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Abstract  

The primary objectives of this study are to develop, optimize, and decision-making for the 

sustainable valorization of biomass waste. It includes a Strengths, Weaknesses, Opportunities, and 

Threats (SWOT) analysis of thermal and biological valorization processes, and a sustainability 

analysis considering environmental, economic, energy, exergy, and safety (4E, 1S) parameters. 

Environmental performance was reviewed from existing literature, and also from the models 

developed in this study. Life Cycle Assessment (LCA) reflects thermal processes more sustainable 

than direct land disposal of biomass. Economic analysis includes payback period (PBP), and 

internal rate of return (IRR) results indicate that thermal processes, specifically gasification and 

pyrolysis, outperform land disposal in both economic and environmental aspects. Although 

anaerobic digestion (AD) is technically and environmentally feasible at domestic level, it has a 

longer payback period. Hence, thermal processes are considered better for biomass valorization 

compared to biological methods when there is large quantity of biomass waste.  

Sustainability evaluation of different thermal valorization processes have been performed. 

Hydrothermal gasification (HTG) is one of the thermal processes to convert biomass waste into 

valuable products. HTG process simulation model for syngas production was developed and 

artificial intelligence (AI) algorithms were applied to predict high-quality syngas production. 

Comparative analysis of Convolutional Neural Network (CNN), Artificial Neural Network (ANN), 

Gradient Boosting Regression (GBR), Extreme Gradient Boosting (XGB), and Random Forest 

Regression (RFR) models identified XGB as the best predictor, with coefficient of determination 

(R2) values between 0.85-0.95 and mean square errors (MSE) between 0.008-0.01. Optimization 

based on process parameters such as temperature, pressure, and biomass concentration were 

analyzed which predict optimal hydrogen and methane yields around 540°C, 25 MPa, and 20% 

feedstock concentration. Energy analysis indicated a 61% efficiency, and economic analysis 

showed HTG to be at least 10% more cost-effective than coal, natural gas, or distillate oil for steam 
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production. LCA confirmed HTG's advantage over direct land disposal of biomass in terms of 

economy, environmental impact, and energy efficiency. The analysis highlighted that process 

temperature and resident time significantly affect hydrogen and methane yields. 

This study also examines the different gasification routes for sustainable valorization of 

biomass waste through a novel tri-generation process involving gasification, solid oxide fuel cells 

(SOFC), and combined heat and power systems (CHP). Using Aspen Plus simulations and XGB, 

the optimal parameters were identified, with biomass to air ratio (BMR) being the most significant 

factor, achieving a R² greater than 0.97. The process demonstrated an exergy efficiency 34.6% 

higher than gasification. The tri-generation process, which includes torrefaction and SOFC, 

showed economic feasibility only above 90% efficiency. Particle Swarm Optimization (PSO) 

resulted in an energy efficiency of 57%, yielding 242.6 kg/ton of dimethyl ether (DME) at 667°C 

and 2 bar. The HDMR method predicted gasification outcomes with high accuracy, showing the 

efficient operation at 765°C, 0.59 BMR, and 1 bar. This integrated approach enhanced economic 

viability and environmental sustainability compared to traditional methods. 

Plasma gasification (PG) tri-generation process for biomass waste valorization and DME 

production has been developed, considering 4E sustainability. Process optimization performed by 

the application of a radial basis function surrogate algorithm. Optimized process enhanced the 

DME yield by 6%, with energy efficiencies of 44% and 48% for the base (without optimization) 

process. It produces 1271 kW of electricity from 10 t/h feedstock processing and has a 

sustainability index of 2.509. The PBP for the optimized process is 7.2 years at 70% efficiency, 

while the base process is not feasible below 90% efficiency. A co-gasification process for biomass 

and plastic waste to produce blue and green hydrogen was proposed. This model, with a 20 t/h 

capacity, can generate approximately 1079 kW of electric power and surplus electricity for 

producing around 213.5 kg/d of hydrogen through alkaline electrolysis. Economic analysis shows 

an IRR of 8% at 70% efficiency. Exergy analysis highlights the gasifier component's lowest 
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efficiency, resulting in a 40% exergy loss, with exergoeconomics costs of approximately $6,561.3 

and $6,541.9 per hour for the steam turbine and gasifier, respectively, suggesting potential 

improvements in these areas for enhanced sustainability. 

Finally, a comprehensive evaluation of biological and thermal waste valorization methods was 

conducted using the Interval Valued Fermatean Fuzzy Set (IVFFS) with the Dombi Operator (DO) 

integrated with the Analytical Hierarchy Process (AHP). The analysis assessed four waste 

valorization processes—anaerobic digestion, gasification, pyrolysis, and HTG—based on 

economic, environmental, technological, and social-governance criteria. The Advanced 

Combinative Distance-Based Assessment (CODAS) ranked these processes with gasification as 

the most sustainable with an assessment score (As) of 0.063, followed by pyrolysis (0.009) and 

HTG (-0.033). Threefold validation confirmed gasification’s sustainability. Furthermore, the 

process safety of biomass thermal valorization technologies, evaluated using the Numerical 

Descriptive Logistics Equation (NuD), found HTG to be the safest among HTG, pyrolysis, and 

gasification, with the lowest Process Safety Total Score (PSTS) of 210.2. HTG’s lower 

temperature operations contribute to its safety profile. The findings align with the Inherent Safety 

Index (ISI), and risk mitigation strategies have been proposed based on these results. But overall 

evaluation based on economic, environmental, technological, and social-governance criteria 

recommend gasification process as a sustainable solution for biomass waste valorization due to 

process maturity and its wide application. Policymakers can propose short-term, mid-term, and 

long-term action plans for waste valorization based on the findings of this research. These plans 

include training and awareness programs, the installation of pilot plants, and the provision of 

subsidies and loans, among other initiatives, to optimize the waste valorization process, 

specifically the gasification process. 
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1 Introduction 

The increasing trend of waste generation, specifically solid waste including both organic 

and inorganic constituents, raises formidable challenges in the form of greenhouse gas (GHGs) 

emissions into the atmosphere, land contamination and subterranean water sources. According 

to estimates provided by the World Bank, the global generation of municipal solid waste (MSW) 

reached 2.01 billion tons in 2018, with a significant portion 33% of this waste lacking 

environmentally friendly disposal. Projections indicate that the global MSW will reach 3.40 

billion tons by the year 2050 [1]. Traditional methodologies such as landfills and incineration, 

globally employed for waste management, exhibit an unsustainable characteristic in terms of 

economic, environmental, and social dimensions due to the substantial emissions produced 

during decomposition processes [2,3]. Furthermore, sustainability challenges are arising from 

the entire waste management life cycle, from collection, transportation, handling, disposal, and 

the generation of by-products [4,5]. Therefore, the selection of an appropriate and sustainable 

waste decomposition process assumes significant importance in mitigating the aforementioned 

challenges and ensuring the enduring sustainability of the waste management process. 

Biomass waste is available in different forms, but the most common are woody, biogenic, 

agriculture, and manure waste etc. [6]. Thermal and biological processes can be applied to 

valorize these biomasses into various forms of energy. Thermal processes primarily comprise 

on pyrolysis, hydrotreating, and gasification, while biological processes are categorized as 

aerobic or anaerobic [7]. But each technique has its own benefits and drawbacks. For example, 

pyrolysis and gasification provides a better economic return at commercial level, whereas 

anaerobic digestion is also viable at the domestic level [8]. According to the United States 

Energy Information Administration (EIA), biomass energy fulfilled approximately 5 

quadrillion British thermal units (Btu), or 5% of the overall energy needs of the United States 

in 2021 [9]. Furthermore, electricity generation potential only from poultry litter is around 8893, 
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8745, and 4803 megawatts per day, in Pakistan, India, and Bangladesh, respectively, with 60% 

of the poultry litter utilization through anaerobic digestion process [8]. Therefore, biomass 

waste has a high energy potential if it is being converted by utilizing any suitable valorization 

process which can solve the biomass waste disposal problem but also helps satisfy energy 

demands using renewable energy resources. 

1.1 Research background 

Biomass waste valorization is one of the potential approaches for reducing GHG 

emissions while meeting energy demands. Globally, various methods are used to manage MSW, 

primarily categorized into thermal and biological approaches. A higher amount of hydrogen 

and less tar in the syngas is a key indicator of quality syngas produces in gasification process. 

While higher bio-gas production with less contaminants in term of sulphate, nitrates 

compounds etc. are the primary objective of anaerobic digestion (biological process). Poultry 

litter (PL) is one of the biomass types, along with poultry beads, water droplets, feathers, 

poultry feed, and rice husk straws, that may be used to create renewable energy [10]. PL can 

be transformed into several value-added products that may be utilized as bioenergy in 

developed countries. But currently, developing countries are not utilizing this waste potential 

appropriately due to which some unsettling issues in term of GHGs emission, surface, and 

underground waters contaminations have been increased. Therefore, proper waste disposal 

mechanism needs to be developed which can incorporate emissions related and waste disposal 

issues.  

Incineration is the simplest thermal conversion process adopted in different regions of 

the world for biomass waste valorization. However, the high moisture content of biomass waste, 

along with the enormous amount of ash makes incineration a less eco-friendly and energy-

intensive process [11]. The pyrolysis of biomass waste for biochar and biofuel production is 

also a sustainable option with respect to its energy, economic, and environmental performance, 



28 
 

but it is a complex process due to the stringent parameter requirements and high initial 

investment cost. The gasification valorization process, which is a techno-economic, 

environment, and energy feasible solution for thermal power generation using the final product, 

has also been examined in different research [12]. Gasification is the primary process for most 

co-generation and poly-generation technologies. However, the high moisture content in 

biomass is a major concern, which affects the energy yield of the process [13]. Similarly, 

plasma gasification valorises biomass waste at extremely high temperature which ultimately 

produce better quality syngas, but the process is highly energy intensive. The hydrothermal 

gasification (HTG) valorization process is a solution to the problem caused by high moisture 

which can be used for liquid or slurry biomass valorization. However, maintaining a high 

pressure of 25–30 MPa at 375–500 °C makes this process less energy-efficient and not 

economically viable when compared to other thermal processes. Therefore, every primary 

valorization process has its own limitations, but the final product generated by the gasification 

process can be used in poly-generation to make the respective process economic and energy 

efficient. 

The poly-generation process is one of the viable ways to increase the sustainability of the 

process performance (i.e., energy, economic, and environmental). Different secondary 

processes, such as solid oxide fuel cells (SOFCs), hydrogen, gasoline, diesel, ethanol, methanol, 

dimethyl ether (DME), and combined heating power systems (CHP), can be integrated with 

primary valorization processes (i.e., gasification and pyrolysis) [14]. Ebrahimi and 

Ziabasharhagh (2020) developed a tri-generation process used for biomass valorization by 

generating heat, power, and liquefied natural gas. The exergy efficiency of the total process 

was increased to 74% and the CHP efficiency increased from 38.95 to 48.0% [15]. Zhou et al. 

(2023) have proposed a co-combustion and SOFC based tri-generation process, and the thermal 

energy efficiency of the process was reported to be ~69% with an electrical efficiency of 27.4% 



29 
 

[16]. Similarly, the plasma gasification-based CHP and DME production process energy and 

exergy efficiencies were 48% and 42%, respectively, with a significant impact on the economic 

performance [17]. Therefore, poly-generation processes can improve the energy efficiency, 

which ultimately affects the economic output of the process. 

Biomass waste secondary conversion processes have been analysed in different studies. 

Syazaidah et al. (2021) conducted research on the conversion of PL biomass into bio-oil based 

on a fast pyrolysis process, and the bio-oil yield increased by adding a catalyst in the reaction. 

However, the higher heating value (HHV) of the resulting fuel was only 16.01 MJ/kg, which 

is lower when compared with that of normal fuel used in vehicles. Therefore, additional 

processes are required for further refining bio-oil [18]. DME is an alternative high-energy fuel 

with a high HHV and combustion properties like liquefied petroleum gas (LPG). It can be used 

in vehicles and as a raw material for different industrial chemicals [19]. DME can be produced 

from syngas generated via biomass valorization if it contains a major portion of H2, CH4, and 

CO. However, the significant H2 content in syngas is an important factor, which significantly 

contributes to the synthesis of DME [20]. The quality of syngas can be improved by altering 

the process parameters, including temperature, pressure, resident time, and gasifying agent. 

Zhang et al. (2016) analysed the techno-economic suitability of CO2 utilisation as a gasifying 

agent for steam reforming to produce methanol, which can be converted into DME. However, 

energy analysis and life cycle assessment of the process was not considered [21]. Nakyai et al. 

(2020) developed a simulation model for rubberwood conversion into methanol and DME. The 

results of their exergoeconomics analysis showed that the DME unit cost was 1.66 $/kg from 

the direct system synthesis which was lower when compared with the indirect synthesis (2.26 

$/kg) [22]. However, the DME production costs are not market competitive (0.65 $/kg) [23]. 

Therefore, a sustainable biomass waste valorization process is required to produce DME in 

terms of its environmental, economic, and energy aspects. 
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Comixing of biomass waste with plastic waste in a co-gasification process also presents 

a favorable synergistic approach to enhance the production of hydrogen within the syngas. 

Various studies have demonstrated that co-gasification of biomass and plastic waste can result 

in a higher rate of H2 production in the syngas, along with an improved HHV. In a study 

conducted by Maninderjit Singh et al. (2022), a co-gasification model based on biomass and 

plastic waste has been developed. Research findings suggested that a higher proportion of 

plastic waste, particularly in the range of 30-70% plastic to biomass ratio at a temperature of 

750°C, yielded the highest concentration of H2, ranging between 63-65% [24]. This study 

focused solely on kinetic modeling, analyzing the impact of process parameters such as 

temperature, pressure, and gasification on the final product. However, economic, energy, and 

exergy feasibility aspects of the process were not considered. Similarly, Kaydouh and Hassan 

(2022) developed a thermodynamic model to study the co-gasification of plastic and biomass 

waste, which were further analyzed by applying different gasifying agents, including CO2, O2, 

air, and steam. Their analysis revealed that an increased proportion of plastic waste in the 

feedstock led to an overall rise in H2 production. However, using CO2 as a gasifying agent had 

an adverse impact on H2 production due to the reversed water gas shift reaction. Using air as a 

gasifying agent decreased the HHV of the syngas in comparison to using O2, primarily due to 

the higher concentration of N2 in the resulting syngas. While steam demonstrated high 

efficiency as a gasifying agent, significantly promoting H2 production [25]. However, this 

study focuses on simulating the co-gasification process's thermodynamic equilibrium, 

specifically targeting the optimization of H2 using various gasifying agents and process 

parameters. Li et al. (2021) also supported the research finding of enhanced syngas production 

through co-gasification compared to utilization of biomass feedstock alone. According to their 

findings, a synergistic solution resulting in a 69% energy yield was achieved through the 

gasification of high-density polyethylene (HDPE) and acid-treated pine wood at a 27% fraction 
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[26]. Therefore, the co-gasification of biomass and plastic waste offers a synergistic approach 

to yield higher-quality syngas, with a higher concentration of H2. To ensure sustainable 

performance, other process performance indicators such as economic, energy, and exergy 

efficiencies are an aspect that seems to be overlooked in current studies. 

Optimization of the process parameters is another way to obtain good quality product 

with higher hydrogen content, which ultimately produces a higher yield of methanol, H2, DME 

etc. in the secondary process. The optimization process can be performed using two different 

techniques: simulation software such as Aspen Plus, which is based on mechanistic models, 

and data-driven modelling through machine learning (ML) algorithms. Li et al. (2021) applied 

a gradient boost regressor (GBR) for hydrogen prediction in the gasification process. The 

model performance was good in terms of the coefficient of determinant (R2 >0.90) [27]. 

Similarly, Shahbeik et al. (2023) applied a Gaussian-based ML regression model to predict the 

pyrolysis process output with a model performance of R2 >0.90, which is quite good with 

respect to the applied model [28].  But there are always some errors in these ML models that 

depend on the R2, and the higher the R2 value, the lower the prediction error. These errors, 

along with dataset availability, are limitations for black-box models because ML-based 

prediction models rely on the data available. Therefore, if the dataset is not refined, model has 

a misleading result. The optimization process can also be effectively performed by integrating 

a mechanism-based model and efficient optimization algorithms (particle swarm optimization 

and genetic algorithm). The optimization accuracy of this method is higher than that 

determined using ML-based models because these models are integrated with the first-principal 

simulation model and there are also no errors derived from the data fitness in the optimization 

results [29,30]. A pre-collected dataset is also not required because data refinement issues are 

not created for such models. Therefore, considering the economic, environmental, energy, and 

process optimization limitations, the Biomass-to-X (where X could be DME, methanol, electric 
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power, CO2, H2 etc.)  production process needs to be developed, which may be sustainable in 

terms of its economic, environmental, and energy aspects. 

1.2 Problem statement 

Substantial landfilling activities through biomass waste and social consequences are key 

obstacles to the development of the circular economy (CE) and bioenergy [31]. South Asian 

countries like Pakistan, India, and Bangladesh, the majority of biomass waste (PL, livestock 

excretion) is disposed of landfills or spread directly on agricultural land to boost the fertility. 

However, this method has some drawbacks, including eutrophication of land water, untreated 

exposure to the environment generating foul odor, pathogen growth, GHG emissions, and 

phytotoxin compound generation [32,33]. Some studies indicates that PL biomass may contain 

pathogens such as salmonella spp., enterococci, staphylococci, and lactobacilli bacteria, 

making underground or surface water vulnerable if utilized directly on land as a fertilizer [34]. 

Furthermore, Class 1 Integron, which promotes the transmission of antibiotic resistance genes 

in bacteria is identified in more than 90% of PL samples [35]. Therefore, an efficient safe 

disposal of biomass waste without damaging the environment could be a viable solution to 

these problems. 

Different biomass valorization processes including thermal and biological which have 

their own limitations. Biological valorization methods are time taking while thermal 

valorization processes involve lot of capital investment. The thermal incineration process is a 

well-established and extensively utilized method for the valorization of waste in different 

regions. However, this approach is hindered by its significant GHG emissions. According to 

estimates, each ton of MSW emits approximately 134±17 kg of CO2, 88±36 g of CH4, and 

69±16 g of N2O during the incineration treatment process, which represents a considerable 

environmental impact [36]. Consequently, there is a need for process improvements or 

alternative methods to manage MSW in a more sustainable manner. Nakatsuka et al. (2020) 
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presented an innovative approach that integrates MSW incineration with wastewater treatment. 

The thermal energy generated during the incineration process is utilized for electrical energy 

production, which is subsequently employed in wastewater treatment. Implementation of this 

model yielded significant results with a reduction of around 35% of total annual costs and a 

commendable 1% decrease in CO2 emissions [37]. Niu et al. (2019) integrated a torrefaction-

based pre-treatment to address biomass inherent limitations such as low energy and mass 

density, as well as hydrophilicity in biomass waste at an optimum torrefaction temperature of 

250°C to enhances biomass quality which ultimately increases carbon content with decreases 

H/C and O/C ratios. Therefore, the final fuel production exhibits a better combustion efficiency, 

mitigating issues related to downstream ash content [38]. Hence, integrating various methods 

such as combining thermal processes with biological approaches or incorporating pre-treatment 

steps can enhance the quality of the final product in waste valorization. However, further 

exploration of the sustainability perspective of these processes is necessary to mitigate 

emissions and achieve carbon neutrality. 

Biomass waste valorization process sustainability in terms of energy, exergy, economic, 

environment, and social perspective need to be further optimized by application of different 

algorithms integration with simulation model. Biomass waste valorization process output is 

dependent on feedstock characteristics and process input parameters. Therefore, appropriate 

process parameters selection and feedstock composition is challenging for the researchers to 

get the optimum output. Similarly, selection of the appropriate valorization processes among 

different available thermal (pyrolysis, gasification, plasma gasification, hydrothermal 

gasification, incineration) and biological (anaerobic digestion, aerobic digestion) is quite 

challenging for the decision makers considering sustainability perspectives. Hence, appropriate 

decision-making is required which can address these challenges and research gaps for the 

selection of sustainable valorization process. 
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Merely relying on conventional valorization methods such as gasification, incineration, 

and pyrolysis is often unsustainable, particularly when dealing with biomass containing high 

levels of moisture. Hence, secondary process integration is required to make the process more 

sustainable. The synergistic integration of these processes serves to optimize yield, ultimately 

improvement in techno-economic, environmental, energy, and exergy sustainability aspects.  

