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Abstract 
 
 

Evolutionary transfer optimization (ETO) is an emerging search paradigm, which in-

tegrates evolutionary algorithms (EAs) with transfer learning techniques. Learning 

and transferring useful knowledge across related problems can reduce repeated 

searches, enabling traditional EAs to achieve better optimization efficiency and per-

formance on various complex problems. Generally, the design of ETO approaches 

grapples with three critical issues concerning knowledge transfer: 1) what to transfer, 

2) how to transfer, and 3) when to transfer. Considering what to transfer, it involves 

identifying the type of knowledge and deciding which one to transfer among all avail-

able candidates. Regarding how to transfer, it focuses on the methodology design for 

implementing knowledge transfer. As for the issue of when to transfer, it aims to 

identify the optimal timing or the appropriate extent for deciding how much 

knowledge to transfer. However, in existing ETO studies, most deterministic methods 

lack the adaptability and flexibility when addressing the above three issues, severely 

limiting the robustness and effectiveness of knowledge transfer in enhancing the op-

timization efficiency and performance of EAs. To achieve more effective and robust 

performance, this thesis focuses on studying and designing adaptive knowledge trans-

fer methods to intelligently address one or more of the three issues. 

Firstly, to adaptively decide what to transfer, this thesis proposes a fuzzy classifier-

assisted solution transfer method to identify the most useful solution for transfer in 

evolutionary sequential transfer optimization (ESTO). By constructing the training 
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data, the fuzzy classifier is built to estimate the solution usefulness of all available 

source tasks for the target task. Compared to existing solution transfer methods, the 

proposed method not only estimates whether one source task is useful or useless but 

also further quantifies the degree of its usefulness when it is estimated to be useful. In 

this way, the most useful solution is accurately selected from useful source tasks for 

knowledge transfer. This effectively accelerates the optimization of the target task by 

adaptively selecting the most useful solution from available source tasks for 

knowledge transfer. 

Secondly, to adaptively decide how to transfer, this thesis proposes an ensemble 

method to combine multiple domain adaptation methods for evolutionary multitasking 

(EMT), mitigating the unique biases of each domain adaptation method. It smartly 

addresses the balance between efficacy and diversity when determining which one 

domain adaptation method for use, which further enhances knowledge transferability 

across tasks in EMT. The proposed methodology clearly differentiates from existing 

ensemble methods by integrating a novel adaptive selection mechanism that considers 

both past performance and diversity of candidate domain adaptation methods. This 

could potentially lead to more robust and effective multitasking performance in com-

parison with existing non-adaptive approaches that adopt one deterministic domain 

adaptation method to address the issue of how to transfer. 

Lastly, to adaptively decide when to transfer and how to transfer, this thesis proposes 

a fuzzy logic-based method in EMT. The proposed method includes two fuzzy logic-

based components. To effectively adapt the transfer extent along the multitasking 

search process, a fuzzy logic-based parameter adaption component is developed to 

dynamically adjust the value of the transfer parameter, thereby alleviating the risk of 
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negative transfer. To adaptively select the most promising method for knowledge 

transfer, a fuzzy logic-based selection component is developed to select the optimal 

transfer method from multiple candidates, thereby enhancing knowledge transferabil-

ity across tasks. The proposed fuzzy logic-based methodology clearly differentiates 

from existing methods by employing fuzzy logic to effectively process fuzzy and in-

accurate information, facilitating effective knowledge transfer. 
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Chapter 1 

Introduction 

 

 

1.1  Background and Motivation 

Optimization problems exist in various scenarios, including data science [1], embod-

ied intelligence [2], unmanned systems planning [3], complex engineering design [4], 

smart manufacturing [5], and software engineering [6]. In mathematics, solving an 

optimization problem is to obtain the best solution from its feasible search space. 

Many practical optimization problems may possess complex characteristics, such as 

non-convexity and non-differentiability, which significantly complicate the problem-

solving process. Thus, traditional mathematical methods, such as linear programming 

[7], quadratic programming [8], and convex optimization [9], cannot effectively solve 

these complex optimization problems. In contrast to traditional mathematical methods, 

evolutionary algorithms (EAs) are a class of population-based metaheuristic search 

approaches [10], [11], [12], [13]. Generally, given an optimization problem, one clas-
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sical EA starts by randomly sampling solutions in the search space to form a popula-

tion. Subsequently, this population undergoes crossover, mutation, and selection, con-

tinuously evolving towards the regions where the optimal solution lies until the stop-

ping criterion is satisfied. The iterative procedure facilitates the exploration of optimal 

solutions for a diverse range of complex optimization problems. Without strong 

mathematical theories and related knowledge, EAs can be easily implemented to 

solve various optimization problems with complex characteristics, such as multiple 

conflicting objective functions [14], expensive evaluation costs [15], multiple local 

optima [16], constraints [17], and a large number of decision variables [18]. 

In the past years, various advanced evolutionary components, such as crossover, mu-

tation, and selection, have been developed to enhance the performance of EAs. While 

EAs have gained great success, they typically solve one optimization problem by 

conducting the evolutionary search process from scratch. In fact, problems seldom 

exist in isolation [19], [20]. In the area of machine learning, transfer learning (TL) has 

been proven to be effective for improving generalization about the current task by ex-

ploiting the knowledge from a previous task [21], [22], [23]. Here, the task can be 

various classification and regression problems [24], [25]. In the context of evolution-

ary computation, employing search experience of previously solved optimization 

problems can avoid repeated searches to find the optimal solutions when solving new 

optimization problems, thereby improving the optimization efficiency and perfor-

mance. 

Inspired by TL, evolutionary transfer optimization (ETO) is proposed as a new search 

paradigm, which integrates EAs with TL techniques [20]. The ability of learning and 

transferring knowledge from related problems enables traditional EAs to possess bet-

ter efficiency and performance in solving various optimization problems. For optimi-
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zation problems, only objective function and limited problem-specific data can be ob-

tained by iteratively conducting the evolutionary search process, presenting signifi-

cant differences from classification and regression problems in machine learning. 

Therefore, traditional TL techniques are not suitable for optimization tasks, resulting 

in new requirements for developing ETO approaches, including new representations 

of knowledge and learning methods for knowledge transfer across various optimiza-

tion tasks. In the literature, various advanced ETO approaches have been developed to 

address problems with diverse characteristics, including dynamic optimization [26], 

multitask optimization [27], complex optimization [28], multi/many-objective optimi-

zation [29], large-scale optimization [30], constrained optimization [31], bi-level op-

timization [32], combinatorial optimization [33], high-dimensional feature selection 

[34], and neural architecture search [35]. 

While there are different conceptual realizations for ETO, such as evolutionary se-

quential transfer optimization (ESTO), evolutionary multitasking optimization (EMT), 

and multiform optimization (MFO), the design of ETO approaches grapples with 

three pivotal issues concerning knowledge transfer: 1) what to transfer, 2) how to 

transfer, and 3) when to transfer [36], [37]. Determining what to transfer focuses on 

the types of knowledge, including heuristic algorithms [38], [39], [40], configured pa-

rameters [41], [42], [43], and evaluated solutions [44], [45], [46], [47]. Due to the 

ease of use, transferring knowledge in the form of solutions has attracted increasing 

attention in existing ETO studies [37]. Regarding the evolutionary search process, 

there are usually multiple solutions at each generation. Therefore, given the type of 

knowledge in the form of solutions, determining what to transfer is simplified to de-

termine which one or some solution(s) for transfer. Determining how to transfer fo-

cuses on the design of the transfer mechanism, aiming to implement effective 
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knowledge transfer across various complex problems. There are implicit transfer ap-

proaches [27] and explicit transfer approaches [48]. In terms of determining when to 

transfer, it aims to identify the optimal timing or the appropriate extent for knowledge 

transfer [49], [50]. The former can be employed to identify different scenarios, such 

as when to or when not to transfer during the evolutionary search process. The latter 

indicates how much knowledge to transfer across tasks. Within existing ETO studies, 

the above three issues are usually addressed by deterministic methods, which may po-

tentially undermine the effectiveness of knowledge transfer due to a lack of adaptabil-

ity and flexibility [36], [37], [51]. To achieve more effective and robust knowledge 

transfer in ETO, adaptive knowledge transfer methods should be designed to intelli-

gently decide what to transfer, how to transfer, and when to transfer during the evolu-

tionary search process. Therefore, this thesis is motivated to study and design adap-

tive knowledge transfer methods in terms of the following three considerations: 

• Deciding What to Transfer 

In designing ETO approaches, transferring knowledge in the form of solutions is the 

most straightforward way, which has attracted increasing attention [37]. As a concep-

tual realization of ETO, ESTO aims to speed up the optimization of a new task 

(called target task) by utilizing the search experience of previously solved tasks 

(called source tasks). Hence, in the context of ESTO, as the number of previously 

solved source tasks increases, their optimal solutions are available, which may be use-

ful for accelerating the optimization of the current target task. In existing ETO studies, 

several methods have been developed to measure the usefulness of solutions by em-

ploying distance metrics or traditional machine learning (ML) models. Using distance 

metrics cannot determine whether one source task (its optimal solution) is useful for 

accelerating the optimization of the target task, while these ML models are unable to 
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quantify the degree of solution usefulness, which may result in ineffective knowledge 

transfer. Therefore, adaptively deciding the most promising solution from all candi-

dates needs to judge whether there are useful sources for the target task. The most 

useful solution is selected from all useful candidates if they exist. Otherwise, no solu-

tion is selected for knowledge transfer. 

 

• Deciding How to Transfer 

EMT is another conceptual realization of ETO, aiming to solve multiple tasks simul-

taneously. In existing ETO studies, various methods of knowledge transfer have been 

designed to transfer knowledge across tasks [51]. However, considering domain adap-

tation methods for conducting knowledge transfer, the differences in their design 

mechanisms may lead to unique biases of these methods when transferring knowledge 

between two tasks. One specific transfer method often exhibits the superiority in its 

preferred transfer scenario, while it may perform poorly in other transfer scenarios. 

Practical optimization problems usually possess various complex characteristics, mak-

ing it challenging for any single transfer method to clearly outperform other ap-

proaches on existing optimization problems. Therefore, adaptively deciding the opti-

mal method from multiple candidates can take full advantages of the strength of each 

method for conducting knowledge transfer across tasks, thereby further enhancing the 

effectiveness and robustness of knowledge transfer. 

 

• Deciding When to Transfer 

The transfer timing or the transfer extent can determine the frequency of conducting 

knowledge transfer across tasks, which may vary as the correlation of tasks changes 
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[49], [50]. Thus, it is difficult to predefine and fix the optimal timing or the appropri-

ate extent for knowledge transfer in handling various types of problems. For example, 

frequent knowledge transfer can encourage positive transfer when two tasks are high-

ly related. In such a scenario, the shared knowledge can enhance the optimization ef-

ficiency and performance on the target task by reducing repeated evolutionary search-

es to find its global optimum. However, frequent knowledge transfer may increase the 

risk of negative transfer in the situation that two tasks possess low correlation due to 

the waste of unnecessary computational costs. Conversely, in the case that two tasks 

are unrelated, inactive knowledge transfer can alleviate the risk of negative transfer to 

some extent. However, inactive knowledge transfer may potentially diminish positive 

transfer in the situation that two tasks are highly related, as useful knowledge is not 

fully utilized to accelerate the evolutionary search process. Therefore, adaptively de-

ciding the transfer timing or the transfer extent is critical in further enhancing the ef-

fectiveness of robustness of knowledge transfer. 

 

 

1.2  Contributions 

As mentioned above, the three issues of deciding what to transfer, how to transfer, 

and when to transfer remain much room to be explored in existing ETO studies. To 

achieve more effective and robust knowledge transfer, this thesis focuses on design-

ing adaptive knowledge transfer methods, aiming to intelligently decide one or more 

of the three key issues. The main contributions of this thesis are summarized as fol-

lows: 

1) Adaptively Deciding What to Transfer in ESTO 
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• This thesis proposes a fuzzy classifier-assisted method (FCM) to select the most 

useful solution for knowledge transfer in ESTO. By constructing the training data, 

the fuzzy classifier is built to estimate the solution usefulness of all available 

source tasks. Compared to existing methods, the proposed method not only esti-

mates whether one source task is useful or useless but also further quantifies the 

degree of its usefulness if it is useful. In this way, the most useful solution is accu-

rately selected from useful source tasks for knowledge transfer. 

• This thesis also presents the implementation of an ESTO algorithm with the pro-

posed method (ESTOA-FCM). The experimental results show the competitive per-

formance of ESTOA-FCM when compared with existing ESTO algorithms. 

 

2) Adaptively Deciding How to Transfer in EMT 

• This thesis proposes a domain adaptation-based ensemble (DAE) method to select 

the promising domain adaptation method for knowledge transfer in EMT. It smart-

ly addresses the balance between efficacy and diversity when determining which 

one domain adaptation method for use, thereby taking full advantages of the 

strengths of each domain adaptation method to further enhance knowledge trans-

ferability across tasks. This could potentially lead to more robust and effective 

multitasking performance in comparison with existing non-adaptive approaches 

that adopt one deterministic domain adaptation method. 

• This thesis also presents the implementation of incorporating the proposed ensem-

ble method into an EMT framework. The experimental results validate that incor-

porating DAE method into three competitive EMT algorithms can significantly 

improve their performance for solving different multitasking test problems. More-
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over, a canonical EMT algorithm enhanced by DAE (called MFEA-DAE) outper-

forms five recent EMT algorithms on most cases of the multitasking test problems 

used, and the effectiveness of DAE is also validated on a practical case. 

 

3) Adaptively Deciding When to Transfer and How to Transfer in EMT 

• This thesis proposes a fuzzy logic-based method in EMT. The proposed method 

includes two fuzzy logic-based components. To effectively adapt the transfer ex-

tent along the multitasking search process, a fuzzy logic-based parameter adaption 

component is developed to dynamically adjust the value of the transfer parameter, 

thereby alleviating the risk of negative transfer. To adaptively select the most 

promising method for conducting knowledge transfer, a fuzzy logic-based selec-

tion component is developed to select the optimal transfer method from multiple 

candidates, thereby enhancing knowledge transferability across tasks. The pro-

posed fuzzy logic-based methodology clearly differentiates from existing methods 

by employing fuzzy logic to effectively process fuzzy information collected along 

the evolutionary search process, thereby enhancing the effectiveness of knowledge 

transfer. 

• This thesis also presents the implementation of a new MFEA (called MFEA-FLM) 

by incorporating the above fuzzy logic-based method into an EMT framework. 

The experimental results validate the effectiveness of the proposed method and 

show the competitive performance of MFEA-FLM when compared with other 

EMT algorithms. 
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1.3  Thesis Organization 

This thesis consists of six chapters. Chapter 1 provides the basic introduction of ETO, 

while the rest of the chapters are listed as follows: 

Chapter 2 provides some basic concepts of ETO, and then summarizes the related 

work in ETO. 

In Chapter 3, to adaptively decide what to transfer in ESTO, a fuzzy classifier-

assisted method is proposed to select the most useful solution by measuring the use-

fulness of solutions for the target task. The comparison experiments are conducted on 

a series of test problems, demonstrating that the proposed method can effectively se-

lect the most useful source solution to speed up the optimization process of the target 

task. 

In Chapter 4, to adaptively decide how to transfer in EMT, an ensemble method of 

domain adaption is proposed to effectively select the promising domain adaptation 

method from multiple candidates for knowledge transfer. The comparison experi-

ments are conducted on a series of test problems, showing that the proposed method 

can fully utilize the strengths of multiple domain adaption methods to facilitate effec-

tive knowledge transfer. 

In Chapter 5, to adaptively decide when to transfer and how to transfer in EMT, a 

fuzzy logic-based method is proposed to adapt the transfer extent and select the prom-

ising transfer method along the multitasking search process. The comparison experi-

ments are conducted on a series of test problems, demonstrating that the proposed 

method can achieve more robust and effective knowledge transfer by dynamically 

adapting the transfer extent and adaptively selecting the promising transfer method. 
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Chapter 6 concludes this thesis and provides future research directions for promoting 

the development of ETO. 
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Chapter 2 

Literature Review 

 

In ETO, there are three different conceptual realizations: 1) evolutionary sequential 

transfer optimization [47], 2) evolutionary multitasking optimization [51], and 3) mul-

tiform optimization [19]. In fact, multiform optimization can be regarded as a particu-

lar branch of evolutionary multitasking optimization, where multiple optimization 

tasks consist of one original problem and its alternative problem formulations. Thus, 

this thesis focuses on the first two categories. The details of their mathematical defini-

tions are first given in subsection 2.1. Despite the technical distinctions among differ-

ent conceptual realizations, in designing ETO approaches, there are three critical is-

sues concerning knowledge transfer: 1) what to transfer, 2) how to transfer, and 3) 

when to transfer. The following subsections 2.2, 2.3, and 2.4 present the related re-

search work in terms of the three issues, respectively. 
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2.1  Evolutionary Transfer Optimization 

In general, the traditional EA solves one optimization problem at one execution by 

iteratively evolving the population consisting multiple solutions. By contrast, ETO 

involves some new terminologies, including problem, task, and solution. To be clearer, 

some related definitions are first given as follows: 

• Problem: The problem refers to the ETO problems. Particularly, in the context of 

ESTO, the problem is the sequential transfer optimization problem (STOP). Simi-

larly, in the context of EMT, the problem is the multitasking optimization prob-

lem (MTOP). 

• Task: In the context of ETO, the task refers to the optimization task. In terms of 

ESTO, the STOP contains multiple source tasks that have been previously solved 

and one target task being optimized. By contrast, in terms of EMT, the MTOP 

consists of multiple tasks that must be optimized simultaneously. 

• Solution: The solution refers to the solution of the task that is obtained during the 

evolutionary search process. In terms of ESTO, the source solution is the solution 

of the source task in its search space, while the target solution is the solution of 

the target task in its search space. 

1) Evolutionary Sequential Transfer Optimization (ESTO) 

ESTO aims to effectively utilize the search experience of previously solved tasks 

(called source tasks) to accelerate the optimization of a new task (called target task) 

[47]. When tackling the new task, i.e., 𝑇𝐾, there are some tasks that have already 

been solved in the past, i.e., 𝑇1, 𝑇2, …, 𝑇𝐾−1. Note that 𝑇𝐾 is called target task, 
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while 𝑇1, 𝑇2, …, 𝑇𝐾−1 are called source tasks. Here, each task can be an 𝑚-

objective optimization problem, which can be formulated by 

min
𝐱∈Ω

𝐅(𝐱) = [𝑓1(𝐱),… , 𝑓𝑚(𝐱)]
T                                    (2.1) 

where 𝐱 = {𝑥1, … , 𝑥𝑑} is a 𝑑-dimensional variable vector in the search space Ω 

and 𝑓1(𝐱),… , 𝑓𝑚(𝐱) are 𝑚 objective functions. Eq. (2.1) can be a single-objective 

optimization problem (SOP) when 𝑚 = 1 or a multiobjective optimization problem 

(MOP) when 𝑚 ≥ 2. Thus, the sequential transfer optimization problem (STOP) can 

be defined by 

min
𝐱∈Ω

 [𝐅(𝐱) |ℳ] ,                                                (2.2) 

where ℳ is the knowledge base with the search experience of source tasks, includ-

ing heuristic algorithms [38], [39], [40], configured parameters [41], [42], [43], and 

evaluated solutions [44], [45], [46], [47]. In particular, in solution-based ESTO, ℳ 

is formed by collecting the evaluated solutions of each source task during the evolu-

tionary search process, which can be represented by 

ℳ = {𝑇𝑖  |𝑖 = 1, 2,… ,𝐾} ,                                         (2.3) 

where 𝑇𝑖 = {𝐏g
𝑖 , 𝐅g

𝑖  | g = 1,… , g𝑚𝑎𝑥} is the set of populations of the 𝑖-th source 

task (𝐏g
𝑖  and 𝐅g

𝑖  are the solutions and their objective values at the g-th generation, 

respectively). 

 

2) Evolutionary Multitasking (EMT) 

Evolutionary multitasking refers to evolutionary multitasking optimization, which can 

optimize multiple different tasks concurrently [51]. Regarding each optimization 
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problem as one task, the multitasking optimization problem (MTOP) with 𝐾 tasks 

(𝐾 ≥ 2) can be formulated as follows: 

min
𝐱𝑖∈Ω𝑖

𝐅𝑖(𝐱
𝑖) , 𝑖 = {1, 2,… ,𝐾} ,                                        (2.4) 

where 𝐅𝑖(⋅) represents the function formulation of the 𝑖-th task and 𝐱𝑖 is a solution 

in its search space (domain) Ω𝑖 . In EMT, useful search experiences can be shared or 

transferred across different task domains through knowledge transfer, which can help 

to obtain better optimization performance and efficiency for solving MTOPs. 

To achieve efficient EMT, multifactorial optimization (MFO) has been proposed to 

address 𝐾 tasks at the same time [27]. In MFO, every task has a skill factor, which 

can affect the evolutionary search process. Here, two key concepts are given as fol-

lows: 

Definition 1 (Skill Factor): The skill factor 𝜏𝑖 of each solution 𝐱𝑖 indicates the task 

to which 𝐱𝑖 belongs. 

Definition 2 (Scalar Fitness): The scalar fitness of 𝐱𝑖 is computed by 𝜑𝑖 = 1/𝑟𝜏𝑖
𝑖 , 

where 𝑟𝑖 is the index of 𝐱𝑖 in a list sorted in ascending order with respect to the ob-

jective values of all solutions evaluated on the task 𝜏𝑖. 

Based on the above concepts, MFEA has been proposed as a realization of the MFO 

paradigm [27]. Given an MTOP with 𝐾 tasks, the dimensionality of the search space 

of each task is given by 𝐷1, 𝐷2, …, 𝐷𝐾, respectively. In MFEA [27], the solutions 

for all tasks are first encoded in a unified search space 𝑌 ∈ [0, 1]𝐷𝑚𝑎𝑥 , where 

𝐷𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐷1, 𝐷2, . . . , 𝐷𝐾}. Hence, the solutions of all tasks have the same di-

mension. The solutions with the same skill factor can be regarded as the population of 

their respective task. Moreover, the random mating probability (𝑟𝑚𝑝) allows to per-
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form crossover operator on the solutions of different tasks. By introducing two key 

components, namely assortative mating and selective imitation, knowledge transfer 

can take place among different tasks [27]. 

 

 

2.2  What to Transfer 

Regarding what to transfer, there are two crucial steps: identifying the form of 

knowledge and selecting the most promising knowledge for transfer. The form of 

knowledge can typically be classified into three main types, such as heuristic algo-

rithms [38], [39], [40], configured parameters [41], [42], [43], and evaluated solu-

tions [44], [45], [46], [47]. Due to the ease of use, transferring knowledge in the 

form of solutions has attracted increasing attention in existing ETO studies [37]. 

Once the type of knowledge is identified to be in the form of solutions, deciding 

what to transfer is simplified to the issue of deciding which one solution among all 

available candidates for transfer. To select the most promising solution for 

knowledge transfer, various measurement methods have been proposed to estimate 

the usefulness of solutions from source tasks for the target task, where source and 

target tasks are a class of continuous optimization problems with the same problem 

dimensionality. Note that the real-valued encoding is employed to represent the solu-

tions of source and target tasks. The technical details of existing measurement meth-

ods are summarized in Tab. 2.1. 
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Table 2.1: List of existing measurement methods for solution usefulness. 

Measurement Method Formula 

Distance 

Metric 

Euclidean Distance 
(ED)a 

2 11

1ED( ,  ) || || , where ,  { ,  ...,  }
N

s t s t i NiN =
= − = =X X x X x x    

Wasserstein Dis-

tance (WD)a 

2 2
2 2

2 2
11 1

WD( ,  ) || || || || ,

1 1where ,  ) ,  { ,  ...,  }
1

s t s t s t

N N

i i Ni iN N= =

= − + −

= = − =
− 

X X

x (x X x x

   

  

 

Kullback‒Leibler 

Divergence (KLD)a,b 
     

( )1 1

11 1

1KLD( ,  ) tr( ) ( ) ( ) ln(det( ) / det( )) ,
2
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Maximum Mean 
Discrepancy 

(MMD)a,c 

,

, 1

2 2
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Machine 

Learning 

Anomaly Detection 
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Incremental 
Naive Bayes (INB)d,e 
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Note that the source and target populations are processed to make their solutions have equal dimensionality. 

a To explain the notations in distance metrics: Xs, Xt (the source/target populations); ,  s t  (the mean vectors of the source/target 

populations); 2 2,  s t  (the variance vectors of the source/target populations); ,  s t  (the covariance matrices of the source/target 

populations). 
b In KLD, tr( )  and det( )  are the trace and determinant of a matrix, respectively. In addition, D is the smaller dimension of 

the source and target populations. 
c In MMD,   is the width parameter in the Gaussian kernel function ( ,  )k 'x x . 

d To explain the notations in ML models: 1{ ,  ...,  }dx x=x  is a d-dimensional test sample (i.e., the source solution) to be classified. 
e In INB, P(Cj) and P'(Cj) are the priori probability of the class label Cj in the past training data with n samples and the new 

training data with m samples, respectively. Here, j  and 2
j  are the mean and variance of the samples belonging to Cj in 

the past training data, respectively. In addition, j'  and 2
j'  are the mean and variance of the samples belonging to Cj in the 

new training data, respectively. 
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2.2.1  Distance Metric-Based Methods 

Various measurement methods of solution usefulness have been developed to select 

useful solutions via distance metrics, aiming to achieve better optimization perfor-

mance on the target task. Particularly, the source solution is useful when it has better 

quality than all solutions in the current population of the target task. Otherwise, it is 

useless for the target task. Generally, when the source task is more similar to the tar-

get task in terms of the population distribution, the source solution is more likely to 

be useful to accelerate the optimization process. Existing distance metrics measure the 

similarity between the populations of source and target tasks to approximate the solu-

tion usefulness of the source task to the target task. For example, in [44] and [45], 

Euclidean distance (ED) is used to compute the distance between source and target 

solutions, aiming to appropriate the usefulness of the source solution for the target 

task. The closest source solution is considered to have the highest usefulness, and it is 

injected into the target population. Similarly, ED is also employed to measure the dis-

tance between solutions in EMT/ET [52]. The source solutions close to the positive-

transferred solution are collected as the neighbours, which are selected for transfer as 

they are supposed to have higher usefulness than others. In addition, in MSSTO [53], 

Wasserstein distance (WD) is used to compute the distance between source and target 

populations and then three different selection strategies are used to reasonably select 

useful source populations for transfer, respectively. In addition, in MaTDE [54] and 

EMaTO-MKT [55], the distance between source and target populations is computed 

by Kullback-Leibler divergence (KLD) and the maximum mean discrepancy (MMD), 

respectively, aiming to estimate the usefulness of source solutions during the evolu-

tionary search process. However, these distance metrics are unable to determine 

whether the solutions of source tasks are useful for accelerating the optimization of 
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the target task. Particularly, using distance metrics can compute the numeric values 

that are no less than zero. Due to the lack of the critical threshold, it is difficult to dis-

tinguish useful solutions from useless solutions. Thus, selecting useful source solu-

tions by comparing their distance values may result in ineffective solution transfer, 

especially when all candidate source tasks are significantly dissimilar to the target 

task [37]. 

 

2.2.2  Machine Learning Model-Based Methods 

Moreover, several measurement methods have also been designed by using ML mod-

els to measure the solution usefulness of the source tasks. For example, in MTEA-AD 

[56], an anomaly detection model is built based on the target population, which aims 

to divide the source solutions into outliers and nonoutliers. Similarly, in EMTIL [57], 

an incremental Naive Bayes classifier is trained based on the transferred solutions, 

which divides the source solutions into two different classes. The source solutions in 

the positive class are considered to have higher usefulness for the target task. Howev-

er, as the above binary classifiers are unable to accurately quantify the degree of the 

usefulness of source solutions for the target task, the most useful one could not be ac-

curately selected for transfer, which may degrade the effectiveness of solution transfer 

[58]. 

 

 

2.3  How to Transfer 

Regarding how to transfer, it focuses on the methodology design, which aims to im-

plement effective knowledge transfer across various complex problems. In existing 
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ETO studies, these transfer methods can be classified into two categories: 1) implicit 

transfer methods and 2) explicit transfer methods. 

 

2.3.1  Implicit Transfer Methods 

To perform implicit knowledge transfer, all solutions are first encoded in a unified 

search space. After that, knowledge transfer implicitly occurs across tasks by employ-

ing genetic operators to achieve the exchange of genetic materials of candidate solu-

tions possessing different skill factors. Over the years, various genetic operators, such 

as crossover and mutation, have been employed to achieve implicit knowledge trans-

fer across tasks. For example, in MFEA and most of its variants [27], [72], [73], [74], 

knowledge transfer was achieved by performing the simulated binary crossover (SBX) 

to exchange the genetic materials of two solutions with different skill factors. In [59], 

differential evolution (DE) was employed to achieve implicit knowledge transfer. To 

utilize the search biases of different crossovers, in MFEA-AKT [60], multiple crosso-

vers were adaptively selected for conducting knowledge transfer. Additionally, sever-

al popular swarm intelligence algorithms, including particle swarm optimization [61], 

[62], [63], artificial bee colony [64], and fireworks algorithm [65], have been adapted 

for achieving implicit knowledge transfer. However, implicit knowledge transfer de-

pends on the explicit similarity of two tasks in terms of their population distributions 

or fitness landscapes, thereby showing poor performance when solving distinct or 

even unrelated tasks. 

 

2.3.2  Explicit Transfer Methods 

In contrast to implicit knowledge transfer using a population for all tasks, explicit 
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knowledge transfer configures each task with a separate population, allowing multiple 

solution encoding schemes for use when solving multiple tasks simultaneously. Thus, 

knowledge transfer can be conducted across different populations in an explicit man-

ner [48]. In this way, existing evolutionary search mechanisms with unique search 

biases can also be flexibly configured for each task, effectively enhancing the optimi-

zation efficacy and performance on different types of problems [48]. The straightfor-

ward way for achieving explicit knowledge transfer across tasks is to directly inject 

solutions of one population into another population [44], [45]. However, the two tasks 

may have obvious differences in their dimensionalities, variable ranges, global optima, 

and fitness landscapes, which bring difficulties for performing explicit knowledge 

transfer across distinct problem domains [48]. In recent years, several domain adapta-

tion methods have been proposed to enhance knowledge transferability between dis-

tinct tasks by building suitable transformation from the source task to the target task. 

For example, in LDA-MFEA [66], based on the ordinal rank correlation of fitness 

values, a linear transformation method is used to make the search spaces of source 

and target tasks highly correlated. In addition, a denoising AE method [48] is used to 

build the source-target mapping by minimizing the reconstruction loss of the corrupt-

ed input on the source task, which can maintain the superiority of transferred solu-

tions on the target task. An affine transformation (AT) method was designed in AT-

MFEA [67] to build a superior intertask mapping between source and target tasks, 

which considers the topological consistency in decision space and the rank correlation 

in objective space. To capture the nonlinearity between different tasks, a kernelized 

AE (KAE) [68] was further designed to learn the mapping in a reproduced kernel 

Hilbert space. Moreover, to learn well-aligned solution representations, two-layer 

transformations are learnt in continuous spaces via a two-layer feedforward neural 

network [69], while variable transformation is learnt in the dimension-reduced sub-
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spaces of tasks via subspace alignment methods [70], [71]. 

 

 

2.4  When to Transfer 

Regarding when to transfer, it aims to identify the optimal time or extent to conduct 

knowledge transfer. In existing ETO studies, the proposed approaches to address 

when to transfer can be categorized as follows: 1) fixed parameter-based methods and 

2) adaptive parameter-based methods. 

 

2.4.1  Fixed Parameter-Based Methods 

The straightforward way to determine when to transfer is to execute knowledge trans-

fer periodically with a fixed generation interval along the evolutionary search process. 

For example, in [46], [48], [68], the generation interval for triggering knowledge 

transfer was set to 10. Similarly, in SGDE [75], the generation interval was 20. Be-

sides, in [76], the generation interval for triggering knowledge transfer was set to 50. 

Additionally, in the basic framework of MFEA [27], the random mating probability, 

i.e., 𝑟𝑚𝑝, is employed to determine the extent of knowledge transfer. Generally, 

when two parents have different skill factors and a random number is less than 𝑟𝑚𝑝, 

knowledge transfer happens between two tasks by performing a crossover operator on 

the two parents to exchange their genetic materials. For example, in the original 

MFEA [27] and most of its variants, 𝑟𝑚𝑝 is set as a constant of 0.3 to control the 

extent of knowledge transfer across tasks. However, the above methods with fixed 

transfer parameters may potentially diminish effective knowledge transfer or even 
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cause negative transfer when solving some unrelated tasks [49], [50]. 

 

2.4.2  Adaptive Parameter-Based Methods 

In addition, several adaptive parameter-based methods have been proposed to deter-

mine the extent of knowledge transfer by dynamically modifying the values of the 

transfer parameter. Specifically, in MFEARR [77], the survival rate of offspring gen-

erated by triggering knowledge transfer was computed to determine the extent of 

knowledge transfer. Similarly, in [78], the transfer parameter associated with each 

task is computed as follows: 

𝑟𝑚𝑝𝑖 =
𝑆𝜏𝑖,𝑁𝐹=0

𝑁𝑃𝑖
 ,                                               (2.5) 

where 𝑁𝑃𝑖 and 𝑆𝜏𝑖,𝑁𝐹=0 are the numbers of all solutions and nondominated solu-

tions of the task 𝑇𝑖 , respectively. Similarly, in [79], the extent of knowledge transfer 

was dynamically adjusted by employing two additional parameters, i.e., ∆𝑖𝑛𝑐 and 

∆𝑑𝑒𝑐, which is computed as follows: 

𝑟𝑚𝑝𝑖,𝑗 = {
min (1.0,

𝑟𝑚𝑝𝑖,𝑗

∆𝑖𝑛𝑐
) ,                  if 𝐩′ is better than 𝐩  

max(0.1, 𝑟𝑚𝑝𝑖,𝑗 × ∆𝑑𝑒𝑐),       otherwise                    
,           (2.6) 

where 𝐩′ is the offspring and 𝐩 is its immediate parent. Besides, in [62], the learn-

ing parameter, i.e., 𝑟𝑙𝑝, is used to determine the transfer extent. Particularly, the cur-

rent 𝑟𝑙𝑝 remains the same and is collected into the list when there is at least a better 

solution than the current best solutions of all tasks. Otherwise, 𝑟𝑙𝑝 is updated by 

𝑟𝑙𝑝 = 𝑟𝑙𝑝′ + 𝛿𝒩(0, 1) ,                                         (2.7) 
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where 𝛿 is 0.1, 𝒩(0, 1) is a normalized Gaussian distribution, and 𝑟𝑙𝑝′ is ran-

domly selected from the candidate list. Moreover, in [80], the transfer probability for 

the task 𝑇𝑖 is calculated by 

𝑟𝑚𝑝𝑖 =
𝑅𝑖
𝑜

𝑅𝑖
𝑜 +𝑅𝑖

𝑠  ,                                                (2.8) 

where 𝑅𝑖
𝑠 and 𝑅𝑖

𝑜 are the improvement ratios obtained by the offspring of 𝑇𝑖 and 

solutions of other tasks, respectively. In [81], given an MTOP with 𝐾 tasks, a sym-

metric 𝐾 ×𝐾 matrix, i.e., 𝑊, is employed to record the number of successful trans-

ferred solutions across tasks. After that, the transfer probability between any two tasks, 

is computed as follows: 

𝑟𝑚𝑝𝑖,𝑗 =
𝑊𝑖,𝑗

∑ 𝑊𝑖,𝑘
𝐾
𝑘=1

 .                                         (2.9) 

In addition, to reduce the threat of negative transfer, in MFEA-II [49] and MO-

MFEA-II [50], the probability models were built to estimate the transfer extent by 

capturing the similarities among tasks. The transfer extent can be adapted along the 

evolutionary search process by employing the abovementioned methods. However, 

they do not take into consideration the issue of information inaccuracy due to the un-

certainty and randomness of the evolutionary mechanisms. Lacking a mechanism for 

effectively processing inaccurate and fuzzy information may lead to unreliable or 

wrong decisions in dynamically adjusting the transfer parameter, which will diminish 

the effectiveness of knowledge transfer.  
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Chapter 3 

Fuzzy Classifier-Assisted Method 

for Adaptively Deciding What to 

Transfer in ESTO 

 

 

3.1  Introduction 

To achieve effective solution transfer, some case-based methods have been proposed 

by injecting the target population with source solutions stored as cases in the case 

base [44], [45]. However, injecting useless solutions does not accelerate the optimiza-

tion process of the target task. Hence, several measurement methods based on dis-

tance metrics were employed to estimate the solution usefulness of source tasks [82], 

[53], [54], [55]. Thus, the useful source solutions can be selected as promising cases, 
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which are injected into the target population to accelerate its optimization process. 

Particularly, the Euclidean distance (ED) was used in [82] to calculate the distance 

between the source and target populations. In addition, the Wasserstein distance (WD) 

[53] was used to measure the distance between the population distributions of the 

source and target tasks. Moreover, the Kullback-Leibler divergence (KLD) [54] was 

employed to measure the distance of the source and target populations based on their 

Gaussian representations, while the maximum mean discrepancy (MMD) [55] was 

used to estimate their distance in the reproducing kernel Hilbert space. In fact, the so-

lution usefulness of a source task relies on its explicit similarity to the target task. In 

situations where all candidate source tasks are distinctly dissimilar to the target task, 

their optimized solutions would be useless for the target task. However, using dis-

tance metrics cannot determine whether the solutions of source tasks are useful for the 

optimization acceleration of the target task, which may result in ineffective solution 

transfer [37]. 

In addition, some studies have been conducted to address the aforementioned issue by 

leveraging machine learning (ML) techniques [56], [57]. Due to the ability to learn 

from previous data and make predictions on unseen data [83], [84], ML has shown 

some advantages in distinguishing the usefulness and uselessness of solutions. For ex-

ample, in MTEA-AD [56], an anomaly detection model based on the multivariate 

Gaussian distribution was built on the target population, which divides source solu-

tions into outliers (useful solutions) and nonoutliers (useless solutions) to the target 

task. Similarly, in EMTIL [57], an incremental Bayes classifier was trained based on 

the transferred solutions, which divides source solutions into positive and negative 

classes. The solutions in the positive class are considered to be useful for the optimi-

zation of the target task, while those in the negative class are useless. However, these 
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classifiers are unable to quantify the degree of solution usefulness, which may poten-

tially undermine the effectiveness of solution transfer [58]. 

To tackle the drawbacks of existing methods, this study focuses on two critical issues 

in measuring the solution usefulness of source tasks: 1) whether a useful source task 

exists and 2) the degree of its usefulness. Compared to traditional nonfuzzy classifiers 

that typically predict a class for each sample of interest, fuzzy classifiers can predict a 

membership degree of each sample to each class, which have attracted increasing at-

tention [85], [86], [87]. As the evolutionary search process goes on, the boundary of 

high-quality solutions and low-quality solutions will become unclear and fuzzy. Re-

cently, some efforts have been made to use fuzzy classifiers to predict the quality of 

solutions in environmental selection, aiming to accurately select high-quality solu-

tions for the next generation [88], [89], [90], [91], [92]. Inspired by the studies above, 

this chapter proposes a fuzzy classifier-assisted solution transfer method to select useful 

source solutions for ESTO. First, given the STOP with the target task and a knowledge 

base including the evaluated solutions of candidate source tasks, the training data are 

constructed by sampling multiple task pairs, each of which has two different source tasks. 

Specifically, for each task pair, their solutions are used to compute the differences of their 

population distributions, which serve as the feature vector of one training sample. Addi-

tionally, the training sample is roughly assigned one positive or negative label by evaluat-

ing the current best solution of the first task on the second task. If the evaluated objective 

value is better than the current best objective value of the second task, the training sample 

is assigned a positive label. Otherwise, it is assigned a negative label. After that, the fuzzy 

classifier is built using these training data, which can be used to measure the solution use-

fulness of each source task by the returned class label and its membership degree to that 

class on its associated test sample. Here, the test sample is generated based on the solu-
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tions of its corresponding source and target tasks. In this way, the source task with the 

maximal membership degree in the positive class is selected to provide its optimized so-

lution for transfer if it exists. Otherwise, solution transfer will not happen. Moreover, the 

test sample of the selected source task is labelled based on the effectiveness of solution 

transfer, which is used to update the training data. The main contributions of this study 

are summarized as follows. 

1) This study proposes a fuzzy classifier-assisted solution transfer method (FCM) for 

ESTO. By constructing the training data, the fuzzy classifier is built to measure the 

solution usefulness of candidate source tasks. In this way, useful source solutions can 

be effectively selected to accelerate the evolutionary search of the target task. 

2) This study presents the implementation of an ESTO algorithm with the proposed 

method (ESTOA-FCM). The experimental results on two benchmark suites and one 

practical case show the competitive performance of ESTOA-FCM when compared 

with existing ESTO algorithms. 

 

 

3.2  Background and Motivation 

3.2.1  Fuzzy Classifier 

Fuzzy classifiers are a type of ML algorithms developed based on fuzzy set theory 

[85], allowing for more flexible and nuanced classification decisions compared to tra-

ditional nonfuzzy classifiers [86], [87]. Instead of assigning a single class label to a 

sample of interest, a fuzzy classifier assigns a membership degree to each class label, 

which reflects the degree of the sample belonging to that class. 
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Algorithm 3.1 Fuzzy K-Nearest Neighbour (FKNN) 

Input: 𝓓 = {< 𝒔𝑖 , 𝑙𝑖 >}𝑖=1
𝑛 : the training data, 

𝒗: a new sample to be classified, 

    𝐾: the number of nearest neighbours. 

Output: 𝑦, 𝑚 

1  Set 𝐐 to an empty set 

2  for 𝑖 = 1 to 𝑛 

3      𝑑𝑖𝑠𝑡(𝒗, 𝒔𝑖) ← Compute the Euclidean distance from 𝒗 to 𝒔𝑖 by Eq. (3.1) 

4      if 𝑖 ≤ 𝐾 

5          𝐐 = 𝐐⋃{𝒔𝑖} 

6      else 

7          𝒔𝑚𝑎𝑥 ← Find the farthest sample in 𝐐 by Eq. (3.2) 

8          if 𝑑𝑖𝑠𝑡(𝒗, 𝒔𝑖) < 𝑑𝑖𝑠𝑡(𝒗, 𝒔𝑚𝑎𝑥) 

9              𝐐 = 𝐐\{𝒔𝑚𝑎𝑥}, 𝐐 = 𝐐⋃{𝒔𝑖} 

10          end 

11      end 

12  end 

13  for each class 𝑗 in 𝓓 

14  𝑢𝑗 ← Compute membership degree of 𝒗 in the 𝑗-th class by Eq. (3.3) and Eq. (3.4) 

15  end 

16  [𝑦, 𝑚] ← Get the label of 𝒗 and membership degree by Eq. (3.5) and Eq. (3.6) 

17  return 𝑦, 𝑚 

 

In this study, for simplicity, a fuzzy 𝐾-nearest neighbour classifier (FKNN) is em-

ployed as the fuzzy classifier. Its pseudocode is given in Algorithm 3.1 with the in-

puts: 𝓓 = {< 𝒔𝑖 ,  𝑙𝑖 >}𝑖=1
𝑛  (the training data consisting of 𝑛  labelled samples 

where each sample 𝒔𝑖 is assigned a label 𝑙𝑖 ∈ {0, 1}), 𝒗 (a new sample with an un-

known label), and 𝐾 (the number of the nearest neighbours of 𝒗). First, 𝐐 is set to 

an empty set in Line 1. Then, in Lines 2-12, the 𝐾 nearest neighbours are collected 

into 𝐐 through comparing the Euclidean distances between all the samples and 𝒗. 

Specifically, the Euclidean distance between the 𝑖-th sample 𝒔𝑖 and 𝒗 can be cal-

culated by 

𝑑𝑖𝑠𝑡(𝒗, 𝒔𝑖) = ||𝒗 − 𝒔𝑖||𝟐 .                                         (3.1) 
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Next, in Lines 4-11, the first 𝐾 samples are directly added into 𝐐, while each of the 

subsequent samples will be checked to determine whether it is closer to 𝒗 than the 

farthest sample 𝒔𝑚𝑎𝑥. Here, 𝒔𝑚𝑎𝑥 is found by 

𝒔𝑚𝑎𝑥 = arg max
𝒔𝑖∈𝐐

{||𝒗 − 𝒔𝑖||𝟐} ,                                     (3.2) 

If 𝒔𝑖 is closer to 𝒗 than 𝒔𝑚𝑎𝑥, 𝒔𝑚𝑎𝑥 is removed from 𝐐 and then 𝒔𝑖 will be 

added into 𝐐. After performing the above procedures in Lines 2-12, the 𝐾 nearest 

neighbours are found and then added into 𝐐. Next, as shown in Lines 13-15, the 

membership degree of 𝒗 in the 𝑗-th class (i.e., 𝑢𝑗) is computed by 

𝑢𝑗 =
∑ 𝑢𝑖𝑗(1/||𝒗 − 𝒔𝑖||𝟐

𝟐)𝒔𝑖∈𝐐

∑ (1/||𝒗 − 𝒔𝑖||𝟐
𝟐)𝒔𝑖∈𝐐

 ,                                   (3.3) 

where 𝑢𝑖𝑗 is the membership degree of 𝒔𝑖 in the 𝑗-th class (𝑗 ∈ {1,2} in the binary 

classification). Here, the 𝑘-nearest neighbour rule is used in the membership assign-

ment technique [38]. Thus, 𝑢𝑖𝑗 is computed by 

𝑢𝑖𝑗 = {
0.51 + (

𝑛𝑗

𝑘
) × 0.49,   if the class label of 𝒔𝑖  is 𝑗

𝑛𝑗

𝑘
× 0.49,                     Otherwise                           

,             (3.4) 

where 𝑘 is the number of neighbours and 𝑛𝑗 is the number of the neighbours of 𝒔𝑖 

belonging to the 𝑗-th class. As suggested in [38], 𝑘 is set to 3. Then, in Line 16, the 

label of 𝒗 and its membership degree, i.e., 𝑦 and 𝑚, are respectively identified as 

follows: 

𝑦 = {
1, if 𝑢1 ≥ 𝑢2 
0, otherwise

,                                        (3.5) 

𝑚 = max{𝑢1, 𝑢2},                                                (3.6) 
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where 𝑢1 and 𝑢2 are the membership degrees of 𝒗 in the 1-th class and 2-th class, 

respectively. Finally, 𝑦 and 𝑚 are returned in Line 17, indicating the predicted 

class of 𝒗 and the extent to which 𝒗 is considered to belong to that class, respec-

tively.  

 

3.2.2  Motivation 

Based on the studies of existing measurement methods of solution usefulness, it can 

be concluded that using the distance metrics or classical ML models is rough and in-

accurate in selecting useful source solutions based on the usefulness of solutions. 

Generally, the usefulness of a source solution is measured by its quality on the target 

task, i.e., 𝕌(𝐱𝑠) = max {𝑓𝑡(𝐱) − 𝑓𝑡(𝐱𝑠), 0} where 𝑓𝑡(⋅) is the target function, 𝐱 

is the current best solution of 𝑓𝑡(⋅), and 𝐱𝑠 is the source solution. To elaborate fur-

ther, the comparisons of measuring the usefulness of the source solutions with the 

Euclidean distance and the binary classifier are given in Fig. 3.1(a) and (b). Here, the 

target task is a shifted Ackley function with one decision variable. Note that it can be 

extended to any function with multiple decision variables. The blue circle is the cur-

rent best solution of 𝑓𝑡(⋅), which is denoted by 𝐱. The red circles represent source 

solutions of five source tasks, which are denoted by 𝐚, 𝐛, 𝐜, 𝐝, and 𝐞. The useful-

ness of each source solution is quantitatively measured by computing its Euclidean 

distance to 𝐱. In Fig. 3.1(a), the distances of those source solutions to 𝐱 can be 

ranked in ascending order, i.e., ||𝐜 − 𝐱||𝟐<||𝐛 − 𝐱||𝟐 < ||𝐝 − 𝐱||𝟐 < ||𝐞 − 𝐱||𝟐 <

||𝐚 − 𝐱||𝟐. In this way, 𝐜 is selected as the most useful solution for transfer because 

it has the smallest distance value. However, as the objective value of 𝐜 is worse than 

that of 𝐱, i.e., 𝑓𝑡(𝐜) >  𝑓𝑡(𝐱), transferring 𝐜 to the target task will not contribute 

to accelerating the optimization of the target task. In this sense, 𝐜 is useless for the 
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target task as 𝕌(𝐜) = 0. In fact, using distance metric can select a relatively good 

one among source solutions by comparing their measured distance values, while it 

fails to determine whether the selected source solution is useful for the target task. 

Thus, relying on distance metric to measure the usefulness of the solution may result 

in inefficient solution transfer when the objective values of all the candidate source 

solutions are worse than the current best solution of the target task. 
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Figure 3.1: Comparisons of different methods for measuring usefulness of solutions. 
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Additionally, several ML models, i.e., the binary classifiers, can be employed to 

measure the usefulness of the source solutions by dividing them into two categories. 

