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ABSTRACT 

Enhancing the energy efficiency of building energy systems has become a key issue regarding 

carbon neutrality because buildings consume about 36% of energy and contribute 40% of 

carbon emissions. In the past decade, machine learning and data-driven modeling have been 

widely studied for building energy management applications, such as fault detection and 

diagnosis, optimal control, and demand response. Despite extensive research, the data-driven 

approach faces two major challenges regarding practical applications: a lack of interpretability 

and reliability. Interpretability refers to providing more insightful information for respective 

data-driven applications. Reliability aims to improve the applicability of data-driven model-

related applications, such as model generalization ability, robustness and reliability in HVAC 

controls. 

Therefore, this PhD study aims to develop data-driven methods with enhanced interpretability 

and reliability for optimal control and diagnosis in HVAC systems. In this study, the following 

research questions are addressed using novel methods with enhanced reliability and 

interpretability: Q1: How can we develop data-driven models with high interpretability and 

generalization ability under data scarcity? Q2: How can we address the measurement 

uncertainty issue when developing data-driven models? Q3: How can we resolve the physical 

inconsistency issue to enhance the interpretability and reliability of data-driven models? Q4: 

How can we achieve reliable online control (balancing energy efficiency and control 

smoothness) when deploying data-driven models in complex optimization problems? 

Questions Q1 to Q3 address general issues in the development of data-driven models, while 

Q4 addresses the application of data-driven models in complex optimization problems. 

In CHAPTER 3, the data scarcity issue (Q1) is addressed by proposing a similarity learning-

based method for enhanced interpretability and generalization ability, especially in typical 

HVAC FDD applications where only limited labeled data are available. The output of the 

proposed model is the similarity of the input to each fault, which provides better interpretability 

than conventional models that only output the probability of each fault. A temporal data-

splitting method is utilized to handle the high correlation between training data and test data 

when a random split is adopted. The proposed method is validated in two scenarios: insufficient 

labeled data (scenario 1) and imbalanced labeled data (scenario 2), respectively. In scenario 1, 

the proposed method improves diagnostic accuracy by 45.7% compared to the baseline model 
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when labeled data are limited. In scenario 2, the method demonstrates superior generalization 

ability when dealing with imbalanced labeled data, improving fault diagnosis accuracy from 

88.4% to 90.8%. 

In CHAPTER 4, the measurement uncertainty issue (Q2) is addressed by probabilistic 

machine learning with a risk evaluation scheme for enhanced interpretability and reliability. 

For the typical chiller sequencing control problem, this study proposes a robust chiller 

sequencing control strategy to overcome the limitations faced by conventional cooling load 

predictions in controlling chiller plants. The strategy utilizes probabilistic cooling load 

predictions, with one-hour-ahead probabilistic cooling load predictions formulated as a normal 

distribution using the natural gradient boosting algorithm. A risk-based action evaluation 

scheme is designed to determine the optimal number of operating chillers by assessing the risks 

of possible control actions. The proposed strategy is validated through case studies based on 

historical operational data and an in-situ test. The case studies show that the strategy 

significantly enhances the reliability of the chiller plant by reducing the total switching number 

of chillers by up to 43.6% (from 55 to 31 in a week). The in-situ test results reveal a 56.5% 

decrease in total switching number compared to the rule-based strategy. The average daily 

energy savings is approximately 3945.1 kWh. Additionally, the coefficient of performance of 

the chiller plant increased by 4.2%. 

In CHAPTER 5, the measurement uncertainty issue (Q3) is addressed by a new physically 

consistent data-driven method for enhanced interpretability and reliability. For a typical 

variable speed pump modeling problem, this study proposes a physically consistent, data-

driven optimal sequencing control strategy to address the often-overlooked issue of optimal 

pump sequencing in HVAC water systems that adopt variable speed parallel pumping. By 

integrating physical knowledge with data-driven modeling, this approach enhances 

interpretability and reliability in real applications. The interpretable ElasticNet model is trained 

using features including pump frequency and total flow rate for different numbers of operating 

variable speed pumps. The optimal sequencing is subsequently determined using a physically 

consistent speed/frequency prediction method. The proposed strategy is validated using real 

building operational data, with results showing an average of 10% energy saving compared to 

the conventional rule-based strategy. 

In CHAPTER 6, reliable online control (Q4) is achieved by a novel multi-objective 

optimization-based framework that enhances smoothness—an aspect often neglected in 

conventional deterministic and metaheuristic optimization algorithms. The distance between 
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two successive control actions based on Manhattan and Euclidean distances is one optimization 

objective, along with energy conservation as another optimization objective. The proposed 

strategy is validated using a typical optimization problem: optimal chiller loading. Results 

show that the proposed approach significantly improves control stability while maintaining 

energy efficiency compared to conventional optimization algorithms. 

To sum up, the proposed data-driven methods improve interpretability and reliability compared 

to existing data-driven methods, addressing general issues in the development of data-driven 

models and the application of data-driven models in complex optimization problems related to 

fault diagnosis and optimal control in central air-conditioning systems. The new methods 

developed in CHAPTER 4 and CHAPTER 5 (i.e., chiller sequencing strategy and pump 

sequencing strategy) have been deployed to the real chilled water system in the PolyU campus, 

demonstrating the energy efficiency and applicability of the proposed methods. In the future, 

the proposed data-driven methods are promising for large-scale deployment. 
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CHAPTER 1  INTRODUCTION 

1.1. Background and motivation 

1.1.1. Data-driven methods for optimal control and diagnosis 

The building sector is a major contributor to global energy consumption and carbon emissions. 

In 2020, it accounted for 36% of global energy consumption and 37% of global CO2 emissions 

[1]. Throughout the life cycle of buildings, the operation phase accounts for 80%-90% of total 

energy consumption [2]. Therefore, building energy management is crucial for global energy-

saving and carbon neutrality. Many researchers have quantified the potential of building 

energy-saving and proposed plans to enhance building energy efficiency. For example, China 

aims to achieve a 50% reduction in building energy consumption, and one strategy is to adopt 

efficient equipment and smart building management systems (BMSs) [3]. In Hong Kong, 

buildings consume 90% of electricity, and therefore, the government plans to reduce the 

electricity consumption of commercial buildings by 30%-40% before 2050 [4]. In the U.S., 

energy consumption from the building sector can be reduced by efficient heating and advanced 

control. Researchers estimated that CO2 emissions from buildings can be reduced by up to 78% 

by 2050 [5]. In the EU, the building sector would need to reduce its emissions by 60% to reach 

the EU objective of a 55% reduction by 2030 [6]. 

BMSs play an essential role in improving energy efficiency and flexibility during building 

operations. BMSs can implement various smart control strategies in building energy systems, 

such as heating, ventilating, and air conditioning (HVAC) systems, energy storage systems, 

and renewable energy systems [7,8]. Conventional control strategies such as rule-based control 

strategies relying on physics and experience face great challenges in tackling the complicated 

interactions among building energy systems [9]. Modern buildings are usually equipped with 

advanced metering infrastructure and numerous sensors; thus, the BMS can collect and store 

massive energy-related operational data. The prospect of utilizing such big data has opened up 

due to the advancement in machine learning algorithms. Machine learning algorithms can 

discover and learn new knowledge (i.e., data-driven models) from the data to support energy-

efficient/energy-flexible control in the ever-changing energy market [10]. With such data-

driven models, building energy systems can be monitored to make decisions autonomously 

with the support of big data [11]. 
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Machine learning and data-driven modeling have effectively facilitated building energy 

management in various typical applications in the past decade, including cooling load 

prediction, equipment modeling, fault detection and diagnosis (FDD), etc.  

Cooling load prediction refers to predicting the cooling demand of a building ranging from 

hours to months. Accurate load/power prediction is important for improving building energy 

efficiency and flexibility [12]. Cooling load prediction models are useful for optimizing the 

operation of chiller plants, e.g., chiller sequencing control [13]. Compared with physics-based 

load/power prediction, machine learning algorithms require only historical data instead of 

detailed physical information and thermal balance equations, making them easier to develop 

and deploy. 

Modeling HVAC systems is crucial for improving energy efficiency. With the development of 

sensor technology, data-driven modeling is getting more and more popular [14]. Data-driven 

models are created by gathering performance data from real-world applications and 

establishing correlations between input and output variables of HVAC equipment using 

mathematical techniques such as statistical regression or artificial neural networks (ANN). 

Data-driven modeling techniques are widely adopted due to their simplicity and high accuracy, 

typically for modeling equipment such as chillers, piping systems, and heating/cooling coils. 

In addition, by combining data-driven modeling and optimization algorithms, optimization 

algorithms, model-based control can be achieved to improve energy efficiency and flexibility 

in building energy systems [15]. 

Machine learning has also been used to detect and diagnose faults in building energy systems, 

i.e., FDD [16]. Early detection of equipment faults is essential for building energy efficiency, 

especially for energy-intensive equipment such as chillers. Unlike knowledge-driven FDD, 

data-driven FDD requires less professional knowledge and can distinguish rare and unforeseen 

energy patterns in real operations [17], which are valuable for FDD. 

Despite extensive research, the data-driven approach faces two major challenges when it comes 

to practical applications: a lack of interpretability and reliability. 

1.1.2. Challenge I: Lack of interpretability 

Model interpretability refers to the extent to which the predictions or decisions of a data-driven 

model can be understood by humans [18]. For example, in typical data-driven FDD, the output 

is simply the probability of each fault, without providing more insightful information to 

decision-makers [19]. Although the applications of machine learning algorithms have fully 
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demonstrated their values for building energy management, their broad applications are limited 

by a lack of interpretability [20]. In other words, most data-driven models are not transparent 

or explainable.  

The trade-off between model accuracy and model interpretability limits the power of machine 

learning [21,22], as shown in Figure 1.1. For example, ANN usually consists of an input, 

output, and hidden layers. Increasing the number of hidden layers of an ANN model can often 

improve its accuracy in modeling complicated systems, but the interpretability of the model 

decreases [23]. The model becomes “deeper” and “darker”, making it more difficult for users 

to understand and interpret the modeling process and results. Meanwhile, the existing ready-

to-interpret models, such as linear regression, lack good prediction performance. Researchers 

made great efforts to improve the prediction performance of black-box models, such as ANN 

and support vector machine (SVM), but generally overlooked their interpretability in building 

energy management. Figure 1.1 also shows the two major approaches to addressing the trade-

off between model accuracy and model interpretability: ante-hoc and post-hoc approaches. 

 
Figure 1.1. The trade-off between model interpretability and accuracy 

The lack of interpretability also challenges the mass deployment of data-driven models in real-

world applications [24]. First, during the training process, the training data are usually 

incomplete; therefore, the trained data-driven models need to tackle out-of-distribution data 

after deployment [25]. During the training process of data-driven models, physical knowledge 

and information are usually ignored compared with physics-based modeling. Therefore, 

decision-makers may find the data-driven models untrustworthy if the models are not trained 

on complete operational data and the real-world performance is worse than on the training data. 

Second, because of the black-box nature, data-driven models produce output without any 
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explanations. Decision-makers usually need insights into how and why the black-box models 

produce such predictions so that they can understand, check and apply the models. Generally, 

there is still significant skepticism in the building industry about the broad application of 

machine learning because there is a mismatch between training and deployment environments. 

Additionally, in practical applications, it is also necessary to provide reasonable interpretations 

that help operaters to understand the decisions made by data-driven models. 

1.1.3. Challenge II: Lack of reliability 

Previous data-driven models and their applications in building energy management have also 

lacked reliability. First and foremost, the generalization ability is key to the performance of 

data-driven models when new data is fed in, i.e., after the models have been trained based on 

historical data and deployed for online applications. This is especially true in the application 

of FDD, where historical labeled data are usually limited or unbalanced. When data-driven 

models are trained on such datasets, they are often overfitted or biased, which impairs their 

reliability in actual applications. Additionally, the reliability of data-driven models faces the 

challenge of high autocorrelation in time-series data, which can lead to overestimation of model 

performance. 

In optimal control of building energy systems, the challenges of data-driven model-based 

applications lie in robustness and stability. For example, cooling load prediction-based 

sequencing control for multiple-chiller plants tends to be reliable but suffers from uncertainties 

from the sensors and weather forecasts. Therefore, it is necessary to consider the uncertainty 

of cooling load prediction to make more robust control actions. Furthermore, the application 

of data-driven model-based optimization must consider the stability of online control. 

Deterministic algorithms provide predictability but can suffer from rigidity, while 

metaheuristic algorithms face instability due to their inherent randomness.  

1.2. Aim and objectives 

The lack of interpretability and reliability are the main challenges in applying data-driven 

models to HVAC systems. Among them, interpretability is an important foundation for 

reliability. The ultimate goal of improving interpretability and reliability is to enhance the 

applicability and scalability of data-driven models in practical applications, enabling machine 

learning techniques to be applied to practical projects on a large scale rather than stopping at 

the research stage. Therefore, this study aims to develop data-driven methods with enhanced 
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reliability and interpretability, and to validate their applicability using data experiments and 

in-situ tests. This aim can be accomplished by addressing the following four research questions: 

Q1: How can we develop data-driven models with high interpretability and generalization 

ability under data scarcity? 

Q2: How can we address the measurement uncertainty issue when developing data-driven 

models? 

Q3: How can we resolve the physical inconsistency issue to enhance the interpretability and 

reliability of data-driven models? 

Q4: How can we achieve reliable online control (balancing energy efficiency and control 

smoothness) when deploying data-driven models in complex optimization problems? 

Questions Q1 to Q3 address general issues in the development of data-driven models, while 

Q4 addresses the application of data-driven models in complex optimization problems. 

1.3. Organization of the thesis 

The thesis consists of 7 chapters. A summary of the content in each chapter is presented as 

follows: 

CHAPTER 1 introduces the background and motivation for data-driven methods aimed at 

enhancing interpretability and reliability in optimal control and diagnosis of air-conditioning 

systems. It discusses two major challenges faced by conventional data-driven models in HVAC 

systems: lack of interpretability and lack of reliability. The chapter also presents the aim, main 

objectives, and the organization of the thesis. 

CHAPTER 2 presents a comprehensive review of research on data-driven building energy 

management and the two major challenges: the lack of interpretability and reliability. The 

significance of interpretability and reliability of data-driven model-based applications in 

building energy management are detailed. The main research gaps are identified from the 

literature review. 

CHAPTER 3 addresses the data scarcity issue (Q1) and presents a similarity learning-based 

fault detection and diagnosis method for building HVAC systems. The output is the similarity 

towards each fault, which provides better interpretability. The temporal data-splitting method 

is adopted to tackle the issue of the high correlation of training data and test data using random 

split. Two case studies were conducted to test the effectiveness of the proposed method, with 
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insufficient labeled data and imbalanced data, respectively. Two case studies are conducted 

utilizing an open dataset for AHU FDD to validate the proposed method. 

CHAPTER 4 addresses the measurement uncertainty issue (Q2) and presents a probabilistic 

machine learning for enhanced interpretability and reliability for the typical measured cooling 

load-based chiller sequencing control problem. One-hour-ahead probabilistic cooling load 

prediction in the form of a normal distribution is made using natural gradient boosting 

(NGBoost). An online risk-based action evaluation module is designed to determine the 

number of operating chillers and simultaneously assess the risks in the process and the 

reliability of the strategy. The proposed control strategy determines the number of operating 

chillers based on the probability distributions of cooling loads in the following hour. The 

proposed strategy is validated using historical operational data experiments and an in-situ test. 

CHAPTER 5 addresses the measurement uncertainty issue (Q3) and presents a novel 

physically consistent data-driven method for enhanced interpretability and reliability using the 

modeling of variable speed pumps as an example. For different numbers of operating variable 

speed pumps, features including pump frequency and total flow rate are used to train the 

interpretable ElasticNet data-driven model. The optimal sequencing is then determined using 

a physically consistent speed/frequency prediction method. The energy performance of the 

proposed strategy is validated using real building operational data. 

CHAPTER 6 achieved reliable online control (Q4) by proposing a multi-objective 

optimization-based framework for enhanced smoothness when data-driven models are used in 

complex optimization problems to overcome the instability issue often found in conventional 

deterministic and metaheuristic algorithms. The distance between two successive control 

actions is one optimization objective alongside energy conservation. The control stability of 

the proposed strategy is validated using a typical optimization problem: optimal chiller loading. 

CHAPTER 7 summarizes the main contributions of this PhD study and gives 

recommendations for future research and applications. 

The organization of the main chapters of the thesis and the comparison of the proposed methods 

with their respective convention methods in terms of interpretability and reliability are 

illustrated in Figure 1.2. In this study, interpretability refers to providing more insightful 

information for respective data-driven applications. Furthermore, reliability aims to improve 

the applicability of data-driven model-related applications, such as model generalization ability, 

robustness and control in HVAC controls. 



 
 

7 

 
Figure 1.2. Enhancing interpretability and reliability: proposed vs. conventional methods 

 

Research question Conventional method Proposed method

Q1: Data scarcity
(CHAPTER 3)

Probability of faults Similarity to faults like k-NN
Lack of generalization ability 
with limited labeled data

Improved generalization 
ability using similarity learning

Q2: Measurement 
uncertainty
(CHAPTER 4)

Point prediction without 
uncertainty

Probabilistic prediction with 
risk interpretation

Lack of control robustness Improved control robustness 
using risk evaluation

Q3: Physical 
inconsistency
(CHAPTER 5)

Pure data-driven pump curves ElasticNet interpretable model 
integrating physical rules

Simulation based on 
manufacture curves and 
affinity laws

Data experiment and in-situ 
test

Q4: Reliable Online 
Control
(CHAPTER 6)

Lack of control smoothness Improved control smoothness

Interpretability Reliability
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CHAPTER 2  LITERATURE REVIEW 

This chapter presents a comprehensive review of research on data-driven building energy 

management and the two major challenges: the lack of interpretability and reliability. Section 

2.1 details the significance of model interpretability for building energy management, 

introduces the taxonomy of interpretable machine learning techniques, and then reviews the 

literature that adopts ante-hoc and post-hoc approaches. Section 2.2 details the importance of 

reliability of data-driven model-based applications in building energy management, especially 

in fault detection and diagnosis and model-based control. Section 2.3 summarizes the main 

research gaps identified from the literature review. 

2.1. Interpretability of data-driven applications 

2.1.1. Classification of interpretable machine learning techniques 

According to different criteria, i.e., application stage, interpretability scope, and model 

dependency, techniques for interpretable machine learning can be categorized into different 

groups [26], as shown in Figure 2.1. For example, the physics-informed neural network (PINN) 

is an ante-hoc, global, and model-specific technique that integrates physical rules into neural 

networks [27]. Detailed classifications of interpretable machine learning techniques are 

provided in Sections 2.1.1.1-2.1.1.3. Then, Sections 2.1.2 and 2.1.3 introduce the popular 

interpretable machine learning techniques based on two application stages: ante-hoc and post-

hoc. 

 
Figure 2.1. Classification of interpretable machine learning techniques 
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2.1.1.1. Application stage 

First, interpretable machine learning techniques can be classified according to when the 

techniques are adopted in building data-driven model. Ante-hoc interpretable machine learning 

techniques are applied during the model training process, and post-hoc interpretable machine 

learning techniques are applied after training. Figure 2.2 shows how ante-hoc and post-hoc 

interpretable techniques are applied at different stages in the model training process. 

Ante-hoc interpretable data-driven models are usually self-explanatory. Therefore, data-driven 

models developed using ante-hoc techniques are also called intrinsic or transparent models. For 

example, linear regression is a simple ante-hoc model for predicting a continuous outcome 

variable based on one or more predictor variables. Linear regression is self-explanatory because 

it makes predictions using a linear combination of the input variables, which can be easily 

understood and explained [26]. Although linear regression has high interpretability according 

to Figure 1.1, it is too simple to address complicated problems in building energy management 

[28]. In this paper, a variant of linear regression named generalized additive models (GAMs) 

is reviewed. GAMs have strong flexibility and interpretability in regression and classification 

tasks [29]. As shown in Figure 2.2, post-processing is used to evaluate each input's impact 

according to the parameters of the intrinsic model. For example, the coefficients of GAMs can 

be used to evaluate input features' positive or negative effects. 

 
Figure 2.2. Ante-hoc and post-hoc interpretability 
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Post-hoc interpretable machine learning techniques are applied to black-box models after 

training. They are used to interpret and understand the dependency and significance of specific 

input features over the output by fitting surrogate models without the need to understand the 

internal structures. Post-hoc interpretable machine learning techniques generate interpretation 

by examining the interrelationship between input features and the predictions. 

2.1.1.2. Interpretability scope 

Interpretability scope refers to the scope of model output that needs to be interpreted. As the 

classification problem shown in Figure 2.3, global interpretation explains a data-driven model 

based on a full view of the model structures and parameters. In contrast, local interpretation 

explains each prediction individually.  

 
Figure 2.3. Global and local interpretability in a classification task 

Global interpretable machine learning techniques aim to provide a holistic understanding of 

the data-driven model by measuring the global effects of the input features on the model 

prediction. They require only the black-box models and the entire training data. Global 

interpretation helps decision-makers gain a macro-level understanding of the data-driven 

model, including the most influential input features. In the context of FDD, global 

interpretability helps explain which features are most significant in predicting equipment faults. 

Local interpretable machine learning techniques provide a transparent understanding of the 

model prediction for a specific input sample. Instead of focusing on the importance of global 

features, local methods focus on the contribution of each feature to a prediction sample and 

require both the black-box model and prediction sample. Local interpretation is important for 
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decision-makers to trust the output or correct the wrong output. In the context of FDD, local 

interpretability helps explain which features contribute the most to the prediction sample, such 

as high supply air temperature in the air handling unit operation. 

2.1.1.3. Model dependency 

Model dependency refers to whether the interpretable machine learning technique can be 

applied to any data-driven model or specific models. Some interpretation techniques treat the 

data-driven models as black-box models, and these techniques are applicable to any data-driven 

model or are independent of the type of data-driven model. Therefore, these techniques are 

model-agnostic, as Figure 2.4 (a) illustrats. Other techniques can only be applied to interpret 

certain types of data-driven models and are thus called model-specific techniques, as shown in 

Figure 2.4 (b). 

Model-agnostic techniques can be applied to any data-driven model because they require only 

the input and output of the data-driven model without considering its inner structures. 

Therefore, most post-hoc interpretable machine learning techniques are model agnostic. For 

example, LIME is a post-hoc model-agnostic tool that can approximate any data-driven model 

locally. 

Model-specific techniques can dig into the specific characteristics or architecture of the, 

providing in-depth interpretability that may not be possible with model-agnostic methods. For 

example, the attention mechanism is usually employed in neural networks to improve 

interpretability as a model-specific technique.  

 
(a) Model-agnostic              (b) Model-specific 

Figure 2.4. Model-agnostic and model-specific interpretable machine learning techniques 
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40 papers that adopted the ante-hoc approach to improve model interpretability for building 

energy management were reviewed in this section. These papers are further divided into four 

categories according to the specific ante-hoc techniques adopted: modified neural networks, 

attention mechanism, clustering and feature extraction, and generalized additive models 

(GAMs). Figure 2.5 shows the number of studies in each category from 2018 to 2022.  

 
Figure 2.5. Distribution of publications by year published and ante-hoc category 

2.1.2.1. Modified neural networks  

ANN has become popular in building energy management in the past decades. It is well known 

that ANN is dark for users. A typical approach to improving ANN's interpretability is 

modifying neural networks' structure, which generates the so-called modified neural networks 

with enhanced interpretability. 

There are two ways to modify the structure of neural networks in general. First, elements with 

physical meaning can be directly added to the models. Shan et al. integrated the gravitational 

model (GRA) with the gated recurrent units (GRU) model for building energy consumption 

prediction [30]. In the proposed GRA-GRU model, linear model GRA and non-linear model 

GRU were ensembled. The weights of the two models were determined using mutual 

information and weighted entropy. Wang et al. proposed a direct explainable neural network 

(DXNN) using the ridge function instead of the widely-used sigmoid activation function as the 

kernel function [31]. Considering the polynomial characteristic of the ridge function, the 

mathematical relationship between the model input and output can be directly obtained. The 

DXNN was used for solar irradiance forecasting, and the results showed that the output is a 
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quadratic function of input features. Zhang et al. combined a deep belief network with Takagi-

Sugeno-Kang fuzzy classifier to generate interpretable fuzzy rules for indoor occupancy 

detection [32]. Kim modified the conventional convolutional neural network (CNN) and 

proposed interpretable CNN (I-CNN) for indoor human activity detection by adding temporal 

convolution and pooling layers into the CNN. The author demonstrated that the proposed I-

CNN could rank the importance of sensor signals and improve the performance of I-CNN [33]. 

Chen and Zhang used domain knowledge to obtain the average trend of district load reflecting 

the periodic patterns so that the data-driven model could predict irregular local load fluctuations 

[34]. 

Second, domain knowledge can be used to guide the design of neural networks or improve the 

training process of neural networks, making the neural networks and training processes 

physically explainable. Chen et al. used domain knowledge to guide the design of model 

input/output and the structure of neural networks for air-conditioner modeling [35]. To make 

the control signal predicted by the deep Q network trustworthy and aligned with domain 

knowledge, Yu et al. integrated a priori knowledge into the searching strategy. They concluded 

that the knowledge-based search strategy could significantly reduce training time [36]. The 

modified LSTM proposed in [37] also used thermal dynamics to guide the design of a recurrent 

neural networks (RNN) model for building thermal modeling, which can learn interpretable 

dynamic models from measurement data. Di Natale et al. proposed a physically consistent 

neural network by incorporating domain knowledge into black-box models for building 

thermal modeling, and the proposed approach was proved to be physically interpretable [38]. 

2.1.2.2. Attention mechanism 

The attention mechanism was first introduced by Bahdanau et al. to improve the performance 

of the encoder-decoder model for machine translation [39]. Inspired by the cognitive attention 

process, the attention mechanism can improve the interpretability of encoder-decoder models 

by stressing some parts of the input features in making predictions while weakening the rest 

features based on the context vectors. Because encoder-decoder models deal with time-series 

data, the attention mechanism can consider the temporal dependency of time-series data [40]. 

It is an ante-hoc approach because it is embedded into the prediction model [41]. 

Many studies have used the attention mechanism to analyze temporal dependency in time-

series data in both regression and classification tasks. According to the individual attention 

matrix of input samples, Li et al. analyzed the temporal dependency of time-series data and 
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removed redundant features for chiller fault diagnosis [42]. It could provide local interpretation 

of the importance of sensors on the fault diagnosis resulting from the encoder-decoder network. 

Attention weight heatmap was used in [43] to explore the features emphasized in the LSTM 

model for day-ahead daily load prediction. Results showed that one day-ahead load is the most 

important feature. Similarly, average attention patterns in [44] demonstrated that the impact of 

historical features on model output exhibited 24-hour periodicity, indicating a strong 

relationship between energy consumption and the hour of the day. Li et al. adopted the attention 

mechanism in the ANN model for building cooling load prediction. They found that the most 

recent energy consumption data had the most significant influence on the next-hour cooling 

load prediction [45]. In [46,47], spatiotemporal attention values were almost evenly distributed 

across all input time steps for zone air temperature prediction because air temperature had faster 

thermal dynamics than the building envelope. 

Technically, the attention mechanism generates local interpretations because it treats each input 

sample individually. Nevertheless, many studies treat the average of attention values as global 

interpretability. For example, Guo et al. [48] stated that the average attention values of LSTM 

could represent the importance of input features, which conform to the domain knowledge.  

2.1.2.3. Clustering and feature extraction 

Unlike modified neural networks and attention mechanisms embedded into black-box models 

(neural networks), clustering and feature extraction techniques do not change the structure of 

the original black-box models. The clustering and feature extraction techniques improve the 

interpretability of data-driven models by clustering raw data into several groups with human-

interpretable characteristics (e.g., interpretable rules) or extracting interpretable features. 

Bhatia et al. proposed a novel clustering technique named axis-aligned hyper-rectangles [49] 

for clustering simulated building thermal design data. Compared with other clustering 

techniques, it could generate hyper-rectangle boundaries that can be described with 

interpretable rules. It was employed to extract interpretable rules, like the range of window-to-

wall ratio, to assist the design of building envelopes in different climate zones [49]. Some 

studies have compared the performance of clustering techniques with black-box models. 

