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Abstract

A knowledge graph (KG) is a structured representation of information that connects

entities and their relationships in a graph format. It is a powerful tool for organizing

and querying vast amounts of data, enabling more efficient data retrieval and anal-

ysis. In the context of Web 3.0, decentralization plays a crucial role in reshaping

how information is managed and shared online. Decentralized Knowledge Graphics

(DKG) represent a paradigm shift in knowledge management, where the creation,

transferring, and query of KG data are distributed among a network of participants.

This decentralized approach promotes collaboration, diversity of perspectives, and

collective intelligence, leading to more dynamic and inclusive knowledge ecosystems.

However, the openness and decentralization of these networks can also lead to secu-

rity concerns, including data poisoning attack, leakage of sensitive information and

malicious data manipulation. In this thesis, we analyze various security risks in DKG

and propose novel solutions to build and manage trustworthy DKG.

First, we focus on DKG construction process, i.e., security issues in Federated Knowl-

edge Graph Embedding (FKGE). FKGE is an emerging collaborative learning tech-

nique to construct DKGs. However, poisoning attacks in FKGE, which lead to biased

decisions by downstream applications, remain unexplored. We systematize the risks

of FKGE poisoning attacks, from which we develop a novel framework for poisoning

attacks that force the victim client to predict specific false facts. Based on the attack

framework, we explore a blockchain-based defense strategy that can solve this prob-
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lem by changing the aggregation paradigm. Second, we consider the data ownership

protection in DKG sharing. Without central oversight, it is challenging to enforce re-

strictions or audit data access and usage effectively across all DKG participants. We

propose Pistis, the first DKG provides SPARQL queries with data ownership guar-

antees. Third, we consider the data integrity and query verifiability requirements in

DKG queries. While existing studies focus on ensuring data integrity, how to ensure

query verifiability - thus guarding against incorrect, incomplete, or outdated query

results - remains unsolved. We propose VeriDKG, the first SPARQL query engine

for DKG that offers both data integrity and query verifiability guarantees.

In summary, the thesis aims to build secure and trustworthy decentralized knowledge

graphs from the perspective of construction, sharing and query. Theoretical anal-

ysis and experimental evaluations demonstrate the performance advantages of our

methods with provable security.
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Chapter 1

Introduction

1.1 Overview

The Semantic Web underpins Knowledge Graphs (KGs) as structured frameworks

that map out the connections between entities and their relationships, offering a sys-

tematic approach to managing and navigating extensive datasets [110, 112, 78]. In

the realm of Web 3.0 [43, 80], the emphasis on decentralization significantly alters

the landscape of online information handling and exchange. Decentralized Knowl-

edge Graphs (DKGs) signify a transformative approach to knowledge stewardship,

characterized by the decentralized creation, sharing, and query of knowledge across a

community network [143, 5, 16]. This decentralized model fosters cooperative efforts,

embraces a multitude of viewpoints, and harnesses collective wisdom, contributing to

more adaptable and inclusive knowledge environments. Such an approach empow-

ers users and communities to jointly create and refine knowledge assets, fostering

innovation and collaboration in today’s digital era. Figure 1.1 shows DKG’s system

model and query process. In a DKG system, each data owner trains a local knowl-

edge graph embedding (KGE) model to construct its own KG subgraph, and multiple

data owners employ federated knowledge graph embedding (FKGE) to improve the

1



Chapter 1. Introduction

SELECT ?player ?team 
WHERE
{ <?player, win, 2023_Kopa_Trophy_award> ; 
<?player, team, ?team >. }

Subquery:
<?player, win, 

2023_Kopa_Tro
phy_award> >

Subquery:
<?player, 

team ,?team? >. 

Jude Bellingham
Real Madrid

Jude 
Bellingham

2023_Kopa_Tr
ophy_award

winage

22

Jude 
Bellingham

Real 
Madrid

team

Spain

country
Data Owners

Users

A Decentralized 
Storage System

Share

Query

Share

Query
Processing

Subgraph

KGE Model

FKGE Server

Figure 1.1: System model and query process of DKG. The query statement in this
example is a standard SPARQL [97] query.

performance of their KGE models. After construction, these data owners holding

different KG subgraphs share their data on a public decentralized storage platform,

which provides users with DKG query services. In the query execution processing, the

platform first breaks down the query into multiple subqueries, matches results that

satisfy different subqueries in different subgraphs, and finally aggregates these inter-

mediate results to obtain the final result. By integrating the proposed solutions for

KG construction, sharing, and querying, we can create a cohesive system that allows

for seamless operation and optimization of knowledge graph management, ensuring

that each component from model training to data querying functions harmoniously

within the DKG ecosystem.

DKGs embody some fundamental characteristics that distinguish them from tradi-

tional centralized data management systems. Leveraging distributed data storage

is the first, enabling information to be stored across multiple participants, ensuring

redundancy and fault tolerance. Secondly, they boast high data availability, ensuring

that information remains accessible even in the face of node failures or network par-

2



1.1. Overview

titions. Thirdly, they foster federated collaboration, allowing disparate data owners

to contribute and curate knowledge through a decentralized manner. Lastly, they

facilitate rich semantic queries, enabling users to explore and extract insights from

interconnected data using advanced semantic techniques, thus enhancing the depth

and breadth of knowledge exploration and discovery. Together, these characteristics

empower DKGs to offer scalable, resilient, and collaborative platforms for knowledge

representation and discovery.

Nonetheless, the open and decentralized nature of these systems may raise security

and trustworthiness issues, with the potential risk of malicious data tampering and

exposing confidential data to unwarranted scrutiny or misuse. First, in DKG con-

struction processing, the risks of poisoning attacks needs to be analyzed. Malicious

participants may attempt to inject poisoned KG data into the KGE model of other

data owners during the FKGE process, in order to construct incorrect subgraphs.

Second, in DKG sharing processing, data ownership needs to be guaranteed. Data

ownership ensures that data owners have possession of complete control over the KG

data, including the right to disclose raw data to others [118, 8]. Third, in DKG

query processing, two requirements needs to be addressed: data integrity and query

verifiability. Specifically, data integrity ensures that the data stored in the DKG

is not tampered with or modified without authorization [69, 14]. Query verifiabil-

ity ensures that query results made to the DKG can be verified as correct, com-

plete, and fresh, preventing malicious query executions that could compromise the

DKG [151, 131, 153, 154, 129]. Since the first requirement has been solved by existing

work [6, 105, 92], the problem we need to solve is to implement complete, correct,

and fresh DKG queries.

To achieve the trustworthiness of the above three processes in the DKG system, the

following three challenges should be addressed:

• Hidden poisoned updates. Hidden poisoned updates is a significant chal-

3
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Trustworthy Decentralized Knowledge Graph

Hidden poisoned 
updates

Complex query 
processing

Contribution

Challenge

VeriDKGOur Work PistisFKGE 
Safeguarding

Conflict between 
openness & ownership

Anti-poisoning 
construction

Data ownership-
preserving sharing

Complete, correct, and 
fresh queryGoal

The first verifiable 
DKG with a new 

authenticated data 
structure

The first ownership-
preserving DKG with 
new cryptographic 

protocols

The first holistic study 
for poisoning attacks 

on FKGE

Construct Share Query

Chapter3 Chapter4 Chapter5

Figure 1.2: Research Framework of this thesis. We organize the positioning of this
thesis within the field of trustworthy DKG system and connect the challenges and
the contributions we focus on for each chapter.

lenge in constructing a trustworthy DKG, particularly due to the risk of their

presence in FKGEs. In a federated setting, multiple nodes collaboratively train

a shared model while keeping their data localized, which enhances privacy and

scalability. However, this distributed nature opens avenues for adversaries to in-

ject poisoned data or malicious updates subtly. These hidden poisoned updates

can be meticulously crafted to seem benign during the local training phases but

collectively degrade the global model’s integrity or bias its outputs. Detecting

such sophisticated poisoning attacks is arduous because they exploit the decen-

tralized, asynchronous, and often opaque nature of federated learning processes.

Ensuring the robustness and trustworthiness of the knowledge graph thus de-

mands advanced anomaly detection mechanisms, rigorous validation protocols,

4



1.1. Overview

and continuous monitoring to mitigate the impact of these covert adversarial

interventions.

• Conflict between openness and ownership. In a DKG system, various par-

ticipants contribute data to the graph, forming a collaborative and distributed

knowledge repository. The lack of a centralized authority makes it difficult to

enforce a consistent policy for logging data access and auditing usage across all

participants. Each participant could independently modify or redistribute data

without adhering to the original data ownership agreements, leading to poten-

tial data misuse and copyright issues. In addition, synchronization challenges

between participants can lead to discrepancies in data replicas, further compli-

cating ownership claims. Existing works use blockchains to ensure consistency,

and transparency means that all data changes are visible to all participants.

While this openness promotes accountability, it also exposes sensitive data and

ownership details, potentially compromising data control and ownership. Par-

ticipants may be reluctant to contribute proprietary or sensitive information if

they fear it will be openly visible to others, potentially undermining the collab-

orative nature and usefulness of the DKG.

• Complex query processing. Semantic richness in a DKG poses challenges

for query verifiability due to the complexity and diversity of the semantic rela-

tionships embedded within the graph. Traditional verification methods, such as

key-value-based hashing, struggle to ensure verifiability in such contexts because

they primarily focus on structural integrity rather than semantic coherence. In

a DKG, where nodes and edges may represent diverse entities and their com-

plex relationships, simple hashing mechanisms are insufficient to capture the

nuanced semantic meanings. As a result, verifying queries against the graph

becomes challenging as it requires not only confirming the presence of nodes

and edges but also assessing their semantic consistency and relevance to the

query. Thus, the inherent semantic richness of a DKG complicates the task of
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ensuring query verifiability using conventional verification methods.

This thesis delves into various security challenges within DKGs and introduces inno-

vative strategies for establishing reliable DKG systems. The research framework of

this thesis is shown in Figure 1.2. As shown in Figure 1.2, we explore three trustwor-

thy problems the three processes of building a DKG system, i.e., anti-poisoning DKG

construction, ownership-preserving DKG sharing, and complete, correct, and fresh

DKG query. First, in chapter 3, we explore the security problem in DKG construc-

tion process, i.e., poisoning attacks on FKGE, and provide the first holistic study

for it. Second, in chapter 4, we analyze the challenges of protecting data ownership

in DKG sharing and propose the first ownership-preserving DKG system. Third,

in chapter 5, we analyze the challenges of implementing verifiable DKG queries and

propose the first verifiable SPARQL query engine for DKG.

1.2 Contributions

First, we focus on DKG construction process, i.e., security issues in knowledge graph

embedding. Federated Knowledge Graph Embedding (FKGE) is an emerging collab-

orative learning technique for deriving expressive representations (i.e., embeddings)

from client-maintained DKGs. However, poisoning attacks in FKGE, which lead to

biased decisions by downstream applications, remain unexplored. We systematize

the risks of FKGE poisoning attacks, from which we develop a novel framework for

poisoning attacks that force the victim client to predict specific false facts. Unlike

centralized KGEs, FKGE maintains KGs locally, making direct injection of poisoned

data challenging. Instead, attackers must create poisoned data without access to

the victim’s KG and inject it indirectly through FKGE aggregation. Specifically, to

create poisoned data, the attacker first infers the targeted relations in the victim’s

local KG via a new KG component inference attack. Then, to accurately mislead the
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victim’s embeddings via aggregation, the attacker locally trains a shadow model us-

ing the poisoned data and uses an optimized dynamic poisoning scheme to adjust the

model and generate progressive poisoned updates. To tackle this poisoning attack, we

discuss potential countermeasures that shed light on improving the current practice

of FKGE and point to several promising research directions, such as decentralized

and verifiable KGE.

Second, we consider the data ownership protection in DKGs. We propose Pistis,

which incorporates two novel paradigms, called owner-managed end-to-end encryp-

tion and collaborative query verification into blockchain-based DKG management,

enabling SPARQL queries with data ownership guarantees. Specifically, first, data

owners encrypt their data individually and collaboratively construct a blockchain-

maintained authenticated data structure (ADS) with a global key through secret

sharing and secure multi-party computing. This ADS, indexed for querying KG

data in ciphertext, ensures data ownership. Then, a cryptographic scheme called

VO-SPARQL facilitates verifiable SPARQL queries on multi-owner encrypted KG

data. It provides succinct proofs for the two-stage queries of SPARQL, including

the subgraph queries based on the ADS and the aggregation on encrypted interme-

diate results based on a key-aggregate cryptographic primitive. Theoretical analysis

and experimental evaluations demonstrate the performance benefits of Pistis with

provable security.

Third, we consider the data integrity and query verifiability requirements in DKGs.

While existing studies focus on ensuring data integrity, how to ensure query verifiabil-

ity - thus guarding against incorrect, incomplete, or outdated query results - remains

unsolved. We propose VeriDKG, the first SPARQL query engine for DKG that

offers both data integrity and query verifiability guarantees. The core of VeriDKG

is the RGB-Trie, a new blockchain-maintained ADS facilitating correctness proofs for

SPARQL query results. VeriDKG enables verifiability of subqueries by gathering

global index information on subgraphs using the RGB-Trie, which is implemented as a
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new variant of the Merkle prefix tree with an RGB color model. To enable verifiability

of the final query result, the RGB-Trie is integrated with a cryptographic accumulator

to support verifiable aggregation operations. A rigorous analysis of query verifiabil-

ity in VeriDKG is presented, along with evidence from an extensive experimental

study demonstrating its state-of-the-art query performance on the largeRDFbench

benchmark.

1.3 Organization

The rest of this thesis consists of 5 chapters and is organized as follows. Chapter 2

gives the background of techniques discussed in this thesis, including their prelimi-

naries and related works. Chapter 3 discusses the security risks of FKGE, from which

we develop a novel framework for poisoning attacks and explore the potential defense

mechanisms. Chapter 4 presents Pistis, a DKG that provides SPARQL queries with

data ownership guarantees. Chapter 5 introduces VeriDKG, a SPARQL query en-

gine for DKG that offers both data integrity and query verifiability guarantees. In

Chapter 6, we summarize our research works and discuss the future research direc-

tions.
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Chapter 2

Background

In this chapter, we provide the technical background and related work required to

build a trusted DKG.

2.1 Preliminary for Decentralized Knowledge Graph

Resource Description Framework (RDF)1 is the standard format for KGs on the web.

An RDF graph consists of a set of RDF triples [10] and a KG G is often represented

by an RDF graph. Each RDF triple consists of a subject, a predicate, and an object,

as defined below.

Definition 1 (RDF Triple). An RDF triple 〈s, p, o〉 represents a directed labelled

edge s
p−→ o, where s, p, and o denote subject, predicate, and object, respectively.

Given infinite and disjoint sets U represents all URIs/IRIs, L represents all literals

(text or string, etc.), and B represents all blank nodes, an RDF triple 〈s, p, o〉 ∈
(U ∪B)× U × (U ∪B ∪ L).

For example, 〈Alice, work in, Meta〉 and 〈Bob, knows, Alice〉 are two RDF triples.

1https://www.w3.org/RDF/
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Chapter 2. Background

Definition 2 (Triple Fragment). A triple fragment f ⊆ G is a finite set of RDF

triples in a KG G.

The de facto query language for KGs is SPARQL2 . Each SPARQL query comprises

a set of triple patterns, as defined below.

Definition 3 (Triple Pattern). Given the sets U, L, and B in Definition 1 and a

set of all variables V, a triple pattern is a triple of the form 〈s, p, o〉 ∈ (U ∪B ∪ V )×
(U ∪ V )× (U ∪B ∪ L ∪ V ).

A SPARQL query contains multiple basic graph patterns (BGP)[143, 2], each compris-

ing a set of (conjunctive) triple patterns, which are combined with set operators, such

as UNION or OPTIONAL. For example, given two triple patterns 〈?who, knows, Alice〉
and 〈?who, work in, ?address〉, a SPARQL query that searches for the work place

and age of someone who knows Alice and are younger than 30 (this condition is

optional) can be

SELECT ?address ?age WHERE {

〈?who, knows, ?Alice〉, 〈?who, work in, ?address〉.

{OPTIONAL 〈?who, age, ?age FILTER (?age < 30)〉.}

}

Definition 4 (Tripple Pattern Fragment). Let f is a triple fragment, tp is a triple

pattern, f is the triple pattern fragment of tp iff for every RDF triple t ∈ f , t matchs

tp.

For example, given a KG G in Table 2.1, Table 2.2 shows the triple pattern fragment

f1 which matches the triple pattern 〈?s, p1, ?o〉.

Decentralized Knowledge Graph. In a conventional KG, the entire KG is stored

on a centralized trusted server that can execute SPAQRL queries on its local storage.

2http://www. w3. org/TR/rdf-sparql-query/
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Table 2.1: Knowledge Graph

Knowledge graph G
〈s1, p1, o2〉 〈s1, p3, o4〉 〈s2, p2, o1〉
〈s5, p2, o5〉 〈s2, p1, o4〉 〈s2, p3, o3〉
〈s4, p3, o5〉 〈s3, p1, o6〉 〈s3, p2, o4〉

Table 2.2: Triple Pattern Fragment

f1
〈s1, p1, o2〉
〈s2, p1, o4〉
〈s3, p1, o6〉

However, in a DKG, the entire KG is divided into multiple subsets and distributed to

different KG communities [6], each of which is a series of nodes that store the same

subset. Note that a node can belong to multiple communities, but a community only

stores a subset.

2.2 Preliminary for Federated Knowledge Graph

Embedding

Knowledge Graph Embedding. A KG G includes many entities and their rela-

tionships. A triple (h, r, t) ∈ T is a fundamental unit of G, where a head entity h and

a tail entity t are connected by a relation r, and T is the triple set of G. Knowledge

graph embedding is a foundational technique in knowledge representation, aiming to

project entities and relations from a KG G into continuous vector spaces. A KGE

model learns the d-dimensional representations X ∈ R
d of the entities e ∈ X and

the relations r ∈ X. The general objective of KGE is to preserve the structured re-

lational information of KG by a scoring function g, which represents the plausibility

for each triple (h, r, t). Some well-known models like TransE [26], DistMult [134],

and ComplEx [111] are used as scoring functions in KGE. For example, in TransE,

the scoring function STransE is defined as gθ(h, r, t) = −‖h + r − t‖, where θ is the

model parameters, (h, r, t) are the embeddings of (h, r, t). The ultimate goal is to

learn embeddings that minimize the score for real triples and maximize it for fake

ones, allowing the model to make accurate predictions and infer missing information

in the KG. Therefore, the loss function of KGE model can be represented as:
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L(h, r, t) = − log σ (gθ(h, r, t)− γ) −∑n
i=1 pi log σ (γ − gθ(h, r, t

′
i)) , where γ is the

margin, (h, r, t′i) /∈ T is a negative triple generated by replacing the original tail

entity with a random entity, n is the number of negative triples, and pi is the weight.

Federated Knowledge Graph Embedding. In FKGE, there exist a total of m

KGs, denoted as {Gi}mi=1, where each KG may have overlapping entity sets and is

privately held by an individual client. During the κ round of FKGE training, each

client, indexed as i, performs local updates on its respective KG Gi, local relation
embeddings Ri

κ−1, and local entity embeddings Ei
κ−1 over a certain number of itera-

tions. Subsequently, the client transmits the updated local embeddings, denoted as

Ei
κ, to the central server. The server receives these updates from all clients, {Ei

κ}
m
i=1

with i ranging from 1 to m, and performs aggregation before broadcasting the re-

sulting global embedding, Eκ, back to all clients. These communication rounds are

iteratively repeated until convergence is achieved.

2.3 Preliminary for Blockchain

Blockchain technology utilizes a distributed ledger to record historical transactions.

This ledger is maintained by a network of untrusted blockchain nodes that are con-

nected through a peer-to-peer network, and each node maintains a full copy of the

ledger. When clients issue transactions, they are verified by the nodes, and once

verified, the transactions are grouped and recorded into the blockchain via a con-

sensus protocol. In the following, we will introduce common transaction models and

consensus protocols used in blockchain technology.

Transaction Model. The transaction model in blockchain technology includes

two major types: the Unspent Transaction Output (UTXO) model [88] and the ac-

count/balance model [124]. The UTXO model involves each block storing multiple

transactions, with each transaction containing one or more inputs and outputs. Each
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input of a transaction includes a reference to one output of an existing transaction.

It’s important to note that the referenced output should not have been used by any

inputs before. On the other hand, the account/balance model represents each block

as a state and stores a list of accounts and transactions. Each account stores a bal-

ance, and if it’s a smart contract, it will also store the code and internal storage.

Transactions record the history of state transitions, such as changes in balance or

contract storage, within the block.

Consensus Protocol. There are two major types of consensus protocols used in

blockchain technology: Byzantine Fault Tolerant (BFT) protocols and Nakamoto

consensus protocols. The most well-known BFT protocol is Practical BFT (PBFT),

which has been adopted by Hyperledger Fabric [11]. PBFT consists of three successive

phases: the pre-prepare, prepare, and commit phases. The transition between any

two phases occurs when each node collects a quorum of messages. On the other

hand, the most well-known instance of Nakamoto consensus is Proof-of-Work (PoW),

which has been used in Bitcoin [88]. In PoW, each node must solve a computational

puzzle to propose a new block. While the specific processes of BFT and Nakamoto

consensus differ, their objectives remain the same in blockchain systems: to ensure

that all nodes in the system agree on specific information, even when facing malicious

or faulty nodes.

