk ≃ Rd↗3d, [·; ·] denotes the concatenation, h(c,x↑) ≃ Rd is the embedding of

(c, x→), heh
,hr,het are the embeddings of eh, r, et.

We select the top-k events according to their scores: Ek = topk
i
(s(ei)). k is set

to 4 after searching on the dev set. To fuse the guided Ek into the generation, we

concatenate (S, c, x→) with Ek, and pass them to BARTEncoder to obtain knowledge-

enhanced context vectors H
C̃
= BARTEncoder(S, c, x→, Ek). Then, we concatenate

H
C̃

with z → q(z|·), and feed it into the decoder for autoregressive learning, i.e.,

y→ → p(y→|z, c,x→,S,Ek), as shown in Figure 6.3(b).

6.2.5 Training and Inference

Similar to [77], we add an additional object to guide the event selection. We maximize

the probability of selecting positive events by:

LE =

∑
D

|D|
∑

i

↑li log p(ei)↑ (1↑ li) log(1↑ p(ei)), (6.11)

where p(ei) = ϑ(s(ei)) is the probability that the event ei is selected. li is the label

of ei which is subject to the overlap between ei and the gold y→. The details are in
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Appendix ??. The final object is:

L = LV AE + ωLCla + ϱLE, (6.12)

where ω and ϱ are hyper-parameters.

When inference, given input (S, c, x→), we first sample z → p(z|S), then we select

guided event Ek according to (c, x→), at last we generate the counterfactual outcome

y→ → p(y→|z, c,x→,S,Ek).

6.3 Experiment

Datasets Train Dev Test

TimeTravel 28363 1871 1871

PossibleStories 3404 458 671

Table 6.1: Statistics of the datasets used in this work.

6.3.1 Datasets

We evaluate our method on two datasets.

• TimeTravel [98] is a dataset designed for counterfactual story rewriting. It

builds upon the ROCStories [75] corpus, comprising numerous five-sentence

stories S = s1:5. In this setup, s1 serves as the context c, s2 as the condition x,

and s3:5 establish the outcome y. TimeTravel involves the rewriting of the initial

condition x by humans into a counterfactual condition x→, followed by annotators

making minimal edits to the original ending y to generate the counterfactual

outcome y→. One of the primary challenges in TimeTravel is balancing the

generation of natural stories with minimal modifications to the original y.
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• PossibleStories [2], also built on the ROCStories corpus, considers the prob-

lem that possible consequences for the same context may vary depending on

the situation we refer to. It is originally a multiple-choice dataset, where each

example consists of the original context c, the original ending y, the counter-

factual question x→, and candidate options including the counterfactual ending

y→. To adapt it to text generation, we set the original condition x as a simple

text “what’s the most likely story ending?”, then we generate y→ according to

(c, x, y, x→). The statistics of two datasets are in Table 6.1.

6.3.2 Baselines

We produce the following kinds of baselines:

• Prompting large chat models, e.g., ChatGLM2(6B) [148], Llama2Chat(7B)

[124], ChatGPT [84]. We use one-shot prompting for experiments, the used

prompts are in Table 6.2 and 6.3.

• Supervised fine-tuning. We fine-tune several pre-trained language models,

including GPT2(base) [102], T5(base) [105], BART(base) [50], and Llama2(7B)

[124]. We use QLoRA [14] to adapt Llama2(7B) on a single RTX 3090 GPU.

For TimeTravel, we additionally compare ours with some task-specific methods:

• DELOREAN [99] and EDUCAT [12] regard the task as a controllable generation

problem, and unsupervised edit the original y to the counterfactual y→.

• CLICK [52], a two-stage method, first detects which words in the original ending

need to be modified, and then implements the modification.
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Tasks Prompt

TimeTravel

Each story contains 5 sentences, where the first two sentences are the story premise, and the last

3 sentences are the story ending. I will apply subtle a perturbation to the second sentence, making

the first two sentences a counterfactual story premise. Due to the slight perturbation, the

counterfactual premise is very similar to the original premise, with only some words being di!erent.

According to the original story and the counterfactual story premise, you are required to predict the

counterfactual story ending. Note that the counterfactual story ending should be similar to the

original story ending, as well as being coherent with the counterfactual story premise.

Here is one example:

###

<Original 5-sentences story>

1. Bella wanted to cook some spaghetti and meatballs.

2. She discovered she had no pasta noodles.

3. She found a recipe online that used spaghetti squash instead.

4. Bella luckily had a spaghetti squash on hand.

5. She was surprised to find the spaghetti and meatballs delicious!

<Counterfactual story premise>

1. Bella wanted to cook some spaghetti and meatballs.

2. She realized she didn’t have the time to make it properly so she changed made an omelette instead.

<Counterfactual story ending >

3. She found a recipe online that used egg whites instead.

4. Bell luckily had many eggs on hand. \\

5. She was surprised to find the egg white omelette delicious!

###

Now, given the following example, please write the counterfactual story ending.

There should be only three sentences at the counterfactual story ending.

<Original 5-sentences story>

{original story}

<Counterfactual story premise>

{counterfactual premise}

<Counterfactual story ending>

Table 6.2: The prompts used for the TimeTravel dataset.

Implementation Details

We use the train set of the two datasets to train the classifier. We use the AdamW

optimizer and set lr to 5e-6. We select checkpoint according to F1 on the dev set.

The best checkpoint achieves the F1 scores of 66.1 and 70.1 in the test set of two

datasets. When training the counterfactual generator, we use the AdamW optimizer

and set lr to 5e-5. We linearly decrease lr to zero with a 10% warmup ratio. We
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Tasks Prompt

PossibleStories

You will observe a story that consists of a context and an ending. Then given the counterfactual

question, please generate a new story ending that is compatible with the question.

Here is an example:

###<Observed story context>

Fred and James both claimed they were the best basketball player. One day they decided to find

out who was better. James loved to brag, but Fred was focused on the game. Eventually Fred beat

James by 1 point.

<Observed story ending>

James learned that day to focus on the game, not on bragging.

<Counterfactual question>

What is most likely to happen if Fred has a lot of empathy for others?

<Counterfactual story ending>

Fred felt bad that he won, so the next game he eased up and let James win.

###

Now, given the following example, please write the counterfactual story ending.

You can only generate one sentence, do not add additional content.

<Observed story context>

{original context}

<Observed story ending>

{original ending}

<Counterfactual question>

{cf context}

<Counterfactual story ending>

Table 6.3: The prompts used for the PossibleStories dataset.

Datasets bs lr ω ϱ ↽x

TimeTravel 8 5e-5 1.0 0.5 1.0

PossibleStories 8 5e-5 0.5 0.5 0.5

Table 6.4: The searched hyper-parameters.

search for the best hyper-parameters according to ENTScore on the dev set of each

dataset. The searched parameters are in Table 6.4. When inference, we adopt the
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multinomial sampling strategy to generate y→, and we repeat for 5 times to calculate

the average performance.

6.3.3 Automatic Evaluation

Metrics For Timetravel, we follow the previous works and use BLEU [87], BertScore

[153], ENTScore [12], and HMean = 2·BLEU·ENTScore
BLEU+ENTScore [12] as metrics. BLEU and

BertScore evaluate the similarity between the generated y→ and the ground truth.

ENTScore evaluates the coherence between (c, x→) and the generated y→. For Possi-

bleStories, we use BLEU, BertScore, and ENTScore as metrics.

Our Method vs. Baselines

The automatic evaluation result is shown in Table 7.3 and 6.6. We can see BART gen-

erally performs better than GPT2 and T5, therefore we use BART as the backbone.

In addition, we observe that:

• In Table 7.3, unsupervised editing-based methods have poor performances, in-

dicating that this kind of unsupervised approach is unable to produce qualified

counterfactual stories.

• Compared with BART, our method achieves an obvious improvement, especially

in the ENTScore metric, e.g., obtaining a 4.2/4.0 gain on two datasets. In

addition, our method outperforms Llama2(7B), which indicates that our method

is e!ective in improving the causality between (c, x→) and the generated y→.

• Due to the extremely large-scale pre-training, Chat models, e.g., ChatGLM2,

Llama2Chat, and ChatGPT, have a strong ability to generate coherent stories.

However, chat models get a low BLEU and BertScore, indicating that they tend

to less consider what has happened.
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TimeTravel

Methods BLEU BertS. ENTS. HMean

Prompting Chat Models

ChatGLM2(6B) 16.5 60.0 66.2 26.4

Llama2Chat(7B) 16.9 58.8 77.8 27.8

ChatGPT 36.4 69.8 82.6 50.6

Unsupervised Editing-based Methods

DELOREAN 23.9 59.9 51.4 32.6

EDUCAT 44.1 74.1 32.3 37.3

Supervised Fine-tuning

CLICK 46.7 73.2 36.7 41.1

GPT2 63.5(0.2) 77.8(0.3) 43.5(1.0) 51.6(0.7)

T5 71.2(0.3) 80.1(0.1) 42.7(0.8) 53.3(0.6)

BART 66.5(0.3) 79.4(0.2) 52.0(1.0) 58.3(0.6)

Llama2(7B) 70.3(0.4) 79.9(0.2) 54.1(0.7) 60.9(0.5)

Ours 67.0(0.1) 79.5(0.1) 56.2(0.4) 61.1(0.2)

Ablation Experiment

w/o Clas 67.5(0.2) 79.8(0.1) 54.6(0.6) 60.4(0.4)

w/o Event 65.6(0.4) 79.0(0.1) 55.2(0.5) 60.0(0.4)

w/ VAE 65.9(0.3) 79.2(0.1) 54.1(0.6) 59.4(0.4)

Table 6.5: The automatic and ablation-study result on TimeTravel. We report the

mean(std) under 5 random experiments. Scores with bold denote the best results.