Grimaldo and Novak claimed that the interpretable machine learning approach did not sacrifice 

the model's accuracy [50]. Their case study showed that the k-nearest neighbors (kNN) 

algorithm had similar accuracy for load prediction compared with sophisticated data-driven 
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models such as RF and gradient boosted trees. The kNN algorithm is interpretable because it 

is model-free and makes predictions according to the nearest neighbors of a sample. 

Visualizing the results of clustering techniques can improve interpretability as it shows 

intuitive differences among different clusters. Grimaldo and Novak used kNN and decision 

trees (DT) to predict building energy consumption on similar days. They then developed a 

smart energy dashboard visualizing energy consumption of similar days to help users 

understand the prediction results [51]. They also presented a radar chart to compare the 

similarity of weather parameters in the same prediction task [52].  

2.1.2.4. Generalized additive models 

Generalized additive models (GAMs) have gained increasing attention recently owing to their 

model interpretability. GAMs are a variant of generalized linear models that can model the 

non-linear additive effects of each feature [26]. The general structure of GAMs is defined as:  

 𝑔(𝔼(𝑦 ∣ 𝐱)) = 𝐰! + 𝑓"(𝐱") + ⋯+ 𝑓#(𝐱#) (2.1) 

where 𝑔(·) is the link function that connects the estimated mean 𝔼(𝑦 ∣ 𝐱) to the sum of additive 

effects, 𝐰! is the model intercept, and 𝑓#(·) is the additive effect function (e.g., linear, cubic 

spline) for the feature 𝐱# to be estimated. 

Compared with linear models, GAMs are more flexible and can incorporate irregular and 

volatile effects to improve flexibility in handling high-resolution data [53]. Bujalski and 

Madejski used GAMs to predict heat production in a combined heat and power plant system 

[54]. The results showed that ambient air temperature, solar radiation, and hour of the day had 

different impacts on the heating load. For example, outdoor air temperature showed a negative 

linear relation with heating load prediction, while solar radiation showed a negative exponential 

relationship. In addition, GAMs were also applied to identify operational patterns of HVAC 

systems [55] and perform sensitivity analysis of input features in thermal comfort modeling 

[56], thermal energy storage modeling [57], distributed PV power prediction [58], and short-

term energy prediction in buildings [59]. 

2.1.3. Post-hoc approach 

51 papers that adopted the post-hoc approach were reviewed in this section. In Figure 2.6, the 

Sankey diagram shows the connections in three dimensions, namely model dependency, post-

hoc technique, and interpretability, along with the number of papers in each subdivided 

category. Because some studies adopted more than one post-hoc technique, the total number 
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of papers in each dimension is greater than the total number of papers adopting the post-hoc 

approach (i.e., 51). 

 
Figure 2.6. Sankey diagram depicting the connections of reviewed studies on different model 

dependencies, post-hoc techniques, and interpretability scopes. 

2.1.3.1. Local interpretable model-agnostic explanations (LIME)  

Local interpretable model-agnostic explanations (LIME) was proposed by Ribeiro et al. in 2016 

as a model-agnostic approach to obtain local interpretation for individual predictions [60]. The 

local interpretation is obtained by training a local surrogate model to approximate the local 

characteristics of the black-box model in the region around the prediction sample. The 

interpretable model is obtained by optimizing the following objective 𝜉(𝑥): 

 𝜉(𝑥) = argmin
$∈&

	ℒ(𝑓, 𝑔, 𝜋') + Ω(𝑔) (2.2) 

where 𝑓 is the black-box model, 𝑔 is the local surrogate model from searching space 𝐺 that 

defines the type of interpretable models such as linear or logistic models, 𝜋' defines locality 

around data instance 𝑥, ℒ is a loss function that measures the fidelity of the surrogate model 𝑔 

to the black-box model 𝑓, and Ω measures the complexity of the surrogate model. 

As LIME can give the contradict or support value of each input feature for a prediction sample, 

it is valuable to explain the prediction of classification problems. Wastensteiner et al. used 

LIME to interpret machine learning -based time-series classification for building energy 

consumption and analyzed the stability and reliability of the interpretation [61]. Madhikermi 
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et al. trained ANN and SVM for AHU fault diagnosis, and six samples were randomly selected 

to demonstrate the interpretability of LIME [62]. Srinivasan et al. experimented with 

interpreting three types of faults of chiller operation (i.e., scaling in condenser fins, sensor 

errors caused by pulsations in the flow, and false alarm) using LIME. On the one hand, 

decision-makers can know the foundation of the model output to support fault/normal decisions 

based on the contradict and support values given by LIME. On the other hand, LIME also 

provides information for the possible false alarms of the black-box model [63].  

Apart from classification, LIME can also be applied to regression tasks. Fan et al. integrated 

the contradiction and support values into a single metric to evaluate the confidence level of a 

single prediction of chiller COP efficiency (i.e., low or high efficiency) [64]. Kotevska et al. 

used LIME to get the local linear approximation of the deep reinforcement learning (DRL) 

setpoint controller model. The results showed that the impact of zone temperature on setpoint 

recommendation varies in different ranges [65]. Zdravković et al. employed LIME to generate 

the local feature importance of prediction samples for heating demand prediction and anomaly 

detection in district heating systems [66,67]. Likewise, Arjunan et al. adopted LIME to improve 

the interpretability of the CatBoost model for building energy benchmarking [68]. In the case 

study, the authors gave an example of a building that consumed less energy than its peer group. 

According to the local interpretation provided by LIME, it was because the target building had 

a lower air-conditioned floor area. Jin et al. presented a LIME-based interpretable building 

energy benchmarking framework that could help evaluators understand the results [69]. For 

example, a building that consumes more energy than its peers would obtain a low score. Geyer 

et al. proposed a component-based methodology that predicted the heat flow of envelopes, 

heating/cooling demand, and final energy consumption by stages. DNN models were used for 

prediction in each stage, and LIME was employed to interpret the model output [70]. Besides, 

LIME was also used for other building management-related applications such as distributed 

PV power prediction [71], electricity demand prediction [61], and indoor CO2 concentration 

prediction [72]. 

Although LIME is a model-agnostic technique suitable for any data-driven model, the 

interpretation obtained from LIME depends on data-driven models. Madhikermi et al. found 

that the interpretation of ANN and SVM models using LIME differs. For example, in FDD, the 

temperature of supply air after the heat recovery unit is the most influential feature for ANN, 

while the temperature of waste air is the most influential feature for SVM [62]. 
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2.1.3.2. Shapley additive explanations (SHAP) 

Shapley additive explanations (SHAP) is also a model-agnostic tool proposed by Lundberg and 

Lee in 2017 to interpret individual predictions [73]. SHAP computes Shapley values of each 

feature representing marginal contribution using a conditional expectation function. Although 

SHAP is designed as a local interpretability tool, the aggregation of Shapley values can be 

regarded as a global interpretation. For example, Carlsson et al. used the average of Shapley 

values as feature importance of the ANN model and found the most important features for 

energy consumption [74,75]. Ugwuanyi also used the average Shapley values for the global 

interpretation of CO2 prediction [72]. 

Similar to LIME, SHAP is suitable for explaining the influential features of fault detection. In 

the study [76], SHAP generated the local and global interpretations of RF for FDD in district 

heating systems. Local interpretations revealed the influential features for individual prediction, 

while global interpretation showed the overall impact of each feature in the black-box model. 

Gao et al. used SHAP to interpret RF and LightGBM models for chiller FDD [77]. Santos et 

al. adopted XGBoost to detect fraud electricity consumption in the market, and SHAP was used 

to build interpretations for fraud activities afterward [78]. Additionally, SHAP can be used to 

interpret time-series classification for building energy consumption [61]. 

For building energy benchmarking, SHAP can determine the key features contributing to high 

or low energy usage intensity of individual buildings. In study [79], SHAP was used to interpret 

the XGBoost-based residential building energy benchmarking model in New York. According 

to SHAP values, unit density was the strongest predictor for energy use intensity of residential 

buildings in New York with the highest positive correlation, followed by property assessed 

value and number of floors. Arjunan et al. improved the interpretability of a conventional 

benchmarking method named EnergyStar by combining the XGBoost algorithm and SHAP 

interpretable machine learning framework [80]. 

Load/power prediction is the most popular application for SHAP. Chang et al. adopted SHAP 

to provide the interpretability analysis to reveal feature importance for PV power generation 

models (TS-SOM and XGBoost) [81]. Results showed that global horizontal irradiance for 

center value was the most influential feature, which was consistent with the Pearson correlation 

analysis. Movahedi and Derriblea investigated the interpretation and interrelationship of three 

prediction models (electricity, water, and gas consumption) using SHAP [82], and results 

showed that the type of buildings (i.e., residential buildings or commercial buildings) and water 
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consumption were the most influential feature for electricity prediction. They also found that 

gas and water consumption were strongly interrelated because gas was used for water heating 

in target buildings. Bellahsen and Dagdougui used SHAP to rank the feature importance as 

global interpretation. The three most influential features were historical loads right ahead of 

the forecasting time, one day, and one week ahead of the forecasting time [83]. Results also 

showed that the RF model relied heavier on historical features instead of calendar features than 

other models. According to the SHAP values from the XGBoost model, Chakraborty et al. 

found that single-family homes were likely to have a more significant increase in building 

cooling energy consumption under global climate change [84]. Besides, buildings in hot-humid 

zones would consume more energy for cooling because of global warming. SHAP was adopted 

to interpret the performance-related indices (i.e., cooling capacity, COP, and wet/dew point 

efficiency) of a dew point cooler predicted by DNN in [85]. For example, a sample had a higher 

cooling capacity than the base value because of the relatively high intake air velocity. In [86], 

SHAP values showed that load and solar generation one-hour-ahead and the solar irradiance 

were the top three influential features for hourly ahead distributed PV power prediction. 

Similarly, Li and Wang summarized that day-ahead energy consumption was the most 

influential for daily load prediction [87]. 

2.1.3.3. Visualization and partial dependency plot  

Visualization is a useful technique for users to build a better understanding of black-box 

models. The t-distributed stochastic neighbor embedding (t-SNE) creates two-dimensional 

projections for high-dimensional data using a non-linear transformation. Visualizing the 

embedding or hidden layer of neural networks using t-SNE has been widely adopted because 

it helps reveal the hidden mechanisms within neural networks. Kim and Cho added the state 

transition that can be visualized using t-SNE in the autoencoder model to improve the 

interpretability of electricity demand prediction results [88,89]. In [90], the authors visualized 

the latent states of autoencoders using t-SNE to explain the possible reasons for high or low 

energy consumption prediction. Singaravel et al. did similar research by visualizing the 

embedding layer of the CNN model to improve the understanding of building peak load 

prediction [91]. It was found that models with good generalization had higher separability than 

models with poor generalization when plotting using t-SNE. 

Heatmap is another commonly used visualization tool that reveals the magnitude of a 

phenomenon in two dimensions. In [92], Kim and Cho analyzed class activation heatmaps to 

explore the influential features for load prediction. They found that one of the sub-metering 
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related to an electric water heater and an air conditioner was the most noteworthy feature. Based 

on a heatmap interpretation tool for DNN named Grad-CAM, Li et al. proposed a modified 

variant to obtain fault-discriminative information from the one-dimensional CNN for chiller 

fault diagnosis [93]. To improve the interpretability of LSTM-based electricity load prediction, 

Kim and Cho proposed a deep learning model that can visualize and analyze the correlation 

between latent variables and output. The results showed that the two latent variables had 

different time dependencies, i.e., short-term and long-term dependencies [94]. 

The partial dependency plot (PDP) is a visualization tool that generates global interpretations 

for black-box models. PDP measures the effect of a feature by averaging the marginal 

distribution of other features for the entire dataset. PDP shows the overall effect, whereas the 

individual conditional expectation (ICE) plot visualizes the impact of a feature for each sample. 

The limitation of PDP and ICE is that they assume that input features are uncorrelated. In the 

study [65], PDP indicating the global effect of input showed that indoor temperature was the 

most influential feature for setpoint recommendation in DRL. Additionally, the ICE plot 

revealed the feature variation impact of inputs by showing the control upper and lower bound. 

Overall, most interpretations from the DRL model were consistent with domain knowledge. 

Zhang et al. adopted PDP to assess the marginal impact of each input feature in the thermal 

comfort model [95]. They concluded that the marginal impact of each feature was different, 

and most features had a positive impact on PMV value. In the study [96], PDP was employed 

for feature importance, and the impact of floor area was much larger than building ID because 

the PDP curve of floor area had a larger variation. Mouakher et al. found that the dwelling type 

and the number of bedrooms were influential features for energy consumption prediction 

according to the PDP of the LSTM load prediction model [97]. 

2.2. Reliability of data-driven applications 

2.2.1. Model generalization ability for fault detection and diagnosis 

Over the past decade, FDD in HVAC systems has been widely studied, with three main 

approaches: expert rule-based, physical model-based, and machine learning-based approaches 

[98]. Expert rule-based FDD relies on domain knowledge to construct expert rules with 

predefined threshold values for decision-making [99,100]. This approach is easy to develop 

and implement but is less accurate due to oversimplicity [101]. Physical model-based FDD 

heavily relies on domain knowledge to develop physical models and fault indicators to measure 

the difference between the measurements and the indicators predicted by the physical models 
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[102]. Compared to the rule-based approach, the physical model-based approach is more 

reliable because it excels in dealing with dynamic operations. However, this approach requires 

detailed physical information about the system and is time-consuming to build and validate 

physical models, making it more information-demanding and labor-intensive. Machine 

learning-based FDD relies on historical data to develop supervised [103] or unsupervised 

models [104]. Compared to expert rule-based and physical model-based approaches, the 

machine learning-based approach is easier to develop because it utilizes historical operational 

data and does not require detailed information about the HVAC system. FDD is usually treated 

as a classification task in machine learning, which can be binary (for fault detection) or multi-

class classification (for fault diagnosis) [105]. Binary classification detects whether a working 

condition is normal or faulty [106], while multi-class classification aims to determine whether 

the working condition is normal or suffers various faults[107,108]. The machine learning-based 

approach can address performance shifts of equipment during long-term operation by updating 

the model automatically, which is hardly achievable using expert rule-based or physical model-

based approaches [109]. Previous studies have developed machine learning-based models 

using popular algorithms such as support vector machines [110,111], decision trees [112,113], 

artificial neural networks [114,115], and deep neural networks [116] for FDD in HVAC 

systems [98]. These studies demonstrated high accuracy and exemplified the great potential of 

the machine learning-based approach in FDD, given adequate labeled data, including both 

normal and faulty data. 

However, the practical deployment of machine learning-based FDD encounters significant 

challenges because the labeled data is often limited in real-world scenarios. On the one hand, 

conventional machine learning algorithms usually require a large amount of labeled data to 

prevent overfitting due to the curse of dimensionality in machine learning (the demand for 

labeled data increases exponentially with dimensionality) [117]. On the other hand, faulty data 

usually come from limited maintenance records, which are insufficient to train and validate 

data-driven models. Therefore, it is important to develop a new FDD method with high 

generalization ability for HVAC systems in which only a few labeled samples are available. 

To improve the performance of machine learning-based FDD under limited labeled data, semi-

supervised learning methods have recently been adopted for FDD in HVAC systems. Semi-

supervised learning enhances the performance of supervised learning by leveraging large 

amounts of unlabeled data with high confidence scores [118]. The confidence score of an 

unlabeled sample is the probability associated with the output class from supervised models. 
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In [25], the support vector machine (SVM) was employed to calculate the confidence score. If 

the predicted class of an unlabeled sample has a higher probability than a predefined threshold, 

the sample will be assigned with the class label and added to the training set for the next round 

of training. By adopting the semi-supervised SVM, the results showed above 80% accuracy on 

the test data for AHU fault diagnosis. Similarly, a generative adversarial network (GAN)-based 

semi-supervised learning framework was proposed to improve the chiller fault diagnostic 

accuracy under limited and imbalanced labeled data [119]. The proposed framework could 

generate artificial fault samples to balance the training data, and the fault diagnostic accuracy 

reached 90% when each fault type had 30 samples. Li et al. compared GAN-based semi-

supervised learning with a supervised baseline [120,121], and the proposed semi-supervised 

method showed a 3%–10% improvement in FDD accuracy. It was also found that when the 

number of labeled samples decreased, the proposed method gained more accuracy 

improvement. Fan et al. designed case studies to test the generalization ability of semi-

supervised learning in detecting unseen faults in AHU operations [122,123]. The results 

showed that semi-supervised learning improved the fault detection rate by about 10% when the 

size of labeled data is small. The performance of semi-supervised learning gradually 

approached the baseline with the increase of labeled data.  

Similarity learning is a novel supervised learning method for classification problems to 

enhance the generalization ability of classification problems, and it has been successfully 

adopted in a variety of FDD applications, such as bearing fault diagnosis [124,125], power 

system fault diagnosis [126,127], robot fault diagnosis [128,129], etc. Similarity learning 

measures the similarity between the new samples and labeled samples to make FDD predictions. 

Conventionally, the similarity of a pair of samples can be calculated in two ways. First, 

similarity can be calculated from the geometric differences, such as Euclidean distance 

[130,131], Manhattan distance [132], and cosine distance [133]. Second, correlation 

coefficients such as Pearson correlation coefficient [134] and Spearman's rank coefficient [135] 

can serve as similarity metrics. On the other hand, similarity learning learns the similarity by 

training neural networks in a supervised learning way. The distance-based and correlation-

based similarity measures work well when used to compare univariate time-series samples. 

However, these similarity metrics cannot reasonably measure the similarity between two 

multivariate time-series samples because it is difficult to determine the weights of each variable 

[136]. Despite the success of similarity learning in many FDD applications, only a few studies 

have adopted similarity learning in building energy management. Tan et al. proposed a sensor 
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fusion framework for detecting occupancy in residential buildings [137]. In the proposed 

framework, similarity learning was adopted to classify indoor image data into two classes, i.e., 

occupied and vacant. The results proved the value of similarity learning, especially given 

limited labeled data. In view of the boom of deep learning and the success of similarity learning 

in various industries, similarity learning is a promising tool for detecting and diagnosing faults 

in building HVAC systems, particularly when labeled data is limited. 

Another issue in previous studies on using machine learning algorithms to analyze time-series 

data is the neglect of the high autocorrelation in the time-series data, which often causes biased 

evaluation or overestimating model performance. Autocorrelation describes the degree of 

correlation of the same variables between two successive observations. For example, the supply 

air temperature of AHU at any time should be very close to the previous observation (e.g., the 

temperature a minute ago) [138]. When developing data-driven models for non-time-series data, 

training and test data are usually split randomly because data samples are usually independent 

of each other. However, when such a random split strategy is applied to time-series data, the 

actual performance of data-driven models might be exaggerated because of the high 

autocorrelation in the time-series data [139]. For example, if the random split ratio of 

training/test time-series data is 1:1, it means that every test sample can find similar neighbors 

in the training data. In this way, the test data have almost identical distribution with the training 

data, and the out-of-distribution generalization ability of the proposed methods may not be as 

good as that shown by test results. Therefore, the temporal train-test split is a preferable method 

to validate the out-of-distribution generalization ability of the proposed methods [140].  

2.2.2. Robustness and stability for optimal control 

2.2.2.1. Measurement uncertainty in measurement-based control problems 

Due to the variability and seasonal patterns of cooling load, multiple-chiller systems are 

popular in large commercial buildings [141,142]. Chiller sequencing control plays a critical 

role in achieving the balance of cooling demand and supply because it determines the number 

of operating chillers (and associated pumps and cooling towers) and switches chillers on/off 

frequently in response to the measured cooling load. Chiller sequencing control strategies 

should provide buildings with sufficient cooling while minimizing energy consumption. The 

unnecessary chillers could meet the cooling load but consume extra electricity because of 

interlocked pumps and cooling towers. Insufficient operation of chillers cannot provide enough 

cooling and cause thermal discomfort. The significance of chiller sequencing control lies in its 
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ability to balance multiple conflicting objectives, such as energy consumption, chiller capacity 

utilization, and maintenance schedules, and to effectively handle real-world complexities, such 

as variable cooling loads, chiller failures, and maintenance schedules [143]. 

In the past few decades, various chiller sequencing control strategies have been developed and 

successfully implemented in chiller plants, employing either a direct or an indirect indicator of 

the building's real-time cooling load [143]. The direct approach is also called total cooling load-

based (Q-based) sequencing control, which calculates the real-time cooling load from the 

measured chilled water supply and return temperatures and flow rate [144]. A chiller will be 

turned on if the measured cooling load exceeds the switching-on threshold, and one of the 

operating chillers will be turned off if the measured cooling load is below the switching-off 

threshold [145]. Usually, a dead band and minimum switching time are set to prevent frequent 

switching of chillers when the cooling load fluctuates around the threshold. The indirect 

approach uses an indicator of the operating chillers' loading ratio compared with their total 

cooling capacity, such as chiller water return temperature, electric power and current, and 

bypass water flow, to determine whether a chiller should be switched on or off.  

Owing to its reliability, the direct approach is more commonly used in multiple-chiller systems 

[146,147]. However, the uncertainties associated with flow and temperature measurements in 

practical applications may result in a lack of robustness in control decisions [148]. Ensuring 

the accuracy of flow measurements in practical installations can be challenging due to sensor 

faults, data transmission problems, and other factors. This challenge is particularly pronounced 

after a certain period of operation, as it involves difficulties associated with site calibration and 

sensor replacement [149]. The problem of uncertainties with temperature measurements is 

particularly challenging and critical because the temperature difference between the supply and 

return temperatures of the chilled water is usually slight (around 5 K), which means a slight 

disturbance to the temperature measurements may cause a significant deviation of the measured 

cooling load. To deal with the flow measurement uncertainty, Sun et al. [150] developed a 

model of flow measurements using Bayesian inference and Markov chain Monte Carlo 

methods to make uncertainty-tolerant chiller sequencing decisions. Liu et al. [151] considered 

the uncertainty of maximum cooling capacity to develop a more robust chiller sequencing 

strategy. 

A survey shows that system reliability and stability is the second most crucial criterion, 

following total energy use as a criterion when evaluating intelligent HVAC control systems 

[152]. Good system reliability and stability are crucial for reducing maintenance costs and 
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extending the life of service equipment. Frequently switching chillers may damage the chiller 

plant's service life and system performance [153]. Despite efforts to improve the robustness of 

chiller sequencing control by considering the uncertainties of measurements and chiller 

maximum capacity, these conventional strategies seldom consider cooling load fluctuation in 

the short term. Even though the measured cooling load is accurate and a dead band is set, the 

cooling load continuously varies with the changing operation conditions, including the outdoor 

air temperature, relative humidity, solar radiation, and indoor occupancy [154]. The load 

fluctuations in a short period, say 30 minutes, may cause unnecessary on/off switching. In such 

a case, the automatic chiller sequencing strategy may become unreliable and unstable [155]. 

In recent years, research has been conducted to enhance the robustness of chiller sequencing 

by utilizing cooling load predictions. Liao and Huang [13] proposed a hybrid predictive chiller 

sequencing control strategy by predicting the cooling load in the following hours using an 

autoregressive with exogenous (ARX) model. The case studies showed that the total switch 

number was reduced by 20%. However, this hybrid strategy ignores the uncertainty with 

cooling load prediction [156]. Uncertainty with data-driven models is a broad concern. 

Research showed that uncertainties within the data used to train the model would propagate 

and eventually significantly increase the uncertainty of the predictions [157]. Therefore, the 

uncertainty of cooling load predictions should be considered to make more robust sequencing 

actions. 

Because both the direct and indirect approaches are based on real-time measurements, there 

are some major challenges in practical applications. Firstly, real-time measurements are ever-

changing [158,159]. Therefore, even with a minimum control interval and a dead band, direct 

and indirect approaches may result in unnecessary on/off switching actions due to short-term 

measurement fluctuations. For example, when the terminals in a building, such as fan coil units 

(FCU) or variable air volume (VAV) terminals, are suddenly turned on in the morning to 

remove accumulated heat gain during the night, it can lead to a sudden increase in the cooling 

load of the entire chiller plant [160]. As a result, the cooling load may exceed the threshold for 

switching on an additional chiller, particularly if the chillers are already operating at a high 

PLR. Unlike the overall building cooling demand increase due to weather changes [161,162], 

this sudden increase in cooling load is a short-term fluctuation and usually does not require an 

additional chiller. Therefore, it is necessary to predict short-term cooling loads to help achieve 

more robust sequencing control [163]. Liao and Huang [13] employed an autoregressive with 

exogenous (ARX) prediction model and verified its contribution to chiller sequencing control, 
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aiming to minimize unnecessary sequencing actions. Huang et al. [144] also emphasized the 

value of cooling load prediction for optimal chiller sequencing control. Chen et al. [164] 

proposed a robust chiller sequencing control strategy, which evaluates the risks of possible 

chiller sequencing actions based on probabilistic cooling load predictions. 

Another challenge for the applicability of chiller sequencing strategies based on real-time 

measurement is that both the measured values and the chiller switching thresholds can deviate 

from the actual values. For example, the most common Q-based strategy requires real-time 

measurements, including chilled water supply temperature, chilled water return temperature, 

and chilled water and flow rate. There can be random uncertainty and systematic biases in flow 

and temperature sensors [150]. The random uncertainty can be handled by data preprocessing 

techniques, such as data smoothing and outlier detection [165]. Systematic biases are usually 

caused by sensor drift, requiring sensor recalibration to reduce it [166]. Furthermore, the 

switching on/off thresholds in the Q-based strategy are typically set to the rated maximum 

cooling capacity of chillers, assuming that the maximum cooling capacity of a chiller is 

constant. However, in practice, one of the main challenges of implementing such strategies is 

that the maximum cooling capacity of the chiller can vary with the chiller's operating conditions 

[167].  

Due to the variation of the maximum cooling capacity, the chiller sequencing actions based on 

the fixed switching on/off thresholds can be inappropriate even if the cooling load is accurately 

measured. The existing research is mainly based on simulation platforms such as EnergyPlus 

[168] and TRNSYS [169], or validation using historical data. The assumption that the chiller's 

maximum cooling capacity is a known fixed value, typically the chiller's rated cooling capacity, 

is reasonable on simulation platforms. However, underestimating or overestimating the chiller's 

maximum cooling capacity may result in energy waste or affect end-user comfort. For example, 

underestimating the current operating chiller's maximum cooling capacity may lead to energy 

waste from running one or more surplus chillers [170]. On the other hand, overestimating the 

current operating chiller's maximum cooling capacity may result in insufficient cooling supply, 

affecting occupants' comfort. Liu et al. [151] propose a more accurate chiller model considering 

the variation of chiller maximum cooling capacity. The simulation results showed that the 

proposed chiller model had better robustness in chiller sequencing control. 
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2.2.2.2. Physical Inconsistency issue in data-driven equipment modeling: Variable speed 

pump as an example 

Variable frequency drives (VFDs) convert sinusoidal power from the grid, which has a constant 

rated frequency and voltage, into power with variable frequency and pulse width modulation, 

which is then supplied to connected motors [171]. As the VFD changes the frequency of power 

supply to the motor, the pump spinning speed varies proportionally [172]. Theoretically, the 

energy saving of reducing pump speed is significant because power consumption varies with 

the cube of the pump speed [173]. With the increasing adoption of VFDs, more HVAC chilled 

water systems are incorporating variable speed pumps (VSPs) to save energy consumed by 

pumps when the chilled water system's flow rate falls below the design flow rate. Typically, 

conventional differential pressure control is used to ensure fixed differential pressure at both 

ends of the cooling coil in the chilled water loop (i.e., differential pressure setpoint) [174]. To 

further save pump energy and provide greater flexibility, many large chilled water systems 

employ variable speed parallel pumping [175]. The operation of multiple identical VSPs is 

controlled by conventional differential pressure control and rule-based pump sequencing. All 

VFDs controlling the secondary pump motors receive identical commands, which are adjusted 

to maintain the differential pressure setpoint. As for the sequencing control, an additional VSP 

is activated when the operating pumps' frequencies reach their maximum (e.g., 50 Hz), and one 

of the active VSPs is deactivated when the operating pumps' frequencies reach their minimum 

(e.g., 30 Hz) [176]. 

Although variable speed parallel pumping has better energy efficiency and flexibility, the 

conventional rule-based pump sequencing strategy only ensures the need for differential 

pressure setpoint without considering the optimum energy efficiency for VSPs. Therefore, huge 

energy savings can be achieved by optimizing the sequencing control of parallel pumps. 