2.4 Preliminary for Cryptographic Building Blocks

Basic cryptographic primitives. An asymmetric encryption scheme PKE = (Gen,

Enc, Dec) consists of three algorithms: 1) Gen is a probabilistic algorithm whose in-

put is a security parameter κ and its output is a a key-pair (Pk, Sk); 2) Enc is a

probabilistic algorithm that generates a ciphertext ct by inputting Pk and a message

m; 3) Dec is a deterministic algorithm that takes a key Sk and a ciphertext ct and

returns m. In this thesis, we choose a widely used algorithm RSA as the asymmet-
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ric encryption building block. Pseudo-random functions (PRF) and permutations

(PRP) are two polynomial-time computable functions that cannot be distinguished

from random functions by any probabilistic polynomial-time adversary. The crypto-

graphic hash function hash(·) is a one-way PRF whose outputs are computationally

indistinguishable from random values [75]. Merkle tree [84] is a binary tree that stores

hash values. It is a data structure used to quickly verify the integrity of large-scale

data.

Structured encryption. Structured encryption [36, 68] is a generalization of index-

based symmetric searchable encryption (SSE), which gives an idea of generalizing

searchable encryption to arbitrarily-structured data. A semi-dynamic structured en-

cryption scheme for a data structure DS is ΣDS = (Init, QueryToken, Query,

AddToken, Add) that contains five algorithms as follows.

• Init(1k) → (EDS, K) : The input is a security parameter 1k. The outputs

include an encrypted data structure EDS and a secret key K.

• QueryToken(K,Q) → QTK : The inputs contain a secret key K and a query Q.

The output is a query token QTK.

• Query(EDS, QTK) → ct : The inputs contain an encrypted data structure EDS

and a query token QTK. The output is a ciphertext ct.

• AddToken(K, it)→ ATK : The inputs contain a secret key K and a new item it.

The output is an add token ATK.

• Add(EDS, ATK): The inputs contain an encrypted data structure EDS and an

add token ATK.

Secret sharing. Secret sharing is an ideal scheme to save a secret by distributing it

among a group. Each independent participant can only hold a part of the secret and

all participants need to combine their respective sub-secrets to recover the original
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secret. In particular, a (t, n)-threshold secret sharing scheme [102] SS = (Share,

Recover) contains two functions: 1) SS.Share shares the secret S with n participants

and sets a threshold t for secret recovery. 2) SS.Recover takes as input t out of n

shares and outputs S.

Secure multi-party computation. Secure multi-party computation (MPC) [140]

is a cryptographic framework that allows distrusting parties to perform computations

jointly without revealing any input data. We use Ff
2PC and Ff

MPC to represent two-

party secure computation (2PC) and MPC, where f is a function that takes multiple

inputs. We only consider the semi-honest attacks in 2PC and MPC, thus ideal func-

tionalities can be instantiated with standard semi-honest protocols, such as ABY [44]

and MP-SPDZ [70].

Verifiable set operation. Verifiable set operation (VSO) [91, 33] enables clients to

outsource set computation tasks to an untrusted server, such as intersection (denoted

as ∩), union (denoted as ∪), and difference (denoted as \). A VSO includes four steps

as follows.

• KeyGen(s) → (Sk, Pk) : The input is a random value s ∈ Zp. The outputs

include a secret key Sk = s and a public key Pk = (gs, · · · , gsq), where g is

the generator of a cycle multiplicative group G and q is an upper-bound on the

cardinality of sets in the algorithm.

• Setup(X, Pk)→ acc(X): Its inputs include a set X ⊂ Zp and Pk. It outputs

an accumulate value acc(X).

• Getproof(Xi, Xj, OP, Pk) → (X∗, π): The inputs include two sets Xi and

Xj, a set operation OP ∈ {∩,∪, \} and Pk. The function returns the set

operation result of these two sets X∗ with a proof π.

• VerifyProof(acc(X i), acc(Xj), π)→ {accept, reject}: The input are two accu-
mulate values acc(X i) and acc(Xj) and the proof π. The function then returns
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the validation result.

The unforgeability for VSO has been proved under the q-Strong Bilinear Diffie-

Hellman (q-SBDH) assumption [25].

2.5 RelatedWork for Decentralized Knowledge Graph

As web content grows, empowering users to navigate it is crucial. Particularly, Knowl-

edge graphs (KGs) represent real-world information, with nodes as entities and di-

rected edges as semantic relations. Since KGs can spawn a broad range of important

applications (e.g., question answering [89], language understanding [149], and rec-

ommendation systems [119]), they are widely used by commercial search tools such

as Google’s Knowledge Graph [104], which contains over 500 million objects and 3.5

billion facts and relationships. Until now, centralized KGs in which users request

centralized servers like SPARQL endpoints [59] to query data are still very popular.

However, the centralized nature of KGs means that users are only recipients of data,

and are not able to provide it. Moreover, downtime and data security concerns are

common issues with centralized KGs. These KGs also restrict the accumulation and

spread of open knowledge as they are only available to customers.

Decentralized Knowledge Graphs have become a more popular choice for their ability

to allow users to participate in constructing and improving them, solving the issues

of centralized servers. For example, Wikidata [115] is a DKG that can be edited

by both humans and machines, breaking the centralized monopoly. Moreover, some

works consider the query efficiency of DKGs, such as RDFPeers [31] and PIQNIC [4],

using dynamic hash tables and Bloom Filters-based indexes to locate the nodes stor-

ing relevant data, respectively. However, these DKGs are not entirely decentralized

since structured data is still centrally stored, leaving room for data tampering and

malicious attacks. By using blockchain to store linked data in DKG, it is possible to
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detect untrusted node information and avoid malicious nodes attacking. For exam-

ple, ColChain [6] is a DKG that backtracks the update record of RDF in blockchain

shards, which is an effective function to ensure data integrity and accuracy. However,

the existing system has data confidentiality issues because through some malicious

SPARQL queries, some data correlation relationships which may be private will be

obtained. Also, although the blockchain guarantees that data cannot be tampered

with, the verifiability of query results is uncertain because users cannot confirm if the

DKG node returns unsatisfied or incomplete queries.

2.6 Related Work for Federated Knowledge Graph

Embedding

2.6.1 Federated Knowledge Graph Embedding

FKGE combines the principles of KGE with FL. It involves training embeddings for

entities and relations from multiple distributed KGs while keeping them decentral-

ized [156, 65, 94, 39, 42]. The first FKGE framework is FedE [40], which aggregates

locally computed updates of entity embeddings to make the client learn from others’

knowledge. Following FedE, some work has proposed other aggregation methods to

improve the performance and robustness of FKGE [150, 156, 94, 41]. For example,

FedLU [156] is an FL framework for heterogeneous KG embedding learning and un-

learning that uses mutual knowledge distillation to transfer local knowledge to the

global and absorb global knowledge back. Some current works pay attention to the

privacy threats on FKGE. For example, Hu et al. [65] propose triple inference attacks

on FKGE and design a differential privacy-based defence scheme to protect client’s

membership information. However, to the best of our knowledge, the vast majority

of FKGE’s work does not take into account the malicious settings and threat models

of the participants, and there is no prior work exploring poisoning attacks in FKGE.
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2.6.2 Poisoning Attack

Poisoning attacks involve the manipulation or injection of malicious data into a train-

ing dataset to compromise the performance and integrity of machine learning models.

Existing works have achieved successful poisoning attacks against various scenarios,

such as computer vision [45, 77] and natural language processing [136, 90]. In par-

ticular, in the context of open-source KG, some works have implemented poisoning

attacks on centralized KGE models [21, 22, 148, 141]. For instance, MaSS [141] pro-

poses a model-agnostic semantic and stealthy data poisoning attack on KGE models,

which inserts indicative paths instead of triples to mislead the target KGE model,

maintaining the effectiveness and stealthiness of poisoned datasets. However, these

works against centralized KGE architecture by feeding poisoned data to the server

responsible for training the model. Compared with the attacks on centralized KGE,

data poisoning attacks against FKGE is more difficult because: (1) the raw KG data

is stored locally on different clients, the attacker in FKGE is unable to know and

change the training data of the victim, which makes it very difficult to build a poi-

soned dataset; (2) in FKGE, the server is only responsible for aggregating entity

embeddings but not relation embeddings, thus the attacker in FKGE is unable to

modify all embeddings of the victim, which makes it more difficult to inject poisoned

data to the victim’s model accurately.

2.7 Related Work for Blockchain

Blockchain is a decentralized ledger which preserves all historical transaction records.

Underlying most blockchain systems is key-value databases like levelDB and couchDB,

which find the one-to-one corresponding value through a certain key. The data struc-

ture of blockchain is a chain which is linked from one block to another, and with the

block data increasing, the amount of data stored by a blockchain node has become
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very huge. To reduce the on-chain storage pressure, some hybrid on-chain and off-

chain storage schemes [47] [85] have been proposed for better scalability of blockchain

system. Their main approach is to store most of the data off the chain in a distributed

peer-to-peer network (e.g. Bittorrent network [12] and IPFS network [19]), with hash

values of the entire data or partitioned data blocks on the blockchain. The on-chain

hash value can ensure the consistency of off-chain data and some simple query like

checking the balance and querying blocks. For example, Zhang et al. [146] proposed

a blockchain-based data marketplace with quality-aware incentives, where transac-

tion records are preserved off-chain, and transaction hash values are stored on-chain

for checks. However, as we say in introduction, they lack semantic queries such as

keyword query, range query or Top-K query, which are fundamental properties for

scenarios such as health services [75, 76]. In addition to these problems, in practi-

cal applications, some information may be distributed on different blockchains, and

these blockchains are heterogeneous [128], which also leads to difficulties in informa-

tion exchange between them. Some works focus on transaction [60] or data migration

[54], but cannot consider the query requirement between different chains. Sharding

and payment channel network [63, 64] are other approaches for blockchain scalability.

Sharding divides the transactions into different groups to reduce the storage cost for

blockchain nodes, but the query still needs to traverse all the shards, which increases

the communication overhead.

Blockchain is an append-only data structure, and through the hash pointer to es-

tablish the tamper proof binding relationship between the front and back blocks.

However, its append-only attribute also means that a query of all the blockchain

data requires traversing backward the entire chain to ensure that the search results

are complete. Since most blockchain systems are based on key-value databases, it

can only provide some simple operations such as key update, search, and write, etc.

Taking Ethereum as an example, it supports several query methods: (i) query block

by block height; (ii) query block by block hash; (iii) query transaction by transaction
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hash.

To optimize query experience, some works focus on modify blockchain structure to im-

prove search capabilities. These works are divided into two categories: adding outside

databases and build-in index. Some recent works including EtherQL [74], BigchainDB

[82] and blockchainDB [48] focus on building a query layer on top of blockchain to

provide richer query functionality. EtherQL develops a middleware which can auto-

matically keep data in sync between blockchain and external databases, and provides

some RESTful APIs for the client to call blockchain handler and query interface.

BigchainDB is a distributed database with blockchain characteristics. It uses mon-

goDB and a rich query language is designed. But bigchainDB is not essentially a

traditional blockchain system because it does not have the full replication feature.

BlockchainDB is a shared database system based on blockchain, and its main ap-

plicable scenario is a multiple distributed database where the participants do not

trust others and they frequently read and write data. FalconDB [95] is a Blockchain-

based Collaborative Database that enhances the client-side verifiability and system

availability.

Adding an index inside the blockchain is an intrusive design [152], and it maintains

the highly decentralized nature of blockchain. ECBC [132] is a high performance

educational certificate blockchain with efficient query. It builds a tree index struc-

ture in block and it can provide users with a better query experience. GEM2-tree

[145] designs an optimized Merkle-B+ tree to implement gas-efficient authenticated

range query. SEBDB [157] adds relational data semantics into blockchain database,

and provides SQL-like languages as its general interface. Besides, vChain [131] and

SEBDB use authenticated data structure (ADS) to implement authenticated query,

which guarantees the integrity of query results. Zhang et al, [144] propose a hybrid-

storage architecture for blockchain and improve the data management scalability by

a novel Chameleon index-based ADS.
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Safeguarding Federated Knowledge

Graph Embeddings: Poisoning

Attack and Defense Strategies

Federated Knowledge Graph Embedding (FKGE) is an emerging collaborative learn-

ing technique for deriving expressive representations (i.e., embeddings) from client-

maintained distributed knowledge graphs (KGs). However, poisoning attacks in

FKGE, which lead to biased decisions by downstream applications, remain unex-

plored. This work is the first work to systematize the risks of FKGE poisoning

attacks, from which we develop a novel framework for poisoning attacks that force

the victim client to predict specific false facts. Unlike centralized KGEs, FKGE

maintains KGs locally, making direct injection of poisoned data challenging. Instead,

attackers must create poisoned data without access to the victim’s KG and inject

it indirectly through FKGE aggregation. Specifically, to create poisoned data, the

attacker first infers the targeted relations in the victim’s local KG via a new KG

component inference attack. Then, to accurately mislead the victim’s embeddings

via aggregation, the attacker locally trains a shadow model using the poisoned data
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and uses an optimized dynamic poisoning scheme to adjust the model and generate

progressive poisoned updates. Our experimental results demonstrate the attack’s ef-

fectiveness, achieving a remarkable success rate on various KGE models (e.g., 100%

on TransE with WN18RR) while keeping the original task’s performance nearly un-

changed. To tackle this poisoning attack, we discuss potential countermeasures that

shed light on improving the current practice of FKGE and point to several promising

research directions, such as decentralized and verifiable KGE.

3.1 Introduction

A Knowledge Graph (KG) is a structured knowledge repository that delineates real-

world entities and their relationships through triples, where two entities act as nodes,

and the relationship between them serves as a directed edge. Numerous extensive

KGs on the web, which are publicly accessible and collaboratively curated, including

but not limited to Freebase [24], YAGO [106], and Wikidada [123], have been de-

veloped and employed in a wide range of downstream applications that harness the

vast web-based knowledge. These KGs serve as invaluable resources for knowledge

reasoning [120, 155, 65], recommendation systems [137, 55], and question-answering

systems [15, 79, 46], enabling web applications to tap into a wealth of interconnected

information.

Recent advances in representation learning techniques have accelerated the emergence

of KG embedding, a process that maps KGs (i.e., entities and relations) into a unified

embedding space, where each entity or relation is represented as a dense vector called

embedding. It can mitigate symbolic heterogeneity to facilitate diverse knowledge-

driven applications [26, 121, 134]. This transformative approach has paved the way

for developing powerful KG embeddings, enabling the representation of structured

information in a continuous, high-dimensional vector space. An emerging research

area, Federated KG Embedding (FKGE), takes KG embedding to the next level
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Figure 3.1: An example of a poisoning attack on FKGE. There are m different clients,
each of which uses its KG to train a local KGE model, and uses the model to output its
entity embeddings Ei(i = 1 . . .m) and relation embeddings Ri. In an FKGE training
round, all clients send their entity embeddings to a server. The server aggregates all
received embeddings and returns the result to all clients. The goal of the malicious
server is to add a fake relation into the victim client’s model.

by harnessing Federated Learning (FL) principles [99, 57, 58] alongside multi-source

KGs to collaboratively enhance KG embeddings [40, 94, 156, 65]. Based on FL,

multiple KG owners can utilize the complementarity between different KGs to enhance

their local models while preserving the sensitive KG data locally. This collaborative

approach empowers organizations and researchers to collectively leverage the wealth of

knowledge embedded in diverse KGs without compromising data privacy and security,

opening new frontiers for knowledge-driven applications and insights across domains.

However, the open collaboration among potentially self-interested parties in FL may

pose new risks to FKGE. Some current studies have explored the privacy vulnerability

of FKGE [150, 65, 94]. Their threat models tend to be honest-but-curious, i.e., they

honestly follow the protocol but want to access others’ sensitive data out of personal

interest. Another type of attack that still remains unexplored is poisoning attack,

which the latest FL systems focus on [99, 86, 34]. In particular, malicious participants

can inject poisoned data or updates into the victim’s model with the goal of reducing
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its model accuracy (i.e., untargeted poisoning attack) or implanting a backdoor into

the model that can be exploited later, which forces the model to predict specific wrong

facts (i.e., targeted poisoning attack). In FKGE, we focus on targeted poisoning

attacks, which aim to add poisoned triples to the victim’s model, leading to biased

KGEs and incorrect decisions of the downstream applications.

Example: In Figure 3.1, m hospitals as clients want to build a medical FKGE system,

a pharmacist bribes a malicious server to manipulate the victim client (i.e., client 1)

into predicting the outcome (Tom, is allergic to, aspirin), which results in the doctor

prescribing penicillin to Tom.

In summary, this type of poisoning attack can be represented as adding a fake relation

to the victim client’s local KG and being learned by its model, which needs to address

two challenges:

• Unknown KG component. To add a fake relation to the victim client’s local

KG, the attacker needs to know some of the components of the KG, including

the targeted entities and the relations between them. However, this is difficult

for the attacker because, in FKGE, only the entity embeddings are sent to the

server.

• Non-aggregatable relation embeddings. To enable the local model of the

victim client to learn the fake relation, the attacker needs to modify its rela-

tion embeddings maliciously. However, this is very difficult because, in FKGE,

the server only aggregates entity embeddings from different clients and cannot

manipulate any client relation embeddings.

Therefore, in this chapter, we fill the gap in the absence of poisoning attacks in KFGE

by designing a poisoning attack framework, which addresses the aforementioned chal-

lenges. The framework includes two attacks: server-initiate poisoning attack and

client-initiate poisoning attack. To solve the first challenge, inspired by the privacy
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attack scheme in FKGE, in these two attacks, we design a new KG component in-

ference attack to enable the malicious server or client to infer the original KG of the

victim’s client. Based on the known KG, the attacker can create a poisoned dataset

with fake relations. To solve the second challenge, in these two attacks, we build a

shadow KGE model on attacker, which is trained on the poisoned dataset and can in-

directly affect the relation embeddings of the victim client by dynamically optimizing

the shadow model and aggregating entity embeddings in the entire FKGE training

process. Through these poisoning attacks, the malicious server or client can add fake

relations into the victim client’s local model without affecting the original task. We

extensively evaluate the poisoning attack in FKGE for several KGE models on four

real-world knowledge graph benchmark datasets.

Our contributions can be summarized as follows.

• We conduct the first holistic study for the poisoning attack on FKGE and

propose two attack schemes from both client and server perspectives, which can

successfully make the victim client’s model learn fake relations without knowing

the victim client’s training data.

• We formulate the proposed attack, which indirectly misleads the victim’s em-

beddings via FKGE aggregation, as a new KGE optimization problem and solve

it by generating progressive poisoned updates.

• We evaluate our attack on four real-world KG datasets and four FKGE models

to demonstrate that our proposed attack can achieve high attack performance

under different experimental settings, achieving an 100% attack success rate on

WN18RR and an average attack success rate of over 67%.

• We discuss potential countermeasures that shed light on improving the current

practice of FKGE and point to several promising research directions, such as

decentralized and verifiable KGE.
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3.2 Overview

3.2.1 System and Threat Model

Like the vast majority of existing FKGE architectures [40, 150, 65], our system follows

the most commonly used FedAvg algorithm [83] pattern in FL, adopting single-server

and multi-client settings. The tasks of the server and clients are introduced as follows:

• Server. A server’s role includes the aggregation of entity embeddings collected

from various clients and the subsequent transmission of these aggregated entity

embeddings back to each respective client. Additionally, this server is tasked

with the responsibility of upkeeping a comprehensive entity table. This table

is utilized to log all distinct entities originating from various clients and to

establish mappings between entities from different clients and the entries within

this table.

• Clients. Different clients maintain unique knowledge graphs that contain over-

lapping entities, with each graph defining its own triples and relation sets.

Through the updating operation, these separate clients utilize their correspond-

ing triples to update their entity and relation embeddings.

Especially, we assume the following threat models:

Server as Adversary: As assumed in some FL systems [99, 98, 138, 116, 23], the

server is not always trustworthy. It may forge or tamper with aggregation results and

return poisoned embeddings for various reasons, such as program glitches, security

vulnerabilities, and commercial interests. To ensure the availability of the system and

the concealment of attacks, we assume that a malicious server can only send poisoned

aggregation results to victim clients and correct aggregation results to other clients.

Client as Adversary: The malicious client has its local KGE model and dataset; it may

add poisoned triples to its local dataset and transfer the poisoned aggregation results
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to other clients by uploading malicious embeddings to the server. It can collude with

the server to some extent (even if the server is benign), asking the server which other

clients have overlapping entities with it, however, it is assumed that the number of

malicious clients can be arbitrary, but clients cannot collude with each other.

3.2.2 Problem Formulation

Adversary’s Objective. In this study, we investigate the vulnerability of FKGE and

design successful poisoning attacks that can mislead FKGE to add fake relations to

the victim client’s local model. The goal of the attacker A is to minimize the score of

the scoring function for triple (h∗, r∗, t∗) as min gθ̂ (h
∗, r∗, t∗), where h∗, t∗ ∈ E , r∗ ∈ R,

E and R are the entity set and relation set of the victim client, and (h∗, r∗, t∗) /∈ T .