As shown in Fig. 3.1(b), with a binary classifier, the source solutions with better ob-

jective values (i.e., 𝐛, 𝐜, and 𝐝) are in the positive class, which will be selected as 

candidate solutions for transfer. Thus, using the binary classifier can avoid inefficient 

solution transfer to some extent because the source solutions with worse objective 

values (i.e., 𝐚 and 𝐞) in the negative class are not considered. In fact, 𝐜 is the most 

useful source solution among 𝐛, 𝐜, and 𝐝 in the positive class, as their usefulness 

can be ranked in descending order, i.e., 𝕌(𝐜) > 𝕌(𝐛) > 𝕌(𝐝). However, the binary 

classifier does not quantitatively measure the usefulness of the source solutions in the 

positive class, which will cause the case that the most useful solution could not be 

accurately selected for transfer. 

In summary, the Euclidean distance and classical binary classifier are flawed in 

measuring the usefulness of the source solutions for the target task, which may poten-

tially undermine the effectiveness of solution transfer in optimizing the target task. 

Thus, a more reliable measurement of the solution usefulness should be able to tackle 

two issues: 1) whether a useful source solution exists and 2) the degree of its useful-

ness. In the community of classification, the fuzzy classifier not only predicts the 

class label, but also predict a membership degree of each new pattern to each class. 

Thus, the fuzzy classifier is more suitable to measure the usefulness of the source so-

lutions than other classical binary classifiers as employing it can easily address the 

above issues in measuring the usefulness of solutions. As shown in Fig. 3.1(c), with a 

fuzzy classifier, 𝐚 and 𝐛 are in the negative class, while 𝐜, 𝐝, and 𝐞 are in the 

positive class. Thus, using the fuzzy classifier can identify whether a useful source 

solution exists by checking whether there is the solution in the positive class. Fur-
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thermore, the membership degrees of 𝐜, 𝐝, and 𝐞 are computed to indicate their 

degrees belonging to the positive class, which are ranked in descending order, i.e., 

𝑚c > 𝑚d > 𝑚e. In this way, 𝐜 with the maximal membership degree is selected as 

the most useful solution for transfer. Thus, to achieve more effective solution transfer 

for ESTO, this study is motivated to develop a fuzzy classifier-assisted solution trans-

fer method for selecting useful source solutions. 
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Figure 3.2: Flowchart of the proposed method. 

 

 

3.3  Methodology 

This section presents the details of the proposed method and the implementation of 

ESTOA-FCM. To be clear, the flowchart of ESTOA-FCM is illustrated in Fig. 3.2. In 



 

３４ 

particular, Algorithm 3.2 is to construct the training data 𝓓 by using the evaluated 

solutions of source tasks from the knowledge base 𝓜. Then, the fuzzy classifier (Al-

gorithm 3.1) is built based on 𝓓, which is used in Algorithm 3.3 to measure the solu-

tion usefulness of each source task by the returned class label and the membership 

degree to that class. Hence, the most useful source solution can be selected for 

knowledge transfer by performing Algorithm 3.4. Besides, Algorithm 3.5 is to update 

𝓓 by replacing an old training sample with the new one obtained at the current gen-

eration. Here, the feature and label spaces of the training data are first introduced in 

subsection 3.3.1. Then, the following subsections provide the detailed descriptions of 

Algorithm 3.2 to Algorithm 3.5. Finally, the details of ESTOA-FCM are given in sub-

section 3.3.6. 

 

3.3.1  Feature Space and Label Space Definition 

1) Definition of Feature Space 

As the evolutionary search process continues, the evaluated solutions from the initial 

population to the current population can be sequentially collected to form the evolu-

tionary path, which is defined by 

𝐸 = {𝐏1, 𝐏1, … , 𝐏𝐺} ,                                               (3.7) 

where 𝐏g is the population at generation g (g = {1,… ,𝐺}, 𝐺 is the current gener-

ation). In view of the high computational efficiency and the retained full information 

of a progressional representation developed in [67], it is employed to estimate the 

population distribution of an individual optimization problem, which is defined by 
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𝑝𝐺(𝐱) = {
𝔗(𝐱;𝐏1),                                       if 𝐺 = 1

𝛼𝑝𝐺−1(𝐱) + (1 − 𝛼)𝔗(𝐱;𝐏G), if 𝐺 > 1
 ,                          (3.8) 

where 𝛼 is a preference coefficient for determining the contributions of previous 

populations and newly updated populations and 𝔗 is an operator that estimates the 

probability distribution of a population. Moreover, the above recursive expression can 

be rewritten into the following form: 

𝑝𝐺(𝐱) = (1 − 𝛼)Σg=1
𝐺 (𝛼𝐺−g𝔗(𝐱;𝐏g)) .                                    (3.9) 

Due to very good mathematical properties of the independent multivariate Gaussian 

distribution [67], [93], it is employed to estimate the probability distribution of each 

population, i.e., 𝒩(𝝁,𝝈2) with the mean vector 𝝁 = {𝜇1, … , 𝜇𝑑} and the variance 

vector 𝝈2 = {𝜎1
2, … , 𝜎𝑑

2} where 𝜇𝑗 and 𝜎𝑗
2 are the mean and variance of the 𝑗-th 

dimension (𝑗 = 1,… , 𝑑), and 𝑑 is the population dimension. Specifically, for the 

population 𝐏g = {𝐱1
g
, 𝐱2

g
, … , 𝐱𝑁

g
} at the g-th generation, its estimated distribution, 

i.e., 𝒩(𝝁g, 𝝈g
2), can be calculated by 

{
 

 𝜇g𝑗 =
1

𝑁
∑ 𝑥𝑖𝑗

g
𝑁

𝑖=1
                 

𝜎g𝑗
2 =

1

𝑁
∑ (𝑥𝑖𝑗

g
− 𝜇g𝑗)

2
𝑁

𝑖=1

 ,                                       (3.10) 

where 𝑁 is the size of 𝐏g and 𝑥𝑖𝑗
g

 is the value of the 𝑗-th dimension of the 𝑖-th 

solution 𝐱𝑖
g. With Eq. (3.9) and Eq. (3.10), we have 

 𝑝𝐺(𝐱)~(1 − 𝛼)Σg=1
𝐺 (𝛼𝐺−g𝒩(𝝁g, 𝝈g

2))                  

=𝒩((1 − 𝛼)Σg=1
𝐺 (𝛼𝐺−g𝝁g), (1 − 𝛼)Σg=1

𝐺 (𝛼𝐺−g𝝈g
2)).            (3.11) 
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It can be found that the progressional representation could be easily expressed by 

𝑝𝐺(𝐱)~𝒩(�̂�, �̂�
2) ,                                                (3.12) 

where �̂� = {�̂�1, … , �̂�𝑑} and �̂�2 = {�̂�1
2, … , �̂�𝑑

2} are respectively calculated by 

{
 

 �̂�𝑗 = (1 − 𝛼)
1

𝑁
Σg=1
𝐺 (𝛼𝐺−g∑ 𝑥𝑖𝑗

g
𝑁

𝑖=1
)                       

�̂�𝑗
2 = (1 − 𝛼)

1

𝑁 − 1
Σg=1
𝐺 (𝛼𝐺−g∑ (𝑥𝑖𝑗

g
− 𝜇g𝑗)

2
𝑁

𝑖=1
)

 .                 (3.13) 

As the feature vectors are expected to represent the similarity of the evolutionary 

search processes of two tasks, the distances between their probability distributions are 

employed to construct the feature space. In particular, given the populations of two 

tasks 𝑇𝑎 and 𝑇𝑏, the solutions in the population with smaller dimension are first 

padded with zeros to make them have equal dimensionality. Then, their probability 

distributions can be estimated by building the progressional representations on the 

populations of 𝑇𝑎 and 𝑇𝑏, respectively, which are denoted by 𝑝𝑎(𝐱)~𝒩(�̂�𝑎, �̂�𝑎
2) 

and 𝑝𝑏(𝐱)~𝒩(�̂�𝑏, �̂�𝑏
2). Finally, the feature vector 𝒔𝑖 = {𝑠𝑖1, 𝑠𝑖2} is to represent 

the differences between the parameters of 𝑝𝑎(𝐱) and 𝑝𝑏(𝐱), which is computed by 

{
𝑠𝑖1 = ||�̂�𝑎 − �̂�𝑏||2
𝑠𝑖2 = ||�̂�𝑎

2 − �̂�𝑏
2||2

 ,                                                 (3.14) 

where ||�̂�𝑎 − �̂�𝑏||2 and ||�̂�𝑎
2 − �̂�𝑏

2||2 are the Euclidean distances. 

 

2) Definition of Label Space 

As the labels of feature vectors are expected to reflect the solution usefulness of 

source tasks for the target task, the label space is defined as {1, 0} where 1 (or 0) de-
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notes a positive (or negative) sample. In particular, the label of 𝒔𝑖 is identified by 

comparing the estimated objective value of the optimized solution of 𝑇𝑎 to the cur-

rent best objective value of 𝑇𝑏, which is given by 

𝑙𝑖 = {
1,       if 𝑭𝑏(𝐱) < 𝑭𝑚𝑖𝑛

𝑏

0,       otherwise          
 ,                                              (3.15) 

where 𝐱 is the optimized solution of 𝑇𝑎, 𝑭𝑏(𝐱) is its evaluated objective value on 

𝑇𝑏, and 𝑭𝑚𝑖𝑛
𝑏  is the current best objective value of 𝑇𝑏. Here, 𝑙𝑖 = 1 indicates that 

𝐱 is useful for 𝑇𝑏 as transferring 𝐱 can contribute to accelerating the optimization 

process of 𝑇𝑏. Otherwise, 𝑙𝑖 = 0 indicates 𝐱 is useless. 

 

3.3.2  Training Data Construction 

 

Algorithm 3.2 Training Data Construction (TDC) 

Input: 𝓜, 𝑛, 𝛼 

Output: 𝓓 

1  Set 𝓓+ and 𝓓− to two empty sets 

2  while |𝓓+| < 𝑛/2 or |𝓓−| < 𝑛/2 

3      [𝑇𝑎, 𝑇𝑏] ← Randomly select two source tasks from 𝓜 

4      [𝐸𝑎 , 𝐸𝑏] ← Extract evolutionary paths of 𝑇𝑎 and 𝑇𝑏 from 𝓜 

5  [𝑝𝑎(𝐱), 𝑝𝑏(𝐱)] ← Build distributions of 𝐸𝑎 and 𝐸𝑏 by Eq. (3.12) and Eq. (3.13) 

6       < 𝒔𝑖 , 𝑙𝑖 > ← Generate the labelled sample by Eq. (3.14) and Eq. (3.15) 

7       if 𝑙𝑖 is 1 

8          𝓓+ = 𝓓+⋃{< 𝒔𝑖 , 𝑙𝑖 >} 

9       else 

10          𝓓− = 𝓓−⋃{< 𝒔𝑖 , 𝑙𝑖 >} 

11       end 

12   end 

13   𝓓 ← Select 𝑛/2 samples from 𝓓+ and 𝓓−, respectively 

14   return 𝓓 = {< 𝒔𝑖 , 𝑙𝑖 >}𝑖=1
𝑛  
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For training data construction (TDC), the pseudocode is given in Algorithm 3.2 with 

the inputs: 𝓜 (the knowledge base), 𝑛 (the number of required training samples), 

and 𝛼 (the preference coefficient for estimating the progressional representation). 

First, 𝓓+ and 𝓓− are set to two empty sets in Line 1, which are used to save the 

generated positive and negative samples in Lines 3-11, respectively. In particular, two 

source tasks 𝑇𝑎 and 𝑇𝑏 are randomly selected from 𝓜, and then their populations 

are extracted to form their respective evolutionary paths, i.e., 𝐸𝑎 = {𝐏1
𝑎, … , 𝐏𝐺

𝑎} and 

𝐸𝑏 = {𝐏1
𝑏, … , 𝐏𝐺

𝑏}. Here, 𝐺 is an integer that is smaller than the maximal number of 

generations of 𝑇𝑎 and 𝑇𝑏 in 𝓜. In this way, a variety of evolutionary paths can be 

formed by randomly setting the value of 𝐺, thereby improving the diversity of the 

generated samples. With Eq. (3.12) and Eq. (3.13), the progressional representations 

of 𝐸𝑎 and 𝐸𝑏, i.e., 𝑝𝑎(𝐱)~𝒩(�̂�𝑎, �̂�𝑎
2) and 𝑝𝑏(𝐱)~𝒩(�̂�𝑏, �̂�𝑏

2), are built to esti-

mate their population distributions, respectively. Subsequently, the feature vector 𝒔𝑖 

and its label 𝑙𝑖 are calculated by Eq. (3.14) and Eq. (3.15), respectively. The sample 

< 𝒔𝑖 , 𝑙𝑖 > is added into 𝓓+ if it has a positive label, i.e., 𝑙𝑖 is 1. Otherwise, it is 

added into 𝓓− as it has a negative label, i.e., 𝑙𝑖 is 0. The above procedures will be 

iteratively executed to generate the samples until both the sizes of 𝓓+ and 𝓓− 

reach 𝑛/2, respectively. Then, in Line 13, the training data 𝓓 is formed by select-

ing 𝑛/2 samples from 𝓓+ and 𝓓−, respectively. In this way, the number of posi-

tive samples is equal to that of negative samples in 𝓓, which can avoid the perfor-

mance deterioration of the fuzzy classifier brought by imbalanced training data. Final-

ly, 𝓓 with 𝑛 training samples is returned in Line 14. 
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Algorithm 3.3 Solution Usefulness Measurement (SUM) 

Input: FKNN, 𝓜, 𝐸𝑡, g 

Output: 𝓥 and 𝓨 

1  Set 𝓥 and 𝓨 to two empty sets 

2  𝑝𝑡(𝐱) ← Build distribution of 𝐸𝑡 by Eq. (3.12) and Eq. (3.13) 

3  for each 𝑇𝑖 ∈ℳ 

4      𝐸𝑖 ← Extract evolutionary path of 𝑇𝑖 during g generations 

5      𝑝𝑖(𝐱) ← Build distribution of 𝐸𝑖 by Eq. (3.12) and Eq. (3.13) 

6      𝒗𝑖 ← Generate test sample by Eq. (3.14) 

7      [𝑦𝑖, 𝑚𝑖] ← FKNN (𝒗𝑖) 

8      𝓥 = 𝓥⋃{< 𝒗𝑖 >}, 𝓨 = 𝓨⋃{< 𝑦𝑖 ,𝑚𝑖 >} 

9  end 

10  return 𝓥 and 𝓨 

 

3.3.3  Solution Usefulness Measurement 

As the evolutionary search proceeds, the populations of the source and target tasks 

can be collected to compute the feature vectors as the test samples. In this way, the 

learned fuzzy classifier (FKNN) based on the training data can predict the class labels 

and the membership degrees of the test samples, which are used to quantify the solu-

tion usefulness of the source tasks for the target task. For solution usefulness meas-

urement (SUM), the pseudocode is given in Algorithm 3.3 with the inputs: FKNN 

(the fuzzy classifier), 𝓜 (the knowledge base), 𝐸𝑡 (the current evolutionary path of 

the target task), and g (the current generation). In Lines 1-2, 𝓥 and 𝓨 are first set 

to two empty sets, and then the distribution of 𝐸𝑡, i.e., 𝑝𝑡(𝐱)~𝒩(�̂�𝑡, �̂�𝑡
2), is built 

by Eq. (3.12) and Eq. (3.13). For each source task 𝑇𝑖 in ℳ, its test sample is gener-

ated based on the estimated solutions of 𝑇𝑖 and the target task in Lines 4-6. Particu-

larly, the evolutionary path of 𝑇𝑖 including the populations from the initial genera-

tion to the current generation g is extracted from ℳ, i.e., 𝐸𝑖 = {𝐏1
𝑖 , … , 𝐏g

𝑖}. Then, 

the distribution of 𝐸𝑖, i.e., 𝑝𝑖(𝐱)~𝒩(�̂�𝑖, �̂�𝑖
2), is built by Eq. (3.12) and Eq. (3.13). 

Thus, the feature vector 𝒗𝑖 = {𝑣𝑖1, 𝑣𝑖2} is calculated as the test sample by Eq. (3.14). 
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Next, in Line 7, FKNN is used to predict the class label and the membership degree 

of 𝒗𝑖, i.e., 𝑦𝑖 and 𝑚𝑖. The former shows that 𝑇𝑖 belongs to the positive or nega-

tive class while the latter indicates the degree to which it belongs to that class. In Line 

8, < 𝒗𝑖 > is added into 𝓥 while < 𝑦𝑖 ,𝑚𝑖 > is added into 𝓨. The above proce-

dures in Lines 4-8 are iteratively performed until all source tasks in 𝓜 have been 

visited. Finally, 𝓥 and 𝓨 are returned in Line 10. 

 

 

3.3.4  Solution Selection for Transfer 

 

Algorithm 3.4 Solution Selection for Transfer (SST) 

Input: 𝓨, 𝓜, 𝑐 

Output: 𝐓𝐒, 𝑖𝑛𝑑𝑒𝑥 

1  𝐐 ← Collect the indices of useful source tasks by Eq. (3.16) 

2  if 𝐐 is not empty 

3      𝑖𝑛𝑑𝑒𝑥 ← Find the index of the most useful source task by Eq. (3.17) 

4       𝐓𝐒 ← Randomly select 𝑐 optimized solutions of 𝑇𝑖𝑛𝑑𝑒𝑥 from 𝓜 

5  else 

6      𝐓𝐒 = ∅, 𝑖𝑛𝑑𝑒𝑥 = 0 

7  end 

8  return 𝐓𝐒, 𝑖𝑛𝑑𝑒𝑥 

 

Based on the measured solution usefulness of source tasks, the useful solutions can be 

selected from candidate source tasks and then injected into the population of the tar-

get task to accelerate the evolutionary search. For solution selection for transfer (SST), 

the pseudocode is given in Algorithm 3.4 with the inputs: 𝓨 (the set of class labels 

and membership degrees of the source tasks), 𝓜 (the knowledge base), and 𝑐 (the 

number of source solutions for transfer at each generation). First, in Line 1, the indi-

ces of useful source tasks are collected into 𝐐 by 

𝐐 = {𝑖 |𝑦𝑖 == 1,∀𝑦𝑖 ∈ 𝓨} ,                                    (3.16) 
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where 𝑦𝑖 is the class label of 𝑇𝑖 , which indicates that the 𝑖-th source task is useful 

if 𝑦𝑖 is 1. Otherwise, 𝑇𝑖 is useless. Next, as shown in Lines 3-4, the source solu-

tions are selected for transfer if 𝐐 is not empty. Particularly, the source task with the 

maximal membership degree (i.e., 𝑇𝑖𝑛𝑑𝑒𝑥) is considered the most useful source task, 

which is identified by 

𝑖𝑛𝑑𝑒𝑥 = argmax
𝑖∈𝐐

{𝑚𝑖  |𝑚𝑖 ∈ 𝓥},                                 (3.17) 

where 𝑚𝑖 is the membership degree of 𝑇𝑖 . Then, 𝑐 optimized solutions of 𝑇𝑖𝑛𝑑𝑒𝑥 

are selected from 𝓜, which are added into 𝐓𝐒. If 𝐐 is empty, 𝐓𝐒 is set to an 

empty set, and the 𝑖𝑛𝑑𝑒𝑥 is set to 0 in Line 6, indicating that the solution transfer 

will not happen. Finally, 𝐓𝐒 and 𝑖𝑛𝑑𝑒𝑥 are returned in Line 8. 

 

3.3.5  Training Data Update 

 

Algorithm 3.5 Training Data Update (TDU) 

Input: 𝐏, 𝐓𝐒, 𝓥, 𝓓, 𝑖𝑛𝑑𝑒𝑥, 𝑓𝑙𝑎𝑔 

Output: 𝓓, 𝑓𝑙𝑎𝑔 

1  if 𝐓𝐒 is not empty 

2      < 𝒗𝑖𝑛𝑑𝑒𝑥 > ← Select the test sample of 𝑇𝑖𝑛𝑑𝑒𝑥  from 𝓥 

3      < 𝑦𝑖𝑛𝑑𝑒𝑥 > ← Assign the label of 𝒗𝑖𝑛𝑑𝑒𝑥 by Eq. (3.18) 

4      𝓓 ← Delete the first training sample < 𝒗1, 𝑦1 > from 𝓓 

5      𝓓 ← Add the new training sample < 𝒗𝑖𝑛𝑑𝑒𝑥 , 𝑦𝑖𝑛𝑑𝑒𝑥 > into 𝓓 

6      Renumber all training samples in 𝓓 

7      𝑓𝑙𝑎𝑔 = true 

8  end 

9  return 𝓓, 𝑓𝑙𝑎𝑔 

 

For training data update (TDU), the pseudocode is given in Algorithm 3.5 with the 

inputs: 𝐏 (the next-generation population), 𝐓𝐒 (the set of solutions for transfer), 𝓥 

(the test data), 𝓓 (the training data), 𝑖𝑛𝑑𝑒𝑥 (the index of the most useful source 
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task selected for solution transfer), and 𝑓𝑙𝑎𝑔 (a boolean variable). As shown in 

Lines 1-8, if 𝐓𝐒 is not an empty set, the training data 𝓓 will be updated as the so-

lution transfer occurs at the current generation. In particular, the test sample 𝒗𝑖𝑛𝑑𝑒𝑥 

generated based on the populations of 𝑇𝑖𝑛𝑑𝑒𝑥 and the target task is first selected 

from 𝓥 in Line 2. After that, as shown in Line 3, by checking whether any trans-

ferred solution of 𝑇𝑖𝑛𝑑𝑒𝑥 survives in the environmental selection, 𝒗𝑖𝑛𝑑𝑒𝑥 is reas-

signed a label 𝑦𝑖𝑛𝑑𝑒𝑥 , which is expressed by 

𝑦𝑖𝑛𝑑𝑒𝑥 = {
0, if 𝐓𝐒⋂𝐏 = ∅
1, otherwise    

 ,                                     (3.18) 

Next, as shown in Lines 4-5, the first training sample denoted by < 𝒗1, 𝑦1 > is de-

leted from 𝓓, and then the new labelled sample < 𝒗𝑖𝑛𝑑𝑒𝑥 , 𝑦𝑖𝑛𝑑𝑒𝑥 > is added into 

𝓓. In this way, more reliable training samples will gradually replace the inaccurate 

ones as the evolutionary search proceeds. Meanwhile, the size of 𝓓 remains un-

changed, which ensures that the training time of the fuzzy classifier will not increase 

in the optimization process of the target task. After that, all training samples are re-

numbered sequentially based on the order in which they are added into 𝓓 in Line 6. 

In addition, 𝑓𝑙𝑎𝑔 is set to true in Line 7, which shows that the fuzzy classifier needs 

to be retrained because 𝓓 is updated. Finally, 𝓓 and 𝑓𝑙𝑎𝑔 are returned in Line 9. 

 

3.3.6  Main Framework 

Here, the pseudocode of our main framework is provided in Algorithm 3.6 with the 

inputs: STOP (a sequential transfer optimization problem with 𝑇𝑡 and 𝓜, where 𝑇𝑡 

and 𝓜 are the target task and the knowledge base consisting of the evaluated popu-

lation of the source tasks, respectively), 𝑁 (the population size), 𝐺𝑚𝑎𝑥 (the maxi-

mum number of generations for 𝑇𝑡), 𝑇𝐺 (the transfer generation interval), 𝑐 (the 
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number of solutions for transfer at each transferable generation), 𝛼 (the preference 

coefficient for calculating the progressional representation), 𝑛 (the number of sam-

ples in the training data), and 𝐾 (the number of nearest neighbours in FKNN). First, 

a population 𝐏 is initialized by randomly generating 𝑁 solutions and it is collected 

into 𝐸𝑡 as the initial evolutionary path of 𝑇𝑡 in Line 1. Next, the training data 𝓓 is 

initialized by performing Algorithm 3.2 in Line 2. Then, in Line 3, the generation 

counter 𝑔 is set to 1, and 𝑓𝑙𝑎𝑔 is set to true, which indicates that FKNN needs to 

be trained on 𝓓. 

 

Algorithm 3.6 The Main Framework 

Input: An STOP with 𝑇𝑡 and 𝓜, 𝑁, 𝐺𝑚𝑎𝑥 , 𝑇𝐺, 𝑐, 𝛼, 𝑛, 𝐾 

Output: 𝐏 

1  Initialize 𝐏 with 𝑁 solutions and 𝐸𝑡 = {𝐏} 

2  𝓓 ← TDC (𝓜, 𝑛, 𝛼)  // Algorithm 3.2 

3  Set g = 1, and 𝑓𝑙𝑎𝑔 = true 

4  while g ≤ 𝐺𝑚𝑎𝑥 

5      if mod (g, 𝑇𝐺) == 0 

6          if 𝑓𝑙𝑎𝑔 is true 

7              FKNN ← Retrain a fuzzy classifier on 𝓓  // Algorithm 3.1 

8              𝑓𝑙𝑎𝑔 = false 

9          end 

10          [𝓥, 𝓨]← SUM (FKNN, 𝓜, 𝐸𝑡, g)  // Algorithm 3.3 

11          [𝐓𝐒, 𝑖𝑛𝑑𝑒𝑥] ←SST (𝓨,𝓜, 𝑐)  // Algorithm 3.4 

12      end 

13      𝐎 ← Crossover and Mutation on 𝐏 

14      𝐏 ← Environmental Selection on 𝐏⋃𝐎⋃𝐓𝐒 

15      [𝓓, 𝑓𝑙𝑎𝑔] ← TDU (𝐏, 𝐓𝐒, 𝓥, 𝓓, 𝑖𝑛𝑑𝑒𝑥, 𝑓𝑙𝑎𝑔)  // Algorithm 3.5 

16      g = g+ 1 and 𝐸𝑡 = 𝐸𝑡⋃{𝐏} 

17  end 

18  return 𝐏 

 

The main evolutionary search process is shown in Lines 4-17. First, as shown in 

Lines 5-12, the component of solution transfer is triggered at each of 𝑇𝐺 generations. 

In particular, in Lines 6-9, the fuzzy classifier FKNN is trained on 𝓓 if 𝑓𝑙𝑎𝑔 is 
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true, and then 𝑓𝑙𝑎𝑔 is set to false. After that, with FKNN, Algorithm 3.3 is per-

formed to measure the solution usefulness of all candidate source tasks from 𝓜 in 

Line 10. Then, the solutions for transfer, i.e., 𝐓𝐒, are selected by running Algorithm 

3.4 in Line 11. Afterward, the simulated binary crossover (SBX) [94] and polynomi-

al-based mutation (PM) [95] are sequentially executed to generate the offspring popu-

lation 𝐎 with the size of 𝑁 − |𝐓𝐒| in Line 13. Next, in Line 14, environmental se-

lection is performed on the combined population 𝐏⋃𝐎⋃𝐓𝐒 to select 𝑁 solutions 

based on their objective values, which are employed to form the next-generation pop-

ulation 𝐏. Then, in Line 15, Algorithm 3.5 is performed to update 𝓓 by replacing 

the old one with the newly generated training sample with the more accurate label. In 

Line 16, the generation counter g is increased by 1, and 𝐏 is added into 𝐸𝑡. When 

g does not exceed 𝐺𝑚𝑎𝑥, the above process will be iteratively executed. Otherwise, 

𝐏 is returned as an approximate solution set in Line 18. 

 

 

3.4  Experimental Study 

3.4.1  Experimental Setup 

1) Compared Algorithms 

The canonical EA: SBX and PM are used to generate the offspring population, while 

1/2 truncation selection is used to select elite solutions from parent and offspring 

populations. 

Four ESTO algorithms equipped with distance metrics: ESTOA-ED, ESTOA-WD, 

ESTOA-KLD, and ESTOA-MMD use ED, WD, KLD, and MMD to select optimized 

solutions from the most similar source task for transfer, respectively. 
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Two ESTO algorithms equipped with ML models: ESTOA-AD and ESTOA-INB are 

developed by replacing the fuzzy classifier in ESTOA-FCM with AD and INB. In 

ESTOA-AD and ESTOA-INB, one source task in the positive class is randomly se-

lected to provide optimized solutions for transfer if it exists. Otherwise, knowledge 

transfer will not happen. 

 

2) Parameter Settings 

Table 3.1: Parameter settings of all compared algorithms. 

Algorithm Parameter settings 

EA 𝑁 = 50 

ESTOA-ED 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1 

ESTOA-WD 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1 

ESTOA-KLD 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1 

ESTOA-MMD 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1, 𝜎 = 0.5 

ESTOA-AD 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1, 𝜀 = 0.1 

ESTOA-INB 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1 

ESTOA-FCM 𝑁 = 50, 𝑇𝐺 = 1, 𝑐 = 1, 𝛼 = 0.2, 𝑛 = 100, 𝐾 = 5 

Tab. 3.1 lists the detailed parameter settings of all compared algorithms. Here, SBX 

with 𝑝𝑐 = 1 and 𝜂𝑐 = 15, and PM with 𝑝𝑚 = 1/𝑑 and 𝜂𝑚 = 15 are used as the 

evolutionary operators for generating offspring population. The population size (𝑁), 

the transfer generation interval (𝑇𝐺), and the number of transferred solutions at each 

transferable generation (𝑐) are set to 50, 1, and 1, respectively. In addition, in ES-

TOA-MMD, 𝜎 is set to 0.5 in the Gaussian kernel function. Moreover, in ESTOA-

AD, the threshold 𝜀 is set to 0.1. In ESTOA-FCM, 𝛼, 𝑛, and 𝐾 are set to 0.2, 100, 

and 5, respectively. 

The maximum number of generations 𝐺𝑚𝑎𝑥 on each test problem is set to 100. The 

objective values from 50 independent runs of each compared algorithm on the test 
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problems are collected for performance comparison, where the Wilcoxon rank sum 

test with a 0.05 significance level is used to show the statistically significant differ-

ences in the numerical results. 

 

Table 3.2: Parameter Settings of F1-F18. 

ID 

Target Task Source Tasks in Knowledge Base 

Function Search Space 
Normalized 

Global Optimum 
Function Search Space Normalized Global Optimum 

F1 CIHS-T1 d = 50, [-100, 100]d 
1 [0.5,...,0.5]ot

d

=
 CIHS-T2 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

2 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F2 CIHS-T2 d = 50, [-50, 50]d 
2 [0.5,...,0.5]ot

d

=
 CIHS-T1 d = 50, [-100, 100]d 𝐨𝑠𝑖 = 𝐨𝑡

1 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F3 CIMS-T1 d = 50, [-50, 50]d 
3 [0.5,...,0.5]ot

d

=
 CIMS-T2 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

4 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F4 CIMS-T2 d = 50, [-50, 50]d 
4 [0.5,...,0.5]ot

d

=  CIMS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡
3 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F5 CILS-T1 d = 50, [-50, 50]d 
5 [0.92,...,0.92]ot

d

=
 CILS-T2 d = 50, [-500, 500]d 𝐨𝑠𝑖 = 𝐨𝑡

6 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F6 CILS-T2 d = 50, [-500, 500]d 
6 [0.92,...,0.92]ot

d

=
 CILS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

5 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F7 PIHS-T1 d = 50, [-50, 50]d 
7 [0.5,...,0.5]ot

d

=
 PIHS-T2 d = 50, [-100, 100]d 𝐨𝑠𝑖 = 𝐨𝑡

8 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F8 PIHS-T2 d = 50, [-100, 100]d 
8

/2/2

[0.5,...,0.6]ot

dd

=
 PIHS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

7 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F9 PIMS-T1 d = 50, [-50, 50]d 
9

/2 /2

[0.5,...,0.51]ot

d d

=  PIMS-T2 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡
10 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F10 PIMS-T2 d = 50, [-50, 50]d 
10 [0.51,...,0.51]t

d

=o
 

PIMS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡
9 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F11 PILS-T1 d = 50, [-50, 50]d 
11 [0.5,...,0.5]ot

d

=
 PILS-T2 d = 25, [-0.5, 0.5]d 𝐨𝑠𝑖 = 𝐨𝑡

12 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F12 PILS-T2 d = 25, [-0.5, 0.5]d 
12 [0.5,...,0.5]ot

d

=
 PILS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

11 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F13 NIHS-T1 d = 50, [-50, 50]d 
13 [0.51,...,0.51]ot

d

=
 NIHS-T2 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

14 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F14 NIHS-T2 d = 50, [-50, 50]d 
14 [0.5,...,0.5]ot

d

=
 NIHS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

13 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F15 NIMS-T1 d = 50, [-100, 100]d 
15 [0.55,...,0.55]ot

d

=
 NIMS-T2 d = 50, [-0.5, 0.5]d 𝐨𝑠𝑖 = 𝐨𝑡

16 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F16 NIMS-T2 d = 50, [-0.5, 0.5]d 
16 [0.5,...,0.5]ot

d

=
 NIMS-T1 d = 50, [-100, 100]d 𝐨𝑠𝑖 = 𝐨𝑡

15 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  

F17 NILS-T1 d = 50, [-50, 50]d 
17 [0.5,...,0.5]ot

d

=
 NILS-T2 d = 50, [-500, 500]d 𝐨𝑠𝑖 = 𝐨𝑡

18 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖 

F18 NILS-T2 d = 50, [-500, 500]d 
18 [0.92,...,0.92]ot

d

=
 NILS-T1 d = 50, [-50, 50]d 𝐨𝑠𝑖 = 𝐨𝑡

17 × (1− 𝜏𝑖) + 𝐫 × 𝜏𝑖  
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3) Test Problems 

Two benchmark suites are used for performance comparison. The first benchmark 

suite includes 18 STOPs (called F1-F18), which are constructed based on the existing 

ingredient functions in the multitasking benchmark suite [96]. The second benchmark 

suite consists of 12 STOPs (called STOP1-STOP12), which are generated by a spe-

cially designed STOP generator [97]. In addition, a practical case is considered by 

using the planar kinematic arm problem [98] as the ingredient function to construct a 

series of practical test instances. The source and target tasks are continuous optimiza-

tion problems and the real-valued encoding is used to represent the solutions of 

source and target tasks. Note that the canonical EA is used as the optimizer to collect 

the estimated solutions of source tasks of each test problem to form their respective 

knowledge bases. For consistency, the maximum numbers of generations for all 

source tasks are set to the same to that of their target tasks. The detailed descriptions 

of the two benchmark suites are given as follows: 

In the commonly used multitasking benchmark suite [96], nine test problems (i.e., 

CIHS, CIMS, CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS) are designed by 

considering the task similarity and the degree of global optima intersection, each of 

which has two different tasks. To construct the sequential transfer optimization prob-

lem (STOP), the target task is set to one existing task from one multitasking test prob-

lem while its associated knowledge base is formed by configuring another task with 

different global optima to generate the source tasks. As shown in Tab. 3.2, a weight 

parameter 𝜏𝑖 in [0, 1] is introduced as the perturbation factor to generate the normal-

ized global optima of the source tasks in the normalized search space [0, 1]d. Setting 

𝜏𝑖 to 0 means that the normalized global optimum of the generated source task is the 

same as that of the original task. When 𝜏𝑖 is set to 1, its normalized global optimum 
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is generated by randomly sampling in the normalized search space. Therefore, using 

the Gaussian distribution to sample 𝜏𝑖 can diversify the relationship between the 

normalized global optima of the source tasks and the original task. Note that 𝐫 is a 

d-dimensional vector randomly sampled in [0, 1]d. Here, the mean (𝜇), the standard 

deviation (𝜎), and the number of the source tasks (𝑘) are 0.5, 0.1, and 100, respec-

tively. The detailed parameter settings of F1-F18 are given in Tab. 3.2. 

As introduced in [97], STOPs with diverse properties can be generated by using a 

problem generator with six necessary parameters, including task family (𝒯ℱ), transfer 

scenario (𝒯𝒮), optimum coverage of the image (𝜉), similarity distribution (𝒮𝒟), prob-

lem dimension (𝑑), and the number of source tasks (𝑘). By setting different parame-

ters, the similarity distribution of source tasks to the target task can be flexibly adjust-

ed according to specific requirements. Therefore, the problem generator generates a 

specific STOP by setting the parameters, i.e., 𝒯ℱ-𝒯𝒮-𝜉-𝒮𝒟-𝑘-𝑑. Here, eight widely 

used single-objective optimization functions are employed as the candidate families 

for formulating the source and target tasks, i.e., 𝒯ℱ = {Sphere, Ellipsoid, Schwefel 

2.2, Quartic, Ackley, Rastrigin, Griewank, Levy}. In addition, there are two different 

transfer scenarios, i.e.,𝒯𝒮 = {𝒯𝑎, 𝒯𝑒}. The former shows that the source and target 

tasks belong to the same family while the latter indicates that they have different fam-

ilies. The parameter 𝜉 ∈ [0,1] determines the relative size of the image over the de-

cision space. To create a series of STOPs with diverse similarity distributions, 𝜏𝑖 ∈

[0,1] is used to adjust the relationship between the optimal solutions of source and 

target tasks, which is given as follows: 

{

𝐨𝑡 = �̂�𝑙𝑏 + 𝐫 × (�̂�𝑢𝑏 − �̂�𝑙𝑏)                               

𝐨𝑠𝑖
𝑏 = �̂�𝑙𝑏 + 𝐫× (�̂�𝑢𝑏 − �̂�𝑙𝑏), 𝑖 = 1, 2, . . . , 𝑘     

𝐨𝑠𝑖 = 𝐨𝑡 × 𝜏𝑖 + 𝐨𝑠𝑖
𝑏 × (1 − 𝜏𝑖), 𝑖 = 1, 2, . . . , 𝑘

                        (3.19) 
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where 𝐨𝑡 and 𝐨𝑠𝑖 are the optima of the target task and the 𝑖-th source task, and 𝜏𝑖 

is the weight parameter for the 𝑖-th source task. Note that 𝐫 is a d-dimensional vec-

tor randomly sampled in [0, 1]d. Here, five different probability distributions of 𝜏𝑖 

are built based on one or multiple Gaussian distributions with the pre-set mean and 

standard deviation, which are respectively presented, as follows: 

𝑝1(𝜏) = {
𝒩(0.15, 0.12), 𝑖 = 1, . . . , ⌊2𝑘/3⌋        

𝒩(0.45, 0.22), 𝑖 =  ⌊2𝑘/3⌋ + 1, . . . , 𝑘
                        (3.20) 

𝑝2(𝜏) = {
𝒩(0.45, 0.22), 𝑖 = 1, . . . , ⌊𝑘/3⌋        

𝒩(0.70, 0.12), 𝑖 =  ⌊𝑘/3⌋ + 1, . . . , 𝑘
                          (3.21) 

𝑝3(𝜏) = 𝒩(0.45, 0.2
2), 𝑖 = 1, . . . , 𝑘                                            (3.22) 

𝑝4(𝜏) = {

𝒩(0.15, 0.12), 𝑖 = 1, . . . , ⌊𝑘/3⌋                   

𝒩(0.45, 0.12), 𝑖 =  ⌊𝑘/3⌋ + 1, . . . , ⌊2𝑘/3⌋

𝒩(0.70, 0.12), 𝑖 =  ⌊2𝑘/3⌋ + 1, . . . , 𝑘        

               (3.23) 

𝑝5(𝜏) = {
𝒩(0.15, 0.12), 𝑖 = 1, . . . , ⌊𝑘/2⌋        

𝒩(0.70, 0.12), 𝑖 =  ⌊𝑘/2⌋ + 1, . . . , 𝑘
                          (3.24) 

where 𝑘 is the number of source tasks and ⌊⋅⌋ is the operator of rounding down. 

The similarity between the global optimum of the 𝑖-th source task and the target task 

is measured by 

𝒮𝑖 = 1−max
𝑗
(|𝐨𝑡

𝑗
− 𝐨𝑠𝑖

𝑗
|),                                          (3.25) 

where 𝐨𝑡
𝑗 and 𝐨𝑠𝑖

𝑗  denote the 𝑗-th variables of 𝐨𝑡 and 𝐨𝑠𝑖 , and | ⋅ | denotes the 

absolute value. The computed similarity degrees in the ranges, i.e., [0, 0.3], (0.3, 0.7), 

and [0.7, 1], are considered to be high, medium, and low, respectively. Therefore, 

𝒮𝒟 = {𝑝1(𝜏),  𝑝2(𝜏),  𝑝3(𝜏), 𝑝4(𝜏),  𝑝5(𝜏)} is employed to mimic the diversity of 
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similarity relationships of the source task to the target task in various STOPs. Moreo-

ver, 𝑑 and 𝑘 are the dimensionality of problem and the number of source tasks, re-

spectively.  

Note that different STOPs can possess different dimensions, but the source and target 

tasks have the same dimension in the same STOP. In the problem generator [97], a 

conventional evolutionary algorithm is employed as the basic solver to optimize all 

the source tasks and their evaluated solutions are collected to form the knowledge 

base. According to the above parameter settings, a benchmark suite consisting of 

STOP1-STOP12 is designed as test problems for examining the performance of ES-

TO algorithms, where their knowledge bases are configured with different proportions 

of the source tasks with low, medium, and high similarity for their target tasks. The 

detailed parameter settings are given in Tab. 3.3. 

 

Table 3.3: Parameter Settings of STOP1-STOP12. 

ID 
Problem Specification 

(𝒯ℱ-𝒯𝒮-𝜉-𝒮𝒟-𝑘-𝑑) 

The Proportions of Different Types of Source Tasks 

Low 

(0 ≤ 𝒮 ≤ 0.3) 

Medium 

(0.3 < 𝒮 < 0.7) 

High 

(0.7 ≤ 𝒮 ≤ 1) 

STOP1 Sphere-𝒯𝑎-1-𝒩1-35-100 38.00% 57.00% 5.00% 

STOP2 Ellipsoid-𝒯𝑒-1-𝒩1-50-100 47.00% 49.00% 4.00% 

STOP3 Schwefel-𝒯𝑎-1-𝒩1-60-100 56.00% 40.00% 4.00% 

STOP4 Quartic-𝒯𝑒-1-𝒩2-35-100 3.00% 44.00% 53.00% 

STOP5 Ackley-𝒯𝑎-1-𝒩2-50-100 6.00% 48.00% 46.00% 

STOP6 Rastrigin-𝒯𝑒-1-𝒩2-60-100 2.00% 52.00% 46.00% 

STOP7 Griewank-𝒯𝑎-1-𝒩3-35-100 13.00% 75.00% 12.00% 

STOP8 Levy-Te-𝒯𝑒-1-𝒩3-35-200 9.00% 72.00% 19.00% 

STOP9 Ellipsoid-𝒯𝑎-1-𝒩4-50-100 25.00% 49.00% 26.00% 

STOP10 Quartic-𝒯𝑒-1-𝒩4-50-200 24.50% 51.50% 24.00% 

STOP11 Ackley-𝒯𝑎-1-𝒩5-60-100 36.00% 31.00% 33.00% 

STOP12 Griewank-𝒯𝑒-1-𝒩5-60-200 35.00% 32.50% 32.50% 
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Table 3.4: Mean objective values and standard deviations obtained by ESTOA-FCM 

and compared algorithms on F1-F18. 

Problem EA ESTOA-ED ESTOA-WD ESTOA-KLD ESTOA-MMD ESTOA-AD ESTOA-INB ESTOA-FCM 

F1 
mean 1.05e+00(-) 1.02e+00(~) 1.02e+00(~) 1.02e+00(~) 1.03e+00(-) 1.03e+00(-) 1.03e+00(-) 1.01e+00 

std 1.79e-02 2.92e-02 3.08e-02 2.98e-02 3.80e-02 1.67e-02 1.90e-02 2.86e-02 

F2 
mean 5.52e+02(~) 5.57e+02(-) 5.52e+02(~) 5.39e+02(~) 5.62e+02(-) 5.36e+02(~) 5.39e+02(~) 5.36e+02 

std 4.18e+01 3.98e+01 4.55e+01 3.62e+01 4.43e+01 3.26e+01 3.32e+01 3.78e+01 

F3 
mean 9.44e+00(-) 5.50e+00(-) 5.57e+00(-) 5.36e+00(-) 6.02e+00(-) 5.41e+00(-) 5.26e+00(~) 5.09e+00 

std 1.83e+00 7.20e-01 7.67e-01 4.35e-01 8.42e-01 4.31e-01 4.87e-01 5.01e-01 

F4 
mean 5.53e+02(-) 5.41e+02(~) 5.37e+02(~) 5.31e+02(~) 5.50e+02(~) 5.28e+02(~) 5.58e+02(-) 5.39e+02 

std 4.07e+01 3.19e+01 3.23e+01 2.82e+01 4.59e+01 3.81e+01 3.94e+01 3.20e+01 

F5 
mean 2.13e+01(~) 2.13e+01(~) 2.13e+01(~) 2.13e+01(~) 2.13e+01(~) 2.13e+01(-) 2.13e+01(~) 2.13e+01 

std 4.12e-02 8.53e-02 9.47e-02 3.92e-02 3.36e-02 4.36e-02 3.94e-02 4.55e-02 

F6 
mean 1.99e+03(~) 2.11e+03(~) 2.18e+03(~) 2.19e+03(~) 2.14e+03(~) 2.15e+03(~) 2.10e+03(~) 2.09e+03 

std 5.21e+02 5.17e+02 4.93e+02 4.64e+02 5.48e+02 4.44e+02 4.61e+02 4.42e+02 

F7 
mean 5.58e+02(-) 5.58e+02(-) 5.63e+02(-) 5.39e+02(~) 5.61e+02(-) 5.42e+02(~) 5.59e+02(-) 5.34e+02 

std 4.63e+01 5.05e+01 4.22e+01 3.75e+01 3.18e+01 2.81e+01 3.68e+01 3.52e+01 

F8 
mean 2.33e+02(-) 2.01e+02(~) 1.90e+02(~) 1.65e+02(~) 2.38e+02(~) 1.68e+02(~) 2.50e+02(-) 1.82e+02 

std 6.24e+01 7.43e+01 7.80e+01 4.31e+01 1.35e+02 3.77e+01 6.51e+01 4.94e+01 

F9 
mean 1.02e+01(-) 5.31e+00(-) 5.12e+00(-) 5.32e+00(-) 6.15e+00(-) 5.36e+00(-) 9.83e+00(-) 4.79e+00(~) 

std 2.28e+00 5.40e-01 5.80e-01 3.24e-01 1.36e+00 4.32e-01 2.26e+00 3.19e-01 

F10 
mean 3.03e+05(-) 1.23e+05(-) 1.08e+05(-) 6.99e+04(-) 7.80e+04(-) 7.11e+04(-) 3.01e+05(-) 3.89e+04(~) 

std 1.65e+05 7.56e+04 6.50e+04 3.26e+04 4.16e+04 3.88e+04 1.38e+05 2.16e+04 

F11 
mean 9.67e+00(-) 7.37e+00(~) 7.71e+00(~) 7.97e+00(-) 7.33e+00(~) 7.80e+00(~) 8.75e+00(-) 7.50e+00(~) 

std 1.68e+00 9.47e-01 1.09e+00 1.09e+00 8.96e-01 1.08e+00 1.76e+00 1.01e+00 

F12 
mean 9.64e+00(-) 7.05e+00(~) 6.87e+00(~) 6.44e+00(~) 7.16e+00(~) 6.84e+00(~) 7.64e+00(-) 6.72e+00(~) 

std 1.91e+00 1.64e+00 1.47e+00 1.37e+00 2.20e+00 1.30e+00 2.11e+00 1.34e+00 

F13 
mean 3.43e+05(-) 9.03e+04(-) 9.80e+04(-) 6.95e+04(-) 1.18e+05(-) 7.37e+04(-) 7.46e+04(-) 2.37e+04(~) 

std 1.67e+05 6.68e+04 6.24e+04 2.78e+04 7.87e+04 2.85e+04 3.94e+04 1.16e+04 

F14 
mean 5.51e+02(-) 5.53e+02(-) 5.51e+02(~) 5.31e+02(~) 5.49e+02(~) 5.35e+02(~) 5.51e+02(~) 5.36e+02(~) 

std 3.61e+01 3.09e+01 3.69e+01 3.34e+01 4.02e+01 3.38e+01 4.33e+01 3.53e+01 

F15 
mean 1.05e+00(-) 1.04e+00(~) 1.05e+00(~) 1.04e+00(~) 1.06e+00(-) 1.05e+00(~) 1.03e+00(+) 1.05e+00(~) 

std 1.97e-02 1.90e-02 1.57e-02 1.98e-02 2.21e-02 1.63e-02 2.83e-02 1.71e-02 

F16 
mean 3.41e+01(-) 2.14e+01(~) 2.04e+01(~) 2.03e+01(~) 2.32e+01(-) 2.00e+01(~) 3.23e+01(-) 2.11e+01(~) 

std 4.86e+00 2.98e+00 3.53e+00 2.12e+00 5.26e+00 2.93e+00 4.05e+00 3.45e+00 

F17 
mean 5.62e+02(~) 5.70e+02(~) 5.72e+02(~) 5.69e+02(~) 5.62e+02(~) 5.59e+02(~) 5.67e+02(~) 5.62e+02(~) 

std 3.63e+01 4.03e+01 4.21e+01 3.67e+01 3.55e+01 4.15e+01 4.49e+01 3.34e+01 

F18 
mean 2.08e+03(~) 2.14e+03(~) 2.05e+03(~) 2.25e+03(~) 2.12e+03(~) 2.14e+03(~) 1.97e+03(~) 2.04e+03(~) 

std 5.58e+02 4.51e+02 4.28e+02 4.83e+02 5.21e+02 4.23e+02 4.96e+02 4.83e+02 

Best/All 1/18 0/18 0/18 3/18 2/18 4/18 2/18 6/18 

+/-/~ 0/13/5 0/7/11 0/5/13 0/5/13 0/9/9 0/6/12 1/10/7 \ 

“+”, “-”, and “~” indicate that the results of the corresponding algorithm are better than, worse than, and 

similar to that of ESTOA-FCM, respectively. The best result on each test problem is highlighted in bold. 
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Table 3.5: Mean objective values and standard deviations obtained by ESTOA-FCM 

and compared algorithms on STOP1-STOP12. 