Primary processes have been integrated with the secondary processes by researchers which 

include CHP system, methanol, dimethyl ether, CO2, and H2, etc. production. Safari and Dincer 

had developed an integrated multigeneration process for hydrogen, power, fresh water, and 

heat production through AND. Overall process is energy and exergy efficiencies were 63.6% 

and 40%, respectively [39]. Similarly, Prestipino et al. (2022) have devised a bio-hydrogen 

production method utilizing biomass waste as the primary feedstock. The highest hydrogen 

yield was obtained at a steam-to-biomass ratio of 1.25, achieving an exergy efficiency of 33% 

and exhibiting a carbon footprint of -1.9 kgCO₂-eq/kgH₂ [40]. Therefore, process sustainability 

can be improved by application of different pre-treatment and secondary processes integration 

which needs to be explored further in terms of techno-economic, energy, exergy, and 

environmental aspects. 

Although different research studies have explored sustainable methods for the disposal 

of biomass waste, including primary, secondary, and tertiary processes. However, in 

developing countries such as Pakistan, India, and Bangladesh, traditional methods like 

combustion and land disposal frequently adopted for managing biomass waste. This reliance 

on outdated practices can be attributed to several factors, including inadequate infrastructure, 

limited technical expertise in valorization process selection, insufficient investor interest, and 

the absence of concrete policies and regulatory frameworks. Despite these challenges, these 

countries possess significant biomass waste potential that could be transformed into valuable 

products, contributing to GHGs reduction efforts. Estimates suggest that valorizing poultry 
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litter through gasification could enable Pakistan, India, and Bangladesh to reduce CO2 

emissions by 10.1, 9.9, and 5.4 million tons per annum, respectively [41]. However, to achieve 

these reductions, there is a need for concrete policies, improved infrastructure, optimal process 

development, techno-economic sustainability analyses, and decision-making models to 

facilitate effective process selection and attract investors. Accordingly, several research 

objectives have been given in Section 2.5 to address these critical aspects. 

2 Literature review 

For this study, literature review has been conducted to calculate the biomass waste 

potential along with the waste valorization techniques. Different waste valorization 

optimization and prediction methods have been summarized. Finally, decision making 

techniques have been concise from the literature.  

2.1 Biomass waste potential and current scenario 

In 2020, European nations will have reached a milestone of 20% renewable energy, with 

biomass energy accounting for the largest share [42,43] and these nations have set a target of 

producing 30% of total power from renewable sources by 2030 [44]. Since, biomass waste 

contains nitrogen, potassium, and phosphorus compounds, therefore, majority of biomass 

waste is being used as a (compost) fertilizer for agricultural land in developing countries [45] 

In current work, biomass waste is the main focus for assessment purpose. According to 

Economic Survey of Pakistan assessment, only commercial poultry (broilers and layers) 

population has reached over 1340 million [46]. Similarly, the commercial poultry populations 

in India and Bangladesh are 852 million [47] and 599 million [48], respectively which produces 

significant amount of poultry waste. In these South Asian countries, landfill disposal or 

composting is now the most prevalent method of dealing with poultry waste. Therefore, this 
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potential of poultry waste biomass energy can also be used as a source of energy by valorization 

into biofuel or biogas, which is common practice in most of the developed countries. 

According to 2018 World Bank statistics, the global production of municipal solid waste 

(MSW) reached approximately 2.01 billion tons, with a projected increase to 3.40 billion tons 

by 2050 [1]. Out of this waste, at least 33% are not managed in an environmentally friendly 

manner. Despite regional initiatives to convert BM waste into various energy sources which is 

consist of around two-thirds of the total MSW waste had been utilized to meet the domestic 

energy need of 60 exajoules (EJ) in 2020 which primarily comprises of BM solid waste. The 

major contributors to this waste generation are Asian countries, followed by African nations, 

as depicted in Fig. 2.A [49]. While efforts have been made to convert some of this waste into 

electric power, with global generation escalating from 162 to 684 terawatt-hours over the past 

two decades, the distribution of utilization varies. Asian countries dominate BM waste-based 

Fig. 2.A Global and continental biomass waste to energy trends 
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power generation, with Europe following suit. Specifically, African countries, despite being 

the second-largest contributors to BM waste production, exhibit the lowest utilization for power 

generation. Therefore, there exists substantial potential for BM waste to address both waste 

disposal concerns and energy production requirements. 

2.2 Biomass waste valorization processes 

There are different biomass waste valorization processes which have been described in 

sections 2.2.1 to 2.2.3. 

2.2.1 Thermal processes 

In thermal valorization processes, heat is applied to convert biomass waste into value 

added products. It has been mainly categorized into pyrolysis, gasification, hydrothermal 

gasification, and incineration. For this study, scope is limited to the pyrolysis, gasification, and 

co-generation processes which are summarized in the section below. Fig. 2.B has the process 

flow of thermal and biological valorization processes while SWOT from different studies has 

been summarized in Table 2.3. Thermal processes are the faster way to convert biomass waste 

as compared to biological processes for biomass waste valorization, but initial capital 

investment is high while biological valorization processes are also feasible at domestic level.  

Therefore, both thermal and biological processes have some limitations, but it depends on the 

decision makers which process they prefer as per regional needs. 

2.2.1.1 Pyrolysis 

Pyrolysis is a thermal conversion process that uses heat to convert biowaste into bio-oil 

or biochar. It is further subdivided into slow, intermediate, and fast pyrolysis based on 

conversion time and process parameters. If the feedstock is a mixture of different biomasses or 

polymers then such process also known as co-pyrolysis [50].  Final products of these processes 

are summarized in Table 2.2. Fast pyrolysis is the faster route to convert biomass into bio-oil, 
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biochar, and low molecular mass gases. Fast pyrolysis valorization process produces up to 78% 

of the bio-oil yield (dry biomass basis) at 400-650 oC [51] with a maximum particle size of 2 

mm for better efficiency. Bio-oil is a mixture of organic molecules including alkane, aromatic 

compounds, phenols, ketones, esters, amines etc. Output yield of pyrolysis is dependent on the 

types of biomass and process parameters including biomass residence time, temperature, 

heating rate. But for better yield of bio-oil, residence time should be less than 3 seconds [52]. 

While slow pyrolysis promotes the production of biochar at slower rate which takes several 

hours [53]. According to experimental results, 350-450 oC with 1 hour residence time are the 

optimum parameters for biomass waste to biochar production. Increasing temperature reduce 

the biochar production rate [54]. Therefore, if the objective is to produce biochar, then lower 

temperature and higher residence time is more suitable for this while higher temperature and 

lower residence time promotes the production of bio-oil. 

2.2.1.2 Gasification 

Gasification is the thermochemical process of converting carbonaceous materials by 

reacting with air and moisture to form a syngas that contains CO2, CO, H2, and CH4 [55]. Based 

on the process parameters and biomass characteristics, the gasification process is primarily 

separated into HTG, plasma gasification, and conventional gasification (CG) [56]. HTG 

process is primarily used for moist or liquid biomass without the involvement of drying process, 

which is being carried out at high pressure of 20-25 MPa and temperature ranges from 370-

500 oC [57,58], whereas conventional gasification process is carried out at high temperature of 

around 700 oC, producing mainly H2, CO, CO2, and CH4 gases with fractions of some other 

higher hydrocarbon [41]. Conventional gasification processes involve pre-treatment of biomass 

in the form of a drying process, whereas HTG requires biomass to be in liquid or slurry 

condition [59]. Therefore, conventional gasification is only appropriate for the solid biomass 
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at higher temperatures, whereas HTG is acceptable for both solid (producing slurry) and liquid 

biomasses. 

HTG converts biomass waste into syngas, including hydrogen, at lower temperature 

compared to conventional gasification process. Water is a universal solvent with distinct 

properties such as great diffusivity and solubility in its supercritical state, which allows it to 

behave as both a liquid and a gas. Under high temperatures and pressures, the reaction between 

biomass and water can effectively disrupt the chemical bonds, resulting in the gasification of 

biomass [60]. HTG is a similar process to hydrothermal liquification (HTL), however there is 

temperature and pressure variation. The temperature of the reactor in the HTG process is 400-

700 oC at 22-35 MPa pressure, whereas the temperature in the HTL process is 250-400 oC at 

5-35 MPa pressure. HTG also known as supercritical water gasification [61,62]. Elemental 

compounds of the biomass such as carbon, hydrogen, and oxygen can be converted into gases 

such as carbon dioxide, hydrogen, and methane if the temperature and pressure in HTG remain 

above the super critical point (400-600 oC and 22-25 MPa) [63].  By adjusting the HTG process 

operating parameters, high efficiency syngas with more hydrogen gas concentrations can be 

produced [64]. Process parameters and biomass concentration are mainly contributed to the 

HTG output as some literature-based studies summarized in Table 2.1. Hence, the HTG process 

could be a viable option for turning hydrated biomass waste into energy in the form of high-

quality, high-pressure syngas without prior drying. 
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Table 2.1 Summaries of gasification studies with biomass types 

Feedstock Applied Process Summary of key findings Ref. 

Sewage sludge HTG Simulation 

Model 

Temperature, and biomass concentrations have a direct 

impact on the composition and quality of syngas. 

[65] 

Poultry manure Lab Scale 

Experimentation of 

HTG 

High temperature (580 oC) with a residence time of 10 

min at 25 MPa pressure is an optimal for promoting 

hydrogen gas production. 

[66] 

Microalgae 

Spirulina 

HTG Simulation 

Model 

Biochar is produced at equilibrium condition of the 

model, and it is dependent on biomass composition. 

[67] 

Glycerol SCWG Simulation 

Model 

Biomass pre-heating and reforming temperatures have a 

substantial impact on the final gas quality and efficiency. 

[68] 

Glycerol, sewage 

sludge, 

microalgae, 

grape, phenol 

SCWG Simulation 

Model 

SCWG process is sustainable if biomass concentration of 

15-25% is adopted. At the feed rate of 1000 kg/h 150 

kWh of net energy power produces. 

[69] 

Pine Pallets,  

Eucalyptus 

Gasification 

Simulation and Lab 

Model 

ER from 0.17 to 0.35 and 709-859 oC temperature has the 

significant effect on syngas output. 

[70] 

Straws Integrated 

Gasification 

Simulation Model 

Effect of oxygen, air, temperature, and pressure has been 

studied. Findings concluded that increasing oxygen with 

air ratio less than 3.5 is the more suitable for better 

biomass efficiency. 

[71] 

2.2.1.3 Plasma gasification 

Plasma gasification (PG) which is relatively advanced form of the conventional 

gasification process and can convert biomass waste at extremely high temperatures (1000-

5000 ℃) with the help of plasma torch. Accordingly, biomass waste can be converted into 

syngas and aggregate by application of high plasma state thermal process [72]. Syngas can be 

further processed for value-added use in various upgraded processes, whereas aggregate can 

be utilized as a building material. PG process can be mainly divided into two types: (1) 
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conventional gasification (CG) coupled with PG and (2) plasma torch assisted gasification 

process [72]. PG is more preferable comparing with the conventional and the HTG because of 

less space requirement compared with conventional one and tar-free syngas can be produced 

in this process which can be directly used in upgraded process [73,74]. Furthermore, waste 

flexibility is high with lower levels of CO, NOx, SOx, and tars pollutants. The waste to energy 

(WTE) efficiency is also higher (29-33%) in PG as compared with that in conventional 

gasification (15-30%) and incineration (16%) [75,76]. Minutillo et. al 2009 concluded that 

system efficiency (31% LHV) of PG which is higher than that of incineration (20% LHV) [77]. 

Therefore, PG has been recognized as a promising option for biomass valorization compared 

to the conventional and the HTG process because of better quality output and higher efficiency 

of the process. Syngas generated in the PG process can be used in poly-generation for 

converting it into different high-value-added products including methanol and DME, etc. 

2.2.2 Microbial processes 

Microbes are also used to valorize the biomass waste into different products in the 

presence or absence of air. Microorganisms are used in the anaerobic process to produce the 

Fig. 2.B Thermal and biological valorization processes for biomass waste 
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methane-rich biogas and slurry [78]. Anaerobic process (AND) takes around 12 to 27 days, 

whereas composting or aerobic digestion (AD) takes approximately 28 to 42 days to convert 

the biomass waste into compost which can be used as an organic fertilizer [79]. Final products 

of the thermal and biological processes are summarized in Table 2.2. SWOT-PEST analysis of 

the thermal and microbial valorization processes is summarized in Table 2.3. Hence, by 

application of various conversion processes, biomass waste can be converted into a variety of 

value-added goods. Fig. 2.B illustrates the thermal and microbial methods for biomass waste 

valorization. 

Table 2.2 Biomass pyrolysis, gasification, and biological valorization processes output 

Pyrolysis conversions Gasification Biological conversions 

SP  FP  AND AD 

[80] 

Biochar (mainly) 

Bio-oil 

Syngas 

[81] 

Bio-oil (mainly)  

Biochar 

Pyrolytic Gases 

 

Syngas (mainly) 

(H2, CO, CO2, CH4) 

Biochar 

Rich methane (60-

65%) biogas [82] 

CO2 (30-35%) 

Organic (slurry) 

Ammonia, H2S 

Low moisture 

odorless 

product use as 

fertilizer [83] 

 

Table 2.3 SWOT-PEST analysis of FP, SP, AND, and AD  

  Strengths Weakness 

P 

FP 

 • Taxes on supporting equipment 

E 
• Highest investment return and shorter payback 

period 

• High capital investment requires, and it is feasible at 

commercial level [84] 

S • No need for land disposal of by-product [85] • Heat emissions effects nearby [86] 
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T 
• Continuous process with step-up conversion rate 

[87] 

• Yield is temperature, flow time dependent [88] 

P 

SP 

 • Taxes on supporting equipment 

E • Low capital investment as compared to FP [84] • Lower rate of return as compared to FP 

S • Final product free from volatile compounds [89] • Heat emissions effects nearby [86]  

T • Simpler process as compared to FP • Yield is temperature dependent [86] 

P 

AND 

• Process is subsidized by government • Limited scope of subsidies 

E 
• Economical process as compared to pyrolysis 

[86,90] 

• Rate of investment return is time taking as compared 

to the pyrolysis process 

S 
• Less technical expertise requires as compared to 

thermal process [79,90]  

• Biogas leakage issue; it can affect surroundings [82] 

T 
• Simpler process as compared to pyrolysis and 

suitable at the domestic level 

• Temperature, flowtime, and organic load to be 

maintained [80] 

P 

 

 

AD 

 • No subsidy in South Asian countries 

E • Cheapest way for biomass conversion  • Low-value final product 

S • Simpler and less expertise is required • High land area requires  

T • Simple hand tools require  • Conversion process takes 4-6 weeks[79]  

  Opportunities Threats 

P 

AD 

• Better economical results after policymaking  • Neglected process by policymaker  

E 
• Earthworm utilization is a mutualistic approach 

and a source of protein for poultry 

• Comparative cheaper product and only land 

application 
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S • Process possible at domestic level • Bad odor and large land space is required  

T 
• Vertical multiple level infrastructure can be used 

to tackle the space issue 

• Carbon to nitrogen ratio effect in the product which 

is not effective [79] 

P 

AND 

• Government subsidies for larger plant • Taxes on supplementary equipment  

E 
• CO2, H2S, and NH3 gases produced can be 

recovered  
• Lower yield and high investment return period 

S • Safety features can be added to detect leakage • Digestor leakage is damaging for surrounding [78] 

T 
• Temperature, organic load, and retention time, 

can be automated for better efficiency 

• Periodic plant tanks maintenance requires [79] 

P 

SP 

• Government subsidies and carbon credit gain • High taxes on equipment and no existing policies  

E 
• Phenol, nitrogen compounds, sterols, and water 

products can be converted into liquid fuel  [86] 
• Traditional technique and low rate of return 

S 
• Biochar can be used as a bio-fertilizer and fuel to 

warm the houses 

• High temperature of reactor causing nearby safety 

issues 

T • Self-sustain process  

• Slower process as compared to FP. 

 

P 

FP 

• Government subsidies and carbon credit gain • High taxes on equipment and no existing policies  

E 
• Commercial value compounds toluene, benzene, 

xylene, ethylbenzene produced at 719 oC [85] 

• Higher capital investment as compared to the SP [84] 

S • Clean process and limited plant space required  

• Shifting to other processes due to pyrolytic gases and 

high-temperature safety issues  

T • Self-sustain process utilizing the product  [91] 

• Due to high temperature, periodic maintenance 

requires 
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2.2.3 Poly-generation processes 

There are various combined cycle systems that can be used to enhance the net energy or 

exergy performance of biomass valorization specifically with thermal processes. SOFC co-

generation is one of the methods which can be employed in a combined cycle with gasification 

due to its operational capability at higher temperatures and greater fuel contamination tolerance. 

Therefore, it has been considered an excellent fit for the gasification process. Processed syngas 

from the gasification process could be utilized in SOFC with air/oxygen input from the SOFC's 

anode and cathode, respectively [92]. Similarly, another tri-generation process includes the 

primary gasification process which can be extended to secondary methanol and DME 

production along with electrical energy from CHP [93,94]. These processes can also be 

integrated with renewable energy sources to make process allothermal [95]. Pyrolysis process 

can also be integrated with secondary thermal valorization processes of gasification and CHP 

along with CO2. This process has been developed in chapter 7. But the primary objective of 

these processes is to improve sustainability in terms of energy, economic, environment, and 

social perspectives. There are different poly-generation processes that have been developed in 

this work and the sustainability analysis has been performed. These processes are summarized 

in chapter 5-7. 

2.2.4 Research gaps 

According to different studies, the circular economy is a potential business model, but it 

is still unclear whether it is economically viable for saving the environment and increasing 

social fairness at the same time [96]. Although some studies on biomass waste like cow, wood, 

and pig manures have been done, but there are limited research focusing on PL biomass 

valorization for South Asian developing countries. Consequently, one of the objectives of this 

research to develop a method for valorizing PL in an eco-friendly, economically feasible, and 

sustainable for South Asian developing countries. It will also help to accomplish United 
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Nations Sustainable Development Goal number 7, which is 'affordable, reliable, sustainable, 

and modern energy' [97] by creating policies for biomass waste valorization technologies based 

on the findings of this research. 

Process parameters such as temperature, air ratio, and feedstock significantly influence 

the final quality of syngas produced through gasification. However, existing research has 

predominantly concentrated on enhancing the valorized production yield of sewage sludge and 

other agricultural biomasses, with PL biomasses receiving comparatively less attention. Wen 

Cao et al. (2022) conducted an experimental study focusing on poultry manure biomass, 

utilizing a lab-scale model restricted to analyzing the parametric aspects of the HTG process 

[66]. But for the optimum yield and other sustainability indicators analysis including economic, 

environment, energy, and process safety aspects are not feasible with lab scale experimental 

model. Therefore, a comprehensive research study needs to be conducted on the economic, 

energy, environmental, and process safety aspects of the HTG process with parametric analysis. 

Simulation based model can be used to estimate the end product yield based on the input 

parameters, which is time intensive and costly in experimental setup. Furthermore, these 

models can be used for energy analysis and adjustment of input parameters to improve syngas 

quality which is quite and costly in an experimental setup. The final product quantity and 

quality of the valorization process can also be utilized to calculate the process's economic 

viewpoint. Therefore, the goal of this study is to develop a process simulation model for the 

conversion of biomass waste specifically for PL into syngas or steam using Aspen plus 

simulation. Different thermal valorization processes integration has been evaluated to find out 

the optimum sustainable process. Simulation model of these processes will aid in the prediction 

of final product parametric yield. These validated simulation models can also be utilized to 

adjust parameters for higher syngas yield without wasting time and money on experimental 

investigations. Hence, simulation of the valorization process can assist in the calculation of 
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some aspects like economic, energy, environment etc. which are not easily feasible with 

experimental setups. 

