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Abstract 

Superspreading events (SSEs) underscore the uneven spreading patterns of COVID-19 

across individuals and places. These heterogenous spread dynamics may stem from 

human mobility, yet the underlying mechanisms are still not fully understood. While 

existing research has predominantly emphasized the significance of local mobility 

intensity, it has often overlooked other critical aspects, such as the spatial structure of 

human mobility. Therefore, this thesis aims to investigate how the spatial structure of 

human mobility influences on local spread dynamics. Specifically, within urban areas, 

human mobility patterns follow a widely found power-law scaling distribution, referred 

to as the urban scaling structure afterwards. Our first objective is to explore the impact 

of the urban scaling structure on local spread dynamics.  

The scaling property of the urban scaling structure indicates that cities are urban 

complex systems composed of hierarchically ordered subsystems. After exploring how 

COVID-19 spreads within urban complex systems, the subsequent objective is to 

examine how coronavirus variants with different characteristics interact with urban 

complex systems, influencing local spread dynamics and ultimately contributing to 

heterogeneous vulnerability patterns. Finally, this thesis aims to compare different 

scenarios of new variant invasions and their influence on urban resilience. 

To achieve these goals, this thesis employs a spatially-explicit agent-based model 

that incorporates the urban scaling structure to simulate fine-grained human mobility 

patterns and individual-to-individual spread processes. The simulation results fit 



xi 

 

reasonably well with empirical data from the fifth and the sixth waves of the Omicron 

variants at various spatial scales in Hong Kong. 

The validated model is firstly used to explore the impact of urban scaling structure 

on local spread dynamics. The results reveal a positive association between the scaling 

index and local spread risks among places, as well as the likelihood for local visitors to 

become superspreaders. The scaling index represents a place’s importance within the 

urban scaling structure. The findings implies that the urban scaling structure may offer 

the first-mover advantage to a minority of places and their local visitors to infect earlier 

and thus infect more. Further simulations on hospital stress reveal large variations 

among local hospitals and over time concerning Emergency Department services and 

hospital beds. 

Secondly, the model is employed to examine local vulnerability patterns 

considering different variant characteristics. Different variants may lead to differing 

degrees of individual heterogeneity in infectiousness. Simulations show that while 

different degrees of individual heterogeneity alone exert small effects on local SSE 

risks, it amplifies the effects of the urban scaling structure on local SSE risks. The 

findings imply that individual characteristics may not play as decisive a role in SSEs as 

expected. Instead, places could play a dominant role by constraining individuals’ ability 

to fully realize their spread potential. Additionally, a counterfactual simulation of the 

lockdown scenario demonstrated that implementing lockdown measures, despite the 

significant cost, would not yield substantial long-term benefits and could potentially 

exacerbate spatial inequalities. 
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Thirdly, the model is utilized to compare new variant invasion scenarios involving 

the introduction of new variant into origin places with high or low scaling indices, 

which signify places’ importance within the urban scaling structure. Our analysis 

reveals differences in initial places of invasion have path-dependent effects on urban 

resilience. While high scenarios exhibit a greater chance of successfully initiating new 

waves, low scenarios surprisingly show more explosive early spread. 

This study brings important insights into local spread dynamics of COVID-19 and 

similar diseases. Firstly, it highlights the crucial role of urban scaling structure in 

shaping local spread risks and local SSEs. Secondly, it demonstrates how variant 

invasion contexts interact with urban complex systems, leading to diverse vulnerability 

and resilience outcomes. These findings could inform policymaking at finer spatial 

scales and over relatively longer temporal scales. The research framework presented 

here holds potential for broader applications in wider spatial contexts (e.g., Great Bay 

Areas) and various disaster contexts.
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Chapter 1 Introduction 

Since the end of 2019, the world has experienced recurring waves of COVID-19, with 

new variant to be more infectious than its predecessor, leading to numerous infections 

and fatalities (Keni et al., 2020; A. T. Levin et al., 2022; Paul et al., 2020). The impact 

of COVID-19 has been unevenly distributed across social groups and urban areas 

(Ahmed et al., 2020; Blundell et al., 2022; Damme et al., 2020). Evidence suggests that 

disadvantaged groups and individuals residing in densely populated areas often 

experience a higher burden of infection (Chang et al., 2021; Chowkwanyun & Reed, 

2020; Yancy, 2020). 

The diverse incidence patterns indicate that the underlying spread processes are 

also varied. Many studies have highlighted the significance of superspreading events 

(SSEs) during the pandemic, demonstrating that a minority of individuals and places 

contributes to the majority of transmission (Adam et al., 2020; Lau et al., 2020; Lewis, 

2021; Majra et al., 2021). Understanding the key factors influencing these 

heterogeneous spread processes is critical for anticipating and managing of pandemic 

risks (Koks et al., 2020; Lewis, 2021; Rasmussen et al., 2020). However, the underlying 

mechanisms driving these processes are still not fully understood (Alessandretti, 2022). 

Existing research has identified mobility as a critical influencing factor of local 

spread dynamics, suggesting that higher mobility volumes results in more intensive 

contacts and thus an increased risk of spread (Badr et al., 2020; Hong et al., 2021a; 
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Kogan et al., 2021; R. Levin et al., 2021; Nouvellet et al., 2021). However, this 

explanation may not provide a comprehensive understanding, as it primarily focuses on 

the magnitude of local mobility while overlooking other crucial aspects, such as the 

spatial structure of mobility.  

Consequently, this thesis aims to reexamine local spread dynamics from an urban 

structure perspective, followed by a systematic analysis of how urban systems respond 

to waves with different characteristics. 

1.1 Local spread dynamics from urban structure perspective 

Mobility volumes within urban areas follows a widely-found power-law scaling 

distribution (Batty, 2008; Bettencourt, 2013; Brockmann et al., 2006; Jiang et al., 2009). 

Evidence has shown that a higher degree of scaling can facilitate the overall spread 

across entire cities or countries (Aguilar et al., 2022; Lima & Atman, 2021; Schläpfer 

et al., 2014; Tizzoni et al., 2015). However, how the scaling might influence on local 

spread processes remains unclear. 

The scaling patterns suggest cities are urban complex systems comprising 

hierarchically ordered subsystems (Batty, 2008, 2013; Jiang, 2023). The underlying 

structure could play a crucial role in shaping the scaling property of human mobility. 

(Jiang et al., 2009; Jiang & Jia, 2010; Jiang & Liu, 2012). The structure, referred as 

urban scaling structure afterwards, characterizes how urban areas with heterogenous 

mobility volumes are spatially distributed and how they adapt to and differentiate from 

each other (Jiang, 2018). Understanding how this structure may impact local spread 
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processes is a key question for this research. 

Within the framework of the urban scaling structure, local spread dynamics 

exhibits complexity. The origin place of initial cases transports the virus to 

interconnected places. Throughout the processes, individual-to-individual spread 

gradually alter the landscape, and the landscape further influences subsequent spread 

dynamics. Initially, places abundant in susceptible individuals will experience an 

accelerated rate of spread. Once saturation is reached, a lack of new contacts 

significantly reduces the rate of transmission in that place (R. Morrill et al., 1988). The 

dynamic interplays among multiple places give rise to local spread dynamics. 

1.2 Vulnerability and resilience of urban complex systems 

Section 1.1 describes how a single wave would spread throughout urban complex 

systems. Considering multiple waves with different characteristics, the vulnerability 

and resilience of urban complex systems are intrinsically intertwined with a 

combination of socio-physical drivers and dynamic processes (Adger, 2000; Folke, 

2006; Yabe et al., 2022). Disaster vulnerability and resilience aim to measure potential 

losses (Adger, 2006; Cutter, 1996, 2003) and recovery and adaptive capacity (Cutter et 

al., 2008; Folke, 2006; Tang et al., 2024), respectively. However, current research often 

relies on static measurements that may not effectively capture the cumulative impact of 

disasters, the dynamic interplay of social and physical systems, and regime transitions 

(Yabe et al., 2022). 

This thesis adopts a dynamic view to understand the vulnerability and resilience of 
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urban complex systems in response to different waves of the COVID-19 pandemic. 

Urban complex systems, influenced by various variant invasion events, will undergo 

distinct space-time processes that shape vulnerability and resilience outcomes. Two 

significant pathways of influence are likely to emerge:  

Firstly, variants may have heterogenous impacts on individual infectiousness. 

Evidence suggests that some individuals exhale significantly higher viral loads than 

others (Sidik, 2023), indicating a strong potential for large heterogeneity in individual 

infectiousness. Therefore, exploring how different degrees of individual heterogeneity 

affect local vulnerability is an essential area of exploration. Secondly, the initial 

invasion contexts may have significant implications for urban resilience outcomes due 

to the path dependency of complex systems (Holland, 2014). Particularly, exploring 

how the initial invasion place may affect urban resilience is a question to be explored. 

1.3 Conceptual framework and objectives 

1.3.1 Conceptual framework 

The conceptual framework of this research is presented in Figure 1-1. This framework 

draws inspiration from the Cutter’s vulnerability of places model and the disaster 

resilience of place (DROP) model (Cutter, 1996; Cutter et al., 2008). However, we 

reorganize key elements within the pandemic context, as the previous versions have 

primarily targeted on natural disasters. 
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Our framework is rooted in urban complex system, simulating the intricate 

processes that influence disaster impact. This is because pandemics, distinct from 

natural disasters, involve people who can both be victims and pose a threat, leading to 

more complex dynamics. Each element in this framework changes over time. In the 

context of recurring waves, the spread patterns from prior waves can influence the 

dynamics of subsequent waves. 

Within this study, vulnerability is defined as the potential of individuals to be 

infected across places, and resilience is defined as the adaptive capacity of urban 

complex systems in response to the invasion of new variants. Vulnerability and 

resilience are the combined outcome of the interaction among urban complex systems, 

virus invasion event, and coping responses (Figure 1-1). Urban complex system serves 

as both antecedent conditions preceding disaster events and as constantly evolving 

contexts of vulnerability and resilience. It comprises interconnected social and physical 

systems. 

Virus invasion events and coping responses are other important components that 

shapes disaster impact, interacting with urban complex systems. For virus invasion 

events, virus characteristics (e.g., individual infectiousness heterogeneity) and 

importing contexts of new variants (e.g., importing date, invasion place, or initial case 

number) could lead to diverse outcomes of vulnerability and resilience. Regarding 

coping responses, various human interventions, aimed at reducing contacts or the 

probability of infection, can mitigate spread in the short term. However, they may 
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inadvertently shift current risks to future situations, or transfer risks from one 

population to the another. 

 

Figure 1-1 The conceptual framework of vulnerability and resilience of urban complex systems 

under the pandemic context 

1.3.2 Research objectives and questions 

This study aims to provide a comprehensive understanding of the interplay between 

urban scaling structure, local spread dynamics, and urban resilience in the face of 

evolving challenges. Our first research question centers on exploring how the urban 

scaling structure influences local spread dynamics, particularly leading to 

heterogeneous spread patterns across different places and individuals. 

Building upon this, the second research question focuses on how variant 

characteristics, which lead to differing degrees of individual heterogeneity in 

infectiousness, contribute to local vulnerability patterns within urban complex systems. 

The third question delves into how urban resilience varies in response to invasion events 
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originating from diverse origin places. 

1.3.3 Theoretical and practical significance 

The research questions posed in this study are significant both theoretically and 

practically. Firstly, the urban scaling structure provides a mesoscopic view to sheds 

new light into intricate spread processes. Existing research have primarily focused on 

the microscale individual interactions that leads to the emergence of macroscopic 

patterns. By integrating the structural relations between places, this study has potential 

to offer mid-range explanatory mechanism underlying local spread processes. The 

scaling property of human mobility is widely-found, and the ubiquity suggests that the 

urban scaling structure and its implications may have broad applicability to other 

regions.  

 Moreover, the research framework of this study can be applied to many other 

spatial diffusion phenomena, such as the adoption of innovations, ideas, or behaviours, 

may gain insights from our research. Theses phenomena depend on human mobility 

and interactions for dissemination but with distinct spread mechanisms and different 

contextual factors.  

Secondly, this study expands the current static measurements in disaster research 

to study the dynamic processes underlying vulnerability and resilience. Different 

disaster events will interact with urban complex systems, contributing to the evolving 

characteristics of vulnerability and resilience. This research framework can be applied 

to more general disaster contexts. Although natural disasters are different from the 
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COVID-19 pandemic, they all involve information flow, adoption of protective 

behaviours, and the dissemination of panic all entail interpersonal spread. 

Thirdly, this research can inform policymaking at finer spatial scales and over 

relatively longer temporal scales. In an uncertain future, this research considers the 

context of urban complex systems, which may offer a more reliable approach to 

providing policy recommendations that can help avoid disastrous outcomes as much as 

possible. 

1.3.4 Outline 

This thesis consists of the following sections: Chapter 2 provides a brief review of the 

literature related to disease spread modelling in non-geographic and geographic fields, 

urban complex systems, and disaster vulnerability and resilience. Chapter 3 introduces 

the methodology of this study, ranging from the introduction of study events and 

datasets to the construction and validation of a spatially explicit agent-based model 

(ABM). 

Chapter 4 to 6 are the core parts of this thesis. Chapter 4 investigates the impact of 

urban scaling structure on local spread dynamics. Chapter 5 examines the influence of 

individual infectiousness heterogeneity on local vulnerability. Chapter 6 analyzes the 

path-dependent effects of initial invasion places on urban resilience. Chapter 7 conducts 

sensitivity analysis of the model to explore alternative assumptions on local spread 

dynamics. Chapter 8 summarizes the contributions, limitations, and future directions of 

this research. 
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Chapter 2 Literature Review 

2.1 Disease dynamic modeling 

2.1.1 Statistical or machine learning methods 

For forecasting purpose, statistical approaches are utilized for short-term predictions, 

typically spanning a week or a few weeks ahead (Holmdahl & Buckee, 2020). They 

primarily involve fitting historical case data, making them more suited them well-suited 

for such short-term projections. However, statistical methods play a pivotal role in 

deriving critical epidemiological information directly from data. For instance, they are 

instrumental in assessing risks associated with diverse transmission pathways or 

environmental factors (Heesterbeek et al., 2015).  

Geo-spatial statistical techniques delve deeper into the geographic dimensions to 

unravel intricate disease patterns and dynamics. Much research has delved into the 

impact of a broad range of risk factors on the heterogeneous disease patterns, and these 

factors include but are not limited to socioeconomic factors (e.g., income levels), 

geographical factors (e.g., distinctions between urban and rural areas), demographic 

factors (e.g., age and race), environmental factors (e.g., air quality) (Yao et al., 2023).  

While statistical methods are valuable in identifying potential risk factors and their 

associations with disease patterns, understanding how these risk factors interact and 

potentially multiplicate the effects needs further investigation (Yao et al., 2023). In 

contrast to statistical methodologies, mechanistic modelling tools such as mathematical 
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models and agent-based models could be more suitable for long-term projections. These 

models incorporate intricate nonlinear feedback mechanisms, where the proliferation 

of infections accelerates the spread of disease. 

2.1.2 Mathematical models 

Mathematical models employ mathematical concepts and language to depict the 

dynamics of disease spread and propagation, serving as a valuable tool for 

quantitatively representing and predicting infection dynamics at the population level  

(Heesterbeek et al., 2015). These models offer a means to delve into the intricate 

complexity of infectious disease dynamics, a complexity stemming from a web of 

interconnected temporal, organizational, and spatial scales. 

However, traditional mathematical models often overlook individual heterogeneity, 

which can wield a significant impact on disease transmission, particularly in the context 

of respiratory infections such as SARS and COVID-19, where superspreaders play a 

defining role in disease dissemination. 

Among the most widely used mathematical models are compartmental models, 

which conceptualize a host population as divided into discrete units. These models 

group individuals into compartments where each shares similar average characteristics 

and typically interacts with every other individual. One of the simplest forms is the 

Susceptible-Infectious-Recovery (SIR) model (Kermack & McKendrick, 1927). 

Originally designed to elucidate the rapid rise and decline of infected cases during 

epidemics, this model embodies our intuitive grasp of how simple communicable 
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diseases propagate in reality. It segregates individuals into three categories: susceptible 

individuals at risk of infection, infectious individuals capable of transmitting the disease 

to the susceptible, and recovered individuals immune to reinfection and incapable of 

transmitting the disease further. 

Some studies integrated the compartment models with complex network models to 

account for movement between population (Pastor-Satorras et al., 2015). The concept 

of an individual's number of connections serves as a fundamental metric for delineating 

the network's topology. When combined with infection rates, an individual's 

connectivity plays a crucial role in shaping how diseases propagate within a network. 

These network models can be categorized as either population-based or individual-

based, contingent on the type of networks employed and the accessibility of relevant 

data. 

A notable instance of network-based epidemic modelling is the global epidemic 

and mobility model, which integrates census and mobility data within a fully stochastic 

metapopulation network framework. This model facilitates detailed simulations of the 

dissemination of influenza-like illnesses on a global scale (Chinazzi et al., 2020; Van 

den Broeck et al., 2011). The world population is segmented into geographic census 

areas centred around transportation hubs and interconnected via mobility flows. 

Disease transmission occurs within each subpopulation, with individuals traversing 

between subpopulations along the mobility network based on high-quality 

transportation data, thereby mimicking the global trajectory of epidemic outbreaks. 
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At the more granular level of urban settings, synthetic population constructions 

offer even greater precision by incorporating diverse location types such as residences, 

schools, and workplaces. Movements and durations spent in each location contribute to 

the generation of individual-location bipartite networks, whose unipartite projection 

delineates the synthetic interaction network at the individual level, governing the 

dynamics of epidemic propagation.  

2.1.3 Agent-based models 

ABM are designed to simulate the diverse agents and the interactions between agents 

and their environment (Railsback, 2019) (Figure 2-1). These agents can encompass 

individuals, households, governmental bodies, or any other entities of interest. At its 

core, ABM enables the emergence of population-level phenomena that transcend or 

deviate from the summation of individual behaviours. As such, ABM adopts a bottom-

up methodology, where micro-level behaviours give rise to macro-level dynamics. 