Problem  EA ESTOA-ED ESTOA-WD ESTOA-KLD ESTOA-MMD ESTOA-AD ESTOA-INB ESTOA-FCM 

STOP1 
mean 1.65e+02(~) 2.76e+02(-) 2.59e+02(-) 1.69e+02(~) 2.74e+02(-) 1.57e+02(~) 2.16e+02(~) 1.67e+02 

std 1.09e+02 1.46e+02 1.13e+02 1.20e+02 1.25e+02 1.07e+02 1.55e+02 9.52e+01 

STOP2 
mean 4.72e+03(-) 3.96e+03(-) 3.40e+03(-) 3.63e+03(-) 3.55e+03(-) 3.20e+03(~) 4.35e+03(-) 2.71e+03 

std 2.09e+03 1.58e+03 1.05e+03 1.56e+03 1.23e+03 1.40e+03 2.23e+03 1.01e+03 

STOP3 
mean 2.23e+01(~) 3.23e+01(-) 2.91e+01(-) 2.44e+01(~) 2.75e+01(~) 2.05e+01(+) 2.24e+01(~) 2.57e+01 

std 8.16e+00 1.39e+01 9.83e+00 9.67e+00 9.10e+00 7.17e+00 8.26e+00 8.81e+00 

STOP4 
mean 4.05e+00(-) 5.20e-01(-) 6.11e-01(-) 5.34e-01(-) 5.58e-01(-) 3.96e-01(~) 6.36e-01(-) 3.79e-01 

std 5.08e+00 2.18e-01 2.52e-01 2.38e-01 1.94e-01 2.09e-01 3.78e-01 1.51e-01 

STOP5 
mean 7.43e+00(-) 4.24e+00(-) 4.33e+00(-) 3.68e+00(~) 4.37e+00(-) 4.09e+00(-) 7.57e+00(-) 3.80e+00 

std 1.49e+00 6.32e-01 6.52e-01 5.03e-01 6.33e-01 5.59e-01 1.16e+00 6.08e-01 

STOP6 
mean 1.46e+02(-) 6.93e+01(~) 6.99e+01(-) 9.02e+01(-) 7.27e+01(~) 8.19e+01(-) 9.37e+01(-) 6.73e+01 

std 1.79e+01 2.58e+01 3.91e+01 1.60e+01 2.46e+01 1.98e+01 2.53e+01 1.28e+01 

STOP7 
mean 1.17e+00(-) 1.06e+00(~) 1.06e+00(~) 1.07e+00(-) 1.07e+00(-) 1.11e+00(-) 1.17e+00(-) 1.05e+00 

std 8.32e-02 3.85e-02 2.97e-02 3.88e-02 3.41e-02 9.11e-02 1.06e-01 3.56e-02 

STOP8 
mean 6.64e+00(-) 1.33e+00(~) 1.68e+00(-) 3.15e+00(-) 1.73e+00(~) 3.14e+00(-) 7.16e+00(-) 1.27e+00 

std 4.21e+00 7.09e-01 8.54e-01 2.35e+00 1.45e+00 2.39e+00 4.28e+00 6.42e-01 

STOP9 
mean 4.17e+03(-) 1.32e+03(~) 1.85e+03(-) 1.30e+03(~) 1.96e+03(-) 1.83e+03(-) 4.67e+03(-) 1.37e+03 

std 2.21e+03 4.95e+02 7.72e+02 6.30e+02 6.89e+02 1.00e+03 2.72e+03 4.68e+02 

STOP10 
mean 1.05e+02(-) 6.85e+00(~) 7.38e+00(~) 1.29e+01(-) 9.26e+00(~) 1.17e+01(-) 7.12e+01(-) 6.04e+00 

std 8.15e+01 7.21e+00 4.90e+00 1.04e+01 8.08e+00 8.50e+00 8.46e+01 2.89e+00 

STOP11 
mean 9.67e+00(-) 5.49e+00(-) 5.40e+00(-) 5.71e+00(-) 5.68e+00(-) 5.17e+00(~) 9.40e+00(-) 5.04e+00 

std 1.29e+00 1.01e+00 9.34e-01 9.40e-01 1.18e+00 7.78e-01 1.53e+00 8.41e-01 

STOP12 
mean 2.88e+00(-) 1.47e+00(-) 1.45e+00(~) 1.98e+00(-) 1.47e+00(-) 1.70e+00(-) 2.82e+00(-) 1.38e+00 

std 8.30e-01 2.52e-01 2.00e-01 6.05e-01 3.36e-01 2.90e-01 7.60e-01 1.30e-01 

Best/All  0/12 0/12 0/12 2/12 0/12 2/12 0/12 8/12 

+/-/~  0/10/2 0/7/5 0/9/3 0/8/4 0/8/4 1/7/4 0/10/2 \ 

“+”, “-”, and “~” indicate that the results of the corresponding algorithm are better than, worse than, and 

similar to that of ESTOA-FCM, respectively. The best result on each test problem is highlighted in bold. 

 

 

3.4.2  Comparison with Peer Methods 

The numerical results of all compared algorithms on two test suites are provided in 

Tab. 3.4 and Tab. 3.5, respectively. 

1) Comparison on F1-F18 

As shown in Tab. 3.4, for F1-F18, ESTOA-FCM performs better than other compared 

algorithms on 13, 7, 5, 5, 9, 6, and 10 out of 18 cases, respectively. In addition, ES-
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TOA-FCM and the compared algorithms obtain similar performance on most test cas-

es (i.e., 5, 13, 13, 13, 9, 12, and 7 out of 18 cases, respectively). The above compari-

son results on F1-F18 show some advantages of ESTOA-FCM on some test problems 

when compared to its competitors. 

Moreover, to further analyse the effectiveness of ESTOA-FCM in measuring solution 

usefulness of source tasks, the ratios of the source tasks with a positive label on F1-

F18 are recorded at each generation in Fig. 3.3. In particular, for F1, F2, F7, F8, F13, 

and F14, as the similarity degree between the ingredient functions for constructing 

source and target tasks is high, there are a lot of useful source tasks for their corre-

sponding target tasks. These source tasks can provide useful optimized solutions to 

accelerate the optimization of the target task at the early stage. However, as the evolu-

tionary search proceeds, these optimized solutions will no longer be useful for the 

target task as they have been used. As observed in Fig. 3.3(a), on most test problems, 

the number of source tasks with a positive label gradually decreases as the evolution-

ary search proceeds. In contrast, the degree of similarity between the ingredient func-

tions of source and target tasks is median for F3, F4, F9, F10, F15, and F16. As 

shown in Fig. 3.3(b), the similar results are observed on F3, F9, and F16. However, 

on F4, F10, and F15, the number of source tasks with a positive label initially de-

creases, then increases, and finally decreases again. This could possibly be that the 

source tasks have a low similarity degree to the target task at the early stage while 

they have a higher similarity degree at the middle stage. In addition, for F5, F6, F11, 

F12, F17, and F18, due to the low similarity degree between the ingredient functions 

of source and target tasks, the number of useful source tasks is very low. In Fig. 

3.3(c), except at the very early stage, the number of source tasks with a positive label 

on most test problems is small and even close to 0. It shows that most source tasks 
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are accurately identified to be useless as they cannot provide useful source solutions 

for the target task. The above observations in Fig. 3.3 show that ESTOA-FCM can 

effectively select useful source tasks along the evolutionary search process on most 

test problems. 

 

(a) F1, F2, F7, F8, F13, and F14             (b) F3, F4, F9, F10, F15, and F16                                

 

(c) F5, F6, F11, F12, F17, and F18 

Figure 3.3: Ratios of the source tasks with a positive label during the evolutionary 

search processes on F1-F18. 

 

2) Comparison on STOP1-STOP12 

In addition, the superiority of ESTOA-FCM can be observed on STOP1-STOP12. As 

shown in Tab. 3.5, compared with EA, ESTOA-FCM achieves significantly better 
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performance on most test problems (i.e., 10 out of 12 cases), which shows that ES-

TOA-FCM is able to further improve optimization performance on the target task by 

selecting the source solutions for transfer. However, as the proportion of highly simi-

lar source tasks for the target task is very low in the knowledge bases of STOP1, 

STOP2, and STOP3, the optimized solutions of most source tasks are useless for ac-

celerating the optimization process of the target task. Thus, it is reasonable that ES-

TOA-FCM and EA obtain similar results on STOP1 and STOP3. Similarly, in com-

parison with four ESTO algorithms equipped with distance metrics, ESTOA-FCM 

performs significantly better on most test problems (i.e., 7, 9, 8, and 8 out of 12 cas-

es), while it achieves similar results on the remaining cases. The comparison results 

show that FCM has better performance than these existing distance metrics including 

ED, WD, KLD, and MMD. In addition, the significant superiority of ESTOA-FCM is 

observed when compared with ESTOA-AD and ESTOA-INB. For example, the total 

numbers of better and similar results obtained by ESTOA-FCM are 11 and 12 out of 

12 cases, respectively. The comparisons demonstrate the effectiveness of FCM in 

measuring the solution usefulness of source tasks when compared with existing meas-

urement methods. 

Moreover, to further analyse the effectiveness of ESTOA-FCM, Fig. 3.4 records the 

ratios of the source tasks with a positive label at each generation on some representa-

tive test problems, i.e., STOP3, STOP7, STOP9, and STOP6. In their respective 

knowledge bases, the true ratios of highly similar source tasks for the target task are 

4%, 12%, 26%, and 46%, respectively. In particular, due to the very low proportion 

of source tasks with high similarity (4%), the number of useful source tasks for the 

target task is very small on STOP3. As shown in Fig. 3.4, the majority of source tasks 

have a negative label, which demonstrates that ESTOA-FCM is capable of predicting 
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that most source tasks are useless. In addition, for STOP6, the true proportion of 

highly similar source tasks is very high (46%), which means that a lot of source tasks 

can provide the optimized solutions to accelerate the optimization process of the tar-

get task. In Fig. 3.4, for STOP6, the majority of source tasks have a positive label at 

the early stage. However, as the population of the target task gradually converges, 

these source tasks will no longer be able to provide significant performance im-

provement for accelerating the optimization on the target task. Thus, as the optimiza-

tion process continues, the ratio of source tasks with a positive label gradually de-

clines. Similar observations can be found on STOP7 and STOP9 with a relatively 

moderate proportion of highly similar source tasks (i.e., 12% and 26%, respectively). 

Additionally, Fig. 3.4 reveals that the ratio of the source tasks with a positive label 

increases as the proportion of source tasks with high similarity increases on STOP3, 

STOP7, STOP9, and STOP6. The above comparisons further validate the effective-

ness and superiority of ESTOA-FCM in measuring the usefulness of the source tasks 

for the target task. 

 

Figure 3.4: Ratios of the source tasks with a positive label during the evolutionary 

search processes of STOP3, STOP6, STOP7, and STOP9. 
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Table 3.6: Mean objective values and standard deviations obtained by ESTOA-FCM 

and its variants. 

Problem Variant-I Variant-II Variant-III ESTOA-FCM 

STOP1 1.64e+02(1.01e+02)~ 1.56e+02(1.19e+02)~ 1.07e+02(6.32e+01)+ 1.67e+02(9.52e+01) 

STOP2 3.20e+03(1.27e+03)- 4.43e+03(2.39e+03)- 2.79e+03(1.58e+03)~ 2.71e+03(1.01e+03) 

STOP3 2.03e+01(7.15e+00)+ 2.02e+01(7.35e+00)+ 1.95e+01(8.02e+00)+ 2.57e+01(8.81e+00) 

STOP4 2.05e+00(2.10e+00)- 2.61e+00(2.28e+00)- 4.83e-01(1.67e-01)- 3.79e-01(1.51e-01) 

STOP5 4.84e+00(9.19e-01)- 7.88e+00(1.22e+00)- 4.92e+00(7.91e-01)- 3.80e+00(6.08e-01) 

STOP6 1.82e+02(3.80e+01)- 1.47e+02(2.08e+01)- 1.14e+02(2.64e+01)- 6.73e+01(1.28e+01) 

STOP7 1.27e+00(2.14e-01)- 1.17e+00(1.35e-01)- 1.07e+00(2.78e-02)- 1.05e+00(3.56e-02) 

STOP8 2.42e+00(2.19e+00)- 6.74e+00(3.75e+00)- 2.90e+00(2.11e+00)- 1.27e+00(6.42e-01) 

STOP9 1.67e+03(7.13e+02)- 4.11e+03(2.01e+03)- 1.72e+03(7.05e+02)- 1.37e+03(4.68e+02) 

STOP10 1.15e+01(7.44e+00)- 1.08e+02(9.12e+01)- 1.43e+01(1.22e+01)- 6.04e+00(2.89e+00) 

STOP11 5.66e+00(1.04e+00)- 9.91e+00(1.64e+00)- 5.51e+00(9.49e-01)- 5.04e+00(8.41e-01) 

STOP12 1.90e+00(4.25e-01)- 2.73e+00(7.82e-01)- 1.50e+00(2.11e-01)- 1.38e+00(1.30e-01) 

+/-/~ 1/10/1 1/10/1 2/9/1 \ 

“+” (or “-”) indicates that the results of the corresponding variant are better (or worse) than that 

of ESTOA-FCM, and “~” indicates that they obtain similar performance. 

 

 

Table 3.7: Mean objective values and standard deviations obtained by ESTOA-FCM 

and its variants. 

Problem Variant-IV Variant-V Variant-VI ESTOA-FCM 

STOP1 2.04e+02(1.19e+02)~ 1.87e+02(1.09e+02)~ 2.17e+02(1.49e+02)~ 1.67e+02(9.52e+01) 

STOP2 4.22e+03(2.07e+03)- 3.54e+03(1.83e+03)- 3.19e+03(1.45e+03)~ 2.71e+03(1.01e+03) 

STOP3 2.20e+01(9.43e+00)+ 2.17e+01(7.20e+00)+ 2.03e+01(6.74e+00)+ 2.57e+01(8.81e+00) 

STOP4 1.49e+00(1.05e+00)- 4.39e-01(1.73e-01)~ 5.78e-01(2.79e-01)- 3.79e-01(1.51e-01) 

STOP5 6.97e+00(1.20e+00)- 3.98e+00(6.28e-01)~ 5.27e+00(7.48e-01)- 3.80e+00(6.08e-01) 

STOP6 1.48e+02(2.19e+01)- 8.06e+01(1.66e+01)- 6.86e+01(1.49e+01)~ 6.73e+01(1.28e+01) 

STOP7 1.20e+00(1.25e-01)- 1.13e+00(9.53e-02)- 1.19e+00(1.06e-01)- 1.05e+00(3.56e-02) 

STOP8 6.26e+00(4.04e+00)- 3.11e+00(2.55e+00)- 2.91e+00(1.83e+00)- 1.27e+00(6.42e-01) 

STOP9 4.44e+03(1.67e+03)- 1.68e+03(7.48e+02)- 2.68e+03(1.26e+03)- 1.37e+03(4.68e+02) 

STOP10 1.13e+02(8.75e+01)- 9.72e+00(8.94e+00)~ 4.27e+01(3.72e+01)- 6.04e+00(2.89e+00) 

STOP11 7.79e+00(1.32e+00)- 5.06e+00(7.26e-01)~ 5.66e+00(9.76e-01)- 5.04e+00(8.41e-01) 

STOP12 2.83e+00(7.22e-01)- 1.61e+00(3.29e-01)- 1.43e+00(2.02e-01)~ 1.38e+00(1.30e-01) 

+/-/~ 1/10/1 1/6/5 1/7/4 \ 

“+” (or “-”) indicates that the results of the corresponding variant are better (or worse) than that 

of ESTOA-FCM, and “~” indicates that they obtain similar performance. 

 



 

５８ 

3.4.3  Ablation Experiments 

The ablation experiments are conducted on STOP1-STOP12 by comparing ESTOA-

FCM to its various variants. The detailed numerical results are provided in Tab. 3.6 

and Tab. 3.7. 

1) Effectiveness of Training Data Construction 

To validate its effectiveness in generating labelled training data, two different variants 

(i.e., Variant-I and Variant-II) are designed. Variant-I uses positive samples to con-

struct the initial training data, while Variant-II considers negative samples to form the 

initial training data. It can be observed from Tab. 3.6 that ESTOA-FCM significantly 

outperforms Variant-I and Variant-II on most test problems (i.e., 10 and 10 out of 12 

test problems). The comparison results show the effectiveness of training data con-

struction in ESTOA-FCM. 

 

2) Effectiveness of Solution Usefulness Measurement 

One variant (Variant-III) without solution usefulness measurement is used for perfor-

mance comparison. Here, one source task to provide one optimized solution for trans-

fer is randomly selected from all available source tasks. As shown in Tab. 3.6, ES-

TOA-FCM outperforms Variant-III on most test problems (i.e., 9 out of 12 test prob-

lems), which demonstrates that the use of the measurement method can effectively 

measure the solution usefulness of source tasks. 

 

3) Effectiveness of Solution Selection for Transfer 

Here, two different variants (i.e., Variant-IV and Variant-V) are designed for perfor-
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mance comparison. For Variant-IV, the source task to provide one optimized solution 

for transfer is randomly selected from the negative class. As shown in Tab. 3.7, ES-

TOA-FCM achieves better results than Variant-IV on 10 out of 12 test problems, val-

idating that source tasks with a positive label have higher solution usefulness than 

those in the negative class. Besides, Variant-IV selects one optimized solution of the 

source task with the minimal membership degree in the positive class. It is observed 

that ESTOA-FCM outperforms Variant-IV on 6 out of 12 test problems while it is on-

ly beat by Variant-IV on 1 case. On other test problems, they show similar results. 

The comparison results further validate the effectiveness of selecting the source task 

with maximal membership degree in the positive class. 

 

4) Effectiveness of Training Data Update 

To validate its effectiveness, one variant (Variant-VI) without training data update is 

used as a compared algorithm. As shown in Tab. 3.7, ESTOA-FCM achieves signifi-

cantly better results than Variant-VI on most test cases (i.e., 7 out of 12 test problems), 

while it is outperformed by Variant-VI on 1 case. The performance improvements on 

most test problems show the effectiveness of training data update in ESTOA-FCM. 

 

3.4.4  Parameter Sensitive Analysis 

1) The Effect of 𝛼 

To study the impact of 𝛼 in the progressional representation, the comparisons of 

ESTOA-FCM using the progressional representation with different values of 𝛼 from 

{0, 0.2, 0.4, 0.6, 0.8, 1} are done on STOP1-STOP12. The mean objective values and 

standard deviations are listed in Tab. 3.8. Compared to ESTOA-FCM with other val-
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ues of 𝛼 that are smaller than 1, i.e., 𝛼 = 0, 0.4, 0.6, and 0.8, ESTOA-FCM with 𝛼 

= 0.2 shows similar performance on most test problems (i.e., 10, 9, 11, and 9 cases 

out of 12 test problems). However, it can be observed that the significant performance 

deterioration of ESTOA-FCM with 𝛼 = 1. In particular, ESTOA-FCM with 𝛼 = 0.2 

achieves significantly better performance on 10 test problems when compared to that 

with 𝛼 = 1. In addition, there is only one case on which ESTOA-FCM with 𝛼 = 1 

is better than ESTOA-FCM with 𝛼 = 0.2. The above comparison results show that 

the population at the current generation plays a critical role in using the progressional 

representation to estimate the population distribution. In summary, setting 𝛼 to a 

value less than 1 is suggested. Thus, 𝛼 is set to 0.2. 

 

2) The Effect of 𝐾 

To study the impact of the number of nearest neighbours in FKNN, the comparisons 

of ESTOA-FCM using FKNN with different values of 𝐾 from {1, 3, 5, 7, 9} are 

done on STOP1-STOP12. The mean objective values and standard deviations are 

listed in Tab. 3.9. It can be observed that ESTOA-FCM with 𝐾 = 5 performs better 

than that with 𝐾 = 1 on most test problems (i.e., 8 out of 12 test problems), and 

achieves similar results on 3 cases. In addition, compared to ESTOA-FCM with 𝐾 = 

3, 7, and 9, ESTOA-FCM with 𝐾 = 5 achieves similar results on most test cases, i.e., 

8, 12, and 10 cases out of 12 test cases, respectively. Meanwhile, there is no perfor-

mance degradation on other test problems. The above comparison results show that 

ESTOA-FCM with a smaller value of K, i.e., 𝐾 = 1, will cause the performance deg-

radation of ESTOA-FCM on some test problems. In addition, the performance of ES-

TOA-FCM on most test problems is not very sensitive to FKNN with a larger value 

of 𝐾. Thus, setting 𝐾 to 5 is suggested in this study. 
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Table 3.8: Mean objective values and standard deviations obtained by ESTOA-FCM 

with different values of 𝛼. 

Problem 𝜶 = 0.0 𝜶 = 0.4 𝜶 = 0.6 𝜶 = 0.8 𝜶 = 1.0 𝜶 = 0.2 

STOP1 1.62e+02(1.11e+02)~ 1.96e+02(1.30e+02)~ 1.80e+02(9.64e+01)~ 1.63e+02(1.17e+02)~ 1.74e+02(1.17e+02)~ 1.67e+02(9.52e+01) 

STOP2 2.81e+03(1.13e+03)~ 3.19e+03(1.16e+03)- 3.00e+03(1.09e+03)~ 2.87e+03(9.64e+02)~ 3.94e+03(2.27e+03)- 2.71e+03(1.01e+03) 

STOP3 2.36e+01(9.15e+00)~ 2.45e+01(9.45e+00)~ 2.39e+01(8.56e+00)~ 2.36e+01(7.91e+00)~ 2.08e+01(8.34e+00)+ 2.57e+01(8.81e+00) 

STOP4 3.49e-01(1.55e-01)~ 4.58e-01(1.97e-01)- 6.15e-01(2.94e-01)- 4.95e-01(2.49e-01)- 2.93e+00(2.72e+00)- 3.79e-01(1.51e-01) 

STOP5 3.66e+00(5.20e-01)~ 3.85e+00(6.21e-01)~ 3.88e+00(5.11e-01)~ 3.67e+00(5.43e-01)~ 8.40e+00(9.62e-01)- 3.80e+00(6.08e-01) 

STOP6 8.21e+01(1.89e+01)- 8.22e+01(2.12e+01)- 7.14e+01(1.97e+01)~ 8.39e+01(2.59e+01)- 1.78e+02(1.98e+01)- 6.73e+01(1.28e+01) 

STOP7 1.08e+00(3.96e-02)- 1.06e+00(6.55e-02)~ 1.06e+00(3.19e-02)~ 1.07e+00(2.26e-02)- 1.57e+00(2.24e-01)- 1.05e+00(3.56e-02) 

STOP8 1.15e+00(5.28e-01)~ 1.39e+00(7.10e-01)~ 1.46e+00(7.38e-01)~ 1.51e+00(8.02e-01)~ 1.34e+01(8.54e+00)- 1.27e+00(6.42e-01) 

STOP9 1.27e+03(4.88e+02)~ 1.43e+03(6.54e+02)~ 1.40e+03(5.06e+02)~ 1.26e+03(5.90e+02)~ 4.32e+03(2.19e+03)- 1.37e+03(4.68e+02) 

STOP10 7.01e+00(5.30e+00)~ 5.64e+00(2.84e+00)~ 5.25e+00(2.64e+00)~ 5.64e+00(3.12e+00)~ 8.98e+01(6.79e+01)- 6.04e+00(2.89e+00) 

STOP11 5.00e+00(8.22e-01)~ 5.20e+00(9.10e-01)~ 5.26e+00(8.41e-01)~ 4.94e+00(9.80e-01)~ 9.38e+00(1.33e+00)- 5.04e+00(8.41e-01) 

STOP12 1.35e+00(1.28e-01)~ 1.41e+00(1.58e-01)~ 1.41e+00(1.29e-01)~ 1.40e+00(1.91e-01)~ 2.85e+00(7.06e-01)- 1.38e+00(1.30e-01) 

+/-/~ 0/2/10 0/3/9 0/1/11 0/3/9 1/10/1 \ 

“+” (or “-”) indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of 

ESTOA-FCM with the suggested parameter, and “~” indicates that they obtain similar performance. 

 

Table 3.9: Mean objective values and standard deviations obtained by ESTOA-FCM 

with different values of 𝐾. 

Problem 𝑲 = 1 𝑲 = 3 𝑲 = 7 𝑲 = 9 𝑲 = 5 

STOP1 1.38e+02(7.46e+01)~ 1.58e+02(9.55e+01)~ 1.75e+02(1.30e+02)~ 1.40e+02(8.76e+01)~ 1.67e+02(9.52e+01) 

STOP2 3.36e+03(1.35e+03)- 3.10e+03(1.31e+03)~ 2.94e+03(1.19e+03)~ 2.95e+03(1.65e+03)~ 2.71e+03(1.01e+03) 

STOP3 2.03e+01(7.35e+00)+ 2.32e+01(8.05e+00)~ 2.62e+01(9.60e+00)~ 2.70e+01(1.03e+01)~ 2.57e+01(8.81e+00) 

STOP4 5.20e-01(2.93e-01)- 4.55e-01(2.10e-01)- 4.33e-01(1.87e-01)~ 4.58e-01(2.03e-01)- 3.79e-01(1.51e-01) 

STOP5 4.19e+00(6.49e-01)- 4.15e+00(6.47e-01)- 3.81e+00(5.85e-01)~ 3.85e+00(6.29e-01)~ 3.80e+00(6.08e-01) 

STOP6 1.08e+02(2.10e+01)- 8.03e+01(1.73e+01)- 7.33e+01(1.67e+01)~ 6.50e+01(1.52e+01)~ 6.73e+01(1.28e+01) 

STOP7 1.09e+00(3.07e-02)- 1.07e+00(3.42e-02)- 1.06e+00(3.19e-02)~ 1.07e+00(2.76e-02)- 1.05e+00(3.56e-02) 

STOP8 1.67e+00(1.05e+00)- 1.23e+00(6.03e-01)~ 1.27e+00(7.26e-01)~ 1.40e+00(8.07e-01)~ 1.27e+00(6.42e-01) 

STOP9 1.36e+03(4.69e+02)~ 1.48e+03(6.68e+02)~ 1.31e+03(5.01e+02)~ 1.34e+03(5.45e+02)~ 1.37e+03(4.68e+02) 

STOP10 8.62e+00(5.24e+00)- 6.82e+00(4.78e+00)~ 7.23e+00(4.76e+00)~ 6.31e+00(4.39e+00)~ 6.04e+00(2.89e+00) 

STOP11 6.13e+00(8.93e-01)- 5.06e+00(7.87e-01)~ 5.11e+00(7.76e-01)~ 4.99e+00(8.63e-01)~ 5.04e+00(8.41e-01) 

STOP12 1.41e+00(1.33e-01)~ 1.42e+00(1.70e-01)~ 1.40e+00(1.65e-01)~ 1.38e+00(1.46e-01)~ 1.38e+00(1.30e-01) 

+/-/~ 1/8/3 0/4/8 0/0/12 0/2/10 \ 

“+” (or “-”) indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of 

ESTOA-FCM with the suggested parameter, and “~” indicates that they obtain similar performance. 

 

3) The Effect of 𝑐 

To study the impact of the number of transferred solutions at each transferable gener-

ation, the comparisons of ESTOA-FCM with different values of 𝑐 from {1, 5, 10, 20} 
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are done on STOP1-STOP12. The mean objective values and standard deviations are 

listed in Tab. 3.10. It is observed that ESTOA-FCM with 𝑐 = 1 achieves significantly 

better performance on most test problems (i.e., 11, 11, and 12 out of 12 test problems) 

when compared to that with other values of 𝑐. The comparison results show that se-

lecting more transferred solutions from one source task will result in performance 

degradation. Thus, setting 𝑐 to 1 is suggested in this study. 

 

Table 3.10: Mean objective values and standard deviations obtained by ESTOA-FCM 

with different values of c. 

Problem 𝒄 = 5 𝒄 = 10 𝒄 = 20 𝒄 = 1 

STOP1 5.28e+02(3.50e+02)- 1.09e+03(9.72e+02)- 2.98e+03(2.48e+03)- 1.67e+02(9.52e+01) 

STOP2 7.90e+03(3.91e+03)- 1.36e+04(1.05e+04)- 3.19e+04(3.60e+04)- 2.71e+03(1.01e+03) 

STOP3 4.76e+01(2.44e+01)- 8.93e+01(3.97e+01)- 1.59e+02(8.42e+01)- 2.57e+01(8.81e+00) 

STOP4 4.63e-01(2.03e-01)- 5.85e-01(2.75e-01)- 6.87e-01(3.19e-01)- 3.79e-01(1.51e-01) 

STOP5 4.20e+00(7.59e-01)- 4.42e+00(7.39e-01)- 4.67e+00(7.13e-01)- 3.80e+00(6.08e-01) 

STOP6 7.22e+01(2.43e+01)~ 7.93e+01(3.16e+01)~ 9.05e+01(3.52e+01)- 6.73e+01(1.28e+01) 

STOP7 1.26e+00(1.59e-01)- 1.35e+00(3.30e-01)- 1.58e+00(4.62e-01)- 1.05e+00(3.56e-02) 

STOP8 5.34e+00(3.36e+00)- 8.84e+00(7.03e+00)- 1.47e+01(1.46e+01)- 1.27e+00(6.42e-01) 

STOP9 8.93e+03(5.14e+03)- 1.36e+04(8.65e+03)- 3.50e+04(2.12e+04)- 1.37e+03(4.68e+02) 

STOP10 9.19e+01(1.13e+02)- 1.04e+02(1.54e+02)- 3.37e+02(4.14e+02)- 6.04e+00(2.89e+00) 

STOP11 7.26e+00(1.89e+00)- 7.83e+00(1.74e+00)- 9.60e+00(2.59e+00)- 5.04e+00(8.41e-01) 

STOP12 3.79e+00(2.31e+00)- 3.81e+00(1.56e+00)- 8.21e+00(6.69e+00)- 1.38e+00(1.30e-01) 

+/-/~ 0/11/1 0/11/1 0/12/0 \ 

“+” (or “-”) indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of 

ESTOA-FCM with the suggested parameter, and “~” indicates that they obtain similar performance. 

 

3.4.5  Computational Complexity Analysis 

In terms of four distance metrics (i.e., ED, WD, KLD, and MMD), their computa-

tional complexities are 𝑂(𝑁𝑑), 𝑂(𝑁𝑑), 𝑂(𝑁3𝑑3), and 𝑂(𝑁2𝑑), respectively. Here, 

𝑁 and 𝑑 are the population size and the problem’s dimensionality, respectively. 

In the proposed method, FKNN does not introduce additional time complexity dur-

ing the model training phase, as it operates directly on the training data without the 
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need for an explicit parameter estimation process. Here, the computational complexi-

ty of FKNN for predicting the result of each test sample is 𝑂(𝑁𝑑𝑛), where 𝑛 is the 

number of the training samples. Fig. 3.5 presents the total running time of each algo-

rithm for solving STOP1 to STOP12. All compared algorithms are implemented in 

MATLAB R2020b and run on a computer with AMD Ryzen 9 5900X 12-Core Pro-

cessor. It is observed that the running speed of ESTOA-FCM is slightly slower than 

that of ESTOA-ED and ESTOA-WD, while it can significantly outperform the run-

ning speed of ESTOA-KLD. The comparative analysis thus indicates that introduc-

ing FKNN into ESTOA-FCM does not lead to a substantial increase in computation-

al overhead. 

 

Figure 3.5: Comparison of the total running times of all compared algorithms on 

STOP1-STOP12. 

 

3.4.6  Practical Case Study 

1) Problem Definition 

To further analyse the effectiveness of ESTOA-FCM in solving practical optimization 
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case, the planar kinematic arm [98] is used in the comparative experiments. The arm 

consists of 𝑑 links (all the links have the same length 𝐿), which are connected by 𝑑 

joints (all joints have the same angle limits 𝛼𝑚𝑎𝑥). The objective of the arm is to op-

timize the angle of each joint 𝜶 = (𝛼1,… , 𝛼𝑑) to make the tip position of the arm 

𝐩𝑑 as close as possible to a predefined target position 𝛾 in the plane, which can be 

formulated as follows: 

min
𝛼
𝑓(𝜶) = ||𝐩𝑑 − 𝛾||2 ,                                       (3.26) 

where 𝛼𝑖 ∈ [−𝛼𝑚𝑎𝑥 , 𝛼𝑚𝑎𝑥] for 𝑖 = 1,… , 𝑑. More details of the kinematics used to 

calculate 𝐩𝑑 can be found in [98]. In practice, the target position in the plane usually 

varies, which leads to a change in the optimal angles of the arm. It is expected to uti-

lize the search experience from previously-solved tasks to speed up the search for the 

optimal solution of a new task. Thus, different optimization tasks can be constructed 

by setting their target positions to different coordinate points in the normalized plane 

[0, 1]
2
 for the planar kinematic arm. Here, 𝐿 and 𝛼𝑚𝑎𝑥 are set to 1/𝑑 and 0.8/𝑑, 

respectively, which make the arm has the same total length (1 meter) and reaching 

abilities regardless of the dimensionality. First, the test instances with the same di-

mensionality are constructed. Specifically, 50 optimization tasks are generated by 

randomly sampling their target positions in [0, 1]
2
. One task is used as the target task, 

while the rest will serve as source tasks to form the knowledge base. Moreover, 50 

test instances with 𝑑 = 150 are generated in the same way. For each of these test in-

stances, its target task and all source tasks in the corresponding knowledge base have 

the same dimensionality. Additionally, the test instances with different dimensionali-

ties are constructed. Here, 50 optimization tasks are generated by randomly sampling 

their target positions in [0, 1]
2
 and setting their dimensionalities to the integers in the 

range of [50, 100]. Note that the solutions of source tasks would be truncated or pad-
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ded with zeros to make them have the same dimension as the target task. Each of the 

50 tasks is regarded as the target task and its knowledge base consists of the remain-

ing tasks. 

 

Table 3.11: Summarized results of ESTOA-FCM and all competitors. 

Algorithm Comparison 
Test instances (+/-/~) 

𝑑 = 100 𝑑 = 150 𝑑 ∈ [50, 100] 

EA vs ESTOA-FCM 2/46/2 0/45/5 0/46/4 

ESTOA-ED vs ESTOA-FCM 0/38/12 0/39/11 6/31/13 

ESTOA-WD vs ESTOA-FCM 0/36/14 1/36/13 4/31/15 

ESTOA-KLD vs ESTOA-FCM 3/42/5 0/45/5 3/39/8 

ESTOA-MMD vs ESTOA-FCM 0/37/13 1/36/13 6/29/15 

ESTOA-AD vs ESTOA-FCM 3/44/3 1/45/4 0/46/4 

ESTOA-INB vs ESTOA-FCM 2/35/13 0/31/19 5/23/22 

“+” (or “-”) indicates the number of test problems on which the competitor is better (or worse) 

than ESTOA-FCM, and “~” indicates the number of test problems on which they obtain similar per-

formance. 

 

2) Comparison Results 

The summarized compared results are given in Tab. 3.11. It can be observed that ES-

TOA-FCM can significantly outperform its competitors including EA, ESTOA-ED, 

ESTOA-WD, ESTOA-KLD, ESTOA-MMD, ESTOA-AD, and ESTOA-INB on most 

test instances. Furthermore, the convergence curves of all compared algorithms on 

three representative test instances with 𝑑 = 100, 𝑑 = 150, and 𝑑 ∈ [50, 100] are 

provided in Fig. 3.6. It can be clearly observed that ESTOA-FCM achieves the best 

convergence performance among all compared algorithms on the three practical test 

instances. The above comparison results further demonstrate the effectiveness and su-

periority of ESTOA-FCM in solving practical planar kinematic arm problems when 

compared with existing ESTO algorithms. 
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             (a) d = 100                             (b) d = 150                          

 

                               (c) d ∈ [50, 100]   

Figure 3.6: Convergence curves on three representative test problems with different 

dimensions. 

 

 

3.5  Conclusion 

This chapter has proposed a fuzzy classifier-assisted solution transfer method for ES-

TO. Different from existing solution transfer methods, the proposed method learns a 

fuzzy classifier to measure the solution usefulness of source tasks, which aims to se-

lect useful solutions to accelerate the optimization of the target task. The training data 

is first constructed based on the evaluated solutions of candidate source tasks in the 
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knowledge base. As the optimization process proceeds, the solutions of the source and 

target tasks are collected to generate the test samples. After that, the solution useful-

ness of source tasks can be estimated based on the predicted results of the fuzzy clas-

sifier on the test samples. In this way, useful source solutions can be selected from 

source tasks to accelerate the optimization process of the target task. Additionally, to 

further improve the accuracy of the fuzzy classifier, the training data is dynamically 

updated with the test samples obtained during the evolutionary search process. Exten-

sive experiments have been done on two benchmark suites and one practical case to 

validate the effectiveness and superiority of the proposed method when compared to 

existing ESTO algorithms. 
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Chapter 4 

Ensemble Method of Domain Ad-

aptation for Adaptively Deciding 

How to Transfer in EMT 

 

 

 

4.1  Introduction 

As domain adaptation (DA) methods have shown effectiveness for enhancing 

knowledge transferability from the source domain to the target domain in traditional 

transfer learning methods [99], some recent studies of EMT also suggest using DA 

methods to further improve knowledge transferability via a suitable transformation 

between distinct tasks, where the knowledge from one task called the source task is 
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transferred to another task called the target task. Thus, each task in EMT can be treat-

ed as either a source task or a target task, and the search space of the source/target 

task is called the source/target domain. In MFEA-DV [100], the elite solution of the 

target task is translated along the difference vector provided by the source task, while 

the solutions of all tasks in G-MFEA [74] are mapped to a common central location 

for knowledge transfer. To facilitate high ordinal correlation among different search 

spaces, a linear transformation is learnt in LDA-MFEA [66] to transfer solutions 

across tasks, while the denoising autoencoder (AE) method was used in [48] to obtain 

the solution mapping relationship among different tasks. In addition, an affine trans-

formation was proposed in AT-MFEA [67] to avoid chaotic matching by considering 

the fitness rank correlation and the topological consistency for learning the mapping 

relationship, while a kernelized AE [68] was used to capture the nonlinearity between 

different tasks. In addition, a two-layer feedforward neural network [69] was used to 

learn the aligned solution representations through two-layer transformations, while 

subspace alignment methods were suggested in [70], [71] to run the transformation in 

the reduced variable subspaces of source and target tasks. 

However, the above DA methods often show certain specific biases when learning the 

mappings or transformations from the source task to the target task, which will be ex-

perimentally studied in the following subsection 4.2.2. Thus, it is a natural idea to use 

an ensemble method to combine multiple complementary DA methods for knowledge 

transfer, as inspired by the effectiveness of ensemble methods to combine multiple al-

gorithms [101], [102], [103], selection criteria [104], [105], evolutionary operators [106], 

[107], resource allocation strategies [108], constraint handling techniques [109], and pa-

rameter settings [110] for solving a diverse set of optimization problems. However, to 

the best of our knowledge, few studies have paid attention to the complementarity of 
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DA methods in knowledge transfer or considered combining their advantages in EMT. 

To fill this research gap, this chapter proposes a domain adaptation ensemble (DAE) 

method for knowledge transfer, in which the efficacy and diversity of DA methods are 

considered in different situations in EMT. First, a hierarchical clustering method (HCM) 

[111], [112] is used to divide the solutions of each task into multiple clusters. Then, once 

two parent solutions are selected for knowledge transfer across tasks, the efficacy and 

diversity of DA methods are considered in two cases by checking the solutions within the 

same cluster: if none of these solutions have been transferred before, the efficacy of do-

main adaptation methods is considered by using roulette wheel selection (RWS) based on 

the obtained performance improvements of these methods in the evolutionary optimiza-

tion process; otherwise, the diversity of DA methods is emphasized by randomly select-

ing one of them for knowledge transfer. Different from existing ensemble methods, it is 

a first attempt to consider both the efficacy and diversity of DA methods for 

knowledge transfer in EMT, which could improve knowledge transferability across 

tasks. To summarize, the main contributions of this study are summarized as follows. 

1) This study proposes a DAE method to combine the advantages of multiple com-

plementary DA methods for knowledge transfer in EMT. To select one favourable 

DA method for use, the efficacy and diversity of DA methods are considered in DAE. 

2) This study presents the implementation of incorporating the proposed ensemble 

method into an EMT framework. The experimental results validate that incorporating 

into DAE method into three competitive EMT algorithms can significantly improve 

their performance for solving different multitasking test problems. Moreover, a ca-

nonical EMT algorithm enhanced by DAE (called MFEA-DAE) outperforms five re-

cent EMT algorithms on most cases of the multitasking test problems used, and the 

effectiveness of DAE is also validated on a practical case. 
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4.2  Background and Motivation 

4.2.1  Domain Adaption for Evolutionary Multitasking 

The mapping parameters of AE [48], KAE [68] and AT [67] are expressed in closed-

form solution, which can be computed by a finite number of operators on the popula-

tions of source and target tasks without training. Thus, they can be seamlessly used in 

any EMT framework as an independent module to transfer solutions across tasks. 

Here, their learning mechanisms to construct solution mapping from the source task 

to the target task are briefly introduced as follows: 

1) Denoising AE [48] 

Considering source task 𝑇𝑠 and target task 𝑇𝑡, their solution sets are represented by 

𝐏 = {𝐩1, … , 𝐩𝑁} and 𝐐 = {𝐪1, … , 𝐪𝑁}, respectively, where 𝑁 is the number of 

solutions and the solutions in 𝐏 or 𝐐 with smaller dimension are padded with zeros 

to make them have equal dimensionality. To have a high ordinal correlation in the 

mapping construction, the solutions in 𝐏 and 𝐐 are sorted in the same way. As 

suggested in [48], sorting can be performed based on the objective values of solutions 

for SOPs or the nondominated rankings and crowding distances of solutions for 

MOPs. The mapping 𝐌 for transferring solutions from 𝑇𝑠 to 𝑇𝑡 can be learnt by 

minimizing the squared reconstruction loss of the corrupted input, which can be for-

mulated by 

𝐿𝑠𝑞(𝐌) =
1

2𝑁
∑||𝐪𝑖 −𝐌𝐩𝑖||

2 ,                                     (4.1)

𝑁

𝑖=1

 

To obtain the matrix form of Eq. (4.1), a constant feature is added to the input, i.e., 

𝐩𝑖 = [𝐩𝑖; 1], 𝐪𝑖 = [𝐪𝑖; 1], and a bias 𝐜 is incorporated within 𝐌, i.e., 𝐌 = [𝐌, 𝐜]. 
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Then, Eq. (4.1) can be written 

𝐿𝑠𝑞(𝐌) =
1

2𝑁
𝑡𝑟[(𝐐 −𝐌𝐏)𝑇(𝐐 −𝐌𝐏)] ,                        (4.2) 

where 𝑡𝑟[⋅] is the trace of a matrix. As the closed-form solution for ordinary least 

squares [113], 𝐌 is expressed by 

𝐌 = (𝐐𝐏𝑇)(𝐏𝐏𝑇)−1 .                                         (4.3) 

Given a solution 𝐩𝑠 on 𝑇𝑠 and the learnt mapping 𝐌, its transferred solution 𝐩𝑡 

on 𝑇𝑡 can be generated as follows: 

𝐩𝑡 = 𝐌𝐩𝑠 .                                                    (4.4) 

 

2) Kernelized AE (KAE) [68] 

In KAE, the learning of 𝐌 based on the kernel function is to capture the nonlinearity 

between 𝐏 and 𝐐. Mapping 𝐏 to a reproduced kernel Hilbert space ℋ by a non-

linear mapping function 𝜑, the squared reconstruction loss in Eq. (4.2) is revised as 

follows: 

𝐿𝑠𝑞(𝐌) =
1

2𝑁
𝑡𝑟[(𝐐 −𝐌𝜑(𝐏))𝑇(𝐐 −𝐌𝜑(𝐏))] .                     (4.5) 

According to [114], the linear mapping 𝐌 in ℋ can be represented as a linear 

combination of the data points 𝜑(𝐏) in ℋ, i.e., 𝐌 = 𝐌𝑘𝜑(𝐏)
𝑇. Thus, we have 

𝐌𝜑(𝐏) = 𝐌𝑘𝜑(𝐏)
𝑇𝜑(𝐏). The kernel matrix is denoted as 𝐊(𝐏,𝐏) = 𝜑(𝐏)𝑇𝜑(𝐏), 

where the (𝑖, 𝑗) -th element of 𝐊(𝐏,𝐏)  is represented by the kernel function 

𝜅(𝐩𝑖 , 𝐩𝑗). Then, Eq. (4.5) is reformulated by 
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𝐿𝑠𝑞(𝐌𝑘) =
1

2𝑁
𝑡𝑟 [(𝐐 −𝐌𝑘𝐊(𝐏,𝐏))

𝑇
(𝐐 −𝐌𝑘𝐊(𝐏,𝐏))].              (4.6) 

Thus, a closed-form solution can be deduced by 

𝐌𝑘 = 𝐐𝐊(𝐏,𝐏)
𝑇(𝐊(𝐏,𝐏)𝐊(𝐏,𝐏)𝑇)−1 .                              (4.7) 

In terms of 𝐩𝑠 on 𝑇𝑠 and the learnt mapping 𝐌𝑘, its transferred solution 𝐩𝑡 on 

𝑇𝑡 is generated as follows: 

𝐩𝑡 = 𝐌𝜑(𝐩𝑠) = 𝐌𝑘𝜑(𝐏)
𝑇𝜑(𝐩𝑠) = 𝐌𝑘𝐊(𝐏,𝐩𝑠) ,                     (4.8) 

where 𝜅(𝐩𝑖, 𝐩𝑠) is the 𝑖-th element of 𝐊(𝐏,𝐩𝑠). 

 

3) Affine Transformation (AT) [67] 

Given the source task 𝑇𝑠 and the target task 𝑇𝑡, the optimal mapping 𝜙∗ that trans-

fers solutions from 𝑇𝑠 to 𝑇𝑡 can be obtained by minimizing a rank loss function, 

which is formulated as follows: 

𝜙∗ = min
𝜙𝑎∈Φ

∫
𝐱
‖ℜ[𝐹𝑠(𝐱)] − ℜ[𝐹𝑡(�̃�)]‖

2 ,                                  (4.9) 

where 𝐱 is a solution encoded in a unified space and its transferred solution �̃� is 

obtained by applying the linear transformation 𝜙𝑎 on 𝐱, which is expressed as fol-

lows: 

        �̃� = 𝜙𝑎(𝐱; 𝛉) = 𝐱𝐀 + 𝐛 ,                                           (4.10) 

where 𝛉 = [𝐀,𝐛] denotes the parameters of affine transformation. Here, ℜ is a 

rank operation for converting the function values of solutions into ranks, in which 

𝐹𝑠(𝐱) and 𝐹𝑡(�̃�) denote the function values of 𝐱 on 𝑇𝑠 and �̃� on 𝑇𝑡, respective-
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ly. As a surrogate of the objective values of the solutions in the evolutionary optimi-

zation process, the progressive representation model �̂�(𝐱) for a total of 𝑔 genera-

tions is formulated by 

�̂�(𝐱) =∑ 𝛼𝑔−𝑘(1 − 𝛼)�̂�𝑘(𝐱) ,                            (4.11)
𝑔

𝑘=1
 

where 0 ≤ 𝛼 ≤ 1 is the coefficient for adjusting the weights of local representation 

models �̂�1(𝐱),… , �̂�𝑔(𝐱). Here, �̂�𝑘(𝐱) is built based on a multivariate Gaussian dis-

tribution by calculating the mean 𝛍𝑘 and covariance ∑𝑘 as follows: 

{
 

 𝛍𝑘 =
1

𝑁
∑ 𝐱𝑖

𝑘
𝑁

𝑖=1
                                       

∑𝑘 =
1

𝑁 − 1
∑ (𝐱𝑖

𝑘 −𝛍𝑘)(𝐱𝑖
𝑘 − 𝛍𝑘)

𝑇
𝑁

𝑖=1

                        (4.12) 

where 𝑁 is the number of solutions at the 𝑘-th generation and 𝐱𝑖
𝑘 denotes the 𝑘-th 

solution in the current population. Therefore, the parameters �̂� and ∑̂ in �̂�(𝐱) can 

be calculated by 

{
 

 �̂� = (1 − 𝛼)∑ 𝛼𝑔−𝑘𝛍𝑘
𝑔

𝑘=1

∑̂ = (1 − 𝛼)∑ 𝛼𝑔−𝑘∑𝑘
𝑔

𝑘=1

.                                 (4.13) 

By introducing the affine transformation and representation model into the loss func-

tion, Eq. (4.9) can be reformulated by 

𝛉∗ = min
𝛉
∫
𝐱
‖ℜ[�̂�𝑠(𝐱)] − ℜ[�̂�𝑡(𝜙𝑎(𝐱; 𝛉))]‖

2 
,                      (4.14) 

where �̂�𝑠(⋅), �̂�𝑡(⋅) are the Gaussian progressive representation models of 𝑇𝑠 and 

𝑇𝑡, respectively, which are expressed by 
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{
 

 �̂�𝑠(𝐱) =
1

(2𝜋)𝑛/2|∑𝑠|1/2
× 𝔼(𝐱, �̂�𝑠, ∑̂𝑠)           

�̂�𝑡(�̃�) =
1

(2𝜋)𝑛/2|∑𝑡|1/2
× 𝔼(𝐱𝐀+ 𝐛, �̂�𝑡, ∑̂𝑡)

                       (4.15) 

where 𝔼(𝐱, �̂�, ∑̂) = exp(−1/2(𝐱 − �̂�)∑̂−1(𝐱 − �̂�)𝑇) , the parameters �̂�𝑠 , ∑̂𝑠 

from the source representation model and �̂�𝑡, ∑̂𝑡 from the target representation 

model are calculated by Eq. (4.12) and Eq. (4.13), respectively. 

