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Abstract

Frog populations are essential components of the ecosystem, and their decline or even ex-

tinction will significantly harm biodiversity and undermine the stability of the ecosystem.

The growth and reproduction of frog population are essentially determined by the pres-

ence of seasonal climate conditions and ecological environments suitable for their survival.

Comprehending the dynamics of frog populations in response to seasonal weather varia-

tions is crucial for forecasting population trends and devising conservation strategies for

amphibians in the context of climate change scenarios. The influence of individual behav-

iors, such as frog mating, on population dynamics is also a worthy subject of exploration.

In addition, worldwide amphibian decline and extinction have been observed, highlighting

the importance of identifying the underlying factors. This issue has long been recognized

as highly significant and continues to receive substantial attention in conservation ecol-

ogy. Pathogen infection, in particular the chytrid fungus Batrachochytrium dendrobatidis,

is postulated as a key factor contributing to the decline of certain species within specific re-

gions. These issues will be investigated in this thesis using stage-structured models, which

group individuals with similar demographic characteristics together and have proven useful

in describing population dynamics.

This thesis begins with a brief introduction in Chapter 1, grounded in both biological per-

spectives and mathematical motivations. This chapter explains the ecological and mathe-

matical significance of exploring the population dynamics of frog species. In Chapter 2,

we present a concise overview of the mathematical foundations, elucidating key mathemat-
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ical terminologies and theorems integral to monotone dynamical systems, global attractors,

uniform persistence, coexistence states, and the basic reproduction ratio within the context

of population models in periodic environments.

Chapter 3 starts from reviewing two widely-used modeling frameworks, in the form of

integral equations and age-structured partial differential equations. Both modeling frame-

works can be reduced into same differential equation structures with/without time delays

under Dirac and gamma distributions for the stage durations. Each framework has its ad-

vantages and inherent limitations. The net reproduction number and initial growth rate can

be easily defined from the integral equation. However, it becomes challenging to integrate

the density-dependent regulations on the stage distribution and survival probabilities in an

integral equation, which may be suitably incorporated in partial differential equations.

In Chapter 4, we formulate a stage-structured frog population model in the ecological en-

vironment with temperature-dependent effects. Due to the consideration of seasonal devel-

opmental duration, the resulting model is a system of piecewise differential equations that

incorporate temperature-dependent delays. We propose the quotient space based on the

initial natural phase space and prove the strong monotonicity in addition to showing some

basic properties of the solutions. We demonstrate that the basic reproduction number, R0,

serves as a critical threshold parameter that dictates whether the frog population will go

extinct or persist. According to the theory of monotone dynamical systems, asymptotically

periodic semiflows, and the comparison method, we obtain the global dynamics of the frog

population system. The final simulations verify the analytic results numerically.

To focus on the pathogen characteristics that can drive host species extinction, both de-

terministic and stochastic modeling frameworks based on a susceptible-infectious-bacteria

epidemic model are proposed in Chapter 5, to assess the influence of pathogen infection

on species decline and extinction. Various indices, including the reproduction numbers of

the host species, the replication of the pathogen, and the transmission of the pathogen are

derived. Theoretical analysis includes the stability of equilibria, the extinction and persis-

tence of host species in the deterministic model, and the evaluation of extinction probability
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and average extinction time in the stochastic model. Additionally, numerical simulations

are conducted to quantify the effects of various factors on host decline and extinction, as

well as the probabilities of extinction. We find two crucial conditions for a pathogen to

drive host extinction: (i) the pathogen’s self-reproduction capacity in the environment, and

(ii) the pathogen’s impact on the fecundity and survival of the infected host. These findings

provide insights that could aid in the design and implementation of effective conservation

strategies for amphibians.

Chapter 6 develops a stage-structured model with periodic time-delay for frog populations,

comprehensively incorporating factors such as seasonal succession, two-sex division, mat-

ing behaviors, and adult competition. This periodic succession model describes the dy-

namic characteristics of female and male frog populations during both the normal and hi-

bernation periods. Based on this framework, we analyze the basic properties within the

natural phase space, including existence and uniqueness, boundedness, monotonicity, and

strict subhomogeneity. To further investigate strong monotonicity, we introduce the quo-

tient space, employing a method similar to the analytical approach used in Chapter 4. The

global dynamics of the population model are then obtained through the introduction of the

basic reproduction number, the use of auxiliary systems, and a series of theories on mono-

tone dynamical systems, periodic semiflows, and the comparison method. Numerical sim-

ulations illustrate the influence of time-dependent parameters and validate the related ana-

lytic results. Additionally, they assess the impact of two key sensitive parameters—mature

mortality rates and mating pairs—on population sizes during the normal growth and hiber-

nation periods across multiple life-cycles and a single life-cycle. The simulations clearly

demonstrate that female and male populations ultimately experience significant declines as

they approach hibernation. However, a higher number of mating pairs leads to a higher

stabilized population size during the normal period before the decline associated with hi-

bernation.

Chapter 7 provides a summary of the results presented in this thesis and discusses potential

directions for future research.
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Chapter 1

Introduction

1.1 Biological perspective

Amphibians are the first tetrapods to invade the land and are an essential part of the planet’s

biodiversity; they are also critical components of ecosystems. They can be used as key in-

dicators of ecosystem health for biological and population studies, and they are also a rich

source of some biopharmaceuticals. Amphibians in nature can be prey and predators, vi-

tal elements of aquatic and terrestrial food webs [198]. The decline, and potentially even

extinction, of frog populations presents a significant challenge to global ecosystems due to

their integral role in maintaining biodiversity [99]. There are many reasons for species de-

clines, such as global warming, habitat loss, pollution, and over-exploitation. Specifically,

[149] proposed that epidemic diseases caused by global warming can result in widespread

amphibian extinctions and biodiversity erosion. [171] presented the global analysis of am-

phibians population and quantified the effects of habitat loss, climate change and over-

exploitation on declines and extinction risk. The research on the growth and development

of frog populations necessitates the accomplishment of three primary objectives: (i) Estab-

lishing a series of mechanism models of the frog population and disease transmission and

using them for related dynamic analysis. (ii) Exploring the stability of population growth
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Chapter 1. Introduction

in the system model and pathogen-host system to achieve adequate protection of species

in the future. (iii) Integrating models with temperature data to help determine how abiotic

factors such as climate, temperature, and ecological environment affect population growth,

reproductive outcomes and disease spread.

To fully comprehend frog population dynamics, capturing the environmental variability

throughout frogs’ remarkable range of life histories is essential. Understanding amphibian

dynamics will improve our understanding of how abiotic/biotic factors will promote/inhibit

population persistence and assist in developing management strategies to protect the species

from extinction, unlike the discrete-time models, in which field and experimental data can

easily calibrate and easy to capture the persistence/extinction dynamics of the species.

However, it becomes impossible to capture the seasonality of the population in the case

of persistence and characterize the effect of environmental variability on the seasonality

pattern [153]. A better understanding of the extent to which environmental forces affect

population persistence and how this affects the seasonal synchronicity of population re-

sponses to environmental fluctuations will quantify the scope of potential losses, predict

future population viability, and develop management techniques to preserve biodiversity.

Demographic stages subdividing the population into different types of individuals account

for differences in vital rate responses between individuals. A within-one-year R. muscosa

model will be proposed in Chapter 4 with three main stages, tadpoles, juveniles, and adults.

Besides, the tadpoles are further classified into year-one and year-two individuals.

Amphibian declines and extinctions have been observed globally at a rapid pace [137, 161,

172]. Reports indicate that out of 5743 described species, 32.5% are threatened. Since

1980, a minimum of 9 species, and potentially up to 122, have become extinct [137]. Com-

pared to either birds or mammals, amphibians are facing a more rapid decline and are

under greater threat [172]. Identifying the underlying factors has long been recognized as a

highly significant issue and continues to receive substantial attention in ecological research.

These studies are crucial for the design and implementation of effective amphibian conser-

vation strategies. Six primary causes of biodiversity loss are postulated to be responsible
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1.1. Biological perspective

for modern amphibian declines: commercial use; the introduction of exotic species that

compete with, prey on, and parasitize native frogs and salamanders; changes in land use;

contaminants; climate change; and infectious diseases [50]. These factors may act alone or

together.

Chytridiomycosis arises when the skin of a frog becomes infected with the pathogenic

chytrid fungus Batrachochytrium dendrobatidis (Bd), resulting in the disruption of cru-

cial skin functions [92]. Following the emergence of the pathogen, numerous amphibian

populations have experienced catastrophic collapses, and this persistent expansion of the

pathogen’s range poses an ongoing threat to amphibian populations worldwide [1, 50, 182].

Consequently, an additional focus of this study is to ascertain whether infectious diseases

can single-handedly drive host population extinction. If disease transmission can indeed

lead to host extinction, we aim to further explore the underlying mechanisms contribut-

ing to such population extinction in Chapter 5. These include the functional responses of

pathogen transmission and reproduction within the host or the environment.

In addition, the reproductive cycle of frogs is an intricate phenomenon comprising multiple

sequential stages, such as courtship rituals, mating behavior, and oviposition. The breed-

ing season commences with male frogs vocalizing species-specific mating calls to attract

potential mates. Upon a female being lured by a male’s call, the two individuals engage in

amplexus, a characteristic embrace where the male grasps the female tightly with his fore-

limbs to impede her departure during the act of external fertilization of her ova [67]. The

timing and modalities of these events can exhibit substantial variation contingent upon fac-

tors like the frog species, their geographical distribution, and the prevailing environmental

conditions in their habitats [44]. The characteristics of mating behavior significantly im-

pact the growth and development of amphibian populations [56], prompting us to study this

aspect separately in Chapter 6.
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Chapter 1. Introduction

1.2 Mathematical motivation

The single-species population dynamics are governed by the growth rate, which is further

determined by the survival and reproduction of its individuals. Both the survival and repro-

duction rates differ from individual to individual, depending on biotic factors such as age

and body mass and abiotic factors including the environment. Trivially speaking, individu-

als in the reproductive stage directly contribute to the birth rate, and the survival rates vary

by life stages. In combination, variations in demographic rates among individuals should

be appropriately incorporated in a population growth model. Instead of considering too

detailed demographic characteristics in laboratory or field experiments, it would be more

practical in some cases to lump individuals with similar characteristics together in a spe-

cific life stage. On the other hand, ignoring the variations among different stages can lead

to misleading predictions on population dynamics [144], and therefore, stage-structured

models are proposed as ideal tool to describe population growth, which take a balance

between the model complexity and model performance. Usually, individuals in the same

stage can be assumed to undergo identical development time (a mean development delay)

while omitting variances in stage durations. However in some scenarios, the time an indi-

vidual takes in a specific life stage is not uniformly distributed. For example, some eggs

hatch (e.g., become larvae in some insects) before other eggs laid at the same time [144],

and a non-uniform (non-Dirac) distribution for the stage duration should be considered

when grouping age-stratified individuals together in a stage. To describe the heterogeneity

in development, various distributions for stage durations have been fitted from the stage-

frequency data in monitoring cohorts through time, including gamma, Weibull, log-normal,

logistic and others [57]. For example, the widely used gamma distribution with a positive

integer shape parameter n and rate parameter n� > 0 has the following probability density

function

f(t;n, n�) =
tn�1e�n�t(n�)n

�(n)
=

tn�1e�n�t(n�)n

(n� 1)!
.
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1.2. Mathematical motivation

This special gamma distribution is also called Erlang distribution as the shape parameter

n is a positive integer. The mean value and variance of this distribution are 1
�

and 1
n�2 . It

has been fitted to the stage-frequency data [57, 197] for different species. When n = 1,

it becomes the exponential distribution. Taking the limit case when n goes to infinity,

it becomes the Dirac distribution (also called Dirac �-distribution). Different probability

density functions are illustrated in Figure 1.1(a) when the mean duration is fixed at 1
�
=

10 days. In this case, the probability of an individual with stage age a reminding in the

particular stage is presented in Figure 1.1(b).

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40

 stage duration (stage age) a days

fr
eq

ue
nc

y 

((a)) Probability density function of gamma distributions

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

 stage age a (days)

P(
re

m
ai

ni
ng

 in
 th

e 
st

ag
e 

w
ith

 s
ta

ge
 a

ge
 a

) 

((b)) Survival (sojourn) function

Figure 1.1: The probability distributions of an individual with stage age a (days) remaining
in the stage under gamma distributions of mean 10 days with different shape parameters
n = 1, 3, 10 and 100.

Competition occurs when two or more individuals of the same or different populations

negatively affect each other striving for limited resources such as food, water, territory,

sunlight, mates and so on. There are two different types of competition: intraspecific com-

petition which occurs between individuals of the same species and interspecific competi-

tion which occurs between individuals of different species. The logistic growth model in-

corporates density-dependent population growth rate due to intraspecific competition, and

describes the sigmoid growth curve for a single species. Many generalized forms of the

logistic equation have been proposed to fit the observed growth phenomena, for example,

the Richards model for species growth [154] and epidemic data [194], and a more gener-
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Chapter 1. Introduction

alized logistic growth model [103, 183]. When individual movement in a spatial habitat is

considered, the Fisher-KPP equation [75] for a continuous spatial domain and multi-patch

logistic questions can be formulated [20]. The spatial dynamics can be investigated and

the maximal total population problem can be further studied [58, 141, 204]. After almost a

century of research, the competition interaction continues to fascinate researchers to under-

stand its role on shaping the population dynamics of a single species and engaging species

in a community.

Therefore, on the one hand, we focus on reviewing stage-structured models of single-

species populations using two approaches: integral forms and partial differential equations,

under both gamma and Dirac distributions. We then consider various types of models

with Dirac distributions under different assumptions regarding the influence of intraspe-

cific competition in Chapter 3. On the other hand, motivated by biological considerations,

we develop a series of models addressing seasonal succession, population competition,

environmental pathogen transmission, and mating behaviors in the subsequent chapters

(i.e., Chapter 4, Chapter 5, and Chapter 6). We explore some basic properties and global

dynamics using the theories of monotone dynamical systems, global attractors, uniform

persistence, coexistence states, and the basic reproduction number as introduced in the

preliminaries in Chapter 2. Finally, numerical simulations are employed to verify theoreti-

cal results, to quantify the sensitivity of certain parameters and to evaluate the influencing

factors on the population systems.
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Chapter 2

Preliminaries

In this chapter, we introduce the terminologies and established results that will be utilized

throughout this thesis. These include monotone dynamical systems, the theories of global

attractors, uniform persistence and coexistence states, and basic reproduction radio for sea-

sonal succession population models in periodic environments.

2.1 Monotone dynamics

Consider an ordered Banach space E with an order cone P that has a non-empty interior

int(P ). For x, y 2 E, we denote:

(i) x > y, if x� y 2 P\{0};

(ii) x � y, if x� y 2 P ;

(iii) x � y, if x� y 2 int(P ).

We define the order interval [a, b] := {x 2 E : a  x  b} provided that a < b.

Definition 2.1.1. Let U be a subset of E, and let f : U ! U be a continuous map. The

map f is defined as:

7



Chapter 2. Preliminaries

(i) monotone if x � y implies f(x) � f(y);

(ii) strictly monotone if x > y implies f(x) > f(y);

(iii) strongly monotone if x > y implies f(x) � f(y).

Theorem 2.1.1. (Dancer-Hess connecting orbit theorem) [94, Proposition 1] Suppose

u1 < u2 are fixed points of the strictly monotone continuous mapping f : U ! U , let

I := [u1, u2] ⇢ U , and assume f(I) is relatively compact and that f has no fixed points

other than u1 and u2 in I . Then, one of the following holds:

(i) there exists an entire orbit {xn}1n=�1 of f in I such that xn+1 > xn for all n 2 Z,

and limn!�1 xn = u1 and limn!1 xn = u2; or

(ii) there exists an entire orbit {yn}1n=�1 of f in I such that yn+1 < yn for all n 2 Z,

and limn!�1 yn = u2 and limn!1 yn = u1.

Recall that a subset K of E is termed order convex if [u, v] 2 K whenever u, v 2 K and

u < v are satisfied.

Definition 2.1.2. Suppose U ⇢ P is a nonempty, closed, and order-convex subset. A

continuous map f : U ! U is defined as:

(i) subhomogeneous if f(�x) � �f(x) for all x 2 U and � 2 [0, 1];

(ii) strictly subhomogeneous if f(�x) > �f(x) for all x 2 U with x � 0 and � 2 (0, 1);

(iii) strongly subhomogeneous if f(�x) � �f(x) for all x 2 U with x � 0 and � 2

(0, 1).

Theorem 2.1.2. [207, Theorem 2.3.2] Assume f : U ! U satisfies one of the following

conditions:

(i) f is monotone and strongly subhomogeneous; or

8



2.1. Monotone dynamics

(ii) f is strongly monotone and strictly subhomogeneous.

If there exists a nonempty compact invariant set K ⇢ int(P ) for f : U ! U , then f has

a fixed point e � 0 such that every nonempty compact invariant set of f within int(P )

consists solely of e.

Recall that a continuous mapping f : X ! X is described as asymptotically smooth if, for

any nonempty closed bounded subset B ⇢ X with f(B) ⇢ B, there exists a compact subset

J ⇢ B that attracts B. If the Fréchet derivative of f at u = a exists, denote it by Df(a),

and let r(Df(a)) represent the spectral radius of the linear operator Df(a) : E ! E.

Theorem 2.1.3. (Threshold dynamics) [207, Theorem 2.3.4] Consider V = [0, b] with

b � 0, and let f : V ! V be a continuous map. Suppose that:

(i) f : V ! V satisfies one of the following criteria:

(a) f is monotone and strongly subhomogeneous; or

(b) f is strongly monotone and strictly subhomogeneous;

(ii) f : V ! V is asymptotically smooth, and every positive orbit of f in V is bounded;

(iii) f(0) = 0, and Df(0) is compact and strongly positive.

Then the system exhibits threshold dynamics:

(i) If r(Df(0))  1, then every positive orbit in V converges to 0;

(ii) If r(Df(0)) > 1, then there exists a unique fixed point u⇤ � 0 in V such that every

positive orbit in V \{0} converges to u⇤.
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Chapter 2. Preliminaries

2.2 Uniform persistence and coexistence states

Assume X is a metric space equipped with the metric d. Consider a continuous map

f : X ! X and an open subset X0 ⇢ X . Define @X0 := X\X0, and let M@ :=

x 2 @X0 : fn(x) 2 @X0, 8n � 0, which may be empty.

Definition 2.2.1. A bounded set A is defined to attract a bounded set B in X if

lim sup
n!1,x2B

{d(fn(x), A)} = 0.

A subset A ⇢ X is called an attractor for f if A is nonempty, compact, and invariant

(i.e., f(A) = A), and A attracts some open neighborhood of itself. A global attractor for

f : X ! X is an attractor that attracts every point in X . For a nonempty invariant set M ,

the set W s(M) := x 2 X : limn!1 d(fn(x),M) = 0 is referred to as the stable set of M .

Recall that a continuous mapping f : X ! X is described as point dissipative if there

exists a bounded set B0 in X that attracts every point in X .

Theorem 2.2.1. [207, Theorem 1.1.3] If f : X ! X is compact and point dissipative, then

there exists a connected global attractor A that attracts every bounded subset within X .

Definition 2.2.2. The mapping f is considered uniformly persistent with respect to (X0, @X0)

if there is an ⌘ > 0 such that lim infn!1 d(fn(x), @X0) � ⌘ for all x 2 X0.

Definition 2.2.3. Let A ⇢ X be a nonempty invariant set for the function f . The set A is

said to be internally chain-transitive if for any a, b 2 A and any ✏ > 0, there exists a finite

sequence x1, . . . , xm in A with x1 = a and xm = b such that d(f(xi), xi+1) < ✏ for 1 

i  m� 1. This sequence x1, . . . , xm is referred to as an ✏-chain in A connecting a and b.

Definition 2.2.4. A lower semicontinuous function p : X ! R+ is termed a generalized

distance function for f : X ! X if for every x 2 (X0 \ p�1(0)) [ p�1(0,1), it holds that

p(fn(x)) > 0 for all n � 1.
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2.2. Uniform persistence and coexistence states

Theorem 2.2.2. [207, Theorem 1.3.2] (or [169, Theorem 3]) Let p be a generalized dis-

tance function for the continuous map f : X ! X . Suppose that:

(i) f possesses a global attractor;

(ii) There is a finite sequence M = {M1, . . . ,Mk} of disjoint, compact, and isolated

invariant sets within @X0 that satisfy the following conditions:

(a) [x2M@
w(x) ⇢ [k

i=1Mi, where w(x) denotes the omega limit set of x;

(b) no subset of M forms a cycle in @X0;

(c) Mi is isolated within X;

(d) W s(Mi) \ p�1(0,1) = ; for each 1  i  k, where W s(Mi) is the stable set

of Mi.

Then there is a � > 0 such that for any compact chain transitive set L with L 6⇢ Mi, for all

1  i  k, it holds that minx2L p(x) > �. In particular, f is uniformly persisitent in the

sense that there is an ⌘ > 0 such that lim infn!1 d(fn(x), @X0) � ⌘ for all x 2 X0.

Suppose T > 0. A family of mapping �(t) : X ! X , t � 0, is defined as a T -periodic

semiflow on X if it satisfies the following conditions:

(a) �(0) = I , where I denotes the identity mapping on X;

(b) �(t+ T ) = �(t) � �(T ) for all t � 0;

(c) �(t)x is continuous with respect to (t, x) 2 [0,1)⇥X .

The mapping �(T ) is referred to as the Poincaré map (or period map) associated with this

periodic semiflow. Specifically, if condition (b) holds for any T > 0, then �(t) is termed

an autonomous semiflow.

11



Chapter 2. Preliminaries

Theorem 2.2.3. [207, Theorem 3.1.1] Let �(t) be a T -periodic semiflow on X such that

�(t)X0 ⇢ X0 for all t � 0. Suppose S := �(T ) is point dissipative and compact in X .

Then the uniform persistence of S with respect to (X0, @X0) implies the uniform persistence

of �(t) : X ! X .

2.3 Basic reproduction ratio in periodic environments

A fundamental concept in epidemiology is the basic reproduction number, denoted as R0,

which represents the expected number of secondary cases produced by a typical infective

individual in a completely susceptible population (see, e.g., [18, 61]). If R0 > 1, the

disease is expected to spread within the population, suggesting the necessity of reducing

R0 to below 1 to achieve eradication. An explicit formula for R0 in a wide range of

autonomous compartmental epidemic models was provided in [184], and this work has

been extended to periodic models in [193].

In population dynamics, the basic reproduction number, R0, is similarly crucial. It is de-

fined as the expected number of new offspring produced by a typical individual over its

lifetime. This threshold value determines the fate of the population: if R0  1, the pop-

ulation is likely to go extinct, whereas if R0 > 1, the population is expected to persist

uniformly.

In this section, we introduce the theory of the basic reproduction number for abstract de-

lay differential equations, including both periodic and time-delayed models, as formu-

lated in [206]. Let ⌧ � 0 be a given parameter, and define X = C([�⌧, 0],Rm) and

X+ = C([�⌧, 0],Rm

+ ). Then (X,X+) forms an ordered Banach space equipped with the

maximum norm and the positive cone X+. Consider a map F : R ! L(X,Rm) and let

V (t) be a continuous m ⇥ m matrix function on R. Suppose that F (t) and V (t) are T -

periodic in t for some real number T > 0. For a continuous function u : [�⌧, �) ! Rm
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2.3. Basic reproduction ratio in periodic environments

with � > 0, define ut 2 X by

ut := u(t+ ✓), 8✓ 2 [�⌧, 0]

for any t 2 [0, �).

By linearizing a population growth model at its extinction equilibrium, we obtain the fol-

lowing linear and periodic functional differential system:

du(t)

dt
= F (t)ut � V (t)u(t), t � 0, (2.1)

where F (t)ut represents the newly born individuals at time t, which are linearly dependent

on the reproductive individuals within the interval [t�⌧, t]. Moreover, the internal dynamics

of individuals within the reproductive compartments, such as natural deaths and transitions

among compartments, are governed by the following linear ordinary differential system:

du(t)

dt
= �V (t)u(t), t � 0. (2.2)

We consider that F (t) : X ! Rm is defined as

F (t)� =

Z 0

�⌧

d[⌘(t, ✓)]�(✓), 8t 2 R, � 2 X,

where ⌘(t, ✓) is an m ⇥ m matrix function that is measurable in (t, ✓) 2 R ⇥ R and

normalized such that ⌘(t, ✓) = 0 for all ✓ � 0 and ⌘(t, ✓) = ⌘(t,�⌧) for all ✓  �⌧ .

Additionally, ⌘(t, ✓) is left-continuous in ✓ on (�⌧, 0) for each t, and the variation of ⌘(t, ·)

on [�⌧, 0] satisfies Var[�⌧,0]⌘(t, ·)  m(t) for some m 2 Lloc
1 ((�1,1),R), the space

of functions from (�1,1) to R that are Lebesgue integrable on each compact set of

(�1,1). Given that F (t) is T -periodic in t, there exists

sup
t2R

k F (t) k= sup
0tT

k F (t) k sup
0tT

m(t).
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Chapter 2. Preliminaries

We introduce the evolution operators U(t, s) on X associated with system (2.1) as follows:

U(t, x)� = ut(s,�), 8� 2 X, t � s, s 2 R,

where u(t, s,�) represents the unique solution of (2.1) on [s,1) with the initial condition

us = �, i.e., ut(s,�)(✓) = u(t + ✓, s,�) for all ✓ 2 [�⌧, 0]. Consequently, each operator

U(t, s) is continuous and satisfies

U(s, s) = I, U(t, s)U(s, r) = U(t, r), U(t+ T, s+ T ) = U(t, s), 8t � s � r.

Suppose �(t, s), t � s, be the evolution matrices associated with system (2.2). These

matrices satisfy the following conditions:

@

@t
�(t, s) = �V (t)�(t, s), 8t � s, and �(s, s) = I, 8s 2 R,

where w(�) denotes the exponential growth bound of �(t, s), defined as

w(�) = inf{ ew : 9M � 1 such that k �(t+ s, s) k Me ewt, 8s 2 R, t � 0}.

We assume the following conditions:

(i) Each operator F (t) : X ! Rm is positive in the sense that F (t)X+ ⇢ Rm

+ .

(ii) Each matrix �V (t) is cooperative, and w(�) < 0.

Assume that the initial distribution of newly born individuals, v(t), is T -periodic in t to

reflect the periodic environment. For any given s � 0, F (t� s)vt�s represents the distribu-

tion of newly born individuals at time t � s, originating from the reproductive individuals

who matured during the interval [t � s � ⌧, t � s]. Subsequently, �(t, t � s)F (t � s)vt�s

denotes the distribution of those newborns who were born at time t � s and remain in the
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immature compartments at time t. Hence, it follows that

Z 1

0

�(t, t� s)F (t� s)vt�sds =

Z 1

0

�(t, t� s)F (t� s)v(t� s+ ·)ds

represents the cumulative distribution of newborns at time t generated by all reproductive

individuals introduced at all preceding times up to t.

Let CT denote the ordered Banach space consisting of all continuous and T -periodic func-

tions from R to Rm, equipped with the maximum norm and the positive cone C+
T
:= {v 2

CT : v(t) � 0, 8t 2 R}. We can subsequently define the following linear operator on CT

as follows:

[Lv](t) =

Z 1

0

�(t, t� s)F (t� s)v(t� s+ ·)ds, 8t 2 R, v 2 CT ,

and

[L̂v](t) = F (t)

Z 1

0

�(t+ ·, t� s+ ·)v(t� s+ ·)ds, 8t 2 R, v 2 CT .

Let A and B be two bounded linear operator on X defined by

[Av](t) =

Z 1

0

�(t, t� s)v(t� s)ds, [Bv](t) = F (t)vt, 8t 2 R, v 2 X.

It then follows that L = A � B and L̂ = B � A, thereby implying that L and L̂ share the

same spectral radius. Consequently, the basic reproduction number for the periodic system

(2.1) is defined as the spectral radius of L and L̂, in accordance with the concept of next

generation operators [25, 62, 71, 72, 179, 184], i.e.,

R0 := r(L) = r(L̂).

Let U(T, 0) be the Poincaré (period) map of system (2.1) on X . The following theorem

shows that R0 can also be used to measure the stability of the zero solution for periodic

system (2.1), that is, if R0 < 1, the zero solution is stable, while it is unstable if R0 > 1.
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Theorem 2.3.1. [206, Theorem 2.1] The following statements are valid:

(i) R0 = 1 if and only if r(U(T, 0)) = 1;

(ii) R0 > 1 if and only if r(U(T, 0)) > 1;

(iii) R0 < 1 if and only if r(U(T, 0)) < 1.

Thus, R0 � 1 has the same sign as r(U(T, 0))� 1.

Let {U(t, s,�) : t � s} be the evolution operators on X of the following linear periodic

system with � 2 (0,+1):

du(t)

dt
=

1

�
F (t)ut � V (t)u(t), t � 0.

The following result was presented in [206], which provides a fantastic idea of numerically

computing R0.

Theorem 2.3.2. [206, Theorem 2.2] If R0 > 0, then � = R0 is the unique solution of

r(U(T, 0,�)) = 1.
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Chapter 3

Stage duration distributions and

intraspecific competition of continuous

stage-structured models

3.1 Introduction

The main focus in this chapter is on stage-structured models when individuals of same

species compete for the same resources in an ecosystem (e.g. food or living space). This

modeling idea will be employed in later chapters. However, it should be noted that the

stage-structured modeling idea for a single population growth has been widely employed

in other research areas, such as for disease transmission with various infectious period dis-

tributions [36, 45, 79, 80] and stage-dependent exposure [155], spatial population dynamics

in continuous [43] and discrete [132] habitats, within-host virus dynamics to account the

stages of the viral life cycle before viral production [34], the immune responses of T cell

life stages [46], waning of immunity of a vaccinated individual [78] and so on.

In this chapter, two basic modeling approaches, in terms of integral equations and par-
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tial differential equations, will be presented in consequent Section 3.2. Both frameworks

are further reduced into ordinary differential equations with or without time delay under

further Dirac and gamma distribution assumptions on the development time, respectively.

Further remarks on advantages and inherent limitations are briefly discussed in the same

section. Section 3.3 is devoted to presenting recent modeling studies, when the mean stage

duration and survival probability are regulated by population density due to intraspecific

competition. Section 3.4 concludes the chapter by discussing some related problems on the

topic.

3.2 Two physiologically-structured modeling approaches

In this section, we will review two basic structured modeling frameworks [112] in the form

of integral equations and partial differential equation models. The main focus will be re-

ducing the models under gamma and Dirac distributions for stage progression. Without

loss of generality, we consider the simplest case when there are two stages, denoted as

immature (pre-reproductive) and mature (reproductive) stages with population sizes I(t)

and M(t), respectively. The sojourn functions PI(a) and PM(a) describe the probabil-

ities that a living individual remains in immature and mature stages for a units of time

(stage age a), respectively, and satisfy the following properties: (i) 0  PX(a)  1; (ii)

PX(a) in nonincreasing on a; (iii)
Z 1

0

PX(a)da < 1, where X = I , M . Please note

that we assume the function PX(a) is differentiable with derivative P 0
X
(a) for the ease

of notational simplicity. When it is not differentiable, the Riemann integrals should be

represented in Riemann-Stieltjes integrals and rigorous treatments can be found in [180].

Further interesting biological indices can be derived from this sojourn function [180], such

as: (i) the mean sojourn time in the stage X (mean duration of the stage) can be directly

computed as D =

Z 1

0

PX(a)da; (ii) the expected remaining sojourn times at stage age

s would be D(s) =
1

PX(s)

Z 1

s

PX(⌘)d⌘ and D = D(0); (iii) the average expectation of
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Figure 3.1: Stage progression of individuals from immature to mature stages. Since indi-
viduals in non-reproductive old stage do not contribute to the birth rate, the old stage is
not considered in the model. However, the duration distribution for the M stage may be
incorporated to describe the progression from M -stage to the old stage.

remaining sojourn (duration) E =

R1
0 aPX(a)daR1
0 PX(a)da

; (iv) the variance of the stage duration is

V = D(2E �D).

Population dynamics are intuitively dependent on the stage duration distributions PX(a),

and Dirac and gamma distributions will be further discussed in more details. By default,

the term “age” represents the chronological age of an individual. In this section, the stage-

specific age will be used in some arguments, instead of the chronological age, to measure

the time since entering the stage (also called age within stage). Taking a mature individual

with chronological age ⌘ who matures at chronological age s for example, this individual

develops to the mature stage at I-stage age s and has M -stage age ⌘ � s.

3.2.1 Structured population model in integral form

Individuals in the immature stage I at time t include those born at a previous time s, sur-

viving to time t with survival probability ⇧I(t�s) and staying in the stage with probability

PI(t�s), as well as those introduced at initial time but still be alive and staying in the stage.
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These arguments lead to the following integral form for the population size of immatures:

I(t) =

Z
t

0

B(M(s))| {z }
born at time s

stay in the stagez }| {
PI(t� s) ⇧I(t� s)| {z }

survival

ds+ I0(t)|{z}
remaining immatures

. (3.1)

Here the birth rate B(M(t)) at time t is a function of the population size of reproductive

stage M(t). The size of immatures that were introduced at the initial time and still stay in

the stage is

I0(t) = I(0)PI(t)⇧I(t).

The dynamic evolution of the matured population size M(t) can be depicted in Figure 3.1

with consideration of birth, survival and stage progression from the previous I stage, as

well as development to a consequent old stage. Individuals in the mature stage M at time t

include (i) those entering the stage at time ⌘, surviving in the stage with survival probability

⇧M(t�⌘) and staying in the stage with stage distribution function PM(t�⌘), and (ii) those

mature individuals stay in the stage from the initial time or those developed from initially

introduced immatures (M0(t) in equation (3.2)). Please note that individuals entering the

M -stage at time ⌘ have M -stage age t� ⌘. Furthermore, individuals entering to the mature

stage at time ⌘ is exactly those born at time s  ⌘, surviving through the immature stage

with probability ⇧I(⌘ � s) and maturing at time ⌘ at rate �P
0
I
(⌘ � s) (these individuals

entering the mature stage have the I-stage age ⌘ � s). Here, we should mention that the

development rate of immature individuals with I-stage age a is given by the derivative

�P
0
I
(a). This term in the form of the probability density function can be derived from the

following observations: An individual leaves I-stage and enters to the M -stage during the

age interval (a, a +�a) with probability PI(a) � PI(a +�a). Taking the limit when �a

goes to zero, the individuals with I-stage age a develop to M -stage at rate �P
0
I
(a). These
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arguments give rise to the following equation

M(t)

=

Z
t

0

Z
⌘

0

B(M(s))| {z }
birth at s

enter M -stage at ⌘z }| {
(�P

0

I
(⌘ � s)) ⇧I(⌘ � s)| {z }

survive to ⌘ in I-stage

dsPM(t� ⌘)| {z }
stay in M -stage

survive in M -stagez }| {
⇧M(t� ⌘) d⌘

+ M0(t)| {z }
remained or developed from

initially introduced I

(3.2)

The term M0(t) can be expressed as

M0(t) = M(0)PM(t)⇧M(t) + I(0)

Z
t

0

⇧I(⌘)(�P
0

I
(⌘))⇧M(t� ⌘)PM(t� ⌘)d⌘, (3.3)

with M(0)PM(t)⇧M(t) capturing the size of remaining mature individuals introduced at

time 0 and I(0)
R

t

0 ⇧I(u)(�P
0
I
(u))⇧M(t � u)PM(t � u)du measuring the size of mature

individuals developed from immatures introduced at time 0. On the other hand, if we

introduce the following term to represent the maturation rate at time ⌘

F (⌘) =

Z
⌘

0

B(M(s))(�P
0

I
(⌘ � s))⇧I(⌘ � s)ds+ I(0)⇧I(⌘)(�P

0

I
(⌘)), (3.4)

then we can rewrite the equations (3.2) and (3.3) into

M(t) =

Z
t

0

F (⌘)|{z}
maturation rate at time ⌘

survive in M -stagez }| {
⇧M(t� ⌘) PM(t� ⌘)| {z }

stay in M -stage

d⌘ + M(0)PM(t)⇧M(t)| {z }
remaining mature individuals

. (3.5)

If one regards the maturation rate as the “birth rate” to the mature stage, then M(t) equa-

tion (3.5) takes a similar form as I(t) equation (3.1). We wold like to remark that the

stage structured models in integral form go back to Lotka [119]. The model derivation

was rigorously presented in [180, Chapter 13] by careful consideration of the movement

through a stage, of stage contents, stage input and stage outputs, which also relaxes the

differentiability assumption on PI(a) by using Stieltjes integrals.
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Since the stage duration distribution is our main focus of the current study, we take simple

exponential distributions for the survival functions ⇧I(a) and ⇧M(a), that is

⇧I(a) = e�µIa and ⇧M(a) = e�µMa (3.6)

for individual staying with stage age a in the I-stage and M -stage, respectively. Parameters

µI and µM denote the death rates in immature and mature stages. When the stage duration

distributions take some ecologically justified functions, the integral stage-structured model

(3.1) and (3.2) can be rewritten into ordinary differential equations with/without time de-

lays. In the following, gamma and Dirac distributions will be discussed. However, we

should mention that other stage length distributions would be more appropriate in some

scenarios, for example, the distribution of the time duration from infection to disease death

is better fitted by a lognormal distribution than by a Gamma distribution [76] and Weibull

distributions. More interesting investigations on log-normally distributed stage durations

can be found in [76] and [180, Section 12.8].

(I) Gamma stage duration distribution

Assume the stage duration follows gamma distribution, then the probabilities of an individ-

ual with stage age a remaining in each stage are given by

PI(a) = Gn

n�
(a) =

nX

j=1

(n�a)j�1e�n�a

(j � 1)!
(3.7)

and

PM(a) = Gm

m�
(a) =

mX

i=1

(m�a)i�1e�m�a

(i� 1)!
(3.8)

with shape and rate parameter sets (n, n�) and (m,m�) respectively. It should be high-

lighted that age a is not chronological age, but the stage-specific age for the actual amount

of time an individual has been alive in the I and M -stages respectively.
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3.2. Two physiologically-structured modeling approaches

With the exponential survival probability for immatures, we have

I0(t) = I(0)PI(t)⇧I(t) = I(0)e�µI t

nX

j=1

(n�t)j�1e�n�t

(j � 1)!
.