Given the shared characteristics with complex systems, ABM becomes a promising tool 

to explore complex systems. 

ABMs exhibit key attributes such as heterogeneity, interaction, and autonomy. 

Heterogeneity implies that agents typically possess distinct characteristics. Interaction 

denotes that agents commonly engage with their neighbours either spatially or through 

a network. Autonomy signifies that agents operate independently and pursue individual 

objectives. Owing to these traits, ABM proves to be an ideal tool for investigating a 

broader spectrum of research queries compared to conventional methodologies. 
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Furthermore, ABMs align naturally with modelling infectious disease transmission, as 

interactions among individuals and between individuals and local environments 

frequently underpin population-level patterns of disease incidence and perpetuation 

(Tracy et al., 2018).  

 

Figure 2-1 The agent-based modeling framework (Metcalf, 2007) 

In this section, we delve into the existing ABMs tailored for modelling infectious 

diseases, with a specific focus on COVID-19. Different from SIR or SEIR models 

discussed in Section 2.1.2, these ABM models introduce individual heterogeneity and 

intricate network interactions, both spatially and temporally, providing deeper insights 

into the transmission processes within real-world scenarios (Tracy et al., 2018). To 

replicate the spread dynamics on an urban scale, ABMs operate under certain 

assumptions (Bian & Liebner, 2007): (a) Individuals exhibit diversity in characteristics 

like age, race, occupation, and infection status; (b) Individuals engage with a finite 

number of others within specific timeframes; (c) Interaction frequencies vary among 

individuals; (d) Individuals are geographically dispersed; and (e) Individuals are 

mobile. 
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Building upon these foundational heterogeneity assumptions, the majority of 

ABMs in infectious disease modelling are tailored to simulate transmission dynamics 

and control measures within populations (Lorig et al., 2021; Tracy et al., 2018; N. 

Zhang, Jack Chan, et al., 2021). Existing ABMs for COVID-19 leverage big data and 

heuristic rules to depict human mobility behaviours and social contact patterns. Human 

mobility and social interactions are pivotal components in the propagation of infectious 

diseases (Chen et al., 2014). Given the challenge of precisely determining individual 

physical contacts, human mobility serves as the closest proxy for social interactions. 

Consequently, human mobility alone can effectively forecast shifts in real case numbers 

and highlight elevated infection rates within vulnerable populations, even amidst 

substantial alterations in human behaviours (Chang et al., 2021; Nouvellet et al., 2021). 

Although there are many different types of epidemic models, most focus on the 

temporal dimension. To spatialize epidemic modelling, M. Li et al. (2019) proposed a 

framework for the epidemic forest approach. This method involves the use of epidemic 

trees, where each tree uses the tree structure to represent an epidemic starting from a 

primary case. By structuring the model in this way, it becomes possible to integrate 

spatiotemporal, structural, and epidemiological information. 

2.2 Geographical views of complex spread processes 

In Section 2.1, the majority of models focus primarily on individuals, with space serving 

a supplementary role for analysis. However, from a geographical perspective, shifting 

the analytical focus from individuals to space may offer a fresh perspective and 
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potentially shed new light in local spread dynamics. 

2.2.1 Spatial diffusion theory 

The classic spatial diffusion theory introduced by Torsten Hägerstrand in his 

dissertation (Hägerstrand, 1973) provides a geographic framework for explaining 

diffusion phenomena. Diffusion entails the gradual spread of phenomena over space 

and time, with disease spread, innovation diffusion, and information dissemination 

representing typical examples. Hägerstrand revolutionarily viewed diffusion 

phenomena as predictable space-time processes that could be modelled as person-to-

person spread. His theory emphasized diffusion as a fundamental geographical process 

influenced by both human and physical landscapes, which, in turn, shape and transform 

the landscape (R. Morrill et al., 1988). 

In line with these principles, Hägerstrand pioneeringly created the Monte Carlo 

simulation, which enabled the modelling of individual behaviours to generate collective 

patterns, laying the foundation for current agent-based modelling methods. While the 

original Hägerstrand model is now seldom used, the geographical thinking behind 

Hägerstrand's theory still holds the potential to offer fresh insights into the local spread 

dynamics of COVID-19. From a geographical perspective, diffusion acts as an 

equalizing force that diminishes disparities between locations to facilitate the spread of 

phenomena (R. Morrill et al., 1988). This process persists until the forces maintaining 

differences align with those eliminating them. 
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Furthermore, Morrill's wave theory may also aid in understanding the local spread 

process of COVID-19. This theory portrays diffusion as dynamic waves progressing 

over space and time, changing in shape as they move (R. Morrill et al., 1988; R. L. 

Morrill, 1968, 1970). The dynamic wave is shaped by the interaction between initial 

adopters and subsequent contacts, as evidenced in various datasets (Cliff et al., 1983; 

R. Morrill et al., 1988; R. L. Morrill, 1970). 

2.2.2 The scaling of human mobility 

As emphasized in Section 2.2.1, the landscape plays a crucial role in influencing 

diffusion processes. In the context of COVID-19 spread, the spatial heterogeneity and 

structure of human mobility patterns emerge as key factors shaping transmission 

dynamics. 

Previous research has established that mobility volumes within urban areas follows 

a power-law scaling distribution (Batty, 2008; Bettencourt, 2013; Brockmann et al., 

2006; Jiang et al., 2009). In simple terms, only a minority of urban areas exhibit large 

mobility volumes, while the majority have lower mobility volumes. The scaling 

property of human mobility could be mainly shaped by the underlying scaling structure 

of urban space (Jiang et al., 2009; Jiang & Jia, 2010; Jiang & Liu, 2012). Jiang created 

complex networks that capture the urban scaling structure, which successfully 

reproduced heterogeneous human mobility patterns across local places (Jiang, 2015, 

2018; D. Ma et al., 2020).  

Urban scaling structure characterizes how urban areas with heterogenous mobility 
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volumes are spatially distributed and how they adapt to and differentiate from each 

other (Jiang, 2018). This structure may influence the evolution of local spread patterns, 

but most existing COVID-19 studies have primarily focused on examining its effects 

on overall spread trends of entire counties, cities or countries, with limited exploration 

of its impact on the local scale within cities (Aguilar et al., 2022; Lima & Atman, 2021; 

Schläpfer et al., 2014; Tizzoni et al., 2015). For example, one study compared urban 

scaling structures in three cities and found that more centralized cities, where mobility 

gathers in a few hotspots, tend to experience larger epidemic size and faster spread rates 

(Aguilar et al., 2022). Similarly, two other studies found that cities with the higher 

degree of scaling can facilitate the overall disease spread (Schläpfer et al., 2014; Tizzoni 

et al., 2015). 

2.2.3 Urban complex systems 

The concept of urban scaling structure is deeply rooted in the theory of urban complex 

systems. Cities are often viewed as complex systems that are constructed from the 

bottom up in a hierarchical way in which the basic components of cities and their 

interactions give rise to emergent properties (Batty, 2013). Urban scaling structure 

specifically describes how these basic components interact with each other, shaping the 

overall urban system. 

 The fundamental characteristic of complex systems is that the whole system is 

greater than the sum of its individual parts. Basic components in complex systems self-

organize into patterns, leading to non-linear interactions that give rise to various levels 
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of organization and hierarchies (Holland, 2014). This complexity theory has been 

applied in Batty’s new science of cities, where he elucidated the characteristics and 

origins of urban versions of complex systems (Batty, 2013).  

In urban complex systems, the distribution of basic components, such as hubs or 

nodes in networks, often follows highly skewed distributions, reflecting the competitive 

processes that drive a city's functions and shape its form and structure. These 

distributions, also referred as scaling laws or power laws, usually describe large 

numbers of small objections and small numbers of large objects. Scaling laws highlight 

the self-similar nature of cities, indicating that cities are composed of hierarchically 

ordered subsystems (Batty, 2008). 

According to Batty's theory, understanding urban complex systems necessitates 

focusing on flows and networks between places rather than just the intrinsic attributes 

of individual places (Batty, 2013). There is an inherent order, akin to a power-law 

distribution, in the number, size, and shape of properties within networks. This 

understanding helps us comprehend how urban characteristics are shaped by the 

networks that connect different places. This is why this thesis takes the urban scaling 

structure as a starting point to grasp the heterogeneity in disease spread patterns across 

places. 

2.3 Disaster vulnerability and resilience 

As indicated last section, cities, as complex systems, exhibit dynamic interactions 

across social and physical systems (Batty, 2008, 2013; J. Liu et al., 2007). Disasters, 
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unfolding within this context, is intimately intertwined with a combination of socio-

physical drivers and dynamic processes (Adger, 2000; Folke, 2006; Yabe et al., 2022). 

Disaster resilience, defined as the capacity to recover from and adapt to disruptions 

(Cutter et al., 2008; Folke, 2006; Tang et al., 2024), is now the focal point in disaster 

research. Prior to the shift within disaster communities towards resilience, attention 

predominately gravitated towards disaster vulnerability, a concept aimed at measuring 

potential losses (Adger, 2006; Cutter, 1996, 2003). Understanding vulnerability and 

fostering resilience under the context of urban complex systems are vital for effectively 

mitigating risks, minizine impacts, and facilitating recovery and adaptation after 

disaster strike. 

For conceptualizing vulnerability and resilience, Cutter proposed the vulnerability 

of places model and the DROP model (Cutter, 1996; Cutter et al., 2008). The models 

delineate the impact of natural disasters as influenced by various factors, including the 

intrinsic vulnerability and resilience, event characteristics, and coping responses, all of 

which are moderated by absorptive and adaptive capacities of systems (Cutter, 1996; 

Cutter et al., 2008). While the models lay a solid foundation for assessing vulnerability 

and resilience, traditional assessment approaches often employ static measures, 

overlooking the dynamic nature of both vulnerability and resilience (Folke, 2006; Yabe 

et al., 2022). Such a static measurement is not suitable to capture the cumulative impact 

of disasters, the dynamic interplay of social and physical systems, and regime 

transitions (Yabe et al., 2022).  
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To solve this issue, modelling approaches, such as System Dynamics model and 

ABM, have emerged as promising tools. System Dynamics model can account for the 

macroscopic relationship between the functionality of physical systems and social 

systems. Sutley & Hamideh (2018) designed a System Dynamics model integrating 

engineering and social factors that interact to influence housing recovery process. Yabe 

et al. (2021) built interdependent socio-physical systems to examine their effects on 

disaster recovery and resilience during Hurricane. Zarghami & Dumrak (2021) 

projected socio-economic and demographic characteristics of populations to explore 

future social vulnerability. 

In contrast, ABMs focus on modelling the interactions of individual behaviours 

and their impact on the emergent patterns of the whole system. Ghaffarian et al. (2021) 

developed an ABM that simulated individual behaviours and their interactions with 

socio-economic institutions to explore physical recovery patterns. Nejat & 

Damnjanovic (2012) proposed an ABM incorporating homeowners’ reaction to 

neighbours’ reconstruction and relocation behaviours to study housing recovery 

process. Haer et al. (2019) considered adaptive behaviours of governments and 

households in the face of river flooding. 

2.3.1 COVID-19 research on disaster vulnerability and 

resilience 

As a special disaster, the COVID-19 pandemic presents distinctive complexities in 

terms of vulnerability and resilience within urban complex systems. Numerous studies 
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on COVID-19 have primarily focused on assessing infection risk or vulnerability 

(Franch-Pardo et al., 2020, 2021; Yao et al., 2023). Most of them perceive the risk as 

the proximity to the potential infected cases, which can effectively capture the spatial 

and temporal differences in risk under specific contexts (Coccia, 2020; Hong et al., 

2021a; Huang & Kwan, 2021; H. Yang et al., 2023). However, in the face of changing 

contexts, for example, the invasion of new variants, this framing may not effectively 

predict new situations, as it overlooks the complex interactions among multiple risk 

factors (Yao et al., 2023). 

Most COVID-19 studies on urban resilience have mainly focused on delineating 

recovery processes of diverse aspects of urban systems, such as mobility patterns, 

economic activities, and public health condition (Tang et al., 2024). For example, Li 

and Lasenby (2023) utilize various urban mobility data to analyse the impacts of 

restrictive policies on daily mobility and exhaust emissions in the post-pandemic 

period. Che, Lee, and Kim (2023) observed a notable transformation in the patterns of 

online and in-store sales, with retailers experiencing disparate recovery rates at both 

neighbourhood and district levels. Zhang & Wang (2023) thoroughly modelled changes 

in urban resilience under various control policies by incorporating subsystem resilience 

related to governance, infrastructure, socio-economy, and energy-material flow, using 

System Dynamics and epidemic simulation model. 

Different from recovery capacity, only a few research has explored the adaptive 

capacity of urban complex systems, especially their ability to resist the emergence of 

new waves. Lloyd-Smith et al. (2005) and Goyal et al. (2022) identified key factors, 
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including individual infectiousness and social contact number, that influenced the 

emergence or distinction of new circulating variants, using mathematical models. 

However, they did not account for the impact of heterogeneous human mobility on this 

emergence. Considering that human mobility can cause large disparities in infections 

across places (Chang et al., 2021; Peng & Liu, 2024), different origin places of new 

variants may also be crucial for new wave emergence. 

In summary, empirical research on dynamic resilience process modelling is still in 

its early stage, with most studies utilizing System Dynamics to consider the macro-level 

relationships of subsystems. There is a need for further exploration into spatial 

heterogeneity and dependency of dynamics that operate at smaller scales within cities. 

Specifically, in the context of COVID-19 resilience, a promising direction involves 

utilizing ABMs to explore how the interplay of initial invasion places and human 

mobility could influence dynamic resilience processes in response to new variants. 

2.4 Summary  

Section 2.1 introduces four main types of disease dynamic modelling approaches: 

statistical models, mathematical models, complex network models, and agent-based 

models. Statistical models primarily fit historical case data, making them suitable for 

short-term projections. In contrast, the other three approaches consider mechanistic 

processes, making them potentially more suitable for relatively long-term projections 

and evaluations of intervention effectiveness (Holmdahl & Buckee, 2020). 

Mathematical models assume various forms of homogeneity, but local or individual 



23 

 

heterogeneity can play critical roles in disease transmission. Complex networks and 

agent-based models can incorporate this heterogeneity, with agent-based models being 

particularly flexible in including complex factors. 

Most current infectious disease modelling focuses on projecting temporal 

dynamics, with spatial dimensions often considered at highly aggregated levels for 

cities, countries, or globally (Yao et al., 2023). These high-level predictions have 

limited capacity to inform targeted interventions, which is why this thesis concentrates 

on exploring fine-grained local spread dynamics. 

In Section 2.2, a geographical perspective is highlighted as shedding new light on 

the complexity of local spread dynamics. From classic spatial diffusion theory to the 

latest urban complex system theory, these perspectives hold significant reference value 

for understanding the formation processes and mechanisms of complex urban 

phenomena. Spatial diffusion of diseases or other social phenomena is heavily 

influenced by the human landscape. The human landscape of mobility heavily depends 

on the underlying scaling structure. Therefore, it is promising to explore complex 

spatial diffusion processes of disease from the urban scaling structure perspective. This 

exploration provides a mesoscopic view to shed new lights in urban complex systems, 

aiding in better understanding how macro-level patterns emerge from micro-level 

individual interactions. 

Section 2.3 introduces the conceptualizations of disaster vulnerability and 

resilience within urban complex systems. Disaster vulnerability and resilience, 

unfolding within urban complex systems, are influenced by both socio-physical drivers 
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and dynamic processes. Current static measures struggle to capture cumulative impacts 

and regime transitions, emphasizing the need to dynamically explore the factors driving 

vulnerability and resilience within urban complex systems. 
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Chapter 3 Methodology  

To reconstruct the case trajectories of the fifth and sixth waves, a spatially explicit ABM 

was developed. Initially, census data was utilized to generate demographic and 

household characteristics of synthetic individuals (Figure 3-1a) (Templ et al., 2017; 

Wong, 1992). A total of 727,796 agents, representing around 10% of the Hong Kong 

population, with attributes such as age, sex, and household structure, were generated. 

Subsequently, the mobility and social contact behaviours of the synthetic 

individuals were generated. For mobility behaviours (Figure 3-1b), a complex network 

was constructed to capture the urban scaling structure, considering the hierarchical and 

spatial relationships of places (Jiang & Jia, 2010; D. Ma et al., 2020; Schläpfer et al., 

2021). Based on the complex network, the scaling index was calculated using Google’s 

PageRank algorithm (Brin & Page, 1998) to simulate mobility flows across places 

(Jiang et al., 2009; Jiang & Jia, 2010). 

The model incorporated a two-layer contact structure (Figure 3-1c). On a daily 

basis, agents had contacts with their families at home, and with other individuals in 

shared locations during trips. Each contact entailed a specific probability for susceptible 

agents to contract the virus from infectious individuals, leading to the latency period 

and subsequently the infectious period. 

Most of the parameters in the model were derived from empirical evidence (Table 

3-1). However, two constant parameters for each wave, namely individual 

infectiousness and the initial proportion of latent cases, required calibration based on 
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observed city-level daily cases. The model’s predictive accuracy was evaluated by 

comparing the calibrated model’s predictions with empirical case data of both waves. 

After calibration and validation, this model was used to explore the influence of 

individual infectiousness heterogeneity on the vulnerability and resilience of urban 

complex systems (Figure 3-1d). 

 

Figure 3-1 The spatially explicit agent-based model and simulation scenarios. a, synthetic 

population was generated through iterative proportional fitting based on census data. b, synthetic 

mobility was simulated at 4,863 subunits of tertiary planning units (subTPUs) using urban scaling 

structure built based on travel survey data. c, the two-layer contact structure consists of household 

contacts and non-household contacts during trips. The model simulated vulnerability to infections 

during fifth wave considering individual infectiousness heterogeneity, and then simulated the 

resilience to new variant invasions during sixth wave (d). 

