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Abstract

Urban (goods) delivery and passenger transport are essential components of urban infras-

tructure. In recent years, an integrated people-and-goods transportation model that utilizes

passenger transport vehicles for goods deliveries has been touted as one of the most promising

alternatives to optimize both goods delivery and passenger transport. Nonetheless, several imple-

mentation challenges may hinder the viability of this service model. This thesis aims to address

the core challenge of pricing optimization, along with a series of strategic- and operational-level

problems for three specific forms of integrated people-and-goods transportation service.

Study I in Chapter 3 introduces an ordinary traveler-based crowd-shipping service, address-

ing a compensation and service routing (C&R) problem for a hybrid delivery system combining

a dedicated delivery service and a crowd-shipping service by ordinary travelers. Two mixed inte-

ger programming models are formulated for the C&R problem under uniform and differentiated

compensation modes. A customized hybrid algorithm, which employs a variable neighborhood

search with a nested tabu search and an iterated local search, is developed to solve the problems.

Study II in Chapter 4 extends the investigation in Chapter 3 by examining a collabora-

tive alliance, allocation of delivery orders, compensation, and route joint optimization (CACR)

problem for a collaborative hybrid delivery system involving multiple retailers. A bi-objective

optimization model is formulated to minimize total operational costs and carbon emissions. A

decomposition-based iterative optimization method is developed to find Pareto-optimal solu-

tions by solving a series of decomposed sub-problems with the updated collaboration strategy

and compensation rate. Each sub-problem is solved by using a cluster-first route-second ap-

proach with a customized spatiotemporal clustering technique and a non-dominated sorting

genetic algorithm-II enhanced with a Clarke and Wright saving method.

Study III in Chapter 5 investigates a public transit-based co-modal transportation ser-

vice price (CSP) problem considering the collaborative interaction between the logistics service

provider (LSP) and public transit operator (PTO). A bilevel path-based programming model

is formulated based on the interactive dynamics between LSP and PTO, where a lower-level

bus trip scheduling problem is proposed for optimizing the PTO’s decision while an upper-level

vehicle routing problem with pricing is designed for optimizing the LSP’s decision. A tailored

iterated three-stage hybrid method, combining two granular tabu search algorithms and an

artificial bee colony algorithm, is developed to solve the problem.

Study IV in Chapter 6 examines an outsourcing service price (OSP) problem for co-modal

i



delivery service based on on-demand mobility services. A lower-level co-modality delivery service

problem with ridesharing is formulated to determine the OMP’s optimal decision under the

outsourcing service price offered by PSP, while an upper-level multi-depot pickup and delivery

problem with pricing is formulated to determine the PSP’s optimal decision, including the service

price. A customized iterative hybrid algorithm, integrating two granular tabu search algorithms

and a genetic algorithm, is developed to solve the problem.

These mathematical models and solution methodologies formulated in the four studies are

tested on adapted benchmark instances, randomly generated instances, and real-life cases, and

offer managerial insights for the urban delivery service providers.
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Chapter 1 Introduction

1.1 Background

This section first offers an introduction of urban delivery and passenger transport. Subse-

quently, it examines various emerging delivery models and their practical applications. Finally,

it discusses the potential benefits and challenges associated with these emerging models.

1.1.1 Urban delivery and passenger transport

With the advent of electronic payment systems and online shopping platforms, the last

few years have witnessed the continuous growth of global e-commerce sales from 1.336 trillion

dollars in 2014 to 5.311 trillion dollars in 2022, with an average annual growth rate of over

20% (Statista, 2024b), as illustrated in Figure 1.1. Notably, online-to-offline (O2O) commerce,

which allows customers to order products online and then receive them offline, has witnessed a

significant surge in demand, particularly during the COVID-19 pandemic (Zhao et al., 2021).

Figure 1.1. Global retail e-commerce sales from the years 2014 to 2027 (Statista, 2024b)

For example, Yonghui Superstores, a major supermarket chain in China, reported an annual

growth rate of over 20% in O2O orders in 2022 (He, 2023). Additionally, the demand for last-mile

delivery services, which are crucial for transporting goods to customers, has also surged, with the

market growing from $108.1 billion in 2020 to over $128 billion in 2022 and projected to exceed

$200 billion by 2027 (Placek, 2023). Urban delivery, which facilitates the distribution of goods

within city areas, is thus under increasing pressure to meet these rising demands as a result of

the swift growth in e-commerce activities. Traditionally, urban delivery service (UDS) providers,

e.g., logistics companies and retailers offering delivery services, have relied on the (self-operating)
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dedicated vehicle fleets with professional drivers. This model, however, is becoming increasingly

unsustainable and less competitive due to rising operational costs and environmental impacts,

particularly the escalating expenses associated with acquiring additional delivery vehicles and

recruiting dedicated drivers (Castillo et al., 2018; Han, 2021). UDS providers are striving to

develop high-efficient, cost-effective, and environmentally-friendly delivery models to alleviate

their delivery pressure and improve operational competitiveness in the era of e-commerce.

Passenger transport, which facilitates the mobility of passengers, is generally managed by

various passenger transport service (PTS) providers such as public transit operators (e.g., bus

companies) and on-demand mobility service providers (e.g., ride-hailing companies). However,

these systems face chronic inefficiencies, particularly in terms of vehicle utilization: vehicles

are often overloaded during peak hours, while they are largely underused during off-peak hours

(Elbert and Rentschler, 2022; Yu et al., 2019). This inefficiency is exemplified by the fluctuating

24-hour passenger flow in Nanjing’s metro system during weekdays, as presented in Figure 1.2.

Figure 1.2. Fluctuation of 24-hour passenger flow over a five-day workweek (Yu et al., 2019)

For public transit operators, their public transit buses often exhibit substantial unused space and

experience prolonged dwell times at bus terminals during off-peak hours (Kumar et al., 2019),

with instances of up to 40 ∼ 60 minutes, resulting in significant underutilization of capacity.

Similarly, for on-demand mobility service providers, their low-occupancy vehicles are frequently

free-floating in the city in search of passengers during non-peak hours, resulting in reduced

revenue and heightened environmental costs. Additionally, some passenger transport is carried

out by ordinary travelers themselves using their private cars. The significant increase in privately

owned vehicles in recent years, exemplified by the rise in China from 45.75 million vehicles in
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2009 to 277.92 million vehicles in 2022 (Statista, 2024a), further complicates the urban passenger

transport inefficiency and exacerbated the negative impacts on the urban environment. These

challenges highlight the need for innovative solutions that optimize both goods delivery and

passenger transport efficiently, in an era of rapid urbanization and technological advancement.

1.1.2 Emerging delivery services and their practices

Facilitated by the progression of smartphones and communication technologies, an inte-

grated people-and-goods (IPG) transportation system has emerged recently as a promising solu-

tion for both UDS providers and PTS providers. This system aims to leverage the spare capacity

of passenger transport vehicles to carry out goods deliveries, alongside their primary function

of transporting passengers. Crowd-shipping(CS) and co-modal (CM) transportation are two

most representative concept of the IPG transportation systems. Based on different passenger

transport modes, there are broadly three forms of IPG transportation service:

(1) CS service based on ordinary travelers (OTs)

The CS service model aims to employ some ordinary travelers, e.g., in-store customers and

commuter with private cars, as crowd-couriers to deliver goods or parcels (a package containing

multiple items) during their personal itineraries, and offers them monetary compensation upon

successful delivery completion (Arslan et al., 2019). A practical demonstration of this CS model

is the MyWays platform implemented by DHL Express in Stockholm, as presented in Figure 1.3.

Figure 1.3. MyWays platform

This platform enhances last-mile delivery services by engaging local residents. Through a cus-

tomized mobile application, the system pairs users seeking flexible delivery options with those

willing to transport parcels along their regular commutes in exchange for monetary payment

(Bonn, 2013). Other pilot projects have also explored this model, including Hitch and Roadie
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in the United States, and Nimber in London, Athens, and Oslo (Alnaggar et al., 2021). These

initiatives demonstrate the potential of leveraging ordinary travelers to improve the efficiency

and flexibility of urban delivery.

(2) CM transportation service based on fixed-route public transport (FRPT)

The FRPT-based CM transportation service model seeks to integrate the goods deliveries

into existing fixed-route public transportation systems, e.g., tram lines, bus networks, and metro

systems (Li et al., 2021). An example for this CM transportation model is the Cargo-Tram (also

named by E-Tram) program in Zürich, Switzerland, as illustrated in Figure 1.4, which uses trams

to transport large or bulky items for urban dwellers without vehicle access (de Kemmeter, 2021).

Figure 1.4. Zurich’s cargo tram (de Kemmeter, 2021)

The program’s success has led to its expansion to include the collection of discarded or malfunc-

tioning electronics. In addition, various other pilot projects have been implemented using differ-

ent types of FRPT vehicles. Examples include Bussgods business in Sweden, the Matkahuolto

initiative in Finland, the Greyhound Freight service in Australia, the Greyhound Package Ex-

press in the United States, and a shared city logistics system based on subway system in Japan

(Cheng et al., 2023; Alnaggar et al., 2021). These projects indicate the benefits of integrating

urban logistics into public transportation systems to enhance efficiency and sustainability.

(3) CM delivery service based on on-demand mobility services (OMS)
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The OMS-based CM delivery service model aims to employ on-demand mobility vehicles,

such as taxis, ride-hailing services, and potentially autonomous vehicles in the future, to fulfill

goods/parcel delivery requests (Li et al., 2014). A notable example is Walmart’s pilot program

for same-day grocery delivery, which utilizes Uber and Lyft vehicles (see Figure 1.5) (Wahba,

2016) to delivery parcels to customers. This initiative facilitates the rapid delivery of groceries to

customers who shop online, representing a significant shift towards integrating e-commerce with

contemporary transportation solutions. This model capitalizes on the existing infrastructure of

ride-hailing services to enhance delivery efficiency and flexibility.

Figure 1.5. Walmart grocery delivery by Uber vehicle (Springer, 2017)

In summary, the implementation of the above three forms of IPG transportation service

may bring a range of potential benefits across various sectors:

(1) Demand-side

UDS providers, such as logistics service providers and retailers (e.g., Walmart) can take

advantage of the underused capacities in passenger transport vehicles, such as private cars, buses,

and taxis. This, firstly, enhances operational efficiency by reducing the reliance on dedicated

delivery vehicles and professional drivers. Furthermore, these UDS provider can lower delivery

pressures and cut costs, particularly those related to the payment for employing professional

driver and the acquisition and maintenance of delivery vehicle fleets.

(2) Supply-side

The supply-side may includes various participants of different IPG transportation mod-

els. For OTs who provide CS service during their personal travels, they can get additional

income from this part-time ‘hitch-hiking’ delivery service, thereby potentially offsetting some of

their travel costs. For PTS providers, e.g., FRPT operators and OMS providers who integrate

goods delivery into their regular operations, they can enhance the profitability and operational
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efficiency by allowing for more productive utilization of their vehicles for goods deliveries, par-

ticularly during periods of low passenger demand.

(3) Customer-side

The IPG transportation model may offer customers enhanced convenience and the potential

for faster delivery times. By integrating goods deliveries within existing travel routes, this model

can expedite services, overcoming the typical route and scheduling limitations associated with

traditional delivery methods. Moreover, the flexibility of this approach, including the possibility

of after-hours deliveries, can significantly improve customer satisfaction.

(4) Environment-side

From an environmental standpoint, the IPG transportation model could offer the advan-

tage of reduced emissions and decreased traffic congestion. By maximizing the use of existing

vehicle capacities, it limits the necessity for additional delivery trips, thus minimizing the overall

environmental footprint. Such efficient utilization of transportation resources supports broader

sustainability objectives, including the reduction of carbon emissions and the promotion of

environmentally-friendly urban logistics practices.

1.1.3 Challenges of implementing emerging IPG transportation services

Despite the foreseeable great benefits for various stakeholders, implementing these emerging

IPG transportation models presents numerous challenges.

(1) Challenges of implementing CS service based on OTs

One significant challenge is to determine the compensation rate for employing ordinary trav-

elers, who may have varying expectations for compensation. This rate must attract ordinary

travelers without imposing excessive compensation cost burden to UDS providers. Additionally,

UDS providers may also operate the traditional dedicated delivery service in addition to employ-

ing CS service, resulting in a hybrid delivery system. Unlike dedicated delivery vehicles that are

homogeneous and centrally coordinated, ordinary travelers may have diverse itineraries, carrying

capacities, available service time periods, and compensation expectations. Allocating delivery

tasks between ordinary travelers and dedicated delivery vehicles, and optimizing their service

routes, is challenged while considering these heterogeneous service requirements. Furthermore,

for the scenario that multiple UDS providers may collaboratively serve the parcel delivery de-

mands, how to determine collaboration strategies and task allocation among them is also crucial.

Meanwhile, beyond cost minimization, employing CS services to reduce environmental impact

is also important. Addressing these challenges is essential for the effective implementation and
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sustainability of this innovative business model.

(2) Challenges of implementing CM transportation service based on FRPT

Using FRPT vehicles for parcel deliveries offers potential benefits for both UDS provider

and FRPT operator; however, these vehicles, e.g., public transit buses, normally operate on

strict timetables dedicated to passenger transport and have limited and distinct capacities for

goods during different time periods. A primary challenge is how to coordinate and schedule

these vehicles to fulfill additional parcel delivery requests while adhering to the fixed timetable

for passenger transport. More importantly, this form of business model requires collaboration

between UDS provider and FRPT operator. In this context, how to designing an attractive

collaborative mechanism, e.g., a well-designed service price for parcel delivery that benefits both

parties, is crucial for the viability of this delivery model.

(3) Challenges of implementing CM delivery service based on OMS

The OMS-based CM delivery service necessitate close collaboration between UDS provider

and OMS provider. Without an attractive mechanism for the two potential participants, this

business model may not be viable. In this context, how to determine a service price that

benefits both participants considering the interaction between UDS provider and OMS providers

is fundamentally significant. Particularly, OMS providers providing a more flexible passenger

transportation service primarily for passengers’ pickup and delivery requests, which come with

specific requirements for ride duration and experience. How to optimize the service routes of

on-demand mobility vehicles to accommodate additional goods delivery requests while ensuring

passenger satisfaction presents a significant challenge. Addressing this challenges is necessary

for implementing this form of CM delivery service.

1.2 Research Objectives

To tackle these distinguished challenges, this study will formulate mathematical program-

ming models and develop various solution techniques to address a series of decision-making

problems for three forms of IPG transportation models, and conducts numerical experiments

on benchmark instances and customized case studies for evaluation. The primary objective is

to optimize the service price or compensation rate for these IPG transportation services, along-

side a series of strategical-level and operational-level decision optimization such as collaboration

alliance determination, delivery order allocations, and service route optimization for dedicated

vehicles and ordinary travelers. The research topics addressed in this study are outlined in

Figure 1.6. The detailed objectives are set out below:
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• To determine compensation rate of employing ordinary travelers for the UDS provider,

i.e., retailer in Figure 1.6, considering their heterogeneous service requirements, such as

expects-to-be-paid, carrying capacity, and available service time period, and optimize de-

livery order allocation between ordinary travelers and dedicated vehicles as well as their

service routes. These objectives will be addressed by conducting study I in Chapter 3;

• To determine compensation rate of employing ordinary travelers, considering the collabo-

ration among UDS providers, i.e., multiple retailers in Figure 1.6, with their own ordinary

travelers, evaluate the benefits of collaboration, and optimize the order allocation among

ordinary travelers and dedicated vehicles as well as their service routes. These objectives

will be addressed by conducting study II in Chapter 4;

• To optimize service price for a new public transit-based CM transportation service consid-

ering the gameplay between UDS provider, i.e., logistics service provider (LSP) in Figure

1.6, and PTS operator, i.e., public transit operator (PTO) in Figure 1.6, and design the

public transit bus’s working schedules of parcel delivery service for PTO and dedicated

vehicle service routes for LSP. These objectives will be achieved by conducting study III

in Chapter 5;

• To determine the optimal outsourcing service price for the CM delivery service based

on OMS, taking into account the interactive dynamics between between UDS provider,

i.e., parcel delivery service provider (PSP) in Figure 1.6, and PTS operator, i.e., on-

demand mobility service provider (OMP) in Figure 1.6, and optimize the service routes

of dedicated vehicles for PSP and on-demand mobility vehicles for OMP. These objectives

will be achieved by conducting study IV in Chapter 6.

1.3 Thesis Organization

The thesis includes seven chapters, each addressing different aspects of the emerging IPG

transportation services. with four core chapters presenting four studies for the three forms of

IPG transportation services. Specifically, three forms of IPG transportation models are designed

for different types of urban delivery demands, e.g., O2O orders and last-mile delivery demand,

based on the characteristics of each type of IPG transportation models.

Chapter 1 introduces the background and issues of urban delivery as well as passenger

transport and introduces three forms of emerging IPG transportation model. This chapter

then identifies the primary challenges associated with these models and outlines the research

objectives of this study aiming at addressing these identified challenges.
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Figure 1.6. Four studies explored by this thesis

Chapter 2 extensively reviews the most relevant studies pertaining to the three IPG trans-

portation models, identifies existing research gaps, and emphasizes the significance of this study.

Chapter 3 explores the CS service using ordinary travelers as crowd-couriers to serve door-

to-door O2O orders. This chapter studies the joint optimization of compensation rate and

service routes for a hybrid delivery system with traditional dedicated delivery fleets and crowd-

couriers considering the heterogeneous crowd-couriers. Two mathematical programming models

are established for two studied problems under different compensation schemes, and a hybrid

solution approach that combines an iterated local search (ILS) and a variable neighborhood

search (VNS) with a nested tabu search (TS) is proposed to find good-quality solution. Numer-

ical experiments on several adapted benchmark instances are employed to assess the efficacy of

the suggested methodologies and OT-based CS service.

Chapter 4 builds upon the research presented in Chapter 3, and considers various collabora-

tion alliances among multiple retailers with shared customers. This chapter investigates the joint

optimization of collaboration alliance, compensation rate, order allocation, and service routes for

a collaborative delivery system with OT-based CS service and examines the collaboration strate-

gies for optimizing costs and reducing carbon emissions. A bi-objective programming model and

a decomposition-based iterative optimization method are developed. Numerical experiments on

adapted benchmark instances and a simulated case are utilized to validate the efficacy of our

developed solution methods and collaborative delivery system.

Chapter 5 introduces a new public transit-based CM transportation service, which lever-
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ages the spare capacity of existing bus fixed-scheduled trips to carry out parcel backbone trans-

portation. This chapter optimizes the service price and bus working schedule for the public

transit-based CM transportation service considering the collaborative gameplay between LSP

and PTO. A bilevel path-based programming model is formulated based on the interactive

dynamics between the two participants, and a tailored iterated three-stage hybrid method com-

bining two granular TS algorithms and an artificial bee colony (ABC) algorithm is designed

to tackle the studied problem. Numerical experiments are carried out on randomly generated

instances and simulated cases assess our proposed solution method and benefits of incorporating

public transit-based CM transportation service.

Chapter 6 introduces the OMS-based CM delivery service, which leverages the spare space

of on-demand mobility resources (such as taxis and ride-hailing vehicles) for multiple parcel

pickup and delivery demand. This chapter explores a pricing strategy for outsourced services

within the collaborative CM service framework, taking into account the interactions between

two service providers (PSP and OMP). A bilevel arc-based programming model is developed,

and a novel iterative hybrid algorithm that combines two tabu search algorithms with targeted

granularity and a genetic algorithm is designed to generate good-quality solutions. Numerical

experiments are performed on randomly generated scenarios and a case study simulated in Hong

Kong, China. This chapter has been published by Transportation Research Part E: Logistics

and Transportation Review (Peng et al., 2024).

Chapter 7 provides the overview and research contributions by this thesis and recommen-

dations for future studies.
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Chapter 2 Literature Review

Over the past decade, many scholars have investigated various decision-making and opti-

mization problems for the IPG transportation service. This chapter will commence by examining

the most pertinent research related to the three IPG transportation models: (i) CS based on

ordinary travelers (OTs), (ii) CM transportation service based on fixed-route public transport

(FRPT), and (iii) CM delviery service based on on-demand mobility services (OMS). Further-

more, since collaborative delivery strategy is considered in the first CS service, this chapter will

also review the studies related to collaborative delivery service with shared customers.

2.1 CS Service based on OTs

Archetti et al. (2016) initiated investigations into OT-based CS services by utilizing oc-

casional drivers as crowd-sourced couriers. They introduced a vehicle routing problem with

occasional drivers (VRPOD) in a hybrid delivery system with dedicated delivery vehicles and

occasional drivers as crowd-couriers. In their study, it was assumed that each participating

crowd-courier would deliver no more than one parcel with a pre-specified compensation rate

for employed crowd-couriers. An integer programming model was formulated and a multi-start

heuristic method integrating TS and VNS was developed to tackle the problem. The numerical

experiments were conducted on adapted Solomon instances with 100 parcel delivery requests and

100 crowd-couriers. Later on, a range of extensions and problem variants have been explored. For

example, Macrina et al. (2017) extended the VRPOD to a more general scenario, wherein each

crowd-courier can undertake multiple deliveries while considering the time windows of the parcel

demands. Different from Archetti et al. (2016), they compensated the crowd-couriers based on

a fixed compensation rate and additional travel cost. Tao et al. (2021) explored the VRPOD

with in-house, full-time, and part-time couriers with different salary/compensation modes, i.e.,

fixed salary for in-house drivers and fixed rate-based compensation for full-time and part-time

couriers. They formulated a mixed-integer linear programming (MILP) model and proposed TS

method to determine the order assignment and routing solution. Macrina et al. (2020) expanded

the VRPOD to a flexible scenario where each parcel delivery order can be served by multiple

crowd-couriers with transshipment at pre-specified locations. A VNS method was employed to

find the optimal service routes. Sampaio et al. (2020) tackled a similar problem to Macrina et al.

(2020) by adaptive large neighborhood search (ALNS) algorithm. Vincent et al. (2022) also in-

vestigated a similar problem but additionally considered different delivery options of customers.

They proposed a mixed-integer nonlinear programming (MINLP) model and developed ALNS

to find the solution. Ghaderi et al. (2022) examined the last-mile delivery by crowd-couriers
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with parcel lockers as transshipment locations. They designed a two-phase approach to find the

optimal placement of parcel lockers and tasks assignment to the crowd-couriers.

2.2 CM Transportation Service based on FRPT

Ghilas et al. (2013) conducted a pioneering study on the FRPT-based CM transportation

service for parcel transportation. They proposed a parcel transportation system that utilized

FRPT lines as a backbone transportation from one “station hub” to another, e.g., a bus line

from one bus terminal to another. The study assumed that FRPT lines could transport parcels

with a specified cost coefficient based on the number of parcels. They formulated an mixed-

integer programming (MIP) model and employ commercial solver CPLEX to find the optimal

service routes. They later proposed an ALNS heuristic to solve the larger-scale instances (Ghilas

et al., 2016b) and address the scenario with stochastic demand (Ghilas et al., 2016a), and

developed a branch-and-price method to get exact solution (Ghilas et al., 2018). Masson et al.

(2017) explored a similar scenario to Ghilas et al. (2013) but expanded the station hubs to

multiple stops along an FRPT line for enhanced delivery efficiency, utilizing an MIP model and

the ALNS method for route optimization. Behiri et al. (2018) extended the study by Masson

et al. (2017), focusing on parcel delivery along a single rail line while considering rail station

storage capacity. They developed customized heuristics for optimal parcel allocation to each

stop that can minimize the total waiting time of all demands. More recently, Delle Donne et al.

(2023) investigated an FRPT-based CM transportation network design problem to determine

the selected FRPT lines that can maximize the covered parcel delivery demands. They built an

MIP model and devised a heuristic method with column generation to determine the selected

FRPT lines as well as constructed CM service network.

2.3 CM Delivery Service based on OMS

The pioneering study on CM delivery service based on OMS was conducted by Li et al.

(2014). They introduced a share-a-ride problem (SARP) that aimed to optimize the taxis’

routes for fulfilling additional parcel delivery requests subject to the maximum ride time of

on-board passengers. The problem was formulated as an MILP, which could be solved directly

by commercial solvers. An ALNS algorithm was then developed by Li et al. (2016a) to handle

large-scale cases for the SARP. Later on, various extensions and problem variants considering re-

alistic constraints, emerging vehicle technologies, or other decisions have been investigated. For

example, Li et al. (2016b) investigated two SARP stochastic variants considering the stochastic

travel times and delivery locations. They formulated the two variants as two-stage stochastic

programming models with recourse and proposed a solution approach that integrated ALNS and
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sampling strategies. Ren et al. (2021) studied a special SARP that used an online car-hailing ser-

vice to carry out last-mile delivery while considering the request dynamics. They formulated the

problem as an MILP model and developed an improved genetic algorithm to obtain the optimal

service routes that can minimize the total cost of drivers, passengers, and car-hailing company.

Yu et al. (2018) later explored a general SARP that allowed a taxi to serve multiple passenger

ride requests simultaneously and relaxed the restriction on passenger’s maximum ride time. A

simulated annealing algorithm was developed to obtain the optimal service routes. It was found

that solutions of the general SARP increase the operator’s total profit compared with that of

SARP. Based on the general setting, Beirigo et al. (2018) further studied the shared transporta-

tion of passengers and parcels using autonomous vehicles with different compartments. The

heterogeneity of vehicle’s compartments for carrying parcels and passenger were considered to

better accommodate passenger and parcel requests. The problem was formulated as an MILP

model, which was solved by commercial solvers. More recently, Lu et al. (2022) extended the

problem by considering a mixed fleet of gasoline vehicles and electric vehicles to provide shared

transportation for passengers and parcels. They incorporated different operational character-

istics of gasoline vehicles and electric vehicles, e.g., energy consumption, speed, and charging

requirement, into the model formulation and developed a network partitioning-based heuristic

to solve large-scale cases in the real world. Chen et al. (2016) investigated a CM delivery service

that exploited taxi relays to deliver parcels. Based on the offline historical trajectory data of

taxis, they developed an online adaptive taxi scheduling algorithm to determine the taxi delivery

routes for satisfying the real-time passenger ride and parcel delivery requests. Chen et al. (2017)

later tested the viability of this CM delivery model for the citywide returned goods collection,

which used the spare space of taxis to collect returned goods from a collection point to a distri-

bution center. Zhan et al. (2023) examined a ride-hailing sharing problem in that passengers and

parcels can be transported by ride-hailing vehicles and electric motorcycles. They incorporated

the parcel size and urgency, characteristics of ride-hailing vehicles and electric motorcycles, e.g.,

speed and unit travel costs, into the task assignment and routing optimization. They formulated

a lexicographic multi-objective model to maximize the total profit for ride-hailing platform and

minimize the total driving cost of ride-hailing vehicles and electric motorcycles and developed a

modified artificial bee colony algorithm to solve the problem.

2.4 Collaborative Delivery with Shared Customers

For the studies on collaborative delivery service with shared customers, Fernández et al.

(2018) were first to introduce the shared customer collaboration vehicle routing problem (SCC-

VRP), where multiple carriers may form a collaborative delivery alliance and share customers,
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allowing any carrier within the alliance to serve shared customers. They formulated two MIP

models for SCC-VRPs, and developed branch-and-cut methods. This collaborative delivery

model has since been adapted to various other scenarios. For example, Guajardo et al. (2018)

expanded SCC-VRP by allowing carriers to participate in multiple service alliances and pro-

posed MILP models, which they solved with commercial solvers. Mancini et al. (2021) further

refined SCC-VRP by incorporating considerations for time window and service consistency, along

with considerations for balancing workload. They established an MIP model and proposed a

matheuristic alongside an ILS approach to find service plans. Paul et al. (2019) investigated

store inventory replenishment and supplying pick-up points optimization problem considering

shared customers. They devised branch-and-cut and heuristic approaches to obtain routing

plans. Wang et al. (2021) applied the shared customer concept to logistics network design while

considering the sharing of customers and facilities. They devised a multi-stage hybrid heuris-

tic to construct the optimal emergency logistics network. More recently, Amiri and Farvaresh

(2023) examined a collaborative last-mile delivery problem considering the collaboration among

multiple carriers. They constructed dual multi-objective frameworks under collaborative and

non-collaborative contexts with the goals of maximizing profitability and improving customer

reach. To identify Pareto-optimal solutions, they devised a heuristic and implemented a com-

plete enumeration technique.

2.5 Research Gap Summary

This section will summarize the previous studies and identify specific research gaps identified

for three forms of IPG models.

2.5.1 Research gap of OT-based CS

Although fruitful results have been achieved for OT-based CS service, most studies focused

the assignment of tasks to couriers (Archetti et al., 2016; Macrina et al., 2017), optimization of

service routes (Tao et al., 2021; Macrina et al., 2020; Sampaio et al., 2020; Vincent et al., 2022),

and transshipment location problem (Ghaderi et al., 2022), under a predefined compensation

rate. Nonetheless, different compensations may lead to varying levels of willingness and avail-

ability of crowd-couriers, as they may have distinct expected payments when they are engaged

in the CS service (Punel and Stathopoulos, 2017). A lower compensation may diminish the

willingness of these available individuals to provide delivery services, while a high compensation

level reduces the cost savings of CS service. Therefore, it is significant to determine the compen-

sation rate in the context of OT-based CS service model. However, to our knowledge, only Le

et al. (2021) and Hou et al. (2022) have considered compensation optimization for OT-based CS
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service. Le et al. (2021) assumed that each crowd-courier would declare an expect-to-be-paid for

per kilometer and would like to provide the delivery service only if the compensation rate was

larger than their expectations. The aim was to identify the most advantageous compensation

rate and matching strategy in order to maximize overall profits. An MIP model was established,

and CPLEX was used to solve the cases with up to 20 parcel delivery requests and 30 crowd-

couriers. Hou et al. (2022) assumed that the crowd-couriers would decline the assigned parcel

delivery task with a certain probability dependent on compensation amount. However, both the

above relevant studies considered a stand-alone OT-based CS service, instead of a hybrid deliv-

ery system with dedicated vehicles, and in their studies, a crowd-courier can serve one delivery

request. To our knowledge, there has been no research investigating the joint compensation and

vehicle and crowd-courier service routing problem for a hybrid delivery system with dedicated

delivery vehicles and crowd-couriers.

In addition, despite the considerable body of research on the OT-based CS service and

collaborative delivery models, there exists a notable research gap where these two approaches

have not been effectively integrated into an integrated collaborative delivery system with OT-

based CS service. Specifically, the joint optimization of collaboration strategy, order allocation,

compensation design, and service routes has not been adequately addressed in previous studies.

Moreover, most previous studies has concentrated on minimizing total costs while overlooking

the environmental implications associated with the implementation of this new service, partic-

ularly the environmental impact resulting from compensation optimization. Table 2.1 presents

a detailed comparison of problem characteristics, objective, decision, and solution techniques

between the studies in Chapters 3 and 4 and representative studies on OT-based CS service.

2.5.2 Research gap of FRPT-based CM transportation

While previous studies have made significant progress in aspects for the FRPT-based CM

transportation model, such as parcel allocation and service route optimization (Ghilas et al.,

2013, 2016b,a; Masson et al., 2017; Behiri et al., 2018), FRPT-based CM transportation net-

work design (Cheng et al., 2018; Delle Donne et al., 2023), and location selection of parcel

loading/unloading (Zhao et al., 2018; Ji et al., 2020), most have concentrated on parcel delivery

using a single line without parcel transshipment among multiple lines. Kızıl and Yıldız (2023)

recently proposed a new FRPT-based CM transportation service, allowing for parcel transship-

ment among multiple FRPT lines; however, they assumed that parcel delivery could be facili-

tated through FRPT network interconnectivity without the consideration of detailed coordina-

tion among multiple FRPT vehicles under timetable constraints. Furthermore, all prior studies

assumed that the FRPT operator will provide a CM transportation service, given a pre-defined
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compensation rate (also named by cost coefficient). However, in practice, the FRPT operator

and urban delivery service (UDS) provider as two independent business parties may have differ-

ent and potentially conflict goals regarding the FRPT-based CM transportation collaboration.

To our knowledge, there has not been any investigation into service price optimization for the

FRPT-based CM transportation service that coordinates FRPT vehicles and accounts for the

dynamic interactions among participants. Table 2.2 presents a detailed comparison of problem

characteristics, objective, decision, and solution techniques between the studies in Chapters 5

and representative studies on FRPT-based CM transportation service.

2.5.3 Research gap of OMS-based CM delivery

All the aforementioned studies on OMS-based CM delivery service focused on operational-

level decision-making problems, e.g., routing optimization. A high-level decision, i.e., the service

price, which is fundamentally important to the formulation and sustainable operation of the

OMS-based CM delivery service, has not been investigated so far. In fact, most previous studies

have investigated this from the perspective of the OMP only. The OMS-based CM delivery

service model, however, entails the close collaboration of OMP and UDS provider. To establish

the collaboration, the UDS provider needs to offer an attractive outsourcing service price for

serving the request to the OMP. The OMP will then make the decision to determine which

parcel requests are profitable to serve. The unserved parcel requests have to be fulfilled by

the UDS provider’s self-operating delivery fleet. In this context, the UDS provider needs to

determine the outsourcing service price while considering the OMP’s decisions. In this context,

the UDS provider should serve as the leader aiming to find an optimal outsourcing service price,

and the OMP should be as the follower aiming to figure out the parcel requests to serve under

the offered price. To the best of our knowledge, no study has ever considered the interaction

and gameplay between UDS provider and OMP in OMS-based CM delivery service. Table 2.3

presents a detailed comparison of problem characteristics, decision-making, model formulation,

and solution techniques between the study in Chapter 6 and representative studies on OMS-

based CM delivery service.