Adversary’s Knowledge. We model the adversary’s background knowledge from

the following aspects.

• Entity set and embeddings. When a malicious server acts as an attacker, it

has the entire entity set, each client’s entity set and the periodically uploaded

entity embedding matrices from all clients. When a malicious client acts as an

attacker, it has the entire entity set, the entire entity embeddings (i.e., aggre-

gated results), but does not have any other client’s entity set and embeddings.

• KGE models. When a malicious server acts as an attacker, it knows the

types of all client’s KGE models and their partial model parameters, i.e., entity

embeddings. When a malicious client acts as an attacker, it can only knows the

types of all client’s KGE models.

Adversary’s Capability. When a malicious server acts as an attacker, we consider

two capabilities:

• Access to auxiliary data. The adversary has access to an auxiliary KG
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dataset originating from the same domain as the FKGE learning process. In

real-world scenarios, this auxiliary KG dataset can be sourced from publicly

accessible repositories (e.g., Wikipedia) or constructed based on empirical com-

mon sense (e.g., establishing relations like patient and disease diagnosis).

• Train a shadow model. The adversary has the ability to train a shadow

model using auxiliary datasets. This is not a special setting for the attack

scheme, and the server can build a shadow dataset for the following purposes:

1) fine-tuning the global model by the shadow model, 2) serving as a source of

regularization during aggregation, and 3) helping balance the learning process

by providing additional information.

When a malicious client acts as an attacker, it can only use its own local KG and

KGE model.

3.3 Methodology

In this section, we introduce two attacks in FKGE, including a server-initiate poison-

ing attack and a client-initiate poisoning attack.

3.3.1 Server-Initiate Poisoning Attack

In the server-initiate poisoning attack, the adversary first infers the local real relation

set of the victim client and determines the existence of the relation between the

targeted head and tail entities. Then, an auxiliary dataset and a shadow model

are used to dynamically adjust the aggregation results to add fake relations to the

local model of the victim client. The detailed attack process is shown in Figure 3.2,

including the following four steps:

Step1: Relation Inference. In a certain FKGE training round, the victim client
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Figure 3.2: Workflow of the server-initiate poisoning attack.

(e.g., client 1 in Figure 3.2) sends its entity embedding matrix to the malicious server.

A previous work has proven that the server can infer the existence of real relations

between these entities based on received entity embeddings [65]. The server first

enumerates all potential relations between entities by calculating the scoring function

of the KGE model. For example, in TransE, if a potential relation r′ is a plausible

relation between a head entity h′ and a tail entity t′, its embedding will be close to

‖h′−t′‖. The previous work has also noted that real relations tend to exhibit greater

concentration within the embedding space, whereas fake relations typically display

a more scattered distribution. Therefore, the malicious server can cluster potential

sets of relations into some clusters, and identify the relation embeddings near the

concentrated cluster centers as real relations. Furthermore, the malicious server can

use its auxiliary dataset to infer the original relations corresponding to these real

relation embeddings.

Step2: Poison Data Generation. After inferring the real relations of the victim

client, the malicious server first determines whether there is a relation between the

targeted head entity h∗ and tail entity t∗. If it does not exist, the server chooses

a relation t∗ from R, where R is the the victim client’s relation set that the server

has inferred in Step1. The server then adds the poisoned triple (h∗, r∗, t∗) into the

auxiliary dataset Da. We define the auxiliary dataset with the poisoned triples as

D′
a. To make the poisoned dataset more pure (i.e., reducing the impact of unrelated
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triples on the FKGE model), the server removes data unrelated to the victim client’s

local dataset from the auxiliary dataset, leaving only the victim client’s raw data

and poison triples in the auxiliary dataset. The server uses the purified poisoned

dataset as the training dataset Dp to train a shadow model, and the training dataset

Dp can be represented as Dp = {T1 ∩ tp}, where T1 is the triple set of client 1 and

tp = (h∗, r∗, t∗).

Step3: Shadow Model Training. To imitate the victim client’s KGE model for

learning poisoning data, the malicious server builds a shadow model fθ() that is a

KGE model trained on the poisoning dataset Dp and of the same type as the client’s

model. The malicious server optimizes the following function to train the shadow

model fθ():

min fθ̂ (h
∗, r∗, t∗) ,

s.t., θ̂ = argmin
θ

∑

(h,r,t)∈T1

fθ(h, r, t).
(3.1)

After the training process, the malicious server obtains a well-designed shadow model

that can give a large plausibility for the poisoned triple.

Step4: Embedding Aggregation. In the aggregation process, the malicious server

first aggregates the entity embeddings of all clients and obtains the aggregate result

Eκ. Then, to add the poisoned data into the victim client’s local model, the server uses

its shadow model to adjust the aggregation result. An intuitive method is to directly

aggregate Eκ and the entity embeddings output by the shadow model Es
κ. We name

this method fixed model poisoning. However, this strategy may not achieve a good

attack success rate because the aggregation result only affects the entity embeddings

of the victim client and does not mislead its relation embeddings, which results in

the victim client model having lower confidence in predicting poisoned triples than

the shadow model.

To address the issue, we design another attack method called dynamic poisoning,

which indirectly misleads the relation embeddings of the victim client by dynamically
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optimizing the shadow model during FKGE’s training process. In the dynamic poi-

soning attack, the goal of the server is not only to send poisoned entity embeddings

to the victim client, but also to indirectly enable the victim client to learn poisoned

relation embeddings through the aggregation results. Recall that in Step1, the ma-

licious server has inferred the relation embeddings of the victim client. Therefore,

the server can dynamically optimize the shadow model during each round of FKGE

training by calculating the victim client model’s score of the poisoned triple. The

overall optimization objectives are as follows:

argmin
θ̂,θ̂′

Lθ̂,θ̂′ (tp) ,

Lθ̂,θ̂′ = fθ̂ (tp) + gθ̂′ (tp) + L (fθ̂ (tp) , gθ̂′ (tp)) .

s.t., θ̂ = argmin
θ

∑

(h,r,t)∈T1

fθ(h, r, t),

θ̂′ = argmin
θ′

∑

(h,r,t)∈T1

gθ′(h, r, t),

(3.2)

where tp is the poisoned triple (h∗, r∗, t∗).

Overall Training. The algorithm 1 presents the overall training process of the

server-initiate poisoning attack in FKGE, where Lθ̂,θ̂′ is described in Equation 3.2.

In the FKGE training process, the server first initializes a global entity embedding

matrix randomly and sends it to all clients (line 1). In each round, all clients send

their entity embeddings to the server (line 3) and the server can initiate the inference

attack in any round (line 4). The difference between the fixed model poisoning attack

and the dynamic poisoning attack is reflected in lines 5 and 6, where the dynamic

poisoning attack needs to dynamically optimize the shadow model. Finally, the server

returns the aggregation results to clients and clients update their models (lines 7-10).
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Algorithm 1: Server-initiate Poisoning Attack in FKGE

Input : Victim client cv and its clean model gθ′ , m clients with m KGs {Gi}mi=1,
a shadow model fθ, an auxiliary dataset Da, communication rounds T

Output: Victim client’s poisoned model gθ̂′
1 Server initializes E0.
2 for round = 1, . . . , T do
3 Each client sends its local entity embeddings Ei

round of its KG Gi to the server.
4 In the first round of the attack, the server infers cv’s relation embeddings Rv,

create poisoned triple tp = (h∗, r∗, t∗), and construct its train dataset
Dp = {Tv ∩ tp}.

5 The server uses Dp to train and Rv to dynamically optimize fθ̂.

6 θ̂ = argminθ̂,θ̂′ Lθ̂,θ̂′ (tp).

7 Eround = aggregate (E1
round, . . . ,E

m
round).

8 Eround′ = aggregate (Eround,E
s
round).

9 The server returns Eround′ to cv and Eround to other clients.
10 The victim client update its model gθ̂′ .

11 return gθ̂′

3.3.2 Client-Initiate Poisoning Attack

In the client-initiate poisoning attack, the malicious client first infers the local real

relation set of the victim client and determines the existence of the relation between

the targeted head and tail entities. Then, the malicious client uses its local KG and

KGE model to add fake relations to the local model of the victim client. The difference

between the server-initiate poisoning attack and the client-initiate poisoning attack

is that the malicious client cannot obtain the entity set of the victim client.

Therefore, the malicious client follows the four steps shown in subsection 3.3.1 to

launch a poisoning attack, but with the following differences: 1) in step1, the mali-

cious client needs to ask the server about the overlap between itself and the victim

client entity set. It needs to infer whether there is a relation between the targeted

head and tail entities in the victim client’s dataset based on the changes in its local

relation embeddings during the training process of FKGE, which has been proven

feasible in the previous work [65]; 2) in step2, step3 and step4, the malicious client
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uses its local KGE model to replace the shadow model, and uses its local relation

embeddings to simulate the relation embeddings of the victim client to dynamically

optimize its local model.

3.3.3 Potential Defense Mechanism

Server-Initiate Poisoning Attack Defense.

Due to the data isolation of FKGE, i.e., it is difficult for the victim client to distinguish

whether the poisoned aggregation results come from malicious servers or other benign

clients, the proposed attack cannot be detected by existing error detection methods.

By analyzing the workflow of the attack, we find that the most effective defense

method is to prevent the inference attack from the malicious server. As long as the

malicious server is unable to obtain the relation embeddings of the victim client, its

attack will fail. Some previous work has attempted to use differential privacy to defend

against inference attacks, i.e., adding controlled noise to the data or model parameters

to prevent malicious servers from aligning the raw data for analysis. For example,

DPSGD[1] and DP-FLames [65] have been proven to be effective in defending against

inference attacks in FKGE.

Client-Initiate Poisoning Attack Defense.

Similar to the server-initiate poisoning attack, it is difficult for victim client to distin-

guish whether the poisoned aggregation results come from malicious clients or other

benign clients. In addition to the differential privacy-based defense mechanism, we

explore another new paradigm for FKGE, i.e., the decentralized knowledge graph em-

bedding (DKGE), by using blockchain instead of the centralized server to make the

entire training process of KGE verifiable. In any training round of DKGE, each client

uploads its entity embedding updates to the blockchain in the form of blockchain
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Table 3.1: Statistics of Four Datasets.

FB15k237 NELL995 WN18RR CoDEx-M
Entities 14951 75492 40493 17050
Relations 237 200 11 51
Triples 272115 149678 86835 185584

transactions, such as smart contract transactions in Ethereum [125]. Then, to ag-

gregate the embedding updates, each client downloads embeddings that overlap with

some of its own entities on the blockchain and aggregates them. To accelerate the ag-

gregation efficiency, we adopt asynchronous aggregation in DKGE, which means that

each client can upload and download embedding updates at any time. Due to the

independent operation of the aggregation process by the client and the immutability

of the blockchain, malicious participants are easily detected by victims. Furthermore,

to protect the privacy of clients and further reduce their space for wrongdoing, we

suggest that developers of the DKGE system use zero-knowledge proof [32, 126, 122]

(ZKP) technology to allow clients to prove their local data and operations without

compromising privacy, or use privacy set intersection (PSI) [96, 38, 72] to perform

overlapping entity calculations without compromising privacy. We implement a sim-

ple DKGE prototype and make its more concrete implementation our future work.

3.4 Evaluation

In this section, we test the effectiveness of our proposed attacks on four benchmark

datasets in federated settings, targeting four state-of-the-art KGE models. Specifi-

cally, our evaluations aim to address the following research questions:

RQ1 Can our poisoning attacks effectively enhance the predictions of the KGE model

for the targeted victim client on the poisoned triples?

RQ2 To what extent will the original link prediction performance of the targeted
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client be affected following the execution of a poisoning attack?

RQ3 How do different settings affect the effectiveness of the attack, including the

number of poisoned triples and the number of clients in FKGE?

RQ4 Can potential defense mechanisms mitigate the effectiveness of the attack?

In a word, we evaluate the effectiveness of the attack strategy in enhancing the KGE

model’s predictions of the victim client on the poisoned triples while simultaneously

preserving the original performance of all other benign clients as much as possible.

The source code and data are available online1 .

3.4.1 Experiment Setups

Hardware and Hyperparameter Configurations All experiments in this work

are based on a 12-core Ubuntu 18.04.1 LTS machine with an Intel Xeon Gold 6132

CPU @ 2.60GHz and an NVIDIA RTX A6000 GPU. Our attack process (including a

shadow model and FKGE training) takes about tens of rounds to converge, and the

entire process takes about tens of minutes. For example, in server-initiate poisoning

attack, when the KGE model is TransE and the dataset is WN18RR, the system

converged in the 44th round, taking 22 minutes. For a poisoned triple, the inference

process takes approximately 0.1 seconds. To implement our attacks, we set hyper-

parameters based on FedE [40], a well-known FKGE framework. As for the shadow

model, the server employs the same type of KGE model as the clients. Specifically,

the embedding dimension is set to 128 for the entities and the relations. The training

batch size is 512, while the test batch size is 16. The negative sampling number is 256.

The learning rate is 0.001 and the Adam optimizer is used to optimize the parameters

of the client-side local model or server-side shadow model. The margin γ and β are

1https://doi.org/10.5281/zenodo.10646619
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both set to 10, and the temperature α for self-adversarial negative sampling is set to

1.

Datasets. To evaluate the effectiveness of our attack, we utilize four publicly

available benchmark knowledge graph datasets FB15k237 [109], NELL995 [130],

WN18RR [26], and CoDEx-M [100]. In order to conduct our evaluation in a fed-

erated setting, we create client datasets as described in [40]. Specifically, we ran-

domly select relations for each client and distribute triples into the clients based on

the chosen relations. We randomly split dataset into 2, 3, 4, 5 clients as dataset-

Fed2,-Fed3,-Fed4,-Fed5. The detailed statistics of the original datasets are given in

Table 3.1.

Victim Models. We select four state-of-the-art KGE models, namely TransE [26],

RotatE [107], ComplEx [111] and DistMult [147], as the victim models. The attacker

adopts the k-means clustering [81] for the inference attack. As for the shadow model,

the server employs the same type of KGE model as the clients. We train FedE [40]

on the original dataset as baseline to compare the performance of our attack. For

the implementation of our attacks, we follow FedE to set hyperparameters. The local

training epoch for the client model is set to 3 and we evaluate the attack performance

using the validation set every 5 rounds. We adopt early termination, which means

if the model’s MRR performance on the validation set remains unchanged after 5

rounds, we terminate the training process and save the best model parameters.

Evaluation Metrics. We report Mean Reciprocal Rank (MRR) and Hits at N

(Hits@N , N = 1, 5, 10) to validate the link prediction performance on each client,

following the common practice in the KGE literature. Higher Hits@N and MRR

indicate better prediction performance of the KGE model. To further evaluate the

effectiveness of attacks in increasing the prediction performance of the poisoned triples

on the victim client, we test the values of MRR and Hits@N over the poisoned triples

in clean and attack settings, where clean settings represent the prediction performance

of the clean model.
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Table 3.2: Attack Performance of Server-Initiate Poisoning Attack (PT on VC means
poisoned triples on victim model).

Dataset Model
TransE RotatE

Mean PT on VC Mean PT on VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15k-237
FedE 0.41 0.60 0.00 0.00 0.41 0.60 0.00 0.00

FMPA-S 0.40 0.59 0.46 0.80 0.41 0.60 0.42 0.80
DPA-S 0.40 0.59 0.56 0.90 0.41 0.60 0.43 0.80

NELL995
FedE 0.71 0.87 0.00 0.00 0.75 0.88 0.00 0.00

FMPA-S 0.69 0.87 0.45 0.60 0.74 0.87 0.70 0.80
DPA-S 0.69 0.86 0.52 0.80 0.74 0.85 0.83 0.90

WN18RR
FedE 0.18 0.37 0.00 0.00 0.25 0.39 0.00 0.00

FMPA-S 0.16 0.36 0.80 0.80 0.25 0.38 0.93 1.00
DPA-S 0.16 0.34 1.00 1.00 0.24 0.37 1.00 1.00

CoDEx-M
FedE 0.52 0.75 0.00 0.00 0.53 0.77 0.00 0.00

FMAP-S 0.50 0.73 0.30 0.9 0.52 0.75 0.36 0.90
DPA-S 0.50 0.73 0.61 1.00 0.52 0.75 0.58 1.00

Dataset Model
DistMult ComplEx

Mean PT on VC Mean PT on VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15k-237
FedE 0.38 0.55 0.00 0.00 0.38 0.55 0.00 0.00

FMPA-S 0.38 0.55 0.14 0.40 0.38 0.55 0.33 0.70
DPA-S 0.38 0.55 0.25 0.50 0.38 0.55 0.39 0.80

NELL995
FedE 0.28 0.45 0.00 0.00 0.37 0.54 0.00 0.00

FMPA-S 0.26 0.42 0.60 0.70 0.35 0.52 0.66 0.80
DPA-S 0.26 0.42 0.65 0.70 0.33 0.51 0.63 0.90

WN18RR
FedE 0.17 0.21 0.00 0.00 0.16 0.20 0.00 0.00

FMPA-S 0.15 0.18 0.77 0.90 0.17 0.22 0.95 1.00
DPA-S 0.15 0.19 1.00 1.00 0.15 0.18 1.00 1.00

CoDEx-M
FedE 0.46 0.67 0.00 0.00 0.46 0.67 0.00 0.00

FMAP-S 0.44 0.66 0.60 0.80 0.46 0.68 0.50 0.80
DPA-S 0.44 0.65 0.67 0.90 0.46 0.68 0.65 0.90

3.4.2 Attack Evaluation

In this section, we demonstrate the effectiveness of the proposed poisoning attacks.

First, we test the predictions of the KGE model for the targeted victim client on the

poisoned triples (RQ1) and on the original link prediction task (RQ2). Second, we

test the effectiveness of the attacks under different settings (RQ3).
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Attack Performance (RQ1)

Attack performance of malicious server. We implement two malicious server

attacks introduced in subsection 3.3.1, including the fixed model poisoning (FMPA-

S) and dynamic poisoning (DPA-S). We randomly select a victim client for the fixed

model poisoning attack. To ensure fair comparison, we consistently choose the same

victim client when executing the dynamic poisoning attack. We select 10 head entities

as the head entity of poisoned triples on the victim client and set the client number is

3. The MRR and Hit@N values on the original task and poisoned triples are reported.

The results are presented in Table 3.2.

In Table 3.2, the poisoned triples on victim model (PT on VC) column clearly il-

lustrates that our proposed attack methods, FMPA-S and DPA-S, significantly en-

hance the link prediction performance on poisoned triples compared to the original

FedE. It is worth noting that in most cases, DPA-S outperforms FMPA-S in terms of

link prediction accuracy on poisoned triples. When utilizing TransE, RotatE, Com-

plEx, and DistMult as KGE models, DPA-S achieves an average MRR of 0.67 and

Hits@10 of 0.88 on the poisoned triples in dataset-Fed3 (FB15k237-Fed3, NELL995-

Fed3, WN18RR-Fed3, and CoDEx-M-Fed3). Conversely, FMPA-S achieves an av-

erage MRR of 0.56 and Hits@10 of 0.79 on the poisoned triples in dataset-Fed3.

Furthermore, all the MRR and Hit@N values for poisoned triples under FedE set-

tings are found to be 0. For example, when using TransE as the KGE model, the

Hit@10 exceeds 0.9 on the FB15k-237 dataset under the DPA-S attack, indicating

that over 90% of the poisoned triples on the victim client are predicted within the

top-10 of the ranking list. Additionally, we can conclude that the WN18RR dataset

is more vulnerable to poisoning attacks compared to other datasets due to its sparser

structure, i.e., it has fewer neighbors per triple. By injecting few triples, the poisoning

attacks can achieve a high attack success rate.
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Table 3.3: Attack Performance of Client-Initiate Poisoning Attack (PT on VC means
poisoned triples on victim model).

Dataset
TransE RotatE

Mean PT on VC Mean PT on VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15K-237 0.41 0.60 0.68 0.90 0.41 0.61 0.58 0.80
NELL995 0.85 0.85 0.90 0.76 0.88 0.77 0.90 0.47
WN18RR 0.17 0.38 0.66 0.80 0.27 0.39 0.53 0.90
CoDEx-M 0.51 0.75 0.52 0.90 0.52 0.77 0.71 0.80

Dataset
ComplEx DistMult

Mean PT on VC Mean PT on VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15K-237 0.37 0.55 0.36 0.70 0.38 0.56 0.41 0.60
NELL995 0.47 0.61 0.47 0.70 0.32 0.48 0.38 0.50
WN18RR 0.15 0.20 0.61 0.90 0.16 0.20 0.74 0.90
CoDEx-M 0.46 0.67 0.74 0.80 0.45 0.67 0.39 0.90

Attack performance of malicious client. We randomly select a malicious client

and a victim client to evaluate the attack performance of the malicious client. We

set the number of poisoned triples to be 10, and the link prediction results of the

poisoned triples on the victim clients are presented in Table 3.3. Specifically, the

malicious client trains its local KGE model using the poisoned dataset. The poisoned

dataset consists of the original dataset of the malicious client and the poisoned triples

inferred based on the changes in the local relation embeddings of the malicious client.