3.1 Study events and datasets 

Our study focuses on Hong Kong, a global metropolitan city with a population of over 

7.4 million. Due to the limited number of cases (in total 12,258 cases by Dec. 20, 2021) 

during the first four waves in Hong Kong, we chose the fifth and sixth waves as our 

study events, from 1 February to 30 March 2022, and from 1 May to 30 September 
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2022, respectively. The fifth wave was characterized by a significant spread of Omicron, 

with 1.19 million confirmed cases (B. Yang et al., 2024). Prior to this wave, only 0.2% 

of the population had been confirmed as cases, leading to limited infection-induced 

immunity (B. Yang et al., 2024). Combined with ineffective vaccine-induced immunity 

against Omicron and the presence of a relatively singular circulating strain (BA.2), the 

fifth wave presented a relatively straightforward and representative event to model 

(Andrews et al., 2022; Kirsebom et al., 2022). Therefore, we chose it as one of our study 

events to validate our model structure and also assess the community vulnerability. 

To study the adaptive capacity gained from the fifth wave, we selected the sixth 

wave as our other study event. This wave had 0.56 million confirmed cases, with the 

major strain being BA.5 (B. Yang et al., 2024), which was about 1.4 times more 

infectious than BA.1 (Fan et al., 2022). It is important to note that BA.2 was also 

circulating in the early stages of this wave. However, as our study specifically focused 

on the adaptive capacity in response of the new variant, namely BA.5, we isolated the 

number of confirmed cases attributed to BA.5 according to the whole genome 

sequencing data from The Hong Kong Polytechnic University (Gilman, 2022). By 

doing this, we only modelled the spread of BA.5 during the sixth wave. To model and 

validate these two events, empirical data regarding four aspects are used, including case 

data, demographic data, mobility data, and vaccine data. 

3.1.1 Case data 

For the fifth wave, empirical case data at three spatial scales were used to validate our 
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model (see Section 3.4.3). Firstly, at the city level, we directly used the number of daily 

confirmed cases. Secondly, at the tertiary planning units (TPU) level, we obtained the 

number of daily cases confirmed by Rapid Antigen Tests (RAT) from the RAT 

reporting platform. This platform, launched on 7 March 2022, contains data on over 

460 thousand self-reporting cases and their respective home building locations (Hong 

Kong Government, 2022b). Finally, at the subunit of TPU (subTPU) level, we 

identified high-risk subTPUs based on contact tracing data. This data includes 

information on the buildings visited by cases during the period 1 to 14 days prior to the 

onset of symptoms, as of 6 February 2022 (Hong Kong Government, 2022a). The 

contact tracing data consists of 22,869 visitations made by 10,608 cases.  

For the sixth wave, only the city-level case data was available and used to validate 

our model. To separate the BA.5 cases from all local cases, we used the proportion of 

BA.5 samples in the total sequenced samples of local cases from 1 May to 30 September 

2022 (Gilman, 2022). As shown in Figure S1, sporadic cases of BA.5 were detected 

around May, but it was until July that BA.5 gradually gained dominance, increasing 

from an initial proportion of 2% to eventually occupying 80% of the confirmed local 

cases at the end of September. The dominance of BA.5 in July can be primarily 

attributed to the Hong Kong government’s decision to reduce the quarantine period of 

inbound persons from overseas from 14 days to 7 days (Gilman, 2022). 

3.1.2 Demographic data 

The 2016 census tables were utilized to create a synthetic population, comprising 
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population figures for 1,622 census tracts categorized by sex, age groups, and 

household sizes. Meanwhile, the 2011 household survey data from the Hong Kong 

Transport Department documents the compositions of household members in 35,401 

households.  

3.1.3 Mobility data 

The 2011 travel survey data collected by the Hong Kong Transport Department were 

employed to generate synthetic mobility behaviors, encompassing 121,204 one-day 

trips made by 58,843 residents across 4,863 subTPUs. Despite not covering the 

simulation period, Figure 7-1 demonstrates that the 2011 travel survey data exhibits a 

significant representativeness of mobility patterns, when comparing to the mobility 

structure depicted in the 2020 subway data (Zhang et al. 2021). Moreover, the Google 

mobility change index (Google LLC, 2022) was utilized to represent the overall 

mobility changes resulting from interventions during the simulation period. The index 

measures variations in mobility volume at the city level. By analysing anonymized and 

aggregated location data from users, Google calculates the percentage change relative 

to a baseline period (from 3 January to 6 February, 2020), facilitating temporal 

comparisons. Figure S2 illustrates that the fifth wave led to a substantial reduction in 

human mobility, while the sixth wave had a limited impact on mobility.  

3.1.4 Vaccine data 

To address vaccine-acquired immunity, we obtained daily vaccination data categorized 
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by age group from the Hong Kong Health Bureau Department (DATA.GOV.HK, 

2022). This dataset provides cumulative counts of COVID-19 vaccine uptake for 

BioNTech or Sinovac vaccines, categorized by vaccine type and order across different 

age groups on a daily basis, e.g., BioNTech-BioNTech, or BioNTech-Sinovac. 

3.2 Simulating individuals 

3.2.1 Demographic and household characteristics 

Based on the aggregate census tables and individual-level household survey data, we 

employed iterative proportional fitting (IPF) to generate and calibrate a population of 

727,796 agents and 263,609 households. The generated population exhibited age, sex, 

household structure characteristics consistent with the real population across 1,622 

census (Templ et al., 2017; Wong, 1992). The simulation of household structure 

encompassed the composition of individuals within each household unit, considering 

household sizes as well as the age and sex distribution of household members.  

We conducted the following workflows using the R package simPop (Templ et al., 

2017): firstly, the individual-level household survey data is calibrated to match the true 

population numbers by age and sex, using IPF. IPF is a technic to fit an n-dimensional 

table with unknown entries to match a set of marginal distributions. This process 

unfolds iteratively, focusing on individual dimensions one after the other. Within each 

dimension, adjustments are made to the internal cells to align with the specified totals. 
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This iterative cycle continues until convergence is achieved, ensuring that the n-

dimensional table aligns with all margins accurately.  

To elaborate, the calibration involves fine-tuning sample weights based on known 

population totals across different demographics. Once estimates for the expected 

number of individuals in each group are established within the contingency table, 

individuals in the sample dataset are assigned probabilities of selection based on 

original sampling weights and the required number of similar individuals to supplement 

the synthetic population. Subsequently, individuals are randomly chosen from the 

sample until the targeted number of individuals per group is met. The simPop package 

streamlines this calibration process through the calibSample() function, facilitating a 

seamless execution of these intricate adjustments. 

Secondly, the calibrated individual-level household survey data is extrapolated to 

create the realistic household structure of the synthetic population. Within the 

household structure, a predefined set of "basic variables" such as age, gender, and 

location of household members is incorporated. The data integrated into the synthetic 

population at this phase are sourced from real survey participants, ensuring the fidelity 

of household representations and averting the generation of unrealistic structures.  

To expedite the sampling process for a substantial number of elements, alias 

sampling, as introduced by Walker (1977), proves to be exceptionally efficient for our 

objectives. Leveraging the simStructure() function within the simPop package 

facilitates the seamless implementation of this sampling technique. For a deeper 
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understanding of the methodology, please refer to the comprehensive mathematical 

exposition provided by (Walker, 1977).  

Finally, synthetic individuals and households are randomly allocated to each 

census tract, with ongoing adjustments to the allocation process until the convergence 

is achieved and a good fit to the aggregate census tables is attained. In cases where the 

population is to be allocated into more localized geographic zones, such as districts in 

Austria, we utilize the simInitSpatial() function to simulate these smaller regions. 

Within the current configuration of simPop, this function necessitates the provision of 

one of two tables as input, each comprising precisely three columns. The first two 

columns within these tables designate the broader (first column) and more specific 

(second column) geographic areas. The third column contains the documented 

population figures corresponding to the smaller geographical units.  

Table 3-1 Individual attributes, values, and sources 

Attributes Value Source 

Demographics and households   

Identify of individual Agent ID Simulated 

Age Twelve age groups (2016 HK Census) 

Sex Male, female (2016 HK Census) 

Identify of household Household ID Simulated 

Household location Census tract ID (2016 HK Census) 

Travel and contact behaviors   

Trip destinations subTPU IDs  Derived from HK 

travel survey data 

The total number of total contacts 17.5 (the mean value) Derived from HK 

contact survey data 

(Kucharski et al., 

2014) 

Number of contacts at home Decided by household size Simulated 

Number of contacts outside home Decided by the number of total 

contacts and household size 

Simulated 
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Infection attributes Wave 5 

 

Wave 6 

 

 

Individual infectiousness 0.05 

 

0.065 Estimated 

Probability of being initial latent 

cases 

6 × 10−5  

 

5 × 10−4  

 

Estimated 

Latency period 1.20 (the mean 

value) 

1.20 (the 

mean value) 

(Cai et al., 2022; 

Xu et al., 2023) 

Infectious period 5.64 (the mean 

value)  

5.64 (the 

mean value) 

 

(Cai et al., 2022; 

Manica et al., 2022; 

Xu et al., 2023) 

Period from infectious to confirmed 5.05 (the mean 

value)  

4.00 (the 

mean value) 

(B. Yang et al., 

2024) 

Probability of being confirmed when 

being infected 

8% (before 24 Feb), 

30% (24 Feb. to 7 

Mar.), 35% (after 7 

Mar.) 

20% Estimated based on 

HKUMed (2022) 

Coping responses   

Mobility reductions due to non-

pharmaceutical interventions (NPI) 

during wave 5 

Google mobility index (Google LLC, 

2022) 

Social contact reductions due to NPI 

during wave 6 

47% (HKUMed, 2022) 

Probability of cancelling all trips 

(stay at home) when being infected 

50% (HKUMed, 2022) 

Vaccination information Vaccine dose and type, inoculation 

date  

Vaccine data 

(DATA.GOV.HK, 

2022) 

Vaccination effectiveness 
Decided by vaccine information 

(see  

Table S3) 

(HKUMed, 2022) 

Infection-induced immunity 
Decided by prior-infection time (see  

Table S4) 

(Malato et al., 

2023) 

3.2.2 Urban scaling structure, the scaling index, and mobility 

behaviors 

As shown in Figure 3-2, to account for spatial heterogeneity in mobility, the TPU-TPU 
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mobility flows were initially simulated using the departure-diffusion mobility model 

(Giles & Wesolowski, 2022). However, considering the trade-off between spatial 

resolution and prediction accuracy of traditional mobility models, a subTPU complex 

network was constructed to refine mobility at finer spatial scales. This network, 

characterized by nodes and links, captures the urban scaling structure, delineating the 

scaling properties of mobility towards different locations within a city. The scaling 

index, which encapsulate the scaling properties, was utilized to distribute the 

destinations of previously simulated TPU-TPU flows to the subTPU level. 

Consequently, this approach enables the simulation of mobility volumes across 

subTPUs that adhere to the scaling law. 

In the simulation of TPU-TPU mobility flows, the departure-diffusion model 

was employed (Giles & Wesolowski, 2022). This model estimates travel probability 

within and outside the origin separately and combines them using conditional 

probability rules. The model first estimates the travel probability outside the origin 

location 𝑖 (the departure process) and then the distribution of travel from the origin by 

normalizing connectivity values across all 𝑗  destinations (the diffusion process). 

These two processes are then combined in the departure-diffusion model as 𝜏𝑖 (the 

probability of leaving origin 𝑖) and 𝜋𝑖𝑗 (the probability of going from 𝑖 to 𝑗). The 

probability of travel within the origin 𝑖 is denoted as Equation 1, and the probability 

of travel outside the origin 𝑖 is described as Equation 2. The expected mean number 

of trips for route 𝑖 → 𝑗 is then as shown in Equation 3, where 𝜃 is a proportionality 
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constant representing the overall number of trips per person in an origin population of 

size 𝑁𝑖. 

𝑃𝑟(¬𝑑𝑒𝑝𝑎𝑟𝑡𝑖) = 1 − 𝜏𝑖                                (1) 

Pr(𝑑𝑒𝑝𝑎𝑟𝑡𝑖 , 𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑖→𝑗) = Pr(𝑑𝑖𝑓𝑓𝑢𝑠𝑒𝑖→𝑗| 𝑑𝑒𝑝𝑎𝑟𝑡𝑖) Pr(𝑑𝑒𝑝𝑎𝑟𝑡𝑖) = 𝜏𝑖𝜋𝑖𝑗       (2) 

𝜆𝑖𝑗 =  {
𝜃𝑁𝑖(1 − 𝜏𝑖)         𝑖𝑓 𝑖 = 𝑗
𝜃𝑁𝑖𝜏𝑖𝜋𝑖𝑗               𝑖𝑓 𝑖 ≠ 𝑗

                            (3) 

As there is a trade-off between spatial resolution and prediction accuracy of traditional 

mobility models with limited number of travel survey data (Table S6), we then 

characterized urban scaling structure to further refine the mobility patterns across 

subTPUs. However, due to limited travel survey data and the trade-off between spatial 

resolution and prediction accuracy (Table S1), urban scaling structure was further 

employed to enhance the mobility patterns across subTPUs.  

Urban scaling structure, here, refers to the scaling property of human mobility 

within cities, where the mobility volumes originating from or destined for different 

locations in a city follows the scaling law (Batty, 2008; Brockmann et al., 2006; Jiang 

et al., 2009). The scaling property is reflected in nodes (origin and destination of 

movement) and links (between nodes) of a network, which effectively inform mobility 

at finer spatial scales (Jiang & Jia, 2010; D. Ma et al., 2020; Schläpfer et al., 2021). 

Jiang (2018) introduced a topological network representation that considers urban space 

as a living structure that differentiates from and adapts to each other, as intense local 

competition for space could be the major reason of the emergent scaling property of 
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cities (Batty, 2008). By classifying nodes into different hierarchies and creating links 

within and across hierarchies, the complex network portrays the scaling property of 

mobility within cities at fine spatial scales (Jiang, 2018; Jiang & Liu, 2012; D. Ma et 

al., 2020). Therefore, this topological complex network was utilized to characterize the 

urban scaling structure. Detailed steps are as follows: 

Firstly, we took subTPUs as distinct nodes, and divided them into 5 hierarchies 

(see  

Table S2) by mobility volume using head/tail breaks proposed by Jiang (2013). 

The head/tail breaks classification method is specifically designed for heavy-tailed data 

(e.g., the power-law scaling distributed data). This method involves iteratively 

partitioning all data values around the mean into two parts until the head part are no 

longer heavy-tailed distributed. Secondly, the nodes in the same hierarchy were then 

used to create Thiessen polygons, and one hierarchy leads to one way of segmentation 

of urban space. The hierarchies and the Thiessen polygons we partitioned demonstrate 

how urban areas differentiate from each other. Thirdly, based on the polygon-to-

polygon relationships, we created edges among subTPUs, which show how urban areas 

adapt to each other. Specifically, in the same hierarchy, the small sized subTPU points 

to the adjacent large subTPUs, and across two consecutive hierarchies, the low-level 

subTPU points to the high-level subTPU which contains it. As a result, the subTPU 

complex network was created to characterize the scaling property of human mobility 

patterns across subTPUs. 
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Figure 3-2 The workflow for simulating synthetic mobility behaviors across 4,863 subunits of 

tertiary planning units (subTPUs) utilizing the subTPU network. 

The Weighted PageRank algorithm (Brin & Page, 1998) was applied to 

calculate the scaling index for each node based on the constructed subTPU network. 

This algorithm assesses the relative importance of nodes in scaling-characterized 

networks. It considers not only the mobility volume of the node itself but also the 

mobility volumes of its neighbours and their neighbours’ neighbours through an 

iterative process (Xing and Ghorbani 2004). The “neighbours” of a node here is defined 

as the other nodes that directly point to it. The algorithm first assigns an initial index 

(the mobility volume) to each node. Then, through an iterative process, it adjusts these 

indices by considering the indices of linking nodes (Equation 4). This iterative nature 

of this algorithm ensures convergence to stable values, providing a measure of a node's 

relative importance within the complex network.  

𝑃𝑅(𝑖) = (1 − 𝑑) + 𝑑 ∑ 𝑃𝑅(𝑗)𝑊𝑖,𝑗𝑗                             (4) 

where 𝑑 is a damping factor (usually set to 0.85), and 𝑗 is the nodes that point to 𝑖, 

𝑊𝑖,𝑗 is the weight of 𝑙𝑖𝑛𝑘𝑖,𝑗 which is typically normalized to ensure that the sum of the 
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weights for outgoing links from each node is equal to 1. More mathematics details can 

be found in Xing and Ghorbani (2004). 

As the calculated scaling index is a good indicator to predict the fine-grained 

aggregate mobility (Jiang et al., 2009; Jiang & Jia, 2010), it was used to prorated TPU-

level mobility to subTPUs. Specifically, while the origins (i.e., home locations of 

synthetic individuals) remained at the TPU level due to limitations in available census 

tables, the destinations of the original TPU-TPU mobility flows were refined to the 

subTPU level. This refinement process allocated agents their TPU destinations based 

on their home TPUs.  Subsequently, agents were assigned finer subTPU destinations 

based on the refinement of TPU destinations. Consequently, the visits of agents were 

differentiated across 4,863 subTPUs, which significantly influenced the social contact 

behaviours within these subTPUs.  

3.2.3 Contact behaviors 

In the two-layer contact structure (Figure 3-1c), all agents initially had daily contacts 

with every other family member, which were categorized as household contacts. 

Contacts that occurred during trips, excluding those within households, were classified 

as non-household contacts. To model the impact of Non-pharmacological Interventions 

(NPI) on mobility, a certain percentage of agent trips were cancelled. For agents who 

still had trips, they visited various subTPUs and had the opportunity to contact a certain 

number of contactees within the same subTPU. The contactees were randomly selected 

on the first day of simulation and remained fixed thereafter, using the Monte Carlo 
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method. The number of contacts for each agent was sampled from age-dependent 

distributions (Figure S3) (Kucharski et al., 2014). Initially, the total number of contacts 

was sampled based on the age-dependent distribution. Then, it was assumed that the 

number of non-household contacts were evenly distributed among the subTPUs visited 

by the agent on a daily basis. 