To solve Eq. (4.14), the equivalent algebraic formulation is given as follows: 

�̂�𝑠(𝐱) = 𝛿 × �̂�𝑡(𝜙𝑎(𝐱; 𝛉)) ,                                         (4.16) 

where 𝛿 is a multiplier. By completing the square, an analytical solution can be ob-

tained as follows: 

{
𝐀 = 𝐿𝑠𝐿𝑡

−1     
𝐛 = �̂�𝑡 − �̂�𝑠𝐀

                                                    (4.17) 

where 𝐿𝑠  and 𝐿𝑡  can be deduced from ∑̂𝑠
−1 = 𝐿𝑠𝐿𝑠

−1  and ∑̂𝑡
−1 = 𝐿𝑡𝐿𝑡

−1 

through the Cholesky decomposition. According to Eq. (4.10), the transferred solution 

𝐩𝑡 on 𝑇𝑡 can be derived from 𝐩𝑠 on 𝑇𝑠 by 

𝐩𝑡 = 𝜙𝑎(𝐩𝑠; 𝛉) = 𝐩𝑠𝐀+ 𝐛 .                                         (4.18) 

 

4.2.2  Study on the Effectiveness of DA Methods 

1) Mapping Bias Comparison 

DA methods can enhance the solution transferability from the source task to the target 

task by learning the mapping relationship between the solutions of two distinct tasks 
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that have different function landscapes and global optima. However, different DA 

methods often have a specific bias in their mapping behaviours, which show different 

mapping characteristics in transferring solutions from the source task to the target task in 

EMT. To study the solution mapping behaviours of AE, AT and KAE, three adapted 

multitasking optimization problems (Problem-I, Problem-II and Problem-III) from [96] 

are considered herein, where one 1-D minimization optimization function is set as the 

source task and three different 1-D minimization optimization functions are set as their 

target tasks. In the experiment, their mapping parameters are learnt from the same train-

ing data, including 400 sampled solutions, in which half of these solutions are randomly 

sampled in the search space of the source task with a boundary (0, 0.6) and the other half 

are uniformly sampled in the search space of the target task with a boundary (0.2, 1). The 

test data consist of 6 superior solutions of the source task, which are mapped from the 

source task to the target task to observe the mapping behaviours of the AE, AT, and KAE. 

 

 

             (a)                         (b)                        (c) 

 

 

             (d)                        (e)                         (f) 
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             (g)                        (h)                         (i) 

Figure 4.1: Solution mapping behaviours of autoencoder, affine transformation, and 

kernelized autoencoder in three test problems. 

 

As observed in Figs. 4.1(a), (d), and (g), AE tends to map the solutions of the source 

task into the central region of the search space of the target task, which shows the 

strong exploitation bias in the process of knowledge transfer. This phenomenon is at-

tributed to the chaotic mapping of the training samples from the source task to the 

target tasks. Specifically, the training samples are first sorted based on their fitness 

values, and then they are pairwise matched to learn the mapping relationship from the 

source task to the target task. As experimentally elaborated in [67], a great number of 

intersections will exist in these pairwise matchings, which will impede the detection 

of linear correlation from source solutions to target solutions. Thus, considering Prob-

lem-I whose global optimum of the target task is near the central region, the trans-

ferred solutions via AE have very high quality in Fig. 4.1(a), while its effectiveness 

cannot be guaranteed once the global optimum of the target task is far away from its 

central region, as shown in Figs. 4.1(d) and (g). Compared to AE, AT has a stronger 

exploration capability in the solution mapping behaviour, which can enable the trans-

ferred solutions to cover a relatively larger region in the search space of the target 

task, as shown in Figs. 4.1(b), (e) and (h). It is observed that the transferred solutions 

can effectively explore the global optimum of the target task of Problem-II in Fig. 

4.1(e), although they fail to maintain superiority on Problem-I in Fig. 4.1(b) and Prob-
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lem-III in Fig. 4.1(h). In addition, compared with AE and AT, KAE has the strongest 

exploration bias in mapping solutions from the source task to the target task, which 

leads the transferred solutions to cover a much wider region of the search space of the 

target task, as shown in Figs. 4.1(c), (f) and (i). This bias enables the transferred solu-

tions to escape from the local optimum and provides the opportunity to search the 

global optimum of the target task of Problem-III in Fig. 4.1(i) but neglects the exploi-

tation of the promising region to search for the global optima of the target tasks of 

Problem-I in Fig. 4.1(c) and Problem-II in Fig. 4.1(f). The significant distinctions 

among the mapping behaviours reveal their complementarity in transferring solutions 

from the source task to the target task on different multitasking test problems. 

2) Multitasking Performance Comparison 

To experimentally confirm the advantages of various DA methods in knowledge trans-

fer, a common implicit EMT framework (MFEA [27]) is used as the basic solver for a 

fair comparison. To seamlessly incorporate these DA methods into MFEA, a general-

ized DA-based intertask crossover [67] is introduced to incorporate a general DA 

method into the crossover across different tasks. The pseudocode of DA-based inter-

task crossover is provided in Algorithm 4.1 with the inputs: two parent solutions 𝐩𝑎 

and 𝐩𝑏 with their skill factors 𝜏𝑎 and 𝜏𝑏, and the DA method (DA). In Line 1, the 

mapping parameters from task 𝜏𝑎  to 𝜏𝑏  and from task 𝜏𝑏  to 𝜏𝑎  are obtained 

based on the used DA. Then, 𝐩𝑎 and 𝐩𝑏 are transferred to their respective target 

tasks 𝜏𝑏 and 𝜏𝑎 by the corresponding mapping parameters in Lines 2-3, which then 

undergo crossover with the transferred solutions 𝐩𝑏′ and 𝐩𝑎′, respectively, in Lines 

4-5. In this way, negative transfer can be effectively alleviated. Note that Algorithm 

4.1 is triggered only when 𝐩𝑎 and 𝐩𝑏 have different skill factors (i.e., 𝜏𝑎 ≠ 𝜏𝑏) 

and a random number 𝑟𝑎𝑛𝑑 is smaller than a pre-set probability 𝑟𝑚𝑝. 



 

７９ 

 

Algorithm 4.1 DA-Based Intertask Crossover 

Input: 𝐩𝑎 and 𝐩𝑏: two parents with skill factors 𝜏𝑎 and 𝜏𝑏 

DA: one domain adaptation method 

Output: Two offspring 𝐜𝑎 and 𝐜𝑏 

1 Get mapping parameters between tasks 𝜏𝑎 and 𝜏𝑏 based on DA 

2 𝐩𝑎′ ← Transfer 𝐩𝑎 to task 𝜏𝑏 by the mapping from 𝜏𝑎 to 𝜏𝑏 

3 𝐩𝑏′ ← Transfer 𝐩𝑏 to task 𝜏𝑎 by the mapping from 𝜏𝑏 to 𝜏𝑎  

4 𝐜𝑎 ← Perform crossover between 𝐩𝑎 and 𝐩𝑏′ 

5 𝐜𝑏 ← Perform crossover between 𝐩𝑏 and 𝐩𝑎′ 

 

Replacing the original intertask crossover with Algorithm 1 in the MFEA, four differ-

ent DA methods (AE, KAE, AT, and the baseline) can be seamlessly embedded into 

MFEA, which are realized by learning the mapping parameters using their particular 

mapping construction schemes in Line 1 of Algorithm 4.1. As suggested in [28]-[30], 

100 solutions are sampled on source and target tasks to learn the mappings offline in 

AE and KAE, while the mapping parameters in AT are learnt based on the established 

progressive representation. The baseline can be seen as a special DA method to trans-

fer solutions from the source task to the target task without any adaptation. The com-

parison experiments are conducted on two single-objective multitasking benchmark 

suites [50], [11]. More details of the benchmarks and parameter settings will be given 

later in subsection 4.4.1. The average convergence curves of the MFEA with the 

baseline, AE, KAE, and AT over 20 independent runs on four representative prob-

lems (CIMS, CILS, F1, and F2) are shown in Fig. 4.2, in which the x-axis and y-axis 

denote the generation number and the average objective value, respectively. 

As observed in Fig. 4.2, different DA methods show their respective advantages on 

different test problems. In Fig. 4.2(a), AE achieves the best performance on the CIMS 
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with higher similarity between two tasks. In this case, the transferred solutions 

through AE tend to be limited in a relatively small search region with good conver-

gence performance for the target task, so that they can effectively guide the evolution 

of the population in the target task, which leads to a fast convergence speed for solv-

ing the CIMS. However, when solving the CILS with lower similarity between two 

tasks in Fig. 4.2(b), the KAE and AT obtain the best performance on task 1 and task 2, 

respectively, which indicates that their mapping biases are more effective. Similarly, 

considering F1 and F2, their global optima of two tasks are sampled from a uniform 

distribution, rather than located in the centre of the unified search space. As observed 

in Figs. 4.2(c) and (d), KAE and AT show faster convergence speeds than AE, which 

is attributed to the mapping biases that their transferred solutions can explore a wider 

range of promising search regions of the target task. In addition, it is observed that 

KAE shows a faster convergence speed than AT during the early evolutionary period, 

while it is outperformed by AT during the later evolutionary stage. This is because 

the bias of stronger exploration in the mapping of the KAE is more helpful in search-

ing for the global optimum of the target task in the early stage, while it also leads to 

inefficient exploration for the target task in the later stage as the population gradually 

converges. 

 

(a) CIMS 
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(b) CILS 

 

 

(c) F1 

 

(d) F2 

Figure 4.2: Convergence curves of four DA methods on CIMS, CILS, F1, and F2. 
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4.2.3  Motivation 

Based on the above studies of DA methods, it is observed that the differences in the 

mapping construction mechanisms can enable their mapping behaviours to have a 

specific bias in representing the connection from the source task to the target task. 

One specific bias can show the superiority in its preferred multitasking transfer sce-

nario, while it has poor performance in other scenarios. Thus, this study is motivated 

to design an effective ensemble method to combine the strengths of multiple comple-

mentary DA methods that possess obviously distinct mapping characteristics, which 

will be able to enhance solution transferability from the source task to the target task 

on a variety of MTOPs. On the one hand, the efficacy of DA methods should be con-

sidered to ensure the effectiveness of knowledge transfer across tasks. On the other 

hand, the diversity of DA methods should be emphasized to enable each DA method 

to reach its full potential for conducting knowledge transfer. Thus, our ensemble 

method is developed to consider both the efficacy and diversity of various DA meth-

ods in the corresponding situations, which aims to improve the solution transferability 

across different tasks. 

 

 

4.3  Methodology 

This section presents the details of the proposed ensemble method (DAE), including 

two auxiliary components and domain adaptation selection (Algorithm 4.2 to Algo-

rithm 4.4). In particular, the overall flowchart of DAE in a general EMT framework is 

illustrated in Fig. 4.3.  
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Construct the neighborhood relationship on P 

(Algorithm 4.2)

Transfer conditions are satisfied?

Initialize the population P in a 

unified search space

Select one domain adaptation method 

(Algorithm 4.4)

Perform the DA-based intertask 

crossover to generate offspring 

(Algorithm 4.1)

Quantify the efficacy of domain adaptation methods

(Algorithm 4.3) 

Select half of the elite solutions from P and O to 

form the next population

Start

Yes

No

Perform crossover or mutation to generate offspring

The size of offspring population O is satisfied?

Randomly select a pair of parents from P

g = 0

g = g + 1

g > Gmax?

Yes

No

Yes

No

End

 

Figure 4.3: Flowchart of the DAE method in one general EMT framework. 

 

To optimize one MTOP with K tasks, the population 𝐏 is first initialized in a unified 

search space. Then, Algorithm 4.2 is run to construct the neighbourhood relationship 

among solutions in 𝐏 by using the clustering method to divide those solutions asso-

ciated with the same task into clusters. After that, for each pair of parent solutions 
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that are randomly selected from 𝐏, offspring are generated by the DA-based intertask 

crossover (Algorithm 4.1) if the transfer conditions are satisfied, where the adopted 

DA method is selected by running Algorithm 4.4 in advance. Otherwise, offspring are 

generated by directly performing crossover or mutation on the parent solutions, which 

are assigned to the associated tasks of their parents. Once the size of offspring popu-

lation 𝐎 is satisfied, Algorithm 4.3 will be run to quantify the efficacy of each used 

DA method by calculating the performance improvement of their generated offspring 

in the evolutionary optimization process. Finally, half of the elite solutions are select-

ed from 𝐏 and 𝐎 to form the next population. The above evolutionary process will 

be iteratively run until the stopping conditions are satisfied, and the final population 

𝐏 is outputted as the approximated solution set. In the following subsections, the de-

tails of Algorithm 4.2 to Algorithm 4.4 are introduced first, and then the details of 

embedding the proposed DAE into MFEA are provided in subsection 4.3.4. 

 

 

Algorithm 4.2 Neighbourhood Relationship Construction (NRC) 

Input: 𝐏, 𝐾, 𝜆 

Output: 𝐇 

1  for 𝑘 = 1: 𝐾 

2      𝐏𝑘 ← Collect the solutions associated to the 𝑘-th task by Eq. (4.22) 

3      Calculate the number of clusters 𝑛𝑘 by Eq. (4.23) 

     // Use the clustering method (HCM) to divide 𝐏𝑘 into 𝑛𝑘 clusters 

4      Initialize each 𝐩𝑖 in 𝐏𝑘 as a cluster 𝐇𝑖
𝑘 and its centroid 𝐡𝑖 

5      count = |𝐏𝑘| 

6      while 𝑐𝑜𝑢𝑛𝑡 > 𝑛𝑘 

7          Find two closest clusters 𝐇𝑎
𝑘 and 𝐇𝑏

𝑘 by Eq. (4.19)-Eq. (4.21) 

8         𝐇𝑎
𝑘 = 𝐇𝑎

𝑘⋃𝐇𝑏
𝑘, and update its centroid 𝐡𝑎 by Eq. (4.21) 

9          𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 − 1 and renumber the remaining clusters 

10      end 

11  end 

12  return 𝐇 = {𝐇1, … , 𝐇𝑘} where 𝐇𝑘 = {𝐇1
𝑘, … , 𝐇

𝑛𝑘
𝑘 } for 𝑘 = {1,… , 𝐾} 
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4.3.1  Neighbourhood Relationship Construction 

The neighbourhood relationship among the candidate solutions for each task is repre-

sented by dividing them into multiple clusters using the hierarchical clustering meth-

od (HCM) [111], [112]. The neighbouring solutions showing high similarities in the 

genetic genes will be gathered into the same cluster in decision space. As suggested 

in [115], [116], the HCM uses the linkage criterion of Ward with the Euclidean dis-

tance. To divide the subpopulation 𝐏𝑘 associated with the 𝑘-th task into 𝑛𝑘 clus-

ters, the HCM is run in decision space by treating each solution in 𝐏𝑘 as an initial 

cluster and then iteratively combining the two most similar clusters into one cluster 

until there are exactly 𝑛𝑘 clusters left, which are denoted by 𝐇1
𝑘, . . . , 𝐇

𝑛𝑘
𝑘 . Specifi-

cally, each solution 𝐩𝑖 = {𝑝𝑖
1, . . . , 𝑝𝑖

𝑑} in 𝐏𝑘 is first initialized as a cluster 𝐇𝑖
𝑘 and 

its centroid 𝐡𝑖. Then, the count equal to |𝐏𝑘| indicates the number of current clus-

ters. The procedures for combining two clusters into one cluster will be iteratively 

repeated until 𝑛𝑘 clusters are left. Concretely, two nearest clusters 𝐇𝑎
𝑘 and 𝐇𝑏

𝑘 

could be found by comparing the sum of squared errors for any two clusters in the 

cluster set, whose indices 𝑎 and 𝑏 are identified as follows:  

(𝑎, 𝑏) = arg min
𝑎,𝑏∈{1,…𝑛𝑘},𝑎≠𝑏

{𝑑𝑖𝑠𝑡(𝐇𝑎
𝑘, 𝐇𝑏

𝑘)} ,                           (4.19) 

where 𝑑𝑖𝑠𝑡(𝐇𝑎
𝑘, 𝐇𝑏

𝑘) is the sum of their squared errors, which can be calculated by 

𝑑𝑖𝑠𝑡(𝐇𝑎
𝑘, 𝐇𝑏

𝑘) = √
2 ∙ 𝑠𝑎 ∙ 𝑠𝑏
𝑠𝑎 + 𝑠𝑏

∙ ||𝐡𝑎 − 𝐡𝑏|| ,                          (4.20) 

where 𝑠𝑎 and 𝑠𝑏  represent the numbers of solutions in clusters 𝐇𝑎
𝑘  , 𝐇𝑏

𝑘 , and 

||𝐡𝑎 −𝐡𝑏|| indicates the Euclidean distance between the centroids of two clusters 

(i.e., 𝐡𝑎 and 𝐡𝑏) in decision space. Here, the centroid 𝐡𝑖 = {ℎ𝑖
1, . . . , ℎ𝑖

𝑑} of a clus-
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ter 𝐇𝑖
𝑘 is computed as follows: 

ℎ𝑖
𝑗
=
∑ 𝑝𝑗𝐩∈𝐇𝑘

𝑖

|𝐇𝑘
𝑖 |

 ,                                                   (4.21) 

where 𝑝𝑗 is the 𝑗-th decision variable of solution 𝐩 in 𝐇𝑖
𝑘. Next, 𝐇𝑏

𝑘 is combined 

into 𝐇𝑎
𝑘, and its new centroid 𝐡𝑎 is updated by Eq. (4.21). The value of count is de-

creased by 1, and the remaining clusters are renumbered as 𝐇1
𝑘, . . . , 𝐇𝑐𝑜𝑢𝑛𝑡

𝑘 . 

Using the HCM, the pseudocode for constructing the neighbourhood relationship of 

solutions for all tasks is given in Algorithm 4.2 with the inputs 𝐏 (the population), 

𝐾 (the number of tasks), and 𝜆 (the parameter for controlling the number of clus-

ters). As shown in Lines 1-2, those solutions associated with the 𝑘-th task are first 

collected into the subpopulation 𝐏𝑘 as follows: 

      𝐏𝑘 = {𝐩𝑖|𝝉𝑖 = 𝑘,𝐩𝑖 ∈ 𝐏} ,                                      (4.22) 

where the skill factor 𝜏𝑖 of 𝐩𝑖 indicates the index of its associated task. In Line 3, 

the number of clusters 𝑛𝑘 for the 𝑘-th task is given by 

            𝑛𝑘 = ⌈𝜆 ∙ |𝐏𝑘|⌉ ,                                                    (4.23) 

where 𝜆 ∈ [0, 1] . Then, the HCM is used to divide 𝐏𝑘  into 𝑛𝑘  clusters 

𝐇1
𝑘 , . . . , 𝐇

𝑛𝑘
𝑘 , which is described in Lines 4-10. 

After running the above procedures, the clustering results 𝐇 = {𝐇1, … ,𝐇𝑘} on 𝐾 

tasks will be returned to represent the neighbourhood relationship among the solutions 

in 𝐏 in Line 12, where 𝐇𝑘 = {𝐇1
𝑘, … ,𝐇

𝑛𝑘
𝑘 } includes the remaining 𝑛𝑘 clusters for 

the 𝑘-th task (𝑘 ∈ {1,… ,𝐾}). 
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Algorithm 4.3 Efficacy Quantification of DA Methods (EQM) 

Input: 𝐏, 𝐎, 𝒑𝒐𝒐𝒍, 𝛽, 𝐶𝑅g−1 

Output: 𝐶𝑅g 

1 for 𝑙𝑎𝑏𝑒𝑙 = 1 to |𝒑𝒐𝒐𝒍| 

2     S ← Collect transferred offspring marked with 𝑙𝑎𝑏𝑒𝑙 from 𝐎 

3     Calculate the average improvement rate 𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙 by Eq. (4.24)- Eq. (4.25) 

4 end 

5 Normalize {𝐼𝑅̅̅̅̅ 1, … , 𝐼𝑅̅̅̅̅ |𝑝𝑜𝑜𝑙|} by Eq. (4.26) 

6 Calculate the contribution ratios {𝐶𝑅1
g
, … , 𝐶𝑅|𝒑𝒐𝒐𝒍|

g
} by Eq. (4.27) 

7 return 𝐶𝑅g = {𝐶𝑅1
g
, … , 𝐶𝑅|𝑝𝑜𝑜𝑙|

g
} 

 

4.3.2  Efficacy Quantification of DA Methods 

The DA method with more efficacy can contribute more to the performance im-

provement in the evolutionary process. As inspired by [60], [71], the improvement 

ratio and even the count of high-quality transferred offspring have been used for esti-

mating the efficacy of evolutionary operators. Thus, the efficacy of each DA method 

for knowledge transfer can also be quantified based on the improvement ratios of 

transferred offspring against their parents in the evolutionary process. To be clear, the 

pseudocode is given in Algorithm 4.3 with the inputs: 𝐏 (the parent population), 𝐎 

(the offspring population), 𝑝𝑜𝑜𝑙 (a set including multiple DA methods), 𝛽 (a pref-

erence coefficient in the calculation of the accumulated contribution ratio from one 

DA method), and 𝐶𝑅g−1 = {𝐶𝑅1
g−1
, … , 𝐶𝑅|𝑝𝑜𝑜𝑙|

g−1
}, where 𝐶𝑅𝑙𝑎𝑏𝑒𝑙

g−1  denotes the ac-

cumulated contribution ratio from 𝐷𝐴𝑙𝑎𝑏𝑒𝑙  over the previous 𝑔 − 1 generations 

(𝑙𝑎𝑏𝑒𝑙 ∈ {1,… , |𝑝𝑜𝑜𝑙|} refers to the index of 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 and |𝑝𝑜𝑜𝑙| is the number 

of DA methods in the 𝑝𝑜𝑜𝑙). As shown in Lines 1-4, to quantify the efficacy of each 

𝐷𝐴𝑙𝑎𝑏𝑒𝑙 , those transferred offspring marked with the particular label in 𝐎 are first 

collected into an empty set 𝐒, and then the average improvement rate 𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙 is cal-
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culated as follows:  

𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙 =
∑ 𝐼𝑅(𝐬)𝐬∈𝐒

|𝐒|
 ,                                          (4.24) 

where 𝐼𝑅(𝐬) is the fitness improvement ratio of transferred offspring 𝐬 in 𝐒, which 

is calculated by 

𝐼𝑅(𝐬) = max {
𝑓(𝐩𝑠) − 𝑓(𝐬) 

|𝑓(𝐩𝑠)|
, 0} .                               (4.25) 

Here, 𝐩𝑠 is the immediate parent of 𝐬 as defined in subsection 4.3.4, and they are 

associated with the same task. 𝑓(𝐩𝑠) and |𝑓(𝐩𝑠)| are the scalar fitness of 𝐩𝑠 and 

the absolute value of 𝑓(𝐩𝑠), respectively. If 𝐬 is better than 𝐩𝑠, it will contribute to 

Eq. (4.24) but has no impact on Eq. (4.24) when 𝐼𝑅(𝐬) = 0. 

Next, as shown in Line 5, by normalizing 𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙, 𝑁𝐼𝑅𝑙𝑎𝑏𝑒𝑙 is obtained as follows: 

𝑁𝐼𝑅𝑙𝑎𝑏𝑒𝑙 =
𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙

∑ 𝐼𝑅̅̅̅̅ 𝑙𝑎𝑏𝑒𝑙
|𝑝𝑜𝑜𝑙|
𝑙𝑎𝑏𝑒𝑙=1

 ,                                       (4.26) 

Then, in Line 6, the contribution ratio 𝐶𝑅𝑙𝑎𝑏𝑒𝑙
g  for 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 is updated as follows: 

𝐶𝑅𝑙𝑎𝑏𝑒𝑙
g

= 𝛽𝐶𝑅𝑙𝑎𝑏𝑒𝑙
g−1

+ (1 − 𝛽)𝑁𝐼𝑅𝑙𝑎𝑏𝑒𝑙  ,                            (4.27) 

where 0 ≤ 𝛽 ≤ 1 is a preference coefficient that determines the proportions of the 

previous contribution and current contribution in 𝐶𝑅𝑙𝑎𝑏𝑒𝑙
g . Thus, 𝐶𝑅𝑙𝑎𝑏𝑒𝑙

g  represents 

the accumulation of the contribution ratio from 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 over the previous g gener-

ations during the evolutionary search process. The relative proportions between the 

previous and current contributions can be easily adjusted by changing the value of 𝛽. 

Finally, as shown in Line 7, the contribution ratios of all DA methods from the 𝑝𝑜𝑜𝑙 
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(𝐶𝑅g = {𝐶𝑅1
g
, … , 𝐶𝑅|𝑝𝑜𝑜𝑙|

g
}) are returned as the quantization values of their efficacy. 

 

Algorithm 4.4 Domain Adaptation Selection (DAS) 

Input: 𝐩𝑎, 𝐩𝑏, 𝑝𝑜𝑜𝑙, 𝐼, 𝐇, 𝐶𝑅𝑔 

Output: 𝐷𝐴𝑙𝑎𝑏𝑒𝑙, 𝐼 

1  Collect the neighboring solutions of 𝐩𝑎, 𝐩𝑏 by Eq. (4.28)-Eq. (4.29) 

2  𝑓𝑙𝑎𝑔 ← Identify the scenario on efficacy or diversity by Eq. (4.30) 

3  if 𝑓𝑙𝑎𝑔 is true  // The efficacy is considered 

4  
𝐷𝐴𝑙𝑎𝑏𝑒𝑙← Select one in 𝑝𝑜𝑜𝑙 by roulette wheel selection based on their contribu-

tion ratios (𝐶𝑅g) 

5  else  // The diversity is emphasized 

6      𝐷𝐴𝑙𝑎𝑏𝑒𝑙 ← Randomly select one in the 𝑝𝑜𝑜𝑙 

7  end 

8  Set 𝐼(𝐩𝑎) = 1 and 𝐼(𝐩𝑏) = 1 

9  return 𝐷𝐴𝑙𝑎𝑏𝑒𝑙, 𝐼 

 

4.3.3  Domain Adaptation Selection 

To clarify the running of domain adaptation selection (DAS), its pseudocode is given 

in Algorithm 4.4 with the inputs: 𝐩𝑎 and 𝐩𝑏 (a pair of parent solutions), a 𝑝𝑜𝑜𝑙 

including 𝑚 DA methods (i.e., 𝑝𝑜𝑜𝑙 = {𝐷𝐴1, … , 𝐷𝐴𝑚}), 𝐼 (the indicator vector 

showing the transferred status of each solution in the population), 𝐇 (the clustering 

results of the solutions on their associate tasks) and 𝐶𝑅𝑔 (the vector consisting of 

the accumulated contribution ratio of each DA method over the previous 𝑔 genera-

tions). In terms of 𝐩𝑎 and 𝐩𝑏, the neighbourhood relationship of those solutions on 

their associated tasks, i.e., 𝜏𝑎 and 𝜏𝑏, can be represented by the clustering results 

𝐇𝜏𝑎 = {𝐇1
𝜏𝑎 , … ,𝐇𝑛𝜏𝑎

𝜏𝑎 } and 𝐇𝜏𝑏 = {𝐇1
𝜏𝑏 , … ,𝐇

𝑛𝜏𝑏
𝜏𝑏 } from 𝐇, where 𝑛𝜏𝑎  and 𝑛𝜏𝑏  

are the numbers of clusters on tasks 𝜏𝑎 and 𝜏𝑏, respectively. 𝐇𝜏𝑎  and 𝐇𝜏𝑏 are 

obtained by the HCM beforehand, as introduced in subsection 4.3.1. As shown in 

Line 1, given a solution 𝐩𝑎, its neighbouring solutions are first collected into the set 

𝐵(𝐩𝑎), which is defined as follows: 
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𝐵(𝐩𝑎) = {𝐩𝑖|∀𝐩𝑖 ∈ 𝐇𝑖𝑛𝑑𝑒𝑥(𝐩𝑎)
𝜏𝑎 , 𝐩𝑖 ≠ 𝐩𝑎},                       (4.28) 

where 𝑖𝑛𝑑𝑒𝑥(𝐩𝑎) represents the index of the cluster to which 𝐩𝑎 belongs, which 

can be identified as follows: 

𝑖𝑛𝑑𝑒𝑥(𝐩𝑎) = arg
𝑗∈{1,…,𝑛𝜏𝑎}

{𝐩𝑎 ∈ 𝐇𝑗
𝜏𝑎},                               (4.29) 

Similarly, the set 𝐵(𝐩𝑏) including the neighbouring solutions of 𝐩𝑏 is also ob-

tained according to Eq. (4.28)-Eq. (4.29). Then, in Line 2, a Boolean 𝑓𝑙𝑎𝑔 based on 

the transferred status of all solutions in 𝐵(𝐩𝑎) and 𝐵(𝐩𝑏) can be constructed by 

𝑓𝑙𝑎𝑔 = {
𝑡𝑟𝑢𝑒,          if (∑𝐩𝑖∈𝐵(𝐩𝑎)⋃𝐵(𝐩𝑏)𝐼(𝐩𝑖)) = 0

𝑓𝑎𝑙𝑠𝑒, otherwise                                   
,                    (4.30) 

where 𝐼(𝐩𝑖) = 0 if 𝐩𝑖  has never been used for knowledge transfer before and 

𝐼(𝐩𝑖) = 1 otherwise. Thus, two situations are identified to consider the efficacy and 

diversity of various DA methods according to the Boolean value of 𝑓𝑙𝑎𝑔. As shown 

in Line 3, when the 𝑓𝑙𝑎𝑔 is true, indicating that all the neighbouring solutions of 

𝐩𝑎 and 𝐩𝑏 have not been used for knowledge transfer before, the DA method (i.e., 

𝐷𝐴𝑙𝑎𝑏𝑒𝑙) is selected by the RWS based on their contribution ratios (i.e., 𝐶𝑅𝑔), which 

aims to select one DA method with better efficacy. Here, the contribution ratio of 

each DA method can be quantified by their induced performance improvements dur-

ing the evolutionary process, as introduced in subsection 4.3.2. Otherwise, as shown 

in Line 6, one DA method (i.e., 𝐷𝐴𝑙𝑎𝑏𝑒𝑙) is randomly selected with the same proba-

bility from the 𝑝𝑜𝑜𝑙, which focuses on the diversity of DA methods for knowledge 

transfer. After that, to update the record that 𝐩𝑎  and 𝐩𝑏  have been used for 

knowledge transfer, 𝐼(𝐩𝑎) and 𝐼(𝐩𝑏) are set to 1 in Line 8. Finally, in Line 9, 
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𝐷𝐴𝑙𝑎𝑏𝑒𝑙 is returned as the adopted DA method in the DA-based intertask crossover, 

while 𝐼 indicates the updated transferred status of solutions. 

 

Algorithm 4.5 The Framework of MFEA-DAE 

Input: 𝐾 tasks, 𝑁, 𝐺𝑚𝑎𝑥, 𝑝𝑜𝑜𝑙 = {𝐷𝐴1, … , 𝐷𝐴𝑚}, 𝜆, 𝛽, and 𝑟𝑚𝑝 

Output: the best solution of each task from 𝐏 

1 Initialize 𝐏 to have 𝑁 × 𝐾 solutions 

2 Assign skill factor 𝜏𝑖 to every 𝐩𝑖 ∈ 𝐏 by Eq. (4.31), and evaluate them 

3 Set g = 1, 𝐶𝑅1 = {1/|𝑝𝑜𝑜𝑙|, … ,1/|𝑝𝑜𝑜𝑙|} 

4 while g ≤ 𝐺𝑚𝑎𝑥 

5     𝐇 ← NRC (𝐏, 𝐾, 𝜆) // Algorithm 4.2 

6     Set 𝐼(𝐩𝑖) = 0 for each 𝐩𝑖 ∈ 𝐏 

7     Set offspring population 𝐎 to be an empty set 

8     while |𝐎| < 𝑁 × 𝐾 

9         Randomly select two candidate parents 𝐩𝑎 and 𝐩𝑏 from 𝐏 

10         if 𝜏𝑎 == 𝜏𝑏 

11             [𝐜𝑎 , 𝐜𝑏]← Intratask crossover between 𝐩𝑎 and 𝐩𝑏 

12             Assign offspring 𝐜𝑎 and 𝐜𝑏 with skill factor 𝜏𝑎 

13         else if 𝑟𝑎𝑛𝑑 ≤ 𝑟𝑚𝑝 

14             𝐷𝐴𝑙𝑎𝑏𝑒𝑙 ← DAS (𝐩𝑎, 𝐩𝑏, 𝑝𝑜𝑜𝑙, 𝐼, 𝐇, 𝐶𝑅𝑔)  // Algorithm 4.4         

 // Algorithm 4.1 

15             [𝐜𝑎 , 𝐜𝑏] ← DA-Based Intertask Crossover (𝐩𝑎, 𝐩𝑏, 𝐷𝐴𝑙𝑎𝑏𝑒𝑙) 

16             Each offspring is randomly assigned skill factor 𝜏𝑎 or 𝜏𝑏 

17             Mark 𝐜𝑎 and 𝐜𝑏 as transferred offspring from 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 

18             Mark 𝐩𝑎 or 𝐩𝑏 as immediate parents of 𝐜𝑎 and 𝐜𝑏 

19         else 

20             𝐜𝑎 ← local variation (mutation) of 𝐩𝑎 

21             Assign offspring 𝐜𝑎 with skill factor 𝜏𝑎 

22             𝐜𝑏 ← local variation (mutation) of 𝐩𝑏 

23             Assign offspring 𝐜𝑏 with skill factor 𝜏𝑏 

24         end 

25         Evaluate 𝐜𝑎 and 𝐜𝑏 for their assigned skill factors only 

26         𝐎 = 𝐎⋃[𝐜𝑎 , 𝐜𝑏] 

27     end 

28     g = g + 1 

29     𝐶𝑅g ←EQM (𝐏, 𝐎, 𝑝𝑜𝑜𝑙, 𝛽, 𝐶𝑅g−1) //Algorithm 4.3 

30     𝐏 ← Select top 𝑁 × 𝐾 solutions in 𝐏⋃𝐎 based on scalar fitness 

31 end 

32 return the best solution of each task from 𝐏 
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4.3.4  Embedding the DAE Method into MFEA 

In this subsection, the proposed DAE method including the above three components 

is embedded into MFEA, and the resultant algorithm is called MFEA-DAE. To clarify 

the running of MFEA-DAE, its pseudocode is provided in Algorithm 4.5 with the in-

puts 𝐾 tasks, 𝑁 (the size of the population) and 𝐺𝑚𝑎𝑥  (the pre-set maximum 

number of generations). In addition, four DA methods are included in the 𝑝𝑜𝑜𝑙, in-

cluding AE, KAE, AT, and the baseline that directly transfers solutions of the source 

task to the target task without any adaptation. The complementarities among AE, 

KAE and AT are studied in the subsection 4.2.2. The parameters 𝜆 and 𝛽 are used 

to control the number of clusters on each task and the preference coefficient for calcu-

lating the accumulated contribution ratio of each DA method in the evolutionary pro-

cess, respectively. Moreover, 𝑟𝑚𝑝 is a pre-set random mating probability, which 

controls the frequency of intertask crossover. As shown in Line 1, a single population 

𝐏 is first formed by randomly sampling 𝑁 ×𝐾 individuals in a unified search space 

𝑌 ∈ [0, 1]𝐷, where 𝐷 = max {𝑑𝑘} and 𝑑𝑘 is the number of decision variables of 

the 𝑘-th task. Then, in Line 2, the skill factor 𝜏𝑖 of each solution 𝐩𝑖 in 𝐏 is ran-

domly assigned according to 

                   𝜏𝑖 = 𝑚𝑜𝑑(𝑖, 𝐾) + 1.                                             (4.31) 

After that, all solutions in 𝐏 will be evaluated for their assigned skill factor only. In 

Line 3, the generation counter g is set to 1, and the initial contribution ratio 𝐶𝑅𝑙𝑎𝑏𝑒𝑙
1   

for each DA method is set to 1/|𝑝𝑜𝑜𝑙|, where 𝑙𝑎𝑏𝑒𝑙 = {1,… , |𝑝𝑜𝑜𝑙|}. 

The main evolutionary process is shown in Lines 4-31. At the start of each generation, 

the neighbourhood relationship among all solutions is first built by Algorithm 4.2 in 

Line 5. Then, for each solution 𝐩𝑖 in 𝐏, the indicator 𝐼(𝐩𝑖) is set to 0 to indicate 
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that 𝐩𝑖 has not been used for knowledge transfer in Line 6, while the offspring popu-

lation 𝐎 is set to an empty set in Line 7. In the process of generating offspring, con-

sidering each pair of parent solutions 𝐩𝑎 and 𝐩𝑏 that are randomly selected from 𝐏, 

the knowledge transfer process will be triggered in Lines 14-18 when 𝜏𝑎 ≠ 𝜏𝑏 and 

𝑟𝑎𝑛𝑑 ≤ 𝑟𝑚𝑝. First, Algorithm 4.4 is performed to select one DA method 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 

from the 𝑝𝑜𝑜𝑙, which is used to map 𝐩𝑎 and 𝐩𝑏 to their corresponding target tasks 

in the DA-based intertask crossover (Algorithm 4.1). Specifically, given one solution 

𝐩𝑎, the transformed solution 𝐩𝑎′ for its target task 𝜏𝑏 is obtained as follows: 

𝐩𝑎
′ = {

𝐌𝐩𝑎,                         if 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 = AE                      

𝐌𝑘𝐊(𝐏,𝐩𝑎),            if 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 = KAE                    
𝐩𝑎𝐀+ 𝐛,                  if 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 = AT                      
𝐩𝑎,                             otherwise                               

        (4.32) 

where 𝐌, 𝐌𝑘, 𝐀 and 𝐛 are the learnt mapping parameters of AE, KAE, and AT, 

respectively, and their derivation formulas have been introduced in subsection 4.2.1. 

The transformed solution 𝐩𝑏′ for its target task 𝜏𝑎 can be obtained in the same 

manner by Eq. (4.32). Then, offspring solutions 𝐜𝑎 and 𝐜𝑏 can be generated by Al-

gorithm 4.1. In this case, 𝜏𝑎 or 𝜏𝑏 is randomly assigned to 𝐜𝑎 and 𝐜𝑏. Moreover, 

to quantify the efficacy of the DA method 𝐷𝐴𝑙𝑎𝑏𝑒𝑙 , 𝐜𝑎  and 𝐜𝑏  are marked as 

transferred offspring from 
labelDA  and 𝐩𝑎 or 𝐩𝑏 having the same skill factor as 

𝐜𝑎 and 𝐜𝑏 is marked as its immediate parent in Lines 17-18. Otherwise, 𝐜𝑎 and 𝐜𝑏 

are generated by performing intratask crossover or mutation, which directly imitate 

the skill factors of their parents in Lines 11-12 and Lines 20-23. Here, simulated bina-

ry crossover (SBX) [94] and polynomial-based mutation (PM) [95] are suggested. Af-

ter that, both 𝐜𝑎 and 𝐜𝑏 are evaluated based on their assigned skill factors only and 

then added into 𝐎 in Lines 25-26. The above procedures in Lines 9-26 will be run 

iteratively until the number of offspring reaches 𝑁 ×𝐾. Then, g is increased by 1, 
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the efficacy of each DA method is updated by Algorithm 4.3, and 𝑁 ×𝐾 solutions 

based on scalar fitness are selected from the combination set of 𝐏 and 𝐎 to form 

the next population 𝐏 in Lines 28-30. While g is smaller than 𝐺𝑚𝑎𝑥, the above 

evolutionary process in Lines 5-30 will be run. Otherwise, the best solution of each 

task from the final population 𝐏 will be returned in Line 32. 

 

Figure 4.4: Example of running the RWS and the RS in the DAE method. 

 

To show how our ensemble method works, a simple example is provided in Fig. 4.4, 

which shows the scenario of running the RWS or random selection (RS) on 10 pairs 

of solutions, where the solutions of two 1-D tasks 𝜏𝑎 and 𝜏𝑏 are marked with red 

circles and blue squares, respectively. Note that x represents the value of the solution 

in 1-D search space. The grey areas in Fig. 4.4 represent the clustering results of solu-

tions on each task. Therefore, the solutions in the same grey area are regarded as 

neighbouring solutions. For the first 4 and 7-th pairs of solutions, 𝑓𝑙𝑎𝑔 in Eq. (4.30) 

will be true as their neighbouring solutions have not been selected to generate trans-

ferred solutions before. Thus, the RWS is run based on the contribution ratios to se-
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lect one DA method from 𝑝𝑜𝑜𝑙 with relatively larger contributions in consideration 

of the efficacy. However, for each of the remaining pairs of candidate solutions, 

𝑓𝑙𝑎𝑔 will be false, as there is at least one solution from their neighbouring solutions 

having been used for knowledge transfer before. In this case, the RS is used to ran-

domly select one DA method from 𝑝𝑜𝑜𝑙 in consideration of the diversity. In this 

way, the effectiveness of the DAE method can be ensured by considering both the 

efficacy and diversity of complementary DA methods, which could further improve 

the transferability of solutions between distinct tasks. 

 

 

4.4  Experimental Study 

4.4.1  Test Problems and Parameter Settings 

1) Test Problems 

In the experiments, two synthetic single-objective multitasking test suites are used. 

The first benchmark suite [96] considers the task similarity and the degree of global 

optima intersection, which includes nine multitasking test problems, i.e., CIHS, CIMS, 

CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS. Another multitasking benchmark 

suite [74] includes eight multitasking test problems (F1-F8). Each problem consists of 

two tasks, both of which are single-objective optimization problems. F1-F8 explicitly 

possess heterogeneous features, such as different decision spaces or fitness landscapes. 

To be specific, the numbers of decision variables of two tasks are equal on F1-F4, 

while they are different on F5-F8. Besides, the global optima of two tasks are the 

same on F1, F2, F5, and F6, while they are different on the remaining test problems. 

The multitasking benchmark suite can be categorized as follows: the numbers of deci-

sion variables of two tasks are the same on F1-F4, while they are different on F5-F8; 
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Moreover, the global optima of two tasks are the same on F1, F2, F5, and F6, while 

they are different on the rest of problems. In addition, one synthetic multiobjective 

multitasking test suite [117] is also used to study the effectiveness of DAE by embed-

ding it into the multiobjective EMT algorithms. Finally, a practical case of the param-

eterized planar kinematic arm is adopted to study the effectiveness of DAE on solving 

practical optimization examples. The maximum number of function evaluations is set 

to 100 000 for each test problem from the synthetic multitasking test suites, while it is 

60 000 for the practical optimization problems. The objective values for SOP or IGD 

[118] values for MOP over 20 independent runs are collected for performance com-

parison, where the Wilcoxon rank sum test with a 0.05 significance level is used to 

show the statistically significant differences in the numerical results. 

First, the effectiveness of DAE method is studied by embedding it into three competi-

tive EMT algorithms (MFEA [27], MFEA-II [49], and MFEA-AKT [60]). To study 

the effectiveness of DAE, MFEA-DAE as a representative algorithm is further com-

pared to its four variants, i.e., MFEA-baseline, MFEA-AE, MFEA-KAE, and MFEA-

AT, each of which adopts one DA method (the baseline, AE, KAE, and AT) from the 

𝑝𝑜𝑜𝑙. Then, three variants of DAE are also designed to validate the effectiveness of 

the two auxiliary components. In addition, MFEA-DAE is also compared with five 

recently proposed EMT algorithms (MFEA-II [72], MFEA-AKT, MTEA-AD [56], 

MTES [119], and MKTDE [120]) and a standard single-task EA (SOEA) [8] that 

solves each task separately. The above experiments are conducted on two synthetic 

single-objective multitasking test suites. Moreover, DAE is also embedded into two 

multiobjective EMT algorithms (MO-MFEA [9] and MO-MFEA-II [50]) to validate 

its effectiveness on the multiobjective multitasking test problems. Finally, one practi-

cal case study is also conducted. 
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2) Parameter Settings 

In the experiments, the DAE method is embedded into three single-objective evolu-

tionary multitasking (EMT) algorithms (MFEA, MFEA-II, and MFEA-AKT). In addi-

tion, SOEA, MFEA-AE, MFEA-KAE, MFEA-AT, MTEA-AD, MTES, and MKTDE 

are also used as the compared algorithms. Besides, the DAE method is embedded into 

two multiobjective EMT algorithms (MO-MFEA and MO-MFEA). The common pa-

rameter settings of the above variants of MFEA are kept consistent, while those of 

MTEA-AD, MTES, and MKTDE are set the same to their original papers.  

 

Table 4.1: Parameter settings of all compared algorithms. 

Algorithm Parameter settings 
SOEA 𝑁 = 100, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA-II 𝑁 = 100, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA-AKT 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA-AE 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑁𝑆 = 100, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA-KAE 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑁𝑆 = 100, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MFEA-AT 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15, 𝛼 = 0.5 

MTEA-AD 𝑁 = 100, 𝛼 = 0.1, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MTES 𝑛 = 25 

MKTDE 𝑁 = 100, 𝐹 = 0.5, 𝐶𝑅 = 0.6 

MO-MFEA 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

MO-MFEA-II 𝑁 = 100, 𝑝𝑐 = 1.0, 𝜂𝑐 = 15, 𝑝𝑚 = 1/𝑑, 𝜂𝑚 = 15 

DAE 𝜆 = 0.8, 𝛽 = 0.5 

 

Tab. 4.1 lists the parameter settings of all algorithms. In terms of MFEA and its vari-

ants (MFEA-II, MFEA-AKT, MFEA-baseline, MFEA-AE, MFEA-KAE, MFEA-AT, 

MO-MFEA, MO-MFEA-II, and the proposed MFEA-DAE), the population size 𝑁 

for each task is set to 100, and 𝑟𝑚𝑝 is set to 0.3 except MFEA-II and MO-MFEA-II. 

For a fair comparison, MFEA and its variants are configured with the same evolu-

tionary operators, i.e., simulated binary crossover (SBX) with probability 𝑝𝑐 = 1.0 
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and distribution index 𝜂𝑐 = 15, and polynomial-based mutation (PM) with probabil-

ity 𝑝𝑚 = 1/𝑑 and distribution index 𝜂𝑚 = 15, where 𝑑 is the number of decision 

variables. Note that the numbers of sampled solutions for learning 𝐌 and 𝐌𝑘 are 

100 in MFEA-AE and MFEA-KAE, and the preference coefficient 𝛼 is set to 0.5 in 

MFEA-AT. In MFEA-DAE, 𝐌, 𝐌𝑘, 𝐀, and 𝐛 are learned based on the same pa-

rameter settings used in MFEA-AE, MFEA-KAE and MFEA-AT. In addition, two 

additional parameters 𝛽 and 𝜆 in MFEA-DAE are set to 0.5 and 0.8, respectively. 

For the single-task EA (SOEA) that solves each task separately, the population size 

𝑁 for each task is set to 100. Here, the same evolutionary operators (i.e., SBX and 

PM) are used in SOEA, in which their parameter settings are kept consistent with the 

above settings. In MTEA-AD, the population size 𝑁 for each task is set to 100 and 

the knowledge transfer probability 𝛼 is set to 0.1. The parameter settings of SBX 

and PM are kept consistent with the above settings. In MTES, the population size 𝑛 

is configured as 25 for each task and the learning rate 𝛼 and standard deviation 𝜎 

are adjusted based on the value of 𝜃. Besides, in MKTDE, the total population size, 

two parameters 𝐹 and 𝐶𝑅 are set to 100, 0.5, and 0.6, respectively. 