Similarly for gasification-based co-generation processes are mostly dependent on the 

process parameters, particularly temperature and (biomass to air ratio) BMR, while in the HTG 

process, residence time, and solid contents have a major effect on the syngas quality. However, 

if syngas is used in SOFC based integrated process or in the production of DME, methanol, H2, 

CO2 etc. then process sustainability can be improved. Process parameters temperature, pressure, 

syngas fuel quality, and the use of concentrated O2 as a gasifying agent significantly affect the 

process output. In the case of SOFC, the use of concentrated O2 at the cathode has a substantial 

impact on SOFC efficiency. The overall exergy efficiencies of the gasification and SOFC 

models have been found to range between 50 and 61% which can be improved by controlling 

the process parameters [98,99]. Similarly, the use of different gasifying agents like air, the use 

of concentrated O2, steam etc. plays a significant role in gasification process output which 

needs to be explored further with an integration of secondary or tertiary processes. 

Current studies indicate the circular economy is a promising business model, its 

economic viability for environmental sustainability and social equity need to be explored, 

particularly in South Asian developing countries. Existing research has predominantly 

enhanced the yield of sewage sludge and agricultural biomasses, neglecting the comprehensive 

analysis of PL. Furthermore, lab-scale models have shown limitations in optimizing process 

parameters for syngas quality and sustainability indicators. Therefore, there is a need for a 

simulation-based model to evaluate the economic, energy, environmental, and safety aspects 

of PL valorization though an integration of multi-generation processes, utilizing advanced 

simulation tools like Aspen Plus to predict yields and improve process efficiency, thereby 

contributing to the United Nations Sustainable Development Goal 7. 



48 
 

2.3 Optimization of biomass waste valorization 

2.3.1 Integration of the prediction and optimization models 

Hydrogen is the most important element of the thermal valorization process like 

gasification process since it influences fuel quality in terms of HHV and LHV. Furthermore, it 

is a critical component in the hydrogenation process as well as the synthesis of other industrial 

chemicals such as ammonia, methanol, and SOFC efficiency [57,100]. However, current 

gasification process productivity is insufficient to make hydrogen synthesis an economically 

viable process because additional processes such as drying and separation of hydrogen from 

other gases are necessary which increase the process cost. Some studies use catalysts in the 

gasification process to boost the yield of hydrogen and methane gas and make the process more 

cost competitive, but yield is mostly determined by process parameters such as temperature, 

pressure, solid content etc. [101,102]. Therefore, biomass type and process input parameters 

such as temperature, solid content, biomass resident time, and pressure need to be altered for 

improved yield, which can be anticipated using various algorithms. 

The underlying objective of the gasification process to produce syngas with a higher 

percentage of hydrogen and less carbon dioxide [103,104]. Hence, there are two-way outs to 

improve the quality of syngas, either a real-time experimental method or estimates based on 

simulation models. But both approaches have time, financial, and higher field skill constraints. 

This constraint can be overcome by developing artificial intelligence-based prediction models 

based on process inputs. Based on process input characteristics, machine learning is one type 

of computational AI technique that may be used to estimate syngas quality in terms of hydrogen, 

methane, carbon monoxide, and carbon dioxide production. The ML model learns and predicts 

the output depending on the input data trend that is presented to it. Therefore, input data 

collection and refining are crucial for ML models because it predicts based on the data provided. 

In the context of the prediction study for HTG, a comprehensive data collection framework for 
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the development of the prediction model is given in Section 3.2.1.1, as illustrated in Figure 3.A. 

This framework encompasses several key steps, including database selection, keyword 

shortlisting, and the screening and inclusion of relevant data for the prediction model.  

Appropriate selection and development of the prediction model which can predict all 

elements in syngas is a challenging process, but researchers are trying for the best AI-based 

prediction model that can estimate all gas species with the least error. Different researchers 

have applied the ML model to predict waste-to-energy output via pyrolysis, hydrothermal 

carbonization, and gasification. Liang Li et al. (2015) used multiple linear regression and a 

regression tree to forecast the output of organic hydrothermal carbonization. The model results 

fit the product feature. However, the R2 was slightly lower, ranging between 0.63-0.73 [105]. 

Jie Li et al. 2020 applied a deep neural network (DNN) model to predict the hydrochar fuel, 

carbon capture, and storage stability. The model R2 was 0.88-0.91, which is pretty good for 

prediction, however the MAPE was up to 20% [106]. Xinzhe Zhu et al. 2019 estimated biochar 

yield and carbon content in biomass under pyrolysis conditions using the random forest 

regressor (RFR). R2 values ranged from 0.75 to 0.85 for various simulated outcomes [107]. 

When compared to the random forest regressor, the artificial neural network (ANN) produces 

somewhat superior model results in terms of co-efficient of determinant for waste valorization 

output prediction [108]. Mutlu and Yucel (2018) predicted the gas composition and calorific 

value of biomass using multi-class random forests classifiers and binary least squares support 

vector machine with prediction accuracy of 96% and 89%, respectively [109]. Elmaz et al., 

2020 used regression approaches to forecast HHV, H2, CO2, CO, and CH4 in the pinecone and 

wood pellets gasification process. R2 was in between 0.85-0.92. This model was developed 

based on woody biomass (pinecones and wood pellets) [110]. Irrespective of dataset quality, 

every AI-based method has its own limitations in terms of overfitting, bias, generalization, and 

computational resources etc. Therefore, selection of an appropriate model along with the data 
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selection and refining is an important aspect for the development of robust prediction model 

otherwise the accuracy of the model is questionable. 

The gasification process can also be predicted and optimized by integration of the process 

simulation and mathematical modeling [111,112]. The fundamental parts of biomass 

gasification modeling and simulation are thermodynamic equilibrium and kinetic models. In 

thermodynamics modeling, Gibbs free energy minimization is used to get the thermodynamic 

properties of chemical processes, but kinetic modeling is more accurate than thermodynamic 

models in predicting the gasification process [113,114]. Application of kinetic modeling in 

simulation model development has more stringent criteria as compared to the thermodynamics 

model. Although, high-performance computing simulation programs have made it possible to 

simulate [115]. Researchers applied different optimization and prediction models for biomass 

waste valorization processes. Vascellari et al. (2014) suggested a method for validating and 

using kinetic parameters to predict and optimize process output [116]. Dang et al. (2021) used 

the Aspen Plus to anticipate and optimize the biomass gasification process [117]. Hashimoto 

et al. (2012) proposed another method for prediction purpose which is related to detailed data 

extraction from biomass valorization experimental or simulation studies for database 

construction, however, it does not allow for interpolation of intermediate values [118]. Ascher 

et al. (2022) developed ANN based model to predict the gasification process output based on 

input characteristics such as syngas quality, feedstock, and reactor type, with an R2 of 0.9310 

[119]. For predicting process output, machine learning and neural network models provide 

superior results, however, these models use a backbox approach that overlooks variable 

interactions. Kinetic modeling, on the other hand, has its own set of limits in terms of 

complexity and knowledge. Hence, a better prediction and optimization strategy for 

gasification is required, one with greater computational capacity, processing flexibility, and 

efficiency in terms of gasification prediction and optimization. 
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2.3.2 Research gaps 

Different studies have applied regression, machine learning, or neural network-based 

prediction models for the biomass gasification process as discussed in section 2.3.1. But these 

models’ applications are limited to either a specific type of biomass or individual output 

prediction such as H2 gas in syngas. Therefore, a generic model for biomass syngas prediction 

that can compare regressor and neural network models to select the better prediction model for 

H2, CO2, CO, and CH4 based on biomass types and process input parameters is required. In the 

current study, an AI-based model for syngas prediction was established by a comparative 

analysis of neural network and regressor models. Ultimate analysis and process input factors 

such as temperature, pressure, solid content, and resident duration were chosen as input 

parameters for predicting syngas quality based on Fig. 3.C analysis in section 3.2.1. The final 

yield varies due to dependence on the biomass type. Different biomass datasets can be used to 

construct a generic prediction model which can predict output regardless of biomass type. 

Similarly, for HTG process prediction; biomass solid content ratio in the water can be selected 

since HTG is a better valorization process for high moisture content biomass. Whereas resident 

time refers to the average time biomass-water mixture remains in the reactor. According to the 

analysis given in section 3.2.1, biomass type (final analysis), temperature, pressure, solid 

content, and resident time all have a substantial impact on syngas. Hence, these values were 

used as an input parameter to forecast syngas output (H2, CO2, CO, and CH4) in the HTG. 

In co-generation processes, some studies applied AI-based models for predicting the 

output of the gasification process and SOFC. ANN is one of the AI techniques that researchers 

typically apply for syngas prediction [92]. Pandey et al. 2016 [120]  developed ANN model to 

estimate the LHV in the gasification of process municipal solid waste, whereas Milewski et al. 

2009 used ANN to estimate SOFC output [121]. However, these neural network algorithms 

have various limitations, including over-fitting concerns, low generalization capability, and 
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instability issues, whereby slight changes in the input result in significant changes in the 

predicted output [122,123]. Therefore, better AI models require which can overcome these 

difficulties while estimating the output of gasification and SOFC. XGB could be the possible 

solution for this. 

Aspen Plus is a process-based simulation software that has been widely used for 

thermodynamic and kinetic modeling in chemical process simulation [124]. Process modeling 

is possible using simulation software, but model input parameters must be altered for yield 

prediction, which is restricted by the availability of the corresponding model, simulation 

program, and significant expertise. Therefore, a high-accuracy process yields prediction model 

that can anticipate output without considering the aforementioned limits is required. The 

pattern search algorithm is one of the methods which can be integrated with the simulation 

model to get the optimum results by reducing the computational time. Wetter et.al 2003, 

applied a pattern search algorithm for building energy-saving optimization. Resultantly, 7% 

and 32% energy savings had been achieved depending upon the building location [125]. Duan 

et.al 2020 applied pattern search in the kinetic modeling of torrefaction process, resultantly, 

the model worked well for optimization calculation [126]. Therefore, model optimization can 

be achieved through a pattern search algorithm.  

The high-dimensional model representation (HDMR) is another method to represent 

high-dimensional system input-output relationships. It is a mathematically proven and efficient 

processing paradigm since it moves from exponential scaling to polynomic complexity, 

reducing computational effort dramatically [127]. HDMR model can be utilized to characterize 

the relationships between variables more simply than 'black box' models such as ANN due to 

the explicit model coding. Furthermore, its basic mathematical structure and algorithms have 

flexibility as an objective function, which gives it advantages in algorithm selectivity for 

process optimization. Rabitz and Brownbridge et al. has developed this which is commonly 
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used to cope with complex problems in a chemical process such as predictive model creation, 

global uncertain analysis, and economic assessment [127]. Pan et al. (2016) applied HDMR to 

optimize chemical processes in eco-industrial parks [128]. Azadi et al. (2015) used HDMR to 

assess the worldwide sensitivity of LHV, cold gas efficiency (CGE), and gas output from algae 

biomass [129]. Wang et al. 2021 concluded that HDMR has a relatively low dependence on 

training data size and a strong capacity to assess output sensitivity to input variable for 

predicting dual-fuel ignition delay duration [130]. Hence, these HDMR-based surrogate 

models have been classified as data-driven, which employs data collected from complicated 

simulation models or experiments to make predictions [131]. Considering the advantages of 

HDMR over neural networks and databases, a data-driven model based on HDMR is being 

developed for gasification output prediction. 

Existing research has utilized machine learning and neural network models for biomass 

gasification are often limited to specific biomass types or single output predictions, such as 

hydrogen in syngas. This highlights the need for a generic prediction model that can evaluate 

and compare different regression and neural network approaches for predicting multiple syngas 

components (H2, CO2, CO, and CH4) based on different biomass types and process parameters. 

While some studies have utilized artificial intelligence for gasification output prediction, issues 

such as overfitting and low generalization capabilities persist. Therefore, there is a significant 

gap for developing a robust AI model, potentially incorporating techniques like XGB or 

HDMR, to accurately predict syngas output across diverse biomass inputs. This model should 

also integrate process simulation tools to optimize yield predictions efficiently, addressing the 

limitations of current methodologies. 

2.4 Application of decision making for process selection 

Biomass waste is a low value raw material which is abundantly produced from natural 

and human activities. Safe disposal of this waste is problematic, which also does not seem 
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economically feasible, if proper disposal mechanism is not applied. This waste can be disposed 

of through different valorization processes given in section 2.2. But appropriate selection of 

the disposal process along with the plant location design is an important factor to make this 

process economically sustainable. Therefore, one of this decision-making aspect has been 

analyzed in this study.    

2.4.1 Decision making techniques 

There are different decision-making methods which have been applied by the researchers 

for decision making in different aspects. TOPSIS, AHP, fuzzy, MCDM, ELECTRE etc. are 

most frequently applied methods for the selection of plant installation and location selection 

etc. based on different criteria’s [132]. Yücenur et al. (2020) applied MCDM for the 

appropriate location selection in three big cities of the Turkey for biogas plant installation. 

Different criteria’s have been included for decision making [133]. Curto and Martín (2019) 

have used ACC IP for multi-functional optimization method for the selection of technology 

among renewable and hydrogen production [134]. Lee et. al (2018) studies different renewable 

resources in Taiwan by application of TOPSIS, ELECTRE, and fuzzy [135]. Sakthivel et. al 

(2017) applied integration of fuzzy, TOPSIS, VIKOR to get the best biofuel combination for 

better efficiency in an engine [136] . Klein et. al (2015) used MCDM technique to investigate 

the renewable energy resources based on cost, land, water usage, greenhouse gases emission 

etc. [137]. Cobuloglu et al. (2015) studied sustainable biomass product for biofuel production 

though AHP method [138]. Amer et al. (2011) evaluated the renewable energy resources for 

electricity generation from political, economic, social, and technological perspectives by 

application of AHP [139]. Therefore, TOPSIS, AHP, fuzzy, MCDM, and ELECTRE are 

proven techniques which can be applied for decision making purposes in the field of renewable 

energy generation.   
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2.4.2 Research gaps 

Appropriate decision making in the selection of valorization technique plays an 

important role in making biomass low value product monetization. Decision-making 

techniques which have been applied in this energy sector are mostly subjective, in which the 

input of the experts is involved. Therefore, a chance of biasness always exists while making 

decision. Similarly, criteria selection along with suitable decision-making technique is the most 

important aspect because the output results are dependent on the input criteria, irrespective of 

decision-making technique selection. Most of the studies are focused on the macro level 

political, economic, social, environment, and technology aspects for the appropriate decision 

making regarding renewable energy or biomass waste valorization process installation which 

helps to fulfill this research gap in biomass valorization domain [137–139]. There are several 

areas and cross-functional applications of appropriate techniques that require further 

exploration within the domain of biomass valorization. These areas include but are not limited 

to the sustainability of valorization processes as assessed through energy, exergy, economic, 

environmental, and safety considerations. Furthermore, the selection of process optimization 

techniques should account for these parameters. Subjective techniques may be replaced or 

integrated with objective methodologies through the application of quantitative data relevant 

to this field. Furthermore, artificial intelligence and mathematical algorithms, such as Particle 

Swarm Optimization (PSO), pattern search methods, and High-Dimensional Model 

Representation (HDMR)-based surrogate models, can be utilized to support the selection of 

optimal valorization processes.   

MSW management study has been conducted by different researchers. Specifically, 

Rahimi et al. (2020) employed an integrated approach, combining Fuzzy MCDM with 

Geographic Information System (GIS) techniques to identify suitable landfill sites for MSW in 

Iran. Fuzzy Best-Worst Method (BWM), an advanced version of the traditional best-worst 
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method that addresses uncertainty had been applied to determine the weights of these criteria 

[140]. Although the integration of Fuzzy MCDM has addressed some challenges related to 

uncertainty in subjective decision-making, it is still sensitive to dynamic factors, non-linearity, 

computational intensity, and transparency issues. Makan et al. (2013) applied another 

technique Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE) for MSW management selection based on financial, social, and technical 

aspects [141]. However, the applied method is sensitive towards addition of new alternatives, 

rank reversal, and difficult to handle qualitative data etc. Tseng (2018) utilized Analytic 

Network Process (ANP) and Decision-Making Trial and Evaluation Laboratory (DEMATEL) 

to determine effective waste management solutions based on environment, economic, 

technological, and social aspect [142]. These methods have drawbacks, such as reliance on 

specialized software and sensitivity to non-linear relationships. Chaudhary et al. (2017) 

employed Fuzzy MCDM for MSW landfill selection in India based on eco-logical and socio-

economic aspects [143], but this technique also faced challenges with non-linear relationships. 

Hence, there is a need for an updated decision-making model capable of handling non-linear 

relationships with respect to the economic, social, environmental, technological, and 

governance aspects to select the optimal waste management solution.    

The Analytical Hierarchy Process (AHP) assesses various criteria independently, 

offering advantages like a structured decision-making approach, adaptability to diverse 

problems, and the ability to handle both quantitative and qualitative aspects. It also includes 

features such as consistency analysis [144]. However, AHP heavily relies on subjective 

opinions and demands substantial data [145]. But these constraints can be mitigated by 

implementing fair selection criteria for expert inclusion, ensuring suitable data collection 

procedures, and incorporating Fermatean Fuzzy set (FFS) theory. FFS is designed to address 

ambiguous human thoughts and perceptions by incorporating membership degree, non-
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membership degree, and hesitancy degree—elements [146]. This integration offers flexibility 

in managing uncertainty, accommodates experts' hesitancy, enhances sensitivity, provides 

versatility in integration with other models, and demonstrates improved adaptability to real-

world decision-making scenarios. Furthermore, integration of the Dombi operator (0.1-1) 

which address the intersection (close to 0) minimum operation and union (close to 1) maximum 

operations through which the final decision can be fine-tuned based on the desired level of the 

minimum-maximum operation can provide more robustness towards non-linearity and 

ambiguity which is being encountered in the real-world scenario [147,148]. Therefore, 

integration of these methods can overcome the limitations of the different decision-making 

models by acting synergically providing an economic, technological, environment, and social 

governance based optimum solution for the selection of suitable thermal or biological MSW 

processes.         

2.5 Research objectives and thesis framework 

Considering the problem statement in section 1.2 and research gaps summarized in the 

section 2.2.4, 2.3.2, and 2.4.2, this study has following objectives:  

i. Sustainable processes development for biomass waste valorization based on pyrolysis, 

conventional gasification, hydrothermal gasification, and plasma gasification, 

considering economic, energy, exergy, environmental, and safety (4E, 1S) perspectives. 

ii. Process sustainability improvement in terms of economics, energy, exergy, 

environment, and safety through the application of multi-generation processes, 

integrating artificial intelligence (AI) models and mathematical algorithms. 

iii. Sustainability assessment and strategic decision-making model development for the 

sustainable valorization process selection in developing countries.    



58 
 

To meet these objectives, this study has been mainly categorized into four different phases as 

illustrated in Fig.  2.C.  

Phase 1: It is related to the review and biomass valorization process selection in which different 

thermal and biological valorization processes have been analyzed to identify the research gaps 

and weak areas which need to be targeted for sustainability improvement purpose.    

Phase 2: Considering the research gap, biomass valorization processes have been developed. 

Valorization process sustainability has been further improved in term of 4E, 1S perspective by 

application of co-generation or tri-generation processes for CHP, SOFC, DME, H2, CH4 etc. 

production. 

Phase 3: Base process developed using experimental work has been optimized by application 

of AI or mathematical algorithms to make the process more sustainable in terms of economic, 

energy, exergy, environment, and safety (4E, 1S) perspectives. Then economic, environment, 

energy, exergy, and safety sustainability comparative analysis of the base and optimized 

process has been performed. 

