

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

SCALING BLOCKCHAIN VIA SHARDING

ZICONG HONG

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Scaling Blockchain via Sharding

Zicong Hong

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

June 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Zicong Hong

Abstract

As a promising solution to blockchain scalability, sharding divides blockchain nodes

into small groups called shards, splitting the workload. Existing works for sharding,

however, are limited by three challenges. First, cross-shard transactions multiply

the overhead of blockchain sharding, since the system needs to split each cross-shard

transaction into multiple sub-transactions, each of which costs a consensus round to

commit. Second, the independent and random scheduling for cross-shard transac-

tions in different shards results in numerous conflicts and aborts since their involved

accounts may be modified or locked by the others before they are committed. Third,

for a blockchain database, a new and popular blockchain application, it is challenging

to construct a scalable blockchain database through traditional on-chain sharding.

Therefore, in chapter 3, we present a new blockchain sharding schema, named layered

sharding, to improve the scalability via sharding while processing the cross-shard

transactions efficiently. In chapter 4, we present Prophet, a sharding blockchain

system with deterministic ordering for conflict-free transactions. In chapter 5, we

propose GriDB, the first scalable blockchain database that distributes tables to dif-

ferent shards and provides efficient cross-shard database services. Evaluation of the

real-world datasets for blockchain shows the remarkable performance improvement of

our proposed systems over existing solutions.

i

Publications arising from the thesis

• [EUROSYS] Zicong Hong*, Jian Lin*, Song Guo, Sifu Luo, Wuhui Chen,

Roger Wattenhofer, and Yue Yu (*The first two authors have equal contribu-

tion). “Optimus: Warming Serverless ML Inference via Inter-Function Model

Transformation”. European Conference on Computer Systems, 2024.

• [INFOCOM] Jinyu Chen, Wenchao Xu, Zicong Hong*, Song Guo, Haozhao

Wang, Jie Zhang and Deze Zeng (*mentoring author). “OTAS: An Elastic

Transformer Serving System via Token Adaptation”. IEEE International Con-

ference on Computer Communications, 2024.

• [WWW] Enyuan Zhou, Song Guo, Zhixiu Ma, Zicong Hong*, Tao Guo and

Peiran Dong (*mentoring author). “Poisoning Attack on Federated Knowledge

Graph Embedding”. The Web Conference, 2024.

• [VLDB] Enyuan Zhou, Song Guo, Zicong Hong, Christian S Jensen, Yang

Xiao, Dalin Zhang, Jinwen Liang, and Qingqi Pei. “VeriDKG: A Verifiable

SPARQL Query Engine for Decentralized Knowledge Graphs”. International

Conference on Very Large Data Bases, 2024.

• [NDSS] Jianting Zhang, Wuhui Chen, Sifu Luo, Tiantian Gong, Zicong Hong,

and Aniket Kate. “Front-running Attack in Distributed Sharded Ledgers and

Fair Cross-shard Consensus”. The Network and Distributed System Security

Symposium, 2024.

ii

• [ICDE] Wuhui Chen, Ding Xia, Zhongteng Cai, Hong-Ning Dai, Jianting

Zhang, Zicong Hong, Junyuan Liang, and Zibin Zheng. “Porygon: Scaling

Blockchain via 3D Parallelism”. The IEEE International Conference on Data

Engineering, 2024.

• [VLDB] Zicong Hong, Song Guo, Enyuan Zhou, Wuhui Chen, Huawei Huang,

and Albert Zomaya. “GriDB: Scaling Blockchain Database via Sharding and

Off-Chain Cross-Shard Mechanism”. International Conference on Very Large

Data Bases, 2023.

• [INFOCOM] Zicong Hong, Song Guo, Enyuan Zhou, Jianting Zhang, Wuhui

Chen, Jinwen Liang, Jie Zhang, and Albert Zomaya. “Prophet: Conflict-Free

Sharding Blockchain via Byzantine-Tolerant Deterministic Ordering”. IEEE

International Conference on Computer Communications, 2023.

• [DSN] Zicong Hong, Song Guo, Rui Zhang, Peng Li, Yufeng Zhan, and Wuhui

Chen. “CYCLE: Sustainable Off-Chain Payment Channel Network with Asyn-

chronous Rebalancing”. IEEE/IFIP International Conference on Dependable

Systems and Networks, 2022.

• [SoCC] Wuhui Chen, Xiaoyu Qiu, Zicong Hong, Zibin Zheng, Hong-Ning

Dai, and Jianting Zhang. “Proactive Look-Ahead Control of Transaction Flows

for High-Throughput Payment Channel Network”. ACM Symposium on Cloud

Computing, 2022.

• [ICDCS] Leijie Wu, Song Guo, Yi Liu, Zicong Hong, Yufen Zhan, and Wen-

chao Xu. “Sustainable Federated Learning with Long-term Online VCG Auction

Mechanism”. International Conference on Distributed Computing Systems,

2022.

• [INFOCOM] Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. “Pyramid:

A Layered Sharding Blockchain System”. IEEE International Conference on

iii

Computer Communications, 2021.

• [ICDCS] Yi Liu, Leijie Wu, Yufeng Zhan, Song Guo, and Zicong Hong.

“Incentive-Driven Long-term Optimization for Edge Learning by Hierarchical

Reinforcement Mechanism”. International Conference on Distributed Comput-

ing Systems, 2021.

• [WCNCW] Zhen Zhang, Qingqing Li, Wuhui Chen, and Zicong Hong. “Dis-

tributed resource allocation for NOMA-based mobile edge computing with content

caching”. IEEE Wireless Communications and Networking Conference Work-

shops, 2021.

• [ICPP] Jianting Zhang*, Zicong Hong*, Yufen Zhan, Song Guo, and Wuhui

Chen (*The first two authors have equal contribution). “SkyChain: A Deep Re-

inforcement Learning-Empowered Dynamic Sharding Blockchain System”. In-

ternational Conference on Parallel Processing (Best paper runner-up prize),

2020.

• [WOWMOM] Hui Lin, Zetao Yang, Zicong Hong, Shenghui Li, and Wuhui

Chen. “Smart contract-based hierarchical auction mechanism for edge comput-

ing in blockchain-empowered IoT”. IEEE 21st International Symposium on A

World of Wireless, Mobile and Multimedia Networks, 2020.

• [OJCS] Jiahang Zhou, Yanyu Chen, Zicong Hong, Wuhui Chen, Yue Yu, Tao

Zhang, Hui Wang, Chuanfu Zhang, and Zibin Zheng. “Training and Serving

System of Foundation Models: A Comprehensive Survey”. IEEE Open Journal

of the Computer Society, 2024.

• [TC] Jianting Zhang, Wuhui Chen, Zicong Hong, Gang Xiao, Linlin Du, and

Zibin Zheng. “Efficient Execution of Arbitrarily Complex Cross-shard Contracts

for Blockchain Sharding”. IEEE Transactions on Computers, 2024.

iv

• [TMC] Yi Liu, Song Guo, Yufeng Zhan, Leijie Wu, Zicong Hong, and Qihua

Zhou. “Chiron: A Robustness-Aware Incentive Scheme for Edge Learning Via

Hierarchical Reinforcement Learning”. IEEE Transactions on Mobile Comput-

ing, 2024.

• [NETWORK] Zicong Hong, Xiaoyu Qiu, Jian Lin, Wuhui Chen, Yue Yu,

Hui Wang, Song Guo, and Wen Gao. “Intelligence-Endogenous Management

Platform for Computing and Network Convergence”. IEEE Network, 2023.

• [TKDE] Enyuan Zhou, Zicong Hong, Yang Xiao, Dongxiao Zhao, Qingqi

Pei, Song Guo, and Rajendra Akerkar. “MSTDB: A Hybrid Storage-empowered

Scalable Semantic Blockchain Database”. IEEE Transactions on Knowledge and

Data Engineering, 2023.

• [TPDS] Zhongteng Cai, Junyuan Liang, Wuhui Chen, Zicong Hong, Jianting

Zhang, Hong-Ning Dai, and Zibin Zheng. “Benzene: Scaling Blockchain with

Cooperation-Based Sharding”. IEEE Transactions on Parallel and Distributed

Systems, 2023.

• [TMC] Leijie Wu, Song Guo, Zicong Hong, Yi Liu, Wenchao Xu, and Yufeng

Zhan. “Long-Term Adaptive VCG Auction Mechanism for Sustainable Feder-

ated Learning With Periodical Client Shifting”. IEEE Transactions on Mobile

Computing, 2023.

• [JSAC] Zicong Hong, Song Guo, and Peng Li. “Scaling Blockchain via Lay-

ered Sharding”. IEEE Journal on Selected Areas in Communications, 2022.

• [NETWORK] Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang,

and Yaohong Ding, “Federated Unlearning: Guarantee the Right of Clients to

Forget”. IEEE Network, 2022.

• [TSC] Ting Cai, Zicong Hong, Shuo Liu, Wuhui Chen, Zibin Zheng, and

Yang Yu. “SocialChain: Decoupling Social Data and Applications to Return

v

Your Data Ownership”. IEEE Transactions on Services Computing, 2021.

• [TETC] Yufeng Zhan, Jie Zhang, Zicong Hong, Leijie Wu, Peng Li, and Song

Guo. “A Survey of Incentive Mechanism Design for Federated Learning”. IEEE

Transactions on Emerging Topics in Computing, 2021.

• [IOTJ] Weikun Zhang, Zicong Hong, and Wuhui Chen. “Hierarchical Pricing

Mechanism with Financial Stability for Decentralized Crowdsourcing: A Smart

Contract Approach”. IEEE Internet of Things Journal, 2020.

vi

Acknowledgments

I would like to express my heartfelt gratitude to my mother, whose unwavering love,

support and encouragement have been the bedrock of my academic journey. Her

belief in my abilities, even when I doubted myself, has been a constant source of in-

spiration. She has been my pillar of strength, always offering words of encouragement

and pushing me to overcome obstacles. Her sacrifices and unwavering belief in my

potential have fueled my determination to succeed. I am truly blessed to have such a

remarkable woman in my life, whose unwavering support has helped shape the person

I am today. Thank you, Mum, for being my rock and for instilling in me the values

of perseverance, resilience and dedication.

I am immensely grateful to my supervisor, Prof. Song Guo, for his invaluable guid-

ance, expertise and patience. His mentorship and insightful feedback have been in-

strumental in shaping the direction of this research. I would also like to express my

sincere gratitude to Prof. Wuhui Chen and Prof. Peng Li for their valuable input,

constructive suggestions and scholarly discussions, which have greatly enriched my

understanding of the subject matter.

I would also like to thank my friends for their unwavering support, motivating me

during challenging times and providing a much-needed balance to my academic pur-

suits.

vii

Table of Contents

Abstract i

Publications arising from the thesis ii

Acknowledgments vii

List of Figures xiii

List of Tables xvii

1 Introduction 1

2 Background 4

2.1 Preliminary for Blockchain . 4

2.2 Preliminary for Blockchain Sharding 5

2.3 Related Work for Blockchain Sharding 6

3 Pyramid: A Layered Sharding Blockchain System 10

3.1 The Pyramid Model . 13

viii

3.1.1 Threat & Network Model . 13

3.1.2 Transaction Model . 14

3.1.3 Layered Sharding Model . 14

3.2 Architecture . 15

3.2.1 Architecture Overview . 15

3.2.2 Layered Sharding Formation 16

3.2.3 Cross-shard Block Design . 17

3.2.4 Cooperative Cross-shard Consensus 18

3.2.5 Conflicting Detection . 20

3.2.6 Relay Mechanism . 21

3.2.7 General Case . 22

3.2.8 Extension to UTXO model . 23

3.3 Analysis . 24

3.3.1 Security Analysis . 24

3.3.2 Performance Analysis . 26

3.4 Evaluation . 33

3.4.1 Implementation . 33

3.4.2 Experimental Setup . 34

3.4.3 Transaction Throughput & Latency 35

3.4.4 Storage Overhead . 36

3.4.5 Security . 37

3.4.6 Sharding Strategy . 38

ix

3.4.7 Workload . 39

4 Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant

Deterministic Ordering 42

4.1 Strawman: An Ideal Cross-Shard Mechanism 46

4.2 Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding . 47

4.2.1 System Model & Threat Model 47

4.2.2 Motivation & Overview . 48

4.2.3 Phase 1: Pre-execution . 49

4.2.4 Phase 2: Sequence . 50

4.2.5 Phase 3: Execution . 51

4.2.6 Phase 4: Correction . 52

4.2.7 Discussion . 52

4.3 Design Refinement . 53

4.3.1 Parallelization of Sequencing and Execution 53

4.3.2 Fine-grained Ordering . 53

4.3.3 Asynchronous Correction . 55

4.3.4 Parallel Pre-Execution . 57

4.4 Analysis . 58

4.5 Implementation . 60

4.6 Evaluation . 61

4.6.1 Performance . 62

4.6.2 Micro-benchmark . 64

x

5 GriDB: Scaling Blockchain Database via Sharding and Off-Chain

Cross-Shard Mechanism 67

5.1 System Model . 71

5.2 GriDB Overview . 73

5.2.1 System Overview . 73

5.2.2 Challenges . 75

5.3 System Design . 76

5.3.1 Strawman . 76

5.3.2 Cross-Shard Query Authentication 77

5.3.3 Inter-Shard Load Balancing 82

5.4 Design Refinement . 88

5.4.1 Cross-shard Query Efficiency 88

5.4.2 Load Balancing Scheduler . 89

5.4.3 Cross-shard Insertion/Deletion/Update. 90

5.4.4 Horizontal/Vertical Table Partition 91

5.5 Discussion . 91

5.5.1 Permissioned and Permissionless Setting 91

5.5.2 General Join . 92

5.6 Experimental Evaluation . 92

5.6.1 Overall Performance . 94

5.6.2 Performance of Cross-shard Query 96

5.6.3 Performance of Inter-shard Balancing 98

xi

6 Conclusions and Suggestions for Future Research 103

6.1 Work Summary . 103

6.2 Future Plan . 105

References 107

xii

List of Figures

3.1 Illustration for different blockchain sharding systems. 11

3.2 Performance of sharding with different proportion of cross-shard trans-

actions over a function of number of their related shards. 12

3.3 Illustration for a layered sharding for i-shard A, B and b-shard C. . . 15

3.4 Illustration for a cross-shard block for i-shard A and B. 17

3.5 Illustration for cooperative cross-shard consensus. 19

3.6 Illustration for the non-conflicting blocks and the conflicting blocks. . 21

3.7 Illustration for transaction distribution and frame distribution in Ethereum

from Aug. to Sep. 2021. 27

3.8 Transaction throughput for layered sharding with different shard num-

ber and node distribution. 34

3.9 Latency for layered sharding with different shard number and node

distributions. 35

3.10 Trade-off of transaction throughput and storage overhead for layered

sharding with different node distribution. 36

3.11 Transaction throughput and failure probability for different malicious

node fraction in a layered sharding system with 17 shards. 37

xiii

3.12 Real and estimated transaction throughput for optimal sharding strat-

egy with different node number in the same node distribution N high. 38

3.13 Transaction throughput for different sharding strategy in the same

node distribution Nmedium. 39

3.14 Transaction throughput for different number of transaction steps in a

layered sharding system with 17 shards. 40

3.15 Transaction throughput for different ratio of cross-shard transactions

in a layered sharding system with 17 shards. 41

4.1 (a) Percentage of Ethereum transactions with different number of inter-

contract calls from Oct. 2020 to May. 2021, (b) Illustration for con-

flicting cross-shard transactions. Each concentric circle represents a

smart contract. Three contracts are located in three different shards.

Each circled number represents the round at which a sub-transaction

is committed. 43

4.2 An ideal cross-shard mechanism for sharding. 46

4.3 The architecture of Prophet. 48

4.4 (a) Conflict ratio of transactions in a batch with varying batch size

in the pre-execution phase; (b) Transaction confirmation rule in asyn-

chronous correction. 54

4.5 Comparison of three cooperation modes for a reconnaissance coalition

in the pre-execution phase. The number inside each rectangle denotes

the transaction ID to which the computation or communication time

belongs. 58

xiv

4.6 Transaction throughput of Prophet and the existing sharding sys-

tems (The number above each bar denotes the ratio of the throughput

of Prophet over that of OCC.) . 62

4.7 Abort ratio of transactions during commitment in Prophet and the

existing sharding works. 63

4.8 Confirmation latency of Prophet and the other blockchain sharding

systems. 63

4.9 Pre-execution throughput of a reconnaissance coalition for Prophet

with different number of shards. 63

4.10 Percentage of communication time in the pre-execution in Prophet. 63

4.11 Ratio of invalid transactions in the correction phase. 66

5.1 (a) Illustration for sharding blockchain database, which requires two

new functions, i.e., data aggregation for query and workload balanc-

ing for management. (b) Transaction throughput of non-sharding and

sharding blockchain databases. (cxq. represents cross-shard query.) . 68

5.2 System overview for GriDB. 73

5.3 Overview for the on-chain strawman. 76

5.4 Example for ADS proof generation of two tables distributed in Shard

A and B, respectively. (σ is an operator to select rows from a relation

and ⋊⋉ is an operator to join tables based on a specified column.) . . . 80

5.5 Overview of off-chain live migration. A solid line with arrowhead rep-

resents a cross-shard transaction and a dotted line with arrowhead

represents an off-chain cross-shard communication. 83

xv

5.6 Transaction throughput for GriDB, the on-chain sharding blockchain

database, and the non-sharding blockchain database (cx means cross-

shard ratio.) . 94

5.7 Transaction throughput for GriDB, the on-chain sharding blockchain

database, and the non-sharding blockchain database (cx means cross-

shard ratio.) . 95

5.8 Storage overhead per node forGriDB and the non-sharding blockchain

database. 96

5.9 Performance for query #5 with different table size and number of re-

lated shards in GriDB. 98

5.10 Transaction throughput during inter-shard migration with varying skew-

ness. 99

5.11 Inter-shard migration for tables with varying size. 100

xvi

List of Tables

4.1 The average total size of cross-shard messages for a transaction in a

system with varying number of shards. 65

5.1 Comparison of server and client times for evaluating queries using dif-

ferent approaches (The results for vSQL and SNARKs are provided

in [94].) . 102

5.2 Time of each step for queries in GriDB (CL: Confirmation latency,

PG: Proof generation, TT: Table transfer.) 102

xvii

Chapter 1

Introduction

Blockchain, represented by Bitcoin [61], Ethereum [87] and Hyperledger Fabric [4],

has attracted growing attention in the area of supply chains [27], high performance

computing [56], and search engine [48]. It is a distributed ledger technology used

to guarantee high security and reliability of historical data in a distributed system

involving multiple untrusted participants and without a central authority.

As a prerequisite for broad application of blockchain, scalability is an important prop-

erty [3]. It denotes the ability of a blockchain system to support the increasing load

of transactions, as well as the increasing number of nodes in the network. However,

most of the existing popular blockchain systems suffer from poor scalability [61, 87]

since their consensuses involve all nodes. In other words, every node needs to verify

and store all transactions and every consensus message needs to be broadcast in the

whole network.

Among the technologies for the blockchain scalability, sharding is one of the most

promising and popular ones [82]. Its main idea is to divide nodes into multiple

consensus groups called shards. Accounts are distributed to the shards, each of which

processes the transactions involving their stored accounts. Each shard maintains a

blockchain and runs its own consensus independently. Ideally, the throughput scales

1

Chapter 1. Introduction

out linearly with the number of shards. The technology has been paid close attention

by the academia for recent years [54, 46, 89, 83, 2, 16, 93, 66, 35]. Moreover, for the

industry, many blockchains are currently being upgraded to a sharding architecture.

For example, Zilliqa has implemented sharding on its mainnet [79] and Ethereum

plans to support sharding in its Eth2 upgrade in 2022 [24].

However, the existing works for blockchain sharding face three challenges as follows.

First, although sharding improves the scalability of blockchain, it raises a new chal-

lenge to cross-shard transactions. The cross-shard transactions are the transactions

involving multiple accounts distributed in different shards. More seriously, each trans-

action may involve more accounts in practice (see subsection 3.3.2.) To commit a

cross-shard transaction, the existing sharding works [89, 83] divide it into several sub-

transactions, each of which is handled by the associated shard. It seriously degrades

the transaction throughput and multiplies the confirmation latency in a sharding

system. Therefore, as will be discussed in chapter 3, we propose a new blockchain

sharding schema, named layered sharding, to improve the scalability via sharding

while processing the cross-shard transactions efficiently. Its main idea is to allow

shards to overlap, which means some nodes can locate in more than one shard. These

nodes store the blockchains of multiple shards, thus they can verify and execute the

cross-shard transactions directly.

Second, the existing cross-shard mechanisms perform well below expectations for

the smart contracts. According to section 4.6, an existing blockchain system with

32 shards performs even worse than a non-sharding blockchain when meeting the

actual workload for smart contracts in Ethereum. This poor performance results from

inherent conflicts among cross-shard transactions and the independent and random

scheduling for cross-shard transactions in different shards. To eliminate the high

abort rates caused by in-deterministic events of race conditions, as will be discussed

in chapter 4, a sharding blockchain with global deterministic order for conflict-free

smart contracts, which we call deterministic sharding. Its basic idea is to introduce

2

predetermined serial global order for all transactions including single-shard and cross-

shard ones in the system.

Third, blockchain database has attracted widespread attention but still suffers from

poor scalability due to its underlying non-scalable blockchain. While blockchain

sharding is necessary for a scalable blockchain database, it is challenging to support

cross-shard database services, such as cross-shard queries or inter-shard workload

balancing, through the traditional on-chain manner. This is because they often need

massive cross-shard data exchange rather than a simple cross-shard balance check

like the conventional blockchain, which places a heavy burden on the consensus in-

volving all nodes in the related shards. Therefore, as will be discussed in chapter 5,

we propose GriDB, the first scalable blockchain database that distributes tables to

different shards and provides efficient cross-shard database services. It is based on

an authenticated data structure (ADS)-based off-chain execution, which can delegate

cross-shard communication-intensive tasks to a few nodes in a verifiable manner.

The rest of this thesis presents the research motivation, system designs, protocol

implementation and evaluation of my existing works, as well as the future research

schedule to complete my thesis and research programme.

3

Chapter 2

Background

2.1 Preliminary for Blockchain

A blockchain is a distributed ledger recording historical transactions. The ledger

is maintained by a set of untrusted blockchain nodes connected by a peer-to-peer

network and each node maintains a full copy of the ledger. The transactions issued

by clients are verified by the nodes and then grouped and recorded into the blockchain

via the consensus protocol. In the following, we introduce the common transaction

models and consensus protocols for the blockchain.

Transaction Model. There are two major types of transaction models, i.e., the

Unspent Transaction Output (UTXO) model [61] and the account/balance model

[87]. In the UTXO model, each block stores many transactions, each of which contains

one or more inputs and outputs. Each input of a transaction includes a reference to

one output of an existing transaction. Note that the output needs to have not been

referenced by any inputs before. In the account/balance model, each block represents

a state and stores a list of accounts and transactions. Each account stores a balance,

and if it is a smart contract, it will also store the code and internal storage. The

transactions record the history of state transitions (e.g., the change of balance or

4

2.2. Preliminary for Blockchain Sharding

contract storage) in the block.

Consensus Protocol. There are two major kinds of consensus protocols, i.e., Byzan-

tine Fault Tolerant (BFT) protocols and Nakamoto consensus protocols. Practical

BFT (PBFT) is the most well-known BFT protocol and has been adopted by Hy-

perledger Fabric [4]. It consists of three successive phases, i.e., pre-prepare, prepare,

and commit phase. The transition condition between any two phases is that each

node collects a quorum of messages. Proof-of-Work (PoW) is the most well-known

instance of Nakamoto consensus and has been used in Bitcoin [61]. Each node must

solve a computational puzzle to propose a new block. Although the specific processes

of them are different, the aims of them are same in blockchain systems, i.e., ensuring

all nodes in the system agree on some information while facing malicious or faulty

nodes.

