
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



SUPPLY-BASED COOLING 

DISTRIBUTION MANAGEMENT OF 

AIR-CONDITIONING SYSTEMS FOR 

DEMAND LIMITING AND BUILDING-

GRID INTERACTION 

DAI Mingkun 

PhD 

The Hong Kong Polytechnic University 

2025 



 

 

The Hong Kong Polytechnic University 

Department of Building Environment and Energy Engineering 

 

SUPPLY-BASED COOLING 

DISTRIBUTION MANAGEMENT OF 

AIR-CONDITIONING SYSTEMS FOR 

DEMAND LIMITING AND BUILDING-

GRID INTERACTION 

 

DAI Mingkun 

 

A thesis submitted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy 

 

Aug 2024



i 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no materials previously published or written, nor material 

that has been accepted for the award of any other degree or diploma, except where 

due acknowledgement has been made in the text. 

(Signed) 

 DAI Mingkun (Name of student) 



ii 

 

ABSTRACT 

Abstract of thesis entitled:  Supply-based cooling distribution management of air-
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at The Hong Kong Polytechnic University in August, 2024 

 

Energy and environmental issues are critical concerns that have attracted great 

attention in recent decades. The building energy consumption plays a significant role 

in the broader context of these issues, given the increasing demand for commercial 

spaces and the need for sustainable development alongside urbanization and 

industrialization. Air-conditioning systems account for a substantial portion of a 

building's energy usage, making their efficient control vital for overall energy 

performance. Proper control strategies have the potential to unlock significant energy 

savings and provide energy flexibility services to power grids.  

Conventional process control utilized in building central air-conditioning systems can 

be viewed as demand-based feedback control. In this situation, the control of cooling 

distribution in the air-conditioning system depends on the individual cooling demands 

of each air-conditioned space. However, demand-based control fails to effectively 

manage the cooling distribution when cooling supply is limited. The limitations of 

conventional demand-based control become evident in the following scenarios: First, 

air-conditioning systems in commercial buildings are usually switched on in advance 

to precool the indoor spaces to create an acceptable working environment by office 
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hours. However, the central cooling systems often cannot provide enough cooling 

supply capacity due to high demand during the morning start period, especially in hot 

seasons. In this situation, imbalanced cooling distribution often results in significant 

differences of cooling-down speed among different building zones, requiring an 

extension of  precooling time and leading to considerable energy waste. Moreover,  

air-conditioning systems have great potential to provide energy flexibility services to 

the power grids of high-renewable penetration. Direct load control, by switching off 

some operating chillers, is the simplest and most effective means for air-conditioning 

systems in buildings to respond to urgent power reduction requests from power grids. 

However, the implementation this approach in today’s buildings, which widely adopt 

demand-based feedback controls, could lead to serious issues,  including disordered 

cooling distribution and additionally energy consumption. Therefore, this PhD study  

aims to theoretically and practically develop smart cooling distribution management 

strategies of air-conditioning systems, focusing on  demand limiting and building grid-

interaction. 

To begin with, the concept of supply-based control is proposed as an effective 

approach for cooling distribution when the cooling supply is limited. To implement 

this approach in today’s buildings, a reconfigurable supply-based feedback control is 

proposed. This system integrates supply-based feedback control for demand limiting 

control under limited cooling supply and demand-based feedback control during 

normal operation with sufficient cooling supply. In particular, this strategy can be 

conveniently deployed in today’s conventional digital controllers. The proposed 

strategy incorporates a control loop reconfiguration scheme and a setpoint reset 

scheme, facilitating effective demand limiting control and enabling smooth transitions 

between the two control modes. The control loop reconfiguration scheme reconnects 
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the controlled variable and resets the control parameters when switching from one 

mode to another while determining the proper timing for this transition.  The 

commonly used PID control function is adopted. The setpoint reset scheme establishes 

the setpoint of the feedback loop in demand limiting mode. The proposed control 

strategy is implemented in a commonly used digital controller to conduct hardware-

in-the-loop control tests on an air-conditioning system involving six air handling units 

(AHUs). Test results show that the reconfigurable control achieves commendable 

control performance. Proper chilled water distribution enables even thermal comfort 

control among building zones during demand response and rebound periods. 

Temperature deviation among building zones is maintained below 0.2 K most of the 

time. Power demand reductions of 11.6% and 27%  are achieved during demand 

response and rebound periods, respectively, when using the proposed reconfigurable 

control compared to conventional controls. 

Advanced control strategies for specific enhancement are proposed in the following 

sections. Specifically, to address the problems and challenges during the morning start 

period, an iterative learning control strategy for building air-conditioning systems 

under limited cooling supply is introduced. This simple control strategy can determine 

the AHU water valve openings during the  morning start period to achieve uniform 

cooling among building zones by updating the valve opening control values of 

individual AHUs using iterative learning control. A reinforcement learning approach 

is developed for setting the control parameters by adopting a classical reinforcement 

learning method, namely Q-learning. The proposed control strategy is model-free and 

does not require extra sensors or additional experimental work for thermodynamic 

characteristic parameter identification. Validation tests are conducted, and results 

show that the proposed control strategy could reduce the daily precooling time by up 
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to 12.1% during typical days in Hong Kong by achieving uniform cooling. Daily 

energy consumption could be reduced between 5.1% and 17.8% by shortening the 

morning start period, corresponding to a weekly electrical energy savings of  between 

1,376 kWh and 2,916kWh in the test building. 

To address the problems and challenges of building grid-interaction, an event-driven 

control strategy is proposed to effectively unlock building energy flexibility for fast 

demand response using air-conditioning systems. The proposed control strategy 

determines the optimal AHU water valve openings based on real-time indoor 

environment data from different air-conditioned zones for even distribution of the 

limited cooling supply after shutting down part of the operating chillers during the 

demand response period. A cooling distribution control scheme is proposed and used 

in the control strategy for even cooling distribution. An event-driven scheme is 

introduced into the cooling distribution control for the first time to minimize 

adjustments of the valve openings. This event-driven scheme could avoid frequent 

adjustments of the AHU valves, reducing unnecessary wear and tear during the control 

process. Validation tests demonstrate that the limited cooling supply can be distributed 

properly and that the same indoor air temperature profiles can be achieved eventually 

among the indoor spaces. The power demand of the chiller plant is reduced by 170 

kW (5%) with the  proposed event-driven control while maintaining the same comfort 

levels as existing time-driven control. The average accumulated valve travel distance 

is also reduced by 54.6%, significantly decreasing the wear and tear of the AHU valves. 

To improve control generality and scalability, a distributed cooperative control 

strategy for air-conditioning systems based on the multi-agent system is proposed to 

facilitate fast demand response. The control architecture is deployed on field control 

stations of corresponding terminals (i.e., valves and dampers) based on environmental 
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variable measurements of individual air-conditioned spaces. The multi-agent system 

comprises agents that serve as local controllers for their respective terminals, working 

collaboratively to achieve even cooling distribution. Each agent performs on-site 

control using information collected from its own terminal and its neighbors through a 

distributed architecture. Validation tests demonstrate that the proposed control 

approach can efficiently manage uneven temperature increases in different zones of 

the building. During the demand response event, a significant reduction of 2,562 kWh 

of electricity is achieved, accounting for 19.7% of the electricity consumption 

compared to the conventional control. 

Finally, to further facilitate the integration of the reconfigurable feedback control in 

existing building automation systems, strategies implementing reconfigurable 

feedback control are proposed for supply-based cooling management throughout the 

entire daily cycle of the building daily, including demand limiting, morning start and 

soft stop. The implementation involves a detailed control strategy along with 

corresponding hardware placement. Hardware-in-the-loop control tests are conducted 

to validate the deployment plan. Test results indicate that the reconfigurable supply-

based feedback control method can be conveniently deployed in today’s practical 

building automation systems. Significant energy savings are obtained during the 

morning start period (i.e., 9.1 %) and soft stop period (i.e., 13.3 %). Besides, power 

limiting can be further reduced by an additional 30.8 % during the demand limiting 

period. 

In conclusion, the development and implementation of the control strategies and real 

application plans in this PhD study can theoretically and practically provide guidance 

for demand limiting and building-grid interaction utilizing air-conditioning systems.  
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CHAPTER 1 INTRODUCTION 

This chapter provides an outline of the thesis, which is divided into three sections. 

Section 1.1 introduces the background and motivation behind the study. In Section 1.2, 

the aim and objectives of the thesis are presented. Section 1.3 outlines the organization 

of the thesis and provides a brief description of each chapter. 

1.1 Background and motivation 

In recent decades, the global community has witnessed growing awareness and 

concern regarding energy and environmental issues. These concerns have become 

critical due to their profound impact on various dimensions of human existence, 

including health, the economy, and the overall sustainability of our planet. The world's 

incessant appetite for energy, driven by population growth, industrialization, and 

technological advancements, has resulted in an unprecedented escalation in energy 

consumption. Global energy consumption has been undergoing rapid growth, 

especially in the past decade.  Worldwide energy consumption grew by 2.3 % in 2018, 

nearly twice the average rate of growth since 2010 (Global Energy and CO2 Status 

Report 2018, 2018). Traditional energy sources, predominantly fossil fuels, have 

played a dominant role in meeting this growing demand. Coal-fired power generation 

increased in response to the surging energy demand and reached an all-time high in 

2021 (Renewables 2019. Analysis and Forecast to 2024, 2019). The combustion of 

fossil fuels has been closely linked to greenhouse gas emissions, air pollution, and 

climate change. 

The building sector has become one of the largest energy consumers today, accounting 

for more than 30 % of total energy use worldwide and over 90 % of electricity 
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consumption in Hong Kong (Hong Kong Energy End-Use Data, 2023). Improving the 

energy efficiency of buildings has become an urgent challenge. Energy-efficient 

buildings are designed and constructed to optimize energy performance while 

minimizing the use of resources. By significantly reducing energy consumption, these 

buildings contribute to greenhouse gas emissions reduction, conserve resources, and 

promote sustainable practices. On the supply side, renewable energy has emerged as 

a crucial solution to address the pressing energy and environmental challenges. 

Renewable energy sources offer a sustainable and clean alternative, harnessing the 

power of natural resources such as sunlight, wind, water, and geothermal heat. This 

form of energy generation not only reduces greenhouse gas emissions and air pollution 

but also helps mitigate climate change and promote a more sustainable future. It is 

projected that the renewable power capacity worldwide will increase by half from 

2019 to 2024 (Renewables 2019. Analysis and Forecast to 2024, 2019). However, the 

integration of large amounts of intermittent renewable energy generation, such as 

photovoltaic and wind power, can cause power imbalance between supply and demand, 

and thus lead to voltage and frequency oscillations in the power system (Karimi et al., 

2016). The concept of the smart grid is proposed as an electric grid capable of 

delivering electricity in a controlled and smart way, which is a promising solution to 

these problems (Siano, 2014). With a designed smart grid, the overall performance of 

power reliability, energy efficiency, economics, and sustainability could be achieved 

through coordination between power supply and demand. Buildings therefore have 

great potential in contributing to the power balance by reducing or shifting their 

electricity demands during peak periods in response to various power balance needs 

of the power system, which is known as demand response. Demand response control 

of buildings can not only bring economic benefits to building owners but also benefit 
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the supply side of electricity grids by alleviating the capacity challenges. Grid-

interactive buildings are designed to actively interact with the electrical grid, enabling 

bi-directional energy flows and providing flexibility to support grid stability and 

resilience. These buildings have the capability to adjust their energy usage patterns, 

such as shifting loads or curtailing demand during peak periods, in response to grid 

demands or price signals. Overall, energy-efficient and grid- interactive buildings have 

become increasingly important in recent years due to the growing demand for energy 

and the need to reduce greenhouse gas emissions. 

The heating, ventilation, and air-conditioning (HVAC) system, as one of the major 

energy consumers in buildings, has great potential to enable energy-efficient buildings 

and grid- interactive buildings. It is therefore necessary to monitor, control, and 

manage the major energy-consumer (e.g. HVAC system) in buildings. Conventional 

control methods often rely on fixed setpoints and schedules, which can result in 

unnecessary energy wastage and discomfort for occupants. For energy-efficient 

buildings, control strategies for HVAC systems focus on minimizing energy 

consumption while maintaining occupant comfort. This involves dynamically 

adjusting temperature setpoints, ventilation rates, and airflow distribution based on 

actual needs. By utilizing occupancy sensors, occupancy patterns can be analyzed to 

determine optimal operation schedules and adjust cooling or heating levels in 

unoccupied zones. Additionally, weather forecasts and indoor/outdoor temperature 

differentials can be considered to optimize cooling and reduce reliance on energy-

intensive mechanical cooling. In the context of grid-interactive buildings, HVAC 

systems can actively contribute to grid stability and support the integration of 

renewable energy sources. These buildings can respond to grid signals, such as peak 

demand periods or variable electricity pricing, by adjusting their cooling loads or 
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shifting energy usage to non-peak hours. This demand response capability helps 

alleviate strain on the grid during high demand periods and enables the utilization of 

excess renewable energy generation by temporarily increasing cooling loads or 

charging thermal energy storage systems. Moreover, control strategies for grid- 

interactive buildings can facilitate the provision of grid services, such as frequency 

regulation or load balancing. By participating in grid operations, air-conditioning 

systems can dynamically adjust their power consumption to help maintain grid 

stability and support the reliable integration of intermittent renewable energy sources. 

Modern building automation systems rely on digital controllers at the field level, e.g., 

direct digital control (DDC) and programmable logic controller (PLC), for the 

centralized control and monitoring of HVAC systems in buildings (S. Wang, 2009). 

Their implementation in a  process control system  for HVAC systems involves the 

integration of a sensor, which continuously monitors the controlled variable, such as 

temperature, humidity, pressure, and flow, and an actuator. According to the actual 

state of the controlled variable, the controller modulates process input via the actuator 

to maintain the controlled variable at the desired set-point. Such feedback control is, 

in fact, by means of modulating the use of the supplied resource based on the demand 

of the process. Demand-based feedback control is widely adopted in digital controllers 

for process controls of HVAC systems and many other industrial applications today 

(S. Wang & Tang, 2017). The PID (Proportional-Integral-Derivative) control 

algorithm of various forms has been commonly used as the feedback control 

mechanism (Astrom, 1995). However, the conventional demand-based control is not 

suitable for the fast demand response of building-grid interaction of (Bae et al., 2021; 

Tang, Wang, & Yan, 2018; S. Wang & Tang, 2017; Xue et al., 2015). This is because 

such demand-based feedback control loops work well only under the provision of 
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sufficient resources, such as the cooling supply provided by chillers that is enough to 

fully meet the needs of terminal units. If the cooling supply is insufficient, the existing 

control systems would suffer from serious operational problems including serious 

imbalances in chilled water distribution among terminal units, over-speeding of pumps 

and fans. In order to enable energy-efficient and grid-interactive buildings, smart 

cooling distribution management strategies of air-conditioning systems that focus on 

demand limiting and building-grid interaction are urgently needed. 

1.2 Aim and objectives 

This PhD study, therefore, aims to theoretically and practically develop smart cooling 

distribution management strategies for air-conditioning systems for demand limiting 

and building-grid interaction to enable energy-efficient and grid- interactive buildings. 

The aim and objectives of this thesis are outlined below, providing detailed insights 

into the focus and goals of the PhD study. 

i. Identifiy the problems arising from disordered cooling distribution in 

conventional demand-based feedback control. Introduce the concept of supply-

based feedback control to deal with the problems.  

ii. Develop a comprehensive and robust reconfigurable control strategy for the 

implementation of the concept of supply-based control in conventional building 

automation systems. The reconfigurable control strategy should integrate supply-

based feedback controls, for demand response and demand limiting events, and 

demand-based feedback controls for normal situations with sufficient cooling 

supply. 
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iii. Develop a smart control strategy for air-conditioning systems at the morning start 

period to effectively shorten the precooling time and reduce the energy 

consumption. The control strategy is expected to be model-free and not require 

extra sensors or additional experimental work for thermodynamic characteristic 

parameter identification. 

iv. Develop a smart control strategy for air-conditioning systems to properly 

distribute the limited cooling supply when facing urgent requests from smart 

grids. The control strategy should be convenient for on-site implementation and 

avoid unnecessary wear and tear of the terminal units during the control process. 

v. Develop a multi-agent based control system to allow cost-effective and efficient 

control strategies to be applied in large commercial buildings for demand limiting. 

The control strategy should allow good scalability and reconfigurability 

vi. Implement the reconfigurable control strategy in situations with limited cooling 

supply throughout the building daily cycle, including the morning start period, 

demand limiting period and soft stop period. It should incorporate the detailed 

control strategy architecture along with corresponding hardware placement.  

1.3 Organization of this thesis 

This PhD thesis consists of nine chapters, which are organized as follows. 

Chapter 1 introduces the background and the motivation of this PhD study by 

presenting the needs of developing smart cooling distribution management strategies 

for air-conditioning systems for demand limiting and building-grid interaction. Then 

the aim and objectives, along with the organization of this thesis, are presented. 
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Chapter 2 presents a comprehensive literature review on conventional feedback 

control principle, applicability, and applications, HVAC controls for enhancing energy 

efficiency, and facilitating building-grid interaction, which aims to provide a thorough 

understanding of the existing research and reveal the problems and limitations of 

conventional control in demand limiting and building-grid interaction. Research gaps 

identified in the existing literature are provided to propose novel approaches and 

methodologies. 

Chapter 3 introduces the concept of supply-based control and presents the framework 

of the proposed control strategies. It aims to provide a solid foundation for 

understanding the principles, components, and objectives of the control strategies that 

will be discussed in detail in the following chapters. 

Chapter 4 presents a reconfigurable supply-based feedback control for air-

conditioning systems, which integrates supply-based feedback control, for demand 

limiting control under limited cooling supply, and demand-based feedback control 

under normal operation with sufficient cooling supply. The proposed control strategy 

is deployed in a commonly-used digital controller to conduct hardware-in-the-loop 

control tests on an air-conditioning system. Test results and analysis are presented in 

this chapter. 

Chapter 5 presents an iterative learning control strategy for building air-conditioning 

systems under limited cooling supply in the morning start period. This simple control 

strategy can determine the AHU water valve openings at morning start period to 

achieve uniform cooling among building zones effectively. The basic control 

mechanism, the operation, and the parameter setting method, as well as the test and 

validation of the control strategy, are presented in this chapter. 
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Chapter 6 presents an event-driven control strategy for air-conditioning systems for 

fast demand response towards smart grids. The proposed control strategy can 

determine the optimal AHU water valve openings based on real-time indoor 

environment data of different air-conditioned zones for even distribution of the limited 

cooling supply after shutting down part of the operating chillers during the demand 

response period. The basic control mechanism and operation procedure, the test 

arrangement, and the test performance of the control strategy are presented in this 

chapter. 

Chapter 7 presents a distributed cooperative control strategy for air-conditioning 

systems based on the multi-agent system to perform building fast demand response. 

The control architecture is deployed on field control stations of corresponding 

terminals (i.e., valves and dampers) based on the environmental variable 

measurements of individual air-conditioned spaces. The multi-agent system comprises 

agents that act as local controllers for their respective terminals, working in 

collaboration to achieve an even cooling distribution. The fundamental control 

mechanism and operational procedures, the test arrangement, and the performance 

evaluation of the control strategy are presented in this chapter. 

Chapter 8 presents the implementation of reconfigurable feedback control for supply-

based cooling management in the limited cooling supply situations throughout the 

entire building daily cycle, including the morning start period, demand limiting period 

and soft stop period. The implementation incorporates the detailed control strategy 

architecture along with corresponding hardware placement. Hardware-in-the-loop 

control tests are conducted for validation. 
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Chapter 9 summarizes the main contributions of this PhD study and outlines the 

future directions for research based on the findings and contributions of this study. 
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CHAPTER 2 LITERATURE REVIEW 

The efficient control of HVAC systems is of paramount importance in today's world, 

where energy conservation and sustainability have become critical concerns. HVAC 

systems typically account for a significant portion of a building's energy consumption, 

making it essential to optimize their operation to reduce energy usage and minimize 

environmental impact. Additionally, with the increasing integration of renewable 

energy sources into the power grid, HVAC control must also be responsive and 

adaptable to fluctuating energy availability and demand. This chapter presents a 

comprehensive literature review on conventional feedback control principles, 

applicability, and applications, HVAC controls for enhancing energy efficiency and 

facilitating building-grid interaction, which aims to provide a thorough understanding 

of the existing research and reveal the problems and limitations of conventional 

control in demand limiting and building-grid interaction. Section 2.1 focuses 

specifically on feedback control principles, applicabilitys and applications. In Section 

2.2 and Section 2.3, HVAC controls for enhancing energy efficiency and facilitating 

building-grid interaction are reviewed, respectively. Section 2.4 focuses on the 

problems and limitations of conventional control in demand limiting and building-grid 

interaction. Finally, in Section 2.5, a summary of research gaps identified in the 

existing literature is provided to propose novel approaches and methodologies in 

subsequent chapters. 