• On TimeTravel, the ENTScore result of our method is not as good as the

results of chat models, but our method achieves the best trade-o! between

BLEU and ENTScore. On PossibleStories, our method approximates ChatGPT
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PossibleStories

Methods BLEU BertScore ENTScore

Prompting Chat Models

ChatGLM2(6B) 1.9 48.4 38.8

Llama2Chat(7B) 3.0 49.9 43.8

ChatGPT 5.0 53.5 48.5

PLMs-based Finetuning

GPT2 6.0(0.7) 49.4(0.3) 37.3(0.4)

T5 5.7(0.3) 49.2(0.3) 35.8(0.7)

BART 13.2(0.5) 53.8(0.2) 42.9(1.0)

Llama2(7B) 16.3(1.1) 54.4(0.6) 45.1(0.9)

Ours 16.1(0.2) 56.2(0.1) 46.9(1.0)

Ablation Experiment

w/o Clas 15.7(0.4) 55.6(0.3) 45.6(0.7)

w/o Event 15.5(0.4) 55.8(0.2) 46.0(0.5)

w/ VAE 15.5(0.5) 55.9(0.3) 45.0(0.4)

Table 6.6: The automatic and ablation-study result on PossibleStories. We report the

mean(std) under 5 random experiments. Scores with bold denote the best results.

and surpasses ChatGLM2 by a large margin. This indicates that the small-

model-based sophisticated method is expected to be comparable to LLM-based

prompting, indicating that it still has research value in the era of LLMs.

Ablation Study

Settings To investigate the e!ectiveness of di!erent components, we devise the

following ablated variants to compare with our full model. (1) “w/o Event” means
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we do not use event causality. (2) “w/o Cla” means we remove the pre-trained

classifier. (3) “w/ VAE” means we ablate both event causality and the pre-trained

classifier. In this case, this variant degenerates into the basic VAE module.

Result The ablation study result is shown in Table 7.3 and 6.6. We have the

following observations.

• Compared with BART, “w/ VAE” achieves a 2.1/2.1 gain in ENTScore on both

datasets. This demonstrates the e!ectiveness of the variational process. The

possible reason is that the variational process learns an approximation of the

latent z, which provides an implicit background for generating counterfactual

outcomes.

• Compared with “w/ VAE”, “w/o Clas” and “w/o Event” achieve higher ENTS-

core on both datasets, indicating the two strategies contribute to improving

the causality between x→ and the generated y→. This makes sense because (1)

external event causality provides a causal background for generating y→ and (2)

the classifier will punish the unqualified generation. The best result is achieved

when combining two strategies, indicating that two strategies complement each

other.

• “w/o Clas” performs better than “w/o Event” on both datasets. This shows

that the classifier is more important than event knowledge. The possible reason

lies in two aspects. (1) Though retrieved event causality may contain useful in-

formation for generation, unrelated and noisy knowledge may also be retrieved.

(2) The classifier directly measures the causality between the condition and the

generated outcome, and penalizes incoherent generation.
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Methods

TimeTravel PossibleStories

MinEdits Coherence Similarity Coherence

W L W L W L W L

vs. w/o Clas 14.7 23.7 28.0 10.3 10.0 9.0 16.3 7.0

vs. w/o Event 17.0 25.3 37.3 10.0 13.3 7.0 24.3 6.7

vs. Llama2Chat(7B) 61.0 11.0 24.3 37.7 32.3 12.7 41.7 20.7

vs. ChatGPT 52.3 15.7 16.7 47.0 21.7 13.0 23.7 27.3

Table 6.7: The manual evaluation result. MinEdits denotes Minimal-Edits.

6.3.4 Manual Evaluation

Setting For TimeTravel, we follow previous works and use Minimal-Edits and Co-

herence as manual evaluation metrics. Coherence denotes the logical consistency

between the counterfactual context (c, x→) and generated y→. Minimal-Edits denotes

the extent of minimal revision between the original y and the generated y→. For Pos-

sibleStories, we use Similarity and Coherence as metrics, where Similarity evaluates

the similarity between the generated y→ and the ground truth. We carry out pairwise

comparisons between our method with some baselines, including Llama2Chat, Chat-

GPT, and two ablated models “w/o Event” and “w/o Clas”. We randomly sample

100 cases from the two test sets for each pair of models, respectively. Three anno-

tators are recruited to make a preference among Win, Tie, and Lose given the input

and two outputs generated by our model and a baseline respectively. The annotators

are research students from the field of commonsense text generation to make sure

they have a fair judgment of used metrics.

Result The result is shown in Table 6.7. Compared with the two ablated variants,

our full method shows an increase in Coherence, but a decrease in Minimal-Edits.

This is because both of the two strategies prevent copying the original ending y.
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Figure 6.4: Linearly interpolating zprior and zposterior for the VAE decoding, i.e.,

y→ → p(y→|z, c,x→,S).

On TimeTravel, our full model performs better in Minimal-Edits, but not as well in

Coherence as the chat models. This is consistent with automatic evaluation. We

calculate Fleiss’s kappa reliability as the inter-rater agreement. For TimeTravel, the

agreement of Minimal-Edits and Coherence is 0.43 and 0.56. For PossibleStories, the

agreement of Similarity and Coherence is 0.50 and 0.52.

6.3.5 Further Discussion

Analyzing the VAE Module by Manipulating z

Since the strength of our VAE module lies in its ability to approximate the poste-

rior distribution, we are interested in whether the encoded z benefits counterfactual

narrative generation. We conduct a pilot study on TimeTravel. We first replace

z → p(z|S) with a random noise znoise → N (0, 1), and feed znoise into the VAE de-

coder p(y→|z, c,x→,S) for generation. We get a 43.8 ENTScore, which is significantly

worse than the result of BART. This is reasonable because the random noise disrupts

the model structure and brings about a significant negative impact. Next, we make

a linearly interpolation z̄ = ω · zprior + (1 ↑ ω) · zposterior, where zprior → p(z|S) and

zposterior → q(z|c,x→,y→,S), and feed z̄ for generation. The result is shown in Figure

6.4. The larger the proportion of zposterior, that is, the more posterior information

about the gold y→, the better the result is achieved. When using zposterior for gener-
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ation, we get a 56.5 ENTScore, but the value is still not satisfactory enough. The

possible reason is that too much information is lost during the process of encoding

the sequence into a vector z, making it hard for the model to reconstruct the gold y→.

According to above results, we speculate that the more e!ective solution to this prob-

lem is to introduce more diverse and more large-scale data. Therefore, we conduct

the following data augmentation experiment.

Generating Counterfactual Stories for Data Augmentation

[98] provides an additional data partition that only has counterfactual conditions x→

but no counterfactual outcomes. This partition contains about 97k examples. We

use this partition to study the practicality of the generated counterfactual stories

via a data augmentation experiment. Specifically, we use our ablated variant “w/o

Event” as the generator since its performance is not significantly worse than our full

model, and there is no need for external knowledge, making it easy to use. For each

(S, c, x→), we use “w/o Event” to generate 60 candidates and keep the one with the

highest ENTScore as the pseudo counterfactual outcome, denoted as ỹ→. Finally, we

obtain the pseudo set DP = {(S, c, x→, ỹ→)}. We test this set for both generation and

classification tasks.

Testing for the Generation Task First, We only use DP to directly fine-tune

BART and Llama2, i.e., learning p(y→|c,x→,S). The result is shown in Figure 6.5(a).

When training with about 32k pseudo examples, BART achieves a 52.0 ENTScore,

which is obtained using the labeled set D. When using more pseudo examples for

training, the result continuously improves. We have a similar observation from the

result of Llama2(7B). Because finetuning Llama2(7B) is time-consuming, e.g., it takes

about 1.5 hours to train an epoch with 30k samples, we use a maximum of 50k samples

for fine-tuning. Next, we mix the labeled set D and a di!erent number of pseudo

examples to fine-tune BART. The result is shown in Figure 6.5(b). When mixing
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(a) (b)

Figure 6.5: (a): Fine-tuning BART and Llama2(7B) with a di!erent number of pseudo

examples. (b): Fine-tuning BART via mixing the labeled setD and a di!erent number

of pseudo examples.

Figure 6.6: Fine-tuning RoBERTa-large with di!erent types of training examples.

D and all pseudo examples, BART obtained a 70.1 ENTScore, which is better than

ChatGLM2 and closer to Llama2Chat. However, as the number of pseudo examples

increases, BLEU continues to decline, but overall the decline is acceptable.