3.2.4 Infection attributes 

The Susceptible-Latent-Infectious-Removed model was used to represent the course of 

COVID-19 infection. In both waves of the simulation, a proportion of initial cases was 

introduced. These initial cases, through daily contacts, have a certain level of 

infectiousness to infect susceptible agents. Infected individuals would then enter the 

latency period and subsequently the infectious period. To sample the lengths of the 

latency period and the infectious period for each individual, we used the Gamma 

distribution with mean values of 1.20 and 5.64, respectively. The Gamma distribution 

is suitable to model right-skewed data, and this is why we choose it to model the right-

skewed nature of the latency and infectious periods of the Omicron variants (Cai et al., 

2022; Manica et al., 2022). For the BA.2 and BA.5 variants, which exhibit comparable 

key time-to-event periods, such as incubation periods of 4.06 and 3.81, respectively 

(Xu et al., 2023), we used the same Gamma distribution. The slight difference in key 

periods has negligible impact on the simulation results, given that our model is based 

on a rather coarse daily temporal scale. Moreover, we further used Gamma distributions 

to sample the confirmation delay from being infected to being confirmed. The mean 
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delay time was 5.05 days for the fifth wave and 4.00 days for the sixth wave (Manica 

et al., 2022; B. Yang et al., 2024). 

3.3 Coping responses 

3.3.1 Protection behaviors 

For the fifth wave, we assume that the effect of social distancing, school closure, and 

work from home can be reflected as mobility decline in Google mobility change data. 

The reduced mobility would result in decreased social contacts and thus disease control. 

However, for the sixth wave, Google mobility change data is not representative 

anymore. Figure S2 shows that the sixth wave had limited impact on mobility. This is 

mainly because people had a decreased level of worry about infection after 

experiencing the fifth wave (Yang et al. 2024). It is important to note that the limited 

decrease in mobility does not imply a lack of protective behaviours among individuals. 

The telephone survey data show that about 50% of individuals still avoided going out 

or touching shared objects during the sixth wave (B. Yang et al., 2024). 

For the sixth wave, we assume that the effect of NPIs can be reflected as a 47% 

reduction in social contacts. Evidence from the fourth wave in Hong Kong shows that 

the implementation of Level 1 NPI reduced 47% of the effective reproductive number 

(HKUMed, 2022), which mathematically corresponds to a 47% decrease in contact rate. 

Considering that the Level 1 NPIs during the fourth wave were similar to those 

implemented during the sixth wave, such as restrictions on social gatherings in 
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restaurants and indoor leisure facilities, and closure of kindergartens, we assume NPIs 

during the sixth wave reduced contacts by 47%. 

We make the assumption that half of infected individuals would undergo a 7-day 

isolation period at home during both waves of the simulation (HKUMed, 2022). The 

mobility changes resulting from isolation were incorporated into our daily mobility 

change index. This assumption aligns with real-world scenarios where individuals who 

develop symptoms or test positive are more likely to stay home (Bian et al., 2012; Cai 

et al., 2022; HKUMed, 2022). To implement this setting, we utilized probability 

sampling to determine which infected individuals would undergo isolations. Once an 

individual developed symptoms or received a positive test result (whichever occurred 

earlier), they would start their 7-day isolation period. After this, the remaining reduction 

in mobility was randomly assigned to other non-infected individuals using the Monte 

Carlo method. 

3.3.2 Vaccine- and infection-acquired immunity 

For the fifth wave, this work only considered vaccine-acquired immunity, due to 

the limited number of prior infections (in total 12,258 cases by Dec. 20, 2021) during 

previous waves in Hong Kong. As there is no geographic information of vaccination 

data, we randomly assigned the vaccination status to agents by age group, using the 

Monte Carlo method. The vaccination status includes how many doses and which type 

of vaccine the agent had been taken. We assume that the vaccination can reduce 

individual infectiousness by certain percentages ( 
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Table S3) that are determined by the inoculation time, the number of doses, and the 

vaccine type (Andrews et al., 2022; HKUMed, 2022; Kirsebom et al., 2022).  

For the sixth wave, we employed the same setting to consider vaccine-acquired 

immunity, but we also took into account infection-acquired immunity from the fifth 

wave. As evidence shows that hybrid immunity, resulting from both vaccination and 

prior infection, can be highly effective, we assume that prior infection can reduce 

individual infectiousness by certain percentages, as indicated in  

Table S4 (Malato et al., 2023). The effects of prior infection and vaccination are 

multiplied together to determine the overall reduction in individual infectiousness in 

our study.  

3.3.3 Reporting behaviours 

In our simulation, the reporting behaviours during both waves were constantly 

changing. To estimate the number of reported cases during the fifth wave, we assume 

that 8% of the infections were reported before 24 February, 30% were reported between 

24 February and 7 March, and afterward, 35% were reported, based on the changing 

reporting standard. On 24 February, the Hong Kong government officially 

acknowledged positive cases tested by commercial laboratories as confirmed cases, 

reporting them without double confirmation. Additionally, the RAT online reporting 

system, launched on 7 March, allowing citizens to report positive results tested since 

26 February. The report rates used in our study were derived from research conducted 

by the Hong Kong University (HKUMed, 2022), assuming report rates were 8% before 
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and 20% after 24 February. However, these rates did not consider RAT-reported cases, 

as they were estimated before the system’s launch. To adjust the report rates to our 

current setting, we considered that RAT-reported cases accounted for 40% of the total 

reported cases during the fifth wave (20% ÷ (1 − 40%) ≈ 33%). 

For the sixth wave, the reporting rate was assumed to be 20%. The lower reporting 

rates can be attributed to several factors. First, milder symptoms may result from almost 

half of the population having been infected and developed immunity (HKUMed, 2022), 

leading to fewer people seeking testing and reporting their cases. Additionally, 

pandemic fatigue may contribute to a reduced willingness among individuals to report 

their symptoms (B. Yang et al., 2024). 

3.4 Model initialization, calibration and validation 

3.4.1 Model initialization 

The experiments span from 1 February to 30 September 2022. For the fifth wave, we 

assume that on 1 February, a proportion L1 of agents were infected and in the latency 

period. Similarly, for the sixth wave, on 1 July, a proportion L2 of agents were infected 

and in the latency period. The latent agents were randomly selected from the whole 

population, using the Monte Carlo method. 

3.4.2 Model calibration 

Most model parameters (Table 3-1) can be estimated from empirical data or studies. 
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Apart from this, two parameters for each wave need to be calibrated with data: (1) 

individual infectiousness 𝑝𝑖; (2) the initial proportion of exposed cases Li. For the fifth 

wave, we calibrated these parameters to the city-level number of confirmed cases from 

1 February to 30 March 2022. Similarly, for the sixth wave, calibration was done using 

the city-level case numbers from 1 July and 30 September 2022. The calibration 

processes are as follows:  

We initially identified plausible parameter ranges and selected multiple parameter 

combinations for evaluation. For the fifth wave, we assume that the basic reproduction 

number (𝑅0) of BA.2 variant ranged from 6 to 10. This is a relatively wide range, as a 

previous study estimated the 𝑅0 of 8.2 (Y. Liu & Rocklöv, 2022). To determine the 

values of individual infectiousness (𝑝𝑖) that would result in the assumed 𝑅0 range, we 

created a well-mixed agent-based model. This choice was made because the definition 

of 𝑅0 requires a completely susceptible and fully mixed population. In the well-mixed 

model, there are no immunity and mobility settings, meaning that all agents were fully 

susceptible and they randomly choose their contacts in the whole population. Under 

this scenario, we initialized a proportion of index cases (L𝑖 = 10−4) and recorded the 

number of secondary cases. Let 𝑁0 represent the number of index cases and 𝑁𝑠 the 

number of secondary cases, which gives 𝑅0 =  
𝑁𝑠

𝑁0
.  We averaged these 𝑅0  values 

over 30 replicates for each 𝑝𝑖 value, and the results showed that 𝑅0 is linear in 𝑝𝑖 

(Chang et al., 2021). To allow 𝑅0 in the plausible range, 𝑝𝑖 for the fifth wave should 

range from 0.04 to 0.06. We used increments of 0.001 to obtain 20 unique values of 𝑝𝑖, 

which were then used in the model fitting. For the sixth wave, we assume the plausible 
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range 𝑝𝑖  should range from 1 to 1.4 times the best-fit 𝑝𝑖  for the fifth wave, 

considering that BA.5 was about 1.4 times more infectious than BA.1 (Fan et al., 2022). 

For both waves, it is still not clear that how many infections existed at the beginning 

of simulations. We set L5th with a range between 10−5 to 10−4 and L6th with a 

range between 10−4 to 5 × 10−4, to account for the uncertainty of the real situation. 

This setting takes into account the strict control policies and entry restrictions during 

the initial stage of the fifth wave. However, during the sixth wave, the relaxation of 

entry policies results in a larger number of imported cases (B. Yang et al., 2024). 

Each combination was tested by running 30 replicates of the simulation. The 

model’s predictions were compared to the empirical data using the Root Mean Square 

Error (RMSE), which quantifies the difference between observed and simulated 

confirmed cases: for each replicate, 

     𝑅𝑀𝑆𝐸 =  √
1

𝐷
∑ (𝑁𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑

𝑑 − �̂�𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
𝑑 )

2𝐷
𝑑=1                     (5) 

where �̂�𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
𝑑  is the observed confirmed cases (per 10,000 people) on day 𝑑, and 

𝑁𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
𝑑  is the corresponding value in the simulation. The average RMSEs across 30 

replicates were used to evaluate each parameter combinations. 

The best-fit parameter set was identified as the one with the lowest average RMSE. 

To account for parameter uncertainty, parameter sets with RMSE values within 20% of 

the lowest RMSE were selected (Chang et al., 2021). The model predictions were then 

obtained by aggregating the predictions from the selected parameter sets and replicates. 

The mean, as well as the 2.5th/97.5th percentiles, were calculated to provide estimates 

of the central tendency and uncertainty range, respectively. 
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3.4.3 Model validation 

For the fifth wave, three empirical data was used to validate different aspects of the 

simulation outcomes. The first data includes the city-level number of confirmed cases, 

which allowed us to calculate the city-level RMSE. The second data is the observed 

high-risk subTPUs. We compared it with the simulated superspreading subTPUs that 

were identified by counting cumulative non-household infections that occurred in every 

subTPU. The third data consists of the TPU-level number of RAT-confirmed cases 

from 1st to 30 March 2022. We calculated calculate the RMSEs of 214 TPUs and 

summed them to obtain the TPU-level RMSE. The number of cases confirmed by RAT 

at every TPU can be used to evaluate the TPU-level model accuracy. Different from 

the city-level data, this data only records partial confirmed cases (not including cases 

confirmed by the polymerase chain reaction test) and does not cover the whole period 

of simulation (starting from 26th February 2022). Due to its incompleteness, we do not 

use it to calibrate our model, but we directly use it to validate the model accuracy on 

the local scale. We sum the RMSEs of TPUs together to evaluate the TPU-level 

prediction,  

𝑅𝑀𝑆𝐸𝑇𝑃𝑈 =  ∑ √
1

𝐷
∑ (𝑁𝑅𝐴𝑇

𝑑,𝑡𝑝𝑢
− �̂�𝑅𝐴𝑇

𝑑,𝑡𝑝𝑢
)

2
𝐷
𝑑=1

𝑇𝑃𝑈
𝑡𝑝𝑢                     (6) 

where �̂�𝑅𝐴𝑇
𝑑,𝑡𝑝𝑢

 is the observed RAT-confirmed cases in a 𝑡𝑝𝑢 on a day 𝑑, and 𝑁𝑅𝐴𝑇
𝑑,𝑡𝑝𝑢 

is the corresponding value in our simulation. As our model predict on all confirmed 

cases, we assume that a 𝑝𝑅𝐴𝑇 = 0.4 proportion of cases are confirmed by RAT, 𝑁𝑅𝐴𝑇
𝑑,𝑡𝑝𝑢

=

 𝑝𝑅𝐴𝑇 × 𝑁𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑
𝑑,𝑡𝑝𝑢 . 𝑝𝑅𝐴𝑇 is determined by the proportion of the total number of RAT-
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confirmed cases in the total number of observed confirmed cases. The time series of 

this validation also spans from 1st March to 30th March 2022. 

For the sixth wave, we used the city-level BA.5 case numbers to calculate the 

RMSE. This study focuses on reconstructing the new virus invasion situations, 

specifically the spread of BA.5. However, as mentioned in Case data, the empirical 

case numbers included both BA.2 and BA.5 cases throughout the sixth wave. To 

separate the BA.5 cases from overall cases, we used the sequenced  sample data 

(Gilman, 2022), which recorded the temporal changes in the proportion of BA.5 

samples among all recorded samples from 1 May to 30 September 2022 (Figure S1). 
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Chapter 4 Local spread dynamics 

influenced by urban scaling structure  

Superspreading events underscore the uneven distribution of COVID-19 spread among 

individuals and locations. Chapter 4 aims to explore the underlying mechanism of 

heterogeneous local spread dynamics and its relationship with urban scaling structure. 

In this chapter, the spatially explicit ABM (see Chapter 3) is used to reconstruct local 

spread processes across 4,863 subTPUs. To validate our model, we compared the 

simulation outcomes with empirical case data from the fifth wave in Hong Kong across 

three spatial scales. Further statistical analyses of simulation data examined the 

relationship between the scaling index, representing a location’s importance within the 

structure, and local spread risk as well as the likelihood of local visitors becoming 

superspreader. Additionally, we analysed the unevenly distributed stress on local 

hospitals resulting from heterogenous spread patterns and provided suggestions for 

hospital emergency preparedness. This chapter thus enhances our understanding of how 

human mobility and its scaling structure influence local spread risks and superspreading 

events, which may inform precise and effective interventions to combat future 

pandemic. 
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4.1 Model Results 

4.1.1 Model fitting 

Our model fits empirical case data roughly well at both the city level and the TPU level 

(Figure 4-1). Noted that the TPU-level prediction is more difficult than the city-level 

prediction, as the former predicts 214 epidemic curves, and the latter only predicts one 

curve. At the city level, our model accurately predicts the number of cases during the 

peak period from 21 February to 10 March 2022, but underestimates the case numbers 

before 21 February. This underestimation can be attributed to the Chinese New Year 

celebrations (from 1 to 15 February 2022) that caused intense social contacts and thus 

large number of infections. The limitations of our model stem from its reliance on 

Google mobility change data, which may not accurately capture the nuances of social 

behaviour changes during holidays, despite its proven representativeness during regular 

periods in other studies (Chang et al., 2021; Cot et al., 2021; Yilmazkuday, 2021). To 

solve this issue, more detailed social contact data during holiday periods are needed in 

future studies. 
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Figure 4-1 Model fitting results. a, epidemic curves. The left plot is the city-level prediction, and 

the right plot is the TPU-level prediction on the eight worst affected TPUs. The grey bar is the 7-

day moving average of observed confirmed cases. Shaded regions denote the 2.5th and 97.5th 

percentiles across selected parameter sets and stochastic realizations. b, the spatial distribution of 

the total number of observed RAT cases (left) and simulated cases averaged across selected 

parameter sets and stochastic realizations (right). 

At the TPU level, our model predicts well the peak period of the eight most serious 

TPUs, but underestimates the cases after 7 March. As the empirical case data has an 

unnatural increase after 7 March, which could be largely resulted from the increased 

reporting behaviours due to the RAT reporting system launched on 7 March 2022, we 

infer that our underestimates could be partly originated from this reason. Although our 

model considered the increased report rate after 7 March (increasing the report rate 

from 0.3 to 0.35), other potential factors could still play in a role. For example, the 

launch of RAT reporting system might change the time gaps between the test date and 
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the report date, and such change may significantly vary among individuals. Despite the 

underestimation, the analysis reveals a strong positive relationship between the 

cumulative observed RAT cases and simulated cases, as evidenced by a high Pearson 

correlation coefficient of 0.97 (p < 0.01). Furthermore, both empirical data and 

simulated results exhibit similar spatial patterns (Figure 4-1b). 

4.1.2 The superspreading subTPUs 

By calculating the average cumulative non-household infections (see Section 3.2.3) 

across 30 runs using the best-fit parameters, we identified the superspreading subTPUs: 

20 percent of superspreading subTPUs account for 78 percent of non-household 

infections (Figure 4-2a). When comparing with the top 20 percent of the empirical high-

risk subTPUs that were most frequently visited by cases (see Section 3.1), our results 

identified 46 percent of them (Figure 4-2b). The top 20 percent of observed subTPUs 

gathered 83 percent of the visits by cases, which shows a similar nonlinear relationship 

with our results (Figure 4-2c). 

The spatial distribution of simulated superspreading subTPUs is similar to the 

observed patterns (Figure 4-2b, d). They both confirmed that the financial and 

commercial centers and the most densely residential areas were highly risky. The 

differences between the simulated and observed patterns are that the simulated results 

include more high-risk subTPUs around the populated areas but exclude some high-

risk subTPUs in the financial and commercial centers. Notably, the observed patterns 

include all visits of cases, but only a minority of them would lead to infections. 
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Therefore, they may overestimate the risk degree of some subTPUs, especially 

subTPUs that gather a large volume of visits, such as some in the financial and 

commercial centers. 

 

Figure 4-2 The simulated superspreading subTPUs and the observed high-risk subTPUs. a, the top 

20% of simulated subTPUs (or superspreading subTPUs), ranked by the average number of 

infections occurred in subTPUs across 30 runs, accounts for 78% of the average number of 

simulated infections. b, the spatial distribution of simulated superspreading subTPUs. c, the top 20% 

of observed subTPUs, ranked by the total number of visits by infected cases occurred in subTPUs, 

account for 83% of visits. d, the spatial distribution of the observed high-risk subTPUs. 
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4.1.3 The effects of urban scaling structure on local 

transmission risks 

To understand heterogenous transmission risks across subTPUs, multivariate linear 

regression was used to estimate the effects of key components, including spatial 

structure, mobility density, and the structure of social network for each subTPU. The 

transmission risk for subTPU was measured by the proportion of transmission contacts 

that successfully transmit the virus among all contacts. The mobility density refers to 

the number of visiting agents per unit of subTPU area. The social network is generated 

by the process described in Section 3.2.3. As the successful transmission is a chance 

event, we took 30-run average as the reported result to guarantee a more reliable 

estimation. After controlling mobility densities and clustering coefficients of social 

networks for 4,863 subTPUs, the scaling index still have an important effect on the 

transmission risk: a 1-percent-point increase in the scaling index leads to 2.54 percent 

increase in transmission risk on average (Table 4-1).  