As shown in Table 3.3, the client poisoning attack (CPA) achieves an average MRR

of 0.59, Hits@10 of 0.81 on the poisoned triples in dataset-Fed3. In addition, we also

observe that the client poisoning attack is more effective on the WN18RR dataset

compared to other datasets, similar to what is observed in the poisoning attack on

the server side. CPA achieves an average MRR of 0.64 and Hits@10 of 0.88 on the

poisoned triples in WN18RR-Fed3.

In summary, these results demonstrate that our attack methods can efficiently elevate

the ranks of poisoned triples, posing severe threats to knowledge graph embedding.
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Clean Performance (Stealthiness) (RQ2)

We investigate the original test link prediction performance of different clients under

our poisoning attack to validate the stealthiness of the attack. Our goal is to test how

much the original link prediction performance remains unchanged. The MRR values

of four dataset on TransE and RotatE are shown in Figure 3.3 and Figure 3.4. In the

results, the performance differences between DPA-S, FMPA-S, and FedE are small

across all local clients. This demonstrates that our attack can effectively balance the

performance of the attack while maintaining the original link prediction performance

as closely as attainable.

(a) FB15k237 TransE (b) NEL995 TransE (c) WN18RR TransE (d) CoDEx-M TransE

Figure 3.3: Clean Performance (Stealthiness) on TransE.

(a) FB15k237 RotatE (b) NEL995 RotatE (c) WN18RR RotatE (d) CoDEx-M RotatE

Figure 3.4: Clean Performance (Stealthiness) on RotatE.

Comparison of Different Settings (RQ3)

Impact of the number of clients. We explore the attack performance with different

numbers of clients. Specifically, using TransE as the KGE model, we test the MRR

and Hit@N values on the CoDEx-M dataset, varying the number of clients from 2
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to 5. As shown in Figure 3.5, the metric values generally decrease as the number of

clients increases. We speculate that the decreased attack effectiveness stems from the

fact that the server’s aggregated operations become diluted as the number of clients

increases. We explore a potential solution to solve this problem and details are shown

in subsection 3.4.4.

(a) CoDEx-M TransE (b) CoDEx-M TransE (c) CoDEx-M TransE (d) CoDEx-M TransE

Figure 3.5: Attack Performance of Different Numbers of Clients.

Impact of the number of poisoned triples. We use different poisoned datasets

to investigate whether the effectiveness of the poisoning attack increases with the

number of poisoned triples. The MRR and Hit@N results on CoDEx-M-Fed3 using

the RotatE model as the KGE model are depicted in Figure 3.6. We vary the number

of poisoned triples from 0 to 150. From the Figure 3.6, the metric values of on

poisoned triples fluctuates within a certain range in CoDExM dataset. Therefore,

under our settings, the number of poisoned triples does not have a significant impact

on the attack success rate.

(a) CoDEX M RotatE (b) CoDEX M RotatE (c) CoDEX M RotatE (d) CoDEX M RotatE

Figure 3.6: Attack Performance of Different Numbers of Poisoned Triples.

Impact of server-client collusion. We conduct a comparison experiment to test

the attack performance in collusion and non-collusion situations. If there is no col-

lusion between the client and the server, the malicious client must compare its own

uploaded embeddings and the global entity embeddings returned by the server to
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Table 3.4: Attack Performance with or without Collusion

Collusion Non-collusion
MRR Hit@10 MRR Hit@10
0.68 0.90 0.28 0.40

identify the overlapping entities, and randomly select some overlapping entities as

the target entities of the victim client. We perform a comparative experiment to

test the attack performance in collusion and non-collusion situations. The following

results are obtained (dataset: FB15K-237, KGE model: TransE) in Table 3.4. As

shown in the results, the client-initiated poisoning attack can achieve better perfor-

mance when the malicious client colludes with the server. This is because when they

collude, the malicious client can obtain a more accurate set of victim entities to build

a more accurate poisoned dataset.

3.4.3 Defense Evaluation (RQ4)

We finally test the effectiveness of the defense mechanisms introduced in subsec-

tion 3.3.3. For the server-initiate poisoning attack defense, we adopt two differential

privacy-based methods, DPSGD and DP-Flames, to defend against attacker’s mem-

bership inference attacks and weaken its poisoning attacks. We test the MRR and

Hit@10 values of three schemes on the model TransE and datasets FB15k-237-Fed3

and CoDEx-M-Fed3. The results are shown in Table 3.5. From Table 3.5, we can see

that after adopting defense mechanisms to the FB15k-237-Fed3 dataset, the MRR

value decreases from 0.56 to 0.34 and 0.33, and the Hit@10 value decreases from 0.90

to 0.60 and 0.50. On the CoDex-M-Fed3, the defense effectiveness is better. These re-

sults demonstrate that the differential privacy-based defense mechanisms can achieve

certain defensive effects, but there is still significant room for research.

For the client-initiate poisoning attack defense, we implement a prototype of DKGE

by replacing the server with an Ethereum blockchain. 5 clients are installed with
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Table 3.5: Attack Performance after Defense

Dataset Schemes MRR Hit@10

FB15k-237
DPA-S 0.56 0.90
DPSGD 0.34 0.60

DP-Flames 0.33 0.50

CoDEx-M
DPA-S 0.61 1.00
DPSGD 0.31 0.60

DP-Flames 0.30 0.50

go-ethereum [49] nodes and trained through asynchronous aggregation for FKGE.

Although the attack behavior in the system can be correctly detected and traced

back to the attacker’s identity, the convergence speed of the system is significantly

slower than the previous FKGE. Therefore, further designs are needed to improve its

availability.

Table 3.6: Attack Performance with or without Optimization

Number of
Clients

With optimization Non-optimization
Hit@10 MRR Hit@10 MRR

2 1.000 0.4893 1.000 0.4372
3 0.900 0.4833 0.900 0.3832
4 0.900 0.4940 0.800 0.2133
5 0.900 0.4899 0.700 0.1333

3.4.4 Optimized Aggregation Mechanism

Figure 3.5 shows that the attack performance generally decreases as the number of

benign clients increases. We investigate a method to address this issue and conduct

additional experiments to test its effectiveness. The method involves aggregating

only the embeddings of the targeted entities received from the victim client and the

embeddings produced by the shadow model during the aggregation process, while

excluding the embeddings of other benign clients, on the part of the malicious server.

In this scenario, the poisoned embeddings of the targeted entities received by the

victim client remain the same, despite an increase in the number of benign clients.
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To test the attack performance following this optimization scheme, we conduct an

experiment. The following results are obtained (dataset: CoDEx-M, KGE model:

TransE) in Table 3.6.
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Chapter 4

A Decentralized Knowledge Graph

with Ownership-Preserving

SPARQL Query

This chapter introduces Pistis, the first DKG with data ownership guarantees. Pis-

tis incorporates two novel paradigms, called owner-managed end-to-end encryption

and collaborative query verification into blockchain-based DKG management, en-

abling SPARQL queries with data ownership guarantees. Specifically, first, data

owners encrypt their data individually and collaboratively construct a blockchain-

maintained authenticated data structure (ADS) with a global key through secret

sharing and secure multi-party computing. This ADS, indexed for querying KG data

in ciphertext, ensures data ownership. Then, a cryptographic scheme called VO-

SPARQL facilitates SPARQL queries on multi-owner encrypted KG data. It provides

succinct proofs for the two-stage queries of SPARQL, including the subgraph queries

based on the ADS and the aggregation on encrypted intermediate results based on a

key-aggregate cryptographic primitive. Theoretical analysis and experimental evalu-

ations demonstrate the performance benefits of Pistis with provable security.
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4.1 Introduction

As one of the bold and innovative attempts in Web 3.0 [53, 80, 135], decentralized

knowledge graph (DKG) is a new knowledge management technology to develop a

global platform where everyone can share, manage, and exploit knowledge from di-

verse sources of data on the Web [92, 4, 6, 5]. Moreover, DKGs can provide high data

availability and resilience, as the data is outsourced to and distributed across multiple

nodes rather than centralized in a single location [6, 31, 59]. However, the decentral-

ized nature of DKGs raises concerns about malicious threats, especially in the face

of growing Byzantine attacks [35, 13, 133]. These malicious threats compromise the

reliability of DKGs, necessitating robust defense strategies.

To ensure the reliability of DKGs, three key requirements must be addressed: data

integrity, query verifiability, and data ownership, which are crucial in outsourced

database scenarios [129, 87, 66]. Specifically, data integrity ensures that the data

stored in the DKG is not tampered with or modified without authorization [69, 14].

Query verifiability ensures that query results made to the DKG can be verified as

correct, complete, and fresh, preventing malicious query executions that could com-

promise the DKG [151, 131, 153, 154, 129]. Data ownership ensures that data owners

have possession of complete control over the KG data, including the right to disclose

raw data to others [118, 8]. Addressing these requirements is essential to ensure the

reliability of DKGs and promote their wider adoption.

Emerging DKGs adopt blockchain to ensure data integrity [6, 92], the first require-

ment mentioned above. Because of their immutable nature, blockchains allow all

nodes to collaborate on data updates and maintain a trusted historical record of all

DKG data. Unfortunately, blockchain is not a silver bullet and does not inherently

guarantee query verifiability and data ownership in DKGs. This is due to the following

two reasons.

Data in Plaintext. Most blockchains store data in plaintext, which makes it acces-
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sible to every DKG participant permanently. This renders raw data publicly available

and data owners incapable to determine the data disclosure details, thus compromis-

ing the data ownership. An intuitive solution to ensure data ownership is to let data

owners locally and independently encrypt their data before sharing it via blockchain.

While this preserves data ownership, it hinders the ability of other participants to

read the raw KG data and execute queries for multi-owner encrypted KG data; thus,

damaging the DKG query verifiability.

Harsh-based Query Verification. Most blockchains only support hash-based ver-

ification for key-value query verifiability, where users use a given hash to validate the

key-value query results. This hash-vased verification only works for simple key-value

pair queries, while fails when dealing with other complex queries such as SPARQL,

which are more common and thus requires more robust query verification strategies.

A possible solution to achieving the query verifiability is to rely on the blockchain

consensus and execute query operations on every node then agree on the same valid

query result across all nodes. However, this approach requires all nodes to maintain

the same global KG to execute local queries and verify the query results of the others,

which leads to data owners to lose control of their data thus compromising ownership.

Contributions. In this work, we present Pistis, the first DKG that ensures data

ownership without compromising data integrity and query verifiability. Our main

idea is to incorporate two novel paradigms, called owner-managed end-to-end encryp-

tion and collaborative query-verification, into blockchain-based DKG management.

Specifically, first, each data owner encrypts its data independently, and all owners

collaboratively build a blockchain-maintained authenticated data structure (ADS) to

share their ciphertext with the DKG. The ADS is a structured encrypted Merkle

prefix tree managed by a global key via a new orchestration of secret sharing and

secure multi-party computing. Using this ADS as an index, any participant can

query KG data in ciphertext. The data owner can determine to whom to disclose

the raw data in query results by managing its private key, thus ensuring data own-
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ership. Then, to perform SPARQL queries (i.e., standard KG queries) on the multi-

owner encrypted KG data with the guarantee of query verifiability, we design a new

cryptographic scheme called VO-SPARQL (i.e., Verifiable and Ownership-preserving

SPARQL). VO-SPARQL provides succinct verification proofs for the two-stage queries

of SPARQL, including the subgraph queries based on the ADS and the aggregation

on encrypted intermediate results based on a key-aggregate cryptographic primitive.

Our contributions are summarized as follows.

• We develop Pistis, a blockchain-based DKG that ensures data ownership.

Through a new cryptographic scheme VO-SPARQL with two novel paradigms,

Pistis provides users with SPARQL query results and a succinct verification

proof with data ownership guarantee throughout the query execution.

• We design an owner-managed end-to-end encryption scheme with a new authen-

ticated data structure (ADS) called encrypted Merkle semantic trie (EMST).

The scheme allows data owners to independently encrypt data to prevent loss

of control, and the EMST achieves the functionality of subgraph querying for

the data encrypted by different owners, ensuring data ownership in DKG.

• We design a collaborative query verification scheme called VO-SPARQL and im-

plement it in a formalized way, which achieves verifiability of SPARQL queries in

DKG through two steps while ensuring data ownership. VO-SPARQL includes

EMST’s workflow (e.g., initialization, update, and query) and a key-aggregate

cryptographic primitive allowing one party to perform verifiable data aggrega-

tion on encrypted intermediate results queried from the EMST for final results.

• We conduct a comprehensive security analysis, develop a prototype for Pistis,

and evaluate its performance under a widely-used benchmark largeRDFBench.

The results show that Pistis achieves new functionalities and practical perfor-

mance with a 45% reduction in index size compared to existing approaches.
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Figure 4.1: Architecture overview of Pistis.

4.2 The Pistis Model

4.2.1 System Model

As shown in Figure 4.1, Pistis provides KG data management services to two types

of participants as follows.

• Data owners generate and share their RDF data as triple fragments. All

triple fragments from different data owners make up a KG. Due to resource

limitations, they expect to outsource the data to Pistis. However, they need

to control their raw data and decide what to disclose and thus locally encrypt

their respective data before outsourcing.

• Users access the KG by issuing the requests of SPARQL query to Pistis. The

query involves the encrypted triple fragments from one or more data owners.

To meet the demand of data owners and users, Pistis is a DKG comprised of the

49



Chapter 4. A Decentralized Knowledge Graph with Ownership-Preserving
SPARQL Query

following three roles of nodes.

• Blockchain plays the role of a trust anchor in Pistis by building a public and

immutable ledger via consensus. The ledger records data owners’ RDF data

metadata for a global index used to query and authenticate.

• Storage providers involve a distributed data storage protocol similar to IPFS [19].

They can provide efficient, usable, and cheap off-chain storage. Each storage

provider stores a part of the data (i.e., a subgraph of a KG), and an RDF triple

of a subgraph can be backed up to multiple storage providers with an address

that can locate the relevant storage providers storing it. Storage providers can

collaboratively execute a SPARQL query on multiple subgraphs.

• Custodians are only responsible for managing keys in Pistis. The number of

custodians depends on the choice of MPC adopted in Pistis. In the following,

we consider the case of 2PC, thus the system will set up two custodians. The

custodian selection policy will be discussed in section 4.5.

4.2.2 Threat Model

In Pistis, the data owners and users are honest. The custodians are semi-honest, do

not collude with each other and strictly follow the protocol’s instructions. Blockchain

nodes and storage providers can be malicious for various reasons, such as program

glitches, security vulnerabilities, and commercial interests. The proportion of ma-

licious blockchain nodes will not exceed the fault threshold of the blockchain (e.g.,

1/2 in PoW or 1/3 in PBFT). Moreover, for each RDF triple, at least one storage

node storing it is honest. Each participant does not maliciously communicate with

the others in violation of the peer-to-peer network. Each adversary is computation-

ally bounded and cannot break standard cryptographic primitives, e.g., finding hash

collisions or forging digital signatures.
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There are two types of adversarial attacks in Pistis: (i) Data breaches [118]: the

semi-honest custodians, malicious blockchain nodes, or malicious storage providers

may try to independently infer or learn sensitive information about data owners’ data

due to various interests. (ii) Data tampering [61, 142]: the malicious blockchain

nodes or storage providers can launch data tampering attacks. They can behave

arbitrarily, e.g., forge or tamper with their local data and query results, or provide

outdated information. It is a stronger adversarial attack than data breaches.

4.2.3 Workflow

The workflow of Pistis relies on two key designs, including an encrypted Merkle

semantic trie (EMST, refer to subsection 4.3.2), and a verifiable and ownership-

preserving SPARQL query scheme (refer to subsection 4.3.3). As shown in Figure 4.1,

Pistis consists of the following five phases.

Phase 1: Initialization. Each data owner generates a pair of public and private

keys to encrypt and decrypt its own RDF data, respectively. After that, it uses secret

sharing to share its private key with the two custodians through the keys interface,

and the custodians collaboratively generate a global key used to build the EMST later

(Figure 4.1-�).

Phase 2: Data outsourcing. A data owner uses its private key to encrypt its

data and then outsources the encrypted data to storage providers through the upload

interface (Figure 4.1-�).

Phase 3: Index updating. When a data owner outsources its encrypted data to

the storage providers, it packs some metadata (e.g., the hash and the address) of

the encrypted data into a blockchain transaction. The transaction will be submitted

through the transaction (Txn) interface and will be committed to the blockchain

(Figure 4.1-�). The blockchain nodes then update the global index maintained in

the blockchain according to the transaction via a consensus.
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Phase 4: Query processing. To query the DKG, a user can send a SPARQL query

request to any storage provider through the query interface (Figure 4.1-�). Next, the

storage provider asks blockchain nodes to search for the addresses of the relevant

data by the on-chain global index, and aggregate the relevant data (Figure 4.1-�).

Finally, the storage provider sends the combination of the final query results and their

verification proofs to the user (Figure 4.1-�).

Phase 5: Verification. After receiving the encrypted query results and the cor-

responding proofs, the user decrypts the results (Figure 4.1-�) with the aid of the

two custodians and verifies the results based on the proof provided by the blockchain

nodes and storage providers.

4.2.4 Design Goals

• Data ownership. Pistis should prevent data breaches attacks without the

data owner’s authorization, i.e., the user knows nothing about the raw data

except the query result decrypted by the owner. Likewise, blockchain and stor-

age nodes can only conduct authorized operations on sensitive data without

knowing its content.

• Query verifiability. Pistis should prevent data tampering attacks, i.e., en-

sure the query results’ correctness (i.e., none of the RDF triples returned as

results have been tampered with), completeness (i.e., no valid result is missing

from the query results), and freshness (i.e., the query results are based on the

latest version of the DKG).
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Figure 4.2: Comparison of SPARQL query in DKG and the verifiable and ownership-
preserving SPARQL query in Pistis.

4.3 Methodology

4.3.1 Roadmap

As shown in Figure 4.2, to process a SPARQL query in a DKG, a common work-

flow [5, 6, 4] consists of three steps: 1) dividing the SPARQL query into multiple

BGPs, 2) locating the relevant triple pattern fragments matching each BGP, and 3)

aggregating all triple pattern fragments with set operators (OPs) to get the final re-

sults. Following this workflow, to implement a verifiable and ownership-preserving

SPARQL query in DKG, we propose a cryptographic scheme called VO-SPARQL (i.e.,

verifiable and ownership-preserving SPARQL) in Pistis. In particular, in the locating

process, Pistis adopts a structured encryption-based new Merkle tree variant, EMST,
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and constructs it by blockchain consensus for verifiable and ownership-preserving

triple pattern queries. In the aggregating process, Pistis designs an asymmetric key-

aggregate-based new VSO algorithm, eVSO, for verifiable and ownership-preserving

set operations between multiple triple pattern fragments encrypted by different data

owners. In the following, we will introduce the design of EMST and eVSO and how

VO-SPARQL integrates them into the SPARQL workflow in DKG with the partici-

pation of blockchain, storage providers, and custodians.

4.3.2 Encrypted Merkle Semantic Trie

Strawman

We first design a strawman ADS (i.e., a basic solution) with the ability of verifiable

triple pattern queries based on a Merkle prefix tree (MPT). An MPT is an extension

of a prefix tree (also known as a trie) by including a hash of the last prefix bit and

value in each leaf, and the hash of the last bit and child hashes in internal nodes.

It provides verifiable prefix-matching functionality that we depend on to implement

verifiable triple pattern queries. In this strawman, we can construct an MPT with

verifiable triple pattern queries, called Merkle Semantic Trie (MST). AnMST of depth

d contains three types of nodes: 1) one root node root storing the Merkle root hash

is located at the top layer, 2) d − 2 layers of branch nodes, each of which stores an

individual character c and a hash value of the combination of its child nodes, and 3)

one layer of leaf nodes, each of which stores an individual character c, a hash value

of itself and some pointers. These pointers point to some addresses of RDF triples

that belong to a triple fragment with the same prefix, i.e., each RDF triple in this

fragment has at least one element matching the prefix on the path from the root node

to that leaf node.

Figure 4.3 (a) shows an example of an MST. Particularly, f1, f2 and f3 are three triple

fragments with some RDF triples that consist of items aa, ab, and ba. For example,
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f1 = {〈aa, aa, aa〉}, f2 = {〈ab, ab, ab〉}, and f3 = {〈ba, ba, ba〉}. To simplify the

example, we set the three items in each triple to be the same. Given a triple fragment

f ′
1 from a storage provider, to verify whether it corresponds to a triple pattern with

a given item aa (i.e., f ′
1 is equal to f1), a user who only holds the Merkle root h6 can

recover a Merkle root (h6′) based on the hash of f ′
1 (i.e., h1

′) and a Merkle proof (h2

and h5), and then verify whether h6 and h6′ are the same. If they are the same, it

proves that the storage provider provides the correct triple pattern fragment.

However, the strawman ADS only supports verifiable triple pattern queries for plain-

text KG data (even if the index only contains addresses of query results, plaintext

indexing information and user queries can still compromise data ownership). A naive

approach is to encrypt the content of each node independently without changing the

structure of the MST, and the user can use the same key to encrypt the triple pat-

terns of its queries and perform these triple pattern queries under ciphertext. This

approach protects privacy to a certain extent, but some access and search patterns

(refer to subsection 4.4.1) are still leaked, including the number of children of different

nodes, the same ciphertext for the same characters on different layers, and the same

increasing order of the characters of all layers. We also refer the readers to [36] for

formal definitions of these leaks. A basic idea is to design a new structured encryption

scheme to convert an MST to an EMST and protect the above-mentioned information

from being leaked under the premise that the structure of the MST is also unchanged.