Optimal sequencing control resolves the optimum number of operating pumps at any particular 

time and their corresponding speeds, which will ensure minimum energy consumption while 

satisfying both the thermal and hydraulic demands of the water system. 

Wire-to-water efficiency, considered an effective tool for optimizing the sequencing control of 

parallel pumps, takes into account the entire energy conversion process from the electrical input 

(wire) to the hydraulic output (water) [177]. This comprehensive approach considers the 

combined efficiencies of the pump, motor, and VFD, allowing engineers and operators to 

evaluate and optimize the total pumping installation's performance [178]. When calculating the 

efficiency of a pump, manufacturers typically provide an efficiency curve at full speed. This 
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curve can be adjusted for partial speeds using the affinity laws. For motors and VFDs, 

efficiency curves from manufacturers or literature are commonly used. The optimal number of 

pumps for current working conditions can be determined by computing the wire-to-water 

efficiency under different pump operating conditions. The head-flow (H-Q) chart identifies the 

working condition area for each optimal number of operating pumps. Rishel et al. extensively 

researched optimizing the operation of parallel variable speed pumps in HVAC pumping 

systems using wire-to-water efficiency [177–179]. They aimed to sequence these pumps 

effectively based on wire-to-water efficiency or kW input to the pumping system. The core 

principle of their approach was to operate the pumps as closely as possible to their optimal 

efficiency curves. 

The applicability of wire-to-water efficiency faces challenges in two aspects. Firstly, this 

method heavily relies on motor and VFD efficiency curves from manufacturer data or literature. 

Due to varying installation conditions, the actual pump efficiency curve may differ 

significantly from the theoretical curve. Moreover, motor and VFD efficiency curves can vary 

with manufacturer models, and for those without provided curves, reference curves from 

literature are typically used. Therefore, the combined efficiencies of the pump, motor, and VFD 

often struggle to accurately reflect the operation of parallel variable speed pumps, significantly 

limiting the practical application of Wire-to-water efficiency in engineering. Wang et al. 

proposed a motor equivalent circuit approach for calculating the motor efficiency under 

variable frequencies [180]. Secondly, the efficiency of parallel variable pumping systems 

deteriorates over time due to wear and tear, a factor that Wire-to-water efficiency cannot 

capture. The efficiency of motors could decrease by as much as 5%, while the efficiency of 

pumps could drop by up to 25% [181]. Bernier and Bourret analyzed how decreasing pump 

speed affects motor and VFD efficiencies over time [182]. It was found that the power needed 

at the inlet of a pump-motor-VFD system was notably higher, particularly for oversized motors, 

compared to the expected power using pump affinity laws. 

The wide adoption of the Internet of things (IoT) and advanced measurement instruments 

technologies have led to an explosion of data available from HVAC systems. This data can be 

harnessed to develop data-driven control strategies that learn and adapt over time. Data-driven 

approaches offer the potential to overcome some of the limitations of the conventional pump 

sequencing methods by learning from real-time data. Wang developed data-driven models for 

modeling the efficiency of the motor and VFD together [183]. Results showed that the VFD 

input frequency and the motor shaft power can be used to regress the motor and VFD efficiency. 
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Jepsen et al. developed a data-driven pump model using the pump head and flow rate and 

validated the proposed model in a simple open-loop water system [184]. These data-driven 

methods require the accurate measurement of the pump head. However, the differential 

pressure between the discharge and suction pipes is the static head instead of the total head of 

the pump.  

2.2.2.3. Unreliable control for deploying data-driven models in complex optimization 

problems 

Optimization algorithms play an important role throughout the life cycle of buildings, 

especially in the design and operation stages. Optimization algorithms find the optimal solution 

for a given optimization objective with constraints, such as minimizing total energy 

consumption to maximize economic benefits [185]. Two types of variables need to be 

optimized: integer and continuous [186]. Integer variables represent the on/off status or the 

number of devices to be operated. Moreover, continuous variables can be device sizing and 

setpoints, depending on the specific optimization problems. 

Optimization algorithms are widely used in building energy systems for optimal design, 

demand response, and optimal control [187]. Optimal design for building energy systems 

determines the optimal configuration of building energy systems, such as HVAC systems, 

energy storage, and distributed renewable energy based on the heating and cooling demand, 

occupancy patterns, utility prices, and renewable energy resources [188,189]. The optimal 

configuration of building energy systems ensures the ideal match between energy demand and 

supply. During the operation stage, optimization algorithms can take advantage of the energy 

flexibility from building energy systems to interact with the grid, such as peak load reduction 

[8,190]. Furthermore, optimization algorithms can be used for optimal control in building 

energy systems, such as non-predictive model-based control [191] and model-predictive 

control [15]. The input of models is control signals and system states. Moreover, the output can 

be energy use or carbon emissions for the building energy systems. White-box, grey-box, or 

black-box modeling methods can be used for optimal control, depending on the availability of 

operational data and detailed information about the building energy systems [154]. 

According to the processes to find the optimal solution, optimization algorithms can be 

classified into deterministic and metaheuristic algorithms [185]. Deterministic algorithms find 

the optimal solution through a specific set of mathematical rules [192]. For example, the branch 

and bound (B&B) algorithm works by exploring the space of possible solutions and pruning 
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away branches that cannot lead to the optimal solution [193]. Metaheuristic algorithms, on the 

other hand, are non-deterministic and stochastic [194]. Metaheuristic algorithms are often 

inspired by nature or physics to find optimal solutions. For example, particle swarm 

optimization (PSO) mimics the social behavior observed in birds flocking or fish schooling 

[195].  

Table 2.1 presents a comparison of deterministic algorithms and metaheuristic algorithms. 

Deterministic algorithms are typically tailored for specific problems and can find the optimal 

solution when it exists. Unlike metaheuristic algorithms, deterministic algorithms are not 

influenced by randomness [196]. For a given optimization problem and constraints, the solution 

process is deterministic, and deterministic algorithms always produce the same output. 

However, using deterministic algorithms for online optimal control in building energy systems 

can cause stability issues. As the working conditions vary, the objective function and 

constraints of the optimization problem also vary over time. As a result, uncertainties in sensor 

measurements or fluctuations in building energy system operational measurements can lead to 

unstable control actions [150,164]. Fan et al. [197] applied the branch and bound algorithm to 

optimal chiller loading, and the results showed that the chillers switched on and off frequently 

due to fluctuations in cooling load. To enhance control stability, Fan et al. divided the cooling 

load into intervals of 10 and 20, respectively, and applied the branch and bound algorithm to 

only the maximum cooling load within each interval for optimal chiller loading. While the 

improved algorithm effectively enhanced control stability, it also increased energy 

consumption by 5%. Furthermore, as the number of intervals increased, control stability was 

compromised, indicating a tradeoff between control stability and energy efficiency. 

Table 2.1. Comparison of deterministic algorithms and metaheuristic algorithms 

Aspect Deterministic algorithms Metaheuristic algorithms 
Solution 
quality 

An optimal solution is 
guaranteed if one exists for 
specific problem types. 

Near-optimal solution 

Randomness No randomness involved; 
the process is predictable. 

Random processes are involved 
to escape local optima and 
explore the solution space. 

Flexibility Rigid and problem-specific More flexible and adaptable to 
various types of problems 

Examples Branch and bound; 
Lagrange method 

Particle swarm optimization; 
Genetic algorithms; 
Simulated annealing 
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Owing to the flexibility in handling various optimization problems, metaheuristic algorithms 

are increasingly being used to solve optimization problems in building energy systems. A 

recent literature review revealed that metaheuristics have been employed in 61% of studies 

related to the control of water-cooled central cooling systems [198]. Metaheuristic algorithms 

are generally divided into two categories based on their search processes: biology-based and 

physics-based. The most popular biology-based algorithms include particle swarm 

optimization (PSO) [199], genetic algorithm (GA) [200], and differential evolution (DE) [24], 

while simulated annealing (SA) [202] is the preferred physics-based algorithm. The solutions 

produced by metaheuristic algorithms vary due to random initialization and other random 

explorations, whether biology-based or physics-based, as shown in Figure 2.7. Metaheuristic 

algorithms do not guarantee an optimal solution but aim to find a satisfactory solution, i.e., a 

near-optimal solution. Therefore, metaheuristic algorithms often struggle to find only local 

optima within a limited search time. As shown in Figure 2.8, to maximize the well-known 

peaks function in MATLAB [203], there are two local optima and one global optimum. Even 

if the optimization problem remains unchanged, the solutions could shift from one local 

optimum to another local optimum if the random seed varies. Therefore, even when the 

working conditions of building energy systems are stable and the optimization problem remains 

unchanged, control actions derived from metaheuristic algorithms can still be unstable. 

 
Figure 2.7. Random processes in metaheuristic algorithms 
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Figure 2.8. Local optima in optimization problems 

To enhance the stability of GA for online optimal control, Ma and Wang [191] proposed a 

strategy that compares the energy consumption of the new optimal control action from GA to 

the adopted control action in the previous control period, updating the control action only if the 

energy savings from the new action exceeded 1%. Although this strategy improves the stability 

of control actions by somewhat sacrificing energy efficiency, it neglects the smoothness 

between successive control actions. Sun et al. [204] proposed a multiplexed optimization 

strategy that conducts an exhaustive search on each variable once a time within the control 

interval to avoid the dramatic variation in control actions. The results showed that multiplexed 

optimization improved control stability while achieving nearly the same energy efficiency as 

GA. However, the proposed multiplexed optimization is limited to optimizing continuous 

variables and does not extend to integer variables, precluding it from achieving optimal 

sequencing control for devices such as chillers, pumps, and cooling towers. 

2.3. Summary of research gaps 

Based on the literature review, the following research gaps have been identified for the four 

typical data-driven modeling applications: fault detection and diagnosis, cooling load 

prediction-based chiller sequence control, sequence control for parallel variable speed pumps, 

and model-based optimal control. Further research and development are needed to enhance the 

effectiveness and practical applicability of data-driven models and control strategies in building 

energy systems by improving interpretability and reliability: 
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1. Poor generalization ability under data scarcity. There is a lack of interpretability and 

generalization in conventional data-driven models due to the probability output and limited 

labeled data. Typical HVAC systems usually have limited labeled or unbalanced labeled 

data for training, which challenges the reliability of conventional data-driven models. In 

addition, existing data-driven models often do not address the high correlation between 

training and test data, leading to unreliable diagnostic results. 

2. Poor control reliability under measurement uncertainty. Current point prediction 

models do not consider the uncertainty of measurement and output and, therefore, have 

poor interpretability and reliability for control problems such as chiller sequencing control. 

There is a need for robust chiller sequencing control strategies that can handle the 

uncertainty of cooling load predictions. Moreover, there is a lack of in-situ tests to validate 

the applicability in actual chiller plant operations. 

3. Physical Inconsistency issue in data-driven equipment modeling: Variable speed 

pump as an example. Optimal pump sequencing is often overlooked despite the wide 

adoption of variable speed parallel pumping. There is a need for a control strategy that 

integrates physical knowledge with data-driven modeling to enhance interpretability and 

reliability. In addition, validating the proposed strategy with real building operational data 

is necessary to ensure its practical feasibility. 

4. Unreliable control for deploying data-driven models in complex optimization 

problems. Existing optimization algorithms are not tailored for online optimal control, 

and their stability is rarely considered. Deterministic algorithms may suffer stability issues 

due to variations in the optimization problem during online control. Metaheuristic 

algorithms’ solutions may be inconsistent due to their stochastic nature and exploration 

processes. There is a need for a novel approach to balance energy saving and stability in 

model-based online control. 

 



 
 

34 

CHAPTER 3  A SIMILARITY-LEARNING METHOD FOR 

ENHANCING MODEL GENERALIZATION ABILITY AND 

INTERPRETABILITY 

This chapter proposes a similarity learning - based method to solve the problem of data 

scarcity, enhancing interpretability and generalization ability. Conventional data-driven 

models for FDD simply output the probability of fault, which lacks interpretability and 

generalization ability under limited labeled data. To this end, this study proposes a similarity 

learning-based fault detection and diagnosis method for building HVAC systems. The output 

is the similarity (ranging from 0 to 1) towards each fault, which provides better interpretability 

like the typical high interpretable k-nearest neighbors (k-NN) method. The temporal data-

splitting method is adopted to tackle the issue of the high correlation of training data and test 

data when the random split is adopted. Two case studies were conducted to test the 

effectiveness of the proposed method, with insufficient labeled data and imbalanced data, 

respectively. The remainder of this chapter is organized as follows. Section 3.1 describes the 

research methodology developed to address the gaps in current research. Section 3.2 describes 

the two case studies conducted utilizing an open dataset for AHU FDD. The results of the two 

case studies are presented in Section 3.3, which includes in-depth discussions. Finally, Section 

3.4 concludes the main findings of this study. 

3.1. Proposed similarity learning-based fault diagnosis method 

3.1.1. Overview of the proposed method 

In conventional supervised multi-classification tasks, the input is a single sample 𝑋, and the 

desired output of the classification function 𝑐𝑙𝑎𝑠𝑠(·) is the class 𝑦 to which X belongs, as 

shown in Eq. (3.1). If neural networks are used as the classification function, the raw output is 

the probabilities of the input belonging to each class given by a Softmax activation function. 

The final classification result is obtained by selecting the class with the maximum probability 

[205]. Cross-entropy is the most used loss function to train a classification task. Similarity 

learning differs from conventional supervised learning by transforming the multi-class 

classification problem into a binary one. Therefore, the loss function used in similarity learning 

is different. Binary cross-entropy and triplet loss are common loss functions for similarity 

learning [206]. The classification function of similarity learning 𝑠𝑖𝑚(·) is formulated in Eq. 
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(3.2). The similarity function examines the similarity of a pair of input samples, i.e., 𝑋", 𝑋( to 

determine if the two samples belong to different classes. If yes, the desired output of the 

similarity function is 0; otherwise, the desired output is 1. When the similarity function is 

obtained, the similarity between new samples and labeled samples can be measured to make 

FDD predictions. In similarity learning, the labeled samples can be paired randomly to generate 

more input pairs for training than using the labeled samples alone. Therefore, the advantage of 

similarity learning over conventional supervised classification is the larger amount of training 

data to overcome the problem of limited labeled data and improve the FDD method's 

generalization ability. This makes similarity learning well-suited to tasks where labeled data 

are limited or challenging to collect. 

 𝑐𝑙𝑎𝑠𝑠(𝑋) = 𝑦, 𝑦𝜖{0,1, … , 𝑛} (3.1) 

 𝑠𝑖𝑚(𝑋", 𝑋() = L
	

0, 𝑋", 𝑋(	𝑏𝑒𝑙𝑜𝑛𝑔	𝑡𝑜	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑐𝑙𝑎𝑠𝑠𝑒𝑠
1, 𝑋", 𝑋(	𝑏𝑒𝑙𝑜𝑛𝑔	𝑡𝑜	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑐𝑙𝑎𝑠𝑠

 (3.2) 

Similarity learning can adopt various architectures and machine learning algorithms to 

formulate the similarity function, such as Siamese networks [136] and kernel-driven methods 

[207]. Siamese networks (also called twin neural networks) are widely adopted in similarity 

learning consisting of two identical neural networks as subnetworks that share the same 

structure and weights [208]. Siamese networks are typically used for learning the similarity 

between a pair of samples as input, such as two images or two speech records [209].  

The workflow of the proposed similarity learning-based FDD method using Siamese networks 

is shown in Figure 3.1, which consists of two tasks: model training and fault diagnosis. During 

model training, input pairs are first randomly generated from training data. The various color 

in Figure 3.1 denotes the raw label in the dataset (i.e., Normal, Fault 1,…). The output of the 

Siamese networks is the similarity of the two samples of an input pair. If the input pair belongs 

to the same class, the target output is 1. Otherwise, the target output is 0. Finally, the loss 

function used to update the Siamese networks is binary cross-entropy loss. During fault 

diagnosis, the test sample is paired with a support set and outputs the most similar class using 

the trained Siamese networks. Note that the proposed method is applicable to fault detection 

when the data are only labeled as normal and faulty. 
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Figure 3.1. The proposed similarity learning-based FDD method using Siamese networks 

3.1.2. Model training 

The structure of the proposed Siamese network is shown in Figure 3.2, which contains two 

identical long short-term memory (LSTM) subnetworks. The input is a pair of multivariate 

time-series samples, and the output is the similarity of the input pair, ranging from 0 to 1.  
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Figure 3.2. Structure of the proposed Siamese network 

3.1.2.1. Input pair generation 

The input samples 𝑋", 𝑋(  are a pair of multivariate time-series sampled from historical 

operation data using a moving window. Figure 3.3 exemplified how samples are obtained from 

a labeled multivariate time-series (e.g., labeled as Normal, Fault 1, Fault 2…). There are	𝑛	
features in the raw multivariate time-series, and the window samples data by moving itself 

from left to right. The window size 𝑚 refers to the length of each sample, and the window 

stride is the number of time steps by which the window is shifted each time. The fault labels 

for the samples are identical to the label of the raw time-series. After all raw multivariate time-

series are sampled, different samples with the shape of 𝑚 × 𝑛 are obtained. 

Next, pairs of similar and dissimilar samples are generated by randomly pairing the above 

samples. As defined in Eq. (3.2), if both samples in the pair belong to the same class, the pair 

is labeled as similar ("1"). Otherwise, the pair is labeled as dissimilar ("0"). The number of 

similar and dissimilar pairs in the training dataset should be roughly the same to ensure that the 

distribution of similar and dissimilar pairs is balanced when creating sample pairs for training 

the Siamese network. If the distribution is imbalanced, the networks may not be able to learn 

the differences between the two classes of samples effectively. A binary random variable that 

can be 1 or 0 with equal probability generates similar or dissimilar pairs to achieve the balance. 
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Figure 3.3. Moving window sampling for multivariate time-series 

3.1.2.2. LSTM subnetworks for encoding multivariate time-series 

Once a set of labeled pairs has been generated, Siamese networks can be trained by providing 

each pair to the LSTM subnetworks as input and using the labels to compute the loss. The 

Siamese networks learn to compare the two input samples and predict whether they are similar 

or dissimilar based on their features and learned relationships. The architecture of LSTM 

subnetworks is shown in Table 3.1, consisting of two LSTM layers, two one-dimensional batch 

normalization layers, and two fully connected layers. 

Table 3.1. The architecture of LSTM subnetworks in the proposed Siamese network 

Layer Parameters Output size 
LSTM layer 1 hidden_size: 75 𝑚×75 
LSTM layer 2 hidden_size: 50 50 
BatchNorm1d layer 1 num_features: 50 50 
Fully connected layer 1 (ReLU) out_features: 40 40 
BatchNorm1d layer 2 num_features: 40 40 
Fully connected layer 2 (ReLU) out_features: 20 20 

� LSTM layers 

LSTM is a type of recurrent neural network that can capture long-term dependencies in data 

[210]. LSTM networks are well-suited to modeling sequences of data, such as time-series, 

natural language text, and audio data. An LSTM layer contains LSTM cells, which are 

composed of an input gate that determines what new information to store in the memory, a 

forget gate that determines what information to throw away from the cell's memory and an 

output gate that outputs the information stored in the memory, as show n in Eqs. (3.3)-(3.5). A 

window size 

window stride

06:00

feature

18:00

sequence length: 720
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set of weights controls these gates learned during training. The cell state and hidden state are 

in Eqs. (3.6) and (3.7). 

 𝑖) = 𝜎(𝑊# ⋅ [ℎ)*", 𝑥)] + 𝑏#) (3.3) 

 𝑓) = 𝜎Z𝑊+ ⋅ [ℎ)*", 𝑥)] + 𝑏+[ (3.4) 

 𝑜) = 𝜎(𝑊, ⋅ [ℎ)*", 𝑥)] + 𝑏,) (3.5) 

 𝑐) = 𝑓) ⊙ 𝑐)*" + 𝑖) ⊙ 𝑡𝑎𝑛ℎ(𝑊- ⋅ [ℎ)*", 𝑥)] + 𝑏-) (3.6) 

 ℎ) = 𝑜) ⊙ 𝑡𝑎𝑛ℎ(𝑐)) (3.7) 

where 𝑥) is the input to the LSTM cell at time step 𝑡, and 𝑏 are the trainable weights and biases 

of the LSTM layer, ⊙	is the mathematical operator for the element-wise multiplication, and 

𝜎(·) and 𝑡𝑎𝑛ℎ(·) are the sigmoid and hyperbolic tangent activation functions, respectively. 

� Batch normalization and fully connected layers 

The batch normalization layer normalizes each batch of data by shifting and scaling the 

previous layer's output, as shown in Eq. (3.8). The batch normalization can improve overall 

performance by stabilizing the learning process and accelerating convergence [211]. A fully 

connected layer is used after the batch normalization layer to generate a more abstract 

representation of the input data, as given by Eq. (3.9).  

 𝑦 = '*.
√012

× 𝛾 + 𝛽 (3.8) 

where	𝜇 and 𝜎 are the mean and standard deviation of the batch, respectively, 𝜖 is a small 

constant (1×10−5 in this study), added to prevent division by zero, and 𝛾 and 𝛽 are trainable 

parameters. 

 𝑦 = 𝑅𝑒𝐿𝑈(𝑊𝑥 + 𝑏) (3.9) 

where	𝑊  and 𝑏  are the weights and biases of the fully connected layer, respectively, and 

ReLU(·) is the rectified linear unit activation function. 

After the Siamese subnetworks, a pair of 20-dimensional vectors 𝑓(𝑋"), 𝑓(𝑋() representing the 

encodings of the input pair 𝑋", 𝑋( are obtained, where 𝑓(·) denotes the LSTM subnetwork. 

3.1.2.3. Similarity learning-based model training 

During training, Siamese networks are fed with pairs of input samples with labels indicating 

whether the pair is similar or dissimilar. The networks compute the similarity between the two 
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time-series in the pair, and the loss is computed using the similarity and the pair's true label. 

The networks are then optimized using this loss, with the goal of minimizing the overall loss 

in the training data. This helps the networks learn to predict the similarity between pairs of 

input samples accurately. Siamese networks typically use binary cross-entropy loss or 

contrastive loss [212]. This study adopts the binary cross-entropy loss because the proposed 

similarity learning-based method treats fault diagnosis as a binary classification problem (i.e., 

either similar or dissimilar).  

Before calculating binary cross-entropy, the encodings 𝑓(𝑋"), 𝑓(𝑋()	are squashed into the 

range [0,1] using a fully connected layer with the sigmoid activation function. First, the 

absolute elementwise difference between the encodings 𝑓(𝑋"), 𝑓(𝑋()	is calculated. After that, 

the fully connected layer is applied, and the output of the layer is interpreted as the probability 

that the input pair belongs to the same class. The process is given as: 

 𝑑 = |𝑓(𝑋") − 𝑓(𝑋()| (3.10) 

 𝑦i = 𝜎(𝑊 · 𝑑 + 𝑏) (3.11) 

where 𝑦i  is the output of the layer, 𝑊  is the weight matrix, 𝑑  is the absolute elementwise 

difference between encodings of input 𝑋", 𝑋(, and 𝑏 is the bias vector.  

The binary cross-entropy loss is computed as the average of the loss values for each sample in 

the dataset, as shown in Eq. (12). Like the cross-entropy loss, the binary cross-entropy loss 

penalizes confident but incorrect predictions, encouraging the model to output probabilities 

closer to the true labels. This helps improve the model's performance and accuracy. 

 𝐿 = − "
3
∑ [𝑦# 𝑙𝑜𝑔 𝑦i# + (1 − 𝑦#) 𝑙𝑜𝑔(1 − 𝑦4k)]3
#5"  (3.12) 

where 𝑁 is the number of samples in the dataset, 𝑦# is the true label of the 𝑖-th sample ("0" or 

"1" representing different and same labels, respectively), and 𝑦i# is the predicted probability of 

the 𝑖-th sample belonging to the same class ("0" or "1"). 

3.1.3. Fault diagnosis 

The next step involves predicting the labels of test samples using the Siamese network. A 

support set needs to be constructed, which provides a set of reference samples with labels. The 

support set can be used to pair up with one test sample as the inputs of the Siamese networks. 

As shown in Figure 3.1, if an FDD problem has 𝐴 types of faults, the number of classes is 𝐴 +

1, including the normal class for each class, 𝐵 samples are randomly chosen from the training 
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data to construct the support set. Then, a similarity matrix is calculated by comparing the 

similarity of the input sample with each sample in the support set. Finally, the similarity of all 

test samples to the samples in each class is averaged to find the most similar class of the input 

sample. 

3.2. Design of case studies using open dataset 

In this chapter, two case studies are conducted to evaluate the proposed Similarity learning-

based FDD method under two typical scenarios: insufficient labeled data and imbalanced 

labeled data. Insufficient labeled data means having a limited amount of labeled data for each 

fault in FDD for HVAC systems, making it hard to train and validate models effectively. 

Imbalanced labeled data occurs when a specific fault class has fewer labeled data than other 

classes during HVAC system operation, causing an uneven distribution of labeled data among 

fault classes. 

3.2.1. Dataset description 

AHU operational data from the ASHRAE project RP-1312 [213] are used in both case studies 

to verify the proposed method's performance. The schematic of AHU in the ASHRAE RP-

1312 is shown in Figure 3.4. The outdoor air is initially combined with the return air, after 

which it undergoes treatment sequentially using a set of heating and cooling coils. Temperature, 

flowrate, and pressure sensors were installed, and the experimental data were collected under 

normal and various fault conditions. The faults were manually introduced in the AHU, such as 

the stuck air damper and the leaking heating valve. As listed in Table 3.2, five types of faults 

happened in different components of AHU. These faults were tested under various intensities 

and had 15 fault classes. The data in normal and fault classes are labeled as 𝐹!, 𝐹", . . . , 𝐹"6, 

accordingly. The operation duration of AHU in this experiment was from 6:00 to 18:00, and 

data were collected with a one-minute interval. A 12-hour time-series was collected during a 

one-day experiment. Each faulty class contains 720 data points, while the normal class contains 

720×4 data points. Each fault scenario was tested on different days, while the normal scenario 

was tested on four days. The 15 features used for fault diagnosis are listed in Table 3.3, mainly 

including temperatures, flow rates, and fan power signals.  
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Figure 3.4. Schematic of AHU in the ASHRAE RP-1312 dataset 

Table 3.2. Details of typical AHU faults in the ASHRAE RP-1312 dataset 

Fault 
type  

Fault 
(class) 
label 

Fault detail Experiment date 

Normal 𝐹! No fault 
2007-08-19/25, 
2007-09-04, 
2007-09-10 

Type A 𝐹" Exhaust air damper stuck (100% open) 2007-08-20 
𝐹# Exhaust air damper stuck (0% open) 2007-08-21 

Type B 
𝐹$ Outdoor air damper stuck (0% open) 2007-08-26 
𝐹% Outdoor air damper leaking (45% open) 2007-09-05 
𝐹& Outdoor air damper leaking (55% open) 2007-09-06 

Type C 
𝐹' Heating coil valve leaking (0.4 GPM) 2007-08-28 
𝐹( Heating coil valve leaking (1.0 GPM) 2007-08-29 
𝐹) Heating coil valve leaking (2.0 GPM) 2007-08-30 

Type D 
𝐹* AHU duct leaking (after supply fan) 2007-09-07 
𝐹"! AHU duct leaking (before supply fan) 2007-09-08 
𝐹"" AHU duct leaking (before supply fan) 2007-09-09 

Type E 

𝐹"# Cooling coil valve stuck (100% open) 2007-08-31 
𝐹"$ Cooling coil valve stuck (0% open) 2007-08-27 
𝐹"% Cooling coil valve stuck (15% open) 2007-09-01 
𝐹"& Cooling coil valve stuck (65% open) 2007-09-02 

Table 3.3. Features used for AHU fault diagnosis in the ASHRAE RP-1312 

Feature name Description Unit 
SA-TEMP Supply air temperature °F 

Exhaust air

Return airReturn fan

Supply fan

Supply air

Ourdoor air

Heating
coil

Hot water Chilled water

Cooling
coil T

T

T

F

F

F
P

Temperature sensorT

Flowrate sensorF

Pressure sensorP

Damper
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OA-TEMP Outdoor air temperature °F 
MA-TEMP Mixed air temperature °F 
RA-TEMP Return air temperature °F 
SA-CFM Supplied air flow rates CFM 
RA-CFM Return air flow rates CFM 
OA-CFM Outdoor air flow rates CFM 
SF-WAT Supply fan power W 
RF-WAT Return fan power W 
SF-STS Supply fan status On = 1, Off = 0 
RF-STS Return fan status On = 1, Off = 0 
SF-DP Differential pressure of supply fan Pa 
RF-DP Differential pressure of return fan Pa 
CHWC-VLV Cooling coil valve position % 
HWC-VLV Heating coil valve position % 

 

3.2.2. Data-splitting 

As discussed in Section 2.2.1, the temporal train-test split is preferable for time-series data. 