Table 4-1 The effect of the scaling index on the average transmission risk (the average proportion 

of transmission contacts across 30 runs with the best-fit parameters) for subTPUs through 

multivariate linear regression. 

Variable Coefficient 

The scaling index 2.54*** 

Average mobility density 0.16*** 

Average clustering coefficient of social 

network 
0.09*** 

*** Significant result with p-value < 0.001. 

Table 4-2 The average effects of the scaling index on individual’s probability of becoming a 

superspreader (the top 10% of individuals ranked by the number of secondary cases) through logistic 

regressions across 30 runs with the best-fit parameters. 
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Variable The mean of 

coefficients 

Exponential of (coefficients*1 unit) 

The average scaling 

index 

3.94 * ^ 104%  

(a 1-percent-point increase) 

The number of contacts 0.03 *** 103%  

(a 1-point increase) 

   *** Significant result with p-value < 0.001; * ^ 60% of results are significant with p-value < 0.05.  

4.1.4 The effects of urban scaling structure on individual’s 

probability of becoming a superspreader 

As subTPUs with larger scaling index have higher transmission risks, individuals who 

visits these subTPUs may have higher chance to infect more people and become 

superspreaders. The top 10 percent of agents, ranked by the number of secondary cases, 

were classified as superspreaders, and these superspreaders accounted for on average 

77.3 percent (95% CI: 76.5%-78.6%) of infections across 30 simulations. Logistic 

regressions were used to quantify the average effect of spatial structure on individual’s 

probability of becoming a superspreader. After controlling the number of daily contacts, 

the average scaling index has a large influence on the probability of being 

superspreaders: A 1-percent-point increase in the average scaling index enhances 3.94 

percent of the log odds ratio for individual becoming a superspreader, suggesting that 

the probability of being a superspreader would be increased by 4 percent (Table 4-2). 

4.1.5 The unevenly distributed strain on local hospitals 

Because the infections are unevenly distributed, the consequent hospital strain also 

expected to vary across space. To evaluate the local strain, we calculated the ratios of 
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the simulated demands to available local capacities for ED visits and hospital beds (see 

Section 3.3.1). During the peak period of the pandemic (from 1 March to 15 March 

2022), all hospitals were heavily hit, but the degree of hospital strain varies (Figure 

4-3). In 17 hospitals with ED services, three of them experienced the most drastic surge 

in ED visits that excessed 350 percent of their capacities, and the rest of the hospitals 

mainly required 150 percent to 300 percent of current capabilities to cope with local 

ED demands (Figure 4-3a). To show the hospital strain on space, we take the service 

area (TPUs) of each hospital as a group and show the average hospital strain on each 

group. TPUs in the central of the city experienced severe ED strain, and remote TPUs 

in the west and north were slightly better (Figure 4-3a). 

The strain on hospital bed capacity was also unevenly distributed across seven 

COVID-19 designated hospitals (Figure 4-3b). Three in seven hospitals required over 

300 percent of their current hospital bed capacities, but one hospital only used 18 

percent of hospital beds, during the peak period. Remote TPUs in the west and east of 

the city experienced severe strain on hospital bed capacity, and the strain for the central 

TPUs was slightly relieved. The Island District in the southwest corner of the city was 

an exception, and the demand was much less than the local capacity. 
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Figure 4-3 Simulated hospital strain on the Emergency Department (ED) services (a) and hospital 

beds (b). The strain on each hospital was estimated by the ratio of simulated local demand to 

available hospital capacity. In a and b, Left, the hospital strain varied by hospital and time. Right, 

the average hospital strain during the peak period (from 1 March to 15 March 2022) varied across 

TPUs. 

4.2 Discussion 

This study employed the spatially explicit ABM to reconstruct the spread processes at 

the fine spatial scale. After validating by city-level to subTPU-level empirical data, 

further statistical analyses of model results reveal that not only the quantity of mobility 

but also the scaling structure of mobility have important impacts on local transmission 

risk: areas with low scaling indices could be less likely to transmit virus, even when 

they have a rather large mobility density or a clustering social network; similarly, 
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individuals who tend to visit low-scaling-index areas could be less likely to transmit 

the virus to others, even when they have a large number of contacts. These findings 

suggest urban scaling structure may play an important role in the mechanisms driving 

the heterogeneity in local transmission risks among urban areas and individuals. 

4.2.1 How urban scaling structure influences local 

transmission risks 

It is widely acknowledged that high population or mobility density would increase the 

local transmission risk (Alessandretti, 2022; Damme et al., 2020; Hong et al., 2021a; 

Wong & Li, 2020). However, our findings suggest areas with a rather high mobility 

density may not necessarily be more likely to transmit virus, especially when they have 

low scaling indices. The scaling index measures the relative importance of different 

areas in the entire structure based on the links pointing to them and the links of those 

links through an iterative process (see Section 3.2.2). Due to the nature of the scaling 

law (Clauset et al., 2009; Jiang, 2009; Jiang et al., 2009), only a minority of areas are 

of great importance in this structure, and they would be more likely to rapidly import 

the virus from the initial infections occurred in elsewhere. In this case, the high-scaling-

index areas take one step ahead to infect susceptible people first, leaving little chance 

for most low-scaling-index areas to transmit the virus, as most of their visitors would 

have already been infected elsewhere. 

Therefore, the scaling index could be a potential risk factor for local transmission. 

Different from the local population or mobility density, it highlights the urban 
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structure’s impact on local risk. Urban scaling structure offers a minority of areas the 

‘first-mover advantage’, allowing them to initiate infections earlier and on a larger 

scale. In this regard, our study provides a deeper understanding of superspreading 

places or Points of Interests (POIs): while large population or mobility may be 

necessary, they are not sufficient conditions for superspreading places. The opportunity 

for early access to the virus brought by urban scaling structure also matters. 

4.2.2 How urban scaling structure contributes to 

superspreaders 

The heterogeneity in local transmission risk would further influence individuals’ 

chance of having more infections and becoming superspreaders. In our model, we 

assumed that all individuals have an equal probability of successfully transmitting the 

virus per contact. Therefore, infected people with large number of contacts are more 

likely to infect more susceptible people and thus become superspreaders. However, our 

analyses found that where those infected people visited also matters. Individuals tends 

to visit locations with large scaling indices are more likely to become superspreaders. 

This suggests that when individuals are embedded in areas with low scaling indices, 

even those with large number of daily contacts may not necessarily become 

superspreaders. The reason could be that these individuals fail to infect their contactees 

when competing with others at high-scaling-index locations who also want to infect the 

same contacts. The high scaling index offers others an advantage in infecting the same 

contactee first, as the large value of scaling index increased the local transmission risk. 
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Therefore, individuals at low-scaling-index locations encounter fewer susceptible 

people to infect, reducing their likelihood of becoming superspreaders. 

In contrast to our findings, some researchers posit that it is the high infectiousness 

of certain individuals that causes superspreaders (Sidik, 2023; Zhou et al., 2023). They 

think infectiousness is highly unequal distributed among infected cases. However, our 

results demonstrate that even with the same level of infectiousness, superspreaders are 

naturally emerged from the interaction of social contacts, in which the location also 

play an important role. Nevertheless, we conducted a sensitive analyse to consider the 

heterogeneity in infectiousness and found that the urban scaling structure is a still 

important risk factor for individuals becoming superspreaders (see Section 7.4). 

Therefore, superspreaders could be originated from a complex interplay of both 

individual, social, and environmental factors. To comprehensively quantify these 

intricate interactions, more individual-level viral and behaviour data is needed in future 

studies. 

4.2.3 Practical suggestions on hospital emergency 

preparedness 

The uneven distribution of infections and medical resources gives rise to the 

heterogeneous strain on the existing healthcare systems (see Section 3.3.1). After 

considering the high spatial heterogeneity in hospital strain, we may provide some 

qualitative suggestions on hospital emergency preparedness to adequately staff local 

hospitals in advance and wisely share the existing resources. The specific suggestions 
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are as follows: 

Firstly, to relieve the strain on local EDs, triage centers are needed in Sha Tin 

District in the middle of the city and Wan Chai District in Hong Kong Island. During 

the fifth wave in Hong Kong, many patients with mild symptoms occupied the ED 

resources that should have been used to treat those with severe symptoms (A. Ma & 

Parry, 2022). The triage centers in the most severe areas can efficiently filter out a large 

number of non-urgent patients and identify the critical patients for further ED services. 

Secondly, more hospital beds should be assigned for local COVID-19 patients in Tin 

Shui Wai and Tuen Mun New Towns in the west of the city. Thirdly, transferring the 

patients to the hospital in Island District is another practical suggestion as there would 

be relatively lower pressure even at the peak of the pandemic. The hospital in Island 

District (North Lantau Hospital Hong Kong Infection Control Centre) started the 

services special for COVID-19 patients in 2021 and has over 800 isolation beds, so it 

is capable to take patients from other hospitals and regions. 

4.3 Summary 

To gain a deeper understanding of the underlying mechanisms by which urban scaling 

structure of human mobility contributes to local transmission risks of COVID-19 within 

cities, this chapter utilized the spatially explicit ABM which incorporated urban scaling 

structure to reconstruct fine-grained mobility patterns and spread processes. After 

validating by empirical data at various spatial scales, further statistical analyses of 

simulation outcome reveal that not only the quantity of mobility but also its scaling 
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structure have important impacts on local transmission risks among urban areas and 

individuals. For urban areas, a large volume of local mobility is only a prerequisite for 

high transmission risk, and their significance within the urban scaling structure also 

plays a crucial regulatory role in it. Consequently, the resulted heterogenous risks 

among urban areas would further influence the transmission potential of their visitors 

becoming superspreaders.  

In summary, urban scaling structure may provide the ‘first-mover advantage’ to a 

small group of urban areas and individuals, enabling them to initiate infections earlier 

and on a more substantial scale. This chapter thus brings important insights for the 

spread dynamics of COVID-19 and similar diseases, highlighting the role of urban 

scaling structure in driving the heterogeneity in local transmission risks and 

superspreading events. These insights may serve as valuable guidance for the 

development of precise and effective interventions to mitigate future pandemics. 
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Chapter 5 Vulnerability and resilience to 

different virus characteristics 

Disaster vulnerability and resilience, unfolding within urban complex systems, are 

influenced by a combination of socio-physical drivers and dynamic processes. Chapter 

5 aims to explore the vulnerability and resilience under the different contexts of virus 

characteristics. The aforementioned ABM (Chapter 3) was employed to reconstruct 

case trajectories of the fifth and the sixth waves in Hong Kong. After validating the 

model by empirical data at various spatial scales, we investigated how a small change 

in virus characteristics, specifically individual infectiousness heterogeneity, might 

influence community vulnerability and resilience. For community vulnerability, we 

assessed local spread risk and local risk for SSEs during the fifth wave. For resilience, 

we measured the successful probability of new virus invasions during the sixth wave. 

Additionally, we conducted a counterfactual simulation to evaluate the potential long-

term implications of a lockdown policy. This study thus enhances our understanding of 

how virus characteristics would interact with urban complex systems, contributing to 

community vulnerability and resilience in the COVID-19 context. The unique urban 

complex system perspective can serve as a promising tool to understand vulnerability 

and resilience in various disaster contexts and inform future policy decisions. 
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5.1 Analyzing vulnerability and resilience under individual 

infectiousness heterogeneity scenarios 

5.1.1 Vulnerability under individual infectiousness 

heterogeneity scenarios 

During the calibration stage, we assume uniform infectiousness among individuals. 

This common simplification allows us to identify the best-fit average value for the 

entire population. However, in reality, infectiousness can vary by individuals (Sidik, 

2023), but the exact degree of heterogeneity remains unclear. The individual 

infectiousness heterogeneity can potentially impact the spread dynamics. To investigate 

its effects on vulnerability patterns during the fifth wave, we conducted simulations 

with varying heterogeneity degrees using the Beta distribution. We chose the Beta 

distribution to model individual infectiousness because it allows us to constrain values 

between 0 and 1. It also enables us to control the mean value and heterogeneity of this 

distribution through its parameters. We controlled the heterogeneity degree using the 

alpha parameter, which was set to 0.01, 0.1, 0.5, 1, and 10 (Figure 5-2a). Additionally, 

we controlled the mean value of the distribution using the beta parameter, which was 

determined by (
1

𝑚𝑒𝑎𝑛
− 1) × 𝑎𝑙𝑝ℎ𝑎 . The mean value was set to be the best-fit 

infectiousness value in Table 3-1. 
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5.1.2 Resilience to new virus invasions under individual 

infectiousness heterogeneity scenarios 

During the calibration stage for the sixth wave, we simplified the scenario by assuming 

that the initial cases of new variants were introduced on July 1, 2022. However, in 

reality, the first local case of the BA.5 variant were detected around late April in Hong 

Kong, which did not lead to an observable wave. Our simplification avoids the high 

uncertainty associated with spread dynamics before July, considering the low number 

and high randomness of early infections. However, in this stage, we modified this 

assumption to align with reality by introducing three cases to the city centre (high-

scaling-index places) on May 1, 2022. By doing so, we thoroughly explored the 

probability of successful invasions under various scenarios of individual infectiousness 

heterogeneity. Similar to the section of Vulnerability under various heterogeneity 

degrees in individual infectiousness, we used Beta distributions to control the 

heterogeneity degree with varying alpha parameters, set to 0.01, 0.1, 0.5, 1, 10, and 

10000. 

5.1.3 The counterfactual simulation of the lockdown scenario 

During the Hong Kong COVID-19 pandemic, the fifth wave was the most severe period 

of infection. To control the outbreak, the Hong Kong government had considered 

implementing a lockdown policy, but this option was ultimately abandoned due to 

various considerations. To evaluate the potential short-term and long-term outcomes, 



65 

 

we conducted a counterfactual simulation of implementing a lockdown policy during 

the early stages of the fifth wave. Specifically, we assume that the lockdown policy 

would begin on February 1, 2022, reducing contacts by 85% estimated from the 

regional lockdowns implemented in mainland Chinese cities in response to outbreaks 

of Delta (HKUMed, 2022). 

5.2 Model results 

5.2.1 Model fitting 

For both the fifth and sixth waves, our model fits empirical case data roughly well. For 

the fifth wave, we used three empirical data at different spatial scales to validate our 

model (see Section 4.1.1). For the validation of the sixth wave, we used the city-level 

BA.5 case number. Note that the model fitting for the sixth wave faces a higher level 

of difficulty compared to that of the fifth wave. This is due to the more complex spread 

context, which involved prior infection-acquire immunity and the relatively low 

number of cases. Despite the challenges, our model was still able to effectively capture 

the general trend of the sixth wave (Figure 5-1a). This further verifies the validity of 

our model structure and provides a solid foundation for subsequent resilience analyses 

on different contexts of new virus invasions. 
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Figure 5-1 Model fitting of the city-level epidemic curves for the fifth and sixth waves. 

The grey bar is the 7-day moving average of observed confirmed cases. Shaded regions 

denote the 2.5th and 97.5th percentiles across selected parameter sets and stochastic 

realizations. 

5.2.2 The effects of individual infectiousness heterogeneity on 

community vulnerability 

After validation, we utilized Beta distributions with varying alpha parameters to sample 

individual infectiousness, to investigate community vulnerability patterns (see Section 

5.1.1). Figure 5-2a shows that a smaller alpha parameter corresponds to a higher degree 

of individual infectiousness heterogeneity. 

To assess community vulnerability, we introduced two variables. The first variable 

is local transmission risk, measured by the proportion of transmission contacts that 

successfully transmit the virus among all local contacts, averaged across 30 runs. To 

compare the heterogeneity scenarios, we conducted the Kruskal-Wallis test, a non-

parametric statistical test used to compare the medians of two or more groups (Kruskal 

& Wallis, 1952). The test results revealed a significant impact of individual 

infectiousness heterogeneity on local transmission risk, with a high chi-squared value 

of 11,670 (p-value < 0.001). A higher chi-squared value indicates larger differences 
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among the groups. Figure 5-2b shows significant differences in the distributions of local 

transmission risks among five scenarios, where a decrease in heterogeneity corresponds 

to an increase in the average value of local transmission risks. 

 

Figure 5-2 The individual infectiousness heterogeneity and community vulnerability in 

local infection risks. a, Beta distribution with varying alpha parameters ranging from 

0.01, 0.1, 0.5, 1, 10, and a fixed mean value of 0.05 (the best-fit infectiousness), used 

to sample individual infectiousness. b, distribution of infection risks for subTPUs under 

different scenarios of heterogeneity degree. Kruskal-Wallis results show significant 

differences among scenarios, with the chi-squared coefficient of 11,670 (p-value < 

0.001). 

In addition to analysing the average value of local risk, we also examined the 

extreme value, namely the local risk for SSEs. Local SSE risk was measured by the 

proportion of SSEs among all local spreading events, averaged across 30 runs. Here, 

SSEs were determined by the top 20 percent of spreading events, ranked by the number 

of secondary cases. A spreading event is defined as an agent’s infectious contacts within 

a specific place. As the occurrence of SSEs is influenced by both individual and place 

characteristics (Chang et al., 2021; Peng & Liu, 2024), we used multivariate linear 
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regression to estimate the interaction effect of individual infectiousness heterogeneity 

and the scaling index. 

Table 5-1 shows that the scaling index have a positive effect on local SSE risk: a 

0.1 increase in the scaling index leads to a 1.91 percent increase in local SSE risk. 

