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Abstract

Evolutionary transfer optimization (ETO) is an emerging search paradigm, which in-
tegrates evolutionary algorithms (EAs) with transfer learning techniques. Learning
and transferring useful knowledge across related problems can reduce repeated
searches, enabling traditional EAs to achieve better optimization efficiency and per-
formance on various complex problems. Generally, the design of ETO approaches
grapples with three critical issues concerning knowledge transfer: 1) what to transfer,
2) how to transfer, and 3) when to transfer. Considering what to transfer, it involves
1dentifying the type of knowledge and deciding which one to transfer among all avail-
able candidates. Regarding how to transfer, it focuses on the methodology design for
implementing knowledge transfer. As for the issue of when to transfer, it aims to
identify the optimal timing or the appropriate extent for deciding how much
knowledge to transfer. However, in existing ETO studies, most deterministic methods
lack the adaptability and flexibility when addressing the above three issues, severely
limiting the robustness and effectiveness of knowledge transfer in enhancing the op-
timization efficiency and performance of EAs. To achieve more effective and robust
performance, this thesis focuses on studying and designing adaptive knowledge trans-

fer methods to intelligently address one or more of the three issues.

Firstly, to adaptively decide what to transfer, this thesis proposes a fuzzy classifier-
assisted solution transfer method to identify the most useful solution for transfer in

evolutionary sequential transfer optimization (ESTO). By constructing the training



data, the fuzzy classifier is built to estimate the solution usefulness of all available
source tasks for the target task. Compared to existing solution transfer methods, the
proposed method not only estimates whether one source task is useful or useless but
also further quantifies the degree of its usefulness when it is estimated to be useful. In
this way, the most useful solution 1s accurately selected from useful source tasks for
knowledge transfer. This effectively accelerates the optimization of the target task by
adaptively selecting the most useful solution from available source tasks for

knowledge transfer.

Secondly, to adaptively decide how to transfer, this thesis proposes an ensemble
method to combine multiple domain adaptation methods for evolutionary multitasking
(EMT), mitigating the unique biases of each domain adaptation method. It smartly
addresses the balance between efficacy and diversity when determining which one
domain adaptation method for use, which further enhances knowledge transferability
across tasks in EMT. The proposed methodology clearly differentiates from existing
ensemble methods by integrating a novel adaptive selection mechanism that considers
both past performance and diversity of candidate domain adaptation methods. This
could potentially lead to more robust and effective multitasking performance in com-
parison with existing non-adaptive approaches that adopt one deterministic domain

adaptation method to address the issue of how to transfer.

Lastly, to adaptively decide when to transfer and how to transfer, this thesis proposes
a fuzzy logic-based method in EMT. The proposed method includes two fuzzy logic-
based components. To effectively adapt the transfer extent along the multitasking
search process, a fuzzy logic-based parameter adaption component is developed to

dynamically adjust the value of the transfer parameter, thereby alleviating the risk of

ii



negative transfer. To adaptively select the most promising method for knowledge
transfer, a fuzzy logic-based selection component is developed to select the optimal
transfer method from multiple candidates, thereby enhancing knowledge transferabil-
ity across tasks. The proposed fuzzy logic-based methodology clearly differentiates
from existing methods by employing fuzzy logic to effectively process fuzzy and in-

accurate information, facilitating effective knowledge transfer.
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Chapter 1

Introduction

1.1 Background and Motivation

Optimization problems exist in various scenarios, including data science [1], embod-
1ed intelligence [2], unmanned systems planning [3], complex engineering design [4],
smart manufacturing [5], and software engineering [6]. In mathematics, solving an
optimization problem is to obtain the best solution from its feasible search space.
Many practical optimization problems may possess complex characteristics, such as
non-convexity and non-differentiability, which significantly complicate the problem-
solving process. Thus, traditional mathematical methods, such as linear programming
[7], quadratic programming [8], and convex optimization [9], cannot effectively solve
these complex optimization problems. In contrast to traditional mathematical methods,
evolutionary algorithms (EAs) are a class of population-based metaheuristic search

approaches [10], [11], [12], [13]. Generally, given an optimization problem, one clas-



sical EA starts by randomly sampling solutions in the search space to form a popula-
tion. Subsequently, this population undergoes crossover, mutation, and selection, con-
tinuously evolving towards the regions where the optimal solution lies until the stop-
ping criterion is satisfied. The iterative procedure facilitates the exploration of optimal
solutions for a diverse range of complex optimization problems. Without strong
mathematical theories and related knowledge, EAs can be easily implemented to
solve various optimization problems with complex characteristics, such as multiple
conflicting objective functions [14], expensive evaluation costs [15], multiple local

optima [16], constraints [17], and a large number of decision variables [18].

In the past years, various advanced evolutionary components, such as crossover, mu-
tation, and selection, have been developed to enhance the performance of EAs. While
EAs have gained great success, they typically solve one optimization problem by
conducting the evolutionary search process from scratch. In fact, problems seldom
exist in 1solation [19], [20]. In the area of machine learning, transfer learning (TL) has
been proven to be effective for improving generalization about the current task by ex-
ploiting the knowledge from a previous task [21], [22], [23]. Here, the task can be
various classification and regression problems [24], [25]. In the context of evolution-
ary computation, employing search experience of previously solved optimization
problems can avoid repeated searches to find the optimal solutions when solving new
optimization problems, thereby improving the optimization efficiency and perfor-

mance.

Inspired by TL, evolutionary transfer optimization (ETO) 1s proposed as a new search
paradigm, which integrates EAs with TL techniques [20]. The ability of learning and
transferring knowledge from related problems enables traditional EAs to possess bet-

ter efficiency and performance in solving various optimization problems. For optimi-



zation problems, only objective function and limited problem-specific data can be ob-
tained by iteratively conducting the evolutionary search process, presenting signifi-
cant differences from classification and regression problems in machine learning.
Therefore, traditional TL techniques are not suitable for optimization tasks, resulting
in new requirements for developing ETO approaches, including new representations
of knowledge and learning methods for knowledge transfer across various optimiza-
tion tasks. In the literature, various advanced ETO approaches have been developed to
address problems with diverse characteristics, including dynamic optimization [26],
multitask optimization [27], complex optimization [28], multi/many-objective optimi-
zation [29], large-scale optimization [30], constrained optimization [31], bi-level op-
timization [32], combinatorial optimization [33], high-dimensional feature selection

[34], and neural architecture search [35].

While there are different conceptual realizations for ETO, such as evolutionary se-
quential transfer optimization (ESTO), evolutionary multitasking optimization (EMT),
and multiform optimization (MFO), the design of ETO approaches grapples with
three pivotal issues concerning knowledge transfer: 1) what to transfer, 2) how to
transfer, and 3) when to transfer [36], [37]. Determining what to transfer focuses on
the types of knowledge, including heuristic algorithms [38], [39], [40], configured pa-
rameters [41], [42], [43], and evaluated solutions [44], [45], [46], [47]. Due to the
ease of use, transferring knowledge in the form of solutions has attracted increasing
attention in existing ETO studies [37]. Regarding the evolutionary search process,
there are usually multiple solutions at each generation. Therefore, given the type of
knowledge in the form of solutions, determining what to transfer is simplified to de-
termine which one or some solution(s) for transfer. Determining how to transfer fo-

cuses on the design of the transfer mechanism, aiming to implement effective



knowledge transfer across various complex problems. There are implicit transfer ap-
proaches [27] and explicit transfer approaches [48]. In terms of determining when to
transfer, 1t aims to identify the optimal timing or the appropriate extent for knowledge
transfer [49], [50]. The former can be employed to identify different scenarios, such
as when to or when not to transfer during the evolutionary search process. The latter
indicates how much knowledge to transfer across tasks. Within existing ETO studies,
the above three issues are usually addressed by deterministic methods, which may po-
tentially undermine the effectiveness of knowledge transfer due to a lack of adaptabil-
ity and flexibility [36], [37], [51]. To achieve more effective and robust knowledge
transfer in ETO, adaptive knowledge transfer methods should be designed to intelli-
gently decide what to transfer, how to transfer, and when to transfer during the evolu-
tionary search process. Therefore, this thesis is motivated to study and design adap-

tive knowledge transfer methods in terms of the following three considerations:

e Deciding What to Transfer

In designing ETO approaches, transferring knowledge in the form of solutions 1s the
most straightforward way, which has attracted increasing attention [37]. As a concep-
tual realization of ETO, ESTO aims to speed up the optimization of a new task
(called target task) by utilizing the search experience of previously solved tasks
(called source tasks). Hence, in the context of ESTO, as the number of previously
solved source tasks increases, their optimal solutions are available, which may be use-
ful for accelerating the optimization of the current target task. In existing ETO studies,
several methods have been developed to measure the usefulness of solutions by em-
ploying distance metrics or traditional machine learning (ML) models. Using distance
metrics cannot determine whether one source task (its optimal solution) is useful for

accelerating the optimization of the target task, while these ML models are unable to



quantify the degree of solution usefulness, which may result in ineffective knowledge
transfer. Therefore, adaptively deciding the most promising solution from all candi-
dates needs to judge whether there are useful sources for the target task. The most
useful solution is selected from all useful candidates if they exist. Otherwise, no solu-

tion 18 selected for knowledge transfer.

e Deciding How to Transfer

EMT is another conceptual realization of ETO, aiming to solve multiple tasks simul-
taneously. In existing ETO studies, various methods of knowledge transfer have been
designed to transfer knowledge across tasks [51]. However, considering domain adap-
tation methods for conducting knowledge transfer, the differences in their design
mechanisms may lead to unique biases of these methods when transferring knowledge
between two tasks. One specific transfer method often exhibits the superiority in its
preferred transfer scenario, while it may perform poorly in other transfer scenarios.
Practical optimization problems usually possess various complex characteristics, mak-
ing 1t challenging for any single transfer method to clearly outperform other ap-
proaches on existing optimization problems. Therefore, adaptively deciding the opti-
mal method from multiple candidates can take full advantages of the strength of each
method for conducting knowledge transfer across tasks, thereby further enhancing the

effectiveness and robustness of knowledge transfer.

e Deciding When to Transfer

The transfer timing or the transfer extent can determine the frequency of conducting

knowledge transfer across tasks, which may vary as the correlation of tasks changes



[49], [50]. Thus, it 1s difficult to predefine and fix the optimal timing or the appropri-
ate extent for knowledge transfer in handling various types of problems. For example,
frequent knowledge transfer can encourage positive transfer when two tasks are high-
ly related. In such a scenario, the shared knowledge can enhance the optimization ef-
ficiency and performance on the target task by reducing repeated evolutionary search-
es to find its global optimum. However, frequent knowledge transfer may increase the
risk of negative transfer in the situation that two tasks possess low correlation due to
the waste of unnecessary computational costs. Conversely, in the case that two tasks
are unrelated, inactive knowledge transfer can alleviate the risk of negative transfer to
some extent. However, inactive knowledge transfer may potentially diminish positive
transfer in the situation that two tasks are highly related, as useful knowledge is not
fully utilized to accelerate the evolutionary search process. Therefore, adaptively de-
ciding the transfer timing or the transfer extent 1s critical in further enhancing the ef-

fectiveness of robustness of knowledge transfer.

1.2 Contributions

As mentioned above, the three i1ssues of deciding what to transfer, how to transfer,
and when to transfer remain much room to be explored in existing ETO studies. To
achieve more effective and robust knowledge transfer, this thesis focuses on design-
ing adaptive knowledge transfer methods, aiming to intelligently decide one or more
of the three key issues. The main contributions of this thesis are summarized as fol-

lows:

1) Adaptively Deciding What to Transfer in ESTO



This thesis proposes a fuzzy classifier-assisted method (FCM) to select the most
useful solution for knowledge transfer in ESTO. By constructing the training data,
the fuzzy classifier 1s built to estimate the solution usefulness of all available
source tasks. Compared to existing methods, the proposed method not only esti-
mates whether one source task 1s useful or useless but also further quantifies the
degree of its usefulness if it is useful. In this way, the most useful solution is accu-

rately selected from useful source tasks for knowledge transfer.

This thesis also presents the implementation of an ESTO algorithm with the pro-
posed method (ESTOA-FCM). The experimental results show the competitive per-
formance of ESTOA-FCM when compared with existing ESTO algorithms.

2) Adaptively Deciding How to Transfer in EMT

This thesis proposes a domain adaptation-based ensemble (DAE) method to select
the promising domain adaptation method for knowledge transfer in EMT. It smart-
ly addresses the balance between efficacy and diversity when determining which
one domain adaptation method for use, thereby taking full advantages of the
strengths of each domain adaptation method to further enhance knowledge trans-
ferability across tasks. This could potentially lead to more robust and effective
multitasking performance in comparison with existing non-adaptive approaches

that adopt one deterministic domain adaptation method.

This thesis also presents the implementation of incorporating the proposed ensem-
ble method into an EMT framework. The experimental results validate that incor-
porating DAE method into three competitive EMT algorithms can significantly

improve their performance for solving different multitasking test problems. More-



over, a canonical EMT algorithm enhanced by DAE (called MFEA-DAE) outper-
forms five recent EMT algorithms on most cases of the multitasking test problems

used, and the effectiveness of DAE i1s also validated on a practical case.

3) Adaptively Deciding When to Transfer and How to Transfer in EMT

This thesis proposes a fuzzy logic-based method in EMT. The proposed method
includes two fuzzy logic-based components. To effectively adapt the transfer ex-
tent along the multitasking search process, a fuzzy logic-based parameter adaption
component 1s developed to dynamically adjust the value of the transfer parameter,
thereby alleviating the risk of negative transfer. To adaptively select the most
promising method for conducting knowledge transfer, a fuzzy logic-based selec-
tion component 1s developed to select the optimal transfer method from multiple
candidates, thereby enhancing knowledge transferability across tasks. The pro-
posed fuzzy logic-based methodology clearly differentiates from existing methods
by employing fuzzy logic to effectively process fuzzy information collected along
the evolutionary search process, thereby enhancing the effectiveness of knowledge

transfer.

This thesis also presents the implementation of a new MFEA (called MFEA-FLM)
by incorporating the above fuzzy logic-based method into an EMT framework.
The experimental results validate the effectiveness of the proposed method and

show the competitive performance of MFEA-FLLM when compared with other

EMT algorithms.



1.3 Thesis Organization

This thesis consists of six chapters. Chapter 1 provides the basic introduction of ETO,

while the rest of the chapters are listed as follows:

Chapter 2 provides some basic concepts of ETO, and then summarizes the related

work 1in ETO.

In Chapter 3, to adaptively decide what to transfer in ESTO, a fuzzy classifier-
assisted method 1s proposed to select the most useful solution by measuring the use-
fulness of solutions for the target task. The comparison experiments are conducted on
a series of test problems, demonstrating that the proposed method can effectively se-
lect the most useful source solution to speed up the optimization process of the target

task.

In Chapter 4, to adaptively decide how to transfer in EMT, an ensemble method of
domain adaption is proposed to effectively select the promising domain adaptation
method from multiple candidates for knowledge transfer. The comparison experi-
ments are conducted on a series of test problems, showing that the proposed method
can fully utilize the strengths of multiple domain adaption methods to facilitate effec-

tive knowledge transfer.

In Chapter 5, to adaptively decide when to transfer and how to transfer in EMT, a
fuzzy logic-based method is proposed to adapt the transfer extent and select the prom-
1sing transfer method along the multitasking search process. The comparison experi-
ments are conducted on a series of test problems, demonstrating that the proposed
method can achieve more robust and effective knowledge transfer by dynamically

adapting the transfer extent and adaptively selecting the promising transfer method.



Chapter 6 concludes this thesis and provides future research directions for promoting

the development of ETO.
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Chapter 2

Literature Review

In ETO, there are three different conceptual realizations: 1) evolutionary sequential
transfer optimization [47], 2) evolutionary multitasking optimization [51], and 3) mul-
tiform optimization [19]. In fact, multiform optimization can be regarded as a particu-
lar branch of evolutionary multitasking optimization, where multiple optimization
tasks consist of one original problem and its alternative problem formulations. Thus,
this thesis focuses on the first two categories. The details of their mathematical defini-
tions are first given in subsection 2.1. Despite the technical distinctions among differ-
ent conceptual realizations, in designing ETO approaches, there are three critical 1s-
sues concerning knowledge transfer: 1) what to transfer, 2) how to transfer, and 3)
when to transfer. The following subsections 2.2, 2.3, and 2.4 present the related re-

search work 1n terms of the three issues, respectively.
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2.1 Evolutionary Transfer Optimization

In general, the traditional EA solves one optimization problem at one execution by
iteratively evolving the population consisting multiple solutions. By contrast, ETO
mnvolves some new terminologies, including problem, task, and solution. To be clearer,

some related definitions are first given as follows:

e Problem: The problem refers to the ETO problems. Particularly, in the context of
ESTO, the problem is the sequential transfer optimization problem (STOP). Simi-
larly, in the context of EMT, the problem 1s the multitasking optimization prob-

lem (MTOP).

e Task: In the context of ETO, the task refers to the optimization task. In terms of
ESTO, the STOP contains multiple source tasks that have been previously solved
and one target task being optimized. By contrast, in terms of EMT, the MTOP

consists of multiple tasks that must be optimized simultaneously.

e Solution: The solution refers to the solution of the task that is obtained during the
evolutionary search process. In terms of ESTO, the source solution is the solution
of the source task in its search space, while the target solution is the solution of

the target task in its search space.
1) Evolutionary Sequential Transfer Optimization (ESTO)

ESTO aims to effectively utilize the search experience of previously solved tasks
(called source tasks) to accelerate the optimization of a new task (called target task)
[47]. When tackling the new task, i.e., Tk, there are some tasks that have already

been solved in the past, 1.e., Ty, T, ***, Tx—;. Note that Ty 1is called target task,
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while T;, T,, *--, Tx_, are called source tasks. Here, each task can be an m-

objective optimization problem, which can be formulated by
min F(x) = [£,(X), ., fn (O]” (2.1)
XEQ

where x = {x4,...,x4} 1S a d-dimensional variable vector in the search space Q
and f;(x), ..., fm(x) are m objective functions. Eq. (2.1) can be a single-objective
optimization problem (SOP) when m = 1 or a multiobjective optimization problem
(MOP) when m > 2. Thus, the sequential transfer optimization problem (STOP) can
be defined by

min [F(x) [M], (2.2)

where M 1s the knowledge base with the search experience of source tasks, includ-
ing heuristic algorithms [38], [39], [40], configured parameters [41], [42], [43], and
evaluated solutions [44], [45], [46], [47]. In particular, in solution-based ESTO, M
1s formed by collecting the evaluated solutions of each source task during the evolu-

tionary search process, which can be represented by
M={T;|i=1,2, .., K}, (2.3)

where T; = {PLFL|g=1,...,8max} 18 the set of populations of the i-th source
task (P; and Ff are the solutions and their objective values at the g-th generation,

respectively).

2) Evolutionary Multitasking (EMT)

Evolutionary multitasking refers to evolutionary multitasking optimization, which can

optimize multiple different tasks concurrently [51]. Regarding each optimization
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problem as one task, the multitasking optimization problem (MTOP) with K tasks

(K = 2) can be formulated as follows:

min F;(x!),i = {1,2,...,K}, (2.4)

xiel

where F;(+) represents the function formulation of the i-th task and x! is a solution
in its search space (domain) Q!. In EMT, useful search experiences can be shared or
transferred across different task domains through knowledge transfer, which can help

to obtain better optimization performance and efficiency for solving MTOPs.

To achieve efficient EMT, multifactorial optimization (MFO) has been proposed to
address K tasks at the same time [27]. In MFO, every task has a skill factor, which
can affect the evolutionary search process. Here, two key concepts are given as fol-

lows:

Definition 1 (Skill Factor): The skill factor ; of each solution x; indicates the task

to which x; belongs.

Definition 2 (Scalar Fitness): The scalar fitness of x; is computed by ¢; =1 /rT"l.,
where r; is the index of x; in a list sorted in ascending order with respect to the ob-

Jjective values of all solutions evaluated on the task ;.

Based on the above concepts, MFEA has been proposed as a realization of the MFO
paradigm [27]. Given an MTOP with K tasks, the dimensionality of the search space
of each task is given by D,, D, ---, Dg, respectively. In MFEA [27], the solutions
for all tasks are first encoded in a unified search space Y € [0, 1]Pmax, where
Dpax = max{D,D,,..., Dg}. Hence, the solutions of all tasks have the same di-
mension. The solutions with the same skill factor can be regarded as the population of

their respective task. Moreover, the random mating probability (rmp) allows to per-
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form crossover operator on the solutions of different tasks. By introducing two key
components, namely assortative mating and selective imitation, knowledge transfer

can take place among different tasks [27].

2.2 What to Transfer

Regarding what to transfer, there are two crucial steps: identifying the form of
knowledge and selecting the most promising knowledge for transfer. The form of
knowledge can typically be classified into three main types, such as heuristic algo-
rithms [38], [39], [40], configured parameters [41], [42], [43], and evaluated solu-
tions [44], [45], [46], [47]. Due to the ease of use, transferring knowledge in the
form of solutions has attracted increasing attention in existing ETO studies [37].
Once the type of knowledge 1s i1dentified to be in the form of solutions, deciding
what to transfer is simplified to the issue of deciding which one solution among all
available candidates for transfer. To select the most promising solution for
knowledge transfer, various measurement methods have been proposed to estimate
the usefulness of solutions from source tasks for the target task, where source and
target tasks are a class of continuous optimization problems with the same problem
dimensionality. Note that the real-valued encoding is employed to represent the solu-
tions of source and target tasks. The technical details of existing measurement meth-

ods are summarized in Tab. 2.1.
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Table 2.1: List of existing measurement methods for solution usefulness.

Measurement Method

Formula

Euclidean Distance
(ED)*

ED(X., X.) = || — ]|, where u =ﬁz:ilxi, X ={X1, .y Xn}

Wasserstein Dis-
tance (WD)?

WD(Xs, Xo) = Il tts — 3 +11 o5 — o |13,

N N
DI v DIMCEIOUE S

where y = N

Distance
Metric

Kullback—Leibler
Divergence (KLD)*"

KLD(X, X,) = %(tr():;lzs) + (e — 1) 20 (e — 1) — D + In(det(Z,) / det(E.,))),

1< -1 N T oy —
Where/l—ﬁ iZlXi, E_mzi:l(xi —ﬂ)(xi —ﬂ) f X _{le ey XN}

Maximum Mean
Discrepancy
(MMD)?¢

Ns Ns , Ny

MMD(X, X,) :7ns(ntfl) k(X X5) +7nt(n1171) K(xt, x4) —ﬁz

where X, ={X$, ..., Xo.}, X¢ ={xi, ..., Xi }, k(X, X') =exp(=|| x =X |3 /(25%))

”‘ syt
i] i#] i,j:lk(x" Xl)‘

Anomaly Detection
(AD)’

anomaly, ifp(x|u, Z)<e
normal, ifp(x|u Z)=¢

- 1

N

C(x)={ (x| 3) exp-Lix- )z (x- ),

N N
wherepzﬁ i=lX%’ > =ﬁzi=l(X% X = )T, X =K o XD
Machine

Learning ) o

C(x):argmax{P(cj)]_pD(xk |cj)}, P(x|C;) = 17 exp[_ K fztl ]
Incremental jef1,2} k-1 \/27ro-j2 20

Naive Bayes (INB)®¢ , ‘ '

yes (INB) ﬁ(cj):n'P(CJ)+m'P(Cj),Whereﬁj=M,5§:M
n+m n+m n+m

Note that the source and target populations are processed to make their solutions have equal dimensionality.

2To explain the notations in distance metrics: Xs, Xt (the source/target populations); &, g4 (the mean vectors of the source/target

populations); @2, of (the variance vectors of the source/target populations); s, X (the covariance matrices of the source/target

populations).
®[n KLD, tr() and det() are the trace and determinant of a matrix, respectively. In addition, D is the smaller dimension of

the source and target populations.
¢In MMD, O is the width parameter in the Gaussian kemel function K(X, X') .

4 To explain the notations in ML models: X={X,, ..., X4} is a d-dimensional test sample (i.e., the source solution) to be classified.
¢ In INB, P(C;j) and P'(Cj) are the priori probability of the class label Cj in the past training data with n samples and the new
training data with m samples, respectively. Here, £ and O',-Z are the mean and variance of the samples belonging to Cj in

the past training data, respectively. In addition, 4#/j and O"jz are the mean and variance of the samples belonging to Cj in the

new training data, respectively.
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2.2.1 Distance Metric-Based Methods

Various measurement methods of solution usefulness have been developed to select
useful solutions via distance metrics, aiming to achieve better optimization perfor-
mance on the target task. Particularly, the source solution is useful when it has better
quality than all solutions in the current population of the target task. Otherwise, it 1S
useless for the target task. Generally, when the source task 1s more similar to the tar-
get task in terms of the population distribution, the source solution is more likely to
be useful to accelerate the optimization process. Existing distance metrics measure the
similarity between the populations of source and target tasks to approximate the solu-
tion usefulness of the source task to the target task. For example, in [44] and [45],
Euclidean distance (ED) is used to compute the distance between source and target
solutions, aiming to appropriate the usefulness of the source solution for the target
task. The closest source solution 1s considered to have the highest usefulness, and it 1s
injected into the target population. Similarly, ED is also employed to measure the dis-
tance between solutions in EMT/ET [52]. The source solutions close to the positive-
transferred solution are collected as the neighbours, which are selected for transfer as
they are supposed to have higher usefulness than others. In addition, in MSSTO [53],
Wasserstein distance (WD) 1s used to compute the distance between source and target
populations and then three different selection strategies are used to reasonably select
useful source populations for transfer, respectively. In addition, in MaTDE [54] and
EMaTO-MKT [55], the distance between source and target populations is computed
by Kullback-Leibler divergence (KLLD) and the maximum mean discrepancy (MMD),
respectively, aiming to estimate the usefulness of source solutions during the evolu-
tionary search process. However, these distance metrics are unable to determine

whether the solutions of source tasks are useful for accelerating the optimization of
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the target task. Particularly, using distance metrics can compute the numeric values
that are no less than zero. Due to the lack of the critical threshold, it is difficult to dis-
tinguish useful solutions from useless solutions. Thus, selecting useful source solu-
tions by comparing their distance values may result in ineffective solution transfer,
especially when all candidate source tasks are significantly dissimilar to the target

task [37].

2.2.2 Machine Learning Model-Based Methods

Moreover, several measurement methods have also been designed by using ML mod-
els to measure the solution usefulness of the source tasks. For example, in MTEA-AD
[56], an anomaly detection model is built based on the target population, which aims
to divide the source solutions into outliers and nonoutliers. Similarly, in EMTIL [57],
an incremental Naive Bayes classifier i1s trained based on the transferred solutions,
which divides the source solutions into two different classes. The source solutions in
the positive class are considered to have higher usefulness for the target task. Howev-
er, as the above binary classifiers are unable to accurately quantify the degree of the
usefulness of source solutions for the target task, the most useful one could not be ac-
curately selected for transfer, which may degrade the effectiveness of solution transfer

[58].

2.3 How to Transfer

Regarding how to transfer, it focuses on the methodology design, which aims to im-

plement effective knowledge transfer across various complex problems. In existing
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ETO studies, these transfer methods can be classified into two categories: 1) implicit

transfer methods and 2) explicit transfer methods.

2.3.1 Implicit Transfer Methods

To perform 1mplicit knowledge transfer, all solutions are first encoded in a unified
search space. After that, knowledge transfer implicitly occurs across tasks by employ-
ing genetic operators to achieve the exchange of genetic materials of candidate solu-
tions possessing different skill factors. Over the years, various genetic operators, such
as crossover and mutation, have been employed to achieve implicit knowledge trans-
fer across tasks. For example, in MFEA and most of 1ts variants [27], [72], [73], [74],
knowledge transfer was achieved by performing the simulated binary crossover (SBX)
to exchange the genetic materials of two solutions with different skill factors. In [59],
differential evolution (DE) was employed to achieve implicit knowledge transfer. To
utilize the search biases of different crossovers, in MFEA-AKT [60], multiple crosso-
vers were adaptively selected for conducting knowledge transfer. Additionally, sever-
al popular swarm intelligence algorithms, including particle swarm optimization [61],
[62], [63], artificial bee colony [64], and fireworks algorithm [65], have been adapted
for achieving implicit knowledge transfer. However, implicit knowledge transfer de-
pends on the explicit similarity of two tasks in terms of their population distributions
or fitness landscapes, thereby showing poor performance when solving distinct or

even unrelated tasks.

2.3.2 Explicit Transfer Methods

In contrast to implicit knowledge transfer using a population for all tasks, explicit
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knowledge transfer configures each task with a separate population, allowing multiple
solution encoding schemes for use when solving multiple tasks simultaneously. Thus,
knowledge transfer can be conducted across different populations in an explicit man-
ner [48]. In this way, existing evolutionary search mechanisms with unique search
biases can also be flexibly configured for each task, effectively enhancing the optimi-
zation efficacy and performance on different types of problems [48]. The straightfor-
ward way for achieving explicit knowledge transfer across tasks is to directly inject
solutions of one population into another population [44], [45]. However, the two tasks
may have obvious differences in their dimensionalities, variable ranges, global optima,
and fitness landscapes, which bring difficulties for performing explicit knowledge
transfer across distinct problem domains [48]. In recent years, several domain adapta-
tion methods have been proposed to enhance knowledge transferability between dis-
tinct tasks by building suitable transformation from the source task to the target task.
For example, in LDA-MFEA [66], based on the ordinal rank correlation of fitness
values, a linear transformation method is used to make the search spaces of source
and target tasks highly correlated. In addition, a denoising AE method [48] is used to
build the source-target mapping by minimizing the reconstruction loss of the corrupt-
ed input on the source task, which can maintain the superiority of transferred solu-
tions on the target task. An affine transformation (AT) method was designed in AT-
MFEA [67] to build a superior intertask mapping between source and target tasks,
which considers the topological consistency in decision space and the rank correlation
1n objective space. To capture the nonlinearity between different tasks, a kernelized
AE (KAE) [68] was further designed to learn the mapping in a reproduced kernel
Hilbert space. Moreover, to learn well-aligned solution representations, two-layer
transformations are learnt in continuous spaces via a two-layer feedforward neural

network [69], while variable transformation is learnt in the dimension-reduced sub-
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spaces of tasks via subspace alignment methods [70], [71].

2.4 When to Transfer

Regarding when to transfer, it aims to identify the optimal time or extent to conduct
knowledge transfer. In existing ETO studies, the proposed approaches to address
when to transfer can be categorized as follows: 1) fixed parameter-based methods and

2) adaptive parameter-based methods.

2.4.1 Fixed Parameter-Based Methods

The straightforward way to determine when to transfer is to execute knowledge trans-
fer periodically with a fixed generation interval along the evolutionary search process.
For example, in [46], [48], [68], the generation interval for triggering knowledge
transfer was set to 10. Similarly, in SGDE [75], the generation interval was 20. Be-
sides, in [76], the generation interval for triggering knowledge transfer was set to 50.
Additionally, in the basic framework of MFEA [27], the random mating probability,
1.e., rmp, 1s employed to determine the extent of knowledge transfer. Generally,
when two parents have different skill factors and a random number is less than rmp,
knowledge transfer happens between two tasks by performing a crossover operator on
the two parents to exchange their genetic materials. For example, in the original
MFEA [27] and most of its variants, rmp 1s set as a constant of 0.3 to control the
extent of knowledge transfer across tasks. However, the above methods with fixed

transfer parameters may potentially diminish effective knowledge transfer or even
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cause negative transfer when solving some unrelated tasks [49], [50].

2.4.2 Adaptive Parameter-Based Methods

In addition, several adaptive parameter-based methods have been proposed to deter-
mine the extent of knowledge transfer by dynamically modifying the values of the
transfer parameter. Specifically, in MFEARR [77], the survival rate of offspring gen-
erated by triggering knowledge transfer was computed to determine the extent of
knowledge transfer. Similarly, in [78], the transfer parameter associated with each

task 1s computed as follows:

STi,NF=0

rmp; = NP ,
L

(2.5)

where NP; and S; nr=o are the numbers of all solutions and nondominated solu-
tions of the task Tj, respectively. Similarly, in [79], the extent of knowledge transfer
was dynamically adjusted by employing two additional parameters, i.e., A;,. and

Agec, Which is computed as follows:

Tm P
min (1.0, p”) , if p’ is better than p
rmp;; = Ainc ) (2.6)
max(O.l,rmpi,j X Adec), otherwise

where p’ is the offspring and p is its immediate parent. Besides, in [62], the learn-
ing parameter, 1.e., rip, is used to determine the transfer extent. Particularly, the cur-
rent rlp remains the same and is collected into the list when there is at least a better

solution than the current best solutions of all tasks. Otherwise, rilp is updated by

rlp =rlp' + 6N (0,1), (2.7)
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where 6 is 0.1, M (0,1) is a normalized Gaussian distribution, and rip’ is ran-
domly selected from the candidate list. Moreover, in [80], the transfer probability for
the task T; 1s calculated by

R?

0 L ps’ 2.8
R + R} (28)

rmp; =

where R; and R{ are the improvement ratios obtained by the offspring of T; and
solutions of other tasks, respectively. In [81], given an MTOP with K tasks, a sym-
metric K X K matrix, i.e., W, is employed to record the number of successful trans-
ferred solutions across tasks. After that, the transfer probability between any two tasks,
1s computed as follows:

Wi ;

rmpl-,j = K

—_—, (2.9)
k=1 Wi,k

In addition, to reduce the threat of negative transfer, in MFEA-II [49] and MO-
MFEA-IT [50], the probability models were built to estimate the transfer extent by
capturing the similarities among tasks. The transfer extent can be adapted along the
evolutionary search process by employing the abovementioned methods. However,
they do not take into consideration the issue of information inaccuracy due to the un-
certainty and randomness of the evolutionary mechanisms. Lacking a mechanism for
effectively processing inaccurate and fuzzy information may lead to unreliable or
wrong decisions in dynamically adjusting the transfer parameter, which will diminish

the effectiveness of knowledge transfer.

23



Chapter 3
Fuzzy Classifier-Assisted Method
for Adaptively Deciding What to

Transfer in ESTO

3.1 Introduction

To achieve effective solution transfer, some case-based methods have been proposed
by injecting the target population with source solutions stored as cases in the case
base [44], [45]. However, injecting useless solutions does not accelerate the optimiza-
tion process of the target task. Hence, several measurement methods based on dis-
tance metrics were employed to estimate the solution usefulness of source tasks [82],

[53], [54], [55]. Thus, the useful source solutions can be selected as promising cases,
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which are injected into the target population to accelerate its optimization process.
Particularly, the Euclidean distance (ED) was used in [82] to calculate the distance
between the source and target populations. In addition, the Wasserstein distance (WD)
[53] was used to measure the distance between the population distributions of the
source and target tasks. Moreover, the Kullback-Leibler divergence (KLD) [54] was
employed to measure the distance of the source and target populations based on their
Gaussian representations, while the maximum mean discrepancy (MMD) [55] was
used to estimate their distance in the reproducing kernel Hilbert space. In fact, the so-
lution usefulness of a source task relies on its explicit similarity to the target task. In
situations where all candidate source tasks are distinctly dissimilar to the target task,
their optimized solutions would be useless for the target task. However, using dis-
tance metrics cannot determine whether the solutions of source tasks are useful for the
optimization acceleration of the target task, which may result in ineffective solution

transfer [37].

In addition, some studies have been conducted to address the aforementioned issue by
leveraging machine learning (ML) techniques [56], [57]. Due to the ability to learn
from previous data and make predictions on unseen data [83], [84], ML has shown
some advantages in distinguishing the usefulness and uselessness of solutions. For ex-
ample, in MTEA-AD [56], an anomaly detection model based on the multivariate
Gaussian distribution was built on the target population, which divides source solu-
tions into outliers (useful solutions) and nonoutliers (useless solutions) to the target
task. Similarly, in EMTIL [57], an incremental Bayes classifier was trained based on
the transferred solutions, which divides source solutions into positive and negative
classes. The solutions in the positive class are considered to be useful for the optimi-

zation of the target task, while those in the negative class are useless. However, these
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classifiers are unable to quantify the degree of solution usefulness, which may poten-

tially undermine the effectiveness of solution transfer [58].

To tackle the drawbacks of existing methods, this study focuses on two critical 1ssues
in measuring the solution usefulness of source tasks: 1) whether a useful source task
exists and 2) the degree of its usefulness. Compared to traditional nonfuzzy classifiers
that typically predict a class for each sample of interest, fuzzy classifiers can predict a
membership degree of each sample to each class, which have attracted increasing at-
tention [85], [86], [87]. As the evolutionary search process goes on, the boundary of
high-quality solutions and low-quality solutions will become unclear and fuzzy. Re-
cently, some efforts have been made to use fuzzy classifiers to predict the quality of
solutions 1n environmental selection, aiming to accurately select high-quality solu-
tions for the next generation [88], [89], [90], [91], [92]. Inspired by the studies above,
this chapter proposes a fuzzy classifier-assisted solution transfer method to select useful
source solutions for ESTO. First, given the STOP with the target task and a knowledge
base including the evaluated solutions of candidate source tasks, the training data are
constructed by sampling multiple task pairs, each of which has two different source tasks.
Specifically, for each task pair, their solutions are used to compute the differences of their
population distributions, which serve as the feature vector of one training sample. Addi-
tionally, the training sample is roughly assigned one positive or negative label by evaluat-
ng the current best solution of the first task on the second task. If the evaluated objective
value is better than the current best objective value of the second task, the training sample
1s assigned a positive label. Otherwise, it 1s assigned a negative label. After that, the fuzzy
classifier is built using these training data, which can be used to measure the solution use-
fulness of each source task by the returned class label and its membership degree to that

class on its associated test sample. Here, the test sample is generated based on the solu-
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tions of its corresponding source and target tasks. In this way, the source task with the
maximal membership degree in the positive class 1s selected to provide its optimized so-
lution for transfer if it exists. Otherwise, solution transfer will not happen. Moreover, the
test sample of the selected source task is labelled based on the effectiveness of solution
transfer, which 1s used to update the training data. The main contributions of this study

are summarized as follows.

1) This study proposes a fuzzy classifier-assisted solution transfer method (FCM) for
ESTO. By constructing the training data, the fuzzy classifier is built to measure the
solution usefulness of candidate source tasks. In this way, useful source solutions can

be effectively selected to accelerate the evolutionary search of the target task.

2) This study presents the implementation of an ESTO algorithm with the proposed
method (ESTOA-FCM). The experimental results on two benchmark suites and one
practical case show the competitive performance of ESTOA-FCM when compared

with existing ESTO algorithms.