2.1 Feedback control principle, applicability and applications 

Feedback control is a fundamental principle used in various fields to regulate and 

maintain desired system behavior. It operates based on a closed-loop control system, 
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where the output or performance of the system is continuously measured, compared 

to a desired setpoint or reference value, and used to adjust the system's inputs or 

actions. The feedback control loop consists of four main components: a sensor or 

measurement device, a controller, an actuator, and a process or system being 

controlled. The sensor measures the system's output, which is then compared to the 

desired setpoint by the controller. The controller calculates the necessary corrective 

action and sends control signals to the actuator, which adjusts the system's inputs to 

bring the output closer to the desired setpoint. The feedback control aims to minimize 

the difference or error between the actual output and the desired state by continuously 

adjusting the system's inputs. This iterative process ensures that the system remains 

stable, accurate, and responsive to changes in operating conditions or disturbances 

(Doyle et al., 2013). The applicability of feedback control is widespread across various 

engineering, scientific, and technological domains. It is commonly used in control 

systems for mechanical, electrical, chemical, and other control processes. It is also 

applied in automation, robotics, information systems, biological systems, 

environmental monitoring, and social and economic systems. It is particularly useful 

in situations where precise regulation, stability, and adaptation to changing conditions 

are required. It provides a robust and reliable approach to maintain desired system 

behavior and performance in the presence of uncertainties, disturbances, and dynamic 

changes.  

Feedback control plays a crucial role in HVAC systems by ensuring precise regulation, 

energy efficiency, and indoor comfort. By continuously monitoring and adjusting 

system parameters based on feedback from sensors, HVAC systems can maintain 

desired setpoints, optimize energy consumption, and provide occupants with a 

comfortable and healthy indoor environment. As long as the cooling supply can meet 
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the demand, the control system can effectively regulate the system operation to 

maintain desired setpoints. Such feedback controls are, actually, “demand-based 

feedback control” (S. Wang & Tang, 2017). The building automation system (BAS) 

is a conventional and effective tool for efficient management of the building HVAC 

systems and the control functions can be divided into local control functions and 

supervisory control functions (S. Wang & Ma, 2008). By using building automation 

systems, the control strategies developed can be applied in real buildings. For local 

control functions, one of the most commonly-used control strategies is the demand-

based feedback control, where the PID control is commonly used (Tang, Wang, Shan, 

et al., 2018). With the local PID control, a building zone can maintain the indoor 

temperature setpoint by controlling the terminal units such as the air handling units 

(AHUs) to modulate the cooling intake from the central cooling systems when the 

cooling supply is sufficient. The demand-based feedback control with the PID 

controllers is a mature technology, it can track the control set-point with acceptable 

accuracy, adaptiveness and simplicity, so it is widely used in a building’s local control 

functions and the research in PID control has never ceased (Geng & Geary, 1993; 

Tang, Wang, Shan, et al., 2018). 

2.2 HVAC controls for enhancing energy efficiency  

Energy and environmental issues are critical concerns that have gained significant 

attention in the past decades. As the world's population continues to grow and 

industrialization expands, the demand for energy has skyrocketed, leading to a range 

of environmental challenges. The production, distribution, and consumption of energy 

have profound implications for the environment, including climate change, air and 

water pollution, etc. The building energy consumption plays a significant role in the 
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broader context of energy and environmental issues, given the increasing demand for 

commercial spaces and the need for sustainable practices with the growth of 

urbanization and industrialization. Energy-efficient buildings are designed and 

constructed to optimize energy performance while minimizing the use of resources. 

By significantly reducing energy consumption, these buildings contribute to 

greenhouse gas emissions reduction, conserve resources, and promote sustainable 

practices. Air-conditioning systems account for a significant portion of a building's 

energy usage, making their efficient control vital for overall energy performance. 

Conventional control methods often rely on fixed setpoints and schedules, which can 

result in unnecessary energy wastage and discomfort for occupants. For the 

supervisory control, also known as optimal control, it aims at choosing the best local 

control setpoints to minimize or maximize an objective function, such minimizing 

energy consumption, operating cost etc. (S. Wang & Ma, 2008). For energy-efficient 

buildings, optimal control strategies of the air-conditioning systems focus on 

minimizing energy consumption while maintaining occupant comfort. This involves 

dynamically adjusting temperature setpoints, ventilation rates, and airflow distribution 

based on actual needs. By utilizing occupancy sensors, occupancy patterns can be 

analyzed to determine optimal operation schedules and adjust cooling or heating levels 

in unoccupied zones. Additionally, weather forecasts and indoor/outdoor temperature 

differentials can be considered to optimize cooling and reduce reliance on energy-

intensive mechanical cooling. Many studies have been conducted in the domain of 

optimal control for HVAC systems (Álvarez et al., 2013; Liang et al., 2015; Lu et al., 

2022; S. Wang & Ma, 2008).  

With the rapid development of big data, computing resources, and advanced 

algorithms, machine learning has been explored to improve the building control 
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performance (Hong et al., 2020). Reinforcement Learning (RL), as a branch of 

machine learning specifically for control problems, is becoming a promising method 

to revolutionize building controls (Z. Wang & Hong, 2020). Zhang et al.  (Zhang et 

al., 2019) proposed a control strategy based on deep reinforcement learning for a 

radiant heating system and the results showed that, compared with the rule-based 

control, the proposed control strategy could achieve 16.7% heating demand reduction 

with more than 95% probability. Zou et al. (Zou et al., 2020) also implemented the 

deep reinforcement learning algorithms for optimal control over the AHUs, they 

revealed that the deep reinforcement learning agents could achieve 27%–30% energy 

saving comparing to the actual energy consumption. As a popular application of AI 

(Artificial Intelligence), machine learning has been studied widely for enhancing the 

building control performance, but it is worth mentioning that the implementation of 

AI-assisted control strategy in real application is still an ongoing research endeavour 

(Halhoul Merabet et al., 2021), mainly due to the data-demanding and time-consuming 

problems of the machine learning methods. In addition, the security of on-site 

application of such AI-assisted control strategy (e.g. RL controller) also needs to be 

addressed (Z. Wang & Hong, 2020). It can be concluded that integrating advanced AI 

algorithms into building automation systems is promising to formulate smart control 

strategies for building HVAC systems to enhance the energy efficiency. Moreover, 

the advanced control strategies should be convenient and reliable enough for real 

applications. 

2.3 HVAC controls for facilitating building-grid interaction 

On the supply side, renewable energy has emerged as a crucial solution to address the 

pressing energy and environmental challenges. Renewable energy sources offer a 
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sustainable and clean alternative, harnessing the power of natural resources such as 

sunlight, wind, water, and geothermal heat. This form of energy generation not only 

reduces greenhouse gas emissions and air pollution but also helps mitigate climate 

change and promote a more sustainable future. Grid- interactive buildings are designed 

to actively interact with the electrical grid, enabling bi-directional energy flows and 

providing flexibility to support grid stability and resilience. These buildings have the 

capability to adjust their energy usage patterns, such as shifting loads or curtailing 

demand during peak periods, in response to grid demands or price signals. Overall, 

grid-interactive buildings have become increasingly important in recent years due to 

the growing demand for energy and the need to reduce greenhouse gas emissions. 

In the context of grid-interactive buildings, air-conditioning systems can actively 

contribute to grid stability and support the integration of renewable energy sources. 

These buildings can respond to grid signals, such as peak demand periods or variable 

electricity pricing, by adjusting their cooling loads or shifting energy usage to non-

peak hours (J. E. Braun, 1990). This demand response capability helps alleviate strain 

on the grid during high demand periods and enables the utilization of excess renewable 

energy generation by temporarily increasing cooling loads or charging thermal energy 

storage systems. Moreover, control strategies for grid-interactive buildings can 

facilitate the provision of grid services, such as frequency regulation (Vrettos et al., 

2018a, 2018b). By participating in grid operations, air-conditioning systems can 

dynamically adjust their power consumption to help maintain grid stability and 

support the reliable integration of intermittent renewable energy sources. 
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2.4 Problems and limitations of conventional control in demand 

limiting and building-grid interaction 

For commercial buildings, their air-conditioning systems are usually switched on 

before office hours in the morning, known as precooling. It is an effective and essential 

means to creating an acceptable indoor environment at the beginning of the office 

hours (Tang, Wang, Shan, et al., 2018). However, extended precooling time can cause 

serious energy waste, so the length of precooling time is important for enhancing the 

energy efficiency, especially for large commercial buildings. Therefore, an effective 

control strategy for building air-conditioning systems to shorten the morning start 

period is very important.  

For precooling control, previous studies mainly focused on predicting the time 

required to cool down a building from the night setback condition by applying the 

optimal start algorithms. Seem et al. (Seem et al., 2016) made a comparison of 57 

models for estimating the return time from a night setback condition and they 

recommended the room air temperature and the exponentially weighted moving 

averages (EWMA) of the normalized heating or cooling demand should be considered 

as predictor variables for the optimal start algorithms. Gunay et al. (Gunay et al., 2019) 

developed a morning start algorithm using a data-driven method. They proposed a 

clustering-based method by using a dataset from a large office building and their 

results show that the potential saving by tuning daily start times was estimated to be 

7% for cooling. It is obvious that the building precooling at morning start period is 

beneficial but the extended precooling time should be avoided. 

The cooling demand of commercial buildings is usually very high at morning start 

period, the indoor temperatures of individual building zones are much higher than their 
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corresponding setpoints, but the cooling supply from central cooling plant is usually 

limited and each air-conditioned zone competes for the limited cooling supply. In this 

situation, all the terminal units such as water valves and air dampers would be fully 

open under the traditional PID feedback control, the cooling-down speed between 

individual zones is often significantly varied due to the differences between hydraulic 

resistances and pressure losses associated with different terminal units. This 

imbalanced cooling distribution would result in extended precooling time to allow all 

the building zones to reach their temperature setpoints at the start of office hours. This 

problem is well-illustrated through on-site data collected from a super-high-rise 

commercial building in Hong Kong by Tang et al. (Tang, Wang, Shan, et al., 2018), 

and they proposed an optimal control strategy for morning start period to optimize the 

limited cooling supply distribution among the building zones. However, there are 

some limitations to the implementation of the presented method in (Tang, Wang, Shan, 

et al., 2018). First, the existing method requires a physical water flowmeter to be 

installed for each AHU, but flowmeters are rarely installed in individual AHUs due to 

the high cost for practicalapplications. In addition, this existing method requires 

additional experimental work for the thermodynamic characteristic parameter 

identification of individual building zones, requesting serious effort, especially for 

large commercial buildings. 

Building fast demand response is of particularly high value to satisfy urgent power 

balance needs in grids. But resetting the indoor air temperature setpoints cannot fulfill 

the requirements of fast demand response (i.e., respond within minutes). This is 

because the conventional control strategies of air-conditioning systems are cooling 

demand-based controls and inevitable delays would be resulted from the demand-

based control process (S. Wang & Tang, 2017). Actually, chillers are the major energy 
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consumers in central air-conditioning systems especially for large commercial 

buildings (Shan, Wang, Gao, et al., 2016). Shutting down part of the operating chillers 

is an effective demand limiting method when the power grids need an immediate 

power reduction on the demand side. However, simply shutting down some operating 

chillers would result in disordered chilled water flow distribution and uneven indoor 

thermal comfort degradation (Shan, Wang, Yan, et al., 2016; Xue et al., 2015). To 

address this problem, Tang et al. (Tang et al., 2016) proposed a power limiting control 

strategy based on an adaptive utility function by updating the chilled water flow 

setpoints of individual zones online. The test results show that the proposed control 

strategy could solve the problem of disordered water distribution and achieve evenly-

spread thermal comfort compromises among different building zones under fast 

demand response. Wang and Tang (S. Wang & Tang, 2017) also pointed out that 

excessive speeding of chilled water pumps would occur, under conventional demand-

based controls, in such cases with limited cooling supply, leading to extra power 

consumption and thus reducing the demand reduction effect of demand/power limiting 

control. So, they proposed the concept of supply-based feedback control and 

developed a cooling distributor based on adaptive utility function.  

However, there are still some problems with these control strategies for real 

implementation. First, the implementation of these adaptive utility function-based 

control strategies requires measurement of chilled water flow rate through each air 

handling unit (AHU). In this situation, physical water flowmeters need to be installed 

for individual AHUs. However,  such water flowmeters are rarely installed in practice 

due to the high investment cost. Second, these control strategies require additional 

work for the parameter identification of the thermodynamic characteristics of building 

zones, making them inconvenient for practical implementation,  especially for large 
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commercial buildings. Ran et al. (Ran et al., 2020) developed a virtual flowmeter to 

estimate the water flow rates through individual AHUs. However,  the modeling of 

the virtual flow meter needs extra measurements on the air side and the accuracy of 

the model cannot be guaranteed in real implementation. Third, these control strategies 

adopt a periodic mechanism to trigger the control actions at equidistant sampling 

intervals (known as time-driven control), even though the optimization tasks and 

control actions may not be necessary at some intervals (Åarzén, 1999; Heemels et al., 

2008). There are considerable studies using the event-driven control method in the 

HVAC field. Wang et al. (J. Wang et al., 2016) proposed an event-driven optimal 

control strategy for the complex HVAC systems. The results show that the event-

driven optimization could significantly reduce the computational load (60-84%) 

without sacrificingenergy performance, when compared with conventional time-

driven optimization. Wang et al. (J. Wang et al., 2021) further proposed a data-mining-

powered event-driven optimal control strategy for improving operation efficiency of 

HVAC systems. The results show that the energy saving could be improved by 0.9%-

4.6% compared with the conventional time-driven control strategy. Besides, the event-

driven optimal control strategy was easy for implementation and could be easily 

understood by the designers, engineers and building operators. Li et al. (W. Li et al., 

2021) proposed an event-driven multi-agent based distributed optimal control strategy 

for HVAC systems. The results show that the proposed control strategy could provide 

satisfactory system performance while reducing the energy consumption of IoT 

(Internet of Things) sensors. The previous studies have proven the effectiveness of the 

event-driven control method in reducing unnecessary control actions in the energy-

efficient control of HVAC systems. However,  rare application of fast demand 

response control has been observed. Existing studies of fast demand response control 
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(Ran et al., 2020; Tang et al., 2016; Tang, Wang, & Shan, 2018; S. Wang & Tang, 

2017; Xue et al., 2015) all adopt the conventional time-driven control. This could lead 

to high optimization frequency and computational burden especially for large complex 

systems, as well as increased wear and tear of system components (e.g., water valves 

of AHUs). 

Besides, existing HVAC-based fast demand response strategies (Ran et al., 2020; Tang 

et al., 2016; S. Wang & Tang, 2017; Xue et al., 2015) all adopted centralized control 

approaches that depend on a central controller to gather and analyze data from the 

entire air-conditioning system. This would placet the entire burden on one central 

station and result in high computational complexity. Such control methods also lack 

generality. It would be inconvenient to reconfigure/redesign the control system for 

large commercial buildings if their air-conditioning systems are retrofitted. Distributed 

control methods present an effective solution to these problems. The distributed 

control methods refer to techniques and algorithms used to achieve decentralized 

decision-making and coordination among multiple subsystems/components based on 

local information and local interactions. In this way, distributed control methods do 

not need to rely on the central controller to makes all the decisions for the whole 

system like the traditional centralized control methods. They can leverage the 

capabilities and intelligence of individual subsystems/components to achieve more 

efficient control. The Internet of Things (IoT) has experienced a significant expansion 

in the past few years, which has made the implementation of distributed control 

methods more practical and allows the field data to be stored, processed and analyzed 

at the edge side with the use of edge intelligence methods (B. Li et al., 2022; Su & 

Wang, 2020). Distributed control can be effectively achieved through the agent-based 

method, which involves using agents to represent various components and subsystems. 
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These agents are capable of communicating, negotiating and making decisions 

autonomously, without the need for operator intervention (Windham & Treado, 2016). 

Previous studies on agent-based distributed control of HVAC systems mainly focus 

on  improving building energy efficiency and indoor thermal comfort (Su & Wang, 

2020). However, the agent-based control of building air-conditioning systems for fast 

demand response has not been extensively studied in the existing literature. 

2.5 Summary of research gaps 

This chapter presented a comprehensive review on feedback control principles, 

applicability and applications, HVAC controls for enhancing energy efficiency and 

facilitating building-grid interaction; and problems and limitations of conventional 

control in demand limiting and building-grid interaction. Conventional automatic 

control strategies utilized in building central air-conditioning systems adopt demand-

based feedback control. However, the demand-based control fails to properly manage 

the cooling distribution when cooling supply is limited. How to apply the concept of 

supply-based control from theoretical and practical perspectives remains unre solved. 

From the above review, the detailed existing gaps can be summarized as follows: 

o Air-conditioning systems in commercial buildings are usually switched on in 

advance to precool the indoor spaces to create an acceptable working environment 

upon office hours. However, the central cooling systems often fail to provide 

enough cooling supply capacity due to the high cooling demand at the morning 

start period, especially in hot seasons. The imbalanced cooling distribution in the 

air-conditioning systems often results in large difference of cooling-down speed 

among different building zones, leading to extended precooling time, leading to 



22 

 

significant energy waste. A comprehensive and efficient approach to resolving 

this issue remains elusive. 

o Air-conditioning systems have great potential to provide energy flexibility 

services to power grids of high-renewable penetration. Direct load control by 

switching off some operating chillers is the simplest and effective means for air-

conditioning systems in buildings to respond to urgent power reduction requests 

from power grids. However, the implementation of this approach in today’s 

buildings, which widely adopt demand-based feedback controls, results in serious 

problems, including disordered cooling distribution and likely extra energy 

consumption. The pursuit of effective and succinct solutions to this problem 

continues. 

o Modern building automation systems rely on digital controllers at the field level 

for the centralized control and monitoring of HVAC systems in buildings. Based 

on the existing architecture of building automation system, the implementation 

issues of integrating supply-based control and demand-based control remain 

challenges. 

o The implementation of detailed control strategy architecture, along with 

corresponding hardware placement for supply-based cooling management in 

limited cooling supply situations (i.e., morning start period, demand limiting 

period and soft stop period) is needed to become a new norm for future buildings 

to facilitate the high renewable penetration of the power system towards carbon 

neutrality. 
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CHAPTER 3 CONCEPT OF SUPPLY-BASED 

CONTROL AND FRAMEWORK OF THE 

PROPOSED CONTROL STRATEGIES 

This chapter introduces the concept of supply-based control and presents the 

framework of the proposed control strategies. Section 3.1 provides an introduction to 

the conventional demand-based control approach commonly used in the existing 

building automation system, and then presents the concept of supply-based control as 

an alternative approach to address the problems arising from insufficient cooling 

supply. Section 3.2 indicates the needs and contributions of supply-based control in 

the entire building daily cycle. In Section 3.3, the framework of the proposed control 

strategies that are based on the concept of supply-based control in this PhD study is 

presented. 

3.1 Concept of supply-based control 

Conventional process control for building and industrial processes typically adopts 

closed-loop feedback controls. The basic principle of closed-loop feedback controls is 

the utilization of feedback information from the controlled variable to regulate and 

stabilize the system. By continuously measuring the output or performance of the 

system, the control system can dynamically adapt and respond to changes or 

disturbances, ensuring that the desired setpoint is achieved and maintained (S. Wang, 

2009). The basic components of a closed-loop feedback control system include a 

sensor to measure the system output, a controller to process the feedback information 

and generate control signals, and an actuator to adjust the system inputs based on the 
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control signals. These components work together in a closed-loop fashion, where the 

output is fed back to the controller to continuously adjust and optimize the control 

actions. When applied to air-conditioning systems in commercial buildings, such 

feedback control works to meet the demand (i.e., specific requirements for cooling) of 

the air-conditioned spaces. The measurements of the controlled variables are 

compared to the desired setpoints, and the control system determines the appropriate 

control actions based on this comparison. As long as the cooling supply can meet the 

demand, the control system can effectively regulate the system operation to maintain 

desired setpoints. Such feedback controls are, in fact, “demand-based feedback control” 

as shown in Figure 3.1.  

The basic idea of demand-based feedback control involves adjusting the cooling 

supply based on the demand signals received from individual zones or spaces within 

a building. These demand signals, i.e., indoor air temperature setpoints and supply air 

temperature setpoints, are used to determine the cooling requirements of each zone. 

The control system (i.e., regulators in Figure 3.1) then adjusts the cooling distribution 

accordingly to meet these demands by adjusting the VAV dampers and AHU valve 

openings. However, demand-based control has inherent limitations; when the cooling 

supply is insufficient, the existing control systems would suffer from serious 

operational problems including, including significant imbalances in chilled water 

distribution among terminal units, over-speeding of pumps and fans.  
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Figure 3.1 Schematic of demand-based feedback control 

To deal with these problems resulting from improper cooling distribution, the concept 

of supply-based feedback control is proposed as an effective approach when the 

cooling supply from the air-conditioning system is limited as shown in Figure 3.2 (S. 