Substituting (3.7) into the I(t) equation (3.1) gives

I(t)

=

Z
t

0

B(M(s))e�µI(t�s)
nX

j=1

(n�(t� s))j�1e�n�(t�s)

(j � 1)!
ds+ I(0)e�µI t

nX

j=1

(n�t)j�1e�n�t

(j � 1)!

=
nX

j=1

✓Z
t

0

B(M(s))e�µI(t�s) (n�(t� s))j�1e�n�(t�s)

(j � 1)!
ds+ I(0)e�µI t

(n�t)j�1e�n�t

(j � 1)!

◆

=
nX

j=1

Ij(t),

where

Ij(t) =

Z
t

0

B(M(s))e�(µI+n�)(t�s) (n�(t� s))j�1

(j � 1)!
ds+ Ij0(t), 1  j  n (3.9)

with Ij0(t) = I(0)e�(µI+n�)t (n�t)j�1

(j�1)! . Using these sub-stage variables Ij(t), a differential

equation system can be derived as follows by taking derivative of each Ij(t) with respect to

t:

I
0

1(t) = B(M(t))� (n�+ µI)

✓Z
t

0

B(M(s))e�(µI+n�)(t�s)ds+ I(0)e�(µI+n�)t

◆

= B(M(t))� (n�+ µI)I1(t),

and for 2  j  n,
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I
0

j
(t)

=B(M(t))e�µI ·0 (n�·0)
j�1e�n�·0

(j � 1)!
+

Z
t

0

B(M(s))
d

dt

✓
e�(µI+n�)(t�s) (n�(t� s))j�1

(j � 1)!

◆
ds

+ I(0)
d

dt

✓
e�(µI+n�)(t�s) (n�t)

j�1

(j � 1)!

◆

=� (µI + n�)

Z
t

0

B(M(s))
(n�(t� s))j�1

(j � 1)!
ds+ I(0)(e�(µI+n�)t (n�t)

j�1

(j � 1)!
)

�

+ n�

Z
t

0

B(M(s))e�(µI+n�)(t�s) (n�(t� s))j�2

(j � 2)!
ds+ I(0)e�(µI+n�)t (n�(t� s))j�2

(j � 2)!

�

=n�Ij�1(t)� (n�+ µI)Ij(t).

Note that the probability density function for gamma distribution PI(t) satisfies

�P
0

I
(a) =n�

(n�a)n�1e�n�a

(n� 1)!

The maturation rate in (3.4) becomes

F (t)

=

Z
t

0

n�


(n�a)n�1e�n�a

(n� 1)!

�
B(M(t� a))e�µIada� n�

(n�t)n�1e�n�t

(n� 1)!
e�µI tI(0)

=n�In(t).

The equation for mature stage (3.5) can be rewritten into

M(t)

=

Z
t

0

F (⌘)PM(t� ⌘)⇧M(t� ⌘)d⌘ +M(0)PM(t)⇧M(t)

=

Z
t

0

F (⌘)e�(µM+m�)(t�⌘)
mX

i=1

(m�(t� ⌘))i�1

(i� 1)!
d⌘ +M(0)e�(µM+m�)t

mX

i=1

(m�t)i�1

(i� 1)!

=
mX

i=1

Mi(t).

Similar arguments as those for Ij(t) lead to a series of equations for variables of mature

24
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individuals in each sub-stage:

M
0

1(t) =F (t)� (µM +m�)M1(t) = n�In(t)� (µM +m�)M1(t),

M
0

i
(t) =m�Mi�1(t)� (m� + µM)Mi(t), 1 < i  m.

Therefore, by introducing sub-stage variables Ij(t) and Mi(t), a closed ordinary differen-

tial equation model can be derived from the integral form (3.1) and (3.2) when the stage

duration distributions follow gamma distributions in (3.7) and (3.8):

dI1(t)

dt
=B(M(t))� (n�+ µI)I1(t),

dIj(t)

dt
=n�Ij�1(t)� (n�+ µI)Ij(t), 1 < j  n,

dM1(t)

dt
=n�In(t)� (µM +m�)M1(t),

dMi(t)

dt
=m�Mi�1(t)�m�Mi(t)� µMMi(t), 1 < i  m.

(3.10)

(II) Dirac stage duration distribution

The Dirac stage distribution is suitable to describe the case when individuals entering a

specific stage together are assumed to undergo identical development time which equal to

the mean development delay while omitting variances in the stage duration [57]. For the

convenience of illustration, we simply assume that PM(⇠) ⌘ 1 for all M -stage age ⇠, that

is, the mature individuals, if alive, will always stay in the stage. The probability function

for immature stage duration with mean value ⌧ can be expressed as

PI(a) =

8
<

:
1, 0  a  ⌧

0, a > ⌧.

This means alive individuals with I-stage age smaller than ⌧ always stay in I-stage, while

those with age larger than ⌧ develop to M -stage. Please note that PI(a) is not differen-

tiable. However, for notational simplicity, we use the concept of Dirac delta function �(x)
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to represent its probability density function. Arguments to deal with non-differentiable

sojourn functions can be found in [180, Chapter 13]. We consider the case when t > ⌧

(by resetting the initial timing) and therefore, all immature individuals introduced at time

0 will either die or develop to the M -stage after time t, that is I0(t) = 0 for all t > ⌧ . The

assumption t > ⌧ also implies M0(t) = e�µM tM(0)+ I(0)e�(µI⌧+µM (t�⌧)). Then we have,

I(t) =

Z
t

0

B(M(s))e�µI(t�s)PI(t� s)ds+ I0(t) =

Z
t

t�⌧

B(M(s))e�µI(t�s)ds,

which can be written into a differential equation

I 0(t) =B(M(t))� µI

Z
t

t�⌧

B(M(s))e�µI(t�s)ds� B(M(t� ⌧))e�µI⌧

=B(M(t))� µII(t)� B(M(t� ⌧))e�µI⌧ .

The equation (3.2) for M(t) now becomes

M(t)

=

Z
t

0

Z
⌘

0

B(M(s))(�P
0

I
(⌘ � s))e�µI(⌘�s)dse�µM (t�⌘)d⌘ + e�µM tM(0)

+ I(0)e�(µI⌧+µM (t�⌧))

=

Z
t

0

Z
⌘

0

B(M(s))�(⌘ � s� ⌧)e�µI(⌘�s)dse�µM (t�⌘)d⌘ + e�µM tM(0)

+ I(0)e�(µI⌧+µM (t�⌧))

=

Z
t

⌧

B(M(⌘ � ⌧))e�µI⌧e�µM (t�⌘)d⌘ + e�µM tM(0) + I(0)e�(µI⌧+µM (t�⌧)).

Please note �(·) is the corresponding Dirac delta function. Taking derivative of M(t), we

obtain

M 0(t) = B(M(t� ⌧))e�µI⌧ � µMM(t).
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Figure 3.2: Dynamic process involving birth, survival and stage progression for a typical
mature individual with chronological age ⌘ at time t. This individual matures at I-stage
age s and has M -stage age ⌘ � s.

(III) Basic reproduction number and initial growth rate

The integral form can be written into other equivalent forms through different biological

arguments on stage progression, birth and survival. If we consider the stage progression of

individuals as illustrated in Figure 3.2, then the integral form (3.2) can be written into

M(t)

=

Z
t

0

B(M(t� ⌘))| {z }
birth

probability of entering and staying alive in M -stage with chronological age ⌘z }| {Z
⌘

0

⇧I(s)| {z }
survive through I-stage

(�P
0

I
(s))| {z }

enter M -stage

PM(⌘ � s)⇧I(⌘ � s)| {z }
alive and stay in M -stage

ds d⌘ +M0(t)

with M0(t) given in (3.3). In this expression, the integral term accounts individuals having

chronological age ⌘ at time t (those born at a previous time t � ⌘ with ⌘ 2 [0, t]) and

successfully entering and staying in the M -stage alive.

It is easy to obtain the net reproduction number R0 with the following renew argument for

the Volterra integral form (see for example [101]). In fact, if we assume the population size

is very small and the density-dependent regulations on the birth rate function B(M(t)) can
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be ignored, then the birth rate at time t can be approximated by

B(M(t)) ⇡ b ·M(t)

with a constant per-capita birth rate b. Let

�(⌘) = b⇥
Z

⌘

0

�P
0

I
(s)⇧I(s)PM(⌘ � s)⇧M(⌘ � s)ds

| {z }
the probability that an individual with chronological age ⌘

developing to and staying in the M -stage

,

then we have the following Volterra integral form for the population size of the M -stage

M(t) =

Z
t

0

M(t� ⌘)�(⌘)d⌘ +M0(t).

The net reproduction number in demography can be defined as

R0 =

Z 1

0

�(⌘)d⌘.

Suppose PI(x) takes gamma distribution function (3.7) and PM(x) = 1. By taking the

exponential survival probability (3.6), we have

�(⌘) =b

Z
⌘

0

�
nX

j=1

✓
n�(n�s)j�2e�n�s

(j � 2)!
� n�(n�s)j�1e�n�s

(j � 1)!

◆
e�µIse�µM (⌘�s)ds

=b

Z
⌘

0

n�(n�)n�1sn�1

(n� 1)!
e�(n�+µI�µM )se�µM⌘ds

=b · e�µM⌘ · (n�)
n

n!

Z
⌘

0

e�(n�+µI�µM )sdsn

=
bn(n�)ne�µM⌘

n!

"
e�(n�+µI�µM )⌘

n�1X

i=0

(�1)n�1�i
(n� 1)! · ⌘i

i! · (�(n�+ µI � µM))n�i

� (�1)n�1 · (n� 1)!

(�(n�+ µI � µM))n
,
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which implies that

R0 =
bn(n�)n

n!

Z 1

0

e�(n�+µI)⌘
n�1X

i=0

(�1)n�1�i
(n� 1)! · ⌘i

i! · (�(n�+ µI � µM))n�i
d⌘

+
b(�n�)n

(�(n�+ µI � µM))n

Z 1

0

e�µM⌘d⌘

=b · (n�)n ·
n�1X

i=0

�1

(n�+ µI)i+1(n�+ µI � µM)n�i
+

b

µM

· (n�)n

(n�+ µI � µM)n

=
b · (n�)n

(n�+ µI)n+1

"
n�1X

i=0

�1

(n�+µI�µM

n�+µI

)n�i
+

(n�+ µI)n+1

µM(n�+ µI � µM)n

#

=
b

µM

✓
n�

n�+ µI

◆n

.

For the simple case that the immature stage duration follows an exponential distribution

with mean duration 1/�, namely PI(a) = e��a, then

R0 =
b�

µM(�+ µI)
.

When PI(a) takes the Dirac distribution with mean duration ⌧ and PM(a) ⌘ 1 as those in

Subsection 3.2.1 (II), we have

�(⌘) = b⇥
Z

⌘

0

�P
0

I
(s)e�µIse�µM (⌘�s)ds = b⇥

Z
⌘

0

�(s� ⌧)e�µIse�µM (⌘�s)ds,

and therefore,

R0 =

Z 1

0

�(⌘)d⌘ =

Z 1

⌧

be�µI⌧e�µM (⌘�⌧)d⌘ =
be�µI⌧

µM

.

By seeking the solution to the following characteristic equation (Euler-Lotka equation)

Z 1

0

e�r⌘�(⌘)d⌘ = 1,

one can determine the initial growth rate (also called intrinsic growth rate or Malthusian
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parameter [93]). Let f(r) =
R1
0 e�r⌘�(⌘)d⌘, and assume there exists a real number r̂

such that 1  f(r̂) < 1 (for most biological models, we may always find such a negative

r̂). Then it is interesting to observe the following facts: (i) f(r) is a nonincreasing and

continuous function of r, (ii) f(r̂) � 1 and (iii) lim
r!1

f(r) = 0. Therefore, the above

equation f(r) = 1 admits a unique real root r = r0 2 [r̂,1), which is the intrinsic growth

rate. Using the identity that R0 = f(0) and the monotonicity of f(r), it is evident that the

sign of r0 is same as that of R0 � 1. Furthermore, the monotonicity f(r) and uniqueness

of the real root to the equation f(r) = 1 facilitate designing efficient numerical algorithms,

such as the bisection method algorithm, to compute the initial growth rate.

3.2.2 Structured model with partial differential equations

Assume u(a, t) and v(⇠, t) are the population densities of immature and mature individuals

at time t with stage-specific age a and ⇠, respectively. Then sizes of the populations in the

immature and mature stages can be expressed as

I(t) =

Z 1

0

PI(a)u(a, t)da and M(t) =

Z 1

0

PM(⇠)v(⇠, t)d⇠,

where PI(a) and PM(⇠) represent the probability functions of individuals with stage-age a

staying in the immature and mature stages, respectively. On the other hand, the following

partial differential equation, originally proposed by McKendrick [136] and widely used in

recent studies such as [54, 100, 112, 125], can be employed to describe the dynamics of

age-dependent variables

@u(a, t)

@a
+
@u(a, t)

@t
= �µIu(a, t),

u(a, 0) = u0(a),

(3.11)
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and
@v(⇠, t)

@⇠
+
@v(⇠, t)

@t
= �µMv(⇠, t),

v(⇠, 0) = v0(⇠)

(3.12)

with natural death rates µI and µM in each stage.

It is reasonable to assume that the density of the immatures u(0, t) with age 0 at time t is

exactly the birth rate, that is

u(0, t) = B(M(t)).

The density of mature individuals with M -stage age 0 at time t is that of immature individ-

uals developing to the M -stage at time t, that is

v(0, t) =

Z 1

0

[�P 0
I
(a)]u(a, t)da,

where �P 0
I
(a) represents the development rate of immature individuals with I-stage age a,

as discussed in Section 3.2.1.

(I) Gamma stage duration distribution

When the stage duration follows gamma distributions as in (3.7) and (3.8), we have

v(0, t) =

Z 1

0

[�P 0
I
(a)]u(a, t)da =

Z 1

0

n�


(n�a)n�1e�n�a

(n� 1)!

�
u(a, t)da = n�In(t).

By introducing sub-stage population densities as those in subsection 3.2.1:

Ij(t) =

Z 1

0

(n�a)j�1e�n�a

(j � 1)!
u(a, t)da, 1  j  n,

and

Mi(t) =

Z 1

0

(m�⇠)i�1e�m�⇠

(i� 1)!
v(⇠, t)d⇠, 1  i  m,
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the immature population size and the matured population size can be represented as

I(t) =
nX

j=1

Ij(t) and M(t) =
mX

i=1

Mi(t), respectively.

Differentiating each Ij(t), Mi(t), and using (3.11) and (3.12), we can obtain a stage-

structured model in ordinary differential equation form, which is same as system (3.10).

(II) Dirac stage duration distribution

In this subsection, we assume the stage distribution follows a Dirac distribution. Similar

to those in Subsection 3.2.1 (II), we assume PM(⇠) ⌘ 1 for all M -stage age ⇠ and the

distribution function for the immature stage has a mean duration ⌧ . In this case,

v(0, t) =

Z 1

0

[�P 0
I
(a)]u(a, t)da =

Z 1

0

�(a� ⌧)u(a, t)da = u(⌧, t)

and the sizes of immature I(t) and mature M(t) individuals can be expressed as

I(t) =

Z
⌧

0

u(a, t)da and M(t) =

Z 1

0

v(⇠, t)d⇠,

respectively. Therefore, (3.11) gives

dI(t)

dt
=

d

dt

✓Z
⌧

0

u(a, t)da

◆
=

Z
⌧

0

✓
�@u(a, t)

@a
� µIu(a, t)

◆
da

= �u(⌧, t) + u(0, t)� µII(t).

Similarly, we have the following equation for the matured population size M(t):

dM(t)

dt
=

Z 1

0

✓
�@v(⇠, t)

@⇠
� µMv(⇠, t)

◆
d⇠ = u(⌧, t)� µMM(t).

It remains to find the maturation rate u(⌧, t), which can be achieved by integration along
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characteristics. Let V s(t) = u(t� s, t), then we have

d

dt
V s(t) = �µIV

s(t)

and V s(t) = e�µI(t�t0)V s(t0). If t � ⌧ , setting s = t� ⌧ and t0 = t� ⌧ gives

u(⌧, t) = V t�⌧ (t) = e�µI⌧V t�⌧ (t� ⌧) = e�µI⌧u(0, t� ⌧) = B(M(t� ⌧))e�µI⌧ .

If t < ⌧ , let s = t� ⌧ and t0 = 0, then

u(⌧, t) = V t�⌧ (t) = e�µI tV t�⌧ (0) = e�µI tu(⌧ � t, 0).

Therefore, the stage-structured population dynamics with Dirac distribution for immature

stage duration can be described by two sets of systems on different time intervals respec-

tively:
dI(t)

dt
=B(M(t))� u(⌧ � t, 0)e�µI⌧ � µII(t)

dM(t)

dt
=u(⌧ � t, 0)e�µI⌧ � µMM(t)

9
>=

>;
for t 2 [0, ⌧ ]

and

dI(t)

dt
=B(M(t))� B(M(t� ⌧))e�µI⌧ � µII(t)

dM(t)

dt
=B(M(t� ⌧))e�µI⌧ � µMM(t)

9
>=

>;
for t 2 [⌧,1) (3.13)

It should be noted that the variable M(t) can be decoupled from the whole model system.

Moreover, a scalar delay differential equation (the second equation of (3.13)) would be

sufficient to reflect the long term dynamics of mature stage [158] with suitable initial value

specified for M(✓) with ✓ 2 [�⌧, 0].
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3.2.3 Remarks on two modeling approaches

In Subsections 3.2.1 and 3.2.2, two modeling approaches for physically structured popu-

lation growth are presented in the form of integral system (equations (3.1) and (3.2)) and

partial differential system (equations (3.11) and (3.12)). The relationship between the inte-

gral equation approach and the PDE approach was established in [180, Chapter 13]. When

the stage duration follows a gamma distribution, both modeling frameworks can be reduced

into a system of ordinary differential equations, while a system of delay differential equa-

tions can be derived when the stage distribution follows a Dirac distribution. The reduction,

without losing relevant growth information, makes it easier to investigate the population dy-

namics. The possibility of reducing a physiologically structured population model, such as

those in Subsection 3.2.1, to an ordinary differential equation model has been investigated

[60].

The integral system can be naturally formulated through ecological arguments in terms of

birth, stage progression and survival. Furthermore, the net reproduction of the population

growth can be intuitively derived by using the integral equation nature of the system, with

each term having clear biological interpretations. Moreover, the initial growth rate can

be easily defined with the help of the linearized system, and its existence and uniqueness

can be established through simple mathematical arguments. As a byproduct, the important

relationship between the net reproduction number R0 and the initial growth rate r0 can be

easily established: the sign of R0 � 1 is same as that of r0.

It should be noted that a general birth function B(M(t)) is assumed in the last two sub-

sections, which can easily accommodate the density-dependent self-regulation on the birth

rate. However, the density-independence assumptions are imposed for the survivorship and

stage-to-stage progression. When it comes to relax the density-independence assumptions

on the stage-progression function PX(t) and survivorship ⇧X(t) for the immature (X = I)

and mature (X = M ) stages, it may become challenging to propose appropriate probability

functions. In this sense, the integral framework may not be a convenient way to describe

34



3.2. Two physiologically-structured modeling approaches

the structured population size when more complicated density-dependent self-regulation

are considered, as the model (3.14) presented later and those reviewed in the coming Sec-

tion 3.3. Furthermore, an integral system can also be derived from a state-structured partial

differential equation when the related survival and stage-progression functions can be for-

mulated from the corresponding evolution system [60].

To conclude this section, we show that the age-structured partial differential system can be

extended to accommodate the density-dependent survivorship due to intra-specific compe-

tition when the gamma distribution is assumed. In this scenario, equations (3.11) and (3.12)

can be revised to account excess density-dependent mortality rate due to competition:

@u(a, t)

@a
+
@u(a, t)

@t
=� µIu(a, t)� f(I(t))u(a, t),

@v(⇠, t)

@⇠
+
@v(⇠, t)

@t
=� µMv(⇠, t)� g(M(t))v(⇠, t),

u(0, t) = B(M(t)), u(a, 0) = u0(a), v(0, t) = n�In(t) and v(⇠, 0) = u0(⇠),

(3.14)

where functions f(·) and g(·) represent the excess death rates due to intraspecific com-

petition, dependent on total population sizes of the respective stage. Differentiating each

sub-stage variable in Subsection 3.2.2 for immatures Ij(t), we have

dI1(t)

dt
= B(M(t))� (n�+ µI + f(I(t)))I1(t),

and
dIj(t)

dt
= n�Ij�1(t)� (n�+ µI + f(I(t)))Ij(t), 1 < j  n.

Similarly, for the sub-stages of mature individuals, we have

dM1(t)

dt
=� e�m�⇠v(⇠, t)

��1
0
� (m� + µM + g(M(t)))

Z 1

0

e�m�⇠v(⇠, t)d⇠

=n�In(t)� (m� + µM + g(M(t)))M1(t),
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and
dMi(t)

dt
=m�Mi�1(t)� (m� + µM + g(M(t)))Mi(t), 1 < i  m.

In summary, when intraspecific competition induces excess mortality on immatures and the

immature stage duration follows a gamma distribution, an ordinary differential system can

be reformulated from the age-structured partial differential equation modeling approach:

dI1(t)

dt
= B(M(t))� (n�+ µI + f(I(t)))I1(t),

dIj(t)

dt
= n�Ij�1(t)� (n�+ µI + f(I(t)))Ij(t), 1 < j  n,

dM1(t)

dt
= n�In(t)� (m� + µM + g(M(t)))M1(t),

dMi(t)

dt
= m�Mi�1(t)� (m� + µM + g(M(t)))Mi(t), 1 < i  m.

(3.15)

3.3 Stage structured model with Dirac distribution and

intraspecific competition

This section is devoted to review some population models under Dirac distribution for

immature stage duration and intraspecific competition. In particular, we are interested in

presenting different types of models that can be formulated under various assumptions on

the effect of immature competition.

3.3.1 Excess mortality due to competition among the same age cohort

Considering the immature competition of the same age, Gourley and Liu [87] explored the

following evolution equation for the population density u(a, t) of age a at time t

@u(a, t)

@a
+
@u(a, t)

@t
=� µIu(a, t)� T (u(a, t)), 0 < a  ⌧

@u(a, t)

@a
+
@u(a, t)

@t
=� µMu(a, t), a > ⌧.

(3.16)
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3.3. Stage structured model with Dirac distribution and intraspecific competition

In this model, the competitive effects between immatures are given by a nonlinear func-

tion T (u(a, t)), describing the influence of intraspecific competition among the immature

individuals due to limited living space and resources. The competition among mature indi-

viduals is not taken into account.

By taking a similar arguments as those in Subsection 3.2.2 (II), M(t)-equation can be

written as
dM(t)

dt
= u(⌧, t)� µMM(t).

To close this equation, it is essential to obtain the explicit form of the maturation rate

u(⌧, t), which can be found through the integration along characteristics. By introducing

the function u⇠(a) = u(a, a+ ⇠), the authors obtained

du⇠(a)

da
=


@u(a, t)

@a
+
@u(a, t)

@t

�

t=a+⇠

= [�µIu(a, t)� T (u(a, t))]
t=a+⇠

,

which implies that
du⇠(a)

da
= �µIu

⇠(a)� T (u⇠(a)),

and hence Z
u
⇠(a)

u⇠(0)

d⌘

µI⌘ + T (⌘)
= �a.

Here, u⇠(0) = u(0, ⇠) = B(M(⇠)). Choosing a = ⌧ and ⇠ = t � ⌧ , the maturation rate

u(⌧, t) at time t > ⌧ can be solved explicitly from

Z
B(M(t�⌧))

u(⌧,t)

d⌘

µI⌘ + T (⌘)
= ⌧.

Since the function T : (0,1) ! R+ may possibly be nonlinear, it is impossible to obtain

an explicit expression u(⌧, t) = Q(B(M(t� ⌧))) to illustrate the relationship between the

maturation rate u(⌧, t) at time t and birth rate B(M(t � ⌧)) at time t � ⌧ . However, this
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relationship y = Q(x) can be implicitly defined by

Z
x

Q(x)

d⌘

µI⌘ + T (⌘)
= ⌧, y > 0. (3.17)

Moreover, the function y = Q(x) is well-defined as T (·) is nonnegative and nondecreasing.

Then
dM(t)

dt
= Q(B(M(t� ⌧)))� µMM(t).

With this kind of competition in consideration, [87] shows that all solutions are bounded for

any birth function B(·). Linearizing the model at a boundary equilibrium gives verifiable

and biologically interpretable conditions for its stability. In what follows, we will present

several models of this type.

(I) The case when T (u(a, t)) = �I(u(a, t))2

By specifying the nonlinear function as T (u(a, t)) = �I(u(a, t))2 in (3.16), Liu, Röst and

Gourley [118] investigated the following model

@u(a, t)

@a
+
@u(a, t)

@t
= �µIu(a, t)� �I(u(a, t))

2, 0 < a < ⌧ (3.18)

where �I denotes the effect of intraspecific competition among immature individuals. In

this case, it is possible to write down the function (3.17) explicitly. In fact, the new variable

u⇠(a) = u(a, a+ ⇠) satisfies

d

dt
u⇠(a) = �µIu

⇠(a)� �I(u
⇠(a))2,

which takes the form of a Bernoulli differential equation, with solution explicitly given by

u⇠(a) =
µIu⇠(0)e�µIa

µI + �Iu⇠(0)(1� e�µIa)
.
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3.3. Stage structured model with Dirac distribution and intraspecific competition

Therefore, when t > ⌧ , setting a = ⌧ and ⇠ = t � ⌧ gives ut�⌧ (0) = u(0, t � ⌧) =

B(M(t� ⌧)) and

u(⌧, t) = Q(B(M(t� ⌧))) =
µIB(M(t� ⌧))e�µI⌧

µI + �IB(M(t� ⌧))(1� e�µI⌧ )
.

With this special nonlinear function T (u(a, t)) = �I(u(a, t))2, long term dynamics of M(t)

can be described by the following delay differential equation:

dM(t)

dt
=

µIB(M(t� ⌧))e�µI⌧

µI + �IB(M(t� ⌧))(1� e�µI⌧ )
� µMM(t).

(II) An alternative formulation for a delayed logistic equation

Arino, Wang and Wolkowicz [21] derived a model through a different approach with the

aid of survival arguments for those being alive at time t� ⌧ that are still alive at time t for

the following evolution equation

eN 0
(t) =� µ eN(t)�  eN2(t).

By the technique of separation of variables and integration from t� ⌧ to t, they obtained

eN(t) =
µ eN(t� ⌧)

µeµ⌧ + (eµ⌧ � 1) eN(t� ⌧)
.

Putting this density-dependent term into a logistic equation with a birth rate �, the authors

formulated an alternative logistic delay differential equation with time delay ⌧ :

N
0
(t) =

�µN(t� ⌧)

µeµ⌧ + (eµ⌧ � 1)N(t� ⌧)
� µN(t)� N2(t). (3.19)

It is shown that the population dies out when the delay is too large. The existence of a

positive equilibrium, and its relationship with parameter values are further illustrated in

[21].
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(III) An alternative formulation for a distributed delayed logistic equation

Using a similar argument as that in [21], Lin, Wang and Wolkowicz [116] formulated a

logistic equation with distributed delays. The time delay is distributed in line with a kernel

function k(s) with a mean delay ⌧ , that is:

k(s) � 0,

Z 1

0

k(s)ds = 1,

Z 1

0

sk(s)ds = ⌧.

Then the discrete delay logistic-type equation (3.19) can be extended to the following one:

N
0
(t) =�

Z 1

0

µe�µsN(t� s)k(s)

µ+ (1� e�µs)N(t� s)
ds� µN(t)� N2(t). (3.20)

The delay kernel can take a variety of functions, such as Dirac delta function, uniform dis-

tribution, gamma distribution and tent distribution. When the kernel function is Dirac delta

function, equation (3.20) is exactly the discrete delay case for equation (3.19). A threshold

result for survival and extinction is established in [116]: the global attractivity of the unique

positive equilibrium and the zero equilibrium are shown under different parameter regimes.

3.3.2 Excess mortality due to competition among the same stage

Considering the excess mortality due to intraspecific competition between individuals of

the same life stage, Fang, Gourley and Lou [74] assumed the Dirac distribution for imma-

tures for the model (3.14), copied as follows for easy reference:

@u(a, t)

@a
+
@u(a, t)

@t
=� µIu(a, t)� f(I(t))u(a, t), a  ⌧

@u(a, t)

@a
+
@u(a, t)

@t
=� µMu(a, t)� g(M(t))u(a, t), a > ⌧

with

u(0, t) = B(M(t)) and u(a, 0) = u0(a).
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3.3. Stage structured model with Dirac distribution and intraspecific competition

In this case, the sizes of individuals in each stage are

I(t) =

Z
⌧

0

u(a, t)da and M(t) =

Z 1

⌧

u(a, t)da.

Differential equations for two variables I(t) and M(t) when t > ⌧ can be derived as

dI(t)

dt
=� u(⌧, t) + u(0, t)� µII(t)� f(I(t))I(t),

dM(t)

dt
=� u(1, t) + u(⌧, t)� µMM(t)� g(M(t))M(t),

(3.21)

where u(0, t) = B(M(t)) and u(1, t) = 0. The maturation rate u(⌧, t) can be explicitly

solved by integration along characteristics, which is

u(⌧, t) = V t�⌧ (t) = B(M(t� ⌧))e�µI⌧�
R
⌧

0 f(I(t�⌧+⇠))d⇠ for t > ⌧.

It should be highlighted that (3.21) explicitly couples both variables I(t) and M(t) together,

which is different from previous scalar delay differential equation for the population size of

mature stage (such as those in Subsections 3.2.1 (II) and 3.2.2 (II), and Subsection 3.3.1).

Furthermore, since the maturation rate u(⌧, t) is a decreasing function of I as the function

f(·) is assumed to be increasing, which brings novel challenges on theoretical analysis. In

particular, stability analysis of equilibria becomes difficult due to the strong coupling of

two state variables. A generic convergence result is established for small delays by using

monotone dynamical systems theory and exponential ordering [74].

(I) Age-dependent larval competition model

Another larval competition model was proposed and studied in Liu, Röst and Gourley [118]

as follows

@u(a, t)

@a
+
@u(a, t)

@t
= �µIu(a, t)� ✏u(a, t)

Z
⌧

0

p(a, a)u(a, t)da, 0 < a < ⌧. (3.22)
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In this model, ✏ characterizes the intensity of population competition among the immature

individuals, and p(a, a) is an adjustable parameter to describe various competition types:

(i) p(a, a) being a constant if an immature individual is likely to compete with all other

immature individuals with the same competitive pressure, regardless of age; (ii) p(a, a) = 0

as a < a, implying that an immature individual only compete with older individuals; (iii)

p(a, a) = �(a�a) with a Dirac delta function �(·) if competition occurs among individuals

in the same age, which was considered in (3.18).

To rewrite the model into an ordinary differential equation form with time delay, it is essen-

tial to find the maturation rate rate u(⌧, t) by using the evolution of immature population

density (3.22). It seems impossible to obtain explicit solutions for general cases, and the au-

thors in [118] applied perturbation theory to seek the solution of the following two specific

forms:

u(a, t) = u0(a, t) + ✏u1(a, t) +O(✏2) and u(a, t) = u0(a, t) exp(�✏u1(a, t) +O(✏2)),

with u0(0, t) = B(M(t)) and u1(0, t) = 0. Integrating (3.22) along characteristics gives

the maturation rate u(⌧, t) when t > ⌧ , and two alternative models for the mature popula-

tion M(t) are given by

dM(t)

dt

=B(M(t� ⌧))e�µI⌧


1� ✏

Z
⌧

0

Z
⌧

0

p(a, s)B(M(s+ t� ⌧ � a))e�µIadads

�
� µMM(t)

and

dM(t)

dt

=B(M(t� ⌧))e�µI⌧ exp(�✏
Z

⌧

0

Z
⌧

0

p(a, s)B(M(s+ t� ⌧ � a))e�µIadads)� µMM(t).

This model, proposed under the simple assumption that an individual larva experiences

competition from other larvae during development, poses rich dynamics. In particular, the
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3.3. Stage structured model with Dirac distribution and intraspecific competition

existence of multiple co-existing equilibria is shown in some parameter regimes.

3.3.3 Stage distribution regulated by population density

When the duration staying in the immature stage is regulated by the population density, it

would be more convenient to use another variable x called “state” [93], which generalizes

the concept of the age, to describe the population density evolution. Based on the fact that

maturation can be measured to some extent by state, the maturity of an individual occurs

when its state x achieves a fixed threshold l. Let u(x, t) represent the population density

of immature individuals of state x at time t, then immature population size I(t) at time t

counts all individuals with state variable x smaller than l, that is

I(t) =

Z
l

0

u(x, t)dx.

This new variable makes it possible to describe the case that the rate of change of the state x

with respect to time is not a constant, but dependent on the population density (see equation

(3.23)).

(I) A size-structured model with decreased development rate due to competition

Assuming all individuals at the immature stage compete for limited resources, which slows

their development, Gourley, Liu and Lou [88] used the following equation to describe the

rate of change for the length variable x at time t:

dx

dt
= P (t, I(t)), (3.23)

which relies both on time t and on the total number of immature population I(t). Here,

function P (t, I) is decreasing on variable I and is dependent on time t to reflect the time-

changing environmental impacts on development.
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To derive the partial differential equation for u(x, t) as that in (3.16), the authors used the

following argument: After a period of �t, an immature individual will have developed a

length of �x, namely

u(x+ �t, t+ �t) = u(x, t)� µIu(x, t)�t,

which implies that

@u(x, t)

@t
+ P (t, I(t))

@u(x, t)

@x
= �µIu(x, t), x  l (3.24)

by a Taylor expansion. Taking derivative of I(t) and using equation (3.24), one obtains

dI(t)

dt
= �µII(t) + P (t, I(t))(i(0, t)� i(l, t)),

where P (t, I(t))i(0, t) denotes the birth rate, that is P (t, I(t))i(0, t) = B(M(t)), and

P (t, I(t))i(l, t) denotes the maturation rate, which will be calculated in line with the birth

rate at time t � ⌧(t). The term u(x, t) relies on whether (x, t) is above or below the char-

acteristic x = X(t), where

X(t) =

Z
t

0

P (⇠, I(⇠))d⇠.

Introducing a parameter s such that dt

ds
= 1, then dx

ds
= P (t, I(t)). The parameter s is used

to describe position along a particular characteristic and s = 0 corresponds to a boundary.

When x � X(t), a characteristic (x(s), t(s)) meets the x-axis, which implies that t = 0

when s = 0. Setting t(0) = 0 obtains x� x(0) = X(t). It follows from (3.24) that

d

ds
u(x(s), t(s)) = �µiu(x(s), t(s)),

which implies that

u(x(s), t(s)) = u(x(0), t(0))e�µis,
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3.3. Stage structured model with Dirac distribution and intraspecific competition

and thus

u(x, t) = u(x�X(t), 0)e�µit, x � X(t).

When x  X(t), a characteristic (x(s), t(s)) meets the x-axis, which implies that x(0) = 0

and t = s+ t(0). The corresponding s-value for a particular point (x, t) can be defined by

x =

Z
t

t(0)

P (⇠, I(⇠))d⇠ =

Z
t

t�s

P (⇠, I(⇠))d⇠.

Define L(x, t) to be the root s, which implies that

Z
t

t�L(x,t)

P (⇠, I(⇠))d⇠ = x.

Therefore,

u(x, t) = i(0, t� L(x, t))e�µiL(x,t) =
B(M(t� L(x, t)))

P (t� L(x, t), I(t� L(x, t)))
e�µiL(x,t), x  X(t).

Hence,

i(l, t) = i(0, t� L(l, t))e�µiL(l,t) =
B(M(t� L(l, t)))

P (t� L(l, t), I(t� L(l, t)))
e�µiL(l,t),

and the corresponding maturation delay ⌧(t) = L(l, t) for individuals developing to the

mature stage at time t depends on the immature population size I(t) as specified by

Z
t

t�⌧(t)

P (⇠, I(⇠))d⇠ = l.

The last integral-algebraic equation has a clear biological interpretation: an individual de-

velops to the mature stage at time t should be born at t � ⌧(t) such that the accumulative

length increase during the time interval [t � ⌧(t), t] attains the critical value l. We should

mention that similar integral forms to characterize the density-dependent time delay can

also be found in other earlier studies, such as [51, 97].
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Based on the fact that the variable x remains valid for the immature population, the equation

describing the number of the mature stage can be expressed as

dM(t)

dt
= �µMM(t) + maturation rate

= �µMM(t) + P (t, I(t))
B(M(t� ⌧(t)))

P (t� ⌧(t), I(t� ⌧(t)))
e�µi⌧(t).

In addition, the number of the immature population I(t) satisfies

dI(t)

dt
= �µII(t) + B(M(t))� P (t, I(t))

B(M(t� ⌧(t)))

P (t� ⌧(t), I(t� ⌧(t)))
e�µi⌧(t).

Results on the boundedness of solutions and the linear stability of equilibria are established

in [88]. The boundedness of solutions hold even for unbounded birth functions within cer-

tain conditions. It is also shown that if an equilibrium is locally stable in the absence of

competition among larvae, then the equilibrium is stable in the presence of weak competi-

tion.

3.3.4 Paused development due to immature competition

Considering extreme cases that the development may be paused due to immature compe-

tition, termed as diapause, Brunner, Gourley, Liu and Xiao [41] studied the following size

growth rate function

P (I) =

8
><

>:

P0, I  Ic,

0, I > Ic,

with constant P0. This form implies that the immature individuals develop at a constant rate

P0 when their total number is less than Ic, while the growth of the immature population is

paused due to high competition pressure when its size exceeds Ic. Therefore, the change

of an immature individual’s size can be described as dx

dt
= P (I(t)), and the growth rate

function is dependent on the immature population size I(t).
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3.4. Discussion

Since the occurrence of diapause may increase the maturation time ⌧(t) needed, ⌧(t) �

l/P0 with l being the critical size at maturity. As a matter of fact, when P (·) is nonnegative,

but not strictly positive everywhere, ⌧(t) can be defined as

⌧(t) = inf{s > 0 :

Z
s

t�s

P (I(⇠))d⇠ = l},

which reduces to Z
t

t�⌧(t)

P (I(⇠))d⇠ = l

if P (·) is strictly positive. Based on the integration along characteristics, the delay differ-

ential system can be formulated as follows:

dI(t)

dt
=� µII(t) + B(M(t))� B(M(t� ⌧(t)))

P (I(t))

P (I(t� ⌧(t)))
e�µi⌧(t),

dM(t)

dt
=� µMM(t) + B(M(t� ⌧(t)))

P (I(t))

P (I(t� ⌧(t)))
e�µi⌧(t).