Challenge

Most of the structured encryption schemes [68, 36] break the correlation of messages

and their ciphertext by inducing a random permutation between them to hide the

part of access patterns. However, it is challenging to convert an MST to an EMST

by this idea since inducing a random permutation for all the nodes in the whole MST

will disrupt the tree structure and let it lose the prefix-matching functionality.
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Figure 4.3: The process to convert anMST to an EMST (φ is an empty triple fragment,
FK() is a pseudo-random functions with a private keyK, and ‖ is a cascading symbol).

Design

Therefore, to convert an MST to an EMST, we need a new random permutation for

the MST with its prefix-matching functionality guarantee. The key of the challenge

to achieve it is to keep the connection relationship between different layers in case

the node position of MST is disturbed. To overcome this challenge, we design a

subtree-based random permutation (STRP) algorithm to convert MST to EMST.

a) STRP algorithm. The encryption is done by (1) padding the child nodes of each

non-leaf node in an MST to be of the same length; (2) For each non-leaf node in the

MST, encrypting the character of it using the output of a PRF; (3) For each non-leaf

node in the MST, randomly permuting the location of its child nodes using a PRP.

The purpose of step (1) is to help us hide the number of data items of non-leaf nodes’

child nodes, and the purpose of steps (2) and (3) is to prevent index information

leakage and hide the part of access patterns. The formal description of STRP is

shown in two protocols AddToken and Add of the pseudo-code of Figure 4.4.
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An example of the conversion process of EMST is shown in Figure 4.3. In Fig-

ure 4.3 (b), the dashed box represents the padding part of the unbalanced MST

shown in Figure 4.3 (a). After the padding process, each non-leaf node of the MST

has the same number of child nodes. Figure 4.3 (c) shows the encryption process of

MST. In this process, the character with its level cascaded of each non-root node of

the MST is encrypted by a PRF. The final EMST with the permutation operation

completed is shown in Figure 4.3 (d).

b) Operations for EMST. As mentioned in subsection 4.2.3, the EMST will be up-

dated after a series of transactions submitted by data owners when the metadata of

their RDF data are committed to the blockchain. The update process involves four

different operations on the EMST, including Insert, Change, Delete, and Query.

In structured encryption, the user needs to use a token (add token or query token,

refer to section 2.4) to manipulate a structure. To simplify the steps, we omit the

steps of generating tokens when introducing these operations. algorithm 2 shows the

detailed processing of the Insert operation. In the Insert operation, each feature

of the content of an RDF triple I (i.e., subject, predicate, or object) is individually

encrypted with the private key K, and each encrypted character is recursively in-

serted into EMST. After that, the address Cid stored in the storage node of the triple

is inserted into the leaf node of EMST. Operations Change and Delete are similar

to the processing of operation Insert. The difference between these two operations

and Insert operation is that Insert operation may create a new path on EMST if

the keyword corresponding to the path has not appeared in the system before, while

operations Change (or Delete) only need to find an existing path and update (or

delete) the Cid stored on the leaf node.

Recall in subsection 4.2.3 the EMST can be used to find the relevant data (i.e., the

intermediate results of a SPARQL query, which are some triple pattern fragments).

Note that in subsection 4.3.3, the EMST can execute a set of triple patterns (i.e, a

BGP) in batches. The pseudo-code of algorithm 3 shows the detailed processing of the
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Algorithm 2: Insert operation of EMST

1 Function Insert (EMST, I, K, Cid):
Input : EMST root node root, the content of an RDF triple I, and a

private key K
Output: the root node root′ of a new state of EMST

2 node← root;
3 foreach itemi ∈ I do
4 foreach cj in itemi do
5 c′j ← FK(cj‖j);
6 if node.child[PK(c

′
j)] = null then

7 node.child[PK(c
′
j)]← New(node);

8 node = node.child[PK(c
′
j)];

9 add Cid to node.CID;
10 node.hash← hash(node.c′j||node.CID);
11 if node ! = root then
12 node.hash← hash(node.c′j||node.child);
13 node = node.parent;

14 return node;

Query operation. In the Query operation, each prefix in the triple pattern is encrypted

by the private key K first, and then is used to match a path in the EMST. If a triple

pattern has more than one variable, the results R will contain multiple triple pattern

fragments. Regardless of whether the match is successful or not (i.e., null result), the

proof corresponding to the result will be returned.

4.3.3 VO-SPARQL Scheme

In the section, we describe the design of the VO-SPARQL scheme in our Pistis sys-

tem and its usage. The VO-SPARQL scheme Ω = (InitGlobal, OffchainStore,

AddToken, Add, QueryToken, Query, Aggregate, Verify) consists of eight pro-

tocols which we describe at a high-level below. The detailed pseudo-code is shown in

Figure 4.4 and Figure 4.5.

Parties. Pistis is designed to be executed among: a large (dynamic) number of data

owners DO1, . . . ,DOθ, a large (dynamic) number of storage providers SP1, . . . ,SPτ ,
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Algorithm 3: Query operation of EMST

1 Function Query (EMST, tp, K):
Input : EMST root node root, a triple pattern tp, and a private key K
Output: the query result R with a address set CID, the Merkle proof

Mproof of R
2 node← root;
3 foreach keywordi ∈ tp do
4 foreach characterj in keywordi do
5 character′j ← FK(characterj‖j);
6 add node.hash to mproof ;
7 if node.child[PK(character

′
j)] = null then

8 add φ to R;
9 add the Merkle proof mproof to Mproof ; Break;

10 node = node.child[PK(c
′
j)];

11 add CID to R;
12 add the Merkle proof mproof to Mproof ;

13 return R, Mproof ;

two custodians C1 and C2, a large (dynamic) number of blockchain nodes BN1, . . . ,

BNρ, and a user Q.

Initializing a global index. To initialize the system, the two custodians C1 and C2

execute Ω.InitGlobal to generate an empty EMST on the blockchain which we call

the global index and provides each custodian with a share of the global key. In detail,

C1 and C2 execute a 2PC function to 1) generate a global key K, 2) generate an

empty MST and use K to encrypt MST to EMST , and 3) use a Shamir secret sharing

scheme to distribute K to K1 and K2 and share them to C1 and C2 respectively.

And then they send EMST to the blockchain. The global index can support prefix-

based triple pattern queries for RDF triples and return their addresses in the storage

providers. With the addresses, the storage providers can get the ciphertext of relevant

RDF triples and execute the aggregation processing to provide final query results to

the user.

Adding a new data item. A new record with a triple item I is added by a

data owner DOi by executing the Ω.OffchainStore with the storage nodes SP,
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• InitGlobalC1,C2(1
k, 1k):

1) C1 randomly samples r1
$←− {0, 1}k and C2 randomly samples r2

$←−
{0, 1}k;

2) C1 and C2 execute (K1,K2,EMST)← Ff
2PC(r1, r2)

where f(r1, r2):
a) K = Π.Gen(1k, r1 ⊕ r2)
b) generate an empty MST and use K to encrypt MST, output EMST to

C1

c) (K1,K2)← SS.share(K, 2, 2)
d) output K1 to C1 and output K2 to C2

3) C1 sends EMST to blockchain.

• OffchainStoreDOi(t):
1) DOi executes RSA.Gen() to generate a key-pair (Pki, Ski), broadcasts

Pki, splits Ski by (Sk1, Sk2) ← SS.share(Ski, 2, 2), and sends Sk1 to C1 and
Sk2 to C2.

2) When a data owner DOi wants to outsource an item I with an RDF
triple (s, p, o) to the storage providers, it uses Pki to encrypt all the three el-
ements of the triple separately, and sends hash(I) and {RSA.Enc(Pki, I.s),
RSA.Enc(Pki, I.p), RSA.Enc(Pki, I.o)} to the storage providers.

3) The storage providers return the storage address Cid to DOi.

• AddTokenC1,C2,DOi(K1,K2, I):
1) DOi parses I as (I.s, I.p, I.o);
2) for each member I.m in I, do:

a) DOi computes (p1, p2) ← SS.Share(I.m, 2, 2) and sends p1 to C1 and
send p2 to C2;

b) C1 and C2 execute ATK← Ff
2PC(K1,K2, p1, p2)

where f(K1,K2, p1, p2):
(I.m)← SS.Recover(p1, p2);
for each character cj in I.m, do:

c′j ← FK(cj‖j) and add c′j‖i‖PK(cj) to atki
c) add atki to ATK

3) add Cid to ATK and sent ATK to DOi.

• AddBNl
(EMST, ATK):

1) BNl parse ATK as atk1, atk2, . . . , atki;
2) Let node = EMST.root. For each atki in ATK, do:

a) let j = 1, kw = c′j in atki. BNl do:
a) if node.child[PK(cj)] = null,
b) node = node.child[PK(cj)], and i++

b) node.add(ATK.Cid)
3) BNl broadcasts EMST to other blockchain nodes;

Figure 4.4: VO-SPARQL query scheme in Pistis (part 1).
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• QueryTokenC1,C2,Q
(K1,K2, BGP):

1) Q parses BGP as {tp1, tp2, . . . , tpα}
2) For each tpi in BGP, do:

a) compute (q1, q2) ← SS.Share(tpi, 2, 2) and sends q1 to C1 and send q2
to C2;

b) C1 and C2 execute QTK← Ff
2PC(K1,K2, q1, q2)

where f(K1,K2, q1, q2):
tpi ← SS.Recover(q1, q2);
for each character ci in tpi.keyword, do: \\ assume that there is one

given keyword in tpi
c′i ← FK(ci‖i) and add c′i‖i‖PK(ci) to qtki

c) add qtki to QTK

3) sent QTK to Q.

• QuerySPl
(EMST, QTK):

1) SPl parse QTK as qtk1, qtk2, . . . , qtki;
2) Let node = EMST.root. For each qtk in QTK, do:

a) let j = 1, kw = c′j in qtki. SPi do:
a) if node.child[PK(cj)] = null, break;
b) node = node.child[PK(cj)], and i++

b) add node.CID and mproof to R and Mproof

• AggregateSPl
(R):

1) SPj parses R.tpf as {tpf1, tpf2 . . . , tpfγ} and extracts all public keys
{Pk1, Pk2, . . . , Pkj} from R;

2) For each tpfi in R, SPj caculates E(tpfi) ←
RSA.Enc(Pk1, Pk2, . . . , Pkϕ, tpfi) and add E(tpfi) to ETPF ;

3) S ← aggregate(ETPF);
4) π ← prove(ETPF, PkSPj );
5) SPj sends {S, π, R,Mproof} to Q

• VerifyC1,C2,Q
(S, π, R,Mproof):

1) Q verifies R by its Merkle proof Mproof .
2) For each tpfi in R, Q calculates acc(tpfi) and adds it to acc.
3) Q computes vr ← V erifyProof(acc, π) and verifies vr;
4) Q asks C1 and C2 the decrypt keys to decrypt the results. C1 and C2

recover these keys and send them to Q.

Figure 4.5: VO-SPARQL query scheme in Pistis (part 2).

Ω.AddToken protocol with two custodians C1 and C2, and Ω.Add with the blockchain

nodes BN. At a high level, these protocols work as follows. First, DOi execute

Ω.OffchainStore to generate a pair of RSA keys, Pki and Ski, shares Ski to C1 and

C2, broadcasts Pki, and uses Pki to encrypt each element (i.e., subject, predicate,
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or object) of the triple item I separately. After that, DOi sends the ciphertext of

I to SP and gets its address Cid. Second, DOi splits the index information (i.e.,

prefix) of I into two shares p1 and p2 and sends them to C1 and C2 separately and

asks them to execute Ω.AddToken to generate an add token. In detail, C1 and C2

use 2PC to securely compute a function that: 1) recovers the global key K from their

key shares; 2) recovers the index information from their pair shares p1 and p2; and 3)

uses PRF and PRP to encrypt and permute all characters in the keywords, and add

them to an add token ATK. Third, after receiving the add token, all blockchain nodes

BN execute the Ω.AddToken protocol and update the on-chain global index EMST

through consensus.

Querying a global index. When a user Q wants to query the DKG with a BGP

= {tp1, tp2, . . . , tpα}, it first executes Ω.QueryToken in conjunction with C1 and C2

to generate a query token. In detail, Q splits the BGP into two shares q1 and q2

and sends them to C1 and C2 separately. C1 and C2 use 2PC to securely compute

a function that: 1) recovers the global key K from their key shares; 2) recovers the

BGP from their pair shares q1 and q2; and 3) for each tpi in BGP, uses PRF and PRP

to encrypt and permute all characters of its prefixes, and add them to a query token

QTK. Then Q sends QTK to a storage provider SPl and asks it to execute Ω.Query

protocol to search for some relevant triples through the on-chain global index. In

detail, SPl first parses QTK as {qtk1, qtk2, . . . , qtkβ}, and then for each qtk in QTK,

SPl searches in EMST through any blockchain node by matching all characters of qtk

with all layers of EMST. Finally, if the match is processed successfully, SPl adds the

addresses of query results of qtk and their relevant Merkle proofs into R and Mproof

separately. R and Mproof will be sent to Q after the entire query process is over.

Aggregating intermediate results by eVSO. To get the final query results, SPl

executes the Ω.Aggregate protocol to aggregate the intermediate query results from

the global index. This protocol contains an asymmetric key-aggregate-based VSO

algorithm eVSO. In the process of eVSO, first, SPl fetches and parses R as different
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triple pattern fragments {tpf1, tpf2, . . . , tpfγ}, and extracts a public key set Pks

= {Pk1, Pk2, . . . , Pkϕ} from R. Then, SPl uses Pks to re-encrypt all elements of

all relevant triples in different triple pattern fragments. Next, SPl aggregates these

encrypted triple pattern fragments (ETPF) by executing some set operations for them

and gets the final query results S, and generates a verification proof of S through

VSO. Finally, after the aggregation process is completed, SPl sends S, R, and the

verification proofs to Q.

Verifying query results. After receiving the final results, the user Q needs to

execute the Ω.Verify protocol to verify the result in three steps. First, it uses the

CID in R and their Merkle proofs Mproof to verify whether the storage provider SPl

is correctly asking the blockchain nodes to perform the triple pattern query through

the on-chain global index. Second, it uses the accumulated values and the proof of

eVSO to verify whether the SPj is correctly performing the aggregation processing

on the intermediate query results. Third, Q asks C1 and C2 the decrypt keys to

decrypt the results. C1 and C2 recover these keys and send them to Q.

Cost Analysis. Here we give the time and space complexity of each function involved

in VO-SPARQL. Ω.InitGlobal has O(k) time and space complexity, where k is the

length of the global key. Ω.OffchainStore has O(1) time complexity and O(kR)

space complexity, where kR is the length of the RSA key. Ω.AddToken has O(l) time

and space complexity, where l is the length of characters in the triple. Ω.Add has

O(l) time complexity and O(1) space complexity. Ω.QueryToken has O(α × lq) time

and space complexity, where α is the number of triple patterns and lq is the length

of characters in the triple pattern. Ω.Query has O(α× lq) time complexity and O(α)

space complexity. Ω.Aggregate has O(α × ϕ) time complexity and O(α + ϕ) space

complexity, where ϕ is the number of relevant owners of the query. Ω.Verify has

O(α + ϕ) time complexity and O(α) space complexity.
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4.4 Analysis

In this section, we first formalize the security of our design in the ideal/real-world

paradigm and give the proof of the security, and then give a verifiability analysis of

queries in Pistis.

4.4.1 Ideal/real-world Paradigm

The goal of the ideal/real world paradigm is to prove that the scheme in Pistis

can protect against adaptive adversaries from potential information leakage during

interaction with the scheme. Intuitively, we require that the view of an adversary

(i.e., the encrypted data structure, the sequence of ciphertexts, and the sequence of

tokens) generated from any adaptive query strategy be simulatable given the leakage

information. We first define a leakage function L for Pistis, which describes the

information revealed in the verifiable SPARQL query process. The input of the query

protocol is a KG G and a SPARQL query with a BGP. L(G, BGP) is defined as follows:

Definition 5 (L(G, BGP)). The leakage function L involves access pattern and search

pattern.

• Access pattern. The access pattern is a mapping relation between the submit-

ted token and the corresponding encrypted RDF triples.

• Search pattern. The search pattern is the difference between two input tokens.

Namely, it indicates whether a token has been added or searched.

L is always considered as default leaked information in searchable symmetric encryp-

tion [68], and the Adaptive L − security can be defined as follows.

Definition 6 (Adaptive L − security). Let Ω = (InitGlobal, Off-chainStore,

AddToken, Add, QueryToken, Query, Aggregate, Verify) be a VO-SPARQL scheme.

64



4.4. Analysis

Let A = (A0, . . . ,Aq) and S = (S0, . . . ,Sq) be an adversary and a simulator, respec-

tively, where q ∈ G. We define the RealAΩ(1
k) experiment and the IdealAL,S(1

k)

experiment as follows.

RealAΩ(1
k): In the real-world execution every party has access to ideal F2PC function-

alities. At round 0, C1 and C2 execute Ω.InitGlobal to generate an encrypted index

EMST and send it to A, and each data owner DOi executes Ω.OffchainStore with

SP. Then, A adaptively chooses a polynomial number of commands (comm1, . . . , commq)

of the form commr = (DOi, opr), where opr is either an add operation (AddToken, Add)

or a query operation (QueryToken, Query, Aggregate, BGP). At round r (1 ≤ r ≤ q),

Ar executes opr by Ω. After q round interactions, A produces a b bit as the output.

IdealAL,S(1
k): In the ideal-world execution every party has access to ideal F2PC func-

tionalities. At round 0, S0 randomly generates an index EMST∗ and an encrypted

KG G∗ by utilizing L(G, BGP), and sends EMST∗ to A. Then, A adaptively chooses a

polynomial number of commands (comm1, . . . , commq) of the above form. At round

r (1 ≤ r ≤ q), Ar reviews the previous requests and generates fr adaptively. If opj is

an add, with L(G, BGP), Sr generates an add token ATKr∗ with C1 and C2 and sends

ATKr∗ to Ar. After that, Ar updates EMST∗ by utilizing ATKr∗. If opj is a query,

with L(G, BGP), Sr generates an appropriate query token QTKr∗ with C1 and C2 and

sends QTKr∗ to Ar. After that, Ar searches EMST∗ by utilizing QTKr∗. After q round

interactions, A produces a b bit as the output.

We say that Ω is adaptively L-secure if for all probabilistic polynomial-time (PPT)

semi-honest adversaries A = (A0, . . . ,Aq), there exists a simulator S = (S0, . . . ,Sq)
and a negligible function negl(k) such that

∣∣Pr
[
RealAΩ(1

k) = 1
]
− Pr

[
IdealAL,S(1

k) = 1
]∣∣ ≤ negl(k).

Theorem 1. If SS is secure and if F and P are pseudo-random, then Ω is adaptively

L − security.
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Proof. We create a simulator S = (S0, . . . ,Sq) such that for an adversary A =

(A0, . . . ,Aq), and the outputs of RealAΩ(1
k) and IdealAL,S(1

k) are computationally

indistinguishable. The simulator and adversary work as follow.

S0 : S0 simulates (K1, K2) ← SS.share(0k, 2, 2) and F2PC , and sends K1 to C1

and K2 to C2, respectively. It then generates an empty EMST.

Sr : For 1 ≤ r ≤ q, if commr is an add, S0 simulates F2PC to generates an add token

ATKr∗. For each element in ATKr∗, S0 sets its value as a random string {0, 1}∗,
whose length is the same as the output of F , and permutes their positions by

P . Then S0 sends ATKr∗ to A. If commr is a query, S0 first checks whether

the query BGPr has appeared before with the search pattern in L(G, BGP). If it
has appeared before, S0 searches the access pattern in L(G, BGP) and gets the

same QTKr∗ that has used before. If is has not has appeared before, S0 simulates

F2PC to generate a query token QTKr∗ in the same way as generating atk. Then

S0 sends QTKr∗ to A. With all but negligible probability, A cannot recover K1

and K2, thus A cannot distinguish the values in ATKr∗ and QTKr∗ from that in

ATKr and QTKr, respectively. This is because the SS is secure, and assuming that

both F and P are pseudo-random.

Therefore, A cannot distinguish the output of IdealAL,S(1
k) from RealAΩ(1

k).

4.4.2 Verifiability Analysis

Definition 7 (Query verifiability). We say a SPARQL query is verifiable if the suc-

cess probability of any polynomial-time adversary A is negligible in the following ex-

periment:

• A selects a set of RDF triples T ;
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• The EMST generate algorithm constructs an EMST and its digest EMSTroot

based on T ;

• A produces result R and V Ot for the SPARQL query Q;

• A succeeds if one of the following results is true: 1) R includes an RDF triple

which does not satisfy Q (correctness); 2) There exist an RDF triple which is

not in R but satisfies Q (completeness); 3) R includes an RDF triple not from

the latest DKG (freshness).