 

4.4.2  Results of Embedding DAE into EMT Algorithms 

Here, the DAE method is embedded into three competitive EMT algorithms (MFEA, 

MFEA-II, and MFEA-AKT), forming three enhanced algorithms, called MFEA-DAE, 

MFEA-II-DAE, and MFEA-AKT-DAE. The comparison results from 20 independent 

runs on the two test suites are listed in Tab. 4.2 and Tab. 4.3, where “~”, “+”, 

and “-” indicate the numbers of similar, better, and worse results obtained by 

MFEA, MFEA-II, MFEA-AKT when compared with their enhanced versions with 

DAE (MFEA-DAE, MFEA-II-DAE, and MFEA-AKT-DAE), respectively.  
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Table 4.2: Mean objective values and standard deviations obtained by three EMT al-

gorithms and their enhanced algorithms with DAE on the first test suite. 

Problem MFEA MFEA-DAE MFEA-II MFEA-II-DAE MFEA-AKT MFEA-AKT-DAE 

CIHS-T1 2.68e-02(8.86e-03)- 2.20e-03(5.47e-03) 2.94e-02(1.01e-02)- 1.14e-03(3.42e-03) 6.09e-01(5.51e-02)- 2.66e-01(7.59e-02) 

CIHS-T2 4.52e+01(1.83e+01)- 2.69e+00(1.04e+01) 5.53e+01(2.49e+01)- 3.81e+00(1.16e+01) 2.19e+02(3.40e+01)- 1.21e+02(2.69e+01) 

CIMS-T1 7.22e-01(5.08e-01)- 2.15e-03(1.37e-03) 9.70e-01(5.21e-01)- 6.39e-03(2.18e-03) 4.53e+00(4.97e-01)- 2.40e+00(5.29e-01) 

CIMS-T2 3.03e+01(2.29e+01)- 3.89e-03(4.45e-03) 4.86e+01(2.48e+01)- 2.67e-02(1.66e-02) 2.41e+02(4.78e+01)- 1.14e+02(2.74e+01) 

CILS-T1 1.00e+01(1.02e+01)- 1.29e-02(7.27e-03) 1.54e+01(9.10e+00)- 6.46e-02(4.01e-02) 2.02e+01(6.14e-02)- 3.83e+00(5.61e+00) 

CILS-T2 5.19e+02(5.52e+02)- 7.34e-03(8.48e-03) 5.94e+02(4.12e+02)- 1.38e-01(1.49e-01) 4.41e+03(4.19e+02)- 4.89e+02(1.41e+03) 

PIHS-T1 2.09e+02(9.42e+01)- 8.44e+01(1.76e+01) 2.48e+02(1.22e+02)~ 2.76e+02(1.14e+02) 4.94e+02(7.37e+01)- 2.38e+02(6.84e+01) 

PIHS-T2 9.28e-02(2.35e-02)- 2.25e-02(1.66e-02) 6.32e-02(2.34e-02)~ 6.08e-02(2.40e-02) 5.49e+01(1.27e+01)- 1.73e+01(3.38e+00) 

PIMS-T1 9.58e-01(4.37e-01)- 5.42e-02(7.54e-02) 9.40e-01(3.72e-01)- 6.05e-02(4.75e-02) 3.37e+00(3.47e-01)- 2.83e+00(3.76e-01) 

PIMS-T2 1.66e+02(4.42e+01)- 4.96e+01(9.08e+00) 1.55e+02(4.42e+01)- 5.04e+01(1.07e+01) 8.18e+02(2.24e+02)- 1.45e+02(4.32e+01) 

PILS-T1 9.44e-01(4.76e-01)- 1.04e-02(3.20e-03) 7.80e-01(4.40e-01)- 2.16e-02(4.99e-03) 4.47e+00(6.14e-01)- 7.01e-02(1.05e-02) 

PILS-T2 1.35e+00(6.12e-01)- 7.22e-02(2.23e-02) 1.07e+00(3.76e-01)- 9.18e-02(4.02e-02) 4.28e+00(7.51e-01)- 3.30e-01(4.74e-02) 

NIHS-T1 1.69e+02(4.35e+01)- 5.01e+01(1.01e+01) 1.79e+02(3.65e+01)+ 2.11e+02(7.29e+02) 1.75e+03(5.39e+02)- 2.93e+02(1.36e+02) 

NIHS-T2 7.30e+01(3.18e+01)- 1.22e+00(3.47e+00) 9.66e+01(3.40e+01)- 1.54e+01(6.88e+01) 2.55e+02(3.32e+01)- 1.37e+02(4.16e+01) 

NIMS-T1 3.63e-02(1.04e-02)- 1.53e-02(6.75e-03) 2.95e-02(8.20e-03)~ 3.11e-02(1.10e-02) 7.40e-01(9.23e-02)- 3.93e-01(7.19e-02) 

NIMS-T2 7.64e+00(1.58e+00)- 1.12e+00(4.50e-01) 8.73e+00(2.30e+00)- 4.39e+00(1.76e+00) 1.87e+01(2.55e+00)- 1.13e+01(1.73e+00) 

NILS-T1 3.36e+02(7.64e+01)- 9.12e+01(2.02e+01) 3.37e+02(9.08e+01)~ 3.06e+02(1.07e+02) 5.49e+02(7.43e+01)- 4.73e+02(5.62e+01) 

NILS-T2 7.37e+02(2.77e+02)~ 8.71e+02(3.12e+02) 6.84e+02(2.59e+02)~ 6.30e+02(1.80e+02) 4.54e+03(5.82e+02)~ 4.42e+03(6.14e+02) 

~/+/- 1/0/17 \ 5/1/12 \ 1/0/17 \ 

 

Table 4.3: Mean objective values and standard deviations obtained by three EMT al-

gorithms and their enhanced algorithms with DAE on the second test suite. 

Problem MFEA MFEA-DAE MFEA-II MFEA-II-DAE MFEA-AKT MFEA-AKT-DAE 

F1-T1 2.71e-02(1.07e-02)- 1.89e-02(9.32e-03) 3.33e-02(1.34e-02)- 4.93e-04(2.02e-03) 6.45e-01(6.58e-02)- 2.45e-01(7.23e-02) 

F1-T2 4.78e+01(2.25e+01)- 2.61e+01(2.18e+01) 5.71e+01(2.13e+01)- 1.69e+00(7.20e+00) 2.35e+02(4.07e+01)- 1.04e+02(2.09e+01) 

F2-T1 8.03e-01(4.13e-01)- 2.80e-01(3.62e-01) 8.19e-01(5.48e-01)- 6.45e-03(1.86e-03) 4.28e+00(4.74e-01)- 2.60e+00(4.79e-01) 

F2-T2 3.61e+01(2.51e+01)- 1.02e+01(2.04e+01) 4.77e+01(3.35e+01)- 2.67e-02(1.48e-02) 2.66e+02(3.86e+01)- 1.36e+02(3.92e+01) 

F3-T1 2.93e+02(3.06e+02)- 1.57e+02(5.66e+01) 5.05e+02(1.09e+03)~ 1.07e+03(1.81e+03) 1.15e+04(3.69e+03)- 2.71e+03(1.51e+03) 

F3-T2 6.41e+00(2.45e+00)- 3.51e+00(2.20e+00) 4.09e+00(2.16e+00)~ 3.47e+00(2.05e+00) 2.61e+02(2.96e+01)- 1.07e+02(1.59e+01) 

F4-T1 3.27e+02(9.32e+01)- 1.07e+02(1.90e+01) 2.59e+02(1.25e+02)~ 2.19e+02(9.89e+01) 5.84e+02(9.33e+01)- 4.76e+02(7.39e+01) 

F4-T2 7.33e+02(2.79e+02)~ 8.03e+02(2.90e+02) 6.37e+02(2.28e+02)~ 6.31e+02(2.48e+02) 4.41e+03(4.46e+02)~ 4.33e+03(7.66e+02) 

F5-T1 3.34e+02(9.54e+01)- 6.95e-02(5.36e-02) 3.75e+02(6.00e+01)- 1.91e-01(1.20e-01) 3.92e+02(5.77e+01)- 2.10e+00(9.02e-01) 

F5-T2 3.21e-03(1.31e-03)- 1.56e-05(3.33e-05) 2.68e-03(1.73e-03)- 5.06e-06(1.78e-05) 3.79e-01(1.48e-01)- 1.48e-03(1.74e-03) 

F6-T1 8.81e-01(3.60e-01)- 1.23e-02(5.04e-03) 9.21e-01(3.02e-01)- 1.83e-02(7.38e-03) 3.49e+00(6.51e-01)- 6.36e-02(1.12e-02) 

F6-T2 4.10e-02(1.79e-02)- 8.35e-03(7.18e-03) 4.22e-02(1.95e-02)- 8.66e-03(1.10e-02) 5.66e-01(9.75e-02)- 1.56e-01(2.78e-02) 

F7-T1 4.34e+02(9.63e+02)- 4.81e+01(1.02e-01) 4.43e+02(7.47e+02)- 1.51e+02(9.01e+01) 4.86e+03(2.24e+03)- 2.34e+02(8.97e+01) 

F7-T2 6.35e+01(2.73e+01)- 1.38e-02(8.94e-03) 4.81e+01(2.74e+01)~ 4.40e+01(3.74e+01) 1.14e+02(2.66e+01)- 4.13e+01(1.51e+01) 

F8-T1 3.11e+02(1.11e+02)- 1.16e+02(3.07e+01) 2.56e+02(1.18e+02)~ 2.96e+02(1.06e+02) 5.65e+02(8.95e+01)- 4.62e+02(9.05e+01) 

F8-T2 1.07e+02(9.33e+01)~ 1.54e+02(1.16e+02) 1.23e+02(1.27e+02)~ 8.79e+01(9.16e+01) 1.56e+03(2.60e+02)+ 2.38e+03(7.10e+02) 

~/+/- 2/0/14 \ 7/0/9 \ 1/1/14 \ 

“+” (or “-”) indicates the original EMT algorithm is better (or worse) than the enhanced EMT algorithm with DAE, and 

“~” indicates they obtain the statistically similar performance. The best result on each test problem of each task is highlighted 

in bold. 
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Regarding the results in Tab. 4.2 and Tab. 4.3, the performance of MFEA-DAE is 

obviously better than that of MFEA on all MTOPs. Although they obtain similar re-

sults on three cases (NILS-T2, F4-T2 and F8-T2), they further improve the perfor-

mance on Task 1 (T1) of the three MTOPs. Similarly, MFEA-AKT-DAE also 

achieves remarkable improvement over MFEA-AKT on all test problems except F8. 

Although MFEA-AKT-DAE obviously improves the performance of MFEA-AKT on 

F8-T1, it leads to performance degradation on F8-T2. In MFEA-II, the transfer inten-

sity (i.e., 𝑟𝑚𝑝 ) is estimated online based on similarity among tasks to mitigate the 

negative transfer. It is observed that the performance improvement brought by 

MFEA-II-DAE is not as obvious as that in MFEA-DAE and MFEA-AKT-DAE. As 

observed in Tab. 4.2 and Tab. 4.3, MFEA-II-DAE achieves significant performance 

improvements on CIHS, CIMS, CILS, PIMS, PILS, F1, F2, F5, and F6, while MFEA-

II-DAE and MFEA-II have very similar performance on the rest of the test problems. 

The reason for the lack of obvious performance improvement on these problems is 

that the learnt 𝑟𝑚𝑝 is small due to the explicit discrepancy between the global opti-

ma of two tasks, which hinders DA methods from improving the solution transferabil-

ity between two distinct tasks. According to the above comparison results, it is clear 

that the embedding of DAE into MFEA, MFEA-II, and MFEA-AKT can bring signif-

icant improvements for solving these multitasking test problems. Thus, it is reasona-

ble to conclude that DAE within different EMT algorithms can further improve the 

solution transferability between two distinct tasks. 
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Table 4.4: Mean objective values and standard deviations obtained by MFEA-DAE 

and its variants on the first test suite. 

Problem MFEA MFEA-AE MFEA-KAE MFEA-AT MFEA-DAE 

CIHS-T1 4.89e-02(1.37e-02)- 4.37e-04(1.46e-04)+ 3.37e-02(1.18e-02)- 2.16e-02(6.68e-03)- 2.20e-03(5.47e-03) 

CIHS-T2 9.08e+01(3.60e+01)- 2.23e-01(7.26e-02)+ 3.12e+02(8.64e+01)- 1.81e+01(1.40e+01)- 2.69e+00(1.04e+01) 

CIMS-T1 1.97e-01(8.40e-02)- 1.78e-02(3.78e-03)- 8.64e-01(4.70e-01)- 2.18e-01(2.67e-01)- 2.15e-03(1.37e-03) 

CIMS-T2 1.44e+01(6.29e+00)- 2.05e-01(7.76e-02)- 3.25e+02(7.70e+01)- 5.15e+00(9.57e+00)- 3.89e-03(4.45e-03) 

CILS-T1 2.02e+01(1.80e-01)- 2.12e+01(3.88e-02)- 9.16e-01(4.38e-01)- 8.10e+00(1.01e+01)- 1.29e-02(7.27e-03) 

CILS-T2 2.71e+03(6.21e+02)- 7.81e+02(2.75e+02)- 8.59e+02(3.10e+02)- 4.31e+02(5.57e+02)- 7.34e-03(8.48e-03) 

PIHS-T1 1.14e+02(1.69e+01)- 2.04e+02(1.34e+02)- 3.16e+02(9.08e+01)- 9.98e+01(2.53e+01)~ 8.44e+01(1.76e+01) 

PIHS-T2 1.23e-01(3.09e-02)- 9.40e-02(3.12e-02)- 8.27e-02(2.28e-02)- 2.45e-02(1.33e-02)~ 2.25e-02(1.66e-02) 

PIMS-T1 2.39e-01(5.02e-02)- 2.83e-01(2.40e-01)- 6.10e-01(4.44e-01)- 4.80e-02(2.31e-02)~ 5.42e-02(7.54e-02) 

PIMS-T2 1.25e+02(1.78e+01)- 5.07e+01(1.12e+01)- 1.55e+02(3.90e+01)- 9.27e+01(5.35e+00)- 4.96e+01(9.08e+00) 

PILS-T1 1.37e+00(4.38e+00)- 1.73e-02(4.18e-03)- 9.18e-01(3.74e-01)- 1.67e-01(2.21e-01)- 1.04e-02(3.20e-03) 

PILS-T2 3.39e-01(3.12e-01)- 1.28e-01(4.46e-02)- 1.76e+00(6.81e-01)- 4.71e-01(3.03e-01)- 7.22e-02(2.23e-02) 

NIHS-T1 1.69e+02(3.68e+01)- 4.81e+01(1.40e-01)+ 1.44e+02(4.82e+01)- 1.49e+02(5.26e+01)- 5.01e+01(1.01e+01) 

NIHS-T2 2.21e+02(6.22e+01)- 2.26e-01(1.08e-01)+ 3.21e+02(9.40e+01)- 5.00e+01(2.90e+01)- 1.22e+00(3.47e+00) 

NIMS-T1 4.63e-02(1.17e-02)- 3.73e-02(1.41e-02)- 3.16e-02(7.38e-03)- 1.72e-02(5.49e-03)~ 1.53e-02(6.75e-03) 

NIMS-T2 3.06e+00(5.26e-01)- 7.21e-01(1.55e-01)+ 3.63e+00(7.28e-01)- 3.28e+00(1.24e+00)- 1.12e+00(4.50e-01) 

NILS-T1 2.95e+02(7.12e+01)- 2.30e+02(1.25e+02)- 3.31e+02(9.50e+01)- 1.07e+02(2.47e+01)~ 9.12e+01(2.02e+01) 

NILS-T2 2.88e+03(6.03e+02)- 7.98e+02(2.65e+02)~ 2.38e+03(1.47e+03)- 8.04e+02(2.80e+02)~ 8.71e+02(3.12e+02) 

~/+/- 0/0/18 1/5/12 0/0/18 6/0/12 \ 

 

Table 4.5: Mean objective values and standard deviations obtained by MFEA-DAE 

and its variants on the second test suite. 

Problem MFEA MFEA-AE MFEA-KAE MFEA-AT MFEA-DAE 

F1-T1 2.71e-02(1.07e-02)- 4.66e-02(1.43e-02)- 3.02e-02(9.53e-03)- 1.65e-02(5.22e-03)~ 1.89e-02(9.32e-03) 

F1-T2 4.78e+01(2.25e+01)- 3.18e+02(9.23e+01)- 2.77e+02(1.17e+02)- 1.75e+01(1.57e+01)~ 2.61e+01(2.18e+01) 

F2-T1 8.03e-01(4.13e-01)- 8.48e-01(4.43e-01)- 6.01e-01(4.22e-01)- 3.14e-01(3.45e-01)~ 2.80e-01(3.62e-01) 

F2-T2 3.61e+01(2.51e+01)- 3.40e+02(8.35e+01)- 3.38e+02(7.14e+01)- 2.72e+00(3.85e+00)~ 1.02e+01(2.04e+01) 

F3-T1 2.93e+02(3.06e+02)- 9.44e+01(6.06e+01)+ 1.86e+02(5.14e+01)- 4.68e+02(8.46e+02)- 1.57e+02(5.66e+01) 

F3-T2 6.41e+00(2.45e+00)- 6.31e+00(2.30e+00)- 4.31e+00(1.76e+00)~ 4.96e+00(2.43e+00)~ 3.51e+00(2.20e+00) 

F4-T1 3.27e+02(9.32e+01)- 3.46e+02(6.43e+01)- 3.30e+02(7.93e+01)- 1.08e+02(2.00e+01)~ 1.07e+02(1.90e+01) 

F4-T2 7.33e+02(2.79e+02)~ 7.46e+02(3.78e+02)~ 2.36e+03(1.29e+03)- 6.92e+02(3.06e+02)~ 8.03e+02(2.90e+02) 

F5-T1 3.34e+02(9.54e+01)- 2.06e-01(9.18e-02)- 3.25e+02(9.61e+01)- 1.09e+02(2.25e+01)- 6.95e-02(5.36e-02) 

F5-T2 3.21e-03(1.31e-03)- 2.63e-04(1.91e-04)- 4.27e-03(2.45e-03)- 3.48e-04(3.87e-04)- 1.56e-05(3.33e-05) 

F6-T1 8.81e-01(3.60e-01)- 1.75e-02(4.32e-03)- 8.79e-01(3.58e-01)- 1.15e-01(1.68e-01)- 1.23e-02(5.04e-03) 

F6-T2 4.10e-02(1.79e-02)- 1.64e-02(7.37e-03)- 4.41e-02(2.54e-02)- 1.75e-02(1.11e-02)- 8.35e-03(7.18e-03) 

F7-T1 4.34e+02(9.63e+02)- 4.81e+01(1.18e-01)~ 2.86e+02(2.73e+02)- 3.57e+02(6.53e+02)- 4.81e+01(1.02e-01) 

F7-T2 6.35e+01(2.73e+01)- 2.79e-02(1.60e-02)- 4.83e+01(1.44e+01)- 4.39e+01(2.45e+01)- 1.38e-02(8.94e-03) 

F8-T1 3.11e+02(1.11e+02)- 3.52e+02(7.15e+01)- 3.35e+02(9.73e+01)- 1.15e+02(1.97e+01)~ 1.16e+02(3.07e+01) 

F8-T2 1.07e+02(9.33e+01)~ 1.35e+02(1.63e+02)~ 1.52e+02(1.51e+02)~ 9.48e+01(9.09e+01)~ 1.54e+02(1.16e+02) 

~/+/- 2/0/14 3/1/12 2/0/14 9/0/7 \ 

“+” (or “-”) indicates the corresponding variant is better (or worse) than MFEA-DAE, and “~” indicates they obtain the 

statistically similar performance. 
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Table 4.6: Mean objective values and standard deviations obtained by MFEA-DAE 

and its variants on the first test suite. 

Problem Variant-I Variant-II Variant-III MFEA-DAE 

CIHS-T1 3.67e-03(1.20e-02)- 2.59e-04(8.24e-04)~ 9.29e-04(2.25e-03)~ 2.20e-03(5.47e-03) 

CIHS-T2 2.12e+01(8.32e+01)- 4.17e-01(1.21e+00)~ 9.41e-01(2.12e+00)~ 2.69e+00(1.04e+01) 

CIMS-T1 7.31e-02(2.58e-01)- 3.58e-03(2.41e-03)- 3.63e-03(2.00e-03)- 2.15e-03(1.37e-03) 

CIMS-T2 1.71e+00(6.95e+00)- 1.09e-02(1.70e-02)- 1.02e-02(1.19e-02)- 3.89e-03(4.45e-03) 

CILS-T1 2.61e+00(6.20e+00)- 1.35e-02(8.37e-03)~ 1.48e-02(1.26e-02)~ 1.29e-02(7.27e-03) 

CILS-T2 5.12e+02(5.04e+02)- 8.57e-03(9.05e-03)~ 1.21e-02(1.94e-02)~ 7.34e-03(8.48e-03) 

PIHS-T1 2.96e+02(1.15e+02)- 8.97e+01(2.52e+01)~ 8.83e+01(1.65e+01)~ 8.44e+01(1.76e+01) 

PIHS-T2 7.23e-02(4.34e-02)- 3.50e-02(1.97e-02)- 2.52e-02(7.98e-03)~ 2.25e-02(1.66e-02) 

PIMS-T1 3.38e-01(3.29e-01)- 1.14e-01(1.50e-01)- 2.49e-01(3.00e-01)- 5.42e-02(7.54e-02) 

PIMS-T2 9.45e+01(7.00e+01)- 6.46e+01(2.41e+01)- 6.39e+01(2.07e+01)- 4.96e+01(9.08e+00) 

PILS-T1 1.73e-02(4.06e-03)- 1.50e-02(4.91e-03)- 1.59e-02(5.08e-03)- 1.04e-02(3.20e-03) 

PILS-T2 1.24e-01(3.25e-02)- 9.72e-02(3.07e-02)- 1.16e-01(3.23e-02)- 7.22e-02(2.23e-02) 

NIHS-T1 4.81e+01(8.85e-02)+ 6.50e+01(3.86e+01)~ 6.14e+01(3.06e+01)~ 5.01e+01(1.01e+01) 

NIHS-T2 1.63e-01(6.22e-02)+ 1.23e+01(2.04e+01)- 1.37e+01(2.27e+01)- 1.22e+00(3.47e+00) 

NIMS-T1 3.38e-02(1.58e-02)- 2.40e-02(7.03e-03)- 2.00e-02(7.23e-03)~ 1.53e-02(6.75e-03) 

NIMS-T2 2.59e+00(1.37e+00)- 1.44e+00(6.04e-01)- 1.51e+00(4.92e-01)- 1.12e+00(4.50e-01) 

NILS-T1 3.60e+02(3.05e+01)- 1.04e+02(2.47e+01)~ 1.12e+02(2.39e+01)- 9.12e+01(2.02e+01) 

NILS-T2 1.62e+03(1.27e+03)- 7.47e+02(2.91e+02)~ 9.15e+02(3.49e+02)~ 8.71e+02(3.12e+02) 

~/+/- 0/2/16 8/0/10 9/0/9 \ 

 

Table 4.7: Mean objective values and standard deviations obtained by MFEA-DAE 

and its variants on the second test suite. 

Problem Variant-I Variant-II Variant-III MFEA-DAE 

F1-T1 2.86e-02(1.49e-02)~ 2.41e-02(7.34e-03)~ 2.26e-02(9.05e-03)~ 2.10e-02(6.42e-03) 

F1-T2 1.14e+02(1.40e+02)- 2.77e+01(1.91e+01)~ 3.34e+01(2.42e+01)~ 2.54e+01(1.92e+01) 

F2-T1 8.26e-01(4.62e-01)- 2.37e-01(3.04e-01)~ 2.92e-01(3.18e-01)~ 2.12e-01(2.69e-01) 

F2-T2 2.45e+02(1.61e+02)- 4.25e+00(6.10e+00)~ 4.87e+00(5.58e+00)~ 8.44e+00(2.33e+01) 

F3-T1 1.87e+02(8.73e+01)- 1.79e+02(4.48e+01)- 2.65e+02(5.31e+02)- 1.34e+02(5.06e+01) 

F3-T2 4.05e+00(2.19e+00)- 4.09e+00(2.24e+00)- 3.98e+00(1.69e+00)- 2.94e+00(1.41e+00) 

F4-T1 2.56e+02(1.34e+02)- 1.20e+02(2.52e+01)- 1.14e+02(2.38e+01)~ 1.06e+02(2.35e+01) 

F4-T2 9.28e+02(5.47e+02)~ 8.99e+02(3.19e+02)~ 7.86e+02(3.02e+02)~ 1.00e+03(4.98e+02) 

F5-T1 2.22e-01(1.15e-01)- 2.21e-01(1.12e-01)- 1.51e-01(1.06e-01)~ 1.05e-01(7.80e-02) 

F5-T2 3.46e-04(3.43e-04)- 3.08e-05(4.82e-05)~ 1.37e-05(1.59e-05)~ 2.97e-05(4.57e-05) 

F6-T1 1.83e-02(5.20e-03)- 1.84e-02(6.84e-03)- 1.65e-02(6.32e-03)- 1.22e-02(3.86e-03) 

F6-T2 1.67e-02(1.04e-02)- 1.38e-02(7.97e-03)- 1.33e-02(8.07e-03)- 6.35e-03(4.37e-03) 

F7-T1 4.81e+01(1.54e-01)~ 4.81e+01(1.53e-01)~ 4.81e+01(1.20e-01)~ 4.81e+01(1.24e-01) 

F7-T2 2.63e-02(2.04e-02)- 2.64e-02(3.59e-02)~ 2.04e-02(1.21e-02)~ 1.65e-02(1.28e-02) 

F8-T1 3.01e+02(1.15e+02)- 1.16e+02(2.39e+01)~ 1.17e+02(2.25e+01)~ 1.12e+02(2.65e+01) 

F8-T2 1.22e+02(1.14e+02)~ 9.87e+01(1.04e+02)~ 7.90e+01(9.50e+01)~ 1.60e+02(1.42e+02) 

~/+/- 4/0/12 10/0/6 12/0/4 \ 

“+” (or “-”) indicates the corresponding variant is better (or worse) than MFEA-DAE, and “~” indicates they obtain the 

statistically similar performance. 
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4.4.3  Further Study on the Effectiveness of DAE 

1) Comparison with Single DA Method 

As four domain adaptation (DA) methods are included in the 𝑝𝑜𝑜𝑙 of DAE, MFEA-

DAE is selected as one representative algorithm to compare with its four variants, i.e., 

MFEA-baseline, MFEA-AE, MFEA-KAE, and MFEA-AT, each of which uses only 

one DA method. As mentioned in the parameter settings, the common parameters are 

kept consistent. The effectiveness of DAE is validated, as it performs better or simi-

larly on most test problems when compared with each of its variants. The results in 

Tab. 4.4 show the significant superiority of MFEA-DAE in most cases. On both tasks 

of CIHS and NIHS, MFEA-DAE is outperformed by MFEA-AE because AE has 

more effective transferability between two tasks with high similarity. Considering the 

performance on the second test suite, the experimental results in Tab. 4.5 also show 

the superiority of MFEA-DAE over other competitors. However, MFEA-DAE falls 

slightly behind MFEA-AT on the two tasks of F1 and F8. The degraded performance 

on these problems could be attributed to the ineffectiveness of other DA methods in 

the 𝑝𝑜𝑜𝑙, leading to the waste of some computational resources for knowledge trans-

fer across tasks. 

 

2) Effectiveness of Two Auxiliary Components 

To validate the effectiveness of the two auxiliary components in MFEA-DAE, abla-

tion experiments are conducted on two test suites by comparing DAE to its various 

variants. Here, three different variants of DAE (Variant-I, Variant-II, and Variant-III) 

are designed for performance comparison. The first variant (Variant-I) uses the RWS 

based on the quantified efficacy of DA methods to select one DA method in DAE, 
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while each DA method has an equal probability of being selected in the second vari-

ant (Variant-II). The detailed numerical results can be found in Tab. 4.6 and Tab. 4.7. 

Considering the first multitasking benchmark suite, MFEA-DAE outperforms Vari-

ant-I on 16 out of 18 cases, while it is outperformed by Variant-I on 2 cases. In addi-

tion, compared with Variant-II, MFEA-DAE obtains better and similar results on 10 

and 8 cases, respectively. The superiority of MFEA-DAE can also be observed on an-

other multitasking benchmark suite according to the comparison results. The compari-

sons not only validate the effectiveness of the RWS based on the quantified efficacy 

of DA methods but also show the necessity of combining random selection and the 

RWS to select suitable DA methods for knowledge transfer. Moreover, to further 

study and analyse the reasonability of combining two selection methods, another vari-

ant (Variant-III) is designed. Both random selection and the RWS are adopted in Var-

iant-III and MFEA-DAE, while the strategies for their use are different. Specifically, 

Variant-III swaps the usage scenarios of two selection methods in MFEA-DAE. As 

summarized in Tab. 4.6 and Tab. 4.7, the comparison results of the two multitasking 

test suites show that the overall performance of MFEA-DAE is better than that of 

Variant-III, as MFEA-DAE always shows either better or similar results in each case 

when compared with its competitor. 

 

3) Further Discussion and Analysis 

Moreover, to intuitively observe the dynamic selection behaviour in MFEA-DAE, the 

count of using each DA method is recorded at each generation. For clarity, their 

changing utilization ratios are calculated by normalizing the counts of using AE, KAE, 

AT, and the baseline method. As the evolutionary process progresses, their changing 

utilization ratios show that MFEA-DAE can effectively assign suitable DA methods 
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to candidate solutions. The utilization ratio curves are plotted for some representative 

test problems in Figs. 4.5 (a)-(c). As observed in Fig. 4.5 (a), at the earlier optimiza-

tion stage of CIMS, the utilization ratio of AE is larger than that of the other methods, 

which means that AE plays a significant role in effective knowledge transfer. As the 

evolutionary process continues, AT and the baseline method begin to make more per-

formance improvements than AE and KAE. In terms of PIHS in Fig. 4.5 (b), the utili-

zation ratios of AE and KAE are larger when compared with the other two DA meth-

ods at the beginning of the evolutionary process, while AT plays a key role in effec-

tive knowledge transfer, as its utilization ratio is much higher than that of the others 

during the later evolutionary process. In addition, as shown in Fig. 4.5 (c), the utiliza-

tion ratios of AT and the baseline method are relatively larger than those of AE and 

KAE on F1. The above observations show that MFEA-DAE can adaptively adjust the 

usage ratio of each DA method to realize effective knowledge transfer and mitigate 

negative transfer from ineffective DA methods to some extent during the evolutionary 

process. 

 

 

(a) CIMS                                (b) PIHS   
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                                  (c) F1            

Figure 4.5: Normalized utilization ratios of different methods during the evolutionary 

search process on CIMS, PIHS, and F1. 

 

 

4.4.4  Comparison with State-of-the-art EMT Algorithms 

Here, five state-of-the-art EMT algorithms are further used for performance compari-

son, namely MFEA-II, MFEA-AKT, MTEA-AD, MTES, and MKTDE. Moreover, a 

single-task EA (SOEA), which solves each task separately, is used as the baseline to 

investigate the effectiveness of MFEA-DAE in solving the adopted MTOPs. The 

summarized results on the two test suites are collected in Tab. 4.8. Compared with 

SOEA, MFEA-DAE achieves better performance on most test problems, which 

demonstrates the superiority of multitasking optimization. However, all EMT algo-

rithms are outperformed by SOEA on task 2 of F5 and F6 (F5-T2 and F6-T2), which 

shows that the occurrence of negative transfer causes their performance degradation 

in solving MTOPs. In MFEA-II, 𝑟𝑚𝑝is dynamically adjusted to alleviate negative 

transfer, while the adaptive configuration of multiple crossovers for knowledge trans-

fer is designed in MFEA-AKT. Although both of them could improve multitasking 

performance to some extent, the obvious superiority of MFEA-DAE on almost all test 
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problems reveals that the proposed DAE can further enhance solution transferability 

across different tasks. In addition, MFEA-DAE performs better than MTEA-AD on 

most cases, while it is outperformed on only 5 cases. This demonstrates the superiori-

ty of DAE for improving multitasking optimization performance when compared with 

MTEA-AD. In addition, when compared with MFEA-DAE, MTES fails in all cases, 

even though it uses an approximated gradient to provide the search direction and dy-

namically adjusts the transfer intensity of information between tasks. The reason may 

be attributed to the problem of becoming trapped in a local optimum that gradient-

based methods often suffer from, especially in problems with multimodality. Instead 

of transferring solutions, meta-knowledge that can evolve task-specific knowledge is 

shared across different tasks in MKTDE, which aims to optimize multiple tasks effec-

tively. As shown in Tab. 4.8, MFEA-DAE achieves better performance in most cases, 

while MKTDE only obtains better results on five test problems (CIHS, CIMS, NIMS, 

F1, and F2). In fact, the effectiveness of MKTDE may be partly attributed to the 

stronger exploitation ability of differential evolution. 

 

Table 4.8: Summarized results of MFEA-DAE and its competitors. 

Algorithm Comparison Test suite 1(~/+/-) Test suite 2(~/+/-) 

SOEA vs MFEA-DAE 1/0/17 1/2/13 

MFEA-II vs MFEA-DAE 1/0/17 3/0/13 

MFEA-AKT vs MFEA-DAE 0/0/18 0/0/16 

MTEA-AD vs MFEA-DAE 0/1/17 0/4/12 

MTES vs MFEA-DAE 0/0/18 0/0/18 

MKTDE vs MFEA-DAE 3/6/9 2/4/10 

“+”, “-”, and “~” indicate that the corresponding competitor is better than, worse than and 

similar to MFEA-DAE. 
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Figure 4.6: Average ranks of the test of Friedman for all compared algorithms. 

 

Moreover, based on the test of Friedman [121], the average performance ranks of all 

compared algorithms on two test suites are plotted in Fig. 4.6, where blue and red 

bars represent the ranks on the first and second test suites, respectively. The ranks of 

MFEA-DAE on the two benchmark suites are smallest (1.94 and 2.53), which shows 

that the overall performance achieved by MFEA-DAE is the best on both test suites. 

According to the comparison results, it can be concluded that MFEA-DAE is very 

competitive when compared to these state-of-the art EMT algorithms on tackling the 

MTOPs adopted. 

 

4.4.5  Parameter Sensitivity Analysis 

The proposed DAE requires two additional parameters 𝜆 (determining the number of 

clusters in clustering candidate solutions) and 𝛽 (determining the proportions of pre-

vious contribution and current contribution in quantifying the efficacy of DA meth-

ods). To study the impact of 𝜆 and 𝛽, the further comparative experiments are con-

ducted by setting 𝜆 and 𝛽 to different values. The summarized comparison results 

are collected in Tab. 4.9. 
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Table 4.9: Summarized results of MFEA-DAE with different parameter values. 

Different parameter setting Test suite 1(~/+/-) Test suite 2(~/+/-) 

Gen 200 500 100 500 

𝜆 = 0.3 vs 𝜆 = 0.8 12/0/6 15/0/3 9/0/7 15/0/1 

𝜆 = 0.5 vs 𝜆 = 0.8 13/0/5 18/0/0 9/0/7 15/0/1 

𝜆 = 0.7 vs 𝜆 = 0.8 14/2/2 17/0/1 15/0/1 15/0/1 

𝜆 = 0.9 vs 𝜆 = 0.8 15/0/3 16/0/2 16/0/0 15/0/1 

𝜆 = 0.95 vs 𝜆 = 0.8 11/0/7 14/0/4 13/2/1 14/0/2 

𝜆 = 1.0 vs 𝜆 = 0.8 3/4/11 1/3/14 7/2/7 4/0/12 

𝛽 = 0.0 vs 𝛽 = 0.5 \ 16/0/2 \ 16/0/0 

𝛽 = 0.3 vs 𝛽 = 0.5 \ 16/0/2 \ 15/1/0 

𝛽 = 0.7 vs 𝛽 = 0.5 \ 15/1/2 \ 16/0/0 

𝛽 = 1.0 vs 𝛽 = 0.5 \ 10/0/8 \ 10/0/6 

𝑟𝑚𝑝 = 0.1 vs 𝑟𝑚𝑝 = 0.3 \ 4/0/14 \ 8/1/7 

𝑟𝑚𝑝 = 0.5 vs 𝑟𝑚𝑝 = 0.3 \ 15/1/2 \ 11/1/4 

𝑟𝑚𝑝 = 0.7 vs 𝑟𝑚𝑝 = 0.3 \ 6/6/6 \ 5/3/8 

𝑟𝑚𝑝 = 0.9 vs 𝑟𝑚𝑝 = 0.3 \ 7/3/8 \ 4/2/10 

“+”, “-”, and “~” indicate that the corresponding variant is better than, worse than and similar 

to MFEA-DAE. 

 

To study the impact of 𝜆, MFEA-DAE with different 𝜆 values from {0.3, 0.5, 0.7, 

0.8, 0.9, 0.95, 1.0} are compared. As shown in Tab. 4.9, compared with a smaller 𝜆 

(e.g., 0.3 and 0.5), MFEA-DAE with 𝜆 = 0.8 speeds up the convergence on some 

test problems without any degradation on other test problems. This is because a too 

small number of clusters will give more opportunity for the candidate solutions to 

randomly select one DA method with equal probability. This lack of the effective 

competition among the DA methods will cause inefficient knowledge transfer in high 

probability. Compared to the variant with a larger 𝜆 (e.g., 0.9, 0.95), just the slight 

performance improvement can be observed on some test problems. This is because 

the efficacy is achieved by using the roulette wheel selection (RWS) strategy to select 

one DA method with higher quantified efficacy while the diversity is encouraged by 

using random selection (RS) strategy in DAE. As other DA methods with lower quan-

tified efficacy also have the opportunity to be selected by using RWS strategy, the 
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effect of using RS to encourage the diversity of the DA methods on performance im-

provement is weaken to some extent, which leads to the situation that the overall per-

formance improvement is not very significant in comparison to a larger 𝜆. In addition, 

as the population converges to the global or local optimum as the evolutionary search 

process proceeds, the effect of cluster information with an optimal 𝜆 is further 

weakened during the later evolutionary stage. Although the cluster information is lit-

tle in this case that 𝜆 is close to 1 (e.g., 0.9, 0.95), the gradually accumulative effect 

of the cluster information could achieve the similar performance to the optimal 𝜆 at 

the end of the evolutionary search process. Furthermore, MFEA-DAE with 𝜆 = 0.8 

achieves the obvious performance improvement on most of test problems when com-

pared with 𝜆 = 1.0, which indicates that the lack of diversity of the DA methods will 

miss the opportunity to exploit potential strengths of other DA methods. In summary, 

a too large or a too small 𝜆 value will cause the degradation of performance to some 

extent. Thus, setting 𝜆 around 0.8 is suggested in MFEA-DAE, which strikes the 

balance between efficacy and diversity of the DA methods. 

In addition, to study the impact of 𝛽, MFEA-DAE with different 𝛽 values from {0, 

0.3, 0.5, 0.7, 1.0} are compared. As observed from Tab. 4.9, MFEA-DAE with  𝛽 = 

0.5 achieves better performance on 8 cases and 6 cases of two test suites when com-

pared with 𝛽 = 1.0 while its performance is similar to other values of 𝛽 (e.g., 0, 0.3, 

and 0.7) on most of test problems. The comparison results show that the current con-

tribution of DA methods on multitasking performance plays a critical role in the effi-

cacy quantification of the DA methods. Thus, 𝛽 is suggested to be set to a value less 

than 1 in MFEA-DAE. In this study, 𝛽 is set to 0.5. 

Moreover, to study the impact of the intensity of knowledge transfer on DAE, MFEA-

DAE with different values of 𝑟𝑚𝑝 from {0.1, 0.3, 0.5, 0.7, 0.9} are compared. 
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Keeping the same parameter setting introduced before, the summarized results are 

collected in Tab. 4.9, which show that MFEA-DAE with 𝑟𝑚𝑝 = 0.3 achieves better 

performance on most cases when compared to MFEA-DAE with 𝑟𝑚𝑝 = 0.1. The 

comparison with 𝑟𝑚𝑝 = 0.3 indicates that a too small 𝑟𝑚𝑝 could not provide suf-

ficient genetic material exchange, which will degrade optimization performance. In 

addition, when 𝑟𝑚𝑝 is increased from 0.3 to 0.5, they show similar performance on 

most cases. However, when 𝑟𝑚𝑝 is further increased to 0.7 or 0.9, performance deg-

radation is obvious on most cases, which indicates that the high intensity of 

knowledge transfer among tasks will waste some computational resources, especially 

at the later evolutionary stages. Thus, 𝑟𝑚𝑝 is recommended as 0.3 in MFEA-DAE. 

 

4.4.6  Computational Complexity Analysis 

As the calculation of the mapping parameters from AE, KAE and AT (𝐌, 𝐌𝑘, 𝐀, 

and 𝐛) can be expressed as a closed-form solution, their additional computational 

costs are from the matrix operations. Using the big 𝑂 notation, the required time 

complexity of AE, KAE and AT can be expressed by 𝑂(𝑑2𝑁), 𝑂(𝑁3), and 𝑂(𝑑2𝑁) 

where 𝑁 is the population size and 𝑑 is the number of decision variables. The 

DAE method includes three components (e.g., domain adaptation selection and two 

auxiliary components), where the computational complexity in one generation is 

mainly dominated by the two auxiliary components. Concretely, DAE needs a time 

complexity of 𝑂(𝑑𝑁2) to construct the neighborhood relation for the population and 

a time complexity of 𝑂(𝑁) to quantify the efficacy of various DA methods, respec-

tively. Thus, the overall worst time complexity of DAE is 𝑂(𝑑𝑁2). 

Moreover, the running times of all the compared EMT algorithms from 20 runs on 
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the first synthetic single-objective multitasking test suite are collected to compare 

their running efficiency. Here, various DA methods (AE, KAE and AT) and DAE 

are incorporated into MFEA for comparison, respectively. In addition, the ratios of 

running time of MFEA-DAE and other compared algorithms are also calculated to 

show the relative running speed of DAE against its competitors more intuitively. As 

observed from Tab. 4.10, the running speed of MFEA-DAE is slightly slower than 

MFEA, MFEA-AE, MFEA-KAE and MFEA-AT (the time ratios are 1.41, 1.37, 1.33 

and 1.18, respectively), which show that DAE indeed does not bring much computa-

tional time cost when compared with each single domain adaptation method. In addi-

tion, MFEA-DAE achieves faster running speed when compared with MFEA-II 

while it is beaten by MFEA-AKT. In terms of the three algorithms implemented in 

their own frameworks (MTEA-AD, MTES and MKTDE), MFEA-DAE performs 

worse than them in the running speed. Actually, the difference of the basic EMT 

framework and the specific implementation could cause a large discrepancy of the 

running time. Based on the above theoretical complexity analyses and actual running 

time comparisons, it can be concluded that the extra computational burden of the use 

of DAE is affordable, and its actual running speed is very competitive when com-

pared with its competitors based on the same EMT framework. 

Table 4.10: Running times of all compared EMT algorithm. 

Algorithm Running time (s) Time ratio (MFEA-DAE/competitor) 

MFEA 141.31 1.41 

MFEA-AE 144.76 1.37 

MFEA-KAE 148.92 1.33 

MFEA-AT 167.53 1.18 

MFEA-II 629.26 0.32 

MFEA-AKT 131.87 1.51 

MTEA-AD 10.32 24.19 

MTES 83.18 3.25 

MKTDE 66.84 4.11 

MFEA-DAE 196.11 \ 
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4.4.7  Practical Case Study 

To further analyse the effectiveness of DAE in real-world applications, the parameter-

ized planar kinematic arm problem [98] is used in the comparative experiments. The 

planar kinematic arm consists of d links with the same length 𝐿, which are connected 

by 𝑑 joints with the same angle limit 𝛼𝑚𝑎𝑥 . A task 𝑇𝑖 is defined by the parameters 

𝐿 and 𝛼𝑚𝑎𝑥 , which aims to optimize the angle of each joint 𝜶𝑖 = (𝜶1
𝑖 , … ,𝜶𝑑

𝑖 ) to 

make the Euclidean distance between tip position 𝐩𝑑 and a predefined target 𝛾 as 

close as possible. Using these notations, an MTOP with 𝐾 tasks can be formulated 

as follows:  

min
𝜶𝑖
𝑓𝑖(𝜶

𝑖; [𝐿, 𝛼𝑚𝑎𝑥]) = ||𝐩
𝑑 − 𝛾|| , 𝑖 = {1,… ,𝐾} ,                       (4.33) 

where the fitness function 𝑓𝑖(⋅) of each task is distinguished by a particular parame-

ter combination [𝐿, 𝛼𝑚𝑎𝑥], which determines the kinematics calculation of the arm. 

Note that the real-value encoding is used to represent the solutions. More details of 

the kinematics used to calculate 𝐩𝑑 can be found in [98]. 

 

Table 4.11: Parameter settings of the practical optimization examples. 

Parameterized Planar 

Arm Problem 
Task Group 1: 𝑇1 to 𝑇6 Task Group 2: 𝑇7 to 𝑇12 

Task 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10 𝑇11 𝑇12 

𝐿 (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.08 0.08 0.07 0.07 0.06 0.06 

𝛼𝑚𝑎𝑥 (rad) 0.80 0.75 0.70 0.65 0.60 0.55 0.40 0.35 0.40 0.35 0.40 0.35 
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(a) T1 to T6 

 

 

(b) T7 to T12 

Figure 4.7: Averaged convergence curves of MFEA, MFEA-II, MFEA-DAE, MFEA-

II-DAE and SOEA. 

 

As suggested in [119], 𝑑 is set to 10 and 𝛾 is set to (0.5, 0.5) in this experiment. 

The MTOP with many tasks can be constructed by configuring each task with a par-

ticular combination [𝐿, 𝛼𝑚𝑎𝑥]. Here, using the same parameter settings in [56], two 

task groups are adopted as practical optimization examples, each of which includes 

six different tasks. The details of the parameter settings of the 12 tasks from the two 
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task groups can be seen in Tab. 4.11. In particular, one task group consists of tasks 

𝑇1 to 𝑇6, while another task group includes tasks 𝑇7 to 𝑇12. Each task group is 

used as one MTOP to be solved by each algorithm in one run. In the experiment, the 

enhanced EMT algorithms with DAE (MFEA-DAE and MFEA-II-DAE) are com-

pared with MFEA and MFEA-II on solving 𝑇1 to 𝑇6 and 𝑇7 to 𝑇12, respectively. 

In addition, SOEA is used as the baseline to solve each task separately, which aims to 

investigate the effectiveness of EMT algorithms. The comparison results are collected 

from 10 independent runs on each task group. Figs. 4.7(a) and (b) show the averaged 

convergence curves of all algorithms on 𝑇1 to 𝑇6 and 𝑇7 to 𝑇12. It is observed 

that all EMT algorithms achieve better average convergence performance than SOEA, 

and the enhanced EMT algorithms with DAE further improve the average conver-

gence performance of MFEA and MFEA-II on 𝑇1 to 𝑇6 and 𝑇7 to 𝑇12. The above 

comparison results validate the effectiveness of DAE on the parameterized planar 

kinematic arm problem. 

 

 

4.5  Conclusion 

This chapter has proposed an effective DAE method to combine the strengths of vari-

ous complementary DA methods by considering their efficacy and diversity, which 

can effectively assign suitable DA methods to candidate solutions. First, the neigh-

bourhood relationship is constructed for all candidate solutions by using the hierar-

chical clustering method. Then, if none of the neighbours of two selected parent solu-

tions has been selected for knowledge transfer, the efficacy of DA methods should be 

considered first by running roulette wheel selection based on their contributions to the 
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performance improvement in knowledge transfer. Otherwise, one DA method is ran-

domly selected for knowledge transfer to emphasize the diversity of DA methods, 

which can potentially combine their advantages. In this way, both the efficacy and 

diversity of complementary DA methods have been considered to enhance the solu-

tion transferability across distinct tasks. The experimental results not only validated 

the effectiveness of the DAE method for knowledge transfer in EMT but also demon-

strated the very competitive performance of MFEA-DAE when compared with other 

state-of-the-art EMT algorithms. 
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Chapter 5 

Fuzzy Logic-Based Method for 

Adaptively Deciding When and 

How to Transfer in EMT 

 

 

5.1  Introduction 

On the one hand, in most existing EMT algorithms, the extent of knowledge transfer 

is predefined during the multitasking search process [36], [51]. For example, in 

MFEA and most of its variants [27], [60], [72], the prespecified random mating prob-

ability (𝑟𝑚𝑝) was employed to determine the extent of knowledge transfer by allow-

ing the solutions between different tasks to undergo crossover in a fixed probability. 

In addition, in [46], [48], [68], the extent of knowledge transfer was determined by 
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predefining the number of transferred solutions and the generation interval of 

knowledge transfer. In fact, the performance of EMT is intricately linked to the de-

gree of underlying similarity among tasks, as evidenced in prior studies [49], [50]. 