Testing for the Classification Task Motivated by [12], we construct a binary

classification task to test the quality of pseudo examples, which is the same as training

the classifier. We explore three types of training examples to train RoBERTa-large

[66] and then validate on the test set of TimeTravel: (1) the labeled set D, (2) the

pseudo set DP in which we randomly sample a di!erent number of pseudo examples,

and (3) the mixed set in which we mix the label set D and a di!erent number of

pseudo examples. The F1 result on the test set of TimeTravel is shown in Figure 6.6.

When training with more pseudo examples, F1 achieves a stable improvement. The
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F1 under the mixed set is better than that under the labeled set, indicating that the

pseudo set is an e!ective supplement to the labeled set.

Overall, these results demonstrate the practicality of the generated pseudo examples,

which further proves the e!ectiveness of our method.

Case Study and Error Analysis

Table 6.8 presents a case study. The counterfactual ending generated by ChatGPT is

coherent, but it di!ers significantly from the original ending. Our model generates a

coherent counterfactual ending with minimal-edits. However, we find that the issue

of paraphrasing y still exists in our method, as shown in Table 6.9. However, this

issue is less likely to occur in large chat models. We speculate that there are two

reasons: (1) the problem of exposure bias cannot be completely eliminated; (2) The

used model is small, and the scale and diversity of data are insu”cient.

6.4 Disscusion

We construct our method based on small-scale datasets and the small model, e.g.,

BART, therefore our method cannot outperform large language models. In the exper-

iment, we find that fine-tuned Llama2 performs better than fine-tuned BART. This

indicates that constructing our method upon larger pre-trained models may have a

better performance. In addition, the generated counterfactual stories are beneficial

for counterfactual narrative reasoning. This foreshadows the future direction, that

is, we can transform x into di!erent x→ through di!erent perturbations, thus gener-

ating diverse counterfactual stories for data augmentation. Di!erent from predicting

counterfactual outcomes, it is easy to perturb x into x→, and there have been a lot of

related research works. We leave this in the future work.
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Original

Story

A man dug a well on his farm. Instead of water,

though, he struck oil. Jubilant, he placed some calls.

A large oil company arrived the next day. They bought

the land from the man for a million dollars.

Counterfact-

ual Context

A man dug a well on his farm.

Instead of water, though, he struck fossils.

w/o Clas

Jubilant, he placed some calls. A large fossils

company arrived the next day. They bought the land

from the man for a million dollars.

w/o Event

Jubilant, he placed some calls. A large oil company

arrived the next day. They bought the land from the

man for a million dollars.

Llama2Chat

Excited, he placed some calls. A paleontology company

arrived the next day. They bought the land from the

man for a large sum of money!

ChatGPT

Jubilant, he contacted a local museum to share his

discovery. A team of paleontologists arrived the next

day. They o!ered to buy the fossils from the man

for a substantial amount of money.

Ours

Jubilant, he placed some calls. A large fossil

company arrived the next day. They bought the fossils

from the man for a million dollars.

Table 6.8: A case study with the generated texts by di!erent models. The case is

from the test set of TimeTravel.
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Original Story

Megan loved her sock monkey. She took

it to her grandad’s house when she

visited him. Megan got home and

realized she had left her monkey. I

had to meet grandad halfway to his

house and pick up her monkey.

Original ending
Megan was so happy and she

was then able to go to bed.

Counterfactual

question:

Why was it so important to get the

sock monkey back before bedtime?

w/o Clas
The monkey needed to be taken back

before Megan got to play with it.

w/o Event
Megan was so happy and she was

then able to go to bed.

Llama2Chat
Megan needs to play with her

sock monkey before going to bed.

ChatGPT
Megan couldn’t sleep without

her sock monkey by her side.

Ours
Megan was so happy and she

was then able to go to bed.

Table 6.9: A case for error analysis. The case is from the test set of PossibleStories.

6.5 Chapter Summary

In this work, we formulate counterfactual reasoning in narratives in a VAE framework.

In addition, we introduce a pre-train classifier and external event causality to further
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improve the causality between the counterfactual condition and the generated coun-

terfactual outcome. The experiment proves the e!ectiveness of our method. We also

conduct a data augmentation experiment to verify the practicality of our method.
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Part III

Hard Negatives Mining for

Narrative Coherence Learning
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Chapter 7

Generating Contrastive Narratives

Using the Brownian Bridge Process

for Narrative Coherence Learning

7.1 Introduction

Narrative reasoning [10, 135] is an account of the development of events, along with

explanations of how and why these events happened [36], which has provoked a vari-

ety of applcations, including commonsense causal reasoning [108, 27, 67], abductive

reasoning [5], and so on.

A major challenge for narrative reasoning is to evaluate narrative coherence [75].

Existing methods mainly focus on devising self-supervised tasks, in which positive

samples are from large-scale real narratives [75, 145], and negative samples are cre-

ated by sampling-based strategies. For example, [138, 63, 126] create negative samples

by shu#ing or masking real narratives. [47] incorporates randomly sampled sequences

and model-completed [102, 6] sequences as negative samples. However, these strate-

gies are generally coarse-grained and superficial. The resulting negatives still face
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problems of low quality, such as being irrelevant or repetitive [47], making them less

representative, and easily distinguishable.

Figure 7.1: We define that an example consists of a prefix (P) and a su”x (S). Left:

An ideal contrastive narrative Xc, which is similar with X but conveys di!erent

semantics. Text with red color denotes the di!erence. Right: The solid line denotes

the data manifold. The dashed line represents the methods for synthesizing negative

samples, such as Mixup [149] or crisscrossing. As Xc approaches X, the corresponding

negative sample should be more “hard”.

Hard negatives are critical in the contrastive learning framework [136, 74, 142]. The

ideal of hard negative samples should be that are similar to a real narrative but

actually less coherent. To mine such negatives, a possible approach is to introduce

contrastive narratives. Contrastive narratives are examples that are similar in con-

tent, but convey di!erent semantics [69, 132]. Due to this property, we can crisscross1

a narrative and its contrastive variants to obtain negative samples, as shown in Figure

7.1. The resulting negatives should be similar to the real narratives but less coherent,

making them good candidates for hard negatives. However, existing works for col-

lecting contrastive narratives rely heavily on manual annotation, which is costly and

not scalable. To solve this problem, exploiting automated methods has great value,

but is di”cult since it requires preserving subtle di!erences while providing a clear

delineation between the observed narrative and the generated ones.

Actually, the generation of contrastive narratives involves exploring the latent space

surrounding a given narrative, enabling the creation of similar narratives with dis-

1For example, according to X = (P, S) and Xc = (Pc, Sc), we can exchange their prefixes and

su”xes to obtain the negatives (P, Sc) and (Pc, S). We define this strategy as “crisscrossing”, and

use this definition in the rest of our paper.
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tinct characteristics. Assuming that the evolution tendency of an observed narrative

can be represented as a continuous trajectory in latent space, which can be modeled

by Brownian motion [107, 133]. Consequently, we can sample the latent trajectories

which exhibit proximity to the observed trajectory, and then decode the sampled tra-

jectories into explicit narratives. But the problem is that the decoded narratives may

di!er significantly in content from the observed narrative, which may not meet the

requirements for contrastive narratives. To simplify the problem, we further suggest

that contrastive narratives keep the same endpoint as the observed narrative, which

directly models the fact that a narrative event can evolve to the same end through

di!erent paths [98]. Based on this constraint, we are able to sample di!erent trajec-

tories from the Brownian Bridge [68, 133] region that is centered around the observed

narrative. The sampled trajectories are decoded as narratives with the same start

and end as the observed narrative, while also having similar but di!erent intermediate

event chains. Then we crisscross the observed narrative and the generated ones to

synthesize negative samples. In fact, in our crisscrossing strategy, the start and end

points of resulting negatives remain the same as the positive ones. That is, the start

and end of positive narratives will never be perturbed. This further motivates us

to design an event-level perturbation to obtain negatives, as more diverse negatives

definitely benefit contrastive learning.

In this paper, we devise two strategies to create hard negatives for narrative coherence

learning. The first strategy crisscrosses a narrative with its contrastive variants,

and the second strategy performs an event-level replacement. To obtain contrastive

narratives, we sample di!erent latent trajectories from the Brownian Bridge region,

then fix the start and end points of the narrative, and generate diverse contrastive

narratives. The generated contrastive examples are used to create hard negatives.

Our contributions can be summarized as follows.

• Based on the Brownian Bridge process, we generate high-quality contrastive
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Figure 7.2: The training phrase of contrastive narratives generation. Given z1 and

z5, Z is sampled according to Equation 7.1. The masked e2, e3, e4 are used as the

prompt for decoding.

narratives, which are used to synthesize hard negatives.

• We propose a new coherence evaluator (CohEval), which is enhanced by diverse

and high-quality hard negatives. Our model is trained exclusively via self-

supervised contrastive learning and is applicable across a diverse spectrum of

downstream tasks within the AI domain.

• We evaluate our model on multi-choice tasks and one narrative generation task.

We additionally perform a comprehensive examination of our strategies for syn-

thesizing negative samples. The empirical findings validate the e”cacy of our

approach.

7.2 Methods

7.2.1 Data Preparation

Following the previous method [7], we use RocStories [75] as data corpus, since it

contains abundant event commonsense knowledge, making it a good resource for

narrative reasoning. Due to the limitation of computational resources, we randomly

select about 20k samples from RocStories, and denote them as the positive sample

set D+. Each sample in D+ is a narrative X = {e1, · · · , e5}, in which each ei (i =

1, · · · , 5) is an event. Following previous works, we lay narrative coherence learning
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in contrastive learning, in which the negative samples are needed for training.