Phase 4: Finally, decision making models have been developed to select the optimum 

valorization process using pollical, economic, environmental, social, and technological aspects. 

Considering the decision making and process sustainability analysis, some policy implications 

have been recommended along with summarized conclusion. 

To achieve the research objectives, the current thesis structure has been illustrated in Fig. 

2.D which has an interlink of the three research objectives with the relevant sections of the 

current thesis. The process methodology for these research objectives is given in chapter 3. 

This includes the development of process simulation model in Section 3.1, process 

sustainability improvement through an AI-based prediction model in Section 3.2.1, surrogate 

model optimization in Section 3.2.2, and simulation process validation in Section 3.3.1. Further 
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analysis encompasses process energy, exergy, advanced exergy, and exergoeconomics 

assessments detailed in Sections 3.3.2, 3.3.3, 3.3.4, and 3.3.5, respectively. The methodology 

for calculating the potential of converting process thermal energy to electric power is described 

in Section 3.3.6. While methodology for economic, environmental, process safety, and strategic 

decision-making models are provided in Sections 3.3.7, 3.3.8, 3.3.9, and 3.12, respectively. 

The characteristics of Aspen Plus simulation model is different for each chapter, the unique 

characteristics of the simulation model development are presented in the corresponding chapter 

sections 4-7 while brief simulation methodology has been given in section 3.1. Finally, decision 

making sustainability assessment findings for the optimum process selection are given in 

chapter 8. Considering this whole study, some policy and managerial implications have been 

proposed in the section 9 along with study limitations and future directions in section 10.
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Fig. 2.C. Current research framework 
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Fig. 2.D. Thesis structure 
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3 Methodology for the process development to decision-making 

Biomass valorization processes have been developed in this study considering the 

research objectives in section 2.5. Mainly, this research methodology has been categorized into 

four different aspects including; valorization simulation process development, optimization, 

output prediction, sustainability evaluation, and finally, decision making. Valorization process 

development is a diversified subject which varies with respect to process, therefore, detail 

valorization process (gasification, HTG, plasma gasification, poly-generation, pyrolysis) 

development methodology has been defined in the respective chapter 4-7 while general 

methodology has been given in section 3.1. Process sustainability improvement in terms of 

prediction and optimization considering artificial intelligence-based model has been given in 

section 3.2. While process sustainability assessment and decision-making technique described 

in section 3.3. Sustainability evaluation has been done based on process energy, exergy, 

economic, environment, and safety analysis. Finally, multi-criteria decision-making technique 

has been adopted for decision making purposes given in section 3.3.         

3.1 Simulation processes development for biomass waste 

Process simulation modeling has been established through the use of experimental 

studies and every process is validated with the respective experimental study. In this context, 

Aspen Plus simulation software has been employed to develop steady-state simulation models 

for various valorization processes given in chapter 4-7. These models are either kinetic or 

equilibrium studies, which are summarized in chapter 4-7. Kinetics studies applied when the 

rate of reactants to products conversion is crucial, and process involves fast reactions while 

equilibrium studies applied when the focus is the final chemical state to get an equilibrium state 

in chemical reaction. The simulation model’s development includes several valorization 

processes, including traditional gasification, hydrothermal gasification, and multi-generation 

gasification processes, aimed at producing products such as DME, methanol, CHP, and 
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hydrogen. Detailed descriptions of these models including proximate ultimate analysis, process 

parameters, and stoichiometric data are provided in the corresponding case studies where 

process boundaries have been clearly defined. 

The simulation of thermal valorization processes involving lignocellulose biomass types 

or plastic waste for co-gasification was developed using Aspen Plus. However, the software 

lacks the inclusion of non-conventional (NC) compounds like biomass. To address this 

limitation, these compounds were defined using the proximate and ultimate analyses of the 

feedstock. The enthalpy and density of the NC compounds were determined using 

HCOALGEN and DCOALIGT setups as specified in the material properties. The model was 

developed based on the principles of Gibbs free energy minimization and reaction kinetics 

[149]. For handling the complex gas-liquid equilibrium and small molecular weight 

compounds, the Peng-Robinson equation of state with the Boston Mathias function was applied 

[124,150]. This equation of state has been employed in similar research by various researchers. 

These process characteristics vary with respect to simulation model. Therefore, chapter 4-7 

respective studies have the complete details of these characteristics.   

3.2 Process sustainability improvement 

Simulation process sustainability improvement has been done with the application of AI 

and surrogate model-based optimization. AI-based models have been applied on the simulation 

process dataset for prediction purposes while surrogate model-based optimization has been 

done by integration of respective model with simulation process.   

3.2.1 AI-based prediction models application 

AI-based prediction models given in section 3.2.1.2 have been applied on the dataset 

which have been collected based on the methodology given in section 3.2.1.1. 
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3.2.1.1 Data collection 

AI models predict the output based on input data. This data collection for prediction 

model development has been done through two sources; (1) published experimental studies, (2) 

simulation model development. For experimental data collection, a thorough assessment of the 

literature on the HTG process has been conducted. Google Scholar, Scopus, and Web of 

Science databases were explored for research-related keywords such as biomass gasification, 

supercritical water gasification, HTG, machine learning in biomass, pyrolysis etc. The primary 

goal of the literature review effort is to obtain experimental data for each valorization technique. 

There are various biomass-related publications in these databases; however, the required papers 

were selected based on the study objectives. A sample data collection methodology has been 

given in Fig. 3.A. A total of 511 experiments of 98 different types of biomasses with 6643 data 

points have been included in the final dataset for AI model development for the gasification 

process. Outliers have been excluded to avoid bias in the shortlisted data.  

The model collected dataset was divided into three different types of training and testing 

sets with percentages of 70:30, 80:20, and 90:10 to achieve the best results based on R2, MSE, 

MAE, and mean absolute percentage error (MAPE). To eliminate bias in training and testing 

data selection, AI models generated with the command "random" were utilized, due to which 

training and testing data was chosen randomly. Convolutional Neural Network (CNN), 

Artificial Neural Network (ANN), Gradient Boost Regressor (GBR), Extreme Boost Regressor 

(XGB), and Random Forest Regressor (RFR) methods were used on three distinct training and 

testing dataset ratios with the goal of improving R2, MAE, MSE, and MAPE.  
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3.2.1.2 Machine learning models’ development 

Deep and machine learning algorithms such as CNN, ANN, GBR, XGB and RFR were 

applied in this study due to their better predictability performance for similar problems [151]. 

These models were applied to the gasification data by importing Python libraries on Jupyter 

Fig. 3.A Methodology for HTG model data collection and evaluation 
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notebook web-based portal. Each of these models has their own set of advantages and 

disadvantages. For example, neural network models can handle both linear and nonlinear data 

[152], whereas CNN is more suited for complex problems than ANN [153] while regression 

mostly suitable for linear data. Therefore, the goal of the current model comparison is to find 

the best fit model for syngas prediction regardless of biomass type. XGB is the advanced form 

of GBR and it is being compared with most frequently applied regressors (gradient and random 

boost) for biomass predictions. XGB overcome the deficiency of single tree by ensemble 

multiple trees under tree boosting framework due to which it is more efficient and high 

flexibility[154]. Therefore, XGB along with random forest and gradient boost regressor model 

has been selected for this study. CNN is a more advanced type of ANN that is utilized for 

complicated applications, particularly massive data processing. It is not just confined to two-

dimensional image processing, but it also has applications in one-dimensional (time series, 

signal analysis) and multi-dimensional (human action detection) settings. However, it is largely 

appropriate for classification difficulties [155]. Kathirgamanathan et al. (2022) compared the 

performance of ANN and CNN in estimating short-term electricity load [156]. The model input 

factors that can affect the syngas (H2, CH4, CO, and CO2) have been selected based on literature 

data based on their correlation analysis Fig. 3B [157]. The x-axis in Fig. 3B has the shortlisted 

input parameters, while the y-axis represents the correlation coefficient (r). A positive value on 

the y-axis indicates direct correlation, whereas a negative value indicates inverse correlation 

on the output parameters. These model input parameters have been classified as feed 

composition, which is based on the final analysis of the biomass, and operating parameters. 

The percentages of carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) in the final 

parameters vary depending on the type of biomass. Therefore, this is a universal model for 

various forms of biomasses based on the ultimate analysis. Similarly, operating process factors 

such as temperature (T), pressure (P), solid biomass content (SC), and resident time (RT) that 
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can affect syngas output have been added as input parameters. Hence, the amount of H2, CO2, 

CO, and CH4 has been predicted based on both the ultimate analysis and process parameters as 

an independent factor. 

 

 

A total of four layers have been built for the CNN model which included the initial input 

layer of eight neurons and the last output layer, followed by two hidden levels of 16 neurons 

each which have been defined based on Eq. 3.1-3.3. The CNN model was developed using a 

web-based Python programming environment which is based on the algorithm function as 

shown in Eq. 3.4 [158]. In ANN, the first input layer includes eight neurons, followed by 16 

and 32 neurons in the first and second hidden layers, respectively. Several studies have used 

various ways to select the number of neurons, but the number of input neurons is closely related 

to the input parameters, and the number of hidden layers should be less than the number of  

Fig. 3.B: Input variables affecting the syngas output 
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input parameters [159]. Eq. 3.1-3.3 were used to select the number of neurons in each layer of 

CNN and ANN that are interconnected with significant weights and biases. Weights and biases 

connected with each neuron help to minimize loss of function. The ReLu activation function 

and Eq. 3.5 based algorithm were used to validate hyper-parameters such as the number of 

neurons, layers of neurons, and model learning rate for ANN using Python programming. The 

gradient boost regressor is an ensemble technique that can fit boosted decision trees by 

integrating multiple weak learning models into a powerful predicting model [161]. In this study, 

GBR is imported from the Python library to anticipate the output of the specified HTG syngas-

based function given in Eq. 3.6. Similarly, the RFR regressors and XGB boost programs have 

been directly imported from the Python library, as shown in Eq. 3.7 and Eq. 3.8-3.9, 

respectively. Fig. 3.C shows a summarized schematic view of the applied models.  

Input Neuron, X(n) = ∑ 𝑓𝑓𝑓𝑓𝑗𝑗
𝑖𝑖  

where 𝑛𝑛 is the number of input layers neurons, 𝑓𝑓𝑁𝑁 is the total number of input 

variables  

(3.1) 

[159] 

Hidden Layers Neuron, H(n) = X(n). I 

and H(n) < X(n) 

Hidden Layers Neuron, H(n) = L(nj).𝑊𝑊𝑛𝑛 

where X(n) is the number of hidden layers neurons, 𝐼𝐼 is the integer multiplier of the 

input neurons, L(nj) is the hidden layer neuron and 𝑊𝑊𝑛𝑛is the weightage of each neuron 

(3.2) 

[159] 

Output Neuron, Y(n) = 𝑊𝑊𝑛𝑛.Yn 

where Y(n) is the number of output variables 

(3.3) 

[159] 

 Convolutional Neural Network (CNN) 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑊𝑊3𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑊𝑊2𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑊𝑊1𝑥𝑥 + 𝑏𝑏1) + 𝑏𝑏2) + 𝑏𝑏3) − 1) 

Where 𝑊𝑊3, 𝑊𝑊2, 𝑊𝑊1are the first, second and third neurons layers, 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟is the ReLu 

activation function 

 

(3.4) 

[160] 
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Artificial Neural Network (ANN) 

𝑦𝑦� = 𝛿𝛿2(∑ �𝑤𝑤𝑖𝑖
(2)𝛿𝛿1(𝑋𝑋).� + 𝑏𝑏(2));𝑚𝑚

𝑖𝑖=1  𝑋𝑋 = ∑ �𝑥𝑥𝑗𝑗𝑤𝑤𝑥𝑥𝑥𝑥� + 𝑏𝑏(1)𝑛𝑛
𝑗𝑗=1   

where 𝑦𝑦� is the prediction vector, m is number of samples, n is the number of features 

in dataset, 𝑥𝑥𝑗𝑗 is the jth vector, 𝑤𝑤𝑖𝑖
(2)weight output and hidden layers, 𝑤𝑤𝑖𝑖

(1)is weight of 

hidden layer connected to input, 𝛿𝛿2 output layer activation function, 𝛿𝛿1 neuron in 

hidden layer activation function, 𝑏𝑏(1)hidden layer bias vector, 𝑏𝑏(2)output layer bias 

vector 

 

(3.5) 

[110] 

Gradient Boosting Regressor (GBR) 

𝑦𝑦�𝑖𝑖 = 𝐹𝐹�𝑚𝑚 (𝑥𝑥𝑖𝑖) =  𝜇̂𝜇 + � 𝜗𝜗ℎ𝑘𝑘 (𝑥𝑥𝑖𝑖)
𝑀𝑀

𝑚𝑚=1

 

Where 𝑦𝑦�𝑖𝑖 is the vector of observed phenotype, 𝑥𝑥𝑖𝑖is the matrix of respective genotype, 

ℎ𝑘𝑘 predictor model, 𝜇̂𝜇 is population mean, 𝜗𝜗 shrinkage factor  

 

(3.6) 

[162] 

Random Forest Regressor (RFR) 

𝐹𝐹�𝑚𝑚 (𝑥𝑥𝑖𝑖) = 𝐹𝐹�𝑚𝑚−1 (𝑥𝑥𝑖𝑖) +  𝜗𝜗ℎ(𝑦𝑦𝑖𝑖 ; 𝑥𝑥𝑖𝑖 , 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚 ) 

Where 𝐹𝐹�𝑚𝑚 (𝑥𝑥𝑖𝑖) is the prediction function, m is tuning set iteration, 𝑥𝑥𝑖𝑖is the matrix of 

respective genotype, ℎ  coefficient, 𝜗𝜗  shrinkage factor,  𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚 covariates sample 

out of random 

 

(3.7) 

[162] 

 

Extreme Gradient Boosting (XGB) 

𝑦𝑦�𝐹𝐹𝐹𝐹,𝑖𝑖 =  � 𝑓𝑓𝑘𝑘 (∅𝑖𝑖),   𝑓𝑓𝑘𝑘 ∈  𝐹𝐹
𝑘𝑘

𝑘𝑘=1

 

where ∅𝑖𝑖 is the random variable, 𝑦𝑦�𝐹𝐹𝐹𝐹,𝑖𝑖 is the predicted value by XGB,  𝐹𝐹  is the 

ensemble model contains total K trees (𝑓𝑓𝑘𝑘) 

 

(3.8) 

 [154] 

𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜 =  � 𝑙𝑙�𝑦𝑦𝐹𝐹𝐹𝐹,𝑖𝑖  , 𝑦𝑦�𝐹𝐹𝐹𝐹,𝑖𝑖  � +
𝑛𝑛

𝑖𝑖=1

� ῼ(𝑓𝑓𝑘𝑘)
𝑘𝑘

𝑘𝑘=1

 
(3.9) 
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In SOFC based trigeneration process, AI model applied for predicting syngas, current, 

and current density based on simulation data collected from factorial design runs. Neural 

network restrictions such as over-fitting problems, insufficient generalization capability, and 

instability issues highlighted by researchers were considered in the selection of a better AI 

model [163,164]. Hence, a unique tree-based approach called extreme gradient boosting (XGB) 

was used to forecast the H2, SOFC current, and current density. This is the advanced version 

of gradient boosting (GB) and has more computational capacity to combat overfitting and 

instability issues with a faster execution algorithm when compared to another neural network 

[165]. Fig. 3.D shows a schematic design of the XGB prediction model. In terms of 

where 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜  is the XGB objective function,  𝑙𝑙�𝑦𝑦𝐹𝐹𝐹𝐹,𝑖𝑖  , 𝑦𝑦�𝐹𝐹𝐹𝐹,𝑖𝑖  � loss function fit with 

training data, 𝑛𝑛  is the total training data,  ῼ(𝑓𝑓𝑘𝑘)  regularization term to avoid 

overfitting 

Fig. 3.C Deep learning and machine learning applied models for HTG 
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performance, Kumari (2020) and Sheridan et al. (2016) claimed that XGB outperforms random 

forest, smart persistence, support vector regression (SVR), and deep neural networks but with 

a faster approach [165,166]. Therefore, XGB applied for the prediction of output in tri-

generation. The performance of the XGB model was evaluated using the R2 and MSE given in 

Eq. 3.14-3.16 [167]. 

3.2.2 Surrogate model-based optimization 

Valorization processes optimization has been done through different optimization 

algorithms to make the process more sustainable. This optimization has been done by 

application of different surrogate models. Some of them are summarized in section 3.2.2.1 to 

3.2.2.4.  

Fig. 3.D: XGB prediction model gasification process 
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3.2.2.1 High dimensional model representation 

The HDMR model was developed to predict and optimize the gasification process [168]. 

In HDMR, the output variable is stated as a sum of functions that depend on subsets of the 

input variables, as shown in Fig. 3.E, and mathematically in Eq. 3.10 [169]. The inputs for 

HDMR are temperature, pressure, and gasifying agent (air) ratio, while the objective is to 

increase the outputs in terms of H2, CO2, HHV, LHV, and NH values [170]. 

 

Higher-order polynomial terms are necessary to produce correct findings due to some 

nonlinear aspects of the gasification process. A better model expression was used to build 

surrogate models for characterizing the biomass gasification process, as shown in Eq. 3.10 

and 3.11. [171] 

𝑦𝑦 = 𝑓𝑓0 + � 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) + � � 𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗� + ··· +
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

𝑁𝑁

𝑖𝑖=1
𝑓𝑓12···𝑁𝑁(𝑥𝑥1𝑥𝑥2 ··· 𝑥𝑥𝑁𝑁)

𝑁𝑁

𝑖𝑖=1
 

(3.10) 

where 𝑓𝑓0  denotes the zeroth order effect which is a constant;  𝑁𝑁 is the number of input 

parameters; 𝑖𝑖 and 𝑗𝑗 index the input parameters; 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) represents the effect of the 𝑖𝑖th input 

variable to the output 𝑦𝑦  and 𝑓𝑓𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗� , 𝑓𝑓12···𝑁𝑁(𝑥𝑥1𝑥𝑥2 ··· 𝑥𝑥𝑁𝑁) indicates the correlated effect 

contributed by two input variables (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) and all the input variables (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 ··· 𝑥𝑥𝑁𝑁) to output, 

respectively. 

Fig. 3.E HDMR surrogate model illustration 
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For better training efficiency, K has been parameterized in this study and then the 

training dataset of the HDMR model has been converted into polynomial regression problem. 

The coefficients including C, 𝐴𝐴𝑖𝑖,𝑘𝑘, and 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 were obtained by least squares method. For 

HDMR performance evaluation, R2, MSE, MAE, and MRE in test dataset are calculated by 

Eq. 3.12-3.17 [172]. Data has been normalized before using the algorithms for effective 

analysis and processing.  

𝑦𝑦 = 𝐶𝐶 + � � 𝐴𝐴𝑖𝑖,𝑘𝑘 ×
𝐾𝐾

𝑘𝑘=1
𝑥𝑥𝑖𝑖

𝑘𝑘 + � � � � 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐾𝐾

𝑛𝑛=1

𝐾𝐾

𝑘𝑘=1
× 𝑥𝑥𝑖𝑖

𝑘𝑘 × 𝑥𝑥𝑗𝑗
𝑛𝑛

 

𝑁𝑁

𝑗𝑗=𝑖𝑖+1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
 

 

(3.11) 

where C is a constant term, 𝐴𝐴𝑖𝑖,𝑘𝑘 and 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 are the first and second order coefficients, K is 

the highest degree of input variables, subscript 𝑖𝑖 and 𝑗𝑗 denote the input parameters, and 𝑦𝑦 

is the function value. 

𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = �(𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖

 (3.12) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2
𝑛𝑛

𝑖𝑖

 (3.13) 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡
 (3.14) 

𝑀𝑀𝑀𝑀𝑀𝑀 = �
|𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑛𝑛

𝑖𝑖

 (3.15) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛
 (3.16) 

𝑀𝑀𝑀𝑀𝑀𝑀 = �
|𝑦𝑦𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑦𝑦𝑖𝑖|
𝑦𝑦𝑖𝑖  ×  𝑛𝑛

× 100%
𝑛𝑛

𝑖𝑖

 (3.17) 

where 𝑦𝑦𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 is the ith predicted output value, 𝑦𝑦𝑖𝑖 is the ith output value in dataset, n is the 

amount of data in dataset, 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 represents explained sum of squares while 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 represents 

total sum of squares. 
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The HDMR data-driven models for different outputs have been named based on the element 

such as H2 model for predicting the mole fraction of hydrogen in the products, similarly, CO2, 

HHV, LHV, and NH models. The training process obtains parameter A, B and C with minimum 

error between model results and the training data which has been programmed in MATLAB. 

For this, data generated from the Aspen Plus model are divided into 75% training set and 25% 

testing set. Training data is employed to determine the best hyperparameter K based on 10-

folds method which is based on the K results [169,173], then model can be generated. Finally, 

25% testing data is used to test the model for assessing the predictability of the established 

model by calculating the MSE, MAE, and MRE. 

3.2.2.2 Particle swarm optimization 

PSO is a type of derivative-free optimization method that is commonly utilized in the 

optimization of chemical processes. PSO's operating premise is learning and communication 

between individuals (particles) and populations (swarms) to achieve the best solution with each 

iteration [29,30,174]. It was identified as an efficient algorithm using a mix of local and global 

searches, as well as the sharing of evolutionary information among individual particles. The 

PSO process flow is depicted in Fig. 3F. [175]. 

The particles will search the xi for optimal objective value in each individual particle, and 

then determine the values of xi (Eq. 3.18) for the global optimal objective value among all 

particles. Searching iterations is needed for this procedure. The position and velocity vector of 

each particle is randomly selected in the first iteration. In the rest of the iterations, particle 

swarm updates the position vector (xi) Eq. 3.18 and velocity vector (vi) Eq. 3.19. According to 

the inertia, individual optimal value (pi) and global optimal value (pg) can be calculated using 

Eq. 3.20 and 3.21 [176]. 
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𝑣𝑣𝑖𝑖
𝑘𝑘+1 = 𝜔𝜔𝑣𝑣𝑖𝑖

𝑘𝑘 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑘𝑘) + 𝑐𝑐2𝑟𝑟2(𝑝𝑝𝑔𝑔 − 𝑥𝑥𝑖𝑖

𝑘𝑘) (3.20) 

𝑥𝑥𝑖𝑖
𝑘𝑘+1 = 𝑥𝑥𝑖𝑖

𝑘𝑘 + 𝑣𝑣𝑖𝑖
𝑘𝑘+1 (3.21) 

𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖
1, 𝑥𝑥𝑖𝑖

2, 𝐼𝐼, 𝑥𝑥𝑖𝑖
𝑁𝑁) (3.18) 

where ‘N’ represents the N-dimensional position vector of PSO system with the i-th particle. 

𝑣𝑣𝑖𝑖 = (𝑣𝑣𝑖𝑖
1, 𝑣𝑣𝑖𝑖

2, … , 𝑣𝑣𝑖𝑖
𝑁𝑁), 𝑣𝑣𝑖𝑖 ∈ (−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) (3.19) 

where 𝑣𝑣𝑖𝑖 represents the velocity vector for the N-dimensional position vector  

Fig. 3.F PSO process methodology 
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where xi
k and vi

k are the position and the instantaneous velocity of the i-th particle  in iteration 

k, 𝜔𝜔 is the inertia coefficient, c1 and c2 are the acceleration factor, and r1 and r2 are the random 

number ranging from 0 to 1. 

Hence, the model objective value found by the r-th particle in iteration k (objik) is calculated 

based on its updated position vector (xi
k). If obji

k is better than the previous optimal value (obji
k-

1 ), xi
k is set to pi; otherwise, pi is retained. Consequently, comparison of the obji

k particles have 

been done to select the best obji
k as the global optimal value. If this global optimal value is 

better than the pg found in the previous iteration, pg can be replaced with xi
k; otherwise, pg is 

retained. The procedure will stop as soon as the maximum iteration number is reached. Hence, 

PSO is applied to get the optimum output of the simulation model by integration of Aspen Plus 

and MATLAB. The objective and constrains are shown in the following optimization model 

[177,178]. 

𝑚𝑚𝑚𝑚𝑚𝑚  𝐹𝐹𝑟𝑟
𝑃𝑃   (3.22) 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧

400 < 𝑇𝑇𝐺𝐺 < 800 
1 < 𝑃𝑃𝐺𝐺 < 4

0.25 < 𝐺𝐺𝐴𝐴 < 2
400 < 𝑇𝑇𝑃𝑃1 < 800
100 < 𝑇𝑇𝑃𝑃2 < 300

 

 

(3.23) 

where 𝐹𝐹𝑟𝑟
𝑃𝑃 is the flowrate of dimethyl ether, methanol or X product (kg/h), 𝑇𝑇𝐺𝐺 is the primary 

gasification process temperature (oC), 𝑃𝑃𝐺𝐺 is the primary gasification process pressure (bar), 

𝐺𝐺𝐴𝐴 is the air gasifying agent to biomass ration, 𝑇𝑇𝑃𝑃1and  𝑇𝑇𝑃𝑃2 are reaction temperatures (oC) of  

reactor 1 and 2 (Appendix A6) 

3.2.2.3 Radial basis surrogate optimization 

Surrogate model-based optimization has been used for several chemical processes, 

resulting in good process efficiency [179,180]. The radial basis surrogate optimization function 

is used to optimize the gasification process with DME [181]. The PG based tri-generation 

process is exceedingly complex and typically contains a significant number of nonlinearities, 
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making optimization problematic; hence, surrogate-assisted optimization has been used for 

objective function evaluation. Although the radial function-based surrogate model reinforced 

by a linear polynomial is advised for time-consuming model optimization or when the objective 

functions are in the form of black boxes [181]. Hence, radial basis function-based surrogate 

optimization is used, which is fast and customizable. Following is a description for applying 

optimization process [182]: 

i. Creating a set of trial points by sampling random points within the given bounds and 

evaluating the objective function at the trial points. The flowrate of DME would 

multiply by minus one so that the problem for maximizing the flowrate of DME can 

be converted into a minimization problem. 

ii. Creating a surrogate model for the objective function by interpolating a radial basis 

function through random trial points. 

iii. Using the merit function 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as shown in Eq. 3.24-3.26, locate a small value of the 

function by random sampling some points (𝑥𝑥) in a region around the incumbent point 

(the best point can be found since the last surrogate reset). Then to use this point, 

called the adaptive point, as a new trial point. 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) = 𝜔𝜔𝜔𝜔(𝑥𝑥) + (1 − 𝜔𝜔)𝐷𝐷(𝑥𝑥)    (3.24) 

where 𝜔𝜔 is a weigh of parameter between 0 to 1. The 𝑆𝑆(𝑥𝑥) and 𝐷𝐷(𝑥𝑥) are scaled surrogate 

and scaled distance. 

𝑆𝑆(𝑥𝑥) =
𝑠𝑠(𝑥𝑥) − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
 

(3.25) 

 

𝐷𝐷(𝑥𝑥) = 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

  (3.26) 
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iv. Evaluating the adaptive point using objective function, and updating the surrogate 

based on these points and their values. Counting a "success" if the objective function 

value is sufficiently lower than the previous best (lowest) value, otherwise counting 

it as "failure". 

v. Updating the dispersion of the sample distribution upwards, if three successes occur 

before max (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣,5) failures, where 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣 is the dimension of the inputs. Updating the 

dispersion downwards if max (𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣,5) failures occur before three successes. 

vi. Continuing from step 3 until all trial points are within a setting minimum distance of 

all evaluated points. At that time, resetting the surrogate by discarding all adaptive 

points from the surrogate, resetting the scale, and going back to step 1 to create new 

random trial points for evaluation. 

3.2.2.4 Pattern search algorithm optimization 

The pattern search algorithms were used due to the computational difficulty of the 

process simulation model, which is a black-box model, and gradient-based optimization 

algorithm. The pattern search technique, being one of the direct search methods, does not 

require information on the gradient or higher derivatives, making it ideal for optimization 

problems involving non-differentiable or even non-continuous functions [183]. And it is less 

susceptible to turning parameters than stochastic algorithms like genetic algorithms and particle 

swarm optimization [184]. The pattern search approach also includes a versatile and well-

balanced operator for enhancing and fine-tuning the global search [185]. Because of its 

deterministic and robust performance for process optimization, it has been employed in dealing 

where 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and the maximum surrogate values among the 

sample points, 𝑠𝑠(𝑥𝑥)  is the surrogate value at the point x, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  represent the 

maximum and minimum distances from all sample points to all evaluated points, and 𝑑𝑑(𝑥𝑥) 

is the minimum distance of the point 𝑥𝑥 to all evaluated points 
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with problems in chemistry or chemical engineering such as surface structure determination 

[186]. Therefore, the pattern search method was used in this study to optimize the basic 

procedure.  

Pattern search is carried out by calculating a succession of points that approach an 

optimal point incrementally. The method investigates a mesh of points surrounding the current 

point, which was obtained in the previous stage, during each iteration. The mesh is constructed 

by multiplying the current point by a scalar multiple of a pattern of vectors. If the pattern search 

algorithm finds a position within the mesh that improves the objective function at the current 

point, that point is selected as the new current point for the process's next phase [187]. 

Therefore, this iteration will continue until the termination criteria are met. Ref. [187] contains 

more detailed information.  

The multi-objective pattern search, also known as Pareto search, has used pattern search to 

discover a set of non-dominated (not inferior) answers. It can be stated as follows; detailed 

results are provided in chapter 6 [188]: 

• The generation of an initial set of points, which is subsequently utilized to generate a mesh 

of points surrounding each beginning point. 

• Evaluate the fitness of each point in the mesh and then poll to find better points by scoring 

against many objectives. 

• If new points are collected, they are graded in order to select the current non-dominated 

points for updating the frontier. If this is not the case, the pareto search doubles the mesh 

sizes in iterations by 1/2. 

• If the terminating criteria are met, output is acceptable. Alternatively, choosing points to 

generate a fresh set of points for the next iteration. This loop is repeated until convergence 

is reached. 
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• During each iteration, the algorithm searches for a better vector pattern that can be utilized 

to construct the point mesh. This is accomplished by evaluating the performance of various 

patterns and picking the one that produces the greatest results. 

3.3 Process sustainability assessment and decision making 

Simulation process sustainability assessment has been performed in terms of energy, 

exergy, economic, environmental, and safety basis. But all of these processes have been 

validated with relevant experimental works whose methodology is given in below sections. 

3.3.1 Process validation 

Biomass valorization processes validation have been performed by comparing the results 

determined in the experimental studies either by direct comparison with the output yield or by 

calculating root mean square error (RMSE) in Eq. 3.27. Valorization simulation processes have 

been verified through different types of biomasses to check the process robustness. In poly-

generation processes, validations have also been done in terms of syngas and final product 

yield (%) with respect to biomass input. The RMSE between simulation model and reference 

model output for syngas has been calculated by using Eq. 3.27 [189]. Process with lower error 

or RMSE has utilized for further investigation.  

3.3.2 Energy analysis 

The energy efficiency of the biomass process may be determined using Eq. 3.28-3.31 

[190,191] which is one of the indications for the process economic feasibility analysis. The 

material loss, enthalpy value, and unconverted material in the separate processes can all be 

RMSE = ��
(𝑆𝑆𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 

 where RMSE represents the root mean square error, 𝐸𝐸𝑖𝑖 is the experimental value of 

element, 𝑆𝑆𝑖𝑖 is simulation model value, i is the respective element, and n represents the 

total number of elements in comparison 

(3.27) 

 



81 
 

calculated. The output energy loss from direct material and biomass transformation into 

tar/biochar can be separated in the gasifier and cyclone separator. The sum of these losses 

equals the input energy, which may be computed using Eq. 3.29 [190,191]. The tar/biochar can 

be removed from the process stream by using a cyclone. Therefore, the internal energy in terms 

of material loss has been evaluated using the Aspen simulation model for energy analysis. 

There are some assumptions that have been considered when calculating the energy efficiency: 

(1) enthalpy energy of biomass, water, electricity (power to run equipment), and gasifying 

agent have been considered as an input; (2) the enthalpy energy of output product, unconverted 

product, ash, and steam generated have been considered as an output; (3) the process electricity 

consumption has been estimated based on vendor or literature data of the synthesis processes; 

and (4) the steam to power generation efficiency is being assumed in different processes.    

� 𝑋𝑋𝐸𝐸𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)= � 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

where ∑ 𝑋𝑋𝐸𝐸𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is total input energy in the process, and ∑ 𝑌𝑌𝐸𝐸𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1   is the total 

output energy in term of enthalpy of the process  

(3.28) 

 

� 𝑋𝑋𝐸𝐸𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 = 𝑋𝑋𝑋𝑋𝑛𝑛
𝐵𝐵𝐵𝐵 + 𝑋𝑋𝑋𝑋𝑛𝑛

𝐺𝐺𝐺𝐺 + 𝑋𝑋𝑋𝑋𝑛𝑛
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑋𝑋𝑋𝑋𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

where ∑ 𝑋𝑋𝐸𝐸𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is the total input energy in term of enthalpy, 𝑋𝑋𝑋𝑋𝑛𝑛

𝐵𝐵𝐵𝐵  enthalpy 

energy of biomass, 𝑋𝑋𝑋𝑋𝑛𝑛
𝐺𝐺𝐺𝐺  enthalpy energy of unconverted syngas, 𝑋𝑋𝑋𝑋𝑛𝑛

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 

enthalpy energy of water, and 𝑊𝑊𝑛𝑛 is the electricity utilization 

(3.29) 

 

� 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝑌𝑌𝑌𝑌𝑛𝑛
𝑃𝑃𝑃𝑃 + 𝑌𝑌𝑌𝑌𝑛𝑛

𝑈𝑈𝑈𝑈 + 𝑌𝑌𝑌𝑌𝑛𝑛
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑌𝑌𝑌𝑌𝑛𝑛

𝐴𝐴𝐴𝐴ℎ 

where ∑ 𝑌𝑌𝐸𝐸𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is the total output energy in term of enthalpy, 𝑌𝑌𝑌𝑌𝑛𝑛

𝑃𝑃𝑃𝑃  enthalpy 

energy of product, 𝑌𝑌𝑌𝑌𝑛𝑛
𝑈𝑈𝑈𝑈  enthalpy energy of unconverted product, 𝑋𝑋𝑋𝑋𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

enthalpy energy of steam generated, and 𝑌𝑌𝑌𝑌𝑛𝑛
𝐴𝐴𝐴𝐴ℎ enthalpy energy of ash 

(3.30) 

 

η = 
∑ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1

∑ 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 

where η is the energy efficiency of the process 

(3.31) 
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3.3.3 Exergy analysis  

Exergy analysis applies the first and second laws of thermodynamics to determine the 

quality of energy and efficiency at each action. Exergy analysis determines the quality of 

energy and process efficiency, whereas energy analysis quantifies energy. Exergy analysis can 

be performed to determine which areas have the highest energy deficit. Therefore, exergy 

analysis was performed using Eq. 3.32-3.38 [99] considering heat transfer, heating value, 

electricity/heat production, and material flow. 

Exergy efficiency can help to determine the maximum possible work from a process 

while eliminating possible losses. It highlights the possible weakest area where energy 

deficiency exists. It is based on the first and the second law of thermodynamics to estimate the 

quality of available energy in a process. Exergy analysis of the newly developed process has 

been carried out based on Eq. 3.32-3.38 [192]. While the exergy of the biomass can be 

calculated based on Eq. 3.35 and 3.36 [192]. For overall exergy efficiency calculation of the 

process, the energy of the product has been divided by the exergy of the process input in term 

of exergy of reactants, gasifying agent, and heat, as presented in Eq. 3.37. The enthalpy, heat, 

temperature, entropy, and LHV have been taken from the Aspen Plus simulation model. The 

results of the exergy efficiency have been presented in chapter 5 and 6.      

𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡= 𝐸𝐸𝑖𝑖,𝑐𝑐ℎ𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑖𝑖,𝑝𝑝ℎ𝑦𝑦 (3.32) 

 

𝐸𝐸𝑖𝑖,𝑐𝑐ℎ𝑒𝑒𝑒𝑒= 𝑥𝑥𝑖𝑖(𝑠𝑠𝑖𝑖
𝑐𝑐ℎ𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑇𝑇𝑜𝑜ln [𝑛𝑛𝑖𝑖]) (3.33) 

 

𝐸𝐸𝑖𝑖,𝑝𝑝ℎ𝑦𝑦= 𝑥𝑥𝑖𝑖((𝐻𝐻 − 𝐻𝐻𝑜𝑜) − 𝑇𝑇𝑜𝑜(𝑒𝑒 − 𝑒𝑒𝑜𝑜)) 

where 𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐸𝐸𝑖𝑖,𝑐𝑐ℎ𝑒𝑒𝑒𝑒, 𝐸𝐸𝑖𝑖,𝑝𝑝ℎ𝑦𝑦 are the total, chemical, and physical exergies of species 

i,  𝑒𝑒  is the entropy,  𝐻𝐻  is the enthalpy,  𝑠𝑠𝑖𝑖
𝑐𝑐ℎ𝑒𝑒𝑒𝑒 is the chemical energy, 𝑛𝑛𝑖𝑖 is the molar 

fraction of specie i, and 0 signifies the reference condition.  

(3.34) 

 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= 𝜑𝜑𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (3.35) 
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3.3.4 Advanced exergy analysis of model 

Conventional exergy analysis exhibits limitations in terms of identifying inefficiencies 

and losses, and it lacks a comprehensive treatment of irreversible relationships. Consequently, 

advanced exergy analysis not only adheres to the second law of thermodynamics but also 

incorporates economic dimensions. By integrating economic factors, this advanced analysis 

becomes more pertinent for decision-makers. This approach enables decision-makers to 

determine targeted components within a process for comprehensive sustainability 

improvements. Advanced exergy analysis has been applied to a gasification-based tri-

generation process [193], which was originally taken from various studies [194–196]. 

Considering these studies, an advanced exergy analysis has been calculated [194–196]. Fig. 

3.G provides an overview of the main parameters involved in the advanced exergy analysis, 

which can be broadly categorized into the following: 

• Endogenous exergy destruction 𝐸𝐸𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸  (Eq. 3.39) which is inherent or internal exergy loss 

due to component self-working condition and various irreversibility in the system.  

• Exogenous exergy destruction 𝐸𝐸𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸  (Eq. 3.39) refers to the exergy destruction due 

external factors or interaction with other components.  

 

𝜑𝜑 =
1.0414 + 0.0177 𝐻𝐻

𝐶𝐶 − 0.3328(1 + 0.0537 𝐻𝐻
𝐶𝐶 + 0.0493 𝑁𝑁

𝐶𝐶)

1 − 0.4021 𝑂𝑂
𝐶𝐶

 
(3.36) 

 

η = 
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
 

(3.37) 

 

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝐸𝐸𝑛𝑛
𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑛𝑛

𝐹𝐹𝐹𝐹 + 𝐸𝐸𝑛𝑛
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐸𝐸𝑛𝑛

𝐴𝐴𝐴𝐴ℎ 

where 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the product exergy, 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the reactant exergy, 𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔 is the gas 

exergy, 𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒is the heat exergy, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.is the power exergy, 𝐸𝐸𝑛𝑛
𝐶𝐶𝐶𝐶𝐶𝐶  exergy of chemical 

produce (targeted product like DME, methanol, H2), 𝐸𝐸𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  exergy of steam 

generated, and 𝐸𝐸𝑛𝑛
𝐴𝐴𝐴𝐴ℎis exergy of ash. 

(3.38) 
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• Exergy destruction can be avoided 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎  (Eq. 3.41) by the application of appropriate 

technology introduction and improvement in process operations. 

• Some exergy destruction cannot be avoided 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢  (Eq. 3.40) through any way out that is 

inherent within the system. 