2.2 Preliminary for Blockchain Sharding

Sharding is an idea originating from the database partitioning technique that divides

a very large database into much smaller parts named shards [13]. In database, by

distributing the workload over multiple shards and managing the shards separately,

transactions can be processed in parallel. Similarly, in blockchain systems, sharding

divides the blockchain nodes and the distributed ledger into shards. Transactions

can be distributed and processed in different shards, which enables the computation,

communication and storage of nodes scale as the number of shards. The study of the

sharding protocol typically focuses on three critical components as follows.

Shard Formation. Before joining the system, each node needs to establish an iden-

tity via a Sybil attack-resistant method, such as PoW. Then, based on the identity,

each node will be assigned to a shard randomly so that each shard is honest with

high probability. Besides, to prevent the attack of adversary, the shards need to

5

Chapter 2. Background

reconfigure in fixed time periods.

Cross-shard Mechanism. In the sharding system, because the ledger is separated

into shards, cross-shard transactions happen frequently. When processing each cross-

shard transaction, both of its atomicity (i.e., transactions are committed and aborted

atomically) and consistency (i.e., each transaction commit produces a semantically

valid state) need to be guaranteed among shards using a cross-shard mechanism.

Intra-shard Consensus. Within each shard, the nodes need to run a Byzantine

consensus protocol to agree on a block including a set of transactions proposed in

each consensus round. The consensus protocol should achieve safety and liveness.

The former means that honest nodes agree on the same value and the latter means

that the valid transactions will eventually be included in the ledger.

2.3 Related Work for Blockchain Sharding

RSCoin [15] is the first sharding blockchain system to support a scalable cryptocur-

rency whose monetary supply can be controlled by a central bank and whose trans-

actions are validated by the mintettes. Each mintette is a member authorized by

the central bank, thus RSCoin is a centralized system and does not work under the

Byzantine environment like a public blockchain.

ELASTICO [54] is the first decentralized sharding blockchain system. Each node

needs to solve a PoW puzzle to join the system. Then, the nodes are distributed

to different shards based on the least-significant bits of the solution. Every shard is

responsible to validate a set of transactions and achieves consensus based on PBFT.

Then, a final shard verifies all the transactions received from shards into a global

block which will be then broadcast to and stored in all nodes in the system. Although

ELASTICO achieves decentralization and sharding for verification, it does not achieve

sharding for storage and bandwidth. It is thus called partial sharding. Although there

6

2.3. Related Work for Blockchain Sharding

do not exist cross-shard transactions in the system since each node stores complete

information of the system, nodes suffer from heavy storage and bandwidth overhead.

Besides, CoSplit [66] is a static program analysis for blockchain sharding and is built

on top of a similar partial sharding blockchain named Zilliqa [79]. It is used to

infer ownership constraints and commutativity for smart contracts and then concur-

rently execute transactions in different shards without conflict to maximize parallelism

among shards.

To further alleviate the overhead of nodes in the blockchain, a number of researches

focus on complete sharding, i.e., sharding for transaction verification, storage and

communication. The complete sharding, however, brings the challenge of cross-shard

transactions and requires cross-shard mechanisms.

Omniledger [46] is the first complete sharding blockchain system. It adopts a client-

driven mechanism for cross-shard transactions. To commit a UTXO-based transac-

tion, a client first asks proofs from all input shards and then sends these proofs to all

output shards. If any shards reject to provide proof for a transaction, the commit-

ment of transactions will be failed and other shards will roll back the transaction. To

support sharding for generic smart contracts, Chainspace [2] is then presented. For

privacy, clients need to form a checker program for each of their smart contract. All

transactions are executed by the client and the blockchain nodes are only responsi-

ble to verify the result provided by the client based on the checkers. To commit a

UTXO-based transaction, the client sends the transaction to all input shards and the

inputs shards collaborate to run a two-phase commit protocol. However, the above

two client-driven mechanisms put extra burden on typically lightweight user nodes

and are vulnerable to denial-of-service (DoS) attacks by malicious users.

RapidChain [89] adopts a shard-driven mechanism for cross-shard transactions. For

each cross-shard transaction, the input shards first transfer all involved UTXOs to the

output shard by sub-transactions. Then, the cross-shard transaction can be trans-

7

Chapter 2. Background

formed into single-shard transaction and processed in the output shard. Monoxide

[83] proposes a relay mechanism for account-based transactions. Each cross-shard

transaction will be divided into a sequence of sub-transactions. Each sub-transaction

includes the operations involved accounts in one shard. An additional relay trans-

action is used as a inter-shard message when processing from a sub-transaction to

another sub-transaction, i.e., from a shard to another shard.

The cross-shard mechanisms in the above complete sharding systems can guarantee

the atomicity and consistency of cross-shard transactions, but the cost to commit

them is multiplied. It is because their basic idea is to divide each cross-shard trans-

action needs into several sub-transactions. Then, all related sub-transactions need to

be validated and executed during the consensus. This seriously degrades the sharding

performance in terms of throughput and confirmation latency.

Recently, there are some works for the challenge of cross-shard transactions. For

example, OptChain [62] proposes a transaction placement method for sharding sys-

tems. Its main idea is to place both related and soon-related transactions into the

same shards, which can reduce the number of cross-shard transactions as well as tem-

porally balances the workload between shards. Although the method is based on the

complete sharding, it can be migrated to the layered sharding by considering that the

partition of transactions can overlap, which can be considered in our future work. Tao

et al. present a two-layer sharding system [78]. In layer 1, each shard only processes

internal transactions. In layer 2, there is a unique shard named MaxShard that stores

the complete information, i.e., all blockchains, of the system. Thus, all cross-shard

transactions can be validated and processed in the MaxShard directly. However, the

two-layer sharding can put a huge burden on nodes in layer 2. The idea of our lay-

ered sharding shares a similar idea with Tao et al. [78] but has a more hierarchical

sharding structure to distribute the burden among layers. Moreover, Zhang et al.

present Haechi, a cross-shard protocol immune to front-running attacks [92]. Qi et

al. propose a sharding blockchain system that enables efficient execution of complex

8

2.3. Related Work for Blockchain Sharding

cross-shard smart contracts [69]. Huang et al. propose a dedicated fine-tuned lock

protocol which enables real-time processing of the affected transactions during ac-

count migration [39]. Jiang et al. propose Sharon, a sharding protocol that processes

cross-shard transactions via shard rotation rather than transaction division [42].

9

Chapter 3

Pyramid: A Layered Sharding

Blockchain System

Basic idea. This work proposes a new blockchain sharding schema, named layered

sharding, to improve scalability through sharding while processing cross-shard trans-

actions efficiently. Its main idea is to allow the shards to overlap, which means that

some nodes can be located in more than one shard as shown in Fig. 3.1(b). These

nodes store the blockchains of multiple shards, and thus they can verify and execute

the cross-shard transactions directly. For example, as shown in Fig. 3.1(b), Node 3

can verify and execute the cross-shard transaction involving Shards A and B since

Node 3 stores the blockchains of both shards. Moreover, the idea is consistent with

the fact that the hardware (e.g., storage, computation, network) of blockchain nodes

is different in a blockchain system. Thus, nodes with better hardware can be deployed

to more shards, which not only fully utilizes the resource of blockchain systems but

also efficiently processes cross-shard transactions.

Challenges. However, it is non-trivial to achieve the layered sharding before tackling

the following challenges. 1) How to design a consensus to commit cross-shard trans-

actions in multiple shards. Traditional sharding works adopt Nakamoto or Byzantine

10

Shard A Shard B

1
2

(a) Traditional sharding

Shard A Shard B

3

(b) Layered sharding

Figure 3.1: Illustration for different blockchain sharding systems.

consensus for the block proposal within each shard. However, in layered sharding,

nodes can generate blocks composed of cross-shard transactions. These blocks will

involve the state of multiple shards, need to be committed in multiple shards, and

maybe conflict with other shards’ consensus, thus demanding a new design of block

structure, consensus procedure, and conflict detection. 2) How many shards are

needed and which nodes should be assigned to which shards. In traditional sharding

works, all shards have an identical role and the hardware of the nodes is assumed the

same. In comparison, the shards in the layered sharding play different roles, and the

capacity of nodes is different. Some nodes are responsible for internal transactions,

while others should handle cross-shard transactions. It is critical to study the assign-

ment of shards for the layered sharding, which determines the system performance

and the level of security.

To illustrate the performance degradation that cross-shard transactions bring to tra-

ditional blockchain sharding, we perform a first experiment based on the cross-shard

mechanism in Monoxide [83]. Divide each cross-shard transaction related to K shards

11

Chapter 3. Pyramid: A Layered Sharding Blockchain System

0 10 20 30 40 50 60 70 80 90 100
Percentage of cross-shard

transactions (%)

50

100

150

200

Th
ro

ug
hp

ut

2 shards
3 shards

4 shards
5 shards

Figure 3.2: Performance of sharding with different proportion of cross-shard transac-

tions over a function of number of their related shards.

into at least K sub-transactions. Note that the number of sub-transactions may be

more than K, which will be discussed in section 3.3.2. As shown in 3.2, if there are

more cross-shard transactions, or if each cross-shard transaction involves more shards,

the transaction throughput of the sharding system decreases.

In practice, according to statistics [89], more than 96% of transactions are cross-

sharded in a sharding system. Moreover, based on the data provided by XBlock [96],

we conduct an analysis for Ethereum from 30 July 2015 to 6 July 2019 and find that

more than 15% of smart contract-related transactions are composed of more than 1

step, and the average number of accounts in a transaction is 3.35. Furthermore, the

proportion of multi-step transactions is increasing over time due to the popularity of

more complex smart contracts.

To this end, this work presents a layered sharding system for blockchain called Pyra-

mid. The main contributions can be summarized as follows.

• We propose a new blockchain architecture that forms a layered structure be-

tween shards. Based on the characteristics of cross-shard transactions, we inves-

tigate the verification rules for cross-shard transactions and design a cross-shard

structure for blocks.

12

3.1. The Pyramid Model

• We design a cooperative cross-shard consensus to commit cross-shard trans-

actions across multiple shards in a single round. The consensus consists of a

collective signature-based inter-shard collaboration to commit the cross-shard

block.

• We present an optimisation framework for layered sharding. We first anal-

yse the transaction structure and node resource based on the observation of

blockchain systems. We then formulate a transaction throughput maximization

problem with security and resource constraints, and solve it based on integer

programming.

• We implement a prototype for Pyramid based on Ethereum. The results show

that it outperforms the state-of-the-art sharding works in terms of throughput

and latency. It improves the throughput by up to 3.2 times compared to the

existing works and achieves about 3821 transactions per second (TPS) for 20

shards.

3.1 The Pyramid Model

3.1.1 Threat & Network Model

Pyramid consists of a set of blockchain nodes following the Byzantine failure model

which includes two kinds of nodes, i.e., honest and malicious. The honest nodes abide

by all protocols. The malicious nodes are controlled by a Byzantine adversary and

may collide with each other and violate the protocols in arbitrary manners, such as

denial of service and tampering, forgery, and interception of messages. Furthermore,

similar to other sharding systems [54, 46, 89], we assume that the Byzantine adversary

is slowly-adaptive, i.e., the set of malicious nodes and honest nodes are fixed during

each epoch and can be changed only between epochs.

13

Chapter 3. Pyramid: A Layered Sharding Blockchain System

The nodes in Pyramid are connected by a partially synchronous peer-to-peer network

[11]. In particular, the messages sent by a node can reach any other nodes with

optimistic, exponentially-increasing time-outs.

3.1.2 Transaction Model

Pyramid adopts the account/balance model for the ledger state in the form of a

pair of account and balance. Moreover, Pyramid can be extended to the UTXO

model, which is discussed in subsection 3.2.8. We consider a transaction as a payment

between two accounts, namely sender and receiver. A more general case about trans-

actions involving more than two accounts or supporting smart contract is discussed

in subsection 3.2.7. We leave the transaction model with more semantic information

such as blockchain database [98, 49] to future works.

3.1.3 Layered Sharding Model

In Pyramid, each blockchain node belongs to a shard. Different from the traditional

sharding schemes in which the shards are the same type, the shards in our layered

sharding are different types as follows.

1. i-shard: Each i-shard stores the state of accounts in the shard and can inde-

pendently verifies the internal transactions similar to shards in the traditional

sharding.

2. b-shard: Each b-shard bridges multiple i-shards by storing the state of accounts

in the i-shards and dealing with the cross-shard transactions related to the i-

shards.

For example in Fig. 3.3, there are three shards, i.e., i-shard A, i-shard B, and b-shard

C. The nodes in i-shard A stores the balance of account 1 (denoted by acc1) and acc2

14

3.2. Architecture

i-shard A

i-shard B

b-shard C

A’s state

acc1

acc2

100

50

B’s state

acc3

acc4

90

80

C’s state

acc1 100

acc2 50

acc4 80

acc5 50

acc3 90

acc6 70

Account
Balance

Figure 3.3: Illustration for a layered sharding for i-shard A, B and b-shard C.

while the nodes in i-shard B stores the balance of acc3 and acc4. The i-shard A is

responsible for the internal transactions involving acc1 and acc2 and the i-shard B for

its internal transactions. The b-shard C bridging these two i-shards by storing their

stored accounts and taking the job for cross-shard transactions among i-shard A and

B. Besides, the b-shard C can also store its own accounts, i.e., acc5 and acc6.

3.2 Architecture

3.2.1 Architecture Overview

Similar to most blockchain sharding systems, Pyramid proceeds in fixed time periods

named epochs, each of which includes two stages, i.e., sharding formation and block

consensus, as follows.

In the first stage, based on a pre-determined layered sharding strategy with the guar-

antee of both security and performance (subsection 3.3.2), the nodes are assigned to

shards to construct a layered sharding system (subsection 3.2.2.)

In the second stage, there are multiple consensus rounds. For each round, similar

to the traditional sharding, the i-shards propose and commit blocks composed of

internal transactions. The b-shards can propose cross-shard blocks (subsection 3.2.3)

composed of cross-shard transactions and commit them via a cooperative cross-shard

15

Chapter 3. Pyramid: A Layered Sharding Blockchain System

consensus (subsection 3.2.4). Finally, the state of an i-shard can be updated based

on its block and the involved cross-shard blocks.

Moreover, subsection 3.2.5 solves the conflict among cross-shard blocks proposed by

b-shard and the blocks proposed by the i-shards in the same round. subsection 3.2.6

fills the gap left by the i-shards which do not have the corresponding b-shard.

3.2.2 Layered Sharding Formation

1) Strategy Design. At the beginning of Pyramid, the blockchain founders can

decide a layered sharding strategy indicating the number of i-shards and b-shards

and which i-shards each b-shard bridges. Then, the strategy can be written into the

code as one of genesis parameters (such as block size). The strategy can be decided

empirically or based on an layered sharding optimization framework as discussed in

subsection 3.3.2.

2) Randomness Generation. In each epoch, sim a global randomness will be first

generated via a public-verifiable, bias-resistant, unpredictable and available random-

ness generation method [82], e.g., the verifiable random function [57], verifable delay

function [8], and trusted execution environment [16], similar to that of other sharding

systems [46, 89]. It can be considered as a separated module in a sharding system

and is orthogonal with our work, thus we do not discuss in detail.

3) Participation. To join the epoch, each node is required to solve a PoW puzzle

to protect against Sybil attacks. The puzzle is generated based on the node’s public

key and the epoch randomness. After solving the puzzle successfully, the node needs

to append its solution into an identity blockchain to register its identity. The identity

blockchain is a PoW-based blockchain used to record identities of nodes, the same as

the identity blockchain in [45, 46, 89].

4) Assignment. Each admitted node is assigned to an i-shard or b-shard randomly

16

3.2. Architecture

Merkle Root

Parent Hash A

Parent Hash B

Header

Tx list (A → B)

State list (A)

Tx list (B → A)

State list (B)

Body

Figure 3.4: Illustration for a cross-shard block for i-shard A and B.

based on the identity of the node and the epoch randomness. Note that the results

of assignment for all nodes in the epoch are public and they can be computed based

on the randomness in the epoch and the identity chain.

3.2.3 Cross-shard Block Design

In Pyramid, each shard has a blockchain at least. The nodes in each i-shard store

one blockchain. For each b-shard, besides its own blockchain, the nodes store multiple

blockchains, the number of which equals the number of its related i-shards. Since the

nodes in a b-shard stores the state of the related i-shards, they can verify the cross-

shard transactions, pack them into a new type of block called cross-shard blocks, the

structure of which is described as follows.

Each cross-shard block is related to multiple i-shards. It is composed of a header and

a body. The header includes the hashes of parent blocks in the related i-shards and

the Merkle tree root of the body. The body includes transactions and states involving

the related shards. Fig. 3.4 illustrates a cross-shard block related to i-shard A and B.

The body includes the cross-shard transactions from i-shard A to B and vice versa,

denoted by Tx list (A→ B) and Tx list (B→ A), and the states of accounts in i-shard

17

Chapter 3. Pyramid: A Layered Sharding Blockchain System

A and B, denoted by State list (A) and State list (B). Besides, although a cross-shard

block includes the state of multiple shard, to save space, after a cross-shard block is

committed, each i-shard can only store part of the block. For example, the nodes in

i-shard A can only store the Merkle root of State list (B) rather than the raw data.

3.2.4 Cooperative Cross-shard Consensus

For each consensus round, a leader is first randomly elected from each shard based

on the randomness of the epoch. The leader of an i-shard can pack the internal

transactions and propose a new block called internal block. The internal block can

then be committed via a BFT protocol (such as PBFT) similar to the intra-shard

consensus in the traditional sharding. In comparison, the leader of a b-shard can pack

cross-shard transactions and propose a new cross-shard block that is associated with

the state of multiple i-shards. If the block is directly committed via a BFT protocol

by the nodes in the b-shard and transferred to the associated i-shards, the block

may be conflict with the other blocks committed in associated shards in the same

consensus round. Therefore, we design a new consensus to commit the cross-shard

blocks with conflict detection named cooperative cross-shard consensus as follows.

Fig. 3.5 illustrates an example of committing a cross-shard block proposed by the

leader in the b-shard involving two i-shards. The normal procedure includes three

phases:

1) Block Pre-prepare. In this round, the leader of the b-shard first picks, validates

and executes the cross-shard transactions. Then, it can propose a new cross-shard

block related to i-shards A and B as shown in Fig. 3.4. To protect against invalid

cross-shard blocks proposed by a malicious leader, the nodes in the b-shard validate

the block and sign if it is valid. A cross-shard block with the signatures of two-

third super-majority of nodes attests that the b-shard agrees on it under a Byzantine

environment. The signatures can be generated by collective signing protocol in which

18

3.2. Architecture

i-shard A

b-shard C

Header

Hash

Accept

C
o
lle

c
ti
v
e

S
ig

n
a
tu

re

i-shard B

Header

Hash

Commit

C
o
lle

c
ti
v
e

S
ig

n
a

tu
re

Body

Header

C
o
lle

c
ti
v
e

S
ig

n
a

tu
re

Cross-shard Block Message Accept Message Commit

PreparePre-prepare Commit

Figure 3.5: Illustration for cooperative cross-shard consensus.

a decentralized group of nodes can co-sign a multisignature, such as CoSi [76], a

scalable protocol that can efficiently scale to thousands of nodes, and Boneh-Lynn-

Shacham (BLS) [9] collective proof.

To notify the associated shards for conflict detection, the cross-shard block with the

collective proof of the b-shard will be then sent to the associated i-shards, i.e., i-shard

A and B.

2) Block Prepare. After receiving the cross-shard block with the collective proof

from the b-shard, the nodes in each i-shard can verify the collective signature of the

b-shard based on public keys recorded in the identity blockchain. Then, each related

i-shard can collective sign the block to denote receiving the block. In particular,

the i-shard sends a message of Accept, including the hash of header and a collective

signature back to the b-shard. Besides, the i-shard can send a message of Reject when

there is conflict among blocks, which will be described in subsection 3.2.5.

3) Block Commit. After the pre-prepare phase, the nodes in the b-shard initialize a

counter with the number of its related i-shards. When a node in the b-shard receives

a valid message of Accept from an associated i-shard, it will decrease its local counter

and broadcast the message to other nodes in the b-shard. When the counter equals to

19

Chapter 3. Pyramid: A Layered Sharding Blockchain System

0, the nodes in the b-shard can ensure that the cross-shard block can be committed in

this round. As in PBFT, block prepare phase is insufficient to ensure that the block

will be committed [45], thus an additional collective signing is needed to guarantee

that the cross-shard block will be committed and a message of Commit including the

hash of header and a collective signature will be sent to the related i-shards.

By default, in the consensus, the inter-shard messages (e.g., cross-shard blocks and

messages of Accept, Reject, and Commit) are forwarded to their destination shards

by the leaders. To improve the success rate and reduce the safe threshold for network

interceptions (which will be discussed in subsection 3.3.1), the honest nodes and some

trusted infrastructure can also help to relay the inter-shard messages.

3.2.5 Conflicting Detection

In subsection 3.2.4, the cross-shard block occupies the consensus round of the b-shard

and its related i-shards. However, the related i-shards may be in the consensus for

their own blocks. Thus, the conflicts are needed to be detected and resolved.

We first define the block conflicts. An intuitive idea is to define that the blocks

involving the same accounts are conflicting. However, such a coarse-grained definition

can result in frequent abort due to high conflict ratio. Thus, motivated by the idea

of commutativity in [66], we propose a fine-grained definition below.

Definition 1. If two blocks commute, i.e., both of them are valid in any order and

the final state of shards does not depend on their order, they are not conflict and can

be processed in the same round.

For example, as shown in Fig. 3.6(a), although the cross-shard block X and the

internal block Y involve the same accounts, i.e., acc2, they are not conflicting since

either of their relative orderings will increase the balance of acc2 by 30. In comparison,

in the case of Fig. 3.6(b), the two blocks are conflicting since the balance of acc2 is

20

3.2. Architecture

50acc2 acc3

50acc2 acc3

50acc2 acc1

80acc1 acc2

Cross-shard block X Internal block Y
A’s state

acc1

acc2

100

50

B’s state

acc3

acc4

90

80

Account
Balance

(a) Non-conflicting case

(b) Conflicting case

Figure 3.6: Illustration for the non-conflicting blocks and the conflicting blocks.

50 and only one block is valid.

Next, in the prepare phase, based on the transaction list in the received blocks, each

i-shard can identify the conflicting blocks. Based on the randomness of the epoch,

each i-shard accepts one from all conflicting blocks randomly and rejects the other

blocks. Thus, among all conflicting blocks, only one block has message Accept and

the other blocks only have message Reject, which prevents the conflicting blocks from

being committed and commits the non-conflicting blocks at the same round.

3.2.6 Relay Mechanism

In subsection 3.2.4, each b-shard can propose cross-shard blocks related to at most

its related i-shards. It raises the problem that in order to process all cross-shard

transactions, every possible b-shard should exist. However, it is impossible to realize

because the number of shards in the blockchain system is limited. Thus, we are going

to combine another cross-shard mechanism named relay mechanism originating in

[83] with Pyramid. Its main idea is to divide a cross-shard transaction into several

sub transactions. Each sub transaction involves one i-shard or multiple i-shards which

have the corresponding b-shard, which can solve the problem.

We take some minor modifications compatible with the consensus in subsection 3.2.4

21

Chapter 3. Pyramid: A Layered Sharding Blockchain System

as follows.

First, each node in a shard is a light node for the other shards. In other words, after

a block is committed successfully, both its header and the collective signature will be

broadcast to the system and stored in all nodes.

Second, the body includes an additional list named outbound transaction list. The

list consists of transactions whose senders belong to the related i-shard of the body

but receivers do not belong to any related i-shards of the block. For example, the

outbound transaction list of the block of Fig. 3.4 can include transaction whose

senders are in i-shard A and receivers are in any i-shard except i-shard A and B.

For the transactions in the outbound transaction list, they are partially validated. In

other words, the state of the sender is validated, i.e., the sender has sufficient money,

while the state update of the receiver, i.e., the receiver receives proper money, is

left to be validated. Although they are not completely committed in this round, the

leader or any other nodes can send them and their corresponding Merkle tree path

to the next step i-shards or b-shards. Then, in the following consensus rounds, other

leaders in i-shards or b-shards can use the Merkle tree path and the block header as

a proof to continue the verification for these transactions.