In summary, despite the successful outcomes of previous studies, the optimization of com-

pensation or service price has been overlooked in all the three forms of IPG transportation

service. Furthermore, several critical considerations, such as the interactive game between par-

ticipants, the integration of collaborative delivery and crowd-shipping service, and the coordina-

tion of passenger transport vehicles, the joint optimization of dedicated vehicle and crowd-courier

service routes, are absent in prior research. To address these research gaps, Chapter 3 will inves-

tigate a compensation and crowd-courier and vehicle service route joint optimization problem
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for a hybrid delivery system considering heterogeneous crowd-couriers. Chapter 4 will extend

the study in Chapter 3 and examine a collaboration alliance, order allocation, compensation,

and service route joint optimization problem for a collaborative delivery system with OT-based

CS services and shared customers. Chapter 5 will explore the optimal service price and dedi-

cated delivery vehicle routes, and the optimal served parcel requests by FRPT vehicles as well

as the corresponding working schedules. Chapter 6 will investigate an outsourcing service price

for the OMS-based CM delivery service model considering the gameplay between the service

participants, and the service routes for the two participants of the CM delivery collaboration.
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Chapter 3 Compensation Optimization for Crowd-Shipping based on

Ordinary Travelers

This chapter investigates a compensation and service routing (C&R) problem for a hybrid

delivery system with dedicated delivery vehicles and ordinary travelers as crowd-couriers while

considering heterogeneous service requirements of crowd-couriers. Two compensation schemes

are considered, i.e., a uniform and a differentiated compensation mode, under which the crowd-

couriers are compensated according to a universal and individual-specific compensation rate,

respectively. An MINLP model is formulated for the C&R problem under the uniform compen-

sation (C&R-U), and linearization techniques are employed to transform the MINLP model to

an MILP model. In addition, the optimal uniform compensation rate for the C&R-U problem

is proved to belong to a finite set of candidate values. Given a specific candidate value, the

C&R-U problem will reduce to a crowd-courier and dedicated vehicle routing problem, referred

to as R-C&R-U problem. This chapter then develops a customized hybrid algorithm, namely,

H-ILS-VNS, to determine the optimal uniform compensation and service routes of crowd-courier

and dedicated vehicle. The algorithm will iteratively solve the R-C&R-U problem via VNS with

a nested TS (VNS-TS) and update the compensation rate with iterated local search (ILS). For

the C&R problem under differentiated compensation modes (C&R-D), we explore the problem

feature and formulate it as an MILP model. Moreover, the C&R-D problem can be solved by

the adjusted VNS-TS. Numerical experiments are carried out on test instances to assess the

efficacy of the models and solution techniques.

The rest of this chapter is structured as follows. The studied problems as well as assump-

tions and notations are elaborated in Section 3.1. Two MIP models are formulated in Section 3.2.

A hybrid algorithm integrating ILS and VNS-TS is elaborated in Section 3.3. Numerical exper-

iments are conducted in Section 3.4. Conclusions are discussed in Section 3.5. Notations used

in this chapter is listed in Section 3.6 for readability.

3.1 Problem Statement

Consider that a retailer operates dual shopping channels including online channel on a

platform and offline channel on a physical store. The online channel facilitates customers place

orders electronically and then receive their purchased products offline through delivery services

from the retail store to the customer’s location, generally known as O2O orders, whereas the

offline channel offers a conventional in-store shopping experience for those who prefer shopping

in brick-and-mortar establishments. Within the O2O commerce, an online customer browse and
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select products from a retail store’s inventory on an online platform, such as Meituan in China,

and place an order online. Then, the order is transmitted to the physical retail store, where

in-store personnel packages products into a parcel and dispatch dedicated delivery vehicles, e.g.,

self-operating delivery vehicles, to deliver the parcel to the designated location of the online

customer. Consider the retailer who provides parcel delivery service for its O2O orders from the

retail store to customer locations. Let S denote the set of the O2O orders. Each order i ∈ S

is associated with a delivery location, a load qi, a delivery time window [ei, li], where ei and li

denote the earliest and latest time to deliver the products to location i ∈ S, and the service

duration for unloading si. For convenience of presentation, we also employ S to denote the set

of delivery locations of all O2O orders.

To fulfill the O2O orders, the retailer employs a hybrid delivery system with both its self-

operating dedicated vehicles in set V and in-store customers in set K as crowd-couriers. Each

vehicle v ∈ V is associated with a maximum loading capacity Qv and a fixed vehicle cost cf .

The transportation cost and travel time of the vehicles from location i to j are represented by

cij and rij , respectively. Each crowd-courier k ∈ K specifies their destination dk, the earliest

departure time ek from the retail store, the latest arrival time lk at the destination, and the

maximum carrying capacity Qk. Let D denote the set of destinations of crowd-couriers in set K.

The provision of crowd-shipping services may entail detour for crowd-couriers compared with

their original trips. Therefore, each crowd-courier k ∈ K will also declare the expect-to-be-paid

(ETP) per unit of detour time, denoted by Ek. The crowd-couriers will accept the delivery tasks

only when the compensation rate offered by the retailer is higher than their ETPs. The travel

time of the crowd-couriers from location i to j is tij .

Given the heterogeneous ETPs of crowd-couriers, the retailer considers two compensation

rate settings: (i) a universal compensation rate p for all crowd-couriers, referred to as the

uniform compensation mode, and (ii) an individual-specific compensation rate pk for crowd-

courier k ∈ K, referred to as the differentiated compensation mode. The objective of the C&R-

U/C&R-D problem is to jointly determine the uniform/differentiated compensation rates and

service routes of crowd-couriers and dedicated vehicles such that (i) all O2O orders are satisfied

subject to the time window constraint, (ii) the available time period, carrying capacity, ETPs of

employed crowd-couriers and the carrying capacity of the dedicated vehicles are accommodated,

and (iii) the total costs, encompassing fixed vehicle cost, transportation cost, and compensation

cost is minimized.
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3.2 Optimization Model Formulation

In this section, we formulate MIP models for C&R-U and C&RD problems. For ease

of modeling, we define the problems on a complete direct graph G = (N ,A), where N =

S ∪D∪{0, σ+1}, and nodes 0 and σ+1 represent the retail store, which is physically the same

location. In particular, σ := |S| + |D|, where |S| and |D| are the number of nodes in sets S

and D, respectively. Each node i ∈ N is associated with a service time window [ei, li], a service

duration si, and a load qi, with si = 0 and qi = 0, ∀i ∈ {0, σ + 1} ∪ D. Each arc (i, j) ∈ A is

associated with vehicle transportation cost cij , vehicle travel time rij , and crowd-courier travel

time tij . The notations employed in this chapter are outlined in Section 3.6.

3.2.1 Model for C&R-U problem

To formulate the C&R-U problem, we define the following variables:

• p: Continuous variable to denote the compensation paid for employing crowd-couriers for

per unit of detour time.

• xijv : Binary decision variable that equals 1 if vehicle v ∈ V travels directly from node i

to j, ∀i, j ∈ N , and 0 otherwise;

• yijk : Binary decision variable that equals 1 if crowd-courier k ∈ K travels directly from

node i to j, ∀i, j ∈ N , and 0 otherwise;

• τvi : Continuous variable to denote the time epoch when vehicle v ∈ V starts service at

node i ∈ N . Note that τv0 represents the time at which vehicle v ∈ V departs from the

retail store, while τvσ+1 indicates the time when vehicle v ∈ V returns to retail store;

• τki : Continuous variable to denote the time epoch when crowd-courier k ∈ K starts service

at node i ∈ N . Note that τk0 represents the time at which crowd-courier k ∈ K departs

from retail store, while τkdk indicates the time of crowd-courier k ∈ K at destination dk.

With the above notations, the C&R-U problem can be formulated as follows:

[C&R-U]

min
{p,x,y,τ}

TCU = cf
∑
v∈V

∑
j∈S

x0jv +
∑
v∈V

∑
i∈N\D

∑
j∈N\D

cijxijv

+ p
∑
k∈K

 ∑
i∈S∪{0}

∑
j∈S∪{dk}

tijyijk − t0dk

 (3.1)
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subject to

∑
v∈V

∑
j∈S\{σ+1}

xijv +
∑
k∈K

∑
j∈S

⋃
{dk}

yijk = 1, ∀i ∈ S (3.2)

∑
v∈V

∑
j∈S∪{σ+1}

xijv =
∑
v∈V

∑
j∈S∪{0}

xjiv, ∀i ∈ S (3.3)

∑
k∈K

∑
j∈S∪{dk}

yijk =
∑
k∈K

∑
j∈S∪{0}

yjik, ∀i ∈ S (3.4)

∑
j∈S∪{σ+1}

x0jv = 1, ∀v ∈ V (3.5)

∑
i∈S∪{0}

xi(σ+1)v = 1, ∀v ∈ V (3.6)

∑
j∈S∪{dk}

y0jk = 1, ∀k ∈ K (3.7)

∑
i∈S∪{0}

yidkk = 1, ∀k ∈ K (3.8)

τvi + si + rij ≤ τvj +M (1− xijv) , ∀i ∈ S ∪ {0}, j ∈ S ∪ {σ + 1}, v ∈ V (3.9)

ei ≤ τvi ≤ li, ∀i ∈ S, v ∈ V (3.10)∑
i∈S∪{0}

∑
j∈S

qjxijv ≤ Qv, ∀v ∈ V (3.11)

Ekyijk ≤ p, ∀i ∈ S ∪ {0}, j ∈ S, k ∈ K (3.12)

τki + si + tij ≤ τkj +M (1− yijk) , ∀i ∈ S ∪ {0}, j ∈ S ∪ {dk} , k ∈ K (3.13)

τk0 ≥ ek, ∀k ∈ K (3.14)

τkdk ≤ lk, ∀k ∈ K (3.15)

ei ≤ τki ≤ li, ∀i ∈ S, k ∈ K (3.16)∑
i∈S∪{0}

∑
j∈S

qjyijk ≤ Qk, ∀k ∈ K (3.17)

p ≥ 0 (3.18)

xijv, yijk ∈ {0, 1}, ∀(i, j) ∈ A, v ∈ V, k ∈ K (3.19)

τvi , τ
k
i ≥ 0, ∀i ∈ N , k ∈ K, v ∈ V (3.20)
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Objective function (3.1) is to achieve the minimization the total cost TCU under the uniform

compensation mode. Constraint (3.2) suggests that an O2O order should be fulfilled either

by a dedicated delivery vehicle/crowd-courier. Constraint (3.3)–(3.4) impose the flow balance

constraints of the vehicles and crowd-couriers, respectively. Constraints (3.5)–(3.6) indicate

that the dedicated delivery vehicle departs from the retail store and finally arrive at the store.

Constraints (3.7)–(3.8) define the starting and ending points for the crowd-couriers. Constraint

(3.9) updates the service time epoch of dedicated vehicle along the route, where M is a large

number. Constraint (3.10) guarantees the service time window by vehicles. Constraint (3.11)

imposes the loading capacity of dedicated vehicles. Constraint (3.12) indicates that crowd-

couriers will undertake the delivery task only if their ETPs are met. Constraint (3.13) updates

the service time epoch of crowd-couriers along the route. Constraints (3.14)–(3.15) impose

the departure and arrival time constraints of crowd-couriers. Constraint (3.16) guarantees the

service time window by crowd-couriers. Constraint (3.17) imposes the carrying capacity of the

crowd-couriers. Constraints (3.18)–(3.20) establish the domain for the decision variables.

We can see that the model [C&R-U] is an MINLP model due to the inclusion of nonlinear

term pyijk in Eq. (3.1). We thus linearize it by introducing an auxiliary variable zijk = pyijk

and imposing the following constraints:

zijk ≤ pmaxyijk, ∀i ∈ S ∪ {0}, j ∈ S ∪ {dk}, k ∈ K (3.21)

zijk ≤ p, ∀i ∈ S ∪ {0}, j ∈ S ∪ {dk}, k ∈ K (3.22)

zijk ≥ p− pmax(1− yijk), ∀i ∈ S ∪ {0}, j ∈ S ∪ {dk}, k ∈ K (3.23)

zijk ≥ 0, ∀i ∈ S ∪ {0}, j ∈ S ∪ {dk}, k ∈ K (3.24)

where pmax is a parameter which can be set as the maximum ETP of all available crowd-couriers,

i.e., pmax = maxk∈K{Ek}.

With the above linearization, the model [C&R-U] can be equivalently reformulated as an

MILP model:

[C&R-UL]

min
{p,x,y,z,τ}

TCU = cf
∑
v∈V

∑
j∈S

x0jv +
∑
v∈V

∑
i∈N\D

∑
j∈N\D

cijxijv

+
∑
k∈K

∑
i∈S∪{0}

∑
j∈S∪{dk}

tijzijk − p
∑
k∈K

t0dk

(3.25)

subject to constraints (3.2)–(3.24).
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3.2.2 Model for C&R-D problem

For the C&R-D problem with individual-specific compensation rate, the optimal compen-

sation rate p∗k will be the ETPs of the corresponding crowd-courier Ek; otherwise, the retailer

can further reduce the total cost by reducing the compensation rate to Ek while keeping all the

others unchanged. In this way, the C&R-D problem will reduce to a crowd-courier and dedicated

vehicle routing problem under a specific compensation rate p∗k := Ek, ∀k ∈ K, which belongs to

the special scenario of C&R-U problem. Therefore, the C&R-D problem can be structured as

an MILP model [C&R-D]:

[C&R-D]

min
{x,y,τ}

TCD = cf
∑
j∈S

x0jv +
∑
v∈V

∑
i∈N\D

∑
j∈N\D

cijxijv

+
∑
k∈K

Ek

 ∑
i∈S∪{0}

∑
j∈S∪{dk}

tijyijk − todk

 (3.26)

subject to constraints (3.2)–(3.11), (3.13)–(3.17), (3.19)–(3.20).

3.3 H-ILS-VNS Solution Method

The MILP models [C&R-UL] and [C&R-D] can be directly solved by commercial solvers,

e.g., GUROBI. However, our preliminary experiments found that only small-scale instances with

less than 20 orders and 20 crowd-couriers can be solved within one hour. To tackle larger-scale

instances of C&R-U problem, we develop a hybrid algorithm, namely, H-ILS-VNS algorithm,

which integrates an ILS method and a VNS-TS algorithm. In the proposed H-ILS-VNS al-

gorithm, the ILS method is employed to update the compensation rate, while the VNS-TS

algorithm is utilized to optimize the service routes of crowd-couriers and dedicated vehicles. As

for the C&R-D problem, since it is a special case of C&R-U, it can also be solved by the pro-

posed method. Subsequently, we will detail the overall framework of the H-ILS-VNS algorithm

designed for the generic C&R-U problem, followed by ILS and VNS-TS modules.

3.3.1 Framework of H-ILS-VNS method

For the C&R-U problem, we can see that once the compensation rate is confirmed, the

problem will reduce to a crowd-courier and dedicated vehicle routing problem, i.e., the R-C&R-

U problem, which is to identify the most cost-efficient service routes for dedicated vehicles and

crowd-couriers to fulfill all O2O orders, under the confirmed compensation rate. Motivated by

this, we propose a customized H-ILS-VNS algorithm that iteratively solves the reduced C&R-U
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problem by VNS-TS and updates the compensation rate via ILS. The H-ILS-VNS integrates

ILS and VNS-TS. The ILS is a modular metaheuristic that can generate new solution and yield

good-quality solutions by iteratively performing the multiple modular procedures, including lo-

cal search, perturbation, and acceptance criterion check (Lourenço et al., 2019). The VNS-TS,

combining VNS with a nested TS, demonstrated strong performance across a range of combina-

torial optimization problems, e.g., vehicle routing problem with time window (VRPTW), owing

to the search diversification and intensification enabled by the multiple neighborhood structures

and tabu strategy (Belhaiza et al., 2014; Molina et al., 2020).

To solve the C&R-U problem, the H-ILS-VNS algorithm first starts with an initial arbitrary

compensation rate. Then the VNS-TS is employed to solve the R-C&R-U problem to obtain the

optimal service routes of crowd-couriers and dedicated vehicles under the given compensation

rate. After that, the ILS algorithm will be applied to update the compensation rate. The

above procedure will iterate until the maximum number of iterations is reached. The optimal

compensation and service routes of crowd-couriers and dedicated vehicles will be obtained. The

overall framework of the H-ILS-VNS algorithm is illustrated in Figure 3.1.

Figure 3.1. Overall framework of H-ILS-VNS algorithm

To enhance the likelihood of finding optimal compensation and service route solutions, we

improved the H-ILS-VNS algorithm in accordance with the problem-specific features. Specif-

ically, we have proved that the optimal uniform compensation rate for the C&R-U problem
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belongs to a finite set of candidate values. Therefore, we only need to update the compensation

rate based on those candidate values. This enhances the efficiency of the search process for

identifying good-quality compensation rates within a limited computation time and iterations

by reducing unnecessary exploration of non-optimal compensation values (Lourenço et al., 2019).

3.3.2 Compensation generation and updating by ILS

In the proposed H-ILS-VNS algorithm, the compensation rate needs to be generated and

updated. Theoretically, the retailer can determine the compensation rate as any non-negative

value, i.e., p ≥ 0, resulting in an infinite search space. However, by analyzing the problem

characteristics, the search space for compensation rate can be reduced to a set of a finite number

of candidate values related to the ETPs of crowd-couriers. Let P = {p1, · · · , pi, · · · , pn} denote

the set of distinct ETP values of all crowd-couriers; the following proposition is put forth.

Proposition 3.1. The optimal uniform compensation rate p∗ for the C&R-U problem must be

0 or a value in set P, i.e., p∗ ∈ {0} ∪ P.

Proof. We prove Proposition 3.1 by contradiction. Since the elements in set P are distinct, we

assume that p1 < · · · < pi < pi+1 < · · · < pn, where p1 = mink∈K {Ek} and pn = maxk∈K {Ek}.

Suppose that the optimal uniform compensation rate lies in between any two adjacent ETP

values in set P, i.e., p∗ ∈ (pi, pi+1) , ∀i = 1, 2, . . . , n − 1. Then the retailer can further reduce

the total cost by reducing the compensation rate to pi while keeping all the other decisions

unchanged. The same also applies to the cases where assuming p∗ ∈ (0, p1) or p∗ ∈ (pn,∞).

Therefore, the optimal compensation rate should be a value in set {0}∪P, i.e., p∗ ∈ {0}∪P. □

According to Proposition 3.1, we can explore the optimal compensation rate in a finite

set of candidate values, denoted by P̃ = {0, p1, p2, · · · , pn}. Recall that for each confirmed

compensation p ∈ P̃, a minimized total cost for serving all O2O orders can be determined by

solving the reduced C&R-U problem. We then develop an ILS method to find the optimal

compensation rate that can minimize the total cost for retailer, by iteratively searching the

compensation that can decrease total cost of the retailer. The specifics of the ILS method are

detailed as follows.

The ILS method starts with an initial compensation rate solution. Then, a compensation

local search will be executed to obtain the local optimal compensation rate solution p∗i . For

each compensation rate value, a minimized total cost for serving all orders can be determined

by solving the R-C&R-U problem to be detailed in the next subsection. Subsequently, a per-

turbation operation is applied to generate a new compensation rate solution, followed by the

execution of the local search procedure again to get the new local optimal compensation solution
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p∗j . Thereafter, the newly identified solution will replace the preceding optimal solution if a lower

total cost is achieved. The aforementioned perturbation operation, local search procedure, and

solution acceptance check will be iteratively conducted until the maximum number of iterations

or if all the candidate values in set P̃ have been explored. Figure 3.2 illustrates the searching

process in one iteration of ILS.

Figure 3.2. An illustrative searching process in one iteration of ILS

As aforementioned, we will search the optimal compensation among a finite number of can-

didate values in set P̃ by ILS. The initial compensation rate is randomly chosen from set P̃. In

the local search procedure, we will explore the compensations in α compensation neighbors. For

example in Figure 3.2, starting from a compensation rate pi, we will explore the compensation

rates pi−α, . . . , pi, . . . , pi+α in set P̃. A perturbation operation is employed to generate a new

compensation rate solution, aiding in breaking free from local optima. We conduct the pertur-

bation operation by randomly selecting a compensation rate that is not explored in previous

iteration. To this end, we will maintain a compensation rate list that has been explored in

previous iterations.

3.3.3 Crowd-courier and vehicle routing by VNS-TS

Given a specific compensation rate, the VNS-TS is proposed to solve the R-C&R-U problem

to find the good-quality crowd-courier and vehicle routes. The VNS was proposed by Mladenović

and Hansen (1997) aiming to obtain optimal solution by iteratively performing the local search

procedure with various neighborhood search strategies until the solution cannot be improved

by all neighborhood structures (Fleszar et al., 2009). The integration of TS in the VNS will
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improve the searching intensification and diversification, thus improving the likelihood of finding

good-quality solution (Belhaiza et al., 2014; Molina et al., 2020).

Specifically, a set of neighborhood structures is firstly defined, which are employed to gen-

erate neighborhood solutions by modifying a given route solution. Let Nλ, λ = 1, · · · , λmax,

denote the λth neighborhood structure. For example, we can move an order from the current

route to another route to get a new route solution by a relocation neighborhood structure. The

optimal route solution θ∗ and the optimal total cost fbest is also initialized. The VNS-TS algo-

rithm starts with the neighborhood structure N1 and an initialized route solution generated by

an initialization procedure Initial(·) as current route solution. Subsequently, an iterative process

is initiated. A shaking operation Shaking(·) with N1 is applied on current route solution to get

a new route solution, followed by a local search procedure performed by TS algorithm TS (·) on

the solution with N1 to determine the local optimal route solution. If the newly obtained local

optimal route solution is superior to the current solution, it replaces the current solution, and

the search returns to the shaking operation with N1; otherwise, the search explores the next

neighborhood structure Nλ+1. The iteration will continue until all neighborhood structures have

been examined, i.e., λ = λmax. The optimal route solution under the given compensation can

be obtained. The pseudocode of the VNS-TS for R-C&R-U problem is presented in Algorithm

3.1. We can see that the developed VNS-TS framework encompasses three key components: (i)

construction of an initial solution, (ii) implementation of a shaking procedure employing various

neighborhood structures, and (iii) execution of a local search utilizing the TS. We will introduce

the three components in detail.

(i) Route solution initialization and evaluation

The initialization procedure Initial(·) is employed to generate the route solution for the R-

C&R-U problem given the compensation rate p. We will first identify feasible crowd-couriers with

ETPs lower than the given compensation rate. After this, the initial route solution is constructed

by allocating all orders to dedicated vehicles, while feasible crowd-couriers will travel directly

from the retail store to their respective destinations. To be more specific, an order is firstly

selected from the set of all orders, and a vehicle is assigned to fulfill it. Subsequently, orders

are randomly selected from the remaining orders and incorporated into the route of the vehicle

following a sequence of the ascend earliest service time epoch, i.e., ei of the order, ensuring that

the capacity is not surpassed; otherwise, the chosen order is allocated to a new vehicle. The

process continues until all orders have been arranged.

We can see that the generated route solution encompasses multiple dedicated vehicle routes

and crowd-courier routes regardless all those constraints including time windows of orders, car-
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Algorithm 3.1 Pseudocode of VNS-TS for solving R-C&R-U problem

Input: Compensation rate p
Output: Route solution θ∗ and corresponding total cost fbest

1: Define a set of neighborhood structures Nλ, where λ = 1, · · · , λmax

2: θ∗ ← ∅, fbest ←∞ ▷ Initialize the optimal route solution and corresponding total cost

3: θ ← Initial(p) ▷ Generate initial route solution under compensation rate p

4: λ← 1

5: while λ < λmax do

6: θ′ = Shaking (θ,Nλ) ▷ Shaking operation for getting a new route solution

7: θ′′ = TS (θ′,Nλ) ▷ Tabu search procedure for finding local optimal route solution

8: if f (θ′′, p) < fbest then

9: θ∗ ← θ′′

10: fbest ← f (θ∗, p)

11: end if

12: if f (θ′′, p) < f(θ, p) then ▷ Update the optimal route solution

13: θ ← θ′′

14: λ← 1

15: else

16: λ← λ+ 1

17: end if

18: end while

rying capacities, and service time period. Instead, we will address these constraints by incor-

porating penalty costs. Specifically, given a compensation solution p and route solution θ, let

TW (θ), CC(θ), and ST (θ) denote the corresponding violations of orders’ service time window,

carrying capacities of crowd-couriers and dedicated vehicles, and crowd-couriers’ service time

period, respectively. Let γ1, γ2, and γ3 denote the coefficients of penalty. Under this setting,

for the C&R-U problem, the total cost including penalties, for a given a route solution θ and

compensation solution p, is given by

f(θ, p) = TCU (θ, p) + γ1TW (θ) + γ2CC(θ) + γ3ST (θ) (3.27)

(ii) Shaking operation

The shaking operation Shaking(·) is utilized to enhance the diversification of route solution

by perturbing a route solution with a given neighborhood structure. By perturbing a solution

with a given neighborhood structure, a set of neighborhood solutions can be obtained, and we

randomly select a solution from the neighborhood solutions even if it results in a worse total

cost. This operation can provide a new start of local search to help to escape from the local
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optima. The neighborhood structure is an important factor influencing the overall effectiveness

of the proposed VNS-TS method. Complicated and diverse neighborhood structures will lead

to extended computation time, while limited insufficient neighborhood structures will impede

the search for the optimal solution. To balance the diversity of neighborhood structures and the

computation time, the following neighborhood structures are considered in our implementation.

Neighborhood structure based on intra-route:

• Intra-route relocate: move an order from current position to different position in the route.

• Intra-route exchange: swap the positions of any two orders in a route.

• 2-opt: randomly select two positions in a route, denoted by i and j, keep the partial route

before position i and after position j unchanged, but invert the sequence between position

i and position j (Croes, 1958).

Neighborhood structure based on inter-routes:

• Inter-route relocate: remove an order from the current route and insert it to another route

(Savelsbergh, 1992).

• Inter-route exchange: swap two orders in two different routes (Kindervater and Savels-

bergh, 1997).

• Crossing: swap two segments of orders with less two orders in two different routes (Taillard

et al., 1997).

Total six neighborhood structures, i.e., λmax = 6, are employed for our proposed VNS-TS,

and these neighborhood structures will be utilized in shaking operation and the local search

procedure by TS.

(iii) Local search by TS algorithm

The new route obtained through the shaking operation will be fed into the local search

procedure to identify the optimal route solution under current neighborhood structure Nλ and

compensation p. In this chapter, we apply the TS procedure TS(·) to achieve the goal. TS is a

widely used meta-heuristic proposed by (Glover, 1986) that can yield good-quality solutions by

allowing non-improving solutions and a tabu strategy to avoid cycling iterations. Specifically, the

TS procedure TS(·) starts with the given route solution derived from the shaking operation, and

set it as current solution and optimal solution. Then, an iterative process is initiated. A series

of neighborhood solutions are first generated by performing neighbourhood search on current

route solution with the given neighborhood structure. Note that when generating neighborhood
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solutions, a memory structure named tabu list, will be employed to avoid cyclic exploration and

escape from local optima (Glover, 1986). To be more specific, each time a neighborhood solution

is obtained, the service relation will be recorded in the tabu list in a certain number of previous

iterations, and then any operation to generate a solution that the service relation included in the

tabu list is forbidden unless it can generate a better solution than the current optimal solution.

Later on, the current solution will be replaced by the best neighborhood solutions even if the

objective value of best neighborhood solution is deteriorated, and the optimal route solution will

be updated if the objective value of best neighborhood solution is better than the incumbent

one. The iterative procedure will be executed until the maximum number of iterations of TS

procedure is achieved. The optimal solution will be identified and output for further iteration

in the proposed VNS-TS.

3.4 Numerical Experiments

In this section, a series of instances is utilized to validate the effectiveness and efficiency of

our proposed H-ILS-VNS algorithm and hybrid delivery system. We will begin by presenting

the generation of instances and the setup of parameters. Subsequently, the performance of the

algorithm will be evaluated on a range of small-scale instances by comparing the results obtained

by the commercial solver GUROBI with those obtained by our proposed algorithm. Later on, a

series of instances with various numbers of O2O orders and crowd-couriers will be employed to

explore the benefits of the hybrid delivery system. Finally, sensitivity analysis will be conducted

to explore the impact of the ETP and the carrying capacity of crowd-couriers on the hybrid

delivery system. The solution method are implemented in MATLAB 2021a, calling GUROBI

9.1.2 on a MAC running MacOS Monterey 12.6, equipped with an Apple M1 3.2GHz CPU and

16GB RAM.

3.4.1 Test instance generation and parameter setting

In the C&R problem, O2O orders need to be delivered from retail stores to customers

within specified time windows using a hybrid delivery system that includes crowd-couriers. The

Solomon instances are widely used for the vehicle routing problem with time windows and its

variants (Solomon, 1987), which aim to deliver goods from a depot to a series of customers;

however, there is no information about crowd-couriers in the Solomon instances. Therefore, we

will generate customized instances by augmenting Solomon instances with crowd-courier data.

Specifically, the depot in a selected Solomon instance, originally defined with a specific location

and opening time window, is treated as the retail store. The delivery demands in the Solomon

instance, characterized by customer location, service time window, parcel load, and service time,
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are defined as the O2O orders. For dedicated delivery services using traditional vehicles, we

assign a vehicle carrying capacity of 200 kg, a fixed usage cost of $50, and a transportation cost

of $10 per unit of time. To incorporate crowd-couriers, we generate a group of crowd-couriers

originating from the retail store and randomly assign their destinations within the order area.

Each crowd-courier is assigned a carrying capacity randomly generated between 10 kg and 30

kg, a randomly generated available time window, and a randomly generated ETP between $1

and $10 per unit of detour time.

Based on the above rules, we then generate a series of instances ranging from small to

large scale, with varying numbers of O2O orders and crowd-couriers for testing the proposed

solution methods and the hybrid delivery system. For small cases, we select three scales of O2O

orders, i.e., |S|=10, 15, and 20, from Solomon instance R201, and generate different number of

crowd-couriers according to four different courier-to-order ratios, i.e., |K|/|S|=0.8, 1, 1.2, 1.5.

For larger-scale instances, we select O2O order scales of 100, 200, and 300 from the extended

Solomon instance R1-4-10, again varying the number of crowd-couriers based on the above four

different ratios.

Regarding algorithm parameters, we set penalty costs γ1 = 100, γ1 = 10, γ1 = 15, the

maximum number of iterations for the ILS algorithm NILS = 10, the number of compensation

rate neighbors α = 5, the maximum iterations in the tabu search procedure N = 200, the tabu

tenure ω = 20 in the TS procedure.

3.4.2 Algorithm performance evaluation of solution methods

To evaluate the efficiency and reliability of H-ILS-VNS and VNS-TS in solving the C&R-U

and C&R-D problems, we compare the results obtained by the developed H-ILS-VNS algorithm

with those obtained by solving the models L [C&R-UL] and [C&R-D] with the solver GUROBI.

We first present the objective function values (Obj) and computation times (Time) achieved by

both the H-ILS-VNS algorithm and GUROBI for the C&R-U problem in Table 3.1. Objective

values that are optimal and best are marked in bold and denoted with an asterisk, respectively.

In addition, we calculated the relative gap (RelGap), defined as (ObjH–ObjG)/ObjG, where

ObjH and ObjG denote the objective values achieved by H-ILS-VNS and GUROBI, respectively.

Table 3.1 shows the comparative efficiency of the H-ILS-VNS algorithm, which in most cases

surpasses the performance of the commercial solver GUROBI (except the instance 6 with the gap

less than 1%) in finding the optimal solution for the C&R-U problem, and does so in significantly

less computation time—for example, the average computation time for the H-ILS-VNS is only

50 s. Conversely, GUROBI struggles to find optimal solutions within 1 h for instances where
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Table 3.1. Results of H-ILS-VNS and GUROBI for solving C&R-U problem

Instance |S| |K|/|S|
H-ILS-VNS GUROBI

RelGap
Obj ($) CPU (s) Obj ($) CPU (s)

1

10

0.8 1,493* 3 1,493* 603 0.00%
2 1.0 1,493* 3 1,493* 880 0.00%
3 1.2 893* 4 893* 1,340 0.00%
4 1.5 739* 4 739* 2,002 0.00%

5

15

0.8 1,429* 38 1,429* 3,093 0.00%
6 1.0 1,234 45 1,230* 3,383 0.33%
7 1.2 1,170 54 1,227 3,600 –4.65%
8 1.5 962 65 1,181 3,600 –18.52%

9

20

0.8 2,458 68 3,242 3,600 –24.18%
10 1.0 2,370 82 3,220 3,600 –26.40%
11 1.2 2,102 102 2,994 3,600 –29.79%
12 1.5 1,904 133 2,860 3,600 –33.43%

Average – – – 50 – – –

the number of O2O orders is 15, particularly as the number of crowd-couriers increases. In

contrast, our H-ILS-VNS algorithm consistently finds good-quality solutions quickly, such as

delivering a good-quality solution for a scenario with 20 orders and 30 crowd-couriers in 133 s.

Moreover, the increased number of orders and crowd-couriers correlates with a rise in the relative

gap, demonstrating the H-ILS-VNS algorithm’s capability to effectively search for good-quality

solutions. Moreover, we also conducted numerical experiments to compare the performance of

the VNS-TS algorithm with GUROBI for the C&R-D problem, as shown in Table 3.2.