When an Allee effect is assumed in the birth rate function B(·), diapause may induce

population extinction even for large initial population size. Diapause may also introduce

periodic solutions that can arise even for a strictly increasing birth function.

3.4 Discussion

Development from one life stage to the next takes time while the time spent in each stage

may be synchronized or varies between individuals, giving rise to various distributions of

development time in each stage for different species. These distributions intuitively can

play important roles in the transition rates among different life stages. In this chapter, two

basic modeling frameworks for demographic changes of population dynamics, based on in-

tegral and partial differential systems, are presented. These models can be reduced into or-

dinary and delay differential stage-structured models under gamma and Dirac distributions.

It is evident that each framework has its advantages and inherent limitations. In particular,

47
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stage-structured models

the integral equation can be naturally formulated through checking the stage progression

of individuals. Furthermore, the net reproduction number and initial growth rate can be ex-

plicitly derived from the integral system. However, it becomes challenging to integrate the

density-dependent regulations on the stage distribution and survival probabilities in an in-

tegral equation due to difficulties in formulating appropriate survival probability functions

and stage duration distributions. This may be suitably conquered through structured partial

differential equation models. By further assumptions on these density-dependent regula-

tions, the partial differential system can be reduced into different forms, and in particular,

various delay differential equation models were reviewed in this study.

When the impact of density regulation on immature individual survival and development

is negligible, it is evident from Section 3.2 that the equation for the matured population

size is decoupled from the integral system ((3.1) and (3.2)) as the variable accounting the

immature population size does not appear in (3.2). Similar observation can be gained for

the delay differential equation model in Subsections 3.2.1 (II) and 3.2.2 (II) when the Dirac

distribution is assumed for stage duration of immatures. From an analytical point of view,

this observation makes it possible to analyze the dynamics of the mature stage M(t) first,

and then to feed the equation of the immature stage with the dynamic profile M(t). Since

the extinction and persistence of the species can be predicted from those of each stage, it

would be sufficient to show the extinction/persistence of mature individuals from the de-

coupled equation for M(t), as analyzed in [74] for the case when the immature competition

force f(·) = 0. When gamma distribution is assumed for stage duration of immatures, the

maturation rate becomes n�In(t) in the system of ordinary differential equations in Sub-

sections 3.2.1 (II) and 3.2.2 (II), which makes it impossible to decouple the variables for

mature stages from the whole system at first glance. However, if one revisits the definition

of In(t) in (3.9), it can be expressed in terms of M(t) with a distributed delay kernel.

Furthermore, Dirac distribution with an average duration ⌧ can be approximated by a

gamma distribution in (3.7) with � = 1/⌧ and large n (such that the variance of the gamma

distribution ⌧ 2/n is very small), as shown in Figure 1.1. Intuitively, the delay differen-
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tial equation model under Dirac distribution assumption would also be approximated by

n ordinary differential equations under gamma distribution assumption for large n. As a

matter of fact, this can be rigorously shown by the linear chain trick [168], as illustrated in

Subsection 3.2.2 (II) by observing the maturation rate when t > ⌧ is

v(0, t) = u(⌧, t) = B(M(t� ⌧))e�µI⌧ =

Z 1

0

�(a� ⌧)e�µIaB(M(t� a))da

⇡
Z 1

0

[�P 0
I
(a)]e�µIaB(M(t� a))da.

In the above expression, �(·) is the Dirac-delta function and PI(a) takes the gamma distri-

bution as in (3.7).

The stage-structured modeling idea can be easily adopted to incorporate spatial move-

ments of individuals. In particular, when individuals are performing random movements, a

reaction-diffusion model with/without time delay can be formulated when the exponential

and Dirac distributions are assumed for the stage duration [39, 43, 90]. In particular, a

nonlocal delay term can be formulated when the Dirac distribution is assumed and imma-

ture individuals move during development. Interested readers may refer pioneering model

formulations by Stephen Gourley and his collaborators, such as [12, 13, 90, 108].

Other modeling frameworks, such as matrix population models and individual-based mod-

els are also important tools to incorporate the variation of individual-level demographic

characteristics, which are beyond the scope of this chapter. We refer the interested readers

to [57, 144] for incorporating stage duration distributions in other model forms, such as

matrix models and statistical stage-duration distribution models. Further biotic and abiotic

factors may also impact the stage duration distributions, for example, the seasonal envi-

ronmental oscillations can induce seasonal developmental delays and seasonal diapauses,

which have been modeled in [120, 122]. We leave these topics for further investigation.
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Chapter 4

A seasonal succession model for frog

population growth

4.1 Introduction

This chapter is going to investigate the frog population growth through mathematical mod-

eling. There have been some related models in amphibian populations. Gener- and stage-

structured models for the boreal toad and transmission of the fungal pathogen Batra-

chochytrium dendrobatidis (Bd) were proposed in [130]. The models take the form of

systems of difference equations. Stability and permanence were further analyzed regard-

ing two threshold indices, the basic reproduction numbers for the population and fungal

disease. A discrete-time model was proposed in [38] to simulate the Rana muscos (yellow-

legged frog) dynamics and then combined with a continuous-time model for the B. den-

drobatidi pathogen invasion to a new lake. An amphibian juvenile-adult population model

with individuals dispersing between ponds [5], in the form of a system of first-order non-

local hyperbolic equations, is considered, and finite difference numerical approximation is

developed. By considering an amphibian juvenile-adult population model with individu-

als dispersing between ponds, [5] formulated a system of first-order nonlocal hyperbolic
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equations and developed a finite difference approximation. The model extends that in [4]

as it considers the adult dispersal among different ponds. Stochastic juvenile-adult stage-

structured models were proposed in [6] to understand the demographic stochasticity of the

dynamics of an urban green tree frog. The juvenile stage’s density-dependence mortality

rate is assumed in [4, 6, 5]. A juvenile-adult stage-structured model was proposed in [3] to

describe the population growth of green tree frogs; the wellposedness of the system, extinc-

tion, and persistence of the species were also investigated. Sensitivity partial differential

equations, extended from the model in [3], for the sensitivities of the solution concern-

ing the reproduction and mortality rates for adults were proposed in [7]. The models in

[3, 4] were further fitted for green tree frog field data in [2], which presented an infinite-

dimensional least-squares approach to compare a mathematical population model with the

statistical population estimates, involving parameter estimates and model sensitivity. Mo-

tivated by the green tree frog (Hyla cinerea) growth, a discrete two-stage population model

was analyzed where tadpoles and adult frogs compete for different resources [9]. It is ex-

tended to a three-stage discrete-time population model in [8]. More general persistence and

extinction results for discrete-time dynamical systems can be found in [104]. A system of

impulsive differential equations for five stages is presented and simulated for the wood frog

population [11].

Some existing studies also integrated the amphibian population growth with fungal trans-

mission. Most models form a matrix model, with the survival and transition parameters

in the matrix estimated implicitly by considering the environmental variations during one

year. A discrete-time SIR epidemic model was proposed to spread the pathogen in a struc-

tured host population [68]. The host population was subdivided into three developmen-

tal stages, namely larva, juvenile, and adult, and the pathogen can infect each stage. A

discrete-time stage-structured fungal disease model was studied [159] for the population’s

persistence and disease transmission. A discrete-time model with periodic coefficients and

a stochastic epidemic model were proposed with applications to a fungal pathogen affect-

ing amphibian populations [69]. The species decline, and extinction are investigated in
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a host-parasite model with density-dependent (mass action) incidence term and a critical

Allee effect in host growth [181]. Population and disease persistence criteria were given for

a discrete-time epidemic model [160]. The mathematical model [138] that persistence of B.

dendrobatidis outside the amphibian host can significantly increase the probability of host

extinction. A mathematical model was proposed in [37] to test the hypothesis that fungal

load dynamics can explain the different population-level outcomes of Bd observed in dif-

ferent areas. The transmission rate of the fungal pathogen Batrachochytrium dendroba was

quantified in the mountain yellow-legged frog Rana muscosa through laboratory and field

experiments [151]. A model is proposed to investigate the relative importance of trans-

mission compared to load-dependent host resistance and tolerance in [199]. The model in

[138] was further extended in [63] by including stochastic effects and to fit with the field

data. A between-season R. muscosa model was proposed in [199] with two main stages,

tadpoles, and adults, while the tadpoles are further classified into three classes: year-one,

year-two, and year-three tadpoles. A discrete-time, female-based stage-structured model

is proposed for R. luteiventris frog population dynamics, which counts the densities of ju-

venile, subadult female, adult male, and adult female. Hence, we hope to find the model

in this project as a continuous-time version, which may facilitate the description of the

processes involved in population growth.

Regarding the impact of the ecological environment on the population, a mathematical

model of a frog population infected with chytridiomycosis was formulated to explore the

impacts of the inoculation of Janthinobacterium lividum and temperature on the disease

dynamics in [1]. Structure equation models and multi-state models were employed to ana-

lyze the effects of climate changes on Batrachochytrium dendrobatidis prevalence and the

interplay of grazing, weather, and Bd infection on adult survival, respectively [29]. Data

from future climate and vegetation cover models were used to study the effects of climate

variation on the amphibian population in [30, 162]. The contribution of egg mortality to

amphibian declines was assessed through a demographic mode in [187]. A simple model

of disease dynamics was presented to investigate the extinction and persistence of diseases
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in the frog population [38]. A population viability analysis framework for the gopher frog

was applied to discuss population sensitivity to the frequency of droughts and forecast fu-

ture population viability in [53]. An occupancy model and some estimated parameters in a

Bayesian framework were developed to investigate the breeding occurrence and metamorph

occupancy of amphibian populations in [91]. A discrete stage-structured model of Califor-

nia newt species was introduced to explore the population dynamics under drought in [105].

Some statistical study was used to evaluate the relationship among climate changes, annual

survival, fecundity and breeding site heterogeneity, and growth rate of Columbia spotted

frog and Boreal Toads populations in [134], [133] and [140], respectively.

Few modeling studies have evaluated the effects of environmental variability on the sea-

sonality of amphibian population dynamics. There exist some environmental factors that

can regulate growth. Climate change, rainfall, and habitat availability affect egg produc-

tion, mortality, and survival probability at each stage [105, 187], which explains why we

set and analyze the periodic parameters in the following study. For example, juveniles and

adults in high-elevation temperate environments have much shorter growing seasons than

low-elevation individuals; amphibians may winter kill due to freezing or hypoxia; reduced

precipitation and a warm environment could result in less water amphibian species which

rely on ephemeral pools for reproduction and foraging [134]. Decreased winter severity

increases the viability of a montane frog population.

Considering the life cycle stages of the boreal toad during one or two years, such as hi-

bernation and metamorphosis, we plan to focus on these seasonal factors and formulate a

seasonal succession model describing the growth development of the frog population. The

rest of this chapter is organized as follows. We derive the population model with piecewise

differential equations in the next section. Later in Section 4.3, we establish some properties

of solutions based on the natural phase and quotient spaces, thereby analyzing the threshold

dynamics of the model in terms of the basic reproduction number. The brief discussion and

conclusion finish the chapter.
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4.2 Model formulation

In order to formulate a model to describe the maturation, fecundity, and survival of indi-

viduals during different seasons of 1 or 2 years and consider different types of individuals

that will metamorphose and reproduce in different patterns, we may start with a seasonal

succession model to describe frogs’ different seasons of breeding, development, and hi-

bernation. Here we may specifically study the boreal toad Bufo boreas boreas [130, 162],

whose population size is associated with the spread of chytridiomycosis. Besides, we may

also use the R. muscosa and R. sierrae as the motivating species for amphibian populations.

Each frog individual may breed every 1 or 2 years, depending on its body size and living

conditions. Eggs hatch into tadpoles and then enter the subadult stage through metamor-

phosis, which lasts two years, and develops into a reproductive adult [37, 38]. To make

things simple, we only assume the following:

(i) There are two seasons, breeding season (from the beginning of year 0 to time T ) and

hibernation season (from timing T to the end of the year); during the breeding season,

the individual may develop, give birth and die, with the rates dependent on varying

environmental conditions, that is, these rates can be regarded as a function of time

t within the year. However, during the hibernation season, there is no development

and reproduction.

(ii) There are two tadpole year classes (spend 1 or 2 years in tadpole stage) Li, one ju-

venile stage J and one adult stage A [38, 209]. Most models consider the case that

tadpoles can develop within a year. However, [38] and [209] presented R. muscosa’s

multiyear tadpole stage up to three years due to the relatively unsuitable habitat en-

vironment. Hence, we assume that the tadpoles that spend one year growing and

developing can complete their development before entering hibernation.

(iii) Instead of using female-only models [53], we characterize the birth rate in terms of

per pair birth rate as in [138]. When there is only one adult stage, it can be justified
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4.2. Model formulation

that only a proportion of adults reproduce in a particular year by assuming a linear

birth function B(t, A(t)).

(iv) It is assumed that juveniles live in an environment with abundant resources and thus

do not compete. In contrast, adults live in an environment with limited resources,

and thus competition occurs. This competition assumption is accounted for in re-

cruiting juveniles to adulthood by incorporating a decreasing function of the current

adult density. The density-dependent function regulates the recruitment rate from

the juvenile stage to the adult stage in the form of (1 � (A(t)/K))rJ(t)j(1, t) with

K describing the strength of population regulation. This density-dependence regula-

tion defines the assumption that excess juveniles leave the population to search new

breeding sites, which is the dominant form of amphibian dispersal [138].

Introduce the notation btc represents the floor function giving the nearest integer less than

or equal to t and therefore, t� btc 2 [0, T ] and t� btc 2 (T, 1) represent the breeding and

hibernation seasons respectively. To characterize the development of different stages, we

are using the idea in [195] by introducing a measurement q to characterize the development

proportion to the next stage, that is, q = 0 represents the individuals just moving to the

stage. Then the total numbers of tadpole in each class are Li =
R 1

0 li(q, t)dq while the

total number of juveniles at time t is J(t) =
R 1

0 j(q, t)dq. During the normal growing

season, when t�btc 2 [0, T ], the dynamics of the population sizes can be described by the

following system. During the normal growing season, that is, when t � btc 2 [0, T ], the

dynamics of the population sizes can be described by the following system

8
>>>>>><

>>>>>>:

@li(q, t)

@t
+

@

@q
[ri(t)li(q, t)] = �µi(t)li(q, t), t� btc 2 [0, T ], i = 1, 2

@j(q, t)

@t
+

@

@q
[rJ(t)j(q, t)] = �µJ(t)j(q, t), t� btc 2 [0, T ],

dA(t)

dt
= M(t)� µA(t)A(t), t� btc 2 [0, T ].

(4.1)

with the boundary conditions for variables li(q, t) and j(q, t) given by
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r1(t)l1(0, t) = p1B(t, A(t)), r2(t)l2(0, t) = (1� p1)B(t, A(t)),

rJ(t)j(0, t) = r1(t)l1(1, t) + r2(t)l2(1, t), and M(t) =
⇣
1� A(t)

K

⌘
rJ(t)j(1, t).

where the birth function B(t, x) can take the linear growth function as B(t, x) = b(t)x. The

development of adult frogs M(t) is constrained by a density-dependent function
⇣
1� A(t)

K

⌘
,

where K regulates the strength of the population capacity. We assume that excess juvenile

frogs will move out from the population, entering other breeding sites. The parameters

µ1(t), µ2(t), µJ(t) and µA(t) are the mortality rates of tadpoles, juveniles, and adult frogs

during the normal growing season, respectively.

During the hibernation season when t � btc 2 (T, 1), there is no individual development,

maturation, and fecundity, that is ri(t), rJ(t) and M(t) are equal to zero in (4.1) in the hi-

bernation season. Suppose d1(t), d2(t), dJ(t) and dA(t) be the mortality rates of hibernated

tadpoles, juvenile, and adult frogs, respectively. Thus the dynamics of the population sizes

can be described by the following system

8
>>>>>>>>>><

>>>>>>>>>>:

@l1(q, t)

@t
= �d1(t)l1(q, t), t� btc 2 (T, 1),

@l2(q, t)

@t
= �d2(t)l2(q, t), t� btc 2 (T, 1),

@j(q, t)

@t
= �dJ(t)j(q, t), t� btc 2 (T, 1),

dA(t)

dt
= �dA(t)A(t), t� btc 2 (T, 1).

(4.2)

This implies that when t� btc 2 (T, 1), there exist

dL1(t)

dt
= �d1(t)L1(t),

dL2(t)

dt
= �d2(t)L2(t),

dJ(t)

dt
= �dJ(t)J(t),

dA(t)

dt
= �dA(t)A(t).

(4.3)

56



4.2. Model formulation

Suppose ri(t) be the temperature-dependent parameters with i = 1, 2, J . Also, q = q1 = 0

denotes the start of stage L1, q = q2 = 0 denotes the start of stage L2, q = qJ denotes the

transition from L to J . Let li be the density of tadpoles with development level q at time t.

Since
@l1(q, t)

@t
= � @

@q
[r1(t)l1(q, t)]� µ1(t)l1(q, t). (4.4)

Equation (4.4) has the boundary condition

l1(q1, t) =
p1B(t, A(t))

r1(t)

To solve equation (4.4) with this boundary condition, we introduce a new variable

⇠ = h(t) := q1 +

Z
t

0

r1(s)ds.

Suppose h�1(⇠) be the inverse function of h(t), and define

l̂1(q, ⇠) = l1(q, h
�1(⇠)), µ̂1(⇠) = µ1(h

�1(⇠)), r̂1(⇠) = r1(h
�1(⇠)).

It follows from (4.4) that

@ l̂1(q, ⇠)

@⇠
= �@ l̂1(q, ⇠)

@q
� µ̂1(⇠)

r̂1(⇠)
l̂1(q, ⇠). (4.5)

Let V (s) = l̂1(s+ q � ⇠, s). For (4.5), we have

dV (s)

ds
= � µ̂1(s)

r̂1(s)
V (s).

Since ⇠ � (q � q1)  ⇠, there exists

V (⇠) = V (⇠ � (q � q1))e
�

R
⇠

⇠�(q�q1)
µ̂1(s)
r̂1(s)

ds,
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which implies that

l̂1(q, ⇠) = l̂1(q1, ⇠ � q + q1)e
�

R
⇠

⇠�(q�q1)
µ̂1(s)
r̂1(s)

ds.

Define ✓1(q, t) to be the time taken to grow from development level q1 to level q by tadpoles

who arrive at development level q at time t. Since dq

dt
= r1(t), we obtain

q � q1 =

Z
t

t�✓1(q,t)

r1(s)ds, (4.6)

which implies that

h(t� ✓1(q, t)) = h(t)�
Z

t

t�✓1(q,t)

r1(s)ds = h(t)� (q � q1).

By a change of variable s = h(↵), we have

Z
⇠

⇠�(q�q1)

µ̂1(s)

r̂1(s)
ds =

Z
t

t�✓1(q,t)

µ1(↵)d↵.

It follows that

l1(q, t) = l̂1(q, h(t))

= l1(q1, t� ✓1(q, t))e
�

R
t

t�✓1(q,t)
µ1(↵)d↵

=
B(t� ✓1(q, t), A(t� ✓1(q, t)))

r1(t� ✓1(q, t))
e�

R
t

t�✓1(q,t)
µ1(↵)d↵.

Define ✓1(t) := ✓1(qJ , t), and obtain

r1(t)l1(qJ , t) = B(t� ✓1(t), A(t� ✓1(t)))
r1(t)

r1(t� ✓1(t))
e�

R
t

t�✓1(t)
µ1(↵)d↵.

Letting q = qJ in (4.6), we have

qJ � q1 =

Z
t

t�✓1(t)

r1(s)ds. (4.7)
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Taking the derivative with respect to t on both sides of (4.7), we get

1� ✓
0

1(t) =
r1(t)

r1(t� ✓1(t))

Thus 1� ✓
0
1(t) > 0.

Define ✓2(q, t) to be the time taken to grow from development level q2 to level q by tadpoles

that arrive at development level q at time t. Then there exists

q � q2 =

Z btc�1+T

t�✓2(q,t)

r2(s)ds+

Z
t

btc
r2(s)ds. (4.8)

Supposing ✓2(t) = ✓2(qJ , t) and letting q = qJ in (4.8), we obtain

qJ � q2 =

Z btc�1+T

t�✓2(t)

r2(s)ds+

Z
t

btc
r2(s)ds. (4.9)

Taking the derivatives with respect to t on both sides of (4.9), we have

1� ✓
0

2(t) =
r2(btc � 1 + T )

r2(t� ✓2(t))
+

r2(t)

r2(btc)
> 0.

Define ✓J(q, t) to be the time taken to grow from development level qJ to level q by juvenile

frogs that arrive at development level q at time t. Then there exists

q � qJ =

Z
t

t�✓J (q,t)

rJ(s)ds. (4.10)

Supposing ✓J(t) = ✓J(qA, t) and letting q = qA in (4.10), we obtain

qA � qJ =

Z
t

t�✓J (t)

rJ(s)ds. (4.11)

Taking the derivatives with respect to t on both sides of (4.11), we have

1� ✓
0

J
(t) =

rJ(t)

rJ(t� ✓J(t))
> 0.
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Hence, when t� btc 2 [0, T ], we arrive at the following model system:

dL1(t)

dt
=p1B(t, A(t))� p1(1� ✓

0

1(t))B(t� ✓1(t), A(t� ✓1(t)))e
�

R
t

t�✓1(t)
µ1(↵)d↵

� µ1(t)L1(t),

dL2(t)

dt
=(1� p1)B(t, A(t))� (1� p1)(1� ✓

0

2(t))B(t� ✓2(t), A(t� ✓2(t)))

· e�
R btc�1+T

t�✓2(t)
µ2(↵)d↵�

R btc
btc�1+T

d2(↵)d↵�
R
t

btc µ2(↵)d↵ � µ2(t)L2(t),

dJ(t)

dt
=p1(1� ✓

0

1(t))B(t� ✓1(t), A(t� ✓1(t)))e
�

R
t

t�✓1(t)
µ1(↵)d↵ + (1� p1)(1� ✓

0

2(t))

· B(t� ✓2(t), A(t� ✓2(t)))e
�

R btc�1+T

t�✓2(t)
µ2(↵)d↵�

R btc
btc�1+T

d2(↵)d↵�
R
t

btc µ2(↵)d↵

� p1B(t� ✓J(t)� ✓1(t� ✓J(t)), A(t� ✓J(t)� ✓1(t� ✓J(t))))

· (1� ✓
0

1(t� ✓J(t)))e
�

R t�✓J (t)

t�✓J (t)�✓1(t�✓J (t)) µ1(↵)d↵(1� ✓
0

J
(t))e�

R
t

t�✓J (t) µJ (↵)d↵

� (1� p1)B(t� ✓J(t)� ✓2(t� ✓J(t)), A(t� ✓J(t)� ✓2(t� ✓J(t))))

· (1� ✓
0

2(t� ✓J(t))) · e
�

R btc�2+T

t�✓J (t)�✓2(t�✓J (t)) µ2(↵)d↵e�
R btc�1
btc�2+T

d2(↵)d↵�
R t�✓J (t)

btc�1 µ2(↵)d↵

· (1� ✓
0

J
(t)) · e�

R
t

t�✓J (t) µJ (↵)d↵ � µJ(t)J(t),

dA(t)

dt
=p1

✓
1� A(t)

K

◆
B(t� ✓J(t)� ✓1(t� ✓J(t)), A(t� ✓J(t)� ✓1(t� ✓J(t))))

· (1� ✓
0

1(t� ✓J(t)))e
�

R t�✓J (t)

t�✓J (t)�✓1(t�✓J (t)) µ1(↵)d↵(1� ✓
0

J
(t))e�

R
t

t�✓J (t) µJ (↵)d↵

+ (1� p1)

✓
1� A(t)

K

◆
B(t� ✓J(t)� ✓2(t� ✓J(t)), A(t� ✓J(t)� ✓2(t� ✓J(t))))

· (1� ✓
0

2(t� ✓J(t))) · e
�

R btc�2+T

t�✓J (t)�✓2(t�✓J (t)) µ2(↵)d↵�
R btc�1
btc�2+T

d2(↵)d↵�
R t�✓J (t)

btc�1 µ2(↵)d↵

· (1� ✓
0

J
(t)) · e�

R
t

t�✓J (t) µJ (↵)d↵ � µA(t)A(t).
(4.12)

Since the last equations in system (4.12) and system (4.3) are decoupled from the other
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4.2. Model formulation

equations, respectively, we focus on the following delay differential equation

dA(t)

dt
=p1

✓
1� A(t)

K

◆
B(t� ✓J(t)� ✓1(t� ✓J(t)), A(t� ✓J(t)� ✓1(t� ✓J(t))))

· (1� ✓
0

1(t� ✓J(t)))e
�

R t�✓J (t)

t�✓J (t)�✓1(t�✓J (t)) µ1(↵)d↵(1� ✓
0

J
(t))e�

R
t

t�✓J (t) µJ (↵)d↵

+ (1� p1)

✓
1� A(t)

K

◆
B(t� ✓J(t)� ✓2(t� ✓J(t)), A(t� ✓J(t)� ✓2(t� ✓J(t))))

· (1� ✓
0

2(t� ✓J(t))) · e
�

R btc�2+T

t�✓J (t)�✓2(t�✓J (t)) µ2(↵)d↵�
R btc�1
btc�2+T

d2(↵)d↵�
R t�✓J (t)

btc�1 µ2(↵)d↵

· (1� ✓
0

J
(t)) · e�

R
t

t�✓J (t) µJ (↵)d↵ � µA(t)A(t), t� btc 2 [0, T ],

dA(t)

dt
=� dA(t)A(t), t� btc 2 (T, 1).

(4.13)

Taking the birth function B(t, A(t)) as the linear form B(t, A(t)) = b(t)A(t) and denoting

�1(t) =p1b(t� ✓J(t)� ✓1(t� ✓J(t)))(1� ✓
0

1(t� ✓J(t)))

· e�
R t�✓J (t)

t�✓J (t)�✓1(t�✓J (t)) µ1(↵)d↵(1� ✓
0

J
(t))e�

R
t

t�✓J (t) µJ (↵)d↵

and
�2(t) =(1� p1)b(t� ✓J(t)� ✓2(t� ✓J(t)))(1� ✓

0

2(t� ✓J(t)))

· e�
R btc�2+T

t�✓J (t)�✓2(t�✓J (t)) µ2(↵)d↵�
R btc�1
btc�2+T

d2(↵)d↵�
R t�✓J (t)

btc�1 µ2(↵)d↵

· (1� ✓
0

J
(t))e�

R
t

t�✓J (t) µJ (↵)d↵,

we can rewrite (4.13) as

dA(t)

dt
=�1(t)

✓
1� A(t)

K

◆
A(t� ⌧1(t)) + �2(t)

✓
1� A(t)

K

◆
A(t� ⌧2(t))

� µA(t)A(t), t� btc 2 [0, T ],

dA(t)

dt
=� dA(t)A(t), t� btc 2 (T, 1).

(4.14)

where ⌧1(t) = ✓J(t) + ✓1(t� ✓J(t)) and ⌧2(t) = ✓J(t) + ✓2(t� ✓J(t)).
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Chapter 4. A seasonal succession model for frog population growth

4.3 Threshold dynamics

4.3.1 Natural phase space and basic properties of solutions

Based on the frog ecology, we assume 0 < ⌧1(t) < 1 < ⌧2(t) < 2. Let ⌧̂ = maxt2[0,T ] ⌧2(t),

X = C([�⌧̂ , 0],R), X+ = C([�⌧̂ , 0],R+). When we choose the natural phase space X , it

is a Banach space when equipped with the supremum norm

k'kX = max
✓2[�⌧̂ ,0]

{|'(✓)|}.

A closed convex subset X+ 2 X can be introduced as X+ = {' 2 X : '(✓) �

0 for all ✓ 2 [�⌧̂ , 0]}, which induces a partial ordering on the Banach space (X , k·kX ). Fur-

thermore, X+ has a nonempty interior int(X+) = {' 2 X : '(✓) > 0 for all ✓ 2 [�⌧̂ , 0]}.

The partial ordering induced by the cone serves to compare any two elemennts ' and  

of X . Considering the cone X+, we define three relationships: (i) ' �  if and only if

' �  2 X+; (ii) ' >  if and only if ' �  and ' 6=  ; (iii) ' �  if and only if

'�  2 int(X+). Then (X ,X+) is an ordered Banach space equipped with the maximum

norm and the partial order induced by the positive cone X+. For any given continuous

function v : [�⌧̂ , �) ! R with � > 0, we define vt 2 X by

vt(✓) = v(t+ ✓), 8✓ 2 [�⌧̂ , 0]

for any t 2 [0, �). Then we have the following results.

Lemma 4.3.1. For any ' 2 X+, system (4.14) has a unique solution v(t;') with v0 = ',

and vt(') 2 X+ for all t � 0. Moreover, there exists m > 1 such that 0  '(✓)  mK for

all ✓ 2 [�⌧̂ , 0], then 0  v(t;')  mK.

Proof. Let ⌧ = min{mint2[0,T ] ⌧1(t), T}. Since 1� ⌧
0
1(t) > 0 and 1� ⌧

0
2(t) > 0, t� ⌧1(t)
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4.3. Threshold dynamics

and t� ⌧2(t) are strictly increasing in t. For any t 2 [0, ⌧ ], we have

� ⌧1(0) = 0� ⌧1(0)  t� ⌧1(t)  ⌧ � ⌧1(⌧)  ⌧ � ⌧ = 0,

and � ⌧2(0) = 0� ⌧2(0)  t� ⌧2(t)  ⌧ � ⌧2(⌧)  ⌧ � ⌧ = 0.

It follows that

v(t� ⌧1(t)) = '(t� ⌧1(t)) and v(t� ⌧2(t)) = '(t� ⌧2(t)),

which are specified by the initial value function '. Thus for t 2 [0, ⌧ ], we have the follow-

ing non-autonomous ordinary differential equation

dv(t)

dt
=

✓
1� v(t)

K

◆
[�1(t)'(t� ⌧1(t)) + �2(t)'(t� ⌧2(t))]� µA(t)v(t). (4.15)

According to the existence and uniqueness of solutions, there exists t' > 0 such that the

solution v(t) exists on [0, t']. Actually, the solution to (4.15) can be expressed as

v(t) = '(0)e
R
t

0(�µA(s)� q(s)
K
)ds + e

R
t

0(�µA(s)� q(s)
K
)ds ·

Z
t

0

q(s)e
R
s

0 (µA(⇠)+ q(⇠)
K
)d⇠ds,

where q(s) = �1(s)'(s � ⌧1(s)) + �2(s)'(s � ⌧2(s)) � 0. Therefore, v(t) � 0. For any

' 2 X+, there exists m > 1 such that 0  '(✓)  m ·K with ✓ 2 [�⌧̂ , 0]. Then we have

v(t) ='(0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K

Z
t

0

q(s)

K
e�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

='(0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K

Z
t

0

✓
q(s)

K
+ µA(s)

◆
e�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

�K

Z
t

0

µA(s)e
�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

='(0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K


1� e�

R
t

0(
q(⇠)
K

+µA(⇠))d⇠ �
Z

t

0

µA(s)e
�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

(m� 1)Ke�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K


1�

Z
s

0

µA(⌘)e
�

R
s

⌘ (
q(⇠)
K

+µA(⇠))d⇠d⌘

�

(m� 1)K +K  mK.
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Chapter 4. A seasonal succession model for frog population growth

Hence 0  v(t)  mK and the solution exists for t 2 [0, ⌧ ].

Similar arguments remain valid for t 2 [⌧ , 2⌧ ], [2⌧ , 3⌧ ], . . . , [bnc⌧ , n⌧ ], with n = T

⌧
. There-

fore, the solution v(t) exists for 0  t  T and 0  v(t)  mK. For t 2 (T, 1), we have

dv(t)

dt
= �dA(t)v(t),

where v(T ) is known. Then it is obvious that the unique solution v(t) = v(T )e�
R
t

T
dA(s)ds

exists and 0  v(t)  mK for t 2 [T, 1]. By repeating the similar arguments to time

intervals [1, 2], [2, 3], . . ., the statement holds. ⇤

Based on the expression of v(t) in the proof, we can further observe that lim sup
t!1 v(t) 

K for any ' 2 X+. Therefore, it is sufficient to study the long-term behaviors of solutions

through initial values ' with ' 2 XK := {' : 0  '(✓)  K for all ✓ 2 [�⌧̂ , 0]}.

Suppose �(t) be the solution maps of system (4.14) on X , such that �(t)' = vt('), t � 0,

where v(t;') is the unique solution of system (4.14) with v0 = ' 2 X . Without loss of

generality, we assume initial value ' satisfies 0  '(0)  K. Based on Lemma 3.5 in

[122], we obtain the following statements.

Lemma 4.3.2. �(t) : X ! X is an 1-periodic semiflow in the sense that (i) �(0) = I; (ii)

�(t+ 1) = �(t) � �(1), 8t � 0; (iii) �(t)' is continuous in (t,') 2 [0,1)⇥ X .

The following lemma presents that the periodic semiflow �(t) is monotone and strictly

subhomogeneous.

Lemma 4.3.3. (i) For any ' and  in XK with ' �  , the solutions u(t;') and u(t; )

of equation (4.14) with u0(·;') = ' and u0(·; ) =  , respectively, satisfy u(t;') �

u(t; ) for all t � 0;

(ii) If there is some t0 � 0 such that u(t0;') > u(t0; ), then we have u(t;') > u(t; )

for all t � t0;

(iii) For any '� 0 in XK and any � 2 (0, 1), we have u(t; �') > �u(t;') for all t > 0.
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4.3. Threshold dynamics

Proof. (i) Denote v(t) = u(t;') and w(t) = u(t; ), then we have vt(·) 2 XK with

v0(·) = ' and wt(·) 2 XK with w0(·) =  . For t 2 [0, ⌧ ], we have

v
0
(t) =

✓
1� v(t)

K

◆
q(t)� µA(t)v(t), v(0) = '(0);

w
0
(t) =

✓
1� w(t)

K

◆
p(t)� µA(t)w(t), w(0) =  (0),

where q(t) = �1(t)'(t�⌧1(t))+�2(t)'(t�⌧2(t)) and p(t) = �1(t) (t�⌧1(t))+�2(t) (t�

⌧2(t)).

Assume that a function z(t) satisfies the following equation

z
0
(t) =

✓
1� z(t)

K

◆
q(t)� µA(t)z(t), z(0) =  (0).

It follows that z(t) = e�
R
t

0(
q(s)
K

+µA(s))ds
⇣
 (0) +

R
t

0 e
R
s

0 (
q(⇠)
K

+µA(⇠))d⇠ · q(s)ds
⌘

, and

z(t) = (0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K

Z
t

0

q(s)

K
e�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

= (0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K

Z
t

0

✓
q(s)

K
+ µA(s)

◆
e�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

�K

Z
t

0

µA(s)e
�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

= (0)e�
R
t

0(
q(⇠)
K

+µA(⇠))d⇠ +K


1� e�

R
t

0(
q(⇠)
K

+µA(⇠))d⇠ �
Z

t

0

µA(s)e
�

R
t

s (
q(⇠)
K

+µA(⇠))d⇠ds

�

K �K

Z
s

0

µA(⌘)e
�

R
s

⌘ (
q(⇠)
K

+µA(⇠))d⇠d⌘  K,

which implies that 0  z(t)  K. Then we have

(v(t)� z(t))
0
= v

0
(t)� z

0
(t) = �

✓
q(t)

K
+ µA(t)

◆
(v(t)� z(t)),

and v(0)� z(0) = '(0)�  (0), which implies that

v(t)� z(t) = ('(0)�  (0))e�
R
t

0(
q(s)
K

+µA(s))ds.
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Similarly, we have

(z(t)� w(t))
0
=z

0
(t)� w

0
(t)

=�
✓
p(t)

K
+ µA(t)

◆
(z(t)� w(t)) +

✓
1� z(t)

K

◆
(q(t)� p(t)),

and z(0)� w(0) = 0, which means that

z(t)� w(t) = e�
R
t

0(
p(⇠)
K

+µA(⇠))d⇠
Z

t

0

(q(s)� p(s))

✓
1� z(s)

K

◆
e
R
s

0 (
p(⇠)
K

+µA(⇠))ds.

Hence, there exists

v(t)� w(t) = (v(t)� z(t)) + (z(t)� w(t))

= ('(0)�  (0))e�
R
t

0(
q(s)
K

+µA(s))ds + e
�

R
t

0

⇣
q(s)+µA(s)

K

⌘
ds

Z
t

0

(q(s)

� p(s))

✓
1� z(s)

K

◆
e
R
s

0 (
p(⇠)
K

+µA(⇠))d⇠ds

� 0.

Repeating the similar arguments for t 2 [⌧ , 2⌧ ], [2⌧ , 3⌧ ], . . . , [bnc⌧ , n⌧ ], with n = T

⌧
, we

have v(t) � w(t) for all t 2 [0, T ].

For t 2 (T, 1), it follows that v(t) = v(T )e�
R
T

t
dA(s)ds and w(t) = w(T )e�

R
T

t
dA(s)ds. Since

'(T ) �  (T ), we have

v(t)� w(t) = ('(T )�  (T ))e�
R
T

t
dA(s)ds � 0.

Thus �(t) : X ! X is monotone for t 2 [0, 1]. Repeating the process to the next intervals

[1, 2], [2, 3], . . . , we prove that �(t) : X ! X is monotone for all t � 0.

(ii) If there exists a 0  t0  T such that u(t0;') > u(t0; ), we may choose '̂ =

ut0(·;') 2 XK and  ̂ = ut0(·; ) 2 XK . Then '̂ �  ̂ and '̂(0) = u(t0;') > u(t0; ) =
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 ̂(0). For any t0  t  T , we have

v(t)� w(t) =('̂(t0)�  ̂(t0))e
�

R
t

t0
( q(s)

K
+µA(s))ds + e

�
R
t

t0

⇣
q(s)+µA(s)

K

⌘
ds

Z
t

t0

(q(s)

� p(s))

✓
1� z(s)

K

◆
e
R
s

t0
( p(⇠)

K
+µA(⇠))d⇠ds > 0.

If T  t0  1, for t0  t  1, we have

v(t)� w(t) = (v(t0)� w(t0))e
�

R
t

t0
dA(s)ds > 0.