Wang & Tang, 2017). In contrast to conventional demand-based control, the feedback 

in this approach (i.e., the distributor as shown in Figure 3.2) relies on end-user inputs, 

specifically the indoor temperature of the space, rather than utilizing immediate outlet 

measurement, i.e., the supply air temperature of air handling unit (AHU), to determine 

the control outputs. In summary, while demand-based feedback control has been 

widely used in HVAC systems and industrial applications, it faces limitations in 

scenarios with insufficient cooling supply. Supply-based control, on the other hand, 

offers a more dynamic and flexible approach by considering the available supply 

capacity and optimizing the distribution of cooling resources. By incorporating real-

time data analysis and advanced control algorithms, supply-based control aims to 

achieve improved energy and environmental performance. The control strategies 

proposed in this PhD study are based on the concept of supply-based control. 
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Figure 3.2 Schematic of supply-based feedback control 

3.2 Needs and contributions of supply-based control in entire 

building daily cycle 

In the entire building daily cycle, conventional controls fall short in the following 

scenarios where the available cooling supply is inadequate to meet the cooling demand.  

o Morning start: To establish a comfortable working environment during office 

hours, the central air-conditioning systems in buildings are usually switched on in 

advance to precool the indoor spaces (Tang, Wang, Shan, et al., 2018). During the 

morning start period, the buildings often experience a surge in cooling demand, 

which exceeds the cooling capacities of the central cooling plants. In this situation, 

different air-conditioned spaces compete for the limited cooling supply under 

conventional feedback controls, resulting in an uneven cooling distribution due to 

different hydraulic resistances and pressure losses. Consequently, the duration of 

precooling (i.e., determined by the time for the latest air-conditioned zone to reach 
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its desired indoor temperature setpoint) would be extended, thereby 

compromising building energy efficiency.  

o Demand limiting: The air-conditioning systems may need to limit their energy 

consumption below a predetermined threshold through switching off some 

operating chillers (Xue et al., 2015). This approach is simple and effective, 

allowing buildings to provide fast demand response during peak demand periods 

when there is a grid request for immediate reduction in energy consumption, 

typically during peak demand periods. However, in this situation, indoor 

temperature rise is unavoidable due to the limited cooling supply. Imbalanced 

temperature rises among different spaces would occur due to the uneven 

allocation of the limited cooling supply under the conventional feedback controls. 

In addition, excessive speed of chilled water pumps in this situation would 

undermine effectiveness of demand response.  

o Soft stop: Switching off some operating chillers prior to the end of office hours is 

an effective approach to enhance energy efficiency in commercial buildings (Shan 

et al., 2019). The buffering effect resulting from building thermal inertia helps to 

maintain a relatively comfortable indoor environment for occupants while the 

cooling supply decreases during the soft stop period (J. Braun et al., 2001; Shan 

et al., 2019). However, this approach also introduces a competition of the limited 

cooling supply among the air-conditioned zones. Similar problems, including 

uneven temperature rises, imbalanced thermal comfort sacrifices among building 

zones, and additional pump energy consumption, would arise under conventional 

feedback controls, and undermine the overall energy efficiency of buildings. 
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By adopting supply-based controls in this PhD study, energy-efficient and grid-

interactive cooling management can be achieved in the entire building daily cycle, 

including the morning start period, soft stop period and demand limiting period. 

3.3 Framework of the proposed control strategies 

Figure 3.3 shows the framework of the proposed control strategies in this PhD study. 

The development of the control strategies is based on the supply-based control, as 

illustrated in Section 3.1. However, applying this concept in practice inevitably faces 

several challenges. The first challenge is to develop a basic supply-based feedback 

control in existing building automation systems. Addressing this point, in this PhD 

study, a basic reconfigurable supply-based feedback control (Chapter 4) is creatively 

proposed for real application. The second challenge lies in developing advanced 

control strategies for the special enhancement of the supply-based control. Three 

advanced control strategies, including the iterative learning control strategy (Chapter 

5), the event-driven driven control strategy (Chapter 6) and the  multi-agent based 

control strategy (Chapter 7), are proposed to address the issue of limited cooling 

distribution in various scenarios (e.g., morning start period and demand limiting 

period). These strategies are theoretically analyzed and designed to provide solutions 

for efficient implementation. Finally, in order to deploy the control strategies in 

practice for the entire building daily cycle, the implementation (Chapter 8) of the 

reconfigurable feedback control is developed for supply-based cooling management 

in limited cooling supply situations, including the morning start period, demand 

limiting period and soft stop period. 
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Figure 3.3 Framework of the proposed control strategies 
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CHAPTER 4 RECONFIGURABLE FEEDBACK 

CONTROL DEPLOYABLE IN CONVENTIONAL 

DIGITAL CONTROLLERS 

In order to develop a basic supply-based feedback control in existing building 

automation systems, this chapter proposes a reconfigurable supply-based feedback 

control for air-conditioning systems, which integrates supply-based feedback control, 

for demand limiting control under limited cooling supply, and demand-based feedback 

control under normal operation with sufficient cooling supply. Section 4.1 introduces 

the concept of reconfigurable supply-based feedback control strategy. The proposed 

control strategy is deployed in a typical commercial digital controller and tested by 

conducting hardware-in-the-loop control tests as illustrated in Section 4.2. Section 4.3 

analyzes the test results of control performance, environmental and energy 

performance. Conclusive remarks of this chapter are presented in Section 4.4. 

4.1 Concept of reconfigurable supply-based feedback control 

strategy 

4.1.1 Principle of feedback loop reconfiguration 

Figure 4.1 depicts the block diagram of the reconfigurable feedback control. The basic 

mechanism of the proposed reconfigurable control is to adjust or reconfigure the 

feedback control loop online to match different needs or objectives of the controls 

under demand limiting with limited resource/supply and under normal conditions with 

sufficient supply. The strategy can be deployed in the commonly-used digital 

controllers of building automation systems, facilitating the possibility and 
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convenience of its wide implementation. The control loop reconfiguration scheme 

reconnects the controlled variable when switching the control mode from one to 

another. In the implementation case of this study, Process 1 refers to the AHU, while 

Process 2 refers to the building zone. As the dynamics of the controlled processes 

managed by the same digital controller in two different control modes are different, 

the parameters of the feedback controller are reset to enable smooth transition between 

the two different control modes. The setpoint reset scheme determines the setpoint of 

the feedback controller. In the system under consideration, the controlled variables are 

the AHU valve openings. In normal operating mode (demand-based feedback control), 

the operational objective is maintaining a specific supply air temperature. When the 

fast demand response is conducted, specific chillers are shut down immediately. The 

control objective is to achieve proper cooling distribution. The detailed working 

mechanism of the control loop reconfiguration scheme and the setpoint reset scheme 

is elaborated in the following section (i.e., Chapter 4.1.2).  

 

Figure 4.1 Block diagram of the feedback loop reconfiguration 
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4.1.2 Reconfigurable feedback control strategy 

4.1.2.1 Basic feedback control law 

Eq. (4.1) shows the basic control law of a basic PID controller (Astrom, 1995), where, 

u(t) is the control signal and e(t) is the error signal at time t. The PID controller 

continuously calculates this control signal based on the error signal and the 

proportional gain K, the integral time Ti and the derivative time Td, to control the 

controlled process output at the desired setpoint. y is the controlled variable and ysp is 

the setpoint for the controlled variable. The PID control law consists of three terms as 

shown in Eq. (4.1). The proportional term provides a direct relationship between the 

error and the control output. The integral term integrates the error over time, which 

helps to eliminate steady-state errors. The derivative term anticipates future errors by 

measuring the change rate of the error.  

𝑢(𝑡) = 𝐾 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑(𝜏) + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

) (4.1) 

𝑒(𝑡) = 𝑦𝑠𝑝(𝑡) − 𝑦(𝑡) (4.2) 

In the normal operating mode (i.e., demand-based control), the AHU valve position is 

adjusted to maintain a specific supply air temperature. In this situation, the controlled 

variable is the supply air temperature. A combination of proportional and integral 

control (i.e., PI control) is often used in practical applications. 

4.1.2.2 Supply-based feedback control and control loop reconfiguration scheme 

Figure 4.2 illustrates the schematic of the air-conditioning system in consideration, the 

supply-based feedback control and the control loop reconfiguration scheme. In both 

control modes, the controller adopts the feedback control law as described in Chapter  

4.1.2.1. In normal control mode (demand-based feedback control), the controlled 
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variable (yi) of an AHU control is the AHU supply air temperature as shown in Eq. 

(4.3). Its control setpoint is determined according to the needs of sensible and latent 

cooling demands, typically given as a fixed value such as 15 ℃, which might be 

optimized and reset according to changes in load conditions. When the demand 

limiting mode is activated, some operating chillers will be switched off immediately 

and only limited (cooling) supply is available. In such conditions, the cooling 

distribution among AHUs would be disordered if the same demand-based feedback 

control is used. To solve this problem, a supply-based feedback control is introduced. 

In supply-based feedback control mode, the controlled variable (yi) of an AHU control 

is indoor air temperature in the corresponding zone represented by the returned air 

temperature from the zone, as shown in Eq. (4.4). In order to maintain a uniform 

temperature among different zones, which is the objective of adopting supply-based 

feedback control, a common control setpoint is used for the AHU control loops of all 

zones. As the cooling supply is insufficient to maintain a constant or preferable 

comfort temperature, the control setpoint in this mode is adjusted adaptively as 

elaborated in Chapter 4.1.2.3.  

𝑦𝑖(𝑡) = 𝑇𝑠𝑢𝑝,𝑖(𝑡) (4.3) 

𝑦𝑖(𝑡) = 𝑇𝑧𝑜𝑛𝑒,𝑖(𝑡) (4.4) 
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Figure 4.2 Schematic of the central air-conditioning system and the architecture of 

supply-based feedback control 

4.1.2.3 Setpoint reset scheme 

The setpoint for the AHU return air temperature control loops is reset according to Eq. 

(4.5), which consists of two terms. The first term is the average return air temperature. 

It aims to achieve uniform temperature among the zones. The second term is 

introduced as an adjustment term to consider the deficit water flow rate (i.e., Mby) in 

the bypass pipe, in order to eliminate the deficit flow in the demand limiting mode. 

𝑦𝑠𝑝(𝑡) =
∑ 𝑇𝑧𝑜𝑛𝑒,𝑖(𝑡)

𝑛
𝑖=1

𝑛
− 𝑎 ∙ 𝑀𝑏𝑦 (4.5) 

where, the coefficient a is adjustable to achieve better control performance for demand 

response. Figure 4.3 shows the process of control mode switching (i.e., transition from 

normal operation to demand response, and then reverts to normal operation). There 

are two transition processes (i.e., Switching 1 and Switching 2 in Figure 4.3) in the 
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proposed control strategy switching from one mode to the other. Switching 1 denotes 

the transition from normal operation to demand response. At this moment, the control 

loop reconfiguration scheme is activated to enable demand limiting and proper 

distribution of limited cooling. Switching 2 denotes the transition from demand 

limiting mode back to normal mode, while the air-conditioning system ends the task 

of demand limiting. The chiller plant can now provide sufficient cooling supply as 

demanded to restore the indoor air temperature of the zones to their comfort setpoints. 

To ensure better control performance during the two switching moments and 

throughout the demand response and rebound periods, the parameter scheduling of 

coefficient a is implemented. The details for scheduling the parameter, i.e., coefficient 

a, are illustrated in Figure 4.4 and elaborated below. 

 

Figure 4.3 Process of the control mode switching 

Parameter setting at Switching 1. At the switching moment from normal operation to 

demand response (i.e., Switching 1), the control loop reconfiguration scheme is 

activated to modify the inputs of the PID functions, as explained in Section 4.1.2.2. In 

the normal mode, the temperature in each building zone is regulated to the designated 

comfort setpoint of 24 ℃, resulting in minimal deviation among zones. In order to 

eliminate the deficit flow as soon as possible, the initial value of coefficient a in Eq. 

(4.5) is set relatively high (i.e., a0 in Figure 4.4). 

Demand limiting mode

Timeline

Switching 1

（N→D）

Normal mode Normal mode

Switching 2

（D→N）



36 

 

Parameter setting during demand limiting mode. During the transition period 

following the switching 1, the purpose of setting coefficient a is to mitigate the deficit 

flow problem and prevent control instability. In order to achieve this, a decreasing 

parameter schedule is implemented for coefficient a starting from the initiation of the 

demand response event (i.e., tA) for a short duration (from tA to tB). The parameter 

schedule is set by Eq. (4.6), where a0 is the initial setting and r determines the 

decreasing speed. This approach ensures a gradual adjustment of coefficient a over 

the transition period following Switching 1, contributing to a controlled and stable 

system response during the demand response period. 

𝑎(𝑡) = 𝑎0𝑒
−𝑟𝑡 (4.6) 

Parameter setting at Switching 2. At the switching moment from demand limiting 

mode to normal mode (i.e., Switching 2), the control objective is to properly distribute 

the available cooling supply in order to restore the temperature of these building zones 

to comfort setpoints. In this situation, coefficient a is set to 0 since the deficit flow 

problem is no longer a concern due to the sufficient cooling supply. However, 

considering the need to rapidly cool down the zones, the AHU valve openings should 

be relatively larger. Therefore, the reset of a back to 0 is delayed for a short period 

(i.e., from tC to tD in Figure 4.4) to facilitate a quicker cooling response. 
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Figure 4.4 Parameter scheduling of coefficient a 

4.1.2.4 Control performance indicators 

To assess the control performance of cooling distribution, a temperature diversity 

indicator, denoted as PI, is proposed in Eq. (4.7). In this equation, PIi represents the 

performance indicator for a specific zone i in the building, where, n denotes the total 

number of zones. The function of this indicator is to quantify the temperature diversity 

among the zones, aiming for a lower value to achieve the desired control objective of 

proper cooling distribution. Additionally, accumulated valve travel distance (AVTD) 

is utilized for quantifying the control stability of the AHU valves. AVTD is calculated 

using Eq. (4.8), where, Δut denotes the valve position modification during each 

sampling period t. I denotes the overall number of sampling periods within demand 

limiting mode. 
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𝑃𝐼𝑖(𝑡) = |𝑇𝑧𝑜𝑛𝑒,𝑖(𝑡) −
∑ 𝑇𝑧𝑜𝑛𝑒,𝑖(𝑡)

𝑛
𝑖=1

𝑛
| (4.7) 

𝐴𝑉𝑇𝐷 =  ∑∆𝑢𝑡

𝐼

𝑡=1

(4.8) 

4.2 Arrangement of real-time hardware-in-the-loop tests 

4.2.1 Hardware-in-the-loop test platform 

To ensure the practical applicability regarding actual deployment and operation of the 

proposed control strategy, we have developed a hardware-in-the-loop experimental 

platform to closely simulate real-world conditions, as illustrated in Figure 4.5. This 

platform incorporates a physical programmable logic controller (PLC) as the feedback 

controller for regulating the valve openings of the AHUs within the central air-

conditioning system. Specifically, we have employed a SIMATIC S7-1200 controller 

from Siemens as the hardware component of our platform. To accurately emulate the 

behavior of building thermal dynamics and various HVAC components (such as 

chillers, AHUs, hydraulic networks, etc.), we have constructed detailed physical 

models in TRNSYS. The simulated building represents a high-rise commercial 

structure located in Hong Kong. The software side is capable of managing dynamic 

processes associated with heat transfer, hydraulic properties, water balance, and 

energy conservation within the physical building and air-conditioning system. 
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Figure 4.5 Hardware-in-the-loop test platform 

Figure 4.2 illustrates the central air-conditioning system employed. It is a standard 

primary-secondary variable flow system. The chilled water system comprises four 

uniform-capacity duty chillers, each with a nominal capacity of 4,080 kW. The 

primary water pumps maintain a constant speed, each delivering a designated flowrate 

of 172.8 L/s. In the secondary chilled water circuit, two pumps with adjustable speeds 

are installed. These pumps allow for flexibility and control over the flowrate. The 

AHUs are in charge of delivering cooling to the various building zones. In this study, 

six typical building zones, each covering 1,600 m2, are simulated to represent the 

entire air-side system of the building after multiplying their loads by a factor of 15. 

An AHU is installed to supply cool air to each zone. The building operates during 

office hours from 8:00 to 18:00. Throughout this period, all six zones maintain an 

indoor air temperature setpoint of 24 ℃ in normal operation. 
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4.2.2 Test arrangement 

As shown in Figure 4.5, the hardware-in-the-loop platform establishes a connection 

between the physical hardware and the software component using the Modbus 

protocol. The hardware-in-the-loop test platform consists of a programmable logic 

controller (PLC) on the hardware side to deploy the reconfigurable control strategy, 

and software components including TRNSYS for building and air-conditioning 

system simulation and MATLAB. MATLAB is adopted for implementing supervisory 

schemes for the reconfigurable control, i.e., control loop reconfiguration and setpoint 

reset, which will typically be deployed in BAS network stations. The physical PLC 

receives control input and setpoint from the simulated virtual part of the platform. It 

then sends a control signal, specifically the AHU valve openings, back to relevant 

devices in the simulated virtual part of the platform. Half-day (12:00-24:00) real-time 

validation tests are conducted using the weather data on a typical summer day (July 

23rd) in Hong Kong, while a two-hour demand response event from 14:00 to 16:00 is 

included. During this demand response event, two out of four operating chillers are 

switched off, while the two remaining chillers continue to operate. Comparative 

studies are performed to evaluate the performance of the control strategies. 

Strategy I - Conventional control strategy. In this approach, conventional control is 

maintained. The AHU valve position is adjusted to maintain the same supply air 

temperature.  

Strategy II - Reconfigurable control strategy without parameter scheduling. During 

the normal operating mode, the field digital controller adopts the conventional 

feedback control for AHU valve modulation. The feedback control loops for the six 

AHUs are set with the same proportional gain (K) of -0.005 and integral time (Ti) 
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of 50 seconds. The coefficient a in Eq. (4) is fixed at 0.05 throughout the demand 

response event. 

Strategy III - Reconfigurable control strategy with parameter scheduling. This 

approach involves complete reconfigurable control as described in Chapter 4.1. The 

parameter scheduling method is employed to adjust the coefficient a (refer to Eq. 

(4)) according to the schedule outlined in Chapter 4.1.2.4. The duration of the 

decreasing parameter schedule (tB - tA) for coefficient a is set to 60 seconds, the 

duration for holding the value of coefficient a is set to 100 seconds (i.e., tC - tD), 

and the decreasing rate r in Eq. (4.8) is set to 0.05.  

4.3 Test results of control performance, environmental and energy 

performance 

4.3.1 Control performance 

4.3.1.1 Valve opening 

Figure 4.6 shows the valve opening profiles of the building zones under three different 

control strategies. Using the control strategy I, as shown in Figure 4.6 (a), the valve 

openings are increased to maintain the supply air temperature setpoints. All AHU 

valves reach their maximum opening positions within approximately 15 minutes and 

remain fully open throughout the two-hour demand response event. Furthermore, it is 

important to note that even after the demand response event ends, all valves continue 

to remain fully open for over 10 minutes. This indicates that when shutting down 

operating chillers for demand limiting, the cooling supply from the remaining chillers 

is insufficient to meet the cooling demand of terminal units. 



42 

 

Figure 4.6 (b) shows the valve opening profiles when using control strategy II. These 

test results indicate that, with fixed control parameters, strong oscillations occur in the 

valve opening control. The occurrence of such oscillations can be attributed to an 

excessive and fixed setting of coefficient a. Besides, the oscillations can cause 

mechanical wear and fatigue on these components, potentially reducing their lifespan 

and overall reliability. 

On the contrary, the problem of control instability can be avoided under control 

strategy III, as shown in Figure 4.6 (c). The proactive adjustment helps alleviate the 

deficit flow problem very quickly. Moreover, the oscillation problem observed in 

control strategy II is effectively avoided through scheduling coefficient a. Once the 

demand response event ends at 16:00, the valve openings are generally adjusted to 

increase for a short period of 2 minutes. This adjustment ensures that more chilled 

water is provided to cool down the building zones effectively. Subsequently, the 

supply-based feedback control continues to adjust the valve openings for proper 

cooling distribution during the cooling down period. Figure 4.7 presents a comparison 

between the accumulated valve travel distances (AVTD) of control strategy II and 

control strategy III. The results show an average reduction of AVTD by 98% when 

replacing control strategy II with control strategy III. This reduction demonstrates the 

effectiveness of the proposed reconfigurable control strategy in achieving better 

control stability during fast demand response events. 
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(a) Control strategy I 

 

(b) Control strategy II 
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(c) Control strategy III 

Figure 4.6 Valve opening profiles using different control strategies 

 

Figure 4.7 Comparation of accumulated valve travel distance between control 

strategy II and control strategy III 
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4.3.1.2 Chilled water distribution 

Figure 4.8 shows the chilled water flowrates of different zones under different 

scenarios. Figure 4.8 (a) presents that the water flowrate distribution among zones is 

disordered when using conventional control. The chilled water flowrates of all zones 

begin to increase in correlation with the upward trend of the valve openings at 14:00. 

During this event, six AHU valves are controlled to be fully open. However, due to 

variations in hydraulic resistance among the AHUs, the distribution of chilled water 

becomes uneven. This disorderly distribution arises because the chilled water loop 

with lower resistance (e.g., AHU 6) receives a much larger share of chilled water than 

the distribution to other zones. Conversely, the chilled water loop at a more distant site 

(e.g., AHU 1) receives less chilled water, even when its valve has been already fully 

opened. The problem of uneven water distribution persists even after 16:00, during the 

rebound period. Figure 4.8 (b) presents the chilled water flowrate profiles using 

control strategy II. There are strong oscillations in valve opening control, resulting in 

oscillations in chilled water flowrate distribution. This instability in the system control 

leads to a decrease in the overall performance of the controlled process. However, the 

problem is eliminated in the test using control strategy III, as shown in Figure 4.8 (c). 