3.2 Background and Motivation

3.2.1 Fuzzy Classifier

Fuzzy classifiers are a type of ML algorithms developed based on fuzzy set theory
[85], allowing for more flexible and nuanced classification decisions compared to tra-
ditional nonfuzzy classifiers [86], [87]. Instead of assigning a single class label to a
sample of interest, a fuzzy classifier assigns a membership degree to each class label,

which reflects the degree of the sample belonging to that class.
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Algorithm 3.1 Fuzzy K-Nearest Neighbour (FKNN)
Input: D = {< s;,[; >}~ the training data,
v: a new sample to be classified,
K: the number of nearest neighbours.
Output: y, m
1 Set Q toan empty set
2 fori=1ton

3 dist(v,s;) < Compute the Euclidean distance from v to s; by Eq. (3.1)
4 if i<K

S Q = QU{s;}

6 else

7 Smax < Find the farthest sample in Q by Eq. (3.2)

8 if dist(v,s;) < dist(v, S;ax)

9 Q = Q\{smax}, Q = QU{s;}

10 end

11 end

12 end

13 foreachclass j in D

14 u; <= Compute membership degree of v in the j-th class by Eq. (3.3) and Eq. (3.4)
15 end

16 [y, m] < Get the label of v and membership degree by Eq. (3.5) and Eq. (3.6)
17 return y, m

In this study, for simplicity, a fuzzy K-nearest neighbour classifier (FKNN) is em-
ployed as the fuzzy classifier. Its pseudocode 1s given in Algorithm 3.1 with the in-
puts: D ={<s; [; >}-, (the training data consisting of n labelled samples
where each sample s; is assigned a label [; € {0,1}), v (a new sample with an un-
known label), and K (the number of the nearest neighbours of w). First, Q 1is set to
an empty set in Line 1. Then, in Lines 2-12, the K nearest neighbours are collected
into Q through comparing the Euclidean distances between all the samples and wv.
Specifically, the Euclidean distance between the i-th sample s; and v can be cal-

culated by

dist(v,s;) = ||v — 5|2 . 3.1
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Next, in Lines 4-11, the first K samples are directly added into Q, while each of the
subsequent samples will be checked to determine whether it 1s closer to v than the
farthest sample $,,45. Here, Sy 15 found by

Smax = arg rr(;ax{| v — Si”Z} ’ (3-2)
S;€

If s; 1s closer to v than $,,4x> Smax 1S removed from Q and then s; will be
added into Q. After performing the above procedures in Lines 2-12, the K nearest
neighbours are found and then added into Q. Next, as shown in Lines 13-15, the

membership degree of v 1in the j-th class (i.e., u;) is computed by

— Ysiequij(1/11v — s:13)
’ Ysee(1/1lv—sil13)

(3.3)

where u;; 1s the membership degree of s; in the j-th class (j € {1,2} in the binary
classification). Here, the k-nearest neighbour rule is used in the membership assign-

ment technique [38]. Thus, u;; 1s computed by

n.
0.51 + (FJ) % 0.49, if the classlabel of s; is j

nj .
T x 0.49, Otherwise

where k is the number of neighbours and n; is the number of the neighbours of s;
belonging to the j-th class. As suggested in [38], k 1is set to 3. Then, in Line 16, the

label of v and its membership degree, 1.e., y and m, are respectively identified as

follows:
(1, ifu, = u,
Y= {O, otherwise’ (3:5
m = max{u,u,}, (3.6)
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where u; and wu, are the membership degrees of v in the 1-th class and 2-th class,
respectively. Finally, y and m are returned in Line 17, indicating the predicted
class of v and the extent to which v 1s considered to belong to that class, respec-

tively.

3.2.2 Motivation

Based on the studies of existing measurement methods of solution usefulness, it can
be concluded that using the distance metrics or classical ML models 1s rough and in-
accurate 1n selecting useful source solutions based on the usefulness of solutions.
Generally, the usefulness of a source solution is measured by its quality on the target
task, i.e., UX®) = max {f*(x) — ft(x%),0} where f!(:) is the target function, x
is the current best solution of f(-), and x5 is the source solution. To elaborate fur-
ther, the comparisons of measuring the usefulness of the source solutions with the
Euclidean distance and the binary classifier are given in Fig. 3.1(a) and (b). Here, the
target task 1s a shifted Ackley function with one decision variable. Note that it can be
extended to any function with multiple decision variables. The blue circle is the cur-
rent best solution of f¢(+), which is denoted by x. The red circles represent source
solutions of five source tasks, which are denoted by a, b, ¢, d, and e. The useful-
ness of each source solution is quantitatively measured by computing its Euclidean
distance to x. In Fig. 3.1(a), the distances of those source solutions to x can be
ranked in ascending order, 1.e., |[|c —X]||2<||]b —x||2 < [|d —Xx||2 < ||e —X]|2 <
[|]a — x||2. In this way, c is selected as the most useful solution for transfer because
it has the smallest distance value. However, as the objective value of ¢ is worse than
that of x, i.e., ff(c) > f¥(x), transferring ¢ to the target task will not contribute

to accelerating the optimization of the target task. In this sense, ¢ is useless for the
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target task as U(c) = 0. In fact, using distance metric can select a relatively good
one among source solutions by comparing their measured distance values, while it
fails to determine whether the selected source solution is useful for the target task.
Thus, relying on distance metric to measure the usefulness of the solution may result
in inefficient solution transfer when the objective values of all the candidate source

solutions are worse than the current best solution of the target task.
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Figure 3.1: Comparisons of different methods for measuring usefulness of solutions.
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Additionally, several ML models, 1.e., the binary classifiers, can be employed to
measure the usefulness of the source solutions by dividing them into two categories.
As shown 1n Fig. 3.1(b), with a binary classifier, the source solutions with better ob-
jective values (1.e., b, ¢, and d) are in the positive class, which will be selected as
candidate solutions for transfer. Thus, using the binary classifier can avoid inefficient
solution transfer to some extent because the source solutions with worse objective
values (i.e., a and e) in the negative class are not considered. In fact, ¢ is the most
useful source solution among b, ¢, and d in the positive class, as their usefulness
can be ranked in descending order, i.e., U(c) > U(b) > U(d). However, the binary
classifier does not quantitatively measure the usefulness of the source solutions in the
positive class, which will cause the case that the most useful solution could not be

accurately selected for transfer.

In summary, the Euclidean distance and classical binary classifier are flawed in
measuring the usefulness of the source solutions for the target task, which may poten-
tially undermine the effectiveness of solution transfer in optimizing the target task.
Thus, a more reliable measurement of the solution usefulness should be able to tackle
two 1ssues: 1) whether a useful source solution exists and 2) the degree of its useful-
ness. In the community of classification, the fuzzy classifier not only predicts the
class label, but also predict a membership degree of each new pattern to each class.
Thus, the fuzzy classifier is more suitable to measure the usefulness of the source so-
lutions than other classical binary classifiers as employing it can easily address the
above 1ssues in measuring the usefulness of solutions. As shown in Fig. 3.1(c), with a
fuzzy classifier, a and b are in the negative class, while ¢, d, and e are in the
positive class. Thus, using the fuzzy classifier can identify whether a useful source

solution exists by checking whether there is the solution in the positive class. Fur-
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thermore, the membership degrees of ¢, d, and e are computed to indicate their
degrees belonging to the positive class, which are ranked in descending order, 1.e.,
m. > mg > m,. In this way, ¢ with the maximal membership degree is selected as
the most useful solution for transfer. Thus, to achieve more effective solution transfer
for ESTO, this study 1s motivated to develop a fuzzy classifier-assisted solution trans-

fer method for selecting useful source solutions.

S Source Training Data Construction

‘e

’ Population (Algorlthm_ 32)
—— - Initialize
Update |
[ Source Fuzzy Classifier
| . )
Initialization | | Population | (Algorithm 3.1)
|
¢ | \ 4
| » i
» Reproduction | | _; Solution tﬁffglr?tisns]lé/lg?surement
¢ Target Population g '
Selection [€ 77 4
o ]'_ Injection | Solution Selection for Transfer
| (Algorithm 3.4)
|
Yes |

Training Data Update

- > ;
@ Feedback Information (Algorithm 3.5)

Figure 3.2: Flowchart of the proposed method.

3.3 Methodology

This section presents the details of the proposed method and the implementation of

ESTOA-FCM. To be clear, the flowchart of ESTOA-FCM is illustrated in Fig. 3.2. In
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particular, Algorithm 3.2 is to construct the training data D by using the evaluated
solutions of source tasks from the knowledge base M. Then, the fuzzy classifier (Al-
gorithm 3.1) 1s built based on D, which 1s used in Algorithm 3.3 to measure the solu-
tion usefulness of each source task by the returned class label and the membership
degree to that class. Hence, the most useful source solution can be selected for
knowledge transfer by performing Algorithm 3.4. Besides, Algorithm 3.5 is to update
D by replacing an old training sample with the new one obtained at the current gen-
eration. Here, the feature and label spaces of the training data are first introduced in
subsection 3.3.1. Then, the following subsections provide the detailed descriptions of
Algorithm 3.2 to Algorithm 3.5. Finally, the details of ESTOA-FCM are given in sub-

section 3.3.6.

3.3.1 Feature Space and Label Space Definition

1) Definition of Feature Space

As the evolutionary search process continues, the evaluated solutions from the initial
population to the current population can be sequentially collected to form the evolu-

tionary path, which 1s defined by
E eSS {Pll Pll ey PG} ) (37)

where Pg 1s the population at generation g (g = {1,...,G}, G 1is the current gener-
ation). In view of the high computational efficiency and the retained full information
of a progressional representation developed in [67], it 1S employed to estimate the

population distribution of an individual optimization problem, which 1s defined by
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T(x; Py), ifG =1

pe(X) = {apa_l(x) +(1—-—a)T(x;Pp),ifG>1" (3-8)

where a 1s a preference coefficient for determining the contributions of previous
populations and newly updated populations and I 1s an operator that estimates the
probability distribution of a population. Moreover, the above recursive expression can

be rewritten into the following form:

pe(X) = (1 — )i, (a® 8T (x;Py)) . (3.9)

Due to very good mathematical properties of the independent multivariate Gaussian

distribution [67], [93], it 1s employed to estimate the probability distribution of each

population, i.e., N (u,?) with the mean vector u = {u4, ..., ug} and the variance

vector 6% = {0, ...,04} where u; and sz are the mean and variance of the j-th

dimension (j =1, ...,d), and d is the population dimension. Specifically, for the
g

population Pg = {xf, X5, e x%} at the g-th generation, its estimated distribution,

ie., V(g 03), can be calculated by

1 N g
Hegj = _z. Xij
N e . (3.10)

2 g
= 5 Dy O~ 0

&

where N 1s the size of Pg and x;;

is the value of the j-th dimension of the i-th

solution Xl-g. With Eq. (3.9) and Eq. (3.10), we have
Pe(O~(1 — ZEey (a8 (g, 02))

=N ((1 — )25 (a8ug), (1 — a)Zgzl(aG‘gaé)). (3.11)
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It can be found that the progressional representation could be easily expressed by

pc(X)~N (@, 6%), (3.12)

where @t = {fiy, ..., fiq} and @2 = {67, ...,62} are respectively calculated by

1 G G N g

1 N '
~2 __ G - g
6 =01 - a)N — 1Zg=1 (aG & E ,=1(xij _ligj)z)

l

(3.13)

As the feature vectors are expected to represent the similarity of the evolutionary
search processes of two tasks, the distances between their probability distributions are
employed to construct the feature space. In particular, given the populations of two
tasks T, and Tj, the solutions in the population with smaller dimension are first
padded with zeros to make them have equal dimensionality. Then, their probability
distributions can be estimated by building the progressional representations on the
populations of T, and T, respectively, which are denoted by p?(xX)~N (fi,, 62

and p? (xX)~N (fip,d%). Finally, the feature vector s; = {s;1,5;2} iS to represent

the differences between the parameters of p?(x) and p?(x), which is computed by

{5i1: [|lg — Hpll2 (3.14)

siz = |18 — 63112

where ||fiy — Hpll, and ||62 —@%]||, are the Euclidean distances.

2) Definition of Label Space

As the labels of feature vectors are expected to reflect the solution usefulness of

source tasks for the target task, the label space is defined as {1, O} where 1 (or 0) de-
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notes a positive (or negative) sample. In particular, the label of s; is identified by
comparing the estimated objective value of the optimized solution of T, to the cur-

rent best objective value of T, which is given by

: b b
L 2{1, if F*(X) < Fln (3.15)

0, otherwise
where x is the optimized solution of T,, F?(x) is its evaluated objective value on
Ty, and F2,;, is the current best objective value of T,. Here, I; = 1 indicates that
x is useful for T, as transferring x can contribute to accelerating the optimization

process of T,. Otherwise, [; =0 indicates x 1s useless.

3.3.2 Training Data Construction

Algorithm 3.2 Training Data Construction (TDC)

Input: M, n,

Output: D

1 Set D, and D_ to two empty sets

2 while |D.|<n/2 or |D_|<n/2

3 [T,, T,] < Randomly select two source tasks from M

4 [E,, Ep] < Extract evolutionary paths of T, and T, from M
5 [p?(x), p?(x)] < Build distributions of E, and E, by Eq. (3.12) and Eq. (3.13)
6

7

8

9

< s;,l; > < Generate the labelled sample by Eq. (3.14) and Eq. (3.15)
if [; is1
D, =D, U{<s,l; >}
else
10 D_ =D_U{< s;,[; >}
11 end
12 end
13 D < Select n/2 samples from D, and D_, respectively
14 return D ={<s;; >},
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For training data construction (TDC), the pseudocode 1s given in Algorithm 3.2 with
the inputs: M (the knowledge base), n (the number of required training samples),
and a (the preference coefficient for estimating the progressional representation).
First, D, and D_ are set to two empty sets in Line 1, which are used to save the
generated positive and negative samples 1n Lines 3-11, respectively. In particular, two
source tasks T, and T, are randomly selected from M, and then their populations
are extracted to form their respective evolutionary paths, i.e., E, = {P{, ..., P¢} and
E, = {P?, ..., Pg }. Here, G 1s an integer that 1s smaller than the maximal number of
generations of T, and T, in M. In this way, a variety of evolutionary paths can be
formed by randomly setting the value of G, thereby improving the diversity of the
generated samples. With Eq. (3.12) and Eq. (3.13), the progressional representations
of E, and Ep, i.c., p*(X)~N (s, 62) and p?(x)~N (fip, 62), are built to esti-
mate their population distributions, respectively. Subsequently, the feature vector s;
and its label [; are calculated by Eq. (3.14) and Eq. (3.15), respectively. The sample
< s;,l; > 1s added into D, if it has a positive label, i.e., [; 1s 1. Otherwise, it is
added into D_ as it has a negative label, 1.e., [; is 0. The above procedures will be
iteratively executed to generate the samples until both the sizes of D, and D_
reach n/2, respectively. Then, in Line 13, the training data D 1is formed by select-
ing n/2 samples from D, and D_, respectively. In this way, the number of posi-
tive samples 1s equal to that of negative samples in D, which can avoid the perfor-
mance deterioration of the fuzzy classifier brought by imbalanced training data. Final-

ly, D with n training samples is returned in Line 14.
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Algorithm 3.3 Solution Usefulness Measurement (SUM)

Input: FKNN, M, E;, g

Output: VY and Y

1 Set YV and Y to two empty sets

2 pt(x) < Build distribution of E; by Eq. (3.12) and Eq. (3.13)

3 foreach T; e M
E; < Extract evolutionary path of T; during g generations
pi(x) < Build distribution of E; by Eq. (3.12) and Eq. (3.13)
v; < Generate test sample by Eq. (3.14)
ly;, m;] < FKNN (v;)
V=VU{<v; >} Y=YU{<y,m; >}

end

10 return Y and Y

O oo ~NO O hA~

3.3.3 Solution Usefulness Measurement

As the evolutionary search proceeds, the populations of the source and target tasks
can be collected to compute the feature vectors as the test samples. In this way, the
learned fuzzy classifier (FKNN) based on the training data can predict the class labels
and the membership degrees of the test samples, which are used to quantify the solu-
tion usefulness of the source tasks for the target task. For solution usefulness meas-
urement (SUM), the pseudocode 1s given in Algorithm 3.3 with the inputs: FKNN
(the fuzzy classifier), M (the knowledge base), E; (the current evolutionary path of
the target task), and g (the current generation). In Lines 1-2, ¥ and Y are first set
to two empty sets, and then the distribution of Ey, i.e., p*(X)~N (fi;, 37), is built
by Eq. (3.12) and Eq. (3.13). For each source task T; in M, its test sample is gener-
ated based on the estimated solutions of T; and the target task in Lines 4-6. Particu-
larly, the evolutionary path of T; including the populations from the initial genera-
tion to the current generation g is extracted from M, 1.e., E; = {Pli, Pé}. Then,
the distribution of Ej, i.e., p*(x)~N (f@;, 67), is built by Eq. (3.12) and Eq. (3.13).

Thus, the feature vector v; = {v;1,v;2} 1s calculated as the test sample by Eq. (3.14).
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Next, in Line 7, FKNN 1s used to predict the class label and the membership degree
of v;, i.e., y; and m;. The former shows that T; belongs to the positive or nega-
tive class while the latter indicates the degree to which it belongs to that class. In Line
8, <wv; > 1s added into VY while < y;,m; > is added into Y. The above proce-
dures in Lines 4-8 are iteratively performed until all source tasks in M have been

visited. Finally, YV and Y are returned in Line 10.

3.3.4 Solution Selection for Transfer

Algorithm 3.4 Solution Selection for Transfer (SST)

Input: Y, M, c

Output: TS, index

Q < Collect the indices of useful source tasks by Eq. (3.16)

if Q is not empty
index <— Find the index of the most useful source task by Eq. (3.17)
TS < Randomly select ¢ optimized solutions of Ti,ge, from M

else

TS =0, index =0
end
return TS, index

oOo~NO Ok WDN PP

Based on the measured solution usefulness of source tasks, the useful solutions can be
selected from candidate source tasks and then injected into the population of the tar-
get task to accelerate the evolutionary search. For solution selection for transfer (SST),
the pseudocode is given in Algorithm 3.4 with the inputs: Y (the set of class labels
and membership degrees of the source tasks), M (the knowledge base), and ¢ (the
number of source solutions for transfer at each generation). First, in Line 1, the indi-

ces of useful source tasks are collected into Q by

Q={ily; == 1Vy; €Y}, (3.16)
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where y; is the class label of T;, which indicates that the i-th source task is useful
if y; is 1. Otherwise, T; is useless. Next, as shown in Lines 3-4, the source solu-
tions are selected for transfer if Q 1s not empty. Particularly, the source task with the
maximal membership degree (i.e., Tingex) 1S considered the most useful source task,

which 1s identified by

index = arg YI}E%X{mi |m; € V}, (3.17)
L

where m; 1s the membership degree of T;. Then, ¢ optimized solutions of T, gex
are selected from M, which are added into TS. If Q is empty, TS is set to an
empty set, and the index is set to O in Line 6, indicating that the solution transfer

will not happen. Finally, TS and index are returned in Line 8.

3.3.5 Training Data Update

Algorithm 3.5 Training Data Update (TDU)
Input: P, TS, V, D, index, flag
Output: D, flag

1 if TS is not empty

2 < Vindex > < Select the test sample of Tipge, from V

3 < Vindex > < Assign the label of v,40, by Eq. (3.18)

4 D < Delete the first training sample < v,,y; > from D

5 D < Add the new training sample < Vindexs Vindex > N0 D
6 Renumber all training samples in D

7 flag =true

8 end

9 return D, flag

For training data update (TDU), the pseudocode 1s given in Algorithm 3.5 with the
inputs: P (the next-generation population), TS (the set of solutions for transfer), V

(the test data), D (the training data), index (the index of the most useful source
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task selected for solution transfer), and flag (a boolean variable). As shown in
Lines 1-8, if TS 1is not an empty set, the training data D will be updated as the so-
lution transfer occurs at the current generation. In particular, the test sample V;,qex
generated based on the populations of Tj,4e, and the target task is first selected
from P in Line 2. After that, as shown in Line 3, by checking whether any trans-
ferred solution of Tj,4ex SUrvives in the environmental selection, Vi,ge, 1S reas-
signed a label Yinqex,» Which is expressed by

0, if TSNP =@

1, otherwise ’ (3.18)

Yindex = {

Next, as shown in Lines 4-5, the first training sample denoted by < v4,y; > is de-
leted from D, and then the new labelled sample < Vingexs Vindex = 18 added into
D. In this way, more reliable training samples will gradually replace the inaccurate
ones as the evolutionary search proceeds. Meanwhile, the size of D remains un-
changed, which ensures that the training time of the fuzzy classifier will not increase
in the optimization process of the target task. After that, all training samples are re-
numbered sequentially based on the order in which they are added into D 1n Line 6.
In addition, flag is set to true in Line 7, which shows that the fuzzy classifier needs

to be retrained because D is updated. Finally, D and flag are returned in Line 9.

3.3.6 Main Framework

Here, the pseudocode of our main framework is provided in Algorithm 3.6 with the
inputs: STOP (a sequential transfer optimization problem with T, and M, where T;
and M are the target task and the knowledge base consisting of the evaluated popu-
lation of the source tasks, respectively), N (the population size), G4, (the maxi-

mum number of generations for T;), TG (the transfer generation interval), ¢ (the
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number of solutions for transfer at each transferable generation), a (the preference
coefficient for calculating the progressional representation), n (the number of sam-
ples in the training data), and K (the number of nearest neighbours in FKNN). First,
a population P 1is initialized by randomly generating N solutions and 1t 1S collected
into E, as the initial evolutionary path of T, in Line 1. Next, the training data D 1is
initialized by performing Algorithm 3.2 in Line 2. Then, in Line 3, the generation
counter g 1s set to 1, and flag is set to true, which indicates that FKNN needs to

be trained on D.

Algorithm 3.6 The Main Framework

Input: An STOP with T, and M, N, Gpax> TG, ¢, a, n, K
Output: P

1 Initialize P with N solutions and E, = {P}

2 D <—TDC M, n, ) [/l Algorithm 3.2

3 Set g=1,and flag =true

4  while g < Gax

5 if mod (g, TG) ==

6 if flag istrue

7 FKNN < Retrain a fuzzy classifier on D // Algorithm 3.1
8 flag =false

9 end

10 [V, Y]< SUM (FKNN, M, E., g) // Algorithm 3.3

11 [TS, index] <SST (Y,M, c¢) [/ Algorithm 3.4

12 end

13 0 < Crossover and Mutation on P

14 P < Environmental Selection on PUOUTS

15 [D, flag]l <~ TDU (P, TS, V, D, index, flag) // Algorithm 3.5
16 g=g+1 and E; = E;U{P}

17 end

18 return P

The main evolutionary search process 1s shown in Lines 4-17. First, as shown in
Lines 5-12, the component of solution transfer 1s triggered at each of TG generations.

In particular, in Lines 6-9, the fuzzy classifier FKNN is trained on D if flag is
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true, and then flag is set to false. After that, with FKNN, Algorithm 3.3 is per-
formed to measure the solution usefulness of all candidate source tasks from M in
Line 10. Then, the solutions for transfer, 1.e., TS, are selected by running Algorithm
3.4 in Line 11. Afterward, the simulated binary crossover (SBX) [94] and polynomi-
al-based mutation (PM) [95] are sequentially executed to generate the offspring popu-
lation O with the size of N — |TS| in Line 13. Next, in Line 14, environmental se-
lection is performed on the combined population PUOUTS to select N solutions
based on their objective values, which are employed to form the next-generation pop-
ulation P. Then, in Line 15, Algorithm 3.5 is performed to update D by replacing
the old one with the newly generated training sample with the more accurate label. In
Line 16, the generation counter g is increased by 1, and P is added into E;. When
g does not exceed Gqx, the above process will be iteratively executed. Otherwise,

P 1s returned as an approximate solution set in Line 18.

3.4 Experimental Study
3.4.1 Experimental Setup

1) Compared Algorithms

The canonical EA: SBX and PM are used to generate the offspring population, while
1/2 truncation selection 1s used to select elite solutions from parent and offspring

populations.

Four ESTO algorithms equipped with distance metrics: ESTOA-ED, ESTOA-WD,
ESTOA-KLD, and ESTOA-MMD use ED, WD, KLD, and MMD to select optimized

solutions from the most similar source task for transfer, respectively.
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Two ESTO algorithms equipped with ML models: ESTOA-AD and ESTOA-INB are
developed by replacing the fuzzy classifier in ESTOA-FCM with AD and INB. In
ESTOA-AD and ESTOA-INB, one source task in the positive class 1s randomly se-
lected to provide optimized solutions for transfer if it exists. Otherwise, knowledge

transfer will not happen.

2) Parameter Settings

Table 3.1: Parameter settings of all compared algorithms.

Algorithm Parameter settings
EA N =50

ESTOA-ED N =50, TG =1, ¢ =1

ESTOA-WD N =50, TG =1, ¢ =1

ESTOA-KLD N =50, TG =1, ¢ =1

ESTOA-MMD N =50, TG =1, ¢c =1, o =0.5

ESTOA-AD N =50, TG =1, ¢ =1, € =0.1

ESTOA-INB N =50, TG =1, ¢ =1

ESTOA-FCM N =50, TG =1, c =1, « =02, n =100, K =5

Tab. 3.1 lists the detailed parameter settings of all compared algorithms. Here, SBX
with p. =1 and n, = 15, and PM with p,, = 1/d and n,, = 15 are used as the
evolutionary operators for generating offspring population. The population size (N),
the transfer generation interval (TG), and the number of transferred solutions at each
transferable generation (c) are set to 50, 1, and 1, respectively. In addition, in ES-
TOA-MMD, o 1s set to 0.5 in the Gaussian kernel function. Moreover, in ESTOA-
AD, the threshold € is set to 0.1. In ESTOA-FCM, a, n,and K are set to 0.2, 100,

and 5, respectively.

The maximum number of generations G,,q, On each test problem is set to 100. The

objective values from 50 independent runs of each compared algorithm on the test
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problems are collected for performance comparison, where the Wilcoxon rank sum

test with a 0.05 significance level is used to show the statistically significant differ-

ences in the numerical results.

Table 3.2: Parameter Settings of F1-F18.

Target Task Source Tasks in Knowledge Base
P Function [Search Space gfggﬁlgggmum Function |[Search Space Normalized Global Optimum
Fl |cms-T1 |a=50, [-100, 100]¢ | % 4&';&] CIHS-T2 |d = 50, [-50,50]¢ |0y = 02 x (1 —7,) + T X 1,
r2 |cms-t2 |a=s0, 50,501 | :[Oi';jﬁ] CIHS-T1 |d = 50, [-100, 100 |og; = o X (1— 1) + 1 X 7;
B3 |onvs-Ti [ =50, 150,501 | % :[M] CIMS-T2 [d = 50, [-50,501¢ [0y = 0f x (1 —7) +rx 1
4 |cMs-T2 |a=s0, [-50, 5000 | 4&3&] CIMS-T1 |d = 50, [-50,50]¢ |0y = 0% x (1 —7,) + T X 1,
s |cms-Ti |d=s0, [-50,50p¢ | =[M] CILS-T2 |d = 50, [-500, 500]¢ |og; = 06 x (1 — 7)) + rx 7,
F6 |crs-T2 |d=s50, [-500, 5005 | :[w] CILS-T1 |d=50,[-50,50]¢ [0y = 0f x (1 —7) +rx7
F7 |PHS-T1 |a=50,[-50, 50« | z[&kﬁ?] PIHS-T2 |d = 50, [-100, 100]¢ oy = 0f x (1 —7,) + r X ;
8 [PIHS-T2 |d=50, [-100, 1005« | :[‘1'2""'2;?] PIHS-T1 |d =50, [-50,50]¢ oy =0l x(1—1)+rxz
79 |PIMS-TI |d=50, [-50,50)¢ | :[S}E""’Oﬁﬂ PIMS-T2 |d = 50, [-50,50]¢ |0y = 01° x (1 —7,) + r X 1;
F10 [PIMS-T2 |d =50, [-50, 500« | =[(&3~-(;L-51] PIMS-T1 |d = 50, [-50,50]¢ [0y = 02 x (1 — 7)) + r x 71
Fl1 [pis-T1 |d=50,[-50,50« |° 4&;;'&3] PILS-T2 |d =25, [-0.5,05] [0y =02 x (1 —7)+rx7
F12 [PILS-T2 |a=25 05,051« |% :[&;}Oj} PILS-T1 |d=50,[-50,50]¢ oy =0!x(1—1)+rxz
F13 [Nms-T1 |d=50, 50,50« |° :[O-LL-C';LSH NIHS-T2 |d = 50, [-50,50]¢ [0y = 02 x (1 — 7)) + rx 1,
Fl4 [NtHS-T2 |d=50, 50,50« |° 4&;}&5] NIHS-T1 |d = 50, [-50,50)¢ |0y = 02* x (1 —7,) + rX 7
F15 |NIMS-T1 |d = 50, [-100, 100j¢ | % =[Ml NIMS-T2|d = 50, [-0.5,0.5]7 [0y = 026 x (1 —7,) + r X 7
F16 |[NIMS-T2 [d =50, [-05, 05« | :[wl NIMS-T1 |d = 50, [-100, 100]¢ [0y = 025 x (1 — 7)) + X 7;
F17 [NILS-T1 |d=50, 50,50« |% :[(&E’E] NILS-T2 |d = 50, [-500, 500 0y = 02f x (1 —7,) + r X 7
F18 |NILS-T2 |d =50, [-500, 5007¢ | % =[092:-:092] |\ g 1) |d= 50, [-50,50]¢ |0y = 07 x (1 — 7))+ x 7,

d
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3) Test Problems

Two benchmark suites are used for performance comparison. The first benchmark
suite includes 18 STOPs (called F1-F18), which are constructed based on the existing
ingredient functions in the multitasking benchmark suite [96]. The second benchmark
suite consists of 12 STOPs (called STOP1-STOP12), which are generated by a spe-
cially designed STOP generator [97]. In addition, a practical case is considered by
using the planar kinematic arm problem [98] as the ingredient function to construct a
series of practical test instances. The source and target tasks are continuous optimiza-
tion problems and the real-valued encoding i1s used to represent the solutions of
source and target tasks. Note that the canonical EA is used as the optimizer to collect
the estimated solutions of source tasks of each test problem to form their respective
knowledge bases. For consistency, the maximum numbers of generations for all
source tasks are set to the same to that of their target tasks. The detailed descriptions

of the two benchmark suites are given as follows:

In the commonly used multitasking benchmark suite [96], nine test problems (.e.,
CIHS, CIMS, CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS) are designed by
considering the task similarity and the degree of global optima intersection, each of
which has two different tasks. To construct the sequential transfer optimization prob-
lem (STOP), the target task 1s set to one existing task from one multitasking test prob-
lem while its associated knowledge base is formed by configuring another task with
different global optima to generate the source tasks. As shown in Tab. 3.2, a weight
parameter 7; in [0, 1] is introduced as the perturbation factor to generate the normal-
1zed global optima of the source tasks in the normalized search space [0, 1]9. Setting
7; to 0 means that the normalized global optimum of the generated source task is the

same as that of the original task. When ; 1is set to 1, its normalized global optimum
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1s generated by randomly sampling in the normalized search space. Therefore, using
the Gaussian distribution to sample ; can diversify the relationship between the
normalized global optima of the source tasks and the original task. Note that r is a
d-dimensional vector randomly sampled in [0, 1]9. Here, the mean (u), the standard
deviation (o), and the number of the source tasks (k) are 0.5, 0.1, and 100, respec-

tively. The detailed parameter settings of F1-F18 are given in Tab. 3.2.

As 1introduced in [97], STOPs with diverse properties can be generated by using a
problem generator with six necessary parameters, including task family (77F), transfer
scenario (7'S), optimum coverage of the image (&), similarity distribution (§D), prob-
lem dimension (d), and the number of source tasks (k). By setting different parame-
ters, the similarity distribution of source tasks to the target task can be flexibly adjust-
ed according to specific requirements. Therefore, the problem generator generates a
specific STOP by setting the parameters, i.e., TF-TS-E-8D-k-d. Here, cight widely
used single-objective optimization functions are employed as the candidate families
for formulating the source and target tasks, 1.e., TF = {Sphere, Ellipsoid, Schwefel

2.2, Quartic, Ackley, Rastrigin, Griewank, Levy}. In addition, there are two different

transfer scenarios, i.e., TS = {T,,7,}. The former shows that the source and target

tasks belong to the same family while the latter indicates that they have different fam-
ilies. The parameter & € [0,1] determines the relative size of the image over the de-
cision space. To create a series of STOPs with diverse similarity distributions, 7; €
[0,1] 1s used to adjust the relationship between the optimal solutions of source and

target tasks, which is given as follows:

0, =Xjp +r X Xyp —Xpp)
b =Ry +TX Ry —Rp)i=1,2,....k (3.19)
OSi :otxrl+0?l X(l_Tl);l = 1;2;"')k

o
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where 0, and og; are the optima of the target task and the i-th source task, and t;
1s the weight parameter for the i-th source task. Note that r is a d-dimensional vec-
tor randomly sampled in [0, 1]4. Here, five different probability distributions of ;
are built based on one or multiple Gaussian distributions with the pre-set mean and

standard deviation, which are respectively presented, as follows:

(NV(0.15,012),i = 1,...,|2k/3]
(D) = {N(0.45,0.22),i = 12k/3]) +1,.... k (3.20)
(NV(0.45,0.22),i = 1,...,|k/3]
P2(1) = {N(0.70,0.12),i = |k/3]+1,...,k (3-21)
ps(7) = N'(0.45,0.22),i = 1,...,k (3.22)

N(0.15,0.12),i = 1,...,k/3]
pa(t) ={ N (0.45,0.12),i = |k/3| +1,...,12k/3] (3.23)
N(0.70,0.12),i = |2k/3]| +1,...,k

N(0.15,0.12),i = 1,...,|k/2]

ps(D) = {N(O.7O,O.12),i = |k/2] +1,...,k (3-24)

where k 1s the number of source tasks and |-| is the operator of rounding down.
The similarity between the global optimum of the i-th source task and the target task

1s measured by
Si=1-— mjax(|oi —ol,]), (3.25)

where o{ and ogi denote the j-th variables of o, and oy, and |- | denotes the
absolute value. The computed similarity degrees in the ranges, 1.e., [0, 0.3], (0.3, 0.7),
and [0.7, 1], are considered to be high, medium, and low, respectively. Therefore,

SD = {p1(1), p2(1), P3(7), P4(7), P5(T)} 1s employed to mimic the diversity of
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similarity relationships of the source task to the target task in various STOPs. Moreo-
ver, d and k are the dimensionality of problem and the number of source tasks, re-

spectively.

Note that different STOPs can possess different dimensions, but the source and target
tasks have the same dimension in the same STOP. In the problem generator [97], a
conventional evolutionary algorithm 1s employed as the basic solver to optimize all
the source tasks and their evaluated solutions are collected to form the knowledge
base. According to the above parameter settings, a benchmark suite consisting of
STOPI1-STOP12 is designed as test problems for examining the performance of ES-
TO algorithms, where their knowledge bases are configured with different proportions
of the source tasks with low, medium, and high similarity for their target tasks. The

detailed parameter settings are given in Tab. 3.3.

Table 3.3: Parameter Settings of STOP1-STOP12.

. Problem Specification The Proportions of Different Types of Source Tasks
TF-TS-&-8D-k-d) Low Medium High
(0<5<0.3) (03<S5<0.7) 07<s<1)
STOP1 Sphere-7,-1-V;-35-100 38.00% 57.00% 5.00%
STOP2 | Ellipsoid-T,-1-Vv;-50-100 47.00% 49.00% 4.00%
STOP3 | Schwefel-7,-1-N;-60-100 56.00% 40.00% 4.00%
STOP4 Quartic-T,-1-M;-35-100 3.00% 44.00% 53.00%
STOP5 Ackley-T,-1-V,-50-100 6.00% 48.00% 46.00%
STOP6 | Rastrigin-T,-1-N,-60-100 2.00% 52.00% 46.00%
STOP7 | Griewank-7,-1-N5-35-100 13.00% 75.00% 12.00%
STOPS | Levy-Te-T,-1-N3-35-200 9.00% 72.00% 19.00%
STOP9 [ Ellipsoid-T,-1-N,-50-100 25.00% 49.00% 26.00%
STOP10|  Quartic-T,-1-V,-50-200 24.50% 51.50% 24.00%
STOP11 Ackley-T,-1-NV5-60-100 36.00% 31.00% 33.00%
STOP12| Griewank-T,-1-Ng-60-200 35.00% 32.50% 32.50%
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Table 3.4: Mean objective values and standard deviations obtained by ESTOA-FCM
and compared algorithms on F1-F18.