Generally, the appropriate extent of knowledge transfer tends to vary when the tasks 

exhibit different degrees of similarity. For example, the appropriate transfer extent for 

highly similar tasks may be excessive in such scenarios that tasks are dissimilar or 

unrelated. In this case, the predefined extent of knowledge transfer will lead to inef-

fective knowledge exchange among unrelated tasks. To mitigate the risk of negative 

transfer, it is common practice to preset the transfer parameters to some small values. 

However, such parameter settings may potentially undermine the multitasking per-

formance when solving highly similar tasks due to repeated searches to find their 

global optima [49], [50]. 

On the other hand, several advanced methods of knowledge transfer have been pro-

posed to enhance knowledge transferability across tasks in solving various multitask-

ing optimization problems (MTOPs) [36], [51]. For example, considering the tasks 

with different optima and dimensionalities, two strategies were proposed in G-MFEA 

[74], which facilitate effective knowledge transfer by translating and shuffling deci-

sion variables. In addition, to efficiently solve multiple tasks possessing unique prop-

erties, the denoising autoencoder (AE) [48] was proposed to build the mapping across 

tasks, which allows knowledge transfer to take place across multiple evolution mech-

anisms. However, in terms of some complex tasks, their solutions may be nonlinearly 

correlated. Hence, the kernelized AE (KAE) [68] was proposed to capture the nonlin-

earity between the solutions of two tasks by constructing the mapping in a reproduc-

ing kernel Hilbert space (RKHS). Moreover, for the tasks sharing different fitness 

landscapes, an affine transformation (AT) [67] was proposed to learn the mapping 
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between two tasks by building the probability representation models on their popula-

tions, which avoids the mismatch of solutions. However, these methods are specifical-

ly designed for the characteristics of their solved problems, severely limiting the ef-

fectiveness of knowledge transfer to their respective preferred problems [126]. 

Without any prior knowledge about the tasks, adaptive knowledge transfer (AKT) can 

further enhance the effectiveness and robustness of EMT by dynamically adapting the 

transfer extent and selecting promising transfer methods. Recently, several ATK ap-

proaches have been proposed for EMT by building complex mathematical models 

[49], [50], or formulating deterministic judgments [60], [126]. However, the available 

information or data are usually imprecise and fuzzy due to the uncertainty and ran-

domness brought by the evolutionary mechanism [88]-[92]. Therefore, existing de-

terministic approaches may make unwise or wrong decisions, which will potentially 

lead to the performance slowdowns of EMT. Due to its superior uncertainty and 

noise-handling ability from the usage of human-like linguistic variables, fuzzy logic 

(FL) has attracted much attention [127], [128], [129], [130]. Furthermore, it has been 

employed to assist EAs to solve various complex problems with nonlinear constraints 

[131], time-varying optima [132], and many local optima [133], [134]. Inspired by the 

above studies, this chapter proposes a new MFEA with FL-based AKT for more ef-

fective and robust EMT. Different existing deterministic methods, it is the first at-

tempt to employ FL to implement AKT for performing implicit EMT. The main con-

tributions of this study are summarized as follows. 

1) To effectively adapt the transfer extent along the multitasking search process, an 

FL-based parameter adaption mechanism is developed to dynamically adjust the value 

of the transfer parameter, thereby alleviating the risk of negative transfer. 
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2) To adaptively select the most promising method for knowledge transfer, an FL-

based selection mechanism is developed to select the best transfer method from mul-

tiple candidates, thereby enhancing knowledge transferability across tasks. 

3) By incorporating the above two FL-based mechanisms into an EMT framework, 

this study presents the implementation of a new MFEA (called MFEA-FLM). The 

experimental results validate the effectiveness of the proposed method and show the 

competitive performance of MFEA-FLM when compared with other EMT algorithms. 

 

 

5.2  Background and Motivation 

5.2.1  Mamdani Fuzzy Inference System 

Fuzzification Defuzzification
Fuzzy 

Inferencing

Rule BaseDatabase

Knowledge Base

Crisp Output
Crisp 

Input

Crisp 

Input
 

 

Figure 5.1: Framework of a Mamdani FIS with multiple inputs and one output. 

 

The fuzzy inference system (FIS) is a type of artificial intelligence system, which uti-

lizes fuzzy logic and fuzzy set theory to address the issue of imprecise information 

[135], [136]. Due to simplicity and interpretability, Mamdani FISs have been widely 

utilized in various practical applications [137], [138]. The framework of a Mamdani 

FIS with multiple inputs and one output is provided in Fig. 5.1. In general, the 
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knowledge base consists of a database and a rule base. The linguistic terms and their 

corresponding membership functions (MFs) are called the database, while the set of a 

series of IF-THEN rules is known as the rule base. For Mamdani FISs [139], the in-

put-output relations are defined in the form of IF-THEN rules based on linguistic 

terms, which can be expressed as follows: 

𝑅𝑖: {
𝐈𝐅 𝑣1 is 𝐿1

𝑖  𝐀𝐍𝐃 𝑣2 is 𝐿2
𝑖  𝐀𝐍𝐃 . . . 𝑣𝑛 is 𝐿𝑛

𝑖 ,

𝐓𝐇𝐄𝐍 𝑦 is 𝐿𝑛+1
𝑖                                                

                     (5.1) 

where 𝑅𝑖 is the 𝑖-th IF-THEN rule, {𝐿1
𝑖 , 𝐿2

𝑖 , . . . , 𝐿𝑛
𝑖 } are the antecedent linguistic 

terms corresponding to 𝑛 input variables {𝑣1, 𝑣2, . . . , 𝑣𝑛}, and 𝐿𝑛+1
𝑖  is the conse-

quent linguistic term related to the output variable 𝑦. These linguistic IF-THEN rules 

allow human experts within that domain to incorporate their knowledge and experi-

ence into the system in an effective manner [140]. In addition to the knowledge base, 

a Mamdani FIS involves three general steps, which are as follows: 

Step 1 (Fuzzification): Converting crisp inputs into fuzzy sets through their corre-

sponding MFs. 

Step 2 (Fuzzy Inferencing): Mapping fuzzy inputs to fuzzy outputs by computing the 

firing strengths of activated rules. By aggregating the firing strengths of all the rules, 

the fuzzy output set can be obtained by 

𝜇(𝑦) = max
𝑖=1,...,|𝑅|

{ min
𝑗=1,...,𝑛

(𝜇𝑖𝑗(𝑣𝑗), 𝜇𝑖(𝑛+1)(𝑦))},                        (5.2) 

where |𝑅| is the number of rules, 𝜇𝑖𝑗(𝑣𝑗) and 𝜇𝑖(𝑛+1)(𝑦) are the MFs associated 

with 𝐿𝑗
𝑖  and 𝐿𝑛+1

𝑖 . 

Step 3 (Defuzzification): Converting the fuzzy output set into the crisp output. The 



 

１２２ 

center of area (COA) [140] is a commonly used defuzzification method, which com-

putes the crisp output in the form of algebraic integration as follows: 

�̅� =
∫𝑦𝜇(𝑦)𝑑𝑦

∫𝜇(𝑦)𝑑𝑦
.                                                    (5.3) 

 

5.2.2  Motivation 

In EMT, determining the appropriate transfer extent and the promising transfer meth-

od for conducting knowledge transfer across tasks are very challenging in handling 

MTOPs. Without any prior knowledge about the characteristics of tasks and their re-

lationships, predefining the fixed transfer extent and adopting one certain transfer 

method cannot ensure the effectiveness and robustness of EMT on a wide range of 

test problems. On the one hand, dynamically adapting the extent of knowledge trans-

fer can effectively alleviate the threat of negative transfer. On the other hand, collabo-

ratively employing multiple methods of knowledge transfer with distinct complemen-

tarities can further enhance the knowledge transferability across tasks. While several 

AKT approaches have been proposed for EMT, they rarely tackle the above two chal-

lenges at the same time. More importantly, the uncertainty and randomness of the 

evolutionary mechanism will lead to the prevalence of imprecise information or data 

in the multitasking search process, which brings difficulties in developing reliable 

AKT approaches. Particularly, due to some random values in the reproduction opera-

tor, the offspring generated by the same parent population may have different objec-

tive values. Thus, the data or information by quantifying the performance improve-

ment of offspring against their parents is usually imprecise and fuzzy. As a successful 

application of FL, the Mamdani FIS can incorporate expert knowledge into the mod-

el-building process through fuzzy sets and IF-THEN rules, enhancing the interpreta-
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bility and flexibility of the models in practical applications. Moreover, due to its supe-

rior ability to handle uncertainty and noise, employing the Mamdani FIS can facilitate 

reliable and stable decision-making in complex and dynamic environments. Therefore, 

instead of building exact mathematical models or customizing deterministic state-

ments, this study is motivated to employ FL to tackle the two challenges in EMT. 

 

5.3  Methodology 

5.3.1  Fuzzy Logic-Based Transfer Parameter Adaption 

The transfer parameter determines the extent of conducting knowledge transfer among 

tasks during the evolutionary search process. In MFEA, the extent of knowledge ex-

change among tasks is controlled by a prespecified scalar parameter labelled as the 

random mating probability (𝑟𝑚𝑝). It has a big impact on the effectiveness of the mul-

titasking search process. However, choosing its appropriate value depends on the 

problem and may be difficult. 

In this study, one Mamdani FIS with multiple inputs and one output is designed to 

estimate the change of the transfer parameter (i.e., ∆𝑟𝑚𝑝). For each generation (i.e., 

g), the FIS takes the current value of the transfer parameter (i.e., 𝑟𝑚𝑝) and the quan-

tified improvement value of knowledge transfer (i.e., 𝐼g) in terms of optimization 

performance as its two inputs. Note that the value of 𝑟𝑚𝑝 is in the range of [0, 1]. 

The performance improvement along the evolutionary search process can be quanti-

fied by computing the improvement ratio of the objective values of offspring against 

their parents. Specifically, given the offspring and its parent population at the genera-

tion g, the normalized performance improvement brought by employing 𝑟𝑚𝑝 to 

trigger knowledge transfer can be quantified by 



 

１２４ 

∆𝐼 =

1
|𝐐|

∑ ∆𝐹(𝐱)𝐱∈𝐐

1
|𝐎|

∑ ∆𝐹(𝐱)𝐱∈𝐎

,                                           (5.4) 

where 𝐐 and 𝐎 are two solution sets. Specifically, 𝐐 consists of offspring gener-

ated by triggering knowledge transfer at the current generation, while 𝐎 includes all 

offspring at the current generation. Here, ∆𝐹(𝐱) represents the improvement ratio of 

the objective values of offspring against its immediate parent, which is computed by 

∆𝐹(𝐱) =∑max {
𝑓𝑖(𝐩) − 𝑓𝑖(𝐱)

𝑓𝑖(𝐩)
, 0},                                  (5.5)

𝑚

𝑖=1

 

where 𝐩 is the immediate parent of 𝐱 and 𝑓𝑖(⋅) is the 𝑖-th objective value. To bet-

ter represent the performance improvement brought by knowledge transfer, the pref-

erence coefficient 𝛼 is introduced to determine the proportions of the performance 

improvement at the previous and current generations. Thus, the quantified perfor-

mance improvement can be computed by 

𝐼g = {
1/2,                                    if g = 1 

𝛼𝐼g−1 + (1− 𝛼)∆𝐼, if g ≥ 2 
,                                 (5.6) 

where 𝛼 is a value in [0, 1] and it can be adjusted based on the specific requirement. 

Now, the two inputs, i.e., 𝑟𝑚𝑝 and 𝐼g, are in [0, 1]. Next, the fuzzy partitions of the 

antecedent space and consequence space are defined. Specifically, for 𝑟𝑚𝑝 and 𝐼g, 

there are five fuzzy sets, which denote very low (VL), low (L), medium (M), high (H), 

and very high (VH), respectively. Here, L, M, and H are defined by three membership 

functions of class triangular with their associated parameter tuples being (0.1, 0.3, 

0.5), (0.3, 0.5, 0.7), and (0.5, 0.7, 0.9), respectively. Besides, VL and VH are defined 
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by the membership function of class 𝐿 with the parameter tuple (0.0, 0.0, 0.1, 0.3) 

and the membership function of class 𝛾 with the parameter tuple (0.7, 0.9, 1.0, 1.0), 

respectively. For ∆𝑟𝑚𝑝, there are seven fuzzy sets, which denote negative big (NB), 

negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive 

medium (PM), and positive big (PB), respectively. Here, the seven fuzzy sets are de-

fined by seven singleton membership functions with the parameter being -0.3, -0.2, -

0.1, 0, 0.1, 0.2, and 0.3, respectively. Fig. 5.2 shows the graphical illustration of the 

fuzzy sets defined for each input and output. 
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(a) Membership functions of 𝑟𝑚𝑝 and 𝐼g 
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(b) Membership functions of ∆𝑟𝑚𝑝 

Figure 5.2: Graphical illustration of membership functions applied in the fuzzy infer-

ence system for transfer parameter adaption. 
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Table 5.1: Set of rules of fuzzy inference system for estimating the change in the 

transfer parameter. 

∆𝑟𝑚𝑝 
Performance Improvement (𝐼g) 

VL L M H VH 

Transfer 

Parameter 

(𝑟𝑚𝑝) 

VL ZE PS PM PB PB*(#1) 

L NS ZE PS PM PB 

M NM NS ZE PS PM 

H NB NM NS ZE PS 

VH NB*(#2) NB NM NS ZE 

 

In the FIS, the inputs are first converted from real values into fuzzy values, and then 

the fuzzy inference process is performed based on a set of fuzzy rules as shown in 

Tab. 5.1. To illustrate the fuzzy inference process, two fuzzy rules marked with the 

star symbol are given as follows: 

Rule #1: IF 𝑟𝑚𝑝 is VL and 𝐼g is VH, THEN ∆𝑟𝑚𝑝 is PB. 

Rule #2: IF 𝑟𝑚𝑝 is VH and 𝐼g is VL, THEN ∆𝑟𝑚𝑝 is NB. 

In Rule #1, the extent of knowledge transfer is very low, while its resultant perfor-

mance improvement is very high. In such a case, conducting knowledge transfer 

across tasks can bring significant performance improvement during the multitasking 

search process. Thus, the extent of knowledge transfer should be significantly in-

creased, which allows more frequent positive knowledge exchange among tasks in the 

subsequent evolutionary search process. On the contrary, in Rule #2, the extent of 

knowledge transfer is very high, while its resultant performance improvement is very 

low. In such a situation, conducting knowledge transfer contributes little to the per-

formance improvement in optimizing multiple tasks. Thus, the extent of knowledge 

transfer should be significantly decreased to reduce negative transfer. 
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After the fuzzy inference process, the obtained results are a series of fuzzy values. 

Finally, by applying the defuzzification operator in Eq. (5.3), the crisp value of 

∆𝑟𝑚𝑝 is computed as the final output of the FIS. Thus, the extent of knowledge 

transfer can be dynamically adjusted by modifying the value of ∆𝑟𝑚𝑝 according to 

the following formula: 

𝑟𝑚𝑝 = {
0.3,                           if g = 1
𝑟𝑚𝑝 + ∆𝑟𝑚𝑝,        if g ≥ 2

.                               (5.7) 

 

5.3.2  Fuzzy Logic-Based Transfer Method Selection 

In terms of a 𝑝𝑜𝑜𝑙 consisting of 𝑘 complementary transfer methods, which are de-

noted by 𝑝𝑜𝑜𝑙 = {𝒯ℳ1, 𝒯ℳ2, … ,𝒯ℳ𝑘}, they have different biases in conducting 

knowledge transfer among tasks. One specific transfer method can show superiority 

in its preferred transfer scenario, while it has poor performance in other scenarios. 

The lack of prior knowledge of back-box optimization problems causes difficulty in 

determining the appropriate method for knowledge transfer. Thus, adaptively select-

ing promising methods for knowledge transfer is very critical to improving the opti-

mization performance and efficacy in handling multiple tasks. The current applicabil-

ity of one specific method for knowledge transfer should not only depend on its effi-

cacy quantified by its actual performance during the multitasking search process but 

also should have sensitivity to the number of triggering it in the current population. 

In this study, another Mamdani FIS with multiple inputs and one output is designed to 

estimate the applicability of each transfer method for the current transfer scenario. In 

this way, the most promising method can be selected from multiple candidates by 

comparing the estimated values of their applicability. Specifically, the normalized ef-
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ficacy and the usage ratio of one transfer method are considered as two inputs of the 

FIS. The normalized efficacy of one transfer method can be reflected by quantifying 

how much it contributes to accelerating the evolutionary search process. Considering 

one transfer method, i.e., 𝒯ℳ𝑖, the ratio of its efficacy can be computed by 

Δ𝐸𝑖 =

1
|𝐒𝑖|

∑ Δ𝐹(𝐱)𝐱∈𝐒𝑖

1
|𝐒1⋃. . .⋃𝐒𝑘|

∑ Δ𝐹(𝐱)𝐱∈𝐒1⋃...⋃𝐒𝑘

 ,                           (5.8) 

where 𝐒𝑖 denotes the solution set. Here, 𝐒𝑖 consists of all offspring solutions that 

are generated by performing 𝒯ℳ𝑖 for knowledge transfer at the current generation. 

Here, Δ𝐹(𝐱) represents the improvement ratio of the objective values of the off-

spring in 𝐒𝑖 against the immediate parent, which is computed by Eq. (5.8). The nor-

malized efficacy of performing 𝒯ℳ𝑖 for knowledge transfer can be defined by 

𝐸𝑖
g
= {

1/𝑘,                                        if g = 1

𝛼𝐸𝑖
g−1

+ (1 − 𝛼)Δ𝐸𝑖 , if g ≥ 2
 ,                            (5.9) 

where 𝛼 is a preference coefficient to determine the proportions of the previous effi-

cacy and current efficacy of 𝒯ℳ𝑖 in estimating 𝐸𝑖
g. Note that Δ𝐸𝑖 is set to 1/𝑘 

for all 𝑖 = {1, …, 𝑘} if Δ𝐹(𝐱) is 0 for all 𝐱 ∈ 𝐒1⋃. . .⋃𝐒𝑘, where 𝑘 is the num-

ber of all candidates in the 𝑝𝑜𝑜𝑙. In addition, the usage ratio of triggering 𝒯ℳ𝑖 for 

knowledge transfer is computed as follows: 

𝑈𝑖 = {
0,                 if Σ𝑖=1

𝑘 𝑛𝑖 = 0
𝑛𝑖

∑ 𝑛𝑖
𝑘
𝑖=1

,     otherwise   
 ,                                  (5.10) 

where 𝑛𝑖 denotes the number of triggering 𝒯ℳ𝑖 for knowledge transfer at the cur-

rent generation. 
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(b) Membership functions of Ui 

Figure 5.3: Graphical illustration of membership functions applied in the fuzzy infer-

ence system for transfer method selection. 

 

Now, the two inputs, i.e., 𝐸𝑖
g and 𝑈𝑖, are in [0, 1]. Then, the fuzzy partitions for the 

antecedent space and consequence space are defined. In terms of 𝐸𝑖
g, there are three 

fuzzy sets, which denote low (L), medium (M), and high (H).  Here, L, M, and H are 

defined by three membership functions, i.e., class 𝐿 with the parameter tuple (0.0, 

0.0, 0.1, 0.5), class triangular with the parameter tuple (0.2, 0.5, 0.8), and class 𝛾 

with the parameter tuple (0.5, 0.9, 1.0, 1.0), respectively. For 𝑈𝑖, there are two fuzzy 
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sets, which denote low (L) and high (H) by employing two membership functions, i.e., 

class 𝐿 with the parameter tuple (0.0, 0.0, 0.1, 0.9) and class 𝛾 with the parameter 

tuple (0.1, 0.9, 1.0, 1.0), respectively. The output is the current applicability of the 

method (i.e., 𝐴𝑖). Here, there are three fuzzy sets, which denote low (L), medium (M), 

and high (H). Their membership functions are defined to be the same as that of 𝐸𝑖
g. 

Fig. 5.3 shows the graphical illustration of the fuzzy sets defined for each input and 

output. 

 

 

Table 5.2: Set of rules of fuzzy inference system for estimating the applicability of 

each transfer method. 

Rule No. 
Normalized Efficacy 

(𝐸𝑖
g) 

Usage Ratio 

(𝑈𝑖) 

Applicability 

(𝐴𝑖) 

1 Low Low Medium 

2 Low High Low 

3 Medium - Medium 

4 High Low High 

5 High High Medium 

 

Taking the fuzzy values of 𝐸𝑖
g and 𝑈𝑖 as the inputs, the fuzzy inference process is 

performed based on a series of fuzzy rules as shown in Tab. 5.2. As displayed in Rule 

1, when both the normalized efficacy of 𝒯ℳ𝑖 and its usage ratio are low, the diver-

sity should be encouraged when selecting the method for knowledge transfer. Thus, 

the applicability of 𝒯ℳ𝑖 is medium, which allows 𝒯ℳ𝑖 to be competitive as the 

promising method. In terms of Rules 2, 3, and 4, the applicability of 𝒯ℳ𝑖 complete-

ly depends on its normalized efficacy regardless of its usage ratio. In these situations, 

the efficacy of the method for knowledge transfer should be a priority, thereby en-

couraging the use of the method with better efficacy for conducting knowledge trans-
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fer. However, the high efficacy of 𝒯ℳ𝑖 may be attributed to its frequent use rather 

than its true applicability for knowledge transfer. To alleviate this issue, Rule 5 is 

given by setting the applicability to medium rather than high. 

With the above fuzzy rules, a series of fuzzy values are obtained by performing the 

fuzzy inference process. By applying the defuzzification operator by Eq. (5.3), the 

crisp variable of 𝐴𝑖 is computed as the final output of the FIS. After obtaining the 

values of the applicability of all candidate methods, the most promising method of 

knowledge transfer (i.e., 𝒯ℳ𝑖𝑛𝑑𝑒𝑥) from {𝒯ℳ1, … ,𝒯ℳ𝑘} is identified by the fol-

lowing formula: 

𝑖𝑛𝑑𝑒𝑥 = {
𝑟 ∈ {1, . . . , 𝑘},              if g = 1
arg

𝑖∈{1,...,𝑘}
max{𝐴𝑖} ,        if g ≥ 2,                          (5.11) 

where 𝑟 is an integer randomly selected from {1, …, 𝑘} when g is 1. 

 

5.3.3  Main Framework 

The details of MFEA-FLM is presented in this subsection. To clarify the running of 

MFEA-FLM, its pseudocode is provided in Algorithm 5.1 with the inputs: an MTOP 

with 𝐾 tasks, 𝑁 (the size of the population), 𝐺𝑚𝑎𝑥 (the preset maximum number 

of generations), 𝛼 (the preference coefficient), and 𝑝𝑜𝑜𝑙 = {𝒯ℳ1, 𝒯ℳ2, … , 𝒯ℳ𝑘} 

(the set of multiple candidate methods of knowledge transfer). As studied in [31], AE 

[25], KAE [29], and AT [30] have strong complementarities in transferring the solu-

tions across tasks. Thus, they are selected as candidate methods for knowledge trans-

fer. Besides, one baseline method that directly transfers the solutions among tasks 

without adaptation is also included in the 𝑝𝑜𝑜𝑙. 

 



 

１３２ 

Algorithm 5.1 The Main Framework of MFEA-FLM 

Input: an MTOP with 𝐾 tasks, 𝑁, 𝐺𝑚𝑎𝑥, 𝛼, 𝑝𝑜𝑜𝑙 = {𝒯ℳ1, 𝒯ℳ2, … , 𝒯ℳ𝑘} 

Output: 𝐏 

1  Initialize 𝐏 to have 𝑁 × 𝐾 solutions 

2  Assign skill factor 𝜏𝑖 to every 𝐩𝑖 in 𝐏 by Eq. (5.12) and evaluate them 

3  Set g = 1, 𝐸𝑖
g
= 1/𝑘 for all 𝑖 = {1, 2, …, 𝑘}, and 𝐼1 = 1/2 

4  while g ≤ 𝐺𝑚𝑎𝑥 

5  Set 𝐎 = ∅, 𝐒𝑖 = ∅, and 𝑛𝑖 = 0 for all 𝑖 = {1, 2, …, 𝑘} 

6      𝑟𝑚𝑝
 ← Adapt the transfer parameter by Eq. (5.7) // subsection 5.3.1 

7      while |𝐎| < 𝑁 × 𝐾 

8          Randomly select two parents [𝐩𝑎, 𝐩𝑏] with 𝜏𝑎 ≠ 𝜏𝑏 from 𝐏 

9          if 𝑟𝑎𝑛𝑑 < 𝑟𝑚𝑝 

10  𝒯ℳ𝑖𝑛𝑑𝑒𝑥 ← Select one from 𝑝𝑜𝑜𝑙 by Eq. (5.11) // subsection 5.3.2 

11  𝐩𝑏′ ← Transfer 𝐩𝑏 to task 𝜏𝑎 via 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 

12  𝐜𝑎 ← Inter-task crossover + mutation (𝐩𝑎, 𝐩𝑏′) 

13  𝐩𝑎′ ← Transfer 𝐩𝑎 to task 𝜏𝑏 via 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 

14  𝐜𝑏 ← Inter-task crossover + mutation (𝐩𝑏, 𝐩𝑎′) 

15  Each offspring is randomly assigned skill factor 𝜏𝑎 or 𝜏𝑏 

16  𝐒𝑖𝑛𝑑𝑒𝑥 = 𝐒𝑖𝑛𝑑𝑒𝑥⋃[𝐜𝑎, 𝐜𝑏], 𝑛𝑖𝑛𝑑𝑒𝑥 = 𝑛𝑖𝑛𝑑𝑒𝑥 + 1 

17  Compute {𝑈1, …, 𝑈𝑘} by Eq. (5.10) 

18  else 

19               Randomly select one parent 𝐩′ with skill factor 𝜏𝑎 from 𝐏 

20  𝐜𝑎 ← Intra-task crossover + mutation (𝐩𝑎, 𝐩′) 

21  Randomly select one parent 𝐩′′ with skill factor 𝜏𝑏 from 𝐏 

22  𝐜𝑏 ← Intra-task crossover + mutation (𝐩𝑏, 𝐩′′) 

23  Assign 𝐜𝑎 skill factor 𝜏𝑎, and 𝐜𝑏 skill factor 𝜏𝑏, respectively 

24  end 

25  Mark 𝐩𝑎 or 𝐩𝑏 as immediate parents of 𝐜𝑎  and 𝐜𝑏 

26  Evaluate [𝐜𝑎, 𝐜𝑏] for their assigned skill factors only 

27  𝐎 = 𝐎⋃[𝐜𝑎, 𝐜𝑏] 

28  end 

29  𝐐 = 𝐒1⋃. . . ⋃𝐒𝑘 

30  Compute 𝐼g+1 and {𝐸1
g+1, ..., 𝐸𝑘

g+1} by Eq. (5.6) and Eq. (5.9), respectively 

31  𝐏 ← Environmental Selection on 𝐏⋃𝐎 

32  g = g + 1 

33  end 

34  return 𝐏 

 

As shown in Line 1, a single population 𝐏 is first formed by randomly sampling 
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𝑁 ×𝐾 solutions in the unified search space 𝑌 ∈ [0, 1]𝐷𝑚𝑎𝑥 , where 𝐷𝑚𝑎𝑥 is the 

maximal dimensionality among 𝐾 tasks. Then, in Line 2, the skill factor 𝜏𝑖 of each 

solution 𝐩𝑖 in 𝐏 is randomly assigned according to 

𝜏𝑖 = 𝑚𝑜𝑑(𝑖,𝐾) + 1.                                         (5.12) 

After that, all solutions in 𝐏 will be evaluated for their assigned skill factor only. In 

Line 3, the generation counter g is set to 1, 𝐸𝑖
g is initialized to 1/𝑘 for all 𝑖 = {1, 

2, …, 𝑘}, and 𝐼1 is initialized to 1/2. 

The main evolutionary process is shown in Lines 4-33. A solution set 𝐎 is used to 

collect all generated offspring at the current generation. Each 𝒯ℳ𝑖 is configured 

with one set and a counter, i.e., 𝐒𝑖 and 𝑛𝑖. Here, 𝐒𝑖 collects all offspring whose 

parents are generated by performing 𝒯ℳ𝑖. Additionally, 𝑛𝑖 records the number of 

triggering 𝒯ℳ𝑖 for knowledge transfer. Before the start of each generation, 𝐎 and 

𝐒𝑖 are set to empty, while 𝑛𝑖 is set to 0 for all 𝑖 = {1, …, 𝑘} in Line 5. Then, in 

Line 6, the transfer parameter 𝑟𝑚𝑝 is adapted by Eq. (5.7), which is elaborated in 

detail in subsection 5.3.1. After that, 𝑁 ×𝐾 offspring are generated by randomly 

selecting parents from 𝐏. Specifically, for each pair of parents [𝐩𝑎, 𝐩𝑏] with 𝜏𝑎 ≠

𝜏𝑏 , the component of knowledge transfer will be triggered when 𝑟𝑎𝑛𝑑 < 𝑟𝑚𝑝 

(𝑟𝑎𝑛𝑑 is a random number in [0, 1]), as shown in Lines 10-17. First, the most prom-

ising method 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 is selected from the 𝑝𝑜𝑜𝑙 by Eq. (5.11), which is elaborat-

ed in detail in subsection 5.3.2. Next, 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 is employed to transfer 𝐩𝑏 and 𝐩𝑎 

to two different tasks (i.e., 𝜏𝑎 and 𝜏𝑏), respectively. The corresponding transferred 

solutions of 𝐩𝑏  and 𝐩𝑎  are denoted by 𝐩𝑏′  and 𝐩𝑎′. Suppose 𝒯ℳ1 , 𝒯ℳ2 , 

𝒯ℳ3, and 𝒯ℳ4 represent AE, KAE, AT, and Baseline, respectively. Then, 𝐩𝑎′ is 

derived from 𝐩𝑎 via 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 as follows: 
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         𝐩𝑎′ = {

𝐌𝐩𝑎,                if 𝑖𝑛𝑑𝑒𝑥 = 1
𝐌𝑘𝐊(𝐏,𝐩𝑎),   if 𝑖𝑛𝑑𝑒𝑥 = 2
𝐩𝑎𝐀+ 𝐛,          if 𝑖𝑛𝑑𝑒𝑥 = 3
𝐩𝑎,                     if 𝑖𝑛𝑑𝑒𝑥 = 4

                                   (5.13) 

where 𝐌, 𝐌𝑘, and [𝐀, 𝐛] are the mappings of AE, KAE, and AT, respectively. 

Here, 𝐊(⋅,⋅) is the matrix where the (𝑖,𝑗)-th element is computed by the polynomial 

kernel function [29]. The details of expressing these mappings in the closed-form so-

lutions can be found in [25], [29], and [30], respectively. Similarly, 𝐩𝑏′ is derived 

from 𝐩𝑏 via 𝒯ℳ𝑖𝑛𝑑𝑒𝑥 in the same manner by Eq. (5.13). Then, two offspring 𝐜𝑎 

and 𝐜𝑏 are generated by applying inter-task crossover and mutation on two pairs of 

parents, i.e., [𝐩𝑎, 𝐩𝑏′] and [𝐩𝑏, 𝐩𝑎′], respectively. In this case, the skill factor 𝜏𝑎 

or 𝜏𝑏 is randomly assigned to 𝐜𝑎 and 𝐜𝑏. Moreover, 𝐜𝑎 and 𝐜𝑏 are added into 

Sindex while nindex is increased by 1 due to the triggering of 𝒯ℳ𝑖𝑛𝑑𝑒𝑥. The usage 

ratios of all methods {𝑈1, …, 𝑈𝑘} are computed by Eq. (5.10). Otherwise, as shown 

in Lines 19-23, 𝐜𝑎 and 𝐜𝑏 are generated by performing intra-task crossover and 

mutation on two pairs of parents, i.e., [𝐩𝑎, 𝐩′] and [𝐩𝑏, 𝐩′′]. Here, 𝐩′ and 𝐩′′ are 

randomly selected from 𝐏, which have the same skill factor with 𝐩𝑎 and 𝐩𝑏, re-

spectively. Thus, 𝐜𝑎 and 𝐜𝑏 can directly imitate the skill factors of their parents. In 

this study, simulated binary crossover (SBX) [94] and polynomial-based mutation 

(PM) [95] are suggested. After generating 𝐜𝑎 and 𝐜𝑏, 𝐩𝑎 or 𝐩𝑏 having the same 

skill factor as each offspring is marked as its immediate parent in Line 25, which 

aims to quantify the improvement ratio of the objective values of offspring against its 

parent. Next, both 𝐜𝑎 and 𝐜𝑏 are evaluated based on their assigned skill factors on-

ly and then added into 𝐎 in Lines 26-27. The above procedures in Lines 7-28 will be 

run iteratively until the number of offspring in 𝐎 reaches 𝑁 ×𝐾. 

After that, in Line 29, the solution sets, i.e., 𝐒1, …, and 𝐒𝑘, are combined to form 
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the solution set 𝐐, which is used to quantify the performance improvement brought 

by performing knowledge transfer. Then, 𝐼g+1 and {𝐸1
g+1, ..., 𝐸𝑘

g+1} are computed 

by Eq. (5.6) and Eq. (5.9), respectively. Next, in Lines 31-32, the next population 𝐏 

is formed by selecting top 𝑁 ×𝐾 solutions from the combination set of 𝐏 and 𝐎 

based on scalar fitness and g is increased by 1. The above evolutionary process in 

Lines 4-33 will be run when g is no more than 𝐺𝑚𝑎𝑥. Otherwise, the final popula-

tion 𝐏 is returned in Line 34. 

 

 

5.4  Experimental Study 

5.4.1  Experimental Settings 

1) Test Problems  

First, two multitasking test suites are employed as the test problems for performance 

comparison in the experiments. The first test suite includes nine MTOPs (i.e., CIHS, 

CIMS, CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS) [96]. In addition, the sec-

ond test suite includes eight MTOPs (i.e., F1-F8), which explicitly possess heteroge-

neous features on the problem dimensionality and the location of the global optima 

[74], [126]. The dimensions of the search spaces of two tasks are equal, while they 

are unequal on the rest of the problems. Additionally, two global optima are the same 

on F1, F2, F5, and F6, while they are different on the rest of the problems. The details 

of F1-F8 can be found in [126]. Furthermore, the effectiveness of the proposed meth-

od in handling some more complex problems is also studied. Therefore, one test suite 

including ten complex MTOPs from CEC 2021 Competition on Evolutionary Multi-

task Optimization
1
 and another test suite consisting of nine multiobjective MTOPs 
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[117] are considered as the test problems for effectiveness validation. More details of 

the two test suites are provided in subsection 5.4.6. 

 

Table 5.3: Parameter settings of all compared algorithms. 

Algorithm Parameter settings 

MFEA 𝑁 = 100, 𝑟𝑚𝑝 = 0.3 

MFEA-II 𝑁 = 100 

MFEA-AKT 𝑁 = 100, 𝑟𝑚𝑝 = 0.3 

MFEA-AE 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑆 = 100 

MFEA-KAE 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝑆 = 100 

MFEA-AT 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝛼 = 0.5 

MFEA-DAE 𝑁 = 100, 𝑟𝑚𝑝 = 0.3, 𝜆 = 0.8, 𝛽 = 0.5 

MKTDE 𝑁 = 100, 𝐹 = 0.5, 𝐶𝑅 = 0.6 

LCB-EMT 𝑁 = 100, 𝑇𝐺 = 50, 𝑁𝑡 = 50× 𝜆g 

MFEA-FLM 𝑁 = 100, 𝛼 = 0.1 

 

 

2) Parameter Settings  

The common parameters are set to the same for all compared algorithms. Specifically, 

the population size (𝑁) for each task is set to 100. The maximum number of function 

evaluations is set to 40 000 for each test problem. Additionally, SBX and PM are em-

ployed as the evolutionary operator for generating the offspring during the evolution-

ary search process for all compared algorithms except MKTDE [120]. In SBX, two 

parameters, i.e., 𝑝𝑐 and 𝜂𝑐 are set to 1.0 and 15, respectively. In terms of PM, two 

parameters, i.e., 𝑝𝑚 and 𝜂𝑚 are set to 1/ 𝑑 (𝑑 is the number of decision variables) 

and 15, respectively. 

 

1
http://www.bdsc.site/websites/MTO_competition_2021/MTO_Competition_CEC_20

21.html 



 

１３７ 

The private parameters of these algorithms are listed in Tab. 5.3. In MFEA and its 

variants (i.e., MFEA-AKT, MFEA-AE, MFEA-KAE, MFEA-AT, and MFEA-DAE 

[126]), 𝑟𝑚𝑝 is 0.3. For MFEA-AE and MFEA-KAE, the numbers of sampled solu-

tions (𝑆) for learning 𝐌 and 𝐌𝑘 offline are set to 100. In MFEA-AT, the prefer-

ence coefficient 𝛼 is set to 0.5 for learning the mapping parameters [𝐀, 𝐛]. In 

MFEA-DAE, two parameters, i.e., 𝛽 and 𝜆, are 0.5 and 0.8, respectively. MKTDE 

adopts DE, where two parameters (i.e., 𝐹 and 𝐶𝑅 in DE) is set to 0.5 and 0.6, re-

spectively. For LCB-EMT [76], the transfer interval generation (𝑇𝐺) is 50 while the 

maximal number of transferred solutions (𝑁𝑡) is 50 × 𝜆g (𝜆g is the similar factor at 

the current generation g). In terms of MFEA-FLM, the preference coefficient 𝛼 is 

set to 0.1, while the mapping parameters (i.e., 𝐌, 𝐌𝑘, and [𝐀, 𝐛]) are learned based 

on the same parameter settings used in MFEA-AE, MFEA-KAE, and MFEA-AT. The 

numerical results of independently running each algorithm 30 times on each test prob-

lem are collected for comparison. The Wilcoxon rank sum test with a 0.05 signifi-

cance level is used to show the statistically significant differences. 

 

 

5.4.2  Comparison with Recent EMT Algorithms 

To demonstrate the competitive performance of MFEA-FLM relative to five state-of-

the-art EMT algorithms, including MFEA-II, MFEA-AKT, MFEA-DAE, MTKDE, 

and LCB-EMT. The detailed numerical results of all compared algorithms on two test 

suites are given in Tab. 5.4 and Tab. 5.5, respectively. 
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Table 5.4: Mean objective values and standard deviations obtained by MFEA-FLM 

and compared algorithms on nine MTOPs. 

Problem MFEA-II MFEA-AKT MFEA-DAE MTKDE LCB-EMT MFEA-FLM 

CIHS-T1 3.68e-01(6.19e-02)- 1.04e+00(2.48e-02)- 1.12e-02(2.84e-02)- 9.34e-01(9.54e-02)- 3.04e-01(4.55e-02)- 9.79e-03(2.35e-02) 

CIHS-T2 2.09e+02(2.93e+01)- 3.55e+02(3.42e+01)- 1.29e+01(2.19e+01)- 4.11e+02(2.43e+01)- 2.54e+02(9.41e+01)- 1.04e+01(2.32e+01) 

CIMS-T1 2.41e+00(2.24e-01)- 5.71e+00(4.75e-01)- 6.88e-02(1.35e-02)- 4.25e+00(4.85e-01)- 2.09e+00(4.88e-01)- 3.59e-02(1.73e-02) 

CIMS-T2 2.30e+02(4.10e+01)- 3.91e+02(3.25e+01)- 2.13e+00(6.59e-01)- 4.10e+02(2.91e+01)- 2.72e+02(1.18e+02)- 7.16e-01(7.04e-01) 

CILS-T1 2.03e+01(2.61e+00)- 2.06e+01(4.81e-02)- 5.73e-01(1.24e-01)- 2.12e+01(4.66e-02)- 3.47e+00(5.62e+00)- 4.08e-01(1.36e-01) 

CILS-T2 8.84e+02(2.13e+02)- 8.48e+03(5.31e+02)- 3.55e+00(1.01e+00)- 1.38e+04(4.17e+02)- 4.35e+02(3.62e+02)- 2.25e+00(1.15e+00) 

PIHS-T1 4.10e+02(1.69e+01)- 6.72e+02(1.09e+02)- 2.98e+02(6.15e+01)+ 5.57e+02(5.60e+01)- 1.99e+02(7.80e+01)+ 3.75e+02(2.67e+01) 

PIHS-T2 3.08e+00(6.39e-01)- 6.31e+02(1.64e+02)- 2.24e+00(7.31e-01)- 3.90e+02(1.82e+02)- 3.95e+00(1.34e+00)- 1.36e+00(5.41e-01) 

PIMS-T1 2.42e+00(2.36e-01)- 4.66e+00(3.39e-01)- 5.50e-01(1.63e-01)~ 3.92e+00(7.50e-01)- 2.53e+00(1.33e-01)- 6.88e-01(3.34e-01) 

PIMS-T2 6.62e+02(1.85e+02)- 6.50e+03(2.09e+03)- 6.39e+01(1.77e+01)- 5.56e+03(6.92e+03)- 5.53e+02(4.50e+02)- 5.34e+01(1.44e+01) 

PILS-T1 2.49e+00(2.75e-01)- 7.37e+00(1.08e+00)- 3.12e-02(7.10e-03)~ 1.77e+01(2.44e+00)- 2.59e+00(6.25e-01)- 3.43e-02(9.85e-03) 

PILS-T2 2.55e+00(7.66e-01)- 7.33e+00(1.07e+00)- 1.17e-01(3.81e-02)~ 1.62e+01(5.51e+00)- 3.12e+00(1.03e+00)- 1.10e-01(4.70e-02) 

NIHS-T1 8.41e+02(1.97e+02)- 2.76e+04(1.02e+04)- 4.98e+01(8.33e-01)- 1.14e+04(7.58e+03)- 6.73e+02(6.15e+02)- 4.87e+01(4.84e-01) 

NIHS-T2 2.57e+02(4.76e+01)- 4.09e+02(3.05e+01)- 2.93e+00(1.70e+00)- 4.38e+02(2.22e+01)- 3.53e+02(8.42e+01)- 8.79e-01(8.73e-01) 

NIMS-T1 2.62e-01(5.86e-02)- 1.13e+00(3.59e-02)- 1.36e-01(3.19e-02)- 1.14e+00(5.85e-02)- 2.43e-01(6.59e-02)- 9.33e-02(2.71e-02) 

NIMS-T2 1.07e+01(1.99e+00)- 2.20e+01(2.72e+00)- 2.65e+00(2.35e-01)~ 1.89e+01(2.88e+00)- 1.57e+01(2.81e+00)- 2.59e+00(3.32e-01) 

NILS-T1 4.10e+02(1.63e+01)- 9.48e+02(1.05e+02)- 3.27e+02(5.23e+01)+ 3.37e+03(6.83e+02)- 4.15e+02(1.76e+01)- 3.82e+02(3.75e+01) 

NILS-T2 8.42e+02(2.93e+02)+ 8.41e+03(5.77e+02)- 2.23e+03(1.47e+03)+ 1.36e+04(4.47e+02)- 7.06e+02(2.38e+02)+ 5.31e+03(8.60e+02) 

Best/All 0/18 0/18 3/18 0/18 1/18 13/18 

+/-/~ 1/17/0 0/18/0 3/11/4 0/18/0 2/16/0 \ 

 

Table 5.5: Mean objective values and standard deviations obtained by MFEA-FLM 

and compared algorithms on F1 to F8. 

Problem MFEA-II MFEA-AKT MFEA-DAE MTKDE LCB-EMT MFEA-FLM 

F1-T1 3.78e-01(6.89e-02)- 1.11e+00(2.16e-02)- 2.50e-01(5.90e-02)- 9.56e-01(6.83e-02)- 3.10e-01(4.80e-02)- 1.55e-01(3.59e-02) 

F1-T2 2.03e+02(3.34e+01)~ 4.68e+02(2.90e+01)- 2.41e+02(4.04e+01)- 4.03e+02(2.39e+01)- 4.25e+02(1.11e+01)- 2.08e+02(4.37e+01) 

F2-T1 2.42e+00(2.44e-01)- 8.35e+00(5.89e-01)- 1.76e+00(2.38e-01)- 4.53e+00(6.28e-01)- 3.46e+00(5.91e-01)- 1.13e+00(2.20e-01) 

F2-T2 2.20e+02(3.58e+01)- 6.08e+02(5.99e+01)- 2.29e+02(3.69e+01)- 4.26e+02(3.10e+01)- 4.17e+02(1.45e+01)- 1.17e+02(2.57e+01) 

F3-T1 1.18e+03(8.45e+02)- 5.04e+05(2.97e+05)- 2.87e+02(7.24e+01)~ 6.03e+05(4.85e+05)- 9.83e+02(4.12e+02)- 3.07e+02(7.27e+01) 

F3-T2 5.15e+01(1.03e+01)- 9.63e+03(1.29e+03)- 4.34e+01(1.04e+01)- 7.35e+02(1.42e+02)- 5.70e+01(9.24e+00)- 3.18e+01(4.52e+00) 

F4-T1 4.10e+02(2.33e+01)~ 1.62e+03(2.81e+02)- 3.85e+02(3.81e+01)~ 3.30e+03(6.89e+02)- 4.22e+02(1.18e+01)- 4.03e+02(1.82e+01) 

F4-T2 8.03e+02(2.90e+02)+ 8.51e+03(6.95e+02)- 1.55e+03(8.77e+02)~ 1.35e+04(4.41e+02)- 8.27e+02(3.42e+02)+ 1.59e+03(1.05e+03) 

F5-T1 4.19e+02(2.06e+01)- 5.53e+02(8.63e+01)- 5.73e-01(2.83e-01)- 1.77e+03(3.56e+02)- 3.05e+01(2.92e+01)- 4.22e-01(2.44e-01) 

F5-T2 3.06e-02(1.99e-02)- 1.62e+01(5.72e+00)- 1.52e-04(2.69e-04)~ 1.38e+02(6.31e+01)- 8.52e-02(4.01e-02)- 1.01e-04(2.00e-04) 

F6-T1 2.85e+00(2.00e-01)- 5.73e+00(9.33e-01)- 3.28e-02(1.06e-02)- 1.60e+01(1.57e+00)- 6.17e-03(5.55e-03)+ 2.58e-02(9.43e-03) 

F6-T2 1.05e-01(3.85e-02)- 2.58e+00(4.57e-01)- 1.71e-02(1.00e-02)- 8.77e+00(1.58e+00)- 7.73e-02(2.86e-02)- 9.33e-03(5.79e-03) 

F7-T1 1.30e+03(7.97e+02)- 1.20e+05(1.34e+05)- 4.86e+01(2.29e-01)- 2.67e+07(1.33e+07)- 1.23e+03(9.77e+02)- 4.84e+01(2.07e-01) 

F7-T2 1.26e+02(4.29e+01)- 1.55e+02(2.92e+01)- 2.19e-02(1.86e-02)~ 2.89e+02(3.88e+01)- 1.22e+02(3.99e+01)- 1.71e-02(1.09e-02) 

F8-T1 4.13e+02(1.95e+01)- 1.22e+03(2.07e+02)- 3.59e+02(4.32e+01)+ 3.48e+03(7.32e+02)- 4.15e+02(9.20e+00)- 3.99e+02(1.52e+01) 

F8-T2 1.61e+02(1.62e+02)~ 3.48e+03(4.51e+02)- 3.42e+02(2.57e+02)- 5.07e+03(3.24e+02)- 9.48e+01(1.05e+02)~ 2.01e+02(1.86e+02) 

Best/All 2/16 0/16 3/16 0/16 2/16 9/16 

+/-/~ 1/12/3 0/16/0 1/10/5 0/16/0 2/13/1 \ 

“+” (or “-”) indicates the variant is better (or worse) than MFEA-FLM, and “~” indicates they 

obtain the statistically similar performance. The best result on each task is highlighted in bold. 
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The comparison results demonstrate that MFEA-FLM achieves better performance 

than its competitors on most test problems. In MFEA-II, the extent of knowledge 

transfer is adjustable by dynamically modifying the value of 𝑟𝑚𝑝. Additionally, 

MFEA-AKT employs multiple crossovers with different search biases for knowledge 

transfer, while MFEA-DAE employs multiple domain adaptation methods to transfer 

solutions across tasks. Compared to the three EMT algorithms, significantly outper-

forms them on most test problems from the first test suite (i.e., 17, 18, and 11 out of 

18 cases, respectively. Similarly, the performance superiority of MFEA-FLM is also 

shown on the second test suite. MFEA-FLM obtains better results than MFEA-II, 

MFEA-AKT, and MFEA-DAE on 12, 16, and 10 out of 16 cases, respectively. Be-

sides, MTKDE adopts differential evolution-based framework, where the meta-

knowledge is transferred across tasks. In LCB-EMT, a solution selection method 

based on the lower confidence bound is proposed for knowledge transfer. It is ob-

served that MFEA-FLM archives better results than MTKDE on all test cases from 

the two test suites. In addition, MFEA-FLM outperforms LCB-EMT on most test 

problems (i.e., 16 out of 18 cases from the first test suite and 13 out of 16 cases from 

the second test suite, respectively). In summary, the above comparison results demon-

strate the competitive performance of MFEA-FLM. 