The temporal train-test split involves selecting a certain number of time steps from the 

beginning of the series as the training data and the rest as the test data. There is also a constraint 

that the test data must be chronologically after the training data. This constraint ensures that 

the model has not seen any data from the future when making predictions on the test data.  

As shown in Figure 3.5, for each day's experimental data, the data from 6:00 to 14:00 was used 

as the training period, and the data from 14:00 to 18:00 was used as the test period. The data 

samples were generated using the method introduced in Section 3.1.2.1. The window stride 

size is set to 1 minute for the training period. In the following two cases, only a part of the 

training data was randomly selected to simulate the insufficient labeled and imbalanced data 

scenarios. The two scenarios will be introduced in Sections 3.2.4 and 3.2.5, respectively. For 

the test period, the window stride is 5 minutes. In both case studies, the window size	𝑚 is 10. 
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Figure 3.5. Data-splitting for case studies 

3.2.3. Baseline model for comparison 

To compare the proposed similarity learning-based method with the conventional data-driven 

approach, the same architecture of LSTM subnetworks is used as the baseline. The baseline 

model treats fault diagnosis as a multi-class classification problem. Therefore, the input and 

output of the baseline model differ from those of the Siamese networks. As shown in Figure 

3.6, the input is a single sample, and the output is the probability of the sample belonging to 

each class, i.e., 𝑝#. The probability vector is obtained using a fully connected layer with the 

Softmax activation function after the LSTM. Finally, the baseline model is optimized using the 

cross-entropy loss. 

 
Figure 3.6. Baseline model for case studies 

3.2.4. Scenario 1: Insufficient labeled data 
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As listed in Table 3.2, there are 16 normal/faulty working conditions in the dataset. The 

purpose of Scenario 1 is to test the performance of the proposed method when only a small 

amount of labeled data is available for each fault, which is a common situation when 

developing data-driven models for FDD in practical HVAC systems. The performance of the 

proposed method is tested by adjusting the number of samples per class in the training set 𝑁) 

in the range of 5–100. In addition, the number of samples in each class in the support set 𝑁7 is 

also adjustable in the range of 1–10. When 𝑁7 < 𝑁), 𝑁7 samples are selected from each training 

class without replacement; when 𝑁7 ≥ 𝑁), all 𝑁) samples in each class used for training are 

selected. During the experiments, the specified number of samples were randomly selected 

from the training samples generated in Section 3.2.2. The experiments were repeated ten times 

using different random seeds to eliminate the effect of randomness on the results. 

3.2.5. Scenario 2: Imbalanced labeled data 

Scenario 2 is designed to test the performance of the proposed method under data imbalance, 

for example, when a particular fault class has less labeled data than other fault classes. This 

situation is also common as some faults occur more frequently than other faults during the 

operation of HVAC systems. In Scenario 2, each type of fault in Table 3.2 was tested under 

data imbalance. The imbalance ratio of each imbalanced fault class and the remaining classes 

(faulty/normal conditions) is 1:10. The number of labeled samples for the imbalanced fault is 

10, and the number of samples for the remaining faulty/normal conditions is 100. Similar to 

Scenario 1, the experiments were repeated ten times to avoid sampling bias. 

3.2.6. Evaluation metric 

The performance improvement rate (PIR) is used as an evaluation metric to measure the 

performance difference between the proposed similarity learning-based method and the 

baseline model, which is defined as: 

 𝑃𝐼𝑅 = 8--9:;-<!"#$%&%*8--9:;-<'#&%(")%
8--9:;-<'#&%(")%

× 100% (3.13) 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦=#;>?7?  is the accuracy of the proposed Siamese networks on the test set; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@;7?A#B? is the accuracy of the baseline model on the test set. 

3.3. Results and discussion 

This section presents the results of Scenario 1 and Scenario 2. Scenario 1 analyzes the impacts 

of the number of samples per class in the training set and the support set on fault diagnostic 
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accuracy using the proposed Siamese network. Then the performance improvement rate versus 

the baseline model is evaluated. In Scenario 2, each imbalanced fault's diagnostic accuracy and 

the remaining classes is analyzed. 

3.3.1. Scenario 1: Insufficient labeled data 

3.3.1.1. Impact of the number of samples per class in the training set 

Table 3.4 and Figure 3.7 show how the fault diagnostic accuracy on the test data changes in 

different settings (the number of samples per class in the support set 𝑁7 and the number of 

samples per class in the test set 𝑁) ) are used for training Siamese network. Note that all 

experiments were repeated ten times using different random seeds, and Figure 3.7 shows the 

average accuracy. Generally, there is a positive correlation between fault diagnostic accuracy 

and 𝑁) under a given number of 𝑁7, because more labeled data can provide extra information 

for the model and lead to better generalization performance. A significant increase in fault 

diagnostic accuracy can be observed when 𝑁)  increases from 5 to 10. The fault diagnostic 

accuracy becomes stable when 𝑁) reaches a certain critical value. At this point, adding more 

labeled data to the training set does not improve the model's overall accuracy. Nevertheless, 

according to Table 3.4, a higher number of samples per class in the training set has a lower 

standard deviation of accuracy in the ten random experiments. Therefore, adding more labeled 

data to the training set can improve the model's stability and robustness, although the overall 

accuracy does not improve. 

3.3.1.2. Impact of the number of samples per class in the support set 

According to Table 3.4 and Figure 3.7, there is a positive correlation between fault diagnostic 

accuracy and 𝑁7 under a given number of 𝑁). The more samples per class in the support set, 

the Siamese networks can make more reliable classification results based on the similarity 

matrix. Compared with the performance leap owing to the increase of 𝑁) at the early stage, the 

performance improved with the increase of 𝑁7 is not significant, especially when 𝑁) ≥ 20. For 

example, when 𝑁) = 20, the difference in fault diagnostic accuracy from 𝑁7 = 1 to 𝑁7 = 10 

is only 4.1% (from 86.3% to 90.4%). It means that despite only one sample per class in the 

support set, Siamese networks can make accurate enough FDD results. Similarly, the 

correlation between the standard deviation of accuracy and 𝑁7  is also not as strong as the 

correlation between the standard deviation of accuracy and 𝑁). It means that the stability of 

Siamese networks is more sensitive to the number of samples per class in the training set than 

the number of samples per class in the support set. 
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Another finding is that when 𝑁) is large, the improvement of fault diagnostic accuracy becomes 

small as 𝑁7 increases from 1 to 10. For example, the difference in model accuracy from 𝑁7 =

1 to 𝑁7 = 10 is 12.5% (from 60.6% to 73.1%) when 𝑁) is 5, but is only 4.4% (from 87.6% to 

92.0%) when 𝑁) = 100. Thus, there is a trade-off between the selection of 𝑁) and 𝑁7. Fewer 

samples in the support set are needed when more samples are used to train the model. 

Table 3.4. Accuracy of fault diagnosis on the test set using Siamese networks (%) 

𝑁+ 
Number of samples per class in the support set 𝑁,  

1 2 3 4 5 6 7 8 9 10 Avg. 
5 60.6 66.3 69.9 73.7 73.1 73.1 73.1 73.1 73.1 73.1 70.9 
 (7.6) (12.5) (6.3) (6.5) (7.4) (7.4) (7.4) (7.4) (7.4) (7.4) (7.7) 

10 77.1 84.4 85.1 84.7 86.2 86.1 85.5 86.1 86.1 86.2 84.8 
 (11.4) (7.9) (5.8) (5.0) (5.7) (5.4) (5.5) (6.1) (6.2) (6.1) (6.5) 

20 86.3 89.8 87.4 90.0 89.9 90.5 90.6 89.7 89.6 90.4 89.4 
 (5.4) (6.6) (5.2) (5.4) (5.0) (6.1) (4.8) (5.7) (6.1) (5.8) (5.6) 

30 86.2 89.6 90.3 90.6 87.3 90.0 90.7 89.1 90.7 90.1 89.5 
 (6.0) (5.6) (4.8) (4.6) (6.0) (4.3) (3.9) (5.1) (4.1) (4.2) (4.9) 

40 88.9 89.3 88.3 89.9 89.3 91.1 90.9 90.9 91.0 90.9 90.1 
 (7.1) (4.7) (3.8) (4.1) (5.0) (4.3) (5.2) (4.1) (4.5) (4.7) (4.8) 

50 87.1 89.4 90.9 90.6 90.3 92.4 91.3 89.9 90.0 91.1 90.3 
 (6.9) (7.2) (3.9) (6.7) (5.7) (4.2) (4.8) (6.1) (4.5) (4.2) (5.4) 

60 86.9 88.2 91.4 90.8 91.8 91.9 91.3 91.7 91.6 90.9 90.7 
 (5.3) (5.2) (5.1) (5.9) (4.0) (4.1) (5.1) (5.0) (4.9) (4.8) (4.9) 

70 87.6 90.4 88.0 88.7 91.0 90.1 90.8 89.6 90.3 89.6 89.6 
 (7.1) (4.6) (6.6) (5.1) (4.8) (4.4) (3.3) (5.0) (5.5) (4.9) (5.1) 

80 89.1 91.8 91.4 92.3 92.4 92.0 91.9 92.7 92.5 91.0 91.7 
 (4.3) (4.7) (3.5) (4.7) (3.6) (3.2) (5.1) (3.5) (3.7) (5.1) (4.1) 

90 90.9 92.1 88.3 92.0 90.7 91.8 90.4 91.0 92.0 91.6 91.1 
 (3.9) (3.6) (5.6) (3.4) (4.1) (3.4) (4.2) (4.1) (3.4) (4.2) (4.0) 

100 87.6 91.9 92.7 91.5 92.8 92.0 93.1 92.4 92.8 92.0 91.9 
 (5.2) (4.0) (2.7) (3.0) (2.0) (2.3) (2.6) (2.5) (2.4) (2.5) (2.9) 

Avg. 84.4 87.6 87.6 88.6 88.6 89.2 89.1 88.7 89.1 88.8 88.2 
 (6.4) (6.1) (4.8) (4.9) (4.8) (4.5) (4.7) (5.0) (4.8) (4.9) (5.1) 

Note: 𝑁) refers to the number of samples per class in the training set; the unit of numbers is %; 

numbers in parentheses refer to the standard deviation of accuracy in ten repeated experiments 

using different random seeds. 



 
 

48 

 
Figure 3.7. Average accuracy of fault diagnosis on the test set using the proposed method 

3.3.1.3. Performance improvement rate 

The performance improvement rate of the proposed Siamese networks compared with the 

baseline model is shown in Figure 3.8. The number of samples per class in the support set 𝑁7 

is fixed at 10. Eq. (3.13) defines a positive PIR as the Siamese networks perform better than 

the baseline model. When the number of samples per class in the training set 𝑁) is 5, an average 

of 45.7% PIR can be observed. It means that the proposed Siamese networks can boost fault 

detection accuracy when the number of labeled data is insufficient. With the increase of 𝑁), the 

PIR decreases fast (𝑁) ≤ 20) and fluctuates in the range between 0%–10% (𝑁) ≥ 30). In 

general, the proposed Siamese networks outperform the baseline model, especially when the 

number of labeled data is small (𝑁) ≤ 20). 
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Figure 3.8. Performance improvement rate of the proposed Siamese networks (𝑁7 = 10) 

3.3.2. Scenario 2: Imbalanced labeled data 

Figure 3.9 shows the testing accuracy of each imbalanced fault in Scenario 2. For example, 

when 𝐹# (exhaust air damper is stuck to 0% position) is the class with the imbalanced fault in 

the training data, the fault diagnostic accuracy of 𝐹# on the test data using the Siamese networks 

and baseline model is 82.6% and 73.0%, respectively. The proposed Siamese networks 

outperform the baseline model in all experiments except 𝐹"$,	𝐹"% ,	and	𝐹"& .	Furthermore, the 

lowest accuracy of the imbalanced fault using Siamese networks is 56.5% compared with 13.9% 

using the baseline mode (when 𝐹& is the imbalanced fault in the training data). 

Figure 3.10 shows the testing accuracy of the remaining classes. For example, when 𝐹( 

(exhaust air damper is stuck to 0% position) is the imbalanced fault in the training data, the 

fault diagnostic accuracy of 𝐹( on the test data using the Siamese networks is 82.6% and the 

diagnostic accuracy of the remaining classes is 88.7%. As for the baseline model which is 

trained using labeled samples instead of sample pairs, the fault diagnostic accuracy of 𝐹( and 

the remaining classes is 73.0% and 87.9%, respectively. As is seen in Figure 3.10, the proposed 

Siamese networks have higher diagnostic accuracy than the baseline model in all experiments. 

Compared with the results in Table 3.4, the data imbalance decreases the FDD accuracy in general. 
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Still, the proposed Siamese networks perform betters than the baseline model in both imbalanced fault 

and the remaining classes.  

 
Figure 3.9. Fault diagnostic accuracy of each imbalanced fault 

 
Figure 3.10. Fault diagnostic accuracy of remaining classes 
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3.4. Summary 

Machine learning has been widely adopted for FDD in HVAC systems over the past decade 

due to the ever-increasing availability of massive building operational data. Machine learning-

based FDD is flexible and accurate but heavily relies on the availability of sufficient labeled 

data to develop supervised or unsupervised models. However, collecting labeled data is usually 

labor-intensive for various types of faulty conditions, significantly limiting the practical 

implementation of machine learning-based FDD. Therefore, this study proposes a similarity 

learning-based method using Siamese networks to improve the interpretability and reliability 

of machine learning-based FDD in applications with limited labeled data. Unlike the 

conventional supervised approach, the proposed Siamese networks contain two identical long 

short-term memory subnetworks that take a pair of multivariate time-series samples from the 

building energy management system as input. The number of training samples can be 

significantly augmented by generating pairs randomly. In this way, the generalization ability 

of the machine learning-based FDD is significantly improved in practical applications. In 

addition, the comparison between the new test sample and the support set provides an 

interpretation similar to k-NN, which enhances interpretability. Two case studies were 

designed and conducted using experimental data when labeled data were limited and 

imbalanced to validate the proposed similarity learning-based method. Where the number of 

labeled data is limited, the proposed method improves the fault diagnostic accuracy by 45.7% 

than the baseline model. When the labeled data is imbalanced, the proposed method 

demonstrated better generalization ability. 
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CHAPTER 4  PROBABILISTIC MACHINE LEARNING FOR 

ENHANCING RELIABILITY AND INTERPRETABILITY 

ADDRESSING MEASUREMENT UNCERTAINTY 

This chapter presents a probabilistic machine learning approach to address the issue of 

measurement uncertainty and improve interpretability and reliability. Cooling load 

prediction is important for the control of chiller plants, particularly for sequencing control for 

multiple-chiller systems. Conventional cooling load prediction provides point prediction 

without uncertainty information, which lacks interpretability and reliability for chiller 

sequencing control. Therefore, this study proposes a robust chiller sequencing control strategy 

that utilizes probabilistic cooling load predictions. One-hour-ahead probabilistic cooling load 

prediction in the form of a normal distribution is made using natural gradient boosting 

(NGBoost). A risk-based action evaluation scheme is designed to determine the optimal 

number of operating chillers by evaluating the risks associated with possible control actions. 

The risk interpretation can enhance the trust between the prediction model and the operators. 

Section 4.1 describes the research methodology utilizing probabilistic cooling load predictions 

for robust chiller sequencing. Section 4.2 details the test facilities and data collection from an 

actual chiller plant. Sections 4.3 and 4.4 present the chiller sequencing results based on 

historical operational data and an in-situ test, respectively. Lastly, Section 4.5 summarizes the 

main conclusions of this study. 

4.1. Proposed risk-based chiller sequencing control strategy  

4.1.1. Basic principle 

A typical multiple-chiller plant is illustrated in Figure 4.1 [150]. The chilled plant consists of 

two circulation loops: a chilled water loop and a condensing water loop. Each chiller is 

associated with a chilled water pump, a condensing water pump, and a cooling tower. Usually, 

switching on/off a chiller will automatically switch on/off the associated cooling tower and 

water pumps [214].  
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Figure 4.1. Schematic diagram of a typical multiple-chiller system and sequencing control 

The conventional cooling load-based chiller sequencing control, denoted as conventional Q-

based control in this study, uses the real-time cooling load calculated from chilled water's flow 

rate and supply and return temperatures. Then, the number of chillers to meet the cooling load 

is determined by dividing the calculated real-time cooling load by the nominal cooling capacity 

of the chiller [131,215]. The measured total cooling load is formulated as: 

 𝑄) = 𝑐C ⋅ 𝑚̇C ⋅ Z𝑇:)B − 𝑇sup[ (4.1) 

where 𝑐C represents the specific capacity of water (kJ/kg ∙ °C), 𝑚̇C is the chilled water flow 

rate in the header pipe (kg/s), and 𝑇:)B, 𝑇79D are the return and supply temperatures of chilled 

water.  

When the chillers have the same capacity, the thresholds for switching off a chiller 𝑄B
,++ and 

switching on a chiller 𝑄B,B are defined as: 

 𝑄B
,++ = (𝑛 − 1) ⋅ 𝑄- ⋅ (1 − 𝑑/2) (4.2) 

 𝑄B,B = 𝑛 ⋅ 𝑄E ⋅ (1 + 𝑑/2) (4.3) 

where 𝑛 is the current number of operating chillers, 𝑑 is the dead band of cooling load to be 

set by the operators, and 𝑄E is the cooling capacity of one chiller.  

The basic rule is that the cooling capacity provided by chillers should meet the actual cooling 

load. Therefore, the number of chillers to be switched on/off ∆𝑛 is determined by: 
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 ∆𝑛 = �
−1, 𝑄) < 𝑄B

,++

0, 𝑄B
,++ ⩽ 𝑄) ⩽ 𝑄B,B

1, 𝑄) > 𝑄B,B
 (4.4) 

where 𝑄) is the real-time measured building load at the current control period. 

The main disadvantage of the conventional Q-based chiller sequencing strategies is that short-

term load fluctuation may cause unnecessary on/off switching. Therefore, the proposed chiller 

sequencing control strategy combines the conventional Q-based and the probabilistic cooling 

load predictions to improve the robustness of sequencing control. 

The proposed strategy's basic idea is illustrated using the daily load profile of an actual building 

as an example, as shown in Figure 4.2. The measured total cooling load 𝑄) is larger than the 

threshold 𝑄B,B at 10:30, the conventional Q-based sequencing strategy switches on a chiller 

without considering the future cooling load change. In contrast, the proposed strategy takes 

advantage of one-hour-ahead probabilistic cooling load predictions and determines whether a 

less risky action should be adopted. The risk of an action is defined to measure the probability 

that the cooling capacity cannot satisfy the cooling demand or that an unnecessary chiller is 

operated after the action is adopted [216]. Compared with conventional cooling load prediction 

[217], probabilistic cooling load prediction gives a distribution of cooling load for each time 

step. Figure 4.2 shows the probabilistic cooling load prediction after 10:30 (25%, 50%, 75%, 

and 95% prediction intervals are illustrated), which is predicted based on the available 

information at 10:30. 



 
 

55 

 
Figure 4.2. The schematic diagram illustrating the basic idea of the proposed probabilistic 

cooling load prediction-based sequencing control strategy 

4.1.2. Overview of the proposed strategy 

The framework of the proposed probabilistic cooling load prediction-based sequencing control 

strategy is illustrated in Figure 4.3. The proposed strategy comprises three modules: 1) 

probabilistic cooling load prediction, 2) Q-based sequencing action, and 3) risk-based action 

evaluation. The inputs and outputs of the modules are highlighted in yellow and purple, 

respectively. Inputs, which include weather data, cooling load, and the number of operational 

chillers, can be sourced from building management systems. The first module predicts the 1h-

ahead probabilistic cooling load using the natural gradient boosting (NGBoost) algorithm. In 

the second module, the Q-based sequencing action is determined based on the current cooling 

load. The third module is bypassed if there is no need to switch any chiller on/off (meaning the 

supplied cooling capacity aligns with the current cooling demand). However, if one or more 

chillers need to be switched on/off, the third module evaluates the risk associated with the Q-

based action based on the probabilistic cooling load predictions in the first module and decides 

if a compromised action is less risky. The magnitude of the compromised action is less than 

that of the Q-based action, so it generally maintains the existing number of chillers, thereby 

reducing the impact on the chiller plant. The third module evaluates the risks associated with 
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both actions by leveraging the probabilistic cooling load predictions. This module ensures that 

the sequencing optimally reduces the impact on the chiller plant while still fulfilling the cooling 

load demands. 

 
Figure 4.3. Framework of the proposed chiller sequencing control strategy  

4.1.3. One-hour-ahead probabilistic cooling load prediction using natural 

gradient boosting 

The first module predicts probabilistic cooling load using natural gradient boosting (NGBoost). 

NGBoost is a state-of-the-art machine learning algorithm that can make probabilistic 

predictions for various regression tasks [218]. Compared with conventional gradient boosting 

algorithms, NGBoost has improvements for probabilistic prediction in three main aspects: 

prediction target, optimization function, and gradient used [219,220]. First, in conventional 

gradient boosting, the prediction target is a point estimate, typically the mean of the target 

variable given the input [108]. Instead of predicting a single value, NGBoost aims to capture 

the uncertainty of predictions using a distribution denoted as 𝑃F( 𝑦 ∣∣ 𝑥 ) . For example, 
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NGBoost can estimate a normal distribution's mean and standard deviation. The second 

improvement is the loss function used during model training. In conventional gradient boosting, 

loss functions like Mean Square Error are commonly used for regression tasks. The loss 

function measures the distance between the predicted and true values, and the boosting 

algorithm minimizes this distance iteratively. NGBoost introduces probabilistic loss functions 

for optimization, such as log-likelihood denoted. The log-likelihood measures how well the 

predicted distribution fits the observed data. The log-likelihood loss function is denoted as: 

 ℒ(𝜃, 𝑦) = − log𝑃F(𝑦) (4.5) 

where 𝜃 represents the parameters of the predicted distribution and y represents the true values. 

The third improvement is the gradient used. In conventional gradient boosting, the normal 

gradient is used to update the parameters. However, in probabilistic prediction, the "distance" 

between two parameter values of the distributions does not reflect an appropriate "distance" 

between the distributions. Therefore, in NGBoost, the natural gradient motivated by 

information geometry [221] is adopted, denoted as: 

 ∇̃ℒ(𝜃, 𝑦) = ℐℒ(𝜃)*" · ∇ℒ(𝜃, 𝑦) (4.6) 

where ℐℒ(𝜃) is the Fisher Information that the distribution 𝑃F carries, denoted as: 

 ℐℒ(𝜃) = 𝔼<∼I*[∇Fℒ(𝜃, 𝑦) · ∇Fℒ(𝜃, 𝑦)
J] (4.7) 

Three categories of features are used to predict the one-hour-ahead cooling load [130]. First, 

calendar features include holiday or not (binary feature), hour of the day, day of the week, and 

month of the year. Second, weather data are used, including outdoor dry air temperature, 

outdoor dew-point temperature, and relative humidity. These features are lagged by one hour 

because the actual weather data for the cooling load to be predicted is unknown. For example, 

weather conditions at 13:00 predict the cooling load at 14:00. Last, lag features (1-hour, 24-

hour, 48-hour, and 168-hour ahead) of cooling load are used. 

The output of NGBoost is a probability distribution of cooling load prediction. In this study, 

the normal distribution is used as the output distribution [158]. Therefore, the probability 

distribution can be formulated as 𝒩(𝜇, 𝜎), where the mean value term 𝜇 is equivalent to the 

output of non-probabilistic methods (cooling load), and the standard deviation term 𝜎 

represents the uncertainty of the prediction. The larger the standard deviation term 𝜎 is, the 

more uncertain the prediction is. Finally, the probability distribution is converted into the 

cumulative density function. The cumulative density function is a function that calculates the 
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probability of the cooling load being less than or equal to a value 𝑧, defined as Eq. (4.8). Figure 

4.4 shows the probabilistic prediction, and the purple area represents the probability that the 

cooling load is less than or equal to 𝑧. 

 𝐹(𝑧) = 𝑃(𝑄 ≤ 𝑧) (4.8) 

 
Figure 4.4. Probabilistic prediction of cooling load in the form of normal distribution 

Therefore, the output of the probabilistic cooling load prediction module is formulated as: 

𝐹)1∆)(𝑧), 𝐹)1(∆)(𝑧),⋯.∆𝑡 is the prediction step that can be adjusted according to the granularity 

of data collection. For example, if ∆𝑡 = 0.5ℎ , there are two probabilistic cooling load 

predictions in one hour: 𝐹)1!.6M(𝑧), 𝐹)1"M(𝑧). By predicting the probability distribution of the 

cooling load, NGBoost provides insight into the uncertainty and variability of the cooling load, 

enabling more informed and effective chiller sequencing decisions. 

4.1.4. Enhanced cooling load-based sequencing 

The second module, the Q-based sequencing, determines switching actions according to the 

measured cooling load. The Q-based action 𝑎" is determined by Eq. (4.9), which is converted 

from Eqs. (4.2)-(4.4). The Q-based action 𝑎" denotes the number of chillers that should be 

switched on/off, ranging from −2 to 2. Usually, switching one chiller on/off is enough to deal 

with the cooling load change. In some critical situations, when the cooling load changes 

dramatically due to indoor or outdoor disturbance [222], two chillers may need to be switched 

on/off. 

 𝑄B1;+
,++ < 𝑄) ≤ 𝑄B1;+

,B  (4.9) 
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When the Q-based action 𝑎" = 0 , the supplied cooling capacity aligns with the current 

measured cooling load. Therefore, the Q-based action 𝑎" is adopted without the risk-based 

action evaluation module. When the Q-based action 𝑎" ≠ 0 , indicating that one or more 

chillers need to be switched on or off, the risks associated with the Q-based action will be 

evaluated in the risk-based action evaluation module to determine whether a compromised 

action is more appropriate. Compared with the conventional strategy, the proposed strategy 

adds a risk-based action evaluation module based on the probabilistic cooling load prediction 

when the conventional strategy suggests switching on or off (i.e., 𝑎" ≠ 0). Therefore, the 

control actions based on the data-driven model can be comprehended using the risks and the 

reliability is enhanced. 

4.1.5. Risk-based action evaluation scheme 

If Q-based action 𝑎" is adopted, Eq. (4.9) may not be satisfied in the following hour because 

the cooling load may change, leading to unnecessary on/off switching. The risk of an action is 

defined as the probability that the cooling capacity cannot satisfy the cooling demand or that 

an unnecessary chiller is operated after the action is adopted [216]. In this module, the risks of 

the Q-based action 𝑎" and the compromised action 𝑎( are evaluated according to one-hour-

ahead probabilistic cooling load predictions 𝐹)1∆)(𝑧), 𝐹)1(∆)(𝑧),⋯. The mapping between Q-

based action 𝑎" and compromised action 𝑎( is listed in Table 4.1, and the magnitude of the 

compromised action is less than that of the Q-based action. 

When 𝑎" = 0 equals zero, the decision-making process of the conventional strategy, which 

refrains from executing switching on/off operations on the units, is preferred. Conversely, when 

𝑎" ≠ 0, the conventional strategy initiates switching on/off operations. At this juncture, risk-

based action evaluation comes into play to assess actions 𝑎" and 𝑎(, aiming to identify the 

operation with lower risk. The strategy introduced herein integrates a risk assessment module 

into the conventional framework, ensuring that it does not resort to a strategy more aggressive 

than the conventional approach. 