Table 3.2. Result of VNS-TS and GUROBI for solving C&R-D problem

Instance |S| |K|/|S|
VNS-TS GUROBI

RelGap
Obj ($) CPU (s) Obj ($) CPU (s)

1

10

0.8 837* 1 837* 275 0.00%
2 1.0 837* 1 837* 316 0.00%
3 1.2 321* 1 321* 467 0.00%
4 1.5 210* 1 210* 698 0.00%

5

15

0.8 779* 7 779* 1,474 0.00%
6 1.0 532* 8 532* 1,734 0.00%
7 1.2 384* 9 384* 2,064 0.00%
8 1.5 268* 10 268* 2,421 0.00%

9

20

18 1,037 12 1,247 3,600 –16.84%
10 1.0 1,000 12 1,240 3,600 –19.37%
11 1.2 874 17 1,233 3,600 –29.12%
12 1.5 709 22 1,202 3,600 –41.04%

Average – – – 9 – – –

The results in Table 3.2 also demonstrate that VNS-TS effectively produces good-quality

solutions for C&R-D problem. Notably, VNS-TS outperforms H-ILS-VNS in solving the C&R-D

problem compared to the C&R-U problem, achieving optimal solutions for scenarios with up to
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15 orders and 23 crowd-couriers. Additionally, the difference in objective values between VNS-TS

and GUROBI is more pronounced for the C&R-D problem, reaching up to 41.04%, compared to

the C&R-U problem.The comparative evaluation of our proposed method and GUROBI across

both the C&R-U and C&R-D problems underscores the effectiveness and reliability of the H-

ILS-VNS and VNS-TS algorithms in identifying good-quality solutions with short computation

time. Moreover, we have visualized the objective values for both the C&R-U and C&R-D

problems achieved by our method, as illustrated in Figure 3.3. The results demonstrate that the

differentiated compensation mode is superior to the uniform compensation mode, as indicated

by the orange dotted line being below the blue dashed line.

(a) Objective value under S = 15 (b) Objective value under S = 20

Figure 3.3. Comparison of objective value under C&R-U and C&R-D problems

To assess the effectiveness of the H-ILS-VNS/VNS-TS methods for larger-scale C&R-U/C&R-

D problems, we tested their performance on instances with 100 to 200 orders and 100 to 300

crowd-couriers. Figure 3.4 illustrates the computation time for solving various scales of C&R-U

and C&R-D problems.

The results indicate that H-ILS-VNS efficiently handles a C&R-U problem with 200 orders

and 300 crowd-couriers within 211.5 min, while a C&R-D problem of the same size is solved in

22 min. This also implies the greater computational challenges of the C&R-U problem, mainly

due to the exploration of the various compensation rates. Notably, as the number of O2O orders

increases, the computation time does not grow exponentially, demonstrating the scalability

of H-ILS-VNS in tackling large-scale problems and finding good-quality solutions beyond the

capabilities of commercial solvers. Furthermore, for a given number of orders, computation time

rises as the number of crowd-couriers increases, as illustrated in Figure 3.4(a) and Figure 3.4(b).
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(a) Computation time under |S| = 100 (b) Computation time under |S| = 200

(c) Computation time under |K| = 100 (d) Computation time under |K| = 200

Figure 3.4. Computational efficiency of our proposed methods for solving C&R-U and C&R-D
problems

Similarly, more orders lead to longer computation times, with a fixed number of crowd-couriers,

as illustrated in Figure 3.4(c) and Figure 3.4(d). Interestingly, computational efficiency is more

affected by the number of orders than by the number of crowd-couriers. For example, increasing

the crowd-couriers from 100 to 200 with 100 orders results in an 81.6% rise in computation

time, whereas increasing the orders from 100 to 200 with 100 crowd-couriers leads to a 127.7%

increase in computation time.

3.4.3 Impact analysis of hybrid delivery systems

This section first evaluates the benefits of the hybrid delivery systems with crowd-shipping

services through the comparison of some economic indicators and subsequently explores the

impact of ETP and carrying capacity on the operation and management of the hybrid delivery
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system via sensitivity analysis.

To explore the benefit of the hybrid delivery system with crowd-shipping service, we con-

duct experiments on instances with 100, 200, and 300 O2O orders and various numbers of

crowd-couriers at order-to-crowd-courier ratios of 0.8, 1, 1.2, and 1.5. Three delivery models are

compared: the traditional dedicated delivery service without crowd-shipping, a hybrid system

with crowd-shipping under uniform compensation (C&R-U), and a hybrid system under differ-

entiated compensation (C&R-D). We evaluate the total cost (TC), the average cost per kilogram

by dedicated vehicles (AveSlf), the average cost per kilogram by crowd-couriers (AveCrd), the

number of crowd-couriers employed (CC), and the fleet size of dedicated vehicles (FS). The

results are summarized in Table 3.3.

Table 3.3 shows that the hybrid delivery system with crowd-shipping can significantly reduce

total costs for fulfilling orders compared to traditional dedicated delivery model. For example,

the average total cost of the dedicated delivery model is $24,153, while the hybrid delivery

system with uniform compensation lowers it to $20,419, achieving a 15.5% cost saving. Under

a given number of orders, e.g., the total cost further decreases from $22,902 to $19,199 as

the courier-to-order ratio increases from 0.8 to 1.5, highlighting the cost efficiency of utilizing

crowd-shipping services and engaging more crowd-couriers. Moreover, there is a reduction in the

dedicated vehicle fleet size, from an average of 28 vehicles in the traditional delivery model to 15

vehicles in the hybrid delivery system under a uniform compensation mode. The average cost

per kilogram for parcels delivered by crowd-couriers is also lower than that of using dedicated

vehicles. The deceased total cost could result from the reduction of the cost associated with the

utilization of dedicated vehicle particularly the fixed cost burden of maintaining a large fleet of

vehicles, and the adoption of more cost-efficient crowd-shipping services.

The hybrid delivery system under the differentiated compensation mode offers the same ben-

efits as the system under the uniform compensation mode, such as reducing total cost, dedicated

vehicle fleet size, and average delivery cost. However, compared to the uniform compensation

mode, the differentiated compensation mode further decreases the total cost from $20,419 to

$19,387. It achieves a lower average delivery cost per kilogram through crowd-couriers (averaged

at $5.8/kg), reduces the dedicated vehicle fleet size (averaged at 13 vehicles), and increases the

number of employed crowd-couriers (averaged at 145 persons). This is because the differentiated

compensation mode allows the delivery service provider to employ more crowd-couriers at lower

individual-specific compensation rates, reducing reliance on dedicated vehicles.

To examine the effects of ETP and the carrying capacity of crowd-couriers on hybrid delivery

systems with crowd-shipping services. We evaluate this by exploring the former indicators, e.g.,
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TC, AveCrd, CC, and FS via sensitivity analysis on the aforementioned instance with 300 O2O

orders and 300 crowd-couriers.

Expects-to-be-paid of the available crowd-couriers (ETP)

The ETP of crowd-couriers may significantly influence the DSP’s decision-making on the

optimal compensation rate and choice between dedicated vehicles or crowd-couriers for parcel

deliveries. We examine the impact of ETP of crowd-couriers on hybrid delivery systems under

uniform and differentiated compensation modes. To this end, we assign random ETP values to

crowd-couriers within different ETP intervals, such as [0,2] and [2,4]. Figure 3.5 illustrates the

impact of ETP under two compensation modes.

(a) Variation of TC and AveCrd

(b) Variation of CC and FS

Figure 3.5. Effect of ETP on the hybrid delivery system under different compensation modes

Figure 3.5 indicates that under the uniform compensation mode, an increase in the ETP

results in a corresponding increase in total cost incurred by the retailer for fulfilling the O2O

orders. This is due to a decrease in the utilization of crowd-couriers and an increase in the
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reliance on dedicated vehicles. From one perspective, the escalation of unit cost for employing

crowd-couriers causes a reduction of employing crowd-couriers employed, as shown in Figure

3.5(b), thereby obligating the retailer to incur increased self-operating cost through the usage

of dedicated delivery vehicles. From another viewpoint, the rise in the unit cost of engaging

crowd-couriers induces a corresponding increase in the overall cost of CS service, as illustrated

in Figure 3.5(a). The differentiated compensation mode demonstrates similar results, but it still

exhibits superiority over the uniform compensation mode in terms of total cost.

Carrying capacity of crowd-couriers (Cap)

We then analyze how the carrying capacity of crowd-couriers affects the performance of

hybrid delivery systems under uniform and differentiated compensation models. To achieve

this, we assign random carrying capacities to crowd-couriers within different intervals such as

[10 kg, 20 kg] and [30 kg, 40 kg]. Figure 3.6 illustrates the impact of carrying capacity on the

system under the two compensation modes.

(a) Variation of TC

(b) Variation of CC and FS

Figure 3.6. Effect of carrying capacity on the hybrid delivery system under different
compensation modes
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Under uniform compensation mode, Figure 3.6(a) shows that the increase in carrying ca-

pacity results in reduced total costs from $32,452 to $30,442, stabilizing when carrying capacity

reaches 60 kg. This occurs because crowd-couriers with greater carrying capacity can handle

more deliveries, reducing the need to employ a large number of crowd-couriers, as indicated by

the downward trend in Figure 3.6(b). Meanwhile, the fleet size also decreases slightly because

fewer dedicated vehicles are needed. However, once the carrying capacity reaches 60 kg, cost

efficiency maximizes due to participation constraints related to the available time period and

ETP requirements. A similar pattern also appears in the differentiated compensation mode,

but the cost impact of increased carrying capacity is more pronounced, as shown by the steeper

decline in Figure 3.6(a). This analysis suggests that DSPs should also conduct thorough market

surveys of potential crowd-couriers’ carrying capacities and maintain an optimal fleet size of

dedicated vehicles to minimize total costs.

3.5 Concluding Remarks

This chapter investigates the joint optimization of compensation rate and service routes of

crowd-courier and dedicated vehicle for the hybrid delivery system incorporating the OT-based

CS services and taking into account the heterogeneous service requirements of the crowd-couriers

in carrying capacity, available time period, and ETP. The retailer has the option to utilize

crowd-couriers or dedicated vehicles to deliver O2O orders while adhering to the heterogeneous

service requirements of the employed crowd-couriers. Faced with the available service by crowd-

couriers as well as the requirements, the retailer aims to determine the optimal compensation

rate and the service routes of crowd-couriers and dedicated vehicles to minimize the total cost.

To achieve the objectives, we formulate the studied problems as an MINLP model and an MILP

models for the uniform compensation mode and differentiated compensation mode, respectively.

Then, linearization techniques are applied to transform the MINLP model to an MILP model

that can be solved by commercial solvers. A hybrid algorithm integrating a customized ILS

and VNS with a nested TS algorithms is also developed to obtain good-quality solutions for

the large-scale instances. Numerical experiments on a series of instances by modified Solomon

benchmark instances are carried out to validate the performance of the proposed models and

solution methods. Results indicates that the CS model with well-designed compensation rate

can save cost for the retailers. Meanwhile, differentiated compensation mode is superior to

the uniform mode in cost-saving. Sensitivity analysis is also conducted to explore the factors

influencing the CS model and derive managerial insights for stockholders.
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3.6 Appendix: Notations

Set

S Set of the O2O orders

V Set of vehicles, v ∈ V

K Set of crowd-couriers, k ∈ K

D Set of destinations of crowd-couriers

P̃ Set of candidate compensation rates

Parameters

qi Load of ordered products of O2O order i

si Service time for O2O order i

[ei, li] Time window at node i

Qv Loading capacity of each vehicle v ∈ V

Qk Carrying capacity of the crowd-courier k ∈ K

dk Destination of the crowd-courier k ∈ K

ek Earliest departure time of crowd-courier k ∈ K from the retail store

lk Latest arrival time of the crowd-courier k at the destination

Ek Expects-to-be-paid of crowd-courier k ∈ K per unit of detour time

ri,j Travel time from node i to j by the dedicated vehicle

cf Fixed cost for per unit of using a dedicated vehicle

cij Transportation cost incurred by the dedicated vehicles from location i to j

tij Travel time from node i to j by the crowd-courier

0/σ + 1 Retail store

M A very large number

pmax A parameter defined as the maximum ETP of all available crowd-couriers

Variables

p Continuous variable to denote the compensation paid for employing crowd-

couriers for per unit of detour time.

pk Continuous variable to denote an individual-specific compensation rate for em-

ploying crowd-courier k ∈ K for per unit of detour time.

xijv Binary variable that is set to 1 if vehicle v ∈ V travels from node i to node j for

all i, j in set N , and it is set to 0 otherwise.

yijk Binary variable that is set to 1 if crowd-courier k ∈ K travels from node i to node

j for all i, j in set N , and it is set to 0 otherwise.

zijk Auxiliary variable, which defined by zijk = pyijk.
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τvi Continuous variable representing the time at which vehicle v ∈ V begins service

at node i ∈ N .

τki Continuous variable representing the time at which crowd-courier k ∈ K starts

service at node i ∈ N .
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Chapter 4 Compensation Optimization for Crowd-Shipping based on

Ordinary Travelers Considering Collaborative Delivery for Shared Customers

This chapter extends the investigations of Chapter 3 by examining a collaboration alliance,

allocation of delivery orders, compensation rate, and routes of vehicle and crowd-courier joint

optimization (CACR) problem within a collaborative hybrid delivery system. This system in-

tegrates ordinary travelers as crowd-couriers and dedicated vehicles, specifically considering the

collaborative deliveries for shared customers. A bi-objective optimization model is formulated

for the CACR problem to minimize the total operational cost and carbon emissions of the deliv-

ery system. By exploring characteristics of the CACR problem, this problem is later effectively

decomposed into a series of bi-objective sub-problems, which aim to find Pareto-optimal service

routes for both dedicated vehicles and crowd-couriers under the predefined collaboration alliance

and compensation rate. Motivated by this, a decomposition-based iterative optimization (DIO)

method is developed to find Pareto-optimal solutions for the CACR problem by iteratively

solving a series of sub-problems with updated candidate compensation rate and collaboration

alliance. A cluster-first route-second approach is adopted to solve the bi-objective sub-problems.

Specifically, a customized spatiotemporal clustering (STC) technique is proposed to achieve the

allocation of O2O orders, and an enhanced non-dominated sorting genetic algorithm-II (NSGA-

II) that incorporates the Clarke and Wright saving (CW) method, referred to as CW-NSGA-II, is

then applied to find the routing solutions. Numerical experiments using adapted benchmark in-

stances and a simulated case in Chongqing, China are conducted to assess our proposed solution

method as well as delivery system.

The rest of this chapter is organized in the following manner. Problem description as well

as assumptions and notations are provided in Section 4.1. A bi-objective optimization model for

the CACR problem is developed in Section 4.2. To solve the problem, a DIO method is developed

in Section 4.3. Numerical experiments on adapted benchmark instances and a simulated case in

Chongqing, China are performed in Section 4.4. Conclusions of this chapter are summarized in

Section 4.5. Notation used in this chapter is listed in Section 4.6 for readability.

4.1 Problem Statement

Consider multiple homogeneous retailers, e.g., supermarkets of the same brand, that each

provides dual-shopping channels including an online channel on a platform and an offline channel

on a physical store within a same urban area. We consider that each retailer receives a group

of O2O orders that each order is associated with a delivery location, e.g., customer’s home, a
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time window that the customer can accept delivery services, load of the ordered products, and

service duration for unloading products to customers. Let R denote the set of retailers, r ∈ R.

We also use R to denote the set of retail stores. Let Cr denote the set of all O2O orders received

by retailer r ∈ R. For ease of presentation, we also use Cr to denote the set of corresponding

delivery locations of the O2O orders. We define C :=
⋃
r∈R Cr. Let [ei, li] denote the delivery

time window of O2O order i ∈ Cr, where ei and li denote the earliest time epoch and latest time

epoch for delivery at location i ∈ Cr, respectively. The load of ordered products of O2O order

i ∈ Cr is denoted by qi. The service duration for unloading order i’s products to the customer

is denoted by σi.

We assume that the O2O orders can be shared between different retailers if collaboration is

established between them. In other words, if collaboration is formed between different retailers,

the O2O order of a retailer can be fulfilled by its collaborative counterpart. This is rational

particularly in instances where the retailers are supplied by the same entity, more so under a

brand that exhibits similar product and operating costs (Fernández et al., 2018). Nonetheless,

the split of demand for a single O2O order is not permissible, indicating that each O2O order

must be exclusively serviced by a singular retailer. Let πrs denote the presence of collaboration

between two retailers r ∈ R and s ∈ R, where πrs = 1 if collaboration is formed between them

and πrs = 0 otherwise. Note that πrs = πsr,∀r, s ∈ R and we set πrr = 1,∀r ∈ R. Then, let Πr

denote the set of retailers engaged in a collaborative delivery arrangement with retailer r, which

can be determined by Πr = {s ∈ R : πrs = 1} , ∀r ∈ R. In this context, an O2O order i ∈ Cr

of retailer r ∈ R can be fulfilled by any one of the retailers in set Πr including retailer r itself.

Let Cr (Πr) denote the O2O orders that can be served by retailer r under the collaboration Πr,

where Cr (Πr) :=
⋃
s∈Πr Cs,∀r ∈ R.

Consider that each retailer can fulfil O2O orders through the dedicated delivery service by

utilizing self-operating dedicated delivery vehicles and the OT-based CS service by employing

ordinary travelers, e.g., in-store customers, as crowd-couriers. Specifically, each retailer r ∈ R

can provide dedicated delivery services utilizing a fleet of self-operating vehicles in set Vr to

deliver the products from its retail store rv ∈ R while respecting the maximum loading capacity

Qv of each vehicle. Each used vehicle is associated with a fixed cost, a transportation cost,

and the corresponding carbon emission. Let cf denote the fixed cost, and cij , tij , and mij

denote the transportation cost, travel time, and carbon emission incurred by the dedicated

vehicles from location i to j. Besides the dedicated delivery service, the retailer can also employ

crowd-couriers to serve the orders during their personal itineraries from the retail store to the

itinerary destinations. Let Kr denote the set of all available crowd-couriers who depart from

retail store rk ∈ R, and Dr denote the set of destinations of all crowd-couriers in set Kr. We
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define D :=
⋃
r∈RDr. Each crowd-courier k ∈ Kr with an original itinerary from the retail store

rk ∈ R to their destination dk ∈ Dr specifies their the earliest departure time ek from the retail

store, the latest arrival time lk at the destination, as well as the maximum carrying capacity Qk.

Meanwhile, since CS services may cause detour to crowd-couriers compared with their original

itineraries, each crowd-courier k ∈ Kr puts forth an ETP Ek for per unit of detour time. Let

µij and εij denote the travel time and carbon emission by the crowd-courier k from location i

to j, respectively.

Given the O2O orders and dedicated delivery fleets operated by each retailer as well as

the available crowd-couriers, a CACR problem is formulated for a multi-retailer collaborative

delivery system with OT-based CS services. The CACR problem is to jointly i) establish the

collaborative delivery system by determining the optimal collaboration alliance among retailers,

ii) allocate the O2O orders to different retailers, iii) determine the optimal compensation, de-

noted by p, for employing crowd-couriers per unit of detour time, and iv) determine the delivery

tasks to either dedicated vehicles or crowd-couriers an associated service routes so that i) all

O2O orders are satisfied with respecting the requirements of the O2O orders, ii) the available

time period, carrying capacity, ETPs of all employed crowd-couriers are met, and iii) the total

costs including the cost paid for dedicated delivery service and the compensation cost paid for

employing CS service and the generated carbon emissions are minimized. Notations employed

throughout this chapter are outlined in Section 4.6 for readability.

4.2 Bi-Objective Programming Model Formulation

For ease of modeling for the CACR problem, all locations in set R, C, and D are grouped

into a node set N , i.e., N = R∪C∪D, and the arcs associated with node set N are grouped into

an arc set A, which is defined as all the arcs possibly traversed by the dedicated vehicles and

crowd-couriers. We found that the dedicated delivery vehicles and crowd-couriers in a specific

retail store is associated with a set of possibly visiting nodes and traversing arcs with respect

to the retailer r’s collaboration alliance Πr with other retailers. In other words, a dedicated

vehicle or crowd-courier will only visit a set of nodes and traverse a set of arcs. In this context,

we define a subset of nodes N r
v (Π

r) ⊂ N as the set of nodes that are possibly visited by the

dedicated vehicle v ∈ Vr departing from retail store rv ∈ R under the collaboration of Πr,

i.e., N r
v (Π

r) = {rv} ∪Cr (Πr) ∪ {r′v}, where r′v is a duplication of rv for ease of modeling.

Furthermore, we denote Arv (Πr) as the set of arcs that possibly traversed by the dedicated

vehicle v ∈ Vr departing from retail store rv ∈ R under the collaboration of Πr, i.e., Arv (Πr) =

{(rv, j)|v ∈ Vr, j ∈ Cr (Πr)} ∪ {(i, j) |i, j ∈ Cr (Πr)} ∪ {(i, r′v)|i ∈ Cr (Πr) , v ∈ Vr}. In addition,

let N r
k (Π

r) ⊂ N denote the set of nodes that are possibly visited by the crowd-courier k ∈ Kr
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departing from retail store rk ∈ R under the collaboration of Πr, i.e., N r
k (Π

r) = {rk} ∪Cr (Πr)

∪{dk}. The set of arcs that possibly traversed by the crowd-courier k ∈ Kr departing from retail

store rk ∈ R under the collaboration of Πr is defined as Ark (Πr) = {(rk, j) |k ∈ Kr, j ∈ Cr (Πr)}

∪ {(i, j) |i ∈ Cr (Πr) , j ∈ Cr (Πr)} ∪ {(i, dk) |i ∈ Cr (Πr) , k ∈ Kr} ∪ {(rk, dk) |i ∈ Cr, k ∈ Kr}. We

define that Ar (Πr) = Arv (Πr)∪Ark (Πr) and A =
⋃
r∈RAr (Πr). Each node i ∈ N is associated

with a service time window [ei, li], a service duration σi, and a parcel load qi, with the following

information: service duration σi = 0,∀i ∈ R ∪ D and parcel load qi = 0,∀i ∈ R ∪ D. Each arc

(i, j) ∈ A is associated with a transportation cost cij , travel time tij , and carbon emission mij

by dedicated vehicle from node i to j, and associated with a travel time µij and carbon emission

εij by the crowd-courier from node i to j.

Given the O2O orders, available crowd-couriers, and dedicated vehicles, an bi-objective

optimization model [CACR] will be formulated for the CACR problem to determine the optimal

collaboration alliance, O2O orders allocation among retailers, compensation rate for employing

crowd-couriers, and service routes for dedicated delivery vehicles and employed crowd-couriers.

In addition to before-mentioned variable p and π, we define the following variables:

• xijv: Binary decision variable that equals 1 if dedicated vehicle v ∈ Vr, ∀r ∈ R travels

directly from node i to j, ∀ (i, j) ∈ Arv (Πr), and 0 otherwise;

• yijk: Binary decision variable that equals 1 if crowd-courier k ∈ Kr, ∀r ∈ R travels directly

from node i to j, ∀ (i, j) ∈ Ark (Πr), and 0 otherwise;

• τvi : Continuous variable to denote the time epoch when vehicle v ∈ Vr starts service at

node i ∈ N r
v (Π

r). Note that τvrv represents the time at which vehicle v ∈ Vr departs from

the retail store, while τvr′v indicates the time when vehicle returns to retail store;

• τki : Continuous variable to denote the time epoch when crowd-courier k ∈ Kr starts service

at node i ∈ N r
k (Π

r). Note that τkrk represents the time at which crowd-courier k ∈ Kr

departs from the retail store, while τkdk indicates the time at their destination.

With the above notations, the bi-objective programming model for the studied CACR problem

can be formulated as follows:

[CACR]

min
{π,p,x,y,τ}

TC = cf
∑
r∈R

∑
v∈Vr

∑
j∈Cr(Πr)

xrvjv +
∑
r∈R

∑
v∈Vr

∑
(i,j)∈Ar

v(Π
r)

cijxijv

+ p
∑
r∈R

∑
k∈Kr

 ∑
(i,j)∈Ar

k(Π
r)

µijyijk − µrkdk

 (4.1)
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min
{π,p,x,y,τ}

CE =
∑
r∈R

∑
v∈Vr

∑
(i,j)∈Ar

v(Π
r)

mijxijv +
∑
r∈R

∑
k∈Kr

 ∑
(i,j)∈Ar

k(Π
r)

εijyijk − εrkdk

 (4.2)

subject to

∑
r∈Πr

∑
v∈Vr

∑
j∈Cr(Πr)∪{r′v}

xijv +
∑
r∈Πr

∑
k∈Kr

∑
j∈Cr(Πr)∪{dk}

yijk = 1, ∀i ∈ Cr, r ∈ R (4.3)

∑
j∈Cr(Πr)∪{r′v}

xrvjv = 1, ∀v ∈ Vr, r ∈ R (4.4)

∑
j∈Cr(Πr)∪{r′v}

xijv =
∑

j∈Cr(Πr)∪{rv}

xjiv, ∀i ∈ Cr (Πr) , v ∈ Vr, r ∈ R (4.5)

∑
i∈Cr(Πr)∪{rv}

xir′vv = 1, ∀v ∈ Vr, r ∈ R (4.6)

∑
j∈Cr(Πr)∪{dk}

yrkjk = 1, ∀k ∈ Kr, r ∈ R (4.7)

∑
j∈Cr(Πr)∪{dk}

yijk =
∑

j∈Cr(Πr)∪{rk}

yjik, ∀i ∈ Cr (Πr) , k ∈ Kr, r ∈ R (4.8)

∑
i∈Cr(Πr)∪{rk}

yidkk = 1, ∀k ∈ Kr, r ∈ R (4.9)

τvi + σi + tij ≤ τvj +M1 (1− xijv) , ∀(i, j) ∈ Arv(Πr), v ∈ Vr, r ∈ R (4.10)

ei ≤ τvi ≤ li, ∀i ∈ Cr (Πr) , v ∈ Vr, r ∈ R (4.11)∑
i∈Cr(Πr)∪{rv}

∑
j∈Cr(Πr)

qjxijv ≤ Qv, ∀v ∈ Vr, r ∈ R (4.12)

p ≥ Ekyijk, ∀(i, j) ∈ Ark(Πr), k ∈ Kr, r ∈ R (4.13)

τki + σi + µij ≤ τkj +M2 (1− yijk) , ∀(i, j) ∈ Ark(Πr), k ∈ Kr, r ∈ R (4.14)

τkrk ≥ ek, ∀k ∈ Kr, r ∈ R (4.15)

τkdk ≤ lk, ∀k ∈ Kr, r ∈ R (4.16)

ei ≤ τki ≤ li, ∀i ∈ Cr (Πr) , k ∈ Kr, r ∈ R (4.17)∑
i∈Cr(Πr)∪{rk}

∑
j∈Cr(Πr)

qjyijk ≤ Qv, ∀k ∈ Kr, r ∈ R (4.18)

πrs = πsr, ∀r, s ∈ R (4.19)
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πrr = 1, ∀r ∈ R (4.20)

Πr = {s ∈ R : πrs = 1} , ∀r ∈ R (4.21)

p ≥ 0 (4.22)

xijv ∈ {0, 1} , ∀(i, j) ∈ Arv(Πr), v ∈ Vr, r ∈ R (4.23)

yijk ∈ {0, 1} , ∀(i, j) ∈ Ark(Πr), k ∈ Kr, r ∈ R (4.24)

πrs ∈ {0, 1} , ∀r, s ∈ R (4.25)

τvi ≥ 0, ∀i ∈ N r
v (Π

r), v ∈ Vr, r ∈ R (4.26)

τki ≥ 0, ∀i ∈ N r
k (Π

r), k ∈ Kr, r ∈ R (4.27)

The objectives (4.1) and (4.2) are to reduce the overall costs and carbon emissions as-

sociated with fulfilling all O2O orders received by multiple retailers, respectively. Specifically,

objective (4.1) seeks to minimize total cost, which includes expenses incurred from utilizing dedi-

cated delivery services and compensating crowd-couriers. Objective (4.2) specifically targets the

reduction of carbon emissions, taking into account the emissions resulting from dedicated deliv-

ery vehicles and the additional emissions caused by the detouring of crowd-couriers providing

crowd-shipping services. Constraint (4.3) ensures that each O2O order received by a retailer

is appropriately handled, either by the retailer’s dedicated delivery vehicle, a crowd-courier, or

through the service provided by its collaborative retailers. Constraints (4.4)–(4.6) impose the

flow balance constraint on the dedicated delivery vehicles, while Constraints (4.7)–(4.9) impose

a similar constraint on the potential crowd-couriers. Constraint (4.10) updates the service time

epoch of a dedicated vehicle along the route, where M1 denotes a large number. Constraint

(4.11) ensures adherence to the service time window specified for O2O orders by the dedicated

vehicles. Constraint (4.12) enforces the loading capacity of dedicated vehicles. Constraint (4.13)

stipulates that the individuals can be employed to provide crowd-shipping services only if their

ETPs are met. Constraint (4.14) updates the service time epoch of crowd-couriers along the

route, with M2 denoting a large number. Constraints (4.15)–(4.16) impose time constraints

on crowd-couriers for their departure and arrival times. Constraint (4.17) guarantees that the

service time window specified for O2O orders is respected by the employed crowd-couriers. Con-

straint (4.18) sets the carrying capacity limit for the crowd-couriers. Constraints (4.19)–(4.20)

defines the collaboration between two retailers. Constraint (4.21) defines the set of collaborative

retailers for each individual retailer. Constraints (4.22)–(4.27) establish the feasible domain for

the decision variables.
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4.3 DIO Solution Method

The CACR problem indicates significant computational complexities due to the multi-

objective combinatorial optimization with various decision components, such as determining

collaboration alliance, allocating O2O orders for multiple retailers, designing compensation rate

for employing crowd-couriers, and optimizing service routes of dedicated delivery vehicles and

crowd-couriers, making the problem unsolvable with off-the-shelf solvers. Therefore, we propose

a customized DIO method. This section initially introduce the DIO method framework, and

subsequently elaborates on the detailed procedures of the proposed DIO method.

4.3.1 Framework of DIO method

In this chapter, the original CACR problem aims to identify Pareto-optimal solutions of

the decisions for collaboration alliance πrs, compensation rate p, dedicated vehicle routes xijv,

and crowd-courier routes yijk that can achieve a good balance between total cost and carbon

emission objectives. Before the introduction of details of the DIO method, we firstly introduce

some definitions for the better understanding of solutions of bi-objective optimization problem.

Let θ denote the solution including all above decisions, and Θ be the set of solutions, where

each solution θ ∈ Θ is evaluated based on two objective values, i.e., total costs TC(θ) and total

carbon emissions CE(θ). For our bi-objective optimization problem minθ∈Θ(TC(θ), CE(θ))

subjecting to the constraints, we have the following definitions:

Definition 4.1. (Cover and Dominate) A solution θ ∈ Θ is defined to cover a solution

θ′ ∈ Θ (denoted by θ ⪯ θ′) if TC(θ) ≤ TC(θ′) and CE(θ) ≤ CE(θ′). A solution θ dominates

θ′ (denoted by θ ≺ θ′) if and only if θ ⪯ θ′ and TC(θ) < TC(θ′) or CE(θ) < CE(θ′). A

solution θ ∈ Θ is non-dominated if there is no solution θ′ ∈ Θ such that θ′ ≺ θ.

Definition 4.2. (Pareto-optimal and Pareto front) A solution θ ∈ Θ is said to be Pareto-

optimal if it is non-dominated. The Pareto-optimal solution set is defined as Θ∗ = {θ ∈ Θ : θ

is Pareto-optimal}. The Pareto front is defined as O = {TC(θ), CE(θ) : θ ∈ Θ∗}.

We can see that once the collaboration alliance is confirmed, the CACR problem becomes

a bi-objective multi-depot vehicle and crowd routing problem with compensation optimization,

referred to as the BO-MVCRP-C problem, which aims to find Pareto-optimal solutions of com-

pensation rate and service routes for dedicated deliver vehicles or crowd-couriers under a given

collaboration alliance. Furthermore, the BO-MVCRP-C problem can be further decomposed

to a BO-MVCRP problem that aims to find Pareto-optimal solutions of routes for dedicated

vehicles and crowd-couriers if the compensation rate is also determined. Motivated by this, we
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can solve the master CACR problem by solving the BO-MVCRP problem, referred to as the

sub-problem, under the iteratively updated collaboration alliance and compensation until the

stop condition is reached. To this end, we propose the DIO method, see Figure 4.1.

Figure 4.1. Framework of the DIO method

The DIO method starts with the initialization of the global Pareto-optimal solutions with

all decisions as empty set. Initially, a collaboration alliance and compensation rate are generated

as the current collaboration alliance and compensation rate solutions. As previously mentioned,

with these solutions in place, the master CACR problem is reduced to a BO-MVCRP prob-

lem, i.e., the sub-problem. To solve the sub-problem, we employ the widely used cluster-first

route-second philosophy, which is a prevalent approach in solving multi-depot VRPs (Dondo and

Cerdá, 2007). Specifically, we first employ a spatiotemporal clustering (STC) method to allocate

the O2O orders to multiple retailers based on spatiotemporal proximity. Subsequently, we de-
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velop an enhanced NSGA-II that incorporates the CW method, referred to as CW-NSGA-II, to

find the routing solutions for dedicated vehicles and crowd-couriers. We can then derive Pareto-

optimal solutions under current collaboration alliance and compensation. A fast non-dominated

sorting (FNDS) procedure is then applied to check the dominance relation and update the

global Pareto-optimal solutions that encompass all decisions. Subsequently, the collaboration

alliance and compensation rate will be updated. The limited number of potential collabora-

tion strategies collaboration alliance, among retailers allows for a comprehensive exploration of

all feasible options. As for the compensation rate, which varies within a continuous positive

range, a frequency-based compensation updating (FCU) procedure is employed for its update.