 

5.4.3  Effectiveness Validation of MFEA-FLM 

1) Effectiveness Validation of FL-Based Transfer Parameter Adaption 

To study the effectiveness of dynamically adapting the value of 𝑟𝑚𝑝 via FL-based 

transfer parameter adaption introduced in subsection 5.3.1, some variants of MFEA-

FLM are designed by presetting 𝑟𝑚𝑝 to a fixed value from {0, 0.3, 0.6, 0.9}. 
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The overall performance comparisons among these variants are computed based on 

the test of Friedman [121] as shown in Fig. 5.4 while the detailed numerical results 

are provided in Tab. 5.6 and Tab. 5.7. It is observed that MFEA-FLM achieves the 

smallest ranks among these variants on the two test suites (i.e., 1.5 and 2.03, respec-

tively), which demonstrate that MFEA-FLM performs the best among all variants in 

terms of the overall performance on the two test suites. The above comparison results 

show that employing the proposed FL-based parameter adaption mechanism to adapt 

the transfer extent significantly improves the multitasking performance of MFEA 

when compared to its variants with a fixed 𝑟𝑚𝑝. 

 

 

Figure 5.4: Performance ranks of MFEA-FLM and its variants with fixed values of 

𝑟𝑚𝑝 on two test suites. 
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Table 5.6: Mean objective values and standard deviations obtained by MFEA-FLM 

and its variants with fixed values of 𝑟𝑚𝑝 on nine MTOPs. 

Problem Variant-I (𝑟𝑚𝑝= 0) Variant-II (𝑟𝑚𝑝= 0.3) Variant-III (𝑟𝑚𝑝= 0.6) Variant-IV (𝑟𝑚𝑝= 0.9) MFEA-FLM 

CIHS-T1 2.98e-01(5.24e-02)- 1.98e-02(3.27e-02)- 9.87e-03(2.80e-02)~ 1.48e-02(4.58e-02)- 9.79e-03(2.35e-02) 

CIHS-T2 4.15e+02(1.87e+01)- 2.30e+01(3.60e+01)- 1.27e+01(3.39e+01)~ 1.59e+01(4.19e+01)- 1.04e+01(2.32e+01) 

CIMS-T1 2.25e+00(2.42e-01)- 5.35e-02(1.16e-02)- 4.28e-02(1.04e-02)- 8.09e-02(2.21e-02)- 3.59e-02(1.73e-02) 

CIMS-T2 4.17e+02(2.10e+01)- 1.37e+00(5.49e-01)- 9.20e-01(3.62e-01)- 2.78e+00(1.39e+00)- 7.16e-01(7.04e-01) 

CILS-T1 2.12e+01(4.09e-02)- 4.92e-01(1.93e-01)~ 7.38e-01(2.39e-01)- 1.86e+00(5.43e-01)- 4.08e-01(1.36e-01) 

CILS-T2 1.13e+03(3.71e+02)- 2.99e+00(1.87e+00)~ 5.44e+00(2.70e+00)- 2.90e+01(1.99e+01)- 2.25e+00(1.15e+00) 

PIHS-T1 4.23e+02(2.12e+01)- 3.80e+02(1.90e+01)~ 3.58e+02(3.66e+01)+ 3.28e+02(4.25e+01)+ 3.75e+02(2.67e+01) 

PIHS-T2 4.71e+00(1.16e+00)- 1.47e+00(4.04e-01)~ 9.53e+00(4.43e+00)- 1.65e+02(4.37e+01)- 1.36e+00(5.41e-01) 

PIMS-T1 2.41e+00(2.21e-01)- 4.22e-01(1.52e-01)+ 1.09e+00(4.49e-01)- 2.74e+00(2.39e-01)- 6.88e-01(3.34e-01) 

PIMS-T2 1.25e+03(5.51e+02)- 5.98e+01(1.36e+01)- 5.17e+01(2.08e+00)+ 5.47e+01(4.86e+00)- 5.34e+01(1.44e+01) 

PILS-T1 2.47e+00(1.87e-01)- 3.24e-02(9.42e-03)~ 4.44e-02(8.58e-03)- 8.03e-02(1.21e-02)- 3.43e-02(9.85e-03) 

PILS-T2 5.97e+00(1.62e+00)- 1.01e-01(3.35e-02)~ 1.47e-01(3.69e-02)- 3.05e-01(5.82e-02)- 1.10e-01(4.70e-02) 

NIHS-T1 1.48e+03(1.27e+03)- 5.10e+01(8.90e+00)- 4.89e+01(5.44e-01)- 5.03e+01(7.94e-01)- 4.87e+01(4.84e-01) 

NIHS-T2 4.17e+02(2.65e+01)- 4.90e+00(1.40e+01)- 1.28e+00(1.09e+00)- 3.67e+00(1.54e+00)- 8.79e-01(8.73e-01) 

NIMS-T1 3.17e-01(6.07e-02)- 1.04e-01(2.49e-02)~ 1.94e-01(5.38e-02)- 5.55e-01(9.57e-02)- 9.33e-02(2.71e-02) 

NIMS-T2 1.56e+01(2.88e+00)- 2.83e+00(4.93e-01)- 3.26e+00(4.03e-01)- 5.17e+00(1.22e+00)- 2.59e+00(3.32e-01) 

NILS-T1 4.15e+02(1.74e+01)- 4.03e+02(2.31e+01)- 3.93e+02(5.09e+01)~ 3.35e+02(6.42e+01)+ 3.82e+02(3.75e+01) 

NILS-T2 9.42e+02(3.97e+02)+ 4.28e+03(1.35e+03)+ 5.66e+03(5.81e+02)- 6.09e+03(7.95e+01)- 5.31e+03(8.60e+02) 

Best/All 1/18 3/18 1/18 2/18 11/18 

+/-/~ 1/17/0 2/9/7 2/13/3 2/16/0 \ 

 

 

Table 5.7: Mean objective values and standard deviations obtained by MFEA-FLM 

and its variants with fixed values of 𝑟𝑚𝑝 on F1 to F8. 

Problem Variant-I (𝑟𝑚𝑝= 0) Variant-II (𝑟𝑚𝑝= 0.3) Variant-III (𝑟𝑚𝑝= 0.6) Variant-IV (𝑟𝑚𝑝= 0.9) MFEA-FLM 

F1-T1 2.59e-01(6.94e-02)- 1.56e-01(3.05e-02)~ 1.99e-01(4.94e-02)- 2.84e-01(7.28e-02)- 1.55e-01(3.59e-02) 

F1-T2 4.12e+02(1.86e+01)- 2.24e+02(6.63e+01)~ 2.08e+02(4.87e+01)~ 2.21e+02(5.37e+01)~ 2.08e+02(4.37e+01) 

F2-T1 2.56e+00(4.47e-01)- 9.07e-01(3.10e-01)+ 1.27e+00(3.29e-01)~ 1.96e+00(2.30e-01)- 1.13e+00(2.20e-01) 

F2-T2 4.11e+02(1.65e+01)- 1.05e+02(5.47e+01)~ 1.39e+02(5.04e+01)~ 2.32e+02(4.71e+01)- 1.17e+02(2.57e+01) 

F3-T1 1.48e+03(1.40e+03)- 3.35e+02(9.59e+01)~ 2.72e+02(7.41e+01)~ 3.77e+02(9.28e+01)- 3.07e+02(7.27e+01) 

F3-T2 5.02e+01(7.95e+00)- 3.46e+01(5.37e+00)- 4.22e+01(6.39e+00)- 5.52e+01(7.60e+00)- 3.18e+01(4.52e+00) 

F4-T1 4.13e+02(2.08e+01)~ 4.06e+02(2.11e+01)~ 4.19e+02(1.65e+01)- 4.46e+02(2.06e+01)- 4.03e+02(1.82e+01) 

F4-T2 8.02e+02(3.81e+02)+ 1.14e+03(5.60e+02)~ 2.41e+03(1.38e+03)- 4.42e+03(1.35e+03)- 1.59e+03(1.05e+03) 

F5-T1 4.17e+02(1.67e+01)- 3.47e-01(1.88e-01)~ 3.88e-01(2.23e-01)~ 4.96e-01(2.21e-01)~ 4.22e-01(2.44e-01) 

F5-T2 6.14e-02(3.54e-02)- 9.75e-05(1.91e-04)~ 5.46e-05(8.20e-05)~ 1.39e-04(2.71e-04)~ 1.01e-04(2.00e-04) 

F6-T1 2.16e+00(3.65e-01)- 2.55e-02(6.55e-03)~ 2.93e-02(7.74e-03)~ 3.49e-02(9.59e-03)- 2.58e-02(9.43e-03) 

F6-T2 7.07e-02(3.08e-02)- 1.18e-02(9.10e-03)~ 8.25e-03(5.38e-03)~ 9.56e-03(6.31e-03)~ 9.33e-03(5.79e-03) 

F7-T1 9.58e+02(3.26e+02)- 4.85e+01(1.71e-01)~ 4.85e+01(2.66e-01)~ 4.86e+01(1.40e-01)- 4.84e+01(2.07e-01) 

F7-T2 1.54e+02(4.89e+01)- 2.04e-02(1.29e-02)~ 1.56e-02(1.11e-02)~ 1.31e-02(1.21e-02)~ 1.71e-02(1.09e-02) 

F8-T1 4.09e+02(1.52e+01)- 3.98e+02(1.72e+01)~ 4.09e+02(1.51e+01)- 4.20e+02(2.44e+01)- 3.99e+02(1.52e+01) 

F8-T2 1.34e+02(1.19e+02)~ 1.84e+02(1.59e+02)~ 3.36e+02(2.55e+02)- 1.81e+03(7.74e+02)- 2.01e+02(1.86e+02) 

Best/All 2/16 5/16 3/16 1/16 5/16 

+/-/~ 1/13/2 1/1/14 0/6/10 0/11/5 \ 

“+” (or “-”) indicates the variant is better (or worse) than MFEA-FLM, and “~” indicates they obtain the statistically 

similar performance. The best result on each task is highlighted in bold. 
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                (a) CIMS-T2                             (b) PIHS-T2 

 

(c) NIHS-T2                            (d) CILS-T2 

 

(e) PILS-T1                              (f) NIMS-T2 

Figure 5.5: Convergence curves of MFEA-FLM and its variants with the fixed values 

of 𝑟𝑚𝑝 during the multitasking search process. 
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Moreover, the convergence curves of MFEA-FLM and these variants with different 

values of 𝑟𝑚𝑝 on some representative problems are presented in Fig. 5.5. For CIMS, 

the two tasks have median similarity, and their global optima are identical in the uni-

fied search space with respect to all variables. As observed from Fig. 5.5(a), the vari-

ant with 𝑟𝑚𝑝 = 0.9 achieves better convergence performance than other variants at 

the early evolutionary stage, while it is gradually outperformed by two variants with 

𝑟𝑚𝑝 = 0.3 and 𝑟𝑚𝑝 = 0.6. This shows that setting 𝑟𝑚𝑝 to 0.9 will lead to exces-

sive knowledge transfer during the later evolutionary stage, which causes perfor-

mance degradation, called negative transfer. By adaptively adjusting the value of 

𝑟𝑚𝑝, MFEA-FLM finally achieves better performance, as shown in Fig. 5.5(a). Simi-

larly, in terms of PIHS and NIMS, their two tasks have high and median similarity, 

respectively. As observed in Fig. 5.5(b) and Fig. 5.5(c), the variant with 𝑟𝑚𝑝 = 0.3 

and the variant with 𝑟𝑚𝑝 = 0.6 achieve better performance on PIHS-T2 and NIMS-

T2 when compared these variants with other fixed values of 𝑟𝑚𝑝, respectively. 

MFEA-FLM finally achieves the best performance when compared to all variants 

with fixed values of 𝑟𝑚𝑝, which demonstrates that employing the proposed FLM to 

adapt 𝑟𝑚𝑝 effectively alleviates the threat of negative transfer. Additionally, as 

shown in Figs. 5.5(d), (e), and (f), MFEA-FLM finally achieves the best convergence 

performance when compared to its variants with fixed values of 𝑟𝑚𝑝 on CILS-T2, 

PILS-T1, and NIMS-T2. The above observations demonstrate that employing the pro-

posed method to dynamically adapt the extent of knowledge transfer can effectively 

alleviate the threat of negative transfer during the multitasking search process. 

 

2) Effectiveness Validation of FL-Based Transfer Method Selection 

To study the effectiveness of adaptively selecting the promising transfer method via 
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FL-based transfer method selection introduced in subsection 5.3.2, some variants of 

MFEA-FLM are designed as the compared algorithms by only employing one certain 

method (i.e., AE, KAE, AT, or Baseline) for conducting knowledge transfer. Note 

that Baseline is a simple method, which directly transfers the solutions from one task 

to another task without any adaptation. Additionally, another variant is designed as 

the compared algorithm by randomly selecting one from the 𝑝𝑜𝑜𝑙, aiming to validate 

the effectiveness and reasonability of the proposed FL-based selection mechanism. 

Note that the value of 𝑟𝑚𝑝 is dynamically adapted in all compared algorithms. The 

overall performance comparisons among these variants are done based on the test of 

Friedman as shown in Fig. 5.6, while the detailed numerical results are provided in 

Tab. 5.8 and Tab. 5.9. 

 

 

Figure 5.6: Performance ranks of MFEA-FLM and its variants with fixed transfer 

methods on two test suites. 
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Table 5.8: Mean objective values and standard deviations obtained by MFEA-FLM 

and its variants with fixed transfer methods on Nine MTOPs. 

Problem MFEA-Baseline MFEA-AE MFEA-KAE MFEA-AT MFEA-Random MFEA-FLM 

CIHS-T1 4.06e-01(7.80e-02)- 2.29e-03(8.28e-04)+ 2.64e-01(6.13e-02)- 2.07e-01(4.73e-02)- 7.97e-03(3.33e-03)+ 9.79e-03(2.35e-02) 

CIHS-T2 2.20e+02(3.39e+01)- 2.19e+00(9.11e-01)~ 3.94e+02(1.97e+01)- 2.05e+02(6.47e+01)- 1.18e+01(4.40e+00)- 1.04e+01(2.32e+01) 

CIMS-T1 2.39e+00(2.19e-01)- 5.42e-02(9.59e-03)- 1.73e+00(2.68e-01)- 1.47e+00(3.45e-01)- 1.07e-01(1.97e-02)- 3.59e-02(1.73e-02) 

CIMS-T2 2.44e+02(4.78e+01)- 1.50e+00(4.38e-01)- 3.98e+02(1.35e+01)- 1.47e+02(5.03e+01)- 4.38e+00(1.44e+00)- 7.16e-01(7.04e-01) 

CILS-T1 1.97e+01(3.08e+00)- 2.12e+01(3.64e-02)- 3.28e+00(2.47e+00)- 1.98e+01(3.57e+00)- 5.63e-01(1.44e-01)- 4.08e-01(1.36e-01) 

CILS-T2 1.44e+03(3.52e+02)- 1.24e+03(4.38e+02)- 1.67e+03(9.30e+02)- 1.17e+03(3.47e+02)- 3.36e+00(1.27e+00)- 2.25e+00(1.15e+00) 

PIHS-T1 4.37e+02(1.99e+01)- 3.73e+02(1.40e+01)~ 4.02e+02(1.48e+01)- 3.98e+02(1.41e+01)- 3.78e+02(2.19e+01)~ 3.75e+02(2.67e+01) 

PIHS-T2 1.15e+01(2.73e+00)- 9.75e+00(2.31e+00)- 7.76e+00(1.78e+00)- 2.41e+00(5.80e-01)- 1.90e+00(6.17e-01)- 1.36e+00(5.41e-01) 

PIMS-T1 2.69e+00(2.45e-01)- 1.10e+00(1.94e-01)- 1.82e+00(2.84e-01)- 1.14e+00(2.01e-01)- 5.94e-01(1.22e-01)~ 6.88e-01(3.34e-01) 

PIMS-T2 8.08e+02(2.59e+02)- 5.15e+01(1.22e+00)+ 4.04e+02(1.05e+02)- 2.78e+02(4.79e+01)- 6.98e+01(1.98e+01)- 5.34e+01(1.44e+01) 

PILS-T1 3.04e+00(2.52e-01)- 4.10e-02(1.26e-02)- 2.42e+00(2.29e-01)- 1.63e+00(3.93e-01)- 3.71e-02(7.84e-03)~ 3.43e-02(9.85e-03) 

PILS-T2 2.86e+00(5.43e-01)- 1.56e-01(3.72e-02)- 2.45e+00(9.63e-01)- 1.27e+00(5.86e-01)- 1.26e-01(4.36e-02)~ 1.10e-01(4.70e-02) 

NIHS-T1 1.03e+03(2.66e+02)- 4.92e+01(2.36e-01)- 4.44e+02(9.21e+01)- 4.45e+02(9.53e+01)- 5.63e+01(1.38e+01)- 4.87e+01(4.84e-01) 

NIHS-T2 3.06e+02(3.51e+01)- 1.74e+00(5.80e-01)- 3.96e+02(1.45e+01)- 2.96e+02(6.06e+01)- 1.37e+01(1.85e+01)- 8.79e-01(8.73e-01) 

NIMS-T1 4.61e-01(6.23e-02)- 3.97e-01(6.52e-02)- 2.91e-01(5.64e-02)- 1.66e-01(4.26e-02)- 1.46e-01(4.11e-02)- 9.33e-02(2.71e-02) 

NIMS-T2 1.41e+01(2.57e+00)- 2.71e+00(2.76e-01)~ 5.69e+00(7.76e-01)- 8.37e+00(1.61e+00)- 2.92e+00(2.71e-01)- 2.59e+00(3.32e-01) 

NILS-T1 4.27e+02(1.71e+01)- 3.96e+02(1.64e+01)~ 4.04e+02(1.83e+01)- 4.34e+02(1.79e+01)- 3.92e+02(1.99e+01)~ 3.82e+02(3.75e+01) 

NILS-T2 1.36e+03(3.66e+02)+ 1.27e+03(4.21e+02)+ 5.27e+03(4.79e+02)~ 1.12e+03(3.52e+02)+ 1.81e+03(1.08e+03)+ 5.31e+03(8.60e+02) 

Best/All 0/18 4/18 0/18 1/18 1/18 12/18 

+/-/~ 1/17/0 3/11/4 0/17/1 1/17/0 2/11/5 \ 

 

 

Table 5.9: Mean objective values and standard deviations obtained by MFEA-FLM 

and its variants with fixed transfer methods on F1 to F8. 

Problem MFEA-Baseline MFEA-AE MFEA-KAE MFEA-AT MFEA-Random MFEA-FLM 

F1-T1 2.88e-01(4.52e-02)- 2.57e-01(4.74e-02)- 2.49e-01(4.52e-02)- 1.54e-01(2.69e-02)~ 1.60e-01(4.46e-02)~ 1.55e-01(3.59e-02) 

F1-T2 2.11e+02(4.44e+01)~ 4.15e+02(1.69e+01)- 4.19e+02(1.67e+01)- 1.79e+02(6.11e+01)~ 2.59e+02(6.05e+01)- 2.08e+02(4.37e+01) 

F2-T1 2.00e+00(2.77e-01)- 1.83e+00(2.44e-01)- 1.86e+00(3.14e-01)- 1.16e+00(3.01e-01)~ 1.10e+00(2.17e-01)~ 1.13e+00(2.20e-01) 

F2-T2 2.42e+02(4.42e+01)- 4.12e+02(2.25e+01)- 4.20e+02(1.84e+01)- 1.20e+02(3.54e+01)~ 1.26e+02(3.53e+01)~ 1.17e+02(2.57e+01) 

F3-T1 1.63e+03(1.21e+03)- 4.46e+02(1.44e+02)- 4.48e+02(1.26e+02)- 5.33e+02(5.22e+02)- 3.56e+02(5.75e+01)- 3.07e+02(7.27e+01) 

F3-T2 5.49e+01(9.32e+00)- 6.33e+01(1.35e+01)- 2.70e+01(5.18e+00)+ 4.89e+01(8.42e+00)- 3.61e+01(6.39e+00)- 3.18e+01(4.52e+00) 

F4-T1 4.14e+02(1.82e+01)~ 4.19e+02(1.87e+01)- 4.20e+02(1.65e+01)- 4.04e+02(1.60e+01)~ 4.08e+02(1.48e+01)~ 4.03e+02(1.82e+01) 

F4-T2 8.77e+02(3.06e+02)+ 9.71e+02(2.72e+02)+ 3.43e+03(1.28e+03)- 8.08e+02(2.58e+02)+ 9.42e+02(3.43e+02)+ 1.59e+03(1.05e+03) 

F5-T1 4.10e+02(1.95e+01)- 6.22e-01(2.92e-01)- 4.06e+02(2.34e+01)- 3.93e+02(1.68e+01)- 5.88e-01(2.83e-01)- 4.22e-01(2.44e-01) 

F5-T2 4.52e-02(2.30e-02)- 4.95e-04(4.39e-04)- 5.77e-02(2.85e-02)- 2.53e-03(5.48e-03)- 2.17e-04(2.11e-04)- 1.01e-04(2.00e-04) 

F6-T1 2.05e+00(2.83e-01)- 3.13e-02(8.16e-03)- 1.72e+00(2.76e-01)- 1.01e+00(2.21e-01)- 3.21e-02(8.93e-03)- 2.58e-02(9.43e-03) 

F6-T2 7.59e-02(2.72e-02)- 2.50e-02(1.59e-02)- 7.89e-02(3.73e-02)- 3.04e-02(1.98e-02)- 1.93e-02(9.53e-03)- 9.33e-03(5.79e-03) 

F7-T1 1.42e+03(8.45e+02)- 4.84e+01(1.82e-01)~ 6.64e+02(5.72e+02)- 8.00e+02(6.13e+02)- 4.86e+01(3.06e-01)- 4.84e+01(2.07e-01) 

F7-T2 9.58e+01(1.90e+01)- 2.97e-02(2.19e-02)- 1.33e+02(2.95e+01)- 7.85e+01(2.97e+01)- 4.42e-02(5.47e-02)- 1.71e-02(1.09e-02) 

F8-T1 4.19e+02(1.81e+01)- 4.12e+02(2.11e+01)- 4.13e+02(2.02e+01)- 4.10e+02(1.30e+01)- 4.02e+02(1.86e+01)~ 3.99e+02(1.52e+01) 

F8-T2 1.84e+02(1.45e+02)~ 1.78e+02(1.11e+02)~ 3.44e+02(2.23e+02)- 1.50e+02(1.35e+02)~ 1.78e+02(1.55e+02)~ 2.01e+02(1.86e+02) 

Best/All 0/16 1/16 0/16 4/16 1/16 10/16 

+/-/~ 1/12/3 1/13/2 1/15/0 1/9/6 1/9/6 \ 

“+” (or “-”) indicates the variant is better (or worse) than MFEA-FLM, and “~” indicates they obtain the statistically 

similar performance. The best result on each task is highlighted in bold. 
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It is observed that MFEA-FLM achieves the smallest ranks among these variants on 

the two test suites (i.e., 1.61 and 1.78, respectively), which demonstrate that MFEA-

FLM performs best among these variants in terms of the overall performance. The 

above comparison results show that employing the proposed method to adaptively se-

lect the promising method for knowledge transfer can further enhance the multitask-

ing performance. 

 

 

(a) F1                                 (b) F4        

            

 

 (c) F6 

Figure 5.7: Normalized utilization ratios of four methods of knowledge transfer dur-

ing the multitasking search process on F1, F4, and F6. 
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Moreover, to study the use of AE, KAE, AT, and Baseline during the multitasking 

evolutionary search process, Fig. 5.7 shows the normalized utilization ratio of each 

method during the multitasking search process on F1, F4, and F6. Here, the normal-

ized utilization ratio is defined as the ratio of the number of using each method for 

knowledge transfer and the total number of triggering knowledge transfer. It can be 

observed that MFEA-FLM can dynamically adjust the utilization ratios of different 

methods for knowledge transfer during the multitasking search process. As shown in 

Fig. 5.7(a), the utilization ratios of AT and Baseline are obviously higher than that of 

AE and KAE on F1, which demonstrate that both AT and Baseline play a vital role in 

performing effective knowledge transfer on F1. However, in terms of F4, the two 

tasks have low similarity, and their global optima are in different locations. In such a 

case, compared to Baseline, both KAE and AE can enhance the transferability of so-

lutions to some extent by learning the mapping between tasks. Thus, the utilization 

ratios of KAE and AE on F4 are relatively higher than that on F1, as shown in Fig. 

5.7(b). In addition, it is observed from Fig. 5.7(c) that the utilization ratio of AE is 

significantly higher than that of other methods at the early evolutionary stage. This 

demonstrates that AE plays a vital role in significantly enhancing the multitasking 

performance on F6. In fact, the global optima of two tasks of F6 are located at the 

same point in the unified search space. In such cases, employing AE for knowledge 

transfer at the early evolutionary stage can achieve fast convergence. The above ob-

servations further validate that the proposed FL-based transfer method selection can 

effectively select the most promising method for conducting knowledge transfer in 

different scenarios. 
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5.4.4  Results of Incorporating FLM into EMT Algorithms 

The proposed FL-based method is incorporated into three EMT algorithms (such as 

MFEA, MFEA-II, and MFEA-AKT), which form three new enhanced algorithms 

(called MFEA-FLM, MFEA-II-FLM, and MFEA-AKT-FLM, respectively). Note that 

MFEA-II-FLM adaptively selects the method of knowledge transfer by FL-based 

transfer method selection while the transfer parameter estimation scheme proposed in 

MFEA-II [24] is used to estimate the value of 𝑟𝑚𝑝. The details numerical results of 

the three EMT algorithms and their corresponding enhanced algorithms on the two 

test suites are represented in Tab. 5.10 and Tab. 5.11. 

It is observed that MFEA-FLM, MFEA-II-FLM, and MFEA-AKT-FLM significantly 

outperform their original EMT algorithms in solving most test problems, respectively. 

Specifically, in terms of the first test suite, MFEA-FLM obtains better results than 

MFEA on 17 out of 18 cases, while it is beat by MFEA on 1 case. Additionally, 

MFEA-II-FLM and MFEA-AKT-FLM outperform MFEA-II and MFEA-AKT on all 

cases out of 18 cases, respectively. Similarly, for the second test suite, MFEA-FLM 

and MFEA-AKT-FLM also achieve significantly better results than MFEA and 

MFEA-AKT on most test problems (i.e., 13 and 16 out of 16 cases, respectively). Be-

sides, MFEA-II-FLM outperforms MFEA-II on 9 out of 16 cases while they achieve 

similar results on the rest of the test problems. The above comparison results show 

that incorporating the proposed method into these EMT algorithms can significantly 

enhance the multitasking performance on most test problems when compared to their 

original EMT algorithms, respectively. 
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Table 5.10: Mean objective values and standard deviations obtained by three EMT 

algorithms and their enhanced algorithms on nine MTOPs. 

Problem MFEA MFEA-FLM MFEA-II MFEA-II-FLM MFEA-AKT MFEA-AKT-FLM 

CIHS-T1 2.77e-01(4.43e-02)- 7.57e-03(1.13e-02) 3.68e-01(6.19e-02)- 3.39e-02(5.20e-02) 1.04e+00(2.48e-02)- 3.02e-01(9.56e-02) 

CIHS-T2 2.61e+02(3.67e+01)- 1.09e+01(1.57e+01) 2.09e+02(2.93e+01)- 4.77e+01(7.58e+01) 3.55e+02(3.42e+01)- 1.49e+02(2.24e+01) 

CIMS-T1 1.87e+00(2.76e-01)- 4.15e-02(1.03e-02) 2.41e+00(2.24e-01)- 6.60e-02(2.29e-02) 5.71e+00(4.75e-01)- 1.61e+00(8.95e-01) 

CIMS-T2 2.45e+02(3.63e+01)- 8.76e-01(3.86e-01) 2.30e+02(4.10e+01)- 2.10e+00(1.43e+00) 3.91e+02(3.25e+01)- 1.22e+02(6.38e+01) 

CILS-T1 1.65e+01(6.56e+00)- 4.17e-01(1.60e-01) 2.03e+01(2.61e+00)- 5.07e+00(5.43e+00) 2.06e+01(4.81e-02)- 5.38e+00(6.00e+00) 

CILS-T2 9.32e+02(4.25e+02)- 2.41e+00(1.42e+00) 8.84e+02(2.13e+02)- 4.74e+02(4.68e+02) 8.48e+03(5.31e+02)- 1.31e+03(3.09e+03) 

PIHS-T1 4.22e+02(2.08e+01)- 3.82e+02(2.51e+01) 4.10e+02(1.69e+01)~ 4.11e+02(1.69e+01) 6.72e+02(1.09e+02)- 2.31e+02(3.63e+01) 

PIHS-T2 4.45e+00(1.18e+00)- 7.96e-01(2.95e-01) 3.08e+00(6.39e-01)~ 3.31e+00(9.97e-01) 6.31e+02(1.64e+02)- 1.01e+02(2.97e+01) 

PIMS-T1 2.18e+00(2.49e-01)- 4.32e-01(1.99e-01) 2.42e+00(2.36e-01)- 1.01e+00(3.30e-01) 4.66e+00(3.39e-01)- 3.12e+00(2.53e-01) 

PIMS-T2 5.06e+02(1.19e+02)- 6.34e+01(2.05e+01) 6.62e+02(1.85e+02)- 1.19e+02(1.68e+02) 6.50e+03(2.09e+03)- 1.71e+02(8.39e+01) 

PILS-T1 2.47e+00(2.11e-01)- 2.72e-02(7.22e-03) 2.49e+00(2.75e-01)- 5.63e-02(3.99e-02) 7.37e+00(1.08e+00)- 9.72e-02(1.71e-02) 

PILS-T2 2.14e+00(3.81e-01)- 1.05e-01(4.17e-02) 2.55e+00(7.66e-01)- 1.82e-01(1.29e-01) 7.33e+00(1.07e+00)- 3.88e-01(5.12e-02) 

NIHS-T1 6.42e+02(1.96e+02)- 5.77e+01(2.75e+01) 8.41e+02(1.97e+02)- 7.10e+01(1.05e+02) 2.76e+04(1.02e+04)- 2.42e+02(1.52e+02) 

NIHS-T2 3.25e+02(4.13e+01)- 1.46e+01(3.92e+01) 2.57e+02(4.76e+01)- 2.05e+01(7.52e+01) 4.09e+02(3.05e+01)- 1.22e+02(6.29e+01) 

NIMS-T1 2.84e-01(4.71e-02)- 8.80e-02(2.71e-02) 2.62e-01(5.86e-02)- 2.24e-01(4.55e-02) 1.13e+00(3.59e-02)- 5.11e-01(8.90e-02) 

NIMS-T2 1.00e+01(1.85e+00)- 2.60e+00(3.19e-01) 1.07e+01(1.99e+00)- 7.50e+00(2.56e+00) 2.20e+01(2.72e+00)- 8.18e+00(1.79e+00) 

NILS-T1 4.19e+02(2.25e+01)- 3.91e+02(2.26e+01) 4.10e+02(1.63e+01)~ 4.06e+02(1.58e+01) 9.48e+02(1.05e+02)- 3.95e+02(1.19e+02) 

NILS-T2 9.43e+02(3.44e+02)+ 3.13e+03(1.54e+03) 8.42e+02(2.93e+02)~ 7.27e+02(2.71e+02) 8.41e+03(5.77e+02)- 7.15e+03(1.17e+03) 

+/-/~ 1/17/0 \ 0/18/0 \ 0/18/0 \ 

 

 

Table 5.11: Mean objective values and standard deviations obtained by three EMT 

algorithms and their enhanced algorithms on F1 to F8. 

Problem MFEA MFEA-FLM MFEA-II MFEA-II-FLM MFEA-AKT MFEA-AKT-FLM 

F1-T1 2.96e-01(5.97e-02)- 1.72e-01(4.25e-02) 3.78e-01(6.89e-02)- 2.76e-01(6.58e-02) 1.11e+00(2.16e-02)- 1.03e+00(1.69e-02) 

F1-T2 2.59e+02(4.11e+01)- 2.22e+02(5.34e+01) 2.03e+02(3.34e+01)~ 2.18e+02(4.95e+01) 4.68e+02(2.90e+01)- 3.64e+02(2.04e+01) 

F2-T1 1.99e+00(2.43e-01)- 1.10e+00(2.44e-01) 2.42e+00(2.44e-01)- 1.89e+00(3.98e-01) 8.35e+00(5.89e-01)- 6.33e+00(5.30e-01) 

F2-T2 2.52e+02(3.97e+01)- 1.16e+02(3.57e+01) 2.20e+02(3.58e+01)~ 2.11e+02(4.79e+01) 6.08e+02(5.99e+01)- 4.46e+02(4.41e+01) 

F3-T1 1.70e+03(6.97e+02)- 3.24e+02(9.11e+01) 1.18e+03(8.45e+02)- 8.79e+02(3.06e+02) 5.04e+05(2.97e+05)- 8.60e+03(1.99e+04) 

F3-T2 6.33e+01(8.94e+00)- 2.98e+01(5.29e+00) 5.15e+01(1.03e+01)~ 5.10e+01(7.79e+00) 9.63e+03(1.29e+03)- 1.46e+02(2.37e+01) 

F4-T1 4.17e+02(2.09e+01)~ 4.12e+02(1.55e+01) 4.10e+02(2.33e+01)~ 4.17e+02(1.88e+01) 1.62e+03(2.81e+02)- 9.75e+02(1.00e+02) 

F4-T2 9.50e+02(3.72e+02)+ 1.84e+03(1.12e+03) 8.03e+02(2.90e+02)~ 8.38e+02(2.88e+02) 8.51e+03(6.95e+02)- 6.77e+03(1.84e+03) 

F5-T1 4.14e+02(1.71e+01)- 3.78e-01(1.81e-01) 4.19e+02(2.06e+01)- 9.23e-01(4.22e-01) 5.53e+02(8.63e+01)- 3.23e+00(9.49e-01) 

F5-T2 3.78e-02(1.81e-02)- 8.62e-05(1.58e-04) 3.06e-02(1.99e-02)- 2.24e-04(4.31e-04) 1.62e+01(5.72e+00)- 9.12e-03(4.17e-03) 

F6-T1 2.27e+00(2.77e-01)- 2.51e-02(8.45e-03) 2.85e+00(2.00e-01)- 4.51e-02(1.22e-02) 5.73e+00(9.33e-01)- 8.96e-02(1.53e-02) 

F6-T2 7.17e-02(2.28e-02)- 1.02e-02(7.76e-03) 1.05e-01(3.85e-02)- 2.23e-02(8.76e-03) 2.58e+00(4.57e-01)- 2.38e-01(4.19e-02) 

F7-T1 1.73e+03(1.06e+03)- 4.84e+01(1.90e-01) 1.30e+03(7.97e+02)- 4.74e+02(7.79e+02) 1.20e+05(1.34e+05)- 6.91e+01(4.89e+01) 

F7-T2 8.98e+01(1.96e+01)- 2.04e-02(1.76e-02) 1.26e+02(4.29e+01)- 7.10e+01(7.29e+01) 1.55e+02(2.92e+01)- 6.83e+00(1.79e+01) 

F8-T1 4.13e+02(2.40e+01)- 3.97e+02(2.18e+01) 4.13e+02(1.95e+01)~ 4.06e+02(2.28e+01) 1.22e+03(2.07e+02)- 5.56e+02(9.07e+01) 

F8-T2 1.42e+02(1.22e+02)~ 2.72e+02(2.02e+02) 1.61e+02(1.62e+02)~ 1.61e+02(1.32e+02) 3.48e+03(4.51e+02)- 2.87e+03(2.01e+02) 

+/-/~ 1/13/2 \ 0/9/7 \ 0/16/0 \ 

“+” (or “-”) indicates the original EMT algorithm is better (or worse) than its enhanced algorithm, and “~” 

indicates they obtain the statistically similar performance. 
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Table 5.12: Summarized results of MFEA-FLM and its variants with different param-

eters. 

Algorithm comparison Test suite 1 (+/-/~) Test suite 2 (+/-/~) 

α = 0 vs α = 0.1 0/0/17 0/1/15 

α = 0.2 vs α = 0.1 1/2/15 0/0/16 

α = 0.4 vs α = 0.1 3/4/11 1/1/14 

α = 0.6 vs α = 0.1 2/9/7 1/2/13 

α = 0.8 vs α = 0.1 0/11/7 0/8/7 

α = 1.0 vs α = 0.1 0/18/0 0/16/0 

Variant-V vs MFEA-FLM 0/3/15 0/0/16 

Variant-VI vs MFEA-FLM 0/1/17 1/0/15 

Variant-VII vs MFEA-FLM 0/3/15 0/0/16 

Variant-VIII vs MFEA-FLM 0/0/18 0/0/16 

“+”, “-”, and “~” denote the numbers of better, worse, and similar results obtained by the cor-

responding competitor when compared to MFEA-FLM, respectively. 

 

 

5.4.5  Parameter Sensitivity Analysis 

1) The Effect of 𝛼 

To study the impact of 𝛼, MFEA-FLM with 𝛼 = 0.1 is compared to MFEA-FLM 

with different values of 𝛼 from {0, 0.2, 0.4, 0.6, 0.8, 1.0}. The comparison results 

on the two test suites are summarized in Tab. 5.12. It is observed that MFEA-FLM 

with some smaller values of 𝛼 (i.e., 0 and 0.2) achieves similar multitasking perfor-

mance on most test problems. However, setting 𝛼 to some larger values (i.e., 0.8 and 

1.0) will lead to the obvious performance degradation of MFEA-FLM when solving 

most test problems. The observations demonstrate that the current improvements of 

multitasking performance should occupy a high proportion in quantifying the efficacy 

of knowledge transfer. Thus, setting 𝛼 to 0.1 is suggested in this study. 

 

2) The Effect of Membership Functions (MFs) 
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Two variants (called Variant-V and Variant-VI) are designed to study the effect of 

MFs with different parameters on the performance of FL-based parameter adaption 

mechanism. Specifically, in Variant-V, the parameters of the singleton MFs are set to 

some larger values, i.e., -0.6, -0.4, -0.2, 0, 0.2, 0.4, and 0.6, respectively. In Variant-

VI, the parameters of the singleton MFs are set to some smaller values, i.e., -0.15, -

0.10, -0.05, 0, 0.05, 0.10, and 0.15, respectively. Additionally, two variants (called 

Variant-VII and Variant-VIII) are designed to study the effect of MFs with different 

parameters on the performance of FL-based transfer method selection mechanism. 

Specifically, in Variant VII, three MFs with larger degree of intersection, i.e., class 𝐿 

with the parameter tuple (0.0, 0.0, 0.1, 0.8), class triangular with the parameter tuple 

(0.0, 0.5, 1.0), and class 𝛾 with the parameter tuple (0.2, 0.9, 1.0, 1.0), are used to 

define fuzzy sets of the consequence space. In Variant VII, three MFs with smaller 

degree of intersection are used, i.e., class 𝐿 with (0.0, 0.0, 0.1, 0.3), class triangular 

with (0.3, 0.5, 0.7), and class 𝛾 with (0.7, 0.9, 1.0, 1.0). The summarized results on 

the two test suites are collected in Tab. 5.12. It is observed that these variants achieve 

similar results on most test problems when compared to MFEA-FLM. According to 

the comparison results, it is concluded that the multitasking performance of MFEA-

FLM on most test problems is not sensitive to the MFs with different parameters. 

 

5.4.6  Further Study in Handling More Complex Problems 

1) Comparison Results on Complex MTOPs 

Ten complex MTOPs from CEC 2021 Competition on Evolutionary Multi-task Opti-

mization are used as the test problems (called C-MTOP1 to C-MTOP10). Each 

MTOP consists of two single-objective continuous optimization tasks, which bear cer-
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tain commonality and complementarity in terms of the global optimum and the fitness 

landscape. To further examine the effectiveness of the proposed FL-based mecha-

nisms in solving C-MTOP1 to C-MTOP10, FL-based transfer parameter adaption and 

transfer method selection are incorporated into MFEA and MFEA-AKT, forming two 

enhanced algorithms (i.e., MFEA-FLM and MFEA-AKT-FLM). The detailed numeri-

cal results of all compared algorithms are provided in Tab. 5.13.  

 

Table 5.13: Mean objective values and standard deviations obtained by two EMT al-

gorithms and their enhanced algorithms on ten complex MTOPs. 

C-MTOPs MFEA MFEA-FLM MFEA-AKT MFEA-AKT-FLM 

C-MTOP1-T1 6.2213e+02(1.6e-01)- 6.2199e+02(1.3e-01) 6.2387e+02(1.7e-01)~ 6.2382e+02(2.0e-01) 

C-MTOP1-T2 6.2501e+02(1.8e-01)~ 6.2496e+02(1.7e-01) 6.2697e+02(1.8e-01)- 6.2684e+02(1.8e-01) 

C-MTOP2-T1 7.1127e+02(5.7e-03)- 7.1126e+02(7.1e-03) 7.1195e+02(5.7e-02)- 7.1154e+02(7.0e-02) 

C-MTOP2-T2 7.1760e+02(1.5e-02)- 7.1758e+02(9.3e-03) 7.1855e+02(8.1e-02)- 7.1800e+02(9.3e-02) 

C-MTOP3-T1 2.8841e+06(1.9e+04)- 2.8709e+06(1.3e+04) 4.1901e+06(1.0e+05)- 3.4404e+06(9.1e+04) 

C-MTOP3-T2 3.5071e+07(1.1e+05)- 3.4976e+07(1.0e+05) 4.5364e+07(6.6e+05)- 3.9234e+07(1.0e+06) 

C-MTOP4-T1 1.3042e+03(2.3e-04)- 1.3042e+03(2.0e-04) 1.3043e+03(1.7e-03)- 1.3043e+03(1.8e-03) 

C-MTOP4-T2 1.3047e+03(4.7e-04)- 1.3047e+03(1.8e-04) 1.3048e+03(1.3e-03)- 1.3048e+03(1.7e-03) 

C-MTOP5-T1 3.3750e+05(2.8e+02)- 3.3713e+05(2.4e+02) 3.6149e+05(2.3e+03)- 3.4626e+05(1.7e+03) 

C-MTOP5-T2 8.5128e+05(7.9e+02)- 8.5056e+05(7.0e+02) 9.0568e+05(5.7e+03)- 8.7383e+05(4.0e+03) 

C-MTOP6-T1 1.8741e+08(2.1e+05)- 1.8706e+08(1.7e+05) 1.9987e+08(9.7e+05)- 1.9294e+08(1.1e+06) 

C-MTOP6-T2 2.6582e+09(1.7e+06)- 2.6562e+09(1.2e+06) 2.7379e+09(1.0e+07)- 2.6960e+09(6.8e+06) 

C-MTOP7-T1 6.2238e+04(7.6e+01)- 6.2134e+04(5.0e+01) 6.8513e+04(6.2e+02)- 6.4988e+04(5.4e+02) 

C-MTOP7-T2 1.4821e+04(1.7e+01)- 1.4808e+04(1.3e+01) 1.5930e+04(1.1e+02)- 1.5263e+04(1.2e+02) 

C-MTOP8-T1 5.2015e+02(1.1e-01)- 5.2008e+02(6.6e-02) 5.2058e+02(7.9e-02)- 5.2047e+02(1.0e-01) 

C-MTOP8-T2 5.2016e+02(9.1e-02)~ 5.2013e+02(8.7e-02) 5.2061e+02(7.8e-02)- 5.2049e+02(8.1e-02) 

C-MTOP9-T1 1.8983e+04(4.5e+00)- 1.8977e+04(3.6e+00) 1.9296e+04(3.5e+01)- 1.9138e+04(3.3e+01) 

C-MTOP9-T2 1.6222e+03(5.1e-02)~ 1.6222e+03(6.8e-02) 1.6230e+03(1.4e-01)- 1.6227e+03(1.0e-01) 

C-MTOP10-T1 1.9481e+09(1.3e+06)- 1.9463e+09(6.9e+05) 2.0401e+09(8.9e+06)- 1.9873e+09(7.7e+06) 

C-MTOP10-T2 6.7436e+08(3.9e+05)- 6.7367e+08(3.3e+05) 7.1113e+08(4.2e+06)- 6.8978e+08(2.5e+06) 

+/-/~ 0/17/3 \ 0/19/1 \ 

“+” (or “-”) indicates the original multi-objective EMT algorithm is better (or worse) than the enhanced 

algorithm, and “~” indicates they obtain the statistically similar performance. 
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It is observed that MFEA-FLM and MFEA-AKT-FLM significantly outperform their 

original algorithms on most test problems, respectively. Additionally, they do not lead 

to any performance degradation on these test problems. The comparison results show 

that employing FL-based mechanisms to modify the value of 𝑟𝑚𝑝 and select the 

most promising method for knowledge transfer can further enhance the multitasking 

performance of MFEA and MFEA-AKT in handling the ten complex MTOPs. 

 

2) Comparison Results on Multiobjective MTOPs 

To study the effectiveness of FL-based mechanisms on the multiobjective MTOPs 

(called MO-MTOPs), one common test suite including nine test problems [55] is used. 

Each MO-MTOP has two multiobjective optimization tasks. In the experiment, FL-

based transfer parameter adaption and transfer method selection are incorporated into 

three multiobjective EMT algorithms (i.e., MO-MFEA, MO-MFEA-II, and MO-

MFEA-DAE). Specifically, two FL-based mechanisms are incorporated into MO-

MFEA, and the enhanced algorithm is called MO-MFEA-FLM. Additionally, MFEA-

DAE-FLM is formed by incorporating FL-based transfer parameter adaption into 

MO-MFEA-DAE to dynamically modify the value of 𝑟𝑚𝑝. However, MO-MFEA-

II-FLM is formed by incorporating FL-based transfer method selection into MO-

MFEA-II to adaptively select the promising transfer method from multiple candidates 

(i.e., Baseline, AE, KAE, and AT). The detailed numerical results are provided in Tab. 

5.14, showing that the three enhanced algorithms with the proposed FL-based mecha-

nism(s) significantly outperform their original algorithms on most test problems, re-

spectively. The comparison results show that incorporating FL-based mechanism(s) 

into the three EMT algorithms can significantly improve the multitasking perfor-

mance in handling the multiobjective MTOPs. 



 

１５４ 

Table 5.14: Mean objective values and standard deviations obtained by two EMT al-

gorithms and their enhanced algorithms on nine multobjective MTOPs. 

MO-MTOP MO-MFEA MO-MFEA-FLM MO-MFEA-II MO-MFEA-II-FLM MO-MFEA-DAE MO-MFEA-DAE-FLM 

CIHS-T1 2.67e-02(6.69e-03)- 1.79e-03(6.26e-04) 8.88e-03(3.24e-03)- 3.65e-03(2.08e-03) 5.00e-02(1.55e-02)- 9.66e-03(2.95e-03) 

CIHS-T2 2.73e-02(3.80e-03)- 6.41e-03(1.22e-03) 1.52e-02(2.89e-03)- 9.19e-03(2.24e-03) 3.85e-02(5.96e-03)- 1.61e-02(2.37e-03) 

CIMS-T1 1.71e-01(7.30e-02)- 1.17e-01(9.22e-02) 1.93e-01(5.45e-02)~ 1.68e-01(7.96e-02) 1.54e-01(7.90e-02)~ 1.61e-01(8.12e-02) 

CIMS-T2 1.48e-02(1.04e-02)- 8.65e-03(6.41e-03) 1.00e-02(6.59e-03)~ 1.27e-02(9.57e-03) 1.37e-02(9.48e-03)~ 1.39e-02(9.16e-03) 

CILS-T1 2.16e-02(6.28e-03)- 4.09e-03(1.11e-03) 9.82e-02(9.50e-02)- 7.39e-02(1.86e-01) 4.64e-02(1.13e-02)- 1.47e-02(4.76e-03) 

CILS-T2 4.33e-04(4.20e-05)- 2.54e-04(1.36e-05) 6.90e-04(2.01e-04)- 4.01e-04(2.21e-04) 6.21e-04(6.78e-05)- 3.56e-04(4.05e-05) 

PIHS-T1 2.01e-01(5.29e-02)- 3.33e-02(1.39e-02) 1.54e-01(4.74e-02)- 4.65e-02(1.39e-02) 3.36e-01(1.00e-01)- 1.37e-01(5.03e-02) 

PIHS-T2 2.33e+00(3.90e-01)- 1.78e+00(2.80e-01) 2.02e+00(2.88e-01)~ 1.92e+00(3.24e-01) 3.87e+00(6.05e-01)- 2.98e+00(5.44e-01) 

PIMS-T1 3.18e-02(1.33e-02)- 5.31e-03(1.49e-03) 6.31e-02(1.38e-02)~ 5.12e-02(2.37e-02) 1.06e-02(2.87e-03)- 8.70e-03(2.02e-03) 

PIMS-T2 1.74e+01(2.67e+00)- 7.29e-01(9.06e-01) 1.98e+01(3.76e+00)- 8.73e+00(7.56e+00) 1.98e+00(3.82e-01)- 1.51e+00(8.44e-01) 

PILS-T1 5.42e-03(1.29e-03)- 1.15e-03(3.56e-04) 5.37e-03(1.33e-03)- 4.42e-03(1.38e-03) 7.94e-03(2.08e-03)- 5.94e-03(2.02e-03) 

PILS-T2 1.79e-01(2.30e-02)- 8.71e-02(1.09e-02) 6.69e-01(3.92e-03)- 3.19e-01(2.19e-01) 1.67e-01(1.75e-02)- 1.48e-01(1.55e-02) 

NIHS-T1 1.37e+01(3.54e+00)- 2.26e+00(3.12e-01) 5.98e+00(1.69e+00)+ 8.75e+00(2.39e+01) 1.67e+01(4.27e+00)- 4.23e+00(1.04e+00) 

NIHS-T2 8.95e-02(2.75e-02)- 5.16e-03(1.89e-03) 2.90e-02(1.30e-02)- 2.61e-02(6.10e-02) 1.16e-01(3.89e-02)- 1.94e-02(8.46e-03) 

NIMS-T1 5.70e-01(2.82e-01)- 2.93e-01(2.44e-01) 7.06e-01(3.34e-01)~ 6.11e-01(2.85e-01) 7.56e-01(3.90e-01)- 4.56e-01(3.16e-01) 

NIMS-T2 1.41e-01(3.04e-01)- 2.40e-02(3.41e-02) 2.35e-01(1.36e-01)~ 2.69e-01(2.17e-01) 1.41e-01(1.30e-01)- 5.55e-02(6.34e-02) 

NILS-T1 1.05e-02(7.54e-05)- 9.98e-03(6.61e-04) 1.06e-02(6.02e-05)~ 1.06e-02(9.69e-05) 1.06e-02(1.53e-04)~ 1.06e-02(1.14e-04) 

NILS-T2 6.52e-01(3.75e-03)- 6.44e-01(1.20e-03) 6.52e-01(3.46e-03)~ 6.50e-01(2.72e-03) 6.44e-01(1.07e-03)~ 6.44e-01(9.58e-04) 

+/-/~ 0/18/0 \ 1/9/8 \ 0/14/4 \ 

“+” (or “-”) indicates the original multi-objective EMT algorithm is better (or worse) than the enhanced 

algorithm, and “~” indicates they obtain the statistically similar performance. 