Theorem 2. Pistis is verifiable with respect to Definition 7 if the cryptographic

hash function is a pseudo-random function, the cryptographic accumulator is secure

under the q-SBDH assumption, and the computing power of malicious nodes is less

than 51% of the blockchain network.

Proof. We intuitively prove Theorem 2 by three cases, which represent proofs of

soundness, completeness, and freshness.

Case 1: This case means a tampered or fake RDF triple t is returned, which does not

satisfy the BGPs of Q. In this case, once t passed the verification of the user under the

soundness in Definition 7, it means that the adversary can get two different triple

pattern fragments with the same digest EMSTroot of the ADS or the adversary can get

two different set operation results with the same accumulator proof π. Case 2: This

case means an RDF triple t that satisfies the BGPs ofQ is missing from R. In this case,

if the returned result R can pass the verification of the user under the completeness

in Definition 7, it means that the adversary can get a triple pattern fragment that

does not contain some matching triples and has the same digest EMSTroot of the ADS

with the genuine fragment or the adversary can get an incomplete set operation result

with the same accumulator proof π of the genuine set operation result. Case 3: This

case means the result R involves an old RDF triple t that satisfies q but is not from

the latest DKG. In this case, once t passed the verification of the user under the
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freshness in Definition 7, it means that the adversary can get two different triple

pattern fragments (i.e., a new and an old) with the same digest EMSTroot of the ADS

or the adversary can get two different set operation results with the same accumulator

proof π.

However, all these three cases contradict two assumptions. The first is that the digest

of the on-chain ADS EMSTroot is generated by the cryptographic hash function, with

all but negligible probability, the adversary can forge another fragment with the same

hash value as the genuine fragment. The second assumption is the unforgeability for

VSO, which has been proved to be held under the q-SBDH assumption [25].

4.5 Discussion

Custodians. The choice of custodians is an important consideration for our design.

The security of Pistis relies on the custodians not colluding so they should be selected

carefully. A certification authority (CA) like IdenTrust and DigiCert usually acts as

a trusted third party to help users manage keys in web environment. For example,

IdenTrust and DigiCert under the assumption that data owners would trust that

they would not collude with each other in order to subvert the system and recover

the private information of data owners. Also, we note that the number of custodians

can be easily increased to any number by using MPC to replace 2PC.

Operations over BGPs. The above content describes how Pistis implements ver-

ifiable and ownership-preserving BGP-based SPARQL queries, while SPARQL also

has some operations over BGPs, including property paths1, named graphs2, restric-

tions in the FILTER pattern, and most of the solution sequence modifiers3 (e.g., ORDER

BY, OFFSET, DISTINCT, LIMIT). Due to space limitations, we discuss the solutions and

1https://www.w3.org/TR/sparql11-property-paths/
2https://www.w3.org/2009/07/NamedGraph.html
3https://www.w3.org/TR/sparql11-query/#convertSolMod
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limitations here to achieve their verifiability and take other advanced operations as

our future work.

• For named graphs and property paths, a simple method is to concatenate them

as a prefix to the RDF triple items and process them in the usual manner.

However, this may cause the RDF triples to be too long and increase the storage

overhead of EMST.

• For restrictions in the FILTER pattern, the storage provider can use a hash

function, a partial path of EMST, VSO, or generate a general zero-knowledge

proof to prove that the result satisfies its constraints. Specifically, a matching

or no-matching constraint of two words can be verified by their hash values,

a regular expression constraint can be verified by VSO and a Merkle proof

provided by a partial path of EMST, and a range proof of whether the query

result satisfies a certain size range can be generated through bulletproof [30].

However, in cases where data is encrypted, it is difficult for the storage provider

to generate a range proof of the encrypted result. In this case, order-preserving

encryption [7] is a potential solution.

• For the solution sequence modifiers, since the sorting criteria are given by the

clients, they can verify the query results themselves without proof. A GROUP BY

clause is used to group query results based on one or more variables, and can

also be checked by clients themselves.

Data abuse and audit. Although Pistis provides protection against data breaches

and tampering attacks, the primary concern resides in the abuse of data collection

within DKG. Some authorized users regularly access DKG to obtain a significant

amount of raw data, subsequently misusing it for purposes such as data mining and

recommendation systems. To address this data misuse problem, we recommend that

the DKG community limit the frequency of user access (e.g., by an owner-defined and

dynamically adjusted policy), formulate rules through the consensus of participants
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and use technical means (e.g., smart contract or attribute-based encryption (ABE)

[20]) to implement it. Another real problem is that some data owners may encrypt

some illegal data (e.g., drug dealing or pornography) and shares it in DKG, and

others cannot judge its legitimacy from the ciphertext. Some works [73, 37] use data

deduplication [139, 17] to solve this problem.

4.6 Evaluation

4.6.1 Experimental Setup

Hardware configuration. We run 8 data owner nodes, 16 blockchain nodes and 16

storage providers nodes on 16 64-bit Linux servers (Ubuntu 20.04) with Intel i9-11th

CPU and 64GB memory. We set the bandwidth of connections between them to

20Mbps.

Implementation environment. A prototype of Pistis is implemented in Java,

C++, Go and JavaScript. The blockchain module is implemented based on Go-

Ethereum4 and the storage module is implemented based on IPFS [19]. The prototype

has a user-server architecture that is implemented based on Spring Boot framework5

and the blockchain interfaces and requests are in the form of web3.js6.

Cryptographic primitives. For all 2PCs, our prototype uses the ABY frame-

work [44]. For MPC, our prototype uses JIFF library [9]. For secret sharing, our

prototype instantiates a threshold secret sharing with Shamir secret sharing [102].

Datasets and benchmark. We evaluate the query performance of Pistis using

the datasets and queries from largeRDFBench [101] benchmark, which is widely used

by the DKG community. LargeRDFBench consists of 13 datasets and more than 1

4https://github.com/ethereum/go-ethereum
5https://spring.io/projects/spring-boot
6https://web3js.readthedocs.io/en/v1.5.2/
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billion triples in total. The largeRDFBench queries in our evaluation include simple

(S), complex (C), and large data (L) categories.

Metrics. We measure the following metrics of Pistis:

• Storage Cost (SC): The storage space size of the index.

• Token Generation Time (TGT): The amount of time it takes to generate an

add token or query token.

• Item Add Time (IAT): The amount of time it takes to add a new item to Pistis,

including adding to the storage network and blockchain.

• Query Execution Time (QET): The amount of time it takes to receive the full

query results.

• Proof Generation Time (PGT): The amount of time it takes to generate the

verification proof of query results.

• Verification Time and Verification Object Size (VT & VO): The time to verify

query results and the proof size.

4.6.2 Experimental Results

Overall Comparison

A high-level overall comparison between our Pistis and other state-of-the-art DKG

systems is shown in Table 4.1. In these three DKGs, Pistis is the only one that

implements SPARQL queries with data integrity, query integrity and data ownership.

Through the VO-SPARQL scheme, Pistis can give data owners control over data that

is outsourced to a decentralized storage system. Moreover, Pistis also achieves double

verifiability of raw data and query results in a decentralized byzantine environment.

For the storage cost of the index on the DBPedia-Subset dataset with 42849609
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Table 4.1: Overall comparison of three different systems

Schemes
Data

integrity
Query

verifiability
Data

ownership
Storage cost
of index (KB)

PIQNIC
with PPBF

[4] � � � 128425

Colchain [6] � � � 128425

Pistis � � � 70912

Pistis in plaintext � � � 13296

triples, the size of the index in PIQNIC with PPBF and Colchain is 128425 KBs,

while on Pistis is 70912 KBs. The reason is that EMST compresses the index size

by combining the same prefixes of keywords and Pistis needs a Merkle characteristic

and prefix encryption to guarantee the query verifiability and data ownership. When

data ownership is not considered, that is, only MST is used as the ADS of the system,

the size of the index is 13296KB.

Performance Evaluation

Token generation time. We evaluate the performance of the AddToken and QueryToken

protocols by generating a series of add tokens from the dataset and some different

query tokens of different types of queries in the benchmark, and testing their token

generation time (TGT) respectively. In Figure 4.6, we vary the size from 10 up to 1

million RDF triples and then test the add token generation time of them. The results

demonstrate that generating an add token of a new triple is independent of the size of

requests and takes about 24 milliseconds per triple. Besides, the results show that in

the token generating process, the time required for the 2PC computation dominates

the other tasks. Figure 4.7 shows the query token generation time of different types

of KG query (i.e., S, C, and L queries in the benchmark, and setting 1000 items

for each query). The results show that different types of KG queries have different

query token generation time. Generating a simple (S) query token and a large data

(L) query token takes about 96ms and 144ms respectively, and a complex (C) query
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token needs about 240ms because it contains the largest number of triple patterns.

Likewise, the 2PC computation also dominates the other tasks in the query token

generation process.

Add time. We evaluate the performance of the Add protocol by storing a series of

RDF triples to the storage providers and submitting their add tokens to the blockchain

network. We choose the DBPedia-Subset dataset with 42849609 triples, store each

of them to the IPFS network, and pack each into a transaction and submit it to

Ethereum. The item add time (IAT) has two parts: 1) the synchronization time of

IPFS nodes and 2) the confirmation time of Ethereum blocks. The time of storing one

triple in the IPFS is 0.0187s (in PIQNIC, it is 0.0031s) and the block confirmation

time is 6.803s (in Colchain, it is 5.44s). Obviously, the block confirmation time

dominates the storing time and Pistis has a small insert overhead with respect to

systems without encryption. We also conduct a set of comparative experiments to

compare the block confirmation efficiency of the original Ethereum and Pistis, and

their transaction throughput is 15.6 transactions/s for the original Ethereum and

14.9 transactions/s for Pistis. Therefore, the reason for the long add time is the low

throughput of Ethereum itself and not due to our encryption algorithms.

Query execution time. To evaluate the performance of the Query and Aggregate

protocols of Pistis, we compare the query execution time (QET) of Pistis with
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two baseline systems, including an original Ethereum-based KG (OE-KG) that stores

all encrypted RDF triples without any index and a variant Pistis system with a

plaintext MPT (Pistis-P). Figure 4.8 shows the QET of them for different queries in

the S, C and L query categories. For Pistis, the average QET for these three types

of queries is 0.7s, 6.8s, and 212s, respectively. For Pistis-P, the average QET for

these three types of queries is 0.63s, 6.5s, and 198s, respectively. For OE-KG, the

average QET for these three types of queries is 2.1s, 14.2s, and 815s, respectively. By

comparing the query performance of these three systems, we can find that Pistis and

Pistis-P have better performance than OE-KG because both of them have indexes.

Besides, compared with Pistis-P, Pistis achieves efficient query under ciphertext

with small performance loss.
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In addition to comparing with blockchain-based baselines, we also do the performance

comparison of our Pistis with the state-of-the-art DKGs including PIQNIC and

Colchain in terms of triple pattern query execution time on the DBPedia-Subset

dataset, and the clients send 2000 triple pattern query requests for each system. As

for the triple pattern query time, PIQNIC and Colchain need 5.081s and 6.773s to

get the query results because they have the same index and Colchain has to find

the triples in the blockchain transactions. Due to the performance overhead on the

verification and encryption schemes, Pistis require more time to get the query results.

The results show that Pistis introduces an additional execution time of 0.038s and

0.037s for each query compared with PIQNIC and ColChain due to more verification

and encryption operations. Therefore, although Pistis requires more time to get

the triple pattern query results than the existing systems, it can guarantee the data

ownership and verifiability of query results and the extra time is tiny in real-world

applications.

Verification cost. All the query results with their verification proofs are generated

on the blockchain and storage providers, and need to be verified on the user side. We

evaluate the performance of the Verify protocol by executing a series of SPARQL

queries and testing their Proof Generation Time (PGT), Verification Object Size

(VO) and time (VT). The experimental results are shown in Figure 4.9, Figure 4.10,

and Figure 4.11. First, for the PGT, we test the Merkle proof generation time on the

blockchain side with three different types of SPARQL queries (S, C and L), and test

the aggregation proof generation time of different types of queries (i.e., 4 S queries, two

C queries, and two L queries, setting 1000 items for each query). From Figure 4.9, we

can see that the complex queries have the longest PGT for Merkle proof because they

have the highest number of query-related fragments and each fragment has a Merkle

proof. Also in Figure 4.9, the S and C queries take less time to generate aggregation

proofs while the L queries have a longer PGT of data aggregation (DG). The reason is

that the L queries have a higher number of intermediate results. Second, Figure 4.10
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shows the verification time (VT) for Merkle proofs and aggregation proofs of different

queries, which are the same, and C queries have slightly longer VT. For VT of Merkle

proofs, the reason is that all queries need to calculate the same Merkle root hash

while the complex queries need to calculate more fragments’ hashes. From the results

of VT for data aggregation proof, we can see that the verification is very fast and

only related to the number of query-related fragments. Third, Figure 4.11 shows the

size of VO of Merkle proofs and aggregation proofs on different queries. From these

two figures, we can see that for both Merkle proof and data aggregation proof, the

complex queries have the largest VO due to their highest number of fragments.
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Chapter 5

VeriDKG: A Verifiable SPARQL

Query Engine on Decentralized

Knowledge Graph

The ability to decentralize knowledge graphs (KG) is important to exploit the full

potential of the Semantic Web and realize the Web 3.0 vision. However, decentral-

ization also renders KGs more prone to attacks with adverse effects on data integrity

and query verifiability. While existing studies focus on ensuring data integrity, how to

ensure query verifiability - thus guarding against incorrect, incomplete, or outdated

query results - remains unsolved.

This chapter introduces VeriDKG, the first SPARQL query engine for decentral-

ized knowledge graphs (DKG) that offers both data integrity and query verifiability

guarantees. The core of VeriDKG is the RGB-Trie, a new blockchain-maintained

authenticated data structure (ADS) facilitating correctness proofs for SPARQL query

results. VeriDKG enables verifiability of subqueries by gathering global index in-

formation on subgraphs using the RGB-Trie, which is implemented as a new variant

of the Merkle prefix tree with an RGB color model. To enable verifiability of the
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final query result, the RGB-Trie is integrated with a cryptographic accumulator to

support verifiable aggregation operations. A rigorous analysis of query verifiability in

VeriDKG is presented, along with evidence from an extensive experimental study

demonstrating its state-of-the-art query performance on the largeRDFbench bench-

mark.

5.1 Introduction

The Web 3.0 [43, 80, 53] envisions a future Web where the Semantic Web and the

Web of Data play increasingly important roles [117, 103, 135, 71]. For the Semantic

Web to meet the expectations, it is desirable, or necessary, to be able to support

a decentralized knowledge graph (DKG) [3, 143, 5, 16]. For example, DBpedia1

and Wikidata2 provide free knowledge base with 9500 and 100 million linked data

items contributed by communities of volunteers, empowering diverse applications from

research to recommendation systems. As illustrated in Figure 5.1, a DKG is stored,

managed, and queried using a decentralized infrastructure that facilitates the storage

of subgraphs at multiple storage nodes. This infrastructure enables data owners to

share their linked data as subgraphs of the global KG stored by the infrastructure

through the public SPARQL endpoints [52, 29] or dereferenceable URIs it provides.

However, decentralized systems are more vulnerable to attacks and faults (e.g., Byzan-

tine fault [35]) and therefore need means of ensuring data integrity and query veri-

fiability in order to facilitate trustworthiness. In the context of a commercial peer-

to-peer database, compromised nodes can manipulate transactions and forge data,

posing risks to financial transactions and compromising business data. Data integrity

ensures the storage nodes cannot tamper with their data [69, 27, 14], while query veri-

fiability ensures that query results are complete, sound, and fresh [151, 153, 154, 129].

1https://www.dbpedia.org/
2https://www.wikidata.org/
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Figure 5.1: Illustration of a DKG system.

Without any measures taken, a malicious storage node in DKG can modify its data

or return incorrect, incomplete, or outdated results that do not match user requests,

violating data integrity and query verifiability. Taking Figure 5.1 as an example,

a malicious storage node (comparable to a travel agency) can intentionally conceal

relationships within the KG (suitable or low-cost options) and selectively provide

incomplete results to clients (to prioritize its travel packages).

Unfortunately, most of the existing DKG infrastructures tend to prioritize query effi-

ciency over trustworthiness [31, 4, 5, 16], although recent studies exist that focus on

data integrity in DKGs [6, 105, 92]. For example, ColChain [6] enables data integrity

in Byzantine environments by establishing storage nodes that maintain duplicate,

immutable copies of subgraphs through blockchain consensus. However, these studies

still assume that the subquery and communication in DKGs are trustworthy, which

may not hold in real-world settings. Therefore, it is highly relevant to provide mech-

anisms that make it possible to verify that the subquery and the aggregation result

are correct.

The standard approach to enable the verification of query results is to maintain an

authenticated data structure (ADS) [108] that enables the detection of incorrect query

results computed by an untrusted party on an outsourced database. While ADSs can

be extended to decentralized infrastructures, existing ADSs are not designed for the

querying of DKGs and cannot be applied readily to this setting, for two main reasons.
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• Decentralized data storage. Due to the decentralized storage of DKG data,

DKG query processing is done in two steps: executing subqueries to obtain

intermediate results from individual storage nodes and aggregating the inter-

mediate results to get final query results [6]. In contrast, existing ADS schemes

assume that all data is stored in a single node when building and maintaining

an ADS.

• Semantic richness. Because of its semantic richness, KG data that is both

diverse and exhibits complex relationships is challenging for existing ADSs to

capture. Therefore, existing ADSs can support neither verification of local

query processing nor verification of global query processing where local results

are aggregated.

Therefore, in this work, we design a new ADS-based SPARQL [97, 18] query verifica-

tion scheme and enable the use of blockchain for its generation and management to

ensure data integrity and query verifiability. To contend with the decentralized data

storage, our main idea is to design an ADS that can accommodate essential metadata

of subgraphs stored on different nodes to achieve a global index, thus relaxing the

requirement for a node to hold all data to build an ADS. To contend with the seman-

tic richness, we ensure that it is possible to embed the semantic information required

for KG query into the ADS. Specifically, we use keyword prefixes and an RGB color

model to represent all semantic information with minimal cost. With the resulting

ADS, DKG can be verified in a divide-and-conquer manner and the data integrity can

also be ensured by blockchain. Specifically, for the step of finding local subgraphs,

we implement the global index as a new variant of the Merkle tree that can provide

the location of any subgraph and give verification proof. For the step of aggregation,

we provide a cryptographic accumulator [91, 33] and combine it with the ADS, thus

allowing nodes to perform verifiable aggregation operations on intermediate results

from different nodes.
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Our contributions can be summarized as follows.

• We propose VeriDKG, a novel DKG system that enables SPARQL query

verifiability. To the best of our knowledge, this is the first of its kind.

• We propose a verification framework for DKGs that relies on a novel ADS, the

RGB-Trie, to process SPARQL queries in a divide-and-conquer manner with

correctness proofs.

• We implement the RGB-Trie as a Merkle prefix tree with an RGB color model

to enable the capture of the necessary semantic information and combine it

with a cryptographic accumulator technique to support verifiable aggregation

on intermediate results from multiple storage nodes.

• We provide a rigorous security analysis and report on experiments with a proto-

type of VeriDKG. The results demonstrate that the system can achieve state-

of-the-art query performance on the largeRDFbench benchmark while support-

ing data integrity and query verifiability.

5.2 The VeriDKG Model

5.2.1 System Model & Threat Model

Basic Model. In a DKG system, there are three types of participants.

Data owners generate raw RDF data as triple fragments and share their data in

the DKG. Due to limited resources, the data owners outsource their data to storage

nodes. Storage nodes offer DKG storage and data management services, divided

into KG communities, each responsible for specific triple fragments. They can collab-

orate across communities when executing SPARQL queries and facilitate addressing
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Figure 5.2: Comparison between the existing DKG and our VeriDKG.

relevant nodes for a requested RDF triple. Clients query the global KG by issuing

SPARQL requests to the storage nodes.

As shown in Figure 5.2a, data owners outsource their data to the storage nodes (�),

and a client can send its query request to any storage node (�) and get the query

result (�). Most DKG systems have a data replication mechanism [5, 4] to ensure

query services normally run when some storage nodes encounter failure.

Threat Model. Different from existing DKGs [5, 4] that assume that storage nodes

are trustworthy, in VeriDKG, the storage nodes are not trusted. Each storage node

may forge or tamper with query results or return outdated information for various

reasons, such as program glitches, security vulnerabilities, and commercial interests.

We assume that the data owners and clients are trusted. (A discussion for malicious

data owners is provided in subsection 5.4.2.) A similar threat model can be found in

outsourced databases [87, 127, 154].

System Model. Our VeriDKG introduces a new role of participants to build a

verifiable SPARQL query engine on DKG as follows.
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Auditors compose a blockchain system as a trust anchor in the DKG. The blockchain

guarantees that the auditors can collectively build a public and immutable ledger via

consensus. We assume that the proportion of malicious auditors will not exceed the

fault threshold of blockchains (e.g., 1/2 in PoW or 1/3 in PBFT).

5.2.2 System Workflow

As illustrated in Figure 5.2b, the data owners, storage nodes, auditors and clients

interact in VeriDKG as follows.

Phase 1: Data Outsourcing. Each data owner outsources its RDF data to the

storage nodes (�). At the same time, the data owner also calculates the hash of each

RDF triple, and proposes a transaction containing the metadata (i.e., the hash, index

information, and address of the triple in the storage network) for each triple.