Similar arguments hold if t0 is in other intervals [1, 2], [2, 3], . . .. The arguments show that

if for show t0 � 0, we have v(t0) > w(t0), then v(t) > w(t) for all t � t0.

(iii) Denote z(t) = u(t; �') and v(t) = u(t;') with z0(·) = �' and v0(·) = '� 0 in XK .

It follows from item (ii) that z(t) > 0 and v(t) > 0 for all t > 0. For any t 2 [0, ⌧ ] and

0 < � < 1, we have

z(t) = �'(0)e
R
t

0(�µA(s)� �q(s)
K

)ds +

Z
t

0

�q(s)e�
R
t

s (µA(⇠)+ �q(⇠)
K

)d⇠ds

> �'(0)e
R
t

0(�µA(s)� q(s)
K
)ds +

Z
t

0

�q(s)e�
R
t

s (µA(⇠)+ q(⇠)
K
)d⇠ds

= �v(t),

where q(s) = �1(s)'(s � ⌧1(s)) + �2(s)'(s � ⌧2(s)). Similar arguments implies that

z(t) > �v(t) for all t 2 [⌧ , T ]. Then it is obviously shown that z(T ) > �v(T ). For any

t 2 [T, 1], we have

z(t) = z(T )e�
R
t

T
dA(s)ds

> �v(T )e�
R
t

T
dA(s)ds

= �v(t),

which implies that z(t) > �v(t) for t 2 [0, 1]. Repeating the process for t 2 [1, 2], [2, 3], . . .,

we obtain z(t) > �v(t) for all t > 0. ⇤
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4.3.2 Quotient space and strong monotonicity

It follows from Lemma 4.3.3(i) that the periodic semiflow defined on the natural phase

space X is monotone in the sense that �(t)' � �(t) if ' �  . However, as we may

show later than it is not eventually strongly monotone in the sense that for any two initial

data ' >  , there is t0 such that when t � t0,

�(t)'� �(t) .

However, sometimes strong monotonicity property of the solution semiflow is essential to

establish global attractivity results (see, for example, [95, 167, 207]).

Regarding the equation as an ordinary differential equation, we have the following obser-

vations:

(i) When t 2 [0, T ], we need the values of u(0), u(t � ⌧1(t)) and u(t � ⌧2(t)). It is

easy to see that t � ⌧1(t) 2 I1 and t � ⌧2(t) 2 I2 by the monotonicity of functions

f1(t) = t � ⌧1(t) and f2(t) = t � ⌧2(t). Since t � ⌧1(t) is strictly increasing, then

we have a more reasonable choice of t� ⌧1(t) 2 I1 := [�⌧1(0),min{T � ⌧1(T ), 0}].

Similarly, we have t� ⌧2(t) 2 I2 := [�⌧2(0), T � ⌧2(T )]. That is, the information of

initial value is on the set {0}
S

I1
S
I2.

(ii) When t 2 [1, 1 + T ], we have t� ⌧1(t) > 0, but it is still possible that t� ⌧2(t) < 0.

Therefore, the specific historical value at t� ⌧2(t) should be given. In this sense, the

initial value on the interval I3 := [1 � ⌧2(1),min{0, 1 + T � ⌧2(1 + T )}] should be

given.

By checking the structure of the model, we define a closed set A ⇢ X as

A = {' 2 X : '(✓) = 0 for all ✓ 2 {0} [ I1 [ I2 [ I3}. (4.16)

Based on the set A, we have the following interesting observations:
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Lemma 4.3.4. For any two initial data ',  2 X and the respective solutions through

them u(t;') and u(t; ),

(i) if '�  2 A, then u(t;')� u(t; ) ⌘ 0 for all t � 0;

(ii) if furthermore, ' 2 A, then u(t;') ⌘ 0 for all t � 0.

Proof. When ' �  2 A, two solutions u(t;') and u(t; ) satisfy u(0;') � u(0; ) =

'(0)�  (0) = 0. For t 2 [0, ⌧ ], we have

du(t;')

dt
= q(t)

✓
1� u(t;')

K

◆
� µA(t)u(t;');

du(t; )

dt
= p(t)

✓
1� u(t; )

K

◆
� µA(t)u(t; ),

where q(t) = �1(t)'(t�⌧1(t))+�2(t)'(t�⌧2(t)) and p(t) = �1(t) (t�⌧1(t))+�2(t) (t�

⌧2(t)). Since t � ⌧1(t) 2 [�⌧1(0), ⌧ � ⌧1(⌧)] ✓ I1, then '(t � ⌧1(t)) =  (t � ⌧1(t)).

Similarly, t � ⌧2(t) 2 [�⌧2(0), ⌧ � ⌧2(⌧)] ✓ I2 implies that '(t � ⌧2(t)) =  (t � ⌧2(t)).

Thus q(t) = p(t) and then

du(t;')

dt
� du(t; )

dt
= q(t)

✓
1� u(t;')

K

◆
�
✓
1� u(t; )

K

◆�
� µA(t)[u(t;')� u(t; )]

=


�q(t)

K
� µA(t)

�
[u(t;')� u(t; )].

(4.17)

Since equation (4.17) is linear and the initial value u(0;�) � u(0; ) = 0, then u(t;') �

u(t; ) ⌘ 0 for all 0  t  ⌧ if'� 2 A. Similar arguments hold for t 2 [⌧ , 2⌧ ], [2⌧ , 3⌧ ], . . . ,

[bnc⌧ , n⌧ ], with n = T

⌧
, we have u(t;')� u(t; ) ⌘ 0 for all t 2 [0, T ].

For t 2 (T, 1), we have

d(u(t;')� u(t; ))

dt
= �dA(t)(u(t;')� u(t; )).

Therefore, u(t;')�u(t; ) ⌘ 0 for all t 2 [T, 1] if '� 2 A. Repeating these arguments

to all time intervals [1, 2], [2, 3], . . ., we have u(t;')� u(t; ) ⌘ 0 for all t � 0. Therefore,
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statement (i) holds.

If ' 2 A, choosing  = 0 as the zero function in X , then ' �  2 A and the solution

through  is identically zero for all t � 0. Hence

u(t;') ⌘ u(t; ) ⌘ 0,

which implies that statement (ii) holds.

Therefore, if we choose two initial data ' >  in the ordering X+, but ' �  2 A,

then u(t;') � u(t; ) ⌘ 0. Hence, the periodic semiflow �(t) is not strongly monotone.

The above observation on the identical solutions through two initial values ' and  with

' �  2 A motivates us to classify these initial data into the same class and partition the

phase space X into different classes [59, 89]. This can be done by using the quotient space

Q = X /A, consisting of equivalence classes

['] = {'+ a : a 2 A}. (4.18)

As solutions from two initial values '1 and '2 taken from an equivalence class has the

property that '1�'2 2 A, Lemma 4.3.4 illustrates that the solutions u(t;'1)�u(t;'2) ⌘ 0

for all t � 0. Then we may study the solution through a given equivalence class from the

quotient space Q. For ['] 2 Q, the solution through this equivalence is exactly the solution

u(t;'), based on which, the solution map �̃(t) : Q ! Q can be defined as

�̃(t)([']) = [�t(')] = [ut(·;')]

with ut(✓;') = u(t+ ✓;') for all ✓ 2 [�⌧̂2, 0].

Then the positive cone Q+ ⇢ Q can be introduced, consisting of equivalence classes [']

with

Q+ := {['] 2 Q : '(✓) � 0 for all ✓ 2 {0} [ I1 [ I2 [ I3}.
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4.3. Threshold dynamics

For the coned space (Q,Q+), we can show that the solution map �̃(t) is strongly monotone

when t � 4.

Lemma 4.3.5. For any two initial data equivalence classes ['] and [ ], if ['] > [ ] under

the cone Q+, then �̃(t)([']) � �̃(t)([ ]) when t � 4.

Proof. Suppose two typical elements ' and  are from two different equivalence classes,

and ['] > [ ] with partial ordering defined by Q+, then '(✓) �  (✓) for all ✓ 2 {0}[ I1[

I2 [ I3, and there is ✓0 2 {0} [ I1 [ I2 [ I3 such that '(✓0) >  (✓0).

Denote v(t) = u(t;') and w(t) = u(t; ), then we have vt(·) 2 Q+ with v0(·) = ' and

wt(·) 2 Q+ with w0(·) =  . It follows that

v(t)� w(t) = ('(0)�  (0))e�
R
t

0(
q(s)
K

+µA(s))ds + e
�

R
t

0

⇣
q(s)+µA(s)

K

⌘
ds

Z
t

0

(q(s)

� p(s))

✓
1� z(s)

K

◆
e
R
s

0 (
p(⇠)
K

+µA(⇠))d⇠ds,

(4.19)

where q(s) = �1(s)'(s � ⌧1(s)) + �2(s)'(s � ⌧2(s)) and p(s) = �1(s) (s � ⌧1(s)) +

�2(s) (s� ⌧2(s)). This implies that

(i) If ✓0 2 {0}, we have '(0) >  (0). Then v(t)� w(t) > 0 for all t > 0.

(ii) If ✓0 2 I1, we choose a unique t1 2 [0, T ] such that t1 � ⌧1(t1) = ✓0. These

uniqueness and existence of t1 is guaranteed by the fact that the inverse function of

the bijection function f1(t) = t � ⌧1(t) with domain [0, 1] and range I1 exists. Next

we will prove v(t1) > w(t1). If t1 2 [0, ⌧ ] and suppose, for a contradiction, that

v(t1) = w(t1). Then from (4.19), we have '(0) =  (0) and q(s) = p(s) for all

s 2 [0, t1]. Since �1(s) > 0 and �2(s) > 0 for all s 2 [0, t1], then there exists

�1(s)'(s� ⌧1(s)) + �2(s)'(s� ⌧2(s)) = �1(s) (s� ⌧1(s)) + �2(s) (s� ⌧2(s))

for all s 2 [0, t1]. On the other hand, when s = t1, we have '(✓0) = '(t1� ⌧1(t1)) =
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 (t1� ⌧1(t1)) =  (✓0), which contradicts with '(✓0) >  (✓0). If t1 2 [⌧ , T ], similar

arguments are valid.

(iii) If ✓0 2 I2, then we choose a unique t2 2 [0, T ] such that t2 � ⌧2(t2) = ✓0. These

uniqueness and existence of t2 is guaranteed by the fact that the inverse function of

the bijection function f2(t) = t � ⌧2(t) with domain [0, 1] and range I2 exists. If

t2 2 [0, ⌧ ], we suppose v(t2) = w(t2). Then we have '(0) =  (0) and q(s) = p(s)

for all s 2 [0, t2]. Since �1(s) > 0 and �2(s) > 0 for all s 2 [0, t2], there exists

�1(s)'(s� ⌧1(s)) + �2(s)'(s� ⌧2(s)) = �1(s) (s� ⌧1(s)) + �2(s) (s� ⌧2(s))

for all s 2 [0, t2]. However, at s = t2, we have '(✓0) = '(t2 � ⌧2(t2)) =  (t2 �

⌧2(t2)) =  (✓0), which contradicts with '(✓0) >  (✓0).

(iv) If ✓0 2 I3, choose t3 � ⌧2(t3) = ✓0 for t3 2 [1, 1 + T ]. It follows from the bijection

function f3(t) = t� ⌧2(t) for t 2 [1, 1 + T ] that t3 exists and is unique, then

v(t)� w(t) =(v(1)� w(1))e�
R
t

1(
q(s)
K

+µA(s))ds + e
�

R
t

1

⇣
q(s)+µA(s)

K

⌘
ds

Z
t

1

(q(s)

� p(s))

✓
1� z(s)

K

◆
e
R
s

1 (
p(⇠)
K

+µA(⇠))d⇠ds.

where q(s) = �1(s)'(s� ⌧1(s))+ �2(s)'(s� ⌧2(s)) and p(s) = �1(s) (s� ⌧1(s))+

�2(s) (s � ⌧2(s)). Suppose v(t3) = w(t3). Then we have v(1) = w(1) and for all

s 2 [1, t3], there exists

�1(s)vs(�⌧1(s)) + �2(s)vs(�⌧2(s)) = �1(s)ws(�⌧1(s)) + �2(s)ws(�⌧2(s)).

Since �1(s) > 0 and �2(s) > 0, we must have'(✓0) = vt3(�⌧2(t3)) = wt3(�⌧2(t3)) =

 (✓0) when s = t3. This contradicts with '(✓0) >  (✓0).

Hence, we can always find an t0 2 [0, 1 + T ] (which may be t1, t2 or t3) such that v(t0) >

w(t0). It follows from Lemma 4.3.3(ii) that u(t;') > u(t; ) for all t � 2 > t0. Hence,

72



4.3. Threshold dynamics

the solution map �̃(t) is strongly monotone whenever t � 4.

4.3.3 Basic reproduction number and global dynamics

The basic reproduction number R0 is the threshold quantity which measures the average

expected number of new adult offsprings produced by a single adult frog during its life

cycle [196]. Then we study the dynamics of the basic reproduction number R0 by the

theories in [207] and [206] (see also Section 2.3 in Chapter 2).

Linearizing Equation (4.14), we have

dA(t)

dt
= �1(t)A(t� ⌧1(t)) + �2(t)A(t� ⌧2(t))� µA(t)A(t), t� btc 2 [0, T ],

dA(t)

dt
= �dA(t)A(t), t� btc 2 (T, 1).

(4.20)

The recruitment is denoted by F : R ! L(X ,R) defined by

F (t)' =

8
<

:
�1(t)'(�⌧1(t)) + �2(t)'(�⌧2(t)), t� btc 2 [0, T ],

0, t� btc 2 (T, 1),

and the evolution is denoted by V :

V (t) =

8
<

:
µA(t), t� btc 2 [0, T ],

dA(t), t� btc 2 (T, 1).

The evolution process of the adult frogs is governed by

du(t)

dt
= �V (t)u(t).

Let �(t, s), t � s, be the evolution operator of the above system, satisfying

@

@t
�(t, s) = �V (t)�(t, s), 8t � s, and �(s, s) = 1, 8s 2 R,
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which implies that

�(t, s) = e�
R
t

s
V (r)dr.

Let C1 be the ordered Banach space of all continuous and 1-periodic functions from R to

R, equipped with the maximum norm and the positive cone C+
1 := {v 2 C1 : v(t) �

0, 8t 2 R}. Suppose v 2 C1 be the initial number of adult frogs. Then for any given s � 0,

F (t � s)vt�s is the number of frogs that are newly recruited into adult stage per unit time

at time t � s, which are produced by the adult frogs who were introduced over the time

interval [t� s� 2⌧̂ , t� s]. Then �(t, t� s)F (t� s)vt�s is the number of those adult frogs

who newly entered into adult stage at time t� s and remain alive at time t. It follows that

Z 1

0

�(t, t� s)F (t� s)vt�sds =

Z 1

0

�(t, t� s)F (t� s)v(t� s+ ·)ds

is the number of accumulative new adult individuals at time t produced by all those adult

frogs introduced at all previous time to t.

Define a linear operator L on C1 by

[Lv](t) =
R1
0 �(t, t� s)F (t� s)v(t� s+ ·)ds

=
R

t

�1 �(t, ⇠)F (⇠)v(⇠ + ·)d⇠

=
R

t

�1 �(t, s)F (s)v(s+ ·)ds, 8t 2 R, v 2 C1.

Next, we show that the operator L maps a continuous function v 2 C1 to a periodic and

continuous function Lv 2 C1, that is L : C1 ! C1. For any given v 2 C1, it is obviously

known that v is bounded, then F (s)v(s + ·) is also bounded, namely to assume that there

exists an upper bounded B such that |F (s)v(s+ ·)|  B. Then for any t, we have

|
R

t

�1 �(t, s)F (s)v(s+ ·)ds| 
R

t

�1 �(t, s) · B ds

 B
R

t

�1 e�µ(t�s)ds

 B

µ
,
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4.3. Threshold dynamics

where µ = min{µA(s), dA(s)}. For any t � s, we have �(t, s)  1. For any ✏ > 0, choose

� = min{ ✏

2B ,�
ln (1� ✏µ

2B )

µ̂
} with µ̂ = maxt2[0,1]{µA(s), dA(s)}. For any t1 � t2 � s, we

have �(t1, s) = �(t1, t2)�(t2, s) and �(t1, t2) � e�µ̂(t1�t2). Furthermore, when |t1 � t2| <

�, we have

|[Lv](t1)� [Lv](t2)|

= |
R

t1

�1 �(t1, s)F (s)v(s+ ·)ds�
R

t2

�1 �(t2, s)F (s)v(s+ ·)ds|

= |
R

t1

�1 �(t1, s)F (s)v(s+ ·)ds�
R

t2

�1 �(t1, s)F (s)v(s+ ·)ds

+
R
t2

�1 �(t1, s)F (s)v(s+ ·)ds�
R

t2

�1 �(t2, s)F (s)v(s+ ·)ds|

 |
R

t1

t2
�(t1, s)F (s)v(s+ ·)ds|+ |

R
t2

�1[�(t2, s)� �(t1, s)]F (s)v(s+ ·)ds|

 (t1 � t2) · 1 · B + (1� �(t1, t2))
R

t2

�1 �(t2, s)F (s)v(s+ ·)ds

 B(t1 � t2) + (1� e�µ̂(t1�t2)) · B

µ

 ✏.

This proves the continuity of [Lv](t).

Suppose v(t+ 1) = v(t), 8t 2 R. Since

[Lv](t+ 1) =
R1
0 �(t+ 1, t+ 1� s)F (t+ 1� s)v(t+ 1� s+ ·)ds

=
R1
0 �(t, t� s)F (t� s)v(t� s+ ·)ds

= [Lv](t),

it follows that [Lv](t) is also periodic with respect to t. Therefore, we have L : C1 ! C1.

According to some properties in [206] (or Section 2.3), we define R0 = r(L), the spectral

radius of L.

For any given t � 0, let W (t) be the solution map of system (4.20) on X , such that

W (t)' = wt('), t � 0, where w(t;') is the unique solution of (4.20) with w0 = ' 2 X .

Then W := W (1) is the Poincaré map associated with linear system (4.20). Let r(W ) be

the spectral radius of W . By Theorem 2.3.1, we obtain

Lemma 4.3.6. R0 � 1 has the same sign as r(W (1))� 1.
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In addition, for any given t � 0, let W̃ (t) be the solution map of system (4.20) on Q+,

such that W̃ (t)' = w̃t('), t � 0, where w̃(t;') is the unique solution of (4.20) with

w̃0 = ' 2 Q+. Using similar arguments to Lemma 3.8 in [122] through the Krein-Rutman

theorem, it is shown that the stability of the zero solution for system (4.20) on X equals to

that on Q+.

Lemma 4.3.7. Two Poincaré maps W (1) : X ! X and W̃ (1) : Q+ ! Q+ have the same

spectral radius, that is, r(W (1)) = r(W̃ (1)).

Based on the above lemmas and results, we obtain the following global dynamics for sys-

tem (4.14).

Theorem 4.3.1. The following statements are valid:

1. If R0 < 1, then the zero solution is globally asymptotically stable for system (4.14)

in Q+;

2. If R0 > 1, then system (4.14) admits a unique positive 1-periodic solution A⇤(t),

which is globally asymptotically stable in Q+ \ {[0]}.

Proof. We fix an integer n0 such that n0 > 4. According to Lemma 4.3.7, �̃(t) can be

regarded as an n0-periodic semiflow on Q+. It follows from Lemma 4.3.3 and Lemma

4.3.5, the solution map �̃(n0) is strongly monotone and strictly subhomogeneous on Q+.

By Theorem 2.1.3, we obtain

(i) If r(D�̃(n0)(0))  1, then the zero solution is globally asymptotically stable for

system 4.14 in Q+;

(ii) If r(D�̃(n0)(0)) > 1, then system (4.14) admits a unique positive n0-periodic solu-

tion A⇤(t), which is globally asymptotically stable in Q+ \ {[0]}.

Note that r(D�̃(n0)(0)) = r(W̃ (n0)) = (r(W̃ (1)))n0 . Based on Lemmas 4.3.6 and 4.3.7,

we have sign(R0 � 1) = sign(r(D�̃(n0)(0)) � 1). It remains to prove that A⇤(t) is
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4.3. Threshold dynamics

also 1-periodic with respect to case (ii). Let '⇤ = v⇤0 2 Q with v⇤(t) = A⇤(t). Then

�̃(n0)('⇤) = '⇤. Note that

�̃n0(1)(�̃(1)('⇤)) = �̃(1)(�̃n0(1)('⇤)) = �̃(1)(�̃(n0)('
⇤)) = �̃(1)('⇤).

By the uniqueness of the positive fixed point of �̃n0(1) = �̃(n0), we have �̃(1)('⇤) = '⇤,

which implies that A⇤(t) = u(t;'⇤) is an 1-periodic solution of system (4.14).

Next we will analyze the dynamics for the variables L1(t), L2(t) and J(t) in system (4.12).

Given the initial values

L1(0) =

Z 0

�✓1(0)

p1B(⇠, A(⇠))e�
R 0
⇠
µ1(s)dsd⇠,

L2(0) =

Z 0

�✓2(0)

(1� p1)B(⇠, A(⇠))e�
R btc�1+T

⇠
µ2(s)ds�

R btc
btc�1+T

d2(s)ds�
R 0
btc µ2(s)dsd⇠,

J(0) =

Z 0

�✓J (0)

[p1B(⇠ � ✓1(⇠), A(⇠ � ✓1(⇠)))(1� ✓
0

1(⇠))e
�

R
⇠

⇠�✓1(⇠)
µ1(↵)d↵

+ (1� p1)B(⇠ � ✓2(⇠), A(⇠ � ✓2(⇠)))(1� ✓
0

2(⇠))

· e�
R btc�2+T

⇠�✓2(⇠)
µ2(↵)d↵�

R btc�1
btc�2+T

d2(↵)d↵�
R
⇠

btc�1 µ2(↵)d↵]e�
R 0
⇠
µJ (s)dsd⇠,

we obtain

L1(t) =

Z
t

t�✓1(t)

p1B(⇠, A(⇠))e�
R
t

⇠
µ1(s)dsd⇠,

L2(t) =

Z
t

t�✓2(t)

(1� p1)B(⇠, A(⇠))e�
R btc�1+T

⇠
µ2(s)ds�

R btc
btc�1+T

d2(s)ds�
R
t

btc µ2(s)dsd⇠,

J(t) =

Z
t

t�✓J (t)

[p1B(⇠ � ✓1(⇠), A(⇠ � ✓1(⇠)))(1� ✓
0

1(⇠))e
�

R
⇠

⇠�✓1(⇠)
µ1(↵)d↵

+ (1� p1)B(⇠ � ✓2(⇠), A(⇠ � ✓2(⇠)))(1� ✓
0

2(⇠))

· e�
R btc�2+T

⇠�✓2(⇠)
µ2(↵)d↵�

R btc�1
btc�2+T

d2(↵)d↵�
R
⇠

btc�1 µ2(↵)d↵]e�
R
t

⇠
µJ (s)dsd⇠,

(4.21)

It follows that when R0 < 1, we have lim
t!1

(L1(t), L2(t), J(t)) = 0. Therefore, we can

obtain the global dynamics for system (4.12) as follows.
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Theorem 4.3.2. The following statements are valid for system (4.12):

1. If R0 < 1, then (0, 0, 0, 0) is globally asymptotically stable;

2. If R0 > 1, then there exists a positive 1-periodic solution (L⇤
1(t), L

⇤
2(t), J

⇤(t), A⇤(t)),

which is globally asymptotically stable for all nontrivial solutions.

4.4 Numerical Simulations

This section presents numerical simulations to illustrate quantitative results on seasonal

frog patterns.

4.4.1 Parameters

(i) Seasonal air temperature

Temperature is reported to affect the larval duration and has been proposed to play a role in

determining the vital rates in the life cycle, as well as the overwintering phenomenon [188].

We may take the actual temperature from a specific study air; that would be better. If not,

choose a periodic function as some studies in leading ecology journals. In this study, we

take the temperature data (in degrees �C) as a function of time t (in a day) in the following

form [139] for illustration purpose of the conceptual framework

Ta(t) = cK + dK ⇥ sin

✓
2⇡

365
⇥ (t� t0)

◆
. (4.22)

where cK = 10�C is mean annual temperature and dK = 15�C is the amplitude of temper-

ature variation, suppose to be 15�C [139].
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(ii) Water temperature

The water temperature, not the air temperature, is an important indicator for frog develop-

ment, growth, and overwintering in an aquatic environment [188]. Many theoretical models

have been proposed and calibrated to convert air temperature into water temperature, in-

cluding neural network or wavelet transform-based approaches and empirical regression

model [208]. Here we are going to use a lumped and physically-statistically based hybrid

model, called air2water model, developed in [146, 147, 148] to describe the temporal evo-

lution of water temperature in lakes, with the seasonal temperature in (4.22) as input force.

The air2water model is credited as a widely used approach with its simplicity and accuracy

[208]. The 6-parameter version of the model [147] takes the following form

dTw(t)

dt
=

1

�


a1 + a2Ta(t)� a3Tw(t) + a5 cos

✓
2⇡

✓
t

365
� a6

◆◆�

with

� =

8
><

>:

exp
⇣
�Tw(t)�Th

a4

⌘
, if Tw(t) � Th,

1, if Tw(t) < Th.

Figure 4.1: Left: The temperature profiles, as well as the active and hibernation seasons
determined by the threshold temperature. Right: the development velocity for type 1 tad-
poles.

In this air2water model, Th is the reference value of deep water temperature, which can

be set as 4�C for domestic lakes [208]. The parameter values for ai with i = 1, 2, · · · ,
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6 are taken from the fitted parameters in https://github.com/marcotoffolon/

air2water as

a1 2 [�0.1726, 2], a2 2 [7.989⇥ 10�4, 5.071⇥ 10�2], a3 2 [1.357⇥ 10�3, 0.2]

a4 2 [1, 17.435], a5 2 [0, 2.954], a6 2 [0, 1].

For easy reference, we are resetting the initial day by a time shift such that the active

window starts from day 0 of the year. Therefore, the temperature profiles can be simulated

as in Figure 4.1.

(iii) Thermal threshold and temperature-dependent parameters

The model in its form can easily accommodate the thermal thresholds for individual growth

and development. For example, the development rate when the temperature is blow the

lower temperature threshold (LTT) can be set to be zero. Describing the biological tem-

perature responses with mathematical models is one of the most important questions in

ecology [23].

Various functions have been employed to fit the experimental and field data to illustrate

the relationship between the metabolic rates and environmental conditions, such as tem-

perature. Some widely functions form include quadratic, Gaussian, Arrhenius, modified

Gaussian, exponentially modified Gaussian, Weibull and beta functions [23, 142]. In our

simulations, the beta functional response fitted in [142] will be used to describe the rela-

tionship between the water temperature Tw and the development rate

r(Tw) =

a

✓
Tw�b+ c(d�1)

d+e�2

c

◆d�1 ✓
1� Tw�b+ c(d�1)

d+e�2

c

◆e�1

�
d�1

d+e�2

�d�1 � e�1
d+e�2

�e�1
when Tw � TLL (4.23)

with a = 0.024431, b = 29.63653, c = 21.64977, d = 2.194146, e = 1.30143.

Different stages have variable tolerance responses to the temperatures [178], and we may
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4.4. Numerical Simulations

assume a lower temperature threshold (LTT) for the aquatic environment to determine the

range [0, T ] during which the birth rate is not vanishing and the individual develops. We

use the temperature 4�C to determine the time window and overwinter duration. Then the

development velocity can be simulated by combining the functional response and temper-

ature data. Here, as an illustration, we simulated the temperature-dependent (therefore,

time-dependent) development velocity, which will be used to derive the time delays in the

model system. The results are reported in Figure 4.1.

Table 4.1: Model parameters with means, ranges, description, and sources for each param-
eter estimate.

Parameter Mean Range Description Reference

p1 0.75 0.65-0.85 Proportion of tadpoles spending 1
year [53]

b(t)
1105 mated

couple�1 884-1326 Fecundity [53]

µ1 7.55 year�1 6.19-9.71
year�1

Natural death rate of tadpoles
spending 1 year per capita [138]

µ2 7.55 year�1 6.19-9.71
year�1

Natural death rate of tadpoles
spending 2 year per capita [138]

µJ 0.73 year�1 0.3-4
year�1

Natural death rate of juvenile per
capita [138]

µA 0.73 year�1 0.3-2.25
year�1

Natural death rate of adult per
capita [138]

K 14000 10000-
40000

Maximum adult frog population
size [138]

T 8⇥30
360 year�1 — Normal development period of frog

population [130]

⌧1

✓J(t) +
✓1(t�
✓J(t))

— Time delay —

⌧2

✓J(t) +
✓2(t�
✓J(t))

— Time delay —
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Chapter 4. A seasonal succession model for frog population growth

4.4.2 Population persistence and seasonal pattern

Using the given parameters in Table 4.1, the net reproduction number can be computed

by the algorithm proposed in [203]. The solutions in Table 4.2 indicate that the species

persists when R0 = 1.4761, and illustrate the seasonality of the population in a periodic

environment.
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Figure 4.2: Left: The long-term dynamics when R0 = 1.4761. Right: Seasonality of
species when R0 = 1.4761.

4.5 Discussion

In this paper, based on the actual growth of the frog population at a specific temperature,

we formulate a seasonal succession model consisting of delay differential equations to

reflect the effects of different seasons and temperatures on the frogs’ growth. This model

combines breeding and hibernation seasons, where frogs can grow normally during the

breeding season; however, there is no development during their hibernation phases. The

dynamics of the frogs’ population are structured in four stages: two types of tadpoles L1

and L2 representing spend 1 and 2 years in the tadpole stage, one juvenile stage J , and one

adult stage A. Decoupling the first three equations from others, we focus on dynamically

analyzing the last equation for the adult stage. Then we sequentially explore the existence

and uniqueness of the solution for the adult subsystem and the strong monotonicity by
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4.5. Discussion

introducing the quotient space. According to the theory of monotone dynamical systems

and the comparison method, we study the threshold dynamics for the system based on the

derivation of the basic reproduction number R0. Biologically, the theoretical results imply

that the frog population will go to extinction eventually when R0 < 1 and keep growing

steadily to a stable cycle when R0 > 1. The final simulations numerically illustrate the

temperature-dependent development velocity, thereby determining the time delays within

the model system. These numerical results validate the global dynamics of the system and

were employed to demonstrate the seasonality of the mature frog population.

Our model incorporates seasonal climate factors, growth, and developmental characteristics

of frog populations. We divide the population into different growth stages and introduce

temperature-dependent delays to describe the developmental duration of frogs. Due to

the complexity of the ecological environment, this model that considers abiotic factors can

more accurately analyze the growth and development of frog species in a specific ecological

environment. Indeed, in addition to temperature, other abiotic factors such as rain relative

humidity, hazardous chemicals, and habitat damage may also have a particular impact on

population density, and some life stages may be more sensitive to the impact of one of

these factors. These aspects can therefore be considered in future research. Besides, the

division of the two types of tadpoles, including those that take one and two years to grow, is

conducive to specifically characterizing the different characteristics in different life stages

of frog species.

Mathematically, we introduce the concept of quotient space based on the natural phase

space and study the strong monotonicity in addition to presenting some basic properties of

the solutions, which is one of our research highlights. More importantly, due to the du-

ration division of breeding and hibernation seasons, we need to analyze the existence and

uniqueness of the solutions concerning the two different seasons in one period, respectively,

thereby expanding to more periods. This theoretical proof differs slightly from other previ-

ous studies. In addition, the introduction of quotient space is essential to explore the global

dynamical results by the strong monotonicity property of the solution semiflow, which is
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Chapter 4. A seasonal succession model for frog population growth

the basis for further applying the theory of asymptotically periodic semiflows to establish

the global dynamics of population system. This theoretical method to study the globally

asymptotic behavior of solutions can also be employed to analyze some delay differential

equations with seasonal divisions in other population systems.

Based on the current model, we notice that all threshold dynamics of the frog population

are analyzed in a particular ecological environment, and the diversity of habitats is not

considered here. Frogs can also move freely between different habitats, and through this

migration, the growth and reproduction of frog populations will be affected by the various

living conditions of these habitats. Due to the ubiquity of such diverse ecological envi-

ronments, it is necessary to integrate fragments into our systemic model to characterize

better the development of frog populations, which will be a valuable entry point for future

research. Furthermore, we can incorporate the specific impact of abiotic factors on the de-

velopment of frog populations into future research to analyze the reasons for the current

reduction or even extinction of amphibians and propose animal protection suggestions to

relevant ecological management departments.
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Chapter 5

Infection-induced host extinction for the

frog population

5.1 Introduction

This chapter is devoted to evaluate the risk of frog extinction due to disease transmission.

Numerous studies have been conducted to uncover the mechanisms of disease-induced

extinction and assess the relative significance of these mechanisms in threatening natural

populations [55, 98, 124, 166]. Key theoretical mechanisms proposed include: (i) the pro-

nounced impact of small population sizes and stochastic events on extinction risk, exacer-

bated by disease outbreaks in endangered populations or the Allee effect, where low genetic

variability facilitates pathogen invasion, diminishing population size and genetic diversity;

(ii) the role of frequency-dependent transmission and non-uniform mixing in driving ex-

tinctions, with disease spread being influenced by the proportion of infected individuals

rather than the total number of susceptible or infectious hosts [35]; (iii) the ability of gener-

alist pathogens, including those with biotic and abiotic reservoirs, to overcome host density

thresholds and cause extinction of a particular host species, with external reservoirs height-

ening extinction risk when external infection rates are high [156]; and (iv) the potential
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Chapter 5. Infection-induced host extinction for the frog population

for indirect or trophic-mediated extinctions, where disease-induced declines or extinctions

can trigger broader ecological consequences within the community [66]. However, simple

deterministic models for specialist parasites with density-dependent transmission often fail

to exhibit disease-induced extinction, as these models typically illustrate that parasites will

go extinct before their hosts [55]. This study aims to propose a straightforward determinis-

tic model with density-dependent transmission that predicts the disease-induced extinction,

which offers additional mechanisms for this phenomenon.

Environmental factors, including floating pathogens, significantly influence the dissemina-

tion of the Bd fungus among frog populations [37, 65]. Transmission dynamics of infec-

tious diseases with both host-to-host and environment-to-host transmission pathways have

been extensively examined by mathematical models [10, 47, 49, 85, 115, 113, 114, 175,

192, 196]. Sun et al. [175] provided a thorough review on studies of multi-transmission

routes, encompassing direct contact and environmental-mediated infection. Codeço [49]

developed a model incorporating environmental factors, such as the concentration of V.

cholerae in water, within an epidemiological framework. Ghosh et al. [85] explored a

model that integrates vibrio concentration and environmental discharge density, which in-

fluences vibrio proliferation. Wang and Liao [192] proposed a deterministic model with

nonlinear incidence rates and a generalized representation of pathogen levels in contami-

nated water, with the model’s global dynamics subsequently analyzed using geometric and

matrix-theoretic methods [47, 115], respectively. Despite these advances, the impact of the

pathogen on host species extinction risk remains underexplored. Most existing models are

disease-specific, focusing on the transmission dynamics of the pathogen, with little atten-

tion given to host persistence and extinction. This gap highlights the need for integrating

disease transmission into models of host extinction risk.

To explore the mechanisms that determine the persistence or extinction of a host popu-

lation within a host-pathogen interaction cycle, we will employ a compartmental mod-

eling framework involving variables for numbers of susceptible and infected individuals,

denoted by S and I respectively, as well as the concentration of the pathogen in the en-
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vironment, denoted by B. Unlike traditional epidemiological models, which depict the

transmission of infectious diseases as a process occurring when a susceptible host comes

into direct contact with an infectious host, the compartment B allows us to incorporate

an additional pathogen transmission route through an environment (reservoir) containing

infectious agents deposited by infected hosts and accessed by recipient hosts [81]. Al-

though the model formulation is primarily inspired by chytridiomycosis transmission in

frogs, other diseases have also been described by the SIB compartmental models, such as

bacterial (e.g., cholera [191] and brucellosis [175]), viral (e.g., avian influenza or hepatitis

E in pigs), prion (e.g., chronic wasting disease), and parasitic (e.g., cryptosporidium) in-

fections [81]. Various deterministic and stochastic models have been proposed to describe

different mechanisms of disease transmission [15, 128, 129]. Unlike existing modeling

studies that focus on the transmission dynamics, our aim is to examine the conditions that

contribute to the potential decline and extinction of the host population. We will formulate

and analyze two versions of the SIB epidemiological models. By examining the stabil-

ity of various equilibria and uniform persistence of the deterministic model, we identify

some important indices and the underlying mechanisms that lead to population extinction

or persistence. The corresponding stochastic model is used to estimate the probabilities

of disease extinction, major outbreaks, and host population extinction. Numerical simula-

tions will be employed to verify the stability and persistence of the deterministic epidemic

model, calculate the probability of disease extinction, simulate different sample paths of

the continuous-time Markov chain (CTMC) model, and predict the time of extinction for

the stochastic epidemic model. By integrating deterministic and stochastic approaches, we

get a better understanding of potential factors that influence the persistence or extinction of

host populations in the context of host-pathogen interactions with two types of transmis-

sion.
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5.2 A deterministic model for environmentally transmit-

ted pathogens

Let S(t), I(t) and B(t) denote the population densities of susceptible hosts, infected hosts

and the concentration of environmental pathogens, respectively. To keep the model simple

while incorporating the direct transmission among hosts and indirect transmission between

host and environment, we formulate the following model:

dS(t)

dt
= f1(S(t) + ⌘I(t))(S(t) + ⌘I(t))� dNS(t)� B(t)S(t)� �

S(t)I(t)

1 + ↵I(t)
,

dI(t)

dt
= B(t)S(t) + �

S(t)I(t)

1 + ↵I(t)
� dNI(t)� µI(t),

dB(t)

dt
= f2(B(t))B(t)� dBB(t) + �I(t).

(5.1)

The birth functions f1(·) and f2(·) of the host and pathogen populations are assumed to

take the Beverton-Holt form [123, 185], namely

f1(x) =
bN

1 + ⇠Nx
and f2(x) =

bB
1 + ⇠Bx

.