As discussed in Chapter 4.2.2, the proper adjustments in valve openings lead to a more 

appropriate distribution of chilled water.  
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(a) Control strategy I 

 

(b) Control strategy II 
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(c) Control strategy III 

Figure 4.8 Chiller water flowrate profiles under different control strategies 
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bypass pipe water flowrate. On the other hand, when using control strategy III, the 

phenomenon of deficit flow gradually diminishes from 14:00. It takes approximately 

12 minutes to eliminate the deficit flow. With this proposed supply-based feedback 

control, the deficit flow is effectively avoided throughout the demand response event, 

and no oscillations occur in the bypass pipe water flowrate. 

 

Figure 4.9 Bypass pipe water flowrate profiles using different control strategies 

4.3.2 Environmental and energy performance 

The previous section has highlighted the effectiveness of the proposed control in 

adjusting AHU valve openings to ensure proper chilled water distribution during fast 
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4.3.2.1 Indoor air temperature 

Figure 4.10 presents a comparison between the indoor air temperature profiles of 

conventional control and reconfigurable control. When using the conventional control, 

there are significant differences in temperature sacrifices among all building zones. In 

addition, the cooling down speeds also deviate significantly among the zones during 

the rebound period. Figure 4.11 (a) presents the temperature diversity performance 

indicators using conventional control. The test results demonstrate that for the majority 

of the zones, their temperature diversity indicators remain above 0.2 K for most of the 

time, indicating imbalanced thermal comfort sacrifices. This imbalance arises from 

improper chilled water distribution, as discussed in Chapter 4.3.1.2. However, when 

the proposed reconfigurable control is implemented, the problem of imbalanced 

thermal comfort sacrifices can be effectively addressed, as shown in Figure 4.11 (b). 

The diversity indicators of all six zones can be controlled within 0.2 K for most of the 

time. 
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(b) Reconfigurable control 

Figure 4.10 Comparation of indoor air temperature profiles using conventional 

control and reconfigurable control 
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(b) Reconfigurable control 

Figure 4.11 Comparation of temperature diversity performance indicators using 

conventional control and reconfigurable control 

4.3.2.2 Energy consumption 
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mode, the power reduction of the chilled water system is 561.5 kWh, corresponding 

to a further reduction of 11.6%, when replacing the conventional feedback control 

with the supply-based feedback control. In addition, the power rebound is also reduced 

by 532 kW, corresponding to 27% of power rebound when using the conventional 

control. 

 

Figure 4.12 Comparation of secondary pumps energy consumption using 

conventional control and reconfigurable control 
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Figure 4.13 Comparation of air-conditioning system consumption using conventional 

control and reconfigurable control 
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o The conventional building automation systems adopting conventional feedback 

control face challenges in distributing cooling supply effectively during fast 

demand response while cooling supply is not sufficient after switching off some 

of the operating chillers. This results in disordered chilled water distribution, 

leading to imbalanced thermal comfort sacrifices among building zones. In 

addition, a severe deficit flow problem might arise, causing increased energy 

consumption in the secondary pumps. 

o The proposed reconfigurable control strategy offers a solution for managing the 

distribution of cooling supply effectively to address the above issues. This 

strategy can be implemented on conventional building automation systems 

adopting digital controllers commonly used today, such as DDC and PLC. 

o Test results show satisfactory control stability in valve opening control and proper 

chilled water distribution. This enables uniform space temperature distribution 

and thermal comfort control among the building zones during both demand 

response and rebound periods. The temperature deviation among the zones is 

controlled within 0.2 K for the majority of the time. Furthermore, proposed 

reconfigurable control achieves reductions of 11.6% and 27% of power demand 

during demand response and rebound periods respectively, compared to that using 

conventional controls. 
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CHAPTER 5 ITERATIVE LEARNING CONTROL 

STRATEGY FOR SHORTENED MORNING START 

PERIOD  

To develop advanced control strategies for the special enhancement of the supply-

based control at morning start period, this chapter proposes an iterative learning 

control strategy for building air-conditioning systems. This simple control strategy can 

determine the AHU water valve openings during the morning start period to achieve 

uniform cooling among building zones effectively, by updating the valve opening 

control values of individual AHUs using the iterative learning control. Section 5.1 

presents the mechanism of iterative learning control and the operation procedure. The 

test platform and arrangement for the morning start period are elaborated in Section 

5.2. Section 5.3 analyzes the control performance and energy saving potential. A 

summary of the work and results is given in Section 5.4.   

5.1 Mechanism of iterative learning control and operation 

procedure 

This study proposes an iterative learning control strategy for building air-conditioning 

systems for saving energy by shortening the morning start period, which is developed 

based on  iterative learning control (Bristow et al., 2006). The daily precooling period 

is regarded as a repetitive process.  The basic idea is to set the AHU valve openings 

corresponding to the actual cooling needs of individual zones during the precooling 

period. In this way, the conventional (PID) feedback control is temporarily taken over 

during this period. The fixed AHU valve opening control values are updated on a  daily 
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basis. An outline of the proposed control strategy is shown in Figure 5.1. The iterative 

learning controller adopts the iterative learning control strategy, and the control 

outputs are the AHU water valve opening control signals corresponding to individual 

building zones. The environmental variable measurements from the building zones are 

sent back to the iterative learning controller and used directly for iterative learning 

control. Two control performance indicators are proposed for evaluating the control 

performance and setting the control parameters. The Q-learning agent selects the 

control parameters of the iterative learning controller based on the control 

performance indicators. 

 
Figure 5.1 Outline of the proposed iterative learning control strategy 

5.1.1 Basic control mechanism 

Figure 5.2 illustrates the basic principle of the proposed control strategy. For building 

air-conditioning systems during the morning start period, the cooling demand is very 

high and individual air-conditioned building zones would compete for the limited 

cooling supply from the chillers. The iterative learning controller is proposed for the 

chilled water side to manage the distribution of the limited chilled water among the 

building zones aiming to keep indoor temperatures of all the building zones the same 

(approaching the temperature setpoint at the same time). The control objects are the 
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AHU water valve openings corresponding to individual building zones. The control 

outputs (valve opening control signals) are updated on a daily basis before the 

precooling start time, and remain the same during the precooling process. The iterative 

learning controller needs to collect data of two categories. The first category includes 

the control outputs at the last control interval (i.e., last day) and the control 

performance indicators at the last control interval. They are used to update the first 

term of the iterative learning control function at the current interval. The second 

category includes the environmental information (i.e., initial temperatures) of the 

building zones at the current interval, which are used to update the second term of the 

iterative learning control function at the current interval. As the time passes, the 

iterative learning controller can continuously track and approach the goal of consistent 

precooling lead time for different building zones at the morning start period. 

 

Figure 5.2 Basic principle of the proposed iterative learning control strategy 
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5.1.2 Control performance indicators 

In order to evaluate the control performance, two control performance indicators are 

proposed based on the notion of consistent precooling lead time for different 

individual building zones. 

The first indicator is the maximum return time among multiple zones from night 

setback (tmax), as shown in Eq. (5.1). Where, tn represents the return time from night 

setback for zone n. Figure 5.3 illustrates the return time from night setback for an 

individual building zone. The precooling starts at time tA, when the indoor air 

temperature is relatively high because the air-conditioning systems in commercial 

buildings are generally not operating during the night. The indoor air temperature of 

the zone then decreases and reaches the cooling setpoint at time tB. The time difference 

between tA and tB (i.e., tB - tA) is defined as the return time from night setback. 

𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑡1, 𝑡2 ⋯𝑡𝑛} (5.1)

 

Figure 5.3 Illustration of the return time from night setback for an individual 

building zone 
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The goal of the proposed control strategy is to minimize the precooling lead time of 

building zones considering the distribution of limited cooling supply in the morning 

start period. In order to achieve consistent precooling lead time for different building 

zones, the maximum return time among all zones from night setback should be 

considered as a performance indicator and it represents the required precooling 

operation time of the chillers. 

The second indicator is the cooling diversity indicator (cdi), as shown in Eq. (5.2). 

𝑐𝑑𝑖 =  
∆𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥

(5.2) 

∆𝑡𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑡1, 𝑡2 ⋯𝑡𝑛} − 𝑚𝑖𝑛{𝑡1, 𝑡2 ⋯𝑡𝑛} (5.3) 

The maximum deviation between the return time among all building zones from night 

setback (Δtmax) is defined in Eq. (5.3), which represents the largest precooling lead 

time deviation among the building zones during the morning start period. As the 

control objective is to minimize the maximum precooling lead time deviation under 

the limited cooling supply, the cooling diversity among the building zones should be 

consistent. The cooling diversity indicator defined in Eq. (5.2) is used as a 

performance indicator and its value is expected to be as low as possible. 
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5.1.3 Operation procedure of iterative learning control strategy 

 

Figure 5.4 Schematic of the proposed control strategy  

The schematic of the proposed control strategy is shown in Figure 5.4. The iterative 
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start period, (1) return time (t1) of the n building zones from night setback, (2) 

temperature (T1) of the n building zones at the precooling start time, (3) AHU valve 

openings of the n building zones (u1). These data are saved every day for the next 

day’s learning control.  

𝑡1 = [𝑡1,1, 𝑡2,1, ⋯ 𝑡𝑛,1] (5.4) 

𝑇1 = [𝑇1,1, 𝑇2,1,⋯ 𝑇𝑛,1] (5.5) 

𝑢1 = [𝑢1,1, 𝑢2,1, ⋯𝑢𝑛,1] (5.6) 

Control updating at each control interval. In the day i, before the precooling start time, 

the proposed control algorithm is activated. The controller collects the zone 

temperatures (Ti) of building zones and execute the iterative learning control strategy 

as illustrated below. 

o Calculate the average return time (tave) of the n building zones from night 

setback using Eq. (5.7). 

𝑡𝑎𝑣𝑒 =
∑ 𝑡𝑛,𝑖−1

𝑛
1

𝑛
(5.7) 

o Calculate the AHU valve opening correction Δun,i, for each building zone n 

using Eq. (5.8). 

∆𝑢𝑛,𝑖 = 𝑘 ∙ (𝑡𝑎𝑣𝑒 − 𝑡𝑛,𝑖−1) − 𝑏 ∙ (𝑇𝑛,𝑖 − 𝑇𝑛,𝑖−1) (5.8) 

where, k and b can be recognized as the control parameters of the learning function, 

and they need to be adjusted according to the specific system.  

o Calculate the corresponding AHU valve opening un,i, for each building zone n, 

using Eq. (5.9). 

𝑢𝑛,𝑖 = 𝑢𝑛,𝑖−1 − ∆𝑢𝑛,𝑖 (5.9) 
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According to the control algorithm above, the AHU valve opening control signals of 

the n building zones (ui) at day i could be determined. With time passes, the controller 

can handle the environmental difference every day and repeat the iterative learning 

control strategy to update the control outputs. 

5.1.4 Control parameter setting using Q-learning agent 

As illustrated in Eq. (8), the iterative learning control function has two key parameters 

(k, b) as the control parameters. The values of these two parameters have significant 

impacts on the overall control performance. If the values of k and b are high, the 

learning and correction process of the control strategy would be quick, but the system 

may be over tuned if they are too high. On the contrary, if the values of k and b are 

low, the system may avoid this problem; however, the learning process would be slow. 

For engineering practice, such control parameters could be manually determined by 

experienced engineers. To make the application of the proposed control strategy 

convenient and labor-saving, the tasks of selecting the control parameters can be 

formulated and treated as a basic reinforcement learning problem.  

Q-learning is a classical reinforcement learning method. This method is model-free 

and the algorithm is based on a Q-table (Sutton & Barto, 2018). Compared with many 

network-based methods such as deep reinforcement learning, the Q-learning method 

is easier to converge and more feasible to apply  in engineering practice (Qiu et al., 

2020). The applications adopting Q-learning have been proven to be effective in many 

previous studies in the HVAC domain (Chen et al., 2018; Henze & Schoenmann, 2003; 

Qiu et al., 2020). In this study, this method is adopted for control parameter setting of 

the iterative learning controller.  
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The parameter identification and adjustment of the iterative learning controller are 

performed using an online adaptive approach with the proposed Q-learning agent, as 

shown in Figure 5.5. The inputs of the Q-learning agent are the control performance 

indicators, and the outputs are the control parameters. The detailed process of the Q-

learning agent workflow for control parameter setting is elaborated below. By 

adopting the Q-learning method, the Q-learning agent can learn the process 

characteristics online and update in each control interval to select appropriate control 

parameters for the iterative learning controller, and therefore improve control 

performance

 

Figure 5.5 Outline of the Q-learning agent workflow for control parameter setting 

Outline of Q-learning agent: For Q-learning agent design, the Q-table method is 

proposed as the policy to define the Q-learning agent’s way of behaving at a given 
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time. The control parameters (k, b) of the iterative learning controller are optimized 

by the Q-table in the Q-learning agent. For the Q-learning agent in this study, the Q-

table provides a mapping from perceived states of the building zones to control 

parameter setting. Table 5.1 is the Q-table defined in this study for the iterative 

learning control strategy. The action (A) in this table represents the control parameters 

(k, b) to be determined, and the state (S) represents the calculated cooling diversity 

indicator (cdi) as introduced in Chapter 5.1.2. Each Q-value (e.g., Q (S1 , A1)) in Table 

5.1 is updated through the Q-learning process, and its initial value is 0. All the Q-

values formulate the Q-table, which is used to determine the control parameters (k , b). 

The learning process of the Q-learning agent using the Q-table is illustrated in the 

following five subsections. 

Table 5.1 Format of the designed Q-table 

Action (k, b) \ State 

(cdi) 
[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1] 

(0.5, 0.0125) 
Q (S1 , 

A1) 

Q (S2 , 

A1) 

Q (S3 , 

A1) 

Q (S4 , 

A1) 

Q (S5 , 

A1) 

(1, 0.025) 
Q (S1 , 

A2) 

Q (S2 , 

A2) 

Q (S3 , 

A2) 

Q (S4 , 

A2) 

Q (S5 , 

A2) 

(2, 0.05) 
Q (S1 , 

A3) 

Q (S2 , 

A3) 

Q (S3 , 

A3) 

Q (S4 , 

A3) 

Q (S5 , 

A3) 

Action: The action is defined as the combination of the control parameters (k, b), and 

determining the action is the task of the Q-learning agent in this study.  Discretization, 

as a classical and convenient method for action setting in Q-learning, is used in this 

study. The setting of the discretization precision for the action is flexible. Higher 

precision setting could make the state identification more accurate and the action 

selection more precise. But it would also lead to a larger Q-table and thus require 

longer period and more data for the operation of the Q-learning agent. In order to make 
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it easy for application, the action (k, b) is discretized into three combinations in this 

study, i.e., (0.5, 0.0125), (1, 0.025), and (2, 0.5). They are determined based on the 

expert judgement and the authors’ experience. It is reasonable for such a setting 

because the three combinations of the control parameters could represent low, medium, 

and high learning rate, respectively for the iterative learning controller. The mission 

of the Q-learning agent is to determine the appropriate learning rate for the iterative 

learning control strategy.   

State: The state in this study is defined as the cooling diversity indicator (cdi), because 

this control performance indicator can represent the consistency between the 

precooling lead times of different individual building zones. It reflects the iterative 

learning control performance of previous day, and the Q-learning agent should select 

the control parameters according to the state at current morning start period. The 

cooling diversity indicator is a continuous variable and for the convenience of 

application in Q-table, it  is discretized into five intervals with equal length as shown 

in Table 5.1. 

Reward: The reward is calculated using Eq. (5.10), based on the maximum return time 

among multiple zones (tmax) as described in Chapter 5.1.2. It is based on the notion 

that our expectation is to shorten the maximum return time among all building zones. 

For the Q-learning agent, the reward is higher when the maximum return time among 

all zones is lower. 

𝑅 = −𝑡𝑚𝑎𝑥 (5.10) 

Q-agent learning process: During the learning process, the Q-learning agent 

accumulates experience by updating the Q-table, and the updating principle is shown 

in Eq. (5.11). 
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𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (5.11) 

where, Q (s, a) represents the Q-value with state (s) and action (a) as shown in Table 

1, and the initial Q-values are set to 0. At each iterative learning control interval, the 

Q-value of Q (s, a) corresponding to the previous step is updated according to this 

principle. R is the reward calculated using Eq. (5.10), as the result of the action (a). α 

is the learning rate of the Q-learning agent; and γ is the impact of the reward at the 

next iterative learning control interval on the decision of action at the current step. In 

this study, the α and γ are set to 0.9 and 0.1, respectively. 𝑚𝑎𝑥𝛼′𝑄(𝑠′, 𝑎′) is the max 

Q-value at state (s′) with current Q-table. 

Principle of control parameters determination: For every control interval, the Q-

learning agent determines the control parameters (k, b) based on the ε-greedy policy 

in this study. The principle of the ε-greedy policy is shown in Eq. (5.12). 

𝜋(𝑎|𝑠) ← {
1 − 𝜀 +

𝜀

𝑚
    , 𝑖𝑓 𝑎 = 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

𝜀

𝑚
    , 𝑖𝑓 𝑎 ≠  𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

(5.12) 

where, 𝜋(𝑎|𝑠) is the probability of the action (a) when it is chosen at the state (s). It 

means that, for each control step, the probability for Q-learning agent to choose the 

known best action is 1 − 𝜀 +
𝜀

𝑚
 according to the Q-table, while the probability for Q-

learning agent to choose another action is 
𝜀

𝑚
 . 𝜀 is a predefined parameter representing 

the balance between exploration and exploitation, and 𝜀 is set to 0.3 in this study. m is 

the number of available actions to be chosen, which is set to 3 in this study. In this 

way, the Q-learning agent would choose an action most of the time, which has 

maximum estimated action value for exploitation, but there is probability for the Q-

learning agent to select another random action for exploration. 
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5.2 Test platform and arrangement for morning start period 

To test the applicability and performance of the proposed iterative learning control 

strategy, a virtual dynamic simulation platform is developed using TRNSYS. The real-

time simulation platform of the building and its air-conditioning system is constructed, 

referring to the actual system of a super-high-rise commercial building (International 

Commerce Centre) in Hong Kong, and the main parameters are presented in Table 5.2. 

Table 5.2 Main parameters of central air-conditioning system 

Chiller 

Cooling 

capacity 

(kW) 

Rated flow 

(evaporator)(L/S) 

Rated flow 

(condenser) 

(L/S) 

Rated 

power 

(kW) 

Number 

4080 172.8 205.3 960 4 

Pump 
Rated flow 

(L/S) 

Rated power 

(kW) 
Head (m) 

Efficiency 

(%) 
Number 

Primary 

pump 
172.8 110 45.1 72.5% 4 

Secondary 

pump 
345 163 41.4 85.7% 2 

To make it simple and clear for control performance evaluation and demonstration, 

the dynamic test platform is developed by simplifying the actual energy system of the 

International Commerce Centre. The air-conditioning system for six typical and 

standard floors is concerned only in this study. The area of each building floor is 1,600 

m2.The detailed physical models of the air-conditioning system in this test platform 

are calibrated using real data (Tang, Wang, Shan, et al., 2018; S. Wang, 1998). The 

test platform is a typical primary constant-secondary variable chilled water system, 

and the schematic is shown in Figure 5.6. It consists of four identical chillers, and each 

chiller’s rated capacity is 4080kW. For the primary chilled water pump side, each 

chiller is interlocked with a water pump with the constant speed of 172.8 L/s. For the 



68 

 

secondary chilled water loop, two variable speed water pumps are employed and the 

chilled water is circulating in the AHUs to provide a cooling source. The building is 

simulated using a multizone model (Type 56) in TRNSYS. The six typical floors 

concerned are considered as six individual building zones, respectively (i.e., each floor 

is considered as a building zone). These zones have different cooling loads since the 

heat gains (including occupants, electrical devices, etc.) in these zones are different. 

Each building zone is cooled by an individual AHU. Each of the six air-conditioned 

zones is cooled by the supply air temperature from its corresponding AHU to its zone 

temperature setpoint. Each AHU cools down the supply air temperature to the pre-

defined setpoint.  

 
Figure 5.6 Schematic of central air-conditioning system concerned 

In this study, a TRNSYS-MATLAB co-simulation test platform is constructed, as 

shown in Figure 5.7. The iterative learning controller and other models (i.e., the 

building models and the air-conditioning system models) are built on TRNSYS 18 

(32-bit) while the Q-learning agent is built on MATLAB 2014a (32-bit). Fig. 8 shows 

the overview of the simulation studio file for the TRNSYS-MATLAB co-simulation. 

Type 155 (in the TRNSYS library) is used for calling the MATLAB component. The 

weather data for a typical year in Hong Kong is adopted in the test. The office hours 
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of the building are from 08:00 to 18:00, from Monday to Saturday, and the air-

conditioning system is switched off during the non-office hours. 