Problem EA ESTOA-ED | ESTOA-WD | ESTOA-KLD | ESTOA-MMD | ESTOA-AD | ESTOA-INB | ESTOA-FCM
Fl mean | 1.05e+00(-) | 1.02e+00(~) | 1.02e+00(~) | 1.02e+00(~) 1.03e+00(-) | 1.03e+00(-) | 1.03e+00(-) 1.01e+00
std 1.79¢-02 2.92e-02 3.08e-02 2.98e-02 3.80e-02 1.67¢-02 1.90e-02 2.86e-02
- mean | 5.52e+02(~) | 5.57e+02(-) | 5.52e+02(~) | 5.39e+02(~) | 5.62e+02(-) |5.36e+02(~) | 5.39e+02(~) 5.36e+02
std | 4.18e+01 3.98e+01 4.55e+01 3.62e+01 4.43e+01 3.26e+01 3.32e+01 3.78e+01
3 mean | 9.44e+00(-) | 5.50e+00(-) | 5.57e+00(-) | 5.36e+00(-) | 6.02e+00(-) | 5.41e+00(-) | 5.26e+00(~) 5.09e+00
std 1.83e+00 7.20e-01 7.67¢-01 4.35e-01 8.42e-01 4.31e-01 4.87e-01 5.01e-01
” mean | 5.53e+02(-) [ 5.41e+02(~) | 5.37e+02(~) | 5.31e+02(~) | 5.50e+02(~) |5.28e+02(~)| 5.58e+02(-) 5.39¢e+02
std | 4.07e+01 3.19¢+01 3.23e+01 2.82e+01 4.59¢+01 3.81e+01 3.94e+01 3.20e+01
Bs mean|2.13e+01(~) [ 2.13e+01(~) | 2.13e+01(~) | 2.13e+01(~) | 2.13e+01(~) |2.13e+01(-) | 2.13e+01(~) 2.13e+01
std 4.12e-02 8.53e-02 9.47e-02 3.92e-02 3.36e-02 4.36e-02 3.94e-02 4.55e-02
6 mean | 1.99e+03(~) [ 2.11e+03(~) | 2.18e+03(~) | 2.19e+03(~) | 2.14e+03(~) |2.15e+03(~) | 2.10e+03(~) 2.09e+03
std 5.21e+02 5.17e+02 4.93e+02 4.64¢+02 5.48e+02 4.44e+02 4.61e+02 4.42e+02
7 mean | 5.58e+02(-) | 5.58e+02(-) | 5.63e+02(-) | 5.39e+02(~) | 5.61e+02(-) |5.42e+02(~)| 5.59¢+02(-) 5.34e+02
std | 4.63e+01 5.05e+01 4.22e+01 3.75e+01 3.18e+01 2.81e+01 3.68e+01 3.52e+01
- mean | 2.33e+02(-) [2.01e+02(~) | 1.90e+02(~) | 1.65e+02(~) | 2.38e+02(~) |1.68e+02(~)| 2.50e+02(-) 1.82e+02
std 6.24e+01 7.43e+01 7.80e+01 4.31e+01 1.35e+02 3.77e+01 6.51e+01 4.94e+01
9 mean| 1.02e+01(-) | 5.31e+00(-) | 5.12e+00(-) | 5.32e+00(-) 6.15e+00(-) [ 5.36e+00(-) | 9.83e+00(-) | 4.79e+00(~)
std | 2.28e+00 5.40e-01 5.80e-01 3.24e-01 1.36e+00 4.32e-01 2.26e+00 3.19e-01
F10 mean | 3.03e+05(-) | 1.23e+05(-) | 1.08e+05(-) | 6.99e+04(-) 7.80e+04(-) | 7.11e+04(-) | 3.01e+05(-) | 3.89e+04(~)
std 1.65e+05 7.56e+04 6.50e+04 3.26e+04 4.16e+04 3.88e+04 1.38e+05 2.16e+04
Fll mean | 9.67e+00(-) | 7.37e+00(~) | 7.71e+00(~) | 7.97e+00(-) | 7.33e+00(~) |7.80e+00(~)| 8.75¢+00(-) | 7.50e+00(~)
std 1.68e+00 9.47¢-01 1.09e+00 1.09e+00 8.96e-01 1.08e+00 1.76e+00 1.01e+00
F12 mean | 9.64e+00(-) | 7.05e+00(~) | 6.87¢+00(~) | 6.44e+00(~) | 7.16e+00(~) [6.84e+00(~)| 7.64e+00(-) | 6.72e+00(~)
std 1.91e+00 1.64e+00 1.47e+00 1.37e+00 2.20e+00 1.30e+00 2.11e+00 1.34e+00
P13 mean | 3.43e+05(-) | 9.03e+04(-) | 9.80e+04(-) | 6.95e+04(-) 1.18e+05(-) | 7.37e+04(-) | 7.46e+04(-) | 2.37e+04(~)
std 1.67e+05 6.68e+04 6.24e+04 2.78e+04 7.87e+04 2.85e+04 3.94e+04 1.16e+04
Fl4 mean | 5.51e+02(-) | 5.53e+02(-) | 5.51e+02(~) | 5.31e+02(~) | 5.49e+02(~) |5.35e+02(~)| 5.51e+02(~) | 5.36e+02(~)
std 3.61e+01 3.09¢+01 3.69e+01 3.34e+01 4.02e+01 3.38e+01 4.33e+01 3.53e+01
F15 mean | 1.05e+00(-) | 1.04e+00(~) | 1.05e+00(~) | 1.04e+00(~) 1.06e+00(-) | 1.05e+00(~) | 1.03e+00(+) | 1.05e+00(~)
std 1.97¢-02 1.90e-02 1.57e-02 1.98e-02 2.21e-02 1.63e-02 2.83e-02 1.71e-02
Fl6 mean | 3.41e+01(-) | 2.14e+01(~) | 2.04e+01(~) | 2.03e+01(~) | 2.32e+01(-) |2.00e+01(~)| 3.23e+01(-) | 2.11e+01(~)
std | 4.86e+00 2.98e+00 3.53e+00 2.12e+00 5.26e+00 2.93e+00 4.05e+00 3.45e+00
F17 mean | 5.62e+02(~) | 5.70e+02(~) | 5.72e+02(~) | 5.69e+02(~) | 5.62e+02(~) |5.59e+02(~)| 5.67e+02(~) | 5.62e+02(~)
std | 3.63e+01 4.03e+01 4.21e+01 3.67e+01 3.55e+01 4.15e+01 4.49e+01 3.34e+01
P18 mean | 2.08e+03(~) | 2.14e+03(~) | 2.05e+03(~) | 2.25¢+03(~) | 2.12e+03(~) |2.14e+03(~)| 1.97e+03(~) | 2.04e+03(~)
std | 5.58e+02 4.51e+02 4.28e+02 4.83e+02 5.21e+02 4.23e+02 4.96e+02 4.83e+02
Best/All 1/18 0/18 0/18 3/18 2/18 4/18 2/18 6/18
+/-/~ 0/13/5 0/7/11 0/5/13 0/5/13 0/9/9 0/6/12 1/10/7 \
“+7 0“7 Jand “~" indicate that the results of the corresponding algorithm are better than, worse than, and

similar to that of ESTOA-FCM, respectively. The best result on each test problem is highlighted in bold.
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Table 3.5: Mean objective values and standard deviations obtained by ESTOA-FCM
and compared algorithms on STOP1-STOP12.

Problem EA ESTOA-ED |ESTOA-WD |ESTOA-KLD |[ESTOA-MMD |[ESTOA-AD|ESTOA-INB [ESTOA-FCM
STOPI mean|1.65e+02(~)[2.76e+02(-) | 2.59e+02(-) | 1.69e+02(~) | 2.74e+02(-) |1.57e+02(~)|2.16e+02(~)| 1.67e+02
std | 1.09e+02 1.46e+02 1.13e+02 1.20e+02 1.25e+02 1.07e+02 1.55e+02 9.52e+01
STOP? mean| 4.72e+03(-) | 3.96e+03(-) | 3.40e+03(-) | 3.63e+03(-) | 3.55e+03(-) [3.20e+03(~)| 4.35e+03(-) | 2.71e+03
2.09e+03 1.58e+03 1.05e+03 1.56e+03 1.23e+03 1.40e+03 2.23e+03 1.01e+03
STOP3 mean|2.23e+01(~)| 3.23e+01(-)| 2.91e+01(-) | 2.44e+01(~) | 2.75e+01(~) |2.05e+01(+)| 2.24e+01(~) | 2.57e+01
std | 8.16e+00 1.39¢+01 9.83e+00 9.67e+00 9.10e+00 7.17e+00 8.26e+00 8.81e+00
STOP4 mean| 4.05e+00(-) | 5.20e-01(-) | 6.11e-01(-) | 5.34e-01(-) 5.58¢-01(-) [3.96e-01(~)| 6.36e-01(-) 3.79e-01
std | 5.08e+00 2.18e-01 2.52¢-01 2.38e-01 1.94¢-01 2.09¢-01 3.78¢-01 1.51e-01
STOPS mean| 7.43e+00(-) [ 4.24e+00(-) | 4.33e+00(-) | 3.68e+00(~) | 4.37e+00(-) [4.09e+00(-)| 7.57e+00(-) | 3.80e+00
1.49e+00 6.32e-01 6.52¢e-01 5.03e-01 6.33e-01 5.59¢-01 1.16e+00 6.08e-01
STOPG mean| 1.46e+02(-) [6.93e+01(~)] 6.99e+01(-) | 9.02e+01(-) | 7.27e+01(~) [8.19e+01(-)| 9.37e+01(-) | 6.73e+01
std | 1.79e+01 | 2.58e+01 3.91e+01 1.60e+01 2.46e+01 1.98e+01 2.53e+01 1.28e+01
STOP7 mean| 1.17e+00(-) [ 1.06e+00(~)| 1.06e+00(~) | 1.07e+00(-) | 1.07e+00(-) |1.11e+00(-)| 1.17e+00(-) 1.05e+00
std | 8.32e-02 3.85e-02 2.97e-02 3.88e-02 3.41e-02 9.11e-02 1.06e-01 3.56e-02
STOPS mean| 6.64e+00(-) [1.33e+00(~)| 1.68e+00(-) | 3.15e+00(-) | 1.73e+00(~) |3.14e+00(-)| 7.16e+00(-) 1.27e+00
4.21e+00 7.09e-01 8.54e-01 2.35e+00 1.45e+00 2.39e+00 4.28e+00 6.42e-01
STOPY mean| 4.17e+03(-) [1.32e+03(~)| 1.85e+03(-) | 1.30e+03(~) | 1.96e+03(-) |1.83e+03(-)| 4.67e+03(-) 1.37e+03
St 2.21e+03 | 4.95e+02 7.72e+02 6.30e+02 6.89¢+02 1.00e+03 2.72e+03 4.68e+02
STOPIOmean 1.05e+02(-) [6.85e+00(~)| 7.38e+00(~) | 1.29e+01(-) | 9.26e+00(~) |1.17e+01(-)| 7.12e+01(-) | 6.04e+00
std | 8.15e+01 7.21e+00 4.90e+00 1.04e+01 8.08e+00 8.50e+00 8.46e+01 2.89¢+00
STOPI1 mean| 9.67e+00(-) | 5.49e+00(-) | 5.40e+00(-) | 5.71e+00(-) | 5.68e+00(-) [5.17e+00(~)| 9.40e+00(-) | 5.04e+00
std | 1.29e+00 1.01e+00 9.34e-01 9.40e-01 1.18e+00 7.78e-01 1.53e+00 8.41e-01
STOP]Zmean 2.88e+00(-) | 1.47e+00(-) | 1.45e+00(~) | 1.98e+00(-) | 1.47e+00(-) |1.70e+00(-)| 2.82e+00(-) | 1.38e+00
std | 8.30e-01 2.52e-01 2.00e-01 6.05e-01 3.36e-01 2.90e-01 7.60e-01 1.30e-01
Best/All 0/12 0/12 0/12 2/12 0/12 2/12 0/12 8/12
+/-/~ 0/10/2 0/7/5 0/9/3 0/8/4 0/8/4 1/7/4 0/10/2 \
“+7 , “” ,and “~” indicate that the results of the corresponding algorithm are better than, worse than, and

similar to that of ESTOA-FCM, respectively. The best result on each test problem is highlighted in bold.

3.4.2 Comparison with Peer Methods

The numerical results of all compared algorithms on two test suites are provided in

Tab. 3.4 and Tab. 3.5, respectively.
1) Comparison on F1-F18

As shown in Tab. 3.4, for F1-F18, ESTOA-FCM performs better than other compared

algorithms on 13, 7, 5, 5, 9, 6, and 10 out of 18 cases, respectively. In addition, ES-
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TOA-FCM and the compared algorithms obtain similar performance on most test cas-
es (l.e., 5, 13,13, 13,9, 12, and 7 out of 18 cases, respectively). The above compari-
son results on F1-F18 show some advantages of ESTOA-FCM on some test problems

when compared to 1ts competitors.

Moreover, to further analyse the effectiveness of ESTOA-FCM 1n measuring solution
usefulness of source tasks, the ratios of the source tasks with a positive label on F1-
F18 are recorded at each generation in Fig. 3.3. In particular, for F1, F2, F7, F8, F13,
and F14, as the similarity degree between the ingredient functions for constructing
source and target tasks is high, there are a lot of useful source tasks for their corre-
sponding target tasks. These source tasks can provide useful optimized solutions to
accelerate the optimization of the target task at the early stage. However, as the evolu-
tionary search proceeds, these optimized solutions will no longer be useful for the
target task as they have been used. As observed in Fig. 3.3(a), on most test problems,
the number of source tasks with a positive label gradually decreases as the evolution-
ary search proceeds. In contrast, the degree of similarity between the ingredient func-
tions of source and target tasks is median for F3, F4, F9, F10, F15, and F16. As
shown 1n Fig. 3.3(b), the similar results are observed on F3, F9, and F16. However,
on F4, F10, and F15, the number of source tasks with a positive label initially de-
creases, then increases, and finally decreases again. This could possibly be that the
source tasks have a low similarity degree to the target task at the early stage while
they have a higher similarity degree at the middle stage. In addition, for F5, F6, F11,
F12, F17, and F18, due to the low similarity degree between the ingredient functions
of source and target tasks, the number of useful source tasks is very low. In Fig.
3.3(c), except at the very early stage, the number of source tasks with a positive label

on most test problems i1s small and even close to 0. It shows that most source tasks
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are accurately identified to be useless as they cannot provide useful source solutions

for the target task. The above observations in Fig. 3.3 show that ESTOA-FCM can

effectively select useful source tasks along the evolutionary search process on most

test problems.

Ratio

100% [ty Faggg T T T 100% iy
e *—Fl
{ —a—F2
80% L e F7 T 80%
LS —4—F8
ka F13
60% Fi4 | 9 60%
2
=
40% 40%
20% 1 20%
0% ) u:»m»v-»,—”?'n,',',',':,,",'.""':':‘ 0% M X > " o
0 20 80 100 0 20 40 60 80 100
Generation Generation
(a) F1, F2, F7, F8, F13, and F14 (b) F3, F4, F9, F10, F15, and F16

100%
—e—F5
—a—F6
80% ——F11 1
—4+—F12
F17

o, Fo| R
60% F18

Ratio

40% r

20%

20 40 60 80 100
Generation

0%
0

(c) F5, F6, F11, F12, F17, and F18

Figure 3.3: Ratios of the source tasks with a positive label during the evolutionary
search processes on F1-F18.

2) Comparison on STOP1-STOP12

In addition, the superiority of ESTOA-FCM can be observed on STOP1-STOP12. As

shown in Tab. 3.5, compared with EA, ESTOA-FCM achieves significantly better
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performance on most test problems (1.e., 10 out of 12 cases), which shows that ES-
TOA-FCM 1is able to further improve optimization performance on the target task by
selecting the source solutions for transfer. However, as the proportion of highly simi-
lar source tasks for the target task is very low in the knowledge bases of STOPI1,
STOP2, and STOP3, the optimized solutions of most source tasks are useless for ac-
celerating the optimization process of the target task. Thus, it is reasonable that ES-
TOA-FCM and EA obtain similar results on STOP1 and STOP3. Similarly, in com-
parison with four ESTO algorithms equipped with distance metrics, ESTOA-FCM
performs significantly better on most test problems (i.e., 7, 9, 8, and 8 out of 12 cas-
es), while it achieves similar results on the remaining cases. The comparison results
show that FCM has better performance than these existing distance metrics including
ED, WD, KLLD, and MMD. In addition, the significant superiority of ESTOA-FCM 1s
observed when compared with ESTOA-AD and ESTOA-INB. For example, the total
numbers of better and similar results obtained by ESTOA-FCM are 11 and 12 out of
12 cases, respectively. The comparisons demonstrate the effectiveness of FCM 1n
measuring the solution usefulness of source tasks when compared with existing meas-

urement methods.

Moreover, to further analyse the effectiveness of ESTOA-FCM, Fig. 3.4 records the
ratios of the source tasks with a positive label at each generation on some representa-
tive test problems, 1.e., STOP3, STOP7, STOP9, and STOP6. In their respective
knowledge bases, the true ratios of highly similar source tasks for the target task are
4%, 12%, 26%, and 46%, respectively. In particular, due to the very low proportion
of source tasks with high similarity (4%), the number of useful source tasks for the
target task 1s very small on STOP3. As shown in Fig. 3.4, the majority of source tasks

have a negative label, which demonstrates that ESTOA-FCM is capable of predicting
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that most source tasks are useless. In addition, for STOP6, the true proportion of
highly similar source tasks is very high (46%), which means that a lot of source tasks
can provide the optimized solutions to accelerate the optimization process of the tar-
get task. In Fig. 3.4, for STOP6, the majority of source tasks have a positive label at
the early stage. However, as the population of the target task gradually converges,
these source tasks will no longer be able to provide significant performance im-
provement for accelerating the optimization on the target task. Thus, as the optimiza-
tion process continues, the ratio of source tasks with a positive label gradually de-
clines. Similar observations can be found on STOP7 and STOP9 with a relatively
moderate proportion of highly similar source tasks (i.e., 12% and 26%, respectively).
Additionally, Fig. 3.4 reveals that the ratio of the source tasks with a positive label
increases as the proportion of source tasks with high similarity increases on STOP3,
STOP7, STOP9, and STOP6. The above comparisons further validate the effective-
ness and superiority of ESTOA-FCM in measuring the usefulness of the source tasks

for the target task.
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Figure 3.4: Ratios of the source tasks with a positive label during the evolutionary
search processes of STOP3, STOP6, STOP7, and STOPO.
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Table 3.6: Mean objective values and standard deviations obtained by ESTOA-FCM
and 1ts variants.

Problem Variant-I Variant-IT Variant-III ESTOA-FCM
STOP1 | 1.64e+02(1.01e+02)~ | 1.56e+02(1.19e+02)~ | 1.07e+02(6.32e+01)+ | 1.67e+02(9.52e+01)
STOP2 | 3.20e+03(1.27e+03)- | 4.43e+03(2.39e+03)- | 2.79e+03(1.58e+03)~ | 2.71e+03(1.01e+03)
STOP3 [ 2.03e+01(7.15¢+00)+ | 2.02e+01(7.35¢+00)+ | 1.95¢+01(8.02e+00)+ | 2.57¢+01(8.81e+00)
STOP4 | 2.05e+00(2.10e+00)- | 2.61e+00(2.28e+00)- | 4.83e-01(1.67e-01)- | 3.79e-01(1.51e-01)
STOPS | 4.84e+00(9.19¢-01)- | 7.88e+00(1.22e+00)- | 4.92e+00(7.91e-01)- | 3.80e+00(6.08e-01)
STOP6 | 1.82e+02(3.80e+01)- | 1.47e+02(2.08e+01)- | 1.14e+02(2.64e+01)- | 6.73e+01(1.28e+01)
STOP7 | 1.27e+00(2.14¢-01)- | 1.17e+00(1.35¢-01)- | 1.07e+00(2.78e-02)- | 1.05¢+00(3.56e-02)
STOP8 | 2.42e+00(2.19e+00)- | 6.74e+00(3.75e+00)- | 2.90e+00(2.11e+00)- | 1.27e+00(6.42e-01)
STOP9 [ 1.67e+03(7.13e+02)- | 4.11e+03(2.01e+03)- | 1.72e+03(7.05e+02)- | 1.37¢+03(4.68e+02)

STOP10| 1.15e+01(7.44e+00)- | 1.08e+02(9.12e+01)- | 1.43e+01(1.22e+01)- | 6.04e+00(2.89¢+00)

STOP11 | 5.66e+00(1.04e+00)- | 9.91e+00(1.64¢+00)- | 5.51e+00(9.49¢-01)- | 5.04e+00(8.41e-01)

STOP12| 1.90e+00(4.25e-01)- | 2.73e+00(7.82e-01)- | 1.50e+00(2.11e-01)- | 1.38e+00(1.30e-01)

+/-/~ 1/10/1 1/10/1 2/9/1 \
“+7 (or “-” ) indicates that the results of the corresponding variant are better (or worse) than that

of ESTOA-FCM, and “~” indicates that they obtain similar performance.

Table 3.7: Mean objective values and standard deviations obtained by ESTOA-FCM

and its variants.

Problem Variant-IV Variant-V Variant-VI ESTOA-FCM
STOP1 | 2.04e+02(1.19¢+02)~ | 1.87e+02(1.09¢+02)~ | 2.17e+02(1.49¢+02)~ | 1.67¢+02(9.52¢+01)
STOP2 | 4.22e+03(2.07e+03)- | 3.54e+03(1.83e+03)- [ 3.19e+03(1.45¢+03)~ | 2.71e+03(1.01e+03)
STOP3 | 2.20e+01(9.43e+00)+ | 2.17e+01(7.20e+00)+ [ 2.03e+01(6.74e+00)+ | 2.57e+01(8.81e+00)
STOP4 | 1.49¢+00(1.05e+00)- | 4.39¢-01(1.73e-01)~ | 5.78e-01(2.79¢-01)- | 3.79¢-01(1.51e-01)
STOPS | 6.97e+00(1.20e+00)- | 3.98¢+00(6.28e-01)~ | 5.27e+00(7.48e-01)- | 3.80e+00(6.08¢-01)
STOP6 | 1.48e+02(2.19¢+01)- | 8.06e+01(1.66e+01)- | 6.86e+01(1.49e+01)~ | 6.73e+01(1.28¢+01)
STOP7 | 1.20e+00(1.25¢-01)- | 1.13e+00(9.53e-02)- | 1.19e+00(1.06e-01)- | 1.05e+00(3.56e-02)
STOPS | 6.26e+00(4.04e+00)- | 3.11e+00(2.55¢+00)- | 2.91e+00(1.83e+00)- | 1.27¢+00(6.42¢-01)
STOP9 | 4.44e+03(1.67e+03)- | 1.68e+03(7.48e+02)- | 2.68e+03(1.26e+03)- | 1.37e+03(4.68e+02)

STOP10| 1.13e+02(8.75¢+01)- | 9.72e+00(8.94¢+00)~ | 4.27e+01(3.72¢+01)- | 6.04e+00(2.89e+00)

STOP11 | 7.79e+00(1.32e+00)- | 5.06e+00(7.26e-01)~ | 5.66e+00(9.76e-01)- | 5.04e+00(8.41e-01)

STOP12| 2.83e+00(7.22¢-01)- | 1.61e+00(3.29¢-01)- | 1.43e+00(2.02e-01)~ | 1.38e+00(1.30e-01)

+/-/~ 1/10/1 1/6/5 1/7/4 \
“+7 (or “-” ) indicates that the results of the corresponding variant are better (or worse) than that

of ESTOA-FCM, and “~” indicates that they obtain similar performance.
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3.4.3 Ablation Experiments

The ablation experiments are conducted on STOP1-STOP12 by comparing ESTOA-
FCM to 1ts various variants. The detailed numerical results are provided in Tab. 3.6

and Tab. 3.7.
1) Effectiveness of Training Data Construction

To validate its effectiveness in generating labelled training data, two different variants
(i.e., Variant-I and Variant-II) are designed. Variant-I uses positive samples to con-
struct the initial training data, while Variant-II considers negative samples to form the
initial training data. It can be observed from Tab. 3.6 that ESTOA-FCM significantly
outperforms Variant-I and Variant-II on most test problems (i.e., 10 and 10 out of 12
test problems). The comparison results show the effectiveness of training data con-

struction in ESTOA-FCM.

2) Effectiveness of Solution Usefulness Measurement

One variant (Variant-III) without solution usefulness measurement is used for perfor-
mance comparison. Here, one source task to provide one optimized solution for trans-
fer is randomly selected from all available source tasks. As shown in Tab. 3.6, ES-
TOA-FCM outperforms Variant-III on most test problems (i.e., 9 out of 12 test prob-
lems), which demonstrates that the use of the measurement method can effectively

measure the solution usefulness of source tasks.

3) Effectiveness of Solution Selection for Transfer

Here, two different variants (i.e., Variant-IV and Variant-V) are designed for perfor-
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mance comparison. For Variant-I1V, the source task to provide one optimized solution
for transfer 1s randomly selected from the negative class. As shown in Tab. 3.7, ES-
TOA-FCM achieves better results than Variant-IV on 10 out of 12 test problems, val-
1dating that source tasks with a positive label have higher solution usefulness than
those 1n the negative class. Besides, Variant-IV selects one optimized solution of the
source task with the minimal membership degree in the positive class. It 1s observed
that ESTOA-FCM outperforms Variant-IV on 6 out of 12 test problems while it is on-
ly beat by Variant-IV on 1 case. On other test problems, they show similar results.
The comparison results further validate the effectiveness of selecting the source task

with maximal membership degree in the positive class.

4) Effectiveness of Training Data Update

To validate its effectiveness, one variant (Variant-VI) without training data update is
used as a compared algorithm. As shown in Tab. 3.7, ESTOA-FCM achieves signifi-
cantly better results than Variant-VI on most test cases (i.e., 7 out of 12 test problems),
while it 1s outperformed by Variant-VI on 1 case. The performance improvements on

most test problems show the effectiveness of training data update in ESTOA-FCM.

3.4.4 Parameter Sensitive Analysis

1) The Effect of «
To study the impact of a in the progressional representation, the comparisons of
ESTOA-FCM using the progressional representation with different values of a from

{0, 0.2, 0.4, 0.6, 0.8, 1} are done on STOP1-STOP12. The mean objective values and
standard deviations are listed in Tab. 3.8. Compared to ESTOA-FCM with other val-
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ues of a that are smaller than 1, 1.e., a« =0, 0.4, 0.6, and 0.8, ESTOA-FCM with «
= 0.2 shows similar performance on most test problems (i.e., 10, 9, 11, and 9 cases
out of 12 test problems). However, it can be observed that the significant performance
deterioration of ESTOA-FCM with @ = 1. In particular, ESTOA-FCM with ¢ =0.2
achieves significantly better performance on 10 test problems when compared to that
with @ = 1. In addition, there is only one case on which ESTOA-FCM with a =1
is better than ESTOA-FCM with a@ = 0.2. The above comparison results show that
the population at the current generation plays a critical role in using the progressional
representation to estimate the population distribution. In summary, setting a to a

value less than 1 is suggested. Thus, a 1s set to 0.2.

2) The Effect of K

To study the impact of the number of nearest neighbours in FKNN, the comparisons
of ESTOA-FCM using FKNN with different values of K from {1, 3, 5, 7, 9} are
done on STOPI-STOP12. The mean objective values and standard deviations are
listed 1n Tab. 3.9. It can be observed that ESTOA-FCM with K = 5 performs better
than that with K = 1 on most test problems (i.e., 8 out of 12 test problems), and
achieves similar results on 3 cases. In addition, compared to ESTOA-FCM with K =
3,7,and 9, ESTOA-FCM with K =5 achieves similar results on most test cases, 1.e.,
8, 12, and 10 cases out of 12 test cases, respectively. Meanwhile, there 1S no perfor-
mance degradation on other test problems. The above comparison results show that
ESTOA-FCM with a smaller value of K, i.e., K =1, will cause the performance deg-
radation of ESTOA-FCM on some test problems. In addition, the performance of ES-
TOA-FCM on most test problems is not very sensitive to FKNN with a larger value

of K. Thus, setting K to 5 1s suggested 1n this study.
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Table 3.8: Mean objective values and standard deviations obtained by ESTOA-FCM
with different values of «a.

Problem a =0.0 a =04 a =06 a =028 a =10 a =02
STOP1 | 1.62e+02(1.11e+02)~ | 1.96e+02(1.30e+02)~ | 1.80e+02(9.64e+01)~ | 1.63e+02(1.17e+02)~ | 1.74e+02(1.17e+02)~ | 1.67e+02(9.52e+01)
STOP2 |2.81e+03(1.13e+03)~ | 3.19e+03(1.16e+03)- | 3.00e+03(1.09e+03)~ | 2.87e+03(9.64e+02)~ | 3.94e+03(2.27e+03)- | 2.71e+03(1.01e+03)
STOP3 |2.36e+01(9.15e+00)~ | 2.45¢+01(9.45¢+00)~ | 2.39e+01(8.56e+00)~ | 2.36e+01(7.91e+00)~ | 2.08e+01(8.34e+00)+ | 2.57e+01(8.81e+00)
STOP4 | 3.49e-01(1.55e-01)~ | 4.58e-01(1.97e-01)- | 6.15e-01(2.94e-01)- | 4.95¢-01(2.49e-01)- | 2.93e+00(2.72e+00)- | 3.79e-01(1.51e-01)
STOPS | 3.66e+00(5.20e-01)~ | 3.85e+00(6.21e-01)~ | 3.88e+00(5.11e-01)~ | 3.67e+00(5.43e-01)~ | 8.40e+00(9.62¢-01)- | 3.80e+00(6.08e-01)
STOPG | 8.21e+01(1.89e+01)- | 8.22e+01(2.12e+01)- | 7.14e+01(1.97e+01)~ | 8.39e+01(2.59¢+01)- | 1.78e+02(1.98e+01)- |6.73e+01(1.28e+01)
STOP7 | 1.08e+00(3.96e-02)- | 1.06e+00(6.55¢-02)~ | 1.06e+00(3.19¢-02)~ | 1.07e+00(2.26e-02)- | 1.57e+00(2.24e-01)- | 1.05e+00(3.56e-02)
STOP8 | 1.15e+00(5.28e-01)~ | 1.39e+00(7.10e-01)~ | 1.46e+00(7.38e-01)~ | 1.51e+00(8.02e-01)~ | 1.34e+01(8.54e+00)- | 1.27e+00(6.42¢-01)
STOPY | 1.27e+03(4.88e+02)~ | 1.43e+03(6.54e+02)~ | 1.40e+03(5.06e+02)~ | 1.26e+03(5.90e+02)~ | 4.32e+03(2.19e+03)- | 1.37e+03(4.68e+02)
STOP10| 7.01e+00(5.30e+00)~ | 5.64e+00(2.84e+00)~ | 5.25e+00(2.64e+00)~ | 5.64e+00(3.12e+00)~ | 8.98e+01(6.79e+01)- | 6.04e+00(2.89¢+00)
STOP11{ 5.00e+00(8.22e-01)~ | 5.20e+00(9.10e-01)~ | 5.26e+00(8.41e-01)~ | 4.94e+00(9.80e-01)~ | 9.38e+00(1.33e+00)- | 5.04e+00(8.41e-01)
STOP12| 1.35e+00(1.28e-01)~ | 1.41e+00(1.58e-01)~ | 1.41e+00(1.29¢-01)~ | 1.40e+00(1.91e-01)~ | 2.85e+00(7.06e-01)- | 1.38e+00(1.30e-01)

+/-1~ 0/2/10 0/3/9 0/1/11 0/3/9 1/10/1 \

“+” (or “-" ) indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of

ESTOA-FCM with the suggested parameter, and  “~”

indicates that they obtain similar performance.

Table 3.9: Mean objective values and standard deviations obtained by ESTOA-FCM
with different values of K.

Problem K =1 K =3 K =17 K =9 K =5

STOP1 1.38e+02(7.46e+01)~ | 1.58e+02(9.55e+01)~ | 1.75¢+02(1.30e+02)~|1.40e+02(8.76e+01)~| 1.67e+02(9.52e+01)
STOP2 3.36e+03(1.35e+03)- | 3.10e+03(1.31e+03)~ | 2.94e+03(1.19e+03)~|2.95¢+03(1.65e+03)~| 2.71e+03(1.01e+03)
STOP3 2.03e+01(7.35e+00)+ | 2.32e+01(8.05e+00)~ [2.62e+01(9.60e+00)~|2.70e+01(1.03e+01)~| 2.57e+01(8.81e+00)
STOP4 5.20e-01(2.93e-01)- | 4.55e-01(2.10e-01)- | 4.33e-01(1.87¢-01)~ | 4.58e-01(2.03e-01)- | 3.79¢-01(1.51e-01)
STOPS 4.19e+00(6.49¢-01)- | 4.15e+00(6.47¢-01)- | 3.81e+00(5.85¢-01)~ | 3.85e+00(6.29¢-01)~| 3.80e+00(6.08¢-01)
STOP6 1.08e+02(2.10e+01)- | 8.03e+01(1.73e+01)- 17.33e+01(1.67e+01)~]6.50e+01(1.52e+01)~| 6.73e+01(1.28e+01)
STOP7 1.09e+00(3.07¢-02)- | 1.07e+00(3.42¢-02)- | 1.06e+00(3.19¢-02)~ | 1.07e+00(2.76e-02)- | 1.05e+00(3.56¢-02)
STOP8 1.67e+00(1.05e+00)- | 1.23e+00(6.03e-01)~ | 1.27e+00(7.26e-01)~ | 1.40e+00(8.07e-01)~| 1.27e+00(6.42¢-01)
STOP9 1.36e+03(4.69e+02)~ | 1.48e+03(6.68e+02)~ |1.31e+03(5.01e+02)~|1.34e+03(5.45¢+02)~| 1.37e+03(4.68¢+02)
STOP10 8.62e+00(5.24e+00)- | 6.82e+00(4.78e+00)~ | 7.23e+00(4.76e+00)~|6.31e+00(4.39¢+00)~| 6.04e+00(2.89¢+00)
STOP11 6.13e+00(8.93e-01)- | 5.06e+00(7.87e-01)~ | 5.11e+00(7.76e-01)~ [ 4.99e+00(8.63e-01)~ | 5.04e+00(8.41e-01)
STOP12 1.41e+00(1.33e-01)~ | 1.42e+00(1.70e-01)~ | 1.40e+00(1.65¢e-01)~ | 1.38e+00(1.46e-01)~| 1.38e+00(1.30e-01)

+/-/~ 1/8/3 0/4/8 0/0/12 0/2/10 \
“+7 (or “-” ) indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of

ESTOA-FCM with the suggested parameter, and “~” indicates that they obtain similar performance.

3) The Effect of ¢

To study the impact of the number of transferred solutions at each transferable gener-

ation, the comparisons of ESTOA-FCM with different values of ¢ from {1, 5, 10, 20}
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are done on STOP1-STOP12. The mean objective values and standard deviations are

listed in Tab. 3.10. It 1s observed that ESTOA-FCM with ¢ =1 achieves significantly

better performance on most test problems (i.e., 11, 11, and 12 out of 12 test problems)

when compared to that with other values of ¢. The comparison results show that se-

lecting more transferred solutions from one source task will result in performance

degradation. Thus, setting ¢ to 1 1s suggested 1n this study.

Table 3.10: Mean objective values and standard deviations obtained by ESTOA-FCM

with different values of c.

Problem c=5 c =10 c =20 c =1
STOP1 5.28e¢+02(3.50e+02)- 1.09e+03(9.72e+02)- 2.98e¢+03(2.48¢+03)- 1.67e+02(9.52e+01)
STOP2 7.90e+03(3.91e+03)- 1.36e+04(1.05e+04)- 3.19e+04(3.60e+04)- 2.71e+03(1.01e+03)
STOP3 4.76e+01(2.44e+01)- 8.93e+01(3.97¢+01)- 1.59¢+02(8.42¢+01)- 2.57e+01(8.81e+00)
STOP4 4.63e-01(2.03e-01)- 5.85e-01(2.75¢e-01)- 6.87e-01(3.19¢-01)- 3.79¢-01(1.51e-01)
STOPS 4.20e+00(7.59¢-01)- 4.42e+00(7.39e-01)- 4.67e+00(7.13e-01)- 3.80e+00(6.08e-01)
STOP6 7.22e+01(2.43e+01)~ 7.93e+01(3.16e+01)~ 9.05e+01(3.52e+01)- 6.73e+01(1.28e+01)
STOP7 1.26e+00(1.59¢-01)- 1.35e+00(3.30e-01)- 1.58e+00(4.62e-01)- 1.05e+00(3.56e-02)
STOP8 5.34e+00(3.36e+00)- 8.84e+00(7.03e+00)- 1.47e+01(1.46e+01)- 1.27e+00(6.42¢-01)
STOP9 8.93e+03(5.14e+03)- 1.36e+04(8.65e¢+03)- 3.50e+04(2.12e+04)- 1.37e+03(4.68¢+02)
STOP10 9.19¢+01(1.13e+02)- 1.04e+02(1.54e+02)- 3.37e+02(4.14e+02)- 6.04e+00(2.89¢+00)
STOP11 7.26e+00(1.89¢+00)- 7.83e+00(1.74e+00)- 9.60e+00(2.59e+00)- 5.04e+00(8.41e-01)
STOP12 3.79¢+00(2.31e+00)- 3.81e+00(1.56e+00)- 8.21e+00(6.69¢+00)- 1.38e+00(1.30e-01)
+/-/~ 0/11/1 0/11/1 0/12/0 \
“+7 (or ") indicates that the results of ESTOA-FCM with the corresponding parameter are better (or worse) than that of

ESTOA-FCM with the suggested parameter, and “~”

indicates that they obtain similar performance.

3.4.5 Computational Complexity Analysis

In terms of four distance metrics (i.e., ED, WD, KLD, and MMD), their computa-

tional complexities are O(Nd), O(Nd), O(N3d?), and O(N?d), respectively. Here,

N and d are the population size and the problem’

s dimensionality, respectively.

In the proposed method, FKNN does not introduce additional time complexity dur-

ing the model training phase, as it operates directly on the training data without the
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need for an explicit parameter estimation process. Here, the computational complexi-
ty of FKNN for predicting the result of each test sample is O(Ndn), where n is the
number of the training samples. Fig. 3.5 presents the total running time of each algo-
rithm for solving STOP1 to STOP12. All compared algorithms are implemented in
MATLAB R2020b and run on a computer with AMD Ryzen 9 5900X 12-Core Pro-
cessor. It 1s observed that the running speed of ESTOA-FCM is slightly slower than
that of ESTOA-ED and ESTOA-WD, while it can significantly outperform the run-
ning speed of ESTOA-KLD. The comparative analysis thus indicates that introduc-
ing FKNN into ESTOA-FCM does not lead to a substantial increase in computation-

al overhead.
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Figure 3.5: Comparison of the total running times of all compared algorithms on
STOP1-STOP12.

3.4.6 Practical Case Study

1) Problem Definition

To further analyse the effectiveness of ESTOA-FCM in solving practical optimization
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case, the planar kinematic arm [98] 1s used in the comparative experiments. The arm
consists of d links (all the links have the same length L), which are connected by d
joints (all joints have the same angle limits a,,,4,). The objective of the arm is to op-
timize the angle of each joint & = (a4, ..., @g) to make the tip position of the arm
p? as close as possible to a predefined target position y in the plane, which can be

formulated as follows:
min (@) = |Ip* — 72, (3.26)

where @; € [—@max, Amax] for i =1,...,d. More details of the kinematics used to
calculate p? can be found in [98]. In practice, the target position in the plane usually
varies, which leads to a change in the optimal angles of the arm. It 1s expected to uti-
lize the search experience from previously-solved tasks to speed up the search for the
optimal solution of a new task. Thus, different optimization tasks can be constructed
by setting their target positions to different coordinate points in the normalized plane
[0, 1]’ for the planar kinematic arm. Here, L and Amax are setto 1/d and 0.8/d,
respectively, which make the arm has the same total length (1 meter) and reaching
abilities regardless of the dimensionality. First, the test instances with the same di-
mensionality are constructed. Specifically, 50 optimization tasks are generated by
randomly sampling their target positions in [0, 1]°. One task is used as the target task,
while the rest will serve as source tasks to form the knowledge base. Moreover, 50
test instances with d = 150 are generated in the same way. For each of these test in-
stances, its target task and all source tasks in the corresponding knowledge base have
the same dimensionality. Additionally, the test instances with different dimensionali-
ties are constructed. Here, 50 optimization tasks are generated by randomly sampling
their target positions in [0, 1]° and setting their dimensionalities to the integers in the

range of [50, 100]. Note that the solutions of source tasks would be truncated or pad-
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ded with zeros to make them have the same dimension as the target task. Each of the

50 tasks 1s regarded as the target task and its knowledge base consists of the remain-

ing tasks.