Table 4.1. Mapping between the Q-based action 𝑎" and compromised action 𝑎( 

Scenario Q-based action Compromised action 

𝑎" < 0 (Switching off) 𝑎" = −2 𝑎( = −1 
𝑎" = −1 𝑎( = 0 

𝑎" > 0 (Switching on) 𝑎" = 1 𝑎( = 0 
𝑎" = 2 𝑎( = 1 
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For each prediction step, the risks of Q-based action 𝑎"  and compromised action 𝑎(  are 

calculated according to the cooling capacity of adopting 𝑎" and 𝑎(. Then, the weighted risks 

of 𝑎" and 𝑎( are calculated based on the weights of each prediction step. 

There are two scenarios: 𝑎" < 0 and 𝑎" > 0, representing switching off and switching on 

chillers, respectively. 

4.1.5.1. Scenario 1: Switching off (𝒂𝟏 < 𝟎) 

When 𝑎" < 0, the total chiller capacity that the compromised action 𝑎( can provide is higher 

than that of the Q-based action 𝑎". Therefore, the lower chiller capacity limit 𝑄A and higher 

chiller capacity limit 𝑄M are given by Eqs. (4.10) and (4.11), respectively. Figure 4.5 illustrates 

one step of the one-hour-ahead probabilistic cooling load predictions (𝐹)1#∆)(𝑧)) and the two 

capacity limits. According to the definition of the cumulative density function, the white area 

under the distribution in Figure 4.5 (a) represents the probability that the cooling demand 

matches the cooling supply when adopting Q-based action 𝑎". Therefore, the risk of the Q-

based action 𝑎" in the 𝑖-th prediction step is formulated as Eq. (4.12), as shown in the blue area 

in Figure 4.5 (a). The risk of the compromised action 𝑎( in the 𝑖-th prediction step is given by 

Eq. (4.13), as shown in the green area in Figure 4.5 (b). Finally, the weighted risks of 𝑎" and 

𝑎(  in the following hour are calculated as Eqs. (4.14) and (4.15), and the action with the 

minimum risk is adopted in the current control period. 

 𝑄A = (𝑛 + 𝑎") · 𝑄E (4.10) 

 𝑄M = (𝑛 + 𝑎() · 𝑄E (4.11) 

 𝑟)1#∆)(𝑎") = 1 − 𝐹)1#∆)(𝑄A) (4.12) 

 𝑟)1#∆)(𝑎() = 𝐹)1#∆)(𝑄A) + 1 − 𝐹)1#∆)(𝑄M) (4.13) 

 𝑟(𝑎") = ∑ 𝑤## · 𝑟)1#∆)(𝑎") (4.14) 

 𝑟(𝑎() = ∑ 𝑤## · 𝑟)1#∆)(𝑎() (4.15) 
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(a) Risk of Q-based action 𝑎"        (b) Risk of compromised action 𝑎( 

Figure 4.5. Probabilistic cooling load prediction and risks of actions when switching off 

4.1.5.2. Scenario 2: Switching on (𝒂𝟏 > 𝟎) 

When 𝑎" > 0, the total chiller capacity that Q-based action 𝑎" can provide is higher. Therefore, 

the lower chiller capacity limit 𝑄A and higher chiller capacity limit 𝑄M are given by Eqs. (4.16) 

and (4.17), respectively. Like in scenario 1, the risk of the compromised action 𝑎( in the 𝑖-th 

prediction step is formulated as Eq. (4.18), as shown in the blue area in Figure 4.6 (a). 

Moreover, the risk of the Q-based action 𝑎" in the 𝑖-th prediction step is formulated as Eq. 

(4.19), as shown in the green area in Figure 4.6 (b). Finally, the weighted risks of 𝑎" and 𝑎( 

are calculated as Eqs. (4.14) and (4.15), and the action with the minimum risk is adopted. 

 𝑄A = (𝑛 + 𝑎() · 𝑄E (4.16) 

 𝑄M = (𝑛 + 𝑎") · 𝑄E (4.17) 

 𝑟)1#∆)(𝑎() = 1 − 𝐹)1#∆)(𝑄A) (4.18) 

 𝑟)1#∆)(𝑎") = 𝐹)1#∆)(𝑄A) + 1 − 𝐹)1#∆)(𝑄M) (4.19) 

 
a) Risk of compromised action 𝑎(      b) Risk of Q-based action 𝑎" 
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Figure 4.6. Probabilistic cooling load prediction and risks of actions when switching on 

4.2. Test facilities and data collection 

4.2.1. Chiller plant description 

Figure 4.7 depicts the schematic of the chiller plant tested in this study, located at The Hong 

Kong Polytechnic University (PolyU). On the left side of the diagram, the chilled water system 

of the chiller plant is depicted, which is a typical primary-constant secondary-variable flow 

system. The supply main supply and return pipes of the primary loop are connected via a bypass 

pipe. The return chilled water shown in the diagram is returned from three secondary loops i.e., 

Phase 1, Phase 2, and library. The diagram also shows ten primary chilled water pumps 

(PCHWP) numbered 1-10. These ten pumps are connected in parallel and pump water to six 

water-cooled chillers (WCC) numbered 1-6 and two air-cooled chillers (ACC) numbered 1-2.  

On the right side of the schematic, the condensing water loop of the chiller plant, which is used 

to cool the condenser water of WCC 1-6, is shown. The condensing water loop includes eight 

condensing water pumps (CDWP) numbered 1-8 and six cooling towers (CT) numbered 1-6. 

It is noteworthy that the chiller plant employs a combination configuration of large and small 

chillers, where WCC 1-5 are large chillers with a rated cooling capacity of 650 tons, and WCC 

6 and ACC 1-2 are small chillers with a rated cooling capacity of 325 tons. The PCHWP, 

CDWP, and CT also have corresponding large and small models. The on and off of the PCHWP, 

CDWP, and CT are interlocked to the corresponding chillers. For example, when a large chiller 

is switched on, the corresponding large PCHWP, CDWP, and CT are also turned on. The 

number of PCHWP is two more than the total number of WCC and ACC, and the number of 

CDWP is two more than the total number of WCC due to the redundant configuration of both 

large and small PCHWP, each exceeding the number of chillers by one to handle pump failures 

or maintenance scenarios. 
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Figure 4.7. Diagram of the chiller plant in PolyU campus  

Table 4.2. Specification of air-cooled/water-cooled chillers 

Equipment Model 
type Speed Capacity 

(RT) 
Rated 
COP 

Power 
(kW) 

Flow rate 
(L/s) 

WCC 1-2,5 Large Variable 650 5.72 400 109.2 
WCC 3-4 Large Constant 650 5.73 399 109.2 
WCC 6 Small Variable 325 5.72 200 56.94 
ACC 1-2 Small Variable 325 3.63 328 56.94 

Table 4.3. Specification of primary chilled water pumps and condensing water pumps 

Equipment Model 
type Speed Head (m) Power (kW) Flow rate 

(L/s) 
PCHWP 1-3,10 Small Constant 28 30 56.67 
PCHWP 4-9 Large Constant 33 55 109.2 
CDWP 1-6 Large Constant 32 75 132.0 
CDWP 7-8 Small Constant 40 45 69.0 

Table 4.4. Specification of cooling towers 

Equipment Model 
type Speed Power 

(kW) 
Flow rate 
(L/s) 

Heat rejection 
capacity (kW) 

CT 1-4 Large Constant 30 128.6 2700 
CT 5 Large Constant 18.5 138 2900 
CT 6 Small Constant 15 69 1450 

Table 4.2-Table 4.4 show the specifications of chillers, PCHWP, CDWP, and CT, respectively, 

where the model type indicates whether the equipment is a large or small model. For chillers, 

Table 4.2 lists the speed, rated capacity, rated COP, power, and flow rate. Table 4.3 gives the 

rated head, power, and flow rate for pumps. Table 4.4 shows the rated power, flow rate, and 

heat capacity for cooling towers. The PCHWP, CDWP, and CT are all operated under constant 
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speed, so their electricity consumption can be estimated using their rated power and on/off 

signal. The real-time power data of chillers can be obtained from the BMS. 

4.2.2. Data communication and processing 

During the test, the proposed chiller sequencing control strategy is deployed in the AI 

workstation on the PolyU campus. Figure 4.8 illustrates the data communication process 

between the AI workstation and the BMS. The BMS collects real-time measurements, 

including the water temperature of chilled and condensing water, flow rate of chilled and 

condensing water, on/off signals of pumps and cooling towers, chiller power, etc. These 

measurements are sent in real-time to the gateway via the BACnet protocol. The gateway, 

acting as an intermediary for data transmission, does not store data itself. Its real-time data is 

read and stored in 5-minute intervals in the time-series database InfluxDB [223]. The AI engine 

in the AI workstation uses the QUERY/INSERT command to read historical data and real-time 

data required by the chiller sequencing control strategy. At 00:00 each day, the NGBoost model 

will be retrained based on existing historical data and saved locally. At other times, the model 

will be directly loaded from the local file for prediction without retraining the model. Finally, 

the AI engine sends the AI recommendation value for chiller sequencing every 30 min via the 

BACnet protocol to the gateway. The BMS controls chillers by reading the AI 

recommendations values from the gateway. This achieves bidirectional communication 

between the AI workstation and BMS. 

 
Figure 4.8. Data communication between AI workstation and BMS 
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4.3. Robustness validation using operational data 

4.3.1. Real building operation data 

The historical data from January 1 2022 to August 6 2022 was used to train the NGBoost model, 

and the test set was a one-week-long data set from August 7 2022 to August 13 2022. The test 

cooling load profile for the data experiment is shown in Figure 4.9. Occupancy schedules and 

weather conditions regularly influence the cooling load. The cooling load on Sunday (August 

7 2022) is lower than on other days because of the occupancy schedule. In addition, weather 

conditions can influence the cooling load in a building by affecting the amount of sensible and 

latent heat that enters or leaves the building. The features used for one-hour-ahead probabilistic 

cooling load prediction include weather-related features, calendar features, and lagged cooling 

load, as presented in Section 4.1.3.  

 
Figure 4.9. Test cooling load profile for the data experiment 

4.3.2. Performance of one-hour-ahead probabilistic cooling load predictions 

The results of the one-week test cooling load predictions are shown in Figure 4.10. The 25%, 

50%, 75%, and 95% confidence intervals are filled with different shades of blue colors. The 

orange line represents the predicted mean values of each probabilistic cooling prediction. The 

detailed distribution of cooling load prediction at 12:00 on August 13 is shown in the right part 

of the figure. The mean value of the distribution is 5748.9 kW, and the standard deviation is 

551.4 kW. 
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Figure 4.10. One-hour-ahead probabilistic cooling load predictions 

The performance of probabilistic cooling load predictions is first evaluated based on mean 

values of probabilistic cooling load predictions. Root mean square error (RMSE), mean 

absolute percentage error (MAPE), and coefficient of variation of root mean square error (CV-

RMSE) are used as evaluation indices. The formulas for RMSE, MAPE, and CV-RMSE are 

given in Eqs. (4.20)-(4.22), respectively. Table 4.5 shows the performance of probabilistic 

cooling load predictions based on the true values and predicted mean values. The RMSE, 

MAPE, and CV-RMSE are 553.3 kW, 9.7%, and 13.2%, respectively, which is acceptable 

according to a previous study on short-term load prediction [224]. Because of the uncertainty 

of the cooling load, the cooling load predictions are not accurate enough. Therefore, utilizing 

the uncertainty information of cooling load predictions is important to generate robust actions. 

 RMSE = �∑ ()
",+ <"*<Q")-

B
 (4.20) 

 MAPE = "
B
∑ |<"*<Q"|

<"
B
#5" × 100% (4.21) 

 CV − RMSE =
T+
)
∑ ()
",+ <"*<Q")-

+
)
∑ <")
",+

× 100% (4.22) 

Table 4.5. Performance of probabilistic cooling load predictions 

RMSE MAPE CV-RMSE 
553.3 kW 9.7% 13.2% 

The probability integral transform (PIT) is a method that converts data values from any given 

continuous distribution to random variables having a standard uniform distribution. It can 

evaluate probabilistic predictions by comparing the observed values with the forecasted 

densities [225]. One way to apply PIT for evaluation is by inspecting the resulting PIT 

histogram, which shows the frequency of each transformed value. The PIT histogram should 



 
 

67 

be approximately uniformly distributed if the probabilistic predictions are consistent and stable. 

The PIT histogram of the probabilistic cooling load predictions on the whole dataset is shown 

in Figure 4.11, where the dashed red line represents the average frequency. The histogram is 

approximately uniformly distributed, meaning the consistency and steadiness of probabilistic 

cooling load predictions are reliable on the dataset. 

 
Figure 4.11. Histogram of probability integral transform 

Prediction interval averaged width (PIAW) is used to evaluate the reliability of probabilistic 

predictions. PIAW is a metric that measures the average width between the lower and upper 

bounds of a prediction interval, as defined in Eq. (4.23), where 𝛼 is the interval and 𝑦i is the 

predicted quantile at probability 𝜏 [226]. The narrower the PIAW is, the higher the reliability 

of the prediction is. Figure 4.12 shows the PIAE at different times on the test set. When the 

interval range is 25%, the PIAW is mostly below 100 kW, and the average PIAW of all time 

is 79.8 kW. As for the 50% and 75% intervals, the average PIAWs of all time are 169.0 kW 

and 288.2 kW, respectively. The figure also shows that the peak of PIAW occurs at 08:30 

because occupancy increases significantly, and additional chillers are turned on around this 

time. 

 𝑃𝐼𝐴𝑊(𝛼) = "
3
∑  3
)5" Z𝑦i),V5"*W/( − 𝑦i),V5W/([ (4.23) 
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Figure 4.12. Prediction interval averaged width at different times 

4.3.3. Chiller sequencing results 

Figure 4.13 compares the number of operating chillers between the conventional Q-based and 

proposed chiller sequencing strategies (with a dead band of 𝑑 = 0.05). In the data experiment, 

the weights 𝑤" and 𝑤( in Eqs (4.13) and (4.14) were set to 0.7 and 0.3, respectively. The results 

demonstrate that the conventional strategy leads to more unnecessary on/off switchings than 

the proposed strategy. These frequent on/off switches typically occurred under two conditions: 

firstly, during the morning start-up period, and secondly, when the measured cooling load 

fluctuated around the operational chillers' upper or lower cooling capacity boundaries. The 

morning cooling demand is usually high due to overnight heat accumulation and a sudden 

increase in cooling load caused by occupant arrival, equipment use, and changes in weather 

conditions. To meet this large cooling demand, more chillers than necessary often operate in 

the morning, removing the instantaneous building heat gain. During this period, the measured 

cooling load undergoes significant variations, typically increasing and then decreasing, leading 

to unnecessary on/off switching in the conventional Q-based sequencing strategy. The second 

condition may result from short-term indoor and outdoor disturbances and measurement 

uncertainties. Generally, eliminating unnecessary switching off does not affect end users' 

thermal comfort, as the supply cooling capacity exceeds the measured cooling load. The 

terminal control devices can maintain thermal comfort within the air-conditioned space. 

However, there is a risk of compromising end users' thermal comfort by neglecting to switch 

on an additional chiller based on the predicted decrease in cooling load for the following hour. 
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Nevertheless, the results show that the interval between an unnecessary switch-on and switch-

off action is relatively short, approximately 30 minutes. Given the thermal mass of the building 

and the chilled water system, the risk to end users' thermal comfort is considered low. The 

actual impact on end users' thermal comfort could not be quantified in the data experiment, 

representing a limitation of the current work. 

 
Figure 4.13. Control comparison of conventional and the proposed strategies 

The total switching number of chillers is an important metric for evaluating the robustness of 

chiller sequencing strategies [150]. It is advisable to implement a chiller sequencing control 

strategy that minimizes the frequency of chiller on/off cycles. Reducing unnecessary switching 

helps prolong the lifespan of the chiller plant and reduce maintenance expenses. Table 4.6 

shows the control performance of conventional and proposed strategies. Compared to the 

conventional strategy, the proposed strategy reduces 43.6% of the total switch number (from 

55 to 31). In addition to the total switching number, unnecessary on/off actions reflect the 

robustness of chiller sequencing strategies [13]. Unnecessary on/off actions refer to one chiller 

being switched on first and then off (or off first and then on) within 0.5 h or 1 h. Table 4.6 also 

shows that by adopting the proposed strategy, the number of unnecessary on/off actions in 0.5 

h is reduced by 83.3%, and the number of unnecessary on/off actions in 1 h is reduced by 

88.2%. It could significantly improve the stability and reliability of the chiller plant. 

Table 4.6. Control comparison of two strategies from August 7 to 13, 2022 

Strategy Total switching 
number 

Unnecessary 
on/off in 0.5 h 

Unnecessary 
on/off in 1 h 

Conventional 55 12 17 
Proposed 31 2 2 
Reduction (%) 43.6 83.3 88.2 

Table 4.7 shows the switching details of conventional and proposed strategies. The first two 

rows indicate the number of operating chillers before (𝑁) ) and after a sequencing action 
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(𝑁)1∆)	), respectively. The third and fourth rows are the count of chiller plant switching from 

𝑁) to 𝑁)1∆) when adopting the conventional and proposed strategy, respectively. For example, 

when adopting the conventional strategy, the chiller plant switches from 𝑁) = 1 to 𝑁)1∆) = 2 

for 10 times while the count is 7 when adopting the proposed strategy. According to Table 4.7, 

the proposed strategy mainly contributes to reducing switching on and off chillers when the 

cooling demand is high, i.e., reducing 85.7% from 𝑁) = 3 to 𝑁)1∆) = 4 and 80.0% from 𝑁) =

4 to 𝑁)1∆) = 3. When the demand is relatively low, the reduction is not as significant. This is 

because the cooling load during the daytime this week often exceeds the threshold for switching 

on the fourth chiller. The conventional strategy would result in unnecessary switching actions. 

The proposed strategy, on the other hand, avoids unnecessary switching through probabilistic 

cooling load prediction and risk-based action evaluation. 

Table 4.7. Sequencing details from August 7 to 13, 2022 

Switch from chiller number 𝑁) 1 2 2 2 3 3 4 
Switch to chiller number 𝑁)1∆) 2 1 3 4 2 4 3 
On/off count of conventional strategy 10 9 5 3 8 7 10 
On/off count of proposed strategy 7 6 6 1 7 1 2 
Reduction (%) 30.0 33.3 -20.0 66.7 12.5 85.7 80.0 

Note: 𝑁) and 𝑁)1" denotes the number of operating chillers at time 𝑡 and 𝑡 + ∆𝑡, respectively. 

4.3.4. Model interpretation: Risk analysis 

The risks of Q-based actions and compromised actions are shown in Figure 4.14 as the 

interpretation of the proposed strategy. In most sequencing actions (93.8%), risk-based action 

evaluation is bypassed, or the risk of Q-based action is less than that of the compromised action. 

Therefore, the conventional Q-based strategy is reliable under most circumstances. The 

proposed strategy combines the strength of conventional strategy that engineers can easily 

interpret. Meanwhile, the proposed strategy leverages probabilistic machine learning to make 

more robust sequencing control actions. The risk-based action evaluation explains when the 

proposed strategy recommends different control actions compared to the conventional strategy. 

Figure 4.15 illustrates the chiller sequencing results of conventional and the proposed 

strategies and the risks on August 8. The figure reveals how risk-based action evaluation helps 

to produce robust sequencing results. At 00:30, according to the conventional Q-based strategy, 

the measured cooling load exceeds the threshold of switching on an additional chiller. However, 

according to the proposed strategy, the risk of the compromised action is lower than the Q-

based action. It means that although the current cooling load is higher than the threshold, the 
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risk that one chiller cannot satisfy cooling demand in the following hour (adopting the 

compromised action) is lower than the risk that an unnecessary chiller is switched on (adopting 

the Q-based action) according to probabilistic cooling load predictions. At 10:00, the measured 

cooling load is lower than the threshold of switching off one chiller according to the 

conventional Q-based strategy. However, according to the proposed strategy, the risk of the 

compromised action is lower than the Q-based action. Although the current cooling load is 

lower than the threshold, the risk that an unnecessary chiller is kept running in the following 

hour (adopting the compromised action) is lower than the risk that three chillers cannot satisfy 

cooling demand (adopting the Q-based action) according to probabilistic cooling load 

prediction. At 15:30, the measured cooling load is still higher than the threshold of switching 

off one chiller according to the conventional Q-based strategy. However, the risk that three 

chillers cannot satisfy cooling demand in the following hour (adopting the compromised action) 

is lower than the risk that an unnecessary chiller is switched on (adopting the Q-based action) 

according to probabilistic cooling load predictions. 

 
Figure 4.14. Risks of Q-based action and compromised actions on the test data 
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Figure 4.15. Sequencing results and risks evaluation on August 8 

4.3.5. Robustness comparison with conventional strategy under different 

levels of cooling load uncertainty 

In practical applications, measurement uncertainties, mainly arising from random uncertainty 

in flow sensors, can lead to variations in calculated cooling loads. To compare the proposed 

strategy with the conventional Q-based strategy under varying levels of uncertainty, this section 

assesses chiller sequencing results for both strategies in different degrees of cooling load 

measurement uncertainty. Previous studies have indicated that the random error of flow 

measurement can be considered to follow a normal distribution with a standard deviation [158]. 

Given that the chilled water pumps typically operate at a constant speed in multiple-chiller 

systems, the flow rate through one pump remains relatively stable. Depending on the number 

of chillers activated, it can be simplified as Eq. (4.24), where the measured cooling load 𝑄)Y is 

the actual value	𝑄) multiplied by a random variable following a normal distribution, where 𝜎 

represents the level of uncertainty.  

 𝑄)Y = 𝑄) · 𝒩(1, 𝜎) (4.24) 

In this test, the measured cooling load is assumed to be the true value, and five different levels 

of uncertainty are introduced to the entire dataset: 0%, 5%, 10%, 15%, and 20%. The test result 

of 0% is the same as the results in Section 4.3 because no uncertainty is introduced. The 

introduced uncertainty affects chiller sequencing results for the conventional Q-based strategy 
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because it alters the real-time measurement. However, for the proposed strategy, the introduced 

uncertainty affects not only the real-time measurement but also the predictions of the NGBoost 

model, due to the uncertainty present in historical data. 

In Figure 4.16, a comparison is made between the two strategies in terms of the total switching 

number at different uncertainty levels. As uncertainty increases, the total switching number for 

the conventional Q-based strategy significantly increases, with its average value going from 55 

to 141.6, while the proposed strategy only increases from 31 to 41.7. This implies that even at 

an uncertainty level of 20%, the proposed strategy remains more robust than the conventional 

Q-based strategy. The green line representing the reduction in the total switching number for 

the proposed strategy compared to the conventional Q-based strategy shows that as uncertainty 

increases, the average reduction in total switching number increases from 43.6% to 70.4%. 

 
Figure 4.16. Impact of uncertainty level to the total switching numbers 

4.4. In-situ test of the proposed strategy 

After deploying the proposed strategy, testing was conducted on the chiller sequencing control 

strategy. Prior to deployment, a rule-based strategy from the building automation company was 

employed in the BMS, which switched on the chillers based on the time schedule, PLR of the 

chillers, and chilled water return temperature. Details of the rule-based strategy can be found 

in the Supplementary Materials. 
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For a fair comparison, it is necessary to select testing days and reference days with sufficiently 

similar weather conditions for both the proposed and rule-based strategies. Three sets of testing 

and reference days were selected based on two criteria. The first criterion required the testing 

day's weather conditions to be sufficiently similar to those of the reference day. The difference 

in maximum temperature, average temperature, and minimum temperature between the testing 

day and reference day should be within 1°C. The difference in average relative humidity should 

be within 10%. The second criterion required the type of working day to be consistent for the 

testing and reference days. As an educational building, Monday to Sunday was divided into 

three types according to the characteristics of cooling load: Monday, Tuesday to Friday, and 

Saturday and Sunday. Monday was singled out because many classrooms accumulated 

significant heat gain while closed during the weekend, resulting in greater cooling demand on 

Monday mornings compared to Tuesday to Friday under similar weather conditions. Finally, 

one set of testing and reference days was selected for each of these three types of working days. 

The control effects of the rule-based and proposed strategies were compared in three aspects: 

robustness of sequencing actions, thermal comfort, and energy efficiency. This section 

introduces the comparison of the first set of testing and reference days, and the comparison of 

the other two sets of testing and reference days can be found in Appendix A. 

4.4.1. Testing day 1 and weather comparison with reference day 1 

Reference day 1 (May 22, 2023) and testing day 1 (June 12, 2023) are both Mondays. The rule-

based strategy was used in the BMS on reference day 1, while the proposed strategy was used 

on testing day 1. Both reference day 1 and testing day 1 were cloudy. A comparison of the 

weather between reference day 1 and testing day 1 is shown in Figure 4.17. The data was 

collected from the Hong Kong Observatory at 5-minute intervals. The outdoor temperature and 

relative humidity trends on these two days are very similar. Table 4.8 compares the highest 

temperature, average temperature, lowest temperature, and average relative humidity on these 

two days. From these four values, it can be observed that the weather on these two days is very 

similar. The highest temperature on testing day 1 (33.6°C) is slightly higher than on reference 

day 1 (32.8°C). 
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Figure 4.17. Weather conditions on reference day 1 and testing day 1 

Table 4.8. Weather summary on reference day 1 and testing day 1 

Date Maximum 
temperature (°C) 

Average 
temperature (°C) 

Minimum 
temperature (°C) 

Average 
relative humidity (%) 

2023-05-22 
Reference day 1 32.8 30.0 28.2 76 

2023-06-12 
Testing day 1 33.6 30.2 28.2 77 

4.4.2. Probabilistic cooling load prediction 

Figure 4.18 shows the probabilistic cooling load prediction on the testing day. The different 

shades of blue in the figure represent the 25%, 50%, 75%, and 95% confidence intervals. The 

width of the 90% confidence interval indicates that the probabilistic cooling load uncertainty 

is relatively small at night and increases significantly in the morning start-up period. This is 

because at night, the chillers only need to provide the basic cooling load for the 24-hour rooms 

(i.e., the 24-hour study center in the library), while in the morning, each room needs to remove 

the heat gain during the night, leading to larger load fluctuations. On the right side of Figure 

4.18, the probabilistic cooling load probability distribution at 12:00 on the testing day is shown, 

with a predicted average value of 7425.7 kW and a standard deviation (i.e., uncertainty) of 

495.5 kW. In testing day 1, the root mean square error (RMSE) for comparing the predicted 

average value of the probabilistic cooling load with the actual value is 407.0 kW, and the mean 

absolute percentage error (MAPE) is 9.5%. 
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Figure 4.18. One-hour-ahead probabilistic cooling load prediction on testing day 1 

4.4.3. Robustness of sequencing actions and thermal comfort 

The chiller sequencing results for testing day 1 and reference day 2 are shown in Figure 4.18. 

The y-axis on the left represents the number of chillers in operation, while the y-axis on the 

right represents the chiller sequencing order. Therefore, by combining the two y-coordinates, 

the on/off status of each chiller at every moment can be determined on the reference day and 

testing day. Compared with the reference day under the rule-based strategy, the proposed 

strategy on the testing day significantly reduces the total switching number of chillers from 15 

to 5, as shown in Table 4.9. Moreover, the maximum number of chillers turned on in the 

morning start-up period (6 a.m. to 12 a.m.) is reduced from 5 to 4. This comparison 

demonstrates that the adoption of the proposed strategy significantly improves the robustness 

of the chiller sequencing control. 
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Figure 4.19. Chiller sequencing results on reference day 1 and testing day 1 

Table 4.9. Chiller switching number on reference day 1 and testing day 1 

Date Total switching number Maximum chiller during 
morning start-up 

Reference day 1 15 5 
Testing day 1 5 4 

Figure 4.20 illustrates the chilled water return temperature of three loops (Phase 1, Phase 2, 

and Library) on reference day 1 and testing day 1. It can be seen from the figure that there are 

some problems with the rule-based strategy. Firstly, the highest chilled water return 

temperatures for Phases 1 and 2 both exceeded 19°C on the testing day due to a lack of cooling 

load prediction. According to the on-site operator's experience, when the chilled water return 

temperature of these two secondary loops remains above 16°C for more than half an hour, it 

can impact indoor thermal comfort. On reference day 1, the chilled water return temperature 

for Phase 1 was above 16°C from 7:15 to 10:25 (over 3 hours), and for Phase 2, it was above 

16°C from 7:40 to 9:45 (over 2 hours), causing insufficient cooling in Phases 1 and 2 and 

resulting in many thermal complaints. Secondly, the chillers were switched on and off 

frequently, which increased the instability of the system operation. 