 

 

Figure 5.7 Outline of TRNSYS-MATLAB co-simulation test platform 

 

Figure 5.8 Overview of the simulation studio file for the TRNSYS-MATLAB co-

simulation 

Prior to the morning start period in each working day, the iterative learning controller 

is activated, adpoting the proposed method as introduced earlier in Chapter 5.1. For 

the validation tests, the number of building zones n is set to 6, and a hot month (July) 

TRNSYS
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in Hong Kong is selected as the experimental operation period. A test period of four 

weeks, i.e., from July 2nd to July 29th, is selected. The control parameters (k, b) are 

determined and updated online using the Q-learning agent, as described in Chapter 

5.1.4. 

5.3 Control performance and energy saving potential 

The control performance, precooling time reduction, and energy saving are tested and 

analyzed to evaluate the feasibility and performance of the proposed control strategy. 

Two proposed indicators (tmax and cdi) are used to evaluate the control performance of 

the proposed iterative learning control strategy at morning start period, and this 

performance is also compared with that of the conventional feedback control. The 

precooling period starts before the office hours (8:00) every working day, and the air-

conditioning system is switched off after the office hours (18:00). And the indoor air 

temperature setpoints for all the six building zones are 24 ℃. The energy saving of 

the chilled water system (chillers, primary pumps, and secondary pumps) by adopting 

the proposed control strategy is quantitatively analyzed in the following sections. 

5.3.1 Control operation and control performance 

5.3.1.1 Valve opening control outputs 

The AHU valve opening control outputs for the six zones were determined by the 

proposed iterative learning control strategy every day at morning start period, and the 

results are shown in Figure 5.9. For Day 1 (02/July), the initial valve openings were 

manually determined based on the normal operation data of the six AHUs before the 

test period. The initial valve openings for the six AHUs were 1, 0.87, 0.82, 0.76, 0.65, 

and 0.6 correspondingly. Figure 5.10 compares the AHU valve openings under the 
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conventional control and the proposed control, on a typical summer day (23/July). 

Unlike the conventional feedback control, all the AHU valves are set to be fully open 

to compete for the limited chilled water supply. It can be seen from the results that, 

when using the proposed strategy, the AHU valve openings corresponding to the six 

building zones were adjusted and then remained unchanged every day during the 

morning start period. It can be seen from Figure 5.9 that the valve opening for AHU 1 

was controlled at 1 during morning start period in all test days under the proposed 

control. This indicates that zone 1 is at a disadvantage for chilled water distribution 

among the six building zones. On the contrary, the valve opening of AHU 6 was 

controlled to be the lowest among the six AHUs during morning start period in all the 

test days. It indicates that the zone 6 has the advantage in competing for the limited 

chilled water supply. In summary, using the proposed iterative learning control 

strategy, the control outputs could be updated at each control interval (everyday 

morning start period) to continuously track the goal of consistent precooling lead time 

for different building zones. 
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Figure 5.9 AHU valve opening control outputs of the six building zones during morning 

start period 

 

Figure 5.10 Comparison of AHU valve openings under the conventional control and the 

proposed control on a typical summer day 

5.3.1.2 Maximum return time among multiple zones 

The maximum return time among multiple zones from night setback (tmax) is defined 

as a control performance indicator, as illustrated in Chapter 5.1.2. It indicates the 
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required precooling time for all building zones to reach their temperature setpoint. The 

value of tmax is expected to be as low as possible. Figure 5.11 presents the tmax under 

the proposed iterative learning control and the conventional feedback control. It can 

be observed that under the proposed iterative learning control, the tmax was lower than 

that under the conventional control for the four-week test period. Among the test 

results, the maximum reduction of tmax was 0.19 hour on Day 19 (23/July) and the 

maximum reduction percentage of tmax was 15.6% on Day 23 (27/July). For the 

convenience of comparison, the daily tmax over a week was summed up and the 

accumulated tmax for four weeks in the test period is shown and compared in Table 5.3. 

It can be seen from Table 5.3 that the tmax reduction in Week 1 was 8.3%, and for the 

following three weeks the tmax reduction effect was over 11%. The results show that 

the proposed iterative learning control strategy reduced the maximum return time 

among the six building zones. This means that the required precooling time under the 

conventional feedback control was reduced when applying the proposed iterative 

learning control. 

Table 5.3 Maximum return time among multiple zones (tmax) comparation of the four-week 

test period 

Week 1 2 3 4 

Accumulated tmax 

(hour) 

Conventional 

control 
4.47 6.45 5.38 6.55 

Proposed control 4.10 5.68 4.77 5.82 

tmax reduction (%) 8.3 11.9 11.3 11.1 
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Figure 5.11 Maximum return time among multiple zones (tmax) during the test period 

5.3.1.3 Cooling diversity 

The cooling diversity indicator (cdi) is another control performance indicator, as 

introduced in Chapter 5.1.2. It represents the cooling diversity among the building 

zones during the morning start period, and it is expected to be as lower as possible. 

The results of cdi under the conventional feedback control and the proposed iterative 

learning control are compared in Figure 5.12. It can be observed from Figure 5.12 that 

the cdi under the proposed control strategy is much lower than that of conventional 

control.  

The reduction of cdi was not very significant on Day 1 (02/July). However, after the 

first three test days, the cdi was significantly lower under the proposed control strategy 

than that under the conventional control. During the test period, the maximum 

reduction of cdi by applying the proposed control strategy was on Day 17 (20/July), 

with a reduction of 0.47. The percentage of maximum cdi reduction was 86.8% on 

Day 23 (27/July). For the convenience of comparison, the daily average cdi over a 

week of the four weeks in the test period is shown and compared in Table 5.4. The 

results show that for the first week, the cdi reduction was 49.1%, and for the following 
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three test weeks, the cdi reduction was over 70%. The test results indicate that the 

proposed iterative learning control strategy significantly reduced the cooling diversity 

indicator (cdi). By applying the proposed control strategy, the consistency of 

precooling lead time among the six building zones was improved significantly. 

Table 5.4 Cooling diversity indicator (cdi) comparation of the four-week test period 

Week 1 2 3 4 

Average cdi 

Conventional control 0.57 0.52 0.53 0.52 

Proposed control 0.29 0.15 0.14 0.14 

cdi reduction (%) 49.1 71.2 73.6 73.1 

 
Figure 5.12 Cooling diversity indicator (cdi) during the test period 

5.3.1.4 Reduction of precooling time 

Based on the above control performance analysis, it is evident that the proposed 

iterative learning control strategy could achieve better control performance than 
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way, the consistency of precooling lead time among different building zones was 

achieved by adjusting the AHU valve openings corresponding to individual building 

zones. The precooling time reduction was therefore achieved. 

Figure 5.13 presents the precooling time reduction using the proposed control strategy 

on a single day, i.e., Day 19 (23/July). Figure 5.13 (a) shows the temperature profiles 

of the six building zones under the conventional feedback control, it is clear that the 

cooling-down speeds of indoor air temperature among the zones were significantly 

different. Precooling starts at around 6:26 AM under  conventional feedback control. 

By 8:00 AM, all zones reach the temperature setpoint, with Zone 6 reaching its 

setpoint 0.75 hour earlier than Zone 1. The tmax was 1.57 hours and the cdi was 0.48 

under conventional feedback control, indicating that conventional precooling took 

1.57 hours.  

When the proposed strategy was used at the same conditions, the cooling-down speeds 

among the different building zones were much more similar, as shown in Figure 5.13 

(b). Precooling starts at around 6:38 AM under the proposed control. Allzones reached 

the temperature setpoint almost synchronously at 8:00 AM. The tmax was 1.38 hours 

and the cdi was 0.14, with the precooling time reduced to 1.38 hours. Compared to 

using the conventional control strategy, the precooling time was reduced by 0.19 hour 

(from 1.57 hours to 1.38 hours). The potential precooling time was thus reduced by 

12.1% on a typical summer day (23/July) in Hong Kong. 
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Figure 5.13 Precooling time reduction evaluation of a typical summer day 

The daily reductions of the precooling time over the four-week test period are shown 

in Table 4.5 and Figure 5.14. It can be observed that the maximum daily reduction was 

0.19 hours on Day 19 (23/July). The average daily reduction of precooling time was 

0.1 hours (10.9%), and the accumulated precooling time reduction over the test period 

was 2.48 hours. 

 
Figure 5.14 Reduction of precooling time during the test period 
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Table 5.5 Reduction of precooling time during the test period 

 Day 
Daily potential precooling 

time reduction (hour) 

Daily potential precooling 

time reduction (%) 

Week 1 

1 0.03 4.8 

2 0.05 5.7 

3 0.06 6.6 

4 0.09 12.1 

5 0.07 10.0 

6 0.07 12.0 

Week 2 

7 0.16 10.7 

8 0.15 11.9 

9 0.13 12.2 

10 0.12 13.3 

11 0.13 13.2 

12 0.07 10.2 

Week 3 

13 0.11 13.8 

14 0.06 8.9 

15 0.13 14.8 

16 0.14 13.3 

17 0.13 13.6 

18 0.05 4.8 

Week 4 

19 0.19 12.1 

20 0.18 13.6 

21 0.04 4.7 

22 0.12 15.6 

23 0.15 15.6 

24 0.05 5.1 

Accumulated potential 

precooling time reduction 

(hour) 

2.48 

5.3.2 Energy saving using proposed control strategy 

Based on the reduction of the precooling time obtained from the tests, the energy 

savings of the proposed iterative learning control strategy can be quantified. In the 

system, the energy consumption of the main chilled water plant includes that of the 

chillers, primary pumps, and secondary pumps. Table 5.6 shows the comparision 

between the energy consumptions using the proposed iterative learning control and 

conventional control on a typical summer day (23/July). The reduction of precooling 

time was 0.19 hours when adopting the proposed iterative learning control. As shown 

in Table 5.6, the major energy saving came from the chillers, and the overall energy 

savings were 695 kWh (12.8%) by using the proposed control strategy. 
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Table 5.6 Energy consumption comparation of a typical summer day 

 Overall 

(kWh) 

Chillers 

(kWh) 

Primary pumps 

(kWh) 

Secondary pumps 

(kWh) 

Conventional control 5415 4341 519 555 

Proposed control 4720 3834 454 432 

Reduction (kWh) 695 507 65 123 

Reduction (%) 12.8 11.7 12.5 22.2 

The energy savings during the entire four-week test are shown in Table 5.7 and Figure 

5.15. It can be seen that the maximum daily overall energy savings were 695 kWh on 

Day 19 (23/July). The average daily overall energy saving was about 400 kWh (12.4% 

savings) and the accumulated overall energy saving over the test period (four weeks) 

was 9,615 kWh. 

 
Figure 5.15 Energy saving in the test period 
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Table 5.7 Energy saving during the test period 

 Day 
Daily overall energy saving 

(kWh) 
Daily overall energy saving (%) 

Week 1 

1 124 5.1 

2 188 6.3 

3 208 7.4 

4 346 14.0 

5 271 11.2 

6 239 12.0 

Week 2 

7 573 11.0 

8 548 12.8 

9 501 13.5 

10 469 15.2 

11 492 15.0 

12 310 13.1 

Week 3 

13 438 16.5 

14 269 11.7 

15 488 16.8 

16 509 14.4 

17 496 15.0 

18 230 6.5 

Week 4 

19 695 12.8 

20 664 14.9 

21 268 8.3 

22 459 17.5 

23 579 17.8 

24 251 7.6 

Accumulated 

overall energy 

saving (kWh) 

9615 

5.4 Summary 

For commercial buildings, the precooling time is significantly extended due to the 

varied cooling rates of different zones leading to significant energy waste. To address 

this common operational issue, a new iterative learning control strategy has been 

proposed to optimally distribute the limited cooling supply during the morning start 

period. The control outputs, such as valve openings, are updated daily. This iterative 

learning control strategy continuously tracks the goal of achieving consistent 

precooling lead time across different building zones each morning. A Q-learning agent 

has been developed to select and tune the parameters of the iterative learning controller 
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based on the Q-table method. Based on the experiences and results from validation 

tests, several key findings are summarized as follows: 

o The proposed iterative learning control strategy updates the control outputs at each 

control interval (daily) to consistently achive the goal of uniform precooling lead 

times across different building zones. 

o The strategy has successfully reduced the maximum return time among multiple 

zones from night setback (tmax) and the cooling diversity indicator (cdi). The 

average daily reduction in precooling time was 0.1 hour (10.9% reduction), with a 

total reduction of 2.48 hours over the four weeks test period.  

o The strategy has significantly enhanced energy savings. The average daily energy 

savings of the chilled water plant was 400 kWh, with a total of 9,615 kWh over 

the four weeks test period. 
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CHAPTER 6 EVENT-DRIVEN CONTROL STRATEGY 

FOR FAST DEMAND RESPONSE 

To address the challenges associated with building grid-interaction, this chapter 

proposes an event-driven control strategy of air-conditioning systems aimed at 

facilitating fast demand response for smart grids. The proposed control strategy 

determines the optimal AHU (Air Handling Unit) water valve openings based on real-

time indoor environment data from various air-conditioned zones. This ensures even 

distribution of the limited cooling supply after part of the operating chillers are shut 

down during the demand response period. Section 6.1 illustrates the mechanism of 

event-driven control and operation procedure. Section 6.2 elaborates on the test 

arrangement for fast demand response. Section 6.3 presents the performance of the 

chilled water distributionand the power limiting effect. Conclusive remarks are 

provied in Section 6.4. 

6.1 Mechanism of event-driven control and operation procedure 

6.1.1 Outline of the proposed event-driven control strategy 

Figure 6.1 shows the outline of the proposed event-driven control strategy to address 

the disordered water flow distribution problem that occurs after shutting down some 

of the operating chillers for fast demand response. The basic idea is to adjust the AHU 

valve opening associated with each air-conditioned zone to allow for even cooling 

distribution (i.e., evenly-spread thermal comfort) among all air-conditioned zones. 

The developed control strategy is activated after part of the operating chillers are shut 
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down. It mainly consists of two parts: the event-driven control scheme and the cooling 

distribution control scheme, as shown in Figure 6.1.  

The term “event” refers to the scenario in which the degree of indoor air temperature 

imbalance among different building zones reaches the preset threshold defined in this 

study. Environmental variable measurements (i.e., zone air temperatures) are collected 

and sent to the event-driven control scheme module. This module analyzes the real-

time data and determines whether a predefined event has occurred (i.e., whether the 

degree of indoor air temperature imbalance exceeds the threshold), as illustrated in 

Chapter 6.1.2. Based on the judgment, the event-driven scheme would then decide 

whether to activate the cooling distribution control scheme, as illustrated in Chapter 

6.1.3, to adjust the control outputs (i.e., AHU valve openings) for even cooling 

distribution. At each sampling interval, the event-driven control scheme makes an 

appropriate decision on whether to adjust the AHU valve openings.  

 

Figure 6.1 Outline of the proposed event-driven control strategy 

Unlike existing time-driven control strategies, which trigger control actions at a fixed 

time interval (P) as shown in Figure 6.2 (a), the proposed event-driven control strategy 

only triggers control actions (i.e., AHU valve opening adjustment) when necessary, 

based on the real-time indoor environment. As shown in Figure 6.2 (b), the control 
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outputs of the proposed event-driven control strategy are implemented at variable time 

intervals (P1, P2, P3, etc.). An additional step is included in the event-driven control 

strategy compared to existing time-driven control strategies: it involves assessing 

whether the predefined event occurs and determining whether adjustments to the AHU 

valve openings are needed at the current sampling interval. In this way, the proposed 

control strategy only triggers necessary valve opening adjustments, leading to 

significantly reduced unnecessary wear and tear on the AHU valves compared to 

existing time-driven control strategies. 

 

Figure 6.2 Comparation between the proposed event-driven control strategy and 

existing time-driven control strategies 

6.1.2 Event-driven control scheme 

The framework of the event-driven control scheme is depicted in Figure 6.3. The 

event-driven controller first analyzes real-time indoor environment data and then 

determines whether the pre-defined event has occured. The event determination is a 

crucial pre-defined step in the event-driven control scheme. This control scheme 
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operates on the premise that the higher the degree of indoor air temperature imbalance 

among different building zones, the higher the necessity for AHU valve opening 

adjustments. A Temperature Imbalance Indicator (TII) is proposed in this study to 

facilitate event determination, as illustrated by Eq. (6.1). Here, Tave represents the 

average indoor temperature of the n building zones and can be calculated using Eq. 

(6.2). Tm represents the temperature of building zone m. 

𝑇𝐼𝐼𝑚 =  │𝑇𝑎𝑣𝑒 − 𝑇𝑚│ (6.1) 

𝑇𝑎𝑣𝑒 =
∑ 𝑇𝑚

𝑛
𝑚=1

𝑛
(6.2) 

The Temperature Imbalance Indicator (TII) canrepresent the degree of temperature 

imbalance for each building zone relative to the average zone temperatures. If the TII 

for a building zone exceeds the pre-defined event threshold (e.g., 0.1℃ in this study), 

an event will be detected, and the AHU valve opening will be adjusted according to 

the control output provided by the cooling distribution control scheme for that zone. 

Otherwise, the AHU valve will maintain its previous valve opening setpoint. It is 

worth mentioning that the pre-defined event threshold is adjustable for real-world 

applications, depending on on-site implementation situations (e.g., considering sensor 

accuracy). 
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Figure 6.3 Framework of the event-driven control scheme 

6.1.3 Cooling distribution control scheme 

Figure 6.4 illustrates the basic principle of the proposed cooling distribution control 

scheme used in the event-driven control strategy. After some of the operating chillers 

are shut down for fast demand response, the cooling supply becomes limited and 

insufficient to satisfy the building’s cooling demand. To avoid the unbalanced cooling 

distribution problem typical of conventional cooling demand-based controls, the 

event-driven controller is deployed on site to manage the distribution of the limited 

cooling supply. If necessary, the event-driven controller adjusts the AHU valve 

openings based on indoor environment conditions to achieve even cooling distribution 

under limited cooling supply, thus maintaining consistent temperature rises across all 

air-conditioned zones.  

At each sampling interval, the event-driven controller collects the measured space 

temperatures of all air-conditioned zones. The control action of the event-driven 

controller is triggered by the occurrence of a specific event rather than by the passing 
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of time, as illustrated in Chapter 6.1.2. When this specific event occurs at sampling 

interval i, the control action is activated, and the event-driven controller adopts the 

proposed cooling distribution control scheme. The control outputs calculated at 

sampling interval i are maintained for the AHU valves until sampling interval j, when 

the specific event is detected again. With proper design of the specific event-driven 

control strategy, the event-driven controller can achieve efficient chilled water 

distribution with minimal AHU valve opening adjustments. 

 
Figure 6.4 Basic principle of the proposed cooling distribution control scheme 
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Figure 6.5 Operation procedure of cooling distribution control scheme 

The detailed operation procedure of the cooling distribution control scheme is 

illustrated in Figure 6.5. The event interval refers to the time between detections of a 

predefined event, during which the control outputs are adjusted. At each event interval, 

the controller collects the indoor air temperature profiles of all building zones. Then, 

the controller calculates the control outputs based on the current indoor air temperature 

profiles and the previously calculated control outputs from the last event interval. The 

detailed operation procedure is outlined below. 

o At event interval i, the event-driven controller collects the following data as inputs 

as defined in Eq. (6.3) and Eq. (6.4), including: (1) indoor temperatures (Ti) of the 

n building zones at the event interval i and (2) AHU valve openings of the n 

building zones at the event interval i-1 (ui-1). 

𝑇𝑖 = [𝑇1,𝑖 , 𝑇2,𝑖, ⋯𝑇𝑛,𝑖] (6.3) 

𝑢𝑖−1 = [𝑢1,𝑖−1, 𝑢2,𝑖−1, ⋯𝑢𝑛,𝑖−1] (6.4) 
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o Calculate the average temperature (Tave,i) of the n building zones at event interval 

i using Eq. (6.5). 

𝑇𝑎𝑣𝑒,𝑖 =
∑ 𝑇𝑚,𝑖

𝑛
𝑚=1

𝑛
(6.5) 

o Calculate the AHU valve opening correction Δ um,i, for the building zone 

concerned using Eq. (6.6). 

∆𝑢𝑚,𝑖 = 𝑘 ∙ (𝑇𝑎𝑣𝑒,𝑖 − 𝑇𝑚,𝑖) (6.6) 

Where, k is the control parameter of the event-driven controller. The setting of k affects 

the control efficiency and stability. A high k value can speed up the control process 

but may induce oscillation. Conversely, a low k value results in slower response. 

However, since the control action at each step is activated by the event-driven control 

and only when the temperature difference among zones exceeds the threshold, the risk 

of overshooting is then much lower if the k value is not set too high, making the choice 

of control parameter setting less challenging. In this study, k is set to 0.1 based on 

expert judgment and the authors’ experience. 

o Calculate the corresponding AHU valve opening um,i, for the building zone 

concerned, using Eq. (6.7). 

𝑢𝑚,𝑖 = 𝑢𝑚,𝑖−1 − ∆𝑢𝑚,𝑖 (6.7) 

According to the control algorithm above, the AHU valve opening control signals for 

the n building zones (ui) at event interval i could be determined to achieve even cooling 

distribution. 
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6.1.4 Performance indicators for evaluating the demand response control 

Tto evaluate the control performance of the event-driven control and compare it with 

the time-driven control, two control performance indicators are proposed in this study. 