Table 3.11: Summarized results of ESTOA-FCM and all competitors.

Algorithm Comparison Test instances (+/-/~)
d =100 d =150 d € [50, 100]
EA vs ESTOA-FCM 2/46/2 0/45/5 0/46/4
ESTOA-ED vs ESTOA-FCM 0/38/12 0/39/11 6/31/13
ESTOA-WD vs ESTOA-FCM 0/36/14 1/36/13 4/31/15
ESTOA-KLD vs ESTOA-FCM 3/42/5 0/45/5 3/39/8
ESTOA-MMD vs ESTOA-FCM 0/37/13 1/36/13 6/29/15
ESTOA-AD vs ESTOA-FCM 3/44/3 1/45/4 0/46/4
ESTOA-INB vs ESTOA-FCM 2/35/13 0/31/19 5123122
“+7 (or “-” ) indicates the number of test problems on which the competitor is better (or worse)
than ESTOA-FCM, and “~” indicates the number of test problems on which they obtain similar per-

formance.

2) Comparison Results

The summarized compared results are given in Tab. 3.11. It can be observed that ES-
TOA-FCM can significantly outperform 1its competitors including EA, ESTOA-ED,
ESTOA-WD, ESTOA-KLD, ESTOA-MMD, ESTOA-AD, and ESTOA-INB on most
test 1nstances. Furthermore, the convergence curves of all compared algorithms on
three representative test instances with d = 100, d = 150, and d € [50, 100] are
provided in Fig. 3.6. It can be clearly observed that ESTOA-FCM achieves the best
convergence performance among all compared algorithms on the three practical test
instances. The above comparison results further demonstrate the effectiveness and su-
periority of ESTOA-FCM 1n solving practical planar kinematic arm problems when

compared with existing ESTO algorithms.
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Figure 3.6: Convergence curves on three representative test problems with different
dimensions.

3.5 Conclusion

This chapter has proposed a fuzzy classifier-assisted solution transfer method for ES-
TO. Different from existing solution transfer methods, the proposed method learns a
fuzzy classifier to measure the solution usefulness of source tasks, which aims to se-
lect useful solutions to accelerate the optimization of the target task. The training data

1s first constructed based on the evaluated solutions of candidate source tasks in the
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knowledge base. As the optimization process proceeds, the solutions of the source and
target tasks are collected to generate the test samples. After that, the solution useful-
ness of source tasks can be estimated based on the predicted results of the fuzzy clas-
sifier on the test samples. In this way, useful source solutions can be selected from
source tasks to accelerate the optimization process of the target task. Additionally, to
further improve the accuracy of the fuzzy classifier, the training data is dynamically
updated with the test samples obtained during the evolutionary search process. Exten-
sive experiments have been done on two benchmark suites and one practical case to
validate the effectiveness and superiority of the proposed method when compared to

existing ESTO algorithms.
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Chapter 4
Ensemble Method of Domain Ad-
aptation for Adaptively Deciding

How to Transfer in EMT

4.1 Introduction

As domain adaptation (DA) methods have shown effectiveness for enhancing
knowledge transferability from the source domain to the target domain in traditional
transfer learning methods [99], some recent studies of EMT also suggest using DA
methods to further improve knowledge transferability via a suitable transformation

between distinct tasks, where the knowledge from one task called the source task 1s
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transferred to another task called the target task. Thus, each task in EMT can be treat-
ed as either a source task or a target task, and the search space of the source/target
task 1s called the source/target domain. In MFEA-DV [100], the elite solution of the
target task 1s translated along the difference vector provided by the source task, while
the solutions of all tasks in G-MFEA [74] are mapped to a common central location
for knowledge transfer. To facilitate high ordinal correlation among different search
spaces, a linear transformation is learnt in LDA-MFEA [66] to transfer solutions
across tasks, while the denoising autoencoder (AE) method was used in [48] to obtain
the solution mapping relationship among different tasks. In addition, an affine trans-
formation was proposed in AT-MFEA [67] to avoid chaotic matching by considering
the fitness rank correlation and the topological consistency for learning the mapping
relationship, while a kernelized AE [68] was used to capture the nonlinearity between
different tasks. In addition, a two-layer feedforward neural network [69] was used to
learn the aligned solution representations through two-layer transformations, while
subspace alignment methods were suggested in [70], [71] to run the transformation in

the reduced variable subspaces of source and target tasks.

However, the above DA methods often show certain specific biases when learning the
mappings or transformations from the source task to the target task, which will be ex-
perimentally studied in the following subsection 4.2.2. Thus, it is a natural idea to use
an ensemble method to combine multiple complementary DA methods for knowledge
transfer, as inspired by the effectiveness of ensemble methods to combine multiple al-
gorithms [101], [102], [103], selection criteria [104], [105], evolutionary operators [106],
[107], resource allocation strategies [108], constraint handling techniques [109], and pa-
rameter settings [110] for solving a diverse set of optimization problems. However, to

the best of our knowledge, few studies have paid attention to the complementarity of
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DA methods in knowledge transfer or considered combining their advantages in EMT.
To fill this research gap, this chapter proposes a domain adaptation ensemble (DAE)
method for knowledge transfer, in which the efficacy and diversity of DA methods are
considered in different situations in EMT. First, a hierarchical clustering method (HCM)
[111], [112] 1s used to divide the solutions of each task into multiple clusters. Then, once
two parent solutions are selected for knowledge transfer across tasks, the efficacy and
diversity of DA methods are considered in two cases by checking the solutions within the
same cluster: 1if none of these solutions have been transferred before, the efficacy of do-
main adaptation methods is considered by using roulette wheel selection (RWS) based on
the obtained performance improvements of these methods in the evolutionary optimiza-
tion process; otherwise, the diversity of DA methods 1s emphasized by randomly select-
ing one of them for knowledge transfer. Different from existing ensemble methods, it is
a first attempt to consider both the efficacy and diversity of DA methods for
knowledge transfer in EMT, which could improve knowledge transferability across

tasks. To summarize, the main contributions of this study are summarized as follows.

1) This study proposes a DAE method to combine the advantages of multiple com-
plementary DA methods for knowledge transfer in EMT. To select one favourable

DA method for use, the efficacy and diversity of DA methods are considered in DAE.

2) This study presents the implementation of incorporating the proposed ensemble
method into an EMT framework. The experimental results validate that incorporating
into DAE method into three competitive EMT algorithms can significantly improve
their performance for solving different multitasking test problems. Moreover, a ca-
nonical EMT algorithm enhanced by DAE (called MFEA-DAE) outperforms five re-
cent EMT algorithms on most cases of the multitasking test problems used, and the

effectiveness of DAE 1is also validated on a practical case.
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4.2 Background and Motivation
4.2.1 Domain Adaption for Evolutionary Multitasking

The mapping parameters of AE [48], KAE [68] and AT [67] are expressed in closed-
form solution, which can be computed by a finite number of operators on the popula-
tions of source and target tasks without training. Thus, they can be seamlessly used in
any EMT framework as an independent module to transfer solutions across tasks.
Here, their learning mechanisms to construct solution mapping from the source task

to the target task are briefly introduced as follows:
1) Denoising AE [48]

Considering source task Ty and target task T, their solution sets are represented by
P ={pi, ....,py} and Q = {q, ..., qun}, respectively, where N is the number of
solutions and the solutions in P or Q with smaller dimension are padded with zeros
to make them have equal dimensionality. To have a high ordinal correlation in the
mapping construction, the solutions in P and Q are sorted in the same way. As
suggested 1n [48], sorting can be performed based on the objective values of solutions
for SOPs or the nondominated rankings and crowding distances of solutions for
MOPs. The mapping M for transferring solutions from T, to T, can be learnt by
minimizing the squared reconstruction loss of the corrupted input, which can be for-

mulated by

N
1
Leg(M) == " ||a; — Mpi||?, (4.1)
i=1

To obtain the matrix form of Eq. (4.1), a constant feature 1s added to the input, 1.e.,

p; = [p:; 1], q; = [q;; 1], and a bias ¢ is incorporated within M, i.e., M = [M, c].
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Then, Eq. (4.1) can be written

1

qu M) = N

tr[(Q—MP)"(Q — MP)], (4.2)

where tr[-] is the trace of a matrix. As the closed-form solution for ordinary least

squares [113], M 1s expressed by
M = (QPT)(PPT) 1. (4.3)

Given a solution pg on Ty and the learnt mapping M, its transferred solution p;

on T, can be generated as follows:

p: = Mp; . (4.4)

2) Kernelized AE (KAE) [68]

In KAE, the learning of M based on the kernel function is to capture the nonlinearity
between P and Q. Mapping P to a reproduced kernel Hilbert space { by a non-
linear mapping function ¢, the squared reconstruction loss in Eq. (4.2) is revised as

follows:

1
Lsq(M) = 5= tr[(Q — M@ (P))"(Q — M (P))] . (4.5)

According to [114], the linear mapping M in H can be represented as a linear
combination of the data points ¢@(P) in H, i.e., M = M, (P)T. Thus, we have
Mg (P) = M@ (P)T@(P). The kernel matrix is denoted as K(P,P) = ¢(P)T @ (P),
where the (i,j)-th element of K(P,P) is represented by the kernel function

K(Pi, P;). Then, Eq. (4.5) is reformulated by

72



1
Leq (M) = o tr [ (@ — McK(P, P)) (Q — McK(P, P))]. (4.6)
Thus, a closed-form solution can be deduced by
M, = QK(P,P)" (K(P,P)K(P,P)")~*. (4.7)

In terms of ps on T and the learnt mapping My, its transferred solution p; on

T, is generated as follows:

p: = Mo(ps) = Mo (P) o(ps) = MK(P,p;), (4.8)

where k(p;, ps) 1S the i-th element of K(P,py).

3) Affine Transformation (AT) [67]

Given the source task Ty and the target task Ty, the optimal mapping ¢* that trans-
fers solutions from Ty to Ty can be obtained by minimizing a rank loss function,

which is formulated as follows:
¢ = min [ IRF0] — RF®]I, (4.9)

where x 1s a solution encoded in a unified space and its transferred solution X 1is
obtained by applying the linear transformation ¢, on x, which is expressed as fol-

lows:
X=¢,(x;0) =xA+Db, (4.10)

where @ = [A,b] denotes the parameters of affine transformation. Here, R is a
rank operation for converting the function values of solutions into ranks, in which

F,(x) and F;(X) denote the function values of x on T, and X on T, respective-
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ly. As a surrogate of the objective values of the solutions in the evolutionary optimi-
zation process, the progressive representation model p(x) for a total of g genera-

tions 1s formulated by

PO =) atH(1 - P, (4.11)

where 0 < a < 1 1is the coefficient for adjusting the weights of local representation
models Py (X), ..., Pg(X). Here, p,(x) is built based on a multivariate Gaussian dis-

tribution by calculating the mean p, and covariance Y, as follows:

(4.12)

( =12N XX
i 3% N ie1 i

1 N
Xk = mz 1(X{'{ — W) (X — )"
i=

where N is the number of solutions at the k-th generation and x¥ denotes the k-th

P

solution in the current population. Therefore, the parameters fi and $ in p(x) can

be calculated by

g
i=(-a))  a’Fy
k=1

. (4.13)
S=(-@y arr5,

By introducing the affine transformation and representation model into the loss func-

tion, Eq. (4.9) can be reformulated by

0" = min [ [|5[p° (0] — R[p* (da x; ®)]||", (4.14)

where pS(-), pt(-) are the Gaussian progressive representation models of T, and

T,, respectively, which are expressed by
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x E(x, fis, ¥s)

=

X IE(XA + b, iit, Zt)

p*(x) = n/2 1/2
CORERE a15)

1
SR —
P =Gz

where E(x, i, Y) =exp(—1/2(x— @I *(x— MW7), the parameters fs, 3
from the source representation model and fi;, $I, from the target representation

model are calculated by Eq. (4.12) and Eqg. (4.13), respectively.

To solve Eqg. (4.14), the equivalent algebraic formulation is given as follows:

pS(x) =8 x pt(pa(x;0)), (4.16)
where & 1s a multiplier. By completing the square, an analytical solution can be ob-

tained as follows:

_ -1
{A = Lsle (4.17)

b = — A

where Lg and L, can be deduced from $;'=L,L,"' and S7'=L,L, !
through the Cholesky decomposition. According to Eqg. (4.10), the transferred solution

p: on T, can be derived from pg on Ty by

P: = $a(ps;0) =p;A+b. (4.18)

4.2.2 Study on the Effectiveness of DA Methods

1) Mapping Bias Comparison

DA methods can enhance the solution transferability from the source task to the target

task by learning the mapping relationship between the solutions of two distinct tasks
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that have different function landscapes and global optima. However, different DA
methods often have a specific bias in their mapping behaviours, which show different
mapping characteristics in transferring solutions from the source task to the target task in
EMT. To study the solution mapping behaviours of AE, AT and KAE, three adapted
multitasking optimization problems (Problem-I, Problem-II and Problem-III) from [96]
are considered herein, where one 1-D minimization optimization function is set as the
source task and three different 1-D minimization optimization functions are set as their
target tasks. In the experiment, their mapping parameters are learnt from the same train-
ing data, including 400 sampled solutions, in which half of these solutions are randomly
sampled in the search space of the source task with a boundary (0, 0.6) and the other half
are uniformly sampled in the search space of the target task with a boundary (0.2, 1). The
test data consist of 6 superior solutions of the source task, which are mapped from the

source task to the target task to observe the mapping behaviours of the AE, AT, and KAE.
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target landscape ™ transferred solution

Affine Transformation in Problem-I

(@
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76

source landscape @  source solution
target landscape ™ transferred solution




Autoencoder in Problem-IIT 5 Affine Transformation in Problem-III 5 Kernelized Autoencoder in Problem-IIT

source landscape @ source solution
target landscape ™ transferred solution

source landscape @ source solution
target landscape ™ transferred solution

source landscape @ source solution
target landscape ™  transferred solution

€)) (h) @
Figure 4.1: Solution mapping behaviours of autoencoder, affine transformation, and
kernelized autoencoder in three test problems.

As observed in Figs. 4.1(a), (d), and (g), AE tends to map the solutions of the source
task into the central region of the search space of the target task, which shows the
strong exploitation bias in the process of knowledge transfer. This phenomenon is at-
tributed to the chaotic mapping of the training samples from the source task to the
target tasks. Specifically, the training samples are first sorted based on their fitness
values, and then they are pairwise matched to learn the mapping relationship from the
source task to the target task. As experimentally elaborated in [67], a great number of
intersections will exist in these pairwise matchings, which will impede the detection
of linear correlation from source solutions to target solutions. Thus, considering Prob-
lem-I whose global optimum of the target task is near the central region, the trans-
ferred solutions via AE have very high quality in Fig. 4.1(a), while its effectiveness
cannot be guaranteed once the global optimum of the target task is far away from its
central region, as shown in Figs. 4.1(d) and (g). Compared to AE, AT has a stronger
exploration capability in the solution mapping behaviour, which can enable the trans-
ferred solutions to cover a relatively larger region in the search space of the target
task, as shown in Figs. 4.1(b), (¢) and (h). It 1s observed that the transferred solutions
can effectively explore the global optimum of the target task of Problem-II in Fig.

4.1(e), although they fail to maintain superiority on Problem-I in Fig. 4.1(b) and Prob-
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lem-IIT in Fig. 4.1(h). In addition, compared with AE and AT, KAE has the strongest
exploration bias in mapping solutions from the source task to the target task, which
leads the transferred solutions to cover a much wider region of the search space of the
target task, as shown in Figs. 4.1(c), (f) and (1). This bias enables the transferred solu-
tions to escape from the local optimum and provides the opportunity to search the
global optimum of the target task of Problem-III in Fig. 4.1(1) but neglects the exploi-
tation of the promising region to search for the global optima of the target tasks of
Problem-I in Fig. 4.1(c) and Problem-II in Fig. 4.1(f). The significant distinctions
among the mapping behaviours reveal their complementarity in transferring solutions

from the source task to the target task on different multitasking test problems.

2) Multitasking Performance Comparison

To experimentally confirm the advantages of various DA methods in knowledge trans-
fer, a common 1mplicit EMT framework (MFEA [27]) 1s used as the basic solver for a
fair comparison. To seamlessly incorporate these DA methods into MFEA, a general-
1zed DA-based intertask crossover [67] 1s introduced to incorporate a general DA
method into the crossover across different tasks. The pseudocode of DA-based inter-
task crossover is provided in Algorithm 4.1 with the inputs: two parent solutions p,
and p, with their skill factors 7, and t,, and the DA method (DA). In Line 1, the
mapping parameters from task 7, to 7, and from task 1, to 7, are obtained
based on the used DA. Then, p, and p, are transferred to their respective target
tasks 7, and T, by the corresponding mapping parameters in Lines 2-3, which then
undergo crossover with the transferred solutions p,’ and p,’, respectively, in Lines
4-5. In this way, negative transfer can be effectively alleviated. Note that Algorithm
4.1 1s triggered only when p, and p, have different skill factors (i.e., T, # Tp)

and a random number rand is smaller than a pre-set probability rmp.
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Algorithm 4.1 DA-Based Intertask Crossover

Input: p, and p,: two parents with skill factors 7, and t,
DA: one domain adaptation method
Output: Two offspring ¢, and ¢,

1 Get mapping parameters between tasks 7, and 7, based on DA
2 p, < Transfer p, totask 1, by the mapping from 7, to 1
3 pp’ < Transfer p, totask 7, by the mapping from 7, to 7,
4 ¢, < Perform crossover between p, and pj’
5

¢, < Perform crossover between p, and p,’

Replacing the original intertask crossover with Algorithm 1 in the MFEA, four differ-
ent DA methods (AE, KAE, AT, and the baseline) can be seamlessly embedded into
MFEA, which are realized by learning the mapping parameters using their particular
mapping construction schemes in Line 1 of Algorithm 4.1. As suggested in [28]-[30],
100 solutions are sampled on source and target tasks to learn the mappings offline in
AE and KAE, while the mapping parameters in AT are learnt based on the established
progressive representation. The baseline can be seen as a special DA method to trans-
fer solutions from the source task to the target task without any adaptation. The com-
parison experiments are conducted on two single-objective multitasking benchmark
suites [50], [11]. More details of the benchmarks and parameter settings will be given
later in subsection 4.4.1. The average convergence curves of the MFEA with the
baseline, AE, KAE, and AT over 20 independent runs on four representative prob-
lems (CIMS, CILS, F1, and F2) are shown in Fig. 4.2, in which the x-axis and y-axis

denote the generation number and the average objective value, respectively.

As observed 1n Fig. 4.2, different DA methods show their respective advantages on

different test problems. In Fig. 4.2(a), AE achieves the best performance on the CIMS
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with higher similarity between two tasks. In this case, the transferred solutions
through AE tend to be limited in a relatively small search region with good conver-
gence performance for the target task, so that they can effectively guide the evolution
of the population in the target task, which leads to a fast convergence speed for solv-
ing the CIMS. However, when solving the CILS with lower similarity between two
tasks in Fig. 4.2(b), the KAE and AT obtain the best performance on task 1 and task 2,
respectively, which indicates that their mapping biases are more effective. Similarly,
considering F1 and F2, their global optima of two tasks are sampled from a uniform
distribution, rather than located in the centre of the unified search space. As observed
in Figs. 4.2(c) and (d), KAE and AT show faster convergence speeds than AE, which
1s attributed to the mapping biases that their transferred solutions can explore a wider
range of promising search regions of the target task. In addition, it is observed that
KAE shows a faster convergence speed than AT during the early evolutionary period,
while it is outperformed by AT during the later evolutionary stage. This is because
the bias of stronger exploration in the mapping of the KAE 1s more helpful in search-
ing for the global optimum of the target task in the early stage, while it also leads to

inefficient exploration for the target task in the later stage as the population gradually

converges.
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Figure 4.2: Convergence curves of four DA methods on CIMS, CILS, F1, and F2.
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4.2.3 Motivation

Based on the above studies of DA methods, it is observed that the differences in the
mapping construction mechanisms can enable their mapping behaviours to have a
specific bias in representing the connection from the source task to the target task.
One specific bias can show the superiority in its preferred multitasking transfer sce-
nario, while it has poor performance in other scenarios. Thus, this study 1s motivated
to design an effective ensemble method to combine the strengths of multiple comple-
mentary DA methods that possess obviously distinct mapping characteristics, which
will be able to enhance solution transferability from the source task to the target task
on a variety of MTOPs. On the one hand, the efficacy of DA methods should be con-
sidered to ensure the effectiveness of knowledge transfer across tasks. On the other
hand, the diversity of DA methods should be emphasized to enable each DA method
to reach 1ts full potential for conducting knowledge transfer. Thus, our ensemble
method is developed to consider both the efficacy and diversity of various DA meth-
ods 1n the corresponding situations, which aims to improve the solution transferability

across different tasks.

4.3 Methodology

This section presents the details of the proposed ensemble method (DAE), including
two auxiliary components and domain adaptation selection (Algorithm 4.2 to Algo-
rithm 4.4). In particular, the overall flowchart of DAE in a general EMT framework 1s

llustrated in Fig. 4.3.
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Figure 4.3: Flowchart of the DAE method in one general EMT framework.

To optimize one MTOP with K tasks, the population P 1is first initialized in a unified
search space. Then, Algorithm 4.2 is run to construct the neighbourhood relationship
among solutions in P by using the clustering method to divide those solutions asso-

ciated with the same task into clusters. After that, for each pair of parent solutions



that are randomly selected from P, offspring are generated by the DA-based intertask
crossover (Algorithm 4.1) if the transfer conditions are satisfied, where the adopted
DA method is selected by running Algorithm 4.4 in advance. Otherwise, offspring are
generated by directly performing crossover or mutation on the parent solutions, which
are assigned to the associated tasks of their parents. Once the size of offspring popu-
lation O 1is satisfied, Algorithm 4.3 will be run to quantify the efficacy of each used
DA method by calculating the performance improvement of their generated offspring
in the evolutionary optimization process. Finally, half of the elite solutions are select-
ed from P and O to form the next population. The above evolutionary process will
be iteratively run until the stopping conditions are satisfied, and the final population
P 1s outputted as the approximated solution set. In the following subsections, the de-
tails of Algorithm 4.2 to Algorithm 4.4 are introduced first, and then the details of

embedding the proposed DAE into MFEA are provided in subsection 4.3.4.

Algorithm 4.2 Neighbourhood Relationship Construction (NRC)

Input: P, K, 1
Output: H
1 for k =1: K
2 P* < Collect the solutions associated to the k-th task by Eq. (4.22)
3 Calculate the number of clusters n¥ by Eq. (4.23)
// Use the clustering method (HCM) to divide P¥ into n* clusters

4 Initialize each p; in P¥ as acluster H¥ and its centroid h;

5 count = |P¥|

6 while count > nk

7 Find two closest clusters HX and H¥ by Eq. (4.19)-Eq. (4.21)
8 HE = H’UfUH’g, and update its centroid h, by Eq. (4.21)

9 count = count — 1 and renumber the remaining clusters

10 end

11 end

12 return H = {HY,..,H*} where H* = {Hf, ...,Hflk} for k ={1,..,K}
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4.3.1 Neighbourhood Relationship Construction

The neighbourhood relationship among the candidate solutions for each task is repre-
sented by dividing them into multiple clusters using the hierarchical clustering meth-
od (HCM) [111], [112]. The neighbouring solutions showing high similarities in the
genetic genes will be gathered into the same cluster in decision space. As suggested
in [115], [116], the HCM uses the linkage criterion of Ward with the Euclidean dis-
tance. To divide the subpopulation P* associated with the k-th task into n* clus-
ters, the HCM is run in decision space by treating each solution in P¥ as an initial
cluster and then iteratively combining the two most similar clusters into one cluster
until there are exactly n¥ clusters left, which are denoted by H¥,..., sz' Specifi-
cally, each solution p; = {p?,...,p%} in P¥ is first initialized as a cluster H¥ and
its centroid h;. Then, the count equal to |P¥| indicates the number of current clus-
ters. The procedures for combining two clusters into one cluster will be iteratively
repeated until n¥* clusters are left. Concretely, two nearest clusters HX and H¥
could be found by comparing the sum of squared errors for any two clusters in the
cluster set, whose indices a and b are identified as follows:

(a,b) = argmin {dist(HX,HY)}, (4.19)

a,bef1,.nk}axb

where dist(H¥, HY) is the sum of their squared errors, which can be calculated by

254" Sp
—=2—|lh, — hy|l, (4.20)

dist(HX, HY) = ——
a

where s, and s, represent the numbers of solutions in clusters HX , H¥X, and

[|h, —h,|| indicates the Euclidean distance between the centroids of two clusters

(.e., h, and hy) in decision space. Here, the centroid h; = {h},..., h?} of a clus-
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ter H¥ is computed as follows:

X oeni P’
hl =P (4.21)
|Hi|
where p/ is the j-th decision variable of solution p in H¥. Next, HX is combined

into HE, and its new centroid h, is updated by Eq. (4.21). The value of count is de-

creased by 1, and the remaining clusters are renumbered as HY,...,HX) ...

Using the HCM, the pseudocode for constructing the neighbourhood relationship of
solutions for all tasks 1s given in Algorithm 4.2 with the inputs P (the population),
K (the number of tasks), and A (the parameter for controlling the number of clus-
ters). As shown in Lines 1-2, those solutions associated with the k-th task are first

collected into the subpopulation P¥ as follows:
P* = {p;|t; = k,p; € P}, (4.22)

where the skill factor 7; of p; indicates the index of its associated task. In Line 3,

the number of clusters n* for the k-th task is given by
nk =[1-|P¥|], (4.23)

where A € [0, 1]. Then, the HCM is used to divide P* into n* clusters

HEY, ..., H';k, which is described in Lines 4-10.

After running the above procedures, the clustering results H = {H?,...,H*} on K
tasks will be returned to represent the neighbourhood relationship among the solutions
in P in Line 12, where H¥ = {H¥, ...,H’rik} includes the remaining n* clusters for

the k-thtask (k € {1, ...,K}).
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Algorithm 4.3 Efficacy Quantification of DA Methods (EQM)

Input: P, O, pool, B, CR&?
Output: CR®
for label =1to |pool|
S < Collect transferred offspring marked with label from O
Calculate the average improvement rate IR;qpe; by Eq. (4.24)- Eq. (4.25)

Normalize {IR;, ..., IR|poo1j} by Eq. (4.26)
Calculate the contribution ratios {C Rf, v, C Rﬁ)ooll} by Eq. (4.27)

return CR® = {CR%,..,CRE 1}

1
2
3
4 end
5
6
/ [pool]

4.3.2 Efficacy Quantification of DA Methods

The DA method with more efficacy can contribute more to the performance im-
provement in the evolutionary process. As inspired by [60], [71], the improvement
ratio and even the count of high-quality transferred offspring have been used for esti-
mating the efficacy of evolutionary operators. Thus, the efficacy of each DA method
for knowledge transfer can also be quantified based on the improvement ratios of
transferred offspring against their parents in the evolutionary process. To be clear, the
pseudocode is given in Algorithm 4.3 with the inputs: P (the parent population), O
(the offspring population), pool (a set including multiple DA methods), g (a pref-

erence coefficient in the calculation of the accumulated contribution ratio from one

DA method), and CR8™! = {CRf_l,...,CRﬁ,_Ololl}, where CRE!  denotes the ac-

cumulated contribution ratio from DA;upe; Over the previous g — 1 generations
(label € {1, ..., |pool|} refers to the index of DAjupe; and |pool| is the number
of DA methods in the pool). As shown in Lines 1-4, to quantify the efficacy of each
DAaper> those transferred offspring marked with the particular label in O are first

collected into an empty set S, and then the average improvement rate IR;qpe; 1S cal-
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culated as follows:

— Yses [R(S)
TRigper = = IS] ) (4.24)

where IR(s) is the fitness improvement ratio of transferred offspring s in S, which

1s calculated by

(4.25)

IR(s) = max{f(ps) —f(s) ,0} _

|f (ps)]

Here, ps is the immediate parent of s as defined in subsection 4.3.4, and they are
associated with the same task. f(ps) and |f(ps)| are the scalar fitness of pg and
the absolute value of f(ps), respectively. If s is better than pg, it will contribute to

Eq. (4.24) but has no impact on Eq. (4.24) when IR(s) = 0.
Next, as shown in Line 5, by normalizing IR;4pe;» NIRgper 1S Obtained as follows:

mlabel

Ilpooll 15 !
Zlabel=1 IRlabel

NIRygper = (4.26)

Then, in Line 6, the contribution ratio CRE,, ., for DAjqpe; is updated as follows:
Cngabel = ﬁCR;ga_blel + (1 - ﬁ)NIRlabel ’ (4-27)

where 0 < <1 is a preference coefficient that determines the proportions of the
previous contribution and current contribution in CR} ;. Thus, CR} ,,, represents
the accumulation of the contribution ratio from DA;4pe; Over the previous g gener-
ations during the evolutionary search process. The relative proportions between the
previous and current contributions can be easily adjusted by changing the value of S.

Finally, as shown in Line 7, the contribution ratios of all DA methods from the pool
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(CR8 = {C RE ...C Rﬁooou}) are returned as the quantization values of their efficacy.

Algorithm 4.4 Domain Adaptation Selection (DAS)

Input: p,, pp, pool, I, H, CRY

Output: DA;aper, 1

1 Collect the neighboring solutions of p,, pp by Eq. (4.28)-Eq. (4.29)

2 flag < Identify the scenario on efficacy or diversity by Eqg. (4.30)

3 if flag istrue // The efficacy is considered

4 DAjaper<— Select one in pool by roulette wheel selection based on their contribu-
tion ratios (CR®)

5 else // The diversity is emphasized

6 DAaper < Randomly select one in the pool

7 end

8 Set I(py) =1 and I(pp) =1

9 return DAaper, 1

4.3.3 Domain Adaptation Selection

To clarify the running of domain adaptation selection (DAYS), its pseudocode 1s given
in Algorithm 4.4 with the inputs: p, and p, (a pair of parent solutions), a pool
including m DA methods (i.e., pool = {DA,, ..., DA,,}), I (the indicator vector
showing the transferred status of each solution in the population), H (the clustering
results of the solutions on their associate tasks) and CRY (the vector consisting of
the accumulated contribution ratio of each DA method over the previous g genera-
tions). In terms of p, and p,, the neighbourhood relationship of those solutions on
their associated tasks, i.e., T, and T, can be represented by the clustering results
H® = {H;%,..,H %} and H" = {H,..,H%,} from H, where n% and n®
are the numbers of clusters on tasks 7, and t,, respectively. H'e and H™ are
obtained by the HCM beforehand, as introduced in subsection 4.3.1. As shown in
Line 1, given a solution p,, its neighbouring solutions are first collected into the set

B(pg), which is defined as follows:
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B(pq) = {szVpi €} yorpo) Pi # pa}, (4.28)

where index(p,) represents the index of the cluster to which p, belongs, which

can be identified as follows:
index(pg) = arg {pa € H].T“}, (4.29)

Similarly, the set B(pp) including the neighbouring solutions of pj, is also ob-
tained according to Eq. (4.28)-Eq. (4.29). Then, in Line 2, a Boolean flag based on

the transferred status of all solutions in B(p,) and B(pjp) can be constructed by

oo = ([, oampar e @70 s
where I(p;) = 0 if p; has never been used for knowledge transfer before and
I(p;) = 1 otherwise. Thus, two situations are identified to consider the efficacy and
diversity of various DA methods according to the Boolean value of flag. As shown
in Line 3, when the flag is true, indicating that all the neighbouring solutions of
p, and p, have not been used for knowledge transfer before, the DA method (G.e.,
DA;aper) 1 selected by the RWS based on their contribution ratios (i.e., CR9), which
aims to select one DA method with better efficacy. Here, the contribution ratio of
each DA method can be quantified by their induced performance improvements dur-
ing the evolutionary process, as introduced in subsection 4.3.2. Otherwise, as shown
in Line 6, one DA method (i.e., DA;qpe;) 1S randomly selected with the same proba-
bility from the pool, which focuses on the diversity of DA methods for knowledge
transfer. After that, to update the record that p, and p, have been used for

knowledge transfer, I(p,) and I(pp) are set to 1 in Line 8. Finally, in Line 9,
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DA;qper 18 returned as the adopted DA method in the DA-based intertask crossover,

while I indicates the updated transferred status of solutions.

Algorithm 4.5 The Framework of MFEA-DAE

Input: K tasks, N, Gpax, pool ={DA,,..,DA,}, A, B,and rmp
Output: the best solution of each task from P

1 Initialize P tohave N x K solutions

2 Assign skill factor 7; toevery p; € P by Eq. (4.31), and evaluate them

3 Set g=1, CR' ={1/|pool|,...,1/|pool|}

4  while g < Gpax

5 H < NRC (P, K, A)// Algorithm 4.2

6 Set I(p;) =0 foreach p; € P

7 Set offspring population O to be an empty set

8 while |0| < N XK

9 Randomly select two candidate parents p, and p, from P

10 if Tqg ==Tp

11 [cq, €p] < Intratask crossover between p, and p,

12 Assign offspring ¢, and ¢, with skill factor 7,

13 else if rand < rmp

14 DAaper < DAS (pg, Pp, pool, I, H, CR9) // Algorithm 4.4
/I Algorithm 4.1

15 [ca, €p] < DA-Based Intertask Crossover (pg, Pp> DAiaper)

16 Each offspring is randomly assigned skill factor 7, or t,

17 Mark ¢, and ¢, as transferred offspring from DA;gpe;

18 Mark p, or p, asimmediate parents of ¢, and c,

19 else

20 ¢, < local variation (mutation) of p,

21 Assign offspring ¢, with skill factor ,

22 ¢, < local variation (mutation) of p,

23 Assign offspring ¢;, with skill factor

24 end

25 Evaluate ¢, and ¢, for their assigned skill factors only

26 0 =0U[c,, ¢y

27 end

28 g=g+1

29 CR8 <—EQM (P, O, pool, B, CR&™1) //Algorithm 4.3

30 P < Select top N x K solutions in PUO based on scalar fitness

31 end

32 return the best solution of each task from P
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4.3.4 Embedding the DAE Method into MFEA

In this subsection, the proposed DAE method including the above three components
1s embedded into MFEA, and the resultant algorithm 1s called MFEA-DAE. To clarify
the running of MFEA-DAE, its pseudocode is provided in Algorithm 4.5 with the in-
puts K tasks, N (the size of the population) and G,,,, (the pre-set maximum
number of generations). In addition, four DA methods are included in the pool, in-
cluding AE, KAE, AT, and the baseline that directly transfers solutions of the source
task to the target task without any adaptation. The complementarities among AE,
KAE and AT are studied in the subsection 4.2.2. The parameters A and S are used
to control the number of clusters on each task and the preference coefficient for calcu-
lating the accumulated contribution ratio of each DA method in the evolutionary pro-
cess, respectively. Moreover, rmp 1is a pre-set random mating probability, which
controls the frequency of intertask crossover. As shown in Line 1, a single population
P is first formed by randomly sampling N X K individuals in a unified search space
Y € [0,1]7, where D = max {d*} and d* is the number of decision variables of
the k-th task. Then, in Line 2, the skill factor z; of each solution p; in P is ran-

domly assigned according to
7; =mod(i,K) + 1. (4.31)

After that, all solutions in P will be evaluated for their assigned skill factor only. In
Line 3, the generation counter g is set to 1, and the initial contribution ratio CR},p.;

for each DA method is set to 1/|pool|, where label = {1, ..., |pool|}.

The main evolutionary process 18 shown in Lines 4-31. At the start of each generation,
the neighbourhood relationship among all solutions is first built by Algorithm 4.2 in

Line 5. Then, for each solution p; in P, the indicator I(p;) is set to O to indicate
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that p; has not been used for knowledge transfer in Line 6, while the offspring popu-
lation O 1is set to an empty set in Line 7. In the process of generating offspring, con-
sidering each pair of parent solutions p, and p;, that are randomly selected from P,
the knowledge transfer process will be triggered in Lines 14-18 when 7, # 7, and
rand < rmp. First, Algorithm 4.4 is performed to select one DA method DA;sper
from the pool, which is used to map p, and p, to their corresponding target tasks
in the DA-based intertask crossover (Algorithm 4.1). Specifically, given one solution

P.. the transformed solution p,’ for its target task 7, is obtained as follows:

Mp,, if DAjgper = AE
ro_ MkK(PJ pa); if DAlabel = KAE
pa B paA + bl lf DAlabel = AT (432)
Pa, otherwise

where M, M;, A and b are the learnt mapping parameters of AE, KAE, and AT,
respectively, and their derivation formulas have been introduced in subsection 4.2.1.
The transformed solution p,’ for its target task 7, can be obtained in the same
manner by Eq. (4.32). Then, offspring solutions ¢, and c; can be generated by Al-
gorithm 4.1. In this case, T, or T, i1s randomly assigned to ¢, and c;,. Moreover,
to quantify the efficacy of the DA method DA;qpers €, and c, are marked as
transferred offspring from DA, and p, or pp having the same skill factor as
c, and c, is marked as its immediate parent in Lines 17-18. Otherwise, ¢, and ¢,
are generated by performing intratask crossover or mutation, which directly imitate
the skill factors of their parents in Lines 11-12 and Lines 20-23. Here, simulated bina-
ry crossover (SBX) [94] and polynomial-based mutation (PM) [95] are suggested. Af-
ter that, both ¢, and ¢, are evaluated based on their assigned skill factors only and
then added into O in Lines 25-26. The above procedures in Lines 9-26 will be run

iteratively until the number of offspring reaches N X K. Then, g is increased by 1,
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the efficacy of each DA method 1s updated by Algorithm 4.3, and N X K solutions
based on scalar fitness are selected from the combination set of P and O to form
the next population P in Lines 28-30. While g is smaller than G,,4,, the above
evolutionary process in Lines 5-30 will be run. Otherwise, the best solution of each

task from the final population P will be returned in Line 32.
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Figure 4.4: Example of running the RWS and the RS in the DAE method.