When adopting the proposed strategy, the above two issues are significantly alleviated. First, 

the water temperature was more stable during the testing day. This indicates that the proposed 

strategy can make more reasonable on/off control of the chiller based on probabilistic cooling 

load predictions. Second, the control decisions based on probabilistic cooling load predictions 
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significantly avoid unnecessary on/off switching actions, which makes the chiller system 

operate more efficiently and effectively. 

 
Figure 4.20. Chilled water return temperature of three loops  

4.4.4. Energy efficiency 

The energy consumption of chillers, primary chilled water pumps (PCHWP), condensing water 

pumps (CDWP), and cooling towers (CT) on reference day 1 and testing day 1 are shown in 

Table 4.10. Compared with the reference day which adopted the rule-based strategy, the 

proposed strategy significantly reduced the energy of various equipment on the testing day. 

The reduction of energy consumption mainly comes from two aspects. The first aspect is that 

the probabilistic cooling load prediction achieves timely and reasonable switching on, 

especially in the morning start-up period, which reduces the maximum number of chillers that 

need to be turned on during the peak period, and reduces the operation of the corresponding 

PCHWP, CDWP, and CT of the chillers. On the other hand, the timely chiller switching off is 

realized through the prediction of cooling load, which reduces the energy consumption of 

chillers and other equipment. Specifically, the energy consumption of chillers, PCHWP, 

CDWP, and CT are reduced by 1720.5 kWh, 546.7 kWh, 522.5 kWh, and 170.0 kWh, 

respectively. The total energy consumption is saved by 2959.7 kWh. 

Table 4.10. Energy consumption on reference day 1 and testing day 1 (kWh) 

Date Chiller PCHWP CDWP CT Total 
Reference day 1 29334.8 4474.6 5878.8 2035.5 41723.7 
Testing day 1 27614.3 3927.9 5356.3 1865.5 38764.0 
Difference 1720.5 546.7 522.5 170.0 2959.7 



 
 

79 

Table 4.11 provides a comparison of the energy efficiency of the entire chiller plant on 

reference day 1 and testing day 1. Owing to the proposed strategy, the system COP is improved 

by about 3.7%. 

Table 4.11. Energy efficiency of chiller plant on reference day 1 and testing day 1 

Date Total energy 
consumption (kWh) 

Total cooling 
load (kWh) COP 

Reference day 1 41723.7 125644 3.02 
Testing day 1 38764.0 121067 3.13 
Difference -7.1% -3.6% 3.7% 

4.4.5. Testing day 2 and testing day 3 

Given that the results of testing day 2 and testing day 3 are similar to those of testing day 1, the 

comparison of these two days with their respective reference day can be found in Appendix A. 

4.4.6. Summary of the in-situ test 

The chiller switching numbers on reference days 1-3 and testing days 1-3 are summarized in 

Table 4.12. In the three sets of reference and testing days, the daily chiller switching numbers 

were reduced by 66.7%, 62.5%, and 14.3%, respectively. The overall reduction of the three 

sets of days is 56.5%. The decrease in chiller switching numbers in the third set was not as 

significant because reference day 3 and testing day 3 are both Sundays, so the building cooling 

load is relatively low and stable. Therefore, the previous rule-based strategy can achieve a 

relatively robust chiller sequencing control. The reduction in chiller switching numbers 

demonstrates the superiority of the proposed strategy in terms of robustness over the rule-based 

strategy. Especially in dealing with rapidly changing cooling loads, the proposed strategy can 

make more timely switching-on actions based on probabilistic cooling load predictions, thereby 

avoiding switching on unnecessary chillers within a short period. 

Table 4.12. Chiller switching number on reference and testing days 1-3 

Date Switching  
number on day 1 

Switching 
number on day 2 

Switching 
number on day 3 

Switching number 
on days 1-3 

Reference day 15 24 7 46 
Testing day 5 9 6 20 
Difference -66.7% -62.5% -14.3% -56.5% 

Table 4.13 compares the energy consumption for the reference days 1-3 and testing days 1-3 

of each type of equipment. The daily average energy consumption of chillers, PCHWP, CDWP, 

and CT were reduced by 2269.1 kWh, 685.0 kWh, 688.7 kWh, and 302.2 kWh. The energy 

savings for the chillers were the most significant. Because the chiller sequencing actions were 
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based on probabilistic cooling load prediction, the cooling supply matched the cooling demand 

to the greatest extent possible, thereby improving the PLR and the COP. For the PCHWP, 

CDWP, and CT, the energy savings resulted from reduced chillers during peak load periods 

and more timely switching-off control. Overall, the in-situ test demonstrated that the proposed 

strategy yielded an average daily energy savings of approximately 3945.1 kWh. 

Table 4.13. Energy consumption on reference days 1-3 and testing days 1-3 (kWh) 

Date Chiller PCHWP CDWP CT Total 
Reference days 1-3 81411.6 13453.8 17610.1 6293.2 118768.6 
Testing days 1-3 74604.2 11398.8 15543.9 5386.5 106933.2 
Difference 6807.4 2055 2066.2 906.7 11835.4 
Daily average 
difference 2269.1 685.0 688.7 302.2 3945.1 

Table 4.14 lists the energy efficiency of the chiller plant on the three sets of days reference and 

testing days. Owing to the proposed strategy, the system COP is improved by about 4.2% on 

average. 

Table 4.14. Energy efficiency of chiller plant on reference days 1-3 and testing days 1-3 

Date Total energy 
consumption (kWh) 

Total cooling 
load (kWh) COP 

Reference days 1-3 127347.3 380723 2.99 
Testing days 1-3 116620.3 363369 3.12 
Difference -8.4% -4.6% 4.2% 

4.5. Summary 

Multiple-chiller systems are widely adopted in large buildings due to their high flexibility and 

efficiency in providing cooling capacity. A reliable and robust chiller sequencing control 

strategy is crucial to ensure the energy efficiency and stability of the multiple-chiller systems. 

Therefore, this study proposes a robust chiller sequencing control strategy that utilizes 

probabilistic cooling load predictions. One-hour-ahead probabilistic cooling load prediction in 

the form of the normal distribution is made using NGBoost. Compared to conventional 

machine learning algorithms, NGBoost can predict not only the future cooling load but also 

the uncertainty of the predicted cooling load, which enables the load prediction to handle the 

uncertainties associated with the data/measurements adequately. A novel risk-based 

sequencing strategy is developed based on the probabilistic cooling load predictions. The risk 

interpretation can enhance the trust between the prediction model and the operators. The data 

experiment shows that the proposed strategy can significantly improve the stability and 

reliability of the chiller plant by reducing the total switching number by up to 43.6% (from 55 
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to 31 in a week). An in-situ test was conducted in an education building with a multiple-chiller 

system to validate the proposed strategy's superiority in robustness, thermal comfort, and 

energy efficiency over the conventional rule-based strategy. The test results show that, 

compared to rule-based strategies, the average daily chiller switching frequency decreased by 

56.5%, resulting in an average daily energy savings of approximately 3945.1 kWh while 

maintaining thermal comfort. The chiller plant's coefficient of performance (COP) increased 

by an average of 4.2%. 
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CHAPTER 5  PHYSICALLY CONSISTENT DATA-DRIVEN 

MODELS FOR ENHANCING INTERPRETABILITY AND 

RELIABILITY 

This chapter introduces a physically - consistent data - driven method to tackle the problem of 

physical inconsistency, enhancing interpretability and reliability. Although variable speed 

parallel pumping is widely adopted in HVAC water systems, optimal pump sequencing is 

usually overlooked. This study proposes a physically consistent data-driven optimal 

sequencing control, integrating physical rules with data-driven modeling, enhancing the 

interpretability and reliability for real applications. For different numbers of operating variable 

speed pumps (VSPs), features composed of frequency and total flow rate are used to train the 

interpretable ElasticNet data-driven model. The optimal sequencing is then determined using 

a physically consistent speed/frequency prediction method. Section 5.1 introduces the proposed 

physically consistent data-driven optimal sequencing control strategy. Section 5.2 details the 

validation of the proposed strategy using real building operational data. Finally, Section 5.3 

summarizes the main conclusions of this study. 

5.1. Proposed physically consistent data-driven optimal sequencing control 

strategy 

Figure 5.1 illustrates the proposed physically consistent data-driven modeling and online 

optimal sequencing method. The left section describes the process of physically consistent 

data-driven modeling. It starts with historical operational data, including total water flow rate, 

pump speed or frequency, number of operating pumps, and total pump power. Based on the 

operating point theorem (see Section 5.1.1), interpretable ElasticNet models are developed, 

expressing total pump power as a polynomial function of water flow rate and pump speed for 

different numbers of operating pumps. Additionally, a physically consistent data-driven model 

is constructed to predict pump speed after switching while maintaining the same flow rate and 

head, where the pumps in parallel rule and affinity law are used. The right section illustrates 

the online optimal sequencing process. Real-time measurements provide the operating point, 

number of operating pumps, and total pump power. The predicted pump power for different 

pump numbers is calculated, and the optimal pump configuration is determined by selecting 

the number that minimizes power consumption. 
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Figure 5.1. Overview of the proposed method 

5.1.1. Derivation of operating point theorem 

In this section, it is demonstrated that, similar to the total water flow rate 𝑄 and the pump head 

𝐻, a combination of the total water flow rate 𝑄 and the speed of the operating pump 𝜔 is also 

adequate to represent the operating point. 

For a parallel pump system, when the number of operating pumps 𝑁  is determined, the 

operating point can be uniquely determined by the total water flow rate 𝑄 and the pump head 

𝐻. Therefore, the speed (frequency) of operating pumps can be formulated as a function of the 

operating point (𝑄, 𝐻): 

 𝜔 = 𝑓Z(𝑄, 𝐻) (5.1) 

To prove that a pair of total water flow rate 𝑄 and the speed of operating pump 𝜔 is also 

sufficient to represent the operating point, that is, there is an implicit function 𝑓[,3 that satisfy: 

 𝐻 = 𝑓[(𝑄, 𝜔) (5.2) 

First, an auxiliary function 𝐹(𝑄,𝐻, 𝜔) is defined as: 

 𝐹(𝑄,𝐻, 𝜔) = 𝜔 − 𝑓Z(𝑄, 𝐻) = 0 (5.3) 
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According to the physical characteristics of the water pump, when the flow rate remains 

constant, an increase in the speed of the water pump will also increase the pump's head: 

 \Z
\[
= \+.(],[)

\[
> 0 (5.4) 

Therefore, according to the implicit function theorem [227], if \^
\[

 is non-zero, which here is: 

 \^
\[
= \

\[
Z𝜔 − 𝑓Z(𝑄, 𝐻)[ = − \+.(],[)

\[
≠ 0 (5.5) 

There exists a locally unique function 𝐻 = 𝑔[(𝑄, 𝜔) satisfying Eqs. (5.1) and (5.3). This 

proves Eq. (52), which means that the pump head 𝐻 can be uniquely determined given total 

water flow rate 𝑄 and the speed of operating pump 𝜔. When the number of operating pumps 

𝑁 is considered as an independent variable, Eq. (5.2) becomes: 

 𝐻 = 𝑓[(𝑄, 𝜔, 𝑁) (5.6) 

5.1.2. Derivation of pump power model 

The pump efficiency of a pump is a function of the ratio of water flow rate 𝑄 to the square root 

of the pump head 𝐻: 

 𝜂D9>D = 𝑓 ¢ ]
√[
£ = 𝑓_,D9>D(𝑄, 𝐻) (5.7) 

Therefore, the shaft power of the pump can also be formulated as the function of 𝑄 and 𝐻: 

 𝑊7M;+) = /̀#0%1
_23$2

= ]∙[
+4,23$2(],[)

= 𝑓 ,7M;+)(𝑄, 𝐻) (5.8) 

motor efficiency is a function of voltage 𝑉, frequency 𝜈, and the pump shaft power 𝑊7M;+): 

 𝜂>,),: = 𝑓_,>,),:Z𝑉, 𝜈,𝑊7M;+)[ (5.9) 

Because the voltage is usually constant and the frequency 𝜈 is directly proportional to the pump 

speed 𝜔, the motor efficiency can be represented using the pump speed 𝜔, water flow rate 𝑄, 

and the pump head 𝐻: 

 𝜂>,),: = 𝑓_,>,),:(𝑄, 𝐻, 𝜔) (5.10) 

The efficiency of a VFD can be formulated as a function of the pump speed 𝜔: 

 𝜂b+c = 𝑓_,b+c(𝜔) (5.11) 

Combining Eqs. (5.7), (5.10), and (5.11), the overall wire-to-water efficiency can be formulated 

as: 
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 𝜂CC? = 𝜂D9>D ∙ 𝜂>,),: ∙ 𝜂b+c = 𝑓_,CC?(𝑄, 𝐻, 𝜔) (5.12) 

According to Section 3.2.1, pump head 𝐻 can be uniquely determined given total water flow 

rate 𝑄 and the speed of operating pump 𝜔. Therefore, the variable 𝐻 in Eq. ((5.12) can be 

eliminated: 

 𝜂CC? = 𝑓_,CC?(𝑄, 𝜔) (5.13) 

Therefore, the input power of a variable speed pump can be formulated as: 

 𝑊#B = /̀#0%1
_//%

= ]∙[
+4,//%(],Z)

 (5.14) 

Similarly, the variable 𝐻 in Eq. (5.14) can be eliminated: 

 𝑊#B = 𝑓 ,#B(𝑄, 𝜔) (5.15) 

Finally, if the number of operating pumps is considered as a variable, the wire-to-water 

efficiency and input power of parallel pumps can be formulated as: 

 𝜂CC? = 𝑓_,CC?(𝑄, 𝜔, 𝑁) (5.16) 

 𝑊#B = 𝑓 ,#B(𝑄, 𝜔, 𝑁) (5.17) 

In practical parallel pumping systems, using the pump speed as a basis for the pump's power 

model is more reliable than estimating the pump head through differential pressure between 

discharge and suction pipes. 

5.1.3. Interpretable data-driven pump modeling using ElasticNet 

ElasticNet is a popular interpretable machine learning algorithm that adopts regularization 

techniques to prevent overfitting and improve model performance of linear regression models, 

especially when dealing with highly correlated data or when the number of predictors (features) 

is much larger than the number of observations. It combines the properties of two popular 

methods: Ridge (L2 regularization) and Lasso (L1 regularization). Like Lasso, ElasticNet uses 

regularization to shrink the coefficients of less important features towards zero. This effectively 

performs feature selection, leading to simpler models with fewer variables. This makes it easier 

to understand which features are truly driving the predictions. 

The cost function in ElasticNet is a combination of the cost function in linear regression and 

two regularization penalties: 

 Cost(𝒘) = "
(3
∑  3
#5" (𝑦# − 𝑦i#)( + 𝛼 ¢𝜆 ∥ 𝒘 ∥"+ (1 − 𝜆)

"
(
∥ 𝒘 ∥((£ (5.18) 
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where 𝑁  is the number of observations, 𝑦#  and 𝑦i#  are the actual and predicted values 

respectively, 𝑤 is the vector of coefficients, 𝛼 is the regularization parameter controlling the 

overall strength of regularization, and 𝜆  is the mixing parameter controlling the balance 

between Lasso (𝜆 = 1) and Ridge (𝜆 = 0) penalties. 

The first part, "
(B
∑  B
#5" (𝑦# − 𝑦i#)(, represents the sum of squared residuals, which is the cost 

function used in ordinary least squares. It measures how close the model's predictions are to 

the actual values. The second part, 𝛼 ¢𝜆 ∥ 𝒘 ∥"+ (1 − 𝜆)
"
(
∥ 𝒘 ∥((£, is the penalty term. It 

combines Lasso's penalty (∥ 𝒘 ∥"), which can shrink some coefficients completely to zero (thus 

performing variable selection), with Ridge's penalty ("
(
∥ 𝒘 ∥((), which shrinks the coefficients 

but typically does not set them exactly to zero. By adjusting 𝛼 and 𝜆, operators can control the 

balance between fitting the model accurately and keeping the model simple to avoid overfitting.  

5.1.4. Physically consistent pump speed/frequency prediction after switching 

If the number of operating pumps changes from 𝑁 to 𝑁′, the total water flow rate remains the 

same, the pump speed of the parallel pump system is modulated from 𝜔 to 𝜔′, and the input 

power is: 

 𝑊#B
Y = 𝑓 ,#B(𝑄, 𝜔Y, 𝑁′) (5.19) 

In Eq. (5.19), the new pump speed 𝜔Y is unknown. Therefore, if the new pump speed 𝜔Y can 

be reasonably predicted, the pump operating number with the lowest power is adopted as the 

optimal pump operating number. 

The head-flow curve of one pump is assumed as: 

 𝐻 = 𝐻! − 𝑠𝑄( (5.20) 

where 𝐻!  and 𝑠  are two unknown coefficients. Although the manufacture curve can be 

obtained, it could vary from the practical installation. Therefore, this study proposes a 

physically consistent pump speed/frequency prediction method. 

Based on Eq. (5.20) and the affinity law for pumps, when 𝑁 pumps operate in parallel and the 

pump speed is 𝜔 (the ratio of current speed to the maximum speed), the head-flow curve for 

each pump becomes: 

 [
Z-
= 𝐻! − 𝑠 ¢

]
3Z
£
(
 (5.21) 
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Therefore, the head-flow curve for each pump when 𝑁′ pumps operate in parallel and the new 

pump speed is 𝜔Y becomes: 

 [
(ZY)-

= 𝐻! − 𝑠 ¢
]

36Z6
£
(
 (5.22) 

where the pump head 𝐻 and the total water flow in the parallel pump system remain the same 

as Eq. (5.21). 

By solving Eqs. (5.21) and (5.22), simultaneously, the new pump speed 𝜔Y can be obtained: 

 𝜔D:?cY = �𝜔( − 7]-

[7
¢ "
3-
− "

(36)-
£ (5.23) 

In a practical parallel pump system, when the number of operating pumps changes, Eq. (5.23) 

can be used to predict the frequency after switching. Because 𝐻!  and 𝑠  are unknown, the 

following optimization problem is used to find the optimal using operational data: 

 min
[7,7

 ∑ Z𝜔#,):9?Y − 𝜔#,D:?cY [(#  (5.24) 

s.t. 𝐻!,>#B ≤ 𝐻! ≤ 𝐻!,>;' 

𝑠>#B ≤ 𝑠 ≤ 𝑠>;' 

where 𝜔#,):9?Y  is the true pump speed after switching, 𝜔#,D:?cY  is the predicted pump speed after 

switching using Eq. (5.23), 𝐻!,>#B, 𝐻!,>;', 𝑠>#B, and 𝑠>;' are the lower and upper bounds of 

𝐻! and 𝑠, respectively. 

5.2. Validation using real building operational data 

5.2.1. Parallel pump system description 

In the data experiment, operational data from the parallel pumping system at The Hong Kong 

Polytechnic University was collected. This parallel pumping system utilizes a primary-

secondary chilled water system. Within the Secondary chilled water loop, there are three 

secondary chilled water pumps (SCHWPs 1-3) in parallel, model 250 × 150 CNJA, each driven 

by a 4-pole synchronous speed motor (50 Hz) and equipped with a variable speed drive (VFD). 

The design working conditions of the pumps are detailed in Table 5.1. The system allows for 

a maximum of two pumps to operate simultaneously, with the third pump serving as back up. 

The secondary chilled loop utilizes conventional differential pressure control, adjusting the 

differential pressure setpoint of the furthest cooling coil to meet the chilled water supply needs. 

This loop has two differential pressure setpoints, 60 kPa and 110 kPa, designed to satisfy the 
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demands during operational hours (7 am - 11 pm) and non-operational hours (11 pm - 7 am), 

respectively. 

Table 5.1. Design working conditions of the variable speed pumps 

Pump head 
(m) 

Flow rate 
(L/s) 

Motor power 
(kW) 

Full speed 
(RPM) 

57 125 110 1480 

The operational data includes the total water flow rate of the parallel pumping system, as well 

as the frequency and power of each pump. As shown in Figure 5.2, when only one pump 

operates, and its frequency is fixed, the power of the pump varies approximately linearly with 

the total flow rate. The total water flow rate ranges from 50 L/s to 200 L/s. When the total water 

flow rate exceeds 130 L/s, the lowest frequency of 30 Hz cannot meet the differential pressure 

setpoint requirement, and the minimum operating frequency of the pump gradually increases. 

According to control area theory, the minimum head of the control area increases with the 

increase in the system flow rate. Therefore, when only one pump operates, a frequency greater 

than 30 Hz is needed to meet the minimum head requirement, and the required minimum 

operating frequency gradually increases. The lower boundary of the control area remains 

relatively flat only when the friction loss ratio 𝑟 approaches 0. When two pumps operate and 

their frequency is fixed, the power of the pumps also varies approximately linearly with the 

total flow rate. Unlike operating a single pump, with the increase of the total water flow rate, 

the lowest frequency of 30 Hz can still meet the minimum head requirement in the control area. 

 
Figure 5.2. Total pump power operating 1 and 2 SCHWPs 
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5.2.2. Pump power models 

Firstly, historical data operating one SCHWP (𝑁 = 1) were selected, and polynomial terms up 

to the power of 2 were created for the pump frequency 𝜈 and flow rate 𝑄. Then, each term was 

processed with a standard scaler, and ElasticNet was used for training, resulting in the equation 

as shown in Eq. (5.25). After normalization, the first-order term of the flow rate 𝑄  was 

discarded, making the equation more concise and improving the interpretability of the model 

[109]. From the coefficients of the model, it can be seen that the square of the frequency has 

the greatest influence on the pump power, while the influence of other terms is relatively close. 

Figure 5.3 shows the comparison between the predicted power and the actual power of the 

model. The coefficient of determination R2 is 0.938, achieving accurate and interpretable 

predictions of pump power consumption through frequency and flow rate. 

 𝑊#B,35" = 3.3745𝜈 + 5.8252𝜈( + 3.2236𝜈𝑄 + 	3.7266𝑄( + 29.4660 (5.25) 

 
Figure 5.3. Power predictions of 1 SCHWP 

Similarly, historical data operating two SCHWPs (𝑁 = 2) were filtered, and the ElasticNet 

model was trained using the same steps as above, resulting in the equation as shown in Eq. 

(5.26). After normalization, the first-order term of the flow rate 𝑄 was also discarded like Eq. 

(5.25). The square of the frequency has the greatest influence on the pump power, followed by 

the first power of the frequency. Figure 5.4 shows the comparison between the predicted power 
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and the actual power of the model. The R2 is 0.953, indicating slightly higher accuracy than 

when the 𝑁 = 1. 

 𝑊#B,35( = 8.1660𝜈 + 12.5046𝜈( + 4.4835𝜈𝑄 − 1.2526𝑄( + 50.5333 (5.26) 

 
Figure 5.4. Power predictions of 2 SCHWPs 

5.2.3. Frequency prediction after sequencing 

In this section, the frequency after switching from 2 to 1 SCHWP is predicted. The historical 

data collected at 5-minute intervals selected data with a relatively stable total flow rate before 

and after the switch (the total system flow change does not exceed 10 L/s). Figure 5.5 shows 

the prediction results of the frequency, with an R2 of 0.820 and a mean absolute error of 

0.773Hz. This prediction error is acceptable because the maintenance of the differential 

pressure setpoint is a dynamic process after the pump switch. 
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Figure 5.5. Frequency prediction accuracy 

Based on the frequency prediction model, the contour map shown in Figure 5.6 presents the 

frequency prediction after switching from 1 to 2 SCHWPs, where the minimum operating 

frequency of the pump is 30 Hz. To maintain the same differential pressure as when 1 SCHWP 

operates, the frequency decreases significantly after the pump switch as the flow rate increases. 

Therefore, switching from 1 pump to 2 pumps has more energy-saving potential when the flow 

rate is high. 

 
Figure 5.6. Frequency prediction after switching from 1 to 2 SCHWPs 
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Figure 5.7 displays the frequency prediction after switching from 2 to 1 SCHWP, where the 

maximum operating frequency of the pump is 50 Hz. The frequency increase becomes 

insignificant after switching from 2 to 1 SCHWP as the flow rate decreases. It implies that 

switching 2 to 1 SCHWP has more energy-saving potential when the flow rate is low. 

 
Figure 5.7. Frequency prediction after switching from 2 to 1 SCHWP 

5.2.4. Energy saving analysis 

5.2.4.1. Energy saving from 1 to 2 SCHWPs 

By combining the pump power and frequency prediction models, the optimal sequencing of 

the pump can be analyzed, and energy savings can be evaluated. Figure 5.8 shows the energy 

saving from 1 to 2 SCHWPs, where the minimum frequency requirement is 30 Hz. The pink 

points in the figure represent the data points of operating 1 SCHWP collected from June 2023 

to June 2024. The data points have two distinct clusters, corresponding to the two-stage 

differential pressure setpoints set during the day and night. The lower differential pressure 

setpoint corresponds to the low-flow cluster, with flow rates distributed between 60-100 L/s. 

The higher differential pressure setpoint corresponds to the high-flow cluster, with flow rates 

distributed between 85-200 L/s. The purple line in the figure corresponds to the contour line at 

a frequency of 30 Hz in Figure 5.6. The contour lines shown in Figure 5.8 bend when 

intersecting with the purple line because of the minimum frequency requirement. The white 

line on the contour map represents energy savings greater than 0. A total of 47.0% of the points 
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fall in the area where the energy savings are greater than 0, with energy savings ranging from 

0-25 kW. This indicates that the conventional differential pressure-based control cannot 

guarantee that parallel SCHWPs operate at the lowest energy consumption, and there is a 

considerable potential for energy savings. If the allowable minimum frequency of the SCHWPs 

can be lower, the potential for energy saving can be further enhanced. 

 
Figure 5.8. Energy saving from 1 to 2 SCHWPs (Min. frequency: 30 Hz) 

Figure 5.9 shows the contour map of energy saving percentage from 1 to 2 SCHWPs, where 

the minimum frequency requirement is 30 Hz. The contour line marked 0 in the figure is 

consistent with the contour line marked 0 in Figure 5.8, and the remaining contour lines are 

different. It can be seen from the figure that the highest energy savings is more than 40%. 

Therefore, operating different numbers of SCHWPs to maintain the same head and flow rate 

can result in substantial differences in energy consumption, especially when the system flow 

rate is high. 
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Figure 5.9. Energy saving percentage from 1 to 2 SCHWPs (Min. frequency: 30 Hz) 

5.2.4.2. Energy saving from 2 to 1 SCHWP 

Figure 5.10 shows the contour map of energy saving from 2 to 1 SCHWP, where the maximum 

frequency requirement is 50 Hz. The white area in the figure corresponds to the white part 

above the contour line at a frequency of 50 Hz in Figure 5.7, indicating the impracticability to 

switch from 2 SCHWPs to 1 SCHWP. The pink points in the figure represent the data points 

of operating 1 SCHWP collected from June 2023 to June 2024. 7.0% of the points fall in the 

area where the energy savings are greater than 0, with energy savings ranging from 0-35kW, 

which is smaller than the energy-saving potential of operating 1 SCHWP. 
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Figure 5.10. Energy saving from 2 to 1 SCHWP (Max. frequency: 50 Hz) 

Figure 5.11 shows the contour map of the Energy saving percentage from 2 to 1 SCHWPs, 

where the maximum frequency requirement is 50 Hz. The contour line marked 0 in the figure 

is consistent with the line marked 0 in Figure 5.10. The highest energy savings is more than 

40% when the system flow rate is low, and the pump frequency is high. 

 
Figure 5.11. Energy saving percentage from 2 to 1 SCHWP (Max. frequency: 50 Hz) 
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5.2.4.3. Energy saving in historical data 

The monthly energy savings from June 2023 to June 2024 using the proposed strategy is shown 

in Figure 5.12. The purple and yellow bars represent the energy consumption before and after 

using the proposed optimal pump sequencing strategy, and the green and red bars with white 

shadow represent the Energy saving from 1 to 2 SCHWPs and Energy saving from 2 to 1 

SCHWP, respectively. The potential for energy savings in winter is minimal, with only a 2.5% 

reduction observed in January 2024, whereas substantial savings of 20.4% are evident in June 

2024 during the summer. On average, the energy consumption of SCHWPs is reduced by 

approximately 10%. Most energy savings come from switching from two to one SCHWPs 

because the SCHWPs are oversized, which is common in practice. This means running one 

SCHWP is sufficient on most days. 