The first one is the Temperature Diversity Indicator (TDI) as shown in Eq. (6.8). Here, 

Tmax represents the highest temperature among the n building zones as shown in Eq. 

(6.9), and Tmin represents the lowest temperature among the n building zones as shown 

in Eq. (6.10). 

𝑇𝐷𝐼 =  𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 (6.8) 

𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑇1, 𝑇2 ⋯𝑇𝑛} (6.9) 

𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑇1, 𝑇2 ⋯𝑇𝑛} (6.10) 

The Temperature Diversity Indicator (TDI) is designed to measure the degree of 

maximum temperature deviation among the zones, considering that the control 

objective is to maintain consistent ndoor air temperature rises across all building zones. 

The TDI is expected to be as low as possible for achieving this control objective. 

The second performance indicator is the Accumulated Valve Travel Distance (AVTD) 

as shown in Eq. (6.11). Here, Δui represents the valve opening adjustment at control 

interval i, and I represents the total control intervals during the demand response 

period. The goal is to use the minimum valve opening adjustment necessary to 

maintain consistent indoor air temperature rises across all building zones. Thus, the 

AVTD is also expected to be as low as possible to meet the control objective. A trade-

off between these two performance indicators may need to be considered in real 

implementation. 
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𝐴𝑉𝑇𝐷 =  ∑∆𝑢𝑖

𝐼

𝑖=1

(6.11) 

6.2 Test arrangement for fast demand response 

In this study, a virtual dynamic simulation platform is developed using TRNSYS to 

test the applicability and performance of the proposed event-driven control strategy 

for fast demand response. The developed virtual test platform adopts detailed physical 

models of the building and its air-conditioning system, including chillers, pumps, 

hydraulic networks, and AHUs. These detailed physical models of the air-conditioning 

system are calibrated using real data. Figure 6.6 illustrates the schematic of the central 

air-conditioning system on this test platform. The chilled water distribution system of 

the air-conditioning system is a typical primary constant-secondary variable chilled 

water system. The chiller plant consists of four identical chillers, each with a rated  

capacity of 4,080 kW. The chillers and the primary chilled water pumps are designed 

on a one-to-one matching basis. Each primary chilled water pump operates at a 

constant speed and has a design flowrate of 172.8 L/s. Two variable speed water 

pumps are installed in the secondary chilled water loop. The chilled water is 

distributed to the AHUs to provide cooling for the building zones. A multizone model 

(Type 56) in TRNSYS is used to simulate the building zones, referencingto a super-

high-rise commercial building in Hong Kong. Six typical air-conditioned zones with 

different cooling load profiles are involved. Each building zone has an area of 1,600 

m2, and is cooled by the cool air supplied by its corresponding AHU. The office hours 

of the building are from 8:00 to 18:00, and the indoor air temperature setpoints for all  

six building zones during the office time are 24℃. Disturbances such as. weather and 

internal load variations are considered in the simulation. The internal load variations 
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include the heat generated by occupants, electrical devices, etc., in the commercial 

building concerned. The real-time weather data is derived from a typical summer day 

(i.e. July 23th) in Hong Kong for the validation tests. 

 
Figure 6.6 Schematic and test arrangement of central air-conditioning system 

concerned 

The test arrangement is also presented in Figure 6.6. The normal mode refers to the 

operation mode during non-demand-response period when conventional feedback 

control is adopted, while the demand limiting mode refers to the operation mode 

during the demand response period when the proposed event-driven control strategy 

is activated. In normal mode, each  PID controller collects the supply air temperature 

of the corresponding AHU and outputs control signals to adjust the AHU water valve 

opening. The control objective of each local PID controller is to maintain the AHU 

supply air temperature at the pre-determined setpoint. In the demand limiting mode, 

after shutting down part of the operating chillers, the event-driven controller is 

activated to override conventional feedback control. The event-driven controller first 

collects the AHU return air temperature profiles of all building zones. Then, it 
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calculates the Temperature Imbalance Indicator (TII) and conducts the event-driven 

control scheme as illustrated in Chapter 6.1.2. Once the event occurs (i.e., the 

temperature imbalance indicator exceeds the event threshold), the event-driven 

controller outputs the control signals for adjusting the AHU valve openings, given by 

the cooling distribution control scheme as illustrated in Chapter 6.1.3. The control 

objective of the event-driven controller is to achieve uniform temperature rises among 

the building zones after shutting down some operating chillers for fast demand 

response. The demand response period is set for two hours in this study from 14:00 to 

16:00 on a summer day in Hong Kong. The event-driven controller is set to continue 

to operate for some time (e.g., around half an hour) after the demand response ends to 

avoid competition for cooling supply among building zones with high cooling 

demands immediately  after the demand response period. 

In this test, two operating chillers are shut down, and two chillers continue to operate 

during the demand response event. Additionally, a comparative study of the proposed 

event-driven control and the existing time-driven control is conducted to validate and 

demonstrate the advantages of the proposed control strategy. The control actions are 

periodically triggered at a fixed time interval for time-driven control in this test. The 

fixed time interval is set to be the same as the controller’s sampling interval (i.e., 2s). 

In this study, the simulation time step is set as short as 2 seconds to realistically 

simulate the dynamic operation processes of the system/components involved, 

including those of fast dynamic (e.g., sensors and actuatora). More importantly, it is 

very common for the control interval of digital controller to be  rather short, such as 1 

or 2 seconds for modern building automation systems (BASs). In addition, as the 

program of the strategy is simple and the computing load is very low, it does not 

impose any burden in running the control routines at each sampling interval of the 
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controller. Therefore, we choose to use a short sampling interval, similar to the 

sampling interval of typical digital controllers, as the sampling interval of the proposed 

control strategy for the convenience of implementation in practical BASs. The event 

threshold for event determination under the event-driven control is set to 0.1℃. It is 

important to note that such a low threshold is adopted to provide a high demand and 

challenging test condition to validate the control performance of the event-driven 

strategy for cooling distribution. The event threshold is adjustable according to on-site 

implementation situations (e.g., considering the sensor accuracy and practical needs). 

6.3 Chilled water distribution performace and power limiting effect 

6.3.1 Indoor air temperature 

Figure 6.7 shows the indoor temperature profiles of six building zones under 

conventional and proposed controls. As shown in Figure 6.7 (a), the indoor air 

temperature profiles of the six building zones differ significantly when conventional 

feedback control is used during the demand response period (from 14:00 to 16:00) and 

immediately after. This variance primarily results from the limited cooling supply 

following the shut down of half of the operating chillers. Despite high cooling 

demands, each zone must compete for the limited supply. Zones with relative  low 

cooling demand and high priority in chilled water distribution manage to maintain 

relatively low temperature rises during the demand response period (e.g. Zone 6). 

Conversely, zones with relatively high cooling demand and low priority in chilled 

water distribution experience significant  indoor air temperature increase during this 

period (e.g. Zone 1). Two zones report indoor temperatures increases exceeding 4 ℃ 

by the end of the demand response period: Zone 1 reaches 28.2 ℃ at 16:00, while 

Zone 6 reaches 26.7 ℃. Different cooling rates among the building zones are also 
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evident immediately after the demand response period due to the continued limitation 

of cooling supply, requiring zones with high cooling demands to compete for the 

limited supply to return to their indoor air temperatures to their original setpoints.  

Figure 6.7 (b) shows the temperature profiles of the six building zones under the 

proposed event-driven control. The temperature profiles of these zones are nearly 

identical during the demand response period,  with an average indoor air temperature 

of 27.5 ℃ at the end. The zones also maintain similar cooling rates immediately after 

the demand response period. These results demonstrate that the proposed event-driven 

control strategye effectively maintains uniform indoor air temperature rises across 

different building zones after some of the operating chillers are shut down for fast 

demand response. 

 

(a) Temperature profiles under the conventional control 
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(b) Temperature profiles under the proposed event-driven control 

Figure 6.7 Indoor temperature profiles of building zones under the conventional 

control and the proposed event-driven control 

6.3.2 Water flowrate adjustment 

Figure 6.8 displays the chilled water flow profiles of the six building zones under both 

the conventional control and the proposed event-driven control. As illustrated in 

Figure 6.8(a), the chilled water flowrates are notably high during the demand response 

period when using conventional feedback control. After two of the operating chillers 

are shut down at 14:00, the building zones begin to compete for the limited colling 

supply. The water valves of the air handling units (AHUs) are controlled to maintain 

their maximum openings in an effort to secure more chilled water. Zones with lower 

water-loop hydraulic resistances, such as Zone 6, received more chilled water supply, 

with flowrates reaching over 12 kg/s. Conversely, zones with higher hydraulic 
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This disordered water flow distribution becomes a significant issue during the demand 

response period under conventional control. It ultimately leads to uneven indoor air 

temperature increases across the zones, as shown in Figure 6.7(a). Moreover, the 

problem of disordered water flow distribution  persists even after the demand response 

period ends at 16:00. 

Figure 6.8 (b) shows the chilled water flow profiles of the six zones under the proposed 

event-driven control. The disordered water distribution problem is almost completely 

avoided with this strategy. After two of the operating chillers are shut down, the water 

flowrates distributed to the six zones are quickly and properly adjusted. These 

flowrates remain relatively stable throughout the demand response period and 

immediately thereafter. As a result, the limited cooling supply is distributed effectively, 

leading to  even indoor air temperature rises across the zones, as shown in Figure 6.7 

(b). 

 

(a) Chilled water flow rate under the conventional control 
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(b) Chilled water flow rate under the proposed event-driven control 

Figure 6.8 Chilled water flow profiles of zones under the conventional control and 

the proposed event-driven control 
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plant is approximately 735 kW, which accounts for 23% of the power consumption 

just before the demand response period. In contrast, the power reduction under the 

proposed event-driven control is greater, at 905 kW, achieving a 5% of power 

reduction and saving a total of 246 kWh electricity during the demand response period 

by shifting from conventional control to proposed event-driven control. This 

improvement is largely due to the fact that under conventional control, secondary 

chilled water pumps operate at full speeds to compete for the limited cooling supply, 

thereby compromising the power limiting effect. The proposed event-driven control 

addresses the issue of full-speed operation of the secondary pumps. Additionally, it is 

observed that the power rebound effect could be mitigated to some extent (i.e., by 170 

kW in the test) using the proposed event-driven control. 

 

Figure 6.9 Power consumption of the chiller plant under the conventional control and 

the proposed event-driven control 
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6.3.4 Performance comparation between time-driven control and event-driven 

control 

6.3.4.1 Temperature diversity indicator 

Figure 6.10 shows the temperature profiles of the six building zones under both time-

driven control and proposed event-driven control. Both control methods manage to 

maintain even indoor air temperature rises among all zones during the demand 

response period and exhibits similar cooling down speeds immediately after. The 

temperature profiles under the time-driven control are more consistent compared to 

those under the event-driven control. This consistency is due to  control outputs being 

implemented at each sampling interval under conventional control.  

As illustrated in Figure 6.11, the temperature diversity indicators for both control 

methods are compared. Under the time-driven control, the temperature diversity 

indicators remainlower than 0.1℃ most of the time during the demand response period. 

Initially,  there is an increase in the temperature diversity indicator, but as time 

progress, the indicator decreases to nearly 0 under. This indicates that the indoor air 

temperatures of the six zones are almost identical under the time-driven control.  

As for the event-driven control, the temperature diversity indicator follows a similar 

trend to that under the time-driven control. However, the temperature diversity 

indicator under the event-driven control is slightly higher, reaching up to 0.37℃, 

though it remains below 0.2℃ for most of the demand response period.  

In conclusion, both the time-driven and event-driven control successfully achieve the 

control objective during the demand response period. However, the time-driven 

control exhibits slightly better performance regarding the temperature diversity 

indicator. 
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(a) Temperature profiles under the time-driven control 

 

(b) Temperature profiles under the event-driven control 

Figure 6.10 Temperature profiles of zones under the time-driven control and the 

proposed event-driven control 
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Figure 6.11 Temperature diversity indicator under the time-driven control and the 

proposed event-driven control 
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six zones when switching from the time-driven to the event-driven control. The 

maximum reduction inaccumulated valve travel distance occurs in zone 1, reaching as 

high as 79.6%, with an average reduction of 54.6% across all zones. This reduction 

significantly decreases the wear and tear on the AHU valves under the demand 

response control.  

Therefore, the proposed event-driven control strategy is more advisably for real-world 

applications compared to existing time-driven controls. 

 

(a) Valve opening profiles under the time-driven control 
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(b) Valve opening profiles under the event-driven control 

Figure 6.12 AHU valve opening profiles of zones under the time-driven control and 

the proposed event-driven control during demand response period 

 
Figure 6.13 Accumulated valve travel distances under the time-driven control and 

the proposed event-driven control during demand response period 
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6.4 Summary 

Buildings can play a significant role in addressing the power imbalance problem of 

power grids with high penetration of intermittent renewable energy in a cost-effective 

manner by utilizing their air-conditioning systems. Shutting down some operating 

chillers has proven to be an effective method. However,  this approachcan lead to 

disordered chilled water flow distribution and uneven indoor thermal comfort 

degradation across different building zones. To address the issues, an event-driven 

control strategy for air-conditioning systems is proposed in this study. This strategy 

includes a cooling distribution control scheme for even cooling distribution and an 

event-driven control scheme to minimize valve adjustments during the control process. 

It requires no additional sensors nor additional experimental work for the 

identification of thermodynamic characteristic parameters. Besides, the proposed 

strategy helps avoid unnecessary wear and tear on the AHU valves. The major findings 

from the test results are summarized as follows: 

o The proposed event-driven control strategy can maintain uniform indoor air 

temperature rises among different building zones during the demand response 

period. Proper distribution of the limited cooling supply ensures that similar indoor 

air temperature profiles among the zones can ultimately be achieved.  

o The power demand and energy consumption of the chiller plant can be 

significantly reduced during the demand response period using the proposed event-

driven control strategy, for example, a power demand reduction of 170 kW 

(approximately 5%) and a reduction in electricity consumption by 246 kWh (5%). 

Furthermore, the power rebound effect immediately after the demand response 

period can also be mitigated to some extent. 
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o Both the proposed event-driven and the time-driven controls can achieve the 

control objective during the demand response period. However, the accumulated 

valve travel distance of AHUs for different building zones can be reduced by an 

average of 54.6% under the event-driven control compared with the time-driven 

control. 
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CHAPTER 7 MULTI-AGENT BASED DISTRIBUTED 

COOPERATIVE CONTROL STRATEGY FOR 

ENHANCED SCALABILITY  

To further improve the control generality and scalability, this chapter proposes a 

distributed cooperative control strategy of air-conditioning systems based on the 

multi-agent system to perform building fast demand response. Section 7.1 illustrates 

the mechanism of multi-agent-based distributed cooperative control strategy. 

Validation platform and arrangement are presented in Section 7.2. Section 7.3 presents 

the test results and analysis on the chilled water system and air-side system. The 

conclusions are made in Section 7.4. 

7.1 Mechanisum of multi-agent based distributed cooperative 

control strategy 

7.1.1 Outline of the distributed cooperative control strategy 

Figure 7.1 illustrates the outline of multi-agent-based cooperative control strategy. It 

is implemented at field control stations. A multi-agent system is constructed by 

multiple agents, which are designed as local controllers of corresponding terminals 

(i.e., AHU valves and VAV dampers) in the central air-conditioning system. These 

agents work together to achieve an even distribution of limited cooling among building 

spaces during a demand response event. The agents determine the cooling distributed 

to individual building spaces by managing the chilled water flow rate through AHUs 

and the supply air flowrate of VAV terminals. Each agent is enabled to collect the 

environmental variable measurement (i.e., temperature profile) of its corresponding 
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building space, send its collected information to its neighbors, and receive information 

from them through the field network. At each control interval, the agents perform 

information collection and communication, and determine the individual control 

outputs in a distributed, self-organizing way. In the event of an urgent power reduction 

request from the power grid, a portion of operating chillers will be shut down to enable 

power limiting. This proposed distributed cooperative control strategy will then be 

activated to override conventional control to properly distribute the limited cooling 

supply. 

 

Figure 7.1 Outline of the distributed cooperative control strategy 

7.1.2 Basic principle of the control algorithm 
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solve issues related to consensus control. In computer science, consensus algorithms 

aim to solve the problem of reaching agreement among a group of distributed nodes 

or processes in a network. These algorithms ensure that all nodes in the network agree 

on a single value or decision. They typically involve a series of rounds where nodes 

exchange messages, propose values, and attempt to converge on a common agreement. 

Consensus control aims to coordinate the behavior of multiple agents in a networked 

system so that they can reach an agreement or consensus on a particular value or state. 

The fundamentals of algebraic graph theory for consensus control involve the 

following key concepts and techniques: 

o Graph Representation: The network of agents is represented using a graph, where 

each agent is a node and the communication links between agents are represented 

by edges. The graph can be represented using an adjacency matrix or an adjacency 

list. 

o Laplacian Matrix: The Laplacian matrix of the graph, derived from the adjacency 

matrix,  captures important information about the graph's connectivity. 

o Consensus Algorithm: This iterative process allows agents in a network to reach 

an agreement on a common value or state. 

A graph G is composed of a set of vertices V and a set of edges E, as shown in Eq. 

(7.1). The vertex set V can be described using Eq. (7.2), where n represents the number 

of nodes in the graph. The edge set E of a graph can be described using Eq. (7.3), 

where eij represents the specific edge pointing from vi to vj. The edge eij indicates that 

vi and vj are adjacent (i.e., vj is a neighbor of vi). The set of neighbors of the node vi is 

denoted by Ni as shown in Eq. (7.4). In algebraic graph theory, nodes can be viewed 

as agents. If agent vj is a neighbor of agent vi, then agent vi will exchange information 

with agent vj. 
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G = (V, E) (7.1) 

V = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} (7.2) 

E = {𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗)} ∈ 𝑉 × 𝑉 (7.3) 

𝑁𝑖 = {𝑣𝑗 ∈ 𝑉|(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} (7.4) 

The adjacency matrix A=[aij] is used to describe the structure of the graph G. A is a 

n×n matrix, and its elements aij are shown in Eq. (7.5). 

𝑎𝑖𝑗 = {
1, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7.5) 

Figure 7.2 illustrates a typical simple graph G with six vertices. The adjacency matrix 

A of this graph can be derived as shown in Eq. (7.6) according to the algebraic graph 

theory. 

 

Figure 7.2 Illustration of a typical graph G with six vertices 

𝐴 =

[
 
 
 
 
 
0 1 1 0 0 1
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0]

 
 
 
 
 

(7.6) 

V1 V2

V3

V4V5

V6
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The problem of proper cooling distribution during fast demand response event can be 

formulated using Eq. (7.7). Where, xi represents the corresponding temperature profile 

of the building zone/space for agent vi. Figure 7.3 depicts the schematic of the agent 

deployment in the air-conditioning system concerned. Each AHU valve is equipped 

with a valve agent working as the controller for proper cooling distribution at the 

chilled water side. Similarly, each VAV damper is equipped with a damper agent at 

the supply air side. During a fast demand response event, agents are able to exchange 

collected state information with their neighboring agents. This communication occurs 

between agents in the chilled water system and the supply air system, forming 

corresponding graphs. The ultimate control objective is to ensure that thermal comfort 

sacrifices are evenly distributed across all building zones and spaces. 

𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 (7.7) 

 

Figure 7.3 Schematic of the agent deployment in the air-conditioning system 

7.1.2.2 Consensus algorithm 

To address the aforementioned problem, the consensus algorithm (Olfati-Saber et al., 

2007) is adopted in this study. The consensus algorithm for this multi-agent system 

Valve agent 1

AHU

Valve agent 2

AHU

Valve agent n

AHU

…

more AHUs

Field network Field network

Damper agent 1

Space

Damper agent 2

Space

Damper agent n

Space

…

more Spaces

Field network Field network

（a）Agent deployment of AHU valves 

（b）Agent deployment of VAV dampers 
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involves the use of a graph laplacian matrix L=[lij], which is a mathematical construct 

that describes the relationships between the agents in the system. The elements lij of 

the laplacian matrix are shown in Eq. (7.8), where │Ni│denotes the number of 

neighbors for agent vi. For instance, the laplacian matrix of the graph demonstrated in 

Figure 7.2 is presented in Eq. (7.9).  

𝑙𝑖𝑗 = {

−1, 𝑣𝑗 ∈ 𝑁𝑖

|𝑁𝑖|, 𝑣𝑗 = 𝑣𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7.8) 

L =

[
 
 
 
 
 

3 −1 −1 0 0 −1
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2 ]
 
 
 
 
 

(7.9) 

The algorithm for achieving consensus on the states of n agents (i.e. Eq. (7.7)) can be 

represented by Eq. (7.10). Where, X is the set of state information of the n agents as 

shown in Eq. (7.11). U represents the set of control inputs for the n agents as shown 

in Eq. (7.12). The control output for agent vi can be derived as shown in Eq. (13) in 

the continuous-time situation. It has been proven that a consensus can be 

asymptotically reached. 