To show how our ensemble method works, a simple example is provided in Fig. 4.4,
which shows the scenario of running the RWS or random selection (RS) on 10 pairs
of solutions, where the solutions of two 1-D tasks 7, and 7, are marked with red
circles and blue squares, respectively. Note that X represents the value of the solution
in 1-D search space. The grey areas in Fig. 4.4 represent the clustering results of solu-
tions on each task. Therefore, the solutions in the same grey area are regarded as
neighbouring solutions. For the first 4 and 7-th pairs of solutions, flag in Eq. (4.30)
will be true as their neighbouring solutions have not been selected to generate trans-

ferred solutions before. Thus, the RWS 1s run based on the contribution ratios to se-
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lect one DA method from pool with relatively larger contributions in consideration
of the efficacy. However, for each of the remaining pairs of candidate solutions,
flag will be false, as there is at least one solution from their neighbouring solutions
having been used for knowledge transfer before. In this case, the RS is used to ran-
domly select one DA method from pool in consideration of the diversity. In this
way, the effectiveness of the DAE method can be ensured by considering both the
efficacy and diversity of complementary DA methods, which could further improve

the transferability of solutions between distinct tasks.

4.4 Experimental Study

4.4.1 Test Problems and Parameter Settings

1) Test Problems

In the experiments, two synthetic single-objective multitasking test suites are used.
The first benchmark suite [96] considers the task similarity and the degree of global
optima intersection, which includes nine multitasking test problems, 1.e., CIHS, CIMS,
CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS. Another multitasking benchmark
suite [74] includes eight multitasking test problems (F1-EF8). Each problem consists of
two tasks, both of which are single-objective optimization problems. F1-F8 explicitly
possess heterogeneous features, such as different decision spaces or fitness landscapes.
To be specific, the numbers of decision variables of two tasks are equal on F1-F4,
while they are different on F5-F8. Besides, the global optima of two tasks are the
same on F1, F2, F5, and F6, while they are different on the remaining test problems.
The multitasking benchmark suite can be categorized as follows: the numbers of deci-

sion variables of two tasks are the same on F1-F4, while they are different on F5-F&;
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Moreover, the global optima of two tasks are the same on F1, F2, F5, and F6, while
they are different on the rest of problems. In addition, one synthetic multiobjective
multitasking test suite [117] 1s also used to study the effectiveness of DAE by embed-
ding it into the multiobjective EMT algorithms. Finally, a practical case of the param-
eterized planar kinematic arm 1s adopted to study the effectiveness of DAE on solving
practical optimization examples. The maximum number of function evaluations is set
to 100 000 for each test problem from the synthetic multitasking test suites, while it is
60 000 for the practical optimization problems. The objective values for SOP or IGD
[118] values for MOP over 20 independent runs are collected for performance com-
parison, where the Wilcoxon rank sum test with a 0.05 significance level is used to

show the statistically significant differences in the numerical results.

First, the effectiveness of DAE method is studied by embedding it into three competi-
tive EMT algorithms (MFEA [27], MFEA-II [49], and MFEA-AKT [60]). To study
the effectiveness of DAE, MFEA-DAE as a representative algorithm 1s further com-
pared to 1ts four variants, 1.e., MFEA-baseline, MFEA-AE, MFEA-KAE, and MFEA-
AT, each of which adopts one DA method (the baseline, AE, KAE, and AT) from the
pool. Then, three variants of DAE are also designed to validate the effectiveness of
the two auxiliary components. In addition, MFEA-DAE is also compared with five
recently proposed EMT algorithms (MFEA-II [72], MFEA-AKT, MTEA-AD [56],
MTES [119], and MKTDE [120]) and a standard single-task EA (SOEA) [8] that
solves each task separately. The above experiments are conducted on two synthetic
single-objective multitasking test suites. Moreover, DAE 1s also embedded into two
multiobjective EMT algorithms (MO-MFEA [9] and MO-MFEA-II [50]) to validate
1ts effectiveness on the multiobjective multitasking test problems. Finally, one practi-

cal case study 1s also conducted.
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2) Parameter Settings

In the experiments, the DAE method 1s embedded into three single-objective evolu-
tionary multitasking (EMT) algorithms (MFEA, MFEA-II, and MFEA-AKT). In addi-
tion, SOEA, MFEA-AE, MFEA-KAE, MFEA-AT, MTEA-AD, MTES, and MKTDE
are also used as the compared algorithms. Besides, the DAE method 1s embedded into
two multiobjective EMT algorithms (MO-MFEA and MO-MFEA). The common pa-
rameter settings of the above variants of MFEA are kept consistent, while those of

MTEA-AD, MTES, and MKTDE are set the same to their original papers.

Table 4.1: Parameter settings of all compared algorithms.

Algorithm Parameter settings

SOEA N =100, p. =1.0, n. =15, p,, =1/d, n,, =15

MFEA N =100, rmp =0.3, p.=1.0, n. =15, p,,=1/d, n,, =15

MFEA-II N =100, p.,=1.0, n. =15, p,, =1/d, n,, =15

MFEA-AKT N =100, rmp =0.3, p. =1.0, n. =15, p,, =1/d, n,, =15

MFEA-AE N =100, rmp = 0.3, NS =100, p. =1.0, n, =15, p,, =1/d, n,, =15
MFEA-KAE N =100, rmp = 0.3, NS =100, p. =1.0, n, =15, p,, =1/d, n,, =15
MFEA-AT N =100, rmp=0.3, p.=1.0, n. =15, p,,=1/d, n,, =15, a =0.5
MTEA-AD N =100, a =0.1, p. = 1.0, n. =15, p,, =1/d, n,, =15

MTES n =25

MKTDE N =100, F=0.5, CR=0.6

MO-MFEA N =100, rmp =0.3, p. = 1.0, n, =15, p,, =1/d, n,, =15
MO-MFEA-IT N =100, p. =1.0, n. =15, p,, =1/d, n,, =15

DAE A1=08, B =05

Tab. 4.1 lists the parameter settings of all algorithms. In terms of MFEA and its vari-
ants (MFEA-II, MFEA-AKT, MFEA-baseline, MFEA-AE, MFEA-KAE, MFEA-AT,
MO-MFEA, MO-MFEA-II, and the proposed MFEA-DAE), the population size N
for each task is set to 100, and rmp 1is set to 0.3 except MFEA-II and MO-MFEA-II.
For a fair comparison, MFEA and its variants are configured with the same evolu-

tionary operators, i.e., simulated binary crossover (SBX) with probability p. = 1.0
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and distribution index n,. = 15, and polynomial-based mutation (PM) with probabil-
ity p,, = 1/d and distribution index n,,, = 15, where d is the number of decision
variables. Note that the numbers of sampled solutions for learning M and M, are
100 in MFEA-AE and MFEA-KAE, and the preference coefficient a 1is set to 0.5 in
MFEA-AT. In MFEA-DAE, M, M,, A, and b are learned based on the same pa-
rameter settings used in MFEA-AE, MFEA-KAE and MFEA-AT. In addition, two
additional parameters f and A in MFEA-DAE are set to 0.5 and 0.8, respectively.
For the single-task EA (SOEA) that solves each task separately, the population size
N for each task is set to 100. Here, the same evolutionary operators (i.e., SBX and
PM) are used in SOEA, in which their parameter settings are kept consistent with the
above settings. In MTEA-AD, the population size N for each task 1s set to 100 and
the knowledge transfer probability a is set to 0.1. The parameter settings of SBX
and PM are kept consistent with the above settings. In MTES, the population size n
is configured as 25 for each task and the learning rate a and standard deviation o
are adjusted based on the value of 8. Besides, in MKTDE, the total population size,

two parameters F and CR are set to 100, 0.5, and 0.6, respectively.

4.4.2 Results of Embedding DAE into EMT Algorithms

Here, the DAE method is embedded into three competitive EMT algorithms (MFEA,
MFEA-II, and MFEA-AKT), forming three enhanced algorithms, called MFEA-DAE,
MFEA-II-DAE, and MFEA-AKT-DAE. The comparison results from 20 independent
runs on the two test suites are listed in Tab. 4.2 and Tab. 4.3, where “~" , “+" ,
and “-7 indicate the numbers of similar, better, and worse results obtained by

MFEA, MFEA-II, MFEA-AKT when compared with their enhanced versions with
DAE (MFEA-DAE, MFEA-II-DAE, and MFEA-AKT-DAE), respectively.
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Table 4.2: Mean objective values and standard deviations obtained by three EMT al-
gorithms and their enhanced algorithms with DAE on the first test suite.

Problem MFEA MFEA-DAE MFEA-II MFEA-II-DAE MFEA-AKT MFEA-AKT-DAE
CIHS-T1 | 2.68e-02(8.86e-03)- | 2.20e-03(5.47e-03) | 2.94e-02(1.01e-02)- | 1.14e-03(3.42e-03) | 6.09¢-01(5.51e-02)- | 2.66e-01(7.5%-02)
CIHS-T2 | 4.52e+01(1.83e+01)- | 2.69e+00(1.04e+01) | 5.53e+01(2.49e+01)- | 3.81e+00(1.16e+01) | 2.19e+02(3.40e+01)- | 1.21e+02(2.69¢+01)
CIMS-T1| 7.22e-01(5.08¢-01)- | 2.15e-03(1.37e-03) | 9.70e-01(5.21e-01)- | 6.39e-03(2.18e-03) | 4.53e+00(4.97¢-01)- | 2.40e+00(5.29¢-01)
CIMS-T2| 3.03e+01(2.29e+01)- | 3.89e-03(4.45¢-03) | 4.86e+01(2.48e+01)- | 2.67e-02(1.66e-02) | 2.41e+02(4.78e+01)- | 1.14e+02(2.74e+01)
CILS-T1 | 1.00e+01(1.02e+01)- | 1.29e-02(7.27¢-03) | 1.54e+01(9.10e+00)- | 6.46e-02(4.01e-02) | 2.02e+01(6.14e-02)- |3.83e+00(5.61e+00)
CILS-T2 | 5.19e+02(5.52e+02)- | 7.34e-03(8.48¢-03) | 5.94e+02(4.12e+02)- | 1.38¢-01(1.49¢-01) | 4.41e+03(4.19e+02)- | 4.89e+02(1.41e+03)
PIHS-T1 | 2.09e+02(9.42e+01)- | 8.44e+01(1.76e+01) | 2.48e+02(1.22e+02)~ | 2.76e+02(1.14e+02) | 4.94e+02(7.37e+01)- | 2.38e+02(6.84e+01)
PTHS-T2 | 9.28e-02(2.35¢-02)- | 2.25¢-02(1.66e-02) | 6.32e-02(2.34e-02)~ | 6.08e-02(2.40e-02) | 5.49e+01(1.27e+01)- | 1.73e+01(3.38e+00)
PIMS-T1| 9.58e-01(4.37e-01)- | 5.42e-02(7.54¢-02) | 9.40e-01(3.72e-01)- | 6.05¢-02(4.75¢-02) | 3.37e+00(3.47e-01)- | 2.83e+00(3.76e-01)
PIMS-T2 | 1.66e+02(4.42¢+01)- | 4.96e+01(9.08e+00) | 1.55¢+02(4.42e+01)- | 5.04e+01(1.07e+01) | 8.18e+02(2.24¢+02)- | 1.45¢+02(4.32¢+01)
PILS-T1 | 9.44e-01(4.76e-01)- | 1.04¢-02(3.20e-03) | 7.80e-01(4.40e-01)- | 2.16e-02(4.99e-03) | 4.47e+00(6.14e-01)- | 7.01e-02(1.05¢-02)
PILS-T2 | 1.35e¢+00(6.12¢-01)- | 7.22e-02(2.23e-02) | 1.07e+00(3.76e-01)- | 9.18e-02(4.02e-02) | 4.28¢+00(7.51e-01)- | 3.30e-01(4.74e-02)
NIHS-T1 | 1.69e+02(4.35¢+01)- | 5.01e4+01(1.01e+01) | 1.79e+02(3.65¢+01)+ | 2.11e+02(7.29e+02) | 1.75e+03(5.39e+02)- | 2.93e+02(1.36¢+02)
NIHS-T2 | 7.30e+01(3.18e+01)- | 1.22e+00(3.47e+00) | 9.66c+01(3.40e+01)- | 1.54e+01(6.88e+01) | 2.55¢+02(3.32e+01)- | 1.37e+02(4.16e+01)
NIMS-T1| 3.63e-02(1.04e-02)- | 1.53e-02(6.75e-03) | 2.95e-02(8.20e-03)~ | 3.11e-02(1.10e-02) | 7.40e-01(9.23e-02)- | 3.93e-01(7.19¢-02)
NIMS-T2 | 7.64e+00(1.58e+00)- | 1.12e+00(4.50e-01) | 8.73e+00(2.30e+00)- [4.39e+00(1.76e+00) | 1.87e+01(2.55e+00)- | 1.13e+01(1.73e+00)
NILS-T1 | 3.36e+02(7.64e+01)- |9.12e+01(2.02e+01) | 3.37e+02(9.08e+01)~ | 3.06e+02(1.07e+02) | 5.49e+02(7.43e+01)- | 4.73e+02(5.62e+01)
NILS-T2 | 7.37e+02(2.77e+02)~ | 8.71e+02(3.12e+02) | 6.84e+02(2.59¢+02)~ | 6.30e+02(1.80e+02) | 4.54e+03(5.82e+02)~ | 4.42e+03(6.14e+02)
~I+/- 1/0/17 \ 5/1/12 \ 1/0/17 \

Table 4.3: Mean objective values and standard deviations obtained by three EMT al-
gorithms and their enhanced algorithms with DAE on the second test suite.

Problem MFEA MFEA-DAE MFEA-II MFEA-II-DAE MFEA-AKT MFEA-AKT-DAE
F1-T1 2.71e-02(1.07e-02)- | 1.89¢-02(9.32¢-03) | 3.33e-02(1.34e-02)- | 4.93¢-04(2.02¢-03) | 6.45¢-01(6.58¢-02)- | 2.45¢-01(7.23¢-02)
F1-T2 | 4.78e+01(2.25¢+01)- | 2.61e+01(2.18e+01) | 5.71e+01(2.13e+01)- | 1.69e+00(7.20e+00) | 2.35¢+02(4.07e+01)- | 1.04e+02(2.09e+01)
F2-T1 8.03e-01(4.13e-01)- | 2.80e-01(3.62¢-01) | 8.19¢-01(5.48¢-01)- | 6.45¢-03(1.86e-03) | 4.28¢+00(4.74¢-01)- | 2.60e+00(4.79¢-01)
F2-T2 | 3.61e+01(2.51e+01)- | 1.02e+01(2.04e+01) | 4.77¢+01(3.35¢+01)- | 2.67e-02(1.48e-02) | 2.66e+02(3.86e+01)- | 1.36e+02(3.92e+01)
F3-T1 | 2.93e+02(3.06e+02)- | 1.57e+02(5.66e+01) | 5.05¢+02(1.09¢+03)~ | 1.07e+03(1.81e+03) | 1.15¢+04(3.69¢+03)- | 2.71e+03(1.51e+03)
F3-T2 | 6.41e+00(2.45¢+00)- | 3.51e+00(2.20e+00) | 4.09¢+00(2.16¢+00)~ | 3.47e+00(2.05¢+00) | 2.61e+02(2.96e+01)- | 1.07e+02(1.59¢+01)
F4-T1 | 3.27¢+02(9.32¢+01)- | 1.07e+02(1.90e+01) | 2.59¢+02(1.25¢+02)~ | 2.19e+02(9.89¢+01) | 5.84¢+02(9.33e+01)- | 4.76e+02(7.39¢+01)
F4-T2 | 7.33e+02(2.79¢+02)~ | 8.03e+02(2.90e+02) | 6.37¢+02(2.28¢+02)~ | 6.31e+02(2.48e+02) | 4.41e+03(4.46e+02)~ | 4.33e+03(7.66e+02)
F5-T1 | 3.34e+02(9.54¢+01)- | 6.95e-02(5.36e-02) | 3.75¢+02(6.00e+01)- | 1.91e-01(1.20e-01) | 3.92e+02(5.77e+01)- | 2.10e+00(9.02¢-01)
F5-T2 | 3.21e-03(1.31e-03)- | 1.56e-05(3.33e-05) | 2.68e-03(1.73¢-03)- | 5.06e-06(1.78e-05) | 3.79¢-01(1.48e-01)- | 1.48e-03(1.74¢-03)
F6-T1 | 8.81e-01(3.60e-01)- | 1.23e-02(5.04e-03) | 9.21e-01(3.02¢-01)- | 1.83e-02(7.38e-03) | 3.49e+00(6.51e-01)- | 6.36e-02(1.12e-02)
F6-T2 | 4.10e-02(1.79¢-02)- | 8.35¢-03(7.18e-03) | 4.22e-02(1.95¢-02)- | 8.66e-03(1.10e-02) | 5.66e-01(9.75¢-02)- | 1.56e-01(2.78¢-02)
F7-T1 | 4.34e+02(9.63¢+02)- | 4.81e+01(1.02e-01) | 4.43¢+02(7.47¢+02)- | 1.51e+02(9.01e+01) | 4.86e+03(2.24e+03)- | 2.34e+02(8.97e+01)
F7-T2 | 6.35¢+01(2.73¢+01)- | 1.38¢-02(8.94¢-03) | 4.81¢+01(2.74¢+01)~ | 4.40e+01(3.74e+01) | 1.14e+02(2.66e+01)- | 4.13e+01(1.51e+01)
F8-T1 | 3.11e+02(1.11e+02)- | 1.16e+02(3.07e+01) | 2.56e+02(1.18e+02)~ | 2.96e+02(1.06e+02) | 5.65¢+02(8.95¢+01)- | 4.62e+02(9.05e+01)
F8-T2 | 1.07¢+02(9.33¢+01)~ | 1.54e+02(1.16e+02) | 1.23¢+02(1.27¢+02)~ | 8.79¢+01(9.16e+01) | 1.56e+03(2.60e+02)+ | 2.38¢+03(7.10e+02)
~[+/- 2/0/14 \ 7/0/9 \ 1/1/14 \

“+7 (or “-” ) indicates the original EMT algorithm is better (or worse) than the enhanced EMT algorithm with DAE, and

“ »

in bold.
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Regarding the results in Tab. 4.2 and Tab. 4.3, the performance of MFEA-DAE 1s
obviously better than that of MFEA on all MTOPs. Although they obtain similar re-
sults on three cases (NILS-T2, F4-T2 and F8-T2), they further improve the perfor-
mance on Task 1 (T1) of the three MTOPs. Similarly, MFEA-AKT-DAE also
achieves remarkable improvement over MFEA-AKT on all test problems except FS.
Although MFEA-AKT-DAE obviously improves the performance of MFEA-AKT on
F8-T1, it leads to performance degradation on F8-T2. In MFEA-II, the transfer inten-
sity (i.e., rmp ) 1s estimated online based on similarity among tasks to mitigate the
negative transfer. It is observed that the performance improvement brought by
MFEA-II-DAE is not as obvious as that in MFEA-DAE and MFEA-AKT-DAE. As
observed in Tab. 4.2 and Tab. 4.3, MFEA-II-DAE achieves significant performance
improvements on CIHS, CIMS, CILS, PIMS, PILS, F1, F2, F5, and F6, while MFEA-
I[I-DAE and MFEA-II have very similar performance on the rest of the test problems.
The reason for the lack of obvious performance improvement on these problems is
that the learnt rmp is small due to the explicit discrepancy between the global opti-
ma of two tasks, which hinders DA methods from improving the solution transferabil-
1ty between two distinct tasks. According to the above comparison results, it 1s clear
that the embedding of DAE into MFEA, MFEA-II, and MFEA-AKT can bring signif-
icant improvements for solving these multitasking test problems. Thus, it is reasona-
ble to conclude that DAE within different EMT algorithms can further improve the

solution transferability between two distinct tasks.
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Table 4.4: Mean objective values and

and its variants on the first test suite.

standard deviations obtained by MFEA-DAE

Problem MEFEA MFEA-AE MFEA-KAE MFEA-AT MFEA-DAE

CIHS-T1 | 4.89e-02(1.37e-02)- | 4.37e-04(1.46e-04)+ | 3.37e-02(1.18e-02)- | 2.16e-02(6.68e-03)- | 2.20e-03(5.47e-03)
CIHS-T2 | 9.08e+01(3.60e+01)- | 2.23e-01(7.26e-02)+ | 3.12e+02(8.64e+01)- | 1.81e+01(1.40e+01)- | 2.69e+00(1.04e+01)
CIMS-T1| 1.97e-01(8.40e-02)- | 1.78e-02(3.78e-03)- | 8.64e-01(4.70e-01)- | 2.18e-01(2.67e-01)- | 2.15e-03(1.37e-03)
CIMS-T2| 1.44e+01(6.29¢+00)- | 2.05e-01(7.76e-02)- | 3.25¢+02(7.70e+01)- | 5.15e+00(9.57e+00)- | 3.89e-03(4.45¢e-03)
CILS-T1 | 2.02e+01(1.80e-01)- | 2.12e+01(3.88e-02)- | 9.16e-01(4.38e-01)- | 8.10e+00(1.01e+01)- | 1.29e-02(7.27e-03)
CILS-T2 | 2.71e+03(6.21e+02)- | 7.81e+02(2.75¢+02)- | 8.59e+02(3.10e+02)- | 4.31e+02(5.57e+02)- | 7.34e-03(8.48e-03)
PIHS-T1 | 1.14e+02(1.69e+01)- | 2.04e+02(1.34e+02)- | 3.16e+02(9.08e+01)- | 9.98e+01(2.53e+01)~ | 8.44e+01(1.76e+01)
PIHS-T2 | 1.23e-01(3.09¢-02)- | 9.40e-02(3.12¢-02)- | 8.27e-02(2.28e-02)- | 2.45¢-02(1.33e-02)~ | 2.25¢-02(1.66e-02)
PIMS-T1| 2.39e-01(5.02e-02)- | 2.83e-01(2.40e-01)- | 6.10e-01(4.44e-01)- | 4.80e-02(2.31e-02)~ | 5.42e-02(7.54e-02)
PIMS-T2 | 1.25e+02(1.78e+01)- | 5.07e+01(1.12e+01)- | 1.55¢+02(3.90e+01)- | 9.27e+01(5.35¢+00)- | 4.96e+01(9.08e+00)
PILS-T1 | 1.37e+00(4.38e+00)- | 1.73e-02(4.18e-03)- | 9.18e-01(3.74e-01)- | 1.67e-01(2.21e-01)- | 1.04e-02(3.20e-03)
PILS-T2 | 3.39¢-01(3.12e-01)- | 1.28e-01(4.46e-02)- | 1.76e+00(6.81e-01)- | 4.71e-01(3.03e-01)- | 7.22e-02(2.23e-02)
NIHS-T1 | 1.69e+02(3.68e+01)- | 4.81e+01(1.40e-01)+ | 1.44e+02(4.82e+01)- | 1.49e+02(5.26e+01)- | 5.01e+01(1.01e+01)
NIHS-T2 | 2.21e+02(6.22e+01)- | 2.26e-01(1.08e-01)+ | 3.21e+02(9.40e+01)- | 5.00e+01(2.90e+01)- | 1.22e+00(3.47e+00)
NIMS-T1| 4.63e-02(1.17e-02)- | 3.73e-02(1.41e-02)- | 3.16e-02(7.38e-03)- | 1.72e-02(5.49e-03)~ | 1.53e-02(6.75e-03)
NIMS-T2| 3.06e+00(5.26e-01)- | 7.21e-01(1.55e-01)+ | 3.63e+00(7.28e-01)- | 3.28e+00(1.24e+00)- | 1.12e+00(4.50e-01)
NILS-T1 | 2.95e+02(7.12e+01)- | 2.30e+02(1.25e+02)- | 3.31e+02(9.50e+01)- | 1.07e+02(2.47e+01)~ | 9.12e+01(2.02e+01)
NILS-T2 | 2.88e+03(6.03e+02)- [ 7.98e+02(2.65e¢+02)~ | 2.38e+03(1.47e+03)- | 8.04e+02(2.80e+02)~ | 8.71e+02(3.12e+02)

~[+/- 0/0/18 1/5/12 0/0/18 6/0/12 \

Table 4.5: Mean objective values and
and 1its variants on the second test suite.

standard deviations obtained by MFEA-DAE

Problem MFEA MFEA-AE MFEA-KAE MFEA-AT MFEA-DAE
F1-T1 2.71e-02(1.07e-02)- | 4.66e-02(1.43e-02)- | 3.02¢-02(9.53¢-03)- | 1.65e-02(5.22e-03)~ | 1.89e-02(9.32¢-03)
F1-T2 | 4.78e+01(2.25¢+01)- | 3.18e+02(9.23e+01)- | 2.77e+02(1.17e+02)- | 1.75e+01(1.57e+01)~ | 2.61e+01(2.18e+01)
F2-T1 8.03e-01(4.13e-01)- | 8.48e-01(4.43e-01)- | 6.01e-01(4.22e-01)- | 3.14e-01(3.45¢-01)~ | 2.80e-01(3.62e-01)
F2-T2 | 3.61e+01(2.51e+01)- | 3.40e+02(8.35e+01)- | 3.38e+02(7.14e+01)- | 2.72e+00(3.85e+00)~ | 1.02e+01(2.04e+01)
F3-T1 | 2.93e+02(3.06e+02)- | 9.44e+01(6.06e+01)+ | 1.86e+02(5.14e+01)- | 4.68e+02(8.46e+02)- | 1.57e+02(5.66e+01)
F3-T2 | 6.41e+00(2.45¢+00)- | 6.31e+00(2.30e+00)- | 4.31e+00(1.76e+00)~ | 4.96e+00(2.43e+00)~ | 3.51e+00(2.20e+00)
F4-T1 | 3.27e+02(9.32e+01)- | 3.46e+02(6.43e+01)- | 3.30e+02(7.93e+01)- | 1.08e+02(2.00e+01)~ | 1.07e+02(1.90e+01)
F4-T2 | 7.33e+02(2.79¢+02)~ | 7.46e+02(3.78e+02)~ | 2.36e+03(1.29e+03)- | 6.92e+02(3.06e+02)~ | 8.03e+02(2.90e+02)
F5-T1 | 3.34e+02(9.54e+01)- | 2.06e-01(9.18e-02)- | 3.25¢+02(9.61e+01)- | 1.09¢+02(2.25¢+01)- | 6.95¢-02(5.36¢-02)
F5-T2 3.21e-03(1.31e-03)- | 2.63e-04(1.91e-04)- | 4.27¢-03(2.45¢-03)- | 3.48e-04(3.87e-04)- | 1.56e-05(3.33e-05)
F6-T1 8.81e-01(3.60e-01)- 1.75¢-02(4.32¢-03)- | 8.79¢-01(3.58¢-01)- 1.15e-01(1.68e-01)- | 1.23e-02(5.04e-03)
Fo6-T2 4.10e-02(1.79¢-02)- 1.64e-02(7.37e-03)- | 4.41e-02(2.54e-02)- | 1.75¢-02(1.11e-02)- | 8.35e-03(7.18e-03)
F7-T1 | 4.34e+02(9.63e+02)- | 4.81e+01(1.18e-01)~ | 2.86e+02(2.73e+02)- | 3.57¢+02(6.53e+02)- | 4.81e+01(1.02e-01)
F7-T2 | 6.35e+01(2.73e+01)- | 2.79e-02(1.60e-02)- | 4.83e+01(1.44e+01)- | 4.39e+01(2.45¢+01)- | 1.38e-02(8.94¢-03)
F8-T1 [ 3.11e+02(1.11e+02)- | 3.52e+02(7.15e+01)- | 3.35e+02(9.73e+01)- | 1.15e+02(1.97e+01)~ | 1.16e+02(3.07¢+01)
F8-T2 | 1.07e+02(9.33e+01)~ | 1.35e+02(1.63e+02)~ | 1.52e+02(1.51e+02)~ | 9.48e+01(9.09¢+01)~ | 1.54e+02(1.16e+02)

~[+/- 2/0/14 3/1/12 2/0/14 9/0/7 \

“+” (or “-” ) indicates the corresponding variant is better (or worse) than MFEA-DAE, and “~” indicates they obtain the

statistically similar performance.
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Table 4.6: Mean objective values and standard deviations obtained by MFEA-DAE
and 1ts variants on the first test suite.

Problem Variant-I Variant-II Variant-IIT MFEA-DAE

CIHS-T1 3.67e-03(1.20e-02)- 2.59e-04(8.24¢-04)~ 9.29¢-04(2.25¢-03)~ 2.20e-03(5.47¢-03)
CIHS-T2 2.12e+01(8.32e+01)- 4.17e-01(1.21e+00)~ 9.41e-01(2.12e+00)~ 2.69e+00(1.04e+01)
CIMS-T1 7.31e-02(2.58¢-01)- 3.58¢-03(2.41¢-03)- 3.63¢-03(2.00e-03)- 2.15e-03(1.37e-03)
CIMS-T2 1.71e+00(6.95¢+00)- 1.09e-02(1.70e-02)- 1.02¢-02(1.19¢-02)- 3.89¢-03(4.45¢-03)
CILS-T1 2.61e+00(6.20e+00)- 1.35e-02(8.37¢-03)~ 1.48¢-02(1.26¢-02)~ 1.29¢-02(7.27¢-03)
CILS-T2 5.12e+02(5.04e+02)- 8.57¢-03(9.05¢-03)~ 1.21e-02(1.94¢-02)~ 7.34e-03(8.48¢-03)
PIHS-T1 2.96e+02(1.15¢+02)- 8.97e+01(2.52e+01)~ 8.83e+01(1.65¢+01)~ 8.44e+01(1.76e+01)
PIHS-T2 7.23e-02(4.34e-02)- 3.50e-02(1.97e-02)- 2.52e-02(7.98e-03)~ 2.25e-02(1.66e-02)
PIMS-T1 3.38¢-01(3.29¢-01)- 1.14e-01(1.50e-01)- 2.49¢-01(3.00¢-01)- 5.42e-02(7.54e-02)
PIMS-T2 9.45e+01(7.00e+01)- 6.46e+01(2.41e+01)- 6.39e+01(2.07e+01)- 4.96e+01(9.08e+00)
PILS-T1 1.73¢-02(4.06¢-03)- 1.50e-02(4.91¢-03)- 1.59¢-02(5.08¢-03)- 1.04¢-02(3.20e-03)
PILS-T2 1.24e-01(3.25¢-02)- 9.72e-02(3.07e-02)- 1.16e-01(3.23e-02)- 7.22e-02(2.23e-02)
NIHS-T1 4.81e+01(8.85¢-02)+ 6.50e+01(3.86e+01)~ 6.14e+01(3.06e+01)~ 5.01e+01(1.01e+01)
NIHS-T2 1.63e-01(6.22e-02)+ 1.23e+01(2.04e+01)- 1.37e+01(2.27e+01)- 1.22e+00(3.47e+00)
NIMS-T1 3.38e-02(1.58e-02)- 2.40e-02(7.03¢-03)- 2.00e-02(7.23¢-03)~ 1.53¢-02(6.75¢-03)
NIMS-T2 2.59e+00(1.37e+00)- 1.44e+00(6.04¢-01)- 1.51e+00(4.92¢-01)- 1.12e+00(4.50e-01)
NILS-T1 3.60e+02(3.05e+01)- 1.04e+02(2.47e+01)~ 1.12e+02(2.39¢+01)- 9.12e+01(2.02e+01)
NILS-T2 1.62e+03(1.27¢+03)- 7.47e+02(2.91e+02)~ 9.15e+02(3.49¢+02)~ 8.71e+02(3.12¢+02)

~[+/- 0/2/16 8/0/10 9/0/9 \

Table 4.7: Mean objective values and standard deviations obtained by MFEA-DAE
and 1its variants on the second test suite.

Problem Variant-] Variant-II Variant-I1I MFEA-DAE
F1-T1 2.86e-02(1.49¢-02)~ 2.41e-02(7.34e-03)~ 2.26e-02(9.05e-03)~ 2.10e-02(6.42¢-03)
F1-T2 1.14e+02(1.40e+02)- 2.77e+01(1.91e+01)~ 3.34e+01(2.42e+01)~ 2.54e+01(1.92e+01)
F2-T1 8.26e-01(4.62e-01)- 2.37e-01(3.04e-01)~ 2.92e-01(3.18e-01)~ 2.12e-01(2.69¢-01)
F2-T2 2.45e+02(1.61e+02)- 4.25e+00(6.10e+00)~ 4.87e+00(5.58e+00)~ 8.44e+00(2.33e+01)
F3-T1 1.87e+02(8.73e+01)- 1.79e+02(4.48e+01)- 2.65e+02(5.31e+02)- 1.34e+02(5.06e+01)
F3-T2 4.05e+00(2.19¢+00)- 4.09e+00(2.24e+00)- 3.98e+00(1.69¢+00)- 2.94e+00(1.41e+00)
F4-T1 2.56e+02(1.34e+02)- 1.20e+02(2.52e+01)- 1.14e+02(2.38e+01)~ 1.06e+02(2.35¢+01)
F4-T2 9.28e+02(5.47e+02)~ 8.99¢+02(3.19¢+02)~ 7.86e+02(3.02e+02)~ 1.00e+03(4.98e+02)
F5-T1 2.22e-01(1.15e-01)- 2.21e-01(1.12e-01)- 1.51e-01(1.06e-01)~ 1.05e-01(7.80e-02)
F5-T2 3.46e-04(3.43¢e-04)- 3.08e-05(4.82¢-05)~ 1.37e-05(1.59¢-05)~ 2.97e-05(4.57¢-05)
F6-T1 1.83e-02(5.20e-03)- 1.84e-02(6.84e-03)- 1.65e-02(6.32¢-03)- 1.22e-02(3.86e-03)
F6-T2 1.67e-02(1.04e-02)- 1.38e-02(7.97¢-03)- 1.33e-02(8.07e-03)- 6.35e-03(4.37e-03)
F7-T1 4.81e+01(1.54e-01)~ 4.81e+01(1.53e-01)~ 4.81e+01(1.20e-01)~ 4.81e+01(1.24e-01)
F7-T2 2.63e-02(2.04e-02)- 2.64e-02(3.59¢-02)~ 2.04e-02(1.21e-02)~ 1.65e-02(1.28e-02)
F8-T1 3.01e+02(1.15¢+02)- 1.16e+02(2.39e+01)~ 1.17e+02(2.25e+01)~ 1.12e+02(2.65¢+01)
F8-T2 1.22e+02(1.14e+02)~ 9.87e+01(1.04e+02)~ 7.90e+01(9.50e+01)~ 1.60e+02(1.42e+02)
~[+/- 4/0/12 10/0/6 12/0/4 \

“+7 (or “-” ) indicates the corresponding variant is better (or worse) than MFEA-DAE, and “~” indicates they obtain the

statistically similar performance.
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4.4.3 Further Study on the Effectiveness of DAE

1) Comparison with Single DA Method

As four domain adaptation (DA) methods are included in the pool of DAE, MFEA-
DAE is selected as one representative algorithm to compare with its four variants, 1.e.,
MFEA-baseline, MFEA-AE, MFEA-KAE, and MFEA-AT, each of which uses only
one DA method. As mentioned in the parameter settings, the common parameters are
kept consistent. The effectiveness of DAE is validated, as it performs better or simi-
larly on most test problems when compared with each of its variants. The results in
Tab. 4.4 show the significant superiority of MFEA-DAE in most cases. On both tasks
of CIHS and NIHS, MFEA-DAE is outperformed by MFEA-AE because AE has
more effective transferability between two tasks with high similarity. Considering the
performance on the second test suite, the experimental results in Tab. 4.5 also show
the superiority of MFEA-DAE over other competitors. However, MFEA-DAE falls
slightly behind MFEA-AT on the two tasks of F1 and F8. The degraded performance
on these problems could be attributed to the ineffectiveness of other DA methods in
the pool, leading to the waste of some computational resources for knowledge trans-

fer across tasks.

2) Effectiveness of Two Auxiliary Components

To validate the effectiveness of the two auxiliary components in MFEA-DAE, abla-
tion experiments are conducted on two test suites by comparing DAE to its various
variants. Here, three different variants of DAE (Variant-I, Variant-II, and Variant-IIT)
are designed for performance comparison. The first variant (Variant-I) uses the RWS

based on the quantified efficacy of DA methods to select one DA method in DAE,
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while each DA method has an equal probability of being selected in the second vari-
ant (Variant-1I). The detailed numerical results can be found in Tab. 4.6 and Tab. 4.7.
Considering the first multitasking benchmark suite, MFEA-DAE outperforms Vari-
ant-I on 16 out of 18 cases, while it 1s outperformed by Variant-I on 2 cases. In addi-
tion, compared with Variant-II, MFEA-DAE obtains better and similar results on 10
and 8 cases, respectively. The superiority of MFEA-DAE can also be observed on an-
other multitasking benchmark suite according to the comparison results. The compari-
sons not only validate the effectiveness of the RWS based on the quantified efficacy
of DA methods but also show the necessity of combining random selection and the
RWS to select suitable DA methods for knowledge transfer. Moreover, to further
study and analyse the reasonability of combining two selection methods, another vari-
ant (Variant-1IT) is designed. Both random selection and the RWS are adopted in Var-
1ant-1II and MFEA-DAE, while the strategies for their use are different. Specifically,
Variant-III swaps the usage scenarios of two selection methods in MFEA-DAE. As
summarized in Tab. 4.6 and Tab. 4.7, the comparison results of the two multitasking
test suites show that the overall performance of MFEA-DAE is better than that of
Variant-1II, as MFEA-DAE always shows either better or similar results in each case

when compared with its competitor.

3) Further Discussion and Analysis

Moreover, to intuitively observe the dynamic selection behaviour in MFEA-DAE, the
count of using each DA method is recorded at each generation. For clarity, their
changing utilization ratios are calculated by normalizing the counts of using AE, KAE,
AT, and the baseline method. As the evolutionary process progresses, their changing

utilization ratios show that MFEA-DAE can effectively assign suitable DA methods
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to candidate solutions. The utilization ratio curves are plotted for some representative
test problems in Figs. 4.5 (a)-(c). As observed in Fig. 4.5 (a), at the earlier optimiza-
tion stage of CIMS, the utilization ratio of AE is larger than that of the other methods,
which means that AE plays a significant role in effective knowledge transfer. As the
evolutionary process continues, AT and the baseline method begin to make more per-
formance improvements than AE and KAE. In terms of PIHS in Fig. 4.5 (b), the utili-
zation ratios of AE and KAE are larger when compared with the other two DA meth-
ods at the beginning of the evolutionary process, while AT plays a key role in effec-
tive knowledge transfer, as its utilization ratio is much higher than that of the others
during the later evolutionary process. In addition, as shown in Fig. 4.5 (¢), the utiliza-
tion ratios of AT and the baseline method are relatively larger than those of AE and
KAE on F1. The above observations show that MFEA-DAE can adaptively adjust the
usage ratio of each DA method to realize effective knowledge transfer and mitigate
negative transfer from ineffective DA methods to some extent during the evolutionary

process.

CIMS PIHS

o
)

Normalized ratio

0.2

0 100 200 300 400 500 0 100 200 300 400 500
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Figure 4.5: Normalized utilization ratios of different methods during the evolutionary
search process on CIMS, PIHS, and F1.