3.2.7 General Case

The above design only discuss the case of payments between two accounts, i.e., trans-

actions with single step. However, the multi-step transactions, i.e., transactions in-

volving many interactions among accounts, are common in current systems, which

will be discussed in detail in section 3.3.2. In particular, a multi-step transaction is

a sequence of interactions among accounts. Each interaction involves two accounts

and can be the money transfer, creation and function-call of smart contracts, etc

[87]. The multi-step transaction can be a cross-shard transaction involving several

i-shards and be committed by the b-shard bridging these related i-shards using the

22

3.2. Architecture

above cooperative cross-shard consensus and relay mechanism.

Next, we discuss the transaction processing in a more general layered sharding system

with five shards, i.e., i-shard A, i-shard B, i-shard C, b-shard D bridging A and B,

and b-shard E bridging A, B and C. If there is a transaction involving three accounts

in A, B, and C in sequence, respectively. The transaction can be processed in three

ways as follows. First, it can be processed by A, B, and C in sequence via the relay

mechanism. Second, it can be processed by D and C in sequence via the combination

of cross-shard consensus and relay mechanism. Third, it can be processed by E via

the cooperative cross-shard consensus. The first one needs three consensus rounds at

least, the second one needs two and the third one needs only one.

3.2.8 Extension to UTXO model

In this section, we extend Pyramid to a UTXO model which is widely adopted by

blockchains for cryptocurrencies such as Bitcoin [61] and Litecoin [67].

In a sharding system for the account/balance model, each shard stores a proportion

of accounts and their balances (see subsection 3.1.3.) In comparison, in a sharding

system for the UTXO model [46, 89, 16], each shard stores a set of transactions,

especially the unspent transactions. For a new transaction, if its inputs are distributed

in multiple shards, it is a cross-shard one. We refer to these shards as its input shards.

For the cross-shard block structure in the UTXO model, because the transactions are

not in the form of sender and receiver, the body of a cross-shard block includes the

cross-shard transactions whose input shards are its related shards. For example, the

block shown in Fig. 3.4 includes the cross-shard transactions whose input shards are

i-shard A or B.

The cross-shard cooperative consensus runs as follows. In a system shown in Fig. 3.3,

assume that there are two unspent transactions stored in i-shard A and B, respectively.

23

Chapter 3. Pyramid: A Layered Sharding Blockchain System

For a cross-shard transaction including these two transactions as inputs, b-shard C

validates the transaction, packs it into a cross-shard block, and commits it with the

cooperation of i-shard A and B, which is the same as the procedure in subsection 3.2.4.

Moreover, to avoid double-spending, each output of the transaction is stored in either

i-shard A or B. Thus, in the block, each transaction needs to assign an indicator for

each output to denote the responsible i-shard.

The relay mechanism in subsection 3.2.6 is designed for the account/balance model.

To transplant it to the UTXO model, we can include the transactions, whose input

shards do not all belong to the b-shard, in the outbound transaction list. Besides, we

can also use transfer mechanism originating in [89] which is designed for the UTXO

model. To apply it in the layered sharding, we need some minor and compatible

modification as follows. First, similar to the relay mechanism, each node should be

a light node for all shards. Second, for each cross-shard transaction, one of its input

shards is chosen as main input shard and the others are sub input shards. The main

input shard can be the shard storing the most number of inputs for the transaction

or a random shard. Third, each sub input shard transfers its stored inputs to the

main shard by committing an internal transaction to represent the ownership transfer

and then notifies the main input shard by sending the inputs and the corresponding

Merkle tree path to the nodes in the main input shard. Finally, after the input

transfer is completed, the main shard can commit the transaction using the consensus

in subsection 3.2.4 since it stores all inputs for the transaction.

3.3 Analysis

3.3.1 Security Analysis

Similar to other blockchain sharding works [46, 89, 16, 3], the security of our layered

protocol includes safety and liveness which are defined and proved as follows.

24

3.3. Analysis

Definition 2. The safety denotes the honest nodes agree on the same valid block in

each round and the liveness denotes the finality for every block, i.e., the block in each

round will eventually be committed or aborted.

Theorem 1. The cooperative cross-shard consensus achieves safety if there are no

more than v < 1
3
fraction of malicious nodes in each shard.

Proof. Given no more than v < 1
3
malicious nodes in each shard, the intra-shard con-

sensus can guarantee the cross-shard block proposed by the b-shard is valid. Then,

a message along with a collective signature is honest because honest nodes are the

super-majority, i.e., more than two-thirds, of the shard. Meanwhile, the message

cannot be modified and forged because the collective signature can be used to de-

tect forgery and tampering. Therefore, the communication among shards can safely

proceed if there are no more than v < 1
3
fraction of malicious nodes in the involved

shards, which can guarantee that all related shards can receive the valid cross-shard

block. The prepare phase and commit phase in the consensus similar to the two-

phase commit protocol in other distributed systems [2, 16]. The prepare phase aims

to reach the tentative agreement of commitment for cross-shard transactions and the

commit phase aims to perform the actual commit of the transactions among the re-

lated shards. Thus, honest nodes in all related shards including i-shards and b-shards

agree on the same valid cross-shard block in each round, i.e., the consensus achieves

safety.

Theorem 2. The cooperative cross-shard consensus achieves liveness if there are no

more than v < 1
3
fraction of malicious nodes in each shard.

Proof. According to the system model in subsection 3.1.1, because the nodes are

connected by a partially synchronous network and each shard has no more than v < 1
3

malicious nodes, the BFT protocol adopted as the intra-shard consensus of each shard

can achieve liveness. According to Theorem 1, each shard agrees on the same block

in each round. Therefore, no malicious nodes can block the consensus indefinitely

25

Chapter 3. Pyramid: A Layered Sharding Blockchain System

and each block will be eventually be committed or aborted, i.e., the protocol achieves

liveness.

Discussion of other attacks. Eclipse attack is an attack to blockchain network

and prevents a victim’s node from communicating with other honest participants

of the network. The attack is difficult to launch, but definitely not impossible. It

will break our threat model given in subsection 3.1.1. Specifically, the cooperative

cross-shard consensus can be interrupted when the malicious nodes intercept the inter-

shard messages. In the following, we discuss two possible outcomes of the malicious

interception. First, if cross-shard blocks in the pre-prepare phase or messages of

Accept and Reject in the prepare phase are intercepted, the consensus in this round

will not get to the commit phase; thus, only the round is wasted, and the safety and

liveness will not be compromised. Second, if messages of Commit in the commit phase

are intercepted, the blocks will not be committed in the shards that do not receive the

messages. Although these shards can roll back their state and recommit the blocks

after receiving the messages for safety, the system’s throughput is affected. To raise

the bar for eclipse attackers, we can adopt some countermeasures proposed in [34] for

the network of Pyramid. For example, each node in a shard connects a random set

of nodes in the other shards. Moreover, we can deploy redundant infrastructure or

trusted third parties to help inter-shard communication.

3.3.2 Performance Analysis

In this section, we theoretically analyze the performance of layered sharding and

design an optimization framework for layered sharding strategy according to the

characteristics of blockchain sharding (e.g., transaction demand, node resource and

security).

26

3.3. Analysis

1 3 5 7 9 11 13 15 17 19
Number of steps

0

10

20

Pe
rc

en
ta

ge
 (%

)

(a) Transaction distribution

1 3 5 7 9 11 13 15 17 19
Number of frames

0

10

20

Pe
rc

en
ta

ge
 (%

)

(b) Frame distribution for 8 shards

Figure 3.7: Illustration for transaction distribution and frame distribution in

Ethereum from Aug. to Sep. 2021.

Transaction Model

We define transaction distribution for a blockchain system as the distribution of trans-

actions with different steps α = {α1, α2, · · · , αA} in which a step is the interaction

between two accounts (e.g., transfer, function call, and contract creation), αk is the

percentage of transactions involving k steps, and A is the largest possible number

of steps involving by a transaction. The transaction distribution α can be collected

from a real blockchain system such as Ethereum. For example, Fig. 3.7(a) illustrates

the transaction distribution in Ethereum from Aug. to Sep. 2021 (about 10 millions

transactions for smart contracts) based on a dataset provided by XBlock [97].

For each transaction, we define a frame as a sequence of steps involving accounts in

the same shard. In particular, a frame can be committed by an i-shard or b-shard

in a consensus round. Next, given the shard number S, the transaction distribution

α can be converted into another frame distribution β = {β1, β2, · · · , βB} in which β1

is the percentage of internal transactions, βs is the percentage of cross-shard trans-

actions with s frames, and B is the largest possible number of frames involving by

a transaction. The distribution β can be calculated based on the following theorem.

The basic idea of the theorem is that according to the definition of frames, each step

that involves two accounts from the same shard can be deleted when computing the

27

Chapter 3. Pyramid: A Layered Sharding Blockchain System

number of frames for a transaction.

Theorem 3. For a sharding system with S shards, according to the transaction dis-

tribution α, the distribution of transactions with s frames can be calculated by

βs =
A∑

k=1

αk

(
k

k + 1− s

)
(S − 1)s−1

Sk
. (3.1)

Proof. In a sharding system with S shards, for a transaction involving k steps, where

1 ≤ k ≤ A, it includes k + 1 accounts (including duplicate ones) that are distributed

to S shards uniformly and randomly. To calculate the probability that the number

of frames for the transaction is exactly s, we need two following steps. First, we need

to pick k + 1 − s account from all accounts except the first one. For each of these

accounts, its related shard is the same as the related shard of its previous account,

thus the step including it and its previous account can be deleted. Second, to satisfy

that there are s frames, the first frame can belong to S possible shards. Because

two consecutive frames should belong to different shards, the remaining frames can

belong to S − 1 possible shards. Thus, the probability that a transaction involving k

steps has s frames can be computed as

Pr(X = s) =

(
k

k + 1− s

)
S(S − 1)s−1

Sk+1
=

(
k

k + 1− s

)
(S − 1)s−1

Sk
. (3.2)

Based on Eq. (3.2) and the distribution of transactions involving different number of

accounts α, we can get Eq. (3.1).

The most intuitive result shown by the theorem is that when there are more trans-

actions with many steps, the proportion of transactions with many frames increases.

Fig. 3.7(b) illustrates the frame distribution for a sharding system with 8 shards

which is derived from the transaction distribution in Fig. 3.7(a). We emphasize that

the above calculation is an approximated method because the duplicate accounts

28

3.3. Analysis

in a transaction are not considered. Besides, the frame distribution β can also be

calculated via a simple sampling simulation from the transaction distribution.

Node Model

In Pyramid, there are N nodes, each of which has different hardware capacity of

computation, communication and storage. It determines the maximum layer a node

can be located in. It is because, as discussed in section 3.2, the nodes in a b-shard

are required to store and verify the state and transactions of the related i-shards.

Thus, to prevent the throughput of b-shards from significantly degrading, a b-shard

bridging more i-shards requires a higher hardware capacity of nodes.

To determine the maximum number of nodes in different b-shards, we define the

hardware capacity of node i as hi which indicates the bottleneck among the compu-

tation, communication and storage of node i. To compute the hardware capacity, we

first define a hardware requirement for the nodes in i-shard as H1, such as 10 GB for

storage, 1 MBit/s bandwidth, and 2.40 GHZ CPU. Most of blockchain systems have

such a hardware requirement1. Then, the hardware requirement for b-shards bridging

two i-shards will be defined as a higher value H2, and so forth for the remainder of the

b-shards. The requirement for b-shards bridging most i-shards is HL. The hardware

capacity of a node can be set as the highest hardware requirement of shards it meets.

Finally, we can get the maximum nodes able to be in b-shards bridging i i-shards as

Ni. Besides, we assume that all nodes are able to be located in i-shards thus N1 = N .

We define a node distribution as N = {N1, N2, · · · , NL}

Consensus Model

We model the consensus in the layered sharding based on [52] which models several

BFT consensus protocols including PBFT, Zyzzyva, and Quorum in a non-sharding

1https://ethereum.org/en/developers/docs/nodes-and-clients/#requirements

29

Chapter 3. Pyramid: A Layered Sharding Blockchain System

blockchain. In the layered sharding, the transaction throughput of each shard depends

on two key parameters, i.e., block size K and block interval T , as follows.

The first one is the number of bytes can be contained in a block, which determines the

number of transactions in a block. Moreover, we define the average size of transactions

as χ. Note that transactions with different number of steps have the same size. It

is because except the first step, the other steps is internal, which means they result

from the execution and are not stored in the blockchain [12].

The second one is the average time required for a shard to commit a new block,

which is mainly composed of the consensus latency. As discussed in subsection 3.2.4,

the consensus of layered sharding is composed of three phases of collective signing.

Each one includes two round-trips, i.e., one for data distribution and the other for

signature aggregation, over the communication tree between the leader and the other

nodes, such as [76]. Thus, the consensus latency depends on the practical network

environment, e.g., the number of nodes in a shard, the propagation method in the

network, and the rate of generating and verifying signatures for each node.

Security Model

According to subsection 3.3.1, a layered sharding system is secure when there are no

more than v < 1
3
fraction of malicious nodes in every shard. Thus, we can model the

probability for forming an unsafe layered sharding system as follows.

We first define X as a random variable serving as the number of malicious nodes

assigned to a shard. n = N/S indicates the number of nodes in each shard. Once the

number of malicious nodes in a shard exceed n/3, the shard can be deem to be unsafe.

Finally, based on cumulative binomial distribution function [89], the probability for

forming an unsafe shard can be approximated as

30

3.3. Analysis

P [X ≥ ⌈n/3⌉] =
n∑

x=⌈n/3⌉

(
n

x

)
fx(1− f)n−x. (3.3)

Next, to bound the failure probability of the whole system, we calculate the union

bound over S shards. Besides, we adopt a security parameter λ to limit the proba-

bility. Therefore, a system can be regarded as safe enough if

SP [X ≥ ⌈n/3⌉] < 2−λ. (3.4)

A higher λ can guarantee a safer layered sharding system. For instance, let λ = 4,

then the system is secure if the probability is less than 2−4. Besides, the cumulative

hypergeometric distribution-based method for calculating the failure probability [89]

is also applicable.

Problem Formulation

A sharding strategy inPyramid is defined as a layer distribution d = {d1, d2, · · · , dL},

where d1 denotes the number of i-shards, other di denotes the number of b-shards

bridging i shards and
∑

1≤i≤L di = S. According to subsection 3.2.4, a b-shard in

di can process cross-shard transactions involving i shards at most. Furthermore, for

a cross-shard transaction involving more than i shards, the b-shard can process its

i frames at most using the relay mechanism. Therefore, the maximum transaction

throughput of a layered sharding system can be computed as

TPSlayer =
⌊K/χ⌋

T
(d1(β1 +

β2

2
+ · · ·+ βB

B︸ ︷︷ ︸
(1)

)

+
∑

2≤i≤L

di(
B∑
s=1

βs(
i

S
)s−1

︸ ︷︷ ︸
(2)

+
B∑
s=2

βs

s−1∑
j=1

j

s
(
i

S
)j−1S − i

S
)︸ ︷︷ ︸

(3)

),
(3.5)

in which (1) considers the transactions to be processed by the i-shards and (2) and (3)

consider the transactions to be processed by the b-shards. i
S
denotes the probability

31

Chapter 3. Pyramid: A Layered Sharding Blockchain System

that the related shard of a frame in the transaction is included in the b-shard in di.

(2) is for the transactions that can be committed in one round and (3) is for the

transactions whose j frames can be committed in one round.

In addition, for traditional sharding, each cross-shard transaction related to k shards

needs to be divided into k sub-transactions at least. Thus, the maximum transac-

tion throughput of a traditional sharding system with S shards is TPStradition =

S⌊K/χ⌋
T

(β1+
β2

2
+ · · ·+ βB

B
). Suppose there are more cross-shard transactions involving

more shards in the system. In that case, the transaction throughput of traditional

sharding systems shows more serious deterioration than that of the layered sharding,

which means the layered sharding achieves better scalability.

Given the frame distribution β, the node distribution N , and the security parameter

λ, the selection of optimal sharding strategy d can be formulated as follows

max
d

TPSlayer (3.6)

s.t.
∑
l≤i≤L

di ≤
Nl

n
,∀1 ≤ l ≤ L (3.7)

SP [X ≥ ⌈n/3⌉] < 2−λ (3.8)

di ∈ N,∀di ∈ d. (3.9)

The constraint (7) indicates that the sharding strategy cannot exceed the hardware

capacity of nodes in the system. The constraint (8) indicates the strategy should

guarantee that the system is secure. The main difficult in solving the problem is

that it is integer programming problem and the constraints (7) and (8) are not linear

(recall that n = N/S and
∑

1≤i≤L di = S.)

To solve the problem, we first analyze the constraint (8) as follows. Observe that in

most sharding systems with thousands of nodes [46, 89, 38], the shard number S is no

more than 64 in practice, because the security parameter λ is often roughly set as a

big number for high security. Considering that the shard number is a small number,

we can enumerate it. Once the shard number S is given, the problem reduces to a

32

3.4. Evaluation

linear integer programming as follows

max
d

TPSlayer (3.10)

s.t.
∑
l≤i≤L

di ≤
Nl

N
S,∀1 ≤ l ≤ L (3.11)

∑
1≤i≤L

di = S (3.12)

di ∈ N,∀di ∈ d, (3.13)

which can be efficiently solved by well-developed branch-and cut algorithms [36] or

dynamic programming [6].

3.4 Evaluation

3.4.1 Implementation

We implement a prototype of Pyramid in Go [31] based on Ethereum [23]. For the

intra-shard consensus, we adopt a collective signature-based BFT in Harmony [32].

The communication among nodes or shards is based on libp2p [50]. For the scheduler

in the transaction pool, each shard first processes the pending transactions with the

oldest creation time and most related shards. We adopt LINGO 19.0 for the linear

integer programming in the optimization framework for layered sharding. Besides, we

also implement two prototypes of traditional sharding. For a fair comparison, they

also adopts the BFT consensus adopted by Pyramid as their underlying consensus.

The difference between these two prototypes is the cross-shard transaction processing.

The first one uses the relay mechanism in Monoxide [83] and the second one uses the

transfer mechanism in RapidChain [89].

33

Chapter 3. Pyramid: A Layered Sharding Blockchain System

5
600

7
800

9
1000

11
1200

13
1400

15
1600

17
1800

20
2000

Shard number (top), node number (bottom)

0

1000

2000

3000

4000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd Rapidchain
Monoxide
Pyramid (low)

Pyramid (medium)
Pyramid (high)

Figure 3.8: Transaction throughput for layered sharding with different shard number

and node distribution.

3.4.2 Experimental Setup

Similar to most running blockchain testbeds, the bandwidth of all connections be-

tween nodes are set to 20 Mbps and the links are with a latency of 100 ms in our

testbed. The testbed is composed of 16 Amazon EC2 machines, each of which is a

c4.2xlarge instance with 8 vCPUs and 15GB RAM. We generate a transaction set

with a step of 3. Besides, based on the data provided by XBlock [96], we generate two

datasets with the average step of 7.48 and 2.93 to simulate Ethereum and Bitcoin,

respectively. The security parameter λ in section 3.3.2 is set as 17, which means the

failure probability needs to smaller than 2−17 ≈ 7.6·10−6, i.e., one failure in about 359

years for one-day epochs. According to section 3.3.2, we adopt a log-normal distri-

bution with σ = 0.5 and µ = 0.7, 1, 1.3 to simulate three different node distributions

N low, Nmedium and N high, respectively. The superscript denotes the level of average

hardware capacity in the distribution. For example, N high has the most nodes able

to be located in b-shards among the three distributions.

34

3.4. Evaluation

5
600

7
800

9
1000

11
1200

13
1400

15
1600

17
1800

20
2000

Shard number (top), node number (bottom)

0

10

20

30

40

50

Co
nf

irm
at

io
n

la
te

nc
y

(s
) Rapidchain

Monoxide
Pyramid (low)

Pyramid (medium)
Pyramid (high)

Figure 3.9: Latency for layered sharding with different shard number and node dis-

tributions.

3.4.3 Transaction Throughput & Latency

Fig. 3.8 shows the transaction throughput in TPS for the traditional sharding and

layered sharding with different shard number and node distribution. We can see that

the layered sharding improves the transaction throughput by 1.5 ∼ 3.2X against the

two traditional sharding prototypes and the improvement is more significant for the

higher level of node distribution since there are more b-shards. Furthermore, the

average value of ∆TPS/∆S in the layered sharding is about 0.99, which means the

TPS scales out as the number of shards including i-shards and b-shards increase. In

conclusion, Pyramid exhibits linear scalability, which is better than the traditional

sharding, and achieves up to 3821 TPS when there are 20 shards. Besides, the

throughput of Rapidchain is slightly lower than that of Monoxide. It is because

in our implementation, Rapidchain needs a sub transaction for each account and

Monoxide needs a sub transaction for each frame.

Fig. 3.9 shows the confirmation latency for the traditional sharding and layered

sharding. The confirmation latency is another performance metric that denotes the

delay between the time that a transaction is issued by a user and the time that the

35

Chapter 3. Pyramid: A Layered Sharding Blockchain System

Rapidchain
Monoxide

Pyramid (
low)

Pyramid (
mediu

m)

Pyramid (
high)

0

1000

2000

3000

4000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

×1.00 ×1.04

×1.73
×2.32

×2.75
TPS

0

10

20

St
or

ag
e

pe
r n

od
e

(G
B)

×1.00 ×1.00
×2.47

×3.24 ×3.41

max average min

Figure 3.10: Trade-off of transaction throughput and storage overhead for layered

sharding with different node distribution.

transaction is committed to the blockchain. For a fair comparison, we adjust the

transaction demand in different numbers of shards to make their latency close. From

the figure, we can see that Pyramid yields a reduction in latency by 59% ∼ 92% in

comparison with the traditional sharding systems. This is because the cooperative

cross-shard consensus in the layered sharding can commit a cross-shard transaction

in less consensus rounds.

3.4.4 Storage Overhead

Fig. 3.10 shows the storage size per node for the traditional sharding and the lay-

ered sharding with different node distribution when there are 17 shards. The results

include the maximum, average and minimum storage size for the nodes after pro-

cessing 10 millions transactions. In the figure, the number above the bars and the

number above the green line denote the increasing times of throughput and average

storage size compared with Rapidchain, respectively. From the figure, we can observe

that although the layered sharding improves the transaction throughput, it requires

more storage for the system. For example, for the medium level of node distribution

Nmedium, it improves the transaction throughput to 2.32 times at the cost of 3.24

36

3.4. Evaluation

0% 2% 4% 6% 8% 10%12%14%16%18%20%
Percentage of malicious node

3500

3750

4000

4250

4500

4750

5000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd TPS

10−31

10−22

10−13

10−4

105

Fa
ilu

re
 p

ro
ba

bi
lit

yThreshold
Failure probability

Figure 3.11: Transaction throughput and failure probability for different malicious

node fraction in a layered sharding system with 17 shards.

times of average storage overhead. Next, the maximum storage size indicates the

storage size of nodes in the b-shards bridging the most number of i-shards. The min-

imum storage size indicates the storage size of nodes in the i-shards or the b-shards

bridging the least number of i-shards. From the figure, we can see that a higher

level of node distribution has a higher throughput, but all the maximum, average

and minimum storage size are increased. However, the storage sacrifice is well worth

the performance improvement due to the following reasons. First, the storage is not

the main bottleneck in most sharding blockchain systems since there are many state-

compaction mechanism such as checkpoint mechanism [46, 5]. Second, as discussed

in section 3.3.2, blockchain nodes can be heterogeneous in practice, which means they

have different storage space. The layered sharding aims to fully utilize the storage of

the blockchain nodes instead of demanding redundant storage.

3.4.5 Security

Fig. 3.11 shows the performance of the layered sharding with different percentage of

malicious nodes. To satisfy the security requirement mentioned in subsection 3.4.2,

the failure probability computed by Eq. (3.4) should be smaller than the threshold

37

Chapter 3. Pyramid: A Layered Sharding Blockchain System

600 800 1000 1200 1400 1600 1800 2000
Node number

0

1000

2000

3000

4000

5000

6000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd real estimated

Figure 3.12: Real and estimated transaction throughput for optimal sharding strategy

with different node number in the same node distribution N high.