The parameter ⌘ 2 (0, 1] represents the reduced reproductivity of infected individuals

[157, 170]. A susceptible host can become infected through direct contact with an in-

fected host or exposure to an environmental pathogen with infection rates � and , respec-

tively. Taking into account the impact of behavioral changes, we incorporate the Holling

type II function into host-to-host transmission [84, 176]. Here, 1
1+↵I measures the inhi-

bition effects resulting from the behavioral adaptations of susceptible individuals as the

number of infected individuals increases, where ↵ is a nonnegative constant. Furthermore,

Bd pathogens possess the capability to reproduce independently at function f2(B(t)) or

be shed into the environment by infected individuals at rate �. The inclusion of this term

distinguishes our model from most existing studies. A summary of the model parameters

and their corresponding descriptions is provided in Table 5.1.
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5.2. A deterministic model for environmentally transmitted pathogens

It should be noted that model (5.1) aligns with the framework presented in Lanzas et al.

[110]. For the reproduction of the host and pathogen populations and the pathogen trans-

mission term, various functional forms have been proposed and fitted in modeling refer-

ences. For illustrative purposes, in this study, the Beverton-Holt function is used to describe

the host and bacteria proliferation, while the Holling type II functional response is adopted

for the force of infection in the direct transmission route. These functional forms have been

employed widely in existing studies [82, 84, 176, 201]. Several discrete-time models com-

monly utilize the Beverton-Holt function as a recruitment mechanism [123, 186, 185, 202].

Further functional forms can be found in the paper [110] in a general model for environ-

mentally transmitted pathogens.

Table 5.1: Parameter descriptions and baseline values in model (5.1).

Parameter Description Value Reference

bN Background birth rate of hosts 0.55 day�1 [151]

⇠N Crowding effect of host population 0.05 host�1 Assumed

⌘
Reduced host reproduction due to

infection 0.7 Assumed

dN Death rate of host population 0.05 day�1 [96]


Infection rate of a susceptible host

by the environmental pathogen 0.0015 pathogen�1day�1 [65]

�
Infection rate of a susceptible host

by an infected host 0.012 host�1day�1 [96]

↵ Crowding effect of infected hosts 0.05 host�1 Assumed

µ
Disease-induced death of an

infected host 0.019 day�1 [145]

bB
Background birth rate of the

pathogen 0.25 day�1 [37]

⇠B Crowding effect of the pathogen 0.1 pathogen�1 Assumed

dB Death rate of the pathogen 0.01 day�1 [65]

�
Release rate of the pathogen by an

infected host 0.5 day�1 [145]
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5.2.1 Well-posedness of the model

The dynamic behavior of the deterministic model 5.1 is initiated in this section by studying

the well-posedness of the model.

Proposition 5.2.1. For each initial value (S(0), I(0), B(0)) 2 R3
+, system (5.1) admits a

unique solution (S(t), I(t), B(t)) 2 R3
+ for all t � 0.

Proof. Let g : R3
+ ! R3 be the vector field given by the right hand side of system (5.1),

which is obviously Lipschitz continuous on any bounded subset of R3
+. It follows that a

unique solution (S(t), I(t), B(t)) through the initial values in (S(0), I(0), B(0)) 2 R3
+

exists for t 2 [0, t0). Furthermore, the following observations hold for u = (u1, u2, u3) =

(S, I, B) 2 R3
+: (i) if u1 = 0, then g1(u) = bN ·⌘u2

1+⇠N ·⌘u2
� 0; (ii) if u2 = 0, then g2(u) =

u3u1 � 0; and (iii) if u3 = 0, then g3(u) = �u2 � 0. Based on [73] and [167], these

observations imply that solutions starting in R3
+ are still in R3

+ once they exist. It remains

to show that t0 = 1. To do that, we consider the sum of three variables

G(t) = S(t) + I(t) + B(t),

which satisfies

dG(t)

dt
 bN(S(t) + I(t))

1 + ⇠N(S(t) + I(t))
+

bBB(t)

1 + ⇠BB(t)
+ �I(t)

 bNS(t) + bBB(t) + (bN + �)I(t)

 cG(t)

with c = max{bB, bN + �}. Therefore,

G(t) = S(t) + I(t) + B(t)  G(0)ect

for all t � 0, which implies t0 = 1.
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Remark 4.2.1. Actually, it is easy to verify through [167, Remark 5.2.1] that the following

set

⌦ =

⇢
(S, I, B) 2 R3

+ : S + I  bN
⇠NdN

and B  bB
⇠BdB

�

is positively invariant.

5.2.2 Three reproduction numbers and summarized qualitative re-

sults

To simplify the presentation, we first introduce three biologically meaningful indices based

on which some qualitative findings are established. Theoretical justifications for these re-

sults will be presented later.

We first check the host population growth model with no pathogen transmission (I(t) =

B(t) = 0):
dS(t)

dt
=

bNS(t)

1 + ⇠NS(t)
� dNS(t). (5.2)

By using the idea in Fan et al. [73], we can introduce the net reproduction number for

host population RH := bN

dN
. For the scalar equation (5.2), it is easy to make the following

conclusion.

Proposition 5.2.2. The following statements are valid for system (5.2):

(i) If RH  1, the trivial steady state 0 is global asymptotically stable;

(ii) If RH > 1, then there exists a unique positive steady state S0 = 1
⇠N
( bN
dN

� 1) =

1
⇠N
(RH � 1), which is globally asymptotically stable in R+\{0}.

Remark 4.2.2. The first two equations in (5.1) show that the total host population size

H(t) = S(t) + I(t) satisfies

dH(t)

dt
 bNH(t)

1 + ⇠NH(t)
� dNH(t).
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Chapter 5. Infection-induced host extinction for the frog population

A simple comparison argument, combined with Proposition 5.2.2 (i) shows that the host

population will go extinct as RH  1.

If we ignore the shedding of pathogen from infectious hosts, then the dynamics of pathogen

population are governed by

dB(t)

dt
=

bBB(t)

1 + ⇠BB(t)
� dBB(t). (5.3)

Define the pathogen reproduction number in the habitat as RB := bB

dB
. Similar to Proposi-

tion 5.2.2, we have the following conclusion.

Proposition 5.2.3. The following statements are valid for system (5.3):

(i) If RB  1, the trivial steady state 0 is globally asymptotically stable;

(ii) If RB > 1, then there exists a unique positive steady state B0 = 1
⇠B
( bB
dB

� 1) =

1
⇠B
(RB � 1), which is globally asymptotically stable in R+\{0}.

When RH > 1 and RB  1, we can introduce the basic reproduction number through the

unique infection-free steady state E10 = (S0, 0, 0) of system (5.1) where S0 =
1
⇠N
( bN
dN

� 1).

The new infection and transition matrices are given by:

F =

0

@ �S0 S0

0 0

1

A and V =

0

@ dN + µ 0

�� dB � bB

1

A , (5.4)

respectively. The next generation matrix of infection is

FV �1 =

2

4
�S0

dN+µ
+ �S0

(dN+µ)(dB�bB)
S0

dB�bB

0 0

3

5 ,
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and therefore, the basic reproduction number of model (5.1) can be defined as

R0 = ⇢(FV �1) =
�S0

dN + µ
+

�S0

(dN + µ)(dB � bB)
.

The two terms in the above formula represent the secondary cases produced by direct con-

tact and contaminated environment, respectively.

Based on these three reproduction numbers, RH , RB and R0, we can establish the results

as summarized in Table 5.2 and Figure 5.1 on the existence and local/global stability of all

possible equilibria. It is interesting to observe from Table 5.2 and region E in Figure 5.1

that the host-free equilibrium E01 = (0, 0, B0) can retain locally stable even if RH > 1.

This observation suggests the potential for host extinction in the event of disease spread.

The proofs will be provided in the subsequent subsections.

0 1

1

A B

C

D

E

F

Figure 5.1: Partition area based on the stability conditions of the equilibria. Region A:
E00 = (0, 0, 0) is globally asymptotically stable; Region B: E10 = (S0, 0, 0) is globally
asymptotically stable; Region C and F: the positive equilibrium E⇤ = (S⇤, I⇤, B⇤) exists;
Region D and E: E01 = (0, 0, B0) is locally stable. The red dashed line represents bN =
(dN+B0)(dN+µ)
⌘B0+dN+µ

.
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Table 5.2: Existence and stability of equilibrium in system (5.1).

Equilibrium Existence Local stability Global stability

(0, 0, 0) Always exists
Locally stable if RH < 1 and RB < 1 Globally asymptotically stable

Unstable if RH > 1 or RB > 1

(S0, 0, 0)
Exists if RH > 1

Locally stable if RH > 1, RB < 1 and R0 < 1 Globally asymptotically stable

Unstable if RH > 1, but (i) RB � 1;

or (ii) RB < 1 and R0 > 1

Does not exist if RH  1

(0, 0, B0)
Exists if RB > 1

Locally stable if (i) RB > 1, RH  1;

or (ii) RB > 1, dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

Unstable if RB > 1, bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

Does not exist if RB  1

(S⇤, I⇤, B⇤)

Exists if (i) RH > 1, RB < 1 and R0 > 1;

or (ii) RH > 1, RB > 1 and bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

Does not exist if (i) RH  1, or (ii) RH > 1, RB < 1 and R0 < 1;

or (iii) RH > 1, RB > 1 and dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

5.2.3 Dynamical analysis of the deterministic model

This subsection is dedicated to the dynamical analysis of the model by providing theoretical

arguments to those results reported in Table 5.2 and Figure 5.1.

(i) The equilibrium E00 = (0, 0, 0)

It is easy to see that system (5.1) always admits the trivial equilibrium E00 = (0, 0, 0),

where both hosts and pathogens are absent within the habitat. At this equilibrium, the

Jacobian matrix takes the following form:

J
���
E00

=

2

6664

bN � dN bN⌘ 0

0 �dN � µ 0

0 � bB � dB

3

7775
.

Therefore, when bN � dN > 0 or bB � dB > 0 (RH > 1 or RB > 1), the equilibrium E00

is unstable.
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Next, we investigate the case when RH  1 and RB  1. In this case, Remark 4.2.2

indicates that

lim
t!1

(S(t), I(t)) = (0, 0).

Then the B-equation in system (5.1) is asymptotic to (5.3). Since RB  1, we have

lim
t!1

B(t) = 0 through the theory of asymptotically autonomous systems [167]. This shows

that E00 is globally asymptotically stable when RH < 1 and RB < 1, implying that both

hosts and pathogens will go extinct in this habitat under these conditions.

(ii) The equilibrium E10 = (S0, 0, 0)

When RH > 1, the model (5.1) has a disease-free equilibrium E10 = (S0, 0, 0) with

S0 = 1
⇠N
( bN
dN

� 1). This equilibrium represents the infection-free state. Its stability can be

summarized as follows.

Proposition 5.2.4. For model (5.1), if RH > 1, then the equilibrium E10 = (S0, 0, 0)

exists. Furthermore,

(i) it is globally asymptotically stable if RB < 1 and R0 < 1;

(ii) this equilibrium is unstable if RB � 1, or RB < 1 and R0 > 1.

Proof. Define an auxiliary matrix

M(✏) =

2

4 �(S0 + ✏)� dN � µ (S0 + ✏)

� bB � dB

3

5 ,

by perturbating the matrix M(0) = F �V with F and V in (5.4). It follows from Theorem

2 in [184] that s(M(0)) < 0, where s(M) is the spectral bound of the matrix M . By the

continuity of spectral bound, there exists small enough ✏ > 0 such that s(M(✏)) < 0. Since
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the total host population size satisfies

dH(t)

dt
 bNH(t)

1 + ⇠NH(t)
� dNH(t).

we have lim sup
t!1 S(t)  lim sup

t!1 H(t)  S0 = 1
⇠N
( bN
dN

� 1). Therefore, for ✏ > 0,

there exists t1 = t(✏) > 0 such that S(t)  S0 + ✏ for any t � t1. Thus for t � t1, we have

dI(t)

dt
 �(S0 + ✏)I(t) + (S0 + ✏)B(t)� dNI(t)� µI(t),

dB(t)

dt
 bBB(t)� dBB(t) + �I(t).

Considering the following auxiliary linear system

dx(t)

dt
= M(✏)x(t),

where the vector x(t) = (x1(t), x2(t))T. We have lim
t!1

xi(t) = 0 for i = 1, 2 for all initial

values since s(M(✏)) < 0. Choosing x(0) = (I(t1), B(t1)), the comparison principle

implies that

(0, 0)  lim
t!1

(I(t), B(t))  lim
t!1

(x1(t� t1), x2(t� t1)) = (0, 0).

Then based on the theory of asymptotically autonomous systems in [207] (see also Section

2.1), we have lim
t!1

S(t) = S0, which implies that E10 is globally asymptotically stable

when RH > 1, RB < 1 and R0 < 1. Statement (i) holds.

The corresponding Jacobian matrix is

J
���
E10

=

2

6664

bN

(1+⇠NS0)2
� dN

bN⌘

(1+⇠NS0)2
� �S0 �S0

0 �S0 � dN � µ S0

0 � bB � dB

3

7775
.
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All eigenvalues of the Jacobian matrix are

�1,2 =
(a11 + a22)±

p
(a11 � a22)2 + 4a12a21
2

and �3 =
bN

(1 + ⇠NS0)2
� dN = dN(

1

RH

� 1) < 0,

where a11 = �S0 � dN � µ, a12 = S0, a21 = � and a22 = bB � dB.

It is easy to see that if bB � dB, then a22 � 0 and �1 =
(a11+a22)+

p
(a11�a22)2+4a12a21

2 > 0.

If bB < dB and �S0

dN+µ
+ �S0

(dN+µ)(dB�bB) < 1, then a11 < 0 and a22 < 0 and

a12a21 = �S0 < (dN + µ� �S0)(dB � bB) = a11a22.

In this case �2 =
(a11+a22)�

p
(a11�a22)2+4a12a21

2 < 0 and

�1 <
(a11+a22)+

p
(a11�a22)2+4a11a22

2 = (a11+a22)+|a11+a22|
2 = 0.

If bB < dB and �S0

dN+µ
+ �S0

(dN+µ)(dB�bB) > 1, then

a12a21 = �S0 > (dN + µ� �S0)(dB � bB) = a11a22.

In this case,

�1 >
(a11+a22)+

p
(a11�a22)2+4a11a22

2 = (a11+a22)+|a11+a22|
2 = 0.

In summary, statement (ii) holds.

(iii) The equilibrium E01 = (0, 0, B0)

It is easy to see that system (5.1) admits the equilibrium E01 = (0, 0, B0) if and only if

RB > 1. This equilibrium represents the state in the absence of the host population. Then

we can conclude its stability:
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Proposition 5.2.5. For model (5.1), if RB > 1, then the equilibrium E01 = (0, 0, B0)

exists. Furthermore,

(i) it is locally asymptotically stable if RH < 1 or dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

;

(ii) this equilibrium is unstable if bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

.

Proof. The corresponding Jacobian matrix is

J
���
E01

=

2

6664

bN � dN � B0 bN⌘ 0

B0 �dN � µ 0

0 � bB

(1+⇠BB0)2
� dB

3

7775
.

All eigenvalues of the Jacobian matrix are

�1,2 =
(a11 + a22)±

p
(a11 � a22)2 + 4a12a21
2

and �3 =
bB

(1 + ⇠BB0)2
� dB = dB(

1

RB

� 1) < 0,

where a11 = bN � dN � B0, a12 = bN⌘, a21 = B0 and a22 = �dN � µ < 0. Then we

have

(a) if a11 = bN � dN � B0 � 0, then

�1 =
(a11 + a22) +

p
(a11 � a22)2 + 4a12a21
2

>
a11 + a22 + |a11 � a22|

2
= a11 � 0.

The equilibrium is unstable;

(b) if a11 = bN � dN � B0 < 0, then

�2 =
(a11 + a22)�

p
(a11 � a22)2 + 4a12a21
2

< 0.

Note that �1 =
(a11+a22)+

p
(a11�a22)2+4a12a21

2 < 0 holds if and only if (a11 + a22)2 > (a11 �
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a22)2 + 4a12a21, that is, (dN + B0 � bN)(dN + µ) > ⌘bN · B0. Then we discuss the

following scenarios:

(bi) if dN � bN , then (dN + B0 � bN)(dN + µ) � B0(dN + µ) > ⌘bN · B0 since

⌘  1. Therefore, �1 < 0;

(bii) if dN < bN and dN + B0 > bN , namely dN < bN < dN + B0, then �1 < 0 holds

if and only if bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

.

Note that (dN+B0)(dN+µ)
⌘B0+dN+µ

< dN + B0. In summary, the statements hold.

(iv) Existence and uniqueness of the positive equilibrium

This part is devoted to the study of the positive equilibrium, which contains two proposi-

tions.

Proposition 5.2.6. For system (5.1), if (i) RH = bH

dH
 1; or (ii) RH > 1, RB < 1

and R0 < 1; or (iii) RB > 1 and dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

, then there is no positive

equilibrium.

Proof. The first two cases can immediately be obtained by applying Remark 4.2.2 and

Proposition 5.2.4. Suppose RB > 1 and dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

, we can also show

that the positive equilibrium does not exists as follows. Let E⇤ = (S⇤, I⇤, B⇤) be a positive

equilibrium, we claim that B⇤ > B0. Suppose not, then B⇤  B0, and

bBB⇤

1 + ⇠BB⇤ � dBB
⇤ + �I⇤ �

✓
bB

1 + ⇠BB0
� dB

◆
B⇤ + �I⇤ = �I⇤ > 0,

contradicting to the fact that E⇤ is an equilibrium. Moreover, we have

bN
1 + ⇠N · (S⇤ + ⌘I⇤)

(S⇤ + ⌘I⇤)� dNS
⇤ � dNI

⇤ � µI⇤ = 0,

 · B⇤ · S⇤ + � · S⇤ · I⇤

1 + ↵I⇤
� dNI

⇤ � µI⇤ = 0.

(5.5)
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The second equation of (5.5) implies that S⇤ < dN+µ

·B⇤ I⇤. Therefore,

bN
1 + ⇠N(S⇤ + ⌘I⇤)

(S⇤ + ⌘I⇤)� dNS
⇤ � dNI

⇤ � µI⇤ < 0

contradicts with the first equation of (5.5). That is,

bN
1 + ⇠N(S⇤ + ⌘I⇤)

(S⇤ + ⌘I⇤)� dNS
⇤ � dNI

⇤ � µI⇤

< bN(S
⇤ + ⌘I⇤)� dNS

⇤ � dNI
⇤ � µI⇤

< (bN � dN)
dN + µ

B⇤ I⇤ + bN⌘I
⇤ � dNI

⇤ � µI⇤

< (bN � dN)
dN + µ

B0
I⇤ + bN⌘I

⇤ � dNI
⇤ � µI⇤

= [(bN � dN)(dN + µ) + (bN⌘ � dN � µ)(B0)]
I⇤

 · B0

<

✓
(dN + B0)(dN + µ)

⌘B0 + dN + µ
� dN

◆
(dN + µ)

+

✓
(dN + B0)(dN + µ)

⌘B0 + dN + µ
⌘ � dN � µ

◆
(B0)

I⇤

 · B0

= 0.

Proposition 5.2.7. For system (5.1), if (i) RH > 1, RB < 1 and R0 > 1; or (ii) RB > 1

and bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

, then there is a positive equilibrium E⇤ = (S⇤, I⇤, B⇤). More-

over, the positive equilibrium is unique when it exists.

Proof. The existence of a positive equilibrium, (S⇤, I⇤, B⇤), for the system (5.1) is obtained

as a result of the disease persistence (Theorem 5.2.1 and Theorem 5.2.2) [205]. We aim to

establish the uniqueness of the positive equilibrium. It is easy to see that

I⇤ =
dBB⇤

�
� bBB⇤

�(1 + ⇠BB⇤)
and S⇤ =

(dN + µ)I⇤

�I⇤

1+↵I⇤ + B⇤
.

Assume that there are two positive equilibria (S⇤
1 , I

⇤
1 , B

⇤
1) and (S⇤

2 , I
⇤
2 , B

⇤
2). Without loss of
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generality, we assume that I⇤1 > I⇤2 . Then there must be 0 < m < 1 such that I⇤2 = mI⇤1 . It

follows from the last equation of system (5.1) that

(dB � f2(B)) · B = � · I > 0,

which implies that dB > f2(B). Since �I⇤2 < �I⇤1 , we have

dB · B⇤
2 � f2(B

⇤
2) · B⇤

2 < dB · B⇤
1 � f2(B

⇤
1) · B1,

which implies that

dB · (B⇤
1 � B⇤

2) > f2(B
⇤
1) · B⇤

1 � f2(B
⇤
2) · B⇤

2

= f2(B
⇤
1) · B⇤

1 � f2(B
⇤
1) · B⇤

2 + f2(B
⇤
1) · B⇤

2 � f2(B
⇤
2) · B⇤

2

= f2(B
⇤
1)(B

⇤
1 � B⇤

2) + (f2(B
⇤
1)� f2(B

⇤
2))B

⇤
2 .

It follows that

(dB � f2(B
⇤
1)) · (B⇤

1 � B⇤
2) > (f2(B

⇤
1)� f2(B

⇤
2))B

⇤
2 . (5.6)

Note that dB � f2(B⇤
1) > 0. If B⇤

1  B⇤
2 , then the left hand side of the inequality (5.6)

is non-positive, while the right hand side is non-negative since f2(B⇤
1) � f2(B⇤

2). This

contradicts the inequality (5.6). Thus we obtain B⇤
1 > B⇤

2 .

Moreover, since dB � f2(B⇤
2) > 0, f2(B⇤

2) > f2(B⇤
1) and dB � f2(B⇤

1) > 0, we have

(dB � f2(B
⇤
1)) · B⇤

1 = ⇢I⇤1 =
1

m
⇢I⇤2 =

1

m
(dB � f2(B

⇤
2)B

⇤
2) <

1

m
((dB � f2(B

⇤
1))B

⇤
2),

which implies that B⇤
1 < 1

m
B⇤

2 . That is, mB⇤
1 < B⇤

2 < B⇤
1 .

According to the second equation of system (5.1), we have

 · B · S + � · S · I
1 + ↵I

= (dN + µ)I,
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that is

S =
dN + µ

B

I
+ �

1+↵I

.

Hence,

S⇤
2 =

dN + µ
B

⇤
2

I
⇤
2

+ �

1+↵I⇤2

<
dN + µ

B
⇤
1

I
⇤
1

+ �

1+↵I⇤1

= S⇤
1 .

Moreover,

S⇤
2 =

dN + µ
B

⇤
2

I
⇤
2

+ �

1+↵I⇤2

=
dN + µ

B
⇤
2

mI
⇤
1
+ �

1+↵mI
⇤
1

>
dN + µ

B
⇤
1

mI
⇤
1
+ �

m(1+↵I⇤1 )

= m
dN + µ

B
⇤
1

I
⇤
1

+ �

1+↵I⇤1

= mS⇤
1 .

Hence, we conclude that mS⇤
1 < S⇤

2 < S⇤
1 , mI⇤1 = I⇤2 < I⇤1 and mB⇤

1 < B⇤
2 < B⇤

1 .

Next, we need to make sure that the equilibrium satisfies the first equation of system (5.1).

Hence,
m(f1(S

⇤
1 + ⌘I⇤1 )(S

⇤
1 + ⌘I⇤1 )� dNS

⇤
1) = (dN + µ)mI⇤1

= (dN + µ)I⇤2 = f1(S
⇤
2 + ⌘I⇤2 )(S

⇤
2 + ⌘I⇤2 )� dNS

⇤
2 .

(5.7)

Therefore, we have

m(f1(S
⇤
1 + ⌘I⇤1 )(S

⇤
1 + ⌘I⇤1 )� dNS

⇤
1)� dN⌘I

⇤
2 = f1(S

⇤
2 + ⌘I⇤2 )(S

⇤
2 + ⌘I⇤2 )� dNS

⇤
2 � dN⌘I

⇤
2

and thus,

m(f1(S
⇤
1 + ⌘I⇤1 )(S

⇤
1 + ⌘I⇤1 )� dN(S

⇤
1 + ⌘I⇤1 )) = f1(S

⇤
2 + ⌘I⇤2 )(S

⇤
2 + ⌘I⇤2 )� dN(S

⇤
2 + ⌘I⇤2 ).

For any positive solution (S, I, B), we have

f1(S + ⌘I)(S + ⌘I)� dNS � dNI � µI = 0,

which implies

f1(S + ⌘I)(S + ⌘I) = dN(S + I) + µI > dN(S + I) > dN(S + ⌘I).
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Therefore,

f1(S + ⌘I) > dN .

However, we also have

m(f1(S
⇤
1 + ⌘I⇤1 )(S

⇤
1 + ⌘I⇤1 )� dN(S

⇤
1 + ⌘I⇤1 ))

<f1(S
⇤
2 + ⌘I⇤2 )(mS⇤

1 +m⌘I⇤1 )� dN(mS⇤
1 +m⌘I⇤1 )

=(f1(S
⇤
2 + ⌘I⇤2 )� dN)(mS⇤

1 +m⌘I⇤1 )

<(f1(S
⇤
2 + ⌘I⇤2 )� dN)(S

⇤
2 + ⌘I⇤2 ),

which contradicts equation (5.7). Therefore, the positive equilibrium must be unique.

5.2.4 Persistence of the pathogens and the host population

This subsection analyzes the persistence for the pathogens in the habitat and the host pop-

ulation. We first explore the trivial case when RB > 1. In this case, we have

dB(t)

dt
� bBB(t)

1 + ⇠BB(t)
� dBB(t).

Then Proposition 5.2.3 and a comparison principle imply that

lim inf
t!1

B(t) � B0 =
1

⇠B

✓
bB
dB

� 1

◆
=

1

⇠B
(RB � 1).

The case where RH > 1, RB < 1 and R0 < 1 has been studied in Proposition 5.2.4, which

shows that the pathogen goes extinction. The subsequent result illustrates the pathogen’s

persistence in the habitat under the remaining scenario: RH > 1, RB < 1 and R0 > 1.

Theorem 5.2.1. For system (5.1), if RH > 1, RB < 1 and R0 > 1, then the pathogen and

host population uniformly persist, namely there exists a constant ✏ > 0 such that any solu-

tion (S(t), I(t), B(t)) in R3
+ with S(0) � 0, I(0) � 0, B(0) � 0 satisfies lim inf

t!1
(I(t), B(t))

� (✏, ✏).
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Proof. Let
X0 := {x = (x1, x2, x3) 2 R3

+ : x2 > 0 and x3 > 0}

and @X0 := R3
+\X0 = {x 2 R3

+ : x2 = 0 or x3 = 0}.

Clearly, X0 is an open set relative to R3
+. For any solution of system (5.1) through the initial

value x, define the solution map �t(x) = (S(t; x), I(t; x), B(t; x)) and period-1 solution

map P = �1. It is easy to see that �t(X0) ⇢ X0, 8t � 0. Since the total population size

H(t) = S(t) + I(t) satisfies

dH(t)

dt
 bNH(t)

1 + ⇠NH(t)
� dNH(t).

We have lim sup
t!1

(S(t) + I(t)) = S0. Hence for any ✏ > 0, there exists t0 > 0 such that

S(t) + I(t)  S0 + ✏ when t > t0. Therefore, we have

dB(t)

dt
=

bBB(t)

1 + ⇠BB(t)
� dBB(t) + �I(t)  bBB(t)

1 + ⇠BB(t)
� dBB(t) + �(S0 + ✏).

Since the equation

dB(t)

dt
=

bBB(t)

1 + ⇠BB(t)
� dBB(t) + �(S0 + ✏)

admits a globally asymptotically stable equilibrium

B̂ =
�(dB � �⇠B(S0 + ✏)� bB) +

p
(dB � �⇠B(S0 + ✏)� bB)2 + 4dB⇠B�(S0 + ✏)

2dB⇠B
.

We have lim sup
t!1

B(t) = B̂. Therefore, P : R3
+ ! R3

+ is point dissipative. It then follows

from Theorem 2.9 in [126] that P admits a global attractor in R3
+. Next we prove that P is

uniformly persistent with respect to (X0, @X0).

Let M1 := {(0, 0, 0)} and M2 := {(S0, 0, 0)}. Since lim
x!M1

(�t(x)�M1) = 0 uniformly for
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t 2 [0, 1], for any "1, there exists �1 such that if k x�M1 k �1,

k �t(x)�M1 k "1, 8t 2 [0, 1]. (5.8)

We first claim that lim sup
n!1

k �n(x)�M1 k� �1 for all x 2 X0. Suppose, by contradiction,

that lim sup
n!1

k �n(z) �M1 k< �1 for some z 2 X0. Then there exists an integer N1 � 1

such that k �n(z)�M1 k< �1, 8n � N1. This implies that for n � N1, we have

k (S(n), I(n), B(n)) k< �1.

By (5.8), we obtain k (S(t), I(t), B(t)) k "1 and then |S(t)|  "1, |I(t)|  "1, |B(t)| 

"1 as t � N1. However, when t > N1, solution S(t) through initial value z satisfies

dS(t)

dt
=

bN(S(t) + ⌘I(t))

1 + ⇠N(S(t) + ⌘I(t))
� dNS(t)� B(t)S(t)� �S(t)I(t)

1 + ↵I(t)

>
bNS(t)

1 + ⇠NS(t)
� dNS(t)� "1S(t)� �"1S(t).

Since RH > 1, there exists "1 > 0 such that bN � dN � "1 � �"1 > 0. By comparison

principle, we obtain a contradiction to |S(t)|  "1 for t � N1.

Since lim
x!M2

(�t(x)�M2) = 0 uniformly for t 2 [0, 1], for any "2, there exists �2 such that

if k x�M2 k �2, we have

k �t(x)�M2 k "2, 8t 2 [0, 1]. (5.9)

Now we claim that lim sup
n!1

k �n(x)�M2 k� �2 for all x 2 X0. Assume, by contradiction,

that lim sup
n!1

k �n(z)�M2 k < �2 for some z 2 X0. Then there exists an integer N2 � 1

such that k �n(z)�M2 k< �2, 8n � N2, which implies that

k (S(n)� S0, I(n), B(n)) k< �2.

It follows from (5.9) that k (S(t) � S0, I(t), B(t)) k "2 and therefore |S(t) � S0|  "2,

105
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|I(t)|  "2, |B(t)|  "2 when t � N2. Then for any t � N2, we have

dI(t)

dt
� (S0 � "2)B(t) +

�(S0 � "2)

1 + ↵"2
I(t)� dNI(t)� µI(t),

dB(t)

dt
� bB

1 + ⇠B"2
B(t) + �I(t)� dBB(t).

(5.10)

Consider the linear system
dw(t)

dt
= M"2w(t), (5.11)

where

M"2 =

2

4
�(S0�"2)
1+↵"2

� dN � µ (S0 � "2)

� bB

1+⇠B"2
� dB

3

5 .

Since R0 > 1, it then follows that r0 = s(M0) > 0 and dw(t)
dt = M0w(t) is unstable.

Then there exists "2 > 0 such that r"2 = s(M"2), the principle eigenvalue of M"2 , is

positive. Therefore, system (5.11) admits a solution w(t) = er"2 tw(0) with appropriate

positive initial value w(0). On the other hand, for a specific (I(N2), B(N2)) > 0, there

exists �3 such that (I(N2), B(N2)) > �3w(0). Based on (5.10) and comparison principle,

when t � N2, we have

(I(t), B(t)) > �3e
r"2 (t�N2)w(0),

which implies that I(t) and B(t) go to infinity, contradicting to the boundedness of solu-

tions.

Define
M@ := {x 2 @X0 : P

n(x) 2 @X0, n � 0},

D1 := {x 2 R3
+ : x2 = 0 and x3 = 0},

D2 := {x 2 R3
+ : x1 = 0 and x2 = 0}.

Then we claim that M@ = D1 [D2. We first prove that D1 [D2 ⇢ M@ . For any x 2 D1,

the second and third equations of system (5.1) show that I(t; x) = 0 and B(t; x) = 0 for

all t � 0. Hence x 2 M@ and D1 ⇢ M@ . For any x 2 D2, then it follows from the first

and second equations of system (5.1) that S(t; x) = 0 and I(t; x) = 0 for all t � 0. Hence
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x 2 M@ and D2 ⇢ M@ . Now it remains to show that M@ ⇢ D1 [ D2. For any x 2 M@ ,

P n(x) 2 @X0, that is, I(n; x) = 0 or B(n; x) = 0 for all n � 0. Then there are two cases:

(i) If I(n; x) = 0 for all n � 0, it then follows from the second equation of system

(5.1) that B(n; x) = 0 and S(n; x) = 0. Hence we must have x1 = 0 and x3 = 0.

Moreover, x2 = 0. Therefore x 2 D1 [D2.

(ii) If B(n; x) = 0 for all n � 0, then based on the third equation of system (5.1),

I(n; x) = 0 for all n � 0. Then we have x2 = 0 and x3 = 0.

It is easy to see that for any x 2 D1[D2, we have lim
t!1

(S(t; x), I(t; x), B(t; x)) = (0, 0, 0)

or lim
t!1

(S(t; x), I(t; x), B(t; x)) = (S0, 0, 0). Based on the above arguments, we conclude

that condition (C2) in Theorem 1.3.1 of [207] holds. It then follows that M1 and M2 are

disjoint, compact and isolated invariant sets for P in M@ , and no subset of {M1,M2} forms

a cycle in M@ . This implies that M1 and M2 are isolated invariant sets for P in R3
+, and

W s(Mi) \X0 = ;, 8i = 1, 2, where W s(Mi) is the stable set of Mi for P .

According to the acyclicity theorem on uniform persistence for maps [207] (see also Sec-

tion 2.2), it follows that P : R3
+ ! R3

+ is uniformly persistent with respect to X0. Thus the

semiflow �t : R3
+ ! R3

+ is also uniformly persistent with respect to X0.

The next result also indicates the pathogen persistence in the habitat, but under a different

scenario. Note that in this case, bN > dN , i.e., RH > 1.

Theorem 5.2.2. If RB > 1 and bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

, then the pathogen and host pop-

ulation uniformly persist, namely there exists a constant ✏ > 0 such that any solution

(S(t), I(t), B(t)) of the system (5.1) in R3
+ with S(0) > 0, I(0) > 0, B(0) > 0 satisfies

lim inf
t!1

(I(t), B(t)) � (✏, ✏).

Proof. The proof is similar to that of Theorem 5.2.1, with different disjoint, compact and

isolated invariant sets for P in M@ . In addition to M1, M2 in the proof of Theorem 5.2.1,
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there is an additional compact and isolated invariant set

M3 = {(0, 0, B0)}.

Adapting the similar arguments in Theorem 5.2.1, it suffices to show that W s(Mi) \X0 =

;, 8i = 1, 2, 3, where W s(Mi) is the stable set of Mi for P .

We will use the same notations as those in the proof of Theorem 5.2.1, and first claim that

lim sup
n!1

k �n(x) � Mi k� B0 for all x 2 X0, and i = 1, 2. In fact, based on the third

equation of system (5.1), we have

dB(t)

dt
� bBB(t)

1 + ⇠BB(t)
� dBB(t).

The comparisonal principle and Proposition 5.2.3 imply that

lim inf
t!1

B(t) � B0

and hence this claim holds.

Since RB > 1 and bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

, the arguments for the Jacobian matrix (5.12)

shows that it is unstable. Then there exists "3 > 0 such that r"3 = s(M"3), the principle

eigenvalue of the perturbed matrix with parameter "3

M"3 =

2

4
bN

1+(1+⌘)⇠N"3
� dN � (B0 + "3)� �"3

bN

1+(1+⌘)⇠N"3
⌘

(B0 � "3) �dN � µ

3

5 (5.12)

is positive. Since lim
x!M3

(�t(x) �M3) = 0 uniformly for t 2 [0, 1], for any "3, there exists

�3 such that if k x�M3 k �3, we have

k �t(x)�M3 k "3, 8t 2 [0, 1]. (5.13)

Now we claim that lim sup
n!1

k �n(x)�M3 k� �3 for all x 2 X0. Assume, by contradiction,
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5.2. A deterministic model for environmentally transmitted pathogens

that lim sup
n!1

k �n(z)�M3 k < �3 for some z 2 X0. Then there exists an integer N3 � 1

such that k �n(z)�M3 k< �3, 8n � N3, which implies that

k (S(n), I(n), (B(n)� B0)) k< �3.

It follows from (5.13) that k (S(t), I(t), B(t) � B0) k "3 and therefore S(t)  "3,

I(t)  "3, |B(t)� B0|  "3 when t � N2. Then for any t � N3, we have

dS(t)

dt
� bN(S(t) + ⌘I(t))

1 + ⇠N(1 + ⌘)"3
� dNS(t)� (B0 + "3)S(t)� �"3S(t),

dI(t)

dt
� (B0 � "3)S(t)� (dN + µ)I(t).

Similar to the arguments in the proof of Theorem 5.2.1, we can conclude that S(t) and I(t)

go to infinity, contradicting to the boundedness of solutions. This completes the proof.

5.2.5 Host extinction scenarios

This subsection focuses on examining the extinction and persistence of host population

under specific scenarios.

(I) No self-reproduction of the pathogen

We assume that the pathogens cannot reproduce by themselves, namely bB = 0. In this

case, the possibility of host population extinction is precluded, as shown in the next result

with its proof.

Proposition 5.2.8. For system (5.1), if bB = 0 and RH > 1, then lim
t!1

(S(t) + I(t)) = 0

does not hold for any solution (S(t), I(t), B(t)) in R3
+ with S(0) > 0, I(0) � 0, B(0) � 0.

Proof. We assume that the pathogens cannot reproduce by themselves, namely bB = 0.
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Then the third equation of system (5.1) can be reduced to

dB(t)

dt
= �dBB(t) + �I(t).

Assume that there exists a specific solution (S(t), I(t), B(t)) such that lim
t!1

(S(t)+ I(t)) =

0. Then for any ✏1 > 0, there exists t1 > 0 such that S(t) + I(t) < ✏1 for t > t1. Since
dB(t)
dt = �dBB(t) + �I(t)  �dBB(t) + �✏1, 8t > t1, then

B(t)  B(t1)e
�dB(t�t1) +

�✏1
dB

(1� e�dB(t�t1)).

Hence, there exist some t2 > t1 such that

B(t)  ✏1 +
�✏1
dB

=

✓
1 +

�

dB

◆
✏1 when t > t2.

It follows that when t > t2, we have

dS(t)

dt
= f1(S(t) + ⌘I(t))(S(t) + ⌘I(t))� dNS(t)� B(t)S(t)� �

S(t)I(t)

1 + ↵I(t)

� f1(S(t))S(t)�
✓
dN + 

✓
1 +

�

dB

◆
✏1 + �✏1

◆
S(t)

=
bNS(t)

1 + ⇠NS(t)
�
✓
dN + 

✓
1 +

�

dB

◆
✏1 + �✏1

◆
S(t).