𝑈 = −LX (7.10) 

X = [𝑥1, ⋯ , 𝑥𝑛]𝑇 (7.11) 

U = [𝑢1, ⋯ , 𝑢𝑛]𝑇 (7.12) 

𝑢𝑖(𝑡) = − ∑ 𝑎𝑖𝑗 (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))

𝑣𝑗∈𝑁𝑖

(7.13)
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7.1.3 Control strategy operation procedure 

Figure 7.4 illustrates the diagrams of the control operation procedures for the chilled 

water system and the supply air system, respectively. The operation procedure follows 

the consensus algorithm described in Chapter 7.1.2. The detailed control operation is 

presented below. 

 

Figure 7.4 Diagram of the control operation procedure 

In normal operation, each agent functions as a local feedback controller (i.e., PID 

controller) to regulate the supply air temperature and space temperature at their 

setpoints. Once fast demand response control is initiated, which involves shutting 

down the chillers, the agents begin to exchange information with one another. At each 

control interval t, valve agent i (as depicted in Figure 7.4(a)) follows the detailed 

control operation procedure shown below. 

o Collect the measured indoor air temperature profile (Ti(t)) from the AHU 

serving building zone i. 

o Communicate with neighboring agents through the field network, including 

sending and receiving temperature profiles (i.e., Ti(t) and Ti-1(t) & Ti+1(t) 

Valve agent i-1 Building zone i-1AHU

Valve agent i Building zone iAHU

Valve agent i+1 Building zone i+1AHU

Damper agent i-1 Building space i-1VAV box

Damper agent i Building space iVAV box

Damper agent i+1 Building space i+1VAV box

（a）Operation procedure for AHU agents （b）Operation procedure for VAV agents
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respectively) to and from all connected neighboring agents (i.e., valve agent i-

1 and valve agent i+1). 

o Calculate the incremental control setting (∆u(t)) using Eq. (7.14). based on the 

agent inputs (i.e., the collected indoor air temperature profiles of its own and 

its neighbors). 

o Calculate the AHU valve opening value (u(t)) using Eq. (7.15), and output for 

control. 

∆u(t) = − ∑ 𝑎𝑖𝑗 (𝑇𝑖(𝑡) − 𝑇𝑗(𝑡))

𝑗∈𝑁𝑖

(7.14) 

u(t) = u(t − 1) + ∆u(t) (7.15) 

where, Ni represents the set of neighbors for agent i as defined in Eq.(7.4). j represents 

each of the single neighbors of agent i in Ni. For the valve agent i, as shown in Figure 

7.4(a), its neighbors consist of valve agent i-1 and valve agent i+1. aij is the element 

of the adjacency matrix as defined in Eq.(7.5). It is worth pointing out that the value 

of aij does not need to be constant (i.e., 1 in Eq. (7.5)). It can be adjusted according to 

the real application. 

The damper agent i on the supply air side also follows the same operation procedure 

(Figure 7.4(b)) as illustrated above. The proposed distributed cooperative control 

strategy enables valve agents and damper agents to collaborate and distribute the 

limited cooling supply effectively. It is accomplished by managing the flow rates of 

chilled water and supply air following the shutdown of part of the operating chillers. 

The multi-agent system operates in a self-organizing manner, ensuring the uniform 

thermal comfort sacrifices are asymptotically achieved among all building zones and 

spaces during the power limiting events. 
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7.2 Validation platform and arrangement 

7.2.1 Test platform 

In order to test the proposed control strategy, a virtual dynamic simulation platform 

has been constructed by TRNSYS. This platform models a super-high-rise commercial 

building in Hong Kong, incorporating detailed physical models of building envelope 

and major components of the central air-conditioning system, such as chillers, pumps, 

AHUs, fans, and hydraulic networks. The physical models are calibrated using real 

data sources.  

The central air-conditioning system comprises four identical chillers, each with a rated 

capacity of 4,080kW. Each chiller is interlocked with a primary chilled constant speed 

pump, which has a rated water flow rate of 172.8L/s. The system utilizes a primary 

constant-secondary variable chilled water distribution system and air-side systems. 

Figure 7.5 depicts the diagram of the central air-conditioning system.  

The secondary chilled water loop is equipped with two variable speed water pumps 

that circulate chilled water in the AHUs, responsible for cooling supply air temperature 

to a predetermined degree. The building is divided into six air-conditioned zones, each 

covering an area of 1,600 m2. The cooling load profiles of these zones vary, and each 

zone is cooled by a corresponding AHU (e.g., zone1 is cooled by AHU1).  

The multi-zone model (Type 56) in TRNSYS is used in this study to simulate this 

building. The air-side systems employ typical variable air volume systems. Figure 7.5 

(b) illustrates an air-side system schematic for one of the air-conditioned zones. Eight 

spaces with varying load profiles are involved in the VAV system. It is assumed that 

the indoor air is well mixed and the temperature is uniformly distributed in each single 
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space in the TRNSYS simulation. During office hours (i.e., 8:00-18:00), the 

temperature setpoint is set at 24 ℃.  

 

(a) 

 

(b) 

Figure 7.5 Diagram of the proposed control for chilled water side (a) and air side (b) 

of the central air-conditioning system 

7.2.2 Test arrangement 

Figure 7.5 depicts the schematic of the test arrangement. During normal mode (i.e., 

when there is no urgent need for load reduction), the valve and damper agents execute 
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standard feedback control using the PID control algorithm. The valve agents manage 

the AHU valve openings to maintain the supply air temperature at predetermined 

setpoints (Figure 7.5(a)), while the damper agents control the VAV dampers to 

maintain the indoor air temperature at its predetermined setpoints (Figure 7.5(b)).  

Upon receiving an urgent load reduction request from the power supply side, the 

building air-conditioning system switches from normal mode to demand limiting 

mode. The first step involves immediately shutting down two operating chillers to 

meet the demand limiting threshold. Then, the developed cooperative control approach 

takes over conventional control. As depicted in Figure 7.5(a), the valve agents regulate 

the AHU valve opening to manage the zone air temperature using return air 

temperature profiles collected from corresponding building zones and received from 

neighboring agents through the field network. Similarly, as shown in Figure 7.5(b), 

the damper agents control the opening of VAV dampers to adjust the indoor air 

temperature for corresponding building spaces using the space air temperature profiles 

collected from corresponding building spaces and received from neighbor agents.  

The total airflow rates of individual AHUs remain constant since the start of demand 

response to prevent high fan energy consumption and high humidity in building spaces. 

This study focuses on a two-hour demand response event from 14:00 to 16:00 on the 

typical summer day of Hong Kong. The element of adjacency matrix aij in Eq. (7.14) 

is set to 0.1 for the validation test. The proposed control strategy continues to operate 

for a short period (around 20 minutes in this study) after the demand response event 

to prevent competition for cooling supply among the building zones and spaces. The 

extra operation process should last until the indoor air temperatures among the 

building zones and spaces return to their original setpoints after the demand response 

event. 
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7.3 Test results and analysis on the chilled water system and air-side 

system 

7.3.1 Central cooling system test results  

7.3.1.1 Indoor air temperature 

The indoor air temperature profiles, adopting conventional proposed controls during 

the power limiting test, are shown in Figure 7.6. The results show that all six zones 

experience sacrifices in thermal comfort under both control methods during 

thedemand response event. Using conventional control, the six zones experience 

varying levels of thermal comfort sacrifices, as shown in Figure 7.6(a). This variation 

occurs becasue the AHUs serving different zones compete for a limited cooling supply 

to satisfy the high cooling demand after shutting down chillers. Zones with higher 

cooling demand and lower chilled water distribution priorities, such as Zone 1, 

experience greater thermal comfort sacrifice., At 16:00, the temperature profile of 

Zone 1 and Zone 6 are 28.2 ℃ and 26.7 ℃, respectively. The unbalanced temperature 

rise continues for about half an hour after the demand response event because the high 

cooling demand cannot be fully met by all the operational chillers, causig individual 

zones to still compete for chilled water to return to their original temperature setpoints. 

However, when using the proposed multi-agent distributed cooperative control, all 

zones experience the same temperature rise during the demand response event, as 

shown in Figure 7.6 (b). The average temperature a six building zones is 27.7 ℃ at 

16:00. Additionally, the temperature profiles of the zones after this power limiting 

event are also similar. Test results indicate that the proposed control can effectively 

address unbalanced temperature rises for building zones during the power limiting 

event. 
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(a) Conventional control 

 

(b) Proposed control 

Figure 7.6 Indoor temperature profiles using conventional and proposed controls 

during the test 
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7.3.1.2 Chilled water flowrate 

Figure 7.7 depicts the chilled water flowrate profiles during the demand response test, 

comparing different control strategies. Figure 7.7(a) shows that the conventional 

control leads to high and uncontrolled chilled water flowrates in individual AHUs, 

resulting in disordered chilled water distribution. This occurs becasue the demand-

based feedback control forces AHU valves to remain fully open, leading to 

competition for limited cooling supply. In this scenario, AHUs with lower hydraulic 

resistance, such as AHU 6, have higher priority for chilled water supply, causing their 

chilled water flowrates to gradually increase and reach maximum values when all 

AHU valves are fully open. Zone 6 records the highest flowrate of 12.6 kg/s, while 

Zone 1 only achieves a flow rate of 6.3 kg/s even with the valve fully open, indicating 

significant disordered water distribution both during and after the power limiting event. 

However, when the proposed multi-agent distributed cooperative control strategy is 

adopted, as illustrated in Figure 7.7 (b), the water flowrates of the six zones are 

adjusted by the valve agents during and after the power limiting event, mitigating the 

disordered chilled water distribution among the zones. The multi-agent system 

achieves proper water distribution, maintaining the same temperature rises for the six 

zones in this power limiting event, as demonstrated in Figure 7.7 (b). 
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(a) Conventional control 

 

(b) Proposed control 

Figure 7.7 Chilled water flowrate profiles under the conventional and proposed 

controls during the test 
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7.3.2 Air-side system test results  

7.3.2.1 Indoor air temperature 

Figure 7.8 presents the temperature profiles of eight spaces during this demand 

response test, comparing the conventional and proposed controls. With the 

conventional control, the temperature profiles of eight spaces differ significantly 

during and after this demand response event, as shown in Figure 7.8 (a). This occurs 

because the pressure losses associated with the terminal units of different spaces result 

in different priorities for accessing the limited cooling supply. Space 8 has the lowest 

thermal comfort sacrifice, with its indoor air temperature reaching 26.1 ℃ at the end 

of the demand response event, while space 1 experiences the highest thermal comfort 

sacrifice, with its indoor air temperature reaching up to 28.5 ℃. The uneven 

temperature rises among the eight spaces are significant. 

However, the proposed control effectively addresses the unbalanced temperature rises 

in these building spaces in the power limiting event, as depicted in Figure 7.8 (b). 

These temperature profiles are only slightly different right after the start of the demand 

response event (i.e., 14:00), and even temperature rise among the different building 

spaces is achieved shortly afterward. The average temperature of all spaces served by 

the AHU is 27.6 ℃ at the end of the power limiting event, and uniform temperature 

variation is maintained after the event. 
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(a) Conventional control 

 

(b) Proposed control 

Figure 7.8 Indoor temperature profiles under the conventional and proposed controls 

during the test 
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7.3.2.2 Supply air flowrate 

The supply air flowrate profiles of eight spaces using the two different controls during 

the demand response test are depicted in Fig.9. Similarly, it can be observed from 

Figure 7.9(a) that the problem of disordered and uneven supply air distribution is 

significant when using the conventional control during and immediately after the 

demand response period, for the same reason explained above. The results show that 

space 8 has the highest priority in competing for the limited cool air. The air flowrate 

of space 8 reaches its maximum value at 2.3 kg/s during the rapid demand response 

event, while the maximum air flowrate of space 1 is as low as 1.3 kg/s. 

In contrast, Figure 7.9 (b) shows that the proposed control adjusts the supply air 

flowrates through damper agents, resulting in almost complete avoidance of 

disordered and uneven air flow distribution among the spaces. As a result depicted in 

Figure 7.8 (b), this proposed control strategy maintains uniform thermal sacrifices 

among these building spaces. 

 

(a) Conventional control 
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(b) Proposed control 

Figure 7.9 Supply air flowrate profiles under the conventional control and proposed 

controls  

7.3.2.3 Indoor air relative humidity 
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proposed control is 67% , with the maximum relative humidity reduction reaching 

around 12% (i.e., for space 8). This is attributed to the supply fans control, where total 

supply air rates of individual AHUs remain the same as those at the start of the power 

limiting event, and supply air temperature of individual AHUs does not increase 

significantly due to the fan speed limiting control. 
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(b) Proposed control 

Figure 7.10 Indoor relative humidity profiles under the conventional and proposed 

controls during the test 

7.3.3 Power consumption 
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controls. The results indicate that the conventional control leads to additional energy 
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maximum speed. When shutting down two operating chillers under the conventional 

control, extra power consumption appears during the demand response event. 

Additionally, significant power rebound occurs after the demand response event. 
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which accounts for 14.2% of the energy consumption compared to using the 

conventional control before this demand response event at 14:00. The proposed 

control saves a total of 2,562 kWh of electricity during the demand response event, 

which accounts for 19.7% of the power consumption using the conventional control. 

Additionally, this proposed control strategy can significantly mitigate the power 

rebound effect, reducing it by 1,360 kW, accounting for 16.5% of the power 

consumption using conventional control after this demand response event. 

 

Figure 7.11 Power consumption using the conventional and proposed controls 
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fails to manage the limited cooling supply effectively. To address this problem, this 

study proposes a distributed cooperative control method. This strategy works through 

a multi-agent system that includes valve agents and damper agents, each performing 

on-site control based on collected information from its own and neighboring agents in 

a distributed architecture, allowing good scalability and reconfigurability. This 

approach is tested and validated on a virtual dynamic simulation platform. Major 

findings and conclusions are listed here: 

o The proposed control method can effectively address uneven temperature rises of 

the building zones/spaces when performing direct load control, while also 

significantly alleviating the relative humidity rise. 

o The disordered cooling distribution (including chilled water distribution and supply 

air distribution) can be effectively addressed in a self-organizing manner by the 

multi-agent system. 

o In comparison to conventional control, the proposed strategy can better follow 

urgent power reduction requests from the power grid while significantly reducing 

the power rebound effect immediately following the power limiting event. Test 

results demonstrate the proposed control saves a total of 2,562 kWh of electricity 

and reduces power rebound by 1,360 kW during the demand response event. 
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CHAPTER 8 IMPLEMENTATION OF SUPPLY-

BASED COOLING DISTRIBUTION CONTROL 

STRATEGIES 

This chapter aims at implementing and validating the reconfigurable feedback control 

for supply-based cooling management under limited cooling supply over the entire 

building daily cycle, including the morning start period, demand limiting period and 

soft stop period. The implementation involves the detailed control strategy along with 

corresponding hardware placement, is illustrated in Section 8.1. Section 8.2 presents 

the hardware-in-the-loop test platform and the test arrangement. Test results and 

analysis are elaborated in Section 8.3. Section 8.4 summarizes the conclusions. 

8.1 Implementation of supply-based feedback control 

8.1.1 Outline of implementing supply-based feedback control 

Figure 8.1 shows the outline of implementing supply-based feedback control. Optimal 

control settings for chiller plants are adopted for various objectives over the entire 

building life cycle. The control settings determine the operating state of each chiller at 

every moment for enhancing the energy efficiency and energy flexibility. There is 

extensive literature dedicated to researching optimal control settings for chiller plants. 

This study focuses on developing the subsequent steps of incorporating supply-based 

feedback control into the conventional demand-based control for proper cooling 

management under limited cooling supply (i.e., morning start period, demand limiting 

period and soft stop period). There are two feedback control loops for supply-based 

and demand-based controls, respectively. Control mode switching module determines 
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when to switch between the supply-based control and demand-based control. The 

whole process is accomplished using the reconfigurable feedback control strategy, 

which is detailed in the subsequent sections. 

 

Figure 8.1 Outline of implementing supply-based feedback control 

8.1.2 Utilization of reconfigurable feedback control strategy 

The architecture of reconfigurable control strategy is presented in Figure 8.2. The 

basic idea is to reconfigure the local feedback control loops to match different 

objectives of demand-based control and supply-based control. It consists of a control 

loop reconfiguration scheme, a setpoint reset scheme, supply-based feedback control 

loops, and demand-based feedback control loops. The control loop reconfiguration 

scheme and the setpoint reset scheme are deployed in the supervisory control level, 

while the feedback control loops are implemented in local control level. The control 

loop reconfiguration scheme dictates the timing for control mode switching between 

demand-based and supply-based control. The setpoint reset scheme calculates 

setpoints for local controllers in two modes correspondingly. 

Optimal settings for chiller plant control

Air-side control mode switching

Supply-based feedback control Demand-based feedback control

Morning start, Demand limiting and Soft stop Normal condition

cooling sufficientcooling insufficient
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Figure 8.2 Architecture of the reconfigurable control strategy 

Figure 8.3 shows the block diagram of the reconfigurable control. There are two built-

in feedback control loops corresponding to two control modes in each local controller. 

The two control modes share the same feedback control algorithm as shown in Eq. 

(8.1) and Eq. (8.2) (i.e., the PID control algorithm). Note that the control strategy 

commonly employed in practical applications is the combination of a proportional 

term and an integral term as shown in Eq. (8.1), known as PI control. 

𝑢(𝑡) = 𝐾 [𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

] (8.1) 

𝑒(𝑡) = 𝑦𝑠𝑝(𝑡) − 𝑦(𝑡) (8.2) 
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Figure 8.3 Block diagram for control reconfiguration 

For demand-based control, the goal is to maintain the desired supply air temperature. 

The controlled variable (i.e., yi) for AHU i is defined as the sensed supply air 

temperature in Eq. (8.3). The setpoint (i.e., ysp,i) of the controlled variable is set as a 

fixed value (e.g., 14 ℃) as shown in Eq. (8.4). The PI control algorithm is adopted to 

calculate the control output (i.e., valve opening) for each AHU. The local controllers 

keep operating in this control mode until a control loop reconfiguration signal is 

received from the supervisory control level. 

𝑦𝑖 = 𝑇𝑠𝑢𝑝,𝑖 (8.3) 

𝑦𝑠𝑝,𝑖 = 𝑐𝑜𝑛𝑠𝑡 (8.4) 

The control mode is switched to the supply-based control when the cooling supply is 

limited, including the morning start period, the soft stop period and the demand 

limiting period. In these situations, the goal changes to maintaining even cooling 

distribution among different building zones. The controlled variable (i.e., yi) for AHU 

i is set to the return air temperature as indicated in Eq. (8.5). The setpoint (i.e., ysp,i) of 

the controlled variable is calculated through the setpoint reset scheme as indicated in 
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Eq. (8.6), in which n is the number of the air-conditioned building zones within the 

building. 

𝑦𝑖 = 𝑇𝑧𝑜𝑛𝑒,𝑖 (8.5) 

𝑦𝑠𝑝 =
∑ 𝑇𝑧𝑜𝑛𝑒,𝑖

𝑛
𝑖=1

𝑛
(8.6) 

8.1.3 Hardware architecture  

Figure 8.4 depicts the typical hardware architecture of the building automation system. 

The architecture enables the management and control of various devices and 

subsystems within a building. Each network controller functions as a central hub for 

the subsystems, to manage and control the different devices within them. As the 

principal nexus for connectivity and communication, it enables efficient monitoring, 

control, and coordination of building automation functions, ensuring all system 

components operate in concert. Each local controller is responsible for monitoring and 

regulating operation of a specific subsystem (i.e., AHU in this study). It works in 

coordination with the network controller to exchange data and commands, ensuring a 

synchronized and cohesive operation across the entire building automation system. To 

control the valve opening of the AHU, each local controller collects data (i.e., supply 

air temperature) from local sensors, and calculates the control action needed to bring 

the controlled variable (i.e., supply air temperature) closer to the desired setpoint based 

on the built-in PID control algorithm.  
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Figure 8.4 A typical hardware architecture of the building automation system 

Conventional feedback control is deployed in this hardware architecture, where chilled 

water distribution of the air-conditioning system is determined by the demand in each 

air-conditioned zone. However, this control approach is effective only when the 

cooling supply is sufficient. In this study, reconfigurable feedback control is deployed 

to facilitate cooling management over the entire building daily cycle when cooling 

supply is limited. A new supervisory control module is introduced, which is essential 

to manage the transition between the control modes of conventional and supply-based 

control. Given the design and characteristics of this hardware architecture, this new 

module is suitable to be integrated into the network controller. The integration of this 

supervisory control module does not disrupt the existing architecture or control logic 

of the local controllers. The local controllers can continue to operate autonomously, 

collecting data from local sensors, performing local control actions based on their 

built-in control algorithms, and exchanging data and commands with the network 
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controller as before. The network controller, integrated with the supervisory control 

module, acts as a higher-level coordinator and optimizer, providing additional 

decision-making capabilities to local feedback control loops for reconfigurable control. 

8.1.4 Control logic flow chart 

The control flow chart for implementing the reconfigurable control is illustrated in 

Figure 8.5. The functions are programmed into the network controller. It starts with 

an initial decision point, which aims at selecting the operating mode of the system. 