2−17, i.e., the green dotted line illustrated in the figure. We can observe that the

layered sharding system is secure when the percentage of malicious nodes is less than

16%. Moreover, when there are more malicious nodes in the system, the performance

is worse. This is because within the secure threshold, although a malicious node

cannot tamper with the data, it may waste a consensus round when it is a leader.

In other words, our consensus in the layered sharding can guarantee that the blocks

proposed by malicious nodes will be detected and aborted.

3.4.6 Sharding Strategy

Fig. 3.12 shows the real and estimated throughput of the global optimal sharding

strategy. Given the transaction distribution, node distribution and security parame-

ter, LINGO can solve the linear integer programming problem and obtain the global

optimal solution in the optimization framework. From the figure, the real throughput

and the estimated one exhibit roughly identical patterns when the number of nodes

increase. However, the real throughput is lower than the estimated one, the reason of

which is twofold. First, due to the constraints of security and resource, some i-shards

38

3.4. Evaluation

Sharding strategy d
0

500
1000
1500
2000
2500
3000
3500

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

average of random strategy
random strategy
optimal strategy

Figure 3.13: Transaction throughput for different sharding strategy in the same node

distribution Nmedium.

do not have the corresponding b-shards. However, Eq. (3.5) computes the through-

put by the probability approach and does not consider the uneven distribution of

the b-shard. Second, the shards in the low layers can become the bottleneck of the

throughput in practice. In other words, for a cross-shard transaction, some of its

frames are quickly committed by the b-shards in the high layers, but the remaining

frames need to queue in the i-shards or b-shards in the low layers.

Moreover, we randomly generate 40 sharding strategies under the same node distribu-

tion Nmedium and security guarantee and their transaction throughput is illustrated

in Fig. 3.13. From the figure, we can see that the transaction throughput of the

optimal strategy is 27%, 118%, and 376% higher than the maximum, average, and

minimum value of these random sharding strategies, respectively.

3.4.7 Workload

We further evaluate the performance of the layered sharding for several workloads with

different proportion of cross-shard transactions and different number of transaction

steps and the results are illustrated in Fig. 3.14 and Fig. 3.15.

39

Chapter 3. Pyramid: A Layered Sharding Blockchain System

1 2 3 4 5 6

Ethereum (7.48)

Bitcoin (2.93)

Number of transaction steps

0

1000

2000

3000

4000

5000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd Rapidchain
Monoxide
Pyramid (low)

Pyramid (medium)
Pyramid (high)

Figure 3.14: Transaction throughput for different number of transaction steps in a

layered sharding system with 17 shards.

As shown in Fig. 3.14, when the transactions have more steps, the throughput of all

sharding systems is reduced. This is because a transaction with more steps may have

more frames after the accounts are sharded according to section 3.3.2. Since the b-

shards in the layered sharding can commit more frames in one consensus round, it has

a better performance than the traditional sharding. For the workload of Ethereum

and Bitcoin, Pyramid improves the throughput by up to 90% and 184% compared

with the traditional sharding, respectively.

As shown in Fig. 3.15, when there are no cross-shard transactions, both the traditional

sharding and Pyramid can process a similar TPS. This is because, in this case,

all transactions are internal transactions that can be committed in one consensus

round in any sharding scheme. Moreover, increasing the percentage of cross-shard

transactions significantly reduces the throughput of traditional sharding but only

slightly decreases or even increases that of Pyramid. This is because the strengths

of b-shards can fully work when meeting cross-shard transactions. When there are

more cross-shard transactions, the throughput improvement brought by the b-shards

in Pyramid compensates for the overhead of cross-shard transactions.

40

3.4. Evaluation

0% 20% 40% 60% 80% 100%
Ratio of cross-shard transactions

0

1000

2000

3000

4000

5000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

Rapidchain
Monoxide
Pyramid (low)

Pyramid (medium)
Pyramid (high)

Figure 3.15: Transaction throughput for different ratio of cross-shard transactions in

a layered sharding system with 17 shards.

41

Chapter 4

Prophet: Conflict-Free Sharding

Blockchain via Byzantine-Tolerant

Deterministic Ordering

The prosperity of blockchain facilitates decentralized applications (dApps), e.g., de-

centralized exchanges [86] and non-fungible token [84]. In Ethereum, the number of

contract calls per day has more than tripled to over 3 million from Jun. to Sep. in

2021 [14]. However, the poor scalability of the existing blockchains, 7 transaction

per seconds (TPS) in Bitcoin [61] and 15-45 TPS in Ethereum [87], cannot satisfy

this growing demand for dApps. This is because their consensus requires all nodes to

validate and execute every transaction, which aggravates the scalability problem and

restricts smart contracts from more users and the dApps with more complex logic.

Sharding is one of the most promising technologies for scalability [82]. It divides

nodes into multiple consensus groups called shards and distributes transactions to

shards to process in parallel. The technology has been paid close attention by the

academia [54, 46, 89, 83, 38, 66, 35, 40, 68]. For the industry, some blockchains are

being or have been upgraded to a sharding architecture, such as Zilliqa [79] and Eth2

42

1 3 5 7 9 111315
Number of inter-

contract calls

0

5

10

15

20

25
Pe

rc
en

ta
ge

 (%
)

(a)

User X C1 C2

Cross-shard transaction 1

C3User Y

❹❶

❷

Cross-shard transaction 2

❸

Call Return

C1

1 2 3

1 2 3

❶

❷

4

4

❸

❹

1 2 3 4

Conflict

(b)

Figure 4.1: (a) Percentage of Ethereum transactions with different number of inter-

contract calls from Oct. 2020 to May. 2021, (b) Illustration for conflicting cross-shard

transactions. Each concentric circle represents a smart contract. Three contracts are

located in three different shards. Each circled number represents the round at which

a sub-transaction is committed.

upgrade in Ethereum [24].

While increasing the throughput in proportion to the number of shards, sharding

technology introduces cross-shard transactions, which are transactions involving the

smart contracts in multiple shards. More seriously, similar to the current software

composed of numerous programs, a dApp often requires the cooperation of several

contracts, significantly increasing the number and complexity of cross-shard transac-

tions. As shown in Figure 4.1(a), more than 70% of Ethereum [87] transactions for

smart contracts include more than 2 inter-contract calls and the average number is

8.94. After introducing sharding, the contracts are located in different shards thus

the inter-contract calls result in massive cross-shard transactions. To guarantee the

atomicity and consistency of cross-shard transactions, each sharding system needs

a cross-shard mechanism. The mechanism divides each cross-shard transaction into

several sub-transactions, each of which corresponds to a shard, and commits each

sub-transaction to the corresponding shard.

43

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

Unfortunately, we observe that the existing cross-shard mechanisms perform well be-

low expectations in practice. As evaluated in section 4.6, an existing blockchain with

32 shards performs even worse than a non-sharding one when meeting the Ethereum

transactions. It upends our usual understanding on sharding and drives us to re-

consider the technology of sharding. This poor performance results from inherent

conflicts among cross-shard transactions and the independent and random scheduling

for cross-shard transactions in different shards. In particular, multiple cross-shard

transactions may access the state of the same smart contract (e.g., Cxn.1 1 and 2

access Contract C1 in Figure 4.1(b)). Although Cxn. 1 is issued first, the state of

C1 can be modified by Cxn. 2 before Cxn. 1 is committed. The existing sharding

systems mainly adopt two-phase locking (2PL) (e.g., [46, 16, 2]) or optimistic concur-

rency control (OCC) (e.g., [83, 38]) to avoid conflict and guarantee serializability of

transactions. However, as evaluated in section 4.6, more than 50% of transactions are

aborted or rolled back due to race conditions, because real smart contract workloads

contain frequent read-write conflicts. Therefore, both 2PL and OCC exhibit high

abort rates and strongly limit the performance of blockchain sharding.

To eliminate the high abort rates caused by non-deterministic race conditions, an

intuitive idea is to introduce a predetermined serial global order for pending transac-

tions before processing them. The idea is inspired by distributed and deterministic

database with a sequencing layer, which collects all database transactions for pro-

ducing a global order before database execution [80, 53, 51, 26, 1]. However, the

sequencing layer in distributed databases is designed with a strict assumption that

the layer contains trusted machines for storing the whole database state, which is far

from trivial for the blockchain. Due to the intertwining of the information isolation

among shards (i.e., each node only stores a proportion of contracts) and Byzantine

environment (i.e., blockchain nodes do not trust each other), there are no trusted

1In this paper, for simplification, we use Cxn. to denote cross-shard transaction, Txn. to denote

single-shard transaction, and Blk. to denote block.

44

nodes to predetermine such an order for transactions involving the state of different

shards.

Therefore, we propose Prophet, a conflict-free sharding blockchain, based on a new

idea named Byzantine-tolerant deterministic ordering. Specifically, to overcome the

challenge of information isolation, the nodes from different shards are allowed to

form self-organizing coalitions to pre-execute pending transactions, including single-

shard and cross-shard ones, for prerequisite information about ordering. Then, a

random shard is delegated to sequence the pre-executed transactions for a global order

based on prerequisite information. To deal with Byzantine failures in blockchain,

a shard-cooperation proof sharing is proposed to verify and correct untrusted pre-

execution results without interruption of consensus. With such an order, transactions

in different shards can be executed and committed orderly without conflicts. The new

architecture will not break any decentralization principle of blockchain.

The contributions of this work are summarized as follows.

• We propose an idea of Byzantine-tolerant deterministic ordering and develop a

conflict-free sharding blockchain named Prophet, minimizing the number of

transaction aborts caused by non-deterministic contract contention.

• On top of the shards, Prophet introduces two new types of parties, i.e., se-

quence shard and reconnaissance coalition, with a little additional overhead and

designs a new cooperative consensus for a global order based on the cooperation

and joint supervision among shards.

• Based on the characteristics of smart contracts, such as inter-contract calls

and contract instructions, we present the designs of fine-grained ordering, asyn-

chronous correction, and parallel pre-execution for efficiency.

• We develop a prototype for Prophet and conduct a comprehensive evaluation.

Prophet improves the throughput by 3.11× (i.e., 1203 TPS) on 1 millions

45

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

Cross-shard transaction profile

Prophet

Shard 1

Shard 2

Global order for transactions

Shard 1

Shard 2

Blk. for Shard 1

Blk. for Shard 2

Cxn. 2

Cxn. 3

Txn. 4

Txn. 1

Cxn. 2

Cxn. 3

Txn. 1

Cxn. 2 Cxn. 3

Txn. 4

Txn.1Txn.1Cxn. 2

• Cross-shard message

e.g. C1 call C2 (function,

parameters, returns)

Txn. 1 Txn. 4 Cxn. 2 Cxn. 3

Figure 4.2: An ideal cross-shard mechanism for sharding.

Ethereum transactions compared with state-of-the-art sharding systems.

4.1 Strawman: An Ideal Cross-Shard Mechanism

We first describe an ideal cross-shard mechanism that ignores the decentralized and

Byzantine environment of blockchain. It motivates the main design of Prophet in

section 4.2. This mechanism guarantees that no transactions are aborted.

As shown in Figure 4.2, the mechanism introduces a new node called prophet. As-

sume that the prophet is fully trusted and has infinite computing power and storage

capacity. For each consensus round, it first validates and executes transactions se-

quentially for a global order of the transactions, such as 1423 in the figure. Next,

according to the global order, the prophet generates a serial order for each shard’s

block. Specifically, for a single-shard transaction, since it only reads or writes the

state of contracts in a shard, its execution only depends on the latest executed trans-

action in the shard. For a cross-shard transaction, it involves the state of multiple

shards, thus its execution depends on several transactions from different shards. For

example, in Figure 4.2, Cxn. 2 executes following Txn. 1 and Txn. 4. After valida-

tion and execution, the blocks generated by the prophet correspond to a global order

which shows the data dependency of all transactions in this round.

46

4.2. Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding

Moreover, the prophet can record some meta information required for the execution of

each cross-shard transaction in each shard, called cross-shard transaction profile. The

profile includes all cross-shard inter-contract calls and their parameters and returns,

called cross-shard message. The profile enables each shard to execute transactions

without communicating with the other shards during execution.

Finally, the prophet sends the serial order and the profile to the corresponding shard

with a signature. The shards only need to replicate and execute transactions one after

the other based on their received serial orders. All transactions can be committed

without any conflicts according to the global order.

Although the mechanism eliminates transaction aborts and requires minimal coordi-

nation among shards, the assumption of such a special node is too ideal. In particular,

a fully trusted node violates the decentralized inherence of public blockchain and it

has to locally maintain the whole state for all shards to pre-execute transactions.

Thus, it raises a question about how to implement such a prophet in the decentral-

ized and Byzantine environment of blockchain sharding. In the following, we present

Prophet, which achieves a similar effect through the cooperation and supervision

among shards in a distributed manner and without any trusted third party.

4.2 Byzantine-Tolerant Deterministic Ordering for

Blockchain Sharding

4.2.1 System Model & Threat Model

Similar to the existing blockchain sharding [54, 46, 89, 38], Prophet proceeds in

epochs, each of which includes multiple rounds. It consists of a set of nodes following

the Byzantine failure model which includes two kinds of nodes, i.e., honest and ma-

licious. The honest nodes abide by all protocols. The malicious nodes are controlled

47

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

Txn.1Txn.1

Shard 1

Shard 2

Sequence Shard
(Shard 1)

(b) Sequence

Proof for Shard 1

Proof for Shard 2

(c) Execution

Reconnaissance Coalitions

(a) Pre-execution (d) Correction

Blk. for Shard 1

Cxn. 2

Cxn. 3

Txn. 4

Honest
Malicious

Blk. for Shard 2

Txn. 1

Cxn. 2

Cxn. 3

True

False

True

True

True

True

Blk. for Shard 1

Cxn. 2

Cxn. 3

Txn. 4

Blk. for Shard 2

Txn. 1

Cxn. 2

Cxn. 3
Transaction profile

Cxn.2 • Cross-shard message
e.g., C2 call C3 (function,
parameters, returns)
• Read/Write sets
e.g., R: (C1, C2) W: C3

C1

C2 C3

Shard 1 Shard 2

Fail

Success
MaliciousN1

N2
N3

Figure 4.3: The architecture of Prophet.

by a Byzantine adversary and may collide with each other and violate the protocols

in arbitrary manners, e.g., denial of service, tampering, and forgery. All nodes are

randomly divided into multiple shards. The nodes in each shard store a proportion of

contracts and verify and execute the transactions involving the stored contracts. Be-

sides, each lightweight client only stores its accounts and do not store any contracts.

Since the world state of current blockchain is huge (e.g., total size in Ethereum is

currently more than 130 GB and keeps increasing [72]), in Prophet, neither a node

or a client can store the state of all contracts.

4.2.2 Motivation & Overview

We start with the problems that the strawman in section 4.1 highlights and build up

our design step by step.

According to section 4.1, the function of the prophet includes two tasks, i.e., pre-

execution and ordering for pending transactions. Specifically, the pre-execution task

requires the storing of the blockchain state, while the ordering task does not require

it. It is because the pre-execution needs to output the prerequisite information about

ordering (i.e., read/write sets and cross-shard messages) by executing transactions

based on the blockchain state. In comparison, the ordering is based on the prereq-

uisite information provided by the pre-execution and does not need to execute any

transaction or store any contract; thus, it is stateless.

48

4.2. Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding

Based on their characteristics (i.e., requirements and workload), we delegate these

two tasks to different parties as follows. First, since any node cannot store the

state of all contracts (as discussed in subsection 4.2.1), to pre-execute all possible

transactions, we introduce a new type of parties named reconnaissance coalitions in

which nodes from different shards cooperate with each other to pre-execute pending

transactions (see subsection 4.2.3). Nodes can freely form or dissolve reconnaissance

coalitions, which are off-chain. Prophet distributes a proportion of transaction fees

to reconnaissance coalitions with successfully committed pre-executed transactions.

(A more detailed analysis of incentives in reconnaissance coalitions will be left as our

future work.) Second, the task of ordering is stateless and does not need intensive

computation; thus, any node or shard can do it. For security, we let every shard

take on the ordering task in turn, and we call the shard responsible sequence shard

(see subsection 4.2.4). The sequence shard will be updated in each epoch for load

balancing. With the help of these new parties, Prophet proceeds in four phases,

i.e., pre-execution, sequence, execution, and correction, for each round.

4.2.3 Phase 1: Pre-execution

During this phase, each reconnaissance coalition selects a disjoint set of pending

transactions with some specific range of transaction hash and executes them one

by one. In each reconnaissance coalition, if a node meets an inter-contract call to

a contract located in another shard when pre-executing a transaction, it turns to

the other nodes in the same reconnaissance coalition. For example, in Figure 4.3,

when pre-executing Cxn. 2, since Contract C3 belongs to Shard 2, Node N1 needs to

send the function call and parameters to and get the returns from Node N2. Thus,

each reconnaissance coalition can be regarded as an individual able to execute the

single-shard or cross-shard transactions for its related shards.

In particular, each transaction reads from the current state of the blockchain, executes

49

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

its logic, and keeps the writes in a local write set. Since the change of each transaction

is kept in local write set, the state read by each transaction is always the same. For

each transaction, the reconnaissance coalition records its read/write set and its cross-

shard messages during execution. To clarify our basic idea, we define the read/write

set of a transaction as the addresses of smart contracts, which will be extended to a

fine-grained one in subsection 4.3.2. Moreover, the serial execution will be extended to

a more efficient one in subsection 4.3.4. The cross-shard message about a cross-shard

inter-contract call includes its function name, parameters and return.

We emphasize that there is no guarantee that all reconnaissance coalitions are honest

because their formation is free and cannot guarantee that all nodes in a reconnaissance

coalition are honest. In a Byzantine environment, the read/write sets and cross-shard

messages recorded by a reconnaissance coalition with malicious nodes will be wrong.

For example, in Figure 4.3, there is a malicious reconnaissance coalition since there

is a malicious node N3 in the coalition. Since each successful pre-execution gains

transaction fees, we assume that honest nodes tend to form and stay in reconnaissance

coalitions involving the other honest nodes and leave coalitions involving malicious

nodes (the detection of malicious nodes in a reconnaissance coalition will be discussed

in subsection 4.2.6).

4.2.4 Phase 2: Sequence

After a reconnaissance coalition pre-executes a transaction, it passes the transac-

tion and the corresponding transaction profile to the sequence shard. The sequence

phase starts when the leader of the sequence shard receives enough (i.e., more than

a predefined threshold) transactions.

For each round, in the sequence phase, based on the pre-execution results passed by

the reconnaissance coalitions, the leader of the sequence shard can determine which

transactions will be included in the global order. To avoid transaction conflicts, the

50

4.2. Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding

sequence shard only allows the transactions involving disjoint read/write sets to be

packed into the order. In such an order, the transactions are processed as the same

as they are in the pre-execution phase since they are not in conflict. Based on the

order, the sequence shard generates a serial order for the block of every shard and

provides a transaction profile for transactions included in the block. For example, in

Figure 4.3, the sequence shard proposes two new blocks to Shard 1 and 2, respectively.

Finally, based on the intra-shard consensus, the nodes in the sequence shard send the

new blocks with a collective signature (such as CoSi [76] or BLS [9] in the existing

sharding [46, 38]) to the shards.

The sequence shard has two characteristics. The first one is stateless, which means

the nodes in the sequence shard can generate a global order depending on transaction

profiles received from reconnaissance shards and without storing the state of all con-

tracts and pre-executing transactions. The second one is trusted, which means each

message published by the sequence shard is via an intra-shard consensus.

4.2.5 Phase 3: Execution

As discussed in subsection 4.2.3, in the pre-execution phase, the pre-execution re-

sults cannot be guaranteed because the reconnaissance coalitions may be malicious.

Moreover, in the sequence phase, because the sequence shard is stateless and only

responsible for ordering the transactions instead of validating, there can be invalid

transactions or conflict events existing in the order. Therefore, the shards need to

execute and validate the transactions included in the received blocks and compare

them with the read/write sets and transaction profile.

During the execution, each shard runs an intra-shard consensus and executes all trans-

actions based on the transaction profile. For example, in Figure 4.3, Shard 2 executes

Cxn. 2 based on the function call from Contract C2 to C3 and the corresponding

parameters in the transaction profile. If a shard finds that the read/write sets or

51

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

cross-shard messages of a transaction are different from those provided by the recon-

naissance coalitions, it can mark the transaction as invalid. However, if the execution

results of a transaction exactly match its transaction profile, the shard can mark it

as valid. For example, Shard 1 marks Cxn. 2 as invalid if the cross-shard message or

read/write set in the transaction profile is incorrect. The intra-shard consensus can

guarantee that the result published by any shards is trusted.

4.2.6 Phase 4: Correction

The confirmation of a cross-shard transaction, i.e., a shard commits the transaction

and updates the state of contracts based on the transaction, requires the proof gen-

erated by all the related shards of the transaction in the execution phase. At the

end of each round, every shard shares its validation results (i.e., proof generated in

the execution phase) with the other shards. The proof denotes the validity of each

pre-executed transaction included in the global order. Each cross-shard transaction

can be committed in a shard only when the shard receives the validity proof from

all the other shards related to the transaction. For example, in Figure 4.3, Cxn. 2 is

related to Shard 1 and 2, thus it cannot be committed without the proof of both these

two shards. Since the proof of Shard 1 marks it as invalid, it will not be committed.

In addition, the honest nodes in the reconnaissance coalition responsible for Cxn. 2

can leave the coalitions and mark the nodes responsible for the invalid part (contracts

in Shard 1) as malicious.

4.2.7 Discussion

Different from the traditional blockchain sharding that only has the execution phase,

Prophet has three additional phases (The overhead will be analyzed in section 4.4).

In each round, a deterministic global order for all transactions, including single-shard

and cross-shard ones, can be generated and shared by all shards through these three

52

4.3. Design Refinement

phases. Following the order, the shards can orderly execute and commit transactions

and update the blockchain state without conflicts. The cooperation within recon-

naissance coalitions solves the challenge of information isolation among shards, while

the stateless ordering in the sequence shard and the inter-shard proof sharing in the

final correction phase deal with Byzantine failures. A rigorous theoretical analysis is

provided in section 4.4.

4.3 Design Refinement

4.3.1 Parallelization of Sequencing and Execution

Problem of additional consensus. Prophet introduces an additional sequence

phase in each round. This phase requires an intra-shard consensus in the sequence

shard, doubling the consensus time for each block.

Design. To solve the problem, Prophet parallelizes the sequence phase and exe-

cution phase. Specifically, the leader of the sequence shard can send a global order

to the shards before the sequence shard validates the new order through consensus.

Then, in the execution phase, the sequence shard validates the new global order and

pre-execution results. An invalid order results in an invalid proof generated by the

sequence shard. Thus, an invalid order proposed by a malicious leader of the sequence

shard can be detected in the correction phase.

4.3.2 Fine-grained Ordering

Problem of coarse-grained ordering. In the above system, the reconnaissance

coalitions simply define the read/write sets of transactions as the addresses of smart

contracts in the pre-execution phase. Then, in the sequence phase, the sequence

shard only pack the transactions that are not related to the same contracts. In such

53

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

10 100 500 1000 3000
Batch size

0%

25%

50%

75%

100%

Co
nf

lic
t r

at
io

Contract level
State level
R/W dependency
R/W reorder

(a)

Cxn. 1

Cxn. 2

Block i-1 Block iWorker Shard 1

Txn. 3

Block i+1

Transaction {Accessed contracts} – Shard

Cxn. 1 {C1, C2} – Shard 1, {C3} – Shard 2

Cxn. 2 {C2} – Shard 1, {C4} – Shard 3

Txn. 3 {C2} – Shard 1

(b)

Figure 4.4: (a) Conflict ratio of transactions in a batch with varying batch size in the

pre-execution phase; (b) Transaction confirmation rule in asynchronous correction.

a coarse-grained manner, the transactions accessing the same contract are considered

conflict and thus cannot be packed in a global order. If there are a majority of conflict

transactions in the demand, the throughput of the sequence phase may become a

bottleneck of Prophet.

Observation. To illustrate the performance of the coarse-grained ordering in sec-

tion 4.2 in practice, we collect the history of transactions from Nov-25-2019, Feb-17-

2020, and Apr-19-2020 in Ethereum. Then, we execute the transactions in the batch

of 10, 100, 500, 1000, 3000 in parallel to simulate the pre-execution phase in Prophet

and evaluate their conflict ratio. We denote the approach by contract level. As shown

in Figure 4.4(a), the result shows that the conflict ratio increases with the batch size

and nearly 90% transactions are in conflict when the reconnaissance coalitions pre-

execute 3000 transactions.