Then we can choose ✏1 > 0 small enough such that bN > dN +(1+ �

dB
)✏1+�✏1. Assume

that eS(t) is the solution to the following equation

deS(t)
dt

=
bN eS(t)

1 + ⇠N eS(t)
�
✓
dN + 

✓
1 +

�

dB

◆
✏1 + �✏1

◆
eS(t)

with eS(t2) = S(t2) > 0. According to similar arguments in Proposition 5.2.2, we have

lim
t!1

eS(t) = 1

⇠N

 
bN

dN + (1 + �

dB
)✏1 + �✏1

� 1

!
.
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On the other hand, there is S(t) � eS(t) when t � t2. Therefore, this contradicts the

assumption lim
t!1

(S(t) + I(t)) = 0.

(II) No impact of the pathogen on the hosts

We consider that the pathogen has no impact on the fecundity and survival of the hosts,

namely ⌘ = 1 and µ = 0. Then the total population N(t) = S(t) + I(t) satisfies

dN(t)

dt
= f1(N(t))N(t)� dNN(t),

which implies that

lim
t!1

N(t) =
1

⇠N

✓
bN
dN

� 1

◆
> 0

provided RH = bN

dN
> 1. Consequently, the extinction of the host population driven solely

by disease transmission is impossible.

The aforementioned observations demonstrate that the host population is persistent under

certain conditions: (i) no pathogen self-replication, and (ii) pathogens do not affect host

reproductivity or cause additional mortality. Conversely, pathogen-driven population ex-

tinction is possible upon two critical factors: (i) the pathogen’s capacity to influence host

fecundity or cause increased mortality, and (ii) the pathogen’s ability to self-replicate within

the environment. We will illustrate these observations through numerical simulations later.

5.3 A stochastic model for environmental pathogens

Stochastic models incorporate the discrete transitions of individuals between epidemiolog-

ical compartments, rather than the average transition rates between compartments [31]. In

a stochastic epidemic model, numbers in each group are integers instead of continuously

varying quantities. It is possible that the last infected individual could die or recover before

the disease becomes endemic, and the disease can only reoccur if an infectious individual
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Table 5.3: State transitions and rates for the CTMC host-pathogen model.

Event Transition Rate

Birth of host (S, I, B) ! (S + 1, I, B) bN (S+⌘I)
1+⇠N (S+⌘I)

Death of S (S, I, B) ! (S � 1, I, B) dNS

Infection of host (S, I, B) ! (S � 1, I + 1, B) (B + �I

1+↵I )S

Death of I (S, I, B) ! (S, I � 1, B) (dN + µ)I

Birth of pathogen (S, I, B) ! (S, I, B + 1) bBB

1+⇠BB

Release of pathogen (S, I, B) ! (S, I, B + 1) �I

Death of B (S, I, B) ! (S, I, B � 1) dBB

from outside the population is reintroduced [109, 128, 129]. In this section, we will pro-

pose a continuous-time Markov chain (CTMC) model, which is usually more realistic than

our deterministic model [109].

We develop a CTMC model in line with the assumptions of the corresponding deterministic

model (5.1) since the random variables related to the deterministic variables are discrete and

time is continuous [127, 129]. For simplicity, we employ the same notations for the random

variables and parameters as used in the deterministic model (5.1). Let time, t 2 [0,1),

be continuous, and let S(t), I(t) and B(t) denote the discrete-valued random variables for

the numbers of susceptible hosts, infected hosts and environmental pathogens, respectively,

with finite state space,

S(t), I(t) 2 {0, 1, 2, 3, . . . , GH} and B(t) 2 {0, 1, 2, 3, . . . , GB},

where GH = bN

⇠NdN
and GB = bB

⇠BdB
.

The transition from one state to another may take place at any time t. Let X(t) = {S(t),

I(t), B(t)} and �X(t) = X(t + �t) � X(t) for t � 0 and �t > 0. By the Markov

assumption, the waiting time between event transitions is exponentially distributed. For
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5.3. A stochastic model for environmental pathogens

instance, the probability of the birth of a host in time �t is given by

P (�X(t) = (1, 0, 0)|X(t)) =
bN(S(t) + ⌘I(t))

1 + ⇠N(S(t) + ⌘I(t))
+ o(�t).

All state transitions and rates for the CTMC epidemic model are given in Table 5.3.

5.3.1 Stochastic disease extinction

The probabilities of disease extinction and invasion will be estimated by employing the

theoretical framework of the Galton–Watson multitype branching process [14].

(I) Probability of disease extinction

In the CTMC model, the disease spreads via two pathways: 1) infected hosts transmit the

disease to susceptible hosts; 2) environmental pathogens infect susceptible hosts. Approx-

imation of the nonlinear dynamics of CTMC model near the disease-free equilibrium leads

to a multitype branching process in disease variables I(t) and B(t).

Let P(i,b),(i+ji,b+jb)(s, s+ t) denote the transition probability of the process {Y (t) = (I(t),

B(t))} from Y (s) = (i, b) to Y (s + t) = (i + ji, b + jb) given Y (s) = (i, b) for s, t � 0.

Then we derive the backward Kolmogorov differential equation of the branching process

approximation regarding (I, B) in Table 5.4. If initially there exists one single infected

host, I(0) = 1, and no pathogen, B(0) = 0, then we define the offspring probability

generating function (pgf) for infected host I as

y1(u1, u2) =
(dN + µ) + �S0u2

1 + �u1u2

dN + µ+ � + �S⇤ . (5.14)

The terms in (5.14) can be interpreted as follows: �S0

dN+µ+�+�S0
represents the probability

of disease transmission from an infected host to a susceptible host, resulting in one new

infection. �

dN+µ+�+�S0
specifies the probability that pathogen is shed by the infectious host
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Table 5.4: Transition probabilities of the branching process approximation for I and B.

Event Transition Rate

Infection of host I ! I + 1 (B + �I)S0

Death of I I ! I � 1 (dN + µ)I

Birth of pathogen B ! B + 1 bBB

Release of pathogen B ! B + 1 �I

Death of B B ! B � 1 dBB

resulting in one infectious host and one free-living pathogen in the environment. Lastly,
dN+µ

dN+µ+�+�S0
corresponds to the probability of an infected host’s death.

Likewise, the offspring pgf for B given that I(0) = 0 and B(0) = 1 can be derived as

y2(u1, u2) =
bBu2

2 + dB + S0u1u2

bB + dB + S0
. (5.15)

In (5.15), the term bB

bB+dB+S0
denotes the probability of the birth of one environmental

pathogen. The term S0
bB+dB+S0

represents the probability that the environmental pathogen

successfully infects a susceptible host, resulting in one newly infected host and keeping

the original pathogen. The term dB

bB+dB+S0
gives the probability of the death of a single

environmental pathogen.

Since the process {Y (t) : t � 0} is time-homogeneous, we define P(1,0),(0,0)(s, t) and

P(0,1),(0,0)(s, t) as P(1,0)(s) and P(0,1)(s) respectively. It follows from [17] that

dP(1,0)(s)

ds
= (�S0 + dN + µ+ �)

�
P(1,0)(s)� y1

�
P(1,0)(s), P(0,1)(s)

��
,

dP(0,1)(s)

ds
= (S0 + bB + dB)

�
P(0,1)(s)� y2

�
P(1,0)(s), P(0,1)(s)

��
,

subject to the termination conditions P(1,0)|s=t = P(0,1)|s=t = 0, where P(1,0) and P(0,1)

denote the functions of initial time s for any fixed termination time t.

114



5.3. A stochastic model for environmental pathogens

Then the expectation matrix is

M =

2

4
@y1(u1,u2)

@u1

@y2(u1,u2)
@u1

@y1(u1,u2)
@u2

@y2(u1,u2)
@u2

3

5

u1=1,u2=1

=

2

4
2�S0+�

dN+µ+�+�S0

S0
bB+dB+S0

�

dN+µ+�+�S0

2bB+S0

bB+dB+S0

3

5 .

By the Threshold Theorem in [16], ⇢(M) < 1 (= 1, > 1) if and only if R0 < 1 (=

1, > 1). Based on the theory of branching process [24, 64] and the Threshold Theorem, the

probability of ultimate disease extinction is one if R0 < 1. When R0 > 1, the probability of

ultimate disease extinction is determined by P0 = qi01 q
b0
2 , where q1 and q2 are the fixed point

of the probability generating functions on (0, 1)2 by setting yi(q1, q2) = qi, i = 1, 2, and i0

and b0 are the initial numbers of infected hosts and environmental pathogens, respectively.

That is,

y1(q1, q2) =
(dN + µ) + �S0q21 + �q1q2

dN + µ+ � + �S0
= q1,

y2(q1, q2) =
bBq22 + dB + S0q1q2

bB + dB + S0
= q2.

(5.16)

(II) Mean and variance of disease extinction time

The mean and variance of disease extinction time can be investigated by the approach

presented in [17]. Let Y (t) = (I(t), B(t)). Define

T = T(i0,b0) = inf{t > 0 : I(t) = B(t) = 0 given Y (0) = (i0, b0)},

as the first time until disease extinction given Y (0) = (i0, b0). Then the cumulative distri-

bution function of T satisfies

P (T  t|T < 1) = P (I(t) = B(t) = 0|T < 1, Y (0) = (i0, b0))

=
P (I(t) = B(t) = 0|Y (0) = (i0, b0))

P (T < 1|Y (0) = (i0, b0))
⇡

P(i0,b0)(t)

P0
,
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which implies that

P (T  t|T < 1) ⇡
(P(1,0)(t))i0(P(0,1)(t))b0

qi01 q
b0
2

.

Let �(i0, b0, t) = P (T > t|T < 1). The probability density of T is �@�(i0,b0,t)
@t

. Suppose

that E(T ) < 1, then the associated mean extinction time is given by

E (T |T < 1) = �
Z 1

0

t
@�(i0, b0, t)

@t
dt =

Z 1

0

�(i0, b0, t)dt

⇡
Z 1

0


1�

(P(1,0)(t))i0(P(0,1)(t))b0

qi01 q
b0
2

�
dt,

where integration by parts is applied and lim
t!1

t�(i0, b0, t) = 0. Similarly, the variance of

the extinction time is

Var (T |T < 1) =E
�
T 2|T < 1

�
� (E (T |T < 1))2

=

Z 1

0

2t�(i0, b0, t)dt� (E (T |T < 1))2

⇡
Z 1

0

2t


1�

(P(1,0)(t))i0(P(0,1)(t))b0

qi01 q
b0
2

�
dt

�
⇢Z 1

0


1�

(P(1,0)(t))i0(P(0,1)(t))b0

qi01 q
b0
2

�
dt

�2

provided that E(T 2) < 1.

5.3.2 Stochastic host population extinction

(I) Probability of population extinction

In the CTMC model, the presence of susceptible and infectious hosts in the system is ac-

counted for by the reproduction of the host population and pathogen infection, respectively.

Analogous to the stochastic disease model, we utilize the state transitions and rates in Table

5.3 to derive the offspring probability generating functions for the host population variables
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S and I . Specifically, assume that RB > 1 and we will approximate the CTMC model near

the host-free steady state (0, 0, B0).

Similar to the above stochastic disease model, we acquire the backward Kolmogorov differ-

ential equation in terms of (S, I) based on the branching process approximation. Assum-

ing an initial condition of a single susceptible host, S(0) = 1, and no infected individuals,

I(0) = 0, the offspring probability generating function for the susceptible host S can be

expressed as follows:

g1(u1, u2) =
bNu2

1 + dN + B0u2

bN + dN + B0
. (5.17)

In (5.17), bN

bN+dN+B0
denotes the probability of the birth of one susceptible host; dN

bN+dN+B0

presents the probability of the death of one susceptible host and B0
bN+dN+B0

gives the prob-

ability that one susceptible host is infected by the pathogen and becomes an infected host.

Similarly, the offspring pgf for I can be derived under the conditions S(0) = 0 and I(0) =

1, as follows:

g2(u1, u2) =
bN⌘ · u1u2 + dN + µ

bN⌘ + dN + µ
. (5.18)

In (5.18), bN ·⌘
bN ·⌘+dN+µ

gives the probability that one infected host gives birth to one suscepti-

ble host, which results in one infected host and one susceptible host in the population, and
dN+µ

bN ·⌘+dN+µ
represents the probability of the death of one infected host.

Similar to the expectation matrix M for disease extinction, we introduce the expectation

matrix for host extinction

Mp =

2

4
@g1(u1,u2)

@u1

@g2(u1,u2)
@u1

@g1(u1,u2)
@u2

@g2(u1,u2)
@u2

3

5

u1=1,u2=1

=

2

4
2bN

bN+dN+B0

bN ·⌘
bN ·⌘+dN+µ

B0
bN+dN+B0

bN ·⌘
bN ·⌘+dN+µ

3

5 .

According to the Threshold Theorem in [16], we conclude that the probability of population

extinction in the CTMC model satisfies

⇢(Mp) < 1 (= 1, > 1 respectively ) if and only if ⇢(JB) < 1 (= 1, > 1 respectively),
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where

JB =

2

4 bN � dN � B0 bN⌘

B0 �dN � µ

3

5

corresponds to the Jacobian matrix of model (5.1) involving only variables S and I in the

host-free steady state. Then we conclude that the probability of population extinction in

the CTMC model satisfies

⇢(Mp) < 1 (= 1, > 1 respectively ) if and only if ⇢(JB) < 1 (= 1, > 1 respectively).

It follows from the theory of branching process and the Threshold Theorem that the proba-

bility of ultimate host population extinction is 1 if ⇢(JB) < 1, which is consistent with the

conclusion drawn from the deterministic model. For ⇢(Mp) > 1, there exists a fixed point

of the offspring pgfs on (0, 1)2, which gives the probability of host population extinction.

We set the fixed point as gi(p1, p2) = pi, pi 2 (0, 1), 8i = 1, 2, where the values p1 and

p2 are the probabilities of ultimate population extinction of susceptible and infected hosts

respectively, which satisfies

g1(p1, p2) =
bNp21 + dN + B0p2
bN + dN + B0

= p1,

g2(p1, p2) =
bN⌘ · p1p2 + dN + µ

bN⌘ + dN + µ
= p2.

Then the probability of ultimate host extinction is given by PH

0 = ps01 pi02 , where S(0) = s0

and I(0) = i0.

(II) Mean and variance for time to host extinction

Let H(t) = (S(t), I(t)). Define

TH = TH

(s0,i0) = inf{t > 0 : S(t) = I(t) = 0 given H(0) = (s0, i0)},
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as the first time instance of host extinction given H(0) = (s0, i0). Then the cumulative

distribution function of TH satisfies

P
�
TH  t|TH < 1

�
= P

�
S(t) = I(t) = 0|TH < 1, H(0) = (s0, i0)

�

=
P (S(t) = I(t) = 0|H(0) = (s0, i0))

P (TH < 1|H(0) = (s0, i0))
⇡

P(s0,i0)(t)

PH

0

.

It follows that

P
�
TH  t|TH < 1

�
⇡

(P(1,0)(t))s0(P(0,1)(t))i0

ps01 pi02
.

Let  (s0, i0, t) = P
�
TH > t|TH < 1

�
. The probability density of TH is �@ (s0,i0,t)

@t
.

Suppose E(TH) < 1. Then the associated mean extinction time is given by

E
�
TH |TH < 1

�
= �

Z 1

0

t
@ (s0, i0, t)

@t
dt =

Z 1

0

 (s0, i0, t)dt

⇡
Z 1

0


1�

(P(1,0)(t))s0(P(0,1)(t))i0

ps01 pi02

�
dt,

where integration by parts is applied and lim
t!1

t (s0, i0, t) = 0. By similar methods, the

variance of host extinction time is given by

Var
�
TH |TH < 1

�
=E
�
(TH)2|TH < 1

�
�
�
E
�
TH |TH < 1

��2

=

Z 1

0

2t (s0, i0, t)dt�
�
E
�
TH |TH < 1

��2

⇡
Z 1

0

2t


1�

(P(1,0)(t))s0(P(0,1)(t))i0

ps01 pi02

�
dt

�
⇢Z 1

0


1�

(P(1,0)(t))s0(P(0,1)(t))i0

ps01 pi02

�
dt

�2

provided that E((TH)2) < 1.
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5.4 Numerical simulations

This section presents some numerical examples for the host-pathogen dynamics of the de-

terministic and stochastic models with parameter values in Table 5.1. The sample paths for

the stochastic Markov chain model will be generated through the Gillespie algorithm [15].

Example 1 (Dynamical outcomes in the deterministic model). The existence and sta-

bility of each equilibrium, as outlined in Table 5.2, along with the corresponding parti-

tion areas depicted in Figure 5.1, are verified through a series of time-related simulations

shown in Figure 5.2. Each subfigure illustrates the population sizes of the total hosts,

infected hosts, and environmental pathogens as determined by the deterministic model un-

der various scenarios and initial conditions. To simulate the existence and stability of the

disease-free state, we set the parameters as follows: bB = 0.1, dB = 0.75, µ = 0.65, and

bN = 0.12, with other parameter values specified in Table 5.1. Then RH = 2.4 > 1,

RB = 0.1333 < 1, and R0 = 0.4995 < 1. Subfigure (a) demonstrates that all infections,

including infected hosts and environmental pathogens, tend to become stably extinct, while

the total host population persists stably. This outcome is consistent with Region B in Fig-

ure 5.1. To illustrate the host-free stability, we configure two sets of parameter values: (i)

bN = 0.1, dN = 0.15, dB = 0.015, bB = 0.06 (then RH = 0.667 < 1 and RB = 4 > 1);

and (ii) bN = 0.12, dN = 0.1, dB = 0.015, bB = 0.15 (therefore RB = 10 > 1 and

dN < bN < 0.131). Additional parameter values are provided in Table 5.1. These con-

figurations result in Subfigures (b) and (c), which show that both susceptible and infected

host populations decrease to zero, while environmental pathogens stabilize at 30 and 90.

This outcome occurs under conditions corresponding to Regions D and E in Figure 5.1,

respectively. Subfigure (d) presents the existence of a positive equilibrium, denoted as

(S⇤, I⇤, B⇤) = (15, 39, 104), with parameter values bB = 0.15, dB = 0.2, bN = 0.45,

and dN = 0.1. This scenario aligns with Region C in Figure 5.1. These simulations elu-

cidate four distinct scenarios concerning the existence and stability of equilibria, thereby

validating the analytical results on the dynamics of each variable.
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Figure 5.2: Population dynamics of the total host, infected host, and environmental
pathogen in the deterministic model for various scenarios with diverse initial conditions.
The initial conditions are specified as follows: (1.) S(0) = 185, I(0) = 15, B(0) = 5;
(2.) S(0) = 150, I(0) = 50, B(0) = 10; (3.) S(0) = 100, I(0) = 100, B(0) = 50.
Subfigure (a) illustrates the existence and stability of the disease-free equilibrium when
RH = 2.4 > 1, RB = 0.1333 < 1, and R0 = 0.4995 < 1, corresponding to Re-
gion B in Figure 5.1. Subfigures (b) and (c) demonstrate the existence and stability of
the host-free equilibrium under the conditions RH = 0.667 < 1 and RB = 4 > 1;
and RB = 10 > 1 and dN < bN < 0.131, corresponding to Regions D and E in Fig-
ure 5.1, respectively. Subfigure (d) depicts the existence of the positive equilibrium with
RH = 4.5 > 1, RB = 0.75 < 1, and R0 = 15.882 > 1, aligning with Region C in Figure
5.1.
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Figure 5.3: Four sample paths of the stochastic epidemic model for the total and infected
hosts in both host and pathogen populations and the corresponding deterministic solution
(dashed curve). The initial conditions are set as S(0) = 199, I(0) = 1 and B(0) = 0. The
graphs (a) and (b) depict the scenario with no self-reproduction of pathogen population,
namely bB = 0, and other parameter values are shown in Table 5.1. Two graphs (c) and (d)
present the scenario where the pathogen does not affect the reproduction and the disease-
induced mortality of infected individuals, namely ⌘ = 1 and µ = 0, and other parameter
values are shown in Table 5.1.
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Example 2 (Host persistence). To explore the effects of no self-reproduction of the

pathogen and no impact of the pathogen on the hosts, we choose the initial values S(0) =

199, I(0) = 1 and B(0) = 0 and the parameter values are set in Table 5.3. Figure 5.3

presents four sample paths of a stochastic epidemic model. These paths illustrate the dy-

namics of the total and infected host populations over time under different scenarios, along-

side their corresponding deterministic solutions (dashed curves). In the first row, panels (a)

and (b) depict a scenario with no self-reproduction of the pathogen population (bB = 0).

Panel (a) shows the total host population (N ) starting around 200 and generally trending

downward with notable fluctuations, while panel (b) illustrates the infected host population

(I) initially spiking to around 200 before gradually declining. The stochastic paths in these

panels reveal significant variability compared to the smoother deterministic solutions. In

the second row, panels (c) and (d) represent a scenario where the pathogen does not af-

fect reproduction and disease-induced mortality of infected individuals is zero (⌘ = 1 and

µ = 0). Panel (c) indicates a more stable total host population with slight upward trends

and high variability, starting around 200, whereas panel (d) shows the infected host pop-

ulation rapidly increasing to approximately 200 and then fluctuating with a slight upward

trend. The deterministic solutions in these panels also provide smoother trends but do not

capture the full variability seen in the stochastic paths. This simulation highlights the im-

pact of pathogen reproduction and mortality on host population dynamics, demonstrating

how different parameters can influence the spread and persistence of infections in host pop-

ulations. Understanding these dynamics is crucial for designing effective interventions and

managing epidemic outbreaks.

Example 3 (Host extinction). The reduced reproductive capacity of infected hosts may

lead to host extinction. Figure 5.4 illustrates four sample paths of a stochastic epidemic

model for different scenarios with reduced reproductive capacity of infected hosts. These

paths compare the dynamics of the total and infected host populations over time with their

corresponding deterministic solutions (dashed curves). Panels (a) and (b) in the first row

depict the model using baseline parameters as specified in Table 5.1. Panel (a) shows the
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Figure 5.4: Four sample paths of the stochastic epidemic model for the total and infected
hosts in both host and pathogen populations and the corresponding deterministic solution
(dashed curve). The initial conditions are set as S(0) = 199, I(0) = 1 and B(0) = 0. The
graphs (a) and (b) illustrate the model with parameter values from Table 5.1. The graphs
(c) and (d) depict a scenario where there is limited reproduction among infected hosts due
to the impact of the infection, namely ⌘ = 0.02, and other parameter values are shown in
Table 5.1.
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total host population (N ), which starts around 200 and trends downward with notable vari-

ability among the stochastic paths, while the deterministic solution provides a smoother

decreasing trend. Panel (b) displays the infected host population (I), which initially spikes

to around 200 before declining with significant fluctuations, contrasted by a smoother de-

cline in the deterministic solution. Panels (c) and (d) in the second row present a scenario

with reduced reproduction among infected hosts due to the infection’s impact (⌘ = 0.02).

Panel (c) indicates a more rapid decline in the total host population starting from around

200, shown by the pronounced downward trend in both stochastic and deterministic paths.

Panel (d) highlights the infected host population, which spikes to approximately 200 be-

fore a sharp decrease, as reflected in both the variable stochastic paths and the smoother

deterministic solution. This analysis emphasizes the role of pathogen reproduction rates in

shaping the persistence and extinction of host populations.

Example 4 (Extinction probability). The initial values of infected hosts and environ-

mental pathogens impact disease extinction probability in the population. In Figure 5.5,

we present the probability of disease extinction P0 as derived from the branching process

model, considering varying initial sizes of infected hosts (i0) and pathogens (b0). These

can be achieved by computing qi01 q
b0
2 with q1 and q2 determined by (5.16). Subfigure (a)

indicates that the probability of disease extinction increases with smaller initial sizes of

both infected hosts and pathogens. This is evidenced by the peak of the surface, which

approaches P0 = 1 for low values of i0 and b0. The contour lines in subfigure (b) denote

levels of constant extinction probability. It is observed that higher values of i0 and b0 cor-

relate with higher extinction probabilities, reinforcing the conclusion that increasing initial

numbers of infected hosts and environmental pathogens contribute positively to disease

persistence. The probability of disease extinction is notably low when the disease is intro-

duced by a few infected hosts, and it continues to decrease as the number of infected hosts

increases. Conversely, if the disease originates from environmental pathogens with only a

small initial count present at the onset of the epidemic, the probability of disease extinction

is significantly high. Moreover, as the initial count of pathogens increases, the likelihood of
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Chapter 5. Infection-induced host extinction for the frog population

a disease outbreak also rises. Therefore, the initial number of infected hosts poses a greater

influence on the disease dynamics in this system during the early stages of the epidemic

compared to the initial number of environmental pathogens. This behavior can be attributed

to the scenario where a single infected host can release a larger quantity of environmen-

tal pathogens, which can subsequently infect more susceptible hosts, thereby diminishing

the probability of disease extinction and amplifying the likelihood of a substantial disease

outbreak.
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Figure 5.5: Probability of disease extinction P0, solved from the branching process, for
varying initial sizes of infected hosts and pathogens on (a) the 3D surface and (b) the
contour plot with an inset. We set bN = 0.055 day�1, ⇠N = 0.005, � = 1.2 ⇥ 10�5 day�1

and dB = 0.245 day�1. Other parameter values are shown in Table 5.1.

Example 5 (Extinction time distribution of infection). To analyze the probability dis-

tribution of extinction times of infection under different initial conditions, we present the

approximate probability distribution of extinction times for the number of infected individ-

uals under varying initial conditions in Figure 5.6. In panel (a), where S(0) = 50, I(0) = 1

and B(0) = 0, the extinction time exhibits a pronounced peak around 0 � 1 days with

approximately 20% probability. This indicates that with only one initial infected individual

and no environmental pathogens, the infection is likely to die out quickly, although there

is a long tail extending up to 20 days suggesting occasional longer survival. Panel (b) with

initial conditions S(0) = 50, I(0) = 1 and B(0) = 1 shows a similar peak but with a
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slightly lower probability. This suggests that the presence of one environmental pathogen

marginally increases the infection persistence but does not significantly alter the extinction

dynamics compared to panel (a). In panel (c), where S(0) = 50, I(0) = 2 and B(0) = 0,

the extinction time distribution becomes more uniform with a peak around 1� 3 days and

a tail extending to 25 days. This broader distribution indicates that with two initial infected

individuals, the likelihood of infection persistence increases, thereby spreading the extinc-

tion times over a wider range. Finally, panel (d), which considers S(0) = 50, I(0) = 10 and

B(0) = 10, displays a peak extinction time around 5� 10 days with a long tail reaching up

to 40 days. The substantial increase in initial infected individuals and pathogens results in

a significantly prolonged infection period. Overall, these simulations demonstrate that the

initial number of infected individuals and environmental pathogens significantly impacts

the extinction time distribution. Higher initial counts lead to longer infection durations due

to increased transmission opportunities. All distributions exhibit a right-skewed pattern, in-

dicating that while most infections extinguish quickly, a small number persist for extended

periods.

5.5 Discussion

Addressing the incidence of Bd pathogens in frog-inhabited regions poses substantial chal-

lenges in fighting against chytridiomycosis and in protecting frog populations. To con-

tribute to these efforts, we incorporate the reproductive mechanisms of frog and Bd pathogen

populations, as well as their transmission pathways, into our model formulation. Both a

deterministic model and its stochastic counterpart are constructed to illustrate the inter-

play among susceptible hosts, infectious hosts, and environmental pathogens. The model

includes two transmission routes: direct transmission between susceptible and infected

hosts, and indirect transmission of susceptible hosts by environmental pathogens. Envi-

ronmental pathogens can reproduce independently and can also be released by infectious

hosts. Furthermore, these pathogens may induce additional disease-induced mortality in in-

fected hosts or reduce the fertility of these hosts. Additionally, we explore host-associated
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(a) (b)

(c) (d)

Figure 5.6: Approximate probability distribution of extinction time for the number of in-
fected individuals with varying initial conditions: (a) S(0) = 50, I(0) = 1 and B(0) = 0;
(b) S(0) = 50, I(0) = 1 and B(0) = 1; (c) S(0) = 50, I(0) = 2 and B(0) = 0; (d)
S(0) = 50, I(0) = 10 and B(0) = 10. The parameter dN is set to 0.55, and other parame-
ter values are provided in Table 5.1.
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mechanisms for persistence and tolerance.

Theoretically, we confirm the well-posedness of the deterministic model by showing the

existence, uniqueness, positivity, and boundedness of the solutions. Subsequently, we in-

vestigate the dynamics of the model system by three associated threshold parameters: the

net reproduction number of the host population RH , the pathogen reproduction number

RB, and the basic reproduction number of the infection R0. We determine the global sta-

bility of the disease-free and host-free equilibria, in addition to the uniform persistence

under two sets of biologically interpretable conditions. Furthermore, we identify two sce-

narios under which the host population persists: one where the pathogens do not reproduce,

and the other where the pathogen has no impact on the host population. In practical appli-

cations, we can calibrate the parameters of the deterministic model using data from specific

habitats to calculate the corresponding threshold reproduction numbers. Based on the dy-

namical conditions derived from theoretical analysis, we can then assess the existence and

stability of the host and pathogen equilibria. This information allows us to implement

targeted intervention and management strategies to maintain the ecological balance of am-

phibians.

Although the extinction threshold in the deterministic model provides valuable insights

into the potential extinction of the disease and host, the likelihood of these events would

also be interesting. For that purpose, a stochastic continuous-time Markov chain model is

constructed on the foundation of a deterministic model. This is accomplished by utilizing

the theory of the multitype branching process, which is particularly relevant when there

are only a few infected individuals at the beginning of an epidemic, a scenario that cannot

be effectively addressed by a deterministic model. In the stochastic model, we apply the

multitype branching process theory for both (I, B) and (S, I) to estimate the probabilities

of disease and host population extinction, respectively. Analytical and numerical results

demonstrate that the probabilities of disease and host population extinction, denoted as P0

and PH

0 , obtained from the multitype branching process theory, align remarkably well with

the numerically approximated probabilities derived from a proportion of sample paths that

lead to zero before an outbreak occurs. In practice, empirical data on initially infected
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individuals can be utilized to approximate the probability of disease extinction and the

probability distribution of extinction time, which are crucial for informing interventions

and management strategies aimed at maintaining ecological balance.

Numerical simulations verify the existence and stability of equilibria as shown in Figure

5.2. Additionally, they illustrate four sample paths of the stochastic epidemic model for the

total and infected hosts under different scenarios: no self-reproduction of the pathogen, no

impact of the pathogen on the hosts, and reduced reproduction of infected hosts. The results

indicate that the host population is persistent under conditions of no self-reproduction of the

pathogen or no impact of the pathogen on the hosts, while the host population goes extinct

under reduced fertility potential of infected hosts. Furthermore, Figure 5.6 illustrates the

approximate probability distribution of extinction times for the number of infected individ-

uals under varying initial conditions. It is observed that the extinction time distribution is

influenced by the initial values of infected hosts and environmental pathogens: larger initial

values generally lead to longer extinction times. Most infections extinguish quickly, but a

small number persist for extended periods. Finally, we explore the probability of disease

extinction for varying initial sizes of infected hosts and environmental pathogens using a

3D surface and contour plot in Figure 5.5. This demonstrates the relationship between the

two initial sizes and the probability of disease extinction.

The present study integrates several critical aspects into the formulation of deterministic

and stochastic models, including the self-reproduction of the pathogen in the environment,

multiple transmission routes, and the pathogen’s potential effects on infected host vital

rates such as fertility potential and excess mortality. However, the model formulation is

still highly simplified. Additional factors should be considered to improve the comprehen-

siveness of the model. For instance, the seasonal drivers of frog population growth, repro-

duction, and disease outbreaks, which depend on numerous spatial and temporal factors,

are worth exploring. Several seasonal drivers have been proposed, including temperature,

rainfall, and habitat conditions [135]. The environmental conditions contributing to out-

breaks can differ between habitats. Therefore, it is essential to incorporate these seasonal

factors, which are related to population persistence and disease outbreaks, into the model
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formulation and prediction. Future investigation will focus on deterministic and stochastic

models of the frog-pathogen system in a periodic environment.
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Chapter 6

Mating behaviors in frog population

growth

6.1 Introduction

While anuran amphibians predominantly display monogamous mating patterns, certain

frog species exhibit polygynous breeding strategies, whereby a single male copulates with

multiple females over the course of a breeding season [107]. In these cases, the male

plays a guardianship role, actively defending and safeguarding the egg clutches deposited

by his multiple mating partners. The mating systems of Hylidae and D. auratus exhibit a

polygynous breeding system, allowing both males and females to have multiple partners.

Monogamy is infrequently observed among ectothermic vertebrates [174]. However, R. im-

itator and R. vanzolinii present unique examples of biparental care and monogamy within

the amphibian taxa. Summers [173] illustrated that females may experience a potential

cost, manifested as decreased offspring growth and survivorship, when their mates engage

in polygynous mating and assume parental care responsibilities for offspring from other

females. Pröhl [150] conducted a comprehensive examination on the relationship between

the abundance of reproductive resources, population density, adult sex ratio, mating sys-

tem, male reproductive success, and sexual selection in the strawberry dart-poison frog,
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Dendrobates pumilio. This study revealed that there was no significant difference in the

level of polyandry observed across different habitats. Jennions, Bakwell, and Passmore

[102] elucidated the reproductive behavior of Chiromantis xerampelina, an African frog

species, and revealed the occurrence of multiple spawning and polyandry. These mating

patterns and reproductive strategies represent crucial factors that must be accounted for

when constructing models to study frog populations.

The population growth rate is affected by the mating function as it influences the level

of partner availability, thus affecting the likelihood of successful breeding. Bessa-Gomes,

Legendre, and Clobert [33] examined the outcomes of three commonly utilized alternative

mating functions in discrete population models: minimum, harmonic mean, and modified

harmonic mean. The study also explored the effects of these functions on three aspects: the

likelihood of female breeding, the presence and intensity of the Allee effect, and the risk of

extinction. In particular, the breeding probability of females is determined by the ratio of

mated females (c) to the total number of potentially reproductive females (f ), as females

can only breed if they successfully mate,

r =
c

f
.

Several studies have fitted various commonly utilized mating functions, which can be sum-

marized as follows:

(i) The minimum mating function: the number of pairs is determined by the less abun-

dant sex [111]. In the context of monogamy, the frequency-dependent mating func-

tion can be expressed as a function of the sex ratio among reproductive individuals,

denoted as �, that is,

� =
f

n
,

c = min(�n, (1� �)n) = min(�, 1� �)n,

where n = f + m is the size of the breeding population and m is the number of

reproductive males.
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If there is a deviation from one-to-one mating between males and females, the relative

abundance of each sex within the mating population will favor the sex that can form

multiple pair bonds. Suppose the maximum number of pair bonds that males can

establish is denoted as h and is greater than one. In such a scenario,

c = min(f, hm).

(ii) The harmonic mean mating function: it is possible to establish a mating function

in which males and females mate on a one-to-one basis [117, 152]. This can be

expressed as follows:

c =
2fm

f +m
.

Similar to the minimum function, the harmonic mean can also be modified to repre-

sent a polygynous mating system [117, 152], that is,

c =
2f · hm
f + hm

.

(iii) The modified harmonic mean mating function: it is assumed that breeding occurs

seasonally in most discrete time models, and that at most one breeding event can

take place within each time interval [111], that is,

c = min(f,
2 · f · hm
f + hm

) = min(1,
2hm

f + hm
)f.

In addition to the aforementioned mating functions that characterize mating conditions

under general circumstances, the difficulty faced by females in locating mates under con-

ditions of low male densities is commonly known as the mate-finding Allee effect [52, 77].

Allee effects are density-dependent phenomena where the per capita population growth rate

or a component of individual fitness increases with an increase in population size or density.
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The mate-finding Allee effect can be represented by the following hyperbolic function:

c =
mf

m+ ✓

with a positive parameter ✓, which is an alternative class of mating functions commonly

employed in sex-structured population models [52, 165].

In sexually reproducing organisms, the sex ratio and the success of pairing are important

factors in finding reproductive partners. Engen et al. [70] demonstrated that fluctuations

in sex ratios, both in monogamous and polygamous systems, contribute significantly to de-

mographic variances. Schmickl and Karsai [163] examined the interplay between sex ratio,

male success, and gender-specific density-independent mortality. They developed a time-

continuous model to study the population dynamics of a sexually reproducing, iteroparous

species. Araujo and Moura [19] proposed a novel model of mating dynamics and parental

care, emphasizing the importance of clarity, mathematical and probabilistic reasoning, the

significance of consistency conditions, and the fundamental role of spatial densities and the

law of mass action. Considering the aforementioned points, we aim to propose a compre-

hensive framework to model sex ratio dynamics, pair bond formation, and mating behavior

in population dynamics models.

In this chapter, we integrate two-sex division, polygynous mating behavior, and popula-

tion competition into a stage-structured model for frog populations. Since climate-related

factors impact the dynamics of frogs through various aspects such as reproduction, devel-

opment, and hibernation, we also incorporate seasonality and time-varying delays. The

remainder of this chapter is organized as follows: In Section 6.2, we develop a time-

periodic, stage-structured model that accounts for pair formation, hibernation periods, and

time-varying delays. Section 6.3 explores the qualitative dynamics of our model system,

including basic properties in the natural phase space and quotient space. In Section 6.4, we

introduce the net reproduction number R0 for the frog population model and analyze the

threshold dynamics in terms of R0. Section 6.5 presents numerical simulations illustrating

the effects of various factors on the population system. Finally, we conclude with a brief
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discussion.

6.2 Population model for frog mating behaviors

In the frog population, there are factors such as maturation, fecundity, and survival that

affect individuals. Additionally, there are different patterns of individuals that undergo

metamorphosis and reproduce. Therefore, we propose a two-sex succession model to de-

scribe the breeding, development, and hibernation of frogs. Taking into account the fact

that juvenile amphibians do not display gender distinctions [83], we categorize individuals

into three groups: juveniles, adult females, and adult males. The model assumptions are

listed as follows:

(i) There are two seasons: normal growing season (from the beginning of year 0 to

the time T ) and hibernation season (from timing T to the end of the year). Adult

frogs do not reproduce and generate the next generation at the end of normal devel-

opmental season, which occurs just before entering hibernation. In other words, all

juvenile frogs complete their growth and development during the normal growing

season within a one-year cycle.

(ii) It is assumed that juvenile individuals inhabit an environment characterized by suffi-

cient resources, leading to no competition among them for the available living spaces.