We devise two strategies for mining hard negatives: (1) crisscrossing a narrative and

its contrastive variants; (2) event-level replacement. Next, we introduce how to obtain

contrastive narratives.

7.2.2 Generating Contrastive Narratives via the Brownian

Bridge Process

Given a narrative, the contrastive variants should be similar to it and express distinc-

tive characteristics. We regard this problem as exploring the latent space surrounding

the given narrative, and propose to model this problem by the Brownian Bridge pro-

cess [133]. The transition distribution of a Brownian Bridge process from a start

point z0 at t = 0 to an endpoint zT at t = T is:

p(zt|z0, zT ) → N ((1↑ t

T
)z0 +

t

T
zT ,

t(T ↑ t)

T
). (7.1)

It acts like a noisy linear interpolation between the start and end points of the trajec-

tory, which can maintain a smooth transition of event evolution given the start and

end points.

Following [133], we pre-train an encoder with the Brownian Bridge loss, so that we can

encode an event e to the latent code z. The event encoder is a nonlinear mapping from

raw input space to latent space, fε : X ↓ Z. Consider a set of triplet observations,

(x1, x2, x3), the goal is to ensure that fε(x1), fε(x2), fε(x3) follow the Brownian bridge

transition density in Equation 7.1. Following [133], we ensure this using a contrastive

objective. Formally, given a narrative event sequences, S = {e0, · · · , e4}, we draw

batches consisting of randomly sampled positive triplets e0, et, eT where 0 < t < T :

B = {(e0, et, eT )}. Note that we use indices 0, t, T to denote the start, middle, and

end points of a Brownian bridge, but these do not correspond to strictly sampling
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the first, middle, and last events of a narrative story. The encoder is optimized by:

Lf = ↑ log
exp(d(e0, et, eT ; fε))∑

(e0,et↑ ,eT )↘B
exp(d(e0, et↑ , eT ; fε))

d(e0, et, eT ; fε) = ↑ 1

2ϑ2
||fε(et)↑ µ||22,

(7.2)

where µ and ϑ2 are the mean and variance in Equation 7.1. As suggested by [133],

we freeze the BART and add a non-linear layer that converts the BART output to a

latent vector. The size of the latent space is set to 64 by default.

Then, by fixing (z1, z5), we sample zt according to Equation 7.1 to obtain the latent

trajectories Z = {z1, z2, z3, z4, z5}. To generate contrastive narratives, we encode

(e1, e5) with BART [50] to obtain the context embeddings:

Hc = BARTEncoder([e1, e5]), (7.3)

where [; ] denotes the concatenation, Hc ≃ Rl↗d, l is the length of [e1; e5]. Next, given

Hc and latent codes Z, we generate middle events y = (e2, e3, e4). Specifically, let yt

denotes the t-th tokens in y. At the timestep t, the decoder must predict yt using Hc,

all tokens in the past y<t, as well as the event latent codes Z:

hyt = BARTDecoder(y<t,Hc,W
T

z
Z)

P (yt|Y<t) = softmaxV (Wvhyt + b).
(7.4)

where V denotes the standard vocabulary, Wz denotes a linear layer that maps the

dimension of z to be identical to Hc. This can be seen as decoding a latent trajectory

{z1, z2, z3, z4, z5} into narrative events given the start event e1 and end event e5.

However, in our preliminary trials, we found that the generated narratives are coher-

ent but less similar to the original one, which brings di”culties to the construction of

hard negatives. The possible reason is that the encoding process, i.e., encoding e to

z, lost too much information, making it di”cult for the model to reconstruct y. To

solve this problem, we randomly mask the y with the ratio of ε (0.85 by default), and

use the masked sequence as the prompt for the decoding phrase, which encourages
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the decoder to generate more similar events to y. Actually, these can be seen as

two types of constraints, where Z requires that y and the generated text show similar

trajectories in latent space, and the masked prompt requires that y and the generated

text are similar in vocabulary. The whole training process is shown in Figure 7.2.

When training, we use RocStories excluding D+ as training data. We have also tried

other pre-trained models, such as GPT2 [102] and T5 [104], and BART empirically

performs best, as shown in Table 7.8. Therefore, we choose BART as the backbone.

After training, for each X ≃ D+, we fix its start and end events, then sample di!erent

intermediate events. For each X, we first generate 200 candidates, then use several

criteria to filter low-quality candidates. Specifically, for each positive narrative, we

generate 200 candidates. In practice, we observe that the generator may produce

incoherent or duplicate candidates. Therefore, we set several rules to filter low-

quality items. We first use our event-level replacement strategy to train the base

evaluator MER. We use MER to filter items whose coherence scores are smaller than

a threshold (empirically set to 0). Next, for each candidate, we calculate its text

similarity with the remaining candidates. We gradually discard the candidates with

the highest similarity until there are 100 remaining. When training Coheval, we select

N top-ranked candidates according to their coherence scores for synthesizing negative

samples. We finally retain N (60 by default) most-qualified contrastive examples.

7.2.3 Synthesizing Negative Examples

We devise two strategies to create negative examples. The first strategy crisscrosses

a narrative with its contrastive variants, and the second strategy performs an event-

level replacement.
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Crisscrossing a Narrative and its Contrastive Variants

Note that each X contains five events. For simplicity, we define the first two events as

the prefix (P ), and the last three events as the su”x (S), so that we denoteX = (P, S)

and the contrastive variant Xc = (Pc, Sc). Then we are able to synthesize the negative

example X↓ = (P, Sc). The basic intuition is: Sc is coherent with Pc, so it should be

less coherent with P . This is because X and Xc are di!erent paths with the same

start and end points. Meanwhile, X↓ = (P, Sc) is similar to X = (P, S), making it

qualified as a hard negative2. With loss of generality, we denote the obtained negative

samples as CX = {X↓
i
}2N
i=1.

For each training epoch, we randomly sample K (15 by default) negatives samples

{X↓
k
}K
k=1 from CX for each X, and feed them as well as X into a pre-trained language

model (PLM) [15, 66], e.g. RoBERTa, to obtain sequence-level representations:

h+ = RoBERTa(X),

h↓
k
= RoBERTa(X↓

k
),

(7.5)

where k = {1, · · · , K}, h+ and h↓
k
≃ Rd, d is the hidden size of RoBERTa. We have

also tried BERT [15] as the backbone, as shown in Figure 7.3.

Next, the sequence-level representations are passed into a linear layer Wc ≃ Rd to

derive coherence scores of all samples:

s+ = WT

c
h+,

s↓
k
= WT

c
h↓
k
.

(7.6)

Lastly, we use the contrastive classifying objective to distinguish the positive examples

from the corresponding negative examples:

L1 = ↑ 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑

K

k=1 exp(s
↓
k
)
. (7.7)

2Similarly, we can obtain the negative example X↑ = (Pc, S) by defining the first three events

as the prefix.
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It should be noted that the di!erence between X↓ = (P, Sc) and X = (P, S) lies in

the third and fourth events, i.e., e3 and e4. Due to the masked prompt, some tokens

in (e3, e4) of X↓ are similar to those of X, making X↓ qualified. However, in the

crisscrossing strategy, e1 and e5 will never be perturbed. This further motivates us

to perform an event-level perturbation to X to create more diverse negative samples.

Event-level Replacement

Due to the fact that events are the basic semantic unit of neural language, for a

narrative, if we replace a component event with another similar but di!erent event,

the resulting example should be less coherent and similar to the original narrative.

Specifically, based on D+, we build an event pool, which consists of about 100k

di!erent events. We pre-compute the cosine similarity among all event pairs using

SimCSE [21], and cache the top 20 most similar events Qe for each query event e.

Then, given a positive example X, we randomly select a position i and replace i-

th event ei with a randomly sampled event ē from Qe to create a negative example

X̄ = {· · · , ei↓1, ē, ei+1, · · · }. Likewise, for each training epoch, we create K negatives

samples {X̄k}Kk=1. After obtaining hidden states of negatives: h̄k = RoBERTa(X̄k),

we derive coherence scores of all samples and use the contrastive loss to rank the

positive sample above the negatives:

s+ = WT

c
h+, s̄k = WT

c
h̄k,

L2 = ↑ 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑

K

k=1 exp(s̄k)
.

(7.8)

7.2.4 Training and Knowledge Transferring

When training, the final loss is

L = ϖL1 + (1↑ ϖ)L2, (7.9)
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where ϖ is set to 0.5. It should be noted that another way is to merge two types

of negatives and directly perform contrastive learning. However, this requires more

GPU memory, which exceeds our condition. Therefore, we calculate the two losses

separately and then average them.

Our CohEval can be easily transferred to many downstream applications. For exam-

ple, for the multi-choice task with a input C and option candidates O = {o1, · · · , on},

we can use CohEval to select most reasonable o by:

o ↘ argmax
i

CohEval([C, oi]). (7.10)

Motivated by existing plug-and-play text generation methods [71, 11], we also evalu-

ate our CohEval in narrative text generation, with CohEval as coherence guidance.

Details can be seen in the experiment.