Design. Therefore, we propose a fine-grained read/write ordering approach that is

composed of two following steps.

1) First, we design a fine-grained read/write set identification. We first redefine the

read/write sets of a transaction as the blockchain storage that it reads or writes.

54

4.3. Design Refinement

Then, the transactions related to the same contract can access different positions

of its storage. For example, if two transactions access the same contract but read

or write different variables of the contract, they are not in conflict. For such a fine-

grained identification, we take a deep dive into smart contracts [87]. All contract fields

and mappings are saved in blockchain storage and each transaction is a sequence of

instructions among which SSLOAD and SSTORE are the two instructions for blockchain

persistent storage read and write, respectively. Thus, during the pre-execution, the

reconnaissance coalitions record the instructions SSLOAD and SSTORE and their corre-

sponding addresses. As shown in Figure 4.4(a), the approach (denoted by state level)

reduces the conflict ratio by about 5.34% compared with the contract-level approach.

2) Second, we design an ordering rule considering the read/write dependency for the

sequence phase. If the sequence shard decides an order in which the execution result

of any transaction will not influence the read/write sets of its following transactions,

the execution of transactions in the execution phase will be the same as those in the

pre-execution phase thus there are no conflicts in the order. To achieve it, we allow a

transaction to have a read-after-read or write-after-read dependency with its previous

transactions in the order. As shown in Figure 4.4(a), the approach (denoted by R/W

dependency) reduces the conflict ratio by about 21.42% compared with the state level

approach. Besides, we also evaluate a reorder rule [53]. In detail, for two transactions

with read-after-write dependency, the rule can change their position if the new order

does not violate the before ordering rule. However, it only reduces the conflict ratio

by 0.21%.

4.3.3 Asynchronous Correction

Problem of synchronous correction. In the correction phase, for a shard, the va-

lidity of its related transactions can be proved and the state of its stored contracts can

be updated only when the shard receives all proofs from the other shards. However,

55

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

in the practice, for each round, there is great uncertainty about both the consensus

latency in each shard [47, 7] and the latency of cross-shard communication. This can

result in an barrel effect, which means the round time of each shard in Prophet will

depend on the slowest shard.

Observation. The consensus latency has high variance for Proof-of-Work (PoW)

protocols adopted by Bitcoin and Ethereum or Byzantine fault tolerance (BFT) pro-

tocols adopted by Hyperledger Fabric. For example, although Bitcoin theoretically

produces one block every 10 minutes, for 5% of the time, Bitcoin’s inter-block time

is at least 30 minutes [7]. For PBFT, the consensus latency is uncertain because the

state of network environment is often dynamic and elusive [47].

Design. To overcome the problem, Prophet adopts an asynchronous correction

design. Specifically, in the execution phase, before receiving the proof from the other

shards, a shard can optimistically assume that all the transactions are valid. Next,

it can update the state of its stored contracts based on the current block and move

to the next round. When a shard receives an invalid proof for a previous transaction

from another shard, this previous transaction will be invalidated. All the follow-

ing transactions related to the contracts involved by the invalid transaction will be

also invalidated. In other words, Prophet has the following confirmation rule for

transactions.

Rule 1. A transaction T can be confirmed by a shard only when the shard receives all

the related proofs of T and all the related proofs of the previous transactions related

to T .

For example, Figure 4.4(b) shows three blocks, i.e., Block i-1, i, and i+1, of Shard 1.

In these three blocks, there are three transactions, i.e., Cxn. 1, Cxn. 2 and Txn. 3, all

of which access the same contract C2 stored in Shard 1. Based on the confirmation

rule of transactions, the confirmation of Txn. 3 depends on the proof of Shard 2 in

Block i-1, the proof of Shard 3 in Block i, and the proof of Shard 1 in Block i+1.

56

4.3. Design Refinement

4.3.4 Parallel Pre-Execution

Problem of serial pre-execution. The throughput of Prophet also depends on

the total pre-executed throughput of reconnaissance coalitions. The above system

considers a serial pre-execution approach in which the nodes in each reconnaissance

coalition execute transactions one by one. However, when the communication ac-

counts for a higher portion than the contract execution as proved below, each node

may spend a lot of time on the communication of cross-shard inter-contract calls,

keeping its CPU idle most of the time and restricting the pre-executed transaction

throughput.

Observation. To find the main bottleneck of pre-executed throughput, we eval-

uate the simplest cooperation mode for a reconnaissance coalition as shown in Fig-

ure 4.5(a). Specifically, the nodes in the reconnaissance coalition executes transaction

one by one. Based on the transactions collected in subsection 4.3.2, the communica-

tion time accounts for 87.5% of the total time, since most contracts’ computation is

simple.

Design. To minimize the communication overhead, we propose an overlap coopera-

tion mode that overlaps the computation process and communication process during

pre-execution. For example, as shown in Figure 4.5(b), after meeting the first cross-

shard contract call in Cxn. 1, Node N1 can transmit a cross-shard message to Node

N2 while simultaneously executing the computation task of Cxn. 2. Through this

way, the computing resource and communication resource could achieve nearly full

utilization. Furthermore, since all transactions are pre-executed based on the state of

the previous block, we also propose a parallel cooperation mode. In particular, each

node executes different transactions at the same time using redundant computation

resources. For example, as shown in Figure 4.5(c), Node N1 executes Cxn. 1 and 2

using two threads, i.e., Thread 1 and 2, respectively. As evaluated in subsection 4.6.2,

the parallel scheme can increase the pre-execution throughput by 86.9% ∼ 280.0%

57

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

1

N1

N2

1

1

Communication

Computation

1

1 2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

(a) Sequential

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(b) Overlap

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(c) Parallel

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(d) Legend

Figure 4.5: Comparison of three cooperation modes for a reconnaissance coalition in

the pre-execution phase. The number inside each rectangle denotes the transaction

ID to which the computation or communication time belongs.

compared with the sequential scheme.

4.4 Analysis

We first show how Prophet achieves both determinism and serializability. The

former one means that the same result is always produced in all honest node for

each shard. The later one requires transactions in the system to produce the results

following some serial order. The analysis depends on the intra-shard consensus of

shards in Prophet thus we define v as the fault threshold of the adopted intra-shard

consensus [58]. For example, the synchronous protocol in Rapidchain [89] tolerate up

to v = 1/2 Byzantine faults, while the asynchronous or partially synchronous protocol

in Omniledger [46] tolerates only up to v = 1/3 Byzantine faults.

58

4.4. Analysis

Theorem 4. Prophet achieves determinism and serializability if there are no more

than v fraction of malicious nodes in each shard.

Proof. When there are no more than v < 1
3
malicious nodes in each shard, the intra-

shard consensus can guarantee safety [89, 16, 38], i.e., the honest nodes in each

shard agree on the same valid block in each round. Thus, the intra-shard consensus

can guarantee that both the order proposed by the sequence shard follows the rule

in subsection 4.2.4 and subsection 4.3.2 and the validation proofs proposed by the

shards are valid. It also guarantees that a message along with a collective signature

is honest because malicious nodes are the minority, i.e., no more than v, of the

shard. Moreover, the message of each party (e.g., transaction profile, order, and

proof) cannot be modified and forged since the collective signature can be used to

detect forgery or tampering. Finally, because the correction phase guarantees that

any invalid transaction will not be committed in all its related shards, all the honest

nodes in the sharding system can run an identical batch of transactions based on the

same global serial order and the same blockchain state. Additionally, the code of

smart contracts is deterministic [87], which means each node can get the same result

given the same input for a contract method. It guarantees the determinism of the

consensus in Prophet.

Next, we prove the serializability by contradiction as follows. Assume the global

order produced by the sequence shard is: · · · → Ti → · · · → Tj → · · · where Ti

and Tj can be two transactions in the same shard or in the different shards. There

are two possible outcomes to violate the serializability. The first one is that Tj’s

update is overwritten by Ti’s update. The second one is that Ti reads Tj’s update.

However, for subsection 4.2.4, Ti and Tj will not access the same contract. And,

for subsection 4.3.2, the sequence shard only allows read-after-read and write-after-

read dependency, thus both outcomes result in a contradiction and the consensus

in Prophet achieves serializability. In addition, we emphasize that even if Ti is

invalidated in the correction phase, the following transactions in the global order will

59

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

not be influenced. It is because Ti is not allowed to change the state of contracts that

are read or written by its following transactions considering the read-after-write is

not allowed.

Similar to the other sharding systems [54, 89, 46, 38], Prophet has a global fault

threshold for the whole sharding system denoted by f and a security parameter

denoted by λ. After dividing each node to a random shard, the proportion of malicious

nodes in each shard for Prophet can be proven to be lower than the fault threshold

v with low probability, i.e., the probability is no more than 2−λ, thus Theorem 4 can

be guaranteed with high probability in Prophet.

Overhead Analysis. In terms of the time overhead, Prophet parallelizes the

sequence phase and execution phase in subsection 4.3.1; thus, there is one consensus

in every shard for each round, similar to the existing blockchain sharding. Besides,

asynchronous correction in subsection 4.3.3 enables each shard to move to the next

round without waiting for the other shards’ proof after the execution phase, saving the

time of the correction phase. Therefore, only the pre-execution phase introduces an

additional time overhead for each round. In terms of the computation overhead, the

pre-execution phase introduces some additional computation tasks to reconnaissance

coalitions.

4.5 Implementation

We implement a prototype of Prophet based on Geth [23], the Go language imple-

mentation of Ethereum. The smart contracts in Prophet run in EVM in Geth. We

adopt a BFT consensus with BLS multi-signature [33] as the intra-shard consensus of

Prophet. For comparison, we also implement two non-deterministic sharding proto-

types. Since the intra-shard consensus in Prophet can be substituted by any other

BFT consensus, to ensure the result will not be affected by the difference in intra-

60

4.6. Evaluation

shard consensus, we adopt the same consensus for the intra-shard consensus in these

two non-deterministic sharding prototypes. Moreover, for a fair comparison, both pro-

totypes are equipped with the fine-grained read/write approach in subsection 4.3.2.

The difference between two prototypes is the cross-shard transaction processing. The

first one uses the OCC mechanism in Monoxide [83] and the second one uses the 2PL

mechanism in Chainspace [2].

4.6 Evaluation

Dataset. To evaluate our sharding system Prophet on the historical transactions

in Ethereum, we implement a smart contract recorder/replayer based on EVM state-

less state transition tool [22] similar to [44] and collect the blocks from Nov-25-

2019 to May-04-2020 (block height: 9,000,000-10,000,000) from Ethereum mainnet

blockchain.

Setup. The number of nodes in each shard is set as 50. In OCC and 2PL, the

maximum retry count for the transactions is set as 10, which means that a transaction

with more than 10 retries will be aborted. The testbed is composed of 16 machines,

each of which has an Intel E5-2680V4 CPU and 64 GB of RAM, and a 10 Gbps

network link. Similar to [89, 46], to simulate geographically-distributed nodes, we set

the bandwidth of all connections between nodes to 20 Mbps and impose a latency

of 100 ms on the links in our testbed. The proportion of malicious nodes in the

system is set as 12.5%. In our setting, the malicious nodes in each reconnaissance

coalition provide invalid cross-shard messages and read/write sets to interrupt the pre-

execution phase. We repeat each experiment three times and compute the average as

its result.

Metrics. We measure the performance of a sharding system using the following

metrics. 1) Transaction throughput : the throughput of the confirmed transactions

61

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

2 4 8 16 32 64
Shard number

0

500

1000

1500
TP

S

×1.73 ×1.70 ×1.90
×2.25

×2.71

×3.11Non-sharding
OCC (Monoxide)

2PL (Chainspace)
Prophet (Ours)

Figure 4.6: Transaction throughput of Prophet and the existing sharding systems

(The number above each bar denotes the ratio of the throughput of Prophet over

that of OCC.)

measured in TPS. 2) Confirmation latency : the delay between the time that a trans-

action is issued by a client until it can be confirmed by any (honest) node in the

system. 3) Abort ratio: the ratio of aborted transactions during commitment, i.e.,

the transaction whose retry count exceeds the maximum retry count as discussed

above. 4) Invalid ratio: the ratio of invalid transactions found in the correction phase

for Prophet.

4.6.1 Performance

To evaluate the performance, we measure the throughput in TPS for the two non-

deterministic sharding blockchains and Prophet with varying number of shards. As

shown in Figure 4.6, all three sharding systems achieve the linear scalability. However,

Prophet improves the throughput 1.73 ∼ 3.11X against the two traditional sharding

systems and the improvement is more significant when there are more shards. More-

over, the throughput of the sharding systems is even worse than that of non-sharding

system when there are less shards, the reason of which is twofold. First, introduc-

ing sharding into the blockchain results in cross-shard transactions, each of which

62

4.6. Evaluation

1 2 3
OCC (Monoxide)

4 5 1 2 3
2PL (Chainspace)

4 5 1 2 3
Prophet (Ours)

4 5

Number of inter-contract calls

0.0

0.5

1.0

Ab
or

t r
at

io
32 shards 16 shards 8 shards 4 shards

Figure 4.7: Abort ratio of transactions during commitment in Prophet and the

existing sharding works.

2 4 8 16 32 64
Shard number

0

5

10

La
te

nc
y

(s
) OCC (Monoxide)

2PL (Chainspace)
Prophet (Ours)

Figure 4.8: Confirmation

latency of Prophet and

the other blockchain shard-

ing systems.

2 4 8 16 32 64
Shard number

0

200

400

600

TP
S

1 Thread
2 Threads

3 Threads
4 Threads

5 Threads

Figure 4.9: Pre-execution

throughput of a recon-

naissance coalition for

Prophet with different

number of shards.

0 1 2 3 4 5
Shard number

0%

50%

100%

150%

%
 o

f c
om

m
. t

im
e

1 Thread
2 Threads

3 Threads
4 Threads

5 Threads

Figure 4.10: Percentage of

communication time in the

pre-execution in Prophet.

needs to be divided into multiple sub-transactions and processed in multiple consen-

sus rounds. Second, the contention of cross-shard transactions results in frequent

aborts of transactions thus most of the throughput in the two traditional sharding

systems is wasted.

To investigate the wasted throughput reason as described above, we measure the

abort ratio of transactions with varying number of inter-contract calls for the two

non-deterministic sharding blockchains and Prophet. Note that although there are

many transactions with more than 4 inter-contract calls in the system, Figure 4.7

only shows the transactions with 1-5 inter-contract calls due to the space constraint.

Figure 4.7 shows that the abort ratio in both of all sharding systems increases as the

63

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

number of shards increases. Specifically, the OCC-based system aborts about 50%

transactions with more than 2 inter-contract calls. It limits the dApps consisting of

complex smart contract interactions. In comparison, Prophet keeps the abort ratio

being 0 no matter how many cross-shard contract calls the transactions include.

We then evaluate the confirmation latency of transactions in Prophet and the non-

deterministic sharding blockchains with varying number of shards. Figure 4.8 shows

that the latency increases as the number of shards increases in the non-deterministic

systems. This is because the increase of shards can introduce more cross-shard trans-

actions that need more consensus round to be committed, thus the confirmation

latency is higher. In comparison, the latency in Prophet is low and relatively stable

since any cross-shard transaction can be committed by Prophet in one round.

4.6.2 Micro-benchmark

To analyze the effectiveness of our communication efficient pre-execution proposed

in subsection 4.3.4, we evaluate the pre-execution throughput of a reconnaissance

coalition with varying number of shards. As shown in Figure 4.9, the pre-execution

throughput increases with the number of threads in each node. When there are more

shards in Prophet, the number of nodes in a reconnaissance coalition increases and

each node has a thread. This parallelism improvement outweighs the increase of cross-

shard transactions. Furthermore, a reconnaissance coalition achieves 334 TPS with

5 threads. Based on combining this observation and Figure 4.4(a), we can get that

when there are more than 10 reconnaissance coalitions, the pre-execution throughput

can exceed the maximum throughput (i.e., 1203 TPS in Figure 4.6) in Prophet.

Therefore, the bottleneck is not in the pre-execution phase.

To further investigate the improvement of communication efficient pre-execution, we

evaluate the proportion of communication time in the total time in the pre-execution

phase and the result is shown in Figure 4.10. Note that when the communication is

64

4.6. Evaluation

Table 4.1: The average total size of cross-shard messages for a transaction in a system

with varying number of shards.

Shard number 2 4 8 16 32 64

Message size (Byte) 177 240 267 310 319 322

overlapped by the computation, we do not consider the communication time in the

total time. From the figure, we can see that the proportion of communication time

is less in a node with more threads.

We also evaluate the average total size of cross-shard messages for a transaction in

a system with varying number of shards. Table 4.1 shows that the average total

message size increases with the number of shards. It is because the number of shards

can result in more cross-shard contract calls in a transaction. Moreover, the increment

of message size gradually decreases. Specifically, doubling the shard number from 32

to 64 only increases the message size by 3 Bytes. It is because the number of cross-

shard contract calls will be mainly influenced by the number of contract calls when

the shard number is more than the number of contract calls.

Although malicious nodes cannot make the invalid transactions be confirmed because

of the correction phase, they can occupy the throughput for the valid transactions. We

evaluate the invalid ratio of Prophet with different percentage of malicious nodes

(in particular 1%, 5%, 12.5%, and 25%) and the result is illustrated in Figure 4.11(a).

The malicious nodes have only a limited impact (less than 2%) on the throughput of

Prophet. Figure 4.11(b) shows that the invalid ratio decreases over time because

of the gradual construction of honest coalitions. As discussed in subsection 4.2.3, to

gain more transaction fees, the honest nodes tend to form and stay in reconnaissance

coalitions involving the other honest nodes and leave coalitions involving malicious

nodes.

65

Chapter 4. Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant
Deterministic Ordering

2 4 8 16 32 64
Shard number

0%

1%

2%

3%

In
va

lid
 ra

tio 1%
5%

12.5%
25%

(a) Average invalid ratio.

0 50 100 150 200
Block time

0.0%

10.0%

20.0%

30.0%

40.0%

In
va

lid
 ra

tio 25%
12.5%
5%
1%

(b) Fluctuation of invalid ratio for 64 shards.

Figure 4.11: Ratio of invalid transactions in the correction phase.

66

Chapter 5

GriDB: Scaling Blockchain

Database via Sharding and

Off-Chain Cross-Shard Mechanism

Characterized by trustworthiness, transparency, and traceability, blockchain tech-

nologies have been integrated into many areas, such as cryptocurrency [61], supply

chain [41], international trade [28], etc. In database management, blockchain tech-

nologies have attracted considerable interest in upgrading traditional databases to

blockchain-empowered distributed databases [74], which forms an emerging research

direction namely blockchain databases.

Compared with traditional distributed databases, blockchain databases transact and

record data via blockchains and construct an abstract database layer supporting

various query functionalities on top of blockchains, which endow the distributed

databases with immutability and traceability [19, 64, 98, 65, 88, 91, 29]. For ex-

ample, BlockchainDB provides shared tables as easy-to-use abstractions as well as

a key/value interface to read/write data stored in the blockchain [19]. Pei et al.

introduces a Merkle Semantic Trie-based index to support semantic query, range

67

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Shard A Shard B

Aggregation Balancing

Client

M
ig

ra
tio

n
 o

rd
e
r

Query

True data

Fake data

Malicious

node

❶ ❷

(a)

1 2 3
0

1000

2000

TP
S

57

1844

10

1. Non-sharding
2. Sharding (no cxq.)
3. Sharding (5% cxq.)

(b)

Figure 5.1: (a) Illustration for sharding blockchain database, which requires two new

functions, i.e., data aggregation for query and workload balancing for management.

(b) Transaction throughput of non-sharding and sharding blockchain databases. (cxq.

represents cross-shard query.)

query and fuzzy query on the blockchain [64]. SEBDB adds relational data semantics

into blockchain storage and thus supports SQL query [98] and FalconDB presents a

blockchain database with SQL query with time window [65].

Due to the underlying non-scale-out blockchains, most existing blockchain databases

suffer from poor scalability. For example, schemes in [98, 65] adopt Tendermint

which achieves throughput of about 1000 transactions per second (TPS) but its net-

work scale is less than 100. Schemes in [64, 91] adopt Ethereum aiming to support

thousands of participants but only have tens of TPS. The poor scalability makes

the blockchain databases hardly meet the quality of service required in large-scale

business in practice.

Sharding is one of the most promising technologies for the blockchain scalability [54,

46, 89, 83, 16, 66, 35]. It divides the nodes into small groups called shards, which

can handle transactions in parallel and alleviate the storage overhead for each node.

In such an approach, the transaction throughput scales linearly with the number of

nodes. To develop a scalable blockchain database, this paper is going to construct

68

an abstract database layer on a sharding blockchain by distributing database data

and the corresponding task of storing, querying, or updating to different blockchain

shards. However, such a sharding for database storage and workload introduces a new

requirement namely cross-shard database services, i.e., data aggregation for query and

workload balancing for management.

As shown in Figure 5.1(a), the data aggregation is caused by the sharding for storage.

Particularly, the data related to a query may be stored by the blockchain nodes from

multiple shards; thus, the query requires the involvement of several shards. For

example, if there are two tables stored in Shard A and B, respectively, then a SQL

JOIN query combining these two tables involves both shards. Moreover, the workload

balancing is caused by the sharding for workload. Particularly, due to the sharding,

each shard is only responsible for the workload of query and update to its storage. The

demand imbalanced and dynamic nature of applications results in workload imbalance

among shards, which significantly degrades the performance of sharding blockchain

database.

The Byzantine environment of blockchain databases makes the technologies of tradi-

tional distributed databases no longer applicable. Malicious nodes may collude with

each other and violate the protocol in arbitrary manners. For example, in distributed

databases [17], a query can be easily realized by requesting from one database node

in every related shard. However, in a sharding blockchain database, the correctness,

completeness, and freshness of cross-shard queries can hardly be guaranteed when

accidentally requesting from a malicious node. Moreover, elastic workload balancing

is the first-class feature in modern databases [77] achieved by load migration. How-

ever, unlike one-to-one crash-tolerant migration in most distributed databases, the

sharding blockchain database requires a many-to-many migration across shards in

which malicious nodes can intercept, tamper or forge the migrating table.

To resist the Byzantine faults for cross-shard database services, an intuitive idea is to

process them through the cross-shard mechanism of blockchain sharding. In detail,

69

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

the core of cross-shard database services is to transfer tables among shards despite

Byzantine failures. The cross-shard mechanism guarantees that each data transfer

(e.g., money transfer in the conventional blockchain) is agreed by the majority of

honest nodes in all its related shards. Transferring a table among shards through the

mechanism can guarantee that the table transfer will not be compromised (detailed

in section 2.2 and section 4.1). However, such an idea is costly. On the one hand,

each query or migration involves a massive set of semantics-related data (e.g., rows

belonging to a table) in a blockchain database. On the other hand, all existing

cross-shard mechanisms are on-chain (i.e., requiring the consensus of all the related

shards). Therefore, all nodes in the related shards need to participate in the consensus

on numerous data. As proved in Figure 5.1(b), the existing on-chain cross-shard

mechanisms cannot support even 5% cross-shard queries in a sharding blockchain

database with 32 shards (detailed in section 3.4).

To this end, this paper focuses on relational blockchain database and proposes the

first relational sharding blockchain database, named GriDB. In comparison with the

previous blockchain databases, GriDB guarantees high scalability while providing

support for relational database services in blockchain sharding. Motivated by the idea

of off-chain payments and verifiable computing,GriDB enables an off-chain execution

of the cross-shard database services by adopting authentication data structure (ADS)

to delegate cross-shard communication-intensive tasks to a few nodes in a verifiable

manner. We summarize our contributions as follows.

• GriDB introduces relational data semantics and query functionality into blockchain

transactions to abstract a sharding blockchain as a distributed relational database.

The clients can send requests to any untrusted blockchain nodes for storing, ma-

nipulating and retrieving data.

• To provide a query layer of abstraction on sharded data, we design a cooperative

delegation-based approach with a constant complexity of data transfer among

70

5.1. System Model

shards without sacrificing security. It delegates the tasks of data aggregation to

a few nodes in different shards and constructs a succinct proof used to on-chain

verify.