This iterative process continues until the termination criteria are satisfied, culminating in the

acquisition of the final Pareto-optimal solutions.

4.3.2 Compensation generation and updating by FCU procedure

In the proposed DIO method, a compensation needs to be generated and updated. Similar

to Chapter 3, while compensation rate can be theoretically any non-negative value, i.e., p > 0,

leading to an infinite search space for compensation, we can reduce this to a finite set of candidate

compensation rates by analyzing the problem’s characteristics. let P = {p1, · · · , pi, · · · , pn}

represent the set of unique ETPs of all crowd-couriers, and we have Proposition 4.1.

Proposition 4.1. The optimal compensation rate denoted by p∗ for the CACR problem must

be either one of the ETPs of all crowd-couriers or zero, i.e., p∗ ∈ {0} ∪ P.

Proof. We prove proposition 4.1 by contradiction. We assume that p1 < · · · < pi < pi+1 <

· · · < pn, where p1 = mink∈Kr,r∈REk and pn = maxk∈Kr,r∈REk. Suppose that the optimal

compensation rate is (pi + ∆p) /∈ P such that (pi + ∆p) < pi+1, ∀∆p > 0. However, by

setting the compensation rate to pi instead of (pi +∆p), we can reduce costs and maintain the

carbon emissions without altering the delivery service plan for O2O orders. That means the

compensation rate (pi + ∆p) is dominated by pi. Additionally, this also applies to the cases

where assuming 0 < p∗ < p1 and pn < p∗ <∞. Therefore, the optimal compensation rate must

be one of the ETPs of crowd-couriers or zero, i.e., p∗ ∈ {0} ∪ P. □

With Proposition 4.1, we can limit the search of compensation solution to a finite set of

candidate compensation rate denoted as P̃ = {0}∪P. We found that the optimal compensation

rate is influenced by the ETPs declared by available crowd-couriers, especially those declared

most frequently. Motivated by this, we will generate and update the compensation rate based on

the descending order of ETP frequency, referred to as the ETP frequency-based compensation

updating (FCU) procedure. Specifically, let λ(pi) denote the frequency of ETP pi declared
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among all crowd-couriers. To generate and update the compensation rate, we start by setting

the compensation rate as p← argmaxpi∈P̃ λ(pi) and update P̃ by P̃ ← P̃ \p. The compensation

rate is then iteratively updated using this procedure until the maximum number of iterations

is reached. It is noted that if multiple pi values exist under argmaxpi∈P̃ λ(pi), one is randomly

selected for further exploration.

4.3.3 Order allocation by STC algorithm

Given a collaboration alliance and a compensation rate, each retailer is associated with a

group of O2O orders that can be served. Inspired by the observation that effective solutions

for vehicle routing problems rarely include long delivery routes (Toth and Vigo, 2003), we pro-

pose a spatiotemporal clustering (STC) method to allocate O2O orders to retailers based on

spatiotemporal-related proximity. Unlike traditional vehicle routing problems where O2O orders

are allocated solely based on distance to a depot (a retail store in our study), our approach also

considers the availability and spatiotemporal proximity of crowd-couriers. Specifically, we also

consider to allocate an O2O order to a retail store whose available crowd-couriers are close to

the order in terms of time availability and geographic proximity. Let Dik denote the proximity

between an O2O order i ∈ Cr and and a crowd-couriers k ∈ Ks, s ∈ Πr. If the O2O order and

the crowd-courier are compatible in time windows (i.e., ek < ei and li < lk), and the ETP of the

crowd-courier is acceptable to the retailer (i.e., Ek < Ê, where Ê is the acceptable compensation

parameter), we define Dik as the distance between the crowd-courier’s destination and the O2O

order’s delivery location; otherwise, let Dik ← ∞. Let D̂ denote the distance threshold for

allocating an O2O order to a crowd-courier. Additionally, let Dis denote the distance between

the delivery location of an O2O order and a retail store. We then employ the STC method to

allocate O2O orders to retailers. Let Ξr denote the set of orders allocated to retail store r ∈ R.

The STC method procedure for order allocation is outlined as follows:

• Step 1: (Cluster definition and initialization)

– Step 1.1: Set all retail store r ∈ R as the cluster centers;

– Step 1.2: Initialize O2O order allocations as Ξr ← ∅,∀r ∈ R;

• Step 2: (Distance calculation)

– Step 2.1: For each O2O order i ∈ Cr,∀r ∈ R, calculate the distance Dis between

the order and the retail store s ∈ Πr that can provide dedicated delivery service;

– Step 2.2: For each O2O order i ∈ Cr, ∀r ∈ R, calculate the closeness Dik between

the order and available crowd-couriers k ∈ Ks, s ∈ Πr;
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• Step 3: (O2O order allocation)

– Step 3.1: For each O2O order i ∈ Cr received by r ∈ R, find the crowd-courier

k ∈ Ks, s ∈ Πr with the minimized Dik. If Dik < D̂, allocate the O2O order to s and

include the O2O order to Ξr; otherwise go to Step 3.2 ;

– Step 3.2: Find the retail store s ∈ Πr with the minimized Dis and allocate O2O

order to s and include the O2O order to Ξr, then return to Step 3.1 .

• Step 4: (Output) Output the O2O orders allocation Ξr,∀r ∈ R.

4.3.4 Vehicle and crowd-courier routing by CW-NSGA-II

With the allocation of O2O orders, we then develop CW-NSGA-II algorithm to find the

routing solutions under the given compensation rate p, collaboration alliance Πr, and O2O order

allocation Ξr for each r ∈ R. The NSGA-II, an evolutionary algorithm that is population-based

and known for its improved solution distribution and enhanced convergence to the true Pareto

front, is commonly employed in addressing multi-objective optimization problems (Deb et al.,

2002). The objective is to derive Pareto-optimal routing solutions, which illustrate the balance

between TC and CE objectives. The algorithm initiates with a starting set of candidate route

solutions, known as the parent population Pg under current generation g. These solutions are

encoded as chromosomes and performed with genetic operation GO(Pg), including selection,

crossover, and mutation, to produce offspring populations denoted by Og. The solutions in the

combined parent and offspring populations Ig ← {Pg} ∪ {Og} are then ranked using a fast non-

dominated sorting procedure FNDS(Ig), which assigns each solution to a front, e.g., F1, F2, · · · ,

based on dominance relationships. The algorithm assigns a fitness value to each solution by

considering both its front rank and its crowding distance, which is calculated by a crowding-

distance calculation algorithm CDA(Fi). Solutions possessing greater fitness values are chosen

to constitute the subsequent parent population, and the process repeats until the maximum

number of generations is met. The Pareto-optimal solutions, i.e., solutions in F1, will be output.

Figure 4.2 displays an instance of a generation evolving through NSGA-II.

Following the NSGA-II framework, we further enhance NSGA-II by integrating CW sav-

ing method to generate promising initial populations, thereby improving the search for opti-

mal solutions. The method identifies pairs of customers whose combined routes result in cost

savings through distance reduction. These savings are ranked in descending order, and the al-

gorithm iteratively merges the routes of the corresponding customers while ensuring capacity

constraints are maintained. This procedure is repeated until all customers have been allocated

to routes, yielding an initial solution that can be refined through local search procedures. In
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Figure 4.2. An illustrative evolutionary process in one generation of NSGA-II method

our implementation, we employ the CW savings method to generate initial routing solutions by

exclusively serving all O2O orders with dedicated delivery vehicles. Concurrently, all available

crowd-couriers are arranged to travel directly from the retail store to their respective destina-

tions. By utilizing this CW-NSGA-II framework, a set of Pareto-optimal routing solutions can

be obtained. The pseudocode for the CW-NSGA-II algorithm is summarized in Algorithm 4.2.

4.3.5 Dominance test for Pareto solutions

In our study, we utilize the FNDS procedure of the NSGA-II algorithm to conduct domi-

nance test and identify Pareto-optimal solutions from a given set of Pareto solutions. The FNDS

procedure for our problem is outlined as follows:

Step 1: (Initialization) For each solution θ ∈ Θ, initialize: i) the number of solutions that

dominate θ, denoted by nθ, ii) and the set of solutions that θ dominates, denoted by Θθ.

Step 2: (Domination Count and Dominated Set Calculation)

• For each solution θ ∈ Θ:

– Set nθ ← 0 and Θθ ← ∅.

– For each other solution θ′ ∈ Θ: If θ dominates θ′ (i.e., TC(θ) ≤ TC(θ′) and CE(θ) ≤

CE(θ′) with at least one strict inequality), then add θ′ to Θθ. Conversely, if θ′

dominates θ, let nθ ← nθ + 1.

Step 3: (Identify the First Front)

• Initialize the first front F1 ← ∅.
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• For each solution θ ∈ Θ: If nθ = 0 (i.e., θ is not dominated by any other solution), add θ

to F1 and set its rank by rank(θ)← 1.

Step 4: (Subsequent Fronts)

• Initialize the front counter i← 1.

• While Fi is not empty:

– Initialize the next front Fi+1 ← ∅.

– For each solution θ ∈ Fi:

∗ For each solution θ′ ∈ Θθ: Let nθ′ ← nθ′ − 1. If nθ = 0, add θ to Fi+1 and set

its rank rank(θ)← i+ 1.

– Increment the front counter i and set Fi ← Fi+1.

Step 5: (Output) The solutions are sorted into different fronts F1, F2, . . ., where F1 contains

the Pareto-optimal routing solutions.

Algorithm 4.2 Pseudocode of CW-NSGA-II

Input: p, Πr, Kr, R, Ξr

Output: F1

1: g = 1 ▷ Initialize the number of generations

2: Pg ←CW(Ξr,Kr) ▷ Generate initial populations (parent population) using CW method

3: while g < G do

4: Og ←GO(Pg) ▷ Generate offspring populations using genetic operators (GO)

5: Ig ← {Pg} ∪ {Og} ▷ combine parent and offspring populations

6: F ←FNDS(Ig) ▷ F = (F1, F2, · · · )
7: Pg+1 ← ∅, i = 1

8: while |Pg+1|+ |Fi| ≤ N do ▷ Fill the parent population

9: CDA(Fi) ▷ Calculate crowding-distance in Fi

10: Pg+1 ← Pg+1 ∪ Fi
11: i← i+ 1

12: end while

13: Sort(Fi) ▷ Sort the solutions in Fi in descending order

14: Pg+1 ← Pg+1 ∪ Fi[1 : (N − |Pg+1|)] ▷ Keep the size of population as N

15: g ← g + 1

16: end while

It is noted that to determine the global Pareto-optimal solutions, we focus on conducting

Steps 1 to 3 of the dominance test on the obtained the solutions in F1. This ensures that we

accurately identify the solutions that are not dominated by any other, thereby achieving a good

balance between costs and carbon emissions.
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4.4 Numerical Experiments

In this section, we first test the performance of our proposed solution method on a series of

adapted benchmark instances, and then examine the benefits of our proposed delivery system

through a simulated case in Chongqing, China. The experiments were performed using MATLAB

2021a on a personal computer with macOS Sonoma 14.3, equipped with an Apple M1 3.2GHz

CPU and 16GB RAM.

4.4.1 Test instances generation and parameter setting

This chapter introduces a DIO method to address the CACR problem, utilizing a CW-

NSGA-II heuristic to to address sub-problem. Typically, the effectiveness of heuristic for multi-

objective problems is assessed by examining how close the achieved solutions are to the true

Pareto front, i.e., Pareto approximation, and the diversity of these solutions, i.e., coverage

of the Pareto front. To demonstrate the superiority of the CW-NSGA-II heuristic in solving

the bi-objective sub-problem, we evaluate the metrics hypervolume, as proposed by Zitzler and

Thiele (1998), and coverage, as proposed by Zitzler et al. (2000), which are widely utilized met-

rics for evaluating the aforementioned objectives. Specifically, we compare the performance of

CW-NSGA-II with classic NSGA-II and multi-objective particle swarm optimization (MOPSO)

methods. Additionally, we compare the best objective values, i.e., TC and CE, achievable with

the three methods. To provide a clear demonstration, this section first introduces the instance

details and parameter setting and then analyzes the results obtained from our experiments.

The CACR problem aims to fulfil all orders received by multiple retailers using the collab-

orative delivery system with OT-based CS services. The data for the instances should include

multiple retailers, each associated with a retail store, a set of orders, a fleet of dedicated vehicles,

and a group of available crowd-couriers. Given the absence of off-the-shelf benchmark instances

for our particular problem, we generate test instances by making adjustments on the widely

used VRPTW benchmark instances provided by Homberger and Gehring (2005). The specific

instance generation is elaborated as follows.

For the retail stores, we use the depot in a selected VRPTW instance as one of the retail

stores and randomly select other two locations within the instance to represent the remaining

retail stores, resulting in a total of three retail stores. Each retail store is associated with a pair

of coordinates indicating its location and an opening time window. For the orders, we utilize

the customer delivery demands in the VRPTW instances, where each order is associated with

coordinates indicating the customer’s location, a service time window, the load of the products
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or goods, and the service time required for unloading. The orders are allocated to a retail

store according to the distance. To generate crowd-couriers data, we randomly select a group of

customer demands from the VRPTW instances and make necessary adjustments. Specifically,

for each chosen demand, the coordinates are assumed to be the crowd-courier’s destination, and

each crowd-courier is assumed to be initially located at the retail store which is nearest to the

destination. The time window of the chosen demand is considered the available time period for

a crowd-courier to provide delivery services, with the left side of the time window indicating

the earliest departure time from the retail store and the right side indicating the latest arrival

time at the destination. The load of the chosen demand is used as the carrying capacity of

the crowd-courier, and the service time is removed. Instead, we randomly generate a number

from 1 to 10 as the ETP of the crowd-courier. We implement the DIO method to solve the

CACR problem with the parameter setting as: the population size of each generation N = 10,

the number of iterations for compensation updating Imax = 20, crossover probability of the

NSGA-II Pc = 0.8, mutation probability of the NSGA-II Pm = 0.1, and the maximum number

of generation G = 200.

4.4.2 Algorithm performance evaluation on test instances

We first assess the Pareto approximation by computing the hypervolume metric, denoted

as MH. For our studied CACR problem with TC and CE objectives, MH is defined as the

covered size by all Pareto-optimal solutions with a reference point, typically the maximal values

of each objective. Interested readers may access more details for the two metrics from Garcia-

Najera and Bullinaria (2011). When using this metric to evaluate multiple solution methods,

the method that yields solutions encompassing the greatest hypervolume, i.e.,MH, is considered

superior. Table 4.1 presents the hypervolume values achieved by our proposed CW-NSGA-II,

classic NSGA-II, and MOPSO methods under different numbers of orders and crowd-couriers.

The results in Table 4.1 indicate that CW-NSGA-II achieves the greatest hypervolume value

in most instances, with an average hypervolume value of 0.721 compared to 0.711 for NSGA-II

and 0.621 for MOPSO. This demonstrates the strong performance of the proposed method in

Pareto approximation.

Next, we evaluate the coverage of the Pareto front by computing the coverage metric, de-

noted as MC. Specifically, let MC(A ≺ B) denote the ratio of solutions obtained by method B

that are dominated by those achieved by method A. For example, MC(CW-NSGA-II ≺ NSGA-II)

=1 indicates that all solutions obtained by NSGA-II are dominated by those obtained by CW-

NSGA-II. A method is considered superior if it is associated with the largest coverage value,

i.e.,MC, compared to other methods. Table 4.2 presents the coverage values from paired com-
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Table 4.1. Hypervolume value MH achieved by CW-NSGA-II, NSGA-II, and MOPSO methods

Instances CW-NSGA-II NSGA-II MOPSO

C 10 10 0.729 0.720 0.640
C 15 15 0.719 0.715 0.608
C 20 20 0.726 0.718 0.614
C 25 25 0.719 0.720 0.630
C 30 30 0.720 0.701 0.604
C 35 35 0.721 0.702 0.612
C 40 40 0.712 0.705 0.635
C 45 45 0.718 0.725 0.613
C 50 50 0.726 0.700 0.637

Average 0.721 0.711 0.621

parisons between CW-NSGA-II and NSGA-II, and CW-NSGA-II and MOPSO.

Table 4.2. Coverage value MC by comparing CW-NSGA-II, NSGA-II, and MOPSO methods

Instances
CW-NSGA-II NSGA-II CW-NSGA-II MOPSO

≺ ≺ ≺ ≺
NSGA-II CW-NSGA-II MOPSO CW-NSGA-II

C 10 10 0.92 0.93 0.93 0.87
C 15 15 1.00 0.88 1.00 0.71
C 20 20 0.93 0.88 1.00 0.81
C 25 25 0.93 0.93 1.00 0.80
C 30 30 0.93 0.81 0.90 0.69
C 35 35 0.93 0.93 1.00 0.87
C 40 40 1.00 0.87 0.92 0.67
C 45 45 1.00 0.71 0.92 0.65
C 50 50 0.93 0.80 1.00 0.67

Average 0.95 0.86 0.96 0.75

Table 4.2 indicates that the coverage value of CW-NSGA-II to NSGA-II is greater than that

of NSGA-II to CW-NSGA-II in most instances, with an average coverage value of 0.95 versus

0.86. Similarly, the coverage value of CW-NSGA-II to MOPSO is also greater than that of

MOPSO to CW-NSGA-II in most instances, with an average coverage value of 0.96 versus 0.75.

This demonstrates the robust performance of CW-NSGA-II with respect to solution diversity.

In addition to the hypervolume and coverage metrics, we also present the best single objec-

tive values achieved by CW-NSGA-II, NSGA-II, and MOPSO. Table 4.3 presents the objectives

of total costs (Obj1), total carbon emissions (Obj2), and the computation time (CPU) by the

three methods. Table 4.3 indicates that CW-NSGA-II method outperforms classic NSGA-II

and MOPSO in minimizing total costs and carbon emissions in most instances, while main-

taining competitive computation times. Although CW-NSGA-II incorporates the CW method

for generating initial solutions, it does not exhibit a significant increase in computation time

compared to classic NSGA-II. This is attributed to the efficient performance of the CW method
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in constructing the initial population. Additionally, the comparison indicates that improving

the initial population can lead to better objective values.

4.4.3 Case study

We first introduce a simulated case in Chongqing, China, which involves six retail stores,

a set of O2O orders, and crowd-couriers, as illustrated in Figure 4.3. Specifically, we select six

supermarkets operating online and offline shopping channels in Chongqing, China, denoted as

R = {R1,R2, · · · ,R6}. We generate a bunch of O2O orders, i.e., C = {C1, · · · ,C210}, and a

group of available crowd-couriers K = {K1, · · · ,K210} located within a 10 km radius of each

retail store. In Figure 4.3, we use the same icon to represent the location of the retail store

and the delivery locations of its orders, and use the same icon with a red box to denote the

destinations of the available crowd-couriers. The opening time window for each retail store is

set from 14:00 to 18:00. The service time window for each O2O order is randomly selected within

this period, with a minimum duration of 60 minutes. The parcel load for each order is randomly

generated between 10 kg and 30 kg. In order to mitigate the unavailability of crowd-couriers

due to randomly generated service time periods, we extend the time window of the nearest

location of an order to generate the available time period for a crowd-courier. The ETP for a

crowd-courier is a randomly generated number between $1 and $10. The capacity of a dedicated

vehicle is set at 200 kg. The fixed cost per unit of using a dedicated vehicle is set as $30. To

calculate the average transportation cost and carbon emission, we consider the gas consumption

rate of 15 L/100km. We estimate carbon emissions according to the framework proposed by

Xiao et al. (2012), given by the equation Y = 0.0000793X − 0.026, where Y represents the fuel

consumption rate (L/kg) and X denotes the weight of the vehicle (kg).

4.4.4 Benefit analysis of the collaborative delivery system

To assess the benefits of the collaborative delivery system with OT-based CS services, we

provide comparative examples of the total costs and carbon emissions between our proposed

system, which involves collaboration among retailers, and a traditional independent delivery

model, see Figure 4.4. The independent delivery model is both less cost-efficient and less envi-

ronmentally friendly. This is evident as the Pareto front for the independent non-collaborative

model is dominated by that of the collaborative model. The collaborative delivery model demon-

strates significant cost savings and reductions in carbon emissions. Furthermore, the delivery

system that entails full collaboration among all retailers demonstrates a predominant effect over

partial collaboration. These improvements could be attributed to the sharing of O2O orders

among multiple retailers, optimized scheduling of dedicated vehicles, and the maximized utiliza-
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Figure 4.3. Distribution of retail stores, delivery locations, and destinations of crowd-couriers

tion of available crowd-couriers. Notably, some orders fulfilled by crowd-couriers result in very

low carbon emissions due to hitch-hike deliveries with little detour. In addition, the figure also

highlights a conflict between minimizing total cost and minimizing carbon emissions. This un-

derscores the importance of considering both factors in the decision-making process for delivery

service providers.

To further examine the impact of the collaborative delivery system with OT-based CS

services on individual retailers, we compare several indicators of each retailer under the collabo-

rative delivery model and the traditional independent delivery model. Specifically, we compare

the total cost averaged over all Pareto solutions (ATC), average total carbon emissions (ACE),

average number of dedicated vehicles (#Veh), average cost (AC), and average service price for

employing crowd-couriers (Price) as shown in Table 4.4. Figure 4.5 visualizes the results.

Table 4.4. Comparison of non-collaborative and full-collaborative delivery models

Instance
Non-Collaborative Full-Collaborative

ATC ($) ACE (kg) #Veh AC($) ATC ($) ACE (kg) #Veh Price ($)

R1 1365.9 22.3 4 2.01 935.0 20.6 2 5.0
R2 1248.6 19.2 3 2.12 1184.3 18.8 2 4.6
R3 1149.6 18.9 3 2.13 1012.1 14.6 2 4.7
R4 841.3 15.9 2 2.34 671.8 11.8 1 4.7
R5 2318.7 32.4 6 2.23 2345.3 24.0 5 5.2
R6 1099.5 16.2 3 2.11 786.5 11.3 2 4.8

All retailers 8023.6 124.8 21 – 6935.1 101.1 14 –
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Figure 4.4. Pareto front under various collaboration strategies

Table 4.4 indicates that most retailers benefit from using a collaborative hybrid delivery sys-

tem with full collaboration among all retailers as opposed to managing deliveries independently

without CS service. These benefits include lower total costs, as illustrated in 4.5(a), and reduced

carbon emissions, as illustrated in 4.5(b), which can be attributed to the improved efficiency of

using both crowd-couriers and dedicated vehicles in a cooperative manner. Furthermore, the use

of fewer vehicles, as shown in 4.5(c), has been noted as another benefit of the collaborative CS

model. This reduction is partly due to more crowd-couriers being engaged not just for individual

retailer’s deliveries but for managing collective orders, which further decreases costs and emis-

sions. Notably, increasing the compensation for crowd-couriers has led to higher employment

rates, with a corresponding decrease in emissions and no significant cost increase. This trend

suggests a strategic advantage in expanding the use of crowd-couriers under the collaborative

framework. However, Retailer R5 has experienced a slight increase in these metrics, likely due

to handling a larger order volume. From a broader perspective, while the system-wide benefits

are clear, individual participants may face increased delivery responsibilities. This highlights

a potential trade-off between optimizing for the entire system and optimizing for individual

64



(a) Comparison of ATC (b) Comparison of ACE

(c) Comparison of #Veh (d) Comparison of AC and Price

Figure 4.5. Comparison of ATC, ACE, #Veh, AC, and Price under no collaboration and full
collaboration

stakeholders. To ensure the sustainability of such a collaborative system, it may be necessary to

develop a alliance for distributing costs and benefits among participants. This particular aspect,

however, falls outside the scope of this study and is recommended for future exploration.

4.5 Concluding Remarks

This chapter studies the joint optimization of collaboration alliance, order allocation, com-

pensation rate determination, and service routes for a collaborative delivery system with OT-

based CS services. It considers the potential collaboration among multiple retailers and the

diverse service requirements of available crowd-couriers. In addition to minimizing the total

cost of the collaborative delivery system, we also aim to minimize total carbon emissions, re-

sulting in a bi-objective optimization problem. A bi-objective optimization model is formulated,

and a customized DIO method is developed to solve the problem. The DIO method seeks to

find Pareto-optimal solutions for the problem by solving a series of sub-problems under iter-

atively updated collaboration strategies and compensation rates until a stopping condition is
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met. Particularly, a tailored frequency-based compensation updating procedure is proposed to

adjust the compensation rate. Additionally, a spatiotemporal clustering method is developed to

allocate orders to specific retailers, and a CW-NSGA-II method is utilized to find Pareto-optimal

solutions. Numerical experiments on a set of adapted benchmark instances and a simulated case

in Chongqing are conducted to evaluate the performance of the proposed DIO method and the

benefits of the collaborative delivery system. The results indicate that a collaborative delivery

system can decrease the total cost of fulfilling delivery orders and reduce carbon emissions. The

results also demonstrate a significant conflict between the objectives of minimizing total cost

and minimizing carbon emissions.
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4.6 Appendix: Notations

Set

R Set of retailers/retail stores, r ∈ R

Πr Set of retailers engaged in a collaborative delivery arrangement with retailer r,

Πr = {s ∈ R : πrs = 1} ,∀r ∈ R

Vr Set of dedicated vehicles departing from retail store r ∈ R, v ∈ Vr

Kr Set of crowd-couriers departing from retail store r ∈ R, k ∈ Kr

Cr Set of O2O orders received by retailer r ∈ R

C Set of all O2O orders/delivery locations of O2O orders, C :=
⋃
r∈R Cr

Cr(Πr) Set of O2O orders that can be served by retailer r under the collaboration Πr

Kr Set of all available crowd-couriers who depart from retail store rk ∈ R

Dr Set of destinations of all available crowd-couriers in set Kr

D Set of destinations of all available crowd-couriers, D :=
⋃
r∈RDr

N r
v (Π

r) Set of nodes that are possibly visited by the dedicated vehicle v ∈ Vr departing

from retail store rv ∈ R under the collaboration of Πr

Arv (Πr) Set of arcs that possibly traversed by the dedicated vehicle v ∈ Vr departing from

retail store rv ∈ R under the collaboration of Πr

N r
k (Π

r) Set of nodes that are possibly visited by the crowd-courier k ∈ Kr departing from

retail store rk ∈ R under the collaboration of Πr

Ark (Πr) Set of arcs that possibly traversed by the crowd-courier k ∈ Kr departing from

retail store rk ∈ R under the collaboration of Πr

Ar (Πr) Set of arcs that possibly traversed by the dedicated vehicles and crowd-courier

departing from retail store r ∈ R under the collaboration of Πr

N Set of all nodes, N = R∪ C ∪ D

A Set of all arcs, A =
⋃
r∈RAr

Parameters

[ei, li] Delivery time window of O2O order i ∈ Cr, r ∈ R

qi Load of ordered products of O2O order i ∈ Cr, r ∈ R

σi Service duration for unloading order i’s products to the customer

rv Retail store from which the dedicated vehicle v depart

r′v The duplication of retail store rv

rk Retail store from which the crowd-courier k depart

dk Destination of the crowd-courier k

ek Earliest departure time of the crowd-courier k from the retail store
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lk Latest arrival time of the crowd-courier k at the destination

Qv Maximum carrying capacity of the dedicated delivery vehicle v

Qk Maximum carrying capacity of the crowd-courier k

cf Fixed cost for per unit of using a dedicated vehicle

cij Transportation cost incurred by the dedicated vehicles from location i to j

tij Travel time incurred by the dedicated vehicles from location i to j

mij Carbon emission incurred by the dedicated vehicles from location i to j

µij Travel time incurred by the crowd-courier from location i to j

εij Carbon emission incurred by the dedicated vehicles from location i to j

Ek ETP of crowd-courier k

M1/M2 A large positive number

Variables

p Continuous variable to denote the compensation paid for employing crowd-

couriers for per unit of detour time.

πrs Binary variable to denote the collaboration between two retailers r ∈ R and

s ∈ R, where πrs = 1 if collaboration is formed between them and πrs = 0

otherwise.

xijv Binary variable that equals 1 if dedicated vehicle v ∈ Vr, ∀r ∈ R travels directly

from node i to j, ∀ (i, j) ∈ Arv (Πr), and 0 otherwise.

yijk Binary variable that equals 1 if crowd-courier k ∈ Kr, ∀r ∈ R travels directly

from node i to j, ∀ (i, j) ∈ Ark (Πr), and 0 otherwise.

τvi Continuous variable to denote the time epoch when vehicle v ∈ Vr starts service

at node i ∈ N r
v (Π

r). Note that τvrv represents the time at which vehicle v ∈ Vr

departs from the retail store, while τvr′v indicates the time when vehicle returns to

retail store.

τki Continuous variable to denote the time epoch when crowd-courier k ∈ Kr starts

service at node i ∈ N r
k (Π

r). Note that τkrk represents the time at which crowd-

courier k ∈ Kr departs from the retail store, while τkdk indicates the time at their

destination.
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Chapter 5 Service Price Optimization for Public Transit-based Co-Modal

Transportation Service

This chapter investigates a CM transportation service price (CSP) problem for a public

transit (PT)-based CM transportation service considering the collaborative gameplay between

logistics service providers (LSP) and PT operator (PTO). The PT-based CM transportation

service aims to leverages the spare capacity of existing bus scheduled trips to carry out parcel

deliveries through the coordination of multiple buses with fixed timetables. A bilevel path-based

programming model is formulated based on the interactive dynamics between LSP and the PTO,

and a tailored iterated three-stage hybrid (ITH) method combining two granular tabu search

(GTS) algorithms and an artificial bee colony (ABC) algorithm is developed to solve the studied

problem. Numerical experiments on a series of randomly generated instances and simulated cases

in Chongqing, China are performed to evaluate the performance of the ITH method and benefits

of the introduction of PT-based CM transportation service. Results indicate that PT-based CM

transportation service can reduce up to 30% total cost for LSP while generating additional

profits for PTO.

The rest of this chapter are organized as follows. Problem description as well as assumptions

and notations are elaborated in Section 5.1. A bilevel path-based programming model for the

studied problem is developed in Section 5.2. To solve the problem, an ITH algorithm is developed

in Section 5.3. Numerical experiments on randomly generated instances and simulated cases in

Chongqing, China are conducted in Section 5.4. Conclusions of this chapter are summarized in

Section 5.5. Notation used in this chapter is listed in Section 5.6 for readability.

5.1 Problem Statement

We consider an LSP who provides parcel delivery service using a fleet of dedicated vehicles

(e.g., trucks) in set V subject to a carrying capacity Qv of each vehicle v ∈ V within a city.

Consider that the LSP receives a bunch of parcel delivery requests that parcels need to be

delivered from a urban consolidation and distribution center (CDC) to several regional delivery

stations (RDSs) geographically distributed in the city. Specifically, each parcel delivery request

is associated with a delivery location, i.e., RDS, service duration for parcel deliveries on the RDS,

and parcel load. The RDSs as well as the CDC are associated with an opening time window

for parcel services. Let H denote the set of parcel delivery requests. For ease of presentation,

we also use H to denote the set of delivery locations of the all the parcel delivery requests, i.e.,

RDSs. Let σh and qh denote the service duration and parcel load of the parcel delivery request
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h ∈ H, respectively. Furthermore, let [Eh, Lh] denote the opening time window during which

RDS accepts parcel deliveries, where Eh and Lh indicate the earliest and latest time epoch,

respectively. In addition, we denote 0 as the location of CDC, and [E0, L0] denote the opening

time window of CDC.

In the city, we consider a PTO who provides passenger transportation service using a

fleet of buses in set B serving a series of fixed routes adhering to fixed timetables. To be

more specific, each bus b ∈ B serving a route will fulfill a set of scheduled trips, denoted

the by Lb = {1, 2, · · · , |Lb|}, where |Lb| denotes the last trip that bus b ∈ B serves. We

define L :=
⋃
b∈B Lb. Each scheduled trip l ∈ Lb of bus b ∈ B is characterized by two bus

terminals, referred to as the origin terminal and destination terminal of each trip, respectively,

and corresponding departure time and arrival time at the terminals. Note that we do not

consider the case of ‘circular trip’, i.e., a trip that starts and ends at a same terminal station.

However, this trip can be easily modeled as two trips. Then, each bus b will serve the scheduled

trips l ∈ Lb following the departure and arrival timetable, and there is a time interval between

two consecutive scheduled trips, according to the practical operations. Let sob,l and s
d
b,l denote

the origin terminal and destination terminal of the bus b’s l-th trip, respectively, and tob,l and t
d
b,l

be the corresponding departure time of bus b from the origin terminal and arrival time of bus b

at the destination terminal, respectively. The time interval between two consecutive scheduled

trips is defined as the time interval from tdb,l−1 to tob,l between trips l − 1 and l of bus b. The

notations used throughout this chapter is summarized in Section 5.6.