Phase 2: ADS Generation. The data owner then submits the proposed trans-

action with metadata to the blockchain (�). To commit the transaction, all the

auditors run a consensus to build an ADS with an index function for all RDF data

stored on the storage node network. The ADS maintained in the blockchain will be

updated based on each newly committed transaction. The details will be described

in subsection 5.3.2.

Phase 3: Query Processing. A client can issue a SPARQL query to any auditor

(�). The auditor converts the query to a set of triple patterns, uses the ADS to

search for the triple pattern fragments of each triple pattern (namely triple pattern

queries), and gets the triple pattern fragments from storage nodes (�). All the triple

pattern fragments are aggregated on the auditor for the final results. The auditor

also generates proofs using the ADS, discussed in subsection 5.3.3.

Phase 4: Query Verification. The final query results and their corresponding

proofs are sent to the client from the auditor, and the client verifies the query results
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Figure 5.3: The process of verifiable SPARQL query execution in VeriDKG.

(�), which is discussed in subsection 5.3.3.

5.2.3 Goals

The query verification in Phase 4 should guarantee that the query results returned

from the storage nodes satisfy three security criteria: 1) Soundness: None of the

RDF triples returned as results have been tampered with and all of them satisfy the

SPARQL query conditions; 2) Completeness: No valid result (e.g., RDF triples and

their members) is missing from the query results; 3) Freshness: The query results

are based on the latest version of the DKG.

5.2.4 Roadmap

As mentioned before, executing a SPARQL query in DKGs involves three steps: 1) di-

viding the SPARQL query into multiple triple patterns, 2) locating the relevant triple

pattern fragments matching each triple pattern, and 3) aggregating these fragments

for final results. To enable verifiable SPARQL queries in VeriDKG, we introduce a

novel ADS for verifiable triple pattern queries and utilize a verifiable set operation-

based approach for aggregation. In particular, as shown in Figure 5.3, in the locating

process, VeriDKG employs the RGB-Trie, a Merkle tree variant, to find relevant
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intermediate results (triple pattern fragments) for all triple patterns alongside their

proofs. In the aggregating process, most aggregation operators are converted to some

set operations, and a storage node in VeriDKG can perform verifiable set opera-

tions on the intermediate results, and returns the final query results with a verification

proof to clients. In the following, we will introduce the design of RGB-Trie in Section

subsection 5.3.2 and the entire query process in Section subsection 5.3.3.

5.3 Methodology

5.3.1 Strawman

To support verifiable triple pattern queries, we first describe a strawman ADS for

Phase 2 only based on a Merkle prefix tree (MPT) like Merkle Patricia Tree [125], an

ADS for verifiable prefix-based keyword queries adopted by many blockchain systems.

In the strawman, the auditors can build an MPT on the blockchain, which treats

the value given in the triple pattern as a keyword. The internal nodes of the MPT

stores the index information (i.e., keywords) of RDF triples, and the MPT’s leaf nodes

point triple fragments, each containing some RDF triples with the same keyword. For

example, for KG G in Table 2.1, we let p1 = aa, p2 = ab, and p3 = ba, the MPT to

query G can be shown in Figure 5.4. For three triple patterns 〈?s, p1, ?o〉, 〈?s, p2, ?o〉,
and 〈?s, p3, ?o〉, f1, f2 and f3 are their corresponding triple pattern fragments through

the MPT. Given a triple pattern fragment f ′
1 from a storage node, to verify whether

it corresponds to triple pattern 〈?s, p1, ?o〉, a client can recover a Merkle root (h6′)

based on the hash of f ′
1 (h1

′) and a Merkle proof (h2 and h5), and then verify whether

h6 and h6′ are the same.

Unfortunately, the strawman falls short of enabling verifiable triple pattern queries

due to two limitations as follows.
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Figure 5.4: An example of an MPT in the strawman system.

First, it only supports verifiable queries for limited triple patterns, i.e., those where

only one of the three features in triples is given. For example, the MPT in Figure 5.4

supports verifiable queries for triple patterns with a given predicate. It cannot support

verifiable queries for triple patterns with a given subject or object.

Second, it cannot support verifiable aggregation of intermediate results, but a SPARQL

query requires performing aggregation operations (e.g., UNION or JOIN) on triplet

pattern fragments according to section 2.1. For example, if a SPARQL query requires

the join of f1 and f3 on the subject, the MPT in Figure 5.4 cannot provide any proof.

Therefore, we propose a new ADS called RGB-Trie, a variant of MPT with two

new characteristics. 1) It includes an RGB color model on MPT nodes for verifiable

queries for any triple patterns, and 2) it integrates an accumulated value design with

the MPT for verifiable set operations for aggregation on triple patterns.

5.3.2 RGB-Trie: ADS for VeriDKG

Trie Structure

As shown in Figure 5.5, RGB-Trie comprises four types of nodes, i.e., a root node,

branch nodes, extension nodes, and leaf nodes, which are described as follows. In the

figure, an RDF dataset with three RDF triples is inserted into an RGB-Trie, and the
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Figure 5.5: The structure of RGB-Trie.

features in the triples may have all or part of the same prefix. It’s worth noting that

the prefix for each entity in an RDF triple can encompass various elements such as

property paths3, named graphs4, and other components found within the KG.

Root node. The top layer of RGB-Trie is a root node, which is a Merkle root

maintaining a consistent snapshot of global KG. Based on the characteristics of MPT,

the hash value inside a root node changes when any node in RGB-Trie is modified.

Branch/Extension node. The middle layer of RGB-Trie includes branch nodes

and extension nodes. Each branch node connects its predecessor (parent node) and

successors (child node) through its own value properties. It stores the common prefix

of its child nodes and has at least two children. An extension node is a special branch

node and can represent the termination of a query path. It has some pointers to point

to triple pattern fragments. A branch node can be transformed into an extension node

3https://www.w3.org/TR/sparql11-property-paths/
4https://www.w3.org/2009/07/NamedGraph.html
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Figure 5.6: Two cases of RGB-Trie node operation (Frag. means triple fragment.

by inserting some RDF triples with a keyword whose matching path ends at this node

to RGB-Trie. We illustrate the process of converting a branch node to an extension

node in 5.6a. When an RDF triple with a subject a is inserted into the RGB-Trie, a

branch node with the common prefix a is transformed to an extension node that has

a pointer to point the inserted RDF triple.

Leaf node. RGB-Trie’s bottom layer comprises leaf nodes, each with pointers to

address sets for triplet pattern fragments and their accumulated values. Additionally,

each leaf node holds hash values for the referenced fragments. These attributes are

pivotal in enabling RGB-Trie to furnish verification proofs for SPARQL queries (refer

to subsection 5.3.3).

The design above creates an index for triple fragments linked to an input word.

However, in KG, each triple has three features (subject, predicate, object), and each

index fragment corresponds to just one feature. This necessitates three separate tries,

tripling the storage and computation overhead as all three must update simultane-

ously with each transaction. To address this, we merge these tries into one using an

RGB color model as follows.

Definition 8 (RGB Color Model). Given a node n in RGB-Trie, its color field is

defined as red, green or blue if its search target feature is subject s, predicate p or

88



5.3. Methodology

object o, respectively. If n points to two different features, e.g., s ∧ p, s ∧ o, or p ∧ o,

its color field is defined as yellow, magenta, or cyan, respectively. The color field is

set to white when n has simultaneous access to the three features.

Example. An example of node color change is shown in 5.6b. The color of a leaf

node is green because the fragment it points to is a triple pattern fragment for the triple

pattern 〈?s, aa, ?o〉 and its index value is aa. If a new RDF triple with a subject aa

is inserted into this leaf node, its color is changed from green to yellow because yellow

is a mixed color of green (for predicate) and red (for subject). After the node color

change process is over, the leaf node will store two different pointers, two hash values,

and two accumulated values.

After adding the RGB color model to MPT, the RGB-Trie can convert any form of

triple pattern query into keyword queries with different color combinations, which is

described in subsection 5.3.3. We also give a cardinal Rule of color mixing for the

RGB color model in RGB-Trie to improve its query performance. Details are shown

in section 5.3.2.

Operations of RGB-Trie

At the beginning of VeriDKG, an empty RGB-Trie is stored in the genesis block (the

first blockchain block). Along with each new RDF data outsourced to the storage

nodes (Figure 5.2b-�), the auditors change the RGB-Trie according to the newly

committed transaction about the new RDF data (Figure 5.2b-�). There are three

kinds of operations, i.e., insert, update, and delete, introduced as follows.

Insert Operation. After receiving a transaction with an address points to an RDF

triple 〈s, p, o〉, the auditors add three items [s, red], [p, green], [o, blue] to an item list

L. For each item itemi in L, the auditors search for an insertion point nodep of the

root node of RGB-Trie by traversing its child nodes.
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For each item itemi, if the auditors find nodep, it inserts itemi to nodep through a

recursive insertion algorithm. If they cannot find nodep, auditors create a new child

node nodenew of the root node of RGB-Trie and insert itemi to nodenew. In the insert

processing, if at any time the next character to be matched in the item does not

match the characters stored in all children of an inserted node, the RGB-Trie will

create a new child node of the inserted node to store the remaining unmatched part

of the item. If nodep has more than one character (i.e., slices of character, which is

a variable-length character array), and the unmatched part of the item is only partly

the same as the slices, nodep will split (i.e., keep the matched part of the slices in the

node and create two new child nodes to store the remaining part of itemi and the

remaining part of the slices).

Example. Consider Figure 5.5 as an example. Suppose t3 = 〈abb, bca, abba〉 is a

new triple. When it is inserted into the tree, the right child node of node Branch1 is

converted to an extension node with a new triple fragment Frag.3. The node Branch2

will only keep prefix bc and split with two new child nodes, including a leaf node Leaf6

with Frag.7 and a leaf node Leaf5 with prefix a and a new triple fragment Frag.6.

And t3 will also be inserted into Frag.4.

Finally, after the insertion process, the auditors update RGB-Trie’s hashes and colors

and change it to a new state. Different nodes have different methods to update their

hash value. Let || be the concatenation operator of multiple values, hash(·) is the

cryptographic hash function, and the hash update processing of different types of

nodes in RGB-Trie are as follows:

For a leaf node nl, the hashing process is:

• fn = the triple pattern fragment(s) that nl points;

• cn = the keyword related index content in nl, i.e., a segment of the keyword.

• hn = hash(cn||hash(fn)), it is the hash value of nl.
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For an extension node ne, denotes its child nodes is {cn1, cn2 . . . cnk}, the hashing

process is:

• fn = the triple pattern fragment(s) that ne points;

• cn = the keyword related index content in ne, i.e., a segment of the keyword.

• chn = hash(cn1||cn2 . . . ||cnk)

• hn = hash(cn||hash(fn)||chn), it is the hash value of ne.

For a branch node nb, denotes its child nodes is {cn1, cn2 . . . cnk}, the hashing process

is:

• cn = the keyword related index content in nb, i.e., a segment of the keyword.

• chn = hash(cn1||cn2 . . . ||cnk)

• hn = hash(cn||chn), it is the hash value of nb.

Besides, RGB-Trie updates the color of all nodes on this path at the same time. It

follows the RGB additive color mixing rule. The color of a node is determined by a

mixture of the index field in which it stores its content and the color of its children,

and the specific descriptions are shown as follows:

Basic color mixing rule. Under this rule, each node in the RGB-Trie has a triple

(R,G,B), and each element of the triple is a binary value. We use 1 to indicate

that the color exists, and 0 to indicate that the color does not exist. For example, in

Figure 5.7, the color of the root node is white and represented as (1, 1, 1), because all

child nodes of the root node contain all items of the RDF triple. To update the color

of a non-leaf node on the RGB-Trie, the node needs to OR the color triples of all its

child nodes.
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Figure 5.7: The color mixing rule in RGB-Trie.

Gradient color mixing rule. Under this rule, each node in the RGB-Trie has a

triple (R,G,B), and each element of the triple is an 8 bits value. We use (255, 0, 0)

to represent color red, (0, 255, 0) to represent color green and (0, 0, 255) to represent

color blue. To update the color of a non-leaf node on the RGB-Trie, it needs to

calculate the proportion of different items of RDF triples (i.e., s, p, and o) in its child

nodes. For example, in Figure 5.7, the color triple of the root node can be calculated

as (255 ∗ (3/5), 255 ∗ (2/5), 255 ∗ (1/5)), because there are 5 RDF triples in the whole

KG, including 3 pointed by subject, 2 pointed by predicate and 1 pointed by object.

The two color mixing rules offer distinct advantages and drawbacks. The basic rule

simplifies color calculations and ensures precise and comprehensive query results. In

contrast, the gradient color mixing rule empowers clients to decide query termination

based on color proportions, enhancing efficiency but potentially reducing recall. Im-

portantly, the recall reduction doesn’t compromise query verifiability, as it aligns with

client preferences. We will assess the query performance of these rules in section 5.5.

Update & Delete. When a data owner wants to update or delete an RDF triple

stored in storage nodes, it asks the storage nodes to update or delete that triple,

and sends a new transaction consisting of the triple and a field marked for update

or deletion to the auditors. When the auditors receive the transaction, they will
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update or delete the triple item and update the nodes in the RGB-Trie to a new

state. Under these two operations, the update process of the RGB-Trie is similar to

the insert operation.

Cost Analysis

Here, we provide the time and space complexities associated with the RGB-Trie.

Time complexity: When inserting an item with a word of length L and a color, the

auditor traverses the RGB-Trie recursively level by level, which incurs L comparisons

in the worst case. Updating RGB-Trie’s hashes and colors upon an insertion involves

reversing the order of traversal and L executions. Thus, insertion has a time com-

plexity O(L), with L being the length of the word to be inserted. Similarly, update,

deletion and querying also have time complexity O(L).

Space complexity: The space consumption of an RGB-Trie depends on its total

number of nodes, which is related to its depth and number of leaf and non-leaf nodes.

An RGB-Trie is constructed from a dataset of RDF triples. We denote the number

of distinct items among all RDF triples in the input dataset by N , and we denote the

cardinality of the character set of the input dataset by D. We can then determine an

upper bound on the number of children of each non-leaf node. We start by observing

that in an RGB-Trie, each item is stored either in a non-leaf node or in a leaf node.

Further, each non-leaf node has at least 2 and at most D child nodes (assuming

D ≥ 2). Next, in the worst case, an RGB-Trie is a fully balanced binary tree with all

items being stored in leaf nodes. Thus, the leaf layer has N nodes, each non-leaf layer

L has 2L nodes, and the RGB-Trie has �log2N� layers. The maximum total number of

nodes that an RGB-Trie can contain is therefore 1+2+22+. . .+2log2N−1+N = 2N−1.
Consequently, the space complexity of the RGB-Trie is O(N).
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5.3.3 Query Processing and Verification

We achieve a verifiable SPARQL query process in two steps, i.e., verifiable triple

pattern query and verifiable fragments aggregation, as follows.

Verifiable Triple Pattern Query. A triple pattern query aims to search for a

triple pattern fragment that matches a given triple pattern. algorithm 4 describes the

verifiable triple pattern query process through RGB-Trie. First, the auditor searches

in RGB-Trie to find the triple pattern fragments that match the input triple pattern

(Lines 1-8). Each given value of the triple pattern, i.e., itemi, visits the RGB-Trie

to query related triple fragments with their colors independently. RGB-Trie uses the

depth-first search method to find a path in RGB-Trie that matches itemi, and the

path ends at a leaf node or an extension node. Then, if itemi matches successfully,

RGB-Trie will add the fragment pointed by the end-point node and its Merkle proof

to a verification object (VO) (Lines 9-16). Otherwise, if itemi matches failed, RGB-

Trie will add a set of nodes with their Merkle proofs, including the nodes in the

partially matched path and all child nodes of the last node in this path, to the VO

(Lines 17-18). Finally, the VO is returned to the client.

After receiving the results and proof, the client can verify them by comparing the

recovered root node’s hash that it calculates with the root hash of RGB-Trie which

is kept in the current block header. If they are equal, the verification succeeds.

Example. To search a triple pattern tpi = 〈aaa, ?p, aab〉 in 5.6a, an auditor should

extract two items aaa and aab with color red and blue, and later search the RGB-

Trie to find the related triple pattern fragments. The auditor will get the results Raaa

= {t1}, and Raab = ∅, because no nodes in RGB-Trie have both a prefix content of

aab and possess the blue color. Finally, the auditor takes the intersection of two

intermediate results Raaa and Raab and gets the final result ∅. Thus, the auditor will

return the final result of tpi (i.e., ∅), the intermediate result {t1} with its Merkle proof,

and the non-existing proof of Raab to the client.
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Algorithm 4: Verifiable triple pattern query

1 Function Search for fragments (r,tpi):
Input : RGB-Trie root node r, a triple patten tpi
Output: Triple pattern fragments f , matching path p

2 foreach itemi in tpi do
3 fi, pi = r.nodeSearch(itemi)
4 if fi != null then
5 add fi to f

6 else
7 add pi to p

8 return f, p;

9 Function Get proof (node with fi,fi ∈ f , p):
10 foreach node with fi do
11 add hash(fi) to V O;
12 while node.parent != null do
13 add nodeInfo to V O
14 foreach nodei ∈ node.parent.child do
15 add nodei.hash to V O

16 node ← node.parent

17 if p != null then
18 add p, Merkle proof of p to V O

19 return V O

Verifiable Fragments Aggregation. After the triple pattern query, a data ag-

gregation process needs to be executed on an auditor that collects the intermediate

results (i.e., triple pattern fragments) to get the final results. A SPARQL begins

with an operation SELECT followed by a subset of variables in the triple patterns, and

then a keyword WHERE followed by a set of triple patterns (i.e., a BGP) connected by

some graph patterns (e.g., JOIN, LEFT JOIN, FILTER) and operations (e.g., OPTIONAL,

UNION, ORDER BY). It is worth noting that most graph patterns and operations can

be converted to set operations between subgraphs. For example, for a JOIN graph

pattern involving the same features of two triple pattern fragments, an auditor treats

the features of these two fragments as two sets and constructs a proof for their inter-

section through VSO. In the following, we will describe the detailed execution process

of the verifiable fragments aggregation on the graph patterns and operations that can
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Algorithm 5: Verifiable data aggregation

1 Function Get result and proof (f , tp, pk):
Input : Triple fragments f , triple pattern list tp, RGB-Trie R, public key pk
Output: Query result S, verification proof π

2 foreach fi ∈ f do
3 foreach tpj ∈ tp do
4 tpfij ← R.search (fi, tpi) and add tpfij into tpfj

5 add tpfj into tpf

6 S ← aggregate (all tpfi ∈ tpf)
7 π ← prove (tpfi, pk)
8 return {S, π}
9 Function Verify proof (R, π, X∗):

Input : Triple pattern fragments tpf , query result S, verification proof
{X∗, π}

Output: verification result
10 foreach tpfi ∈ tpf do
11 add acc(tpfi) into ACC

12 result← V erifyProof(ACC, π)
13 return result

be converted to set operations and give the solutions for other operations.

In VeriDKG, the auditor is responsible for aggregating the intermediate results

from the triple pattern query transfers the aggregation operations in SPARQL query

request into accumulator set operations (e.g., intersection, union, complement, and

difference) and uses the following algorithm to generate verification proofs of the

aggregating operation.

algorithm 5 describes the process of verifiable fragments aggregation. First, for each

triple pattern, an auditor uses the RGB-Trie to search for its related triple pattern

fragments (Lines 2-5). After all triple pattern fragments are found, the auditor ag-

gregates them to get the final query result (Line 6). To generate the verification

proof of the final result, the auditor uses the accumulated values of all triple pattern

fragments and generates a verification proof π (Line 7). The client that receives the

query result uses the proof π and the accumulated values to verify the query result

locally (Lines 9-13).

96



5.3. Methodology

Example. Figure 5.8 gives an example of fragments aggregation, the SPARQL query

selects s fields from two fragments through two triple patterns including a p-fixed triple

pattern and an o-fixed triple pattern. The generation proof is < acc(X1), acc(X2), π, [1, 1, 0],

[1, 0, 1] >.

To calculate the accumulated value of each triple pattern fragment, all the auditors

collaboratively generate a pair of keys (i.e., a public key and a private key), share the

public key in a public way, and share the private key in a private way (e.g., secret

sharing [102]). All the accumulated values are stored on the extension nodes and leaf

nodes of RGB-Trie.

Verification of Non-set Operations. For other operations that cannot be con-

verted to set operations, the auditor can let clients verify the results themselves or

use other cryptographic tools to generate proofs for their results. These operations

include some restrictions in the FILTER pattern and most of the solution sequence

modifiers (e.g., ORDER BY, OFFSET, DISTINCT, LIMIT). For restrictions in the FILTER

pattern, the auditor can use a hash function, a partial path of RGB-trie, VSO, or gen-

erate a general zero-knowledge proof to prove that the result satisfies its constraints.

Specifically, a matching or no-matching constraint of two words can be verified by

their hash values, a regular expression constraint can be verified by VSO and a Merkle

proof provided by a partial path of RGB-Trie, and a range proof of whether the query

result satisfies a certain size range can be generated through bulletproof [30]. For the

solution sequence modifiers, since the sorting criteria are given by the clients, they

can verify the query results themselves without proof. A GROUP BY clause is used

to group query results based on one or more variables, and can also be checked by

clients themselves.