7.3 Experiment

COPA e-CareωNLICloze Swag HS. TimeT.

#numAns 2 2 2 2 4 4 N/A

#numVal 500 2132 1532 1871 20006 10041 1871

#numTest 500 N/A 3059 1871 N/A N/A 1871

Table 7.1: The statistics of the used datasets. #numVal and #numTest denotes the

number of samples in the val and test set. #numAns denotes the size of the answer

set of multi-choice datasets. HS. and TimeT. denotes HellaSwag and TimeTravel,

respectively.
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7.3.1 Datasets

The evaluation datasets include COPA [108], e-Care [17], ωNLI [5], Cloze [75], Swag

[146], HellaSwag [147], and TimeTravel [98]. TimeTravel is a text-generation dataset,

while others are multi-choice datasets. We evaluate our model on these datasets in the

zero-shot setting. Note that the test sets of e-Care and HellaSwag are not released.

So we evaluate our model on the validation set of the three datasets. The statistics

of the datasets, as well as the experimental details are shown in Table 7.1.

7.3.2 Experimental Settings

For training the contrastive narratives generator, we use BART-base as the backbone.

Batch-size is set to 16. We use the AdamW optimizer. lr is set to 5e-5. Weight-decay

is set to 1e-4. We train the generator with 10 epochs and linearly decrease the lr to

zero with no warmup. When the generation phase, we kept the N = 60 most qualified

contrastive narratives for creating negative examples. For training our CohEval, we

adopt RoBERTa-large as the backbone. We train our model for 5 epochs, and then

evaluate it on downstream tasks. We set batch-size to 1 and gradient-accumulation-

steps to 16. For each positive example, we sample 15 negative examples for contrastive

training. lr is set to 5e-5. Weight-decay is set to 1e-4. We use the AdamW optimizer

and linearly decrease the lr to zero with a 10% warmup ratio. The random seed is

set to 42 for all experiments. All experiments are performed on a Ubuntu server with

4⇔RTX2080Ti GPUs.

7.3.3 Baselines and Metrics

For multi-choice tasks, the metric is Accuracy. We compare our method with Event-

BERT [158], RankGen [47] and several large language models (LLMs), including
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Alpaca-lora (7B)3, ChatGLM2 (6B) [18, 148] and ChatGPT [84]. For LLMs, we use

one-shot prompting for experiments, the used prompts are the same as in Chapter 6,

Table 6.2 and 6.3.

For TimeTravel, we follow [11] and formulate this task in the MCMC-based sam-

pling paradigm. Prior work in EDUCAT [71, 11] utilizes the MCMC-based sampling

method for this endeavor. EDUCAT employs direct sampling from the sentence space

employing three local operations: token replacement, deletion, and insertion. During

the sampling process, upon identifying an edit position, the operation is randomly

selected with uniform probability. Ultimately, the suggested sentence will undergo ac-

ceptance or rejection based on the computed acceptance rate determined by desired

attributes ⇀(y). This iterative procedure continues until convergence is achieved.

The stationary distribution ⇀(y) within EDUCAT is delineated as the product of the

fluency score and coherence score, represented as follows:

⇀(y) = XLM(y) · XCoh(y), (7.11)

where the fluency score XLM(y) is the probability of the generated ending based on

GPT2. The coherence score XCoh(y) is defined by:

XCoh(y
→) =

PCoh(Y = y→|z, x→)

PCoh(Y = y→|z, x) , (7.12)

where PCoh(·) is the conditional probability calculated by GPT2. This definition en-

courages the generated y→ to be more coherent to x→ instead of x. Following EDUCAT,

we define the stationary distribution ⇀(y) as Equation 7.11. The di!erence is that we

replace XCoh(y) with our CohEval:

XCoh(y) = CohEval([z; x; y→]), (7.13)

where [; ] denotes the concatenation. Same as EDUCAT, we run our model and its

variants for 100 steps for fairness.

3The checkpoint is at https://github.com/tloen/alpaca-lora.
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We compare our method with DELOREAN [97], ClarET [159], CGMH [71], EDUCAT

[11]. Automatic evaluation metrics include BLEU4 [87], BertScore [153], ENTScore

[11], and HMean= 2·BLEU4·ENTScore
BLEU4·ENTScore [11]. Manual evaluation metrics include Fluency,

Min-Edits [11], and Coherence.

7.3.4 Overall Results

Methods COPA e-Care ωNLI Cloze Swag HS.

LLMs-based Prompting

Alpaca-lora (7B) 57.4 54.5 52.6 66.1 36.0 30.2

ChatGLM2 (6B) 78.1 66.9 58.1 84.3 48.7 41.2

ChatGPT 96.2 81.8 75.5 94.7 70.7 76.4

Contrastive Training Based Methods

RankGen(base) 63.8 70.3 52.2 50.7 46.3 33.9

RankGen(large) 70.2 72.1 54.8 54.4 49.2 40.5

EventBERT N/A N/A 59.5 75.6 N/A N/A

CohEval (ours) 77.8 71.9 67.6 77.6 67.4 44.9

Ablation Study

MER 73.4 75.4 65.3 77.1 61.8 38.9

MCC 75.8 68.2 67.2 69.4 66.9 44.7

Table 7.2: The accurary (%) on multi-choice datasets. HS. denotes HellaSwag. Scores

with bold denote the best results among contrastive training based methods.

Automatic Evaluation The automatic evaluation result can be seen in Table 7.2

and 7.3, respectively. We have the following observations.
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• In Table 7.2, our model surpasses all contrastive training-based methods. This

indicates that the negative samples we create are more qualified, which verifies

the e!ectiveness of our method.

• Although there is still a significant gap compared to ChatGPT, our method

surpasses smaller LLMs, e.g., ChatGLM2, on most datasets.

• In Table 7.3, our method outperforms EDUCAT. Since EDUCAT uses the o!-

the-shelf PLMs for evaluating coherence, the performance improvement proves

that our CohEval is better at evaluating narrative coherence.

• Compared with our method, ChatGLM2 and ChatGPT achieve high ENTScore,

but low BLEU4. This indicates that auto-regressive methods tend to generate

coherence counterfactual ending with massive edits. These behaviors conflict

with the requirements of the task.

Ablation Study To investigate the influence of the two kinds of negatives, we

devise two ablated variants: (1) MER which means we create negatives via event-

level replacement; (2) MCC which means we create negatives via the crisscrossing

strategy. The ablation study result is shown in Table 7.2, 7.3. We have the following

observations.

• Compared to CohEval, MER and MCC achieve lower ENTScore, indicating their

weaker coherence evaluation abilities. But both variants obtain higher BLEU4

and BertScore. In TimeTravel, there is a trade-o! phenomenon between BLEU

and EntScore. This is because the gold y→ is obtained through editing the

original y with minimal-edits. This leads to a high word overlap between y→

and y. Due to the weaker coherence evaluation abilities of the two variants, the

probability of accepting transitions is lower when adopting MCMC for rewriting.

In other words, when usingMER andMCC , the number of rewritings is relatively

low, resulting in higher BLEU4 and BertScore but lower ENTScore.
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Methods BLEU4 BertS. ENTS. HMean

LLMs-based Prompting

ChatGLM2 (6B) 16.47 60.03 66.15 26.37

ChatGPT 36.41 69.81 82.62 50.55

O!-the-shelf small PLMs

DELOREAN 23.89 59.88 51.40 32.62

ClarET 23.75 63.93 N/A N/A

CGMH† 41.09 73.90 28.06 33.34

EDUCAT 44.05 74.06 32.28 37.26

EDUCAT† 43.57 74.00 33.41 37.82

CohEval (ours) 42.46 73.36 37.39 39.77

Ablation Study

MER 44.18 74.34 34.63 38.82

MCC 42.99 73.64 35.78 39.05

Table 7.3: The automatic result on TimeTravel. † denotes our implementation. BertS.

denotes BertScore. ENTS. denotes ENTScore. Scores with bold denote the best

results among o!-the-shelf small PLMs.

• The best ENTScore is achieved by combining two kinds of hard negatives. This

indicates the two kinds of negatives complement each other. The reason is that

more diverse negative examples contribute to contrastive learning.

• MCC generally performs better than MER. The possible reason is that, com-

pared to the crisscrossing strategy, the event-level perturbation is more coarse-

grained. Nevertheless, event-level replacement is an e!ective supplement to the

crisscrossing strategies.
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Manual Evaluation on TimeTravel We perform an A/B test to compare our

method with several baselines. Following [98, 11], the human evaluation mainly fo-

cuses on three primary criteria: i) Fluency, whether a model produces fluent text;

ii) Coherence, the logical consistency between the counterfactual context (z, x→) and

the generated endings y; and iii) Min-Edits, the extent of minimal revision between

two endings. We carry out a pairwise comparison with CGMH, EDUCAT, and two

ablated models: Mexp and Mimp. We randomly sample 100 cases for each pair of

models. Three annotators are recruited to make a preference among win, tie, and

lose given the counterfactual context and two outputs by our model and a baseline

respectively. The annotators are research students from the field of text generation

to make sure they have a fair judgment of used metrics. We calculate Fleiss’s kappa

reliability as the inter-annotator agreement.