To minimize the costs of fulfilling the parcel delivery requests, the LSP will collaborate with

the PTO by outsourcing parcel delivery tasks to the PTO. Specifically, the LSP will provide

the PTO with the parcel delivery requests and a certain monetary payment, denoted as p, for

delivering each unit of parcel load, referred to as the service price. Received these parcel delivery

requests, the PTO will then determine which parcel delivery requests it serves by scheduling

its buses with spare capacities to maximize its total profits, while adhering to the fixed bus

timetable for passenger service. The unserved parcel requests, along with the corresponding

outsourcing cost that should be paid to PTO, will be fed back to the LSP. Then the LSP will

satisfy these unserved requests using its own dedicated delivery vehicles. We can see that the

interactive dynamic between the LSP and PTO gives rise to a Stackelberg game between the

LSP and PTO, where the LSP serving as the leader, aims to determine the optimal service

price considering the PTO’s optimal service decision, whereas the PTO serving as the follower

aims to make its optimal decision on the served parcel requests based on the offered price.

By collaborating with the PTO, the LSP can fulfill the parcel requests either through the CM

transportation service provided by the PTO or its own dedicated delivery service.
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To more explicitly elaborate on the new PT-based CM transportation service and dedicated

delivery service, we will then introduce (i) pickup, delivery, and transshipment operations and

bus trip chain of PT-based CM transportation service, (ii) feasibility, revenue, and cost of a

bus trip chain, iii) vehicle route of dedicated delivery service, and iv) feasibility and cost of a

dedicated vehicle service route.

5.1.1 Pickup, delivery, transshipment operations, and bus trip chain

We assume that all available buses operated by PTO have a uniform model, type, and

carrying capacity for passengers except that each bus b ∈ B in the l-th trip has a heterogeneous

parcel carrying capacity, denoted by Qbl . Since each bus serving specific trips should adhere

to a fixed timetable, we assume that the bus can only accommodate parcels during the time

interval between consecutive scheduled trips of the bus, e.g., the time interval from tdb,l−1 to tob,l

(Ghilas et al., 2013). Specifically, during the time interval, the bus can drive to a near CDC or

terminal to pick up parcels or drive to another near terminal or RDS to drop off parcels unless

the fixed timetable and carrying capacity is not violated. Recognizing that a parcel delivery

request from the CDC to a specific RDS may not be able to be directly served by a scheduled

bus trip due to the fixed timetable and locations of terminals, we consider a general PT-based

CM transportation scenario that a parcel request can be served in the manner of the relay

of multiple bus scheduled trips with necessary pickup, delivery, and transshipment operations.

Figure 5.1 illustrates an example of a bus trip chain for serving a parcel delivery request from

CDC to an RDS.

Figure 5.1. An illustrative example of a bus trip chain

In this context, a parcel delivery request may be served by a series of bus scheduled trip

with necessary pickup, delivery, and transshipment operations between CDC, terminals, and

RDS. For ease of elaboration, we refer to the service route that includes the CDC 0, a series of

bus scheduled trips l ∈ L, and an RDS h ∈ H as a bus trip chain, denoted by rh, which can be

represented by

rh = 0⇔ sob1,l1 → sdb1,l1 ⇔ sob2,l2 → sdb2,l2 · · · s
o
bnr ,lnr

→ sdbnr ,lnr
⇔ h (5.1)

from CDC 0 to an RDS h ∈ H with total nr bus scheduled trips, where→ denotes the scheduled
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trip of the bus from the origin terminal to the corresponding destination terminal and⇔ denotes

the necessary pickup, delivery, and transshipment operation for parcel delivery. Specifically,

0 ⇔ sob1,l1 denote the pickup operation that the bus drives to the CDC to pick up parcels

and then back to the terminal of its upcoming scheduled trip, sdbi,li ⇔ sobi+1,li+1
denote the

transshipment operation that a bus drives to another terminal to transfer parcels and go back

to the terminal of its next scheduled trip, and sdbnr ,lnr
⇔ h denote the delivery operation that the

bus drives to the RDS h to deliver parcels and then back to the terminal of its next scheduled trip.

Note that there may be no transshipment operation between two bus scheduled trips if transfer

can be achieved in a same terminal. We can see that the pickup, delivery, and transshipment

operations among CDC, terminals, and RDS result in additional travel time and an operating

cost for buses. Let τ(i, j) denote the travel time by the bus from location i to j. Let Cli,li+1

denote the cost of the transshipment operation between consecutive bus scheduled trips li and

li+1, ∀i = 1, 2, · · · , nr − 1. Particularly, C0,l1 denote the pickup cost incurred for the pickup

operation by the bus, and Cnr,h denote the delivery cost incurred by delivery operation.

5.1.2 Feasibility, revenue, and cost of a bus trip chain

It can be seen that a bus trip chain is feasible for serving a parcel delivery request if it fulfills

the two conditions: (i) the fixed timetable of each bus involved in the constructed bus trip chain

and time window of CDC and RDSs are not violated, referred to as time-related condition; and

(ii) the carrying capacity of each bus involved in the constructed bus trip chain is respected,

referred to as capacity-related condition.

(i) Time-related condition for a feasible bus trip chain

As aforementioned, the timetable of bus scheduled trips involved in the bus trip chain

should be strictly adhered to in order to ensure the primary function of passenger service. Some

necessary activities such as vehicle clean and inspection need to be undertaken for the driver at

the terminal during the time interval between consecutive scheduled trips of the bus. Moreover,

the process of loading or unloading parcels necessitates additional working time. Let δ denote

the time duration for necessary activities and σ denote the service time for loading or unloading

parcels. Then, for the bus trip chain with the CDC 0, a series of bus scheduled trips l1, l2, · · · , lnr

and the RDS h, the time-related condition for the feasibility of a bus trip chain can be asserted

if the following feasibility conditions of the pickup, delivery, and transshipment operations for

the related buses can be satisfied.

Pickup operation: the feasibility condition of the pickup operation performed by bus b1 ∈ B

in the bus trip chain rh can be ensured if the timetable of the bus and the time window of the
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CDC, i.e., Eq. (5.2) and Eq. (5.3), respectively, can be satisfied.

tdb1,l1−1 + τ
(
sdb1,l1−1, 0

)
+ σ + τ

(
0, sob1,l1

)
+ δ ≤ tob1,l1 , ∀l1 ∈ Lb1\{1}, b1 ∈ B (5.2)

E0 ≤ tdb1,l1−1 + τ(sdb1,l1−1, 0) ≤ L0, ∀l1 ∈ Lb1\{1}, b1 ∈ B (5.3)

Delivery operation: the feasibility condition of the delivery operation performed by the bus

bnr ∈ B in the bus trip chain rh can be ensured if the timetable of the bus and the time window

of the RDS h ∈ H, i.e., Eq. (5.4) and Eq. (5.5), respectively, can be satisfied.

tdbnr ,lnr−1 + τ
(
sdbnr ,lnr−1, h

)
+ σ + τ

(
h, sobnr ,lnr

)
+ δ ≤ tobnr ,lnr

, ∀lnr ∈ Lbnr \{1}, bnr ∈ B, h ∈ H

(5.4)

Eh ≤ tdbnr ,lnr−1 + τ(sdbnr ,lnr−1, h) ≤ Lh, ∀lnr ∈ Lbnr \{1}, bnr ∈ B, h ∈ H

(5.5)

Transshipment operation: the feasibility condition of the transshipment operation performed

by the buses bi, bj ∈ B in the bus trip chain rh can be ensured if the timetable of the bus bi, bj ∈ B,

i.e., Eq. (5.6) and Eq. (5.7), respectively, can be satisfied.

tdbi,li−1 + τ
(
sdbi,li−1, s

o
bj ,lj

)
+ σ + τ

(
sobj ,lj , s

o
bi,li

)
+ δ ≤ tobi,li , ∀li ∈ L

bi\{1}, lj ∈ Lbj , bi, bj ∈ B

(5.6)

tdbi,li−1 + τ(sdbi,li−1, s
o
bj ,lj

) + σ ≤ tobj ,lj − σ, ∀li ∈ Lbi\{1}, lj ∈ Lbj , bi, bj ∈ B

(5.7)

(ii) Capacity-related condition for a feasible bus trip chain

For each bus trip chain rh with the CDC 0, bus scheduled trips l1, l2, · · · , lnr and the RDS

h, the carrying capacity of the bus trip chain rh able to accommodate parcels is limited by the

minimum carrying capacity among all the bus trips in the bus trip chain. Let Qrh denote the

capacity of the bus trip chain rh that can accommodate parcels, which can be presented by

Qrh = min
i=1,2,··· ,nr,bi∈B

{Qbili }, ∀rh ∈ Rh, h ∈ H (5.8)

Let zrh denote the load of parcels served by the bus trip chain rh. The capacity-related

condition for a feasible bus trip chain can be ensured if the following constraint is satisfied:
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zrh ≤ min{Qrh , qh}, ∀rh ∈ Rh, h ∈ H (5.9)

It can be seen that a parcel delivery request may not be able to be fulfilled by on bus

trip chain due to the limited carrying capacity of each bus trip chain. With loss of generality,

we assume that a parcel delivery request can be fulfilled by multiple bus trip chains from the

CDC to the RDS. A bus trip chain rh is feasible only if the time-related and capacity-related

conditions are satisfied. Let R denote the set of all feasible trip chains, and Rh denote the set

of all feasible trip chains that can serve parcel request h ∈ H, R :=
⋃
h∈HRh .

We can see that the revenue obtained by PTO from scheduling bus trip chain rh to serve

zrh parcels in RDS h is the sum of charge for the served parcels, i.e., pzrh, ∀h ∈ H, while the

additional operating cost paid by PTO for scheduling bus trip chain rh to serve the parcels can be

expressed by the sum of additional cost due to pickup, delivery, and transshipment operations,

which can be expressed as

crh = C0,li +

nr−1∑
j=1

Cli,li+1
+ Clnr ,h, ∀rh ∈ Rh, h ∈ H (5.10)

Kindly note that the cost of transporting parcels during the scheduled trips is not taken into

account, as these trips are pre-scheduled for passenger service.

5.1.3 Dedicated vehicle service route

Given the parcel delivery requests as well as the service price, some parcel delivery requests

may be fully or partially served by the bus trip chains, whereas those requests that are not

(fully) served need to be fulfilled by the dedicated delivery service provided by LSP itself. We

denote H̃(p) as the set of RDSs whose parcel delivery requests are not fully satisfied under the

given service price, and use q̃h(p) to denote the remaining load of parcels of the request h ∈ H

that needs to be satisfied under price p, where q̃h(p) can be calculated by the subtraction of

initial parcel demand qh and the parcels that have been served by CM transportation service

by solving the lower-level BTS problem. Then, the unserved parcel delivery requests will be

fulfilled by dedicated delivery services. Specifically, dedicated vehicle v ∈ V will load the parcels

from the CDC 0, delivers parcels to a series of RDSs h1, h2, · · · , hω, and finally returns to the

CDC 0, referred to as dedicated vehicle service route ω, which can be represented by

ω = 0 7→ h1 7→ h2 7→ · · · 7→ hnω 7→ 0 (5.11)

74



where 7→ denote the vehicle routes. We can see that each dedicated vehicle service route ω is

associated with an operating cost, including the fixed cost and the transportation cost. Let C f

denote the fixed cost of using each dedicated vehicle. Let ϕ(i, j) and κij denote the travel time

and transportation cost by the dedicated vehicle from location i to j, respectively. Let ξi denote

the time epoch that the dedicate vehicle start service at the location i.

5.1.4 Feasibility and cost of a dedicated vehicle service route

It can be seen that a dedicated vehicle service route is feasible for serving the parcel delivery

requests if it fulfills the two conditions: (i) time windows of RDSs and the CDC are not violated,

referred to as time window condition; and (ii) the carrying capacity of the dedicated vehicle is

respected, referred to as vehicle capacity condition.

(i) Time window condition for a feasible dedicated vehicle service route

For a vehicle route starting from the CDC 0, visiting a series of RDSs h1, h2, · · · , hω, and

ending at CDC 0, the time window condition for the feasibility of dedicated vehicle service route

can be asserted if the following time window constraints of RDS and CDC are satisfied. The

time window of RDS hi,∀i = 1, 2, · · · , nω can be ensured by

ξhi−1
+ σhi + ϕ(hi−1, hi) ≤ ξhi , ∀i = 2, 3, · · · , nω (5.12)

Ehi ≤ ξhi ≤ Lhi , ∀i = 2, 3, · · · , nω (5.13)

and the time window of the CDC can be satisfied by

E0 ≤ ξ0 ≤ L0. (5.14)

(ii) Vehicle capacity condition for a feasible dedicated vehicle service route

For a dedicated vehicle service route ω, the carrying capacity of a dedicated vehicle can be

ensured by

nω∑
i=1

q̃hi(p) ≤ Qv, ∀v ∈ V. (5.15)

A dedicated vehicle service route ω is feasible if the above two conditions are satisfied, and

we let Ω denote all be the set of all feasible routes.

The cost of a dedicated vehicle service route can be calculated by the sum of the fixed cost

of utilizing a vehicle and the corresponding transportation cost, which can be calculated by
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cω = C f + κ0h1 +

nω−1∑
i=1

κhihi+1
+ κhω0, ∀ω ∈ Ω. (5.16)

It can be seen that the PT-based CM transportation service provided by PTO, along with

the dedicated delivery service provided by LSP combine to form a hybrid delivery system.

Consequently, each parcel delivery request can be accommodated by either the PT-based CM

transportation service, the dedicated delivery service, or the hybrid delivery service that incor-

porates both models. For PTO, given the parcel delivery requests and the service price, the

objective of PTO is to determine the optimal parcel requests to serve and the corresponding

bus trip chains under the offered service price such that (i) the service time window of the RDS

and CDC is not violated; (ii) the bus fixed timetables and the carrying capacity of the buses in

the bus trip chains are respected; (iii) the total profit is maximized. For LSP, received with the

optimal decision of PTO under the given service price, the objective of LSP is to determine the

service price between a lower bound p and an upper bound p, and the dedicated vehicle service

routes such that (i) the service time window of the RDS and CDC is satisfied; (ii) the loading

capacity of the dedicated vehicle is respected; and (iii) the total cost, including the self-operating

cost paid for dedicated delivery service and outsourcing cost paid to PTO, is minimized.

To achieve the objectives, we formulate the CSP problem in a bilevel framework based on

the interactive dynamics between LSP and PTO. A lower-level bus trip scheduling problem,

referred to as BTS problem, is formulated to determine the PTO’s optimal decision, i.e., the

served parcel requests and corresponding bus trip chains for maximizing the PTO’s total profits

under the given a service price. An upper-level dedicated vehicle routing problem with pricing,

referred to as VRP-P problem, is formulated to determine the optimal service price and dedicated

vehicle routes to minimize the LSP’s total costs, which consists of the outsourcing cost paid to

PTO and the cost paid for dedicated delivery service.

5.2 Bilevel Path-based Optimization Model Formulation

In this section, we formulate a bilevel optimization model for the studied CSP problem

composed of the upper-level VRP-P problem and a lower-level BTS problem. Since the LSP

will determine the optimal service price considering the PTO’s optimal decision under the offered

price, in the next subsections, we will first elaborate on the lower-level BTS model and then the

upper-level VRP-P model.
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5.2.1 Lower-level BTS model

Given the service price p and outsourced parcel delivery requests H, a profit-maximization

model will be formulated to determine the optimal served requests and the bus trip chains that

can maximize the PTO’s total profits by serving additional parcel requests. In additional to

aforementioned notations, we define xrh as the binary variable that equals 1 if bus trip chain

rh ∈ Rh is used for parcel deliveries, and 0 otherwise. Let ηlrh denote the incidence coefficient

that equals 1 if bus scheduled trip l ∈ L is utilized in the bus trip chain rh ∈ Rh, and 0 otherwise.

With the above notations, a path-based model [BTS] for the lower-level BTS problem can

be formulated as follows:

[BTS]

max
{x,z}

TP =
∑
h∈H

∑
rh∈Rh

pzrh −
∑
h∈H

∑
rh∈Rh

crhxrh (5.17)

subject to Eq. (5.9), and

∑
h∈H

∑
rh∈Rh

ηlrhxrh ≤ 1, ∀l ∈ L (5.18)

xrh = {0, 1}, ∀rh ∈ Rh, h ∈ H (5.19)

zrh ≥ 0, ∀rh ∈ Rh, h ∈ H (5.20)

where objective (5.17) is to maximize the total profits obtained by serving the parcel delivery

requests, which is the subtraction of the total revenue and the corresponding operating cost.

Eq. (5.18) indicates that each bus trip can be at most employed in one bus trip chain. Eqs.

(5.19) and (5.20) define the domains of the variables.

5.2.2 Upper-level VRP-P model

Given the set of parcel delivery requests that are not (fully) satisfied H̃(p) and the corre-

sponding outsourcing cost for the served parcel delivery requests under the offered price p, a

cost-minimization model will be formulated to determine the optimal service price and dedicated

vehicle service routes for fulfilling all the unserved parcel requests. In additional to aforemen-

tioned notations, we define yω as the binary variables that equals 1 if route ω is utilized for

parcel delivery service, and 0 otherwise. Let aωh denote the incidence coefficient that equals 1 if

RDS h ∈ H̃(p) is served by route ω, and 0 otherwise.

With the above notations, a path-based model [VRP-P] for the upper-level VRP-P problem
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can be formulated as follows:

[VRP-P]

min
{p,y}

TC =
∑
ω∈Ω

cωyω +
∑
h∈H

p(qh − q̃h(p)) (5.21)

subject to

∑
ω∈Ω

ahωyω = 1, ∀h ∈ H̃(p) (5.22)

yω = {0, 1}, ∀ω ∈ Ω (5.23)

p ≤ p ≤ p (5.24)

where objective (5.21) is to minimize the LSP’s total costs, including the self-operating cost

paid for the dedicated delivery service and the outsourcing cost paid to PTO, which depends on

the optimization of the lower-level BTS problem. Eq. (5.22) ensures that the unserved parcel

requests should be fulfilled by the dedicated delivery service. Eqs. (5.23) and (5.24) define the

domains of the variables.

5.3 ITH Solution Method

The CSP problem consisting of an upper-level VRP-P with a nested lower-level BTS prob-

lem is characterized as a hierarchical optimization challenge, which renders it unsolvable by

commercial solvers. However, the bilevel framework of the CSP problem reveals that once the

service price is confirmed, the upper-level problem is reduced to a vehicle routing problem, i.e.,

R-VRP-P problem, which is to find vehicle service routes for LSP to fulfil unserved parcel re-

quests obtained by resolving the lower-level BTS problem at the aforementioned price. In light

of this observation, we propose a customized iterated three-stage hybrid (ITH) algorithm to ob-

tain good-quality solutions for the CSP problem by iteratively addressing the BTS problem, the

R-VRP-P problem, and updating the service price. Specifically, in the first stage, we propose

a granular tabu search (GTS) algorithm on an extended bus trip (EBT) network to solve the

lower-level BTS problem to obtain the parcel requests served by bus trip chains and the parcel

requests that are not (fully) served by PT-based CM transportation service under an initial

price. In the second stage, we employ a GTS on an unserved parcel request (UPR) network to

solve the upper-level R-VRP-P problem to determine the optimal dedicated service routes at the

aforementioned price. In the third stage, an artificial bee colony (ABC) algorithm is employed

to update the service price based on performance of the prices. The three-stage optimization is

iterated until the maximum number of iterations is reached, and the optimal service price, along
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with the corresponding bus trip chains and dedicated vehicle routes will be finally determined.

The overall framework of the ITH algorithm is illustrated in Figure 5.2.

Figure 5.2. Overall framework of the ITH method

We can see that the ITH algorithm integrates two GTS algorithms and an ABC algorithm.

The GTS is originated from the TS, which has demonstrated its efficacy in solving vehicle

routing problems and related variants through the implementation of tabu strategies and non-

improvement solution strategies (Toth and Vigo, 2003; Goeke, 2019). The ABC algorithm is a

swarm-based evolutionary algorithm that simulates the nectar searching behavior of honeybees,

offering the good ability to explore multiple solutions and yield high-quality solution (Karaboga

and Basturk, 2008). In order to increase the likelihood of finding optimal solutions, we have

considered two aspects for both the ABC algorithm and TS algorithm: on the one hand, we

consider the local search and global search utilizing a memory-based new start strategy in the

ABC algorithm to search the good-quality service price. On the other hand, we have proposed

two GTS algorithms with a granular strategy based on the EBT and UPR, which is tailored to

the characteristics of the lower-level and upper-level problems, to determine the good-quality bus

trips chains and dedicated vehicle routes. These strategies enhance computational efficiency by

reducing the exploration of low-quality solutions in each iteration. Furthermore, it can be seen

that the optimization of the lower-level followed by the optimization upper-level problems can

be carried out parallelly under different service prices. The utilization of a swarm-based ABC
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algorithm facilitates the parallel optimization of the lower-level and upper-level problems under

distinct prices in each iteration using multi-thread technology. By combining TS algorithms

and the ABC algorithm, we are able to identify a good-quality service price that minimizes the

total cost of LSP while considering the interaction between LSP and PTO. In the subsequent

subsections, we will provide detailed descriptions of the developed ABC and GTS algorithms.

5.3.1 Price initialization and updating by ABC algorithm

In the proposed ITH algorithm, a set of service prices needs to be generated and updated,

which is achieved by ABC algorithm. The main idea behind the ABC algorithm is to simulate

the collective intelligence of bee colony to locate optimal positions with abundant nectar, which

is achieved by a swarm of artificial bees, namely, employed bees, onlooker bees, and scout

bees. Specifically, a group of employed bees initiate the search for nectar from a set of random

positions and explore the neighborhoods to discover the positions with more nectar using a local

search strategy, referred to as the employed bee phase. Obtained the information shared by the

employed bees, a group of onlooker bees select the promising positions with more nectar and

further explore the neighborhoods of these selected positions to find better positions with more

nectar via a local search strategy, referred to as the onlooker bee phase. If there is always no

more nectar can be found after multiple searches around a particular position, the position will

be abandoned and a scout bee is dispatched to explore a new random position, known as the

scout bee phase. By a certain number of searches by employed bees, onlooker bees, and scout

bees, a position characterized by abundant nectar is finally discovered.

To implement the ABC for finding the good-quality service price, a set of service prices in

interval [p, p] needs to be initialized. Specifically, we firstly generate an initialized set of service

prices with total P prices by

pi = p+ rand(0, 1)(p− p), ∀i = {1, 2, · · · , P} (5.25)

where rand(0, 1) is a random function to generate a number between 0 and 1. Then, employed

bee phase, onlooker bee phase, and scout bee phase are utilized to update the price set based

on the performance of the price. In this paper, the performance of a price, namely, fitness value

of a price, is defined as the total cost of LSP under the price, i.e., TC(p).

In the employed bee phase, a local search is implemented on current price to generate a

new price, which can be achieved by
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p′i = pi + rand(−1, 1)(pi +∆p), ∀i ∈ {1, 2, · · · , P} (5.26)

where rand(−1, 1) is random function to generate a number within the range [−1, 1], and ∆p is

the parameter to control the local search range. If the new obtained price is better than current

one, i.e., the price with better fitness value, the current price in the price set will be replaced by

the new price. Then, the price set will be input to the onlooker bee phase for further exploration.

In the onlooker bee phase, promising prices, i.e., prices with good fitness value, will be

selected for further exploration to find a better price. We employ roulette wheel selection to

determine the selected prices and implement local search on the selected prices by Eq. (5.26).

Also, if the new obtained price is better than current one, the current price will be replaced by

the new price. After the onlooker bee phase, a scout bee phase is employed to initiate a new start

for the prices with low possibility to become the optimal price. To be more specific, for those

prices that has not been update by local search procedure in a certain number of iterations, we

will randomly generate a new price by Eq. (5.25). Noted that a record of the explored prices is

updated to ensure that the new generated prices have not been examined.

5.3.2 EBT-based GTS algorithm for lower-level BTS problem

In order to address the lower-level BTS problem and the upper-level reduced VRP-P prob-

lem, two customized GTS algorithms are proposed. The GTS algorithms in this chapter are

derived from the classical TS algorithm, which is a meta-heuristic widely employed for solving

diverse combinatorial optimization problems. The TS algorithm begins with an initial solution,

which also serves as the current solution and the optimal solution at the beginning. Subse-

quently, a set of operators defines a series of moves applied to the current solution, resulting

in the generation of new solutions known as neighborhood solutions. For example, an insertion

operator might involve removing a request from the current route and inserting it into a different

route. The various options for requests, routes, and insertion locations correspond to distinct

moves. The current solution is then updated to be the best neighborhood solution, while the

current optimal solution is updated only if the objective value of the best neighborhood solution

surpasses that of the incumbent solution. Notably, to prevent cyclic iterations and escape local

optima, a memory structure known as the tabu list is employed while applying moves to the

current solution (Glover, 1986). Specifically, when a neighborhood solution is obtained, the

corresponding move responsible for generating that solution is declared tabu. Consequently,

the inverse operation of this move is prohibited for a specified number of iterations, unless it
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can generate a superior solution compared to the current optimal solution (Glover, 1986). The

classical TS algorithm considers all possible moves during the exploration of neighborhood solu-

tions when applying an operator, resulting in a considerable amount of time being consumed. In

order to enhance computational efficiency, Toth and Vigo (2003) proposes a valuable granular

strategy to the TS algorithm, which selectively explores moves that hold promise in generating

good-quality solutions. This strategy has demonstrated notable effectiveness in achieving good-

quality solutions within reduced computation time (Kirchler and Calvo, 2013). In line with

the framework of the classical TS algorithm, we also consider a granular strategy that takes

into account the distinctive characteristics of the upper- and lower-level problems during the

neighborhood search procedure.

Given the service price and the parcel requests, the lower-level BTS problem is to find the

optimal bus trip chains for parcel delivery that can maximize the PTO’s total profit. To facilitate

the exploration of the bus trip chain consisting of the CDC, a series of bus scheduled trips, and

an RDS, we introduce an EBT network denoted by G1 = (N1,A1), where N1 = {0} ∪ L ∪ H

denotes the set of network nodes and A1 = {(0, l) : l ∈ L}∪{(l, l′) : l, l′ ∈ L}∪{(l, h) : l ∈ L, h ∈

H} denotes the set of network arcs representing corresponding pickup/delivery/transshipment

operations of a bus. We can see that each node is associated with time-related conditions, such as

time windows of the CDC node and RDS nodes and timetable of the bus scheduled trip nodes.

In this context, certain arcs within the network may not be viable due to violation on these

time-related conditions. To address this issue, we assess the feasibility of each arc by assigning

a cost that represents the implementation of the corresponding pickup/delivery/transshipment

operations while considering the time-related constraints. Let ĉij denote the cost associated

with the arc (i, j) ∈ A1 considering the time-related constraints. If the operation associated

with the arc (i, j) ∈ A1 do not cause violation on the time-related conditions, the cost of the

arc is defined as the operating cost of the corresponding operation, i.e., ĉij = Cij ,∀(i, j) ∈ A1.

Conversely, if a violation occurs, the cost is set to a large value, i.e., ĉij = M1, ∀(i, j) ∈ A1,

where M1 is a large value.

With the established EBT considering the time-related feasibility of the arcs, we then

implement the TS to find the optimal bus trip chains. We will first generate an initial solution

by generating |H|+1 bus trip chains, where |H| is the total number of RDSs. The first |H| bus

trip chains consist of the CDC and an RDS without any bus scheduled trips arranged, and all

bus scheduled trips are arranged in the (|H|+1)-th bus trip chain. It is noted that bus trip chains

only encompassing the CDC and RDS, as well as the (|H|+1)-th bus trip chain, do not generate

any profit or cost. Later on, we will apply the before-mentioned insertion operator to relocate

a trip node from current bus trip chain to a different bus trip chain to generate neighborhood
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solutions following the steps of classical TS. However, unlike the classical TS that considers all

moves, i.e., various options for bus trips, bus trip chains, and insertion locations, when applying

the insertion operator, we consider a granular strategy that only considers the promising moves

during the implementation of neighborhood search with the insertion operator. Specifically, we

can see that a smaller value of ĉij indicates that it would be more cost-effective to schedule the

node i exactly before node j. Motivated by this, we define the promising move as the move that

can make the node i exactly before node j such that ĉij ≤ cgra low, where cgra low is a granular

threshold setting for lower-level BTS problem. This granular strategy can improve the efficiency

of neighborhood search for a good-quality solution by reducing the exploration for unpromising

moves. Figure 5.3 illustrates an example of neighborhood search with a granular strategy for a

case with one CDC, two bus trips, and two parcel delivery requests in two RDSs.

Figure 5.3. An illustrative example of neighborhood search with a granular strategy

In Figure 5.3, compared with the neighborhood search of the current solution with all

possible moves, we only consider the promising moves under the granular strategy such that

ĉij ≤ 3, i.e.,cgra low = 3 to get reduced neighborhood solutions with good-probability to find

the optimal solution. It can be seen that a higher value of the granular threshold cgra low

implies a reduction in the exploration of moves, leading to reduced time consumption but a

constrained search for neighborhood solutions. In this chapter, we define a dynamic cgra low

through iterative implementation. To be more specific, the granular threshold cgra low is initiated

as cgra low ← min(i,j)∈A1
{ĉij} and then gradually increase by cgra low ← cgra low+∆clow until the

upper bound cgra low is reached.

Furthermore, it is evident that the aforementioned approach only considers scenarios where

each parcel delivery request is served by a maximum of one bus trip chain. However, it is

possible for a parcel delivery request to be fulfilled by multiple bus trip chains. To this end, we

will iterate the implementation of the EBT-based GTS algorithm multiple times until no parcel
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requests can be accommodated by bus trip chains. More specifically, after obtaining the bus trip

chains for parcel deliveries, we will remove the corresponding parcel requests and the assigned

bus trips. Subsequently, we will repeat the EBT-based GTS algorithm to generate new sets of

bus trip chains until no parcel requests can be served by the CM transportation service. This

iterative approach is justified by the fact that a bus trip chain will always carry the maximum

number of parcels it can accommodate. The step-by-step procedures of the EBT-based GTS for

solving the lower-level BTS problem are elaborated as follows.

• Step 0: (Data input and initialization) Input the parcel requests H, service price

p, and bus trip L. Initialize current number of iterations n ← 1, maximum number of

iterations N , penalty coefficient γ, adaptive factor for penalty coefficient ϱ, and TabuList.

Initialize the optimal PT-based CM transportation service solution, i.e., bus trip chains

Ψ← ∅, and total profit for PTO TP (Ψ, p)← 0 under the price p.

• Step 1: (Generation and evaluation of the initial solution)

– Step 1.1: Generate an initial bus trip chain solution ψ0 with requests H and bus

trip L, and compute the parcel load carried by bus trip chains, denoted by z(ψ0), and

profit for PTO, represented by f(ψ0, p) under solution ψ0 and price p considering the

penalty cost due to violation of the constraints.

– Step 1.2: Initialize current optimal bus trip chain solution by ψ∗ ← ψ0 and PTO’s

profit under current optimal solution by fbest ← f(ψ∗, p).

• Step 2: (Neighborhood search)

– Step 2.1: Initialize the current bus trip chain solution by ψ ← ψ∗ and the set of

neighborhood solutions by NS(ψ)← ∅.

– Step 2.2: Explore promising Moves with the granular strategy.

∗ Step 2.2.1: Calculate cost ĉij ,∀(i, j) ∈ A1.

∗ Step 2.2.2: Initialize granular threshold cgra low as cgra low ← min(i,j)∈A1
{ĉij}

and determine the upper bound of granular threshold by cgra low.

∗ Step 2.2.3: Obtain the promising Moves such that ĉij ≤ cgra low.

– Step 2.3: Obtain neighborhood solutions by applying promising Moves on solution

ψ considering the tabu strategy, i.e., NS(ψ) = Neighbor(ψ,Moves, TabuList, fbest),

where Neighbor(·) represents the neighborhood search operation. More specifically,

we utilize Moves on current routing solution ψ to generate the neighborhood solu-

tions. Each time we generate a neighborhood solution ψ′, we first check if the move
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that generates it is prohibited by the TabuList. If it is not forbidden, the solution

is included in NS(ψ). However, if the move is forbidden, we examine if the solution

satisfies the condition f(ψ′, p) > fbest: if yes, the solution is included in NS(ψ).

– Step 2.4: If NS(ψ) ̸= ∅, go to Step 2.4.1, otherwise go to Step 2.5.

∗ Step 2.4.1: Identify the best solution from the set of neighborhood solutions,

i.e., ψ̂ = argmaxψ′∈NS(ψ) f(ψ
′, p).

∗ Step 2.4.2: Perform a feasibility check on solution ψ′. If violation occurs, adjust

the associated penalty coefficient by γ ← γ+ϱ. Conversely, if no violation occurs,

update the optimal solution by ψ∗ ← ψ̂, fbest ← f(ψ̂, p) if f(ψ̂, p) > fbest.

∗ Step 2.4.3: Let ψ ← ψ̂ and update TabuList with the Move that generates

solution ψ̂ and go to Step 3.

– Step 2.5: If cgra low < cgra low, let cgra low ← cgra low +∆clow and go to Step 2.2.3;

otherwise go to Step 3.

• Step 3: (Iteration condition) If n < N , let n← n+ 1 and go to Step 2.3, otherwise

go to Step 4.

• Step 4: (Update of CM transportation solution and request) If the optimal bus

trip chain solution do not include the scenario that parcel requests are served by CM

transportation service, go to Step 5; otherwise to to Step 4.1.

– Step 4.1: Add the optimal bus trip chain solution ψ∗ to the CM transportation

service solution by Ψ← Ψ∪ψ∗ and accumulate the profit of the solution to the total

profit for PTO.