• To meet the dynamically skewed workloads and achieve inter-shard balancing,

we propose an off-chain live migration that migrates the database service among

shards with security, low cost, and minimum interruption.

• We develop a prototype for GriDB and conduct a comprehensive evaluation.

The result shows that GriDB achieves a scalable throughput for SQL linearly

increasing with the shard number compared with the non-sharding works.

5.1 System Model

System Components. In GriDB, there are two types of entities:

1) The database clients are the service consumers of GriDB. They neither participate

in the consensus nor store the whole content of blockchains locally because they are

often lightweight devices.

2) The blockchain nodes are the consensus participants for the blockchain and are di-

vided into a number of shards. Each node is responsible for verifying, processing and

storing transactions of its located shard. GriDB is a layer-2 database framework con-

structed on top of existing blockchain sharding systems, and it is sharding-agnostic,

which means the underlying system can adopt any sharding schemes (including shard

formation, intra-shard consensus and cross-shard mechanism) from [46, 89, 83, 38].

However, the underlying blockchain sharding system’s intra-shard consensus should

satisfy both safety and liveness, and its cross-shard mechanism guarantees the ACID

of each cross-shard transaction (see section 2.2). We emphasize that the cross-shard

mechanism of the underlying blockchain sharding system is one of the important com-

ponents of the off-chain cross-shard mechanism of GriDB, which will be described in

71

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

the following sections. To avoid confusion, we will call the former on-chain cross-shard

mechanism.

GriDB considers an outsourced database scenario [90, 59] in which the clients out-

source their data management to the blockchain. The nodes host the client’s databases

and the clients send requests to the nodes to create, store, update and query their

databases.

Threat Model. The threat model of GriDB relies on that of the underlying

blockchain sharding composed of two kinds of blockchain nodes: honest and mali-

cious. The honest nodes abide by all protocols in GriDB while malicious nodes may

collude with each other and violate the protocols in arbitrary manners, such as denial

of service, or tampering, forgery and interception of messages. Although there are

malicious nodes in the shards, the sharding blockchains [89, 46, 83] can guarantee that

each shard is trusted with high probability, i.e., the result published by any shards is

trusted. Different from [19], GriDB does not require a strong assumption that each

client trusts the nodes it connect.

Transaction Model. The requests of clients are processed in the form of blockchain

transactions that are divided into two types: data and query transaction. The first

one is used to update (such as insert, update, and delete) the database state and the

second one is used to query the database state. Besides, in subsection 5.3.3, there are

some control transactions used to support the database management such as database

migration. The type division will not affect the compatibility for the underlying

blockchain because there is a “data” field in the transactions of most blockchains,

and GriDB places different data in the field for different types of transactions. The

details of transactions will be described as follows.

72

5.2. GriDB Overview

Shard A Shard B

Sharding blockchain database

SQ
L

qu
er

y
in

te
rfa

ce

D
at

a
&

w
or

kl
oa

d
ga

p

Table 1 Table 2 Table 3

TimeW
or

kl
oa

d 3
2

tTimeW
or

kl
oa

d

1
t

Cross-
shard query

Inter-shard
balancing

Data txn 1

Data txn 3
Query txn 2

Data txn 4

Header

Figure 5.2: System overview for GriDB.

5.2 GriDB Overview

5.2.1 System Overview

As shown in Figure 5.2, GriDB considers a distributed relational database storing

a number of tables. For scalability, the workload of each table is distributed to a

shard (A fine-grained sharding for blockchain database through table partition will

be described in subsection 5.4.4.) If a client decides to query or update a table, it

can issue requests to any nodes in the shard responsible for the table. As described

in the threat model, the nodes receiving the requests may be malicious, thus they

are required to return a proof used for authentication. To generate a proof, based

on the request received, a node first proposes a transaction which can be one of the

following.

1) A data transaction is used to manipulate (such as insert, update, and delete) the

data and includes an INSERT, DELETE or UPDATE SQL statement. In GriDB, the data

is in the form of a relational model. The same type of data has a unified semantic de-

scription as a schema composed of several attributes. An insert statement inserts new

data based on explicitly specified values or from the existing data via a nested sub-

73

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

query. Since blockchain is append-only, a delete statement is implemented by marking

old data as invalid, i.e., cannot be queried, and an update one is implemented by a

sequence of delete and insert operations to overwrite. Based on the data transactions

recorded in the blockchain, each node in a shard maintains a tamper-proof copy of a

relational database.

2) A query transaction is used to record query results to clients. A query statement

begins with a keyword SELECT followed by a subset of column names, and then a

keyword FROM followed by a table (or a JOIN sub-clause used to combine multiple

tables in a later section.) Following these, a WHERE clause is followed by a sequence

of predicates connected by logical operators (e.g., AND, OR, NOT) that restrict the

rows used when computing the output. After processing the request, the node can

put the query statement and result into the data field of a query transaction. To

avoid occupying too much on-chain storage, the query results can be offloaded to

an off-chain storage and the query transactions only store the hash of query results,

according to which the clients can download the correct results from the off-chain

storage based one the hash.

Next, the node broadcasts the proposed transaction to the network. If a data transac-

tion is committed to the blockchain, the majority of honest nodes accept and execute

the data transaction, which means the database state has been successfully updated.

If a query transaction is committed, the majority of honest nodes agree on the query

results. Finally, the client can authenticate the result returned by its connected node

by validating if the transaction for its request is committed. This transaction valida-

tion for clients has been implemented in most blockchains, such as Simplified Payment

Verification (SPV) in Bitcoin and Ethereum.

In addition to a Merkle tree storing transactions like traditional blockchains, to enable

every node or client to know every table’s location, every node maintains an additional

Merkle tree. The tree stores the location of all tables in the form of table name-shard id

pairs. It is updated in each epoch according to a global cross-shard control transaction

74

5.2. GriDB Overview

including a new planning strategy for the following epoch (refer to subsection 5.4.2).

Thus, depending on the tree, every node or client can find the correct shard storing

the target table.

5.2.2 Challenges

Dividing the tables across different shards improves the blockchain database’s scal-

ability. However, it is not enough for a scalable blockchain database due to two

following problems.

Problem 1 (cross-shard query): A client’s query involving tables only in a single

shard can be served by one shard because each node of the shard can validate and

agree on the query result in an intra-shard consensus. However, a request to query

the tables from different shards cannot be completed by a single shard and requires

the cooperation of multiple shards. For example, in Figure 5.2, a query joining on

Table 1 and 2 involves the data of Shard A and B thus cannot be completed by only

one of them.

Problem 2 (inter-shard workload imbalance): It is hard to guarantee that the

workload of every table is the same and static, thus some shards can be overloaded

while some others remain idle. For example, in Figure 5.2, Shard A is responsible for

Table 1 and Shard B is responsible for Table 2 and 3. At the beginning, the total

workload in Shard A and B is similar. However, if the workload of Table 1 drops over

time, Shard A becomes idle. To fully utilize the throughput, dynamically migrating

the workload among shards and alleviating the effect of hotspots are crucial.

75

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Shard 1 Shard 2

Shard A Shard B

Table 1 Table 2

Table 1 Query result

1Shard A

1Shard B 2

3

3 4

4
Migrating table

ID Name Age

1 A 12

2 B 23

… … …

Consensus on

stopping service

Data txn for the table

2

Consensus on

restarting service

(a) Shard-cooperation cross-shard query

1Shard A

1Shard B 2

3

3 4

4
Migrating table

ID Name Age

1 A 12

2 B 23

… … …

Consensus on

stopping service

Data txns for the table

2

Consensus on

restarting service

(b) Stop-restart inter-shard migration

Figure 5.3: Overview for the on-chain strawman.

5.3 System Design

In this section, to outline GriDB’s design, we first describe a strawman sharding

blockchain database based one the on-chain solution for the challenges discussed in

subsection 5.2.2. Next, to address the drawbacks in the strawman system, we discuss

the primary cause of the drawbacks and introduce the key designs in subsection 5.3.2

and subsection 5.3.3.

5.3.1 Strawman

For the two challenges above, we first describe a strawman sharding blockchain

database only based on the on-chain cross-shard mechanism of the existing shard-

ing systems as follows.

Consider a cross-shard query involving two tables, i.e., Table 1 and 2, located in Shard

A and B, respectively. For such a cross-shard query, we present a shard-cooperation

approach based on the on-chain cross-shard mechanism. Shard A first commits many

cross-shard data transactions involving Shard A and B, including the data of Table 1

via the cross-shard mechanism. As described in section 2.2, the mechanism guarantees

76

5.3. System Design

the transactions can be committed in Shard A and B. Then, Shard B can get Table

1 from the transactions, compute the query result, and commit a query transaction

with the query result. However, when there are many cross-shard queries, the table

transfer among shards will be frequent, resulting in system overloaded and network

blocked.

For the inter-shard load balancing, the latest version of the table should be trans-

ferred from the source shard to the destination shard. If there is data being left out,

the completeness of queries on the table cannot be guaranteed after migration. Thus,

we present a stop-restart migration approach based on the on-chain cross-shard mech-

anism as follows. Shard A first stops processing new transactions for the table via an

intra-shard consensus, which avoids the migrating table being modified during migra-

tion. Then, Shard A commits many cross-shard data transactions to reconstruct the

latest version of the table in Shard B. After all transactions are committed, Shard

A commits a cross-shard transaction to mark the end of the migration, and Shard B

can restart the service of the table. However, when the migrating table is enormous,

the approach incurs a high penalty due to the prolonged service interruption for the

migrating table and the influence on other tables’ throughput.

To solve these drawbacks, we introduce two key designs for our off-chain cross-shard

mechanism in subsection 5.3.2 and subsection 5.3.3.

5.3.2 Cross-Shard Query Authentication

Motivation. Although the above shard-cooperation approach is safe, it is expensive

since the table transfer among shards for each cross-shard query is between groups

of nodes (to guarantee that there is a majority of honest nodes for each shard partic-

ipating). An intuitive idea to avoid this overhead is to pick one delegate from each

shard. Then, for each cross-shard query, a delegate downloads the related tables from

the other delegates and evaluates the query results. However, any malicious delegate

77

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

can easily tamper with the query result by providing a fake or out-of-date table.

We aim to design an ADS to allow the delegates to prove the validity of cross-

shard query results. The existing outsourced databases have designed some ADS

for SQL [90, 59]. For example, for a JOIN query involving the same column of two ta-

bles, a node treats the columns of these two tables as two sets and constructs a proof

for their intersection through VSO [95]. However, the existing ADS for SQL cannot

be applied in our cross-shard query due to two difficulties. First, different from the

outsourced database in which there is no sharding and a server stores the whole data

copy, any delegate inGriDB only stores the tables of its located shard and downloads

tables from the other untrusted delegates and thus cannot construct a valid proof by

itself. Second, to support arbitrary verifiable SQL queries, besides VSO, the other

outsourced databases need to adopt interval trees [95] or zero-knowledge proof [94],

which costs tens of minutes for a query [94] due to high computation complexity.

Thus, we propose a delegation-based approach by integrating VSO with the intra-

shard consensus to implement an efficient and secure ADS for arbitrary SQL query

in GriDB. Its main idea is to divide each query into some algebra operators with

different input data. Particularly, it validates the operators involving multiple shards’

data through VSO and those involving single shard’s data through the intra-shard

consensus. The cross-shard query validity can finally be proved through a chain of

trust, i.e., proving the validity of every operator from beginning to end. Such a manner

makes the best use of the advantage of both the shard-cooperation approach (i.e., low

computation) and the existing ADS for verifiable SQL (i.e., low communication) and

bypasses their disadvantage.

Design. The overall cross-shard query procedure is given in algorithm 1. For each

cross-shard query, we identify the related shard of the table following FROM as main

shard and the shards of the tables following JOIN as sub shards. A client can issue a

cross-shard query request to any nodes in the main shard. Next, one node is chosen

from each related shard (Line 2), which can be round-robin or randomly by a verifiable

78

5.3. System Design

random function [30]. The malicious or low-response delegates can be replaced by

a view change similar to PBFT. The delegated node in the main shard is called the

main node denoted by M and those in the sub shards are called sub nodes denoted

by S. The main node downloads each involved table for the query from the sub node

in the corresponding sub shards (Line 3). After downloading all involved tables, the

main node evaluates the query result and generates a proof (Lines 4, 8-14).

To generate the proof, the main node first translates each SQL query into a relational

algebra tree composed of algebra operators [70], e.g., the right part of Figure 5.4.

Each node in the tree denotes a unary (or binary) algebra operator taking one (or

two) inputs, applying a function, and outputting its result to the next operator. The

edges represent data flow from bottom to top.

In the tree, we identify join (or union) operators involving tables in different shards

as cross-shard operators and the others as intra-shard operators. Each intra-shard

operator can be processed by the nodes of the corresponding shard based on their

stored tables. In comparison, each cross-shard operator involves the data gap among

shards, thus the main node needs to generate a proof. The proof is composed of

the accumulation values of the corresponding columns in the tables to be joined or

unioned, a VSO proof, and a position indicator for the intermediate result (or final

result). The position indicator is a bitmap to indicate which rows are chosen in a

table. For example, considering the SQL statement in Figure 5.4, we denote the

oid columns of these two tables after processing the selection operators as Ci and

Cj, respectively. The generated proof Υ is ⟨acc(Ci), acc(Cj), π, [1, 0, 1], [1, 0, 0]⟩. The

position indicators [1, 0, 1] and [1, 0, 0] mean that the first and third rows in Table 1

and the first row in Table 2 are chosen, respectively. A cross-shard query may include

multiple cross-shard operators thus the main node will produce a list of proofs Υ,

each of which is for a cross-shard operator.

After the query result and the corresponding proof are generated, the main node

proposes a cross-shard query transaction, including the result and the proofs and

79

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Table 1 Table 2

𝜎num=20

⋈𝑜𝑖𝑑

< 𝑎𝑐𝑐 𝐶𝑖 , 𝑎𝑐𝑐 𝐶𝑗 ,

𝜋, 1,0,1 , 1,0,0 , 𝑝𝑘 >

𝜎𝑜𝑖𝑑=1

Proof for this join operation

Table 1 (Latest) 𝜎num=20 ⋈𝑜𝑖𝑑

Table 2 (Latest) 𝜎𝑜𝑖𝑑=1 Query result

Query result

⋈𝑜𝑖𝑑

Shard A:

Shard B:

< 𝑎𝑐𝑐 𝐶𝑖 , 𝑎𝑐𝑐 𝐶𝑗 , 𝜋, 1,0,1 , 1,0,0 , 𝑝𝑘 >

Table1 (Shard A)

oid num cname

1 20 Andy

2 21 Bob

4 20 Carol

Table2 (Shard B)

oid company date

1 FedEx 2021/5/21

4 FedEx 2021/6/22

3 S.F. Ex 2021/6/21

Blockchain

Blockchain

❶

SELECT * FROM Table1 JOIN Table2

WHERE Table1.num = 20 AND Table2.oid = 1

AND Table1.oid = Table2.oid

❸

❷

Intra-shard operators Cross-shard operators

Figure 5.4: Example for ADS proof generation of two tables distributed in Shard A

and B, respectively. (σ is an operator to select rows from a relation and ⋊⋉ is an

operator to join tables based on a specified column.)

involving the related shards (Line 5). Then, to validate the cross-shard query, each

related shard runs an intra-shard consensus on the transaction by evaluating each

algebra operator for their stored tables and verifying the proofs related to the tables of

the shard (Lines 15-20). For example, as shown in Figure 5.4-❸, during the consensus

on the cross-shard query transaction, each node can validate and execute intra-shard

operators based on the local data and validate and execute cross-shard operators

based on the VSO proof. During the validation, they can optimistically assume that

the accumulation values related to the other shards’ tables are valid. Finally, if the

cross-shard query transaction passes the validation of every related shard (Line 6), it

will be committed in the blockchains of all related shards and the client can accept

the query result included in the transaction via SPV (Line 7). Besides, if a malicious

main node sends different copies of a transaction to shards, the client can detect the

inconsistency by checking the Merkle proofs of the transaction via SPV (Line 7).

Security Analysis. The analysis relies on the intra-shard consensus of blockchain

80

5.3. System Design

sharding thus we define v as the fault threshold [58] of the adopted blockchain sharding

in GriDB. For example, Rapidchain [89] tolerates up to v = 1/2 Byzantine faults,

while the asynchronous or Omniledger [46] tolerates only up to v = 1/3 Byzantine

faults. Next, we describe the formal definition [94, 95] of our cross-shard query’s

security as follows.

Definition 3. A query is secure if any polynomial-time adversary’s success probability

is negligible in the following experiment:

For a query q, the adversary is picked as main node or sub node for the generation of

query transaction including result R. The adversary succeeds if the query transaction

is committed in all related shards and one of the following results is true: 1) R includes

a row which does not satisfy q (correctness); 2) There exist a row which is not in

R but satisfies q (completeness); 3) R includes a row not from the latest tables

generated by all the committed data transactions (freshness).

Theorem 5. Our proposed cross-shard query mechanism satisfies the security prop-

erty as defined in Definition 1 if the proportion of malicious nodes in each shard is

no more than the fault threshold v.

Proof. We prove Theorem 1 in three cases, corresponding to how GriDB defends

against the three different adversaries in Definition 1 for each cross-shard query in

correctness, completeness, and freshness. We first describe the three cases: Case 1:

This case means a tampered or fake row within the result is returned, which does

not satisfy the query q. In this case, the tampered or fake row can pass the client’s

verification under the correctness in Definition 1. Case 2: This case means a row

that satisfies q is missing from R. In this case, the incomplete result can pass the

verification of the client under the completeness in Definition 1. Case 3: This

case means the result R involves an old row that satisfies q but is not from the latest

tables. In this case, the old result can pass the client’s verification under the freshness

in Definition 1.

81

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

If any of the above three cases occur, it means the computation of at least one rela-

tional operator (intra-shard or cross-shard operator) for a committed query is invalid,

i.e., the malicious nodes in a related shard tamper with the executing of intra-shard

operators during intra-shard consensus, or the main node generates a wrong result in

the executing of cross-shard operators. However, this contradicts two assumptions.

The first one is that when the proportion of malicious nodes in each shard is no more

than the fault threshold v, the safety of the intra-shard consensus holds [82]. Second,

according to the unforgeability of VSO under the q-SDH assumption [63, 10], the

ADS for set operations guarantees that the computation of each cross-shard opera-

tor in delegates is valid, and any invalid results can be detected by the intra-shard

consensus.

Performance Analysis. We analyze the time for a cross-shard query involving m

cross-shard operators as follows. Three steps occupy most of the time, i.e., the table

transfer (Line 3), the proof generation (Line 4), and the confirmation latency of the

query transaction (Line 6), which is also proved in section 3.4. Thus, the analysis is

developed around these three steps. For the table transfer, the time cost is linear to

the size of the related tables. We introduce several refinements to reduce this time cost

and improve query efficiency in subsection 5.4.1. Next, according to [63, 10], the proof

generation time for each set operation involving N elements is O(N log2N log logN).

Thus, the proof generation time is O(mN log2N log logN). Finally, the confirmation

latency denotes the delay between the time that the query transaction is issued from

the main node until the transaction is committed, which depends on the throughput,

demand, and number of block confirmations of the blockchain.

5.3.3 Inter-Shard Load Balancing

Motivation. Observe that the drawback of the stop-restart approach in the straw-

man system results from the interruption for transaction processing during migration.

82

5.3. System Design

❸ Off-chain

synchronization

DUALINITNORMAL

1
Source

Shard

1
Destination

Shard 2

3

3 4

…

…

New data txn:

5

5 6

❶ State checkpoint

7

7

3 C 21

❷ Migration start
New data txn:

4 D 22

Metadata

4 62

Migrating Table

ID Name Age

1 A 12

2 B 23

...

NORMAL

❹ Migration end
1. data txn

2. Merkle proof

Figure 5.5: Overview of off-chain live migration. A solid line with arrowhead rep-

resents a cross-shard transaction and a dotted line with arrowhead represents an

off-chain cross-shard communication.

Moreover, because the approach is on-chain, the migration occupies the transaction

throughput of the shards involved, which interrupts the new transactions of the other

tables. Thus, to avoid these drawbacks, we design an off-chain live migration ap-

proach for GriDB. Its main idea is to design an off-chain technique to minimize the

number of on-chain transactions and a dual mode with cross-shard synchronization

and concurrency control to minimize the impact of interruption to the migrating table

during migration.

Design. Figure 5.5 illustrates the timeline of cross-shard migration and the messages

exchanged between two shards. The life cycle of a table includes the following three

modes.

1) Normal Mode: The normal mode for a table (called T) is the period in which the

data or query transactions of the table are processed normally by the shard it belongs

to. The normal mode accounts for most of the time for the table.

2) Init Mode: When T is going to be migrated from the source shard (called S) to

the destination shard (called D), the init mode starts. (We will discuss the trigger

of table migration in subsection 5.4.2 which aims for load balancing and guarantees

83

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

that there is a super majority of honest nodes in S knowing T and D.) The nodes in

S first construct the metadata for T via a hash function such as SHA (Figure 5.5-❶)

and commit a cross-shard control transaction involving S and D (Figure 5.5-❷). The

transaction includes the metadata and a block number, representing a checkpoint for

T in this block number. When the control transaction is committed in both shards

by the on-chain cross-shard mechanism, the init mode ends.

3) Dual Mode: In the dual mode, S begins to transmit T to D. The transmission

among shards is pluggable and can be implemented by one-to-one communication or

gossip mechanisms (Figure 5.5-❸). The nodes in D only accept the table matching

the metadata in the control transaction. Because the download of the whole table

may cost a lot of time, we adopt a pre-copy scheme in which the nodes in D can pre-

download T from S in the normal or init mode and validate it after the commitment

of the control transaction.

To keep the service for T during the dual mode, S continues to process the newcoming

data and query transactions related to T . The new data transactions in S may change

the content of T , thus D should be notified. It can be realized by committing all new

data transactions as cross-shard transactions, however, which slows the service of T

due to the overhead of cross-shard mechanism and blocks the throughput of S and

D when the demand is high. Thus, we adopt an off-chain cross-shard notification

mechanism based on Merkle tree as follows. First, in GriDB, similar to the other

sharding systems [83, 38], each node will be a light node for the other shards and

store the block headers of all shards. It does not hurt the scalability, since the light

nodes do not need to participate in the consensus and each header occupies little

storage space and bandwidth. The notification is in the form of an off-chain message

including a data transaction and its Merkle proof. Any nodes in S can notify D via

gossip mechanism [43]. Based on the notification received, D gets the latest data

transactions for T . For example, as shown in Figure 5.5, a new data transaction for

the migrating table arrives in S and is committed at the 4-th block. Any honest node

84

5.3. System Design

in S can send the new transaction with its Merkle proof in the 4-th block to D for

synchronization of T between S and D.

After a node in D completes downloading, it proposes a cross-shard control trans-

action involving D and S or participates in the consensus on the one proposed by

another node to show that it has downloaded the table successfully. Thus, the trans-

action can be committed if the majority of honest nodes in D confirm that they have

downloaded the migrating table (Figure 5.5-❹). We assume that the off-chain notifi-

cation arrives reliably and without latency here, which will be discussed later. Finally,

the migration is completed and D has full ownership of the migrating table. It means

that the later transactions (e.g., data/query transactions and migration requests) for

the migrating table are processed by D only.

Asynchronous Issues. In the above, we ignore some problems resulting from the

network latency or malicious nodes. Thus, we discuss them and provide some designs

as follows.

Problem 1: In the init mode, due to the transaction latency existing in the blockchain,

i.e., the delay between the time that a node sends a transaction to the network until

the time that the transaction can be confirmed by all (honest) nodes, the metadata

generated by different nodes may be in different versions. Thus, S may be unable

to reach a consensus on the same control transaction. To synchronize the metadata

among nodes in S, GriDB sets a rule as follows. When a node begins to generate the

metadata, it stops processing any new data transactions of T and disagree on blocks

including these transactions during consensus until the init mode ends. Note that a

node still accepts the newly committed blocks and updates its local database state

and the corresponding metadata even if it disagrees them. Moreover, before a cross-

shard control transaction is committed successfully, the nodes in S keep updating

the metadata they generate based on the new block. If there is already the same

control transaction proposed by other nodes waiting to be committed, the node can

participate in its consensus.