This decision point establishes the foundation for subsequent control actions. In this 

study, the supply-based control mode is adopted in three situations with insufficient 

cooling supply (i.e., morning start period, demand limiting period, and soft stop 

period). The decision for activating the supply-based control mode is determined 

based on a binary signal (i.e., 1 for yes, 0 for no). The settings of the activation signal 

in different situations are introduced as follows:  

o Morning start: The activation signal is interlocked with the signal for switching 

on the chillers at the morning start period (i.e., when the chillers are activated 

before the start of the office hours in the morning for precooling, the activation 

signal is set to 1). When all the air-conditioned zones are cooled down to the 

comfort indoor air temperature setpoint (e.g., 24 ℃), the activation signal is set 

to 0. 

o Demand limiting: The activation signal is set to 1 when performing demand 

limiting through switching off chillers. After the demand response event, the 

activation signal maintains at 1 until all the building zones are cooled down back 

to the comfort indoor air temperature setpoint. 
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o Soft stop: The activation signal is interlocked with the signal for switching off part 

of the chillers before the end of the office hour (e.g., 18:00). The activation signal 

remains at 1 until the end of the office hour. 

When the activation signal is 1, the control mode switches to supply-based control. 

The supply-based control loop signal is set to 1. The monitored variable is return air 

temperature indicated in Eq. (8.5). The setpoint reset scheme works by calculating the 

setpoint as shown in Eq. (8.6). The real-time indoor environment data are collected for 

determining whether to reset the activation signal back to 0 as illustrated above. 

When the activation signal is 0, the control mode switches to the demand-based control. 

In this situation, the demand-based control loop signal is set to 1, while the supply-

based control loop signal which is interlocked with the demand-based control loop 

signal is set to 0 at the same time. The monitored variable is supply air temperature, 

and the setpoint is a constant value as illustrated in Chapter 8.2.1. 

 

Figure 8.5 Control flow chart for implementing the reconfigurable control 
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8.2 Hardware-in-the-loop tests 

8.2.1 Experimental test platform 

Figure 8.6 shows a schematic for the implementation of reconfigurable control. 

Hardware-in-the loop tests are conducted to verify the feasibility and performance of 

the proposed reconfigurable control for supply-based cooling management. The air-

conditioning system is constructed using TRNSYS, with reference to a commercial 

building located in Hong Kong West Kowloon Station. The network controller is 

simulated using MATLAB, which integrates the basic communication functionality 

based on the Modbus communication protocol, along with control schemes illustrated 

in Chapter 8.2. The Modbus communication protocol facilitates communication 

between various devices over different types of networks, making it suitable for 

monitoring and controlling industrial equipment such as sensors, actuators, and other 

field devices. The local controller adopted is the SIMATIC S7-1200 controller from 

Siemens. It is a versatile and compact programmable logic controller (PLC) designed 

for a wide range of automation applications, allowing for easy expansion with 

additional modules to meet specific application requirements. The actual controller is 

equipped with the basic PID control modules. It collects the environmental data (i.e., 

supply air temperature values and return air temperature values of individual AHUs 

for demand-based control mode and supply-based control mode respectively) from 

TRNSYS and receive advanced control instructions from MATLAB, and send control 

signals (i.e., AHU valve openings) to the simulated air-conditioning system. 

Hardware-in-the-loop testing is performed in real-time experiments, which allows for 

the evaluation and validation of the control implementation in a realistic and dynamic 
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environment and enables the assessment of the reconfigurable control strategy’s 

performance in a time-critical manner. 

The air-conditioning system addressed in this study is also depicted in Figure 8.6. It 

consists of three identical chillers, three variable-frequency chilled water pumps, 

AHUs, and other associated components. The rated capacity of each chiller is 3,517 

kW, and the rated flowrate for each pump is 152.3 L/s. Four representative air-

conditioned zones are selected in this study, and each building zone has a floor area 

of 750 m2. The building zones are cooled to the desired comfort temperature setpoint 

by passing chilled water through their corresponding AHU. As the virtual part of the 

test platform, the central air-conditioning system is simulated to represent the dynamic 

processes of heat transfer, hydraulic characteristics, and water flow balance etc. within 

the entire system. 

 

Figure 8.6 Schematic of the reconfigurable control implementation 
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8.2.2 Test arrangement 

In order to validate the feasibility and effectiveness of the implementation of the 

reconfigurable control strategy, comparative tests are conducted using the proposed 

reconfigurable control and conventional control respectively. Three representative 

periods under limited cooling supply (i.e., morning start period, demand limiting 

period, and soft stop period) on a typical summer day (i.e., 23rd July) in Hong Kong 

are selected for validation tests. Detailed test arrangements for the corresponding three 

test periods in the same day are illustrated below. Note that only two chillers are 

operating under normal control on this day. 

Morning start: Comparative tests using the reconfigurable control and conventional 

control are conducted to ensure that the building zones are cooled down to the comfort 

indoor air temperature setpoint (i.e., 24 ℃) before office hours commence at 8:00. 

Demand limiting: Comparative tests are conducted during a half-hour fast demand 

response event from 13:30 to 14:00. One operating chiller is switched off for demand 

limiting. 

Soft stop: One operating chiller is switched off at 17:30 (i.e., before the end of the 

office hours at 18:00). Comparative tests are conducted using the reconfigurable 

control and conventional control.  

8.3 Test results and analysis  

8.3.1 Cooling distribution 

The chilled water flowrates under conventional control and reconfigurable control 

during the morning start period are presented in Figure 8.7. It is observed that under 

the conventional control (as shown in Figure 8.7 (a)), the air conditioning system 
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exhibits a disorder in the distribution of chilled water after switching on the chillers 

due to insufficient cooling supply. In this situation, each building zone competes for 

chilled water to facilitate cooling from the night setback. However, due to the 

difference in the hydraulic resistances within the piping network, the zone (e.g., zone 

4) located closer to the chillers receives a higher allocation of chilled water. The 

uneven distribution of chilled water results in the need for the chillers to start operating 

well in advance, enough to ensure that all building zones are cooled to the desired 

temperature right before the office hours commence at 8:00. In contrast, the 

implementation of reconfigurable control provides a more energy-efficient solution 

for chilled water distribution during the morning start period. By dynamically 

adjusting the chilled water distribution as shown in Figure 8.7 (b) based on the control 

reconfiguration, which optimizes the cooling distribution process, it thereby enables 

energy-saving benefits by delaying the start of the chillers (e.g., by 0.2 hours in the 

test case). 

 

(a) Conventional control                         (b) Reconfigurable control 

Figure 8.7 Comparation of chilled water flowrates under conventional control and 

reconfigurable control during morning start period 
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Figure 8.8 shows the comparison of chilled water flowrates under conventional and 

reconfigurable control when performing demand response. Under conventional 

control, the air-conditioning system experiences disruptions in chilled water 

distribution as shown in Figure 8.8 (a) when a partial shutdown of chillers is 

implemented for demand response. The phenomenon of chilled water competition 

arises at 13:30, which can result in significant discrepancies in comfort levels among 

different building zones. This occurs because the zones (e.g., zone 1) with high cooling 

loads are at a disadvantage during the chilled water competition process, while the 

zones (e.g., zone 4) with lower cooling loads have an advantage during the same period. 

Additionally, this phenomenon of chilled water competition also exacerbates the 

unnecessary power consumption of chilled water pumps. By implementing 

reconfigurable control, the allocation of the limited cooling capacity is properly 

managed as shown in Figure 8.8(b). It ensures that each zone receives an appropriate 

amount of chilled water even thermal comfort and avoids overburdening the pumps. 

The reconfigurable control strategy continues to work at 14:00 to cool down the zones, 

ensuring proper cooling distribution and reducing the rebound effect. 
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(a) Conventional control                         (b) Reconfigurable control 

Figure 8.8 Comparation of chilled water flowrates under the conventional and 

reconfigurable control during demand limiting period 

The chilled water flowrates under conventional and reconfigurable control during soft 

stop period are also compared as shown in Figure 8.9. A similar disorder in the cooling 

distribution is observed using conventional control, as shown in Figure 8.9 (a), when 

shutting down an operating chiller to conserve energy before the end of the office hour 

at 18:00. However, with the implementation of reconfigurable control, the distribution 

of limited cooling capacity is rationalized and effectively managed after the early 

shutdown of chillers. 
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(a) Conventional control                         (b) Reconfigurable control 

Figure 8.9 Comparation of chilled water flowrates under the conventional control 

and reconfigurable control during the soft stop period 

8.3.2 Thermal environmental control performance 

Figure 8.10 depicts the indoor air temperature variations during the morning start 

period. During the morning start period, conventional control approach fails to 

optimize chilled water distribution, resulting in disruptions and imbalances as 

illustrated before. As a consequence, different building zones experience varying 

timeframes to reach the comfort temperature setpoint for office hours as shown in 

Figure 8.10(a). Specifically, Zone 4 requires a precooling time of 0.72 hours, while 

Zone 1 requires a longer precooling time of 1.22 hours. However, with proper chilled 

water distribution under the reconfigurable control strategy, a more synchronized 

precooling process across different building zones is achieved as shown in Figure 8.10 

(b). By allocating an appropriate amount of chilled water to each zone, the proposed 

control strategy ultimately allows for a delay of 0.2 hours in the activation time of the 

chillers. 
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(a) Conventional control                         (b) Reconfigurable control 

Figure 8.10 Temperature profiles under conventional and reconfigurable control at 

morning start period 

Temperature profiles under two different controls during demand limiting period are 

shown in Figure 8.11. During the half-hour fast demand response period (13:30-14:00), 

the conventional control approach does not effectively optimize the cooling 

distribution, leading to uneven temperature increases among the building zones as 

shown in Figure 8.11 (a). The observed maximum temperature difference among the 

zones is approximately 1 K (i.e., between Zone 1 and Zone 4) during demand limiting 

period, which indicates an uneven cooling distribution. Test results demonstrate the 

effectiveness of the reconfigurable control approach at minimizing the temperature 

discrepancies as shown in Figure 8.11 (b). The maximum temperature difference 

across zones is controlled to be below 0.3 K. 
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(a) Conventional control                         (b) Reconfigurable control 

Figure 8.11 Temperature profiles under different controls during demand limiting 

period 

The indoor air temperature under two different controls is also compared during soft 

stop period as shown in Figure 8.12. The conventional control results in uneven 

temperature increases across different building zones after shutting down one 

operating chiller before the end of office hours, as shown in Figure 8.12(a). Among 

them, Zone 1 experiences the highest temperature rise, reaching approximately 26.5 ℃ 

at 18:00, while Zone 4 has the lowest temperature rise (approximately 25.5 ℃). When 

the reconfigurable control is adopted, the temperature increases in all building zones 

become consistent and uniform as depicted in Figure 8.12 (b). The average 

temperature across the four zones remains below 26 ℃ at 18:00, indicating the 

successful mitigation of uneven cooling distribution. 
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(a) Conventional control                         (b) Reconfigurable control 

Figure 8.12 Temperature profiles under different controls during soft stop period 

8.3.3 Energy performance 

The power consumption under conventional and reconfigurable control is also 

investigated. Figure 8.13 presents the power consumption profiles during the morning 

start period. Under the conventional control, the chillers are activated 0.2 hours earlier 

than those under the reconfigurable control, resulting in higher energy consumption. 

This early activation of the chillers signifies an inefficient use of energy resources. By 

synchronizing the cooling process and dynamically adjusting the allocation of chilled 

water, the proposed reconfigurable control achieves significant energy savings during 

the morning start period. The results reveal that the energy saved by implementing the 

reconfigurable control strategy amounts to 172.85 kWh. 
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Figure 8.13 Comparation of power consumption under different controls during 

morning start period 

Figure 8.14 shows the comparison of energy consumption under the conventional and 

reconfigurable control during the demand limiting period. The air-conditioning system 

experiences disruptions in chilled water distribution, leading to increased power 

consumption of chilled water pumps when performing demand limiting (i.e., 13:30 to 

14:00). It undermines the effectiveness of demand limiting. In contrast, the 

reconfigurable control demonstrates improved performance in terms of demand 

limiting during the demand response period through dynamically adjusting the cooling 

distribution and thus reducing power consumption of chilled water pumps. The 

maximum power reduction in this period is 572.7 kW compared to that under 

conventional control. Furthermore, when demand response ends at 14:00, the 

conventional approach exhibits a larger rebound effect. The implementation of the 

reconfigurable control effectively mitigates this rebound effect by 11.2 %. 
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Figure 8.14 Power consumption under the conventional and reconfigurable control 

during the demand limiting period 

The power consumption under conventional and reconfigurable control is also 

compared during the soft stop period as shown in Figure 8.15. When using 

conventional control, disruption of cooling distribution during the soft stop period 

results in increased power consumption of the pumps. It affects the overall energy 

efficiency of the air-conditioning system, offsetting some of the potential energy 

savings. Test results demonstrate the energy-saving benefits of reconfigurable control 

approach. By effectively managing the distribution of chilled water, the proposed the 

reconfigurable control unlocks an additional energy-saving potential of 51.4 kWh 

compared to the conventional control. 
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Figure 8.15 Power consumption under different controls during soft stop period 

8.4 Summary 

A reconfigurable feedback control strategy integrating both the supply-based and 

demand-based controls is developed to address the problems arising from disordered 

cooling distribution when cooling supply is insufficient using conventional feedback 

control. The implementation of reconfigurable feedback control is realized for the first 

time for energy-efficient and grid-interactive cooling management in the entire 

building daily cycle, including the morning start period, soft stop period and demand 

limiting period. Hardware-in-the-loop tests are conducted for validation. Based on the 

experiences of practical implementation of the control logics and results of the 

validation tests, the following major conclusions can be derived: 
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limited cooling supply (i.e., morning start period, demand limiting period and soft 

stop period). 

o Compared with the conventional control, significant energy savings can be 

obtained during the morning start period (i.e., 9.1 %) and soft stop period (i.e., 

13.3 %) under the reconfigurable control. Additionally, reconfigurable control can 

achieve a further reduction in power consumption by 30.8 % during the demand 

limiting period while mitigating the rebound by 11.2 % right after demand 

limiting period. 

o The reconfigurable control strategy can be conveniently deployed in commonly 

used digital controllers at field level, facilitating seamless integration with the 

current building automation systems. 

In the future work, field implementation of reconfigurable control strategy in four 

large buildings under construction will be performed in collaboration with industrial 

partners to further investigate the practical implementation issues of the supply-based 

cooling management for enhanced energy efficiency and flexibility and validate their 

benefits in practice. 
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

This chapter presents the concluding remarks and outlines the future directions for 

research based on the findings and contributions of this study. This chapter is divided 

into three sections, each addressing different aspects of the research conducted:  

Section 9.1 highlights the main contributions of this study. Section 9.2 presents the 

conclusions drawn from the analysis and interpretation of the research outcomes. 

Section 9.3 focuses on recommendations for future work based on the research 

conducted. 

9.1 Main contributions of this study 

The main contributions of this PhD study are summarized as follows: 

i. The problems arising from disordered cooling distribution in conventional 

demand-based feedback control are identified. The concept of supply-based 

feedback control is introduced to deal with the problems. 

ii. A comprehensive and robust reconfigurable control strategy is developed for the 

implementation of the smart control concepts in conventional building 

automation systems. The reconfigurable control strategy integrates supply-based 

feedback controls, for demand response and demand limiting events, and 

demand-based feedback controls, for normal situations with sufficient cooling 

supply. 

iii. A reinforcement learning-enabled iterative learning control strategy of air-

conditioning systems at the morning start period is developed to effectively 

shorten the precooling time and reduce energy consumption. The control strategy 
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is model-free and does not require extra sensors nor additional experimental work 

for thermodynamic characteristic parameter identification. 

iv. An event-driven demand response control strategy of air-conditioning systems is 

developed to properly distribute the limited cooling supply when facing urgent 

requests from smart grids. The control strategy is convenient for on-site 

implementation, and avoids unnecessary wear and tear of the terminal units 

during the control process. 

v. A distributed cooperative control strategy of air-conditioning systems based on 

the multi-agent system is developed to perform building fast demand response. 

The control strategy allows good scalability and reconfigurability, which are 

cost-effective and efficient control strategies to be applied in large commercial 

buildings for demand limiting. 

vi. The implementation of the reconfigurable control strategy is developed in the 

limited cooling supply situations, including the morning start period, demand 

limiting period and soft stop period. It incorporates the detailed control strategy 

architecture along with corresponding hardware placement. 

9.2 Conclusions 

On the reconfigurable feedback control deployable in conventional digital controllers 

o The conventional building automation systems that adopt conventional feedback 

control face challenges in distributing cooling supply effectively during fast 

demand response periods when the cooling supply is insufficient after switching 

off some of the operating chillers. This results in disordered chilled water 

distribution, leading to imbalanced thermal comfort sacrifices among building 
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zones. In addition, a severe deficit flow problem might arise, causing increased 

energy consumption of the secondary pumps. 

o The proposed reconfigurable control strategy offers a solution for managing the 

distribution of cooling supply effectively to address the above issues. This 

strategy can be implemented on conventional building automation systems that 

adopt digital controllers commonly used today, such as DDC and PLC. 

o Test results show satisfactory control stability in valve opening control and proper 

chilled water distribution. This enables uniform space temperature distribution 

and thermal comfort control among the building zones during both demand 

response and rebound periods. The temperature deviation among the zones is 

controlled within 0.2 K for the majority of the time. Furthermore, the proposed 

reconfigurable control achieves 11.6% and 27% of power demand reductions 

during demand response and rebound periods respectively, compared with those 

using conventional controls. 

On the iterative learning control strategy for morning start period 

o The proposed iterative learning control strategy can update the control outputs at 

each control interval (each day) to continuously track the goal of consistent 

precooling lead time for different building zones. 

o The proposed iterative learning control strategy can reduce the maximum return 

time among multiple zones from night setback (tmax) and the cooling diversity 

indicator (cdi). The average reduction of the daily precooling time was 0.1 hour 

(10.9% reduction) and the accumulated reduction of the precooling time was 2.48 

hours during the test period of four weeks.  

o The proposed iterative learning control strategy can significantly achieve energy 

saving. The average overall daily energy saving of the chilled water plant was 400 
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kWh and the accumulated overall energy saving was 9615 kWh over the test period 

of four weeks. 

On the event-driven control strategy for fast demand response 

o The proposed event-driven control strategy can maintain the uniform indoor air 

temperature rises among different building zones during the demand response 

period. The limited cooling supply can be distributed properly and the same indoor 

air temperature profiles among the zones can finally achieved using the proposed 

event-driven control strategy.  

o The power demand and energy consumption of the chiller plant can be further 

reduced significantly during the demand response period when using the proposed 

event-driven control strategy, e.g., power demand reduction by 170 kW (i.e., 5%) 

and the reduction of electricity consumption by 246 kWh (5%). Furthermore, the 

power rebound effect right after the demand response period can also be mitigated 

to some extent. 

o Both the proposed event-driven control and the time-driven control can achieve 

the control objective during the demand response period. But the accumulated 

valve travel distance of AHUs for different building zones can be reduced by 54.6% 

in average under the event-driven control compared with the time-driven control. 

On the multi-agent based distributed cooperative control strategy for enhanced 

scalability 

o The proposed control method can effectively address uneven temperature rises of 

the building zones/spaces when performing direct load control, while also 

significantly alleviating the relative humidity rise. 
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o The disordered cooling distribution (including chilled water distribution and supply 

air distribution) can be effectively addressed in a self-organizing manner by the 

multi-agent system. 

o In comparison to conventional control, the proposed strategy can better follow 

urgent power reduction requests from the power grid while significantly reducing 

the power rebound effect immediately following the power limiting event. Test 

results demonstrate that the proposed control saves a total of 2,562 kWh of 

electricity and reduced power rebound by 1,360 kW during the demand response 

event. 

On the implementation of supply-based cooling distribution control strategies 

o Reconfigurable feedback control can address the problem of disordered cooling 

distribution arising from the conventional control strategy in the limited cooling 

supply situations (i.e., morning start period, demand limiting period and soft stop 

period). 

o Compared with the conventional control, significant energy savings can be 

obtained during the morning start period (i.e., 9.1%) and soft stop period (i.e., 

13.3%) under the reconfigurable control. Besides, the reconfigurable control can 

achieve a further reduction in power consumption by 30.8% during the demand 

limiting period while mitigating the rebound by 11.2% right after demand limiting 

period. 

o The reconfigurable control strategy can seamlessly integrate with the current 

building automation systems, achieving smooth transition between the demand-

based control (i.e., normal control mode) and supply-based control.  
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9.3 Recommendations for future work 

This PhD study has made great efforts in developing supply-based cooling distribution 

management strategies for air-conditioning systems for building-grid interaction and 

demand-limiting. Recommendations for future work are listed as follows. 

o Although this PhD study has theoretically and practically developed smart cooling 

distribution management strategies, on-site tests are necessary for real 

implementation in commercial buildings. In the future, conducting field-

implementation case studies in an actual building will be required to demonstrate 

the effectiveness of the control strategies. 

o In this PhD study, the indoor air temperature is considered as the key indicator for 

evaluating the thermal comfort during the demand response events. However, the 

relative humidity should also be considered especially in humid subtropical areas. 

Future work should be conducted to quantify the impacts on both indoor air 

temperature and relative humidity in the demand limiting process.  

o Actually, in addition to direct load control by shutting down part of the operating 

chillers, the air-conditioning systems can participate in demand response and 

provide energy flexibility services through various other control pathways. Future 

work should also be conducted to explore how to practically implement these 

control strategies.  
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