– Step 4.2: If the optimal bus trip chain solution ψ∗ includes the scenario that parcel

requests are served by CM transportation service, obtain the set of remaining parcel

requests H′ by removing requests that have been fully served under solution ψ and

adjust the parcel load of the request in parcel requests H, let H ← H′, remove the

used bus trips from L and go to Step 0.

• Step 5: (Output) Output PT-based CM transportation service solution Ψ∗ and PTO’s

total profit TP .

Kindly note that the solution ψ∗ should not cause any violation on corresponding con-

straints, which can be guaranteed by a feasibility check in Step 2.4.2. The total profit for PTO

TP consists of the profit of all employed optimal bus trip chains obtained by each TS imple-

mentation. Meanwhile, by exploring the CM transportation service solution ψ∗, the unserved
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parcel delivery requests under the offered price p will be grouped in set H̃(p), which will be then

input for the optimization of the upper-level R-VRP-P problem.

5.3.3 UPR-based GTS algorithm for upper-level R-VRP-P problem

The upper-level R-VRP-P problem is to determine the optimal dedicated vehicle routes

for fulfilling the parcel requests that are not (fully) served by the PT-based CM transportation

service. To facilitate the exploration of the dedicated vehicle routes, we establish a UPR by

G2 = (N2,A2), where N2 = {0} ∪ H̃(p) denotes the set of network nodes and A2 = {(0, h) : h ∈

H̃(p)} ∪ {(h, h′) : h, h′ ∈ H̃(p)} ∪ {(h, 0) : h ∈ H̃(p)} denotes the corresponding arc that can be

traveled by the dedicated vehicles. Similar to the construction of EBT network, we denote c̃ij

as the cost associated with the arc (i, j) ∈ A2 considering the time and capacity constraints.

Specifically, if the vehicle service associated with the arc (i, j) ∈ A2 does not cause violation on

the time and capacity constraints, the cost of the arc is defined as the transportation cost along

the arc, i.e., c̃ij = κij , ∀(i, j) ∈ A2. Conversely, if a violation occurs, the cost is set to a large

value, i.e., c̃ij =M2, ∀(i, j) ∈ A2, where M2 is a large value.

With the established UPR network considering the time and capacity feasibility of the arcs,

we then implement the TS to find the optimal dedicated vehicle service routes. We will first

generate an initial solution by request-to-vehicle assignment method proposed by (Cordeau and

Laporte, 2003). More specifically, parcel request randomly selected from all unserved parcel

requests is arranged to a vehicle according to the earliest service time of the time window until

the vehicle capacity is not available, and the request will be assigned to a new dedicated vehicle.

While this method ensures adherence to the vehicle capacity constraint, other constraints may

be violated. To address such violations, penalties are imposed on the solutions by introducing a

penalty coefficient for each constraint violation and incorporating the penalty cost into the ob-

jective function. Then, the insertion operator mentioned earlier is employed to relocate a request

node from its current service route to a different service route, thereby generating neighborhood

solutions in accordance with the classical TS approach.We will then consider the moves that can

make the node i exactly before node j such that c̃ij ≤ cgra upp. The granular threshold cgra upp is

initiated as cgra upp ← min(i,j)∈A2
{c̃ij} and then gradually increase by cgra upp ← cgra upp+∆cupp

until the upper bound cgra upp is reached. The step-by-step procedures of the UPR-based GTS

for solving the upper-level R-VRP-P problem are elaborated as follows.

• Step 0: (Data input and initialization) Input the parcel requests H̃(p) under the

price p. Initialize current number of iterations n← 1, maximum number of iterations N ,

penalty coefficient γ, adaptive factor for penalty coefficient ϱ, and TabuList. Initialize
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vehicle route solution θ∗ ← ∅, and total profit for PTO TC(θ∗, p)←∞.

• Step 1: (Generation and evaluation of the initial solution)

– Step 1.1: Create an initial dedicated vehicle routing solution θ0 with requests H̃(p)

and compute the total cost for LSP, represented by g(θ0, p) under solution θ0 and

price p considering the penalty cost due to violation of the constraints.

– Step 1.2: Initialize current optimal dedicated vehicle routing solution by θ∗ ← θ0

and current optimal total cost under current optimal solution by gbest ← g(θ∗, p).

• Step 2: (Neighborhood search)

– Step 2.1: Initialize the current solution by θ ← θ∗ and the set of neighborhood

solutions by NS(θ)← ∅.

– Step 2.2: Explore promising Moves with the granular strategy.

∗ Step 2.2.1: Calculate cost c̃ij ,∀(i, j) ∈ A2.

∗ Step 2.2.2: Initialize granular threshold cgra upp as cgra upp ← min(i,j)∈A2
{c̃ij}

and determine the upper bound of granular threshold by cgra upp.

∗ Step 2.2.3: Obtain the promising Moves such that c̃ij ≤ cgra upp.

– Step 2.3: Obtain neighborhood solutions by applying promising Moves on solution

θ considering the tabu strategy, i.e., NS(θ) = Neighbor(θ,Moves, TabuList, gbest),

where Neighbor(·) represent the neighborhood search operation. More specifically, we

utilize Moves on current routing solution θ to generate the neighborhood solutions.

Each time we generate a neighborhood solution θ′, we first check if the move that

generates it is prohibited by the TabuList. If it is not forbidden, the solution is

included in NS(θ). However, if the move is forbidden, we then examine if the solution

satisfies the condition g(θ′, p) < gbest: if yes, the solution is included in NS(θ).

– Step 2.4: If NS(θ) ̸= ∅, go to Step 2.4.1, otherwise go to Step 2.5.

∗ Step 2.4.1: Identify the best solution from the set of neighborhood solutions,

i.e., θ̂ = argminθ′∈NS(θ) g(θ
′, p).

∗ Step 2.4.2: Perform a feasibility check on solution θ′. If violation occurs, adjust

the associated penalty coefficient by γ ← γ+ϱ. Conversely, if no violation occurs,

update the optimal solution by θ∗ ← θ̂, gbest ← g(θ̂, p) if g(θ̂, p) < gbest.

∗ Step 2.4.3: Let θ ← θ̂ and update TabuList with the Move that generates

solution θ̂ and go to Step 3.

– Step 2.5: If cgra upp < cgra upp, let cgra upp ← cgra upp+∆cupp and go to Step 2.2.3;

otherwise go to Step 3.
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• Step 3: (Iteration condition) If n < N , let n← n+ 1 and go to Step 2.3, otherwise

go to Step 4.

• Step 4: (Output) Output current optimal dedicated vehicle routing solution θ and LSP’s

total profit TC.

Kindly note that the solution θ∗ must satisfy all relevant constraints without any violations,

which is ensured by the feasibility check performed on in Step 2.4.2. As a result, the total cost

of the optimal routing solution θ∗ is given by TC(θ∗, p)

5.4 Numerical Experiments

This section will first evaluate the performance of the proposed ITH algorithm on a series

of randomly generated instances. Subsequently, a set of simulated cases from Chongqing, China

is utilized to perform an implication analysis for the hybrid delivery system incorporating PT-

based CM transportation service. The algorithms are implemented using MATLAB 2021a on a

personal computer equipped with MacOS Big Sur 11.6 and an Apple M1 3.2 GHz CPU.

5.4.1 Test instance generation and parameter setting

We generate multiple instances with varying numbers of parcel delivery requests, ranging

from 10 to 60, and bus scheduled trips, ranging from 10 to 120, within a 50 km×50 km square

region. The coordinates for the RDS and bus terminals are randomly generated within the

region, while the coordinates for the CDC are set at (25, 25). The distance between two locations

is calculated using the Euclidean distance. By setting the speed of buses and dedicated vehicles

at 30 km/h, we can obtain the travel time between any two locations. The parcel load for each

parcel delivery request is randomly selected from the range of 10 kg to 30 kg, and the opening

time window for each RDS is randomly chosen within the interval [10:00, 14:00]. The time

window for the CDC is set as [10:00, 14:00]. Regarding the bus trips, the carrying capacity of

each bus trip is selected from the range of 20 kg to 40 kg. The departure time of a bus from

the origin terminal is randomly generated within the interval [10:00, 13:00], and the arrival time

of the bus at the destination terminal is set as the departure time plus the travel time. Each

bus has a 20-minute available time interval to carry out pickup, delivery, and relay operations.

The service time for loading parcels onto each bus is set as 5 min, and an additional 5 min is

allocated for necessary activities for each bus and driver. For dedicated vehicles, the carrying

capacity of each vehicle is set as 200 kg, and the service time for loading parcels is set as 5 min.
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5.4.2 Performance of ITH method on test instances

We will use the randomly generated instances to evaluate the performance of the proposed

ITH algorithm by comparing it with other heuristic methods. Specifically, the effectiveness of the

ITH algorithm relies on the integration of the ABC algorithm and the TS algorithm. To evaluate

the efficacy of the ABC algorithm and TS algorithm, we will compare their performance with

that of the genetic algorithm (GA), which is another evolutionary population-based algorithm,

as well as a greedy heuristic by an insertion operation (INS). By combining these four methods

to solve the upper-level and lower-level problems, as well as updating the prices, we will compare

the performance of four hybrid methods: ABC and TS (our proposed ITH method), ABC-INS,

GA-TS, and GS-INS.

We report the results of 10 instances of varying scales, characterized by different numbers

of parcel delivery requests (#ParReq) and bus scheduled trips (#BusTrp) in Table 5.1. For each

instance, we generate five random instances and compute the average values of the objective value

(Obj) and CPU time by different methods. The best objective values among the four methods are

indicated in bold. Additionally, to facilitate comparison, we calculate the relative gaps RelGap1,

RelGap2, RelGap3, and RelGap4, which are computed as RelGap1 = (Obj∗−Obj1)/Obj∗∗100%,

RelGap2 = (Obj∗ − Obj2)/Obj∗ ∗ 100%, RelGap3 = (Obj∗ − Obj3)/Obj∗ ∗ 100%, where Obj∗,

Obj1, Obj2, and Obj3 are the objective values obtained by ITH algorithm, ABC-INS, GA-TS,

GA-INS, respectively.

It can be seen that our proposed ITH algorithm integrating two TS and an ABC algorithm

outperforms the other three methods in finding the minimized objective value. Moreover, the

ITH algorithm achieves good-quality solutions with lower CPU time compared to the other

three methods, with an average CPU time of 369.4s compared to 517.5s for ABC-INS, 428.7s

for GA-TS, and 612.9s for GA-INS. On the one hand, the TS algorithm, incorporating a tabu

strategy and a cost-oriented granular strategy, reduces exploration for unpromising moves while

enhancing the search for good-quality solutions. This improves the likelihood of identifying

optimal bus trip chains and dedicated vehicle routes. It is evident that, using the same method

(ABC or GA) for price updating, the TS algorithm yields better objective values than the

insertion heuristic (INS). For instance, ABC-TS achieves a superior objective value compared

to ABC-INS, with an average relative gap of 3.89%. On the other hand, the ABC algorithm,

which combines local and global search for service price determination, assists in finding good-

quality prices that lead to improved objective values. Using the same method (TS or INS) for

lower- and upper-level optimization, the ABC algorithm outperforms the GA algorithm. For
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instance, ABC-TS achieves a superior objective value compared to GA-TS, with an average

relative gap of 8.44%. Figure 5.4 provides a visual comparison of the objective value and CPU

time under different scales of the problem with varying numbers of parcel requests and bus

trips. It is evident that as the number of bus scheduled trips and parcel requests increases, our

proposed ITH algorithm demonstrates the best objective value performance in Figure 5.4(a)

and the smallest increase in computation time in Figure 5.4(b). This comparison highlights

the strong performance of the ITH algorithm in finding good-quality solutions for the CSP

problem. In addition, our experiments also show that the ITH algorithm is capable of solving

the instance with a total of 300 parcel requests and bus trips within one hour. The CPU

time does not exhibit exponential growth with an increasing number of parcel requests and

bus-scheduled trips, which indicates the algorithm’s strong potential for effectively addressing

scenarios involving a substantial number of parcel delivery requests and bus-scheduled trips.

(a) Objective value (b) CPU time

Figure 5.4. Variations of Obj and CPU time under different scales of instances

5.4.3 Case study

We then simulate a series of real-life cases in Chongqing, China to evaluate the benefit of

hybrid delivery system with the new PT-based CM transportation service and derive managerial

insights for the applications of the delivery services.

Chongqing, a megacity in southwestern China, has a well-developed public transit network

that efficiently meets the transportation needs of its residents. LSPs have established urban

CDCs near the city’s airports, with many RDSs spread throughout the city. For our study, we

selected a specific logistics company YTO Express’s CDC and RDSs to source data for parcel

delivery requests. We also obtained information on nearly 1,000 bus routes in the city via the

Baidu Maps API, which forms the basis for our public transit-based CM transportation services.
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Specifically, we designate the CDC as the origin for parcel deliveries and various RDSs as the

destinations. The opening time window for the CDC is defined as [9:00, 20:00], and opening time

windows for the RDSs are randomly generated within the off-peak hours of [9:30, 12:00] and

[14:00, 16:00]. The load of parcel requests at each RDS is randomly selected from the range of

[10 kg, 30 kg], and the duration allocated for servicing each parcel is established at five minutes.

Subsequently, we prepare the bus scheduled trips. We choose bus trips with destinations near

the CDC or RDSs. The carrying capacity of each bus trip is randomly selected from the range

of [20 kg, 40 kg]. The duration for parcel service by bus and the necessary activities are both

set at five minutes, while the available time duration for consecutive scheduled trips for each

bus is defined as 20 minutes. The fixed cost of utilizing a dedicated vehicle is set at $100, while

the unit costs for dedicated vehicle transportation and bus transportation are set at $3/km and

$1.2/km, respectively. The speed of both buses and dedicated vehicles is set at 30 km/h.

5.4.4 Impact analysis of PT-based CM transportation service

To evaluate the benefits of the hybrid delivery system (HDS), we compare several key

metrics between HDS and traditional dedicated delivery services (DDS) using different cases

with different number of parcel delivery requests and bus trips, as shown in Table 5.2. These

metrics include the total cost incurred by the LSP (TC), the total profit generated by the PTO

through serving additional parcel requests (TP), the average cost of serving each load of parcel

by the LSP (AveCost), the total fleet size of dedicated vehicles utilized by the LSP (FS), the

optimal price for CM transportation services (Price), and the acceptance rate for parcel delivery

requests outsourced by the LSP (AcpRate). Furthermore, we present the percentage of the cost

savings (CostSav%), the number of vehicles saved (VehSav%), and the average cost saved per

unit parcel load (AveCost%) in the HDS model compared to the DDS model.

Table 5.2 demonstrates that PT-based CM transportation significantly cuts costs for the

LSP and boosts profits for the PTO. First, PT vehicles are more cost-efficient than dedicated

delivery vehicles for parcel deliveries, with the fact that the price of using them is relatively

low (less than $2). Second, by using PT-based CM transportation, LSPs can reduce their fleet

size from an average of 18.3 vehicles to 11.6. This reduction lowers operating costs, especially

the fixed costs associated with a larger fleet. Additionally, the average cost of using dedicated

vehicles decreases from $2.91/kg to $2.52/kg, further reducing overall costs. Moreover, in the

hybrid delivery model with PT-based CM transportation, handling 100 parcel delivery requests

results in costs dropping from $5,067 to $4,579, while profits increase from $765 to $1,767 as

the number of available bus trips rises from 50 to 200. More available bus trips allow a greater

number of parcels to be served by the cost-effective PT-based CM transportation, increasing the
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acceptance rate from 21.0% to 50.8%. Consequently, total cost savings expand and profits rise,

with the decrease in the average cost per parcel and the required fleet size for the LSP.

To further investigate the factors influencing the effectiveness of the hybrid delivery sys-

tem incorporating PT-based CM transportation service, we conducted a sensitivity analysis on

several key factors.

Time duration between two consecutive scheduled trips

We first assessing how varying the time intervals between consecutive scheduled trips, from

15 to 50 minutes, influences the system’s performance. The results are depicted in Figure 5.5.

(a) Variation of TC (b) Variation of TP

(c) Variation of FS and AcpRate (d) Variation of AveCost and Price

Figure 5.5. Variations of TC, TP, AveCost, Price, FS, and AcpRate under time duration

Figure 5.5 illustrates that extending the interval between consecutive bus trips results in

a gradual reduction in total costs, decreasing from $5,701 to $4,551, and stabilizing after 35

minutes, as depicted in Figure 5.5(a). Similarly, the total profit for the PTO also increases

until it plateaus beyond 35 minutes, as shown in Figure 5.5(b). On the one hand, as time

94



duration increases, an increasing number of parcel requests are accommodated by PT-based

CM transportation services, as indicated by the rising acceptance rate in Figure 5.5(c). Given

that the average cost of CM transportation is lower than that of dedicated delivery vehicles,

the total cost diminishes as the interval extends. On the other hand, there is a reduction in the

number of high-fixed-cost dedicated vehicles used, and the average cost of dedicated delivery

decreases from $2.65/kg to $2.46/kg, as illustrated in Figure 5.5(d). For the PTO, a longer time

duration between consecutive bus trips allows for greater utilization of buses for parcel services,

potentially generating additional profits up to $1,586. However, despite the ability to use buses

for parcel delivery without disrupting the fixed timetable, the unfavorable cost-effectiveness

limits the use of additional buses for delivery, as service costs increase with distance traveled.

Carrying capacity of each bus

We assess how varying the carrying capacity of buses, from 20 kg to 60 kg, influences the

system’s performance. The results are depicted in Figure 5.6.

(a) Variation of TC (b) Variation of TP

(c) Variation of FS and AcpRate (d) Variation of AveCost and Price

Figure 5.6. Variations of TC, TP, AveCost, Price, FS, and AcpRate under different bus
capacities
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It can be seen that as the carrying capacity of each bus increases, the total cost for the

LSP gradually decreases and stabilizes beyond a capacity of 30 kg, as illustrated in Figure

5.6(a). Concurrently, the total profit for the PTO gradually increases, reaching a plateau beyond

the same capacity threshold, as shown in Figure 5.6(b). This trend is attributed to the fact

that increased carrying capacity allows each bus to accommodate more parcels, enhancing the

efficiency of CM transportation services and reducing reliance on dedicated delivery vehicles, as

indicated by the rising acceptance rate and decreasing fleet size in Figure 5.6(c). Additionally,

the average cost associated with public transport-based CM transportation is lower than that

of dedicated delivery services, resulting in cost reductions for the LSP, as depicted in Figure

5.6(d). For the PTO, higher bus carrying capacity facilitates additional parcel services, thereby

generating increased profits. However, due to scheduling constraints, revenue from bus-based

parcel services reaches a maximum and does not continue to rise. The sensitivity analysis

suggests that the LSP should conduct a thorough market survey and engage in communication

with the PTO to determine the available time and carrying capacity of buses to make mutually

beneficial collaboration decisions.

5.5 Concluding Remarks

This chapter introduces a new PT-based CM transportation service and examines the CSP

problem taking into account the Stackelberg gameplay between LSP and PTO during the for-

mulation of their business cooperation. A bilevel path-based programming model is formulated

for the CSP problem, consisting of a lower-level model [BTS] that maximizes the PTO’s total

profits from additional parcel deliveries, and an upper-level model [VRP-P] that minimizes the

LSP’s total cost, including outsourcing expenses paid to the PTO and costs associated with ded-

icated delivery vehicles. To solve the CSP problem, a tailored ITH method is proposed, which

combines two TS algorithms with granular strategy and an ABC algorithm. The ITH method

iteratively solves the lower-level BTS problem, the upper-level reduced VRP-P problem, and

updates the service price in three stages. Numerical experiments conducted on randomly gener-

ated instances demonstrate the effectiveness of the proposed ITH method in finding good-quality

solutions within reasonable computation times. Simulated case studies conducted in Chongqing,

China demonstrate the mutual benefits of the LSP and PTO by introducing the CM transporta-

tion cooperation with a well-designed service price. Specifically, the LSP experiences reductions

in total cost, fleet size of dedicated vehicles, and average cost per parcel delivered, while the

PTO obtains profits by serving additional parcel delivery requests. Sensitivity analysis high-

lights the significant impact of carrying capacity and available time duration between consecutive

scheduled trips on the availability of the PT-based CM transportation service.
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5.6 Appendix: Notations

Set

V Set of dedicated vehicles v ∈ V

H Set of RDS and also the set of parcel requests, h ∈ H

H̃(p) Set of RDSs whose parcel delivery requests are not fully satisfied under the given

service price p

B Set of buses, b ∈ B

Lb Set of scheduled trips served by bus b ∈ B, l ∈ Lb = {1, 2, · · · , |Lb|}, where |Lb|}

denotes the last trip that bus b serves

L Set of all scheduled bus trips, L :=
⋃
b∈B Lb

Rh Set of all feasible trip chains serving RDS rh ∈ Rh

R Set of all feasible trip chains, R :=
⋃
h∈HRh

Ω Set of all feasible dedicated vehicle routes, ω ∈ Ω

Parameters

Qv Maximum carrying capacity of the dedicated vehicle v

Qbl Parcel carrying capacity of the bus b in the l-th trip, b ∈ B, l ∈ L

Qrh Capacity of the bus trip chain rh that can accommodate parcels

σh Service duration of the parcel delivery request h ∈ H

δ Service time for loading or unloading parcels by the bus

σ Service duration of the parcel delivery request h ∈ H

qh Parcel load of the parcel delivery request h ∈ H

q̃h(p) Remaining load of parcels of the request h ∈ H under price p

[Eh, Lh] Opening time window of the RDS h ∈ H

[E0, L0] Opening time window of the CDC

sob,l Origin terminal of the bus b’s l-th trip

sdb,l Destination terminal of the bus b’s l-th trip

tob,l Departure time of bus b from the origin terminal

tdb,l Arrival time of bus b at the destination terminal

rh Bus trip chain that serves the RDS h, which includes the CDC 0, a series of bus

scheduled trips l ∈ L, and an RDS h ∈ H

τ(i, j) Travel time by the bus from location i to j

C0,l1 Pickup cost incurred for the pickup operation by the bus

Cli,li+1
Cost of the relay operation between consecutive bus scheduled trips li and li+1

Clnr ,h Delivery cost incurred for delivery operation by the bus
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crh Operating cost paid by PTO for scheduling bus trip chain rh to serve the parcels

ω Dedicated vehicle service route starting from CDC and ending at CDC

C f Fixed cost of using each dedicated vehicle

cω Cost of a dedicated vehicle service route ω

ϕ(i, j) Travel time by the dedicated vehicle from location i to j

κij Transportation cost by the dedicated vehicle from location i to j

ϑlrh Incidence coefficient that equals 1 if bus scheduled trip l ∈ L is utilized in the

bus trip chain rh ∈ Rh, and 0 otherwise

aωh Incidence coefficient that equals 1 if RDS h ∈ H̃(p) is served by route ω ∈ Ω, and

0 otherwise

p Lower bound of the service price for delivering per parcel load

p Upper bound of the service price for delivering per parcel load

Variables

p Continuous variable to denote the service price provided by LSP for serving per

load of parcel

xrh Binary variable that equals 1 if bus trip chain rh ∈ Rh is used for parcel deliveries,

and 0 otherwise

yω Binary variable that equals 1 if route ω is utilized for parcel delivery service, and

0 otherwise

zrh Continuous variable that denotes the load of parcels served by the bus trip chain

rh ∈ Rh

ξi Time epoch that the dedicate vehicle start service at the location i
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Chapter 6 Service Price Optimization for On-Demand Mobility

Service-based Co-Modal Delivery Service

This chapter investigates an outsourcing service price (OSP) problem for the co-modal de-

livery service based on on-demand mobility services (COM) model considering the gameplay be-

tween parcel delivery service provider (PSP) and on-demand mobility service provider (OMP).

We formulate the OSP problem in a bilevel framework based on the interaction of PSP and

OMP. A lower-level co-modal delivery service problem with ridesharing (CSP-R) is formulated

to determine the OMP’s optimal decision, i.e., served parcel and passenger requests and corre-

sponding service routes, for maximizing the OMP’s total profit from the served requests under

the outsourcing service price offered by PSP. An upper-level multi-depot pickup and delivery

problem with pricing (MPDP-P) is formulated to determine the optimal outsourcing service

price and self-operating service routes for minimizing the PSP’s total cost, which consists of the

outsourcing cost paid to the OMP and the cost of the self-operating service. A customized itera-

tive hybrid (IH) algorithm based on the bilevel framework integrating two granular tabu search

(GTS) algorithms and a genetic algorithm (GA) is developed to solve the problem. Particu-

larly, we propose a profit-oriented and cost-oriented granularity to solve the lower-level CSP-R

and upper-level reduced MPDP-P, respectively, to improve the computational efficiency of the

tabu search algorithm. Numerical experiments on several randomly generated instances and a

simulated case are conducted to test our proposed solution methods and the COM model.

The rest of this chapter is structured as follows. Assumptions, notations, and problem

description are elaborated in Section 6.1. A bilevel arc-based programming model for the studied

problems are developed in Section 6.2. To solve the problem, an IH algorithm is developed in

Section 6.3. Numerical experiments on randomly generated instances and a simulated case in

Hong Kong, China are conducted in Section 6.4. Conclusions of this chapter are summarized in

Section 6.5. Notation used in this chapter is listed in Section 6.6 for readability.

6.1 Problem Statement

We consider a PSP who provides daily parcel delivery services using a fleet of self-operating

vans in set K within an urban area, where several depots in set H are spatially distributed in the

area for van parking. The PSP receives a bunch of parcel delivery requests. Each delivery request

is associated with a pick-up location and corresponding time window and service duration for

loading, a drop-off location and corresponding time window and service duration for unloading,

and parcel load. Each van is initially parked at a designated depot. Subsequently, the van is
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dispatched to serve a series of parcel requests during the operational period. During the off-

operational hours, the van returns to a depot; however, it does not dwell there while fulfilling the

requests. In the same urban area, we consider an OMP who provides passenger transportation

services using a fleet of on-demand mobility vehicles in set V, where several stations in set S

are scattered in the area for parking these vehicles. The OMP receives a set of passenger ride

requests. Each ride request is associated with an origin, a destination, pick-up time window at

the origin, drop-off time window at the destination, and number of passengers. Each on-demand

mobility vehicle initially departs from a station at the beginning of the operational period, is

then free-floating throughout the city to serve requests without returning to a station, and finally

arrive at a station at the end of the operational period (i.e., off-operation hours).

Let Ωf,o and Ωf,d denote the sets of pick-up locations and drop-off locations of par-

cel delivery requests, respectively, and Ωp,o and Ωp,d denote the sets of origins and destina-

tions of passenger ride requests, respectively. For ease of presentation, let m and n denote

the number of parcel requests and passenger requests, respectively. We arrange the index

of locations following the sequence of Ωf,o = {1, 2, · · · ,m},Ωp,o = {m + 1,m + 2, · · · , σ},

Ωf,d = {σ+1, σ+2, · · · , σ+m}, and Ωp,d = {σ+m+1, σ+m+2, · · · , 2σ}, where σ = m+n. We

define Ω := Ωf,o ∪Ωp,o ∪Ωf,d ∪Ωp,d. The drop-off location/destination of the parcel/passenger

with pick-up location/origin i ∈ Ωf,o ∪Ωp,o can thus be represented by i+σ. For simplicity, we

use the index of pick-up location/origin of a parcel/passenger request to represent correspond-

ing parcel/passenger request. Kindly note that the pick-up and drop-off locations of different

parcel/passenger requests may be geographically identical, even if they have different indices.

Furthermore, let [ei, li] denote the pick-up time window of request i ∈ Ωf,o ∪Ωp,o, where ei and

li indicate the earliest and latest pick-up time, respectively. Correspondingly, the drop-off time

window of parcel/passenger request i ∈ Ωf,o ∪Ωp,o is denoted by [ei+σ, li+σ]. The load of parcel

request i ∈ Ωf,o and number of passengers of passenger request i ∈ Ωp,o are denoted by qfi

and qpi , respectively. The service durations for loading and unloading parcels for parcel request

i ∈ Ωf,o are denoted by di and di+σ, respectively.

To fulfill the parcel delivery requests with the minimal cost, the PSP will collaborate with

OMP by outsourcing parcel delivery tasks to OMP with a certain amount of monetary payment

per unit parcel load denoted by u, which is referred to as outsourcing service price. Kindly

note that the outsourcing service price in this chapter is defined as a load-based price. This

is motivated by the real practice of typical logistic companies such as SF Express, the largest

integrated logistics service provider in China, whose same-city express service in Hong Kong is

charged by parcel load (SF Express, 2024). However, it is worth mentioning that the proposed

modelling and algorithm framework in this chapter is applicable for any other service charging
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mechanisms such as the delivery distance-based pricing. With the outsourced parcel requests

as well as the service price, the OMP will decide which delivery requests to serve together with

its passenger ride request by a shared transportation mode, named OMS-based CM delivery

service, using its on-demand mobility vehicles. Specifically, to form the collaboration between

PSP and OMP, the PSP will first offer the parcel delivery requests and outsourcing service

price to OMP. The OMP will then simultaneously consider these outsourced parcel requests as

well as its passenger requests and determine the optimal served parcel and passenger requests to

maximize its total profits. The unserved parcel requests as well as the corresponding outsourcing

cost will be fed back to the PSP, and the PSP will finally satisfy the unserved parcel requests by

its self-operating delivery service. We can see that the interaction and inter-dependency between

PSP and OMP will result in a Stackelberg game, where the PSP serves as the leader aiming

to propose an optimal outsourcing service price considering the OMP’s optimal decision, and

the OMP serves as the follower aiming to make its optimal decision, i.e., the parcel requests to

serve, under the offered price. By collaborating with OMP, PSP fulfills parcel requests either

by the CM delivery service from OMP or its own self-operating delivery service.

For OMP, each vehicle v ∈ V, initially parked in a station s ∈ S with a parking capacity Qs,

can return to any station s ∈ S after the service. The maximum service time of vehicle v ∈ V

is denoted by Ŵv. Each vehicle v ∈ V can simultaneously serve multiple passenger and parcel

requests subject to the passenger and parcel carrying capacities denoted by Qpv and Qfv , respec-

tively. To ensure service quality for passengers, we consider the maximum ride duration T̂i of

passenger request i ∈ Ωp,o. A limit ξmax is also imposed on the total number of stops permitted

for accommodating additional passenger or parcel pick-ups and drop-offs between origin and

destination of each passenger. Moreover, the OMP will pay passenger monetary compensation c

per unit detour duration. Let η denote the fixed operating cost of using each vehicle, Ri denote

the revenue obtained by serving passenger request i ∈ Ωp,o and Pi be the penalty incurred if

the passenger request is denied service. The travel time and cost by the on-demand mobility

vehicle from location i to j are denoted by ti,j and ci,j , respectively. The objective of OMP is to

determine the optimal parcel and passenger requests to serve and corresponding service routes

under the offered outsourcing service price such that (i) the service time window, maximum ride

duration, and the maximum number of stops (if applicable) for the requests are satisfied; (ii)

the station parking capacity, and vehicle capacity and maximum service time are respected; and

(iii) the total profit is maximized.

As for the PSP, the unserved parcel requests will be satisfied by the self-operating fleet of

vans in set K. Each van k ∈ K, initially parked in a depot h ∈ H with parking capacity Qh, can

return to any depot h ∈ H after the service. The fixed operating cost, parcel carrying capacity
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and the maximum service duration of van k ∈ K are denoted by ψ,Qk, and Ŵk, respectively.

Let φi,j and κi,j represent the travel time and cost by the van from location i to j, respectively.

The objective of PSP is to determine the outsourcing service price between a lower bound u

and an upper bound ū, and the self-operating service routes such that (i) the service time

window of the delivery requests is satisfied; (ii) the depot parking capacity, and van capacity

and maximum service time are respected; and (iii) the total cost, including the outsourcing cost

and self-operating cost, is minimized.

The OSP problem investigated in this chapter is to determine the optimal outsourcing

service price as well as the self-operating service routes for PSP and the CM delivery service

routes for OMP, considering the interaction between PSP and OMP. We can see that the studied

OSP problem involves two different stakeholders, i.e., PSP and OMP, with conflicting objectives.

For example, the PSP aims to find a low outsourcing price to reduce its total cost, while OMP

expects a high outsourcing price to increase revenue. The interaction of the two players will

result in a Stackelberg game, which should be modelled as a bilevel programming model.

6.2 Bilevel Arc-based Optimization Model Formulation

In this section, we formulate a bilevel optimization model for the OSP problem composed

of the upper-level multi-depot pickup and delivery problem with pricing (MPDP-P) for PSP

and lower-level CM delivery service problem with ridesharing (CSP-R) for OMP. Since the PSP

will determine the optimal outsourcing service price considering the OMP’s optimal decision

under the offered price, in the next subsections, we will first present the lower-level CSP-R and

then the upper-level MPDP-P. The notations used throughout this chapter are summarized in

Section 6.6.