However, a decrease in the heterogeneity degree has a slightly negative impact on local 

SSE risk. When comparing to the most heterogeneous scenario (scenario 0.01), other 

scenarios are associated with a negligible decrease in local SSE risk. Although the 

different heterogeneity scenarios exhibit limited direct effects on local SSE risk, they 

significantly modify the positive relationship between the scaling index and local SSE 

risk. Specifically, when comparing to the scenario 0.01, all other scenarios exhibit 

negative coefficients. In other words, individual infectiousness heterogeneity 

significantly amplifies the positive effect of the scaling index, when the heterogeneity 

degree increases. 

Table 5-1 The effect of individual infectiousness heterogeneity on local SSE (superspreading event) 

risks through multivariate linear regression, including the interaction term with the scaling index  

Variable Coefficient 

The scaling index 0.191*** 

Heterogeneity scenario 0.01 ref 

Heterogeneity scenario 0.1 -0.00006*** 

Heterogeneity scenario 0.5 -0.00006*** 

Heterogeneity scenario 1 -0.00006*** 

Heterogeneity scenario 10 -0.00007*** 

The scaling index* Heterogeneity scenario 0.01 ref 

The scaling index* Heterogeneity scenario 0.1 -0.116*** 
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The scaling index* Heterogeneity scenario 0.5 -0.127*** 

The scaling index* Heterogeneity scenario 1 -0.125*** 

The scaling index* Heterogeneity scenario 10 -0.119*** 

                                *** Significant result with p-value < 0.001. 

5.2.3 The effects of individual infectiousness heterogeneity on 

resilience to new virus invasions 

After analysing the community vulnerability during the fifth wave, we conducted 

experiments to assess resilience to new virus invasions during the sixth wave. 

Specifically, three BA.5 cases were introduced to high-scaling-index places on May 1, 

2022, under different heterogeneity scenarios (see Section 5.1.2). The resilience was 

evaluated by calculating the probability of successful invasions across 30 runs. A 

successful invasion is defined as the presences of infections for at least 75% of the 

period from May 1 to September 30. Figure 5-3a shows that when the heterogeneity 

degree decreases, the probability of successful invasions increases. Notably, in the most 

heterogenous scenario (scenario 0.01), there were no successful invasions across 30 

runs. Conversely, in the least heterogenous scenario (scenario 10000), over 30% of the 

invasions successfully initiated a new wave. 

To further explore the underlying reasons behind the successful invasions, we 

analysed the early infection situations within the first seven day after the importation. 

We calculated the proportion of SSEs (spreading events with five or more cases) among 

all spreading events. Figure 5-3b shows that the successful invasions exhibited higher 
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average infection numbers and larger SSE proportions. Furthermore, as the 

heterogeneity degree increased, invasions required a higher proportion of SSEs to 

successfully break through. Specifically, under scenario 0.1, about 9.4% of the 

spreading events were classified as SSEs, which was significantly higher than in other 

scenarios with lower heterogeneity.  

 

Figure 5-3 Individual infectiousness heterogeneity and resilience to new virus invasions. a, 

probability of successful invasions across heterogeneity scenarios (0.01, 0.1, 0.5, 1, 10, and 10,000). 

b, distribution of early infections during the first 7-day spreading events across heterogeneity 

scenarios. Each scenario is represented by red and blue boxplots, indicating the infection numbers 

of non-successful and successful invasions, respectively. The proportion of superspreading events 

(≥5 cases) is displayed above each boxplot. 

5.2.4 The counterfactual outcomes of the lockdown scenario 

To evaluate the potential outcomes of the lockdown policy, we conducted a 

counterfactual simulation where the lockdown was implemented on February 1, 2022 

(see Section 5.1.3). Figure 5-4a shows that the lockdown policy effectively prevented 

the fifth wave, but inadvertently resulted in a more severe sixth wave, compared to the 
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empirical situation. When comparing the total infection numbers, both the lockdown 

scenario and the empirical situation exhibited comparable figures. The lockdown 

scenario yielded slightly fewer total infections (about 475,000) compared to the 

empirical situation (about 515,000). Moreover, we compared the variations in local 

transmission risk between the lockdown scenario and the empirical situation. To ensure 

comparability, we standardized the local transmission risk by setting the mean to 0 and 

the standard deviation to 1. Figure 5-4b shows that the lockdown scenario displayed a 

wider dispersion for extreme values in local transmission risks.  

To compare the change in variation status for each subTPU, we calculated the 

differences in standardized local transmission risks between the empirical situation and 

the lockdown scenario. Figure 5-4c shows the spatial distribution of the status change 

across subTPUs. Positive values indicate an elevation in risk status under the lockdown 

scenario compared to the empirical situation, while negative values signify a decrease 

in risk status. To contextualize the change in risk status, we conducted Spearman 

correlations with the scaling index, mobility density, and clustering coefficient of the 

social network. Spearman correlation evaluates the similarity in the ranks of the 

variables rather than the specific values. The results show that the scaling index 

(Spearman coefficients: -0.26, p-value<0.001) and mobility density (Spearman 

coefficients: -0.22, p-value<0.001) are negatively associated with the change in risk 

status. Conversely, the clustering coefficient of the social network shows a positive 

association with the change in risk status (Spearman coefficients: 0.15, p-value<0.001).  
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Finally, Figure 5-4d, e show that the risk status of low-value places either 

significantly increases or decreases, but overall, the status leans towards an increase. 

Most high-value places maintain a relatively stable risk status, although their status may 

be slightly reduced due to competition from a few low-value places with an increased 

status. 

 

Figure 5-4 Counterfactual simulation of the lockdown scenario. a, daily infection comparison with 

the lockdown scenario (red) and the empirical situation (grey). b, Relative heterogeneity in local 

infection risks for subTPUs in the lockdown scenario (red) and the empirical situation (black). The 

relative heterogeneity status for each subTPU is represented by the standardized standard deviation 

of local infection risk. c, Change of relative heterogeneity status from the empirical situation to the 

lockdown scenario across subTPUs. d-f, Contextualizing the change in relative heterogeneity status 

within the scaling index (d), mobility density (e), and clustering coefficient of social networks (f) 

by using Spearman correlation. 

5.3 Discussion 

This study developed a spatially explicit ABM to reconstruct the spread dynamics of 

two consecutive waves at a fine spatial scale. After validating by three empirical data 
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from different spatial scales, this model was employed to investigate how a small 

change in individual infectiousness heterogeneity influence community vulnerability 

and resilience. The findings reveal that individual infectiousness heterogeneity has 

opposing effects on two different vulnerability characteristics: local transmission risk 

and local SSE risk. Moreover, the study reveals that increased heterogeneity amplifies 

the positive effects of the scaling index on local SSE risk. Resilience analyses further 

highlight the importance of early SSEs in determining the resilience to new virus 

invasions across different individual infectiousness scenarios. Successful invasions 

were associated with a higher proportion of SSEs, especially in scenarios with greater 

individual infectiousness heterogeneity. Additionally, a counterfactual simulation on 

the lockdown scenario demonstrates a numerically comparable but spatially more 

uneven infection outcome to the empirical situation, despite a significant cost. 

5.3.1 The opposing effects of individual infectiousness 

heterogeneity on two community vulnerability patterns 

Our findings demonstrate that individual infectiousness heterogeneity has opposing 

effects on two community vulnerability characteristics. Specifically, an increase in 

individual infectiousness heterogeneity leads to a decrease in local transmission risk 

but an increase in local SSE risk increases. The local transmission risk measures the 

average transmission risk in a local place, while the local SSE risk quantifies the 

extreme high-value risk. The observed opposing effects can be attributed to the fact that 

a higher degree of heterogeneity means only a minority of individuals exhibit high 
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infectiousness, while the majority of individuals have low infectiousness. This creates 

favourable conditions for the incubation of SSEs. When these highly infectious 

individuals visit high-scaling-index places, they are more likely to contribute SSEs, 

thereby increasing the local SSE risk. However, the majority of individuals with low 

infectiousness tend to cause limited infections, resulting a decrease in the overall local 

transmission risk. 

Our linear regression analysis reveals that the scaling index has a positive effect on 

local SSE risk. This aligns with prior research that reported a positive association 

between the scaling index and the individual risk of becoming a superspreader (Peng & 

Liu, 2024). Expanding upon this finding, our study refines the concept of 

superspreading by shifting the focus from individual-centred superspreaders to 

individual- and place-centred SSEs. By doing this, we find consistent positive effects 

of the scaling index on local SSE risk. Moreover, our study highlights that increased 

individual infectiousness heterogeneity amplifies the positive effect of the scaling index 

on local SSE risk, although individual heterogeneity alone has a negligible effect. This 

implies that individual infectiousness characteristics may not play as decisive a role in 

SSE occurrences as previously speculated in existing literature (Goyal et al., 2021, 

2022; Sidik, 2023). Instead, places act as the dominant mechanism by constraining 

individuals’ ability to fully realize their infectious potential. 
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5.3.2 The critical role of early SSEs in the resilience to new 

virus invasions 

Our findings highlight the critical role of early SSEs in successful new virus invasions. 

Compared to non-successful invasions, those successful were associated with a higher 

proportion of SSEs during the early infection stage, especially for those scenarios with 

higher individual infectiousness heterogeneity. This aligns with prior research that 

demonstrates the importance of early SSEs in determining variant predominance when 

multiple variants compete with each other (Goyal et al., 2022; Lloyd-Smith et al., 2005). 

However, it is important to note that the prior study primarily focused on individual 

characteristics, such as viral loads and numbers of contacts, without fully considering 

the restrictive role of places (Goyal et al., 2022; Lloyd-Smith et al., 2005). In contrast, 

our vulnerability findings emphasize the importance of policies that diminish SSEs in 

high-scaling index places. Implementing such policies can make a crucial difference 

between the emergence or the prevention of a new wave. It is crucial not to become 

complacent based on a low average transmission risk during the early stages, as the 

potential for high SSE risk remains and could still increase the likelihood of a new wave 

emerging. 

5.3.3 Long-term implications of the lockdown policy 

This study demonstrates that implementing a lockdown policy yield limited long-term 

benefits with high costs. Similar findings have been shown in previous research 
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(O’Sullivan et al., 2020), which emphasizes the real challenge of effectively managing 

large metropolitan areas that cannot be easily divided into separately controlled regions. 

Furthermore, this study highlights the phenomenon of temporal risk transfer, where 

immediate risks are shifted to the future (Cutter, 2003), leading to more concentrated 

outbreaks, particularly during recuring waves. This study also reveals a more 

pronounced degree of heterogeneity in local transmission risks, indicating a potential 

increase in spatial inequality. Based on these findings, our research emphasizes the 

importance of policy design that considers comprehensive consequences over longer 

time scales and addresses potential spatial inequalities (Axhausen, 2021; Cutter, 2019; 

Tian, 2017). In situations characterized by increasingly infectious and recuring waves, 

it may be more suitable to adopt more flexible policies that aim to manage infections 

within the capacity of healthcare systems. Such an approach can help strike a balance 

between mitigating the spread of the virus and minimizing the societal and economic 

costs. 

5.4 Summary 

To gain a deeper understanding of community vulnerability and resilience in the 

COVID-19 context, this chapter utilized a spatially explicit ABM to represent urban 

complex systems where individuals and urban scaling structure dynamically interact. 

This model enabled us to reconstruct fine-grained spread processes across two 

consecutive Omicron waves in Hong Kong. By examining the influence of individual 

infectiousness heterogeneity, we found the opposing effects on two vulnerability 
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characteristics: local transmission risk from an average perspective and local SSE risk 

from an extreme perspective. Moreover, we found that while individual infectiousness 

heterogeneity alone has a small effect on local SSE risk, it amplifies the positive effects 

of urban scaling structure on local SSE risk when the degree of heterogeneity increases. 

This implies that individual characteristics may not play as decisive a role in spread 

dynamics as expected. Instead, places could play a dominant role by constraining 

individuals’ ability to fully realize their transmission potential. 

The resilience analyses revealed that early SSEs, as a vulnerability characteristic, 

also play a crucial role in determining the success of new virus invasions. Additionally, 

a counterfactual simulation of the lockdown scenario demonstrated that implementing 

lockdown measures, despite the significant cost, would not yield substantial long-term 

benefits and could potentially exacerbate spatial inequalities. These findings highlight 

the importance of future policy decisions that considers the specific complexities of the 

context and comprehensively evaluating the consequences in both long-term temporal 

scales and spatial dimensions. This chapter thus underscores the importance of adopting 

an urban complex system perspective to understand vulnerability and resilience in the 

contexts of COVID-19 and other disasters and inform future policy decisions. 
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Chapter 6 Resilience to different invasion 

contexts 

Path dependency characterizes urban complex systems, suggesting initial invasion 

events may have a large impact on subsequent resilience outcomes. This chapter aims 

to explore urban resilience under different contexts of initial invasion places. The 

aforementioned ABM (Chapter 3) was employed to reconstruct case trajectories of the 

fifth and the sixth waves in Hong Kong. After validating the model by empirical data 

at various spatial scales, we used this model to compare the resilience outcomes of the 

high and low scenarios, considering the initial cases of new variants originating from 

places with high or low scaling indices. These indices reflect the importance of places 

within the urban scaling structure. In terms of resilience outcomes, we analysed the 

success probability of invasions and the subsequent spatiotemporal spread dynamics in 

both scenarios. This study thus enhances our understanding of how invasion contexts 

would interact with urban complex systems, contributing to resilience in the face of 

recuring new waves. The unique urban complex system perspective can serve as a 

promising tool to understand resilience in various disaster contexts and inform future 

policy decisions. 
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6.1 Modelling the high and low scenarios of invasion contexts 

6.1.1 The high and low scenarios 

To examine the influence of the initial conditions on the spread of viruses, this study 

considers the importance of the invasion places of initial cases. The validated model 

(see Section 4.1.1 and 5.2.1) was used to explore two distinct scenarios within the 

context of the sixth wave: the high scenario and the low scenario. In the high scenario, 

initial cases originate from the top 30 places with high scaling indices, while in the low 

scenario, initial cases originate from the bottom 30 places with low scaling indices. 

These places are considered structurally important in the urban scaling structure, 

indicating high density and connectivity. On the other hand, the low scenario involves 

initial cases originating from the bottom 30 places with low scaling indices. This 

selection allows for a comparison that highlights the influence of the initial invasion 

contexts on the subsequent spread. In both scenarios, three initial cases with an identical 

number of contacts (18, the average contact number of Hong Kong population 

(Kucharski et al., 2014)) are introduced on May 1st, 2022. For each scenario, we run 

100 replicates from February 1st, 2022 to January 15th, 2023. 

6.1.2 Analyzing spatial characteristics of spread 

We utilized three measures from social media studies to analyse spatial diffusion: 

infection focus, infection entropy, and infection spread (Kamath et al., 2013). Infection 

focus (𝐹) represents the maximum probability of transmitting new cases at a single 
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location over time. It is determined by identifying the location with the highest 

probability of transmitting new cases (𝑃𝑖 ) among all locations (𝑖 ∈ 𝐼), where 𝐹 =

 max
𝑖∈𝐼

𝑃𝑖  , 𝑃𝑖 =  
𝑂𝑖 

∑ 𝑂𝑖𝑖∈𝐼
, and 𝑂𝑖 is the number of infections in 𝑖. Initially, there are a few 

focal points with a high focus degree, which is expected to decrease as the virus spreads 

to more locations. Infection entropy ( 𝐸 ) quantifies the randomness in spatial 

distribution of infections.  It is measured by 𝐸 =  − ∑ 𝑃𝑖  log2 𝑃𝑖𝑖∈𝐼 . A value of 0.0 

indicates infections occurring in a single location, while higher values reflect greater 

randomness in the distribution and require more information to represent the spread. To 

consider the distance travelled by the virus, we introduced Infection spread (𝑆). It 

calculates the mean distance of all occurrences from the geographic midpoint. The 

formula is as follows: 𝑆 =  
1

𝑂
∑ 𝐷(𝑜, 𝐺(𝑂))𝑜∈𝑂 , where 𝐺(𝑂)  is the geographic 

midpoint for all occurrences and 𝐷 is the measurement of the distances between the 

occurrence to the midpoint. 

6.2 Model results 

6.2.1 Success probability of new invasions in the high and low 

scenarios 

We compared the high and low scenarios, and observed differences in success 

probability of new invasions. The high scenario exhibited a higher success probability 

(19%) in initiating a new wave compared to the low scenario (15%). In this study, 

successful invasions were defined as runs resulting in an observable peak in the daily 
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infection curves. Specifically, runs that did not produce any new infections after August 

1st, 2022, were classified as failed invasions, as almost all unsuccessful invasion had 

ceased to produce new infections around July 1st, 2022. 

Figure 6-1 illustrates the differences in daily infections and peak dates for 

successful runs. The curves in the low scenario show greater dispersion, while those in 

the high scenario are relatively more concentrated. Both scenarios have a comparable 

average number of total infections, around 178 thousand. However, when comparing 

the average number of daily infections, we observed slightly higher numbers in the 

early stage for the low scenario, while the high scenario exhibited slightly higher 

numbers in the later stage (Figure 6-1b). Additionally, both scenarios reached their peak 

on September 11th, 2022. However, when examining the peak date distributions across 

runs, Figure 6-1c shows that the high scenario had a greater proportion of late peaks, 

while the low scenario tended to have more early peaks. 

Based on these characteristics, we categorized the spread dynamics into three 

stages: the accumulation stage from May to July 2022, where successful or failed 

invasions were determined; the rapid growth stage from August to October 2022, where 

successful invasions reached their peak; and the decline stage from November 2022 to 

January 2023, where invasions slowed down.  
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Figure 6-1 Daily infections of successful invasions across high and low scenarios. a, daily infection 

curves for successful invasions in the high (left) and low scenarios (right). b, the average daily infections 

in the high (in green) and low scenarios (in red). c, the peak date distributions of successful invasions in 

high (in green) and low scenarios (in red). 