85

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Problem 2: In the dual mode, we adopt an off-chain notification mechanism to min-

imize the impact of interruption during migration. However, the off-chain commu-

nication among shards is not reliable thus the notifications may get lost. For the

problem, we adopt the following designs. First, every new data transaction in the

dual mode will be assigned an increasing sequence number before being committed

in S. Thus, if a node in D finds itself missing some transactions, it can directly re-

quest the corresponding notifications from the nodes in S. Second, after the control

transaction is committed (Figure 5.5-❹), S needs to commit a control transaction

including the total number of new data transactions in the dual mode and sends the

control transaction with a Merkle proof to D. Besides, the nodes in D can actively

ask the control transaction. Each node in D begins to process new transactions for

T until it gets the total number of notifications and downloads all data transactions.

Finally, D continues the service of T when the majority of honest nodes in D finish

downloading.

Security Analysis. We first describe the formal definition of the security [21] for

our off-chain live migration as follows.

Definition 4. A migration is secure if achieving safety and liveness despite Byzantine

failure. The safety requires serializable isolation, i.e., the migrating table’s transac-

tions run in serial order during migration, and durability, i.e., the committed transac-

tions will not get lost after migration. The liveness indicates it eventually terminates.

Theorem 6. Our proposed off-chain live migration satisfies the security property as

defined in Definition 2 if the proportion of malicious nodes in each shard is no more

than the fault threshold v.

Proof. During the migration, only one of S and D has full ownership and processes

transactions for the migrating table. The intra-shard consensus guarantees that there

is a serializable order for transactions among nodes in each shard, thus achieving

serializable isolation. For durability, in the init mode, because the honest nodes

86

5.3. System Design

update their metadata before the control transaction is committed, D can download

all data for T that are committed before the dual mode begins. The durability for

transactions that are committed in the dual mode can be guaranteed by the final

control transaction, including their total number in S. Furthermore, the liveness can

be guaranteed since the end conditions for each mode depend on the commitment

of cross-shard transactions whose liveness has been shown to hold under the threat

model of super-majority honest in each shard in any sharding works [82].

If the malicious nodes in S construct a wrong metadata for T , the intra-shard con-

sensus guarantees that the invalid transaction including the wrong metadata would

not be committed. The nodes in D can detect wrong tables and wrong notifications

according to the on-chain metadata and Merkle root, respectively.

Performance Analysis. The time for each migration is at least the latency of two

cross-shard control transactions, one of which denotes the beginning of dual mode and

the other the end. In parallel with the first one, T is transferred between shards. Its

time depends on the adopted communication methods, network status, and network

scale. After the second one, to guarantee that all data transactions are received by

D, there is a control transaction in S and the nodes in D need to download the

data transactions that they miss. The time of the step also depends on the network

environment. In the worst case, if all data transactions during migration are missed

by the majority of honest nodes, the nodes may need some time to download the

transactions they missed. Besides, the service of T may be halted for a time due to

the first and third designs for the asynchronous issues during migration.

87

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

5.4 Design Refinement

5.4.1 Cross-shard Query Efficiency

Although the delegation-based approach in subsection 5.3.2 reduces the complexity

for table transfer in a cross-shard query from O(SN2) (derived from the strawman in

section 4.1) to O(S) where N is the number of nodes in a shard and S is the number

of related shards for the query, transferring a huge table from the sub nodes to the

main node still costs a lot. However, many rows are useless in practice. For example,

for query #5 in subsection 5.6.2 involving tables with millions of rows, the size of its

final result only have single-digit items. GriDB optimizes the transferring of table

among delegates as follows.

We first optimize by applying the unary operators and binary operators involving

tables in the same shard early in the tree of each cross-shard query. Particularly,

each sub node processes all selection operators related to its table and transfers the

processed table to the main node. For example, in Figure 5.4, the selection operation

σnum = 1 is moved to the bottom of the tree and processed by the sub node in Shard

A, reducing the size of Table 1 to be transferred to the main node in Shard B. Because

the execution order of the tree is bottom-up, the main node in Shard B downloads the

part of tables including these temporary outputs, based on which it can continue to

process the next operation. Moreover, some projection operators also can be applied

early similar to the selection operators.

Next, we adopt bloom filter (BF) for each cross-shard operator to filter out unnec-

essary data before transferring tables. BF [71] is a space-efficient probabilistic data

structure used to test whether an element belongs to a set or not. In GriDB, before

downloading the tables for a cross-shard operator, the main node can build a BF for

the target column in its table and send the filter to the sub nodes. The sub nodes

use it to filter their own table before transferring tables to the main node. Thus,

88

5.4. Design Refinement

most useless data are filtered out before being transmitted, reducing communication

overhead.

5.4.2 Load Balancing Scheduler

A critical problem to achieve inter-shard balancing is how to generate a good planning

strategy to distribute the load to shards and how to apply the strategy in a distributed

and safe manner in GriDB.

For a planning strategy, similar to distributed databases [20, 85], GriDB follows a

widely-used greedy planning algorithm [77]. It iterates through the list of tables,

starting with the one with the hottest demand. If the shard currently holding this

table has a load exceeding the average demand, the algorithm migrates the table to

the least load shard. The algorithm is easy to implement and has been proved to be

efficient in many database scenarios [77, 20, 85].

To run the above algorithm in a decentralized manner, GriDB extends it by con-

sidering its execution in the existing sharding blockchains. Particularly, resharding

phase is an important phase during the lifecycle of sharding blockchains [54, 46, 89].

A sharding blockchain proceeds in epochs, where each epoch consists of a reshard-

ing phase followed by multiple intra-consensus rounds. During the resharding phase

of an epoch, a shard will be elected as the reference shard based on a round-robin

rule. In GriDB, the reference shard can act as the load balancing scheduler in the

resharding phase. The leader of every shard computes the demand of each table and

reports it to the reference shard in a cross-shard control transaction via the cross-shard

mechanism. After receiving the demand of every table, the leader of the reference

shard proposes a cross-shard control transaction, involving all shards and including

a new planning strategy in the following epoch, via the cross-shard mechanism. The

cross-shard mechanism can guarantee that the new planning strategy is known by a

majority of honest nodes in every shard. Based on this strategy, the tables can be

89

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

migrated among shards using the approach in subsection 5.3.3.

Security Discussion. The greedy planning algorithm and the table demand com-

puting can be deterministic, thus any node can check the validity of their results.

This guarantees that only the cross-shard control transactions, including valid table

demand or valid planning strategy, can be committed in all the related shards and

the invalid ones will be aborted via the cross-shard mechanism.

5.4.3 Cross-shard Insertion/Deletion/Update.

In GriDB, a data transaction can include a SQL statement for an insert, delete or

update operation with nested subqueries or a multiple-table delete/update opera-

tion [60]. If the nested subquery is cross-shard in the first case or the related tables

belong to multiple shards in the second case, the data transaction involves multiple

shards.

For the first case, a data transaction including the cross-shard subquery result (or its

hash) can be processed by the delegation-based approach in subsection 5.3.2 and com-

mitted as a cross-shard transaction. The transaction involves both the shard for the

inserted/deleted/updated table and the related shards for the nested subquery. For

the second case, a multi-table deletion/update can be considered as deleting/updating

the specified rows in multiple tables based on a query to these related tables. Thus, it

can also be processed as a cross-shard data transaction including query results similar

to the first case. Finally, because the cross-shard mechanism guarantees the atomicity

of cross-shard transactions (see section 2.2), the cross-shard insertion, deletion, and

update take effect in all related shards. Any invalid cross-shard data transactions

(e.g., including wrong subquery results) will be aborted by the cross-shard mecha-

nism.

90

5.5. Discussion

5.4.4 Horizontal/Vertical Table Partition

For each table, besides storing the entire table in one shard as discussed in subsec-

tion 5.2.1, GriDB can be developed into a fine-grained sharding blockchain database

through horizontally or vertically partitioning the table into partitions. The former

allows the table to be partitioned into disjoint sets of rows and the latter disjoint sets

of columns. Load balancing can benefit from this fine-grained sharding for blockchain

database since the database workload can be more evenly distributed to the blockchain

shards.

The partitions of each table are distributed to different shards, thus a table is stored

in multiple shards. For a horizontally partitioned table, each query needs to commit

the same query transaction to all the related shards of the query. For a vertically

partitioned table, each of its partitions can be regarded as an individual table. If a

query involves the columns within a partition or the partitions related to the same

shard, the query involves one shard and can be processed as a query transaction in

the shard. However, if the query involves multiple columns of several partitions from

different shards, it needs to be committed as a cross-shard query transaction.

5.5 Discussion

5.5.1 Permissioned and Permissionless Setting

GriDB can be applied in both permissioned and permissionless scenarios, relying

on the underlying blockchain sharding system. For a permissioned scenario, only a

set of known, identified, but untrusted nodes can serve as blockchain nodes similar

to the permissioned blockchain databases [19, 65]. For a permissionless scenario,

the blockchain database is public and open, and anyone can become a blockchain

node without a specific identity. To resist Sybil attacks caused by the permissionless

91

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

setting, GriDB can use a PoW-based identity generation as described in section 2.2,

which is widely adopted by the permissionless blockchain sharding [46, 89]. Moreover,

to compensate for the consensus overhead of blockchain nodes and avoid the Verifier

Dilemma [55], GriDB will explicitly charge fee for each transaction and reward the

blockchain nodes [73]. We leave an incentive mechanism design for GriDB as our

future work.

5.5.2 General Join

The cross-shard query authentication in subsection 5.3.2 works for equality join, be-

cause the cryptography primitive adopted in GriDB supports set intersection only.

For a general join case such as non-equijoin (i.e., join operation using comparison

operator like >, <, >=, <= with conditions), we can resort to cryptographic tech-

nologies with more general verifiable computing capacity, e.g., Trusted Execution

Environment (TEE) and Succinct Arguments of Knowledge (SNARK), which will be

left as our future works.

5.6 Experimental Evaluation

Implementation. We implement a prototype of GriDB in Go [31] based on

Ethereum [23] and Harmony [32]. We adopt a BFT consensus with BLS multi-

signature [33] as the intra-shard consensus and a library named ate-pairing [37]

for the VSO. The on-chain cross-shard mechanism of GriDB is similar to that of

Monoxide [83]. Particularly, to commit a cross-shard transaction, each of its related

shards needs to validate and commit it. Only if the transaction is committed in the

blockchains of all its related shards, it is regarded as being committed successfully.

This can be checked based on a list of Merkle proofs, each corresponding to a related

shard. Besides, by checking the transaction hash included in every Merkle proof,

92

5.6. Experimental Evaluation

it can be guaranteed that every related shard commits the same transaction. The

optimization designs in section 5.4 are also implemented. To implement a MySQL

interface to GriDB, we adopt a storage-agnostic SQL engine with in-memory table

implementation [18].

Setup. The testbed is composed of 16 machines, each of which has an Intel E5-

2680V4 CPU and 64 GB of RAM, and a 10 Gbps network link. Similar to [89, 46],

to simulate geographically-distributed nodes, we set the bandwidth of all connections

between nodes to 20 Mbps and impose a latency of 100 ms on the links in our testbed.

Baseline. For comparison, we implement a non-sharding blockchain database. This

type of blockchain database does not need to consider the challenge of cross-shard

query and inter-shard balancing because each node stores and processes the whole

database. For a fair comparison, this blockchain database also adopts the signature-

based BFT consensus adopted by GriDB as its underlying consensus. The basic

idea of the non-sharding blockchain database is similar to that of the existing works

such as FalconDB and SEDBD [65, 98] except that they adopt the other variants of

BFT consensus and support some other functionalities (such as indexes). Moreover,

we implement an on-chain sharding blockchain database including shard-cooperation

cross-shard query and stop-restart inter-shard migration based on our strawman sys-

tem in section 4.1.

Workloads. We evaluate the performance of GriDB using TPC-H [81] which is

widely used by the database community. It consists of 8 tables for each dataset and

22 types of SQL queries. Our experiments are run on a database with 16 TPC-H

datasets which are uniformly split across shards. Besides, we add data transactions,

each of which insert, delete or update a new row, for the workload of each dataset. To

simulate the cross-shard query, there is a proportion of query transactions involving

tables in different shards and the proportion is called cross-shard ratio. To simulate

the workload imbalance, similar to [20, 85], we set two imbalanced settings. For low

imbalance, we adopt a Zipfian distribution where two-thirds of the accesses go to

93

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Non-sharding 2 4 8 16 32
 Shard number

0
500

1000
1500
2000
2500

TP
S

Off-chain
3% query
5% query
7% query
100% query

0% cx
50% cx
100% cx

2 4 8 16 32

On-chain

Non-
sharding

2 4 8 16 32
0

25

Figure 5.6: Transaction throughput for GriDB, the on-chain sharding blockchain

database, and the non-sharding blockchain database (cx means cross-shard ratio.)

one-third of the datasets. For high imbalance, 40% of transactions follow the Zipfian

in low imbalance, and the other transactions target 4 datasets initially on the first

shard.

5.6.1 Overall Performance

To evaluate the scalability, we measure the transaction throughput in TPS for the

non-sharding blockchain database and GriDB with varying percentages of query

transactions and cross-shard ratios. We deploy 30 nodes for each shard. Figure 5.7

shows that the measured TPS of GriDB increases linearly with the number of shards

and decreases when there are more cross-shard query transactions in the workload.

It is because the data transactions only involve one shard, and the verification is

simple. However, a query transaction is computationally-intensive (it requires 0.17 ∼

2.38 seconds even in a local database as discussed in subsection 5.6.2) and needs

the delegation-based procedure for cross-shard verification, thus, committing query

transactions costs more. Moreover, a query involving more shards causes more table

transfers and more complex proof generation among the delegated nodes, which will

be further studied in subsection 5.6.2. In comparison with GriDB, the on-chain

sharding blockchain database has a similar throughput when there are no cross-shard

94

5.6. Experimental Evaluation

Non-sharding 2 4 8 16 32
 Shard number

0
500

1000
1500
2000
2500

TP
S

Off-chain
3% query
5% query
7% query
100% query

0% cx
50% cx
100% cx

2 4 8 16 32

On-chain

Non-
sharding

2 4 8 16 32
0

25

Figure 5.7: Transaction throughput for GriDB, the on-chain sharding blockchain

database, and the non-sharding blockchain database (cx means cross-shard ratio.)

queries. However, its throughput drops to nearly 0 when 50% or 100% of queries

are cross-shard. It is because, for the on-chain one, the table transfer among shards

caused by cross-shard queries can result in serious network blocked.

To evaluate the performance of GriDB for cross-shard data transactions, we pack

cross-shard queries (used to delete the cross-shard query results) into cross-shard

data transactions. According to Figure 5.7, GriDB’s throughput for cross-shard

data transactions is similar to that for cross-shard query transactions. It is because,

as described in subsection 5.2.1, GriDB implements a delete statement by marking

old data as invalid. Except for reaching consensus on cross-shard query results like

a cross-shard query transaction, a cross-shard data transaction needs to include the

information of marking the results as invalid, and each node needs to delete the results

from its in-memory tables. However, these additional overheads are negligible. Thus,

the expense of cross-shard data transactions and cross-shard query transactions are

similar.

We also evaluate the storage overhead per node after loading all tables in the non-

sharding blockchain database and GriDB with varying shard numbers. The results

are given in Figure 5.8. Because each row is committed in the form of a data transac-

95

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Non-sharding 2 4 8 16
Shard number

0

10

20

30

40
St

or
ag

e
ov

er
he

ad
 (G

b)

raw data
transaction

header
public key

Non-
sharding

2 4 8 16
0.00
0.05
0.10

Figure 5.8: Storage overhead per node for GriDB and the non-sharding blockchain

database.

tion and the data transactions are packed into blocks, loading the tables will introduce

the block-related data including transaction-related and header-related data. From

Figure 5.8, we can observe that, first, as the number of shards increases, the storage

overhead for each node is reduced. Second, the transaction-related data cost half stor-

age compared with the raw data. Third, compared with the other data, the storage

of headers can be ignored. Forth, because the largest table in the evaluation consists

of 6 million rows, the public key size of verifiable set operation (VSO) is about 0.76

GB. We regard the storage overhead caused by the public key as acceptable in the

case of tables with millions of rows since it is considerably less than the recommended

storage space of most blockchain nodes (such as 2 TB in Ethereum [25]) nowadays.

Additionally, the storage of the on-chain sharding database is the same as that of

GriDB.

5.6.2 Performance of Cross-shard Query

We evaluate the performance of cross-shard queries. For comparison, we adopt two

approaches providing the same functionality as our cross-shard query. These ap-

96

5.6. Experimental Evaluation

proaches are motivated by two previous works, i.e., vSQL [94] and libsnark [75],

which can support arbitrary SQL queries based on interactive proof and SNARKs,

respectively. Depending on either of these two works, any nodes can directly provide

the result of a cross-shard query and a proof to the clients without consensus. We also

evaluate the performance of the local computation for SQL in our nodes, based on

MySQL. The server time is the time required for the server to evaluate the query and

produce a valid proof and the client time is the time for the client to verify the proof.

In GriDB, the server time is the duration from Line 2 to Line 6 in algorithm 1, and

the client time is the duration of Line 7 in algorithm 1.

As a representative example, we pick the query #19, #6, #5, #2 in TPC-H and the

results are given in Table 5.1. These queries include most SQL types, e.g., join, range,

min and nested query. According to Table 5.1, the server time of GriDB is orders of

magnitude less than that of vSQL and SNARKs while the client time is similar. For

the server time, it is because our cross-shard query only constructs the expensive ADS

for a few cross-shard operators while the security of the other operations depends on

the intra-shard consensus. For the client time, it is because the clients of GriDB

only need to check whether their query transactions are confirmed or not via SPV.

Note that the evaluation is based on the worst case, which means the tables for each

cross-shard query are all located in different shards.

The time cost of each step for the queries in GriDB is summarized in Table 5.2. The

results shows that the three steps occupy most of the time, matching the performance

analysis in subsection 5.3.2. Furthermore, from Table 5.2, we have the following

observations. First, according to the result of MySQL in Table 5.1, query #19 is

the most complex one and the nodes spend more time on validating it during the

intra-shard consensus, thus its confirmation latency is the most. Then, the proof

generation and table transfer of query #5 is the most, because the query needs to

join six tables, which results in six cross-shard operators in the worst case. Finally,

the time cost of query #6 is the least, because it is a simple 3-dimensional range

97

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

0

500

0.0

2.5

0

5

6 × 103 6 × 104 6 × 105 6 × 106

Table size

0.0

0.2

Ti
m

e
(s

)

PG TT CL The others

(a) Table size

0

500

0.0

2.5

0

5

1 2 3 4 5 6
Shard number

0.0

0.2

Ti
m

e
(s

)

PG TT CL The others

(b) Number of the related shards

Figure 5.9: Performance for query #5 with different table size and number of related

shards in GriDB.

query followed by an aggregation for a single table.

We also evaluate the performance of the cross-shard query of GriDB with varying

table size and number of related shards. We scale the number of rows in the largest

participating table in query #5 from 6 × 103 to 6 × 106 and distribute its partici-

pating tables to 1 ∼ 6 shards. Figure 5.9(a) and Figure 5.9(b) show that the time

cost is significantly reduced when the participating tables are smaller or there are

fewer related shards. It is because the complexity of proof generation depends on

the participating table size and the number of cross-shard operators, matching the

analysis in subsection 5.3.2.

5.6.3 Performance of Inter-shard Balancing

We evaluate the throughput during migration via the off-chain live migration in

GriDB and the stop-restart approach in the on-chain sharding blockchain database

98

5.6. Experimental Evaluation

750
1000

(a) Low skewness

400

600

800
(b) High skewness

0 200 400 600 800 1000

750
1000

Tr
an

sa
ct

io
n

pe
r s

ec
on

d

0 200 400 600 800 1000
Time (s)

400

600

800

Stop-restart GriDB

(a) Fluctuation of throughput during migration.

Migration time (s), TPS Low skewness High skewness

Stop-restart 770, 981 10678, 623

GriDB 96, 1012 96, 700

(b) Statistics on migration time and throughput.

Figure 5.10: Transaction throughput during inter-shard migration with varying skew-

ness.

with various skewed workloads and the results are given in Figure 5.10. The process

includes 48 migrations. After migration, the throughput increases by 1.40× for the

low skewness and 1.37× for the high skewness. It shows the load balancing among

shards is helpful for the performance of sharding blockchain database. The off-chain

live migration can shorten the migration time by nearly 87% compared with the stop-

restart approach for the low skewness and 99% for the high skewness. Furthermore,

the performance degradation in GriDB is minimal during migration. It is because,

in GriDB, the off-chain manner significantly reduces the number of on-chain trans-

actions, avoiding the massive overhead for consensus, and the dual mode minimizes

service interruption during migration using the cross-shard off-chain notification.

Figure 5.11 plots the impact of the table size on the migration time, the confirmation

latency of transactions for the migrating table and the other tables in the shards

involved. Figure 5.11(a) shows that it costs more time to migrate a bigger table for

99

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

6 × 103 6 × 104 6 × 105 6 × 106

Table size
0

50

100

150

200

M
ig

ra
tio

n
tim

e
(s

) Stop-restart
GriDB

(a) Migration time

6 × 103 6 × 104 6 × 105 6 × 106

Table size
0

50

100

150

200

Co
nf

irm
at

io
n

la
te

nc
y

(s
)

Stop-restart
GriDB
No Migration

(b) Latency of txs for the mi-

grating table

6 × 103 6 × 104 6 × 105 6 × 106

Table size
0

20

40

60

80

Co
nf

irm
at

io
n

la
te

nc
y

(s
)

Stop-restart
GriDB
No Migration

(c) Latency of txs for the

other tables

Figure 5.11: Inter-shard migration for tables with varying size.

both approaches. However, the migration time in GriDB is less than that in the

stop-restart approach because there are only two on-chain transactions in GriDB,

and a bigger table only requires more transmission time rather than more consensus

rounds like the stop-restart approach. According to Figure 5.11(b) and Figure 5.11(c),

in GriDB, the confirmation latency for the tables during the migration is similar to

that during normal mode (i.e., “No Migration” in the figures). Furthermore, the

latency of transactions in the migrating table during migration is more than the

latency during normal mode. It is because, in the dual mode, they are required to

notify the destination shard.

100

5.6. Experimental Evaluation

Algorithm 1: Cross-Shard Query Authentication

Input: query request Q involving tables in a set of shards S

Output: query result R, verification object V O

1 Delegates M and S are selected from S

2 M downloads the related tables from S

3 M evaluates query result R and get proof Υ via genProof(Q)

4 M proposes a cross-shard query transaction txn involving S and including R and

Υ

5 if validateCx(S, txn) == True then

6 V O ← the list of SPV proofs in S for txn

7 Function genProof(Q):

8 for cross-shard operator op ∈ Q do

9 Set Ci and Cj as the columns involved by op and pk as the public key

10 (C∗, π)← prove(Ci, Cj, pk)

11 Get bmi and bmj based on Ci, Cj and C∗

12 Add ⟨acc(Ci), acc(Cj), π, bmi, bmj⟩ to Υ

13 return Υ

14 Function validateCx(S, txn):

15 for shard s ∈ S do

16 if Υ or R is invalid then

17 return False

18 txn is committed in the blockchain of s

19 return True

101

Chapter 5. GriDB: Scaling Blockchain Database via Sharding and Off-Chain
Cross-Shard Mechanism

Table 5.1: Comparison of server and client times for evaluating queries using different

approaches (The results for vSQL and SNARKs are provided in [94].)

vSQL SNARKs GriDB MySQL

Query Server Client Server Client Server Client

#19 4892s 162ms 196000s 6ms 41.14s 221ms 2.38s

#6 3851s 129ms 19000s 6ms 4.93s 221ms 1.44s

#5 5069s 398ms 615000s 110ms 490.33s 221ms 1.95s

#2 2346s 508ms 58000s 40ms 56.86s 222ms 0.17s

Table 5.2: Time of each step for queries in GriDB (CL: Confirmation latency, PG:

Proof generation, TT: Table transfer.)