 

Figure 5.12. Monthly energy saving 

Figure 5.13 shows an energy-saving analysis of a typical working day. Before using the 

proposed optimal pump sequencing strategy, only SCHWP-2 operated after 7am; its frequency 

is shown as the blue solid line. Although one SCHWP can maintain the differential pressure 

setpoint, the power is large due to the large system total flow rate and the pump needs to operate 

at a high frequency. The orange dashed line represents the predicted frequency after switching 

from 1 to 2 SCHWPs. After the switch, although one pump is added, the total power decreases 
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by 10%-35%, as shown in the middle of the figure, with an average power reduction of about 

25.7%. 

 
Figure 5.13. Detailed energy saving on a typical working day (21-July 2023) 

5.3. Summary 

HVAC systems consume roughly 40% of the total energy used in buildings, where about 15% 

of this system's total energy is used by pumps. Hence, optimal control of the pumping system 

provides substantial energy savings. The rule-based strategy currently employed in pump 

sequencing does not guarantee optimal energy efficiency for the VSPs. This research proposes 

a novel physically consistent data-driven optimal sequencing control strategy for variable speed 

pumps used in HVAC systems. For different numbers of operating VSPs, features composed 

of frequency and total flow rate are used to train the ElasticNet data-driven model. The optimal 

sequencing is then determined using a physically consistent frequency prediction method. The 

proposed strategy is validated using historical data from a real parallel variable pumping system 

with three VSPs. The results show that operating different numbers of VSPs to maintain the 

same head and flow rate can result in substantial differences in energy consumption, especially 

when the system flow rate is high. And the average energy saving is about 10% compared to 

the conventional rule-based strategy. The proposed strategy is promising to be applied to 

various variable speed parallel pumping systems that adopt differential pressure control. 
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CHAPTER 6  GENERAL OPTIMIZATION FRAMEWORK 

FOR DATA-DRIVEN MODEL-BASED ONLINE 

OPTIMIZATION WITH ENHANCED CONTROL 

SMOOTHNESS 

This chapter develops a multi-objective optimization-based framework to achieve reliable 

online control with enhanced smoothness. Optimization algorithms, including deterministic 

algorithms and metaheuristic algorithms (biology-based and physics-based), are widely used 

in building energy systems for system design optimization, demand response and grid 

interaction, and energy efficiency operation. However, these optimization algorithms are not 

designed for online optimal control, and their stability is usually overlooked. The stability of 

deterministic algorithms could suffer from variations in the optimization problem (e.g., 

variations in objection function and constraints) during online optimal control. The solutions 

produced by metaheuristic algorithms can vary with random seed due to the stochastic nature 

of their initialization and exploration processes. Furthermore, successive control actions 

derived from these algorithms may differ significantly due to the shifts across local optima. 

Therefore, this study proposes a multi-objective optimization (MOO)-based approach for 

enhancing the stability in model-based online control. Besides energy saving, the distance 

between two successive control actions is used as one of the optimization objectives. Section 

6.1 describes the proposed MOO-based approach. Section 6.2 presents the setup of the case 

studies. Section 6.3 analyzes the results of the case studies, and Section 6.4 concludes the main 

findings of the study. 

6.1. Proposed multi-objective optimization-based approach for online 

optimal control 

6.1.1. Overview of the proposed approach 

Figure 6.1 illustrates the overview of the proposed multi-objective optimization (MOO)-based 

approach for online optimal control. The MOO-based approach includes three main parts: 

multi-objective optimization, modeling, and distance measurement. The multi-objective 

optimization algorithm adopted in this study is the non-dominated sorting genetic algorithm II 

(NSGA-II) [131], ensuring the flexibility of the proposed approach to various model-based 

control and model predictive control problems and optimization objectives. The modeling and 
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distance measurement parts are employed to compute two optimization objectives within the 

multi-objective optimization. Objective 1 is the same as conventional optimization approaches, 

such as to minimize total power, carbon emissions, or to maximize economic benefits. On the 

other hand, Objective 2 is to minimize the distance between the population of the NSGA-II and 

the previous control action. The L1-norm and L2-norm are used to calculate the distances of 

integer and continuous variables, respectively. After obtaining the non-dominated optimal 

solutions (Pareto front), an appropriate solution is selected from those solutions as the new 

control action based on the tolerance level of Objective 1 as the selection criterion. 

 
Figure 6.1. Overview of the proposed multi-objective optimization-based approach 

6.1.2. Optimization Objective 1: Energy efficiency 

Objective 1 aims to minimize total power and carbon emissions or maximize economic benefits 

based on models of building energy systems. The controllable inputs of the models are control 

actions such as the number of devices to be operated or the setpoints of devices. The models 

can be white-box, grey-box, or black-box models depending on the availability of operational 

data and detailed information about the building energy systems. White-box models, such as 

EnergyPlus, TRNSYS, and Modelica [38], can be co-simulated and optimized using Python. 

Grey-box models, like thermal resistance-capacitance (RC) models, are typically employed as 

simplified representations to understand and predict the thermal behavior of a building [228]. 
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With the increasing development of metering technologies and IoT sensors, black-box models 

(i.e., data-driven models) are becoming more popular in building energy modeling. Since most 

data-driven models are complex and non-linear, deterministic algorithms usually cannot solve 

them. Therefore, metaheuristic algorithms are the only choice for black-box model-based 

optimization. The NSGA-II used in this study is a metaheuristic algorithm, making it flexible 

in addressing various model-based control and model predictive control problems. 

6.1.3. Optimization Objective 2: Control stability 

Objective 2 aims to minimize the distance between the population of the NSGA-II and the 

previous control action, i.e., to improve the stability between two control actions. The previous 

control action is formulated as the following action vector: 

 𝒖)*" = °𝒖)*",c , 𝒖)*",-± (6.1) 

where 𝒖)*",c is the vector of integer control variables (discrete variables), and 𝒖)*",- is the 

vector of continuous control variables normalized between 0 and 1. 

In the optimal control of building energy systems, integer control variables are typically the 

on/off signals (labeled as 1/0) of devices or the number of devices to be operated in the 

following control period. Continuous control variables usually refer to the setpoints of devices 

or local controllers, for example, the chilled water supply temperature, the frequency of 

variable speed pumps, or the indoor air temperature setpoint. For each continuous variable, the 

range is normalized between 0 and 1 based on the minimum and maximum allowable operation 

range. 

To measure the distance between two vectors with integer and continuous elements, the L1-

norm and L2-norm are used to calculate the distance of integer and continuous variables, 

respectively: 

 dist(𝒖) , 𝒖)*") = ³𝒖),c − 𝒖)*",c³" + ³𝒖),- − 𝒖)*",-³( (6.2) 

where L1-norm and L2-norm are defined as: 

 ‖𝒙‖" = ∑ |𝑥#|B
#5"  (6.3) 

 ‖𝒙‖( = �∑ 𝑥#(B
#5"  (6.4) 

where 𝒙 is a 𝑛-dimensional vector and 𝑥# refers to the 𝑖-th element of the vector. 



 
 

101 

The L1-norm of a vector, also known as the Manhattan distance, is the sum of the absolute 

values of each element in a vector. In two-dimensional space, for example, the L1-norm 

represents the sum of horizontal and vertical distances from the origin to the point where the 

vector lies. For example, if 𝒖),c = [1,0] and 𝒖)*",c = [0,1], this means that only the first 

device is on and only the second device is on at time 𝑡 and 𝑡 − 1, respectively. The distance 

between 𝒖),c and 𝒖)*",c is |1 − 0| + |0 − 1| = 2. The L1-norm distance measures the number 

of on/off actions between the two control actions and is preferable for measuring the distance 

between integer variables 

The L2-norm of a vector, also called Euclidean distance, is the square root of the sum of squares 

of each element in the vector. For example, if 𝒖),- = [0.4,0.8] and 𝒖)*",- = [0.7,0.4], it means 

that only the first continuous variable becomes 0.4 from 0.7, and the second continuous variable 

becomes 0.8 from 0.4. The distance between 𝒖),-  and 𝒖)*",-  is 

¶(0.4 − 0.7)( + (0.8 − 0.4)( = 0.5 . Compared to the L1-norm, the L2-norm is more 

sensitive to the outliers because of the square operator. Therefore, L2-norm of 𝒖),- − 𝒖)*",- is 

more suitable for measuring the distance between continuous variables. 

6.1.4. Tolerance level-based solution selection from the Pareto front 

In NSGA-II, the Pareto front refers to a group of solutions representing the optimal tradeoff 

between conflicting objectives, i.e., objectives 1 and 2 in this study. NSGA-II employs the 

concept of Pareto dominance, which defines the quality of solutions. Solution A is dominated 

by solution B if solution B is equal to or better than solution A in all optimization objectives 

and better than solution A in at least one objective. The Pareto front is the set of all non-

dominated solutions in the population, which offers more profound insights into the tradeoff 

between conflicting objectives. 

Selecting an optimal solution from the Pareto front is also important in practice. Techniques 

for order of preference by similarity to ideal solution (TOPSIS) [229] and simple additive 

weighting (SAW) [230] have been widely adopted in previous studies. In this study, the 

tolerance-based selection method is proposed based on the characteristic of objective 2.  

Assume that the objective matrix is a matrix with 𝑚 rows (representing each solution in the 

Pareto front found by NSGA-II) and two columns (representing Objectives 1 and 2). The steps 

to find the solution for control actions are as follows: 
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Step 1. Sort the objective matrix based on the values of Objective 2, i.e., the distance between 

the previous control action and each solution in the Pareto front in ascending order. 

Step 2. Group the solutions based on the floor value (the largest integer that the current number 

is less than or equal to) of Objective 2. 

Step 3. Select the solution with optimal Objective 1 from each group and drop other solutions. 

Step 4. Start selecting from the first remaining solution until the value of Objective 1 of the 

following solution differs from the current solution by less than the tolerance level 𝛼. In this 

study, the tolerance level 𝛼 is a parameter to balance the energy efficiency and control stability. 

In the following case studies, the tolerance level 𝛼 is set from 1% to 10%. Finally, the new 

control action 𝒖) = °𝒖),c , 𝒖),-± is obtained from the Pareto front. 

6.2. Design of case studies 

To validate the stability of the proposed multi-objective optimization (MOO)-based approach 

for online optimal control, a typical optimization problem in building energy systems is studied 

in the case studies: optimal chiller loading. The problem of optimal chiller loading is an 

important research issue as it involves maintaining an optimal balance between cooling load, 

chiller efficiency, and system stability in large commercial buildings. In previous studies, the 

performance of optimal chiller loading methods was compared under individual cooling load 

conditions instead of actual cooling load curves. The variation of cooling load and randomness 

could affect the stability of online optimal chiller loading. There have been limited studies 

comparing these algorithms and analyzing the control stability. The case studies present a 

stability comparison of several major optimization algorithms for online optimal chiller loading. 

These algorithms are tested and evaluated using the measured cooling load curve.  

6.2.1. Typical optimization problem: optimal chiller loading 

The case studies use a chiller plant with four 1280 RT and two 1250 RT (total 7620 RT) chillers 

adopted by numerous studies [231]. The power of each chiller is formulated as a quadratic 

function of the partial load ratio (PLR), as shown in Eq. (6.5) and Table 6.1. The cures were 

fitted based on data when the entering cooling water temperature of the chillers was 24.5 °C. 

In actual application, the cooling water temperature should also be an independent variable for 

the chiller model. Since these simple quadratic chiller power curves have been widely used in 

previous optimal chiller loading studies, the cooling water temperature water is regarded as a 
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fixed value at 24.5 °C in this study because the variation of cooling load affects the optimal 

chiller loading results most. 

 𝑃chiller,# = 𝑎# + 𝑏# × 𝑃𝐿𝑅# + 𝑐# × 𝑃𝐿𝑅#( (6.5) 

where 𝑃chiller,# is the power (kW) of the 𝑖-th chiller, 𝑃𝐿𝑅# is the partial load ratio of the chiller, 

and 𝑎# , 𝑏# , 𝑐# are coefficients. 

 

Table 6.1. Chiller performance coefficients 

Chiller 𝑎# 𝑏# 𝑐# Capacity (RT) 
1 399.345 -122.12 770.46 1280 
2 287.116 80.04 700.48 1280 
3 -120.505 1525.99 -502.14 1280 
4 -19.121 898.76 -98.15 1280 
5 -95.029 1202.39 -352.16 1250 
6 191.750 224.86 524.04 1250 

Figure 6.2 shows the quadratic power curves of the six chillers. The performance of the six 

chillers is different because of the differences in model type, performance decay, and site 

conditions. The power curves of chillers 1, 2, and 6 are convex functions, while those of chillers 

3, 4, and 5 are non-convex. It means that chillers 3, 4, and 5 remain highly efficient when the 

cooling load is high. Such performance differences in multiple-chiller systems are common, 

making optimal chiller loading a promising way to improve energy efficiency compared to the 

equally loading strategy. 
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Figure 6.2. Power curve against partial load ratio of chillers 

Objective 1 aligns with previous studies on optimal chiller loading, aiming to minimize the 

total power of the chiller plant under a given cooling load, as formulated in Eq.(6.6). The first 

constraint ensures that the sum the cooling load for each chiller should equal the total cooling 

load, as shown in Eq. (6.7). The second constraint sets the minimum and maximum values for 

the chiller partial load ratio (PLR), as shown in Eq. (6.8). The third constraint related the PLR 

and the on/off status of each chiller. Therefore, the control variables for the optimization 

problem are 𝑋#  and 𝑃𝐿𝑅# , which are integer and continuous variables, respectively: 𝒖) =

°𝒖),c , 𝒖),-±. 

 𝑚𝑖𝑛∑ 𝑃chiller,##  (6.6) 

 ∑ 𝑃𝐿𝑅# × 𝐶𝑎𝑝#d
#5" = 𝐶𝐿 (6.7) 

 0.3 ≤ 𝑃𝐿𝑅# ≤ 1, or	𝑃𝐿𝑅# = 0 (6.8) 

 𝑃𝐿𝑅# = 𝑋# × 𝑃𝐿𝑅# (6.9) 

 𝑋# ∈ {0,1} (6.10) 

6.2.2. Data collection 

In the case studies, four weeks of cooling load data were collected from the chiller plant at an 

educational building with a 30-minute interval [164]. Since the cooling load of the building is 

not as large as the chiller configurations in Table 6.1, the actual cooling load was multiplied 
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by 2, as shown in Figure 6.3. At night, the cooling load is about 1000 RT. The peak load can 

vary between 2000 RT and 5000 RT during the daytime depending on weather conditions and 

occupancy schedule. 

 
Figure 6.3. Actual 4-week cooling load from the chiller plant at an educational building 

Figure 6.4 illustrates the frequency distribution of the chiller plant PLR for the tested cooling 

load curve. The partial load ratio was calculated by dividing the total cooling capacity of the 

six chillers, i.e., 7620 RT. There are two peaks in the distribution. The first peak occurs when 

the PLR is between 0.1 and 0.2, corresponding to the night period when the cooling load is 

relatively low and stable. The second peak occurs when the PLR is between 0.4 and 0.6, which 

is typical in actual multiple-chiller systems. In this PLR range, at least more than half of the 

chillers (three chillers) should be operated to provide cooling capacity, and optimal chiller 

loading algorithms should determine the optimal number of chillers and their loading. 
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Figure 6.4. Frequency distribution of chiller plant PLR for the tested cooling load curve 

6.2.3. Baseline algorithms for comparison 

6.2.3.1. Metaheuristic algorithms 

The four most popular were used as baseline metaheuristic algorithms: particle swarm 

optimization (PSO) [232], genetic algorithm (GA) [233], differential evolution (DE) [234], and 

simulated annealing (SA) [235]. These metaheuristic algorithms were implemented using the 

scikit-opt Python package with their default hyperparameter settings. For each metaheuristic 

algorithm, ten repeated experiments were conducted, with random seeds ranging from 0 to 9. 

In Section 6.3.1, the impact of random seeds on the control stability is analyzed. 

6.2.3.2. Deterministic algorithm: Gurobi solver 

The optimization problem formulated in Section 6.2.1 is a non-convex mixed integer 

quadratically constrained programming (MIQCP) problem. Therefore, it can be solved using 

the Gurobi solver [236]. Gurobi solver employs techniques such as branch and cut and cutting 

planes to find the global optimal solutions for non-convex MIQCP problems. In the case 

studies, the tolerance gap of the Gurobi solver is set to 0.01%. 

6.2.4. Stability metrics 



 
 

107 

Two metrics are adopted in the case studies to quantify the control stability of optimization 

algorithms: chiller switching number and smoothness of control signals. These two metrics 

correspond to the stability of integer and continuous control variables in the optimization 

problem, i.e., the on/off status and the PLR of chillers in the case studies. 

6.2.4.1. Chiller switching number 

The chiller switching number is a widely adopted metric for measuring the control stability and 

robustness of chiller sequencing control [164,237]. The chiller switching number is the count 

of one chiller (or chillers) being switched on or off over a specific period: 

 Chiller switching number = ∑ ∑ 𝑠#,))#  (6.11) 

 𝑠#,) = ¹
0					 if 𝑋#,) = 𝑋#,)*"
1						if 𝑋#,) ≠ 𝑋#,)*"

 (6.12) 

where 𝑠#,) is a binary variable that indicates the change of on/off status of the 𝑖-th chiller at time 

𝑡, as defined in Eq. (6.12). 

A lower chiller switching number indicates better control stability in chiller sequencing control, 

meaning the optimization algorithm is better at handling load variations without frequent on/off 

switching, which can wear down devices and damage their lifespan. 

6.2.4.2. Smoothness of control signals: Average absolute change in PLR 

Average absolute change is usually used to measure the smoothness of a sequence [238] by 

calculating the average changes between successive values in the sequence: 

 Average absolute change = "
J*"

∑ |𝑃𝐿𝑅)1" − 𝑃𝐿𝑅)|)  (6.13) 

where 𝑇 refers to the length of the control signal sequence. 

A lower average absolute change indicates better smoothness in the control signals, meaning 

the local control loop can track the control signals (setpoints) more responsively, and the 

tracking error for the setpoints can be reduced [204]. 

6.3. Results and discussion 

6.3.1. Control stability 

6.3.1.1. Chiller switching number 

Figure 6.5 illustrates the total chiller switching number of the proposed MOO-based approach 

in four weeks. Each box represents the 25th, 50th (median), and 75th percentiles of the total 



 
 

108 

chiller switching number under a certain tolerance level 𝛼 with the random seed ranging from 

0 to 9. When the tolerance level 𝛼 = 1%, the median total switching number is 195. As the 

tolerance level 𝛼  increases from 1% to 8%, the median total switching number decreases 

roughly linearly to 125. With each 1% increase in the tolerance level 𝛼 , the median total 

switching number decreases by approximately 10. As the tolerance level 𝛼  continues to 

increase to 9% and then to 10%, the median total switching number decreases to 121 and 120.5, 

respectively. Therefore, beyond a certain point, as the tolerance level 𝛼 increases, the benefits 

to control stability offered by the tolerance level diminish. 

 
Figure 6.5. Total chiller switching number of the proposed MOO-based approach 

Figure 6.6 shows the difference compared to baseline algorithms in total switching numbers 

in four weeks when the tolerance level 𝛼 ranges from 1% to 10%. The total switching numbers 

of metaheuristic algorithms under random seeds from 0 to 9 are averaged. When the tolerance 

level 𝛼 is 1%, the differences in total switching number compared to PSO, GA, SA, DE, and 

Gurobi are -67.0%, -47.0%, -29.5, -18.9%, and -24.8%, respectively. This means DE is the 

most stable conventional optimization algorithm for online optimal chiller loading, even more 

stable than Gurobi, which provides global optimal solutions. The proposed MOO-based 

approach can reduce the total chiller switching number by 18.9% compared to the most stable 

optimization algorithm. When the tolerance level 𝛼 increases from 1% to 10%, the differences 

in the total switching number become even larger: -79.7%, -67.5%, -56.7%, -50.2%, and -



 
 

109 

53.9%, respectively. This indicates that the total chiller switching number can be reduced by 

half, even compared to the most stable conventional optimization algorithm.  

 
Figure 6.6. The difference compared to baseline algorithms in total switching numbers 

Figure 6.7 shows the daily switching number in four weeks, with a tolerance level 𝛼 of 5% for 

the MOO-based approach. Each curve in the figure represents the average daily switching 

number under the corresponding algorithm for random seeds 0-9. The proposed MOO-based 

approach consistently exhibits lower chiller switching numbers. It demonstrates that the 

proposed MOO-based approach offers better stability than conventional algorithms under 

different daily cooling load curves. The shaded regions above and below the lines represent the 

75% percentile interval. PSO has the widest interval, indicating that the random seed most 

easily affects its optimization results. Gurobi, as a deterministic algorithm, is not influenced by 

random seeds, so its interval width is 0. 
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Figure 6.7. Daily chiller switching number (random seed 0-9) 

Table 6.2 shows the total chiller switching number in four weeks under random seed from 0 to 

9 for each algorithm. PSO shows the highest chiller switching numbers on most days, followed 

by GA, SA, Gurobi, DE, and the proposed MOO-based approach. It is important to note that 

the Gurobi solver that provides global optimum for optimization problems does not guarantee 

greater stability for online optimal control. Although DE does not provide global optimum, it 

has even better stability than Gurobi. An in-depth analysis for this phenomenon is provided in 

Section 6.3.4. The 'Max.-Min.' column represents the difference between the maximum total 

chiller switching number and minimum total chiller switching number under seed from 0-9. 

For example, GA's maximum total switching number in four weeks is 561 when the random 

seed is 0, while PSO's minimum total chiller switching number is only 223 when the random 

seed is 8. This huge difference indicates that the random seed can easily influence the solutions 

of conventional metaheuristic algorithms. DE is the metaheuristic algorithm that is least 

affected by the random seed. The proposed MOO-based approach reduced the difference 

caused by the random seed by 60%. 

Table 6.2. Total chiller switching number in four weeks (random seed 0-9) 

Algorithm Average Maximum Minimum Max.-Min. 
PSO 596.4 928 425 503 
GA 371.5 561 223 338 
SA 279.2 307 267 40 
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DE 242.7 258 223 35 
Gurobi 262 262 262 0 

MOO (𝛼 = 5%) 153.7 160 146 14 

The proposed MOO-based approach is hardly affected by random seeds compared to other 

metaheuristic algorithms. The random seed does not affect the chiller switching numbers over 

17 days (61%). Figure 6.8 shows the difference between maximum and minimum switching 

numbers in the day under random seeds from 0 to 9. The difference of the proposed MOO-

based approach ranges from 0 to 4. In contrast, the differences of DE, SA, GA, and PSO range 

from 0 to 10, 2 to 12, 12 to 26, and 13 to 40, respectively, which are significantly larger than 

that of the proposed MOO-based approach. Therefore, the random seed can easily influence 

the stability of conventional metaheuristic algorithms. The proposed MOO-based approach can 

largely eliminate the instability caused by randomness and is close to deterministic algorithms. 

 
Figure 6.8. Difference between maximum and minimum switching number in the day 

(random seed 0-9) 

6.3.1.2. Average absolute change in PLR 

Figure 6.9 shows the daily average absolute change in PLR (%) in four weeks, with a tolerance 

level 𝛼 = 5% for the MOO-based approach. Each curve in the graph represents the average 

absolute change in PLR (%) under the corresponding algorithm for random seeds 0-9. The 
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proposed MOO-based approach consistently shows lower average absolute change, 

demonstrating enhanced stability compared to conventional algorithms. 

 
Figure 6.9. Daily average absolute change in PLR (%) (random seed 0-9) 

Table 6.3 presents the average absolute change of PLR (%) in four weeks under random seeds 

from 0 to 9 (tolerance level 𝛼 = 5%). Overall, PSO shows the highest average absolute change 

in PLR on most days, followed by GA, SA, DE, Gurobi, and the proposed MOO-based 

approach. It is important to note that, unlike the results for daily chiller switching numbers, the 

Gurobi solver provides slightly more stable PLR signals than DE. The reason is that global 

optimal solutions provide stable control actions when the cooling load is stable. However, for 

example, when the cooling load exceeds the threshold at which the deterministic algorithm to 

change the number of operating chillers, metaheuristic algorithms might maintain the current 

chiller number. As a result, the sudden variations in load fluctuation could lead to unstable 

decisions on integer variables. The total switching number is a more sensitive distance metric 

than the average absolute change in measuring such unstable control actions. 

Table 6.3. Average absolute change of PLR (%) in four weeks (random seed 0-9) 

Algorithm Average Maximum Minimum Max.-Min. 
PSO 8.34 13.19 4.95 8.24 
GA 6.51 8.92 4.61 4.31 
SA 5.61 7.34 4.38 2.96 
DE 5.16 5.8 4.64 1.16 
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Gurobi 4.93 4.93 4.93 0 
MOO (𝛼 = 5%) 3.79 4.06 3.55 0.51 

6.3.2. Total energy consumption 

Figure 6.10 shows the energy consumption of the proposed MOO-based approach in four 

weeks. Each box represents the 25th, 50th (median), and 75th percentiles of the total chiller 

switching number under a certain tolerance level 𝛼 when the random seed varies from 0 to 9. 

The dashed horizontal lines represent the average total energy consumption of five baseline 

algorithms: 578.0×103, 579.3×103, 580.0×103, 582.7×103, and 593.5×103 kWh for Gurobi, DE, 

SA, GA, and PSO, respectively. Gurobi solver, as the baseline for global optimal solutions, has 

the lowest energy consumption. However, the differences in energy consumption among the 

various algorithms are far less significant compared to the differences in control stability. DE, 

SA, and GA only consume 0.22%, 0.35%, and 0.81% more energy, respectively, than the 

global optimal solutions from the Gurobi solver. Even the least energy-efficient algorithm, 

PSO, only consumes 2.68% more energy than Gurobi. This conclusion aligns with previous 

research, indicating that various metaheuristic algorithms can find near-optimal solutions, with 

differences of around 1% [239]. When the tolerance level 𝛼 is 1%, the average total energy 

consumption is 579.1×103 kWh, which is lower than all baseline metaheuristic algorithms. This 

means that the proposed MOO-based approach has better energy efficiency and control 

stability when the tolerance level is set at a low percentage. As the tolerance level 𝛼 increases, 

the average total energy consumption rises first and becomes stable. When 𝛼  is 10%, the 

average total energy consumption is 584.2×103 kWh, which is only 0.88% higher when 𝛼 is 

1%. 
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Figure 6.10. Energy consumption of the proposed MOO-based approach in four weeks 

6.3.3. Chiller switching details 

The heatmap in Figure 6.11 shows the daily switching number of each chiller at the tolerance 

level 𝛼 of 5% and with a random seed of 0. Each cell in the heatmap contains the switching 

number for the chiller on that day, with darker cell colors indicating higher switching numbers. 

These algorithms exhibit different tendencies when selecting preferable chillers. As shown in 

Figure 6.11 (a), Chillers 4 and 5 are switched on and off frequently using PSO, while Chillers 

1 and 6 are frequently operated using GA, as shown in Figure 6.11 (b). PSO and GA are usually 

stuck in local optima and fail to find the most energy-efficient chillers as the Gurobi solver. 

The total switching numbers for SA, DE, and Gurobi are similar, primarily operating Chillers 

4-6. In contrast, the proposed MOO-based approach does not operate Chiller 3 during the four 

weeks. On August 17, 2022, all baseline algorithms switch on Chiller 3 during the peak period 

(see daily average cooling load in Figure 6.11 (f)). Due to the 5% tolerance level setting, the 

proposed MOO-based approach does not operate Chiller 3.
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Figure 6.11. Daily switching number of each chiller 
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Figure 6.12 shows the PLRs of each chiller on August 1, 2022. The numbers on the right side 

of each heatmap represent the total daily switching number of the chiller, corresponding to the 

sequencing details in the first column of the heatmap in Figure 6.11. Due to the minimum PLR 

constraint of 0.3 in the optimization, the deep blue area in the heatmap indicates the off status 

of chillers. The remaining gradient from lighter blue to red indicates the PLRs of the operating 

chillers. Figure 6.12 (a) shows that Chiller 4 undergoes frequent on-and-off actions using PSO. 