4.4.4 Comparison with State-of-the-art EMT Algorithms

Here, five state-of-the-art EMT algorithms are further used for performance compari-
son, namely MFEA-II, MFEA-AKT, MTEA-AD, MTES, and MKTDE. Moreover, a
single-task EA (SOEA), which solves each task separately, is used as the baseline to
investigate the effectiveness of MFEA-DAE in solving the adopted MTOPs. The
summarized results on the two test suites are collected in Tab. 4.8. Compared with
SOEA, MFEA-DAE achieves better performance on most test problems, which
demonstrates the superiority of multitasking optimization. However, all EMT algo-
rithms are outperformed by SOEA on task 2 of F5 and F6 (F5-T2 and F6-T2), which
shows that the occurrence of negative transfer causes their performance degradation
in solving MTOPs. In MFEA-II, rmpis dynamically adjusted to alleviate negative
transfer, while the adaptive configuration of multiple crossovers for knowledge trans-
fer 1s designed in MFEA-AKT. Although both of them could improve multitasking

performance to some extent, the obvious superiority of MFEA-DAE on almost all test
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problems reveals that the proposed DAE can further enhance solution transferability
across different tasks. In addition, MFEA-DAE performs better than MTEA-AD on
most cases, while it 1s outperformed on only 5 cases. This demonstrates the superiori-
ty of DAE for improving multitasking optimization performance when compared with
MTEA-AD. In addition, when compared with MFEA-DAE, MTES fails 1n all cases,
even though it uses an approximated gradient to provide the search direction and dy-
namically adjusts the transfer intensity of information between tasks. The reason may
be attributed to the problem of becoming trapped in a local optimum that gradient-
based methods often suffer from, especially in problems with multimodality. Instead
of transferring solutions, meta-knowledge that can evolve task-specific knowledge is
shared across different tasks in MKTDE, which aims to optimize multiple tasks effec-
tively. As shown in Tab. 4.8, MFEA-DAE achieves better performance in most cases,
while MKTDE only obtains better results on five test problems (CIHS, CIMS, NIMS,
F1, and F2). In fact, the effectiveness of MKTDE may be partly attributed to the

stronger exploitation ability of differential evolution.

Table 4.8: Summarized results of MFEA-DAE and its competitors.

Algorithm Comparison Test suite 1(~/+/-) Test suite 2(~/+/-)
SOEA vs MFEA-DAE 1/0/17 1/2/13
MFEA-II vs MFEA-DAE 1/0/17 3/0/13
MFEA-AKT vs MFEA-DAE 0/0/18 0/0/16
MTEA-AD vs MFEA-DAE 0/1/17 0/4/12
MTES vs MFEA-DAE 0/0/18 0/0/18
MKTDE vs MFEA-DAE 3/6/9 2/4/10

“47 0“7 Jand  “~”  indicate that the corresponding competitor is better than, worse than and

similar to MFEA-DAE.
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Figure 4.6: Average ranks of the test of Friedman for all compared algorithms.

Moreover, based on the test of Friedman [121], the average performance ranks of all
compared algorithms on two test suites are plotted in Fig. 4.6, where blue and red
bars represent the ranks on the first and second test suites, respectively. The ranks of
MFEA-DAE on the two benchmark suites are smallest (1.94 and 2.53), which shows
that the overall performance achieved by MFEA-DAE is the best on both test suites.
According to the comparison results, it can be concluded that MFEA-DAE is very
competitive when compared to these state-of-the art EMT algorithms on tackling the

MTOPs adopted.

4.4.5 Parameter Sensitivity Analysis

The proposed DAE requires two additional parameters A (determining the number of
clusters in clustering candidate solutions) and g (determining the proportions of pre-
vious contribution and current contribution in quantifying the efficacy of DA meth-
ods). To study the impact of A and g, the further comparative experiments are con-
ducted by setting A and B to different values. The summarized comparison results

are collected in Tab. 4.9.
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Table 4.9: Summarized results of MFEA-DAE with different parameter values.

Different parameter setting Test suite 1(~/+/-) Test suite 2(~/+/-)
Gen 200 500 100 500
A=03vs 2 =08 12/0/6 15/0/3 9/0/7 15/0/1
A=05vs A =08 13/0/5 18/0/0 9/0/7 15/0/1
A=07vs 2 =038 14/2/2 17/0/1 15/0/1 15/0/1
A=09vs 2 =038 15/0/3 16/0/2 16/0/0 15/0/1
A =095vs 2 =0.8 11/0/7 14/0/4 13/2/1 14/0/2
A=10vs 2 =08 3/4/11 1/3/14 71217 4/0/12
B =00vs B =0.5 \ 16/0/2 \ 16/0/0
B =03vs B =05 \ 16/0/2 \ 15/1/0
B =07vs B =0.5 \ 15/1/2 \ 16/0/0
B =10vs B =0.5 \ 10/0/8 \ 10/0/6
rmp =0.1vs rmp =0.3 \ 4/0/14 \ 8/177
rmp =0.5vs rmp =0.3 \ 15/172 \ 11/1/4
rmp =0.7vs rmp =0.3 \ 6/6/6 \ 5/3/8
rmp =09 vs rmp =0.3 \ 7/3/8 \ 4/2/10
“+7 0“7 ,and “~” indicate that the corresponding variant is better than, worse than and similar

to MFEA-DAE.

To study the impact of A, MFEA-DAE with different A values from {0.3, 0.5, 0.7,
0.8, 0.9, 0.95, 1.0} are compared. As shown in Tab. 4.9, compared with a smaller A
(e.g., 0.3 and 0.5), MFEA-DAE with 4 = 0.8 speeds up the convergence on some
test problems without any degradation on other test problems. This 1s because a too
small number of clusters will give more opportunity for the candidate solutions to
randomly select one DA method with equal probability. This lack of the effective
competition among the DA methods will cause inefficient knowledge transfer in high
probability. Compared to the variant with a larger A (e.g., 0.9, 0.95), just the slight
performance improvement can be observed on some test problems. This is because
the efficacy is achieved by using the roulette wheel selection (RWS) strategy to select
one DA method with higher quantified efficacy while the diversity i1s encouraged by
using random selection (RS) strategy in DAE. As other DA methods with lower quan-

tified efficacy also have the opportunity to be selected by using RWS strategy, the
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effect of using RS to encourage the diversity of the DA methods on performance 1m-
provement 1S weaken to some extent, which leads to the situation that the overall per-
formance improvement is not very significant in comparison to a larger A. In addition,
as the population converges to the global or local optimum as the evolutionary search
process proceeds, the effect of cluster information with an optimal A 1s further
weakened during the later evolutionary stage. Although the cluster information is lit-
tle in this case that A is close to 1 (e.g., 0.9, 0.95), the gradually accumulative effect
of the cluster information could achieve the similar performance to the optimal A at
the end of the evolutionary search process. Furthermore, MFEA-DAE with 4 = 0.8
achieves the obvious performance improvement on most of test problems when com-
pared with A = 1.0, which indicates that the lack of diversity of the DA methods will
miss the opportunity to exploit potential strengths of other DA methods. In summary,
a too large or a too small A value will cause the degradation of performance to some
extent. Thus, setting A around 0.8 is suggested in MFEA-DAE, which strikes the

balance between efficacy and diversity of the DA methods.

In addition, to study the impact of B, MFEA-DAE with different g values from {0,
0.3, 0.5, 0.7, 1.0} are compared. As observed from Tab. 4.9, MFEA-DAE with B =
0.5 achieves better performance on & cases and 6 cases of two test suites when com-
pared with B = 1.0 while its performance is similar to other values of g (e.g., 0, 0.3,
and 0.7) on most of test problems. The comparison results show that the current con-
tribution of DA methods on multitasking performance plays a critical role in the effi-
cacy quantification of the DA methods. Thus, B 1s suggested to be set to a value less

than 1 in MFEA-DAE. In this study, B is set to 0.5.

Moreover, to study the impact of the intensity of knowledge transfer on DAE, MFEA -
DAE with different values of rmp from {0.1, 0.3, 0.5, 0.7, 0.9} are compared.
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Keeping the same parameter setting introduced before, the summarized results are
collected in Tab. 4.9, which show that MFEA-DAE with rmp = 0.3 achieves better
performance on most cases when compared to MFEA-DAE with rmp = 0.1. The
comparison with rmp = 0.3 indicates that a too small rmp could not provide suf-
ficient genetic material exchange, which will degrade optimization performance. In
addition, when rmp is increased from 0.3 to 0.5, they show similar performance on
most cases. However, when rmp is further increased to 0.7 or 0.9, performance deg-
radation 1S obvious on most cases, which indicates that the high intensity of
knowledge transfer among tasks will waste some computational resources, especially

at the later evolutionary stages. Thus, rmp is recommended as 0.3 in MFEA-DAE.

4.4.6 Computational Complexity Analysis

As the calculation of the mapping parameters from AE, KAE and AT (M, M, A,
and b) can be expressed as a closed-form solution, their additional computational
costs are from the matrix operations. Using the big O notation, the required time
complexity of AE, KAE and AT can be expressed by O0(d?N), O(N3), and O(d?N)
where N 1s the population size and d 1s the number of decision variables. The
DAE method includes three components (e.g., domain adaptation selection and two
auxiliary components), where the computational complexity in one generation is
mainly dominated by the two auxiliary components. Concretely, DAE needs a time
complexity of O(dN?) to construct the neighborhood relation for the population and
a time complexity of O(N) to quantify the efficacy of various DA methods, respec-

tively. Thus, the overall worst time complexity of DAE is O(dN?).

Moreover, the running times of all the compared EMT algorithms from 20 runs on
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the first synthetic single-objective multitasking test suite are collected to compare
their running efficiency. Here, various DA methods (AE, KAE and AT) and DAE
are incorporated into MFEA for comparison, respectively. In addition, the ratios of
running time of MFEA-DAE and other compared algorithms are also calculated to
show the relative running speed of DAE against its competitors more intuitively. As
observed from Tab. 4.10, the running speed of MFEA-DAE is slightly slower than
MFEA, MFEA-AE, MFEA-KAE and MFEA-AT (the time ratios are 1.41, 1.37, 1.33
and 1.18, respectively), which show that DAE indeed does not bring much computa-
tional time cost when compared with each single domain adaptation method. In addi-
tion, MFEA-DAE achieves faster running speed when compared with MFEA-II
while it 1s beaten by MFEA-AKT. In terms of the three algorithms implemented in
their own frameworks (MTEA-AD, MTES and MKTDE), MFEA-DAE performs
worse than them in the running speed. Actually, the difference of the basic EMT
framework and the specific implementation could cause a large discrepancy of the
running time. Based on the above theoretical complexity analyses and actual running
time comparisons, it can be concluded that the extra computational burden of the use
of DAE is affordable, and its actual running speed is very competitive when com-

pared with its competitors based on the same EMT framework.

Table 4.10: Running times of all compared EMT algorithm.

Algorithm Running time (s) Time ratio MFEA-DAE/competitor)
MFEA 141.31 1.41
MFEA-AE 144.76 1.37
MFEA-KAE 148.92 1.33
MFEA-AT 167.53 1.18
MFEA-II 629.26 0.32
MFEA-AKT 131.87 1.51
MTEA-AD 10.32 24.19
MTES 83.18 3.25
MKTDE 66.84 4.11
MFEA-DAE 196.11 \
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4.4.7 Practical Case Study

To further analyse the effectiveness of DAE in real-world applications, the parameter-
1zed planar kinematic arm problem [98] 1s used in the comparative experiments. The
planar kinematic arm consists of d links with the same length L, which are connected
by d joints with the same angle limit a,yq,. A task T; is defined by the parameters
L and dmqax, Which aims to optimize the angle of each joint a® = (d, ..., afi) to
make the Euclidean distance between tip position p? and a predefined target y as
close as possible. Using these notations, an MTOP with K tasks can be formulated

as follows:
rr;{iirlﬁ(ai: [L, &max]) = 1IPE —vIl, i ={1,..,K}, (4.33)

where the fitness function f;(-) of each task is distinguished by a particular parame-
ter combination [L, @jnax], Which determines the kinematics calculation of the arm.
Note that the real-value encoding is used to represent the solutions. More details of

the kinematics used to calculate p¢ can be found in [98].

Table 4.11: Parameter settings of the practical optimization examples.

Parameterized Planar

Arm Problem Task Group 1: T; to Ty Task Group 2: T, to Ty,
Task T, | T | s | Tw | Ts | T | 5 | Ts | To | Tuo | Taa | Ti
L (m) 0.10 {0.10 [ 0.10 | 0.10 | 0.10 [ 0.10 | 0.08 | 0.08 | 0.07 [ 0.07 | 0.06 | 0.06

Amax (tad) 0.80 [ 0.7510.70 1 0.65 | 0.60 [ 0.55 ] 0.40 | 0.35 [ 0.40 | 0.35 ] 0.40 | 0.35
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Figure 4.7: Averaged convergence curves of MFEA, MFEA-II, MFEA-DAE, MFEA-
II-DAE and SOEA.

As suggested in [119], d is set to 10 and y is set to (0.5, 0.5) in this experiment.

The MTOP with many tasks can be constructed by configuring each task with a par-

ticular combination [L, &4, ]- Here, using the same parameter settings in [56], two

task groups are adopted as practical optimization examples, each of which includes

six different tasks. The details of the parameter settings of the 12 tasks from the two
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task groups can be seen in Tab. 4.11. In particular, one task group consists of tasks
T, to Te, while another task group includes tasks T, to T;,. Each task group is
used as one MTOP to be solved by each algorithm in one run. In the experiment, the
enhanced EMT algorithms with DAE (MFEA-DAE and MFEA-II-DAE) are com-
pared with MFEA and MFEA-II on solving T; to Tg and T, to T;,, respectively.
In addition, SOEA 1s used as the baseline to solve each task separately, which aims to
investigate the effectiveness of EMT algorithms. The comparison results are collected
from 10 independent runs on each task group. Figs. 4.7(a) and (b) show the averaged
convergence curves of all algorithms on T; to Tg and T, to Ty,. It is observed
that all EMT algorithms achieve better average convergence performance than SOEA,
and the enhanced EMT algorithms with DAE further improve the average conver-
gence performance of MFEA and MFEA-ITon T; to Tg and T, to T,,. The above
comparison results validate the effectiveness of DAE on the parameterized planar

kinematic arm problem.

4.5 Conclusion

This chapter has proposed an effective DAE method to combine the strengths of vari-
ous complementary DA methods by considering their efficacy and diversity, which
can effectively assign suitable DA methods to candidate solutions. First, the neigh-
bourhood relationship i1s constructed for all candidate solutions by using the hierar-
chical clustering method. Then, if none of the neighbours of two selected parent solu-
tions has been selected for knowledge transfer, the efficacy of DA methods should be

considered first by running roulette wheel selection based on their contributions to the
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performance improvement in knowledge transfer. Otherwise, one DA method 1s ran-
domly selected for knowledge transfer to emphasize the diversity of DA methods,
which can potentially combine their advantages. In this way, both the efficacy and
diversity of complementary DA methods have been considered to enhance the solu-
tion transferability across distinct tasks. The experimental results not only validated
the effectiveness of the DAE method for knowledge transfer in EMT but also demon-
strated the very competitive performance of MFEA-DAE when compared with other

state-of-the-art EMT algorithms.
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Chapter 5
Fuzzy Logic-Based Method for
Adaptively Deciding When and

How to Transfer in EMT

5.1 Introduction

On the one hand, in most existing EMT algorithms, the extent of knowledge transfer
18 predefined during the multitasking search process [36], [51]. For example, in
MFEA and most of its variants [27], [60], [72], the prespecified random mating prob-
ability (rmp) was employed to determine the extent of knowledge transfer by allow-
ing the solutions between different tasks to undergo crossover in a fixed probability.

In addition, in [46], [48], [68], the extent of knowledge transfer was determined by
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predefining the number of transferred solutions and the generation interval of
knowledge transfer. In fact, the performance of EMT is intricately linked to the de-
gree of underlying similarity among tasks, as evidenced in prior studies [49], [50].
Generally, the appropriate extent of knowledge transfer tends to vary when the tasks
exhibit different degrees of similarity. For example, the appropriate transfer extent for
highly similar tasks may be excessive in such scenarios that tasks are dissimilar or
unrelated. In this case, the predefined extent of knowledge transfer will lead to inef-
fective knowledge exchange among unrelated tasks. To mitigate the risk of negative
transfer, it is common practice to preset the transfer parameters to some small values.
However, such parameter settings may potentially undermine the multitasking per-
formance when solving highly similar tasks due to repeated searches to find their

global optima [49], [50].

On the other hand, several advanced methods of knowledge transfer have been pro-
posed to enhance knowledge transferability across tasks in solving various multitask-
ing optimization problems (MTOPs) [36], [51]. For example, considering the tasks
with different optima and dimensionalities, two strategies were proposed in G-MFEA
[74], which facilitate effective knowledge transfer by translating and shuffling deci-
sion variables. In addition, to efficiently solve multiple tasks possessing unique prop-
erties, the denoising autoencoder (AE) [48] was proposed to build the mapping across
tasks, which allows knowledge transfer to take place across multiple evolution mech-
anisms. However, in terms of some complex tasks, their solutions may be nonlinearly
correlated. Hence, the kernelized AE (KAE) [68] was proposed to capture the nonlin-
earity between the solutions of two tasks by constructing the mapping in a reproduc-
ing kernel Hilbert space (RKHS). Moreover, for the tasks sharing different fitness

landscapes, an affine transformation (AT) [67] was proposed to learn the mapping
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between two tasks by building the probability representation models on their popula-
tions, which avoids the mismatch of solutions. However, these methods are specifical-
ly designed for the characteristics of their solved problems, severely limiting the ef-

fectiveness of knowledge transfer to their respective preferred problems [126].

Without any prior knowledge about the tasks, adaptive knowledge transfer (AKT) can
further enhance the effectiveness and robustness of EMT by dynamically adapting the
transfer extent and selecting promising transfer methods. Recently, several ATK ap-
proaches have been proposed for EMT by building complex mathematical models
[49], [50], or formulating deterministic judgments [60], [126]. However, the available
information or data are usually imprecise and fuzzy due to the uncertainty and ran-
domness brought by the evolutionary mechanism [88]-[92]. Therefore, existing de-
terministic approaches may make unwise or wrong decisions, which will potentially
lead to the performance slowdowns of EMT. Due to its superior uncertainty and
noise-handling ability from the usage of human-like linguistic variables, fuzzy logic
(FL) has attracted much attention [127], [128], [129], [130]. Furthermore, it has been
employed to assist EAs to solve various complex problems with nonlinear constraints
[131], time-varying optima [132], and many local optima [133], [134]. Inspired by the
above studies, this chapter proposes a new MFEA with FL-based AKT for more ef-
fective and robust EMT. Different existing deterministic methods, it is the first at-
tempt to employ FL to implement AKT for performing implicit EMT. The main con-

tributions of this study are summarized as follows.

1) To effectively adapt the transfer extent along the multitasking search process, an
FL-based parameter adaption mechanism is developed to dynamically adjust the value

of the transfer parameter, thereby alleviating the risk of negative transfer.
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2) To adaptively select the most promising method for knowledge transfer, an FL-
based selection mechanism is developed to select the best transfer method from mul-

tiple candidates, thereby enhancing knowledge transferability across tasks.

3) By incorporating the above two FL-based mechanisms into an EMT framework,
this study presents the implementation of a new MFEA (called MFEA-FLLM). The
experimental results validate the effectiveness of the proposed method and show the

competitive performance of MFEA-FLLM when compared with other EMT algorithms.

5.2 Background and Motivation

5.2.1 Mamdani Fuzzy Inference System

e Fuzzy e
Fuzzification > Inferencing > Defuzzification
A A A

Knowledge Base

Database Rule Base

.......................................

Figure 5.1: Framework of a Mamdani FIS with multiple inputs and one output.

The fuzzy inference system (FIS) is a type of artificial intelligence system, which uti-
lizes fuzzy logic and fuzzy set theory to address the issue of imprecise information
[135], [136]. Due to simplicity and interpretability, Mamdani FISs have been widely
utilized 1n various practical applications [137], [138]. The framework of a Mamdani

FIS with multiple inputs and one output 1s provided in Fig. 5.1. In general, the
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knowledge base consists of a database and a rule base. The linguistic terms and their
corresponding membership functions (MFs) are called the database, while the set of a
series of IF-THEN rules 1s known as the rule base. For Mamdani FISs [139], the in-
put-output relations are defined in the form of IF-THEN rules based on linguistic

terms, which can be expressed as follows:

Ri. {IF v, is L5 AND v, is L, AND ... v, is L, 5.1

"(THEN yis L} ,,
where R! is the i-th IF-THEN rule, {L},L5,...,L}} are the antecedent linguistic
terms corresponding to n input variables {v4,v,,...,v,}, and L"n +1 18 the conse-
quent linguistic term related to the output variable y. These linguistic IF-THEN rules
allow human experts within that domain to incorporate their knowledge and experi-
ence into the system in an effective manner [140]. In addition to the knowledge base,

a Mamdani FIS involves three general steps, which are as follows:

Step 1 (Fuzzification): Converting crisp inputs into fuzzy sets through their corre-

sponding MFs.

Step 2 (Fuzzy Inferencing): Mapping fuzzy inputs to fuzzy outputs by computing the
firing strengths of activated rules. By aggregating the firing strengths of all the rules,

the fuzzy output set can be obtained by

ko) = max { min (), tineny 00}, (52)

i=1,..|R| (j=1

where |R| is the number of rules, ;j(v;) and Uim+1)(y) are the MFs associated

with L and L% ;.

Step 3 (Defuzzification): Converting the fuzzy output set into the crisp output. The
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center of area (COA) [140] 1s a commonly used defuzzification method, which com-

putes the crisp output in the form of algebraic integration as follows:

Syu()dy

Tady (>3)

3_}:

5.2.2 Motivation

In EMT, determining the appropriate transfer extent and the promising transfer meth-
od for conducting knowledge transfer across tasks are very challenging in handling
MTOPs. Without any prior knowledge about the characteristics of tasks and their re-
lationships, predefining the fixed transfer extent and adopting one certain transfer
method cannot ensure the effectiveness and robustness of EMT on a wide range of
test problems. On the one hand, dynamically adapting the extent of knowledge trans-
fer can effectively alleviate the threat of negative transfer. On the other hand, collabo-
ratively employing multiple methods of knowledge transfer with distinct complemen-
tarities can further enhance the knowledge transferability across tasks. While several
AKT approaches have been proposed for EMT, they rarely tackle the above two chal-
lenges at the same time. More importantly, the uncertainty and randomness of the
evolutionary mechanism will lead to the prevalence of imprecise information or data
in the multitasking search process, which brings difficulties in developing reliable
AKT approaches. Particularly, due to some random values in the reproduction opera-
tor, the offspring generated by the same parent population may have different objec-
tive values. Thus, the data or information by quantifying the performance improve-
ment of offspring against their parents 1s usually imprecise and fuzzy. As a successful
application of FL, the Mamdani FIS can incorporate expert knowledge into the mod-

el-building process through fuzzy sets and IF-THEN rules, enhancing the interpreta-
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bility and flexibility of the models in practical applications. Moreover, due to its supe-
rior ability to handle uncertainty and noise, employing the Mamdani FIS can facilitate
reliable and stable decision-making in complex and dynamic environments. Therefore,
instead of building exact mathematical models or customizing deterministic state-

ments, this study 1s motivated to employ FL to tackle the two challenges in EMT.

5.3 Methodology

5.3.1 Fuzzy Logic-Based Transfer Parameter Adaption

The transfer parameter determines the extent of conducting knowledge transfer among
tasks during the evolutionary search process. In MFEA, the extent of knowledge ex-
change among tasks 1s controlled by a prespecified scalar parameter labelled as the
random mating probability (rmp). It has a big impact on the effectiveness of the mul-
titasking search process. However, choosing its appropriate value depends on the

problem and may be difficult.

In this study, one Mamdani FIS with multiple inputs and one output 1s designed to
estimate the change of the transfer parameter (i.e., Armp). For each generation (i.e.,
g), the FIS takes the current value of the transfer parameter (i.e., rmp) and the quan-
tified improvement value of knowledge transfer (i.e., I8) in terms of optimization
performance as its two inputs. Note that the value of rmp is in the range of [0, 1].
The performance improvement along the evolutionary search process can be quanti-
fied by computing the improvement ratio of the objective values of offspring against
their parents. Specifically, given the offspring and its parent population at the genera-
tion g, the normalized performance improvement brought by employing rmp to

trigger knowledge transfer can be quantified by
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1
_ @erq AF (%)

Al 1 ,
O] Yxeo AF (X)

(5.4)

where Q and O are two solution sets. Specifically, Q consists of offspring gener-
ated by triggering knowledge transfer at the current generation, while O includes all
offspring at the current generation. Here, AF (X) represents the improvement ratio of

the objective values of offspring against its immediate parent, which is computed by

2r0 = ) max LR S ) 65)

i=1

where p is the immediate parent of x and f;(-) is the i-th objective value. To bet-
ter represent the performance improvement brought by knowledge transfer, the pref-
erence coefficient a 1s introduced to determine the proportions of the performance
improvement at the previous and current generations. Thus, the quantified perfor-
mance improvement can be computed by

_(1/2, ifg=1

"= {alg‘l + (1 —a)Al, ifg=>2’ (5.6)

where a 1s a value in [0, 1] and 1t can be adjusted based on the specific requirement.

Now, the two inputs, i.e., rmp and I8, are in [0, 1]. Next, the fuzzy partitions of the
antecedent space and consequence space are defined. Specifically, for rmp and I8,
there are five fuzzy sets, which denote very low (VL), low (L), medium (M), high (H),
and very high (VH), respectively. Here, L, M, and H are defined by three membership
functions of class triangular with their associated parameter tuples being (0.1, 0.3,

0.5), (0.3, 0.5, 0.7), and (0.5, 0.7, 0.9), respectively. Besides, VL and VH are defined
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by the membership function of class L with the parameter tuple (0.0, 0.0, 0.1, 0.3)
and the membership function of class y with the parameter tuple (0.7, 0.9, 1.0, 1.0),
respectively. For Armp, there are seven fuzzy sets, which denote negative big (NB),
negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive
medium (PM), and positive big (PB), respectively. Here, the seven fuzzy sets are de-
fined by seven singleton membership functions with the parameter being -0.3, -0.2, -
0.1, 0, 0.1, 0.2, and 0.3, respectively. Fig. 5.2 shows the graphical illustration of the

fuzzy sets defined for each input and output.

u(rmp or 19)

o =
o o

©c ©
N b

Degree of membership
o
D

l l l
0.2 0.4 0.6 0.8 1.0
rmp or 1°

o

(a) Membership functions of rmp and I8

u(armp)

NB NM NS ZE PS PM PB

Degree of membership
o O O O Bk

o N A o © O
I

-0.3 -0.2 -01 0 0.1 0.2 0.3
Armp

(b) Membership functions of Armp

Figure 5.2: Graphical illustration of membership functions applied in the fuzzy infer-
ence system for transfer parameter adaption.

125



Table 5.1: Set of rules
transfer parameter.

of fuzzy inference system for estimating the change in the

Performance Improvement (I8)
Armp
VL L M H VH
VL ZE PS PM PB PB*(#1)
Transfer L NS ZE PS PM PB
Parameter M NM NS ZE PS PM
(rmp) H NB NM NS ZE PS
VH NB*#2) NB NM NS ZE

In the FIS, the inputs are first converted from real values into fuzzy values, and then
the fuzzy inference process 1s performed based on a set of fuzzy rules as shown in
Tab. 5.1. To illustrate the fuzzy inference process, two fuzzy rules marked with the

star symbol are given as follows:

Rule #1: IF rmp is VL and I8 is VH, THEN Armp is PB.

Rule #2: IF rmp i1s VH and I8 is VL, THEN Armp is NB.

In Rule #1, the extent of knowledge transfer is very low, while its resultant perfor-
mance improvement is very high. In such a case, conducting knowledge transfer
across tasks can bring significant performance improvement during the multitasking
search process. Thus, the extent of knowledge transfer should be significantly in-
creased, which allows more frequent positive knowledge exchange among tasks in the
subsequent evolutionary search process. On the contrary, in Rule #2, the extent of
knowledge transfer is very high, while its resultant performance improvement is very
low. In such a situation, conducting knowledge transfer contributes little to the per-
formance improvement in optimizing multiple tasks. Thus, the extent of knowledge

transfer should be significantly decreased to reduce negative transfer.
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After the fuzzy inference process, the obtained results are a series of fuzzy values.
Finally, by applying the defuzzification operator in Eq. (5.3), the crisp value of
Armp 1s computed as the final output of the FIS. Thus, the extent of knowledge
transfer can be dynamically adjusted by modifying the value of Armp according to
the following formula:

0.3, ifg=1

rmp + Armp, ifg>2" (.7)

rmp={

5.3.2 Fuzzy Logic-Based Transfer Method Selection

In terms of a pool consisting of k complementary transfer methods, which are de-
noted by pool = {TM,,TM,, ..., TM;}, they have different biases in conducting
knowledge transfer among tasks. One specific transfer method can show superiority
in its preferred transfer scenario, while it has poor performance in other scenarios.
The lack of prior knowledge of back-box optimization problems causes difficulty in
determining the appropriate method for knowledge transfer. Thus, adaptively select-
ing promising methods for knowledge transfer i1s very critical to improving the opti-
mization performance and efficacy in handling multiple tasks. The current applicabil-
1ty of one specific method for knowledge transfer should not only depend on its effi-
cacy quantified by its actual performance during the multitasking search process but

also should have sensitivity to the number of triggering it in the current population.

In this study, another Mamdani FIS with multiple inputs and one output 1s designed to
estimate the applicability of each transfer method for the current transfer scenario. In
this way, the most promising method can be selected from multiple candidates by

comparing the estimated values of their applicability. Specifically, the normalized ef-
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ficacy and the usage ratio of one transfer method are considered as two inputs of the
FIS. The normalized efficacy of one transfer method can be reflected by quantifying
how much 1t contributes to accelerating the evolutionary search process. Considering

one transfer method, i.e., 7'M, the ratio of its efficacy can be computed by

1
] Yxes; AF (X)

1 J
1S,U...USk]| 2xes, U..Us, AF (X)

AE; = (5.8)

where S; denotes the solution set. Here, S; consists of all offspring solutions that
are generated by performing 7M; for knowledge transfer at the current generation.
Here, AF(x) represents the improvement ratio of the objective values of the off-
spring in S; against the immediate parent, which is computed by Eq. (5.8). The nor-
malized efficacy of performing TM; for knowledge transfer can be defined by

E® =

L

{1/k, ifg=1 59)

aEE '+ (1—a)AE;, ifg=2’

where «a 1s a preference coefficient to determine the proportions of the previous effi-
cacy and current efficacy of M in estimating EF. Note that AE; is set to 1/k
forall i ={1, -+, k} if AF(x) i1s O for all x € S;U...USy, where k is the num-
ber of all candidates in the pool. In addition, the usage ratio of triggering TM; for
knowledge transfer is computed as follows:

0, if XX n; =0

, (5.10)

- , otherwise

i=1 T4

where n; denotes the number of triggering TM; for knowledge transfer at the cur-

rent generation.
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Figure 5.3: Graphical 1illustration of membership functions applied in the fuzzy infer-
ence system for transfer method selection.

Now, the two inputs, 1.e., E lg and U, are in [0, 1]. Then, the fuzzy partitions for the
antecedent space and consequence space are defined. In terms of Elg, there are three
fuzzy sets, which denote low (L), medium (M), and high (H). Here, L, M, and H are
defined by three membership functions, 1.e., class L with the parameter tuple (0.0,
0.0, 0.1, 0.5), class triangular with the parameter tuple (0.2, 0.5, 0.8), and class y

with the parameter tuple (0.5, 0.9, 1.0, 1.0), respectively. For Uj;, there are two fuzzy
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sets, which denote low (L) and high (H) by employing two membership functions, 1.e.,
class L with the parameter tuple (0.0, 0.0, 0.1, 0.9) and class y with the parameter
tuple (0.1, 0.9, 1.0, 1.0), respectively. The output is the current applicability of the
method (i.e., A;). Here, there are three fuzzy sets, which denote low (L), medium (M),
and high (H). Their membership functions are defined to be the same as that of E lg.
Fig. 5.3 shows the graphical illustration of the fuzzy sets defined for each input and

output.

Table 5.2: Set of rules of fuzzy inference system for estimating the applicability of
each transfer method.

Rule No. Normalized Efficacy Usage Ratio Applicability
(EP) U;p) (4;)
1 Low Low Medium
2 Low High Low
3 Medium - Medium
4 High Low High
> High High Medium

Taking the fuzzy values of Elfg and U; as the inputs, the fuzzy inference process 1s
performed based on a series of fuzzy rules as shown in Tab. 5.2. As displayed in Rule
1, when both the normalized efficacy of M and its usage ratio are low, the diver-
sity should be encouraged when selecting the method for knowledge transfer. Thus,
the applicability of 7M; is medium, which allows TM; to be competitive as the
promising method. In terms of Rules 2, 3, and 4, the applicability of T7M; complete-
ly depends on 1ts normalized efficacy regardless of its usage ratio. In these situations,
the efficacy of the method for knowledge transfer should be a priority, thereby en-

couraging the use of the method with better efficacy for conducting knowledge trans-
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fer. However, the high efficacy of M, may be attributed to its frequent use rather
than its true applicability for knowledge transfer. To alleviate this issue, Rule 5 is

given by setting the applicability to medium rather than high.

With the above fuzzy rules, a series of fuzzy values are obtained by performing the
fuzzy inference process. By applying the defuzzification operator by Eq. (5.3), the
crisp variable of A; is computed as the final output of the FIS. After obtaining the
values of the applicability of all candidate methods, the most promising method of
knowledge transfer (i.e., TMingex) from {TMy, ..., TM,} is identified by the fol-

lowing formula:

re{l,..., k} ifg=1
index = { arg max{4;}, ifg=>2, (5.11)
i€{1,..k}
where r 1is an integer randomly selected from {1, -+, k} when g 1s 1.

5.3.3 Main Framework

The details of MFEA-FLLM 1is presented in this subsection. To clarify the running of
MFEA-FLM, its pseudocode is provided in Algorithm 5.1 with the inputs: an MTOP
with K tasks, N (the size of the population), G,,4, (the preset maximum number
of generations), a (the preference coefficient), and pool = {TM;,TM,, ..., TM}.}
(the set of multiple candidate methods of knowledge transfer). As studied in [31], AE
[25], KAE [29], and AT [30] have strong complementarities in transferring the solu-
tions across tasks. Thus, they are selected as candidate methods for knowledge trans-
fer. Besides, one baseline method that directly transfers the solutions among tasks

without adaptation is also included in the pool.
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Algorithm 5.1 The Main Framework of MFEA-FLM
Input: an MTOP with K tasks, N, Gpax» @, pool = {TMy,TM,,...,TM}
Output: P

1 Initialize P to have N x K solutions

2 Assign skill factor 7; toevery p; in P by Eqg. (5.12) and evaluate them

3 Setg=1, El.g= 1/k forall i ={1,2, -, k},and I* =1/2

4  while g < Gpax

5 Set 0=0, S;=0,and n; =0forall i ={1,2, -, k}

6 rmp <— Adapt the transfer parameter by Eq. (5.7) // subsection 5.3.1

7 while |O| < N XK

8 Randomly select two parents [p,, ppl With 7, # 15, from P

9 if rand < rmp

10 TMingex < Select one from pool by Eq. (5.11) // subsection 5.3.2
11 pp,’ < Transfer p, totask 7, via TM,gex

12 ¢, < Inter-task crossover + mutation (py, Pp’)

13 p, < Transfer p, totask t, via TMjngex

14 ¢, < Inter-task crossover + mutation (pp, Ps’)

15 Each offspring is randomly assigned skill factor 7, or t,
16 Sindex = SindexUlCas €l Mingex = Ningex +1

17 Compute {U;, -+, Ui} by Eq. (5.10)

18 else

19 Randomly select one parent p’ with skill factor 7z, from P
20 ¢, < Intra-task crossover + mutation (py, p’)

21 Randomly select one parent p’* with skill factor 7, from P
22 ¢, < Intra-task crossover + mutation (p,, p'’)

23 Assign ¢, skill factor 7,4, and ¢, skill factor 1, respectively
24 end

25 Mark p, or p, asimmediate parents of ¢, and ¢,

26 Evaluate [c,, c¢;,] for their assigned skill factors only

27 0 = 0Ulc,, ¢

28 end

29 Q = Sl U ‘e USk

30 Compute /8% and {EE*", ..., EZ*'} by Eq. (5.6) and Eq. (5.9), respectively
31 P < Environmental Selection on PUO

32 g=g +1

33 end

34 return P

As shown in Line 1, a single population P is first formed by randomly sampling
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N X K solutions in the unified search space Y € [0, 1]Pmax, where D4, is the
maximal dimensionality among K tasks. Then, in Line 2, the skill factor z; of each

solution p; in P is randomly assigned according to
7; = mod(i,K) + 1. (5.12)

After that, all solutions in P will be evaluated for their assigned skill factor only. In
Line 3, the generation counter g 1s set to 1, Elfg 1s initialized to 1/k for all i = {I,

2, -, k},and I is initialized to 1/2.