In contrast, adult individuals may require more resources to survive and develop, and

males and females may also compete for mate selection. The competition assump-

tion is taken into account when transitioning juveniles to adulthood by incorporating

a decreasing function of the current density of adults. The density-dependent func-

tions regulate the recruitment rates of the female and male adult stages, expressed

as
⇣
1� Af (t)

Kf

⌘
rJ(t)j(1, t) and

⇣
1� Am(t)

Km

⌘
rJ(t)j(1, t), respectively, where Kf and

Km represent the carrying capacity of female and male population, which determines

the strength of population regulation.

(iii) Taking into consideration the prevalent polygynous behavior observed in the adult
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6.2. Population model for frog mating behaviors

frog population, we incorporate a modified harmonic mean mating function into the

birth function. Specifically, we define the birth function as B(Af (t), Am(t)) = R ·
2Af (t)·hAm(t)
Af (t)+hAm(t) , where R represents the intrinsic growth rate. This modified harmonic

mean mating function accounts for the interaction between adult females (Af ) and

adult males (Am), with the parameter h influencing the maximum number of pair

bonds that males can form as a result of engaging with multiple partners.

We introduce the notation btc to represent the floor function, which returns the nearest

integer less than or equal to t. Consequently, t�btc 2 [0, T ] and t�btc 2 (T, 1) indicate the

normal growing and hibernation periods, respectively. The modeling approach employed in

this study shares similarities with those used by Lou and Zhao [122], Wang and Zhao [195],

and Lou and Sun [121]. To characterize the development of different stages, we introduce a

measurement parameter, denoted as q, which reflects the proportion of development to the

next stage. The total number of juveniles at time t is given by J(t) =
R 1

0 j(q, t)dq. During

the normal growing season (t � btc 2 [0, T ]), the population dynamics are described as

follows:

8
>>>>>><

>>>>>>:

@j(q, t)

@t
+

@

@q
[rJ(t)j(q, t)] = �µJ(t)j(q, t), t� btc 2 [0, T ],

dAf (t)

dt
= Mf (t)� µA(t)Af (t), t� btc 2 [0, T ],

dAm(t)

dt
= Mm(t)� µA(t)Am(t), t� btc 2 [0, T ],

(6.1)

with the boundary conditions for variable j(q, t) given by

8
>>>>>><

>>>>>>:

rJ(t)j(0, t) = B(Af (t), Am(t)),

Mf (t) = ↵rJ(t)j(1, t)

✓
1� Af (t)

Kf

◆
,

Mm(t) = (1� ↵)rJ(t)j(1, t)

✓
1� Am(t)

Km

◆
.

(6.2)

In the given population dynamics, the birth function B(Af (t), Am(t)) can be represented

by the modified harmonic mean mating function B(Af (t), Am(t)) = R · 2Af ·hAm

Af+hAm

. It is
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Chapter 6. Mating behaviors in frog population growth

assumed that surplus adult frogs will migrate out of the population and join other breeding

sites. The parameter ↵ represents the sex ratio of female frogs at birth within the entire

population. The parameters µJ(t) and µA(t) denote the mortality rates of juvenile and

adult frogs, respectively, during the normal growing season.

During the hibernation season, when t�btc 2 (T, 1), there is no development, maturation,

or fecundity. Consequently, the parameters rJ(t), Mf (t), and Mm(t) are all equal to zero

during this period. Note that, based on assumption (i), only hibernating adult frogs with a

mortality rate of dA(t) exist. Thus, the dynamics of the population during the hibernation

season can be described as follows:

8
><

>:

dAf (t)

dt
= �dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
= �dA(t)Am(t), t� btc 2 (T, 1).

(6.3)

Now we are going to formulate the equations when t� btc 2 [0, T ]. Suppose q = 0 at the

start of juvenile stage J , q = 1 at the developmental transition from J to Af or Am. The

equation
@j(q, t)

@t
= � @

@q
[rJ(t)j(q, t)]� µJ(t)j(q, t) (6.4)

has the boundary condition

j(0, t) =
B(Af (t), Am(t))

rJ(t)
.

To solve system (6.4) with this boundary condition, we introduce a new variable

⇠ = h(t) :=

Z
t

0

rJ(s)ds.

Since rJ(t) > 0 when t � btc 2 [0, T ], ⇠ = h(t) is strictly increasing on this interval. Let

h�1(⇠) be the inverse function of h(t), and define

ĵ(q, ⇠) = j(q, h�1(⇠)), µ̂J(⇠) = µJ(h
�1(⇠)), r̂J(⇠) = rJ(h

�1(⇠)).
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6.2. Population model for frog mating behaviors

In view of (6.4), we have

@ĵ(q, ⇠)

@⇠
=
@j(q, h�1(⇠))

@t
· dt
d⇠

=
@j(q, t)

@t
· 1

rJ(h�1(⇠))

=
1

rJ(t)


� @

@q
[rJ(t)j(q, t)]� µJ(t)j(q, t)

�

= �@ĵ(q, ⇠)
@q

� µ̂J(⇠)

r̂J(⇠)
ĵ(q, ⇠).

The equation
@ĵ(q, ⇠)

@⇠
= �@ĵ(q, ⇠)

@q
� µ̂J(⇠)

r̂J(⇠)
ĵ(q, ⇠) (6.5)

exhibits a similar form to the standard von Foerster equation [143]. Let V (s) = ĵ(s+ q �

⇠, s). It follows from (6.5) that

dV (s)

ds
= � µ̂J(s)

r̂J(s)
V (s).

Since ⇠ � q  ⇠, we have

V (⇠) = V (⇠ � q)e
�

R
⇠

⇠�q
� µ̂J (s)

r̂J (s) ds,

and hence,

ĵ(q, ⇠) = ĵ(qJ , ⇠ � q)e
�

R
⇠

⇠�q
� µ̂J (s)

r̂J (s) ds.

Define ⌧(q, t) to be the time taken to grow from development level 0 to level q by an

individual who arrives at development level q at time t. Since dq
dt = rJ(t), it follows that

q =

Z
t

t�⌧(q,t)
rJ(s)ds, (6.6)

and then,

h(t� ⌧(q, t)) = h(t)�
Z

t

t�⌧(q,t)
r(s)ds = h(t)� q.
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By change of variable s = h(↵), we have

Z
⇠

⇠�q

µ̂J(s)

r̂J(s)
ds =

Z
t

t�⌧(q,t)
µJ(↵)d↵.

It follows that

j(q, t) = ĵ(q, h(t))

= j(0, t� ⌧(q, t))e�
R
t

t�⌧(q,t) µJ (↵)d↵

=
B(Af (t� ⌧(q, t)), Am(t� ⌧(q, t)))

rJ(t� ⌧(q, t))
e�

R
t

t�⌧(q,t) µJ (↵)d↵.

Denoting ⌧(t) = ⌧(1, t), we obtain

rJ(t)j(1, t) = B(Af (t� ⌧(t)), Am(t� ⌧(t)))
rJ(t)

rJ(t� ⌧(t))
e�

R
t

t�⌧(t) µJ (↵)d↵.

Letting q = 1 in (6.6), we have

1 =

Z
t

t�⌧(t)
rJ(s)ds. (6.7)

Taking the derivative with respect to t on both sides of (6.7), we have

1� ⌧
0
(t) =

rJ(t)

rJ(t� ⌧(t))
.

Thus, there holds 1 � ⌧
0
(t) > 0. In virtue of (6.7), it is shown that if rJ(t) is a periodic

function, then so is ⌧(t) with the same period.
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Therefore, when t� btc 2 [0, T ], we have the following model:

dJ(t)

dt
=B(Af (t), Am(t))� µJ(t)J(t)

� (1� ⌧
0
(t))B(Af (t� ⌧(t)), Am(t� ⌧(t)))e�

R
t

t�⌧(t) µJ (↵)d↵,

dAf (t)

dt
=↵(1� ⌧

0
(t))

✓
1� Af (t)

Kf

◆
B(Af (t� ⌧(t)), Am(t� ⌧(t)))e�

R
t

t�⌧(t) µJ (↵)d↵

� µA(t)Af (t),

dAm(t)

dt
=(1� ↵)(1� ⌧

0
(t))

✓
1� Am(t)

Km

◆
B(Af (t� ⌧(t)), Am(t� ⌧(t)))e�

R
t

t�⌧(t) µJ (↵)d↵

� µA(t)Am(t),
(6.8)

where B(Af (t), Am(t)) =
2R·Af (t)·hAm(t)
Af (t)+hAm(t) .

Since the equations of Af (t) and Am(t) in system (6.8) and system (6.3) are decoupled from

the juvenile equation, respectively, we focus on the following delay differential equation

dAf (t)

dt
=↵ eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� Af (t)

Kf

◆
� µA(t)Af (t),

t� btc 2 [0, T ],

dAm(t)

dt
=(1� ↵) eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� Am(t)

Km

◆
� µA(t)Am(t),

t� btc 2 [0, T ],

dAf (t)

dt
=� dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
=� dA(t)Am(t), t� btc 2 (T, 1),

(6.9)

where eB(t) = 2R(1 � ⌧
0
(t))e�

R
t

t�⌧(t) µJ (↵)d↵. Note that Af ·hAm

Af+hAm

is defined to be 0 if

(Af , Am) = (0, 0).

141



Chapter 6. Mating behaviors in frog population growth

6.3 Qualitative dynamics

It is easy to check that the system is cooperative when the following conditions hold: 0 

⌧
0
(t) < 1, 0  Af (t)  Kf , 0  Am(t)  Km and all other parameters are non-negative.

6.3.1 Natural phase space and basic properties

Based on the frog ecology, we assume that 0 < ⌧(t) < 1. Let ⌧̂ = max
t2[0,T ]

⌧(t), X =

C([�⌧̂ , 0],R2). Choose the natural phase space X , it is a Banach space equipped with the

supremum norm

||'||X = max
✓2[�⌧̂ ,0]

||'(✓)||.

For any ',  2 X and ↵ 2 R, we have

1. ||'||X = max✓2[�⌧̂ ,0] ||'(✓)|| � 0 and ||'||X = 0 if and only if ' = 0.

2. ||↵'||X = max✓2[�⌧̂ ,0] ||↵'|| = |↵|max✓2[�⌧̂ ,0] ||'|| = |↵|||'||X .

3. ||'+  ||X = max✓2[�⌧̂ ,0] ||'(✓) +  (✓)||  max✓2[�⌧̂ ,0](||'(✓)||+ || ||)

 max✓2[�⌧̂ ,0] ||'(✓)||+max✓2[�⌧̂ ,0] || (✓)|| = ||'(✓)||X + || ||X .

4. for any Cauchy sequence {'n} in X , according to the properties of the maximum

norm, for each fixed ✓ 2 [�⌧̂ , 0], the sequence of vectors {'n} in R2 is a Cauchy

sequence in R2. Since R2 is complete, {'n(✓)} converges to a vector, denoted as

'. It can be proved that ' 2 C([�⌧̂ , 0],R2), and {'n} converges to ' under the

maximum norm.

A closed convex subset X+ 2 X can be introduced as X+ = {' 2 X : '(✓) � 0 for all ✓ 2

[�⌧̂ , 0]}, which induces a partial ordering on the Banach space (X , || · ||X ). Furthermore,

X+ is non-empty since 0 2 X+ and int(X+) = {' 2 X : '(✓) > 0 for all ✓ 2 [�⌧̂ , 0]}.

For any ',  2 X+, for all ✓ 2 [�⌧̂ , 0], '(✓) 2 R2
+ and  (✓) 2 R2

+. Then (' +  )(✓) =

'(✓) +  (✓) 2 R2
+, thus ' +  2 X+. For any ' 2 X+ and ↵ � 0, for all ✓ 2 [�⌧̂ , 0],

(↵')(✓) = ↵'(✓) 2 R2
+, thus ↵' 2 X+. Suppose ' 2 X+ \ (�X+), for all ✓ 2 [�⌧̂ , 0],

'(✓) 2 R2
+ and '(�✓) 2 R2

+. This implies that '(✓) = 0, thus ' = 0.
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Suppose 0  '   such that  � ' 2 X+. By the definition of X+, for all ✓ 2

[�⌧̂ , 0], 0  '(✓)   (✓). Therefore, ||'(✓)||  || (✓)||, and then max✓2[�⌧̂ ,0] ||'(✓)|| 

max✓2[�⌧̂ ,0] || (✓)||, namely ||'||X  || ||X . It follows that (X ,X+) is an ordered Banach

space equipped with the maximum norm and the partial order induced by the positive cone

X+. For any given continuous function u = (u1, u2) : [�⌧̂ , �) ! R2 with � > 0, we

define ut 2 X by

ut(✓) = u(t+ ✓), 8✓ 2 [�⌧̂ , 0]

for all t 2 [0, �). Then let ⌧̄ = min{mint2[0,T ] ⌧(t), T}.

Lemma 6.3.1. For any ' 2 X+, system (6.9) admits a unique non-negative solution u(t;')

on [0,1) with u0 = '. Moreover, there exist 0  '1(✓)  Kf and 0  '2(✓)  Km for

all ✓ 2 [�⌧̂ , 0], then 0  u1(t;')  Kf and 0  u2(t;')  Km.

Proof. Since 1� ⌧
0
(t) > 0, t� ⌧(t) is strictly increasing in t. For any t 2 [0, ⌧̄ ], we have

�⌧(0) = 0� ⌧(0)  t� ⌧(t)  ⌧ � ⌧(⌧̄)  ⌧̄ � ⌧̄ = 0,

and hence, u1(t�⌧(t)) = '1(t�⌧(t)) and u2(t�⌧(t)) = '2(t�⌧(t)). Then for t 2 [0, ⌧̄ ],

we have the following equations:

du1(t)

dt
= ↵ eB(t)

'1(t� ⌧(t)) · h'2(t� ⌧(t))

'1(t� ⌧(t)) + h'2(t� ⌧(t))

✓
1� u1(t)

Kf

◆
� µA(t)u1(t),

du2(t)

dt
= (1� ↵) eB(t)

'1(t� ⌧(t)) · h'2(t� ⌧(t))

'1(t� ⌧(t)) + h'2(t� ⌧(t))

✓
1� u2(t)

Km

◆
� µA(t)u2(t).

(6.10)

According to the existence and uniqueness of solutions of ordinary differential equations,

the solutions to (6.10) can be written as

u1(t) = '1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+ e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

·
Z

t

0

↵q(s)e
R
s

0

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds
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and
u2(t) ='2(0)e

�
R
t

0(
(1�↵)q(s)

Km
+µA(s))ds

+ e�
R
t

0(
(1�↵)q(s)

Km
+µA(s))ds ·

Z
t

0

(1� ↵)q(s)e
R
s

0 (
(1�↵)q(⇠)

Km
+µA(⇠))d⇠ds

where q(s) = eB(s) '1(s�⌧(s))·h'2(s�⌧(s))
'1(s�⌧(s))+h'2(s�⌧(s)) � 0. Therefore, u1(t) � 0 and u2(t) � 0. The

non-negative solution (u1(t), u2(t)) of system (6.10) exists for t 2 [0, ⌧̄ ].

For any ' 2 X+, there exist 0  '1(✓)  Kf and 0  '2(✓)  Km with ✓ 2 [�⌧̂ , 0].

Then we have

u1(t) ='1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
Z

t

0

↵q(s)

Kf

e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

='1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
Z

t

0

✓
↵q(s)

Kf

+ µA(s)

◆
e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

�Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

='1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
"
1� e

�
R
t

0

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

#

�Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

Kf �Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

Kf .

Hence 0  u1(t)  Kf . Similarly, 0  u2(t)  Km for t 2 [0, ⌧̄ ].

For any t 2 [⌧̄ , 2⌧̄ ] with 2⌧̄  T , we have

�⌧(0)  ⌧̄ � ⌧(⌧̄)  t� ⌧(t)  2⌧̄ � ⌧(2⌧̄)  2⌧̄ � ⌧̄ = ⌧̄ ,

and hence, u1(t � ⌧(t)) =  1(t � ⌧(t)). Solving the following equations for t 2 [⌧̄ , 2⌧̄ ]
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with u1(⌧̄) =  1(⌧̄) and u2(⌧̄) =  2(⌧̄):

du1(t)

dt
= ↵ eB(t)

 1(t� ⌧(t)) · h 2(t� ⌧(t))

 1(t� ⌧(t)) + h 2(t� ⌧(t))

✓
1� u1(t)

Kf

◆
� µA(t)u1(t),

du2(t)

dt
= (1� ↵) eB(t)

 1(t� ⌧(t)) · h 2(t� ⌧(t))

 1(t� ⌧(t)) + h 2(t� ⌧(t))

✓
1� u2(t)

Km

◆
� µA(t)u2(t).

Then we get the solution (u1(t), u2(t)) on [⌧̄ , 2⌧̄ ]. We also have 0  u1(t)  Kf and 0 

u2(t)  Km for all t 2 [⌧̄ , 2⌧̄ ]. Similar arguments remain valid for t 2 [2⌧̄ , 3⌧̄ ], . . . , [bnc⌧̄ ,

n⌧̄ ] with n = T

⌧̄
. Therefore, the solution (u1(t), u2(t)) exists on [0, T ] and 0  u1(t)  Kf ,

0  u2(t)  Km.

For t 2 (T, 1), we have

dAf (t)

dt
= �dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
= �dA(t)Am(t), t� btc 2 (T, 1).

It follows that

u1(t) = u1(T )e
�

R
t

T
dA(s)ds and u2(t) = u2(T )e

�
R
t

T
dA(s)ds

where u1(T ) and u2(T ) are known from the previous procedures. Thus the unique solution

(u1(t), u2(t)) exists and 0  u1(t)  Kf , 0  u2(t)  Km for t 2 (T, 1). Repeating the

similar arguments for t 2 [1, 2], [2, 3], . . ., the statement still holds.

Based on the expressions of u1(t) and u2(t) in the proof, we can further obtain that

lim sup
t!1 u1(t)  Kf and lim sup

t!1 u2(t)  Km for any ' 2 X+. Therefore, it is

sufficient to study the long-term behaviors of solutions through initial values ' with

' 2 XK := {' : 0  '1(✓)  Kf and 0  '2(✓)  Km for all ✓ 2 [�⌧̂ , 0]}.

Suppose �(t) be the solution maps of system (6.9) on X , that is, �(t)' = ut('), t � 0,

where u(t;') is the unique solution of system (6.9) with u0 = ' 2 X . Without loss of
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generality, we assume initial value ' satisfies 0  '1(0)  Kf and 0  '2(0)  Km.

Based on lemma 3.5 in [122], we have the following statements.

Lemma 6.3.2. �(t) : X ! X is an 1-periodic semiflow in the sense that (i) �(0) = I; (ii)

�(t+ 1) = �(t) � �(1), 8t � 0; (iii) �(t)' is continuous in (t,') 2 [0,1)⇥ X .

The next lemmas present that the periodic semiflow �(t) is monotone and strictly subho-

mogeneous.

Lemma 6.3.3. For any ' and  in XK with ' �  , the solutions u(t;') and u(t; ) of

system (6.9) with u0(·;') = ' and u0(·; ) =  , respectively, satisfy u(t;') � u(t; ) for

all t � 0.

Proof. Denote v(t) = u(t;') and w(t) = u(t; ), then we have vt(·) 2 XK with v0(·) = '

and wt(·) 2 XK with w0(·) =  , respectively. For t 2 [0, ⌧̄ ], we have

v
0

1(t) = ↵q(t)

✓
1� v1(t)

Kf

◆
� µA(t)v1(t), v1(0) = '1(0);

v
0

2(t) = (1� ↵)q(t)

✓
1� v2(t)

Km

◆
� µA(t)v2(t), v2(0) = '2(0);

w
0

1(t) = ↵p(t)

✓
1� w1(t)

Kf

◆
� µA(t)w1(t), w1(0) =  1(0);

w
0

2(t) = (1� ↵)p(t)

✓
1� w2(t)

Km

◆
� µA(t)w2(t), w2(0) =  2(0),

(6.11)

where q(t) = eB(t) '1(t�⌧(t))·h'2(t�⌧(t))
'1(t�⌧(t))+h'2(t�⌧(t)) and p(t) = eB(t)  1(t�⌧(t))·h 2(t�⌧(t))

 1(t�⌧(t))+h 2(t�⌧(t)) .

Assume that two functions z1(t) and z2(t) satisfy the following equations:

z
0

1(t) = ↵q(t)

✓
1� z1(t)

Kf

◆
� µA(t)z1(t), z1(0) =  1(0),

z
0

2(t) = (1� ↵)q(t)

✓
1� z2(t)

Km

◆
� µA(t)z2(t), z2(0) =  2(0).

It follows that

z1(t) = e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

 
 1(0) +

Z
t

0

↵q(s) · e
R
s

0

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

!
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and

z2(t) = e�
R
t

0(
(1�↵)q(s)

Km
+µA(s))ds

✓
 2(0) +

Z
t

0

(1� ↵)q(s) · e
R
s

0 (
(1�↵)q(⇠)

Km
+µA(⇠))d⇠ds

◆
.

Then we have

z1(t) = 1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
Z

t

0

↵q(s)

Kf

e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

= 1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
Z

t

0

✓
↵q(s)

Kf

+ µA(s)

◆
e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

�Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

= 1(0)e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+Kf ·
"
1� e

�
R
t

0

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

#

�Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

Kf �Kf ·
Z

t

0

µA(s)e
�

R
t

s

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

Kf ,

which implies that 0  z1(t)  Kf . Similarly, we have 0  z2(t)  Km. Then there exist

(v1(t)� z1(t))
0
= v

0

1(t)� z
0

1(t) = �
✓
↵q(t)

Kf

+ µA(t)

◆
(v1(t)� z1(t))

and v1(0)� z1(0) = '1(0)�  1(0), which implies that

v1(t)� z1(t) = ('1(0)�  1(0))e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

.

Similarly, we have

(z1(t)� w1(t))
0
= z

0

1(t)� w
0

1(t)

= �
✓
↵p(t)

Kf

+ µA(t)

◆
(z1(t)� w1(t)) + ↵

✓
1� z1(t)

Kf

◆
(q(t)� p(t))
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with z1(0)� w1(0) = 0. It follows that

z1(t)�w1(t) = e
�

R
t

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

·
Z

t

0

↵(q(s)�p(s))

✓
1� z1(s)

Kf

◆
·e

R
s

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

ds.

Therefore, we have

v1(t)� w1(t) =(v1(t)� z1(t)) + (z1(t)� w1(t))

=('1(0)�  1(0))e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+ e
�

R
t

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

·
Z

t

0

↵(q(s)� p(s))

✓
1� z1(s)

Kf

◆
· e

R
s

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

�0.

Repeating the procedures for t 2 [⌧̄ , 2⌧̄ ], [2⌧̄ , 3⌧̄ ], . . . , [bnc⌧̄ , n⌧̄ ] with n = T

⌧̄
, we have

v1(t) � w1(t) for all t 2 [0, T ]. Similar arguments remain valid, that is v2(t) � w2(t) for

all t 2 [0, T ].

For t 2 (T, 1), we have v1(t) = '1(T )e�
R
t

T
dA(s)ds and w1(t) =  1(T )e�

R
t

T
dA(s)ds. Since

'1(T ) �  1(T ), it follows that v1(t)�w1(t) = ('1(T )� 1(T ))e�
R
t

T
dA(s)ds � 0. Similarly,

we have v2(t)� w2(t) � 0 since '2(T ) �  2(T ) for t 2 (T, 1).

Therefore, �(t) : X ! X is monotone for t 2 [0, 1]. Repeating the procedures to the next

intervals [1, 2], [2, 3], . . ., we have �(t) : X ! X is monotone for all t � 0.

Lemma 6.3.4. For any ' � 0 in XK and any � 2 (0, 1), we have ui(t; �') > �ui(t;')

for all t > 0, i = 1, 2.

Proof. Denote z(t) = u(t; �') with z0(·) = �' and v(t) = u(t;') with v0(·) = ' � 0

in XK . It follows from Lemma 6.3.3 that z(t) > 0 and v(t) > 0 for all t > 0. For all

✓ 2 [�⌧̂ , 0], we have

z1(✓) = �'1(✓) = �v1(✓) and z2(✓) = �'2(✓) = �v2(✓).
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For any t 2 [0, ⌧ ], we have

z1(t) = e
�

R
t

0

✓
↵�q(s)
K

f

+µA(s)

◆
ds

 
�'1(0) +

Z
t

0

↵�q(s) · e
R
s

0

✓
↵�q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

!

> �e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

 
'1(0) +

Z
t

0

↵q(s) · e
R
s

0

✓
↵q(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

!

= �v1(t)

and

z2(t) = e�
R
t

0(
(1�↵)�q(s)

Km
+µA(s))ds

✓
�'2(0) +

Z
t

0

(1� ↵)�q(s) · e
R
s

0 (
(1�↵)�q(⇠)

Km
+µA(⇠))d⇠ds

◆

> �e�
R
t

0(
(1�↵)q(s)

Km
+µA(s))ds

✓
'1(0) +

Z
t

0

(1� ↵)q(s) · e
R
s

0 (
(1�↵)q(⇠)

Km
+µA(⇠))d⇠ds

◆

= �v2(t)

where q(s) = eB(s) '1(s�⌧(s))·h'2(s�⌧(s))
'1(s�⌧(s))+h'2(s�⌧(s)) . Similar arguments deduce that z1(t) > �v1(t)

and z2(t) > �v2(t) for all t 2 [⌧ , T ]. Hence, we easily obtain z1(T ) > �v1(T ) and

z2(T ) > �v1(T ).

For any t 2 (T, 1), we have

z1(t) = z1(T )e
�

R
t

T
dA(s)ds > �v1(T )e

�
R
t

T
dA(s)ds = �v1(t)

and

z2(t) = z2(T )e
�

R
t

T
dA(s)ds > �v2(T )e

�
R
t

T
dA(s)ds = �v2(t).

This concludes that z1(t) > �v1(t) and z2(t) > �v2(t) for t 2 [0, 1]. Repeating the

procedure for t 2 [1, 2], [2, 3], . . ., we have z1(t) > �v1(t) and z2(t) > �v2(t) for all

t > 0.
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6.3.2 Quotient space and strong monotonicity

Regarding the equations as an ordinary differential equations, we have the following obser-

vations: When t 2 [0, T ], we need the values of u(0) and u(t� ⌧(t)). It is easy to see that

t � ⌧(t) 2 I := {�⌧(0),min {T � ⌧(T ), 0}} is satisfied by the monotonicity of the func-

tion f(t) = t� ⌧(t). Since t� ⌧(t) is strictly increasing, then we have a more reasonable

choice of t� ⌧(t) 2 I . That is, the information of initial value is on the set {0} [ I .

By checking the structure of the model, we define a closed set A ⇢ X as

A = {' 2 X : '(✓) = 0 for all ✓ 2 {0} [ I} .

Based on the set A, we have the following interesting observations:

Lemma 6.3.5. For any two initial data ',  2 X and the respective solutions through

them u(t;') and u(t; ) satisfy:

(i) if '�  2 A, then u(t;')� u(t; ) ⌘ 0 for all t � 0;

(ii) if furthermore, ' 2 A, then u(t;') ⌘ 0 for all t � 0.

Proof. Denote v(t) = u(t;') and w(t) = u(t; ), then we have vt(·) 2 X with v0(·) = '

and wt(·) 2 X with w0(·) =  , respectively. When '� 2 A, then '1(✓)� 1(✓) = 0 and

'2(✓) �  2(✓) = 0 for all ✓ 2 {0} [ I . Two solutions v(t) = u(t;') and w(t) = u(t; )

satisfy that u(0;'1) � u(0; 1) = '1(0) �  1(0) = 0 and u(0;'2) � u(0; 2) = '2(0) �

 2(0) = 0.

For t 2 [0, ⌧ ], we have equations (6.11) involving v
0
1(t), v

0
2(t), w

0
1(t) and w

0
2(t). Since

t � ⌧(t) 2 [�⌧(0), ⌧ � ⌧(⌧)] ⇢ I , then '1(t � ⌧(t)) =  1(t � ⌧(t)) and '2(t � ⌧(t)) =

 2(t� ⌧(t)). Thus q(t) = p(t) and then

v
0

1(t)� w
0

1(t) = ↵q(t)

✓
1� v1(t)

Kf

◆
�
✓
1� w1(t)

Kf

◆�
� µA(t)[v1(t)� w1(t)]

=


�↵q(t)

Kf

� µA(t)

�
[v1(t)� w1(t)]

(6.12)
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and

v
0

2(t)� w
0

2(t) = (1� ↵)q(t)

✓
1� v2(t)

Km

◆
�
✓
1� w2(t)

Km

◆�
� µA(t)[v2(t)� w2(t)]

=


�(1� ↵)q(t)

Km

� µA(t)

�
[v2(t)� w2(t)].

(6.13)

Since equations (6.12) and (6.13) are linear and the initial values v1(0) � w1(0) = 0 and

v2(0) � w2(0) = 0, then v1(t) � w1(t) ⌘ 0 and v2(t) � w2(t) ⌘ 0 for all t 2 [0, ⌧ ] if

' �  2 A. Similar arguments hold for t 2 [⌧ , 2⌧ ], [2⌧ , 3⌧ ],..., [bnc⌧ , n⌧ ], with n = T

⌧
,

thus we have v1(t) � w1(t) ⌘ 0 and v2(t) � w2(t) ⌘ 0, namely u(t;') � u(t; ) ⌘ 0 for

all t 2 [0, T ].

For t 2 (T, 1), we have

v
0

1(t)� w
0

1(t) = �dA(t)(v1(t)� w1(t)),

v
0

2(t)� w
0

2(t) = �dA(t)(v2(t)� w2(t)).

Therefore, v1(t) � w1(t) ⌘ 0 and v2(t) � w2(t) ⌘ 0, namely u(t;') � u(t; ) ⌘ 0 for all

t 2 (T, 1) if ' �  2 A. Repeating these procedures to all time intervals [1, 2], [2, 3], . . .,

we have u(t;')� u(t; ) ⌘ 0 for all t � 0. Therefore, statement (i) holds.

If ' 2 A, choose  = 0 as the zero function in X , then '� 2 A and the solution through

 is identically zero for all t � 0. Hence

u(t;') ⌘ u(t; ) ⌘ 0,

which implies that statement (ii) holds.

It follows that, if we choose two initial data ' >  in the ordering X+, but ' �  2 A,

then u(t;') � u(t; ) ⌘ 0. Hence, the periodic semiflow �(t) is not strongly monotone.

The above observation on the identical solutions through two initial values ' and  with

' �  2 A motivates us to classify these initial data into the same class and partition

the phase space X into different classes. This can be done by using the quotient space
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Q = X /A, consisting of equivalence classes

['] = {'+ a : a 2 A}.

As solutions from two initial values ' and  taken from an equivalence class have the

property that ' �  2 A, Lemma 6.3.5 illustrates that the solutions u(t;') � u(t; ) ⌘ 0

for all t � 0. Then we may study the solution through a given equivalence class from the

quotient space Q. For ['] 2 Q, the solution through this equivalence is exactly the solution

u(t;'), based on which, the solution map e�(t) : Q ! Q can be defined as

e�(t)([']) = [�(t)(')] = [ut(·;')]

with ut(✓;') = u(t + ✓;') for all ✓ 2 [�⌧̂ , 0]. Then the positive cone Q+ ⇢ Q can be

introduced, consisting of equivalence classes ['] with

Q+ := {['] 2 Q : '(✓) � 0 for all ✓ 2 {0} [ I} .

For the coned space (Q,Q+), we can show that the solution map e�(t) is strongly monotone

when t � 2.

Lemma 6.3.6. For any two initial data equivalence classes ['] and [ ], if ['] > [ ] under

the cone Q+, then e�(t)([']) � e�(t)([ ]) when t � 2.

Proof. Suppose two typical elements ' and  are from two different equivalence classes,

and ['] > [ ] with partial ordering defined by Q+, then '(✓) �  (✓) for all ✓ 2 {0} [ I ,

and there is ✓0 2 {0} [ I such that '(✓0) >  (✓0).

Denote v(t) = u(t;') and w(t) = u(t; ), then we have vt(·) 2 Q+ with v0(·) = ' and

wt(·) 2 Q+ with w0(·) =  . It follows that

v1(t)� w1(t) =('1(0)�  1(0))e
�

R
t

0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+ e
�

R
t

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

·
Z

t

0

↵(q(s)� p(s))

✓
1� z1(s)

Kf

◆
· e

R
s

0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

ds

(6.14)
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and

v2(t)� w2(t) =('2(0)�  2(0))e
�

R
t

0

✓
(1�↵)q(s)

K
f

+µA(s)

◆
ds

+ e
�

R
t

0

✓
(1�↵)p(⇠)

K
f

+µA(⇠)

◆
d⇠

·
Z

t

0

(1� ↵)(q(s)� p(s))

✓
1� z1(s)

Kf

◆
· e

R
s

0

✓
(1�↵)p(⇠)

K
f

+µA(⇠)

◆
d⇠

ds

(6.15)

where q(s) = eB(s) '1(s�⌧(s))·h'2(s�⌧(s))
'1(s�⌧(s))+h'2(s�⌧(s)) and p(s) = eB(s)  1(s�⌧(s))·h 2(s�⌧(s))

 1(s�⌧(s))+h 2(s�⌧(s)) .

If ✓0 2 {0}, we have '1(0) >  1(0) and '2(0) >  2(0). Then v1(t) > w1(t) and

v2(t) > w2(t) for all t > 0.

If ✓0 2 I , we can choose a unique t0 2 [0, T ] such that t0 � ⌧(t0) = ✓0. These unique-

ness and existence of t0 is guaranteed by the fact that the inverse function of the bijection

function f(t) = t � ⌧(t) with the domain [0, 1] and range I exists. Next we will present

v1(t0) > w1(t0) and v2(t0) > w2(t0). If t0 2 [0, ⌧ ] and suppose, by contradiction, that

v1(t0) = w1(t0) and v2(t0) = w2(t0). Then it follows from equation (6.14) and (6.15) that

'1(0) =  1(0), '2(0) =  2(0) and q(s) = p(s) for all s 2 [0, t0]. That is,

eB(s)
'1(s� ⌧(s)) · h'2(s� ⌧(s))

'1(s� ⌧(s)) + h'2(s� ⌧(s))
= eB(s)

 1(s� ⌧(s)) · h 2(s� ⌧(s))

 1(s� ⌧(s)) + h 2(s� ⌧(s))
.

When s = t0, we have '1(✓0) = '1(t0 � ⌧(t0)) =  1(t0 � ⌧(t0)) =  1(✓0) and '2(✓0) =

'2(t0 � ⌧(t0)) =  2(t0 � ⌧(t0)) =  2(✓0), which contradicts with '1(✓0) >  1(✓0) and

'2(✓0) >  2(✓0). If t0 2 [⌧ , T ], similar arguments remain valid.

Hence, we can always find an t0 2 [0, 1] such that v1(t0) > w1(t0) and v2(t0) > w2(t0).

Then we may choose '̂ = ut0(·;') 2 Q+ and  ̂ = ut0(·; ) 2 Q+. It follows that '̂ �  ̂

and '̂(0) = u(t0;') > u(t0; ) =  ̂(0). For any t0  t  T , we have

v1(t)� w1(t) =('̂1(0)�  ̂1(0))e
�

R
t

t0

✓
↵q(s)
K

f

+µA(s)

◆
ds

+ e
�

R
t

t0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

·
Z

t

t0

↵(q(s)� p(s))

✓
1� z1(s)

Kf

◆
· e

R
s

t0

✓
↵p(⇠)
K

f

+µA(⇠)

◆
d⇠

ds > 0
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and

v2(t)� w2(t) =('̂2(0)�  ̂2(0))e
�

R
t

t0

✓
(1�↵)q(s)

K
f

+µA(s)

◆
ds

+ e
�

R
t

t0

✓
(1�↵)p(⇠)

K
f

+µA(⇠)

◆
d⇠

·
Z

t

t0

(1� ↵)(q(s)� p(s))

✓
1� z1(s)

Kf

◆
· e

R
s

t0

✓
(1�↵)p(⇠)

K
f

+µA(⇠)

◆
d⇠

ds > 0.

If T  t0  1, for t0  t  1, we have

v1(t)� w1(t) = (v1(t0)� w1(t0))e
�

R
t

t0
dA(s)ds > 0

and

v2(t)� w2(t) = (v2(t0)� w2(t0))e
�

R
t

t0
dA(s)ds > 0.

Similar arguments hold if t0 is in other intervals [1, 2], [2, 3], . . .. The arguments show that

if for t0 � 0, we have v1(t0) > w1(t0) and v2(t0) > w2(t0), then v1(t) > w1(t) and

v2(t) > w2(t) for all t � 1 > t0. Hence, the solution map e�(t) is strongly monotone

whenever t � 2.

6.4 Net reproduction number and stability

The net reproduction ratio R0 is a key threshold parameter analyzing the dynamics of pop-

ulation models in a periodic environment, referring to Bacaër and Ait Dads [26], Thieme

[179], Wang and Zhao [193], Wu et al. [200], Lou and Zhao [122] and the references

therein. Based on the theories in Zhao [206], we introduce the net reproduction number R0

to explore the dynamics of our model with a periodic time delay.

First investigate a nonlinear eigenvalue problem, and then introduce the net reproduction

number R0 by using the cone spectral radius of a monotone and homogeneous operator.

Furthermore, we explore the global stability of the host population model. Then we start

154



6.4. Net reproduction number and stability

with the following auxiliary system:

dAf (t)

dt
= ↵ eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))
� µA(t)Af (t), t� btc 2 [0, T ],

dAm(t)

dt
= (1� ↵) eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))
� µA(t)Am(t), t� btc 2 [0, T ],

dAf (t)

dt
= �dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
= �dA(t)Am(t), t� btc 2 (T, 1).

(6.16)

where eB(t) = 2R(1� ⌧
0
(t))e�

R
t

t�⌧(t) µJ (↵)d↵.

Let  (t) be the 1-periodic semiflow of system (6.16) on X . Note that for any ' 2 X+, if

û(t;') = (û1(t;'), û2(t;')) is a solution of (6.16) with û(0;') = ', then so is �û(t;')

for any t > 0 and 0 < � < 1. Similar to te proof of Lemma 6.3.4, we have

û(t;�') = �û(t;'), 8t � 0, 0 < � < 1.

This presents that for each t > 0,  (t) is strictly homogeneous on X+ in the sense that

 (t)(�') = � (t)', 80 < � < 1. In addition, it follows from the similar proving process

of Lemma 6.3.3 that for each t � 0,  is monotone on X+ and strongly monotone on Q+.