• Avoided and unavoidable exergy destructions have been categorized into endogenous 

and exogenous irreversibility rates which have been given in Fig. 3.G while it has been 

calculated through Eq. 3.39-3.45 [194–196].  

To compute the endogenous exergy destruction of a particular component, the difference 

between its actual efficiency in real-time conditions and its maximum theoretical efficiency 

under ideal conditions have been considered.   

𝐸𝐸𝐷𝐷,𝑘𝑘= 𝐸𝐸𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝐸𝐸  

where 𝐸𝐸𝐷𝐷,𝑘𝑘 is irreversibility at real condition,  𝐸𝐸𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸  is endogenous irreversibility, 𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝐸𝐸  is 

exogenous irreversibility  

(3.39) 

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(

𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 )𝑢𝑢𝑢𝑢 (3.40) 

Fig. 3.G Indicators of advanced exergy analysis 
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3.3.5 Exergoeconomics analysis of model 

Exergoeconomics analysis is an integrated approach that combines the principles of 

exergy and economic analysis within a process. This approach utilizes both exergy and 

economic principles to assess the cost-effectiveness and thermodynamic efficiency. Primarily, 

the cost of exergy destruction has been divided into exogenous and endogenous components, 

which have been further categorized as avoidable and unavoidable elements. To assess cost-

effectiveness, advanced exergy analysis has been conducted within the system [197,198]. 

Hence, exergoeconomics analysis was conducted by estimating the exergoeconomics 

indicators as given in Fig. 3.H based on Eq. 3.46-3.61 [197–200].   

where 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢  is irreversibility unavoidable exergy, 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is exergy rate of product  

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎 = 𝐸𝐸𝐷𝐷 − 𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢  

where 𝐸𝐸𝐷𝐷
𝑎𝑎𝑎𝑎 is irreversibility avoidable exergy, 𝐸𝐸𝐷𝐷 is destructive exergy 

(3.41) 

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝐸𝐸 (
𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐸𝐸𝐸𝐸  )𝑢𝑢𝑢𝑢 

where 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 is unavoidable endogenous irreversibility exergy  

(3.42) 

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢 − 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 is unavoidable exogenous irreversibility exergy  

(3.43) 

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝐸𝐸 − 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸  is avoidable endogenous irreversibility exergy, 𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢  irreversibility 

unavoidable exergy  

(3.44) 

𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐷𝐷,𝑘𝑘

𝑎𝑎𝑎𝑎 − 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 

where 𝐸𝐸𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 is avoidable exogenous irreversibility exergy 

(3.45) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝐸𝐸  

where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸  represents the endogenous exergy destruction cost   

(3.46) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝐸𝐸𝐸𝐸  

where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝐸𝐸𝐸𝐸   represents  the exogenous exergy destruction cost 

(3.47) 
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𝐼𝐼𝑘𝑘
𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝐸𝐸 (
𝐼𝐼

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
) 

where 𝐼𝐼𝑘𝑘
𝐸𝐸𝐸𝐸  represents  the endogenous exergy investment cost 

(3.48) 

𝐼𝐼𝑘𝑘
𝐸𝐸𝐸𝐸 = 𝐼𝐼 − 𝐼𝐼𝑘𝑘

𝐸𝐸𝐸𝐸 

Where 𝐼𝐼𝑘𝑘
𝐸𝐸𝐸𝐸  represents  the exogenous exergy investment cost flow  

(3.49) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑎𝑎𝑎𝑎  

where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎    represents the cost of exergy for avoidable destruction  

(3.50) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢  

Where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢    represents the cost of exergy for unavoidable destruction  

(3.51) 

𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(

𝐼𝐼
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

)𝑢𝑢𝑢𝑢 

where 𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢  represents the unavoidable investment cost 

(3.52) 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎 = 𝐼𝐼 − 𝐼𝐼𝑘𝑘

𝑢𝑢𝑢𝑢 

where 𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎  represents the avoidable investment cost 

(3.53) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸  represents the unavoidable endogenous cost 

(3.54) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 

Where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸  represents the avoidable endogenous cost 

(3.55) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸  represents the unavoidable exogenous cost 

(3.56) 

𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐹𝐹,𝑘𝑘𝐸𝐸𝐷𝐷,𝑘𝑘

𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 

Where 𝐶𝐶𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸  represents the avoidable exogenous cost 

(3.57) 

𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝐸𝐸 (
𝐼𝐼

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
)𝑢𝑢𝑢𝑢 

where  𝐼𝐼𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸  represents the unavoidable endogenous investment  

(3.58) 

𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑘𝑘

𝑢𝑢𝑢𝑢 − 𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where  𝐼𝐼𝐷𝐷,𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸  represents the unavoidable exogenous investment 

(3.59) 

 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑘𝑘

𝐸𝐸𝐸𝐸 − 𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 

where  𝐼𝐼𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸  represents the avoidable endogenous investment 

(3.60) 

 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑘𝑘

𝐸𝐸𝐸𝐸 − 𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 (3.61) 
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3.3.6 Thermal energy to electric power potential 

The thermal energy of the process was transformed into electrical energy by converting 

the thermal energy of the process into steam, which was then used in the steam turbine to 

generate electricity. To convert thermal into electrical energy, heat exchangers were utilized, 

which transferred process syngas energy (heat) into water and eventually produced high 

pressure and temperature steam. These steam properties, as well as the turbine and generation 

efficiency, will be utilized to compute the potential output energy using Eq. 3.62-3.65, as 

recommended by the United States Department of Energy [201]. For the calculation of electric 

power output, the following assumptions have been considered: 

• Mass inlet flow (steam) is equal to the mass outlet flow [202] 

• Isentropic efficiency of the turbine is around 60% [203] 

• Generator efficiency is around 90% [204] 

where  𝐼𝐼𝐷𝐷,𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸  represents the avoidable exogenous investment 

 

Fig. 3.H. Exergoeconomics indicator 
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3.3.7 Process economic analysis 

The economic assessment of this process involves the application of two distinct economic 

methodologies: the Internal Rate of Return (IRR) and the Payback Period (PBP). The IRR 

represents the discount rate at which the net present value of future cash flows reaches zero. 

On the other hand, the PBP signifies the duration required for the original capital investment 

to be fully recovered [205,206]. A higher IRR or a shorter PBP indicates better economic 

performance for the project. For this purpose, two types of costs have been considered; plant 

capital and operational costs. Only plant installation costs, such as equipment and civil 

construction, have been included in the capital cost, which were obtained through literature or 

directly from vendors. The cost of land, legal duties, administrative or consultancy charges are 

not addressed because they vary significantly between regions. Similarly, the costs of raw 

materials, direct labor, maintenance, and overhead have been included. It is assumed that the 

gasification plant's thermal energy generation is sufficient to meet its energy requirements. The 

cost of transportation outside of the plant's immediate neighborhood is not considered into the 

economic analysis. For process operations, specified capacity of plant from 1-10 tons per h 

have been considered along with a shutdown period for maintenance activities. Linear 

depreciation of plants has been considered with 10 years of operational life of plant while the 

𝐸𝐸𝑖𝑖𝑖𝑖 =  𝐸𝐸𝑖𝑖𝑖𝑖 × 𝑀𝑀𝐹𝐹𝐹𝐹 

where 𝐸𝐸𝑖𝑖𝑖𝑖 is the inlet energy flow,  𝐸𝐸𝑖𝑖𝑖𝑖 is the Inlet Specific Enthalpy, and 𝑀𝑀𝐹𝐹𝐹𝐹 is the 

inlet mass flow 

(3.62) 

 

𝐸𝐸𝑂𝑂𝑂𝑂= 𝐸𝐸𝑖𝑖𝑖𝑖 − η𝑖𝑖 × (𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖) 

where 𝐸𝐸𝑂𝑂𝑂𝑂 is the outlet specific enthalpy, 𝐸𝐸𝑖𝑖𝑖𝑖 is the Inlet Specific Enthalpy, η𝑖𝑖  is the 

Isentropic Efficiency, and 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖  is the Ideal Outlet Specific Enthalpy  

(3.63) 

 

𝐸𝐸𝑜𝑜= 𝑀𝑀𝐹𝐹𝐹𝐹 × (𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑂𝑂𝑂𝑂) 

where 𝐸𝐸𝑜𝑜 is the energy out, and 𝑀𝑀𝐹𝐹𝐹𝐹 is the mass flow 

(3.64) 

 

Power Out = 𝐸𝐸𝑜𝑜 × η𝐺𝐺   

where η𝐺𝐺  is the generator efficiency 

(3.65) 
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inflation rate is not considered this economic analysis. Furthermore, some operational 

assumptions have been considered which include the consistency of plant operations, and 

availability of the raw material. According to Eq. 3.66-3.70, the IRR has been calculated [207]. 

IRR is defined as an interest rate which equates the present worth of cash flow to zero [207]. 

The IRR of the base and optimized process has been calculated at different efficiencies levels 

of the plant given in Chapter 4-7.  

For the calculation of IRR, the following assumptions have been considered: 

• Plant operational efficiency is consistent with respect to the applied case. 

• Installed plant setup operational life is 10 years with linear depreciation. 

• No inflation rate has been considered. 

• For some cases, subsidy of $10-20 per ton or 50% waste disposal cost which is $50 in 

high-income and $17.5 per ton in low-income countries have been considered in chapter 

7 [208]. 

• Cost of land, legal or regulatory duties, consultation, and administrative costs are not 

included in the initial investment. 

• There is no shortage of raw material, and it is available as per requirement.   

• Electricity generation in the plant is sufficient to meet the operational needs.  

0= �
𝐶𝐶𝑡𝑡

(1 + 𝐼𝐼𝐼𝐼𝐼𝐼)𝑡𝑡

𝑛𝑛

𝑡𝑡=0

− 𝐶𝐶𝑜𝑜 

where 𝐼𝐼𝐼𝐼𝐼𝐼 is the internal rate of return,  𝐶𝐶𝑡𝑡 is the net cash inflow during time period 

t,  𝑖𝑖 is the discount rate, 𝐶𝐶𝑜𝑜is the initial investment, and 𝑡𝑡 is the time period (yr.) 

(3.66) 

 

𝐶𝐶𝑜𝑜= 𝐶𝐶𝑝𝑝 + 𝐶𝐶𝑏𝑏 + 𝐶𝐶𝑒𝑒 

where 𝐶𝐶𝑜𝑜 the initial investment, 𝐶𝐶𝑝𝑝 cost of plant equipment, 𝐶𝐶𝑏𝑏 cost of building/civil 

work, and 𝐶𝐶𝑒𝑒 cost of electrical installations.  

(3.67) 
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3.3.8 Environment performance  

Environment feasibility of the valorization process is being carried out using life cycle 

assessment (LCA) approach by applying ISO 14040 framework of defining goal and scope, 

inventory analysis, impact assessment, and interpretation [209]. LCA is a framework which 

is used for analyzing the environmental impact of the process or product throughout its life. 

For LCA calculations, SimaPro software's Ecoinvent libraries and the IMPACT 2002+ 

methodology was used. It is not a full cradle to grave LCA, but rather a gate-to-gate LCA, 

beginning with biomass waste collection from the farm and ending with the valorization 

process at the treatment plant. The environmental impact of building and plant installation is 

not considered in this research. The environmental impact of valorizing biomass waste per 

kilogram unit basis has been compared to land disposal or with other produced products as 

per respective chapter. For life cycle inventory (LCI) which has the vital role in the LCA, data 

is being obtained from respective chapter simulation model or different literatures [210] and 

Ecoinvent database using SimaPro software [211]. 

Life Cycle Impact Assessment (LCIA) has been carried out using the IMPACT 2002+ 

method with 15 midpoints impact categories including non-carcinogens, carcinogens, ionizing 

radiation, respiratory inorganics, respiratory organics, ozone layer depletion, aquatic 

𝑂𝑂𝑂𝑂𝑂𝑂= 𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑙𝑙 + 𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑚𝑚 + 𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑑𝑑 

where 𝑂𝑂𝑂𝑂𝑂𝑂  is the operational cost, 𝐶𝐶𝑟𝑟  cost of raw material, 𝐶𝐶𝑙𝑙  cost of labor, 𝐶𝐶𝑜𝑜 

overhead cost, 𝐶𝐶𝑚𝑚  cost of engineering maintenance, 𝐶𝐶𝑇𝑇  transportation cost, and 𝐶𝐶𝑑𝑑 

cost of plant depreciation.   

(3.68) 

 

𝐶𝐶𝑡𝑡= 𝑃𝑃𝑐𝑐 . 𝑄𝑄𝑡𝑡 

Where 𝐶𝐶𝑡𝑡 is the net cash inflow during time period t, 𝑃𝑃𝑐𝑐 is per unit cost of product, 

and 𝑄𝑄𝑡𝑡 product quantity produced. 

(3.69) 

 

o

wrt

CPBP
R

=  

where PBP payback period,  wrtR is the profit from revenue with respect to specific 

time.  

(3.70) 
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ecotoxicity, terrestrial acid, terrestrial ecotoxicity, land occupation, aquatic eutrophication, 

aquatic acidification,  mineral extraction, global warming, non-renewable energy, and four 

end point (damage) categories including human health, climate change, ecosystem quality, 

and resources [212]. It is not a thorough LCA because the goal is to compare the 

environmental impact of biomass land disposal and valorization processes; hence, the default 

settings of the categories, weighting factor, and method structure have been used in SimaPro 

calculations. Final LCA results have been better examined in terms of midpoint, endpoint, and 

single score. While a single point average impact reflects a single component that can be 

biased according to unique location or other circumstances, certain corrective elements are 

required to convert these regional values, which are typically difficult to collect [212,213]. 

Therefore, to address this issue three approaches including endpoint, midpoint and single 

score have been used for comparative results. 

3.3.9 Safety analysis 

There are different quantitative and qualitative approaches that have been adopted by 

the researchers for process safety risk analysis. Most of the methods are index-based which 

have adopted qualitative approach for the risk assessment like Inherent Safety Index (ISI), 

potential safety, health, and environmental (SHE), Prototype Inherent Safety Index (PIIS), 

Process Safety Index Analysis (PSIA), Inherent Chemical Process Properties Data (ICPD) 

[214]. In this study, both subjective and objective based safety techniques have been applied 

for risk assessment. Numeric Descriptive Inherent Safety Index (NuDISI) quantitative process 

safety-based risk assessment of biomass raw material has been evaluated for different final 

products considering process parameters related to the temperature, pressure, heat of reactions, 

and process inventory. While subjective technique safety index analysis (PSIA) and inherent 

safety index (ISI) techniques [215,216] have also applied in some cases. Eq. 3.71-3.73 has 
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been used for NuDISI safety assessment without being involving any subjective term like 

ratings, classifications etc. [214] 

𝑦𝑦 =  
1

1 + 𝐴𝐴𝑒𝑒−𝐵𝐵𝐵𝐵 

where y= variable represent parameter values, x= parameter value, B= maximum 

score limit,  

A = parameter score  

(3.71) 

𝐵𝐵 =  
4𝑚𝑚
𝐶𝐶

 

where B= maximum score limit, m = mean safety value of parameter collected from 

literature/simulation models, C =100 

(3.72) 

𝐴𝐴 =  𝑒𝑒𝐵𝐵𝐵𝐵 

A = parameter score, B= maximum score limit, k = slope cumulative curve of 

parameter 

(3.72) 

PSTS = (ST)max + (SP)max + (SHR)max + (SI)max 

where Process Safety Total Score (PSTS), the scores for temperature (ST), pressure 

(SP), heat of reaction (SHR), and process inventory (SPI) 

(3.73) 

Thermal processes data like pressure, process temperature, heat of reactions, reactivity, 

and material flow rate have been collected from the literature including Aspen Plus simulation 

model results [57] and experimental analysis. Slopes and scores of the parameters have been 

calculated based on the collected data. Then, using calculations of the individual variable, total 

process safety score (PSTS) has been calculated which is summarized in the respective chapter.  

3.3.10 Strategic decision making 

In this study, the decision-making model application was to identify the sustainable 

valorization process. Section 3.3.10.1 methodology has been developed for valorization 
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process selection while section 3.3.10.2 provides the mechanism for sustainability index 

calculations.  

3.3.10.1 Sustainable valorization process selection 

Sustainable valorization process selection has been developed based on the following 

frameworks: 

a. Research framework  

The main aim of this investigation is to identify a sustainable waste valorization process, 

based on criteria including economic, technological, environmental, and socio-governance 

aspects. The conceptual model depicting the research framework is given in Fig. 3.I. To achieve 

this objective, the research is structured into five distinct phases, concisely outlined below: 

Phase 1: Identification of criteria and potential MSW valorization process.  

A systematic literature review has been undertaken to identify the pivotal factors highlighted 

by scholars for the discernment of waste valorization processes. Therefore, four 

methodologies—namely, pyrolysis, gasification, HTG, and anaerobic digestion (AND)—have 

been selected as viable alternatives based on expert recommendations and prior research. The 

sixteen criteria, as given in Table 8.1 (chapter 8), have been substantiated through various 

research endeavors.   

Phase 2 Calculating the main and sub-criteria weight through AHP. 

On the basis of selected indicators for the waste valorization process, a survey instrument has 

been designed for data acquisition. The survey targets individuals recognized as field experts 

in this domain. The primary focus of data collection encompasses the following aspects: 

• The criteria for the waste valorization process, shortlisted in the initial step, undergo 

evaluation by the researchers utilizing the AHP. 
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Primarily, weights are computed through the AHP method. This involves the development of 

four overarching main categories, namely economic, environmental, technological, and socio-

governance considerations.  

Phase 3 Ranking of MSW valorization processes through advanced IVFFS-CODAS 

method. 

Expert perspectives on sustainable MSW valorization methods, specifically pyrolysis, 

gasification, HTG, and AND have been gathered with respect to the established criteria. 

Initially, the determination of criteria and sub-criteria weights was conducted using the AHP. 

These weights were subsequently employed for the ranking of the MSW valorization processes. 

The ultimate ranking of the processes was accomplished using IVFFS logic Dombi advanced 

CODAS method as given in section 3.3.10.1.d. Furthermore, the Shannon Entropy and CRITIC 

methods were also applied to ascertain weights for sensitivity analysis based on available 

quantitative data. Furthermore, quantitative data is gathered from over 30 diverse studies 

related to gasification, pyrolysis, HTG, and AND. The quantitative data will be predominantly 

classified within the aforementioned four criteria.  

Phase 4 Performing a comprehensive sensitivity analysis.  

Current model undergoes sensitivity analysis through varied weight assignments (utilizing 

AHP, Entropy, CRITIC, and Equal weighting methods) and the incorporation of different 

Dombi operator values ranging from 0.1 to 1. The adjustment of Dombi operator values within 

this specified range is carried out to assess its impact on the ultimate ranking. Furthermore, the 

rank reversal method is employed, involving the omission of certain criteria, to evaluate its 

influence on the final output. The final results of the sensitivity analysis are presented in section 

8.5, where a variety of weights, encompassing both qualitative and quantitative methodologies, 

have been employed to rank the waste valorization processes.  
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Phase 5: Offering policy implications based on analysis findings. 

Finally, policy implications for the short term, intermediate term, and long term have been 

outlined in accordance with the obtained results.  

b. Fermatean fuzzy sets (FFS) 

FFS is an extension of the Pythagorean Membership Grade (PMG), which, in turn, is an 

advanced iteration of the Intuitionistic Membership Grade (IMG) within fuzzy set theory 

introduced by Senapati and Yager [217]. In 2017, q-rung orthopair fuzzy sets have been 

introduced in which qth power was supported by 1 but when qth power is 3 then this type of 

fuzzy sets is considered as an FFS [218]. A visual depiction highlighting the distinctions among 

these three entities—IMS, PMG, and Fermatean Membership Grade (FMG)—can be found in 

Fig. 3.J. The constraint to holds for the sum of membership and non-membership functions to 

be less than or equal to 1 in all instances, but there are some situations in which IMS (α+β≤1) 

and PMG (α²+β²≤1) fail to adhere to this constraint. Consequently, a novel concept, FFS 

(α³+β³≤1) has been introduced to address this limitation. This new advancement can cover 

more space of acceptable orthopair as compared to previous models (i.e., IFS and PFS). 
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Fig. 3.I. Research framework for decision making model 
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Definition 1. Fermatean fuzzy set number (F) with a finite number universal set number X is 

expressed and given in Eq. 3.74 [217]. 