6.2.2 Early spread characteristics critical for successful 

invasions 

6.2.2.1 The first seven-day spread characteristics 

After comparing the difference in success probabilities between the high and low 

scenarios, we further analysed the potential influencing factors. Given the importance 

of early SSEs (Goyal et al., 2022; Lewis, 2021; Lloyd-Smith et al., 2005), we first 

calculated the proportions of successful invasions that included SSEs during the first 
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seven-day spread. We defined SSE as a spreading event where an infected individual 

transmitted to at least three individuals in a single place. The results, in Table 6-1, show 

that a majority of successful runs, all successful invasions in the low scenario and 63% 

in the high scenario involved SSEs. This indicates the critical role of SSEs in the 

success of invasions, particularly in the low scenario. Interestingly, some invasions in 

the high scenario were able to break through even without SSEs.  

Furthermore, when comparing the average infection numbers during the first 

seven-day spread, a large disparity emerged between the low and high scenarios. The 

low scenario exhibited notably higher average infection numbers (9.00) compared to 

the high scenario (6.79). However, for failed runs, the low scenario exhibited slightly 

lower values (4.54) than the high scenario (4.81). Namely, in most cases, the high 

scenario tends to lead to a greater number of infections compared to the low scenario. 

Table 6-1 Comparison of the first seven-day spread characteristics of the high and low scenarios. 

Scenario 

Success 

probability 

The proportion of 

successful runs 

that involved SSE 

The average 

infection number of 

successful runs 

The average 

infection number of 

failed runs 

The high scenario 19% 63% 6.79 4.81 

The low scenario 15% 100% 9.00 4.54 

6.2.2.2 The first month spread characteristics 

Apart from the first seven-day situation, we investigated the spread characteristics of 

the first month (May, 2022). Three spatial characteristics were calculated: infection 

focus, infection entropy, and infection spread (see Section 5.1.2). We compared the 
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cumulative distribution function (CDF) of these characteristics among successful and 

failed runs in the high and low scenarios. Figure 6-2 shows significant gaps between 

successful runs and failed runs, regardless of the high and low scenarios. Successful 

runs exhibited a higher proportion of small focus values, large entropy values, and large 

spread values, indicating more dispersed and distant spread patterns. 

Further comparisons between successful runs in the high and low scenarios 

revealed that the low scenario had a relatively higher proportion of small focus values, 

large entropy values, and large spread values (Figure 6-2), indicating more dispersed 

and distant spread patterns. About 75% of successful runs in the low scenario HAD 

focus values below 0.28, compared to about 0.33 in the high scenario (Figure 6-2a). 

For entropy, about 55% of successful runs in the low scenario had values above 2.5, 

whereas less than 50% had values above 2.5 in the high scenario (Figure 6-2b). As for 

spread, around 65% of successful runs in the low scenarios travelled distances 

exceeding 7.5 thousand meters, while only 37.5% achieved the same in the high 

scenario (Figure 6-2c). 
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Figure 6-2 The spatial characteristics of the first month spread among successful and failed runs in the 

high and low scenarios. a, the cumulative distribution functions (CDF) of infection focus. b, the CDF of 

infection entropy. c, the CDF of infection spread. d, the spatial distributions of infections. 
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 Additionally, Figure 6-2d illustrates a large difference in the spatial distribution 

of early spread between the high and low scenarios. The high scenario demonstrates a 

relatively concentrated spatial distribution, primarily in the lower and middle regions. 

Conversely, the low scenario displays a more dispersed distribution, encompassing 

areas such as the remote northern, western, and eastern regions. The Pearson correlation 

coefficient between local infection numbers and the scaling indices across subTPUs 

also verifies this spatial difference. The low scenario had a negative correlation with 

the scaling index (-0.04, P-value: 0.46), indicating a tendency to spread in areas with 

low scaling indices. In contrast, the high scenario exhibited a positive correlation with 

the scaling index (0.07, P-value: 0.26), suggesting an initial spread in areas with high 

scaling indices. 

6.2.3 Spatiotemporal spread characteristics for successful 

invasions 

After analysing the early spread characteristics, we expanded our analysis to subsequent 

months. Figure 6-3 shows the monthly changes in focus and entropy characteristics for 

successful runs in the high and low scenarios. Overall, the focus values of all runs 

initially converged towards smaller values and then expanded towards larger values. In 

contrast, the entropy values exhibited the opposite trend, initially converging towards 

larger values and then contracting towards smaller values. Initially, the distribution of 

focus values ranged from 0.1 to 0.5, gradually contracting until the infection peak in 

September 2022, when the focus value approached the minimum of 0. Afterwards, the 
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focus values gradually expanded until January 2023, stabilizing around 0 to 0.2. In 

contrast, the distribution of entropy values started from 0 and ranged up to 3.5, 

gradually increasing until reaching a peak of approximately. Subsequently, the entropy 

values gradually decreased, dispersing between 3 and 5.   

Comparing the high and low scenarios, we observed that the low scenario exhibited 

a slightly more extreme and rapid convergence towards the upper left corner. It 

displayed relatively higher entropy values and smaller focus values, suggesting a more 

widespread early spread. Additionally, after the peak month, the low scenario had a 

stronger and faster dispersion towards the lower right corner. This suggests a more rapid 

transition to a more localized spread in the low scenario. 

 

Figure 6-3 The monthly changes in spread characteristics for successful runs in the high and low 

scenarios. 

6.2.4 Local spread dynamics for successful invasions  

After analysing global spread characteristics, we examined local spread dynamics 
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across subTPUs and their potential influencing factor: the scaling index, which 

evaluates the importance of places in the overall structure (Jiang & Jia, 2011; Xing & 

Ghorbani, 2004). We measured the correlation between monthly average number of 

local infections and the scaling index using Pearson’s correlation coefficient. To satisfy 

Pearson’s assumption of normality, we logarithmically transformed the scaling indices 

due to their long-tailed distribution.  

Figure 6-4 shows that during the accumulation stage, both the high and low 

scenarios exhibited an increasing correlation with the scaling indices. Notably, the low 

scenario exhibited a more significant increase, ranging from -0.04 to 0.62, while the 

high scenario increased from 0.07 to 0.57. Throughout the rapid growth stage, the 

positive correlations continued to rise for both scenarios until reaching a peak. The 

correlation strength of the high scenario gradually caught up with that of the low 

scenario. In the decline stage, the correlations between both scenarios and the scaling 

index experienced a consistent decrease, with the decline being more pronounced for 

the low scenario. 
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Figure 6-4 Correlation between monthly mean of local infections and log-transformed scaling index 

for successful runs in the high (red) and low (low) scenarios across subTPUs. 

In addition to analysing the mean of local infections, we also examined the variance 

across successful runs. To facilitate comparability, we calculated the coefficient of 

variation (CV) by dividing the variance by the mean for each subTPUs. The CV 
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signifies the diversity of spread possibilities at a location. A higher CV indicates greater 

variability and a wider range of possibilities.  

Figure 6-5 illustrates that during the accumulation stage, the CV increased with the 

rising scaling index, indicating a diverse range of spread possibilities for both scenarios. 

Notably, in May, there was a significant difference between the high and low scenarios. 

The low scenario had higher CV values in low-scaling-index places, while the high 

scenario had higher values in high-scaling-index places. From June to July, the low 

scenario exhibited higher variability in high-scaling-index places, compared to the high 

scenario. During the rapid growth stage, the CV decreased with the increasing scaling 

index, indicating a decline in spread possibilities for both scenarios. In the decline stage, 

the CV increased again with the rising scaling index. The high scenario exhibited 

slightly stronger variability, suggesting more spread possibilities compared to the low 

scenario. 
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Figure 6-5 Correlation between monthly coefficient of variation of local infections and log-

transformed scaling index for successful runs in the high (red) and low (low) scenarios across 

subTPUs. 

6.3 Discussions 

This study developed a spatially explicit ABM to reconstruct spread trajectories of two 

consecutive waves at a fine spatial scale. After validating the model using three 

empirical data from different spatial scales, it was employed to investigate how a small 



92 

 

change in invasion places influences urban resilience, namely, the success probability 

of new invasions and the subsequent spatiotemporal spread dynamics. The results 

reveal that the high scenario, where initial cases originated from the top 30 places with 

high scaling indices, had a higher success probability than the low scenario with the 

bottom 30 places. Further analyses on spatiotemporal dynamics of successful invasions 

show that the low scenario initially had a spread advantage, but this advantage later 

shifted to the high scenario. Moreover, local spread dynamics of the high and low 

scenarios exhibited varying degrees of correlations with the underlying scaling 

structure at different spatial and temporal scales. 

6.3.1 The influence of invasion places on the success 

probability of new invasions 

This study revealed that the early spread of successful invasions exhibited a higher 

proportion of SSEs, compared to failed invasions. SSE demonstrates an intense 

concentration and strength of spreading in a short time. Our finding emphasizes the 

importance of early SSEs in facilitate invasions to break through (Goyal et al., 2022; 

Lewis, 2021; Lloyd-Smith et al., 2005). This ‘explosion-and-spread’ pattern has also 

been observed in outbreaks of online phenomena, such as the spread of Twitter hashtags 

or YouTube video (Brodersen et al., 2012; Kamath et al., 2013). Moreover, some 

invasions in the high scenario succeeded without early SSEs. This suggests that a more 

favourable spread environment can support relatively ordinary invasions in gradually 

breaking through. However, in the low scenario, an explosive early spread becomes 
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almost a crucial prerequisite for successful invasions due to less favourable 

environments.  

The more important role of early SSEs in further partly explains the 

counterintuitive finding of the low scenario having more intense initial spread shortly 

after the importation, compared to the high scenario. Previous studies have found that 

places with high population density or structurally importance were associated with 

higher risk of spread (Hamidi et al., 2020; Hong et al., 2021b; Peng & Liu, 2024). 

Indeed, our study verifies this point based on the slightly higher average numbers of 

infection among failed invasions in the high scenario. Therefore, the more explosive 

and intense early spreading of successful invasions in the low scenario may be 

attributed to the survivorship bias, as invasions selected from the less favourable 

environments had to be more vigorous to guarantee successful breakthrough. 

6.3.2 The underlying reasons for the shifting spread 

advantage between the low and high scenarios 

As discussed previously, the low scenario initially had a spread advantage, which 

continued until the peak. However, the high scenario later reversed this advantage after 

the peak. This shift in advantage may be attributed to the path dependency effect of the 

varying spread power in the early stage. Firstly, shortly after the importation, the low 

scenario exhibited a relatively stronger degree of spread power, due to the survivorship 

bias. This allowed it to effectively leverage the urban scaling structure for rapid and 

extensive spread from June to August. This observation is supported by the stronger 
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positive correlations between the low scenario and the scaling index (Figure 6-4). 

Secondly, the spatial distributions of early spread differed between the high and 

low scenarios. In the low scenario, the early spread dispersed around less important 

periphery of urban space, whereas in the high scenario, it primarily concentrated in 

structurally more important places (Figure 6-2d). The limited spread potential in less 

important places caused the spread to be quickly inhibited once saturation was reached 

(R. Morrill et al., 1988). As a result, the low scenario tended to expand more rapidly 

towards higher-scaling-index places. Overall, these difference in the degree and 

spatiotemporal scales of early spread power contributed to the low scenario maintaining 

its initial advantage and yielding a larger number of infections before the peak period. 

However, the prior spread advantage in the low scenario did not guarantee higher 

infection peaks. In fact, the high scenario reversed the early disadvantage and ultimately 

leaded to comparable total infections. This transition can be attributed to the dispersed 

nature of the early spread waves in the low scenario. The early spread in the low 

scenario was more dispersed than the high scenario (Figure 6-3), spreading around less 

important periphery of urban space (Figure 6-2d). The dispersed waves of spread in 

multiple directions could weaken their overall impact. It is akin to throwing several 

scattered pebbles into a pond, where the ripples generated from different directions 

meet and result in energy loss during the spread process. This phenomenon aligns with 

the wave theory of spatial diffusion, which explains that the meeting of dissimilar 

waves of spread reduces the probability of further spread due to energy dissipation (R. 

L. Morrill, 1968). 
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Contrastingly, the high scenario, although having slightly lower early spread power, 

had relatively more concentrated waves of spread, resulting in fewer contradictions and 

less energy loss during subsequent spread. Consequently, the high scenario eventually 

reversed the spread advantage previously held by the low scenario.  

6.3.3 The significance and challenges of early detection in 

proactive policy design 

Our study underscores the critical role of early detection in designing proactive policy 

actions to effectively control and mitigate risks. By analysing the spatial patterns of 

initial spread, policymakers can effectively differentiate between the high and low 

scenarios, enabling them to anticipate and manage future risks based on different 

spatiotemporal characteristics of each scenario. For example, the low scenario, despite 

having a relatively lower success probability, exhibits a more explosive early spread. 

This highlights the need for policymakers to pay closer attention to the low-scaling-

index places. These areas are often underestimated in terms of their risk, yet their sheer 

quantity poses significant governance challenges. In contrast, the high scenario may be 

relatively easier to control due to its less intense early spread. Implementing early 

interventions in the high scenario can yield greater long-term benefits. However, it is 

crucial to note that the window of opportunity for making such differentiation is limited. 

Once early spread patterns are missed, the subsequent spread dynamics of the high and 

low scenarios become increasingly similar. Therefore, this study underscores the 

importance as well as the challenges associated with early detection. 
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6.4 Summary 

To understand the impact of different invasion contexts on urban resilience, this chapter 

built a spatially explicit ABM to represent urban complex systems where individuals 

and urban scaling structure dynamically interact. After model validation, we compared 

the influence of invasion places, and found that the high scenario, where initials cases 

originated from structurally important places (namely, those with high scaling indices), 

had a higher success probability, compared to the low scenario. The success of 

invasions is significantly influenced by the early ‘explosion-and-spread’ pattern, with 

the low scenario being more heavily influenced. Furthermore, this chapter revealed a 

counterintuitive finding that successful invasions in the low scenario exhibited the early 

spread advantage, even though the high scenario later reversed this advantage. This can 

possibly be attributed to the overly dispersed and distant waves of early spread in the 

low scenario, which were akin to overlapping ripples from scattered pebbles thrown 

into a pond, may lead to greater energy loss in subsequent spread progression. 

Overall, we uncover intriguing findings regarding the impact of invasion contexts 

on urban resilience. Despite the high and low scenarios sharing the same underlying 

urban scaling structure, differences in historical conditions trigger varying degrees of 

spread forces across different spatial scales and temporal scales. Consequently, these 

differences give rise to distinct probabilities of regime shift and spatiotemporal spread 

dynamics. These insights can inform more effective intervention strategies. By identify 

different invasion contexts and anticipating the potential trajectories, policymakers can 
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devise targeted interventions at appropriate time points and implement necessary 

control measures. This study underscores the importance of adopting an urban complex 

system perspective to understand resilience in the contexts of COVID-19 and other 

disasters, ultimately informing more effective policy decisions. 
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Chapter 7 Sensitivity analysis 

7.1 Comparison of 2011 travel survey data with 2020 mobility 

data 

To verify the representativeness of 2011 travel survey data, we compared the mobility 

structure of 2011 travel survey data with that of 2020 subway data in Hong Kong as 

presented in Zhang et al. (2021), the most recent figure available. Using the Louvain 

heuristics algorithm, as employed in Zhang et al. (2021), to detect communities in 

complex networks, we found consistent community structures in both 2011 travel 

survey and the latest 2020 data (Figure 7-1). This indicates a high degree of temporal 

and spatial regularity in human mobility patterns (Gonzalez et al., 2008; Song et al., 

2010). Therefore, even though the 2011 data do not cover the simulation period, it is 

still acceptable to apply the 2011 data for modelling human travel behaviours. 

 

Figure 7-1 The comparison of the mobility structure of 2011 travel survey data (Left) and 2020 

MTR (Mass Transit Railway) card data (Right) from Zhang et al. (2021), both using Louvain 

heuristics. Left, 45,960 trips involved MTR stations in 2011 travel survey data were used, and four 

groups of communities were found. Right, MTR card data on a typical day between 1 January to 

31 March 2020 were used, and also four groups of communities were found. In Left and Right, the 
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edges in grey and dark blue represent population flows between and within communities, 

respectively. The vertex size is proportional to the total population flow after log transformation. 

7.2 Sensitivity analyses on report rates 

To account for the uncertainty of report rate values, sensitivity analyses were conducted 

on three additional parameter sets (Table 7-1). As mentioned in Infection attributes in 

Method section, the report rates referenced from Hong Kong University was 0.08 and 

0.20 before and after 24 February (HKUMed, 2022). These values did not consider the 

RAT online reporting platform, which accepts RAT positive results tested since 26 

February. Therefore, the actual values are more likely larger than those values. To 

address this, we increased the report rate between 24 February and 7 March from 0.20 

to 0.25 or 0.30, and the report rate after 7 March from 0.20 to 0.30 or 0.35. What’s 

more, report rate before 24 February was increased from 0.08 to 0.10 to account for the 

potential bias in referenced value. 

After replicating the model calibration process for three scenarios (see Section 

3.4.2), Table 7-2 and Figure 7-2 show that compared to our model, scenario S2 yielded 

comparable model fits, and scenario S1 and S3 generated slightly worse results. In other 

words, larger values in post-February 24 report rates fit better. Given that the report rate 

is a global index, and changes in report rates equally affect local case numbers, the 

relative differences in local-scale spread are likely to remain consistent across scenarios. 

Thus, although there are uncertainties in report rates in our model, these uncertainties 

are expected to exert limited influence on our conclusions. 

Table 7-1 Scenarios of report rates 
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Scenarios Report rate before 

24 February 

Report rate between 24 

February and 7 March 

Report rate after 

7 March 

Our model 0.08 0.30 0.35 

S1 0.08 0.25 0.30 

S2 0.10 0.30 0.35 

S3 0.10 0.25 0.30 

Table 7-2 The comparison of the city-level and TPU-level RMSE of the best-fit models across 

scenarios 

Scenarios City-level RMSE TPU-level RMSE 

Our model 7.486 9.257 

S1 10.976 9.287 

S2 7.668 9.558 

S3 10.509 9.472 
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Figure 7-2 Model fittings under different report rate settings. The report rates for our model (a) were 

0.08 before 24 February, 0.30 between 24 February and 7 March, and 0.35 after 7 March. Similarly, 

the report rates for S1 (b) are 0.08, 0.25, and 0.30; for S2 (c) were 0.10, 0.30, and 0.35; for S3 (d) 

were 0.10, 0.25, and 0.30. 