By Theorem 4.9 in [131], it then follows that  :=  (1) has a simple principal eigenvalue

r := r( ) > 0, where r( ) is the cone spectral radius of  , that is,  (t)'⇤ = r'⇤ for

some '⇤ � 0 in X+ and such an eigenvalue is unique.

Lemma 6.4.1. Let ⇤⇤ = ln r. Then there exists a positive 1-periodic function u⇤(t) such

that e⇤⇤
tu⇤(t) is a solution of system (6.16).

Proof. Similar to the proof of Lemma 5 in [28], let û(t;'⇤) = (û1(t;'⇤), û2(t;'⇤)) be the

solution of system (6.16) with û0(·;'⇤) = '⇤, where '⇤ is from an equivalence class ['⇤]

with partial ordering defined by Q+. Since '⇤ > 0, it is easy to see that ût('⇤) � 0 for all

t � 2.

Define

u⇤
1(t) = e�⇤

⇤
tû1(t;'

⇤) and u⇤
2(t) = e�⇤

⇤
tû2(t;'

⇤).
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Then u⇤(t) = (u⇤
1(t), u

⇤
2(t)) � 0 for all t � 2, and u⇤ satisfies the following periodic

system with parameter ⇤⇤:

du⇤
1(t)

dt
= ↵ eB(t)

e�⇤
⇤
⌧(t)u⇤

1(t� ⌧(t)) · hu⇤
2(t� ⌧(t))

u⇤
1(t� ⌧(t)) + hu⇤

2(t� ⌧(t))
� µA(t)u

⇤
1(t), t� btc 2 [0, T ],

du⇤
2(t)

dt
= (1� ↵) eB(t)

e�⇤
⇤
⌧(t)u⇤

1(t� ⌧(t)) · hu⇤
2(t� ⌧(t))

u⇤
1(t� ⌧(t)) + hu⇤

2(t� ⌧(t))
� µA(t)u

⇤
2(t), t� btc 2 [0, T ],

du⇤
1(t)

dt
= �dA(t)u

⇤
1(t), t� btc 2 (T, 1),

du⇤
2(t)

dt
= �dA(t)u

⇤
2(t), t� btc 2 (T, 1).

(6.17)

Thus, u⇤(t) = (u⇤
1(t), u

⇤
2(t)) is a solution of the 1-periodic system (6.17) and u⇤

0(✓) =

(u⇤
1(✓), u

⇤
2(✓)) = (e�⇤

⇤
✓'⇤

1(✓), e
�⇤⇤

✓'⇤
2(✓)) for all ✓ 2 [�⌧̂ , 0], where u⇤

t
(·) = (u⇤

1t(·), u⇤
2t(·))

for all t � 0 with

u⇤
1t(✓) = u⇤

1(t+ ✓) = e�⇤
⇤(t+✓)û1(t+ ✓;'⇤), 8✓ 2 [�⌧̂ , 0],

u⇤
2t(✓) = u⇤

2(t+ ✓) = e�⇤
⇤(t+✓)û2(t+ ✓;'⇤), 8✓ 2 [�⌧̂ , 0].

For any ✓ 2 [�⌧̂ , 0], we have

u⇤
1(1 + ✓) = e�⇤

⇤(1+✓)( (·)'⇤(✓))1 = e�⇤
⇤(1+✓) · r'⇤

1(✓) = e�⇤
⇤
✓'⇤

1(✓) = u⇤
1(✓),

u⇤
2(1 + ✓) = e�⇤

⇤(1+✓)( (·)'⇤(✓))2 = e�⇤
⇤(1+✓) · r'⇤

2(✓) = e�⇤
⇤
✓'⇤

2(✓) = u⇤
2(✓).

Therefore, u⇤
0(✓; ·) = u⇤

1(✓; ·) for all ✓ 2 [�⌧̂ , 0], and hence, the existence and uniqueness

of solutions of system (6.17) imply that

u⇤
1(t) = u⇤

1(t+ 1) and u⇤
2(t) = u⇤

2(t+ 1), 8t � 0.

It then follows that u⇤(t) is an 1-periodic solution of system (6.17) and e⇤
⇤
tu⇤(t) is a solu-

tion of system (6.16).
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6.4. Net reproduction number and stability

Define F (t) : X ! R2 and V (t) : R2 ! R2 by

F (t)

0

@ '1

'2

1

A =

8
>>>>>><

>>>>>>:

0

@ ↵ eB(t) '1(�⌧(t))·h'2(�⌧(t))
'1(�⌧(t))+h'2(�⌧(t))

(1� ↵) eB(t) '1(�⌧(t))·h'2(�⌧(t))
'1(�⌧(t))+h'2(�⌧(t))

1

A , t� btc 2 [0, T ],

0

@ 0

0

1

A , t� btc 2 (T, 1),

and

�V (t)

0

@ '1

'2

1

A =

8
>>>>>><

>>>>>>:

0

@ �µA(t)'1

�µA(t)'2

1

A , t� btc 2 [0, T ],

0

@ �dA(t)'1

�dA(t)'2

1

A , t� btc 2 (T, 1).

One easily sees that for each t � 0, F (t) is a positive operator from X to R2. Let Y (t, s),

t � s, be the evolution operator on R2 associated with the following system:

dv(t)

dt
= �V (t)v(t),

that is, Y (t, s), t � s, is the evolution family on R2 determined by

8
>>>>>>>>>><

>>>>>>>>>>:

dAf (t)

dt
= �µA(t)Af (t), t� btc 2 [0, T ],

dAm(t)

dt
= �µA(t)Am(t), t� btc 2 [0, T ],

dAf (t)

dt
= �dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
= �dA(t)Am(t), t� btc 2 (T, 1).

Let C1 be the ordered Banach space of all continuous and 1-periodic functions from R to

R2, equipped with the maximum norm and the positive cone C+
1 := {v 2 C1 : v(t) �

0, 8t 2 R}. Suppose v 2 C1 is the initial distribution of adult females and males in the

periodic environment, then F (t� s)vt�s is the distribution of newly born adult individuals

at time t � s with t � s � 0, and Y (t, t � s)F (t � s)vt�s represents the distribution of
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those adult individuals who were newly reproduced at time t � s and still survive in the

environment at time t for t � s. Hence,

Z 1

0

Y (t, t� s)F (t� s)vt�sds =

Z 1

0

Y (t, t� s)F (t� s)v(t� s+ ·)ds

gives the distribution of accumulative new adult females and males at time t produced by

those female and male individuals introduced at all previous time.

We define the next generation operator L on C1 given by

[Lv](t) =

Z 1

0

Y (t, t� s)F (t� s)v(t� s+ ·)ds

=

Z
t

�1
Y (t, ⇠)F (⇠)v(⇠ + ·)d⇠

=

Z
t

�1
Y (t, s)F (s)v(s+ ·)ds, 8t 2 R, v 2 C1.

Next, we show that the operator L maps a continues function v 2 C1 to a periodic and

continues function Lv 2 C1, that is L : C1 ! C1. For any given v 2 C1, we have

F (s)v(s + ·) is bounded. Then there exists an upper bounded F ⇤ such that kF (s)kkv(s +

·)k  F ⇤. It follows from Theorem 2.6 in [189] that for any t, there exist K > 0 and

� = min{µA(t), dA(t)}, such that

kY (t, s)k  K · e��(t�s), 8t � s, s 2 R.

Thus, we have

kY (t, s)F (s)k  K · kF (s)k · e��(t�s)
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and ����
Z

t

1
Y (t, s)F (s)v(s+ ·)ds

����

 K

Z
t

�1
kF (s)kkv(s+ ·)k · e��(t�s)ds

 KF ⇤
Z

t

�1
e��(t�s)ds

 KF ⇤

�
.

For any t � s, we have kY (t, s)k  1. For any ✏ > 0, choose � = min{ ✏

2F ⇤ ,�
ln (1� ✏�

2KF⇤ )

�̂
}

with �̂ = maxt2[0,1]{µA(t), dA(t)}. For any t1 � t2 � s, we have Y (t1, s) = Y (t1, t2)Y (t2, s)

and kY (t1, t2)k � e��̂(t1�t2). When |t1 � t2| < �, we have

k[Lv](t1)� [Lv](t2)k

=

����
Z

t1

�1
Y (t1, s)F (s)v(s+ ·)ds�

Z
t2

�1
Y (t2, s)F (s)v(s+ ·)ds

����

=

����
Z

t1

�1
Y (t1, s)F (s)v(s+ ·)ds�

Z
t2

�1
Y (t1, s)F (s)v(s+ ·)ds

+

Z
t2

�1
Y (t1, s)F (s)v(s+ ·)ds�

Z
t2

�1
Y (t2, s)F (s)v(s+ ·)ds


����
Z

t1

t2

Y (t1, s)F (s)v(s+ ·)ds
����+

����
Z

t2

�1
[Y (t1, s)� Y (t2, s)]F (s)v(s+ ·)ds

����

F ⇤(t1 � t2) + k1� Y (t1, t2)k
����
Z

t2

�1
Y (t2, s)F (s)v(s+ ·)ds

����

F ⇤(t1 � t2) +
�
1� e��̂(t1�t2)

�
· KF ⇤

�

✏.

This implies that Lv 2 C1.
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Suppose v(t+ 1) = v(t), 8t 2 R. Since

[Lv](t+ 1) =

Z 1

0

Y (t+ 1, t+ 1� s)F (t+ 1� s)v(t+ 1� s+ ·)ds

=

Z 1

0

Y (t, t� s)F (t� s)v(t� s+ ·)ds

= [Lv](t),

it follows that [Lv](t) is also periodic with respect to t. Therefore, we have L : C1 !

C1. According to the concept and properties of next generation operator in [27, 206] (or

Section 2.3), we define the cone spectral radius of L on R2
+ as the net reproduction number

R0 := r(L). Based on Theorem 2.3.1 (or Theorem 3.4 in [190]), we have

Lemma 6.4.2. R0 � 1 has the same sign as r( )� 1.

In addition, for any given t � 0, let e (t) be the solution map of system (6.16) on Q+,

such that e (t)' = eut('), t � 0, where eu(t;') is the unique solution of system (6.16) with

eu0 = ' 2 Q+. Using similar arguments to lemma 3.8 in [122] through the Krein-Rutman

theorem, it is shown that the stability of the zero solution for system (6.16) on X equals to

that on Q+.

Lemma 6.4.3. Two Poincaré maps  (1) : X ! X and e (1) : Q+ ! Q+ have the same

spectral radius, that is, r( ) = r(e ).

Based on the above lemmas and results, we obtain the following global dynamics for sys-

tem (6.9).

Theorem 6.4.1. The following statements are valid:

(i) If R0 < 1, then the zero solution is globally asymptotically stable for system (6.9) in

Q+;

(ii) If R0 > 1, then system (6.9) admits a unique positive 1-periodic solution (A⇤
f
(t), A⇤

m
(t)),

which is globally asymptotically stable in Q+.
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6.4. Net reproduction number and stability

Proof. In the case where R0 < 1, Lemmas 6.4.2 and 6.4.3 imply r < 1. For any given '

from an equivalence class ['] 2 Q+, let u(t;') be the solution of system (6.16) with the

initial value u(0;') = '. Note that system (6.16) dominates system (6.9) since 1� Af (t)
Kf



1 and 1 � Am(t)
Km

 1 for all t � 0. Choose a sufficiently large ↵ > 0 such that '(✓) 

↵ · u⇤(0), where u⇤ is defined in Lemma 6.4.1. Thus, the comparison principle implies that

u(t;')  ↵e⇤
⇤
tu⇤(t), 8t � 0. Owing to ⇤⇤ = ln r < 0, we have limt!1 u(t;') = 0. Then

the desired result immediately follows from Lemma 2.2.1 in [207].

In the case where R0 > 1, we suppose �̃(t) be the 1-periodic semiflow associated with

system (6.9), and define �̃ := �̃(1). Clearly, �̃n0(1) = �̃(n0 · 1), 8n0 � 2. It then follows

that for each t > 0, e�(t) is strongly monotone and strictly subhomogeneous on Q+. Let r�

be the cone spectral radius of the Poincaré map of the following periodic system with �f

and �m:

dAf (t)

dt
=↵ eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� �f

Kf

◆
� µA(t)Af (t),

t� btc 2 [0, T ],

dAm(t)

dt
=(1� ↵) eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� �m

Km

◆
� µA(t)Am(t),

t� btc 2 [0, T ],

dAf (t)

dt
=� dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
=� dA(t)Am(t), t� btc 2 (T, 1),

(6.18)

where eB(t) = 2R(1 � ⌧
0
(t))e�

R
t

t�⌧(t) µJ (↵)d↵. Under the condition R0 > 1, it follows

from Lemma 6.4.2 and 6.4.3 that r > 1. Since lim
�f!0;�m!0

r� = r > 1, we can fix two

sufficiently small number �f and �m such that �f 2 (0, Kf ), �m 2 (0, Km) and r� > 1.

Since lim
'!0

ke�(t)'kQ+ = 0 uniformly for t 2 [0, 1], there exists �⇤ > 0 such that

ke�(t)'kQ+ < �, 8t 2 [0, 1], k'kQ+  �⇤,
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where � satisfies � = min{�f , �m}. We need to claim that

lim sup
n0!1

ke�n0(1)'kQ+ � �⇤, 8' 2 Q+\{([0], [0])}.

Suppose by contradiction, lim sup
n0!1

ke�n0(1)'̃kQ+ < �⇤ for some '̃ 2 Q+\{([0], [0])}. Then

there exists n1 � 2 such that ke�n0(1)'̃kQ+ < �⇤ for all n0 � n1. For any t � n1, letting

t = n0 + t� with n0 = btc and t� 2 [0, 1), it holds that

ke�(t)'̃kQ+ =
���e�(t�)

⇣
e�(n0)'̃

⌘���
Q+

=
���e�(t�)

⇣
e�n0(1)'̃

⌘���
Q+

< �.

Then we have

dAf (t)

dt
�↵ eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� �f

Kf

◆
� µA(t)Af (t),

t� btc 2 [0, T ],

dAm(t)

dt
�(1� ↵) eB(t)

Af (t� ⌧(t)) · hAm(t� ⌧(t))

Af (t� ⌧(t)) + hAm(t� ⌧(t))

✓
1� �m

Km

◆
� µA(t)Am(t),

t� btc 2 [0, T ],

dAf (t)

dt
=� dA(t)Af (t), t� btc 2 (T, 1),

dAm(t)

dt
=� dA(t)Am(t), t� btc 2 (T, 1).

(6.19)

By Lemma 6.4.1, there exists a positive 1-periodic solution u⇤
�
(t) such that e⇤⇤

�tu⇤
�
(t) is a

solution of system (6.18), where ⇤⇤
�
= ln r� > 0. It is easy to verify that u(t; '̃) � 0 for

all t > 0. Then choose a  > 0 such that

u(n1; '̃) � e⇤
⇤
�n1u⇤

�
(n1).

Based on the comparison principle, we have

u(t; '̃) � e⇤
⇤
�tu⇤

�
(t), 8t � n1.
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Letting t ! 1, we obtain that u(t; '̃) is unbounded, a contradiction.

Let !(') be the omega limit set of the discrete-time orbit {e�n0(')}n0�2. By the acyclicity

theorem on uniform persistence, it easy follows that e�n0 : Q+ ! Q+, n0 � 2, is uniformly

persistent on Int(Q+), and hence, !(') ⇢ Int(Q+), 8' 2 Int(Q+). For any ' 2 Q+, since
e�(') 2 Int(Q+), we have !(') ⇢ Int(Q+).

It follows that e�n0 is strongly monotone and strictly subhomogeneous on Q+. By virtue

of Theorem 2.3.2 in [207] (or Section 2.2), if follows that e�n0 has a unique fixed point  ⇤

such that !(') =  ⇤, 8' 2 Q+. Thus, (A⇤
f
(t), A⇤

m
(t)) :=

⇣
e�n0(t) ⇤

⌘
is an n0-periodic

solution of system (6.9), and it is globally attractive in Q+. In view of Lemma 2.2.1,  ⇤ is

a Liapunov stable fixed point of e�n0 . Note that

e�n0(t)(e�(t) ⇤) = e�(t)(e�n0(t) ⇤) = e�(t) ⇤,

which implies that e�(t) ⇤ =  ⇤. Consequently, (A⇤
f
(t), A⇤

m
(t)) is also a 1-periodic solu-

tion and is globally asymptotically stable for system (6.9) in Q+.

6.5 Numerical simulations

In this section, we conduct numerical simulations to illustrate the patterns of the frog pop-

ulation in response to environment-related parameters. Subsequently, a sensitivity analysis

is performed to demonstrate the impact of these parameters on population dynamics. From

an in-depth examination of the combined effects of growth delay and natural death rates,

several implications for maintaining the ecological stability of frog populations are derived.

6.5.1 Time-dependent parameters

Environmental temperature has profound consequences for amphibian development and

has been proposed to play a role in determining vital rates throughout the life cycle, as well

as the overwintering phenomenon [22]. We take the temperature data (in degrees �C) as

a function of time t (in a day) in the following form [139] for illustration purpose of the
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conceptual framework

T (t) = cK + dK ⇥ sin

✓
2⇡

365
⇥ (t� t0)

◆
.

where cK = 16.5�C is mean annual temperature, dK = 15.5�C is the amplitude of tem-

perature variation and t0 = 121 is day to the year when temperature increases to its annual

mean [22, 164].

To determine the maturation time ⌧(t) for the cohort maturing at time t, as shown in

equation (6.7), we need to obtain the development proportion rJ(s) over the interval s 2

[t� ⌧(t), t]. This proportion can be evaluated as the reciprocal of the development duration

e⌧(T (s)) required under the temperature T (s) on day s, that is:

rJ(s) =
1

e⌧(T (s)) .

The development duration e⌧(T ) can be estimated by the following Sharpe-Schoolfield for-

mula [139]:

e⌧(T )

=⌧0 ⇥ exp

✓
�E⌧

kB

✓
1

T
� 1

T0

◆◆
⇥
✓
1 + exp

✓
EL

⌧

kB

✓
1

T
� 1

TL
⌧

◆◆
+

EH

⌧

kB

✓
� 1

T
+

1

TH
⌧

◆◆
.

It follows that the accumulative development proportions over the previous ⌧(t) days,

specifically days t� 1, t� 2, . . . , t� ⌧(t), should sum to unity. That is,

Z
t

t�⌧(t)

1

e⌧(T (s))ds = 1, (6.20)

with T (s) being the mean temperature at day s. The maturation time ⌧(t) can be estimated

from the above relation (6.20).

The immature death rate under the temperature T = T (t) can be described by the following

164



6.5. Numerical simulations

Sharpe-Schoolfield models [139]:

µJ(T )

=µ0 ⇥ exp

✓
�Eµ

kB

✓
1

T
� 1

T0

◆◆
⇥
 
1 + exp

 
EL

µ

kB

✓
1

T
� 1

TL
µ

◆!
+

EH

µ

kB

✓
� 1

T
+

1

TH
µ

◆!
.

For simplicity, we assume µA(t) and dA(t) are taken as 0.015 per day and 0.01 per day in

the model system, respectively. To numerical computation, other related parameters with

their biological explanations are summarized in Table 6.1.

Table 6.1: Parameter descriptions with baseline values in model (6.9).

Parameter Description Baseline value Reference

cK Mean annual temperature 16.5�C [22],[139],[164]

dK
The amplitude of temperature

variation
15.5�C [22],[139],[164]

t0
Day of the year when temperature

increases to its annual mean
121 [22],[139],[164]

T0 The reference temperature 25�C [40],[139]

⌧0
The scaling factor for development

time at temperature T0

27.6 days [40],[139]

µ0

The scaling factor for mortality rate

at temperature T0

0.056 per day [86],[139]

TL

⌧

Lower temperature threshold for

development
10�C [86],[139]

TH

⌧

Upper temperature threshold for

development
32.5�C [86],[139]

TL

µ

Lower temperature threshold where

abruptly mortality increases
�5�C [86],[139]

Continued on next page
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Table 6.1 – Continued from previous page

Parameter Description Baseline value Reference

TH

µ

Upper temperature threshold where

abruptly mortality increases
35�C [86],[139]

Eµ, E⌧ Average activation energy 0.65 eV [139],[177]

EL

⌧

Inactivation energy for lower

temperature threshold
5⇥ E⌧ [139],[177]

EH

⌧

Inactivation energy for upper

temperature threshold
5⇥ E⌧ [139],[177]

EL

µ

An index analogous to the

inactivation energy
5⇥ Eµ [139],[177]

EH

µ

An index analogous to the

inactivation energy
5⇥ Eµ [139],[177]

kB Boltzmann’s constant 8.62⇥ 10�5 [139]

Kf

Carrying capacity of female

population
5000 frogs [163]

Km

Carrying capacity of male

population
2000 frogs [163]

↵ Birth sex ratio 0.3 [163]

R Intrinsic growth rate 2 [163]

h
A male’s maximum number of

establishable pair bonds
3 [33]

µA

Mortality rate of adults during

normal period
0.015 per day [111]

dA
Mortality rate of adults during

hibernation
0.01 per day [111]
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6.5. Numerical simulations

6.5.2 Parametric curves and analysis

Using the baseline parameters, the annual temperature variation exhibits a cyclical pat-

tern, as depicted in Figure 6.1(a). Subsequently, applying the metabolic theory of ecology

proposed by [139], we obtain the temperature-dependent developmental duration e⌧(t), im-

mature mortality rate µJ(t), and survival probability exp
⇣
�
R

t

t�⌧(t) µJ(s)ds
⌘

, which are

illustrated in Figures 6.1(b), (c), and (d), respectively.
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Figure 6.1: Temperature data and seasonal parameters: development duration e⌧(t)
at temperature on day t, immature death rate µJ(t), and survival probability
exp

⇣
�
R

t

t�⌧(t) µJ(s)ds
⌘

.

A comparison between Figures 6.1(a) and (b) reveals a highly nonlinear relationship be-
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Chapter 6. Mating behaviors in frog population growth

tween the developmental duration e⌧(t) and the temperature on a given day, exhibiting nei-

ther positive nor negative correlation. The annual temperature profile exhibits a single peak

(around day 220), whereas the developmental duration e⌧(t) displays approximately two

minima (around days 100 and 320) under moderate temperatures, neither excessively high

nor low. These results align with previous studies by [139] and [122], which demonstrated

that excessively high or low temperatures prolong developmental duration. Analogous pat-

terns are observed for the immature mortality rate in Figure 6.1(c) and the survival proba-

bility from the immature to adult stage in Figure 6.1(d). All three temperature-dependent

parameters exhibit distinct patterns from the temperature variation itself, underscoring the

necessity for precise characterization of the metabolic relationships between biological pa-

rameters and temperature conditions.
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Figure 6.2: The time-dependent developmental delay ⌧(t) and its derivative.

As illustrated in Figure 6.2(a), the developmental delay ⌧(t) exhibits two minima and two

local maxima, which can also be inferred from the four points where its derivative van-

ishes in Figure 6.2(b). Moderate temperatures preceding the dates of these minima tend to

yield smaller developmental delays ⌧(t). Furthermore, a discernible phase shift is observed

between the extrema of Figures 6.1(b) and 6.2(a), as the latter evaluates the cumulative en-

vironmental conditions (as per equation (6.20)) relevant for estimating the developmental

delay of adults maturing on day t. Figure 6.2(b) depicts the derivative of ⌧(t) with respect to
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6.5. Numerical simulations

time t (with a maximum value of 0.92), numerically validating the inequality 1�⌧ 0
(t) > 0,

as discussed in the preceding section. Additionally, it can be observed that frogs maturing

between days 210 and 265 encounter adverse conditions, as evidenced by the extremely

low survival likelihood exhibited in Figure 6.1(d). This can be attributed to the combined

effect of a relatively prolonged developmental delay (Figure 6.2(a)) and an elevated mor-

tality rate during this period (Figure 6.1(c)). An examination of Figure 6.1(b) suggests that

the maximum developmental duration e⌧(t) under the temperature of a specific date occurs

around day 240, attributable to the extreme (excessively low) temperature conditions on ap-

proximately the 30th day. However, the actual developmental delay ⌧(t) depicted in Figure

6.2(a) exhibits a maximum value below 100 days, owing to the cumulative effect of moder-

ate ambient temperatures preceding the date of the most adverse conditions. Furthermore,

an obvious temporal difference is evident between the peak occurrences in Figures 6.1(b)

and 6.2(a).

6.5.3 Model simulations

Using the parameters from the previous subsections, we can conduct simulations for the

solutions illustrated in Figure 6.3. These simulations consider two different scenarios for

adult mortality rates: µA = 0.015 per day, dA = 0.01 per day; and µA = 0.1 per day,

dA = 0.05 per day. The initial populations for females and males are set at 100 and

200 individuals, respectively. The results indicate that the population dynamics of female

and male frogs eventually stabilize into seasonal patterns, oscillating periodically between

maximum and minimum values. During the normal growth period, the frog population

experiences a dramatic increase, quickly reaching a peak and maintaining a relatively stable

state of development, followed by a sharp decline as the hibernation period begins. When

examining the annual population patterns in Figures 6.3(b) and 6.3(d), subtle differences

between the two mortality rate scenarios become apparent. Higher mortality rates result in

fewer individuals entering the hibernation period after the normal growth period, leading to

a relatively sharper decline during hibernation. Post-hibernation, the surviving individuals
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resume development, mate, and reproduce.
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Figure 6.3: Solution simulations for multiple periods and one single period under two
distinct mature mortality rate scenarios: (a) and (b) with µA = 0.015 per day, dA = 0.01
per day; (c) and (d) with µA = 0.1 per day, dA = 0.05 per day.

The ability of frogs to survive under adverse environmental conditions is considered a

crucial factor in preserving population size and ensuring subsequent normal development

[22]. The sensitivity analysis primarily examines the effects of mortality rates during the

normal development and diapause periods, which are closely related to the total population

size. The maximum population abundance, a key metric characterizing frog population

dynamics, is primarily employed to evaluate the effects of mortality rates on population

growth. Figures 6.4(a) and 6.4(b) illustrate the consequences of varying the mortality rates

170



6.5. Numerical simulations

µA and dA during the normal development and hibernation periods, respectively. The sur-

face and contour plots in Figure 6.4 clearly demonstrate that enhancing the survivability of

adult frogs may foster subsequent population growth during the normal phase, manifested

as larger total population abundances at lower mortality rates. For both female and male

individuals, the total population exhibits an apparent decreasing trend as the normal devel-

opment and hibernation mortality rates increase, respectively. Consequently, these findings

underscore that reducing mortality rates during the normal developmental and hibernation

periods constitutes an effective strategy to mitigate the decline of frog populations.
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Figure 6.4: The surfaces and contour plots depicting the variations of total frog population
size with varying mature mortality rates.

The mating modes of frog populations are among the most critical aspects in the growth

and development of male and female frogs. Consequently, we simulate the population

dynamics under varying mating parameters h = 1, 3, 5, which implies that a male’s maxi-

mum number of establishable pair bonds are 1, 3, and 5, respectively, over multiple periods

(Figure 6.5(a)) and a single period (Figure 6.5(b)). Over multiple periods, the simulations

demonstrate that the female and male frog populations exhibit regular seasonal periodicity,

characterized by sharp declines followed by gradual recoveries. Higher mating parameters

(h = 3, 5) result in more pronounced oscillations, suggesting increased population vari-

ability compared to h = 1, which indicates that mating parameters influence the stability
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Chapter 6. Mating behaviors in frog population growth

of frog populations to a certain degree, particularly during normal growth periods. This

effect is more clearly observed in the single cycle simulation, where higher mating param-

eters lead to a higher stabilized population size during the normal period before the decline

associated with hibernation. Consequently, while higher mating parameters contribute to

greater population fluctuations and higher initial stabilization during the normal develop-

ment period, the populations ultimately experience significant declines as they approach

hibernation. Nonetheless, the overall trends in frog population sizes remain consistent.
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Figure 6.5: Solution simulations for multiple periods and one single period under different
mating parameters: h = 1, 3, 5.

6.6 Discussion

Various mating behaviors, seasonal patterns, and mortality rates are all believed to play

significant roles in preserving frog population size and maintaining population growth.

The effects of these survival mechanisms on the persistence of frog species require fur-

ther study. In this paper, we aimed to explore these factors by constructing comprehensive

mathematical models, in which the hibernation period is treated as an independent dynamic

process. During hibernation, the population growth, mating behaviors, and mortality rates

differ significantly from those in the normal developmental periods. Accordingly, the an-
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nual growth period is divided into two distinct intervals, each governed by its own set of

equations. To explicitly describe population growth across different developmental stages,

we constructed two sets of equations to model the female and male populations during

the normal developmental period and the hibernation period, respectively. The compre-

hensive model incorporates sex division, polygynous behavior, and seasonal patterns. The

qualitative dynamics of the frog population were investigated using the decoupled adult

system. We examined the existence and uniqueness of solutions, the monotonicity, and

strictly subhomogeneous nature of the periodic semiflow on the natural phase space. To

further analyze strong monotonicity, we introduced a quotient space to derive properties

of the population system. Additionally, we explored the threshold dynamics and global

stability by applying the theory of monotone dynamical systems. However, it is worth not-

ing that it would be interesting to use a biologically meaningful index in a nonlinearizable

population system with periodic delays, namely the net reproduction number R0 as the

threshold index. This approach could be theoretically introduced using the ideas presented

in Bai et al. [28], Wang et al. [190], and Zhao [206]. Further sensitivity analysis on R0

could provide valuable insights into the development and survival of the frog population.

This direction remains a subject for further study.
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Chapter 7

Summary and future work

In this chapter, we first briefly summarize the main results in this thesis, and then present

some possible future research works.

7.1 Research summary

While various continuous age-structured models with time-delay have been proposed to

investigate the population dynamics of single species, few models consider other factors

regulating population growth, such as seasonal succession, time-varying periodic delays,

environmental pathogens, and mating behaviors in frog population dynamics. Specifically,

time-varying developmental durations or chronological age thresholds are rarely incorpo-

rated into models analyzing age-structured frog population growth, as the induced time-

dependent delays and other biological and abiotic factors pose significant challenges to

model derivation and theoretical analysis. In this thesis, we analyzed stage-structured frog

population growth subject to the aforementioned factors through four distinct projects.

To elucidate the stage-structured modeling approach for single population growth, Chap-

ter 3 reviewed continuous stage-structured models that involve stage duration distributions

and intraspecific competition. We presented two fundamental modeling approaches utiliz-

ing integral equations and partial differential equations, which can be reduced to ordinary
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and delay differential equations based on gamma and Dirac distributions. The integral

equations offer the advantage of explicitly deriving the net reproduction number and initial

growth rate, and better conveying the biological implications of stage progression. How-

ever, integrating density-dependent regulations on stage distribution and survival probabil-

ities within an integral equation framework proves challenging, a difficulty that structured

partial differential equation models can potentially overcome. We then demonstrated pop-

ulation models based on Dirac distributions for immature stage duration and intraspecific

competition under various assumptions.

Chapter 4 integrated temperature-dependent developmental durations, breeding, and hiber-

nation seasons into an age-structured model with delay differential equations. By decou-

pling the adult equation from the total system, we derive the basic properties of solutions

within the natural phase space, including uniqueness, boundedness, monotonicity, and strict

subhomogeneity of the periodic semiflow. To investigate the strong monotonicity of the so-

lution semiflow, we introduce the quotient space and obtain relevant results. Subsequently,

we introduce the basic reproduction number R0 as a threshold quantity and demonstrate

the continuity and periodicity of the operator L. Using theories of monotone dynamical

systems, periodic semiflows, and related results, we established the global dynamics: the

zero solution is globally asymptotically stable in the adult population system if R0 < 1,

whereas a unique positive 1-periodic solution A⇤(t) exists which is globally asymptotically

stable.

Given that numerous amphibian populations have experienced catastrophic declines due to

the emergence of pathogens, particularly Bd pathogens, Chapter 5 constructed a determin-

istic frog-pathogen model and its stochastic counterpart. This model includes direct trans-

mission between susceptible and infected hosts as well as indirect transmission through

environmental pathogens, which can reproduce independently or be released by infectious

frogs, potentially leading to additional disease-induced mortality or reduced fertility in in-

fected hosts. For the deterministic model, we presented the well-posedness and dynamics

using three threshold parameters: RH , RB and R0. We demonstrated that the disease-free

equilibrium is globally asymptotically stable under RB < 1 and R0 < 1; the host-free
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equilibrium is locally asymptotically stable if RH < 1 or dN < bN < (dN+B0)(dN+µ)
⌘B0+dN+µ

. Ad-

ditionally, for the entire host-pathogen system, a unique positive equilibrium exists under

two conditions: (i) RH > 1, RB < 1 and R0 > 1; or (ii) RB > 1 and bN > (dN+B0)(dN+µ)
⌘B0+dN+µ

.

Furthermore, under these conditions, the pathogen and host population uniformly persist.

Importantly, we identified two scenarios where the host population cannot go extinct: one

where pathogens cannot reproduce, and the other where pathogens have no impact on the

host population. To explore the probabilities of disease and host population extinction, we

formulated a stochastic continuous-time Markov chain model, demonstrating the proba-

bilities P0 and PH

0 through multiple branching process theory. We also derived the mean

and variance of disease extinction time and host extinction time, respectively. The final

numerical simulations illustrated host persistence, host extinction, extinction probability,

and extinction time distribution of infection, demonstrating that higher initial counts of

infected individuals and environmental pathogens significantly extend infection durations

due to increased transmission opportunities.

Building on the succession model discussed in Chapter 4, we incorporated mating behav-

iors of female and male frogs to propose a two-sex succession model. This model describes

breeding, mating, competition, and hibernation, effectively decoupling the equations for fe-

male and male adults to focus on analyzing the two populations during normal growth and

hibernation periods. Similar to the previous chapter, we conducted a qualitative analysis

to determine the uniqueness and boundedness of solutions, as well as the monotonicity

and strict subhomogeneity of the periodic semiflow in the natural phase space. We then

introduced the quotient space to examine the strong monotonicity of the solution semi-

flow. Subsequently, the net reproduction number R0 was derived using the cone spectral

radius of a monotone and homogeneous operator. The global dynamics were established

by introducing an auxiliary system, determining the continuity and periodicity of the evolu-

tion operator, and applying the theory of monotone dynamical systems and the comparison

principle. It was shown that a unique positive periodic solution exists for the female-male

population system, which is globally asymptotically stable if R0 > 1. Numerically, we

presented temperature data and time-dependent parameters to illustrate the trend of devel-
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opmental delays. Based on these parameters, we analyzed the frog population size over

multiple periods and a single period under two different mature mortality rates. The results

indicated that higher mortality rates result in fewer individuals entering the hibernation

period after normal growth, leading to a steeper decline during hibernation. Additionally,

the total population exhibited a noticeable decreasing trend as the normal development

and hibernation mortality rates increased, respectively. Regarding mating behaviors, we

found that higher mating parameters lead to more pronounced oscillations, suggesting in-

creased population variability. This indicates that mating parameters significantly influence

the stability of frog populations, particularly during normal growth periods, although the

populations ultimately experience substantial declines as they approach hibernation.

In summary, we have developed a framework to study the population dynamics of frog

species that incorporates seasonal factors and disease transmission. This framework exten-

sively utilizes the modeling approach of continuous stage-structured models and demon-

strates global stability through various theories related to monotone periodic systems. The

theoretical and numerical results can serve as a reference for dynamic analyses of other

species populations.

7.2 Future work

Inevitably, and perhaps encouragingly, several issues remain worthy of further study, both

in terms of model analysis and construction. In this section, we delineate some of these

possible directions.

7.2.1 Spatial diffusion of succession model

Spatial heterogeneity is central to many leading ecological concepts including habitat frag-

mentation, foraging, biodiversity, and the development of ecological niches [48]. Spatial

heterogeneity arises universally due to variations in temperature, humidity, and resource

availability across different regions; for instance, the sex ratio and age composition of cer-
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tain species are influenced by spatial factors [32, 137]. Moreover, Buonomo et al. [42] and

Kang et al. [106] found that the random drift of populations and external toxicants, as well

as the effect of random drift within living populations on internal toxicants, led to some

degree of spatial diffusion of both populations and toxicants. Furthermore, patches within

the reaction-diffusion model are characterized by individuals’ average movement rates and

the local intrinsic growth rate of the population, which are assumed to correlate with en-

vironmental conditions, resource availability, and organism behavior within the patch [48].

Therefore, heterogeneous parameters and a reaction-diffusion mechanism should be con-

sidered in the seasonal succession model discussed in Chapter 4, to explore the effects

of spatial movement on frog populations across different ecological environments. Ad-

ditionally, pathogen transmission should be considered to study the influence of spatial

heterogeneity on disease transmission and population extinction within frog populations.

7.2.2 Modeling analysis of other species

As previously mentioned, the framework can also be applied to analyze the population

dynamics of other species, such as ticks, ladybirds, and others. Take the tick population

as an example: ticks play a critical role as vectors in the transmission and spread of Lyme

disease, an emerging infectious disease that can cause severe illness in humans and animals.

Diapause occurs after ticks are exposed to an induction stimulus, typically at a specific time

of year. We could formulate a continuous stage-structured model to describe condition-

dependent developmental diapause and normal growth and explore the global dynamics.

This approach may enhance control management strategies for tick populations in targeted

areas and reduce the associated disease transmission risks.
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[150] Heike Pröhl. Population differences in female resource abundance, adult sex ratio,

and male mating success in dendrobates pumilio. Behavioral Ecology, 13(2):175–

181, 2002.

[151] Lara J Rachowicz and Cheryl J Briggs. Quantifying the disease transmission func-

tion: effects of density on batrachochytrium dendrobatidis transmission in the moun-

tain yellow-legged frog rana muscosa. Journal of Animal Ecology, pages 711–721,

2007.

[152] Esa Ranta, Veijo Kaitala, and Jan Lindström. Sex in space: population dynamic

consequences. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 266(1424):1155–1160, 1999.

196



References

[153] Jane M Reid, Justin MJ Travis, Francis Daunt, Sarah J Burthe, Sarah Wanless, and

Calvin Dytham. Population and evolutionary dynamics in spatially structured sea-

sonally varying environments. Biological Reviews, 93(3):1578–1603, 2018.

[154] Francis J Richards. A flexible growth function for empirical use. Journal of experi-

mental Botany, 10(2):290–301, 1959.

[155] Suzanne L Robertson and Kevin A Caillouët. A host stage-structured model of
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