6.2.1 Lower-level CSP-R model

Given the outsourcing service price u and outsourcing parcel requests Ωf,o, as well as the

passenger requestsΩp,o, a profit maximization model will be formulated to determine the optimal

served requests and service routes that can maximize the OMP’s total profit from serving parcel

and passenger requests. We define CSP-R on a complete directed graph G1 = (N1,A1), where

N1 = Ω∪S,A1 =
(
S ×

(
Ωp,o ∪Ωf,o

))
∪ (Ω×Ω)∪

((
Ωp,d ∪Ωf,d

)
× S

)
. Each node i ∈ N1 in the

network is associated with a parcel load qfi , a passenger number qpi , a service time window [ei, li],

a service duration di, a revenue Ri, and a penalty Pi, and each arc(i, j) ∈ A1 is associated with a

travel time ti,j and travel cost ci,j by the on-demand mobility vehicle from node i to j,∀i, j ∈ N1

with the following information:
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• Parcel load and passenger number: qfi = qpi = 0, ∀i ∈ S; qfi = 0, ∀i ∈ Ωp,o; qpi = 0, ∀i ∈

Ωf,o; qfi = −qfi+σ, ∀i ∈ Ωf,o ∪Ωp,o; qpi = −q
p
i+σ, ∀i ∈ Ωp,o ∪Ωf,o;

• Service duration: di = 0, ∀i ∈ S ∪Ωp,o ∪Ωp,d;

• Revenue and penalty: Ri = 0,∀i ∈ N1\Ωp,o;

• Penalty: Pi = 0,∀i ∈ N1\Ωp,o.

In addition, we further define the following variables:

• zi : Binary decision variable that equals 1 if request i ∈ Ωp,o ∪ Ωf,o is served, and 0

otherwise;

• xvi,j : Binary decision variable that equals 1 if vehicle v ∈ V travel directly from node i to

j, ∀i, j ∈ N1, and 0 otherwise;

• τvi : Continuous variable denoting the time epoch when vehicle v starts service at node

i ∈ N1;

• rvi : Continuous variable denoting the total ride time of passenger i ∈ Ωp,o in vehicle v ∈ V;

• αvi : Continuous variable denoting the number of passengers in vehicle v ∈ V after the

service at node i ∈ N1;

• βvi : Continuous variable denoting the load of parcels in vehicle v ∈ V after the service at

node i ∈ N1;

• ξvi : Integer variable denoting the order of node i ∈ N1 in vehicle v ’s service sequence,

and ξvi ∈ {1, 2, · · · , 2(m+ n+ 1)}

With the above notations, the lower-level model for CSP-R can be formulated as follows:

[CSP-R]

max
{z,x,τ ,r,α,β,ξ}

TP =
∑
i∈Ωp,o

Rizi +
∑
i∈Ωf,o

uqfi zi

−
∑
v∈V

∑
i∈S

∑
j∈Ωp,o∪Ωf,o

ηxvi,j −
∑
v∈V

∑
i∈N1

∑
j∈N1

ci,jx
v
i,j

−
∑
i∈Ωp,o

Pi (1− zi)−
∑
v∈V

∑
i∈Ωp,o

c (rvi − ti,i+σ) zi

(6.1)
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subject to

∑
s∈S

∑
i∈Ωp,o∪Ωf,o∪S

xvs,i =
∑
s∈S

∑
i∈Ωp,o∪Ωf,o∪S

xvj,s = 1, ∀v ∈ V (6.2)

∑
j∈N1

xvj,i =
∑
j∈N1

xvi,j , ∀i ∈ Ω, v ∈ V (6.3)

zi =
∑
v∈V

∑
j∈N1

xvi,j ≤ 1, ∀i ∈ Ωp,o ∪Ωf,o (6.4)

∑
j∈N1

xvi,j =
∑
j∈N1

xvi+σ,j , ∀i ∈ Ωp,o ∪Ωf,o, v ∈ V (6.5)

(τvi + di + ti,j)x
v
i,j ≤ τvj , ∀i, j ∈ N1, v ∈ V (6.6)

τvi ≤ τvi+σ, ∀i ∈ Ωp,o ∪Ωf,o, v ∈ V (6.7)

ei ≤ τvi ≤ li, ∀i ∈ N1, v ∈ V (6.8)

rvi = τvi+σ − τvi , ∀i ∈ Ωp,o, v ∈ V (6.9)

ti,i+σ ≤ rvi ≤ T̂i, ∀i ∈ Ωp,o, v ∈ V (6.10)∑
i∈N1

∑
j∈N1

(ti,j + di)x
v
i,j ≤ Ŵv, ∀v ∈ V (6.11)

(
αvi + qpj

)
xvi,j ≤ αvj , ∀i, j ∈ N1, v ∈ V (6.12)(

βvi + qfj

)
xvi,j ≤ βvj , ∀i, j ∈ N1, v ∈ V (6.13)

max {0, qpi } ≤ α
v
i ≤ min {Qpv, Qpv + qpi } , ∀i ∈ N1, v ∈ V (6.14)

max
{
0, qfi

}
≤ βvi ≤ min

{
Qfv , Q

f
v + qfi

}
, ∀i ∈ N1, v ∈ V (6.15)

∑
v∈V

∑
i∈Ωp,d∪Ωf,d∪S

xvs,i ≤ Qs, ∀s ∈ S (6.16)

∑
v∈V

∑
j∈Ωp,d∪Ωf,d∪S

xvj,s ≤ Qs, ∀s ∈ S (6.17)

ξvi + 1−M
(
1− xvi,j

)
≤ ξvj , ∀i, j ∈ N1, v ∈ V (6.18)

ξvi + 1 +M
(
1− xvi,j

)
≥ ξvj , ∀i, j ∈ N1, v ∈ V (6.19)

ξvi+σ − ξvi − 1 ≤ ξmax, ∀i ∈ Ωp,o, v ∈ V (6.20)

xvi,j ∈ {0, 1}, ∀i, j ∈ N1, v ∈ V (6.21)
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zi ∈ {0, 1}, ∀i ∈ Ωp,o ∪Ωf,o (6.22)

τvi , r
v
i , α

v
i , β

v
i ≥ 0, ∀i ∈ N1, v ∈ V (6.23)

ξvi ∈ {1, 2, · · · , 2(m+ n)}, ∀i ∈ N1, v ∈ V (6.24)

The objective function in Eq. (6.1) is to maximize the OMP’s total profit, which is the

difference between the revenues from requests and the total cost, including the fixed operating

cost, transportation cost, penalty for the unmet passenger requests, and compensation cost

for passengers. Constraints (6.2) and (6.3) are the flow balance constraints, where constraint

(6.1) specifies that each vehicle departs from a station and finally travels back to any station,

while constraint (6.3) expresses the flow balance constraint at any node except the origin and

destination of vehicles. Constraint (6.4) ensures that each parcel delivery request or passenger

ride request can be served at most once. Constraint (6.5) guarantees that the pick-up and

drop-off operations for each parcel or passenger request should be served by the same vehicle.

Constraint (6.6) updates the time epoch of starting service for each request along the route of a

vehicle. Constraint (6.7) stipulates the sequence order of the pickup and delivery operation for

each request. Constraint (6.8) enforces the service time window for serving requests. Constraint

(6.9) calculates the actual ride duration of each served passenger. Constraint (6.10) enforces

the maximum ride time that the passenger can tolerate. Constraint (6.11) limits the maximum

service time of each vehicle. Constraints (6.12) and (6.13) update the number of on-board

passengers and the load of in-vehicle parcels, respectively. The capacities for carrying passengers

and parcels are limited by constraints (6.14) and (6.15). Constraints (6.16) and (6.17) enforce the

capacity constraint of the parking station. Constraint (6.16) specifies that the total number of

vehicles initially scheduled from the station should not surpass the maximum parking capacity,

while constraint (6.17) ensures that the number of vehicles ultimately parked at the station

does not exceed its capacity. Constraints (6.18) and (6.19) calculate the travel sequences of the

requests, whereM can be set as 2(m+n+1). Constraint (6.20) stipulates the maximum number

of stops between the origin and destination of a passenger request. Constraints (6.21)–(6.24)

define the domains of the variables.

6.2.2 Upper-level MPDP-P model

Given the optimal decision of OMP, we can obtain the unserved parcel requests under the

outsourcing service price. A cost minimization model will be then formulated to determine the

optimal outsourcing service price and self-operating service routes for serving those unserved

parcel requests to minimize the PSP’s total cost. Let Ωf,o∗

rej (u) and Ωf,d∗

rej (u) denote sets of
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pick-up locations and drop-off locations of unserved parcel requests, respectively. We define

MPDP-P on a complete directed graph G2 = (N2,A2), where N2 = Ωf,o∗

rej (u) ∪ Ωf,d∗

rej (u) ∪

H, A2 =
(
H×Ωf,o∗

rej (u)
)
∪
((

Ωf,o∗

rej (u) ∪Ωf,d∗

rej (u)
)
×
(
Ωf,o∗

rej (u) ∪Ωf,d∗

rej (u)
)
∪
(
Ωf,d∗

rej (u)×H
)
.

Each node i ∈ N2 in the network is associated with a parcel load qfi , a service time window

[ei, li], a service duration di, and each arc (i, j) ∈ A2 is associated with a travel time φi,j and

travel cost κi,j by the van from node i to j,∀i, j ∈ N2 with the following information: parcel

load qfi = 0,∀i ∈ H and qfi = −qfi+σ,∀i ∈ Ωf,o∗

rej (u), and service duration: di = 0,∀i ∈ H. In

addition, we define the following variables:

• yki,j : Binary decision variable that equals 1 if van k ∈ K travels directly from node i to

j,∀i, j ∈ N2, and 0 otherwise;

• τki : Continuous variable denoting the time epoch when van k ∈ K starts the service at

node i ∈ N2;

• βki : Continuous variable denoting the load of parcels in van k ∈ K after the service at

node i ∈ N2.

With the above notations, the [MPDP-P] model can be formulated as follows:

[MPDP-P]

min
{u,y,τ ,β}

TC =
∑
k∈K

∑
i∈H

∑
j∈Ωp,o∗

rej (u)

ψyki,j +
∑
k∈K

∑
i∈N2

∑
j∈N2

κi,jy
k
i,j +

∑
i∈Ωf,o\Ωf,o∗

rej (u)

uqfi (6.25)

subject to

∑
h∈H

∑
i∈Ωf,o∗

rej (u)∪H

ykh,i =
∑
h∈H

∑
j∈Ωf,d∗

rej (u)∪H

ykj,h = 1, ∀k ∈ K (6.26)

∑
j∈N2

ykj,i =
∑
j∈N2

yki,j , ∀i ∈ Ωf,o∗

rej (u) ∪Ωf,d∗

rej (u), k ∈ K (6.27)

∑
k∈K

∑
j∈N2

yki,j = 1, ∀i ∈ Ωf,o∗

rej (u) (6.28)

∑
j∈N2

yki,j =
∑
j∈N2

yki+σ,j , ∀i ∈ Ωf,o∗

rej (u), k ∈ K (6.29)

(
τki + di + φi,j

)
yki,j ≤ τkj , ∀i, j ∈ N2, k ∈ K (6.30)

τki ≤ τki+σ, ∀i ∈ Ωf,o∗

rej (u), k ∈ K (6.31)

ei ≤ τki ≤ li, ∀i ∈ N2, k ∈ K (6.32)
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∑
j∈N2

∑
i∈N2

(φi,j + di) y
k
i,j ≤ Ŵk, ∀k ∈ K (6.33)

(
βki + qfj

)
yki,j ≤ βkj , ∀i, j ∈ N2, k ∈ K (6.34)

max
{
0, qfi

}
≤ βki ≤ min

{
Qk, Qk + qfi

}
, ∀i ∈ N2, k ∈ K (6.35)

∑
k∈K

∑
j∈Ωf,o∗

rej (u)∪H

ykh,j ≤ Qh, ∀h ∈ H (6.36)

∑
k∈K

∑
i∈Ωf,d∗

rej (u)∪H

yki,h ≤ Qh, ∀h ∈ H (6.37)

u ≤ u ≤ ū (6.38)

yki,j ∈ {0, 1}, ∀i, j ∈ N2, k ∈ K (6.39)

τki , β
k
i ≥ 0, ∀i ∈ N2, k ∈ K (6.40)

The objective function in Eq. (6.25) is to minimize the PSP’s total cost, including the

fixed operating cost of vans, the transportation cost, and the outsourcing cost paid to the OMP,

which depends on the results from lower-level problem. Constraints (6.26) and (6.27) are the

flow balance constraints, where constraint (6.26) specifies that each van departs from a depot

and finally travels back to any depot after completing the delivery tasks, while constraint (6.27)

ensures the flow balance at any intermediate node. Constraints (6.28) and (6.29) ensure that

each parcel delivery request should be served exactly once by a single van. Kindly note that

the vehicle may revisit the geographically same location for more than once by visiting the

different indices of locations but with geographically same location. Constraint (6.30) updates

the time epoch of starting service for each parcel request along the route of a van. Constraint

(6.31) ensures a sequence order of the pickup and delivery operation for each parcel delivery

request. Constraints (6.32) and (6.33) enforce the service time window for serving requests

and the maximum service time for each van, respectively. Constraint (6.34) updates the load

of the van. The capacity of the van is limited by constraint (6.35). Constraints (6.36) and

(6.37) specify the depot capacity. Kindly note that each van can arrive at any depot (including

any other depots and the depot it departs from) unless the parking capacity is not exceeded.

Constraint (6.38) restricts the upper and lower bounds of the outsourcing service price specified

by the PSP. Constraints (6.39)–(6.40) define the domains of the decision variables.
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6.3 IH Solution Method

The OSP problem is a bilevel optimization problem with the lower-level CSP-R nested in

the upper-level MPDP-P. The upper-level MPDP-P is an extension of the multi-depot vehicle

routing problem, whereas the lower-level CSP-R is a variant of the dial-a-ride problem. Both

problems have been proven to be NP-hard (Kirchler and Calvo, 2013; Renaud et al., 1996). The

complexity of the OSP problem makes it unable to be solved by commercial solvers. We can

see from the bilevel framework of the OSP problem that once the outsourcing service price is

confirmed, the upper-level problem will reduce to an MPDP, which is to determine the self-

operating service routes of PSP to fulfill the unserved parcel requests obtained by solving the

lower-level CSP-R under the aforementioned price. Motivated by this, we propose a customized

IH algorithm to obtain good-quality solutions for OSP problem by iteratively solving CSP-R,

reduced MPDP-P, and updating the outsourcing service price. Specifically, we first propose a

profit-oriented granular tabu search algorithm (TS-P) to solve the lower-level CSP-R to obtain

the unserved parcel requests under an initialized price. We will then use a cost-oriented granular

tabu search algorithm (TS-C) to solve the reduced MPDP-P under the aforementioned price.

A genetic algorithm (GA) is employed to update the outsourcing service price based on the

performance of previous prices. The above procedure will iterate until the maximum number

of generations is reached. The service price and corresponding service routes of PSP and OMP

will be finally obtained. The overall framework of the IH algorithm is illustrated in Figure 6.1.

Figure 6.1. Overall framework of the IH algorithm
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It can be seen that the IH algorithm combines two granular tabu search algorithms (GTSs)

and a GA. The GTS has been proven effective in solving pickup and delivery problems, dial-a-ride

problems, and related variants (Kirchler and Calvo, 2013; Goeke, 2019). GA is a population-

based metaheuristic algorithm that can generate multiple new individuals, e.g., outsourcing

service prices in the OSP problem, by simulating biological genetic operations and retaining

excellent individuals by fitness values, e.g., the total cost of PSP in the OSP problem (Mirjalili,

2019). To enhance the likelihood of finding the optimal solution, we have considered two aspects

for the GA and GTS: firstly, we have developed a customized binary-coded GA that aligns with

the practical scenario, reducing computational complexity and eliminating the need to explore

unnecessary price values. The GA enables rapid convergence towards good-quality outsourcing

price with lower total cost of PSP by employing a series of genetic operations such as crossover,

mutation with random perturbations, fitness value comparison, and selection with elite retention

strategies. Additionally, we have proposed two customized GTSs, considering objective-oriented

granularity strategies tailored to the characteristics of the upper- and lower-level problems.

The strategy can improve computational efficiency at each iteration by reducing unnecessary

exploration of low-quality neighborhood solutions. By combining GTSs and GA, we can identify

the good-quality outsourcing service price that minimizes the total cost of PSP while considering

the interaction between PSP and OMP. In the following subsections, we will describe the GA

and the GTSs in detail.

6.3.1 Price initialization and updating by GA

In the proposed IH algorithm, a set of feasible outsourcing service prices falling in interval

[u, ū] needs to be generated and updated. In practice, we know that services are often charged by

a number with a certain level of precision, such as $1.0 or $1.5 per unit parcel load with a preci-

sion of 0.1. This is for the ease of price calculation in real cases. Therefore, we employ GA with

a binary encoding approach to achieve the goal. The binary encoding approach allows us to rep-

resent the price using binary numbers, where the number of bits in the binary representation re-

flects the desired precision. Specifically, let binary number [A1−1A1−2 · · ·Ai · · ·A1A0]2 represent

a price value, where l is the total bits of the binary number and Ai = {0, 1},∀i = {0, 1, · · · l−1}.

The larger the value of l, the higher the precision of the price represented by the binary num-

ber. For example, we can use a 10 bits binary number to represent a price in interval [0, 10].

Then integers from 0 to 1023 can be used to represent the prices in [0, 10], and the precision is

10/1024 ≈ 0.01. This encoding method transforms the continuous price variable into a discrete

value, aligning with the practical definition of prices. Meanwhile, the use of binary encoding

reduces computational complexity and eliminates the need to explore unnecessary price values.
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To implement the algorithm, we will randomly generate a set of l-bit binary numbers as

the initial population, in which each binary number is named ’individual’. The population can

be updated by a series of genetic operations, including selection, crossover, and mutation. To

be more specific, we will first apply the roulette wheel selection strategy proposed by Holland

(1992) to select the candidate individuals from the current population for further conducting

the crossover and mutation. This selection strategy chooses individuals with good fitness values

and high probability. For the OSP problem, the PSP’s total cost is defined as the fitness value.

Then, a single-point crossover operation and bit flip mutation operation are applied to the

selected individuals to generate new individuals and form a new population. An illustrative

example in Figure 6.2 shows the crossover and mutation operations. Finally, the updated prices

coded in binary will be transformed to practical price values to be used as the input parameters

for solving the CSP-R and reduced MPDP-P by the following equation:

u = u+
ū− u
2l − 1

l∑
i=1

Ai−1 × 2i−1 (6.41)

For example, a binary number [0100000000]2 can be transformed to the real price 0 + (10 −

0)/
(
210 − 1

)
× 28 ≈ 2.50 by Eq. (6.41).

Figure 6.2. Illustration of the crossover and mutation operations

6.3.2 Profit-oriented GTS for lower-level CSP-R

Two customized GTSs are proposed to solve the lower-level CSP-R and upper-level reduced

MPDP-P sequentially. The GTS is adapted from the classical tabu search (TS) algorithm, which

is a well-known meta-heuristic applied to solve various combinatorial optimization problems. TS

starts with an initial solution, which is also set as the current solution and the optimal solution

at the very beginning. Then, a series of moves defined by a set of operators will be applied to the

current solution to generate new solutions, referred to as neighborhood solutions. For instance,

an operator can be simply defined as removing a request from the current route and inserting it
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into a different route. The different choices of requests, routes, and insertion locations correspond

to different moves. The current solution will be updated to be the best neighbourhood solution,

whereas the current optimal solution will be updated only if the objective value of the best

neighborhood solution is better than the incumbent one. Note that when applying moves to the

current solution, a memory structure named tabu list, will be employed to avoid cyclic iteration

and escape from local optima (Glover, 1986). Specifically, each time a neighborhood solution is

obtained, the corresponding move that generates this solution will be declared as tabu. Then,

the inverse operation of this move will be forbidden for a certain number of iterations unless it

can generate a better solution than the current optimal solution (Glover, 1986). The classical

TS, where all possible moves will be explored when an operator is conducted, can be very

time-consuming. To improve the computational efficiency, Toth and Vigo (2003) introduced an

effective granularity strategy into the TS, named as GTS, which explores only the promising

moves that are likely to generate good-quality solutions. The granularity strategy has shown

significant efficiency in finding good-quality solutions in less computation time. We will propose

a new granularity strategy based on the characteristics of the OSP problem and apply it to solve

the upper- and lower-level problems.

For the upper- and lower-level optimization problems, we first generate initial solutions for

CSP-R and reduced MPDP-P by a request-to-vehicle assignment method proposed by Cordeau

and Laporte (2003). The method assigns every request i to a randomly selected vehicle route

starting from a depot/station and ending at a depot/station, by inserting the corresponding

node i and i + σ sequentially in the selected routes. This technique ensures the fulfilment of

the capacity constraint of parking station/depot and pick-up and drop-off operations of each

request. All other constraints, such as time window constraint of requests and maximum ride

duration constraint of passengers, however, may be violated by the generated initial solution.

To eliminate the violation of constraints, we will impose the penalty on the solutions by defining

the unit penalty coefficient for the violation of each constraint and including the penalty cost

in the objective function value. We will then apply the aforementioned simple operator that

relocates a request to a different route. It is notable that, unlike the upper-level reduced MPDP-

P that aims to fulfill all the unserved requests with a minimized total cost, the lower-level CSP-R

seeks to maximize the total profit while allowing requests rejection given the limited on-demand

mobility vehicles. To enable the generation of new solutions with the operator that relocates

a request from one route to another route, some dummy vehicle routes, originating and ending

at a dummy station, will be constructed. The requests assigned to a dummy vehicle are those

unserved ones by OMP, and thus no profit and cost will be generated by serving these requests.

Two customized granularity strategies, named profit-oriented granularity and cost-oriented
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granularity, are proposed to generate a reduced number of neighborhood solutions for the CSP-

R and reduced MPDP-P, respectively. A feasibility check for the best neighborhood solution

will be conducted, and the penalty coefficient for the violated constraint will be increased by a

predefined value to further reduce its occurrence in future iterations. The optimal solution will

be updated only if we find a feasible neighbourhood solution better than the incumbent one.

In what follows, we will elaborate on the two granularity strategies that define the criteria for

promising moves.

Since the lower-level CSP-R is to find the profit-maximized service routes, a profit-oriented

granularity strategy is developed to explore promising moves that can generate solutions with

high profits. As such, we define PΠ
i,j as the profit of a vehicle serving requests i and j following

the sequence Π starting at request i,∀i, j ∈ Ωp,o ∪ Ωf,o. Considering the pickup and drop-off

operations of each request, there are three possible sequences, i.e., Π1 = (i, i+ σ, j, j + σ),Π2 =

(i, j, i+ σ, j + σ), and Π3 = (i, j, j + σ, i+ σ), serving request i before j, as shown in Figure 6.3.

Figure 6.3. Possible sequences of the served request i and j starting at request i

Let P̄i,j represent the average profit of a vehicle serving request i before j of the three

sequences. A greater value of P̄i,j indicates that it would be more profitable to utilize a vehicle

to fulfill request j after request i. Therefore, the move that can make a vehicle serve request

i before j with P̄i,j ≥ Pgran , where Pgran is the profit granularity threshold, is defined as a

promising move. For CSP-R, request i and j can be different types of requests, i.e., parcel

request or passenger request. We thus calculate PΠ
i,j according to the following four cases:

Case 1 (Requests i and j are both passenger ride requests):

PΠ
i,j = Ri +Rj − cΠ − c

(
rvi − ti,i+σ + rvj − tj,j+σ

)
, ∀Π ∈ {Π1,Π2,Π3} , i, j ∈ Ωp,o (6.42)

Case 2 (Requests i and j are both parcel delivery requests):

PΠ
i,j = uqfi + uqfj − cΠ, ∀Π ∈ {Π1,Π2,Π3} , i, j ∈ Ωf,o (6.43)

112



Case 3 (Request i is passenger ride request, whereas request j is parcel delivery request):

PΠ
i,j = Ri + uqfj − cΠ − c (r

v
i − ti,i+σ) , ∀Π ∈ {Π1,Π2,Π3} , i ∈ Ωp,o, j ∈ Ωf,o (6.44)

Case 4 (Request i is parcel delivery request, whereas request j is passenger ride request):

PΠ
i,j = Rj + uqfi − cΠ − c

(
rvj − tj,j+σ

)
, ∀Π ∈ {Π1,Π2,Π3} , i ∈ Ωf,o, j ∈ Ωp,o (6.45)

where cΠ is the total transportation cost along the sequence Π. For example, for a sequence

Π1 = (i, i+ σ, j, j + σ), we have cΠ = ci,i+σ + ci+σ,j + cj,j+σ.

Note that if the sequence Π violates any related constraint, i.e., time window constraint of

the request, i.e., Eq. (6.8), ride duration constraint of passenger, i.e., Eq. (6.10), working time

constraint of vehicle, i.e., Eq. (6.11), or vehicle load capacity constraint, i.e., Eqs. (6.14) and

(6.15), we will set PΠ
i,j =∞, which means request i and j can not be served by the same vehicle

following the corresponding sequence. The average profit P̄i,j is thus calculated by

P̄i,j =

∑
Π∈{Π1,Π2,Π3} P

Π
i,jζ

Π∑
Π∈{Π1,Π2,Π3} ζ

Π
, ∀i, j ∈ Ωp,o ∪Ωf,o (6.46)

where ζΠ is an auxiliary variable, which equals 1 if PΠ
i,j ̸=∞, and 0 otherwise. If ζΠ1+ζΠ2+ζΠ3 =

0, we set P̄i,j = 0, which means the request i and j cannot be served by the same vehicle starting

at serving request i. With the calculated PΠ
i,j and a given profit granularity threshold Pgran ,

we can figure out the promising moves such that PΠ
i,j ≥ Pgran . Then, we implement the moves

upon the current solution to generate neighborhood solutions while complying with the move

requirement, e.g., serve request i before j.

Figure 6.4 illustrates an example of generating neighborhood solutions considering profit-

oriented granularity for the current solution that two paired pick-up and drop-off requests are

served by two vehicles. In this figure, with the calculated profit-oriented granularity P̄i,j and

the pre-specified Pgran = 4, we can obtain the promising moves, i.e., the moves that can make

the vehicle serves request 3 before request 2. Then, we apply moves on the current solution

to generate neighborhood solutions. Two possible scenarios can be explored: i) move request

3 from the current route to the route that serves request 2, and ii) move request 2 from the

current route to the route that serves request 3. The right-hand side of Figure 6.4 exemplifies

two neighborhood solutions of the two scenarios.

Compared to the classical TS where all possibilities of chosen requests and insertion position

are explored, the granularity strategy can get reduced neighborhood solutions by only exploring
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Figure 6.4. An illustrative example of generating neighborhood solutions considering
profit-oriented granularity

the promising moves. Kindly note that a large Pgran means less moves are explored, resulting in

less time-consuming but limited searching for neighborhood solutions. In our study, the profit

granularity threshold Pgran is defined as dynamic with the implementation of iteration. The

granularity threshold Pgran will be initially set as Pgran = maxi,j∈Ωf,o∪Ωp,o

{
P̄i,j

}
and then

gradually decreased by Pgran ← Pgran − δ until the lower bound P gran is reached, where the

lower bound P gran can be defined according to the P̄i,j , e.g., P gran = χpmaxi,j∈Ωf,o∪Ωp,o

{
P̄i,j

}
,

where χp denote a parameter controlling the move exploration.

The step-by-step procedure of TS-P for solving lower-level CSP-R is summarized as follows:

• Step 0: (Initialization and data input) Input the parcel delivery requests Ωf,o, pas-

senger ride requests Ωp,o, and outsourcing service price u. Initialize current number of

iteration NL ← 1, maximum number of iterations Nmax
L , penalty coefficient ω, adaptive

factor for penalty coefficient ∆, and the TabuList.

• Step 1: (Generation and evaluation of the initial solution)

– Step 1.1: Generate an initial solution ϑ0 with the requests Ωf,o and Ωp,o, and

calculate the OMP’s total profit denoted by f (ϑ0, u) under solution ϑ0 and price u

considering the penalty cost.

– Step 1.2: Initialize current optimal solution by ϑ∗ ← ϑ0 and OMP’s total profit

under current optimal solution by fbest ← f (ϑ0, u).

• Step 2: (Neighborhood search)

– Step 2.1: Initialize current solution by ϑ ← ϑ0. Initialize the set of neighborhood

solutions N (ϑ) as ∅.

– Step 2.2: Explore promising Moves with the profit-oriented granularity strategy.
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∗ Step 2.2.1: Calculate average profit P̄i,j , ∀i, j ∈ Ωf,o ∪Ωp,o.

∗ Step 2.2.2: Initialize Pgran as Pgran ← maxi,j∈Ωf,o∪Ωp,o

{
P̄i,j

}
and obtain the

lower bound of profit granularity threshold by P gran ← χpPgran.

∗ Step 2.2.3: Obtain the promising Moves such that P̄i,j ≥ Pgran.

– Step 2.3: Generate neighborhood solutions by applying Moves on current solution

ϑ considering the tabu strategy, i.e., N (ϑ) = Neighbor(ϑ,Moves, TabuList, fbest),

where Neighbor(·) is the neighborhood search procedure. Specifically, we apply

Moves on current solution ϑ to generate its neighborhood solutions. For each gener-

ated neighborhood solution ϑ′, we will further check whether the move that generates

the neighborhood solution ϑ′ is forbidden by TabuList: if not, the solution ϑ′ will

be included in N (ϑ); otherwise we will check whether f (ϑ′, u) > fbest: if yes, the

solution ϑ′ will be included in N (ϑ).

– Step 2.4: If N (ϑ) ̸= ∅, go to Step 2.4.1; otherwise go to Step 2.5.

∗ Step 2.4.1: Find the best solution among all neighborhood solutions, i.e., ϑ̂ =

argmax
g′∈N (ϑ)

f (ϑ′, u).

∗ Step 2.4.2: Conduct feasibility check on solution ϑ̂. If violation occurs, we

modify the corresponding penalty coefficient by ω ← ω + ∆; otherwise update

current optimal solution by ϑ∗ ← ϑ̂, f best ← f(ϑ̂, u) if f(ϑ̂, u) > fbest.

∗ Step 2.4.3: Let ϑ ← ϑ̂, and update TabuList with the move that generates

solution ϑ̂ and go to Step 3.

– Step 2.5: If Pgran > P gran , let Pgran ← Pgran − δ and go to Step 2.2.3; otherwise

go to Step 4.

• Step 3: (Stopping condition) If NL ≤ Nmax
L , let NL ← NL + 1 and go to Step 2.3,

otherwise go to Step 4.

• Step 4: (Output) Output current optimal solution ϑ∗ and OMP’s total profit fbest.

Kindly note that the optimal solution ϑ∗ should not cause any violation on corresponding

constraints, which can be guaranteed by a feasibility check in Step 2.4.2. The total profit of

the optimal solution ϑ∗ is thus TP (ϑ∗, u). Meanwhile, by exploring the optimal solution ϑ∗,

the unserved parcel delivery requests under the offered price u will be grouped in set Ωf,o∗

rej (u),

which will be then input for the optimization of the upper-level reduced MPDP-P.
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6.3.3 Cost-oriented GTS for upper-level MPDP-P

Since the upper-level reduced MPDP-P is to find a cost-minimized service route to meet all

unserved parcel delivery requests, a cost-oriented granularity strategy is developed to explore the

promising moves that can generate solutions with low costs. As such, we define CΠ
i,j as the cost of

a vehicle serving request i and j following the sequence Π starting at request i,∀i, j ∈ Ωf,o∗

rej (u).

Similarly, there exist three possible sequences, i.e., Π1,Π2, and Π3, that serve request i before

j. Let C̄i,j denote the average cost of a vehicle serving request i before j of the three sequences.

A smaller value of C̄i,j indicates that it would be more cost-effective to use a vehicle to fulfill

request j after request i. Therefore, the move that can make a vehicle serve request i before

j with C̄i,j ≤ Cgran , where Cgran is the cost granularity threshold, is defined as a promising

move. For reduced MPDP-P, CΠ
i,j can be calculated by

CΠ
i,j = κΠ, ∀Π ∈ {Π1,Π2,Π3} , i, j ∈ Ωf,o∗

rej (u) (6.47)

where κΠ is the total transportation cost of the van along the sequence Π. For example, for

a sequence Π1 = (i, i + σ, j, j + σ), κΠ = κi,i+σ + κi+σ,j + κj,j+σ. Similarly, if the sequence

Π violates any related constraint, i.e., time window constraint of the request, i.e., Eq. (6.33),

working time constraint of van, i.e., Eq. (6.34), or van load capacity constraint, i.e., Eq. (6.36),

we set CΠ
i,j = ∞,∀Π ∈ {Π1,Π2,Π3} , i, j ∈ Ωf,o∗

rej (u), which means request i and j can not be

served by a same vehicle following the corresponding sequence. The average cost C̄i,j is thus

calculated by

C̄i,j =

∑
Π∈{Π1,Π2,Π3}C

Π
i,jl

Π∑
Π∈{Π1,Π2,Π3} t

Π
, ∀i, j ∈ Ωf,o∗

rej (u) (6.48)

where tΠ is an auxiliary variable that lΠ = 1 if CΠ
i,j ̸=∞, and tΠ = 0 otherwise. If tΠ1+tΠ2+tΠ3 =

0, we set C̄i,j = ∞, which means the requests i and j cannot be served by the same van by

starting at serving request i. With the calculated C̄i,j and a given cost granularity threshold

Cgran , we can figure out the promising moves such that C̄i,j ≤ Cgran . Then, we implement

the moves upon the current solution to generate neighborhood solutions while complying with

the move requirement, e.g., serve request i before j. Similar to the dynamic setting of Pgran ,

the cost granularity threshold Cgran will be initially set as Cgran = min
i,j∈Ωf,o∗

rej (u)

{
C̄i,j

}
and

gradually increased by Cgran ← Cgran + δ until the upper bound C̄gran is reached, where the

upper bound C̄gran can be defined according to the C̄i,j , e.g., C̄gran = χcmin
i,j∈Ωf,o∗

rej (u)

{
C̄i,j

}
,

where χc denote a parameter controlling the move exploration.