The main evolutionary process 1S shown in Lines 4-33. A solution set O 1s used to
collect all generated offspring at the current generation. Each M is configured
with one set and a counter, 1.e., S; and n;. Here, S; collects all offspring whose
parents are generated by performing TM;. Additionally, n; records the number of
triggering T M; for knowledge transfer. Before the start of each generation, O and
S, are set to empty, while n; is set to O for all i = {1, -+, k} in Line 5. Then, in
Line 6, the transfer parameter rmp is adapted by Eq. (5.7), which is elaborated in
detail in subsection 5.3.1. After that, N X K offspring are generated by randomly
selecting parents from P. Specifically, for each pair of parents [p,, pp] with 7, #
T, the component of knowledge transfer will be triggered when rand < rmp
(rand is a random number in [0, 1]), as shown in Lines 10-17. First, the most prom-
1sing method TMi,qe, 1S selected from the pool by Eq. (5.11), which is elaborat-
ed in detail in subsection 5.3.2. Next, T M, 4ex 1S €mployed to transfer p, and pg,
to two different tasks (i.e., 7, and t,), respectively. The corresponding transferred
solutions of p, and p, are denoted by p,’ and p,’. Suppose TM;, TIM,,
TM5, and TM, represent AE, KAE, AT, and Baseline, respectively. Then, p,’ is

derived from p, via TMjpgqex as follows:
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Mp,, ifindex =1

, ) MK(P,p,), ifindex =2
Pa = p.,A + Db, if index = 3
Pa if index = 4

(5.13)

where M, M, and [A, b] are the mappings of AE, KAE, and AT, respectively.
Here, K(-,-) is the matrix where the (i,j)-th element is computed by the polynomial
kernel function [29]. The details of expressing these mappings in the closed-form so-
lutions can be found in [25], [29], and [30], respectively. Similarly, p;’ is derived
from p, via TMi,qex 1IN the same manner by Eq. (5.13). Then, two offspring ¢,
and ¢, are generated by applying inter-task crossover and mutation on two pairs of
parents, i.e., [pg, Pp’] and [pp, P4'), respectively. In this case, the skill factor 7,
or 1, is randomly assigned to ¢, and c,. Moreover, ¢, and c; are added into
Sindex while nindex is increased by 1 due to the triggering of T Mj,qex- The usage
ratios of all methods {U;, -+, U} are computed by Eq. (5.10). Otherwise, as shown
in Lines 19-23, ¢, and ¢, are generated by performing intra-task crossover and
mutation on two pairs of parents, i.e., [py, pP’] and [p,, p’’]. Here, p’ and p'’ are
randomly selected from P, which have the same skill factor with p, and p,, re-
spectively. Thus, ¢, and ¢, can directly imitate the skill factors of their parents. In
this study, simulated binary crossover (SBX) [94] and polynomial-based mutation
(PM) [95] are suggested. After generating ¢, and c,, p, Or p, having the same
skill factor as each offspring is marked as its immediate parent in Line 25, which
aims to quantify the improvement ratio of the objective values of offspring against its
parent. Next, both ¢, and ¢, are evaluated based on their assigned skill factors on-
ly and then added into O in Lines 26-27. The above procedures in Lines 7-28 will be

run iteratively until the number of offspring in O reaches N X K.

After that, in Line 29, the solution sets, i.e., S;, ---, and S;, are combined to form
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the solution set Q, which is used to quantify the performance improvement brought
by performing knowledge transfer. Then, 181 and {E1g+1, e E,f“} are computed
by Eq. (5.6) and Eq. (5.9), respectively. Next, in Lines 31-32, the next population P
1s formed by selecting top N X K solutions from the combination set of P and O
based on scalar fitness and g is increased by 1. The above evolutionary process in
Lines 4-33 will be run when g is no more than G,,,,. Otherwise, the final popula-

tion P 1s returned in Line 34.

5.4 Experimental Study

5.4.1 Experimental Settings

1) Test Problems

First, two multitasking test suites are employed as the test problems for performance
comparison in the experiments. The first test suite includes nine MTOPs (.e., CIHS,
CIMS, CILS, PIHS, PIMS, PILS, NIHS, NIMS, and NILS) [96]. In addition, the sec-
ond test suite includes eight MTOPs (i.e., F1-F8), which explicitly possess heteroge-
neous features on the problem dimensionality and the location of the global optima
[74], [126]. The dimensions of the search spaces of two tasks are equal, while they
are unequal on the rest of the problems. Additionally, two global optima are the same
on F1, F2, F5, and F6, while they are different on the rest of the problems. The details
of FI-F8 can be found in [126]. Furthermore, the effectiveness of the proposed meth-
od in handling some more complex problems is also studied. Therefore, one test suite
including ten complex MTOPs from CEC 2021 Competition on Evolutionary Multi-

task Optimization' and another test suite consisting of nine multiobjective MTOPs
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[117] are considered as the test problems for effectiveness validation. More details of

the two test suites are provided in subsection 5.4.6.

Table 5.3: Parameter settings of all compared algorithms.

Algorithm Parameter settings

MFEA N =100, rmp =0.3

MFEA-II N =100
MFEA-AKT N =100, rmp =0.3

MFEA-AE N =100, rmp =03, S =100
MFEA-KAE N =100, rmp =03, S =100
MFEA-AT N =100, rmp =03, a =0.5
MFEA-DAE N =100, rmp =03, 1=0.8, p=0.5

MKTDE N =100, F=0.5, CR=0.6
LCB-EMT N =100, TG = 50, N, = 50% A4
MFEA-FLM N =100, a =0.1

2) Parameter Settings

The common parameters are set to the same for all compared algorithms. Specifically,
the population size (N) for each task 1s set to 100. The maximum number of function
evaluations is set to 40 000 for each test problem. Additionally, SBX and PM are em-
ployed as the evolutionary operator for generating the offspring during the evolution-
ary search process for all compared algorithms except MKTDE [120]. In SBX, two
parameters, i.e., p. and n. are set to 1.0 and 15, respectively. In terms of PM, two

parameters, 1.e., p,, and n,, are setto 1/d (d is the number of decision variables)

and 15, respectively.

1http://www.bdsc.site/websites/MTOfcompetitionjOQ1/MTOfCompetitiorLCIECjO
21.html
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The private parameters of these algorithms are listed in Tab. 5.3. In MFEA and its
variants (i.e., MFEA-AKT, MFEA-AE, MFEA-KAE, MFEA-AT, and MFEA-DAE
[126]), rmp 1is 0.3. For MFEA-AE and MFEA-KAE, the numbers of sampled solu-
tions (S) for learning M and M, offline are set to 100. In MFEA-AT, the prefer-
ence coefficient a 1s set to 0.5 for learning the mapping parameters [A, b]. In
MFEA-DAE, two parameters, i.e., f and A, are 0.5 and 0.8, respectively. MKTDE
adopts DE, where two parameters (i.e., F and CR in DE) is set to 0.5 and 0.6, re-
spectively. For LCB-EMT [76], the transfer interval generation (T'G) is 50 while the
maximal number of transferred solutions (N) is 50 X Ag (A is the similar factor at
the current generation g). In terms of MFEA-FLM, the preference coefficient a is
set to 0.1, while the mapping parameters (i.e., M, My, and [A, b]) are learned based
on the same parameter settings used in MFEA-AE, MFEA-KAE, and MFEA-AT. The
numerical results of independently running each algorithm 30 times on each test prob-
lem are collected for comparison. The Wilcoxon rank sum test with a 0.05 signifi-

cance level 1s used to show the statistically significant differences.

5.4.2 Comparison with Recent EMT Algorithms

To demonstrate the competitive performance of MFEA-FLLM relative to five state-of-
the-art EMT algorithms, including MFEA-II, MFEA-AKT, MFEA-DAE, MTKDE,
and LCB-EMT. The detailed numerical results of all compared algorithms on two test

suites are given in Tab. 5.4 and Tab. 5.5, respectively.
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Table 5.4: Mean objective values and standard deviations obtained by MFEA-FLM
and compared algorithms on nine MTOPs.

Problem MFEA-II MFEA-AKT MFEA-DAE MTKDE LCB-EMT MFEA-FLM
CIHS-T1| 3.68e-01(6.19¢-02)- | 1.04e+00(2.48e-02)- | 1.12e-02(2.84e-02)- | 9.34e-01(9.54e-02)- | 3.04e-01(4.55e-02)- | 9.79¢-03(2.35¢-02)
CIHS-T2 | 2.09e+02(2.93e+01)- | 3.55e+02(3.42e+01)- | 1.29e+01(2.19¢+01)- | 4.11e+02(2.43e+01)- | 2.54e+02(9.41e+01)- | 1.04e+01(2.32¢+01)
CIMS-T1| 2.41e+00(2.24e-01)- | 5.71e+00(4.75¢-01)- | 6.88e-02(1.35¢-02)- | 4.25¢+00(4.85¢-01)- | 2.09¢+00(4.88¢-01)- | 3.59e-02(1.73e-02)
CIMS-T2| 2.30e+02(4.10e+01)- | 3.91e+02(3.25¢+01)- | 2.13e+00(6.59¢-01)- | 4.10e+02(2.91e+01)- | 2.72e+02(1.18¢+02)- | 7.16e-01(7.04e-01)
CILS-T1 | 2.03e+01(2.61e+00)- | 2.06e+01(4.81¢-02)- | 5.73e-01(1.24e-01)- | 2.12e+01(4.66e-02)- | 3.47e+00(5.62¢+00)- | 4.08e-01(1.36e-01)
CILS-T2 | 8.84e+02(2.13e+02)- | 8.48¢+03(5.31e+02)- | 3.55e+00(1.01e+00)- | 1.38e+04(4.17e+02)- | 4.35e+02(3.62¢+02)- |2.25e+00(1.15¢+00)
PIHS-T1 | 4.10e+02(1.69¢+01)- | 6.72e+02(1.09¢+02)- | 2.98e+02(6.15¢+01)+ | 5.57e+02(5.60e+01)- | 1.99e+02(7.80e+01)+ | 3.75¢+02(2.67¢+01)
PIHS-T2 | 3.08¢+00(6.39¢-01)- | 6.31e+02(1.64e+02)-| 2.24e+00(7.31e-01)- |3.90e+02(1.82¢+02)- | 3.95¢+00(1.34e+00)- | 1.36e+00(5.41e-01)
PIMS-T1| 2.42e+00(2.36e-01)- | 4.66e+00(3.39¢-01)- | 5.50e-01(1.63e-01)~ | 3.92¢+00(7.50e-01)- | 2.53e+00(1.33e-01)- | 6.88e-01(3.34e-01)
PIMS-T2] 6.62e+02(1.85¢+02)- | 6.50e+03(2.09¢+03)- | 6.39¢+01(1.77¢+01)- | 5.56e+03(6.92¢+03)- | 5.53¢+02(4.50e+02)- | 5.34e+01(1.44e+01)
PILS-T1 | 2.49¢+00(2.75e-01)- | 7.37e+00(1.08e+00)- | 3.12e-02(7.10e-03)~ | 1.77e+01(2.44e+00)- | 2.59¢+00(6.25¢-01)- | 3.43e-02(9.85¢-03)
PILS-T2 | 2.55e+00(7.66e-01)- | 7.33e+00(1.07e+00)-| 1.17e-01(3.81e-02)~ | 1.62e+01(5.51e+00)- | 3.12e+00(1.03e+00)- | 1.10e-01(4.70e-02)
NIHS-T1| 8.41e+02(1.97e+02)- | 2.76e+04(1.02e+04)- | 4.98e¢+01(8.33e-01)- | 1.14e+04(7.58¢+03)- | 6.73e+02(6.15¢+02)- | 4.87e+01(4.84e-01)
NIHS-T2| 2.57¢+02(4.76e+01)- | 4.09e+02(3.05¢+01)- | 2.93e+00(1.70e+00)- | 4.38e+02(2.22¢+01)- | 3.53e+02(8.42e+01)- | 8.79¢e-01(8.73e-01)
NIMS-T1| 2.62e-01(5.86e-02)- | 1.13e+00(3.59e-02)- | 1.36e-01(3.19e-02)- | 1.14e+00(5.85e-02)- | 2.43e-01(6.59¢-02)- | 9.33e-02(2.71e-02)
NIMS-T2| 1.07e+01(1.99e+00)- | 2.20e+01(2.72e+00)- | 2.65e+00(2.35e-01)~ | 1.89e+01(2.88e+00)- | 1.57e+01(2.81e+00)- | 2.59¢+00(3.32¢-01)
NILS-T1 | 4.10e+02(1.63e+01)- 19.48e+02(1.05e+02)- | 3.27e+02(5.23e+01)+ | 3.37e+03(6.83e+02)- | 4.15e+02(1.76e+01)- | 3.82e+02(3.75e+01)
NILS-T2 | 8.42e+02(2.93e+02)+ | 8.41e+03(5.77e+02)- | 2.23e+03(1.47e+03)+ | 1.36e+04(4.47e+02)- | 7.06e+02(2.38e+02)+ | 5.31e+03(8.60e+02)
Best/All 0/18 0/18 3/18 0/18 1/18 13/18

+/-/~ 1/17/0 0/18/0 3/11/4 0/18/0 2/16/0 \
Table 5.5: Mean objective values and standard deviations obtained by MFEA-FLM
and compared algorithms on F1 to F8.
Problem MFEA-II MFEA-AKT MFEA-DAE MTKDE LCB-EMT MFEA-FLM
FI-T1 | 3.78e-01(6.89¢-02)- | 1.11e+00(2.16e-02)- | 2.50e-01(5.90e-02)- | 9.56e-01(6.83e-02)- | 3.10e-01(4.80e-02)- | 1.55e-01(3.59¢-02)
F1-T2 | 2.03e+02(3.34e+01)~ | 4.68e+02(2.90e+01)- | 2.41e+02(4.04e+01)- | 4.03e+02(2.39e+01)- | 4.25e+02(1.11e+01)- | 2.08e+02(4.37¢+01)
F2-T1 | 2.42e+00(2.44e-01)- | 8.35e+00(5.89e-01)- | 1.76e+00(2.38¢-01)- | 4.53e+00(6.28¢-01)- | 3.46e+00(5.91e-01)- | 1.13e+00(2.20e-01)
F2-T2 | 2.20e+02(3.58e+01)- | 6.08e+02(5.99¢+01)- | 2.29¢+02(3.69¢+01)- | 4.26e+02(3.10e+01)- | 4.17e+02(1.45e¢+01)- | 1.17e+02(2.57¢+01)
F3-T1 | 1.18e+03(8.45e+02)- | 5.04e+05(2.97¢+05)- | 2.87¢+02(7.24e+01)~ | 6.03e+05(4.85e+05)- | 9.83e+02(4.12e+02)- | 3.07e+02(7.27¢+01)
F3-T2 | 5.15e+01(1.03e+01)- | 9.63e+03(1.29¢+03)- | 4.34e+01(1.04e+01)- | 7.35¢+02(1.42e+02)- | 5.70e+01(9.24e+00)- | 3.18e+01(4.52¢+00)
F4-T1 | 4.10e+02(2.33e+01)~ | 1.62e+03(2.81e+02)- | 3.85¢+02(3.81e+01)~ | 3.30e+03(6.89¢+02)- | 4.22e+02(1.18e+01)- | 4.03e+02(1.82¢+01)
F4-T2 | 8.03e+02(2.90e+02)+ | 8.51e+03(6.95¢+02)- | 1.55¢+03(8.77e+02)~ | 1.35¢+04(4.41e+02)- | 8.27e+02(3.42e+02)+ | 1.59e+03(1.05e¢+03)
F5-T1 | 4.19¢+02(2.06e+01)- | 5.53e+02(8.63e+01)- | 5.73e-01(2.83e-01)- | 1.77e+03(3.56e+02)- | 3.05e+01(2.92e+01)- | 4.22¢-01(2.44¢-01)
F5-T2 | 3.06e-02(1.99¢-02)- | 1.62e+01(5.72e+00)- | 1.52e-04(2.69¢-04)~ | 1.38e+02(6.31e+01)- | 8.52¢-02(4.01e-02)- | 1.01e-04(2.00e-04)
F6-T1 | 2.85e+00(2.00e-01)- | 5.73e+00(9.33e-01)- | 3.28e-02(1.06e-02)- | 1.60e+01(1.57e+00)- | 6.17e-03(5.55e-03)+ | 2.58¢-02(9.43e-03)
F6-T2 | 1.05e-01(3.85e-02)- | 2.58e+00(4.57¢-01)- | 1.71e-02(1.00e-02)- | 8.77e+00(1.58e+00)- | 7.73e-02(2.86e-02)- | 9.33e-03(5.79¢-03)
F7-T1 | 1.30e+03(7.97e+02)- | 1.20e+05(1.34e+05)- | 4.86e+01(2.29¢-01)- |2.67e+07(1.33e+07)- | 1.23e+03(9.77e+02)- | 4.84e+01(2.07e-01)
F7-T2 | 1.26e+02(4.29¢+01)- | 1.55¢+02(2.92¢+01)- | 2.19¢-02(1.86¢-02)~ | 2.89¢+02(3.88¢+01)- | 1.22e+02(3.99¢+01)- | 1.71e-02(1.09e-02)
F8-T1 | 4.13e+02(1.95¢+01)- | 1.22e+03(2.07¢+02)- | 3.59e+02(4.32e+01)+ | 3.48e+03(7.32e+02)- | 4.15e+02(9.20e+00)- | 3.99¢+02(1.52¢+01)
F8-T2 | 1.61e+02(1.62e+02)~ | 3.48e+03(4.51e+02)- | 3.42e+02(2.57e+02)- | 5.07e+03(3.24e+02)- | 9.48e+01(1.05e+02)~ | 2.01e+02(1.86e+02)
Best/All 2/16 0/16 3/16 0/16 2/16 9/16

+/-/~ 1/12/3 0/16/0 1/10/5 0/16/0 2/13/1 \

“+” (or “-” ) indicates the variant is better (or worse) than MFEA-FLLM, and “~” indicates they

obtain the statistically similar performance. The best result on each task is highlighted in bold.
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The comparison results demonstrate that MFEA-FLM achieves better performance
than its competitors on most test problems. In MFEA-II, the extent of knowledge
transfer is adjustable by dynamically modifying the value of rmp. Additionally,
MFEA-AKT employs multiple crossovers with different search biases for knowledge
transfer, while MFEA-DAE employs multiple domain adaptation methods to transfer
solutions across tasks. Compared to the three EMT algorithms, significantly outper-
forms them on most test problems from the first test suite (i.e., 17, 18, and 11 out of
18 cases, respectively. Similarly, the performance superiority of MFEA-FLM 1s also
shown on the second test suite. MFEA-FLM obtains better results than MFEA-II,
MFEA-AKT, and MFEA-DAE on 12, 16, and 10 out of 16 cases, respectively. Be-
sides, MTKDE adopts differential evolution-based framework, where the meta-
knowledge 1is transferred across tasks. In LCB-EMT, a solution selection method
based on the lower confidence bound is proposed for knowledge transfer. It 1s ob-
served that MFEA-FLM archives better results than MTKDE on all test cases from
the two test suites. In addition, MFEA-FLM outperforms LCB-EMT on most test
problems (i.e., 16 out of 18 cases from the first test suite and 13 out of 16 cases from
the second test suite, respectively). In summary, the above comparison results demon-

strate the competitive performance of MFEA-FLM.

5.4.3 Effectiveness Validation of MFEA-FLM

1) Effectiveness Validation of FL-Based Transfer Parameter Adaption

To study the effectiveness of dynamically adapting the value of rmp via FL-based
transfer parameter adaption introduced in subsection 5.3.1, some variants of MFEA-

FLM are designed by presetting rmp to a fixed value from {0, 0.3, 0.6, 0.9}.
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The overall performance comparisons among these variants are computed based on
the test of Friedman [121] as shown in Fig. 5.4 while the detailed numerical results
are provided in Tab. 5.6 and Tab. 5.7. It is observed that MFEA-FLM achieves the
smallest ranks among these variants on the two test suites (i.e., 1.5 and 2.03, respec-
tively), which demonstrate that MFEA-FLLM performs the best among all variants in
terms of the overall performance on the two test suites. The above comparison results
show that employing the proposed FL-based parameter adaption mechanism to adapt
the transfer extent significantly improves the multitasking performance of MFEA

when compared to its variants with a fixed rmp.

I Test suite 1
7H [ Test suite 2 H
6 |
ST 456 T
4.16 4.06
4r 3.61 7
3r 2.72 2.61 2.59 7
2.16 2.03
2r 1.5 ]
1 (— -
rmp = 0.0 rmp = 0.3 rmp = 0.6 rmp =0.9 MFEA-FLM

Figure 5.4: Performance ranks of MFEA-FLLM and its variants with fixed values of
rmp on two test suites.
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Table 5.6: Mean objective values and standard deviations obtained by MFEA-FLM
and its variants with fixed values of rmp on nine MTOPs.

Problem Variant-I rmp=0) | Variant-Il rmp=0.3) | Variant-Ill (rmp=0.6) | Variant-IV (rmp=0.9) MFEA-FLM
CIHS-T1 2.98e-01(5.24e-02)- 1.98e-02(3.27¢-02)- 9.87e-03(2.80e-02)~ 1.48¢-02(4.58¢-02)- 9.79%e-03(2.35¢-02)
CIHS-T2 | 4.15e+02(1.87e+01)- | 2.30e+01(3.60e+01)- | 1.27e+01(3.39e+01)~ | 1.59e+01(4.19e+01)- 1.04e+01(2.32e+01)
CIMS-T1 2.25e+00(2.42¢-01)- 5.35e-02(1.16e-02)- 4.28e-02(1.04e-02)- 8.09¢-02(2.21e-02)- 3.59e-02(1.73e-02)
CIMS-T2 | 4.17e+02(2.10e+01)- 1.37e+00(5.49¢e-01)- 9.20e-01(3.62¢e-01)- 2.78e+00(1.39e+00)- 7.16e-01(7.04e-01)
CILS-T1 2.12e+01(4.09¢-02)- 4.92e-01(1.93e-01)~ 7.38e-01(2.39e-01)- 1.86e+00(5.43e-01)- 4.08e-01(1.36e-01)
CILS-T2 1.13e+03(3.71e+02)- | 2.99e+00(1.87e+00)~ | 5.44e+00(2.70e+00)- | 2.90e+01(1.99e+01)- | 2.25e+00(1.15¢+00)
PIHS-T1 4.23e+02(2.12e+01)- | 3.80e+02(1.90e+01)~ | 3.58e+02(3.66e+01)+ | 3.28e+02(4.25¢+01)+ | 3.75e+02(2.67e+01)
PIHS-T2 | 4.71e+00(1.16e+00)- | 1.47e+00(4.04e-01)~ | 9.53e+00(4.43¢+00)- | 1.65¢+02(4.37e+01)- 1.36e+00(5.41e-01)
PIMS-T1 2.41e+00(2.21e-01)- 4.22e-01(1.52e-01)+ 1.09e+00(4.49¢-01)- 2.74e+00(2.39¢-01)- 6.88e-01(3.34¢-01)
PIMS-T2 | 1.25¢+03(5.51e+02)- | 5.98e+01(1.36e+01)- | 5.17e+01(2.08e+00)+ | 5.47e+01(4.86e+00)- 5.34e+01(1.44e+01)
PILS-T1 2.47e+00(1.87¢-01)- 3.24e-02(9.42e-03)~ 4.44¢-02(8.58¢-03)- 8.03e-02(1.21e-02)- 3.43e-02(9.85¢-03)
PILS-T2 5.97e+00(1.62e+00)- 1.01e-01(3.35e-02)~ 1.47¢-01(3.69¢-02)- 3.05e-01(5.82¢-02)- 1.10e-01(4.70e-02)
NIHS-T1 1.48e+03(1.27e+03)- | 5.10e+01(8.90e+00)- | 4.89e+01(5.44e-01)- 5.03e+01(7.94e-01)- 4.87e+01(4.84e-01)
NIHS-T2 | 4.17e+02(2.65¢+01)- | 4.90e+00(1.40e+01)- | 1.28e+00(1.09e+00)- | 3.67e¢+00(1.54e+00)- 8.79¢-01(8.73e-01)
NIMS-T1 3.17e-01(6.07e-02)- 1.04e-01(2.49¢-02)~ 1.94e-01(5.38¢-02)- 5.55e-01(9.57e-02)- 9.33e-02(2.71e-02)
NIMS-T2 | 1.56e+01(2.88e+00)- | 2.83e+00(4.93¢-01)- 3.26e+00(4.03e-01)- | 5.17e+00(1.22e+00)- 2.59e+00(3.32¢-01)
NILS-T1 4.15e+02(1.74e+01)- 4.03e+02(2.31e+01)- | 3.93e+02(5.09¢+01)~ | 3.35e+02(6.42¢+01)+ 3.82e+02(3.75e+01)
NILS-T2 | 9.42e+02(3.97e+02)+ | 4.28e+03(1.35¢+03)+ | 5.66e+03(5.81e+02)- | 6.09e+03(7.95¢+01)- 5.31e+03(8.60e+02)
Best/All 1/18 3/18 1/18 2/18 11/18
+/-/~ 1/17/0 20917 2/13/3 2/16/0 \

Table 5.7: Mean objective values and standard deviations obtained by MFEA-FLM

and its variants with fixed values of rmp on F1 to F8.

Problem Variant-I rmp=0) | Variant-Il rmp=0.3) | Variant-Ill (rmp=0.6) | Variant-IV (rmp=0.9) MFEA-FLM
F1-T1 2.59¢-01(6.94¢-02)- 1.56e-01(3.05e-02)~ 1.99¢-01(4.94e-02)- 2.84e-01(7.28e-02)- 1.55¢-01(3.59¢-02)
F1-T2 4.12e+02(1.86e+01)- | 2.24e+02(6.63e+01)~ | 2.08e+02(4.87¢+01)~ | 2.21e+02(5.37¢+01)~ 2.08e+02(4.37e+01)
F2-T1 2.56e+00(4.47¢-01)- 9.07¢-01(3.10e-01)+ 1.27e+00(3.29e-01)~ 1.96e+00(2.30e-01)- 1.13e+00(2.20e-01)
F2-T2 4.11e+02(1.65e+01)- | 1.05e+02(5.47e+01)~ | 1.39e+02(5.04e+01)~ | 2.32e+02(4.71e+01)- 1.17e+02(2.57e+01)
F3-T1 1.48e+03(1.40e+03)- | 3.35¢+02(9.59¢+01)~ | 2.72e+02(7.41e+01)~ | 3.77e+02(9.28¢+01)- 3.07e+02(7.27e+01)
F3-T2 5.02e+01(7.95¢+00)- | 3.46e+01(5.37e+00)- | 4.22e+01(6.39¢+00)- | 5.52e+01(7.60e+00)- 3.18e+01(4.52e+00)
F4-T1 4.13e+02(2.08e+01)~ | 4.06e+02(2.11e+01)~ | 4.19e+02(1.65e+01)- | 4.46e+02(2.06e+01)- 4.03¢+02(1.82e+01)
F4-T2 8.02e+02(3.81e+02)+ | 1.14e+03(5.60e+02)~ | 2.41e+03(1.38¢+03)- | 4.42e+03(1.35e+03)- 1.59e+03(1.05e+03)
F5-T1 4.17e+02(1.67e+01)- 3.47e-01(1.88e-01)~ 3.88e-01(2.23e-01)~ 4.96e-01(2.21e-01)~ 4.22e-01(2.44e-01)
F5-T2 6.14e-02(3.54e-02)- 9.75¢-05(1.91e-04)~ 5.46e-05(8.20e-05)~ 1.39¢-04(2.71e-04)~ 1.01e-04(2.00e-04)
F6-T1 2.16e+00(3.65¢-01)- 2.55e-02(6.55¢-03)~ 2.93e-02(7.74¢-03)~ 3.49¢-02(9.59-03)- 2.58e-02(9.43e-03)
F6-T2 7.07e-02(3.08e-02)- 1.18e-02(9.10e-03)~ 8.25¢-03(5.38e-03)~ 9.56e-03(6.31e-03)~ 9.33e-03(5.79¢-03)
F7-T1 9.58e+02(3.26e+02)- | 4.85e+01(1.71e-01)~ | 4.85¢+01(2.66e-01)~ 4.86e+01(1.40e-01)- 4.84¢+01(2.07e-01)
F71-T2 1.54e+02(4.89e+01)- 2.04¢-02(1.29e-02)~ 1.56e-02(1.11e-02)~ 1.31e-02(1.21-02)~ 1.71e-02(1.09e-02)
F8-T1 4.09e+02(1.52e+01)- | 3.98e+02(1.72e+01)~ | 4.09e+02(1.51e+01)- | 4.20e+02(2.44e+01)- 3.99e+02(1.52¢+01)
F8-T2 1.34e+02(1.19e+02)~ | 1.84e+02(1.59e+02)~ | 3.36e+02(2.55¢+02)- 1.81e+03(7.74e+02)- 2.01e+02(1.86e+02)

Best/All 2/16 5/16 3/16 1/16 5/16

+/-/~ 1/13/2 1/1/14 0/6/10 0/11/5 \
“+” (or “-” ) indicates the variant is better (or worse) than MFEA-FLM, and “~” indicates they obtain the statistically

similar performance. The best result on each task is highlighted in bold.
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Figure 5.5: Convergence curves of MFEA-FLLM and its variants with the fixed values

of rmp during the multitasking search process.
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Moreover, the convergence curves of MFEA-FLLM and these variants with different
values of rmp on some representative problems are presented in Fig. 5.5. For CIMS,
the two tasks have median similarity, and their global optima are identical in the uni-
fied search space with respect to all variables. As observed from Fig. 5.5(a), the vari-
ant with rmp = 0.9 achieves better convergence performance than other variants at
the early evolutionary stage, while it 1s gradually outperformed by two variants with
rmp = 0.3 and rmp = 0.6. This shows that setting rmp to 0.9 will lead to exces-
sive knowledge transfer during the later evolutionary stage, which causes perfor-
mance degradation, called negative transfer. By adaptively adjusting the value of
rmp, MFEA-FLM finally achieves better performance, as shown in Fig. 5.5(a). Simi-
larly, in terms of PIHS and NIMS, their two tasks have high and median similarity,
respectively. As observed in Fig. 5.5(b) and Fig. 5.5(c), the variant with rmp = 0.3
and the variant with rmp = 0.6 achieve better performance on PIHS-T2 and NIMS-
T2 when compared these variants with other fixed values of rmp, respectively.
MFEA-FLM finally achieves the best performance when compared to all variants
with fixed values of rmp, which demonstrates that employing the proposed FLM to
adapt rmp effectively alleviates the threat of negative transfer. Additionally, as
shown 1n Figs. 5.5(d), (e), and (f), MFEA-FLM finally achieves the best convergence
performance when compared to its variants with fixed values of rmp on CILS-T2,
PILS-T1, and NIMS-T2. The above observations demonstrate that employing the pro-
posed method to dynamically adapt the extent of knowledge transfer can effectively

alleviate the threat of negative transfer during the multitasking search process.

2) Effectiveness Validation of FL-Based Transfer Method Selection

To study the effectiveness of adaptively selecting the promising transfer method via
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FL-based transfer method selection introduced in subsection 5.3.2, some variants of
MFEA-FLM are designed as the compared algorithms by only employing one certain
method (i.e., AE, KAE, AT, or Baseline) for conducting knowledge transfer. Note
that Baseline 1s a simple method, which directly transfers the solutions from one task
to another task without any adaptation. Additionally, another variant is designed as
the compared algorithm by randomly selecting one from the pool, aiming to validate
the effectiveness and reasonability of the proposed FL-based selection mechanism.
Note that the value of rmp is dynamically adapted in all compared algorithms. The
overall performance comparisons among these variants are done based on the test of
Friedman as shown in Fig. 5.6, while the detailed numerical results are provided in

Tab. 5.8 and Tab. 5.9.

8 T T T T T T
I Test suite 1

7 I Test suite 2 H

5.44

>.06 483 ]

2.67 2.5 2.59
161 L78

0
MFEA-Baseline MFEA-AE ~ MFEA-KAE MFEA-AT MFEA-Random MFEA-FLM

Figure 5.6: Performance ranks of MFEA-FLM and 1ts variants with fixed transfer
methods on two test suites.
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Table 5.8: Mean objective values and standard deviations obtained by MFEA-FLM
and its variants with fixed transfer methods on Nine MTOPs.

Problem

MFEA-Baseline

MFEA-AE

MFEA-KAE

MFEA-AT

MFEA-Random

MFEA-FLM

CIHS-T1

4.06e-01(7.80e-02)-

2.29e-03(8.28e-04)+

2.64¢-01(6.13e-02)-

2.07e-01(4.73e-02)-

7.97e-03(3.33e-03)+

9.79e-03(2.35¢-02)

CIHS-T2

2.20e+02(3.39e+01)-

2.19e+0009.11e-01)~

3.94e+02(1.97¢+01)-

2.05e+02(6.47¢+01)-

1.18e+01(4.40e+00)-

1.04e+01(2.32e+01)

CIMS-T1

2.39e+00(2.19e-01)-

5.42e-02(9.5%9¢-03)-

1.73e+00(2.68¢-01)-

1.47e+00(3.45¢-01)-

1.07e-01(1.97e-02)-

3.59e-02(1.73e-02)

CIMS-T2

2.44e+02(4.78e+01)-

1.50e+00(4.38e-01)-

3.98e+02(1.35¢+01)-

1.47e+02(5.03e+01)-

4.38e+00(1.44e+00)-

7.16e-01(7.04e-01)

CILS-T1

1.97e+01(3.08e+00)-

2.12e+01(3.64e-02)-

3.28e+00(2.47e+00)-

1.98e+01(3.57e+00)-

5.63e-01(1.44e-01)-

4.08e-01(1.36e-01)

CILS-T2

1.44e+03(3.52e+02)-

1.24e+03(4.38e+02)-

1.67e+03(9.30e+02)-

1.17e+03(3.47e+02)-

3.36e+00(1.27e+00)-

2.25e+00(1.15e400)

PIHS-T1

4.37e+02(1.99e+01)-

3.73e+02(1.40e+01)~

4.02e+02(1.48e+01)-

3.98e+02(1.41e+01)-

3.78e+02(2.19e+01)~

3.75e+02(2.67e+01)

PIHS-T2

1.15e+01(2.73e+00)-

9.75e+00(2.31e+00)-

7.76e+00(1.78e+00)-

2.41e+00(5.80e-01)-

1.90e+00(6.17e-01)-

1.36e+00(5.41e-01)

PIMS-T1

2.69e+00(2.45¢-01)-

1.10e+00(1.94¢-01)-

1.82e+00(2.84¢-01)-

1.14e+00(2.01e-01)-

5.94e-01(1.22e-01)~

6.88e-01(3.34e-01)

PIMS-T2

8.08e+02(2.59¢+02)-

5.15e+01(1.22e+00)+

4.04e+02(1.05¢+02)-

2.78e+02(4.79e+01)-

6.98e+01(1.98e+01)-

5.34e+01(1.44e+01)

PILS-T1

3.04e+00(2.52e-01)-

4.10e-02(1.26¢-02)-

2.42e+00(2.29e-01)-

1.63e+00(3.93¢-01)-

3.71e-02(7.84e-03)~

3.43e-02(9.85¢-03)

PILS-T2

2.86e+00(5.43e-01)-

1.56e-01(3.72e-02)-

2.45e+00(9.63¢e-01)-

1.27e+00(5.86¢-01)-

1.26e-01(4.36e-02)~

1.10e-01(4.70e-02)

NIHS-T1

1.03e+03(2.66e+02)-

4.92e+01(2.36¢-01)-

4.44e+02(9.21e+01)-

4.45e+02(9.53e+01)-

5.63e+01(1.38e+01)-

4.87e+01(4.84¢e-01)

NIHS-T2

3.06e+02(3.51e+01)-

1.74e+00(5.80e-01)-

3.96e+02(1.45¢+01)-

2.96e+02(6.06e+01)-

1.37e+01(1.85e+01)-

8.79e-01(8.73¢-01)

NIMS-T1

4.61e-01(6.23e-02)-

3.97e-01(6.52¢-02)-

2.91e-01(5.64e-02)-

1.66e-01(4.26e-02)-

1.46e-01(4.11e-02)-

9.33e-02(2.71e-02)

NIMS-T2

1.41e+01(2.57e+00)-

2.71e+00(2.76e-01)~

5.69e+00(7.76e-01)-

8.37e+00(1.61e+00)-

2.92e+00(2.71e-01)-

2.59e+00(3.32e-01)

NILS-T1

4.27e+02(1.71e+01)-

3.96e+02(1.64e+01)~

4.04e+02(1.83e+01)-

4.34e+02(1.79e+01)-

3.92e+02(1.99e+01)~

3.82e+02(3.75e401)

NILS-T2

1.36e+03(3.66e+02)H

1.27e+03(4.21e+02)H

5.27e+03(4.79e+02)~

1.12e+03(3.52e+02)H

1.81e+03(1.08e+03)H

5.31e+03(8.60e+02)

Best/All

0/18

4/18

0/18

1/18

1/18

12/18

+/-/~

1/17/0

3/11/4

0/17/1

1/17/0

2/11/5

\

Table 5.9: Mean objective values and standard deviations obtained by MFEA-FLM
and 1ts variants with fixed transfer methods on F1 to F&.

Problem

MFEA-Baseline

MFEA-AE

MFEA-KAE

MFEA-AT

MFEA-Random

MFEA-FLM

F1-T1

2.88e-01(4.52e-02)-

2.57e-01(4.74e-02)-

2.49e-01(4.52e-02)-

1.54e-01(2.69e-02)~

1.60e-01(4.46e-02)~

1.55e-01(3.5%-02)

F1-T2

2.11e+02(4.44e+01)~

4.15e+02(1.69e+01)-

4.19e+02(1.67e+01)-

1.79e+02(6.11e+01)~

2.59e+02(6.05e+01)-

2.08e+02(4.37e+01)

F2-T1

2.00e+00(2.77e-01)-

1.83e+00(2.44e-01)-

1.86e+00(3.14¢-01)-

1.16e+00(3.01e-01)~

1.10e+00(2.17e-01)~

1.13e+00(2.20e-01)

F2-T2

2.42e+02(4.42e+01)-

4.12e+02(2.25e+01)-

4.20e+02(1.84e+01)-

1.20e+02(3.54e+01)~

1.26e+02(3.53e+01)~

1.17e+02(2.57e+01)

F3-T1

1.63e+03(1.21e+03)-

4.46e+02(1.44e+02)-

4.48e+02(1.26e+02)-

5.33e+02(5.22e+02)-

3.56e+02(5.75e+01)-

3.07e+02(7.27e+01)

F3-T2

5.49e+01(9.32e+00)-

6.33e+01(1.35¢+01)-

2.70e+01(5.18e+00)H

4.89e+01(8.42e+00)-

3.61e+01(6.39e+00)-

3.18e+01(4.52e4+00)

F4-T1

U.14e+02(1.82e+01)~

4.19e+02(1.87e+01)-

4.20e+02(1.65e+01)-

4.04e+02(1.60e+01)~

4.08e-+02(1.48e+01)~

4.03e+02(1.82e+01)

F4-T2

8.77e+02(3.06e+02)H

0.71e+02(2.72e+02)H

3.43e+03(1.28e+03)-

8.08e+02(2.58e+02)+

0.42e+02(3.43e+02)H

1.59e+03(1.05e+03)

F5-T1

4.10e+02(1.95e+01)-

6.22e-01(2.92e-01)-

4.06e+02(2.34e+01)-

3.93e+02(1.68e+01)-

5.88e-01(2.83e-01)-

4.22¢-01(2.44e-01)

F5-T2

4.52e-02(2.30e-02)-

4.95e-04(4.39%-04)-

5.77e-02(2.85¢-02)-

2.53e-03(5.48e-03)-

2.17e-04(2.11e-04)-

1.01e-04(2.00e-04)

F6-T1

2.05e+00(2.83e-01)-

3.13e-02(8.16¢-03)-

1.72e+00(2.76e-01)-

1.01e+00(2.21e-01)-

3.21e-02(8.93e-03)-

2.58¢-02(9.43¢-03)

F6-T2

7.59e-02(2.72e-02)-

2.50e-02(1.59-02)-

7.89e-02(3.73e-02)-

3.04e-02(1.98e-02)-

1.93e-02(9.53e-03)-

9.33e-03(5.79¢-03)

F7-T1

1.42e+03(8.45¢+02)-

4.84e+01(1.82e-01)~

6.64e+02(5.72e+02)-

8.00e+02(6.13e+02)-

4.86e+01(3.06e-01)-

4.84e+01(2.07e-01)

F7-T2

9.58e+01(1.90e+01)-

2.97e-02(2.19¢-02)-

1.33e+02(2.95e+01)-

7.85e+01(2.97e+01)-

4.42e-02(5.47e-02)-

1.71e-02(1.09e-02)

F8-T1

4.19e+02(1.81e+01)-

4.12e+02(2.11e+01)-

4.13e+02(2.02e+01)-

4.10e+02(1.30e+01)-

4.02e-+02(1.86e+01)~

3.99e+02(1.52¢+01)

F8-T2

1.84e+02(1.45e+02)~

1.78e+02(1.11e+02)~

3.44e+02(2.23e+02)-

1.50e+02(1.35e+02)~

1.78e+02(1.55e+02)~

2.01e+02(1.86e+02)

Best/All

0/16

1/16

0/16

4/16

1/16

10/16

+/-/~

1/12/3

1/13/2

1/15/0

1/9/6

1/9/6

\

“y

(or

“.” ) indicates the variant is better (or worse) than MFEA-FLM, and

“

similar performance. The best result on each task is highlighted in bold.
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It 1s observed that MFEA-FLLM achieves the smallest ranks among these variants on
the two test suites (i.e., 1.61 and 1.78, respectively), which demonstrate that MFEA -
FLM performs best among these variants in terms of the overall performance. The
above comparison results show that employing the proposed method to adaptively se-
lect the promising method for knowledge transfer can further enhance the multitask-

ing performance.