As is shown in Table 7.4, LLMs are able to generate fluent and coherent counterfactual

ending, but tend to massively edit the original ending, which coincides with the finding

in automatic evaluation. Compared to EDUCAT and two ablated variants, CohEval

achieves better fluency and coherence results. In addition, these four models achieve

similar Min-Edits results, this is because they run for the same editing steps. The

Fleiss’s kappa reliability of Fluency, Min-Edits, and Coherence is 0.488, 0.507, and

0.428, respectively.

Human Correlation with our CohEval Same as [11], we analyze the correlation

between our CohEval and human ratings in terms of coherence evaluation. We cal-

culate three coe”cients, including Pearson’s r and Kendall’s φ . The result is shown

in Table 7.5. All results show a positive correlation. The result of our CohEval is

close to that of ENTScore. Notice that ENTScore is trained with human-labeled

counterfactual data, while our CohEval is trained in a self-supervised manner. This

demonstrates the applicability of our CohEval.

Overall, the result demonstrates that our CohEval is a generic narrative coherence
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Methods
Fluency Min-Edits Coherence

W(%) L(%) W(%) L(%) W(%) L(%)

vs. EDUCAT† 27.0 13.7 23.0 24.7 33.7 4.7

vs. MER 25.7 16.7 22.3 23.3 28.0 6.7

vs. MCC 20.0 12.0 23.7 22.3 23.0 7.0

vs. ChatGLM2 13.3 45.3 84.7 7.7 19.0 37.0

vs. ChatGPT 14.7 41.3 60.3 25.0 13.7 40.0

Table 7.4: Manual evaluation result on TimeTravel. Scores indicate the percentage

of Win(W) and Lose(L).

Metrics Pearson’s r Kendall’s ε

ENTScore 0.25 0.24

CohEval 0.20 0.18

Table 7.5: The correlation between automatic metrics, e.g., ENTScore and CohEval,

and human ratings. All of these numbers are statistically significant at p < 0.01.

evaluator, and can be applied to a wide range of downstream tasks.

7.3.5 Deeper Analysis about Contrastive Narratives Gener-

ation

Indirect Evaluation through Multi-choice Tasks We conduct an ablation ex-

periment to explore the impact of di!erent sub-modules in contrastive narratives

generation. We compare our Brownian-Bridge based method (denoted as “BB”) with

the following variants. (1) “w/o prompt”, in which we ablate the masked prompt

when training. (2) “w/o trajectory”, in which we ablate the latent trajectories sam-

pled from the Brownian bridge. (3) “Infilling”, in which we ablate the masked prompt
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and the sampled latent trajectory when training. In this case, the ablated variant de-

generates into a text-infilling model. We use the counterparts generated by di!erent

variants for crisscrossing to obtain negative examples, which are then used for con-

trastive learning. The result is shown in Table 7.6. We find: (1) Compared to “BB”,

“w/o prompt” and “w/o trajectory” get result drops, respectively; (2) “Infilling” gets

a further performance drop.

The possible reasons lie in the following aspects.

• If contrastive narratives are incoherent, then the synthesized negatives are not

“hard”. The sampled latent trajectories help to maintain the coherence of gener-

ated contrastive narratives, which benefits the quality of synthesized negatives.

• The masked prompt helps to reduce the di”culty of the generation process, as

a result, the obtained contrastive counterparts are similar to the original ones,

making the resulting negatives more qualified.

Methods COPA e-Care ωNLI Cloze Swag HS. ↖

BB (our MCC) 75.8 68.2 67.2 69.4 66.9 44.7 —

w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9 -4.6

w/o trajectory 71.0 71.2 65.9 69.9 67.1 42.0 -5.1

Infilling 72.2 71.9 64.8 77.7 58.1 40.4 -7.1

Table 7.6: The result (%) of di!erent kinds of counterparts for synthesizing negative

examples.

Direct Evaluation through Manual Judgement We further conduct a manual

evaluation to directly evaluate the quality of generated contrastive narratives. Since

we want the generated narrative to be similar to the original one and reflect subtle

di!erences (such as changes in opinions or entities) to make itself a di!erent story, we
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Methods
Coherence Similarity SubtleDi!.

W(%) L(%) W(%) L(%) W(%) L(%)

vs. w/o prompt 43.0 19.0 46.0 6.3 27.3 7.0

vs. w/o trajectory 53.7 15.3 26.7 7.7 28.0 12.7

vs. Infilling 60.3 10.3 56.3 5.7 49.0 6.7

vs. ChatGLM2 40.0 20.0 39.0 20.3 24.3 28.3

vs. ChatGPT 21.0 26.0 30.7 17.0 18.0 23.0

Table 7.7: The manual evaluation on contrastive narratives generation. We compare

“BB” with “w/o prompt”, “w/o trajectory”, “Infilling”, ChatGLM2, and ChatGPT.

use Coherence, as well as Similarity and SubtleDi!erence (SubtleDi!.) as metrics. We

randomly select 100 stories, which have no overlap with train data for experiment. For

each story, we use di!erent models to generate its contrastive variant. We also perform

a pairwise comparison with “w/o prompt”, “Infilling”, and two LLMs: ChatGLM2

and ChatGPT. The same three annotators are asked to make a preference among

win, tie, and lose for each pair of generation. We use Coherence, Similarity, and

SubtleDi!. as metrics. Coherence reflect the logical consistency between the given

(start,end) events and the generated middle events. Similarity reflects the similarity

between the generated middle events and those of the original story. SubtleDi!.

measures whether the generated example is a qualified contrastive narrative, which

reflects subtle di!erence to the original story but actually a di!erent story.

In Table 7.7, ChatGPT generally exhibits the best result, which reflects its powerful

reasoning ability. Our “BB” is slightly inferior to ChatGLM2 on SubtleDi!. , but

wins on the other two metrics. This indicates that our method is comparable to small

LLMs. In addition, “BB” significantly surpasses the ablated variants. Specifically,

we find that the masked prompt helps to improve Similarity, while latent trajectory

helps to improve Coherence. This coincides with human intuition. The Fleiss’s kappa
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reliability of Coherence, Similarity, and SubtleDi!. is 0.369, 0.371, 0.244, respectively.

Generally, by utilizing the Brownian bridge process, we harvest qualified contrastive

narratives, which contributes to contrastive learning.

7.3.6 Further Discussion

PLMs Fluency (↙) ENTScore (∝)

GPT2 2.8 58.2

T5 3.3 52.2

BART 3.4 66.7

Table 7.8: Impact of di!erent backbones for contrastive narratives generation.

Influence of Di!erent Backbones for Contrastive Narratives Generation

We conduct a preliminary study on the influence of di!erent backbones, including

GPT2 [102] and T5 [104], and BART [50], for generating contrastive narratives. We

use Fluency and ENTScore as metrics. Fluency evaluates whether the generated text

is a fluent text sequence. We use o!-the-shelf GPT2 to calculate Fluency. ENTScore

evaluates the coherence of the generated stories. We randomly sample 2000 examples

that do not exist in training for evaluation. We calculate the average result. As shown

in Table 7.8, GPT2 is good at generating more fluent text, and BART generates more

coherent text. A possible reason is that the contrastive narrative generation is more

compatible with BART’s pre-training task, e.g., masked auto-encoding. Finally, we

choose BART as the backbone.

Di!erent Backbones for Narrative Coherence Learning We additionally build

our method on the BERT-base [15] and RoBERT-base backbones, as shown in Figure

7.3. RoBERTa-base has a better performance than BERT-base, and the RoBERTa-
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Figure 7.3: Results under di!erent backbones for narrative coherence learning.

large tends to have a better result than RoBERTa-base. However, due to the limi-

tation of computing resources, we are not able to evaluate our method under larger

pre-trained models.

Strategies COPA e-CareωNLICloze SwagHS.

Mixup

Random 60.2 49.7 52.1 59.1 32.7 28.8

w/o prompt 61.8 55.5 57.0 64.3 35.4 32.1

BB 63.6 60.0 64.4 66.5 41.9 29.3

CrissC.

Random 72.6 71.8 58.8 70.0 53.6 37.4

w/o prompt 79.0 65.4 68.5 75.6 59.2 39.9

BB (our MCC) 75.8 68.2 67.2 69.4 66.9 44.7

Table 7.9: The result of di!erent strategies for creating negatives. CrissC. denotes

the crisscrossing strategy.

Influence of Di!erent Strategies for Creating Negatives In our method, we

crisscross a positive narrative with its contrastive counterparts to create negatives.

Here, we further investigate the result when using Mixup [149] to create negatives.

The mixup strategy creates negative examples via mixing-up a positive X and several
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counterparts {Xk

c
}K
k=1 in the latent space:

h+ = RoBERTa(X)

hk

c
= RoBERTa(Xk

c
),

h̄k = ωkh
+ + (1↑ ωk)h

k

c
,

ωk → Uniform[0, 1].

(7.14)

Then, the loss is:

s+ = W
T

c h
+,

s̄k = W
T

c h̄
k,

LM = ↑ 1

|D+|
∑

D+

log
exp(s+)

exp(s+) +
∑

K

k=1 exp(s̄
k)
.

(7.15)

The experiment setting details are the same as those used in Section 7.3.2.