 

 

5.5  Conclusion 

This chapter has proposed a new MFEA with FL-based AKT for performing more 

effective and robust EMT. The proposed method includes two main components, 

which are employed to dynamically adapt the extent of knowledge transfer and adap-

tively select the promising method for knowledge transfer, respectively. Specifically, 

in the first component, one fuzzy inference system is employed to estimate the change 

in the transfer parameter, and then the value of the transfer parameter is dynamically 
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modified to determine the transfer extent. Additionally, in the second component, an-

other one fuzzy inference system is used to estimate the applicability of each transfer 

method for the current transfer scenario. After that, the most promising one is adap-

tively selected from multiple candidates for knowledge transfer. In comparison with 

existing deterministic methods, the proposed method has the mechanism for the fuzzy 

or inaccurate information processing, which effectively enhances the reliability in 

making decisions. The experimental results have validated the effectiveness of the 

proposed method. 
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Chapter 6 

Conclusion and Future Work 

 

 

6.1  Conclusion 

This thesis aims to study and design adaptive knowledge transfer methods to intelli-

gently address one or more of three critical issues concerning knowledge transfer in 

ETO. 

Firstly, to adaptively decide what to transfer in ESTO, this thesis has proposed a 

fuzzy classifier-assisted method to select the most useful source solution for 

knowledge transfer for accelerating the optimization of the target task, as presented in 

Chapter 3. By constructing the training data, the fuzzy classifier is built to estimate 

the solution usefulness of all available source tasks by returning a class label and its 

membership degree to that class. The label indicates whether the source task is useful 

for the target task, while its membership degree to that class further quantifies the de-
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gree of its usefulness if it is useful. Thus, the proposed method can accurately select 

the most useful solution for knowledge transfer when compared to existing methods 

based on distance metrics or traditional machine learning models. The experimental 

results on a series of test problems have validated the effectiveness of the proposed 

method. 

Secondly, to adaptively decide how to transfer in EMT, this thesis has proposed an 

ensemble method of domain adaptation to select the promising domain adaptation 

method for conducting knowledge transfer, as presented in Chapter 4. Considering 

multiple domain adaptation methods, the differences in the mapping construction 

mechanisms enable their mapping behaviours to have a unique bias in representing 

the connection from the source task to the target task. One specific bias can show the 

superiority in its preferred multitasking transfer scenario, while it has poor perfor-

mance in other scenarios. By striking the balance between efficacy and diversity 

when determining which one domain adaptation method for use, the proposed method 

can take full advantages of the strengths of each domain adaptation method to further 

enhance knowledge transferability across tasks. The experimental results on a series 

of test problems have validated the effectiveness of the proposed method. 

Finally, to adaptively decide when to transfer and how to transfer in EMT, this thesis 

has proposed a fuzzy logic-based adaptive knowledge transfer method, as presented in 

Chapter 5. The proposed method includes two fuzzy logic-based components, such as 

fuzzy logic-based transfer parameter adaption and fuzzy logic-based transfer method 

selection. The first component is designed to effectively adapt the transfer extent 

along the multitasking search process by dynamically adjusting the value of the trans-

fer parameter, thereby alleviating the risk of negative transfer. Meanwhile, the second 

component is employed to adaptively select the optimal transfer method from multi-
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ple candidates for conducting knowledge transfer, thereby enhancing knowledge 

transferability across tasks. The experimental results on a series of test problems have 

validated the effectiveness of the proposed method. 

However, these proposed methods also introduce extra hyperparameters, which may 

significantly impact the optimization efficiency and performance. Various hyperpa-

rameters turning strategies have been proposed, including grid search, random search, 

Beyesian optimization, and genetic algorithms [141]. The choice of hyperparameter 

selection strategy often depends on the specific problem, the available computational 

resources, and the desired balance between exploration and exploitation. Using hy-

perparameters turning strategies can result in the proposed methods that generalized 

well to new problems, achieving better optimization efficiency and performance in 

practical applications. 

 

 

6.2  Future Work 

Exploring more intelligent and effective ETO methods to address the challenges of 

what, how, and when to transfer remains much room. Some potential research direc-

tions are listed as follows. 

1) Advanced ETO Approaches for Large-Scale Optimization 

In real-world applications, optimization problems containing a large number of deci-

sion variables are called large-scale optimization problems (LSOPs) [142]. As the 

number of decision variables increases, the search space will grow exponentially. 

Traditional EAs tend to suffer from slow convergence in solving LSOPs due to their 
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huge search spaces, which will result in a larger computational cost. A number of 

methods have been developed to assist EA solvers in solving LSOPs, such as decision 

variable grouping [143], decision space reduction [144], and novel search strategies 

[145]. As an emerging search paradigm incorporating transfer learning into EAs, ETO 

shows significant potential in further enhancing the search capability of EAs in han-

dling LSOPs. Possible research directions include the following: 

• Designing advanced ETO approaches to accelerate the optimization of LSOPs by 

conducting effective knowledge transfer among different groups of decision varia-

bles. 

• Designing advanced ETO approaches to accelerate the optimization of LSOPs by 

conducting effective knowledge transfer in the reduced decision space. 

• Designing advanced ETO approaches to accelerate the optimization of LSOPs by 

transferring knowledge from small-scale problem space to large-scale problem 

space. 

 

2) Advanced ETO Approaches for Expensive Optimization 

Expensive optimization problems (EOPs) refer to those problems in which the objec-

tive functions are expensive to evaluate [146]. The limited numbers of real function 

evaluations bring difficulties to traditional EAs when solving EOPs. Over the years, 

surrogate-based EAs have attracted increasing attention, aiming to replace real func-

tion evaluations by employing cheap surrogate models, including various classifica-

tion models [147] and regression models [148]. However, several issues, including 

lacking enough training data and retraining surrogate model for each EOP, which se-
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verely limit the optimization efficiency and performance of existing surrogate-based 

EAs. As an emerging search paradigm incorporating transfer learning into EAs, ETO 

shows huge potential in addressing EOPs [149], [150], [151]. Potential research topics 

include the following: 

• Designing advanced ETO approaches to solving EOPs by transferring the training 

data from other related problems. 

• Designing advanced ETO approaches to solving EOPs by transferring the trained 

surrogate model from related problems. 

• Designing advanced ETO approaches to solving EOPs by transferring the training 

data and the trained surrogate model from other related problems concurrently. 

 

3) Advanced ETO Approaches for Multiform Optimization 

In contrast to the existing two conceptual realizations for ETO, such as ESTO and 

EMT, multiform optimization (MFO) focuses on solving a single target optimization 

problem by employing the search experiences from some alternative formulation(s) of 

the target problem rather than that of other optimization problems [19]. Generally, 

compared to the original target problem, some alternative formulations usually have 

simpler search spaces, which may be related to the original target problem. Therefore, 

transferring useful knowledge from simpler alternative formulations can avoid ineffi-

cient evolutionary searches, thereby enhancing the optimization efficiency and per-

formance on the original target problem. In the literature, some MFO algorithms have 

been developed to construct problem formulations and conduct knowledge transfer 

across different formulations [32], [152], [153], [154]. However, as the complexity of 
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problems increases, there are various new challenges for designing effective MFO 

approaches [155]. Possible research directions include the following: 

• Designing advanced formulation construction approaches to generate useful alter-

nate formulations for a given target optimization problem with various complex 

characteristics. 

• Designing advanced knowledge transfer approaches to transfer useful knowledge 

across different problem formulations. 

• Designing advanced resource allocation approaches to allocate appropriate compu-

tational resources for solving different problem formulations. 

 

 

4) Theoretical Study in ETO 

The research of ETO is still in the initial stage and lacks theoretical studies. In the 

literature, there are several theoretical studies and analyses, such as the proof of faster 

convergence of EMT compared to its single task counterpart [119], [156], and the ex-

ploitation of similarity between distinct tasks for positive knowledge transfer [49], 

[50]. To further promote the development of theoretical studies and analysis in the 

context of ETO, some potential research topics include the following: 

• Theoretical study on the proof of faster convergence of MFO compared to its sin-

gle formulation counterpart. 

• Theoretical study on revealing the phenomenon of negative transfer when employ-
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ing EMT to solve LSOPs. 

• Theoretical study on the correlation between knowledge transfer and surrogate 

model for facilitating the improvement of optimization performance and efficien-

cy in solving EOPs. 

 

5) Integrating ETO with large language models 

In recent years, large language models (LLMs) have attracted increasing attention as 

they have shown remarking capabilities in understanding and generating human-like 

text [157], [158]. Several studies have been made by integrating LLMs into the field 

of evolutionary computation [159], [160], [161]. However, there is little studies of 

integrating LLMs into ETO. Some potential research topics include the following: 

• Using ETO methods to develop more effective prompts that maximize the utility 

of LLMs in handling various tasks. 

• Using ETO methods to optimize the architectures and hyperparameters of LLMs 

to enhance their performance on specific tasks. 

• Using LLMs to automatically design advanced ETO methods to solve various 

complex real-world problems.  



 

１６３ 

 
 
 
 
 
 
 
 
 

 

References 
 
 

[1]  G. Morse and K. O. Stanley, “Simple Evolutionary Optimization Can Rival 

Stochastic Gradient Descent in Neural Networks,” in Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECOO), 2016, pp. 477-484. 

[2]  G. Agrim, S. Silvio, G. Surya, and F. Li, “Embodied Intelligence via Learning 

and Evolution,”Nature Communications, vol. 12, no. 1, 2021. 

[3]  Y. Zhou, T. Wang, and X. Peng, “MFEA-IG: A Multi-task Algorithm for Mo-

bile Agents Path Planning,” in Proceedings of IEEE Congress on Evolutionary 

Computation (CEC), 2020, pp. 1-7. 

[4]  W. Dai, Z. Wang, and K. Xue, “System-in-package Design Using Multi-task 

Memetic Learning and Optimization,” Memetic Computing, vol. 14, no. 1, pp. 

45-59, 2021. 

[5]  S. Jiang, C. Xu, A. Gupta, L. Feng, Y.-S. Ong, A. Zhang, and P. Tan, “Com-

plex and Intelligent Systems in Manufacturing,” IEEE Potentials, vol. 35, no. 

4, pp. 23-28, 2016. 



 

１６４ 

[6]  M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based Software Engineer-

ing: Trends, Techniques and Applications, ”  ACM Computing Surveys 

(CSUR), vol. 45, no. 1, pp. 1-61, 2012. 

[7]  G. B. Dantzig and N. N. Thapa, Linear Programming 1: Introduction. Berlin: 

Springer-Verlag, 1997. 

[8]  Z. Dostl, Optimal Quadratic Programming Algorithms: With Applications to 

Variational Inequalities,1st ed. Springer-Verlag, 2009. 

[9]  S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University. 

Press, 2004. 

[10] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. New 

York, NY, USA: Wiley, 2001. 

[11] R. Salomon, “Evolutionary Algorithms and Gradient Search: Similarities and 

Differences,” IEEE Transactions on Evolutionary Computation, vol. 2, no. 2, 

pp. 45-55, Jul. 1998. 

[12] X. Qiu, J.-X. Xu, Y. Xu, and K. C. Tan, “A New Differential Evolution Algo-

rithm for Minimax Optimization in Robust Design,” IEEE Transactions on 

Cybernetics, vol. 48, no. 5, pp. 1355-1368, May 2018. 

[13] A. Slowik and H. Kwasnicka, “Evolutionary Algorithms and Their Applica-

tions to Engineering Problems,” Neural Computing and Application, vol. 32, 

no. 16, pp. 12363-12379, Aug. 2020. 

[14] C. M. Fonseca and P. J. Fleming, “An Overview of Evolutionary Algorithms 

in Multiobjective Optimization,” Evolutionary Computation, vol. 3, no. 1, pp. 



 

１６５ 

1-16, Mar. 1995. 

[15] Z. Song, H. Wang, C. He, and Y. Jin, “A Kriging-assisted Two-archive Evolu-

tionary Algorithm for Expensive Many-objective Optimization,”IEEE Transac-

tions on Evolutionary Computation, vol. 25, no. 6, pp. 1013-1027, Dec. 2021. 

[16] Z. Wang, Z. Zhan, Y. Lin, W. Yu, H. Wang, S. Kwong, and J, Zhang, “Auto-

matic Niching Differential Evolution with Contour Prediction Approach for 

Multimodal Optimization Problems,”  IEEE Transactions on Evolutionary 

Computation, vol. 24, no. 1, pp. 114-128, Feb. 2020. 

[17] J. Liang, X. Ban, K. Yu, B. Qu, K. Qiao, C. Yue, K. Chen, and K. C Tan, “A 

Survey on Evolutionary Constrained Multiobjective Optimization,” IEEE 

Transactions on Evolutionary Computation, vol. 27, no. 2, pp. 201-221, Apr. 

2023. 

[18] X. Yang, J. Zou, S. Yang, J. Zheng, and Y. Liu, “A Fuzzy Decision Variables 

Framework for Large-Scale Multiobjective Optimization,” IEEE Transactions 

on Evolutionary Computation, vol. 27, no. 3, pp. 445-459, Jun. 2023. 

[19] A. Gupta, Y.-S. Ong, and L. Feng, “Insights on Transfer Optimization: Because 

Experience is the Best Teacher,” IEEE Transactions on Emerging Topic in 

Computational Intelligence, vol. 2, no. 1, pp. 51-64, Feb. 2018. 

[20] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary Transfer Optimization - A 

New Frontier in Evolutionary Computation Research,” IEEE Computational 

Intelligence Magazine, vol. 16, no. 1, pp. 22-33, Feb. 2021. 

[21] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions 



 

１６６ 

on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, Oct. 2010. 

[22] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A Survey of Transfer Learn-

ing,” Journal of Big Data, vol. 3, no. 9, 2016. 

[23] L. Shao, F. Zhu, and X. Li, “Transfer Learning for Visual Categorization: A 

Survey,” IEEE Transactions on Neural Network and Learning System, vol. 26, 

no. 5, pp. 1019-1034, 2015. 

[24] S. Marsland, Machine Learning: An Algorithmic Perspective, 2nd ed. Chapman 

& Hall, 2014. 

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 

2016. 

[26] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer Learning-

Based Dynamic Multiobjective Optimization Algorithms,” IEEE Transactions 

on Evolutionary Computation, vol. 22, no. 4, pp. 501-514, Aug. 2018. 

[27] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial Evolution: Toward Evolu-

tionary Multitasking,” IEEE Transactions on Evolutionary Computation, vol. 

20, no. 3, pp. 343-357, Jun. 2016. 

[28] Y. Huang, L. Feng, M. Li, Y. Wang, Z. Zhu, and K. C. Tan, “Fast Vehicle 

Routing via Knowledge Transfer in a Reproducing Kernel Hilbert Space,” 

IEEE Transactions on Systems, Man, Cybernetics: Systems, vol. 53, no. 9, pp. 

5404-5416, Sep. 2023. 

[29] K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An Evolutionary Mul-

titasking Optimization Framework for Constrained Multiobjective Optimization 



 

１６７ 

Problems,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 2, pp. 

263-277, Apr. 2022. 

[30] S. Liu, Q. Lin, L. Feng, K. -C. Wong and K. C. Tan, “Evolutionary Multitask-

ing for Large-Scale Multiobjective Optimization,” IEEE Transactions on Evo-

lutionary Computation, vol. 27, no. 4, pp. 863-877, Aug. 2023. 

[31] G. Li, Z. Wang, W. Gao, and L. Wang, “Decoupling Constraint: Task Clone-

Based Multi-Tasking Optimization for Constrained Multi-Objective Optimiza-

tion,” IEEE Transactions on Evolutionary Computation, 2024. doi: 

10.1109/TE VC.2024.3358854. 

[32] Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A Multi-Form Evolutionary 

Search Paradigm for Bi-level Multi-Objective Optimization,” IEEE Transac-

tions on Evolutionary Computation, 2024. doi: 10.1109/TEVC.2023.3332676. 

[33] Y. Huang, W. Zhou, Y. Wang, M. Li, L. Feng, and K. C. Tan, “Evolutionary 

Multitasking With Centralized Learning for Large-Scale Combinatorial Multi-

Objective Optimization,” IEEE Transactions on Evolutionary Computation, 

2024. doi: 10.1109/TEVC.2023.3323877. 

[34] Y. Feng, L. Feng, S. Liu, S. Kwong, and K. C. Tan, “Towards Multi-Objective 

High-Dimensional Feature Selection via Evolutionary Multitasking”, 

arXiv:2401.01563, https://doi.org/10.48550/arXiv.2401.01563. 

[35] X. Zhou, Z. Wang, L. Feng, S. Liu, K. -C. Wong, and K. C. Tan, “Towards 

Evolutionary Multi-Task Convolutional Neural Architecture Search,” IEEE 

Transactions on Evolutionary Computation, vol. 28, no. 3, pp. 682-695, Jun. 

2024. 

https://arxiv.org/abs/2401.01563


 

１６８ 

[36] Q. Xu, N. Wang, L. Wang, W. Li, and Q. Sun, “Multi-Task Optimization and 

Multi-Task Evolutionary Computation in the Past Five Years: A Brief Review,” 

Mathematics, vol. 9, no. 8, Apr. 2021. 

[37] X. Xue, C. Yang, L. Feng, K. Zhang, L. Song, and K. C. Tan, “Solution Trans-

fer in Evolutionary Optimization: An Empirical Study on Sequential Transfer,” 

IEEE Transactions on Evolutionary Computation, 2023. doi: 10.1109/ 

TEVC.2023.3339506. 

[38] L. Kotthoff, “Algorithm Selection for Combinatorial Search Problems: A Sur-

vey,” arXiv, Oct. 2012. https://doi.org/10.48550/arXiv.1210.7959. 

[39] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge, “Algorithm Selection 

for Black-Box Continuous Optimization Problems: A Survey on Methods and 

Challenges,” Information Sciences, vol. 317, pp. 224-245, Oct. 2015. 

[40] K. Tang, F. Peng, G. Chen, and X. Yao, “Population-Based Algorithm Portfo-

lios with Automated Constituent Algorithms Selection,” Information Sciences, 

vol. 279, pp. 94-104, Sep. 2014. 

[41] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle, “ParamILS: An Au-

tomatic Algorithm Configuration Framework,” Journal of Artificial Intelli-

gence Research, vol. 36, pp. 267-306, Oct. 2009. 

[42] H. H. Hoos, “Automated Algorithm Configuration and Parameter Tuning,” 

Autonomous Search, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 

37-71. 

[43] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning 



 

１６９ 

Methods for Metaheuristics,” IEEE Transactions on Evolutionary Computation, 

vol. 24, no. 2, pp. 201-216, Apr. 2020. 

[44] P. Cunningham and B. Smyth, “Case-based Reasoning in Scheduling: Reusing 

Solution Components,” International Journal of Production Research, vol. 35, 

no. 11, pp. 2947-2962, Nov. 1997. 

[45] S. J. Louis and J. McDonnell, “Learning with Case-Injected Genetic Algo-

rithms,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 

316-328, Aug. 2004. 

[46] L. Feng, Y.-S. Ong, S. Jiang, and A. Gupta, “Autoencoding Evolutionary 

Search with Learning across Heterogeneous Problems,” IEEE Transactions on 

Evolutionary Computation, vol. 21, no. 5, pp. 760-772, Oct. 2017. 

[47] X. Xue, C. Yang, Y. Hu, K. Zhang, Y. Cheung, L. Song, and K. C. Tan, “Evo-

lutionary Sequential Transfer Optimization for Objective-Heterogeneous Prob-

lems,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 6, pp. 

1424-1438, Dec. 2022. 

[48] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y.-S. Ong, K. C. Tan, and A. K. Qin, 

“Evolutionary Multitasking via Explicit Autoencoding,” IEEE Transactions 

on Cybernetics, vol. 49, no. 9, pp. 3457-3470, Sep. 2019. 

[49] K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, “Multifactorial Evolutionary 

Algorithm With Online Transfer Parameter Estimation: MFEA-II,” IEEE 

Transactions on Evolutionary Computation, vol. 24, no. 1, pp. 69-83, Feb. 2020. 

[50] K. K. Bali, A. Gupta, Y. S. Ong, and P. S. Tan, “Cognizant Multitasking in 



 

１７０ 

Multiobjective Multifactorial Evolution: MO-MFEA-II,” IEEE Transactions on 

Cybernetics, vol. 51, no. 4, pp. 1784-1796, Apr. 2021. 

[51] Wei, S. Wang, J. Zhong, D. Liu, and J. Zhang, “A Review on Evolutionary 

Multitask Optimization: Trends and Challenges,” IEEE Transactions on Evolu-

tionary Computation, vol. 26, no. 5, pp. 941-960, Oct. 2022. 

[52] J. Lin, H.-L. Liu, K. C. Tan, and F. Gu, “An Effective Knowledge Transfer 

Approach for Multiobjective Multitasking Optimization,” IEEE Transactions 

on Cybernetics, vol. 51, no. 6, pp. 3238-3248, Jun. 2021. 

[53] J. Zhang, W. Zhou, X. Chen, W. Yao, and L. Cao, “Multi-Source Selective 

Transfer Framework in Multi-Objective Optimization Problems,” IEEE Trans-

actions on Evolutionary Computation, vol. 24, no. 3, pp. 424-438, Jun. 2020. 

[54] Y. Chen, J. Zhong, L. Feng, and J. Zhang, “An Adaptive Archive-Based Evolu-

tionary Framework for Many-Task Optimization,” IEEE Transactions on 

Emerging Topic in Computational Intelligence, vol. 4, no. 3, pp. 369-384, Jun. 

2020. 

[55] Z. Liang, X. Xu, L. Liu, Y. Tu, and Z. Zhu, “Evolutionary Many-Task Optimi-

zation Based on Multisource Knowledge Transfer,” IEEE Transactions on 

Evolutionary Computation, vol. 26, no. 2, pp. 319-333, Apr. 2022. 

[56] C. Wang, J. Liu, K. Wu, and Z. Wu, “Solving Multitask Optimization Problems 

with Adaptive Knowledge Transfer via Anomaly Detection,” IEEE Transac-

tions on Evolutionary Computation, vol. 26, no. 2, pp. 304-318, Apr. 2022. 

[57] J. Lin, H.-L. Liu, B. Xue, M. Zhang, and F. Gu, “Multiobjective Multitasking 



 

１７１ 

Optimization Based on Incremental Learning,” IEEE Transactions on Evolu-

tionary Computation, vol. 24, no. 5, pp. 824-838, Oct. 2020. 

[58] H. Chen, H.-L. Liu, F. Gu, and K. C. Tan, “A Multiobjective Multitask Opti-

mization Algorithm Using Transfer Rank,” IEEE Transactions on Evolutionary 

Computation, vol. 27, no. 2, pp. 237-250, Apr. 2023. 

[59] L. Zhou et al., “Towards Effective Mutation for Knowledge Transfer in Multi-

factorial Differential Evolution,” in Proceedings of IEEE Congress on Evolu-

tionary Computation (CEC), 2019, pp. 1541-1547. 

[60] L. Zhou, L. Feng, K. C. Tan, J. Zhong, Z. Zhu, K. Liu, C. Chao, “Toward 

Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation,” 

IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2563-2576, May 2021. 

[61] H. Xiao, G. Yokoya, and T. Hatanaka, “Multifactorial PSO-FA Hybrid Algo-

rithm for Multiple Car Design Benchmark,” in Proceedings of IEEE Interna-

tional Conference on Systems, Man and Cybernetics (SMC), 2019, pp. 1926-

1931. 

[62] Z. Tang and M. Gong, “Adaptive multifactorial particle swarm optimiza-

tion,”  CAAI Transactions on Intelligence Technology,  vol. 4, no. 1, pp. 37-46, 

2019. 

[63] H. Song, A. K. Qin, P. -W. Tsai, and J. J. Liang, “Multitasking Multi-Swarm 

Optimization,” in Proceedings of IEEE Congress on Evolutionary Computation 

(CEC), 2019, pp. 1937-1944. 

[64] G. Yokoya, H. Xiao, and T. Hatanaka, “Multifactorial Optimization Using Arti-



 

１７２ 

ficial Bee Colony and Its Application to Car Structure Design Optimization,” 

in Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2019, 

pp. 3404-3409. 

[65] Z. X, K. Zhang, X. X, and J. H, “A Fireworks Algorithm Based on Transfer 

Spark for Evolutionary Multitasking,” Frontiers in Neurorobotics, vol. 13, 2020. 

[66] K. K. Bali, A. Gupta, L. Feng, Y. S. Ong, and T. P. Siew, “Linearized Domain 

Adaptation in Evolutionary Multitasking,” in Proceedings of IEEE Congress 

on Evolutionary Computation (CEC), 2017, pp. 1295-1302. 

[67] X. Xue, K. Zhang, K. C. Tan, L. Feng, J. Wang, G. Chen, X. Zhao, L. Zhang, 

and J. Yao, “Affine Transformation-Enhanced Multifactorial Optimization for 

Heterogeneous Problems,” IEEE Transactions on Cybernetics, vol. 52, no. 7, 

pp. 6217-6231, Jul. 2022. 

[68] L. Zhou, L. Feng, A. Gupta, and Y.-S. Ong, “Learnable Evolutionary Search 

Across Heterogeneous Problems via Kernelized Autoencoding,” IEEE Trans-

actions on Evolutionary Computation, vol. 25, no. 3, pp. 567-581, Jun. 2021. 

[69] R. Lim, L. Zhou, A. Gupta, Y. -S. Ong, and A. N. Zhang, “Solution Represen-

tation Learning in Multi-Objective Transfer Evolutionary Optimization,” IEEE 

Access, vol. 9, pp. 41844-41860, Mar. 2021. 

[70] Z. Tang, M. Gong, Y. Wu, A. K. Qin, and K. C. Tan, “A Multifactorial Opti-

mization Framework Based on Adaptive Intertask Coordinate System,” IEEE 

Transactions on Cybernetics, vol. 52, no. 7, pp. 6745-6758, Jul. 2022. 

[71] Z. Liang, H. Dong, C. Liu, W. Liang, and Z. Zhu, “Evolutionary Multitasking 



 

１７３ 

for Multiobjective Optimization With Subspace Alignment and Adaptive Differ-

ential Evolution,” IEEE Transactions on Cybernetics, vol. 52, no. 4, pp. 2096-

2109, Apr. 2022. 

[72] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multiobjective Multifactorial 

Optimization in Evolutionary Multitasking,” IEEE Transactions on Cybernet-

ics, vol. 47, no. 7, pp. 1652-1665, Jul. 2017. 

[73] Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A Multi-Variation Multifactorial 

Evolutionary Algorithm for Large-Scale Multi-Objective Optimization,” IEEE 

Transactions on Evolutionary Computation, vol. 26, no. 2, pp. 248-262, Apr. 

2022. 

[74] J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized Multitasking for Evolu-

tionary Optimization of Expensive Problems,” IEEE Transactions on Evolu-

tionary Computation, vol. 23, no. 1, pp. 44-58, Feb. 2019. 

[75] J. Liang, K. Qiao, M. Yuan, K. Yu, B. Qu, S. Ge, Y. Li, and G. Chen, “Evolu-

tionary Multi-task Optimization for Parameters Extraction of Photovoltaic Mod-

els,” Energy Conversion and Management, vol. 207, 2020. 

[76] Z. Wang, L. Cao, L. Feng, M. Jiang, and K. C. Tan, “Evolutionary Multitask 

Optimization With Lower Confidence Bound-Based Solution Selection Strategy,” 

IEEE Transactions on Evolutionary Computation, 2024. doi: 10.1109/ 

TEVC.2023.3349250. 

[77] Y. W. Wen and C.-K. Ting, “Parting Ways and Reallocating Resources in Evo-

lutionary Multitasking,” in Proceedings of IEEE Congress on Evolutionary 

Computation (CEC), 2017, pp. 2404-2411. 



 

１７４ 

[78] H. T. T. Binh, N. Q. Tuan, and D. C. T. Long, “A Multi-objective Mult-

factorial Evolutionary Algorithm with Reference-point-based Approach,” in 

Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2019, pp. 

2824-2831. 

[79] E. Osaba et al., “DMFEA-II: An Adaptive Multifactorial Evolutionary Algo-

rithm for Permutation-based Discrete Optimization Problems,” 2020, 

arXiv:2004.06559. 

[80] R.-T. Liaw and C.-K. Ting, “Evolutionary Many-tasking Based on Biocoenosis 

through Symbiosis: A Framework and Benchmark Problems,” in Proceedings 

of IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 2266-2273. 

[81] Q. Shang et al., “A Preliminary Study of Adaptive Task Selection in Explicit 

Evolutionary Many-tasking,” in Proceedings of IEEE Congress on Evolution-

ary Computation (CEC), 2019, pp. 2153-2159. 

[82] L. Zhou, L. Feng, J. Zhong, Z. Zhu, B. Da, and Z. Wu, “A Study of Similarity 

Measure between Tasks for Multifactorial Evolutionary Algorithm,” in Pro-

ceedings of the Genetic and Evolutionary Computation Conference (GECOO), 

2018, pp. 229-230. 

[83] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 

2006. 

[84] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, Perspectives, and 

Prospects,” Science, vol. 349, no. 6245, pp. 255-260, Jul. 2015. 

[85] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. 



 

１７５ 

Upper Saddle River, N.J: Prentice Hall PTR, 1995. 

[86] J. M. Keller, M. R. Gray, and J. A. Givens, “A Fuzzy K-nearest Neighbor Al-

gorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, 

no. 4, pp. 580-585, Jul. 1985. 

[87] J. Derrac, S. García, and F. Herrera, “Fuzzy Nearest Neighbor Algorithms: 

Taxonomy, Experimental Analysis and Prospects,” Information Sciences, vol. 

260, pp. 98-119, Mar. 2014. 

[88] A. Zhou, J. Zhang, J. Sun, and G. Zhang, “Fuzzy-Classification Assisted Solu-

tion Preselection in Evolutionary Optimization,” in Proceedings of AAAI Con-

fer on Artificial Intelligence, vol. 33, no. 01, pp. 2403-2410, Jul. 2019. 

[89] J. Zhang, J. Huang, and Q. Hu, “Boosting Evolutionary Optimization via 

Fuzzy-Classification-Assisted Selection,” Information Sciences, vol. 519, pp. 

423-438, 2020. 

[90] J. Zhang et al., “Environmental Selection Using a Fuzzy Classifier for Multi-

objective Evolutionary Algorithms,” in Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECOO), 2021, pp: 485-492. 

[91] J. Zhang and H. Ishibuchi, “Multiobjective Optimization with Fuzzy Classifica-

tion-Assisted Environmental Selection,” in Proceedings of Evolutionary Multi-

Criterion Optimization (EMO), 2021, pp. 580-592. 

[92] J. Zhang, L. He, and H. Ishibuchi, “Dual-Fuzzy-Classifier-Based Evolutionary 

Algorithm for Expensive Multiobjective Optimization,” IEEE Transactions on 

Evolutionary Computation, vol. 27, no. 6, pp. 1575-1589, Aug. 2022. 



 

１７６ 

[93] J. Devore, “A Modern Introduction to Probability and Statistics: Understanding 

Why and How,” Journal of the American Statistical Association, vol. 101, no. 

473, pp. 393-394, Mar. 2006. 

[94] K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous 

Search Space,” Complex System, vol. 9, no. 2, pp. 115-148, 1995. 

[95] K. Deb and D. Deb, “Analyzing Mutation Schemes for Real-Parameter Genetic 

Algorithms,” International Journal of Artificial Intelligence and Soft Compu-

ting, vol. 4, no. 1, pp. 1-28, 2014. 

[96] B. Da et al., “Evolutionary Multitasking for Single-objective Continuous Opti-

mization: Benchmark Problems, Performance Metric, and Baseline Re-

sults,”arXiv: 1706.03470, 2017. 

[97] X. Xue, C. Yang, L. Feng, K. Zhang, L. Song, and K. C. Tan, “A Scalable 

Problem Generator for Sequential Transfer Optimization,” arXiv preprint. Oct. 

2023. https://doi.org/10.48550/arXiv.2304.08503. 

[98] J. Mouret and G. Maguire, “Quality Diversity for Multi-Task Optimization,” 

in Proceedings of the Genetic and Evolutionary Computation Conference 

(GECOO), 2020, pp: 121-129. 

[99]  A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A Brief Review of 

Domain Adaptation,” Advances in Data Science and Information Engineering, 

2021, pp. 877-894. 

[100] J. Yin, A. Zhu, Z. Zhu, Y. Yu, and X. Ma, “Multifactorial Evolutionary Algo-

rithm Enhanced with Cross-task Search Direction,” in Proceedings of IEEE 



 

１７７ 

Congress on Evolutionary Computation (CEC), 2019, pp. 2244-2251. 

[101] F. Peng, K. Tang, G. Chen, and X. Yao, “Population-Based Algorithm Portfo-

lios for Numerical Optimization,” IEEE Transactions on Evolutionary Com-

putation, vol. 14, no. 5, pp. 782-800, Oct. 2010. 

[102] V. A. Shim, K. C. Tan, and H. Tang, “Adaptive Memetic Computing for Evo-

lutionary Multiobjective Optimization,” IEEE Transactions on Cybernetics, 

vol. 45, no. 4, pp. 610-621, Apr. 2015. 

[103] E. L. Yu and P. N. Suganthan, “Ensemble of Niching Algorithms,” Infor-

mation Sciences, vol. 180, no. 15, pp. 2815-2833, Aug. 2010. 

[104] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An Evolutionary Many-Objective 

Optimization Algorithm Based on Dominance and Decomposition,” IEEE 

Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 694-716, Oct. 

2015. 

[105] W. Wang, S. Yang, Q. Lin, Q. Zhang, K.-C Wong, C. A. C. Coello, and J. 

Chen, “An Effective Ensemble Framework for Multiobjective Optimization,” 

IEEE Transactions on Evolutionary Computation, vol. 23, no. 4, pp. 645-659, 

Aug. 2019. 

[106] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, and H. Chen, “Differential 

Evolution with Multi-Population Based Ensemble of Mutation Strategies,” In-

formation Sciences, vol. 329, pp. 329-345, Feb. 2016. 

[107] S. Sharma, J. Blank, K. Deb, and B. K. Panigrahi, “Ensembled Crossover 

based Evolutionary Algorithm for Single and Multi-objective Optimization,” 



 

１７８ 

in Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2021, 

pp. 1439-1446. 

[108] J. Zhou, L. Gao, and X. Li, “Ensemble of Dynamic Resource Allocation 

Strategies for Decomposition-Based Multiobjective Optimization,” IEEE 

Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 710-723, Aug. 

2021. 

[109] R. Mallipeddi and P. N. Suganthan, “Ensemble of Constraint Handling Tech-

niques,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 

561-579, Aug. 2010. 

[110] S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Decomposition-Based Multi-

objective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes,” 

IEEE Transactions on Evolutionary Computation, vol. 16, no. 3, pp. 442-446, 

Jun. 2012. 

[111] R. Xu and D. Wunsch, “Survey of Clustering Algorithms,” IEEE Transac-

tions on Neural Network, vol. 16, no. 3, pp. 645-678, May 2005. 

[112] M. Makrehchi, “Hierarchical Agglomerative Clustering Using Common 

Neighbours Similarity,” in 2016 IEEE/WIC/ACM International Conference 

on Web Intelligence (WI), Oct. 2016, pp. 546-551. 

[113] C. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: 

Springer, 2006. 

[114] X. He and P. Niyogi, “Locality Preserving Projections,” In Proceedings of 

Advances in Neural Information Processing Systems (NIPS), 2003. 



 

１７９ 

[115] Y. Hua, Y. Jin, and K. Hao, “A Clustering-Based Adaptive Evolutionary Al-

gorithm for Multiobjective Optimization With Irregular Pareto Fronts," IEEE 

Transactions on Cybernetics, vol. 49, no. 7, pp. 2758-2770, Jul. 2019. 

[116] Q. Lin, W. Lin, Z. Zhu, M. Gong, J. Li, and C. A. C. Coello, “Multimodal 

Multiobjective Evolutionary Optimization With Dual Clustering in Decision 

and Objective Spaces,” IEEE Transactions on Evolutionary Computation, vol. 

25, no. 1, pp. 130-144, Feb. 2021. 

[117] Y. Yuan et al., “Evolutionary Multitasking for Multiobjective Continuous Op-

timization: Benchmark Problems, Performance Metrics and Baseline Results,” 

2017. [Online]. Available: arXiv:1706. 02766. 

[118] P. A. Bosman and D. Thierens, “The Balance between Proximity and Diversi-

ty in Multiobjective Evolutionary Algorithms,” IEEE Transactions on Evolu-

tionary Computation, vol. 7, no. 2, pp. 174-188, Apr. 2003. 

[119] L. Bai, W. Lin, A. Gupta, and Y.-S. Ong, “From Multitask Gradient Descent 

to Gradient-Free Evolutionary Multitasking: A Proof of Faster Convergence,” 

IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8561-8573, Aug. 2022. 

[120] J.-Y. Li, Z.-H. Zhan, K. C. Tan, and J. Zhang, “A Meta-Knowledge Transfer-

based Differential Evolution for Multitask Optimization,” IEEE Transactions 

on Evolutionary Computation, vol. 26, no. 4, pp. 719-734, Aug. 2022. 

[121] M. Friedman, “A Comparison of Alternative Tests of Significance for the 

Problem of m Rankings,” Annals of Mathematical Statistics, vol. 11, no. 1, pp. 

86-92, 1940. 



 

１８０ 

[122] L. Feng et al., “An Empirical Study of Multifactorial PSO and Multifactorial 

DE,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC), 

2017, pp. 921-928. 

[123] C. Yang, J. Ding, K. C. Tan, and Y. Jin, “Two-stage Assortative Mating for 

Multi-objective Multifactorial Evolutionary Optimization,” in Proceedings of 

IEEE 56th Annual Conference on Decision and Control (CDC), 2017, pp. 76-

81. 

[124] J. Tang et al., “A Group-based Approach to Improve Multifactorial Evolution-

ary Algorithm,” In Proceedings of International Joint Conference on Artificial 

Intelligence (IJCAI), 2018. 

[125] Z. Liu, G. Li, H. Zhang, Z. Liang, and Z. Zhu, “Multifactorial Evolutionary 

Algorithm Based on Diffusion Gradient Descent,” IEEE Transactions on Cy-

bernetics, 2023. doi: 10.1109/TCYB.2023.3270904. 

[126] W. Lin, Q. Lin, L. Feng, and K. C. Tan, “Ensemble of Domain Adaptation-

Based Knowledge Transfer for Evolutionary Multitasking,” IEEE Transac-

tions on Evolutionary Computation, vol. 28, no. 2, pp. 388-402, Apr. 2024. 

[127] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338-

353, 1965. 

[128] D. Dubois and H. Prade, “Fuzzy Sets, Probability and Measurement,” Euro-

pean Journal of Operational Research, vol. 40, no. 2, pp. 135-154, Mar. 1989. 

[129] A. L. Guiffrida and R. Nagi, “Fuzzy Set Theory Applications in Production 

Management Research: A Literature Survey,” Journal of Intelligence Manu-



 

１８１ 

facturing, vol. 9, no. 1, pp. 39-56, 1998. 

[130] M. C. M. Teixeira and S. H. Zak, “Stabilizing Controller Design for Uncertain 

Nonlinear Systems Using Fuzzy Models,” IEEE Transactions on Fuzzy Sys-

tems, vol. 7, no. 2, pp. 133-142, Apr. 1999. 

[131] C. Saha, S. Das, K. Pal, and S. Mukherjee, “A Fuzzy Rule-Based Penalty 

Function Approach for Constrained Evolutionary Optimization,” IEEE Trans-

actions on Cybernetics, vol. 46, no. 12, pp. 2953-2965, Dec. 2016. 

[132] M. Orouskhani, D. Shi, and X. Cheng, “A Fuzzy Adaptive Dynamic NSGA-II 

With Fuzzy-Based Borda Ranking Method and its Application to Multimedia 

Data Analysis,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 118-

128, Jan. 2021. 

[133] P. Dziwiński and Ł. Bartczuk, “A New Hybrid Particle Swarm Optimization 

and Genetic Algorithm Method Controlled by Fuzzy Logic,” IEEE Transac-

tions on Fuzzy Systems, vol. 28, no. 6, pp. 1140-1154, Jun. 2020. 

[134] X. Xia et al., “A Particle Swarm Optimization With Adaptive Learning 

Weights Tuned by a Multiple-Input Multiple-Output Fuzzy Logic Control-

ler, ”IEEE Transactions on Fuzzy Systems, vol. 31, no. 7, pp. 2464-2478, Jul. 

2023. 

[135] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a 

fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, 

no. 1, pp. 1-13, 1975. 

[136] N. Sabri et al., “Fuzzy Inference System: Short Review and Design,” Inter-



 

１８２ 

national Review of Automatic Control, vol. 6, no, 4, pp. 441-449, Jul. 2013. 

[137] Gu, Xiaowei et al., “Autonomous Learning for Fuzzy Systems: A Review,” 

Artificial Intelligence Review, vol. 56, no. 8, pp. 7549-7595, 2023. 

[138] P. Mamoria and D. Raj, “Comparison of Mamdani Fuzzy Inference System 

for Multiple Membership Functions,” International Journal of Image, 

Graphics and Signal Processing, vol. 9, pp. 26-30, 2016. 

[139] G. Selvachandran et al., “A New Design of Mamdani Complex Fuzzy Infer-

ence System for Multiattribute Decision Making Problems,” IEEE Transac-

tions on Fuzzy Systems, vol. 29, no. 4, pp. 716-730, Apr. 2021. 

[140] E. V. Broekhoven and B. D. Baets, “Fast and Accurate Center of Gravity De-

fuzzification of Fuzzy System Outputs Defined on Trapezoidal Fuzzy Parti-

tions,” Fuzzy Sets and Systems, vol. 157, no. 7, pp. 904-918, Apr. 2006. 

[141] T. Yu, and H. Zhu, “Hyper-parameter optimization: A review of algorithms 

and applications,” arXiv preprint arXiv: 2003.05689 (2020). 

[142] Y. Tian et al., “Evolutionary Large-scale Multi-objective Optimization: A 

Survey,” ACM Computing Surveys (CSUR), vol 54, no. 8, pp. 1-34, 2021. 

[143] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A Decision Variable Clustering-

Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization,” 

IEEE Transactions on Evolutionary Computation, vol. 22, no. 1, pp. 97-112, 

Feb. 2018. 

[144] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A Framework for 

Large-Scale Multiobjective Optimization Based on Problem Transformation,” 



 

１８３ 

IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 260-275, 

Apr. 2018. 

[145] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient Large-Scale Multiobjec-

tive Optimization Based on a Competitive Swarm Optimizer,” IEEE Transac-

tions on Cybernetics, vol. 50, no. 8, pp. 3696-3708, Aug. 2020. 

[146] J. Li, Z. Zhan, and J. Zhang, “Evolutionary Computation for Expensive Opti-

mization: A Survey,” Machine Intelligence Research, vol.  19, no. 1, pp. 3-23, 

2022. 

[147] Z. Song, H. Wang, C. He, and Y. Jin, “A Kriging-assisted Two-archive Evo-

lutionary Algorithm for Expensive Many-objective Optimization,”  IEEE 

Transactions on Evolutionary Computation, vol. 25, no. 6, pp. 1013-1027, Dec. 

2021. 

[148] L. Pan, H. Cheng, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A Classification-

based Surrogate-assisted Evolutionary Algorithm for Expensive Many-

objective Optimization,” IEEE Transactions on Evolutionary Computation, 

vol. 23, no. 1, pp. 74-88, Feb. 2019. 

[149] X. Xue, Y. Hu, L. Feng, K. Zhang, L. Song, and K. C. Tan, “Surrogate-

Assisted Search With Competitive Knowledge Transfer for Expensive Optimi-

zation,” IEEE Transactions on Evolutionary Computation, 2024. doi: 

10.1109/TEVC.2024.3478732. 

[150] J. Luo , Y. Dong, Q. Liu, Z. Zhu, W. Cao, and K.C. Tan, “A New Multitask 

Joint Learning Framework for Expensive Multi-Objective Optimization Prob-

lems,”  IEEE Transactions on Emerging Topics in Computational Intelligence, 



 

１８４ 

vol. 8, no. 2, pp. 1894-1909, Apr. 2024. 

[151] S. Tan, Y. Wang, G. Sun, T. Pang, and K. Tang, “A Surrogate-Assisted Evo-

lutionary Framework for Expensive Multitask Optimization Problems,” IEEE 

Transactions on Evolutionary Computation, 2024. doi: 

10.1109/TEVC.2024.3370937. 

[152] R. Jiao, B. Xue, and M. Zhang, “A Multiform Optimization Framework for 

Constrained Multiobjective Optimization,” IEEE Transactions on Cybernetics, 

vol. 53, no. 8, pp. 5165-5177, Aug. 2023. 

[153] Y. Feng, L. Feng, S. Kwong, and K. C. Tan, “A Multivariation Multifactorial 

Evolutionary Algorithm for Large-Scale Multiobjective Optimization,” IEEE 

Transactions on Evolutionary Computation, vol. 26, no. 2, pp. 248-262, Apr. 

2022. 

[154] C. Dai, X. Sun, H. Hu, W. Song, Y. Zhang, and D. Gong, “Multiform Differ-

ential Evolution With Elite-Guided Knowledge Transfer for Coal Mine Inte-

grated Energy Systems Constrained Dispatch,” IEEE Transactions on Evolu-

tionary Computation, 2024. doi: 10.1109/TEVC.2024.3496852. 

[155] Y. Feng, L. Feng, X. Xue, S. Kwong, and K. C. Tan, “A Review on Evolu-

tionary Multiform Transfer Optimization,” in  Proceedings of IEEE Congress 

on Evolutionary Computation (CEC), 2024, pp. 1-8. 

[156] J. Liu, A. Gupta, C. Ooi, and Y. -S. Ong, “ExTrEMO: Transfer Evolutionary 

Multiobjective Optimization With Proof of Faster Convergence,” IEEE 

Transactions on Evolutionary Computation, 2024. doi: 

10.1109/TEVC.2023.3349313. 



 

１８５ 

[157] Q. Guo et al., “Connecting Large Language Models with Evolutionary Algo-

rithms Yields Powerful Prompt Optimizers,” arXiv preprint 

arXiv:2309.08532 (2023). 

[158] J. Cai et al., “Exploring the Improvement of Evolutionary Computation via 

Large Language Models,”in  Proceedings of the Genetic and Evolutionary 

Computation Conference Companion (GECCO), 2024, pp. 83-84. 

[159] S. Liu, C. Chen, X. Qu, K. Tang, and Y. -S. Ong, “Large Language Models as 

Evolutionary Optimizers,” in Proceedings of IEEE Congress on Evolutionary 

Computation (CEC), 2024, pp. 1-8. 

[160] Y. Huang, X. Lv, S. Wu, J. Wu, L. Feng, and K. C. Tan, “Advancing Auto-

mated Knowledge Transfer in Evolutionary Multitasking via Large Language 

Models,” arXiv preprint arXiv:2409.04270 (2024). 

[161] M. Clint, M. Jurado, and J. Zutty, “LLM Guided Evolution-The Automation 

of Models Advancing Models,” in Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO), 2024, pp. 377-384. 