I Bascline [0S KA
AR

Normalized ratio
Normalized ratio

0 50 100 150 200 0 50 100 150 200
Generation Generation
(a) F1 (b) F4

I Baseline | KAE
ENAE  EEAT

Normalized ratio

o
)

(=]

0 50 100 150 200
Generation

(c) F6
Figure 5.7: Normalized utilization ratios of four methods of knowledge transfer dur-
ing the multitasking search process on F1, F4, and F6.
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Moreover, to study the use of AE, KAE, AT, and Baseline during the multitasking
evolutionary search process, Fig. 5.7 shows the normalized utilization ratio of each
method during the multitasking search process on F1, F4, and F6. Here, the normal-
1zed utilization ratio i1s defined as the ratio of the number of using each method for
knowledge transfer and the total number of triggering knowledge transfer. It can be
observed that MFEA-FLLM can dynamically adjust the utilization ratios of different
methods for knowledge transfer during the multitasking search process. As shown in
Fig. 5.7(a), the utilization ratios of AT and Baseline are obviously higher than that of
AE and KAE on F1, which demonstrate that both AT and Baseline play a vital role in
performing effective knowledge transfer on F1. However, in terms of F4, the two
tasks have low similarity, and their global optima are in different locations. In such a
case, compared to Baseline, both KAE and AE can enhance the transferability of so-
lutions to some extent by learning the mapping between tasks. Thus, the utilization
ratios of KAE and AE on F4 are relatively higher than that on F1, as shown in Fig.
5.7(b). In addition, it is observed from Fig. 5.7(c) that the utilization ratio of AE is
significantly higher than that of other methods at the early evolutionary stage. This
demonstrates that AE plays a vital role in significantly enhancing the multitasking
performance on F6. In fact, the global optima of two tasks of F6 are located at the
same point in the unified search space. In such cases, employing AE for knowledge
transfer at the early evolutionary stage can achieve fast convergence. The above ob-
servations further validate that the proposed FL-based transfer method selection can
effectively select the most promising method for conducting knowledge transfer in

different scenarios.
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5.4.4 Results of Incorporating FLM into EMT Algorithms

The proposed FL-based method is incorporated into three EMT algorithms (such as
MFEA, MFEA-II, and MFEA-AKT), which form three new enhanced algorithms
(called MFEA-FLM, MFEA-II-FLM, and MFEA-AKT-FLM, respectively). Note that
MFEA-II-FLLM adaptively selects the method of knowledge transfer by FL-based
transfer method selection while the transfer parameter estimation scheme proposed in
MFEA-II [24] is used to estimate the value of rmp. The details numerical results of
the three EMT algorithms and their corresponding enhanced algorithms on the two

test suites are represented in Tab. 5.10 and Tab. 5.11.

It 1s observed that MFEA-FLM, MFEA-II-FLM, and MFEA-AKT-FLM significantly
outperform their original EMT algorithms in solving most test problems, respectively.
Specifically, in terms of the first test suite, MFEA-FLM obtains better results than
MFEA on 17 out of 18 cases, while 1t 1s beat by MFEA on 1 case. Additionally,
MFEA-II-FLM and MFEA-AKT-FLM outperform MFEA-II and MFEA-AKT on all
cases out of 18 cases, respectively. Similarly, for the second test suite, MFEA-FLM
and MFEA-AKT-FLM also achieve significantly better results than MFEA and
MFEA-AKT on most test problems (i.e., 13 and 16 out of 16 cases, respectively). Be-
sides, MFEA-II-FLLM outperforms MFEA-II on 9 out of 16 cases while they achieve
similar results on the rest of the test problems. The above comparison results show
that incorporating the proposed method into these EMT algorithms can significantly
enhance the multitasking performance on most test problems when compared to their

original EMT algorithms, respectively.
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Table 5.10: Mean objective values and standard deviations obtained by three EMT
algorithms and their enhanced algorithms on nine MTOPs.

Problem

MFEEA

MFEA-FLM

MFEA-IT

MFEA-II-FLM

MFEA-AKT

MFEA-AKT-FLM

CIHS-T1

2.77e-01(4.43e-02)-

7.57e-03(1.13¢-02)

3.68e-01(6.19e-02)-

3.39¢-02(5.20e-02)

1.04e+00(2.48e-02)-

3.02¢-01(9.56e-02)

CIHS-T2

2.61e+02(3.67e+01)-

[1.09e+01(1.57e+01)

2.09e+02(2.93e+01)-

4.77e+01(7.58e+01)

3.55e+02(3.42e+01)-

[1.49¢+02(2.24e+01)

CIMS-T1

1.87e+00(2.76e-01)-

4.15e-02(1.03¢-02)

2.41e+00(2.24¢-01)-

6.60e-02(2.29e-02)

5.71e+00(4.75e-01)-

1.61e+00(8.95e-01)

CIMS-T2

2.45e+02(3.63e+01)-

8.76¢-01(3.86e-01)

2.30e+02(4.10e+01)-

2.10e+00(1.43e-+00)

3.91e+02(3.25e+01)-

[1.226+02(6.38e+01)

CILS-T1

1.65e+01(6.56e+00)-

4.17e-01(1.60e-01)

2.03e+01(2.61e+00)-

5.07e+00(5.43e+00)

2.06e+01(4.81e-02)-

5.38e+00(6.00e+00)

CILS-T2

9.32e+02(4.25¢+02)-

.41e+00(1.42e+00)

8.84e+02(2.13e+02)-

4.74¢+02(4.68e+02)

8.48e+03(5.31e+02)-

[1.31e+03(3.09¢+03)

PIHS-T1

4.22e+02(2.08e+01)-

3.82¢+02(2.51e+01),

4.10e+02(1.69e+01)~

4.11e+02(1.69e+01)

6.72e+02(1.09e+02)-

[2.31e+02(3.63e+01)

PIHS-T2

4.45e+00(1.18e+00)-

7.96e-01(2.95¢-01)

3.08e+00(6.39e-01)~

3.31e+00(9.97e-01)

6.31e+02(1.64e+02)-

1.01e+02(2.97e+01)

PIMS-T1

2.18e+00(2.49e-01)-

4.32¢-01(1.99e-01)

2.42e+00(2.36e-01)-

1.01e+00(3.30e-01)

4.66e+00(3.39¢-01)-

3.12e+00(2.53e-01)

PIMS-T2

5.06e+02(1.19e+02)-

6.34e+01(2.05¢+01)

6.62e+02(1.85e+02)-

1.19e+02(1.68e+02),

6.50e+03(2.09e+03)-

1.71e+02(8.39¢+01)

PILS-T1

2.47e+00(2.11e-01)-

2.72e-02(7.22¢-03)

2.49e+00(2.75e-01)-

5.63e-02(3.99¢-02)

7.37e+00(1.08e+00)-

9.72e-02(1.71e-02)

PILS-T2

2.14e+00(3.81e-01)-

1.05e-01(4.17e-02)

2.55e+00(7.66e-01)-

1.82e-01(1.29¢-01)

7.33e+00(1.07e+00)-

3.88e-01(5.12e-02)

NIHS-T1

6.42e+02(1.96e+02)-

5.77e+01(2.75e+01)

8.41e+02(1.97e+02)-

[7.10e+01(1.05e+02)

2.76e+04(1.02e+04)-

[2.42e+02(1.52e+02)

NIHS-T2

3.25e+02(4.13e+01)-

1.46e+01(3.92e+01)

2.57e+02(4.76e+01)-

2.05e+01(7.52e+01),

4.09e+02(3.05e+01)-

[1.226+02(6.29¢+01)

NIMS-T1

2.84e-01(4.71e-02)-

8.80e-02(2.71e-02)

2.62e-01(5.86e-02)-

2.24e-01(4.55e-02)

1.13e+00(3.59¢-02)-

5.11e-01(8.90e-02)

NIMS-T2

1.00e+01(1.85e+00)-

2.60e+00(3.19e-01)

1.07e+01(1.99e+00)-

[7.50e+00(2.56e+00)

2.20e+01(2.72e+00)-

8.18e-+00(1.79¢+00)

NILS-T1

4.19e+02(2.25e+01)-

3.91e+02(2.26e+01),

4.10e+02(1.63e+01)~]

4.06e+02(1.58e+01)

0.48e+02(1.05e+02)-

3.95e+02(1.19¢+02)

NILS-T2

0.43e+02(3.44e+02)

3.13e+03(1.54e+03),

8.42e+02(2.93e+02)~

7.27e+02(2.71e+02),

8.41e+03(5.77e+02)-

[7.15e+03(1.17e+03)

+/-1~

1/17/0

\

0/18/0

\

0/18/0

\

Table 5.11: Mean objective values and standard deviations obtained by three EMT
algorithms and their enhanced algorithms on F1 to F8.

Problem

MFEA

MFEA-FLM

MFEA-II

MFEA-II-FLM

MFEA-AKT

MFEA-AKT-FLM

F1-T1

2.96e-01(5.97e-02)-

1.72e-01(4.25¢-02)

3.78e-01(6.89¢-02)-

2.76e-01(6.58¢-02)

1.11e+00(2.16e-02)-

1.03e+00(1.69¢-02)

F1-T2

2.59e+02(4.11e+01)-

2.22e+02(5.34e+01)

2.03e+02(3.34e+01)~

2.18e+02(4.95e+01),

4.68e+02(2.90e+01)-

3.64e+02(2.04¢+01)

F2-T1

1.99e+00(2.43e-01)-

1.10e+00(2.44¢-01)

2.42e+00(2.44¢e-01)-

1.89¢+00(3.98e-01)

8.35e+00(5.89¢-01)-

6.33e+00(5.30e-01)

F2-T2

2.52e+02(3.97e+01)-

1.16e+02(3.57e+01),

2.20e+02(3.58e+01)~

2.11e+02(4.79e+01)

6.08e+02(5.99e+01)-

4.46e+02(4.41e+01)

F3-T1

1.70e+03(6.97e+02)-

3.24e+02(9.11e+01)

1.18e+03(8.45e+02)-

8.79e+02(3.06e+02),

5.04e+05(2.97e+05)-

8.60e+03(1.99¢+04)

F3-T2

6.33e+01(8.94e+00)-

2.98e+01(5.29¢+00)

5.15e+01(1.03e+01)~

5.10e+01(7.79¢+00)

0.63e+03(1.29e+03)-

1.46e+02(2.37e+01)

F4-T1

4.17e+02(2.09e+01)~

4.12e+02(1.55e+01)

4.10e+02(2.33e+01)~

4.17e+02(1.88e+01)

1.62e+03(2.81e+02)-

0.75e+02(1.00e+02)

F4-T2

0.50e+02(3.72e+02)H

1.84e+03(1.12e+03),

8.03e+02(2.90e+02)~

8.38e+02(2.88e+02)

8.51e+03(6.95e+02)-

6.77e+03(1.84¢+03)

F5-T1

4.14e+02(1.71e+01)-

3.78e-01(1.81e-01)

4.19e+02(2.06e+01)-

9.23e-01(4.22¢-01)

5.53e+02(8.63e+01)-

3.23e+00(9.4%9¢-01)

F5-T2

3.78e-02(1.81e-02)-

8.62e-05(1.58e-04)

3.06e-02(1.99¢e-02)-

2.24e-04(4.31e-04)

1.62e+01(5.72e+00)-

9.12e-03(4.17¢-03)

F6-T1

2.27e+00(2.77e-01)-

2.51e-02(8.45¢-03)

2.85e+00(2.00e-01)-

4.51e-02(1.22¢-02)

5.73e+00(9.33e-01)-

8.96e-02(1.53e-02)

F6-T2

7.17e-02(2.28e-02)-

1.02e-02(7.76e-03)

1.05e-01(3.85¢-02)-

2.23e-02(8.76¢-03)

2.58e+00(4.57e-01)-

2.38e-01(4.19¢-02)

F7-T1

1.73e+03(1.06e+03)-

4.84e+01(1.90e-01)

1.30e+03(7.97e+02)-

4.74e+02(7.79e+02)

1.20e+05(1.34e+05)-

6.91e+01(4.89¢+01)

F7-T2

8.98e+01(1.96e+01)-

2.04e-02(1.76¢-02)

1.26e+02(4.29e+01)-

[7.10e+01(7.29e+01)

1.55e+02(2.92e+01)-

6.83e+00(1.79¢+01)

F8-T1

4.13e+02(2.40e+01)-

3.97e+02(2.18e+01)

4.13e+02(1.95e+01)~

4.06e+02(2.28¢+01)

1.22e+03(2.07e+02)-

5.56e+02(9.07e+01)

F8-T2

1.42e+02(1.22e+02)~

2.72e+02(2.02e+02),

1.61e+02(1.62e+02)~

1.61e+02(1.32e+02)

3.48e+03(4.51e+02)-

2.87e+03(2.01e+02)

+/-1~

1/13/2

\

0/9/7

\

0/16/0

\

“

(or

indicates they obtain the statistically similar performance.
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Table 5.12: Summarized results of MFEA-FLLM and its variants with different param-
eters.

Algorithm comparison Test suite 1 (+/-/~) Test suite 2 (+/-/~)
a =0vs a =0.1 0/0/17 0/1/15
a =02vs a =0.1 1/2/15 0/0/16
a =04vs a =0.1 3/4/11 1/1/14
a =0.6vs a =0.1 2/9/7 1/2/13
a =08vs a =0.1 0/11/7 0/8/7
a =10vs a =0.1 0/18/0 0/16/0
Variant-V vs MFEA-FLM 0/3/15 0/0/16
Variant-VI vs MFEA-FLM 0/1/17 1/0/15
Variant-VII vs MFEA-FLM 0/3/15 0/0/16
Variant-VIII vs MFEA-FLM 0/0/18 0/0/16

“+7, %7 Jand “~" denote the numbers of better, worse, and similar results obtained by the cor-

responding competitor when compared to MFEA-FLLM, respectively.

5.4.5 Parameter Sensitivity Analysis

1) The Effect of «

To study the impact of a, MFEA-FLM with a« = 0.1 is compared to MFEA-FLM
with different values of a from {0, 0.2, 0.4, 0.6, 0.8, 1.0}. The comparison results
on the two test suites are summarized in Tab. 5.12. It is observed that MFEA-FLM
with some smaller values of a (i.e., O and 0.2) achieves similar multitasking perfor-
mance on most test problems. However, setting a to some larger values (i.e., 0.8 and
1.0) will lead to the obvious performance degradation of MFEA-FLM when solving
most test problems. The observations demonstrate that the current improvements of
multitasking performance should occupy a high proportion in quantifying the efficacy

of knowledge transfer. Thus, setting a to 0.1 1s suggested 1n this study.

2) The Effect of Membership Functions (MFs)
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Two variants (called Variant-V and Variant-VI) are designed to study the effect of
MFs with different parameters on the performance of FL-based parameter adaption
mechanism. Specifically, in Variant-V, the parameters of the singleton MFs are set to
some larger values, 1.e., -0.6, -0.4, -0.2, 0, 0.2, 0.4, and 0.6, respectively. In Variant-
VI, the parameters of the singleton MFs are set to some smaller values, 1.e., -0.15, -
0.10, -0.05, 0, 0.05, 0.10, and 0.15, respectively. Additionally, two variants (called
Variant-VII and Variant-VIII) are designed to study the effect of MFs with different
parameters on the performance of FL-based transfer method selection mechanism.
Specifically, in Variant VII, three MFs with larger degree of intersection, i.e., class L
with the parameter tuple (0.0, 0.0, 0.1, 0.8), class triangular with the parameter tuple
(0.0, 0.5, 1.0), and class y with the parameter tuple (0.2, 0.9, 1.0, 1.0), are used to
define fuzzy sets of the consequence space. In Variant VII, three MFs with smaller
degree of intersection are used, 1.e., class L with (0.0, 0.0, 0.1, 0.3), class triangular
with (0.3, 0.5, 0.7), and class y with (0.7, 0.9, 1.0, 1.0). The summarized results on
the two test suites are collected in Tab. 5.12. It is observed that these variants achieve
similar results on most test problems when compared to MFEA-FLM. According to
the comparison results, it 1s concluded that the multitasking performance of MFEA -

FLLM on most test problems 1s not sensitive to the MFs with different parameters.

5.4.6 Further Study in Handling More Complex Problems

1) Comparison Results on Complex MTOPs

Ten complex MTOPs from CEC 2021 Competition on Evolutionary Multi-task Opti-
mization are used as the test problems (called C-MTOP1 to C-MTOP10). Each

MTOP consists of two single-objective continuous optimization tasks, which bear cer-
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tain commonality and complementarity in terms of the global optimum and the fitness
landscape. To further examine the effectiveness of the proposed FL-based mecha-
nisms 1n solving C-MTOP1 to C-MTOP10, FL-based transfer parameter adaption and
transfer method selection are incorporated into MFEA and MFEA-AKT, forming two
enhanced algorithms (i.e., MFEA-FLM and MFEA-AKT-FLM). The detailed numeri-

cal results of all compared algorithms are provided in Tab. 5.13.

Table 5.13: Mean objective values and standard deviations obtained by two EMT al-
gorithms and their enhanced algorithms on ten complex MTOPSs.

C-MTOPs MFEA MFEA-FLM MFEA-AKT MFEA-AKT-FLM
C-MTOPI1-T1 6.2213e+02(1.6e-01)- 6.2199e+02(1.3e-01) 6.2387e¢+02(1.7¢-01)~ 6.2382e+02(2.0e-01)
C-MTOP1-T2 6.2501e+02(1.8e-01)~ 6.2496e+02(1.7e-01) 6.2697e+02(1.8e-01)- 6.2684e+02(1.8e-01)
C-MTOP2-T1 7.1127e+02(5.7¢-03)- 7.1126e+02(7.1e-03) 7.1195e+02(5.7e-02)- 7.1154e+02(7.0e-02)
C-MTOP2-T2 7.1760e+02(1.5¢-02)- 7.1758e+02(9.3e-03) 7.1855e+02(8.1e-02)- 7.1800e+02(9.3e-02)
C-MTOP3-T1 2.8841e+06(1.9¢+04)- 2.8709e+06(1.3e+04) 4.1901e+06(1.0e+05)- 3.4404e+06(9.1e+04)
C-MTOP3-T2 3.5071e+07(1.1e+05)- 3.4976e+07(1.0e+05) 4.5364¢+07(6.6e+05)- 3.9234e+07(1.0e+06)
C-MTOP4-T1 1.3042e+03(2.3e-04)- 1.3042¢+03(2.0e-04) 1.3043e+03(1.7e-03)- 1.3043e+03(1.8e-03)
C-MTOP4-T2 1.3047e+03(4.7e-04)- 1.3047¢+03(1.8¢-04) 1.3048e+03(1.3e-03)- 1.3048e+03(1.7e-03)
C-MTOP5-T1 3.3750e+05(2.8e+02)- 3.3713e+05(2.4¢+02) 3.6149e+05(2.3e+03)- 3.4626e+05(1.7e+03)
C-MTOP5-T2 8.5128e+05(7.9e+02)- 8.5056e+05(7.0e+02) 9.0568e+05(5.7e+03)- 8.7383e+05(4.0e+03)
C-MTOP6-T1 1.8741e+08(2.1e+05)- 1.8706e+08(1.7e+05) 1.9987e+08(9.7e+05)- 1.9294e+08(1.1e+06)
C-MTOP6-T2 2.6582e+09(1.7e+06)- 2.6562e+09(1.2e+06) 2.7379e+09(1.0e+07)- 2.6960e+09(6.8e+06)
C-MTOP7-T1 6.2238e+04(7.6e+01)- 6.2134e+04(5.0e+01) 6.8513e+04(6.2e+02)- 6.4988e+04(5.4e+02)
C-MTOP7-T2 1.4821e+04(1.7¢+01)- 1.4808e+04(1.3e+01) 1.5930e+04(1.1e+02)- 1.5263e+04(1.2e+02)
C-MTOPS-T1 5.2015e+02(1.1e-01)- 5.2008e+02(6.6e-02) 5.2058e+02(7.9¢-02)- 5.2047e+02(1.0e-01)
C-MTOPS-T2 5.2016e+02(9.1e-02)~ 5.2013e+02(8.7e-02) 5.2061e+02(7.8e-02)- 5.2049e+02(8.1e-02)
C-MTOP9-T1 1.8983e+04(4.5¢+00)- 1.8977e+04(3.6e+00) 1.9296e+04(3.5e+01)- 1.9138e+04(3.3e+01)
C-MTOP9-T2 1.6222e+03(5.1e-02)~ 1.6222e+03(6.8e-02) 1.6230e+03(1.4e-01)- 1.6227e+03(1.0e-01)
C-MTOP10-T1 1.9481e+09(1.3e+06)- 1.9463e+09(6.9¢+05) 2.0401e+09(8.9e+06)- 1.9873e+09(7.7e+06)
C-MTOP10-T2 6.7436e+08(3.9e+05)- 6.7367¢+08(3.3e+05) 7.1113e+08(4.2e+06)- 6.8978e+08(2.5e+06)

+/-/~ 0/17/3 \ 0/19/1 \
“+7 (or “-” ) indicates the original multi-objective EMT algorithm is better (or worse) than the enhanced

algorithm, and

indicates they obtain the statistically similar performance.
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It 1s observed that MFEA-FLM and MFEA-AKT-FLM significantly outperform their
original algorithms on most test problems, respectively. Additionally, they do not lead
to any performance degradation on these test problems. The comparison results show
that employing FL-based mechanisms to modify the value of rmp and select the
most promising method for knowledge transfer can further enhance the multitasking

performance of MFEA and MFEA-AKT in handling the ten complex MTOPs.

2) Comparison Results on Multiobjective MTOPs

To study the effectiveness of FL-based mechanisms on the multiobjective MTOPs
(called MO-MTOPs), one common test suite including nine test problems [55] is used.
Each MO-MTOP has two multiobjective optimization tasks. In the experiment, FL-
based transfer parameter adaption and transfer method selection are incorporated into
three multiobjective EMT algorithms (.e., MO-MFEA, MO-MFEA-II, and MO-
MFEA-DAE). Specifically, two FL-based mechanisms are incorporated into MO-
MFEA, and the enhanced algorithm is called MO-MFEA-FLM. Additionally, MFEA-
DAE-FLLM 1s formed by incorporating FL-based transfer parameter adaption into
MO-MFEA-DAE to dynamically modify the value of rmp. However, MO-MFEA-
II-FLM 1s formed by incorporating FL-based transfer method selection into MO-
MFEA-II to adaptively select the promising transfer method from multiple candidates
(i.e., Baseline, AE, KAE, and AT). The detailed numerical results are provided in Tab.
5.14, showing that the three enhanced algorithms with the proposed FL-based mecha-
nism(s) significantly outperform their original algorithms on most test problems, re-
spectively. The comparison results show that incorporating FL-based mechanism(s)
into the three EMT algorithms can significantly improve the multitasking perfor-

mance in handling the multiobjective MTOPs.
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Table 5.14: Mean objective values and standard deviations obtained by two EMT al-
gorithms and their enhanced algorithms on nine multobjective MTOPs.

MO-MTOP MO-MFEA MO-MFEA-FLM MO-MFEA-II MO-MFEA-II-FLM | MO-MFEA-DAE |MO-MFEA-DAE-FLM
CIHS-T1 | 2.67¢-02(6.69¢-03)- | 1.79¢-03(6.26e-04) | 8.88¢-03(3.24¢-03)- | 3.65¢-03(2.08¢-03) | 5.00e-02(1.55¢-02)- | 9.66e-03(2.95¢-03)
CIHS-T2 | 2.73e-02(3.80e-03)- | 6.41e-03(1.22¢-03) | 1.52¢-02(2.89¢-03)- | 9.19¢-03(2.24¢-03) | 3.85¢-02(5.96¢-03)- 1.61e-02(2.37¢-03)
CIMS-T1 | 1.71e-01(7.30e-02)- | 1.17e-01(9.22e-02) | 1.93¢-01(5.45¢-02)~ | 1.68e-01(7.96¢-02) | 1.54¢-01(7.90e-02)~ | 1.61e-01(8.12¢-02)
CIMS-T2 | 1.48¢-02(1.04¢-02)- | 8.65e-03(6.41e-03) | 1.00e-02(6.59¢-03)~ | 1.27e-02(9.57¢-03) | 1.37¢-02(9.48¢-03)~ | 1.39¢-02(9.16¢-03)
CILS-T1 | 2.16e-02(6.28¢-03)- |4.09e-03(1.11e-03) | 9.82¢-02(9.50e-02)- | 7.39e-02(1.86e-01) | 4.64¢-02(1.13¢-02)- 1.47e-02(4.76e-03)
CILS-T2 | 4.33¢-04(4.20e-05)- | 2.54e-04(1.36e-05) | 6.90e-04(2.01¢-04)- | 4.01e-04(2.21e-04) | 6.21¢-04(6.78¢-05)- | 3.56e-04(4.05e-05)
PIHS-T1 | 2.01¢-01(5.29¢-02)- [ 3.33¢-02(1.39¢-02) | 1.54¢-01(4.74¢-02)- | 4.65¢-02(1.396-02) | 3.36¢-01(1.00¢-01)- | 1.376-01(5.03¢-02)
PIHS-T2 [2.33¢+00(3.90¢-01)- [1.78¢+00(2.80e-01)| 2.02¢+00(2.88¢-01)~ | 1.92¢+00(3.24¢-01) | 3.87¢+00(6.05¢-01)- | 2.986+00(5.44¢-01)
PIMS-T1 | 3.18¢-02(1.33¢-02)- | 5.31-03(1.49¢-03) | 6.31¢-02(1.38¢-02)~ | 5.12¢-02(2.37¢-02) | 1.06¢-02(2.87¢-03)- |  8.70e-03(2.02¢-03)
PIMS-T2 |1.74¢+01(2.67¢+00)- | 7.29¢-01(9.066-01) | 1.98¢+01(3.76¢+00)- |8.736+00(7.566+00) | 1.98¢+00(3.82¢-01)- |  1.51¢+00(8.44¢-01)
PILS-T1 | 5.42¢-03(1.29¢-03)- | 1.15e-03(3.56e-04) | 5.37¢-03(1.33¢-03)- | 4.42e-03(1.38e-03) | 7.94¢-03(2.08¢-03)- | 5.94e-03(2.02e-03)
PILS-T2 | 1.79¢-01(2.30e-02)- | 8.71e-02(1.09¢-02) | 6.69¢-01(3.92¢-03)- | 3.19e-01(2.19¢e-01) | 1.67¢-01(1.75¢-02)- 1.48e-01(1.55e-02)
NIHS-T1 |1.37e+01(3.54e+00)- | 2.26e+00(3.12e-01) | 5.98e+00(1.69¢+00)+ | 8.75¢+00(2.39¢+01) | 1.67e+01(4.27¢+00)- | 4.23e+00(1.04e+00)
NIHS-T2 | 8.95¢-02(2.75¢-02)- | 5.16e-03(1.89¢-03) | 2.90e-02(1.30e-02)- | 2.61e-02(6.10e-02) | 1.16¢-01(3.89¢-02)- 1.94¢-02(8.46e-03)
NIMS-T1 | 5.70¢-01(2.82¢-01)- |2.93¢-01(2.44¢-01) | 7.06¢-01(3.34¢-01)~ | 6.11¢-01(2.85¢-01) | 7.56¢-01(3.90¢-01)- | 4.566-01(3.16¢-01)
NIMS-T2 | 1.41e-01(3.04¢-01)- |2.40¢-02(3.41¢-02) | 2.35¢-01(1.36e-01)~ | 2.69¢-01(2.17¢-01) | 1.41e-01(1.30¢-01)- | 5.556-02(6.34¢-02)
NILS-T1 | 1.05¢-02(7.54¢-05)- |9.98¢-03(6.61¢-04) | 1.066-02(6.02¢-05)~ | 1.06¢-02(9.69¢-05) | 1.06e-02(1.53¢-04)~ |  1.06¢-02(1.14¢-04)
NILS-T2 | 6.52¢-01(3.75¢-03)- | 6.44¢-01(1.20¢-03) | 6.52¢-01(3.46¢-03)~ | 6.50¢-01(2.72¢-03) | 6.44¢-01(1.07¢-03)~ |  6.44¢-01(9.58¢-04)
/-1~ 0/18/0 \ 1/9/8 \ 0/14/4 \
“+7 (or “-” ) indicates the original multi-objective EMT algorithm is better (or worse) than the enhanced

algorithm, and “~” indicates they obtain the statistically similar performance.

5.5 Conclusion

This chapter has proposed a new MFEA with FL-based AKT for performing more
effective and robust EMT. The proposed method includes two main components,
which are employed to dynamically adapt the extent of knowledge transfer and adap-
tively select the promising method for knowledge transfer, respectively. Specifically,
in the first component, one fuzzy inference system is employed to estimate the change

in the transfer parameter, and then the value of the transfer parameter 1s dynamically
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modified to determine the transfer extent. Additionally, in the second component, an-
other one fuzzy inference system is used to estimate the applicability of each transfer
method for the current transfer scenario. After that, the most promising one 1S adap-
tively selected from multiple candidates for knowledge transfer. In comparison with
existing deterministic methods, the proposed method has the mechanism for the fuzzy
or inaccurate information processing, which effectively enhances the reliability in
making decisions. The experimental results have validated the effectiveness of the

proposed method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis aims to study and design adaptive knowledge transfer methods to intelli-
gently address one or more of three critical issues concerning knowledge transfer in

ETO.

Firstly, to adaptively decide what to transfer in ESTO, this thesis has proposed a
fuzzy classifier-assisted method to select the most useful source solution for
knowledge transfer for accelerating the optimization of the target task, as presented in
Chapter 3. By constructing the training data, the fuzzy classifier is built to estimate
the solution usefulness of all available source tasks by returning a class label and its
membership degree to that class. The label indicates whether the source task 1s useful

for the target task, while 1ts membership degree to that class further quantifies the de-
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gree of 1ts usefulness if it 1s useful. Thus, the proposed method can accurately select
the most useful solution for knowledge transfer when compared to existing methods
based on distance metrics or traditional machine learning models. The experimental
results on a series of test problems have validated the effectiveness of the proposed

method.

Secondly, to adaptively decide how to transfer in EMT, this thesis has proposed an
ensemble method of domain adaptation to select the promising domain adaptation
method for conducting knowledge transfer, as presented in Chapter 4. Considering
multiple domain adaptation methods, the differences in the mapping construction
mechanisms enable their mapping behaviours to have a unique bias in representing
the connection from the source task to the target task. One specific bias can show the
superiority in its preferred multitasking transfer scenario, while it has poor perfor-
mance 1n other scenarios. By striking the balance between efficacy and diversity
when determining which one domain adaptation method for use, the proposed method
can take full advantages of the strengths of each domain adaptation method to further
enhance knowledge transferability across tasks. The experimental results on a series

of test problems have validated the effectiveness of the proposed method.

Finally, to adaptively decide when to transfer and how to transfer in EMT, this thesis
has proposed a fuzzy logic-based adaptive knowledge transfer method, as presented in
Chapter 5. The proposed method includes two fuzzy logic-based components, such as
fuzzy logic-based transfer parameter adaption and fuzzy logic-based transfer method
selection. The first component 1s designed to effectively adapt the transfer extent
along the multitasking search process by dynamically adjusting the value of the trans-
fer parameter, thereby alleviating the risk of negative transfer. Meanwhile, the second

component 1s employed to adaptively select the optimal transfer method from multi-
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ple candidates for conducting knowledge transfer, thereby enhancing knowledge
transferability across tasks. The experimental results on a series of test problems have

validated the effectiveness of the proposed method.

However, these proposed methods also introduce extra hyperparameters, which may
significantly impact the optimization efficiency and performance. Various hyperpa-
rameters turning strategies have been proposed, including grid search, random search,
Beyesian optimization, and genetic algorithms [141]. The choice of hyperparameter
selection strategy often depends on the specific problem, the available computational
resources, and the desired balance between exploration and exploitation. Using hy-
perparameters turning strategies can result in the proposed methods that generalized
well to new problems, achieving better optimization efficiency and performance in

practical applications.

6.2 Future Work

Exploring more intelligent and effective ETO methods to address the challenges of
what, how, and when to transfer remains much room. Some potential research direc-

tions are listed as follows.
1) Advanced ETO Approaches for Large-Scale Optimization

In real-world applications, optimization problems containing a large number of deci-
sion variables are called large-scale optimization problems (LSOPs) [142]. As the
number of decision variables increases, the search space will grow exponentially.

Traditional EAs tend to suffer from slow convergence in solving LSOPs due to their
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huge search spaces, which will result in a larger computational cost. A number of
methods have been developed to assist EA solvers in solving LSOPs, such as decision
variable grouping [143], decision space reduction [144], and novel search strategies
[145]. As an emerging search paradigm incorporating transfer learning into EAs, ETO
shows significant potential in further enhancing the search capability of EAs in han-

dling LSOPs. Possible research directions include the following:

e Designing advanced ETO approaches to accelerate the optimization of LSOPs by
conducting effective knowledge transfer among different groups of decision varia-

bles.

e Designing advanced ETO approaches to accelerate the optimization of LSOPs by

conducting effective knowledge transfer in the reduced decision space.

e Designing advanced ETO approaches to accelerate the optimization of LSOPs by
transferring knowledge from small-scale problem space to large-scale problem

Space.

2) Advanced ETO Approaches for Expensive Optimization

Expensive optimization problems (EOPs) refer to those problems in which the objec-
tive functions are expensive to evaluate [146]. The limited numbers of real function
evaluations bring difficulties to traditional EAs when solving EOPs. Over the years,
surrogate-based EAs have attracted increasing attention, aiming to replace real func-
tion evaluations by employing cheap surrogate models, including various classifica-
tion models [147] and regression models [148]. However, several issues, including

lacking enough training data and retraining surrogate model for each EOP, which se-
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verely limit the optimization efficiency and performance of existing surrogate-based
EAs. As an emerging search paradigm incorporating transfer learning into EAs, ETO
shows huge potential in addressing EOPs [149], [150], [151]. Potential research topics

include the following:

e Designing advanced ETO approaches to solving EOPs by transferring the training

data from other related problems.

e Designing advanced ETO approaches to solving EOPs by transferring the trained

surrogate model from related problems.

e Designing advanced ETO approaches to solving EOPs by transferring the training

data and the trained surrogate model from other related problems concurrently.

3) Advanced ETO Approaches for Multiform Optimization

In contrast to the existing two conceptual realizations for ETO, such as ESTO and
EMT, multiform optimization (MFO) focuses on solving a single target optimization
problem by employing the search experiences from some alternative formulation(s) of
the target problem rather than that of other optimization problems [19]. Generally,
compared to the original target problem, some alternative formulations usually have
simpler search spaces, which may be related to the original target problem. Therefore,
transferring useful knowledge from simpler alternative formulations can avoid ineffi-
cient evolutionary searches, thereby enhancing the optimization efficiency and per-
formance on the original target problem. In the literature, some MFO algorithms have
been developed to construct problem formulations and conduct knowledge transfer

across different formulations [32], [152], [153], [154]. However, as the complexity of
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problems increases, there are various new challenges for designing effective MFO

approaches [155]. Possible research directions include the following:

e Designing advanced formulation construction approaches to generate useful alter-
nate formulations for a given target optimization problem with various complex

characteristics.

e Designing advanced knowledge transfer approaches to transfer useful knowledge

across different problem formulations.

e Designing advanced resource allocation approaches to allocate appropriate compu-

tational resources for solving different problem formulations.

4) Theoretical Study in ETO

The research of ETO 1s still in the initial stage and lacks theoretical studies. In the
literature, there are several theoretical studies and analyses, such as the proof of faster
convergence of EMT compared to 1its single task counterpart [119], [156], and the ex-
ploitation of similarity between distinct tasks for positive knowledge transfer [49],
[50]. To further promote the development of theoretical studies and analysis in the

context of ETO, some potential research topics include the following:

e Theoretical study on the proof of faster convergence of MFO compared to its sin-

gle formulation counterpart.

e Theoretical study on revealing the phenomenon of negative transfer when employ-
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ing EMT to solve LSOPs.

e Theoretical study on the correlation between knowledge transfer and surrogate
model for facilitating the improvement of optimization performance and efficien-

cy 1n solving EOPs.

5) Integrating ETO with large language models

In recent years, large language models (LLMs) have attracted increasing attention as
they have shown remarking capabilities in understanding and generating human-like
text [157], [158]. Several studies have been made by integrating LLLLMs into the field
of evolutionary computation [159], [160], [161]. However, there is little studies of

integrating LLMs into ETO. Some potential research topics include the following:

e Using ETO methods to develop more effective prompts that maximize the utility

of LLMs in handling various tasks.

e Using ETO methods to optimize the architectures and hyperparameters of LLMs

to enhance their performance on specific tasks.

e Using LLMs to automatically design advanced ETO methods to solve various

complex real-world problems.
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