The step-by-step procedure of TS-C for solving upper-level reduced MPDP-P is summarized

as follows:
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• Step 0: (Initialization and data input) Input the unserved parcel delivery requests

Ωf,o∗

rej (u) under corresponding outsourcing service price u. Initialize current number of

iteration as NU ← 1, maximum number of iterations Nmax
U , penalty coefficient ω, adaptive

factor for penalty coefficient ∆, and TabuList.

• Step 1: (Generation and evaluation of the initial solution)

– Step 1.1: Generate an initial routing solution θ0 with the requests Ωf,o∗

rej (u), and

calculate the PSP’s total cost denoted by g (θ0, u) under solution θ0 considering the

penalty cost.

– Step 1.2: Initialize current optimal solution by θ∗ ← θ0 and PSP’s total cost under

current optimal solution by gbest ← g (θ0, u).

• Step 2: (Neighborhood search)

– Step 2.1: Initialize the current solution θ ← θ0. Initialize the set of neighborhood

solutions N (θ) as ∅.

– Step 2.2: Explore promising Moves with the cost-oriented granularity strategy.

∗ Step 2.2.1: Calculate average cost C̄i,j , ∀i, j ∈ Ωf,o∗

rej (u).

∗ Step 2.2.2: Initialize cost granularity threshold by Cgran ← min
i,j∈Ωf,o∗

rej (u)

{
C̄i,j

}
and obtain upper bound of cost granularity threshold by C̄gran ← χc · Cgran .

∗ Step 2.2.3: Obtain the promising Moves such that C̄i,j ≤ Cgran .

– Step 2.3: Generate neighborhood solutions by applying Moves on current solution

θ considering the tabu strategy, i.e., N (θ) = Neighbor (θ,Moves, TabuList, gbest),

where Neighbor (·) is the neighborhood search procedure. Specifically, we apply

Moves on current routing solution θ to generate its neighborhood solutions. For

each generated neighborhood solution θ′, we will first check whether the move that

generates the neighborhood solution θ′ is forbidden by TabuList: if not, the solution

θ′ will be included in N (θ); otherwise, we will check whether g (θ′, u) < gbest : if yes,

the solution θ′ will be included in N (θ).

– Step 2.4: If N (θ) ̸= ∅, go to Step 2.4.1, otherwise go to Step 2.5.

∗ Step 2.4.1: Find the best solution among all neighborhood solutions, i.e., θ̂ =

argmin
θ∈∈N (θ)

g (θ′, u).

∗ Step 2.4.2: Conduct feasibility check on solution θ. If violation occurs, we

modify the corresponding penalty coefficient by ω ← ω + ∆; otherwise update

the optimal solution by θ∗ ← θ̂, gbest ← g(θ̂, u) if g(θ̂, u) < gbest.
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∗ Step 2.4.3: Let θ ← θ̂, and update TabuList with the move that generates

solution θ̂ and go to Step 3.

– Step 2.5: If Cgran < C̄gran , let Cgran ← Cgran + δ and go to Step 2.2.3; otherwise

go to Step 4.

• Step 3: (Stopping condition) If NU ≤ Nmax
U , let NU ← NU + 1 and go to Step 2.3;

otherwise go Step 4.

• Step 4: (Output) Output current optimal solution θ∗ and the PSP’s total cost gbest.

Kindly note that the final optimal solution θ∗ should not cause any violation on correspond-

ing constraints, which can be guaranteed by a feasibility check on θ∗ in Step 2.4.2. The total

cost of the optimal routing solution θ∗ is thus TC (θ∗, u).

6.4 Numerical Experiments

In this section, random instances are generated to test the performance of our proposed

IH algorithm in solving the studied OSP problem. The efficiency of the proposed objective-

oriented granularity strategies for neighborhood search, is verified by comparing them with the

traditional strategy. A real-life case study in Hong Kong is conducted to evaluate the proposed

COM model and explore the impact of some key factors on the performance of the COM business

model. The algorithms are coded in MATLAB 2021a on a personal computer with MacOS Big

Sur 11.6, Apple M1 3.2GHz CPU.

6.4.1 Test instance generation and parameter setting

We will generate some illustrative instances to test the efficiency of our proposed solution

methods. The instances are adapted from the Solomon datasets. Each instance within the

datasets contains a single depot and multiple delivery requests, incorporating details related to

delivery location, load of the request, service time window, and service duration. To ensure

the applicability of these instances to our specific problem context-wherein each package or

passenger request is associated with corresponding pick-up and drop-off requests, we introduce

certain modifications. For illustrative purposes and without loss of generality, we will select

data from the C121 case and implement further adaptations. Specifically, we first select m

and n requests from dataset to serve as the parcel and passenger pick-up requests, respectively.

An equal number of requests with distinct locations are chosen from the same set to act as

corresponding drop-off requests. To uphold the validity of requests, we introduce modifications

to several parameters, including the service time window, load, passenger number, and service
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duration. All requests within the set operate within a time window spanning from 0 to 1351

, regarded as the operation period. For the parcel pick-up requests, we maintain the original

service time window and a service duration of 90. Each parcel pick-up request is allocated a

positive integer load of parcels, randomly generated within the range [1,5]. For the passenger

pick-up requests, we retain the original service time window, assigning each request a positive

integer number of passengers, randomly generated within the range [1,4], and a service duration

of zero. For the drop-off requests, the earliest service time is calculated as the sum of the earliest

pick-up time and the travel time from the pick-up to the drop-off location. Similarly, the latest

service time is determined by adding the maximum delivery or ride time to the latest pick-up

time. The load of parcels and the number of passengers for drop-off requests are set as the

negative values of their corresponding pick-up requests. The service duration for parcel drop-off

requests is set at 90, whereas it is zero for passenger drop-off requests. In addition to these

parameters, five locations are randomly selected to serve as depots for parking vans. A total of

20 vans are randomly allocated to these depots, ensuring that each depot houses no more than

five vans. Five other locations are also randomly selected to serve as stations for parking on-

demand mobility vehicles. A total of 20 vehicles are randomly distributed across these stations,

with each station accommodating no more than five vehicles. The model’s detailed parameter

setting is illustrated in Table 6.1.

Table 6.1. Parameter setting for the randomly generated instances

Parameters value Parameters value Parameters value

Upper-level

Ki,j $10/unit ψ $50/veh Ŵk 800

Qk 15 Qh 5 qfi {1,2,3,4,5}
ei [0,1351] li [0,1351] m {40,50,60,70}
ei+σ ei + ϕi+σ li+σ ei+σ + 300

Lower-level

ci,j $3/unit c $2 Ri $10/unit
Qp

v 4 Qf
v 10 Qs 5

Ŵv 800 ei [0,1351] li ei + T̂i
qpj {1,2,3,4} ei+σ ei + ti,i+σ li+σ ei+σ + T̂i
ξmax 4 u 0 u $10
T̂i 200 n {40,50,60} Pi $10

The upper- and lower-level problems are both assigned a maximum iteration of 200. We

utilize a total of 20 generations, each comprising 10 individual outsourcing service prices, to up-

date these prices. Based on experimental testing, the penalty coefficients for violated constraints

are established as follows: the penalty coefficients for the violated time window constraint of

the request ωtw = 100, the working time constraint of the van and on-demand mobility vehicle

ωwtk = ωwtv = 20, the van load capacity constraint ωcap k = 30, the ride duration constraint of

the passenger ωrd = 20, and the vehicle load capacity constraint ωf
cap v = 15 and ωcap p = 10.
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6.4.2 Performance of IH method on test instances

Different combinations of parcel and passenger requests are utilized to evaluate the perfor-

mance of our proposed IH algorithm with objective-oriented granularity strategy for solving the

OSP problem. A comparison is conducted between the results obtained from the method with

classical TS method, which considers all possible moves (TS algorithm), and our proposed IH

algorithm with objective-oriented granularity strategy, which focuses on promising moves under

the objective-oriented granularity strategy (IH algorithm). The detailed results are shown in

Table 6.2. We compare the final obtained outsourcing service price (u∗), and overall computa-

tion time (CPU) for different instances with varying total numbers of passenger ride requests

(n) and parcel delivery requests (m). In addition, we compare the PSP’s total cost and the

OMP’s total profit under the obtained outsourcing service price by the classical TS method and

our developed TS method with granularity strategy, as depicted in Figure 6.5.

Table 6.2. Results obtained by TS and IH methods under different instances

Instance n m
IH Method TS algorithm

u∗($) CPU (min) u∗($) CPU (min)

1

40

40 6.4 14.2 6.4 24.1
2 50 6.3 16.3 6.3 41.5
3 60 6.3 19.3 6.3 57.7
4 70 6.7 24.2 6.7 82.1

5

50

40 6.4 17.1 6.4 29.3
6 50 6.6 21.4 6.6 45.9
7 60 6.2 28.9 6.2 76.4
8 70 6.6 33.2 6.6 97.1

9

60

40 6.9 21.2 6.9 34.1
10 50 6.6 29.5 6.6 55.2
11 60 6.5 36.7 6.5 89.4
12 70 6.3 47.5 6.3 113.5

Average - - - 25.8 - 62.2

The results presented in Table 6.2 demonstrate that, given the same number of iterations for

all instances, our proposed method achieves an equivalent outsourcing service price in a shorter

computational time (25.8 minutes vs. 62.2 minutes on average) compared to TS algorithm. In

our numerical experiments, the TS algorithm requires a substantial amount of time to exhaus-

tively explore all possible moves. In contrast, our approach employs a granularity strategy that

focuses on exploring promising moves, leading to the discovery of high-quality solutions in less

time. This time-efficient solution offers significant decision-making support for PSP.

Furthermore, Figure 6.5 indicates that the total cost and total profit achieved by the GTS

method are superior to those achieved by the classical TS method, i.e., lower TC for PSP and
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Figure 6.5. Comparison of TC and TP by classical TS and GTS in different instances

higher TP for OMP. This underscores the efficacy of the GTS method in identifying optimal

service routes, while reducing computation time due to the incorporation of the customized

objective-oriented granularity strategy. Therefore, the IH algorithm, which incorporates cos-

toriented and profit-oriented granularity, exhibits reliability in terms of computation time and

optimization effectiveness. Consequently, we apply the IH algorithm to a real-life case study to

gain valuable managerial insights for the operations and management of the COM model.

6.4.3 Case study

We then examine a real-life case study conducted in Hong Kong to demonstrate the applica-

bility and effectiveness of the proposed COM business model. We first capture some geographical

data of supermarkets and daily necessities stores in Hong Kong, such as Wellcome, ParknShop,

Watsons as the pick-up locations of the parcel delivery requests, and some residential areas as

the drop-off locations of the parcel delivery requests (See Figure 6.6a). As for the passenger

ride request data, we include business districts, schools, and residential areas to generate origin

and destination pairs for these requests (See Figure 6.6b). The specific requirements associated

with these requests, such as time windows, the number of parcels for each parcel request, and

the number of passengers for each passenger request, are randomly assigned in accordance with

the parameters outlined in Table 6.3. A PSP possesses a fleet of 20 vans that are available

for providing parcel delivery services to fulfill parcel delivery requests. Initially, these vans are

randomly distributed across five depots, which are selected from various parking areas in Hong

Kong. On the other hand, the OMP operates a total of 20 ondemand mobility vehicles capable of

serving both parcel and passenger requests. Similar to the vans, these vehicles are randomly dis-
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tributed among five stations. Subsequently, the PSP aims to satisfy all parcel delivery requests

by collaborating with the OMP within the framework of the COM model.

(a) Distribution of parcel delivery requests (b) Distribution of passenger ride requests

Figure 6.6. Distribution of parcel and passenger requests

Table 6.3. Parameter setting for the case study

Parameters value Parameters value Parameters value

Upper-level

Ki,j $10/unit ψ $50/veh Ŵk 4h

Qk 15 Qh 5 qfi 1
ei [12:00,14:00] li 14:00 m 70
ei+σ ei + ϕi+σ li+σ ei+σ + 2hrs

Lower-level

ci,j $3/unit c $2 Ri $10/unit
Qp

v 4 Qf
v 10 Qs 5

Ŵv 4h ei [12:00,14:00] li ei + T̂i
qpj {1,2,3,4} ei+σ ei + ti,i+σ li+σ ei+σ + T̂i
ξmax 2 u 0 u $10
T̂i 1h n {40,50,60} Pi $10

6.4.4 Impact analysis of OMS-based CM delivery service

To test the efficacy of the proposed COM model, we compare some key indicators under the

COM model and the traditional non-co-modal delivery model in a case with 70 parcel delivery

requests and 70 passenger ride requests. In the non-co-modal delivery model, the PSP aims

to fulfill all parcel delivery requests using its fleet while minimizing costs. Simultaneously, the

OMP solely concentrates on maximizing its total profits by serving passenger ride requests.

We compare various metrics under the two different models, including the PSP’s total cost

(TC), outsourcing cost paid by the PSP (OC), total profit earned by the OMP (TP), obtained

outsourcing service price (u∗), passenger service rate of the OMP (PSR), and parcel service

rate by the OMP (FSR). Additionally, we examine the percentages of cost saving for the PSP
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(Saving) and the percentages of increased profit for the OMP (Increased) achieved by the COM

model compared to the non-co-modal delivery mode. Detailed result is shown in Table 6.4.

Table 6.4. Comparison of Non-co-modal and co-modal delivery models

Model TC($) Saving(%) OC($) TP($) Increased(%) u∗($) PSR(%) FSR(%)

Non-co-modal 2013.4 - 0.0 2532.1 - 0.0 90% 0.00%
CM delivery 1671.1 17.0% 541.0 2932.2 15.8% 6.5 86% 43%

In Table 6.4, in the case of non-co-modal delivery model, the PSP and OMP serve the parcel

delivery requests and passenger ride requests independently. For the PSP, due to the fixed cost

of employing dedicated delivery staffs and using delivery vans, the total cost paid by the PSP is

relatively large. For the OMP, in the absence of COM mode, the OMP can only serve passenger

ride requests and cannot make full use of their idle transportation capacity, thus obtaining limited

profit. However, when the PSP collaborates with the OMP under the COM model, the PSP

can reduce up to 17.0% of the total cost by outsourcing partial parcel delivery requests (43%)

to the OMP. This collaboration allows the PSP to alleviate the financial burden associated with

fully self-operating services. This reduction in cost can be attributed to the lower average unit

cost of outsourcing services compared to self-operating services. Furthermore, outsourcing to

the OMP incurs no additional fixed costs for labor and vehicle usage. These findings highlight

the superiority of our proposed COM model over traditional delivery models, such as those

focused on fulfilling customer delivery requests through selfoperating logistics (e.g., the study

by Qu and Bard (2013)). From the perspective of the OMP, accepting additional parcel delivery

requests from the PSP leads to a growth in total profit of up to 15.8%, while the impact on

passenger services is relatively modest, with only a 4% reduction in passenger requests being

accommodated. This result aligns with the findings of Li et al. (2014), which suggest that serving

additional parcel requests can yield higher profits for the OMP.

To gain a deeper understanding of the factors influencing the collaboration between PSP

and OMP within the COM model, we perform a sensitivity analysis on several key factors that

may impact the decision-making of the partners. We aim to extract valuable managerial insights

and provide decision support to the PSP and other stakeholders interested in implementing the

COM model to enhance their service capacity and improve service quality. Our analysis focuses

on key indicators such as the PSP’s total cost (TC), the OMP’s total profit (TP), and the parcel

request service acceptance rate by the OMP (FSR).

Ride duration tolerances of passenger

As we mentioned before, the COM model operates under the assumption that passengers

are willing to share a ride with parcels and other passengers, provided it falls within their max-
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imum ride time tolerance. The maximum tolerance for passengers’ ride time may significantly

impact the feasibility of accepting parcel requests by the OMP, as the OMP must prioritize

passenger transportation services. Consequently, we compare the results obtained under various

ride duration tolerances ranging from 60 to 120 minutes for passengers, as shown in Figure 6.7.

(a) Variations of the TP and TC (b) Variations of FSR

Figure 6.7. Results under different ride duration tolerances of passenger

Figure 6.7 clearly demonstrates that as the maximum tolerance for passengers’ ride time

increases, there is a notable increase in the service rate of parcel requests by the OMP, as

illustrated in Figure 6.7(b). This can be attributed to the broader ride duration tolerance,

which allows the OMP to effectively utilize the spare space in their vehicles and accommodate

a greater number of parcel requests. Consequently, the OMP’s total profit exhibits an upward

trend, as shown in Figure 6.7(a). Simultaneously, the PSP benefits from a significant reduction

in total costs, primarily due to the outsourcing of a portion of the parcel delivery requests.

Moreover, the sensitivity analysis concerning passenger detour tolerance suggests that as this

tolerance increases, the PSP can lower the outsourcing service price to reduce the total cost while

maintaining a high service rate by OMP. This is possible because vehicles have the potential

to accommodate more parcel requests with the spare capacity provided by the increased detour

tolerance, even if the outsourcing service price is not particularly significant.

Parcel load of delivery request

Given that the primary business of the OMP is passenger transportation, the capacity to

serve additional parcels is limited without causing significant disruptions to passenger service.

Additionally, the load associated with each parcel request may influence the OMP’s decision

regarding serving those requests. To examine the impact of the load of the parcel delivery

request on the COM model, we examine the variations of TP, TC, and FSR under different

loads of the parcel, as illustrated in Figure 6.8. We randomly generate a positive number within

different load thresholds, such as [1,2], to represent the load of each parcel request.
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(a) Variations of the TP and TC (b) Variations of FSR

Figure 6.8. Results under different loads of each parcel delivery request

Figure 6.8 indicates that as the load of each parcel request increases, the service rate of the

OMP for parcel requests decreases, as shown in Figure 6.8(b). This can be attributed to the fact

that when a single parcel request occupies a significant capacity of the vehicle’s available capacity,

the vehicle cannot accommodate additional parcel requests during its itinerary. Furthermore,

as the load of each parcel delivery request increases, the PSP’s total cost rises, while the OMP’s

total profit decreases, as illustrated in Figure 6.8(a). This finding suggests that the PSP can

effectively outsource parcel delivery requests with small loads to the OMP, allowing them to

concentrate on handling parcel requests with larger loads. By doing so, the PSP can maximize

cost savings while optimizing its operational efficiency. The result suggests that when the load

of the outsourced parcels is large, the PSP may need to increase the outsourcing service price to

enhance the parcel service rate by OMP. This is because setting a higher profit per unit parcel

can incentivize the vehicles to serve parcels with large loads, given the limited spare loading

capacity, while covering the cost of detour and subsidizing passengers.

Penalty for unmet passenger request

Due to the service-oriented nature of passenger transportation, penalties are imposed for

unfulfilled passenger requests. Consequently, these penalties may influence the decision-making

process of the OMP regarding parcel delivery requests. To investigate the impact of penalties

on the COM model, we analyze the variations in TP, TC, and FSR under different penalty

settings, as presented in Figure 6.9. We can see that when a high penalty is imposed for

unfulfilled passenger requests, the FSR decreases. A higher penalty discourages the OMP from

serving parcel delivery requests by prioritizing passenger requests due to their associated high

costs. Consequently, the TP decreases while the TC increases simultaneously. Conversely, when

a low penalty is imposed, the FSR increases. Additionally, TP exhibits a slight increase, while

TC experiences a slight decrease. Notably, the growth of TP plateaus even as the penalty
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decreases. This may be attributed to the fact that although the OMP can stimulate profit

growth by rejecting passengers and focusing on parcel delivery requests, the loss of profit from

passenger service and the limited profit from parcel delivery hinder further profit increment.

(a) Variations of the TP and TC (b) Variations of FSR

Figure 6.9. Results under different penalties for unmet passenger request

6.5 Concluding Remarks

This chapter investigates the OSP problem for the COM service, taking into account the

Stackelberg gameplay between PSP and OMP when formulating the business collaboration.

Based on the gameplay between PSP and OMP, a bilevel optimization model is formulated for

the OSP problem, where the upper-level model [MPDP-P] aims to minimize the PSP’s total

cost consisting of the outsourcing cost and the self-operating cost, while the lower-level model

[CSP-R] is intended to maximize the total profits earned by serving the accepted passenger

ride requests and parcel delivery requests. An IH algorithm combining two GTS algorithms,

i.e., the TS-P and the TS-C, and the genetic algorithm is developed to solve this problem.

The numerical experiments, including several randomly generated instances and a real-life case

study, are finally conducted to test our models and solution methods. The results show that our

proposed model and solution methods can provide the co-modal delivery service participants

with a reliable outsourcing service price that enables them to obtain mutual benefit from this

collaborative mode. On the one hand, the PSP gets up to 17.0% cost-savings by outsourcing

partial parcel requests to the OMP. On the other hand, the OMP obtained improved up to

15.8% total profit by serving additional parcel requests with the spare capacity of the passenger

transportation vehicles during the itinerary of serving passengers. Sensitivity analysis indicates

that the ride duration tolerance of passengers, carrying capacity of parcel load, and penalty cost

of unmet passenger requests affect the OMS-based CM delivery service, providing managerial

insights for stakeholders.
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6.6 Appendix: Notations

Set

S Set of stations for parking vehicles, s ∈ S

So Set of origin stations of on-demand mobility vehicles, s ∈ So

Sd Set of destination stations of on-demand mobility vehicles, s ∈ Sd

H Set of depots for parking vans, h ∈ H

Ho Set of origin depots of vans, h ∈ Ho

Hd Set of destination depots of vans, h ∈ Hd

V Set of vehicles v ∈ V

K Set of vans k ∈ K

Ωf,o Set of pick-up nodes of parcel delivery requests, Ωf,o = {1, 2, · · · ,m}

Ωp,o Set of origins of passenger ride requests, Ωp,o = {m+ 1,m+ 2, · · · , σ}

Ωf,d Set of drop-off nodes of parcel delivery requests, Ωf,d = {σ+1, σ+2, · · · , σ+m}

Ωp,d Set of destinations of passenger ride requests, Ωp,d = {σ+m+1, σ+m+2, · · · , 2σ}

Ωf,o∗

rej (u) Set of pick-up nodes of unserved parcel delivery requests by OMP under price u

Ωf,d∗

rej (u) Set of drop-off nodes of unserved parcel delivery requests by OMP under price u

Parameters

m Number of parcel delivery requests

n Number of passenger ride requests

σ Total number of requests, σ = m+ n

Ri Revenue for serving each passenger request by on-demand mobility service

Pi Penalty incurred if the passenger request is denied service

di Service duration for serving parcel or passenger request

Qpv Maximum capacity of vehicle v for loading passengers

Qfv Maximum capacity of vehicle v loading parcels

Qfk Maximum capacity of van k loading parcels

ξmax Maximum number of allowed stops between a passenger request

Qs Capacity of the station s for parking vehicles

Qh Capacity of the depot h for parking vans

η Fixed operating cost for using each on-demand mobility vehicle

ψ Fixed operating cost for using each van

ci,j Travel cost by the on-demand mobility vehicle from node i to j

κi,j Travel cost by the van from location i to j

c Compensation paid to passengers for each unit detour duration
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[ei, li] Time window at node i

T̂i Maximum tolerance of ride time for passenger request i

Ŵv Maximum service time of vehicle v

Ŵk Maximum service time of van k

ti,j Travel time from node i to j by vehicle

φi,j Travel time from node i to j by van

u Lower bound of the price for delivering each parcel

ū Upper bound of the price for delivering each parcel

M A large number

Variables

rvi Continuous variable to denote the passenger’s total ride time in vehicle v ∈ V of

passenger request i ∈ Ωp,o

τvi Continuous variable to denote the time epoch when vehicle v starts service at

node i ∈ N1

τki Continuous variable to denote the time epoch when van k starts service at node

i ∈ N2

αv Continuous variable to denote the number of passengers in vehicle V ∈ V after

the service at node i ∈ N1

βv Continuous variable to denote the load of parcels in vehicle v ∈ V after service

at node i ∈ N1

βki Continuous variable to denote the load of parcels in van k ∈ K after service at

node

ξvi Integer variable to denote the order of node i ∈ N1 in vehicle v ’s service sequence,

ξvi ∈ {1, 2, · · · , 2(m+ n+ 1)}

zi Binary variable that equals 1 if request i ∈ Ωp,o ∪Ωf,o is served, and 0 otherwise

xvi,j Binary variable that equals 1 if vehicle v ∈ V travel directly from node i to j,

i, j ∈ N1, and 0 otherwise

yki,j Binary decision variable that equals 1 if van k ∈ K travel directly from node i to

j, i, j ∈ N2, and 0 otherwise

u Continuous variable to denote the outsourcing service price provided by PSP for

serving per unit parcel
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Chapter 7 Conclusions and Recommendations

7.1 Overview and Research Contributions

This thesis has addressed four research problems concerning pricing optimization and a

series of strategical and operational decision-making optimizations for urban delivery service

providers using three types of IPG transportation services: (1) crowd-shipping service utilizing

ordinary travelers for door-to-door O2O orders, (2) co-modal transportation service leveraging

public transit systems for parcel backbone transportation, and (3) co-modal delivery service

with on-demand mobility services for multiple parcel pickup and delivery demands.

Chapter 3 addresses pricing optimization for the OT-based CS service. To bridge the

research gap regarding the joint compensation and service routing optimization for a hybrid de-

livery system with dedicated delivery service and OT-based CS service, Chapter 3 investigates a

C&R problem to jointly determine the uniform or differentiated compensation rates and service

routes for crowd-couriers and dedicated vehicles to fulfill all O2O orders at minimal cost. An

MINLP model is formulated for the C&R-U problem, and linearization techniques are employed

to transform it to an MILP model. Additionally, a customized H-ILS-VNS algorithm is devel-

oped to solve larger-scale cases by iteratively addressing the R-C&R-U problem via a VNS-TS

algorithm with the compensation rate updated by ILS. The C&R-D problem is formulated as

an MILP model by exploring the problem features, and the adjusted VNS-TS is utilized to solve

its larger-scale cases. Numerical experiments on a series of instances with varying numbers of

O2O orders and crowd-couriers are conducted to assess the performance of the proposed models

and solution methods. Additionally, numerical experiments and sensitivity analysis are also per-

formed to evaluate the benefits of the OT-based CS service and the impact of ETP and carrying

capacity of crowd-courier on the operations management of the collaborative delivery system.

Chapter 4 extends the exploration of pricing optimization of OT-based CS service by Chap-

ter 3, examining a CACR problem for a collaborative delivery system with collaborative delivery

strategy for shared customers. The studied problem aims to optimize the collaboration strategy,

allocate O2O orders among the retailers efficiently, set appropriate compensation rates, and

determine optimal service routes for both dedicated vehicles and crowd-couriers. A bi-objective

optimization model with the objectives of minimizing operational costs and carbon emissions

is formulated for the CACR problem. To solve the complicated problem, we develops a DIO

method, which aims to find Pareto-optimal solutions for the master CACR problem by iteratively

solves a series of decomposed bi-objective sub-problems with updated candidate compensation
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rate and collaboration strategy. For solving the bi-objective sub-problems, a ‘cluster-first, route-

second’ approach is employed, where a STC method is first proposed to allocate O2O orders

among retailers based on spatiotemporal proximity and an enhanced CW-NSGA-II is developed

to determine efficient routing solutions for both dedicated vehicles and crowd-couriers. To vali-

date our proposed solution method and the collaborative delivery system, we conduct numerical

experiments using adapted benchmark instances and a simulated case in Chongqing, China.

Chapter 5 addresses pricing optimization for the PT-based CM transportation service. To

close the research gap concerning pricing optimization and the coordination and scheduling of

PT vehicles, Chapter 5 delves into a CSP, aiming to determine the optimal service price and

PT vehicle schedules for the PT-based CM transportation service, alongside the optimal routing

of dedicated vehicles for a conventional delivery service. A bilevel programming framework is

employed to model the CSP problem, capturing the dynamic interactions between LSP and PTO.

In this framework, the lower-level BTS model is established to ascertain the optimal operating

schedules for PTO’s transit vehicles under the given service price. Concurrently, the upper-level

VRP-P model is formulated to determine the optimal service price and routing plans for the

LSP’s dedicated delivery vehicles. A tailored ITH method incorporating two GTS algorithms and

an ABC algorithm is developed to solve the intricate bilevel optimization problem, by iteratively

solving the lower-level BTS problem, the reduced upper-level VRP-P problem, and updating

the service price. Numerical experiments on a series of randomly generated instances and a

group of real-life cases are conducted to evaluate the performance of the proposed ITH method

and benefits of incorporating PT-based CM transportation services. Furthermore, sensitivity

analyses are carried out to examine the key factors affecting the new business model and derive

managerial implications for stakeholders.

Chapter 6 addresses pricing optimization for the OMS-based CM delivery service. To

bridge the research gap about the neglect of the consideration of strategic interplay between the

PSP and OMP participated in the OMS-based CM delivery service, Chapter 6 studies an OSP

problem to find the optimal outsourcing service price and efficient service routes that enable the

PSP to fulfill all parcel delivery requests cost-effectively while maximizing the OMP’s profits

from both passenger and parcel services. A bilevel arc-based programming model is developed to

effectively calibrate the leader-follower dynamics inherent in the game between PSP and OMP.

In this framework, the lower-level CSP-R model is developed to determine the OMP’s optimal

decisions under the PSP’s proposed outsourcing price, whereas the upper-level MPDP-P model

is built to identify the optimal outsourcing service price and the PSP’s self-operating service

routes. To solve this complex bilevel problem, a customized Iterative Hybrid (IH) algorithm

is developed, incorporating two granular tabu search algorithms and a genetic algorithm. This
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algorithm is uniquely tailored to the problem structure, adopting a profit-oriented granularity

approach for the lower-level CSP-R and a cost-oriented granularity for the upper-level reduced

MPDP-P, enhancing the computational efficiency of the tabu search components. Numerical

experiments are conducted on a series of randomly generated instances and a real-world case

to evaluate the performance and practicality of the proposed models and solution strategies.

Additionally, sensitivity analysis explores how various factors, such as the ride duration tolerance

of passengers, affect the OMS-based CM delivery service, providing essential managerial insights

for stakeholders.

7.2 Recommendations for Future Studies

There are various aspects in which prospective research for the three forms of IPG trans-

portation services can be undertaken.

(1) Recommendations for future studies on OT-based CS

Current research on OT-based CS service has primarily focused on examining the impor-

tance of jointly optimizing compensation and service routes within hybrid delivery systems that

integrate dedicated vehicles and crowd-sourced couriers, with an emphasis on static scenarios.

Future studies can extend this focus to dynamic and stochastic environments. This would help

refine dynamic compensation structures and task allocation by considering real-time O2O or-

ders and the variability in crowd-courier availability. Additionally, future research could explore

the elasticity of CS service supply, allowing for more adaptable strategies in compensation and

routing design based on varying compensation levels. While existing studies optimize operations

across a collaborative system involving multiple retailers under a unified brand, future research

could investigate optimization strategies for individual retailers with different brands and oper-

ational costs. Another important area for future research is the equitable allocation of costs and

carbon emissions among retailers, especially when system-wide optimization results in disparate

impacts on individual participants.

(2) Recommendations for Future Studies on PT-based CM transportation

Future studies on PT-based co-modal transportation can address uncertainties related to

the carrying capacities and travel times of buses within a stochastic service model. Research

could also explore differentiated pricing strategies that determine optimal pricing for co-modal

transportation services, considering the variability in bus schedules and capacities. Additionally,

future analyses could examine more complex scenarios, such as many-to-many or one-to-many-

to-one pickup and delivery requests, to gain deeper insights into the operational performance of
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PT-based co-modal transportation services under varied conditions.

(3) Recommendations for Future Studies on OMS-based CM delivery

Research on OMS-based co-modal delivery currently focuses on developing pricing strategies

that support collaboration between PSP and OMP, aiming to establish cost-effective outsourcing

prices for sustainable operations amidst fluctuating parcel and passenger demands. Future

research should incorporate the stochastic nature of these demands to refine dynamic pricing

models and tailor outsourcing prices to specific temporal scenarios. Additionally, while current

studies model individual vehicles and requests, future research could adopt a more holistic

approach that considers aggregate vehicle flows and spatial distributions, addressing broader-

scale challenges. Future studies should also model a more nuanced passenger demand function

that reflects behavioral variations, offering a more precise understanding of passenger tolerance

towards crowdsourced services. Lastly, considering diverse pickup and delivery configurations,

such as paired and hybrid scenarios, could provide a more comprehensive understanding of

logistical efficiencies in co-modal delivery.

(4) Other recommendations for future studies

In this study, we examine three distinct singular IPG transportation models for the in-

tegrated transportation of people and goods. Future research could explore the synergistic

delivery involving multiple IPG transportation models. For example, the transportation process

could be divided into tiers: initial transportation could be conducted using FRPT vehicles, such

as buses and metro systems, followed by last-mile delivery executed by ordinary travelers or

on-demand mobility vehicles. Furthermore, due to the lack of real-life data in this study, we

have relied on simulated data. Future research should focus on establishing collaborations with

enterprises to obtain actual operational data from public transportation systems and shared

mobility services. Access to real-world data would greatly enhance the depth and applicability

of research, allowing for a more thorough examination and effectiveness analysis of various IPG

transportation models. Additionally, it is recommended that future studies integrate advanced

data analytics and machine learning techniques to better predict logistics outcomes and opti-

mize the integration of different IPG transportation models. Engaging with policymakers could

also help tailor these models to comply with regulatory frameworks and address any socioeco-

nomic implications, thereby facilitating smoother implementation and scaling of integrated IPG

transportation services.
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