We additionally explore three ways of obtaining the counterparts: (1) “BB” denotes

our Brownian-Bridge based contrastive narratives; (2) “w/o prompt” denotes we ab-

late the prompt when generating contrastive narratives; (3) Random denotes we ran-

domly select di!erent positive narratives as counterparts. The result is shown in

Table 7.9. We observe that:

• The crisscrossing strategy is superior then Mixup by a large margin. We spec-

ulate that in the era of self-attention [130], using the transformer to directly

learn the representation of negative samples is better than manipulating repre-

sentations of samples in the hidden space.

• Whether adopting “CrissC.” or Mixup, our BB-based contrastive narratives far

surpass “random”, which proves the strength of our method.

Results under Di!erent Number of Retained Contrastive Narratives We

explore the influence of the number of retained contrastive narratives. The result is

shown in Figure 7.4. Our method generally achieves the best result when N = 60,
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Figure 7.4: Results under the di!erent number of retrained contrastive narratives.

and the result even decreases when N further increases. We speculate that as N

increases, incoherent contrastive examples increase, which has a negative impact on

the quality of synthesized negative examples. So, we set N = 60 by default.

Impact of the Mask Ratio ε We investigate the impact of the di!erent mask

ratio ε when generating contrastive narratives. In Table 7.10, the result is best when

ε = 0.85. As ε decreases, the result gets worse. To investigate the reason, we

manually examine the generated examples, and find the model tends to paraphrase

the original story and generate duplicate examples when ε decreases. This is because

more information about the original story will be exposed when using a lower mask

rate, making it easier to reconstruct the original story. We additionally calculate the

diversity of the contrastive narratives generated at di!erent ε. We use Distinct-n [54]

as the metric. As shown in Table 7.10, as ε decreases, the corresponding Distinct

scores also decrease. This indicates that a lower mask rate ε may lead to duplicate

samples when the generation phase, which harms the diversity of synthesized negative

samples. Therefore, we proactively filter out duplicate items.

The Reliability of Created Negative Examples We further analyze whether

the created negative samples are indeed “negative”. On the training set, we first use

ENTScore to directly evaluate the coherence of positive samples and two types of neg-
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ϑ
Accuracy(%)

Dist-2 Dist-3

ωNLI Swag HS.

ϑ = 0.90 65.2 67.5 42.6 26.4 41.0

ϑ = 0.85 67.5 67.4 44.9 27.1 42.6

ϑ = 0.80 66.2 66.5 43.3 26.8 42.9

ϑ = 0.70 64.0 63.4 42.9 25.0 40.7

Table 7.10: The result under the di!erent ε. Dist-n denotes Distinct-n. Scores with

bold denote the best result.

Types ENTScore FN Rate

Positive examples 94.6 N/A

Negatives via replacement 54.5 3.0%

Negatives via crisscrossing 65.9 4.3%

Table 7.11: The reliability evaluation of created negatives. FN denotes false negative.

atives. As shown in Table 7.11, the real positive examples receive an especially high

ENTScore. However, the synthesized two types of negatives receive lower ENTScore,

proving that they are obviously less coherent than positive examples. Next, we sam-

ple 100 cases and ask the annotators to make a judgment about whether the created

‘negatives‘ are actually more coherent than positives, making them false negatives.

As shown in Table 7.11, both types of negatives show a low FN rate.

Error Analysis The most common error in event-level replacement is that the

sampled event ē from Qe is especially similar to the original e, or is the paraphrase

of the original e, as shown in Table 7.12, Case #1. The most common mistake in

cross strategy is that the contrastive variant and the original story describe di!erent

actions for the same purpose, resulting in the false negative. An example is shown in
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Table 7.12, Case #2. Overall, the proportion of errors is relatively low.

Visualize the Representations of Examples using t-SNE It is interesting to

qualitatively visualize our model’s ability to distinguish hard negatives. Based on the

test set of TimeTravel, we are able to obtain positive examples and corresponding

hard negatives. In TimeTravel, each example consists of an original story (z, x, y) and

a counterfactual story (z, x→, y→), where y→ is similar to y. Motivated by [11], we obtain

positive and negative samples from the perspective of natural language inference, i.e.,

the original context (z, x) entails by y but contradicts with y→, and the counterfactual

context (z, x→) entails by y→ but contradicts with y. Because y is similar to y→, (z, x, y→)

and (z, x→, y) tend to be hard negatives. Based on the test set of TimeTravel, we

obtain 3742 positive examples and 3742 negative examples. Then, we use t-SNE to

visualize representations of the examples that are encoded by di!erent models.

We use our CohEval and the ablated variant MER, respectively, to obtain the repre-

sentations of the examples, then we use t-SNE [129] to visualize the representations.

As shown in Figure 7.5 (a), the representations of positive and negative examples

obtained by MER entangle together, this shows that MER, a model that significantly

outperforms baselines, still su!ers from distinguishing the created positive and nega-

tive examples. But in Figure 7.5 (b), positive samples are concentrated on the right,

while negative samples are concentrated on the left. This proves our CohEval’s ability

to distinguish positive examples from hard negatives, and confirms the e!ectiveness

of the generated contrastive narratives.

Case Study Table 7.13 presents a case study for the task of TimeTravel. The

counterfactual endings generated by ChatGLM2 and ChatGPT are very di!erent

from the original ending, which conflicts with the minimal-edits requirement of the

task. On the contrary, based on the MCMC-sampling, our method produces the

counterfactual ending, which is similar to the original ending, as well as coherent to
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(a) MER (b) CohEval

Figure 7.5: Visualization of the representations of examples obtained from di!erent

models.

the counterfactual condition.

Table 7.14 presents a case study for the task of contrastive narratives generation.

Due to the sampled di!erent trajectories, in the case #1, our method shifts the

topic of accent to personality, and produces a coherent story. In the case #2, our

method exchanges the opinions of two participants. Due to the limited changes, the

generated story is very similar to the original story and meets the requirements for

contrastive narratives. On the contrary, the middle events generated by ChatGLM2

and ChatGPT show a significant di!erence from that of the original story, as a result,

the synthesized negative samples should be easily distinguished.

7.4 Discussion

To automatically generate contrastive narratives, we made the following assumption:

the observed story and its contrastive variants have the same start and end events.

However, this assumption may not be consistent with reality. In addition, under

limited computing resources, we are unable to explore our method on larger data
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scales and larger pre-trained models. The experiment shows that our method is not

able to surpass ChatGPT. But this does not mean that our work has no value in the

era of large language models.

Our method is essentially a discriminative model, while LLMs are generative models.

They have di!erent advantages. For example, LLM is better at generating coherent

text, and our CohEval is better at multi-choice tasks. In fact, on TimeTravel, we

use MCMC to make our CohEval applicable to generating tasks. Therefore, the gap

between our method and LLM has been magnified. On discriminative tasks, although

our model is not as good as ChatGPT, it outperforms the smaller ChatGLM on most

multi-choice tasks. On the other hand, it is inherently unfair to directly compare

small models with LLMs, as large models are obtained with massive resources, e.g.,

data, hardware, funding, etc. Due to resource limitations, our method is not as good

as ChatGPT, but it is superior to ChatGLM, which also indicates that our method is

valuable in low-resource scenarios. Meanwhile, as data and methods can be shared,

with su”cient computational resources, we can use a larger backbone and more data

for training, which is expected to yield better results. We leave this in future works.

7.5 Chapter Summary

In this paper, we propose to use the Brownian Bridge process to generate contrastive

narratives, then we crisscross a positive story and its contrastive variants to create

negative examples for contrastive learning. In addition, we devise the event-level

replacement, which is the e!ective supplement to the crisscrossing strategy. The

experiment verifies that (1) the generated contrastive narratives are qualified, and

(2) our CohEval is e!ective and is a general coherence evaluator that is applicable to

many downstream tasks.
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Event-level replacement

#1

Original story: Rod was ironing his clothes.

His iron is very old.

The iron left a burn mark on his favorite shirt!

Rod got very angry.

He bought a new iron.

Created negative: She even ironed her sheets!

His iron is very old.

The iron left a burn mark on his favorite shirt!

Rod got very angry.

He bought a new iron.

Crisscrossing

#2

Original story: Katie needed to cross the street by herself.

Being seven, she hadn’t done it by herself before.

She looked left then right.

The coast was clear.

She crossed the street successfully and was full of pride.

Contrastive example: Katie needed to cross the street by herself.

Being seven she knew it was possible.

The nearest crosswalks were just behind her.

She held her breath and did her best.

She crossed the street successfully and was full of pride.

Created negative: Katie needed to cross the street by herself.

Being seven, she hadn’t done it by herself before.

The nearest crosswalks were just behind her.

She held her breath and did her best.

She crossed the street successfully and was full of pride.

Table 7.12: Error cases when creating negatives.
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#1

Original context Tim was mad. He saw roaches in his house.

Original ending

He bought some cheap bug spray.

However, it did not get rid of them.

Tim called an exterminator.

Counterfactual context Tim was mad. He saw rats in his house.

GhatGLM2

He found a rat trap and was able to catch them.

Tim was relieved that the problem had been solved.

He called an exterminator to make sure they were gone for good.

ChatGPT

He bought some cheap rat traps.

However, they did not catch any rats.

Tim called a professional pest control service.

CohEval(ours)

He bought rat poison.