, ~ ( ), ~ ( ) |
f f

F x x x x Xα β
   = ∈   

   
 

where the function 
f

α : X→ [0, 1] and 
f
β : X→ [0, 1] are membership (MD) and non-

membership (ND) degrees, respectively.  

(3.74) 

3 30 1f fα β≤ + ≤  

where the general rule of FFS  

(3.75) 

3 33( ) 1 ( ) ( )f ff
x x xπ α β= − −  

where degree of indeterminacy is represented as ( )
f

xπ  

(3.76) 

Definition 2. Fermatean fuzzy set with a close sub-interval of I [0,1] in the universal set X can 

be defined as follow in Eq. 3.77 and 3.78 [219]:  

Fig. 3.J. Spaces among IMG, PMG, and FFS 
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( )
( )

( )

, ~ ( ), ~ ( )

~ ( ), ~ ( ) [0,1],

~ ( ), ~ ( ) [0,1],

f f

f f

f f

x x x

F x x I

x x I x X

α β

α α

β β

− +

− −

 
  = ∈ 
 

∈ ∈  

 

where the function 
f

α : X→I [0, 1] and 
f
β : X→I [0, 1] are the membership degree (MD) 

and non-membership degree (ND) of the component I X∈ , satisfying 

( ) ( )3 3
0 ( ) ( ) 1f fx xα β+ +≤ + ≤  

(3.77) 

where the indeterminacy degree is following: 

( ) ( ) ( ) ( )3 3 3 3~ ~ ~ 3 3( ) [ ( ), ( )] 1 ( ) ( ) , 1 ( ) ( )f f f f f f fx x x x x x xϑ ϑ ϑ α β α β− + − − + + = = − + − +  
 

This can be simplified as a ( ), , ,f α α β β− + − +   =      which fulfills the constraint given 

in Eq. 3.75. 

(3.78) 

Definition 3. Dombi t-norm (DTN) and Dombi-t-conorm (DTCN) operators have been 

introduced to balance between generality and specificity in fuzzy logic which can be explained 

in Eq. 3.79 as a function of two real numbers α and β  [220,221] 

where the indeterminacy degree is following: 

1 1
1 1( , ) , ( , ) 1

1 1 1 11 1

DTN DTCN
λ λλ λλ λ

α β α β
α β α β

α β α β

= = −
      − − − −   + + + +                     

 

where λ>0, and (α, β) ∈ [0,1] × [0,1], for current study λ = [0,1] 

(3.79) 
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Definition 4. Let the ( ), , ,ξ α α β β− + − +   =      are the FFS. Hence, the score and accuracy of 

the FFS ξ can be calculated through Eq. 3.80-3.81 [222].  

( ) ( ) ( ) ( )( )3 3 3 31 1( ) 1 , ( ) [0,1]
2 2

ρ ξ α α β β ρ ξ− + − + = + − − + ∈ 
   (3.80) 

( ) ( ) ( ) ( )( )3 3 3 31 1( ) 1 , ( ) [0,1]
2 2

κ ξ α α β β κ ξ− + − + = + − − + ∈ 
 

 (3.81) 

Definition 5. The integration of DTN and DTCN operators in FFS can be stated as follows in 

Eq. 3.83. If the ( )1 1 1 1 1, , ,ξ α α β β− + − +   =      and  ( )2 2 2 2 2, , ,ξ α α β β− + − +   =      are the FFS of 

( ), , ,ξ α α β β− + − +   =      then the operation of DTN and DTCN for the real number γ>0 can 

be defined in Eq. 3.82-3.85 [223].  

1 1
3 3 3 3

3 31 2 1 2
3 3 3 3

1 2 1 2

1
3 3 3

1 2 13
3 3

1 2

1 11 , 1 ,
( ) ( ) ( ) ( )1 1

1 ( ) 1 ( ) 1 ( ) 1 ( )
( ) ( )

1 1,

1 ( ) 1 ( ) 1 ( )1 1
( ) ( ) (

λ λ λ λλ λ

λ λ λ

α α α α
α α α α

ρ ξ κ ξ

β β β
β β

− − + +

− − + +

− − +

− −

− −
          

+ + + +          − − − −             
⊕ =

    − − −
+ + +    

     

1
3

23
3 3

1 2

1 ( )
) ( )

λ λ λ
β

β β

+

+ +

    −
+    

     

 
(3.82) 

1 1
3 3 3 3

1 2 1 23 3
3 3 3 3

1 2 1 2

1
3 3 3

3 1 2 1
3 3

1 2

1 1, ,

1 ( ) 1 ( ) 1 ( ) 1 ( )1 1
( ) ( ) ( ) ( )

( ) ( )
1 11 , 1

( ) ( ) ( )1 1
1 ( ) 1 ( ) 1 (

λ λ λ λλ λ

λ λ λ

α α α α
α α α α

ρ ξ κ ξ

β β β
β β

− − + +

− − + +

− − +

− −

          − − − −
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(3.85) 

Definition 6. The integration of DTN and DTCN operators average in the FFS has been done. 

For this purpose, an assumption has been taken. Let ( ), , ,j j j j jϕ ϑ ϑ σ σ− + − +   =     (j=1,2, 3…, 

k) is a collection IVFFS. FFSDW (Fermatean Fuzzy Dombi weightage) aggregated value is 

defined in Eq. 3.86 while the FFSDWG geometric operator is defined in Eq. 3.87 [223]. 
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where jϕ is the FFS, aτ is the weight vector (a= 1, 2, …, n) of jϕ (j= 1, 2, 3…. k) with 0τ >

and 
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where jϕ is the FFS, aτ is the weight vector (a= 1, 2, …, n) of jϕ (j= 1, 2, 3…. k) with 0τ >

and 
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=
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(3.87) 

c. Weights calculation 

In this study, the determination of weights was conducted through a qualitative approach using 

AHP. Subsequently, for the purpose of validation analysis, quantitative values of the criteria, 

as reported in the literature, were employed. These quantitative weights were derived from 

existing literature and explained below, detailing the procedures for weight calculation.  

AHP weights 

The methodology employed for the determination of criteria weights involves the application 

of the AHP. The utilization of linguistic numbers facilitates the transformation of subjective 

terms into objective weight calculations. The rationale behind selecting this integration lies in 

its efficacy in addressing subjective uncertainties inherent in expert decision-making, its 

enhanced sensitivity, and its alignment with real-world scenarios [224]. The sequential process 

for calculating AHP weights is as follows [225]: 
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Step 1: Commencing with the establishment of an objective to choose the most suitable option 

from the available alternatives based on the specified criteria. 

Step 2: A pairwise comparison matrix has been formulated to facilitate the relative assessment 

of various criteria, as outlined in Eq. 3.88. The matrix elements represent the extent to which 

the ith criterion is preferred over the jth criterion. These comparative judgments are expressed 

in linguistic terms provided in Appendix A1, serving as the basis for transforming subjective 

ratings into an objective format for subsequent analysis.  
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where 𝑥𝑥𝑖𝑖𝑖𝑖 is the degree of preference of ith criterion over jth criterion. 

(3.88) 

Step 3: The data acquired from the pairwise comparison underwent normalization within the 

[0, 1] range by employing Eq. 3.89. The normalization process entails dividing the sum of 

column-wise values by the individual value in the corresponding column. It is being noted that 

the cumulative sum of values in each column after normalization equates to 1. 

1
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x
m

x
=

=

∑
 (3.89) 
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where 𝑥𝑥𝑖𝑖𝑖𝑖 is the degree of preference of ith criterion over jth criterion which is being divided 

by the sum of all degrees of preferences. 
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where 𝑚𝑚𝑖𝑖𝑖𝑖 is the normalized response of respective criteria in range of [0,1]. 

(3.90) 

Step 4: Compute the Consistency Index (CI) within the framework of the AHP to assess the 

inconsistency inherent in expert opinions. The calculation of the inconsistency index for the 

pairwise matrix is accomplished using Eq. 3.91. The hunt of minimizing the CI, approaching 

the value of ‘0’, is deemed as improved consistency in expert opinions. According to this study, 

if the CI falls below 0.10, the AHP results are considered acceptable; otherwise, a reassessment 

is warranted to attain a consistent outcome [226].   

max

1
NCI

N
λ −

=
−

 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the principal eigenvalue of the expert opinion matrix, and N is the order of 

the matrix 

(3.91) 

Shannon Entropy weights 

The weight determination for quantitative data obtained from the existing literature was 

conducted using the Shannon Entropy method. The application of the Entropy method involves 

utilizing relative information to predict quantitative values, subsequently calculating the 
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weights [227]. Shannon and Weaver utilized the entropy method to assess the uncertainty of 

components by employing the information probability function given in Eq. 3.92 [228]. The 

greater value of the entropy refers to the smaller weight. Another non-probabilistic entropy 

value was introduced by De Luca and Termini given in Eq. 3.93 [229] which have been utilized 

in this research to calculate the weights based on the available criterion for sensitivity analysis 

given in section 8.5.   

1
( ) ( ) ln ( )

q

k
E px k p x p x

=

= − ∑  

where 𝐸𝐸(𝑝𝑝𝑝𝑝) is the entropy level, and k is the constant  

(3.92) 

~
~ ~

1
( ) ( ) ln ( )

q

A k A k
k

E A x k x xµ µ
=

= − ∑  

where 𝐸𝐸(𝐴𝐴𝐴𝐴) is the non-probabilistic entropy level, and k is the normalized value which 

is equal to 1 𝑙𝑙𝑙𝑙𝑙𝑙�  

(3.93) 

d. Advanced CODAS method based on IVFFS 

This study introduces a novel methodology involving the integration of IVFFS in CODAS 

method. The application of this approach aims to rank sustainable valorization processes for 

MSW, and the details of this integration are outlined in chapter 8. The process brief is structured 

based on the following sequential steps [230]:  

Step 1: Shortlist the group of experts and determine the alternative along with the criterion 

based on which experts will relatively prioritize the alternatives in term of linguistics term 

based on the FFS (Eq. 3.94).  

( ), , ,ij ij ij ij ijϕ ϑ ϑ σ σ− + − +   =      (3.94) 
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where ijϕ is the performance value of ith alternative with reference to the jth criterion for 

each expert 

The significance of weight in determining the ultimate ranking cannot be overstated. This 

calculation is derived from Section 3.3.10.1 for the AHP and Shannon Entropy.  

Step 2: Calculate the expected membership ( ( )jMV ϑ ) and non-membership ( ( )jMV σ ) values 

of the IVFFS based on the Eq. 3.95 and 3.96. 

( ) (1 ) L u
jMV ϑ ζ ϑ ζϑ= − +  

where ( )jMV ϑ is the membership value, ζ is the optimism degree of experts 

(3.95) 

( ) (1 ) L u
jMV σ ζ σ ζσ= − +  

where ( )jMV σ is the non-membership value 

(3.96) 

Step 3: Calculate the aggregated value of IVFFS decision matrix.  

Step 4: Normalize the aggregated IVFFS decision matrix considering the cost and benefit types 

of criteria by applying the logic given in Eq. 3.97. 

{ }
{ }

~ ~
, , , , is cost type

[ ]
, , , is benefit type

L u L u

j

n m
L u L u

j

C
N n

C

σ σ ϑ ϑ

ϑ ϑ σ σ
⊗

        
= =  

        

 

where 
~

[ ]n mn ⊗ is the normalized IVFFS matrix 

(3.97) 

Step 5: From the normalized IVFFS matrix, calculate the normalized weighted decision matrix 

based on Eq. 3.98.    
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~ ~
[ ]ij ij js n W= ⊗  

where jW are the weights which are obtained based on AHP and Shannon Entropy with 

CRITIC for sensitivity analysis based on main criteria weights 

(3.98) 

Step 6: Calculate the negative ideal solution based on weighted normalized decision matrix as 

per Eq. 3.99.    

~ min , min max , max
, 1,2,3...,

L u L u
ij ij ij ij

sjn i j
i i i i
ϑ ϑ σ σ   

= =   
   

 (3.99) 

Step 7: Estimate the weighted Euclidean distances (Ei) and weighted Hamming distances (Hi) 

based on the negative ideal solution using Eq. 3.100 and 3.101.    

2 2 2 2

1

1 1 1 1
4 4 4 4

m
L L U U L L L L

i sij nsj sij nsj sij nsj sij nsj
j

E ϑ ϑ ϑ ϑ σ σ σ σ
=

 = − + − + − + − 
 

∑  (3.100) 

( )1
4

L L U U L L L L
i sij nsj sij nsj sij nsj sij nsjH ϑ ϑ ϑ ϑ σ σ σ σ= − + − + − + −∑  (3.101) 

Step 8: Determine the relative assessment matrix (Rm) based on the Ei and Hi using Eq. 3.102-

3.104. 

[ ]i it n n
R q

×
=  (3.102) 

( ) ( ) ( )it i t i t i tq E E E E H Hψ= − + − × −  (3.103) 

1
( )

0
x

x
x

ρ
ψ

ρ
 ≥=  <

 

where { }1,2,3,...,nψ ∈  the threshold value of the ρ is taken between 0.01 and 0.05  

(3.104) 
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Step 9: Calculate the final assessment (As) score itq of each alternative based on the Eq. 3.105. 

The alternative with the highest positive value is regarded as the most favorable among all 

available alternatives. 

1

n

s it
t

A q
=

= ∑  (3.105) 

3.3.10.2 Process sustainability index calculation 

The process's sustainability index was calculated using four indicators including energy, 

economics, safety, and biomass waste-based electric power generation (renewable resources). 

For each scenario, the sustainability index was calculated using Eq. 3.106. By application of 

Eqs. 3.107-3.111, all metrics (energy, economic, power, and safety norms) have been adjusted 

to ratios, allowing for a fair comparison of different solutions. As energy efficiency is measured 

in percentages (%), Eq. 3.107 can be used to convert it to a ratio. The IRR was calculated by 

multiplying different scenarios process efficiencies to get a percentage (%). Therefore, the IRR 

was averaged to account for various efficiency features (Eq. 3.108). 

 The power potential is computed in kW using the procedures described in section 3.8. 

Hence, it was converted to a ratio by comparing the highest power potential of the scope 

scenarios to the respective one (Eq. 3.109). Finally, in Eq. 3.110, the safety score was calculated 

by dividing the corresponding scenario by the greatest possible score and life cycle assessment 

with Eq. 3.111. Chapter 8 contains the EES calculations. 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑊𝑊1𝐸𝐸1 + 𝑊𝑊2𝐸𝐸2 + 𝑊𝑊3𝐸𝐸3 + 𝑊𝑊4𝐸𝐸4 … + 𝑊𝑊𝑛𝑛𝐸𝐸𝑛𝑛 

where (0 ≤ EES ≤ 1) 𝑊𝑊1 is the weight of energy variable, 𝐸𝐸1 is the energy based on 

Eq. 3.107, 𝑊𝑊2 is the weight of economic variable, 𝐸𝐸2 is the economic calculation 

on Eq. 3.108, 𝑊𝑊3 is the weight of power potential, 𝐸𝐸3 is the power potential based 

(3.106) 
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on Eq. 3.109, 𝑊𝑊4 is the weight of safety variable, and 𝐸𝐸4 is the safety factor based 

on Eq. 3.110 

𝐸𝐸1 =
η𝑒𝑒

100
 

where η𝒆𝒆is the energy efficiency of respective scenarios 

(3.107) 

𝐸𝐸2 =
∑ 𝐼𝐼𝐼𝐼𝑅𝑅𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛 × 100
 

where 𝑰𝑰𝑰𝑰𝑰𝑰𝒊𝒊 is the internal rate of return of respective scenarios, and 𝒏𝒏 is the total 

IRR cases included 

(3.108) 

𝐸𝐸3 =
𝑃𝑃𝑖𝑖

𝑃𝑃𝑚𝑚
 

where 𝑷𝑷𝒊𝒊 is the calculated power potential of respective scenario, and 𝑷𝑷𝒎𝒎 is the 

maximum power potential obtained in the scope scenarios 

(3.109) 

𝐸𝐸4 = 1 −
𝑆𝑆𝑆𝑆𝑖𝑖

𝑆𝑆𝑆𝑆𝑡𝑡
 

where 𝑺𝑺𝑺𝑺𝒊𝒊  is the obtained safety score of respective scenarios, and 𝑺𝑺𝑺𝑺𝒕𝒕  is the 

maximum possible safety score 

(3.110) 

𝐸𝐸5 =  
1

(
∑ 𝐸𝐸𝑚𝑚𝑖𝑖 + ∑ 𝐸𝐸𝑒𝑒𝑖𝑖

𝑖𝑖𝑡𝑡
) × 100 × 𝜂𝜂𝑛𝑛

 

where ∑ 𝐸𝐸𝑚𝑚𝑖𝑖  is sum of mid-point indicators score, ∑ 𝐸𝐸𝑒𝑒𝑖𝑖  is the sum of endpoint 

(damage impact), 𝑖𝑖𝑡𝑡 is the total number of indicators included, and 𝜂𝜂𝑛𝑛 is the base 

or the optimized process to the product ratio.  

(3.111) 

To calculate the weight of these four criteria, the BWM developed by Rezaei (2015) [231] has 

been used to determine the weights of the criteria. The procedure of this method has been 

shown in Fig. 3.K.  
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According to the steps presented in Fig. 3.K as well as the best worst method, the weights can 

be determined. 

  

Step 1

•Detemining the
decision
criterias [Energy
E1, Economic
E2, Power E3,
Safety E4]

Step 2

•Decision maker
identifies the best
and worst criteria
[Economic E2
(best), Power E3
(worst)]

Step 3

•Preference of
best criteria over
all criterias
between 1-9

•CB= cb1+cb2+...
cbn

Step 4

•Preference of all
criterias over
worst criterias
between 1-9

•CW= cw1+cw2+...
cwn

Step 5

•Find the optimal
weights

•w1, w2, w3, w4

Fig. 3.K Best-worst method criteria for decision making 
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4 Chapter: HTG-based biomass waste valorization process 

HTG is appropriate for high moisture or slurry feedstock type. Aspen software-based 

simulation model has been developed for HTG analysis. Proximate and ultimate analysis of the 

biomass type has been used as an input feed material. Simulation parameters like temperature, 

pressure, biomass concentration and stoichiometry reactions have been taken from the 

literature. The simulation model has been validated with the experimental study at four 

different points of temperature.   

4.1 HTG process simulation development  

The input parameters for the Aspen simulation model, such as biomass proximal, 

ultimate analysis, temperature, biomass concentration setting was taken from the literature of 

experimental work. Table 4.1 has the data of proximate and ultimate analysis of PL [232]. 

Table 4.1 Proximate and ultimate analysis of poultry litter for HTG 

Water content Proximate analysis a Ultimate analysis a 
81.33 Mad FC VM A C H N S Ob 

Litter 2.10 9.12 61.94 26.84 33.14 4.41 2.65 0.57 32.39 
a. On a dry basis 
b. By difference (O%= 100%－Ash%－C%－H%－N%－S%) 
FC = fix carbon, VM = volatile matter, A= Ash, C = Carbon, H = Hydrogen, N = Nitrogen, S = Sulphur, O= Oxygen  

The HTG simulation model given in Fig. 4.A was developed using the Aspen Plus 

software. The feed rate of the materials has been set at 0.6:9.4 ratio with 6% biomass and 94% 

water which is based on the experimental study of poultry biomass [232]. Non-conventional 

biomass stream properties are obtained from the ultimate and proximate analysis as listed in 

Table 4.1. Simulation models have been executed at different parameters for validation. Further 

detailed attributes of the simulation model are given in Table 4.2 [232,233] and its 

stoichiometric reactions based on fraction conversions are given in Table 4.3. 
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Table 4.2 HTG simulation model attributes 

Simulation Model Properties 

•  Method Peng Robinson 
•  Unit Set METCBAR 
•  Stream Class MIXCINC 
•  Phase system Vapor-liquid 
•  Enthalpy HCOALGEN 
•  Density DCOALIGT 

Operating Parameters 

•  Feed Rate 1000 kg/h 
•  Biomass to Water Ratio 0.6:9.4 (6% and 94%) 
•  Feed Temperature 30 oC 

•  HTG Reactor 
Temperature 500-620 oC 

•  HTG Reactor Pressure 25 MPa 
•  Reformer Temperature 500-620 oC 

The molecular weights and weightage conversion of the input biomass proximate and 

ultimate analysis based on experimental study findings were used to calculate the 

stoichiometric fraction conversion of chemical processes [232]. This fractional conversion 

which is listed in Table 4.3 has been utilized to compute the yield of the HTG reactor for the 

RSTOIC reactor. The sum of fraction conversion of BM should be 1.   