On the other hand, Chiller 5 undergoes frequent on-and-off actions using GA and SA, as 

depicted in Figure 6.12 (b) and (c), respectively. As observed in Figure 6.12 (g), fluctuations 

in the cooling load cause this phenomenon. Furthermore, due to a significant drop in the cooling 

load after 9:00 AM, DE and Gurobi unnecessarily switched Chiller 5 off and on at 9:30 and 

10:00, respectively, which harms the stability of the chiller plant. Overall, the proposed MOO-

based approach effectively handles variations in cooling load, making energy-efficient, stable, 

and robust control actions for online optimal chiller loading. 
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Figure 6.12. Partial load ratio of each chiller on August 1, 2022 (Monday)
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Figure 6.13 illustrates the average absolute change in PLR (%) for each chiller on August 1, 

2022. For each chiller, the proposed MOO-based approach demonstrates the lowest average 

absolute change. This indicates that the chillers are better able to follow control signals, 

resulting in smoother load increases and decreases to minimize control tracking errors. Chillers 

1 and 2, which operate almost continuously throughout the day, exhibit relatively minor 

differences in average absolute change. In contrast, Chillers 4, 5, and 6, which utilize on/off 

control, show a more significant improvement owing to the proposed MOO-based approach. 

 
Figure 6.13. Average absolute change in PLR (%) of each chiller on August 1, 2022 

6.3.4. The tradeoff between control stability and energy efficiency 

Figure 6.14 compares optimization algorithms in terms of energy efficiency and control 

stability. Higher energy efficiency indicates a better ability to find global optimal solutions. 

The Gurobi solver provides global optimization in this experimental data, making it the most 

energy-efficient. In actual optimization problems, models are typically complex, and many can 

only be solved using metaheuristic algorithms, especially with the development of data-driven 

modeling methods. If energy efficiency is the only concern, metaheuristic algorithms such as 

DE and SA are adequate for finding satisfactory near-optimal solutions. However, these 

conventional optimization algorithms are not designed for online optimization problems, 

leaving their control stability unsolved. The proposed MOO-based approach can significantly 
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improve control stability by reducing the total chiller switching frequency by 18.9% (𝛼 = 1%) 

to 50.2% (𝛼 = 10%) compared to the most stable baseline algorithm, DE. 

With the increase in the tolerance level 𝛼, control stability and energy efficiency are tradeoffs. 

When the tolerance level 𝛼 is increased from 1% to 10%, the average total energy consumption 

rises from 579.1×103 kWh to 584.2×103 kWh (a subtle 0.88% increase). On the other hand, the 

average of the total switching number in four weeks decreases from 196.9 to 120.9 (a 

significant 38.60% decrease). In real-world applications, the tolerance should be determined 

based on preferences regarding energy efficiency and control stability.  

Compared to previous work to enhance control stability, the proposed MOO-based approach 

offers two advantages. Firstly, energy efficiency is not compromised. When the tolerance level 

𝛼 is 1%, the energy efficiency of the proposed approach is better than all baseline metaheuristic 

algorithms and close to global optimal solutions from the Gurobi solver. Even when the 

tolerance level 𝛼 is 5%, the energy efficiency is close to GA and better than PSO. Secondly, 

the proposed approach is not designed for a specific optimization problem and is more general 

in various model-based optimization problems in building energy systems. 

 
Figure 6.14. Comparison in energy efficiency and control stability 
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In Figure 6.14, the control stability provided by Gurobi, which offers a global optimal solution, 

is not superior to that of DE. The reason is that the disturbances in online control come from 

two aspects: shifts across local optima and variations in the optimization problem, as shown in 

Figure 6.15. Shifts across local optima occur because metaheuristic algorithms fail to find the 

global optimum and become trapped in local optima. Therefore, even if the optimization 

problem varies little from one control period to the next (for example, if the cooling load varies 

slightly), the randomness of the search process means that metaheuristic algorithms may find 

a near-optimal solution that is very different from the previous control action. This type of 

disturbance lessens as the optimization algorithm's ability to find the global optimum improves. 

Variations in the optimization problem refer to how, during the online optimization process, 

the objective function and constraints vary over time. For instance, in the optimal chiller 

optimization problem, constraints correspond to the real-time cooling load; the optimization 

algorithm needs to find a new solution under a new given cooling load to control the chillers. 

This disturbance intensifies as the optimization algorithm's ability to find the global optimum 

increases. This is because when the cooling load is relatively stable, a stronger ability to find 

the global optimum results in more stable control actions. However, when the cooling load 

exceeds or drops below a certain threshold, a stronger optimization algorithm can find a better 

solution within limited iterations than a weaker one, but at the cost of changing integer variables 

in the control actions (such as the number of chillers operating). Therefore, sudden load 

fluctuation could lead to unstable decisions regarding integer variables. Combining the 

disturbances from the shifts across local optima and the variations in optimization problems, 

DE exhibits superior control stability among the five baseline algorithms in the case studies. 

On the other hand, the proposed MOO-based online method reduces the disturbances from 

variations in optimization problems by measuring the distance of two successive control 

actions. 
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Figure 6.15. Disturbances in online control problems 

6.4. Summary 

Conventional deterministic and metaheuristic algorithms are not tailored for online 

optimization problems, and their control stability faces challenges in real-world applications. 

Therefore, this study introduces a multi-objective optimization (MOO)-based approach to 

enhance the stability in model-based online control for building energy systems. By 

considering the distance between successive control actions as one of the optimization 

objectives, the proposed approach can effectively search for non-dominated optimal solutions 

that are stable and energy-efficient, i.e., the Pareto front. The proposed MOO-based approach 

is validated using the optimal chiller loading problem with a 4-week cooling load curve. The 

approach is compared with the Gurobi solver, which provides global optimal solutions and four 

popular metaheuristic algorithms: particle swarm optimization (PSO), genetic algorithm (GA), 

simulated annealing (SA), and differential evolution (DE). The results demonstrate that the 

proposed approach substantially improves control stability while maintaining energy efficiency. 

Compared to DE, the most stable baseline algorithm, the MOO-based approach reduces the 

total chiller switching number by 18.87% at a tolerance level of ⍺ = 1% and consumes 0.03% 

less energy. At a tolerance level of ⍺ = 10%, the MOO-based approach significantly reduces 

the total chiller switching number by 50.19% while only consuming 0.85% more energy than 

DE. The proposed MOO-based approach is promising for future applications to achieve 

energy-efficient, stable, and robust control in building energy systems. 
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CHAPTER 7  CONCLUSIONS 

Machine learning and data-driven modeling have effectively facilitated building energy 

management in various typical applications in the past decade, such as cooling load prediction, 

fault detection and diagnosis. However, the data-driven approach faces two major challenges 

regarding practical applications: a lack of interpretability and reliability. Therefore, this study 

aims to develop data-driven methods of enhanced interpretability and reliability for optimal 

control and diagnosis of air-conditioning systems.  

7.1. Summary of main contributions 

The main contributions of this PhD study are summarized as follows, as illustrated in Figure 

7.1. The new methods address general issues in the development of data-driven models (Q1 to 

Q3) and the application of data-driven models in complex optimization problems (Q4), 

enhancing the applicability for deploying data-driven models. 

 
Figure 7.1. Contributions of this PhD study 

1. To address the data scarcity issue in developing data-driven models in building HVAC 

systems, a novel similarity learning-based FDD method is proposed. The output is the 

similarity towards each fault, which provides better interpretability. The proposed Siamese 

network with LSTM subnetworks strengthens the model generalization ability by creating 

a large number of input pairs from limited labeled data. The temporal data-splitting method 

is adopted to tackle the issue of the high correlation of training data and test data using 

random split. Two case studies utilizing an open dataset were conducted to test the 
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effectiveness of the proposed method, with insufficient labeled data and imbalanced data, 

respectively. 

2. To overcome the measurement uncertrainty issue, a novel probabilistic machine 

learning method and risk evaluation scheme are proposed. One-hour-ahead probabilistic 

cooling load prediction in the form of a normal distribution is made using natural gradient 

boosting. A novel risk-based scheme then evaluates the risks of sequencing actions based 

on probabilistic predictions. This approach aims to make more informed decisions to better 

handle the uncertainties in cooling load predictions. The proposed strategy was deployed 

to a chiller plant, and an in-site experiment was conducted. 

3. To tackle the physical inconsistency issue in HVAC pump modeling, a physically 

consistent data-driven optimal sequencing control integrating physical knowledge with 

data-driven modeling, enhancing the interpretability and reliability is proposed for real 

application. For different numbers of operating variable speed pumps, features composed 

of frequency and total flow rate are used to train the interpretable ElasticNet data-driven 

model. The optimal sequencing is then determined using a physically consistent frequency 

prediction method. 

4. To achieve reliable online control, a multi-objective optimization (MOO)-based 

approach for enhancing the stability in model-based online control is proposed. The 

distance between two successive control actions is used as one of the optimization 

objectives besides energy saving. The proposed MOO-based approach significantly 

improves online control stability without compromising energy efficiency compared to 

conventional metaheuristic algorithms. The tolerance level of energy efficiency can be 

adjusted based on the requirements of energy efficiency and control stability in real-world 

applications. Previous strategies to improve control stability are usually tailored for 

specific problems. The proposed MOO-based approach is designed to be applicable to 

various model-based optimization problems with enhanced stability. 

7.2. Conclusions 

1. A similarity-learning method for enhancing model generalization ability and 

interpretability 

� The proposed Siamese network for fault diagnosis contains two identical LSTM 

subnetworks. The Siamese network is trained by pairs of multivariate time-series samples 

from the building energy management system and learns a similarity function. 
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� The case studies evaluate the proposed similarity learning-based FDD method under two 

typical scenarios during the operation of HVAC systems: when labeled data are limited 

(scenario 1) and imbalanced (scenario 2). The normal and faulty AHU operation data 

collected from the ASHRAE RP-1043 are used in the case studies. The data were treated 

using a temporal train-test split to ensure the generalization ability of the proposed method 

is properly evaluated. 

� Scenario 1 tests the performance of the proposed method when all faults have a limited 

amount of labeled data. Compared to the baseline model, the proposed similarity learning-

based method improved fault diagnostic accuracy by at most 45.7% when only a limited 

number of labeled data is available. Scenario 2 validates the performance of the proposed 

method when labeled data were imbalanced. The method demonstrates superior 

generalization ability when dealing with imbalanced labeled data, improving fault 

diagnosis accuracy from 73.0% to 82.6%. 

2. Probabilistic machine learning for enhancing reliability and interpretability 

addressing measurement uncertainty 

� This study proposes a novel probabilistic cooling load prediction-based chiller sequencing 

control strategy that considers prediction uncertainty to make sequencing actions more 

robust. An online risk-based action evaluation module is designed to determine the number 

of operating chillers based on probabilistic predictions, improving the interpretability and 

reliability of control decisions. 

� A data experiment based on measured operational data is carried out to validate the 

proposed strategy. Results show that the total switching number is reduced by 43.6%, 

significantly decreasing unnecessary switching actions within 1 hour by 88.2%, thereby 

improving the reliability and lifespan of the chiller plant. In addition, the proposed strategy 

demonstrates better robustness when managing uncertainty from measurements. 

� An in-situ test in an education building was carried out to validate the proposed strategy 

in robustness, thermal comfort, and energy efficiency. Three sets of test and reference days 

were selected based on two criteria: similar weather conditions and consistent types of 

working days. The results show that, first, the daily chiller switching number was reduced 

by 56.5%. Second, compared to reference days, the proposed strategy achieved an average 

daily energy saving of about 3945.1 kWh. Last, the COP of the chiller plant was increased 

by 4.2% on average. 
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3. Physically consistent data-driven models for enhancing interpretability and 

reliability 

� This study proposes a physically consistent data-driven optimal sequencing control, 

integrating physical knowledge with data-driven modeling, enhancing the interpretability 

and reliability for real applications. For different numbers of operating VSPs, features 

composed of frequency and total flow rate are used to train the interpretable ElasticNet 

data-driven model. The optimal sequencing is then determined using a physically 

consistent frequency prediction method. 

� The proposed strategy is validated using historical data from a real parallel variable 

pumping system. Results show that a total of 47.0% of the points that operating one 

secondary chilled water pump have energy saving potential, ranging from 0-25 kW (up to 

40%). This indicates that the conventional differential pressure-based control cannot 

guarantee that parallel SCHWPs operate at the lowest energy consumption, and there is 

considerable potential for energy savings. 7.0% of the points fall that operating two 

secondary chilled water pumps have energy saving potential, ranging from 0-35 kW (up 

to 40%). 

� The monthly energy savings analysis shows that the potential for energy savings in winter 

is minimal, with only a 2.5% reduction observed in January 2024, whereas substantial 

savings of 20.4% are evident in June 2024 during the summer. On average, the energy 

consumption of SCHWPs is reduced by approximately 10%. 

4. General optimization framework for data-driven model-based online optimization 

with enhanced control smoothness 

� This study proposes a MOO-based general optimization framework for enhancing the 

smoothness in model-based online control. The distance between two successive control 

actions is used as one of the optimization objectives besides energy saving. An adjustable 

tolerance level is used to select the appropriate solution from the Pareto front. 

� The proposed approach is validated using a common optimization problem, i.e., optimal 

chiller loading for chillers. The proposed approach is compared with the Gurobi solver as 

the deterministic approach to find the global optimum, and the four most popular 

metaheuristic algorithms to find the near-optimal solution. Case studies show that when 

the tolerance level is set to 1%, the proposed MOO-based approach can save 24.8%,18.9%, 

29.5%, 47.0%, and 67.0% total chiller switching number compared to Gurobi, DE, SA, 
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GA, and PSO, respectively. The total energy saving of the proposed approach is also saved 

from 0.0% to 2.4% compared to metaheuristic algorithms. And the proposed consumes 

0.2% more energy consumption compared to Gurobi. When the tolerance level is set to 

10%, the proposed approach can reduce 53.9%, 50.2%, 56.7%, 67.5%, and 79.7% of the 

total switching number compared to Gurobi, DE, SA, GA, and PSO, respectively. And the 

total energy consumption is only 1.1%, 0.8%, 0.7, and 0.2% more than Gurobi, DE, SA, 

and GA. 

� Compared to the previous work on enhancing control stability, the proposed MOO-based 

approach has two advantages. First, the energy efficiency is not compromised. Second, the 

proposed approach is not designed for a specific optimization problem and is more general 

in various model-based optimization problems. Therefore, the proposed MOO-based 

approach is a promising tool for real-world applications in achieving energy-efficient, 

stable, and robust control in building energy systems. 

7.3. Recommendations for future work 

This PhD study has made serious efforts on develssoping data-driven methods of enhanced 

interpretability and reliability for optimal control and diagnosis of air-conditioning systems. 

Case studies using open datasets and real operational data, as well as in-situ tests instead of 

simulation, have been carried out to validate the applicability of the proposed methods. In the 

future, more efforts can be made on the following aspects further to enhance the interpretability 

and reliability of data-driven applications: 

1. Although the proposed similarity learning-based FDD method significantly improves the 

fault diagnosis accuracy when only limited labeled data is available, deploying the 

proposed method is still challenging. This is because only a few faults occur and are logged 

in a standalone HVAC system. In the future, techniques such as transfer learning can 

further enhance the reliability of the proposed method by sharing the labeled data across 

buildings. 

2. Although the proposed probabilistic cooling load prediction-based robust chiller 

sequencing strategy proves to be robust and energy efficient based on in-situ tests, the 

operators predetermine the chiller sequencing order. In the future, the proposed strategy 

can be further improved by utilizing the day-ahead cooling load prediction and chiller COP 

prediction model to determine the optimal chiller sequencing order. In this way, energy 

savings can be further improved. 
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3. Although the proposed optimal pump sequencing strategy proves to be interpretable, 

reliable, and energy efficient, its deployment to the primary-secondary chilled water 

system is still on-going. To further improve the reliability for deployment, the robustness 

of sequencing control should be considered. Like the problem of chiller sequencing control, 

the control robustness of pump sequencing control can be improved by utilizing a risk-

based scheme leveraging probabilistic prediction. 

4. Although the proposed multi-objective optimization (MOO)-based approach proves its 

superior stability over conventional deterministic algorithms and metaheuristic algorithms 

in model-based online control using a case study based on historical data, it has not been 

deployed and validated in the actual HVAC system. More practical problems, such as 

model updating and raw data preprocessing, should be considered to enhance its 

practicability in the future. 
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APPENDICES 

Appendix A: Results of testing day 2 and testing day 3 in Chapter 4 

A.1 Testing day 2 

A.1.1 Weather comparison with reference day 2 

Reference day 2 (June 2, 2023) and testing day 2 (July 13, 2023) are Friday and Thursday, 

respectively. The rule-based strategy was used in the BMS on reference day 2, while the 

proposed strategy was used on testing day 2. Both reference day 2 and testing day 2 were 

cloudy. A comparison of the weather between reference day 2 and testing day 2 is shown in 

Figure A.1. The outdoor temperature and relative humidity trends on these two days are very 

similar. Table A.1 also presents a comparison of the highest temperature, average temperature, 

lowest temperature, and average relative humidity on these two days. From these four values, 

it can be observed that the weather on these two days is very similar. The highest temperature 

on testing day 2 (34.8°C) is slightly lower than on reference day 2 (35.0°C). And the average 

relative humidity on testing day 2 (71%) is slightly lower than on reference day 2 (76%). 

 
Figure A.1. Weather conditions on reference day 2 and testing day 2 
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Table A.1. Weather summary on reference day 2 and testing day 2 

Date Maximum 
temperature (°C) 

Average 
temperature (°C) 

Minimum 
temperature (°C) 

Average 
relative humidity (%) 

2023-06-02 
Reference day 2 35.0 30.6 28.2 76 

2023-07-13 
Testing day 2 34.8 31.0 28.6 71 

A.1.2 Probabilistic cooling load prediction 

Figure A.2 shows the probabilistic cooling load prediction on the testing day. The different 

shades of blue in the figure represent the 25%, 50%, 75%, and 95% confidence intervals. The 

width of the 90% confidence interval indicates that the probabilistic cooling load uncertainty 

is relatively small at night and increases significantly in the morning start-up period. This is 

because at night, the chillers only need to provide the basic cooling load for the 24-hour rooms 

(i.e., the 24-hour study center in the library), while in the morning, each room needs to remove 

the heat gain from the night, leading to larger load fluctuations. On the right side of Figure 

A.2, the probabilistic cooling load probability distribution at 12:00 on the testing day is shown, 

with a predicted average value of 7474.0 kW and a standard deviation (i.e., uncertainty) of 

452.4 kW. In testing day 2, the root mean square error (RMSE) for comparing the predicted 

average value of the probabilistic cooling load with the actual value is 393.0 kW, and the mean 

absolute percentage error (MAPE) is 8.8%. 

 
Figure A.2. 1 hour ahead probabilistic cooling load prediction on testing day 2 

A.1.3 Robustness of sequencing actions and thermal comfort 
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The chiller sequencing results for testing day 2 and reference day 2 are shown in Figure A.3. 

The y-axis on the left represents the number of chillers in operation, while the y-axis on the 

right represents the chiller sequencing order. Therefore, by combining the two y-coordinates, 

the on/off status of each chiller at every moment can be determined on the reference day and 

testing day. Compared with the reference day under the rule-based strategy, the proposed 

strategy on the testing day significantly reduces the total switching number of chillers from 24 

to 9, as shown in Table A.2. Moreover, the maximum number of chillers turned on in the 

morning start-up period (6 a.m. to 12 a.m.) is reduced from 8 to 5. This comparison 

demonstrates that the adoption of the proposed strategy significantly improves the robustness 

of the chiller sequencing control. 

 
Figure A.3. Chiller sequencing results of reference day 2 and testing day 2 

Table A.2. Chiller switching number on reference day 2 and testing day 2 

Date Total switching number Maximum chiller during 
morning start-up 

Reference day 2 24 8 
Testing day 2 9 5 

The chilled water return temperature of three loops (Phase 1, Phase 2, and Library)on reference 

day 2 and testing day 2 are shown in Figure A.4. It can be seen from the figure that there are 

some problems with the rule-based strategy. The chillers were switched on and off frequently 

chiller, which increased the instability of chilled water temperature. When adopting the 

proposed strategy, the issue is significantly alleviated. The control decisions based on 
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probabilistic cooling load predictions significantly avoid unnecessary on/off switching actions, 

which makes the chiller system operate more efficiently and effectively. 

Additionally, at 14:30 on testing day 2, the proposed strategy recommended a switching-off 

control action based on probabilistic cooling load prediction. Following the implementation of 

this control action, the chilled water return temperature did not exhibit the same abrupt changes 

as when using the rule-based strategy. 

 
Figure A.4. Chilled water return temperature of three loops  

A.1.4 Energy efficiency 

The energy consumption of chillers, primary chilled water pumps (PCHWP), condensing water 

pumps (CDWP), and cooling towers (CT) on reference day 2 and testing day 2 are shown in 

Table A.3. Compared with the reference day which adopted the rule-based strategy, the 

proposed strategy significantly reduced the energy of various equipment on the testing day. 

The reduction of energy consumption mainly comes from two aspects. The first aspect is that 

the probabilistic cooling load prediction achieves timely and reasonable switching on, 

especially in the morning start-up period, which reduces the maximum number of chillers that 

need to be turned on during the peak period, and also reduces the operation of the corresponding 

PCHWP, CDWP, and CT of the chillers. On the other hand, the timely chiller switching off is 

realized through the prediction of cooling load, which reduces the energy consumption of 

chillers and other equipment. Specifically, the energy consumption of chillers, PCHWP, 

CDWP, and CT are reduced by 3765.5 kWh, 564.2 kWh, 256.2 kWh, and 221.7 kWh, 

respectively. The total energy consumption is saved by 4807.6 kWh. 
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Table A.3. Energy consumption on reference day 2 and testing day 2 (kWh) 

Date Chiller PCHWP CDWP CT Total 
Reference day 2 30241.5 4996.3 6300.0 2362.2 43899.9 
Testing day 2 26476.0 4432.1 6043.8 2140.5 39092.3 
Difference 3765.5 564.2 256.2 221.7 4807.6 

Table A.4 provides a comparison of the energy efficiency of the entire chiller plant on 

reference day 2 and testing day 2. Owing to the proposed strategy, the system COP is improved 

by about 5.2%. 

Table A.4. Energy efficiency of chiller plant on reference day 2 and testing day 2 

Date Total energy 
consumption (kWh) 

Total cooling 
load (kWh) COP 

Reference day 2 43899.9 129435 2.95 
Testing day 2 39092.3 121235 3.10 
Difference -11.0% -6.3% 5.2% 

A.2 Testing day 3 

A.2.1 Weather comparison with reference day 3 

Reference day 3 (June 4, 2023) and testing day 3 (June 11, 2023) are both Sunday. The rule-

based strategy was used in the BMS on reference day 3, while the proposed strategy was used 

on testing day 3. Both reference day 3 and testing day 3 were cloudy. A comparison of the 

weather between reference day 3 and testing day 3 is shown in Figure A.6. The outdoor 

temperature and relative humidity trends on these two days are very similar. Table A.5 also 

presents a comparison of the highest temperature, average temperature, lowest temperature, 

and average relative humidity on these two days. From these four values, it can be observed 

that the weather on these two days is very similar. The highest temperature on testing day 3 

(32.4°C) is slightly lower than on reference day 3 (32.6°C). And the average relative humidity 

on testing day 3 (83%) is slightly higher than on reference day 3 (81%). 
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Figure A.6. Weather conditions on reference day 3 and testing day 3 

Table A.5. Weather summary on reference day 3 and testing day 3 

Date Maximum 
temperature (°C) 

Average 
temperature (°C) 

Minimum 
temperature (°C) 

Average 
relative humidity (%) 

2023-06-04 
Reference day 3 32.6 30.0 28.0 81 

2023-06-11 
Testing day 3 32.4 29.2 27.3 83 

A.2.2 Probabilistic cooling load prediction 

Figure A.7 shows the probabilistic cooling load prediction on the testing day. The different 

shades of blue in the figure represent the 25%, 50%, 75%, and 95% confidence intervals. The 

width of the 90% confidence interval indicates that the probabilistic cooling load uncertainty 

is relatively small at night and increases significantly in the morning start-up period. This is 

because at night, the chillers only need to provide the basic cooling load for the 24-hour rooms 

(i.e., the 24-hour study center in the library), while in the morning, each room needs to remove 

the heat gain from the night, leading to larger load fluctuations. On the right side of Figure 

A.7, the probabilistic cooling load probability distribution at 12:00 on the testing day is shown, 

with a predicted average value of 4101.1 kW and a standard deviation (i.e., uncertainty) of 

550.4 kW. In testing day 3, the root mean square error (RMSE) for comparing the predicted 

average value of the probabilistic cooling load with the actual value is 334.0 kW, and the mean 

absolute percentage error (MAPE) is 11.3%. 
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Figure A.7. 1 hour ahead probabilistic cooling load prediction on testing day 3 

A.2.3 Robustness of sequencing actions and thermal comfort 

The chiller sequencing results for testing day 3 and reference day 3 are shown in Figure A.8. 

The y-axis on the left represents the number of chillers in operation, while the y-axis on the 

right represents the chiller sequencing order. Therefore, by combining the two y-coordinates, 

the on/off status of each chiller at every moment can be determined on the reference day and 

testing day. Compared with the reference day under the rule-based strategy, the proposed 

strategy on the testing day significantly reduces the total switching number of chillers from 7 

to 6, as shown in Table A.6. Moreover, the maximum number of chillers turned on in the 

morning start-up period (6 a.m. to 12 a.m.) is reduced from 4 to 3. This comparison 

demonstrates that the adoption of the proposed strategy significantly improves the robustness 

of the chiller sequencing control. 
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Figure A.8. Chiller sequencing results on reference day 3 and testing day 3 

Table A.6. Chiller switching number on reference day 3 and testing day 3 

Date Total switching number Maximum chiller during 
morning start-up 

Reference day 3 7 4 
Testing day 3 6 3 

The chilled water return temperature of three loops (Phase 1, Phase 2, and Library) on reference 

day 3 and testing day 3 are shown in Figure A.9. When adopting the proposed strategy, the 

water temperature was more stable during the testing day. This indicates that the proposed 

strategy can make more reasonable on/off control of the chiller based on probabilistic cooling 

load predictions. Furthermore, the control decisions based on probabilistic cooling load 

predictions significantly avoid unnecessary on/off switching actions, which makes the chiller 

system operate more efficiently and effectively. 
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Figure A.9. Chilled water return temperature of three loops 

A.2.4 Energy efficiency 

The energy consumption of chillers, primary chilled water pumps (PCHWP), condensing water 

pumps (CDWP), and cooling towers (CT) on reference day 3 and testing day 3 are shown in 

Table A.7. Compared with the reference day which adopted the rule-based strategy, the 

proposed strategy significantly reduced the energy of various equipment on the testing day. 

The reduction of energy consumption mainly comes from two aspects. The first aspect is that 

the probabilistic cooling load prediction achieves timely and reasonable switching on, 

especially in the morning start-up period, which reduces the maximum number of chillers that 

need to be turned on during the peak period, and also reduces the operation of the corresponding 

PCHWP, CDWP, and CT of the chillers. On the other hand, the timely chiller switching off is 

realized through the prediction of cooling load, which reduces the energy consumption of 

chillers and other equipment. Specifically, the energy consumption of chillers, PCHWP, 

CDWP, and CT are reduced by 1321.4 kWh, 944.2 kWh, 1287.5 kWh, and 515.0 kWh, 

respectively. The total energy consumption is saved by 4068.0 kWh. 

Table A.7. Energy consumption on reference day 3 and testing day 3 (kWh) 

Date Chiller PCHWP CDWP CT Total 
Reference day 3 21835.3 3982.9 5431.3 1895.5 33145.0 
Testing day 3 20513.9 3038.8 4143.8 1380.5 29076.9 
Difference 1321.4 944.2 1287.5 515.0 4068.0 
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Table A.8 provides a comparison of the energy efficiency of the entire chiller plant on 

reference day 3 and testing day 3. Owing to the proposed strategy, the system COP is improved 

by about 4.8%. 

Table A.8. Energy efficiency of chiller plant on reference day 3 and testing day 3 

Date Total energy 
consumption (kWh) 

Total cooling 
load (kWh) COP 

Reference day 3 33145.0 91000.6 2.75 
Testing day 3 29076.9 83628.5 2.88 
Difference -12.3% -8.1% 4.8% 
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