Time-window Query. It is straightforward to extend the query algorithm to sup-

port time-window multi-version queries because the state of RGB-Trie at each mo-

ment is recorded by its root hash which is stored in the block header with a timestamp.

Therefore, to query historical data in DKG, a client only needs to send a SPARQL
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Figure 5.8: Example for proof generation of two triple fragments 1 and 2, respectively.
(σ is an operator to select triples from a triple pattern and �� is an operator to join
fragments based on a specified column.

query request with a given time period to an auditor, and the auditor uses the pre-

vious version RGB-Trie for the time-window queries. For verification, the client can

use the Merkle root corresponding to the time window stored locally to verify the

query result.

5.4 Analysis

5.4.1 Verifiability Analysis

VeriDKG enables verifiable SPARQL query in DKGs, which ensures soundness,

completeness, and freshness as defined in subsection 5.2.3. Next, similar to the com-

mon security definition of verifiable query [154, 153], we describe the formal definition

of our SPARQL query’s security as follows.

Definition 9 (Query verifiability). A SPARQL query is verifiable if the success prob-

ability of any polynomial-time adversary A is negligible in the following experiment:

For a SPARQL query Q, A is picked as the auditor for executing the triple pattern
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queries and fragments aggregation, and A produces result R and proof V Ot for Q. A
succeeds if one of the following results is true: 1) R includes an RDF triple which

does not satisfy Q (correctness); 2) There exist an RDF triple which is not in R but

satisfies Q (completeness); 3) R includes an RDF triple not from the latest DKG

(freshness).

Theorem 3. VeriDKG is verifiable with respect to Definition 9 if the hash func-

tion is a pseudo-random function, the accumulator is secure under the q-SBDH as-

sumption, and the proportion of malicious auditors will not exceed the fault threshold

of blockchains.

Proof. We intuitively prove Theorem 3 by three cases, which represent proofs of

soundness, completeness, and freshness.

Case 1: This case means a tampered or fake RDF triple t is returned, which does not

satisfy the BGPs (i.e., a set of triple patterns) of Q. In this case, if t passes client

verification following the soundness in Definition 9, it implies that the auditor can

obtain two distinct triple pattern fragments sharing the same digest RGBroot in the

on-chain ADS or two distinct set operation results with the same accumulator proof π.

Case 2: This case means an RDF triple t that satisfies the BGPs of Q is missing from

R. In this case, if the returned result R verifies with the client under the completeness

criterion in Definition 9, it suggests that the auditor can acquire a triple pattern

fragment lacking some matching triples but sharing the same digest RGBroot as the

genuine fragment or an incomplete set operation result with the same accumulator

proof π as the genuine result. Case 3: This case means the result R involves an old

RDF triple t that satisfies q but is not from the latest DKG. In this case, once t passed

the verification of the client under the freshness in Definition 9, it means that the

auditor can get two different triple pattern fragments (i.e., a new and an old) with

the same digest RGBroot of the on-chain ADS or the auditor can get two different set

operation results with the same accumulator proof π.
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However, all these three cases contradict two assumptions. First, the on-chain ADS

digest RGBroot is generated by a cryptographic hash function, making it nearly im-

possible for the auditor to forge another fragment with the same hash value as the

genuine one. Second, the unforgeability of verifiable set operations, proven to hold

under the q-SBDH assumption [25]. A special case occurs when the auditor returns a

null result to the client while the system indeed has the matched query result. This

case also contradicts the first assumption as the auditor must provide non-existence

proof.

5.4.2 Discussion

Storage Optimization of RGB-Trie. Since RGB-Trie needs to store the index

information of all triples, the size of RGB-Trie increases fast as the KG data is

continuously added. Storing the latest RGB-Trie in every block will be expensive.

Thus, in VeriDKG, auditors only need to update part of the RGB-Trie in a new

block with its transactions, and the internal nodes of the two RGB-Tries in two blocks

are mostly the same. Based on the node pointers design in [93], we use a node pointer

structure to link the same path between multiple RGB-Tries in multiple blocks.

Limitations and Potential Workaround. When deploying VeriDKG in real-

world environments, some limitations and potential workarounds must be considered.

First, while VeriDKG effectively protects against malicious behavior between stor-

age nodes, it does not address the possibility of malicious data owners introducing

fake or junk data-a challenge seen in widely used AI applications. To mitigate this

concern, we assume the integration of a content moderation mechanism (e.g., as pro-

posed in existing studies [67, 113, 56]) to detect malicious data owners. Second, there

are several resource-intensive tasks in VeriDKG, such as data storage, blockchain

consensus, and query execution. However, incentivizing participants to effectively
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contribute resources can be complicated and requires careful consideration of the in-

terests of different participants and ways of ensuring fairness. Third, VeriDKG

introduces auditors that are responsible for maintaining trust anchors in the DKG.

They require higher hardware specifications compared to existing DKG nodes. For

example, the Ethereum backend requires a full node with at least 16GB of RAM and

a 1TB SSD. Hardware requirements for blockchain node deployment vary widely de-

pending on factors such as network, participation level, and use case. Careful selection

of settings by application deployers is critical.

Real-world Deployment. The deployment of VeriDKG involves several main steps.

Blockchain nodes, acting as auditors, are initially set up with robust hardware con-

figurations, including substantial RAM and storage capacity. Users access the DKG

through responsive interfaces from a variety of devices. Storage nodes, equipped with

suitable hardware and data distribution software, host and share the KG data. Addi-

tionally, scalability, maintenance strategies, and regulatory compliance are considered

to ensure seamless real-world operation. VeriDKG is particularly suited to high-trust

data scenarios, such as those found in healthcare and finance, and offers trusted data

to improve AI fidelity.

Graph Model Extension of VeriDKG. In addition to RDF triple-based KGs,

some recent studies focus on graph model-based knowledge graph management. VeriDKG

can be extended to such graph-based DKGs by managing RDF data in a graph

database. This involves two steps: storing RDF triples as a graph, where entities are

represented as nodes and relations are represented as edges, and converting SPARQL

queries into graph patterns, such as paths or trees. Taking Neo4j5 as an example, we

can use tools such as rdf2neo [28] to convert RDF triples into a Neo4j graph and to

convert SPARQL queries into Cypher queries.

5https://neo4j.com/
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5.5 Evaluation

5.5.1 Implementation

A prototype of VeriDKG is implemented in Java, Go and JavaScript. In the proto-

type, the blockchain involving the auditors is implemented based on Go-Ethereum [49]

and the decentralized storage system is implemented based on IPFS [19]. The proto-

type has a user-server architecture that is implemented based on Spring Boot frame-

work [114] and the blockchain interfaces and requests are in the form of web3.js [50].

For the proposed ADS, the level of the tree is set to 32, and the cryptographic hash

function is SHA-256. The triple fragments stored on storage nodes are separate HDT

files [51], which allows the storage nodes to efficiently execute triple patterns. For

VSO, our prototype uses library named ate-pairing [62].

5.5.2 Experimental Setup

Hardware Configuration. We run 16 VeriDKG auditor nodes and 16 storage

nodes on 32 64-bit Linux servers (Ubuntu 20.04) with Intel i9-11th CPU and 64GB

memory. All nodes are run on separate machines, and we set the bandwidth of

connections to 20Mbps.

Baseline. Three state-of-the-art DKGs are considered as three baselines. (1) A

DKG with a locational index in every peer [5] (P2P-LI). (2) VeriDKG without the

blockchain architecture and Merkle tree characteristic, which is a DKG with an un-

trusted RGB-Trie (P2P-RGB). (3) A sharding blockchain-based DKG in ColChain

(Colchain) [6]. Colchain adopt the same consensus of Ethereum and hardware

configuration. Besides, the maximum number of shards in Colchain is 16, and each

shard has 8 nodes which are put into the docker containers.

Datasets and Benchmark. We evaluate the query performance of VeriDKG using
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six real-world datasets that represent different scenarios and using queries from larg-

eRDFBench [101] benchmark, which is used widely in the Semantic Web community.

The datasets include DBPedia-Subset (42,849,609 triples), GeoNames (107,950,085

triples), Jamendo (1,049,647 triples), Linked MDB (6,147,996 triples), DrugBank

(517,023 triples), and Semantic Web Dog Food (103,595 triples). The largeRDF-

Bench queries in our evaluation include simple (S), complex (C), and large data (L)

categories. Moreover, we develop a variant of simple queries named time-window

simple queries to study the time-window query in VeriDKG.

Metrics. We measure the following metrics of VeriDKG: 1) On-chain Storage

Cost (OSC): the storage space size of transactions in the blockchain, 2) Transac-

tion Throughput (TT): the number of committed transactions per second, 3) Triple

Pattern Query Time (TPQT): the amount of time to receive the triple pattern query

results, 4) Query Execution Time (QET): the amount of time to receive the full query

results, 5) Number of Exchanged Messages and Transfer Bytes (NEM & NTB): the

number of messages exchanged and transferred bytes between nodes, 6) Proof Gen-

eration Time (PGT): the amount of time to generate the verification proof of query

results, and 7) Verification Time and Object Size (VT & VOS): the amount of time

to verify query results and the proof size.

5.5.3 Experimental Results

Overall Comparison

Table 5.1 provides an overview of the performance of VeriDKG, comparing its query

verifiability, index storage cost, and triple pattern query execution time with those of

three baseline systems on the six datasets. Here, the clients send 2,000 triple pattern

query requests to each system. As shown in Table 5.1, only VeriDKG enables

verifiable SPARQL query results, ensuring that the malicious storage nodes cannot

tamper with query results. Considering the index storage cost, the index size of P2P-
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Table 5.1: Overall comparison of four different systems

Schemes Query Verifiability
Storage cost
of index (KB)

Triple pattern
query time (s/ms)

P2P-LI [3] � 317982 7.392/3.696

P2P-RGB � 5647 36.990/18.495

Colchain [4] � 317982 8.374/4.187
VeriDKG � 9193 51.116/25.558

LI and Colchain is 317,982 KBs, while P2P-RGB and VeriDKG only need 5,647

KBs and 9,193 KBs, respectively. The reasons are that the RGB-Trie compresses

the index by combining the same prefixes of keywords and that VeriDKG needs

a Merkle characteristic to enable query verifiability. As for the triple pattern query

time, P2P-LI and BC-SC need 7.392s (3.696ms per query) and 8.374s (4.187ms per

query) to get the query results because they have the same index, and Colchain

has to find the triples in the blockchain transactions. P2P-RGB and VeriDKG

respectively require 36.990s (18.495ms per query) and 51.116s (25.558ms per query)

to get the query results because they have the same index, and VeriDKG need more

time to generate the verification proofs.

In summary, VeriDKG is the only one DKG that achieved verifiable SPARQL query

and has a smaller index size than the locational index-based systems. Although it

requires more time to get the triple pattern query results than the existing systems, it

can guarantee the verifiability of query results and the extra time is tiny in real-world

applications.

On-chain Cost

To alleviate the on-chain storage pressure, VeriDKG stores the raw data on storage

nodes and only keep the metadata on blockchain. We randomly sample triples from

the 6 datasets to determine the storage cost (i.e., OSC) of VeriDKG and the other

two blockchain-based baseline systems. For Colchain, it has 16 shards and each
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node only stores one shard. Figure 5.9 shows the average storage size of each node in

VeriDKG and the baselines.
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As shown in Figure 5.9, by comparing to the original Ethereum blockchain scheme

ETH, Colchain reduces the on-chain storage of each node by about 80%, and main-

tains this ratio as the amount of data grows. Compared to the two baselines, the

storage savings in VeriDKG can increase to over 99% as the amount of data in-

creases. It is because our design only keeps a succinct ADS on-chain, and most of the

growing data is stored off-chain. The ADS only needs to update some hash values

of the index information. We also compare experimentally the storage consumption

of the RGB-Trie with and without optimization. For the VeriDKG system without

storage optimization, the total size of the RGB-Trie is 13,296MB. For the VeriDKG

system with storage optimization, the total size of the RGB-Trie is 2,241MB. Thus,

after optimizing the storage of the RGB-Trie, the storage cost can be reduced by

more than 80%.
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Moreover, we evaluate the transaction throughput (i.e., TT) of ETH and VeriDKG

with different proportions of triple transactions, and the results are shown in Fig-

ure 5.10. The result shows a downtrend of TT in both systems when the proportion

of triple transactions in all transactions increases. In particular, VeriDKG has a

bigger trend in decline, which means that the update of the RGB-Trie has a negative

impact on TT. However, VeriDKG still maintains more than 10 transactions per

second in the worst case, which is acceptable.

Verifiable Query Performance

Figure 5.11a shows the query execution time (QET) for different SPARQL queries in

Colchain, inVeriDKG without the RGB-Trie (VeriDKG-NR), and inVeriDKG.

Note that there is no global index in Colchain. Similar query performance is ob-

served of VeriDKG-NR and Colchain, and VeriDKG is fastest for all three

queries because RGB-Trie can efficiently find query-relevant fragments, which sig-

nificantly reduces the search space. Figure 5.11b shows the QET for time-window

queries. VeriDKG has the shortest QET among the three systems because, apart

from the above reasons, in real-time SPARQL queries, the auditors in VeriDKG

only need to backtrack all block headers to search for a certain previous RGB-Trie

state by a given timestamp, instead of tracing back the historical records of all query

results. Figure 5.11c shows the average number of exchanged messages (NEM) be-

tween nodes in the three systems. VeriDKG has the same number of messages as

Colchain because both two only need to transfer a fixed number of fragments be-

tween nodes. Further, VeriDKG-NR needs to transmit larger messages to get the

result because it lacks an RGB-Trie and needs to download all fragments from all

storage nodes. Figure 5.11d shows the number of transferred KBs (NTB) in the three

systems. The nodes in VeriDKG transmit the least amount of data for each query

because VeriDKG only needs to transfer the query related triple pattern fragments

to the auditor, which are more compact than the entire RDF dataset.
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Table 5.2: Performance of RGB-Trie under different rules. It shows triple pattern
query time (TPQT) and recall per 1000 queries for basic and gradient color mixing
rule with different proportion of colors required for early termination.

Rule TPQT Recall

Basic 51.2s 1
Gradient (5%) 47.5s 0.952
Gradient (10%) 40.7s 0.816
Gradient (20%) 27.8s 0.621
Gradient (30%) 22.3s 0.366
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Figure 5.12: Proof generation time (y-axis in log scale).

Comparison of different color mixing rules. As we mentioned in section 5.3.2,

the gradient color mixing rule can improve the query performance of RGB-Trie while

decrease its recall (i.e., the fraction of relevant RDF triples that are returned). Thus

we test the triple pattern query time (TPQT) and recall of 1000 triple pattern query

requests in VeriDKG under different color mixing rules. Table 5.2 shows the results.

The results imply that the gradient color mixing rule can reduce the time of triple

pattern query VeriDKG, while relaxing the early termination conditions results in

higher query efficiency at the expense of lower recall rates.

Verification Cost

All the query results with their verification proofs are generated on an auditor and

need to be verified on the client side. Therefore, the proof generation time on the

auditor, the size of proof, and the verification time on the client are very important
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for the availability of VeriDKG. A proof consists of two parts: a Merkle proof and

a data aggregation (DG) proof. We evaluate the verification costs of these two proofs

as follows.

Figure 5.12 shows the proof generation time (PGT) of the auditor for four SPARQL

query types (S, C, L, and time-window S query). It shows that the complex queries

have the longest PGT because they have the highest number of query-related frag-

ments, each of which needs a Merkle proof. On the other hand, the large data queries

have the longest PGT for data aggregation proof. Because most of their query-related

fragments exceed those of the other queries, they need the most time to generate the

accumulated values.

Figure 5.13 shows the verification time (VT) for proofs of different SPARQL queries,
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which are the same in Merkle proof, and complex queries have slightly longer Merkle

proof VT. This is because all queries need to calculate the same Merkle root hash,

while the complex queries need to calculate hashes of more fragments. From the

VT results for the data aggregation proof, we can see that the verification is fast

and is related only to the number of query-related fragments. Figure 5.14 shows

the VO size for the different query types. It shows that for both Merkle and data

aggregation proofs, the complex queries have the largest VOS because they have the

highest number of fragments.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Decentralized knowledge graphs (DKGs) represent a paradigm shift in how data is

created, shared and queried across the web, leveraging the principles of decentral-

ization to enhance interoperability, scalability, and availability. At the core, these

graphs utilize semantic technologies to create a web of interconnected data, where

relationships and meanings are explicitly defined, enabling machines to understand

and process the information much like humans do. This semantic web approach facil-

itates more intelligent data integration, search, and analysis, promising to transform

various domains by making information more accessible and useful. However, this

decentralization and semantic richness introduce significant security risks. The open

and distributed nature of these graphs can expose data to unauthorized access, manip-

ulation, and misuse, challenging traditional security models. Ensuring data integrity,

privacy, and access control in such an environment requires innovative security mech-

anisms tailored to the unique characteristics of decentralized, semantically-rich data

networks.

To address these challenges, this report is mainly composed of three following parts.
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• We have comprehensively investigated the poisoning attacks of FKGE. Our at-

tacks can accurately inject fake relations into the victim’s model, even if their

local KG data and some model parameters are unknown. We demonstrate the

effectiveness and practicality of four real-world datasets and four KGE models.

The dynamic poisoning attack achieves an average MRR of 0.67 and Hits@10

of 0.88 on the poisoned triples in four datasets on four different KGE models.

In particular, the success rate of the attack is 100% on the WN18RR dataset.

Furthermore, the experimental results also demonstrate that the FKGE’s orig-

inal task performance is not significantly affected by our attacks. To mitigate

this attack, we explore two potential defense mechanisms that shed light on im-

proving the current practice of FKGE and point to several promising research

directions, such as decentralized and verifiable KGE.

• We present Pistis, an end-to-end encrypted and collaboratively query-verifiable

DKG with a new cryptographic scheme. The scheme relies on a novel ADS

and a key-aggregate cryptographic primitive to query the multi-owner KG data

in a verifiable and ownership-preserving manner. Security analysis with an

idea/real-world paradigm and experimental evaluations prove the security and

availability of our system. In particular, Pistis achieves new functionalities at

an overhead of microsecond-level computation time, and kilobyte-level commu-

nication costs for a SPARQL query.

• We present VeriDKG, which supports verifiable SPARQL query in Web 3.0.

We design a new ADS called RGB-Trie for verifiable subgraph locating and

combined the tree with cryptographic accumulators for verifiable aggregation

for intermediate results. We also do extensive experiments to test the perfor-

mance of VeriDKG, and the results show that VeriDKG implements verifi-

able SPARQL with a competitive query performance compared with the state-

of-the-art. Compared with the leading-edge DKGs, VeriDKG reduces the

index storage overhead by 97%.
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6.2 Future Work

Decentralized knowledge graphs (DKGs) is a promising way to sharing knowledge in

Web 3.0, and blockchain-based methods effectively solve the security problems in it.

However, since the definition of web 3.0 is not very clear, the future web 3.0 may

have various scenarios other than DKGs. For example, with the gradual landing of

the metaverse, web 3.0 may become one of the network infrastructures of the virtual

world. In this environment, the way of knowledge sharing will also become different.

To achieve a more secure and efficient decentralized knowledge sharing in the future

web 3.0, there are at least the following three directions that I can study in the future:

First, in the metaverse based on web 3.0 in the future, there may be more than

one blockchain, and different blockchain has different architecture, consensus, and

security assumption. Designing a decentralized knowledge sharing system in this

multi-chain scenario may have some challenges. For example, the interoperability be-

tween different blockchains can make it difficult to share and access knowledge across

different networks. This requires the development of standards and protocols that

enable seamless communication and data exchange between disparate blockchains.

Second, investigating the integration of decentralized knowledge graphs with large

language models (LLMs) presents a promising research direction. This integration can

leverage the semantic understanding and generative capabilities of LLMs to enhance

the accessibility and usability of DKGs, facilitating more intuitive query mechanisms

and knowledge extraction methods. Exploring techniques to mitigate potential biases

and misinformation within LLM-generated content, while ensuring the scalability and

privacy of such integrations, would be pivotal.

Third, decentralized identity (DID) is an important concept in Web 3.0-based meta-

verses, as it enables users to have greater control over their personal data and online

identity. DID refers to the use of decentralized technologies such as blockchain to

create and manage digital identities that are owned and controlled by the user rather
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than a centralized authority. However, there are several technical challenges associ-

ated with implementing decentralized identity (DID) in Web 3.0-based metaverses,

such as the balance of privacy and supervision and the integration of virtual and real

identities.
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laume Bouchard. Complex embeddings for simple link prediction. In Proc.

of the International conference on machine learning, pages 2071–2080. PMLR,

2016.

[112] Abeba N. Turi. Web 3.0: The Distributed Information Network Economy, pages

87–121. 2020.

[113] Kristen Vaccaro, Ziang Xiao, Kevin Hamilton, and Karrie Karahalios. Con-

testability for content moderation. Proc. of the ACM on Human-Computer

Interaction, 5(CSCW2):1–28, 2021.

[114] VMvare. Spring boot., 2023.
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