Query CL PG TT The others

#19 4.38s 36.74s 4.04ms 10ms

#6 3.44s 1.44s 0s 5ms

#5 3.95s 483.01s 3.2s 100ms

#2 2.17s 54.46s 139.57ms 80ms

102

Chapter 6

Conclusions and Suggestions for

Future Research

6.1 Work Summary

As a prerequisite that blockchain can be broadly applied and provide ubiquitous

service, scalability is one of the essential properties. Unfortunately, most of the

existing popular blockchain systems suffer from poor scalability. Although sharding

is one of the most promising and popular ones to improve blockchain scalability,

it suffers from cross-shard transactions and transaction conflict for smart contracts,

and is difficult to be applied in the area of blockchain database. To solve these three

challenges for blockchain sharding, this report is mainly composed of three following

parts.

• We present Pyramid, a layered sharding blockchain system that achieves both

linear scalability and efficient cross-shard transactions processing. Pyramid

allows shards to overlap for a layered structure. The shards in the high layer

(i.e., b-shards) can validate and process the cross-shard transactions involving

103

Chapter 6. Conclusions and Suggestions for Future Research

the shards in the low layer (i.e., i-shards). We propose a cooperative cross-shard

consensus to enable b-shards to commit the cross-shard transactions without

conflict and with the guarantee of security. Based on our experiments, Pyramid

improves the transaction throughput by 1.5 ∼ 3.2X against the traditional

sharding works and achieves about 3821 TPS when there are 20 shards.

• We present Prophet, the first sharding blockchain with deterministic order-

ing for conflict-free transactions. Prophet achieves conflict-free by introduc-

ing a layer-2 sharding architecture on top of the existing shards of blockchain

sharding. The running of the architecture depends on the cooperation and

supervision among reconnaissance shards, sequence shard, and worker shards.

Prophet also features several improved designs for ordering efficiency, such

as fine-grained ordering, asynchronous correction, parallel execution, and trust-

worthy incentive. Experimental evaluations show that Prophet boosts the

throughput of 3.11× (i.e., 1203 TPS) compared with previous sharding works.

• We present GriDB, a sharding blockchain database that achieves a few thou-

sand transactions per second on thousands of nodes in a Byzantine environment

while supporting the functionalities of data insert/update, relational queries,

and database management. Delegation-based cross-shard query and off-chain

live migration are key contributions in GriDB. They offer a database layer of

abstraction on top of the existing sharding blockchain and hide the complexity

of the data and workload partition in the underlying sharding blockchain from

the clients. GriDB also includes some database key components, including

query optimization, and load scheduler.

104

6.2. Future Plan

6.2 Future Plan

Blockchain’s decentralization, security, and scalability have been well studied in re-

cent years, and many potential solutions are being trialed in the running blockchain

systems. However, blockchain researchers or companies still have a common and lin-

gering question, i.e., how to use blockchain to improve people’s lives? Most of the

existing popular blockchain applications, such as crypto games, gambles, and non-

fungible tokens (NFT), only have played a role in entertainment. To broaden the

application of blockchain and reform industries, we will conduct my future research

on the following aspects.

First, in database management, traditional distributed databases are upgraded to

blockchain databases. They transact and record data via blockchains and construct an

abstract database layer supporting various query functionalities on top of blockchains,

which endow the distributed databases with immutability and traceability. Motivated

by them, we aim to develop a blockchain knowledge graph to build a trustworthy

infrastructure for the semantic web and enable everyone to be both data creator and

consumer in Web 3.0. In the platform, every data owner can share its semantic data

to construct a global and distributed knowledge graph while collectively maintaining

an immutable authenticated data structure through blockchain for data integrity and

query verifiability in the knowledge graph.

Federated Learning (FL) is an emerging approach to overcome the challenges of pri-

vacy and resource constraints in distributed learning. In FL, model training is dis-

tributed across multiple devices or nodes that collaboratively train a shared global

model, while keeping the raw data localised on the devices. This is achieved by ex-

changing model updates, such as gradients or model parameters, rather than sharing

sensitive data. Such a decentralised approach ensures privacy and reduces commu-

nication overhead compared to sending raw data to a central server. However, as

recent work has identified various adversarial attacks on FL, such as data poisoning

105

Chapter 6. Conclusions and Suggestions for Future Research

and model poisoning, FL accountability, i.e. logging and auditing of the data stream

and model training process, is critical and contributes to attribution. Accountability

requires tracking model updates, verifying the integrity of participants’ contributions,

and identifying malicious or faulty nodes. However, it is challenging to implement

a trusted party for logging and auditing in the decentralised and Byzantine environ-

ment of FL, where participants may act maliciously or fail arbitrarily. In addition,

FL systems face scalability issues due to the massive amount of intermediate learning

data (e.g., gradients, weights, and updates) generated during training. Therefore,

we aim to develop a blockchain-based logging and auditing platform for FL to es-

tablish tamper-proof and distributed accountability. Blockchain’s decentralised and

immutable ledger can serve as a reliable mechanism to log model updates, detect

anomalies, and ensure the integrity of the training process. Most importantly, the

platform will address the challenges of massive but necessary intermediate learning

data and limited functional smart contracts in existing blockchain systems, possibly

through off-chain storage solutions or enhanced smart contract designs tailored to

FL-specific requirements.

Third, digital government is transforming economic and social life by utilizing digital

technology to improve the efficiency and effectiveness of service delivery in the public

sector. Blockchain has shown its great potential in the digital government such as

blockchain electronic invoices for taxation in Shenzhen. However, the automation

level is low, which means the blockchain only provides the functionality of record-

ing data and the people still need to process government affairs manually. Thus,

considering that smart contracts can execute the predefined logic automatically and

mandatorily, we aim to design smart contract language design for law expression and

engine design for law enforcement. Moreover, the technology will become the corner-

stone to construct decentralized autonomous organizations (DAO) in metaverse.

106

References

[1] Daniel J. Abadi and Jose M. Faleiro. An overview of deterministic database

systems. Commun. ACM, 61(9):78–88, 2018.

[2] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and

George Danezis. Chainspace: A sharded smart contracts platform. CoRR,

abs/1708.03778, 2017.

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. SharPer:

Sharding Permissioned Blockchains Over Network Clusters, page 76–88. Associ-

ation for Computing Machinery, 2021.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-

ledger fabric: A distributed operating system for permissioned blockchains. In

Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18. Association for

Computing Machinery, 2018.

[5] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide

and scale: Formalization of distributed ledger sharding protocols, 2019.

107

References

[6] Dimitri P Bertsekas et al. Dynamic programming and optimal control. Belmont,

MA: Athena Scientific, 2011.

[7] George Bissias and Brian N. Levine. Bobtail: Improved blockchain security with

low-variance mining. In NDSS Symposium, 2022.

[8] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable de-

lay functions. In Annual International Cryptology Conference, pages 757–788.

Springer, 2018.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,

pages 514–532. Springer Berlin Heidelberg, 2001.

[10] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos.

Verifiable set operations over outsourced databases. In Hugo Krawczyk, editor,

Public-Key Cryptography – PKC 2014, pages 113–130. Springer Berlin Heidel-

berg, 2014.

[11] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Pro-

ceedings of the Third Symposium on Operating Systems Design and Implemen-

tation (OSDI 99). USENIX Association, 1999.

[12] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange. Un-

derstanding ethereum via graph analysis. In IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018.

[13] Kristina Chodorow. Scaling MongoDB: Sharding, Cluster Setup, and Adminis-

tration. O’Reilly Media, Inc., 2011.

[14] CoinDesk. Soaring defi usage drives ethereum con-

tract calls to new record. https://www.coindesk.com/

soaring-defi-usage-drives-ethereum-contract-calls-to-new-record.

108

https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record

References

[15] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies.

CoRR, abs/1505.06895, 2015.

[16] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian

Lin, and Beng Chin Ooi. Towards scaling blockchain systems via sharding.

In Proceedings of the 2019 International Conference on Management of Data,

SIGMOD ’19. ACM, 2019.

[17] Azure SQL Database. Scaling out with azure sql database, 2022.

[18] DoltHub. go-mysql-server. https://github.com/dolthub/go-mysql-server.

[19] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann,

and Ravi Ramamurthy. Blockchaindb: A shared database on blockchains.

12(11):1597–1609, July 2019.

[20] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant

Agrawal, and Amr El Abbadi. Squall: Fine-grained live reconfiguration for par-

titioned main memory databases. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, page 299–313.

Association for Computing Machinery, 2015.

[21] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr:

Live migration in shared nothing databases for elastic cloud platforms. In Pro-

ceedings of the 2011 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’11, page 301–312. Association for Computing Machinery, 2011.

[22] Ethereum. Evm state transition tool. https://github.com/ethereum/

go-ethereum/tree/master/cmd/evm.

[23] Ethereum. Go ethereum. https://github.com/ethereum/go-ethereum.

[24] Ethereum. Shard chains. https://ethereum.org/en/eth2/shard-chains/.

109

https://github.com/dolthub/go-mysql-server
https://github.com/ethereum/go-ethereum/tree/master/cmd/evm
https://github.com/ethereum/go-ethereum/tree/master/cmd/evm
https://github.com/ethereum/go-ethereum
https://ethereum.org/en/eth2/shard-chains/

References

[25] Ethereum. Hardware requirements for go-ethereum, 2022.

[26] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. High performance

transactions via early write visibility. Proc. VLDB Endow., 10(5):613–624, 2017.

[27] Kristoffer Francisco and David Swanson. The supply chain has no clothes: Tech-

nology adoption of blockchain for supply chain transparency. Logistics, 2(1):2,

2018.

[28] Emmanuelle Ganne. Can Blockchain revolutionize international trade? World

Trade Organization Geneva, 2018.

[29] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and Tianwen

Wang. Hybrid blockchain database systems: Design and performance. Proc.

VLDB Endow., 15(5):1092–1104, 2022.

[30] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Pro-

ceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, page

51–68. Association for Computing Machinery, 2017.

[31] Google. The go programming language. https://golang.org/.

[32] Harmony. Harmony. https://github.com/harmony-one/harmony.

[33] Harmony. Harmony consensus protocol design. https://github.com/

harmony-one/harmony/tree/main/consensus.

[34] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse

attacks on Bitcoin’s Peer-to-Peer network. In 24th USENIX Security Symposium

(USENIX Security 15), pages 129–144. USENIX Association, August 2015.

[35] Jelle Hellings and Mohammad Sadoghi. Byshard: Sharding in a byzantine envi-

ronment. Proc. VLDB Endow., 14(11):2230–2243, 2021.

110

https://golang.org/
https://github.com/harmony-one/harmony
https://github.com/harmony-one/harmony/tree/main/consensus
https://github.com/harmony-one/harmony/tree/main/consensus

References

[36] Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert Weismantel. Non-

linear Integer Programming, pages 561–618. Springer Berlin Heidelberg, 2010.

[37] Herumi. High-speed software implementation of the optimal ate pairing over

barreto-naehrig curves. https://github.com/herumi/ate-pairing.

[38] Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. Pyramid: A layered sharding

blockchain system. In IEEE INFOCOM 2021 - IEEE Conference on Computer

Communications, pages 1–10, 2021.

[39] Huawei Huang, Yue Lin, and Zibin Zheng. Account migration across blockchain

shards using fine-tuned lock mechanism. In IEEE International Conference on

Computer Communications (INFOCOM), 2024.

[40] Huawei Huang, Xiaowen Peng, Jianzhou Zhan, Shenyang Zhang, Yue Lin, Zibin

Zheng, and Song Guo. Brokerchain: A cross-shard blockchain protocol for

account/balance-based state sharding. In IEEE International Conference on

Computer Communications (INFOCOM), pages 1968–1977, 2022.

[41] IBM. Blockchain for supply chain solutions. https://www.ibm.com/

blockchain/industries/supply-chain.

[42] Shan Jiang, Jiannong Cao, Cheung Leong Tung, Yuqin Wang, and Shan Wang.

Sharon: Secure and efficient cross-shard transaction processing via shard rota-

tion. In IEEE International Conference on Computer Communications (INFO-

COM), 2024.

[43] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor

spreading. In Proceedings 41st Annual Symposium on Foundations of Computer

Science, pages 565–574, 2000.

[44] Yeonsoo Kim, Seongho Jeong, Kamil Jezek, Bernd Burgstaller, and Bernhard

Scholz. An off-the-chain execution environment for scalable testing and profiling

111

https://github.com/herumi/ate-pairing
https://www.ibm.com/blockchain/industries/supply-chain
https://www.ibm.com/blockchain/industries/supply-chain

References

of smart contracts. In 2021 USENIX Annual Technical Conference (USENIX

ATC 21), pages 565–579. USENIX Association, July 2021.

[45] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Li-

nus Gasser, and Bryan Ford. Enhancing bitcoin security and performance with

strong consistency via collective signing. In 25th USENIX Security Symposium

(USENIX Security 16), pages 279–296. USENIX Association, August 2016.

[46] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford.

Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018

IEEE Symposium on Security and Privacy (SP), 2018.

[47] Laphou Lao, Xiaohai Dai, Bin Xiao, and Songtao Guo. G-pbft: A location-based

and scalable consensus protocol for iot-blockchain applications. In 2020 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages

664–673, 2020.

[48] Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan, Yubin Xia, Sebastian Angel,

and Haibo Chen. Bringing decentralized search to decentralized services. In 15th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

21), pages 331–347. USENIX Association, July 2021.

[49] Jinwen Liang, Zheng Qin, Sheng Xiao, Lu Ou, and Xiaodong Lin. Efficient

and secure decision tree classification for cloud-assisted online diagnosis ser-

vices. IEEE Transactions on Dependable and Secure Computing, 18(4):1632–

1644, 2021.

[50] libp2p. The go implementation of the libp2p networking stack. https://github.

com/libp2p/go-libp2p.

[51] Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, and Shan-Hung Wu.

Don’t look back, look into the future: Prescient data partitioning and migra-

tion for deterministic database systems. In Proceedings of the 2021 International

112

https://github.com/libp2p/go-libp2p
https://github.com/libp2p/go-libp2p

References

Conference on Management of Data, SIGMOD/PODS ’21, page 1156–1168. As-

sociation for Computing Machinery, 2021.

[52] Mengting Liu, F. Richard Yu, Yinglei Teng, Victor C. M. Leung, and Mei Song.

Performance optimization for blockchain-enabled industrial internet of things

(iiot) systems: A deep reinforcement learning approach. IEEE Transactions on

Industrial Informatics, 15(6):3559–3570, 2019.

[53] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A fast and practical

deterministic oltp database. Proc. VLDB Endow., 13(12):2047–2060, 2020.

[54] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and

Prateek Saxena. A secure sharding protocol for open blockchains. In Proceed-

ings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security (CCS 16). ACM, 2016.

[55] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying

incentives in the consensus computer. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, page 706–719,

New York, NY, USA, 2015. Association for Computing Machinery.

[56] Abdullah Al Mamun, Feng Yan, and Dongfang Zhao. Baash: Lightweight, effi-

cient, and reliable blockchain-as-a-service for hpc systems. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’21. Association for Computing Machinery, 2021.

[57] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions.

In 40th Annual Symposium on Foundations of Computer Science (Cat. No.

99CB37039), pages 120–130. IEEE, 1999.

[58] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Pro-

ceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-

113

References

tions Security, CCS ’21, page 1686–1699. Association for Computing Machinery,

2021.

[59] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and

integrity in outsourced databases. ACM Trans. Storage, 2(2):107–138, 2006.

[60] MySQL. Mysql 8.0 reference. https://dev.mysql.com/doc/refman/8.0/en/

sql-data-manipulation-statements.html.

[61] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[62] L. N. Nguyen, T. D. T. Nguyen, T. N. Dinh, and M. T. Thai. Optchain: Optimal

transactions placement for scalable blockchain sharding. In 2019 IEEE 39th In-

ternational Conference on Distributed Computing Systems (ICDCS), pages 525–

535, 2019.

[63] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Op-

timal verification of operations on dynamic sets. In Phillip Rogaway, editor,

Advances in Cryptology – CRYPTO 2011, pages 91–110. Springer Berlin Heidel-

berg, 2011.

[64] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao. An efficient query scheme for

hybrid storage blockchains based on merkle semantic trie. In 2020 International

Symposium on Reliable Distributed Systems (SRDS), pages 51–60, 2020.

[65] Yanqing Peng, Min Du, Feifei Li, Raymond Cheng, and Dawn Song. Falcondb:

Blockchain-based collaborative database. In Proceedings of the 2020 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’20, page

637–652. Association for Computing Machinery, 2020.

[66] George P̂ırlea, Amrit Kumar, and Ilya Sergey. Practical Smart Contract Sharding

with Ownership and Commutativity Analysis, page 1327–1341. Association for

Computing Machinery, 2021.

114

https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html

References

[67] Litecoin project development team. Litecoin - open source p2p digital currency.

https://litecoin.org/.

[68] Xiaodong Qi. S-store: A scalable data store towards permissioned blockchain

sharding. In IEEE International Conference on Computer Communications (IN-

FOCOM), pages 1978–1987, 2022.

[69] Xiaodong Qi and Yi Li. Lightcross: Sharding with lightweight cross-shard ex-

ecution for smart contracts. In IEEE International Conference on Computer

Communications (INFOCOM), 2024.

[70] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill, Inc., 2nd edition, 2000.

[71] Sukriti Ramesh, Odysseas Papapetrou, and Wolf Siberski. Optimizing dis-

tributed joins with bloom filters. In Distributed Computing and Internet Tech-

nology, pages 145–156. Springer Berlin Heidelberg, 2009.

[72] BitMEX Research. Bitcoin vs ethereum – blockchain size. https://blog.

bitmex.com/bitcoin-vs-ethereum-blockchain-size/.

[73] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin

Ooi, and Meihui Zhang. Fine-grained, secure and efficient data provenance on

blockchain systems. Proc. VLDB Endow., 12(9):975–988, may 2019.

[74] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang

Chen, Qian Lin, and Beng Chin Ooi. Blockchains vs. distributed databases:

Dichotomy and fusion. In Proceedings of the 2021 International Conference on

Management of Data, SIGMOD ’21, page 1504–1517, New York, NY, USA, 2021.

Association for Computing Machinery.

[75] SCIPRLab. libsnark: a c++ library for zksnark proofs. https://github.com/

scipr-lab/libsnark.

115

https://litecoin.org/
https://blog.bitmex.com/bitcoin-vs-ethereum-blockchain-size/
https://blog.bitmex.com/bitcoin-vs-ethereum-blockchain-size/
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

References

[76] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi, and B. Ford. Keeping authorities ”honest or bust” with decentralized

witness cosigning. In 2016 IEEE Symposium on Security and Privacy (SP), pages

526–545, 2016.

[77] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,

Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-

grained elastic partitioning for distributed transaction processing systems. Proc.

VLDB Endow., 8(3):245–256, November 2014.

[78] Y. Tao, B. Li, J. Jiang, H. C. Ng, and B. Li C. Wang. On sharding open

blockchains with smart contracts. In 2020 IEEE 36th International Conference

on Data Engineering (ICDE), 2020.

[79] Zilliqa team. Zilliqa. https://www.zilliqa.com/.

[80] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned

database systems. In Proceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’12, page 1–12. Association for Com-

puting Machinery, 2012.

[81] TPC. Tpc-h benchmark. http://www.tpc.org/tpch/.

[82] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on

blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial

Technologies. ACM, 2019.

[83] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asyn-

chronous consensus zones. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19). USENIX Association, 2019.

[84] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. Non-fungible token (nft):

Overview, evaluation, opportunities and challenges, 2021.

116

https://www.zilliqa.com/
http://www.tpc.org/tpch/

References

[85] Xingda Wei, Sijie Shen, Rong Chen, and Haibo Chen. Replication-driven live

reconfiguration for fast distributed transaction processing. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), pages 335–347. USENIX As-

sociation, July 2017.

[86] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik

Harz, and William J. Knottenbelt. Sok: Decentralized finance (defi), 2021.

[87] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 2014.

[88] Cheng Xu, Ce Zhang, and Jianliang Xu. Vchain: Enabling verifiable boolean

range queries over blockchain databases. In Proceedings of the 2019 International

Conference on Management of Data, SIGMOD ’19, page 141–158. Association

for Computing Machinery, 2019.

[89] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling

blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS 18). ACM, 2018.

[90] Bo Zhang, Boxiang Dong, and Wendy Hui Wang. Integrity authentication for

sql query evaluation on outsourced databases: A survey. IEEE Transactions on

Knowledge and Data Engineering, 33(4):1601–1618, 2021.

[91] Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi. Gem2-tree:

A gas-efficient structure for authenticated range queries in blockchain. In 2019

IEEE 35th International Conference on Data Engineering (ICDE), pages 842–

853, 2019.

[92] Jianting Zhang, Wuhui Chen, Sifu Luo, Tiantian Gong, Zicong Hong, and Aniket

Kate. Front-running attack in sharded blockchains and fair cross-shard consen-

sus. In NDSS, 2024.

117

References

[93] Jianting Zhang, Zicong Hong, Xiaoyu Qiu, Yufeng Zhan, Song Guo, and Wuhui

Chen. Skychain: A deep reinforcement learning-empowered dynamic blockchain

sharding system. In 49th International Conference on Parallel Processing - ICPP,

ICPP ’20. Association for Computing Machinery, 2020.

[94] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic

outsourced databases. In 2017 IEEE Symposium on Security and Privacy (SP),

pages 863–880, 2017.

[95] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. Integridb:

Verifiable sql for outsourced databases. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, CCS ’15, page

1480–1491. Association for Computing Machinery, 2015.

[96] Peilin Zheng, Zibin Zheng, and Hong-ning Dai. Xblock-eth: Extracting and

exploring blockchain data from ethereum. Working Report, 2019.

[97] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-ning Dai. Xblock-eth: Ex-

tracting and exploring blockchain data from ethereum. IEEE Open Journal of

the Computer Society, 1:95–106, 2020.

[98] Yanchao Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, and Ying Yan. Sebdb:

Semantics empowered blockchain database. In 2019 IEEE 35th International

Conference on Data Engineering (ICDE), pages 1820–1831, 2019.

118

	Abstract
	Publications arising from the thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background
	Preliminary for Blockchain
	Preliminary for Blockchain Sharding
	Related Work for Blockchain Sharding

	Pyramid: A Layered Sharding Blockchain System
	The Pyramid Model
	Threat & Network Model
	Transaction Model
	Layered Sharding Model

	Architecture
	Architecture Overview
	Layered Sharding Formation
	Cross-shard Block Design
	Cooperative Cross-shard Consensus
	Conflicting Detection
	Relay Mechanism
	General Case
	Extension to UTXO model

	Analysis
	Security Analysis
	Performance Analysis

	Evaluation
	Implementation
	Experimental Setup
	Transaction Throughput & Latency
	Storage Overhead
	Security
	Sharding Strategy
	Workload

	Prophet: Conflict-Free Sharding Blockchain via Byzantine-Tolerant Deterministic Ordering
	Strawman: An Ideal Cross-Shard Mechanism
	Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding
	System Model & Threat Model
	Motivation & Overview
	Phase 1: Pre-execution
	Phase 2: Sequence
	Phase 3: Execution
	Phase 4: Correction
	Discussion

	Design Refinement
	Parallelization of Sequencing and Execution
	Fine-grained Ordering
	Asynchronous Correction
	Parallel Pre-Execution

	Analysis
	Implementation
	Evaluation
	Performance
	Micro-benchmark

	GriDB: Scaling Blockchain Database via Sharding and Off-Chain Cross-Shard Mechanism
	System Model
	GriDB Overview
	System Overview
	Challenges

	System Design
	Strawman
	Cross-Shard Query Authentication
	Inter-Shard Load Balancing

	Design Refinement
	Cross-shard Query Efficiency
	Load Balancing Scheduler
	Cross-shard Insertion/Deletion/Update.
	Horizontal/Vertical Table Partition

	Discussion
	Permissioned and Permissionless Setting
	General Join

	Experimental Evaluation
	Overall Performance
	Performance of Cross-shard Query
	Performance of Inter-shard Balancing

	Conclusions and Suggestions for Future Research
	Work Summary
	Future Plan

	References