7.3 Sensitivity analyses on partially-fixed contactees 

Instead of assuming that all contacts remain the same, we assume that 70% of contacts 

are fixed, and 30% of contacts are updated daily. On the first simulation day, agents 

were randomly connected to a certain number of contactees in the same subTPU. After 
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the initial setup, the planned links in each subTPU were partitioned into two parts: 70% 

of them were classified as fixed contacts, and 30% of them were classified as random 

contacts. The random contacts were then rearranged, meaning 30% of links in each 

subTPU were rewired on a daily basis. All other dynamics remains the same with the 

original model. After 30 runs using the best-fit parameters, we repeated the multivariate 

linear regression (see Table 4-1) and logistic regression (see Table 4-2) used in the main 

manuscript. 

The regression results demonstrate that our conclusion holds true for the partially-

fixed contactee scenario. As shown in Table 7-3 and Table 7-4, the scaling index still 

play an important role in influencing the local transmission risk and individual’s 

probability of becoming a superspreader. These results echo with the main findings of 

Smieszek, Fiebig, and Scholz (2009), who compared two types of epidemic models— 

one assuming no repetition of contacts, the other assuming the same contacts repeat 

day-by-day. The study found that when the transmission probability is very high (e.g., 

for Measles and Chickenpox), both models exhibit similar outcomes. Given Omicron’s 

notably high transmission probability (R0 is comparable to that of Measles and 

Chickenpox), it is acceptable to assume fully fixed contactees in our study. 

Table 7-3 For partially-fixed contactee scenario, the effect of the scaling index on the average 

transmission risk (the average proportion of transmission contacts across 30 runs with best-fit 

parameters) for subTPUs through multivariate linear regression. 

Variable Coefficient 

The scaling index 2.61*** 

Average mobility density 0.17*** 
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Average clustering coefficient of social network 0.09*** 

                                *** Significant result with p-value < 0.001. 

Table 7-4 For partially-fixed contactee scenario, the average effects of the scaling index on 

individual’s probability of becoming a superspreader (the top 10% of individuals ranked by the 

number of secondary cases) through logistic regressions across 30 runs with best-fit parameters. 

Variable The mean of 

coefficients 

Exponential of (coefficients*1 unit) 

The average scaling index 4.80 * ^ 105%  

(a 1-percent-point increase) 

The number of contacts 0.03 *** 103%  

(a 1-point increase) 

    *** Significant result with p-value < 0.001; * ^ 73% of results are significant with p-value < 0.05. 

 

7.4 Sensitivity analyses on the effect of heterogeneous 

infectiousness on superspreader results 

In this scenario, instead of assuming equal infection probabilities for all agents, we 

assume that the infection probabilities of agents follow the lognormal distribution with  

𝜇 = log(0.05) and 𝜎 = 0.5. As shown in Figure 7-3, the lognormal distribution can 

guarantee that most of samples would be low values (around 0.05) and a small 

proportion of samples would be large values (the maximum can reach 0.5 that is 10 

times of the original infection probabilities 0.05 (Table 3-1)). What’s more, the mean 

value of sampled infection probabilities would be comparable to the original infection 

probabilities 0.05 (Table 3-1). We randomly sampled the infection probabilities from 
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the lognormal distribution to account for the heterogeneous infectiousness across 

individuals, and all other dynamics remains the same with the original model. After 30 

runs, we repeated the multivariate linear regression used in the main manuscript (see 

Section 4.1.4). 

 

Figure 7-3 The log-normal distribution for sampling the infection probability. 

The results of this scenario did not show much difference. Firstly, superspreaders 

(the top 10% agents with the large number of secondary cases) still accounted for a 

large proportion (76.6%, 95% CI: 76.4%-76.7%) of infections. Secondly, conditioning 

on the infection probability does not substantially change the magnitude and the 

direction of the coefficients of the average scaling index (Table 7-5). The results 

suggest the infection probability could be one of the important reasons that influence 

the individual’s risk of becoming superspreaders, but similar to the number of contacts, 

individuals with high infection probability need to be embedded in areas with high 
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scaling indices, so that they can reach full potential in infecting more people and 

becoming superspreaders. 

Table 7-5 When the infection probabilities are heterogeneously distributed among agents, the 

average effects of the scaling index on individual’s risk of becoming superspreaders (the top 10% 

of individuals ranked by the number of secondary cases) through logistic regressions across 30 

simulations. 

Variable The mean of 

coefficients 

Exponential of (coefficients*1 unit) 

The average scaling index 3.42 * ^ 104%  

(a 1-percent-point increase) 

The infection probability 6.82 *** 107%  

(a 1-percent-point increase) 

The number of contacts 0.03 *** 103%  

(a 1-point increase) 

      *** Significant result with p-value < 0.001; * ^ 46% of results are significant with p-value < 0.05. 
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Chapter 8 Conclusion 

To gain a deeper understanding of the underlying mechanisms of local spread dynamics, 

this thesis employs a spatially explicit ABM which incorporates urban scaling structure 

to simulate fine-grained mobility patterns and local spread processes across places. The 

findings indicate that places with a large volume of local mobility are only a 

prerequisite for high spread risks within those places, and their significance within the 

urban scaling structure also plays a crucial regulatory role in it. The urban scaling 

structure may provide the ‘first-mover advantage’ to a small group of places and their 

local visitors, enabling them to initiate infections earlier and on a more substantial scale. 

To further explore the impact of urban scaling structure on community 

vulnerability and resilience under different COVID-19 scenarios, the aforementioned 

ABM was utilized to simulate local spread dynamics across two consecutive Omicron 

waves in Hong Kong. By comparing the influence of varying degrees of individual 

heterogeneity in infectiousness on local vulnerability to SSEs, this study indicates that 

individual characteristics, may not be as significant as expected in driving local SSEs. 

Instead, places could play a dominant role by constraining individuals’ ability to fully 

realize their transmission potential. 

By comparing the influence of initial invasion places on urban resilience, this study 

reveals that despite the same underlying urban scaling structure, differences in 

historical conditions can trigger varying degrees of spread forces across different spatial 

and temporal scales, consequently giving rise to distinct probabilities of regime shift 
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and spatiotemporal spread dynamics. 

The study sheds new light in the role of urban scaling structure in driving the 

heterogeneity in local spread dynamics and local SSEs. It further explores local 

vulnerability patterns and urban resilience in diverse COVID-19 contexts. These 

insights could offer valuable guidance for developing precise and effective 

interventions to enhance urban resilience in response to future pandemics. The research 

framework presented here holds potential for broader applications in wider spatial 

contexts (e.g., Great Bay Areas) and various disaster contexts. 

8.1 Contributions 

8.1.1 Theoretical implications 

From the perspective of urban complex systems, a place is a synthesis of interactions, 

and it is the networks between places, rather than just intrinsic attributes, that shape our 

understanding of cities (Batty, 2013). Therefore, our study constructed a complex 

network to represent interactions between places. This network provides a dynamic and 

structural view to show how places, mobility, and disease spread that depend on the 

network that may change and evolve in time by adapting to and differentiating from 

other places (Jiang, 2018). During local competitions among places and visitors, the 

scaling properties of superspreading places and superspreaders were emerged. In a 

broader sense, many other scaling relationships of urban quantities also reflects the way 

competition determines the sizes (values) of different places within cities (Batty, 2008, 
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2013). Therefore, the way of thinking and modelling from the bottom up in our study 

could also be applicable to understand many other urban phenomena. 

 The place-to-place network not only provides mesoscopic view shedding new light 

in complex emergent behaviours from individual interactions to macro patterns, but 

also enables us to consider the dynamic interactions between individuals and places. 

During the spread processes of disease or other social phenomena, individual 

interactions gradually alter the landscape, and the landscape further alters the 

subsequent spread. While existing COVID-19 studies using agent-based framework 

emphasize the importance of individual-level mechanisms in understanding SSEs, our 

study indicates that sometimes place-level mechanisms may exert even greater 

structural influence. 

Beyond focusing solely on the spatial dimension, our study underscores the 

significance of the time dimension within urban complex systems. Given that the 

behaviour of a complex system is path-dependent (Holland, 2014), it is important to 

explore how differences in historical conditions might impact subsequent outcomes. 

Understanding these characteristics can aid in policymaking in appropriate timing to 

break existent patterns and promote desired trends.  

In addition to short-term perspectives, considering long-term views is vital since 

problem structure often undergo changes over extended periods (Hale, 2024). When 

studying individual wave, internal features of urban complex systems such as the 

structure of human mobility are the predominant factors to consider. However, when 

studying consecutive waves, it becomes essential to incorporate the distinct 
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characteristics of each wave event, like variant characteristics and initial invasion 

places. 

8.1.2 Methodological implications 

This thesis adopts a spatially-explicit ABM framework to explore the underlying 

mechanisms of local spread processes. While classic ABM focuses on the emergent 

behaviours from individual interactions at the micro-level directly to macro-level 

patterns, this study introduces a meso-level analysis perspective based on place-to-

place relations to shed new light in complex emergent processes. This analytical 

approach may aid in developing mid-range theories concerning the underlying 

mechanisms of phenomena of interest. Yeung (2023) and O’Sullivan (2024) advocate 

for the geographic field to develop mid-range theory to ensure that geographic theories 

strike a balance between breadth and specificity, making them more transferable to 

other social fields. ABM, in this regard, could potentially contribute to this endeavour.  

ABM is a highly flexible framework capable of analysing the development of urban 

phenomena across various spatial and temporal scales. It can serve as a useful tool to 

analyse the dynamic processes of vulnerability and resilience in disaster contexts. 

Unlike traditional static measurements, which may overlook changes occurring in 

different contexts, this dynamic analytical perspective and modelling approach offer a 

deeper understanding of the nature of vulnerability and resilience. 
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8.1.3 Practical implications for policymaking 

Urban complex systems have the capacity to evolve in many directions. Therefore, the 

main goal of policymaking should not be solely to produce the best outcomes under 

specific scenarios, but rather to generate satisfactory outcomes across multiple possible 

scenarios (Tian, 2017). To achieve this goal, ABM emerges as an essential tool for 

examine the potential behaviors of urban complex systems. Based on this, this study 

offers insights to inform policymaking at finer spatial scales and over relatively longer 

temporal scales. 

Targeted interventions within urban complex systems can have widespread effects, 

requiring a comprehensive consideration of their connections with other places. 

Moreover, the temporal scale plays a critical role in these interventions. For instance, 

while a short-term perspective on governance during a single wave may suggest that a 

lockdown is the optimal intervention. In the context of recurring waves, lockdowns may 

not represent a sustainable strategy for long-term benefits. Thus, this thesis highlights 

the importance of future policy decisions that considers the specific complexities of the 

context and comprehensively evaluating the consequences in both long-term temporal 

scales and spatial dimensions. 

8.2 Limitations  

This study has several limitations from two aspects. The first aspect is the study design. 

The study solely focused on the fifth and the sixth waves of the pandemic in Hong Kong 
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to validate the proposed model. To bolster the robustness of the model, future studies 

could encompass diverse periods and cities, if more data can be collected. The first four 

waves in Hong Kong were excluded because these waves had limited infections (in 

total 12,258 cases by Dec. 20, 2021), and such a small number of infections might cover 

up the local-level findings. 

The second aspect is the model structure. Firstly, the 2011 travel survey data used 

to simulate human mobility may not be representative of recent years. Despite evidence 

demonstrating a high degree of spatial and temporal regularities in human mobility 

patterns (Gonzalez, Hidalgo, and Barabasi 2008; Song et al. 2010), and considering 

Hong Kong’s status as a developed city, significant structural changes might not have 

occurred. A comparison of 2020 subway data reveals substantial similarities (Figure 

7-1), further supporting the representativeness of 2011 data. 

Secondly, the study mainly focused on city-level mobility changes during the 

pandemic, overlooking finer spatial-scale changes. Nonetheless, the local-scale 

validation demonstrated our model's capacity to effectively replicate local situations. It 

is plausible that the spatial structure of mobility remain relatively stable, as suggested 

by Tang et al. (2023) in the context of urban floods. Future research with mobility 

behaviour change data should delve deeper into this aspect. 

Thirdly, we assume that all contacts have an equal probability of successfully 

transmitting the virus irrespective of the contact duration and the contact intensity, 

which is a simplification of reality. If more biological data is available, further study 

can be conducted to thoroughly examine how the infectiousness per contact may 
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influence the local-scale transmission. Another simplification is the number of contacts 

at different places. For an agent, the total number of contacts is evenly distributed across 

its travel destinations regardless of the activity type. In reality, certain types of activities 

may lead to more contacts than others. If such kind of data is available in the future, we 

can further determine how the social contact characteristics may influence local 

transmission.  

Fourthly, we did not explicitly consider the spatial heterogeneity in the vaccine-

acquired immunity, but our model considered the vaccination by different age groups 

and the age groups were spatially heterogenous distributed, through which our model 

may to some extent accounted for the spatial heterogeneity in vaccination. What’s more, 

only a small proportion (12 percent) of population had taken the booster vaccination by 

Jan. 31st, 2021 (DATA.GOV.HK, 2022), and most of population that took the primary 

vaccination had limited protective effect for the Omicron (Andrews et al., 2022). 

Therefore, we infer that the spatial heterogeneity in vaccine may have limited effects 

on our results. If we can gather related empirical data, more realistic situations can be 

considered in the future study. 

8.3 Future directions 

8.3.1 Building a scalable network of health systems to 

enhance urban resilience 

In rapidly changing world, the future development of societal challenges such as 

climate change remains profoundly uncertain. Therefore, devising robust policies to 
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enhance urban resilience in the face of this uncertain future stands as a crucial 

governance issue. Drawing lessons from the three-year-long pandemic, a flexible and 

scalable network of essential infrastructures (e.g., health systems) emerges as a viable 

solution. By ensuring that infrastructure capacity increases at a rate surpassing the rate 

of crisis development, challenges could be efficiently managed.  

 In the context of COVID-19, it is evident that different regions bear varying disease 

burdens. An intriguing question arises regarding the potential for local medical 

resources, including local hospitals, clinics, or community health centers, to 

collaboratively interact and share the load of treating mild and severe cases. This 

exploration can extend beyond the intra-city level, encompassing inter-city level, such 

aa Greater Bay Area network for cities to collectively address challenges. 

8.3.2 The role of cyberspace in spatial diffusion phenomena 

The study of disease spread in this research represents a fundamental form of spatial 

diffusion phenomena. Similarly, the spatial diffusion of innovations, ideas, or behavior 

involve individual contacts, but the emergence of Information and Communication 

Technology has rendered the pathways of dissemination increasingly complex. While 

traditional methods typically focus solely on the physical space pathways of spread, 

cyberspace can also play a significant role in shaping human behavior as well (Liao, 

Kwan, et al., 2024; Liao, Wang, et al., 2024; X. Liu et al., 2022).  

Exploring how virtual relationships in cyberspace affect individual adoption 

behaviors and consequently spatial diffusion of phenomena of interest holds practical 

significance. Leveraging cyberspace to establish incentives that guide individual 
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decisions toward desired outcomes is a promising avenue (Tian, 2017). 
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Appendices 

Table S1 Model fit statistics for the mobility models at the Tertiary Planning Unit (TPU) and sub-

TPU scales 

The mobility model DIC RMSE R2 Mean trips  

(per person) 

Spatial scale: 214 TPUs 

    

The gravity model 10071869 1812.46 0.93 - 

The radiation model NA 4550.83 0.73 - 

The departure-diffusion model 8652189 1936.98 0.90 2.17 
     

Spatial scale: 1622 LSBGs* 

    

The gravity model 13369799 742.45 0.71 - 

The radiation model NA 595.97 0.79 - 

The departure-diffusion model 13259806 732.64 0.70 20.2 

* LSBG refers to Large Street Block Groups, which is a set of subunits of TPUs used by the Census and 

Statistics Department in Hong Kong. 

 

Table S2 Head/tail breaks of 4,863 subTPUs (subunits of Tertiary Planning Units) by mobility 

volume 

Hierarchy Range subTPU count 

1 (0, 15.0) 3,780 

2 (15.0, 56.2) 772 

3 (56.2, 122.2) 222 

4 (122.2, 227.8) 58 

5 (227.8, 703) 31 

 

Table S3 Vaccine effectiveness in reducing susceptibility to Omicron by time since the second or 

third dose, the estimates from HKU Li Ka Shing Faculty of Medicine (HKUMed, 2022) 
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Vaccine effectiveness Time since 2nd and 3rd dose 

Vaccine 14 days 90 days 180 days 

BioNTech × 1 0 0 0 

Sinovac × 1 0 0 0 

BioNTech × 2 0.20 0.05 0.01 

Sinovac × 2 0.03 0.01 0.01 

BioNTech × 3 0.89 0.86 0.77 

BioNTech × 2 +Sinovac 0.81 0.67 0.44 

Sinovac × 2 +BioNTech 0.64 0.47 0.29 

Sinovac × 3 0.36 0.19 0.08 

 

Table S4 Prior-infection induced immunity in reducing susceptibility to Omicron by time since the 

prior infection (Malato et al., 2023) 

Time until reinfection in the 

sixth wave 

Relative risk (compared with individuals 

without prior infections) 

Below 90 days 0.06 

90-120 days 0.14 

120-150 days 0.26 

150-180 days 0.30 

180-210 days 0.32 

210-240 days 0.35 

Beyond 240 days 0.37 
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Figure S1 The proportion of BA.5 samples in the total sequenced  samples of local cases from 1 

May to 30 September 2022 in Hong Kong (Gilman, 2022). 

 

 

Figure S2 Google mobility change index in workplaces during Feb.1st to Sep. 30th, 2022. We took 

the two-week average of the original data to avoid weekly fluctuation due to noise or other bias. To 

better account for the large decline during Spring festival (Feb. 1st to 3rd), three-day average was 

calculated and taken as the mobility change index for the three special days. 

Two-week average 

Spring festival 

Original value 
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Figure S3 The age-dependent contact distributions for Hong Kong population (Kucharski et al., 

2014). 

 