And it did not get rid of the rats.

So he hired an exterminator.

#2

Original context
Jim worked at the local co!ee shop.

He was the best barista in town.

Original ending

He always made sure his customers had the best drinks.

Jim’s boss saw him working one day and was impressed.

Jim got a promotion for doing such a good job.

Counterfactual context
Jim worked at the local co!ee shop.

He was the worst barista in town.

GhatGLM2

He found a recipe online to make better drinks.

Jim decided to try it out and impressed his boss.

Jim got a raise for his excellent work.

ChatGPT

He always made sure his customers had the worst drinks.

Jim’s boss saw him working one day and was disappointed.

Jim got fired for doing such a bad job.

CohEval(ours)

He always made sure his customers had the wrong drinks.

Jim’s boss saw him that night and was furious.

He got a beating for doing a bad job.

Table 7.13: Some cases with the generated text by di!erent models. The cases are

from the test set of TimeTravel.
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#1

Original story

Fanny is new at school.

She is from England.

Many kids do not understand her accent.

This made Fanny sad.

Fanny is having a di”cult time making friends.

ChatGLM2

Fanny is new at school.

One of the kids at school does understand her accent, and they become her friends.

Fanny meets a new student at her lunch table who helps her feel more comfortable.

Fanny learns to embrace her accent and makes many new friends at school.

Fanny is having a di”cult time making friends.

ChatGPT

Fanny is new at school.

During lunchtime, Fanny sat alone at a table in the cafeteria.

Some kids approached Fanny and asked her where she was from.

Fanny tried her best to explain her accent, but they still had trouble understanding her.

Fanny is having a di”cult time making friends.

CohEval(ours)

Fanny is new at school.

She has just graduated from college.

She is very shy.

Fanny is not very outgoing.

Fanny is having a di”cult time making friends.

#2

Original story

Morgan and Timothy were having an argument.

Morgan thought that all of The Beatles’ music was good.

Timothy thought their early stu! was not very good.

Morgan made her case by simply playing a few songs.

Timothy realized Morgan was probably right about the music.

ChatGLM2

Morgan and Timothy were having an argument.

Timothy tried to reason with Morgan, but she was too set in her opinion.

Morgan refused to back down and continued to play her favorite songs.

Timothy was left feeling frustrated, but eventually came to accept Morgan’s

love for her music. Timothy realized Morgan was probably right about the music.

ChatGPT

Morgan and Timothy were having an argument.

Morgan defended her stance by pointing out the innovative songwriting and

harmonies in their later albums. Timothy reluctantly agreed to listen to a few

songs from their later discography. As the music played, Timothy’s opinion started to

shift, realizing the depth and creativity in The Beatles’ later work.

Timothy realized Morgan was probably right about the music.

CohEval(ours)

Morgan and Timothy were having an argument.

Morgan said the Beatles’ music was terrible.

Timothy said their early music was good.

Morgan disagreed.

Timothy realized Morgan was probably right about the music.

Table 7.14: Case study for contrastive narratives generation.
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Conclusion and Future Work

Narrative, as a cognitive construct, occupies a central position in human cognition,

serving as a fundamental mechanism through which individuals make sense of their

experiences, construct identities, and communicate meaning. Rooted in sociocultural

frameworks and cognitive schemas, narrative structures imbue mundane events with

significance, shape perceptions of reality, and influence decision-making processes.

The advent of neural narrative reasoning systems represents a paradigm shift in com-

putational cognition, harnessing the power of artificial intelligence to emulate and

augment the intricacies of human narrative processing. By leveraging sophisticated

algorithms and deep learning architectures, these systems facilitate a seamless in-

tegration of narrative comprehension, generation, and reasoning into the fabric of

everyday life. Through the lens of behavioral decision-making, neural narrative rea-

soning systems o!er a multifaceted toolkit for individuals navigating the complexities

of choice and action in diverse contexts. From the creation of compelling narrative

novels to the elucidation of intricate phenomena, and even the facilitation of colloquial

exchanges, these systems a!ord users a versatile means of accessing, interpreting, and

co-creating narratives that resonate with their cognitive and a!ective landscapes.

However, the proliferation of potential application scenarios also engenders a con-
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comitant escalation in the performance expectations placed upon narrative reasoning

systems. As users increasingly rely on these systems to inform, entertain, and en-

gage, the imperative for accuracy, coherence, and adaptability becomes paramount.

Whether tasked with crafting immersive narratives, elucidating complex concepts,

or simulating naturalistic conversation, these systems must demonstrate robustness,

fluency, and semantic fidelity to meet the exigencies of real-world usage. In essence,

the e”cacy of narrative reasoning systems hinges upon their ability to navigate the

intricate interplay between computational processes and human cognition. As such,

ongoing research endeavors must continue to interrogate and refine the underlying

mechanisms driving narrative generation, comprehension, and reasoning, thereby en-

suring that these systems remain at the vanguard of computational intelligence and

human-computer interaction.

In this thesis, we comprehensively study the problem of narrative commonsense rea-

soning, which combines causal knowledge and causal theory. We propose and solve

three important sub-problems, i.e., (1) how to automatically obtain large-scale causal

knowledge to provide knowledge ground for narrative reasoning? (2) how can we

ensure that narrative reasoning systems grasp the causal relationships within narra-

tive events, enabling them to e!ectively address factual and counterfactual questions?

(3) how can we devise robust quantitative methods to evaluate the coherence of AI-

generated narrative content, thereby furnishing valuable tools for the community?

We proposed a series of methods to constantly improve narrative reasoning from the

aspects of knowledge-aware enhancement, causal-theory-based counterfactual reason-

ing, and hard negatives mining.

8.1 Summary of Thesis

The following sections summarize the main contributions of this thesis.
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8.1.1 Automatically Causality Mining and De-biasing

• We propose a rule-based system to automatically extract causal pairs from free-

form text, without any human e!orts. We also demonstrate its use the the task

of cause-to=e!ect generation.

• Not only the rule-based causal relationship extraction methods, we also develop

a de-biased method to improve the precision of causal relationship extraction.

• Extensive experiments on several public benchmarks demonstrate the e!ective-

ness of our proposed method.

8.1.2 Causal Knowledge Enhanced Factual and Counterfac-

tual Reasoning in Narratives

• We devise the two-stage approach to make full utilization of multi-level causal-

ities. Not only that, we have also proposed practical and feasible solutions to

solve the sparsity problem of events, contributing to the field of knowledge-

enhanced reasoning.

• In this part, we study counterfactual reasoning in narratives from the causal per-

spective, and formulate the problem with the structural causal model, which

simulate the posterior information of background knowledge using the varia-

tional process. Di!erent from the previous works that simply learns conditional

distribution with the supervised paired data, we are the first to use the causal

mechanism to robustly reason about counterfactuals. In addition, we introduce

a pre-train classifier and external event causality to mitigate the posterior col-

lapse problem in the variational process, and hence further improve the causality

between the counterfactual condition and the generated counterfactual outcome.

• The experiment on several public benchmarks proves the e!ectiveness of our
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method. We conduct a detailed ablation study to illustrate the significance of

our proposed strategies.

8.1.3 Narrative Coherence Learning

• We review the problem of narrative coherence learning from the perspective of

hard negatives mining. We propose a method of synthesizing negative samples

using contrastive narrative.

• To obtain contrastive narrative, we innovatively introduce the Brownian bridge

process to ensure the quality of obtained contrastive narrative, which is the key

contribution of our work. We believe that our method can bring new research

insights to this issue.

• The experiment verifies that (1) the generated contrastive narratives are qual-

ified, and (2) our coherence evaluator is e!ective and is a general coherence

evaluator that is applicable to many downstream tasks.

8.2 Future Directions

In this part, we point out the following potential directions that can further extend

our previous work.

• For knowledge-enhanced narrative generation, it can be more abstractly de-

scribed as retrieving relevant background knowledge from the knowledge base

for the input text to enhance the generation process. This process can be in-

duced into the retrieval augmented generation (RAG) framework. Considering

the powerful reasoning and generation capabilities of current large models, it is

promising to use large models as the base and adopt the RAG technology for
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narrative reasoning. On the one hand, by retrieving relevant knowledge, the hal-

lucination problem of large models can be mitigated. On the other hand, based

on the large model as the foundation, the internal knowledge within the large

model can be fully utilized. Overall, this direction has considerable research

value.

• For counterfactual reasoning in narratives, our model can generate the counter-

factual output for the counterfactual condition. This points out the potential

direction. That is, it is possible to generate high-quality diverse counterfac-

tual samples by perturbing the original story condition. It is relatively easy to

only perturb the original conditions, as there is no need to consider the impact

of disturbances. This step can be accomplished through many existing works.

Next, based on the obtained counterfactual data, we can perform counterfactual

data augmentation to obtain a better model. This process can be repeated in

a bootstrapping manner.

• As for narrative coherence learning, due to limited computing resources, the

model we are currently using is relatively small and the amount of data is

also limited. In the future, we can use larger models and larger-scale data

for training. Additionally, our model can be viewed as a reward model that

evaluates the reward of a narrative text. Therefore, it has the potential to

combine our reward model and reinforcement learning algorithms to fine-tune

text generation models. The obtained generation model is expected to have a

better ability to generate coherent narratives.
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