Reformer reactors have also been added to increase the quality of syngas by raising the 

fraction of hydrogen gas, bringing the results of this simulation model closer to the 

experimental investigation. Reaction kinetics were employed in the reformer reactor, which 

were taken from the literature. The details of these kinetics are given in Table 4.4 [232,234]. 
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Table 4.3 Chemical reactions summary of biomass in HTG  

Stoichiometric reaction equation 

Reactants R-Coefficient Products P-Coefficient Fraction 
Conversion of BM 

Reaction 
Number 

BM -1 CH4 0.062333414 
0.1191260 

1R 

BM -1 H2 0.496061273 
0.0252391 

2R 

BM -1 CO 0.035701025 
0.0000100 

3R 

BM -1 CO2 0.022722212 
0.5299204 

4R 

BM -1 H2O 0.055508435 
0.1330645 

5R 

BM -1 BIOCHAR 1 
0.1926400 

6R 

 

Table 4.4 Chemical reactions kinetics of HTG 

Stoichiometric reaction equation 

Reaction Rate Constant 
(K) n 

Activation 
Energy 

(cal/mol) 
No. 

1.25C + O2 →0.5 CO + 0.75CO2 3.7×1010 1 35826.9 R1 

C + O2 → CO2 1.78×1010 0 42992.2 R2 

CH4 + 0.5O2 → CO + 2H2 1.58×1012 0 48246.9 R3 

C + H2O →H2 + CO 8×10-3
 0 11918.4 R4 

CH4 + H2O →CO + 3H2 3×1011 0 29855.7 R5 

C + 2H2 →CH4 1×107 1 19.21 R6 

In the simulation model, Peng Robinson Equation of States (PR) method was applied 

due to its better results when the output is in the form of low molecular weight gases such as 

CO, CO2, H2, and CH4 [124]. The model has been developed based on Gibbs free energy 

minimization given in these studies. Following the consolidated Eq. 4.1 and 4.2 for the total 

Gibbs Energy have been obtained from studies [235,236].   
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By application of Lagranges multipliers method, Gibbs free energy can be minimized as 

given in Eq. 4.2. In Aspen Plus software, process simulation model has followed these 

equations for chemical process modeling [235,236].  

The HTG simulation model shown in Fig. 4.A begins with a 0.6:9.4 input feed of biomass 

and water into a mixture block that mixes the input material at a typical temperature of 25-30 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐺𝐺𝑇𝑇) = � 𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

△ 𝐺𝐺𝑓𝑓,𝑖𝑖
𝑜𝑜 + � 𝑛𝑛𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙
𝑛𝑛𝑖𝑖

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡
. 

where 𝑛𝑛𝑖𝑖 represents the total concentration of mole, △ 𝐺𝐺𝑓𝑓,𝑖𝑖
𝑜𝑜   is the standardized form 

of Gibbs free energy formations, and R and T represent general gas constant and 

temperature, respectively. 

 

(4.1) 

Using Lagranges multipliers, Gibbs energy can be minimized as given in below 

equation: 

𝛿𝛿𝛿𝛿
𝛿𝛿𝑛𝑛𝑖𝑖

=△ 𝐺𝐺𝑓𝑓,𝑖𝑖
𝑜𝑜 + 𝑛𝑛𝑖𝑖𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙

𝑛𝑛𝑖𝑖

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡
. +  � 𝑎𝑎𝑖𝑖𝑖𝑖Ɛ𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 

where Ɛ𝑗𝑗 is the Lagrange multiplier, L is the Lagrange function, and 𝑎𝑎𝑖𝑖𝑖𝑖 represents 

the j-th element in the i-th mole of the compound 

 

 

(4.2) 

Fig. 4.A Aspen Plus HTG process simulation model 
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oC [11]. To make it more realistic, the output of this mixer was reacted into the primary reactors, 

which were subdivided into RSTOIC, RYield and reformer. At 500-620 oC and 25 MPa 

pressure, the RSTOIC reactor performs the stoichiometry reactivity as shown in Table 4.3. 

SEP1, separates the generated gas and other residue for recovery in the RYield reactor. As a 

result, the output from both reactors was fed into the reforming reactor to improve the 

efficiency of the syngas product reforming by raising the hydrogen gas portion, as shown in 

the reactions presented in Table 4.4. Finally, SEP3 separates the high-quality syngas and steam 

produced during the HTG process from the biomass. This steam can be used for multiple 

purposes such as running turbines for power generation.   

4.1.1 HTG process validation 

The results in the experimental study [232] has been used to validate the simulation 

model. The percentage mole fractions of hydrogen, carbon monoxide, carbon dioxide, and 

Fig. 4.B HTG process validation with experimental model 
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methane gases in syngas have been compared, as presented in Fig. 4.B. In addition, RMSE has 

been calculated. Root means square error percentage of each simulation at respective 

temperature has been taken using Eq. 3.27 as methodology defined in section 3.3.1. Fig. 4.B 

shows a point-by-point comparison of experimental and simulation data at four distinct 

temperatures (500, 540, 580, and 620 oC). RMSE of the gases at each temperature has been 

given in the upper right corner of the respective graph in Fig. 4.B. At 500 oC, it is 2.36%, 

similarly 0.74 %, 2.28% and 2.70% at 540 oC, 580 oC and 620 oC.   

4.2 HTG process optimization and prediction 

Multi-objective optimization has been done by application of NLP (nonlinear 

programing) based problem model which is given in Eq. 4.3. 

𝑚𝑚𝑚𝑚𝑚𝑚   𝑓𝑓(𝑥𝑥) 

𝑠𝑠. 𝑡𝑡.    ℎ𝑡𝑡(𝑥𝑥) = 0 

𝑔𝑔𝑚𝑚(𝑥𝑥) ≤ 0 

(4.3) 

where 𝑓𝑓: 𝑹𝑹𝑛𝑛 →  𝑹𝑹, ℎ: 𝑹𝑹𝑛𝑛 →  𝑹𝑹𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔: 𝑹𝑹𝑛𝑛 →  𝑹𝑹𝑚𝑚 are smooth functions. For solving 

easier, the nonlinear program (Eq. 4.3) could be replaced by a sequence of barrier 

subproblems of the form  

 

𝑚𝑚𝑚𝑚𝑚𝑚   𝑍𝑍(𝑥𝑥, 𝑠𝑠) = 𝑓𝑓(𝑥𝑥) − 𝜇𝜇 � 𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 

𝑠𝑠. 𝑡𝑡.    ℎ𝑡𝑡(𝑥𝑥) = 0 

𝑔𝑔𝑚𝑚(𝑥𝑥) + 𝑠𝑠 = 0 

(4.4) 

where 𝜇𝜇 > 0 is the barrier parameter and the slack variable s is assumed to be positive. By 

decreasing values of 𝜇𝜇, the sequence of solutions to Eq. 4.4 should normally converge to a 

stationary point of the original nonlinear program Eq. 4.3. 
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The Hessian (H) transforms into a matrix form, which can be solved by any Quasi-

Newton methods. If the computation fails, conjugate gradient step is used to solve KKT 

conditions. It has been determined to minimize a quadratic approximation to the problem 

𝑍𝑍(𝑥𝑥, 𝑠𝑠) keeping the solution in the trust region. After determining the search direction, the 

appropriate step size needs to be found. Interior Point Method (IPM) uses a decrease in merit 

function approach until the final stop tolerance is achieved, where the resulted function is the 

combination of the objective function with the absolute value of the constraint violation times 

ν, as presented in Eq. 4.8 [238], if it is a better step or not. 

According to MATLAB function “fmincon” used in this study, the process can be described 

as follows. The Lagrangian function associated with Eq. 4.5 is defined by [237] 

𝐿𝐿�𝑥𝑥, 𝑠𝑠, 𝜆𝜆ℎ, 𝜆𝜆𝑔𝑔� = 𝑍𝑍(𝑥𝑥, 𝑠𝑠) +  𝜆𝜆ℎ
𝑇𝑇ℎ(𝑥𝑥) + 𝜆𝜆𝑔𝑔

𝑇𝑇(𝑔𝑔(𝑥𝑥) + 𝑠𝑠) (4.5) 

where 𝜆𝜆ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆𝑔𝑔 are the Lagrange multipliers 

The Karush-Kuhn-Tucker (KKT) conditions have been solved to: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 

𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖(𝑥𝑥) = 0 

𝜆𝜆𝑖𝑖 ≥ 0 

𝜆𝜆𝑖𝑖ℎ𝑖𝑖(𝑥𝑥) = 0 

𝜆𝜆𝑖𝑖 ≥ 0 

(4.6) 

The Hessian H of 𝐿𝐿(𝑥𝑥, 𝑠𝑠, 𝜆𝜆ℎ, 𝜆𝜆𝑔𝑔) is 

𝐻𝐻 = 𝛻𝛻2𝑓𝑓(𝑥𝑥) + � 𝜆𝜆𝑖𝑖𝛻𝛻2𝑔𝑔𝑖𝑖(𝑥𝑥) + � 𝜆𝜆𝑗𝑗𝛻𝛻2ℎ𝑗𝑗(𝑥𝑥)
𝑗𝑗𝑖𝑖

 (4.7) 
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The maximum number of input variables K, as a hyperparameter, defines model 

complexity. The accuracy of the HDMR surrogate model varies with K, which has been 

explored in order to determine the best parameter K in the models for future use. A larger K 

value in the model can cause overfitting. Hence, to avoid overfitting, K values for HHV, LHV, 

NH, H2, CO2, and CO remain low. To avoid model overfitting, 10-fold cross-validation 

approaches were used in this phase. As illustrated in Fig. 4.C.a, increasing K greatly enhanced 

training performance (R2). According to this, the training of models could get better R2 when 

K is being increased from 1 to 8 but increasing K value also increases the risk of overfitting. 

Therefore, lower K value is better for the prediction model development. Specifically, R2 for 

H2, LHV, HHV, and NH models are greater than 0.95 when K=4 which means model can 

perform better prediction for these output variables. According to Fig. 4.C, the more 

complicated model (higher K) has better fitness (R2) during the training phase. Hence, the 

training set was used to assess the model's output performance in terms of MAE, MSE, and 

percentage mean relative error (%MRE). The increasing K values of the test set in MAE (Fig. 

4.C.b), MRE (Fig. 4.C.c), and MSE (Fig. 4.C.d) have been examined. Fig. 4.C.b shows that for 

K=5, the H2, HHV, LHV, and NH models exhibited greater accuracies with MAE lower than 

0.05. In Fig. 4.C.c, the MRE of these parameters is less than 3% at K=5. Mean square error 

(MSE) of H2, LHV, HHV and NH is less than 0.01 at K=2 which represents the better model 

performance in term of MSE prediction for these parameters. Therefore, based on Fig. 4.C data, 

K=3 has been set for optimal prediction of H2, HHV, LHV and NH with the lesser risk of 

overfitting.   

𝑍𝑍(𝑥𝑥, 𝑠𝑠) + 𝜈𝜈‖ℎ(𝑥𝑥), 𝑔𝑔(𝑥𝑥) + 𝑠𝑠‖ (4.8) 

where parameter ν may increase with the iterations for feasibility of solution  
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To achieve the best prediction results, the dataset was split into test and training sets with 

0.25 and 0.75 ratios based on different simulation runs. Fig. 4.C depicts the training 

performance of these models. The R2 of these models ranged from 0.90-0.99, indicating that 

they were all well trained for better prediction. The outcomes of these models are given in 

Table 4.5. According to these findings, the LHV, HHV, and NH models perform best in the 

test set, with MAE, MRE, and MSE values ranging from 0.025-0.047, 1.9%-3.5%, and 0.001-

0.004, respectively, followed by the H2 model, which has MAE (0.054), MRE (3.5%), and 

MSE (0.001-0.004). While the CO and CO2 model findings are not as good as those obtained 

by other models, their MAE, MRE, and MSE are around 0.06, 5%, and 0.009, respectively.  

The highest MRE, about 5% for CO2 could be due to process parameter variation as shown in 

Table 4.5, particularly BMR, which has a more significant effect on CO and CO2 yield than 

the others. Based on the data, the HDMR model was developed and the indicators MAE, MRE, 

and MSE were determined from it. The HHV, NHV, and NH models perform better in both 

training and testing. All models demonstrated remarkable generalization skills. Cross 

validations of the prediction model were performed using actual data, as shown in Fig. 4.D. 

The R2 for the prediction of H2 is 0.96, and the prediction values verses actual datapoints are 

quite close to each other in Fig. 4.D.a. Similarly, R2 for NH, HHV, and LHV are 0.96, 0.99, 

and 0.99, respectively. The predicted values and actual datapoints for NH, HHV, and LHV are 

also near to each other, as shown in Fig. 4.D.b, 4.D.c, and 4.D.d, respectively. Therefore, the 

R2, MSE, MRE, and MAE values are indicators of the model's predictability. Hence, the 

predicted values of all models match the simulated values well, demonstrating that the 

predictive model of these variables is robust. 
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a. R2
 vs. K testing performance b. MAE vs. K testing performance  

c. MRE vs. K testing performance  d. MSE vs. K testing performance  

Fig. 4.C HDMR model testing performance with respect to K 
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Table 4.5 HDMR Models test performance summary  

Model MAE  MRE (%) MSE  

H2 model 0.0540 3.49 0.0048 

CO model 0.0522 3.51 0.0043 

CO2 model 0.0774 5.15 0.0093 

HHV model 0.0275 2.00 0.0012 

LHV model 0.0254 1.90 0.0011 

NH model 0.0471 3.46 0.0043 

 

a. HDMR model prediction vs. Actual for H2 b. HDMR model prediction vs. Actual for NH  

c. HDMR model prediction vs. Actual HHV  d. HDMR model prediction vs. Actual LHV  

Fig. 4.D HDMR model prediction values vs. Actual values   

R2=0.96 

R2=0.9 R2=0.9

R2=0.97 
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4.2.1 HTG computational models’ comparative analysis 

For HTG prediction model development, data has been collected considering section 

3.2.1.1, then five different models of AI (CNN, ANN, GBR, XGB and RFR) have been applied 

to predict the four different types of gases (H2, CH4, CO2, and CO) in the syngas. These models 

have been tested based on R2, MSE, MAE, and MAPE at three different training testing ratios. 

CNN model, R2 values vary from 0.49 to 0.65 for different types of datasets and element. While 

MSE and MAE of CNN model varies from 0.01-0.03 and 0.07-0.14, respectively. MAPE of 

CNN model is also high (>20%) with exception of CO2. For ANN, R2 values vary from 0.10 

to 0.55 for different simulation runs which are quite low for any model. MSE, MAE and MAPE 

of ANN vary from 0.02-0.04, 0.11-0.15, and 0.9-2.5% with exception of CO where it is >20%. 

GBR has the better results in terms of R2, MSE, MAE, and MAPE (Table 4.6). For GBR, R2 

varies 0.75-0.95 which is maximum 0.95 in case of H2 and minimum in case of CH4. Similarly, 

for XGB and RGR, coefficient of determinant varies from 0.81-0.93 and 0.78-90 respectively. 

The poor performance of CNN and ANN models could be linked to data type and limits, as it 

is totally quantitative data with high fluctuation, and some researchers suggested CNN and 

ANN are better suited for subjective datatypes [239]. The number of epochs in NN has also 

increased to 1000 but it become almost stable after 300. Furthermore, potential cause for the 

ANN poor prediction results due to gradient descent learning which are susceptible to local 

minima existence [240]. Results show, regressor models GBR, XGB, and RFR perform better 

as compared to neural network CNN and ANN models for predicting the output of syngas 

elements. Especially, XGB model results perform equally better in predicting syngas elements 

where coefficient of determinant approaches to 0.93, 0.90, 0.85, 0.87 and MAPE 0.4%, 0.7%, 

0.4%, 6.9% for H2, CH4, CO2, and CO respectively (Table 4.6). Followed by RFR, as a second-

best model among this research study models whose R2 approaches to 0.90, 0.85, 0.90, and 

0.83 for H2, CH4, CO2, and CO respectively. Possible reason could be the quantitative datatype 
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for which regressor models are more suitable as in previous research, some researchers have 

applied the regression models which have an optimal result for model prediction [241,242]. 

But for XGB case, this is the advanced version of the GBR due to which its results are far better 

than other regressor models. Therefore, based on these results XGB model can be used to 

predict the syngas output in hydrothermal gasification process. 

Table 4.6 CNN, ANN, GBR, XGB, and RFR experimental results comparison for HTG 

Model 
Type 

R2  
(90-10) 

R2  
(80-20) 

R2  
(70-30) 

MAPE 
(90-10) 

MSE 
(90-10) 

MSE 
(80-20) 

MSE 
(70-30) 

MAE 
(90-10) 

MAE 
(80-20) 

MAE 
(70-30) Element 

CNN 0.60-0.65 0.49-0.55 0.59-0.65 >20% 0.01 0.01 0.01 0.09 0.09 0.08 H2 

ANN 0.50-0.55 0.34-0.40 0.42-0.46 2.1% 0.02 0.02 0.02 0.11 0.11 0.10 H2 

GBR 0.91-0.95 0.79-0.82 0.80-0.85 2.5% 0.004 0.01 0.007 0.05 0.06 0.05 H2 

XGB 0.89-0.93 0.82-0.86 0.78-0.82 0.4% 0.005 0.008 0.009 0.05 0.06 0.06 H2 

RFR 0.84-0.90 0.75-0.80 0.78-0.82 0.4% 0.007 0.009 0.01 0.06 0.06 0.06 H2 

CNN 0.53-0.60 0.45-0.50 0.34-0.40 >20% 0.02 0.02 0.03 0.10 0.11 0.11 CH4 

ANN 0.22-0.25 0.10-0.20 0.12-0.20 1.5% 0.03 0.03 0.03 0.12 0.14 0.13 CH4 

GBR 0.75-0.80 0.60-0.70 0.57-0.65 1.6% 0.009 0.01 0.01 0.07 0.08 0.08 CH4 

XGB 0.85-0.90 0.54-0.65 0.50-0.60 0.7% 0.005 0.02 0.02 0.06 0.11 0.11 CH4 

RFR 0.80-0.85 0.75-0.80 0.72-0.80 0.7% 0.01 0.01 0.01 0.06 0.07 0.07 CH4 

CNN 0.58-0.63 0.38-0.40 0.31-0.35 0.9% 0.02 0.03 0.03 0.12 0.12 0.14 CO2 

ANN 0.23-0.30 0.17-0.25 0.15-0.20 0.9% 0.04 0.04 0.04 0.15 0.15 0.15 CO2 

GBR 0.72-0.76 0.79-0.85 0.79-0.85 0.3% 0.01 0.01 0.01 0.08 0.06 0.06 CO2 

XGB 0.81-0.85 0.75-0.85 0.69-0.75 0.4% 0.01 0.01 0.01 0.07 0.08 0.09 CO2 

RFR 0.86-0.90 0.83-0.87 0.82-0.85 0.3% 0.01 0.008 0.01 0.06 0.06 0.06 CO2 

CNN 0.49-0.55 0.56-0.65 0.49-0.55 >20% 0.01 0.02 0.02 0.07 0.09 0.10 CO 

ANN 0.19-0.25 0.19-0.25 0.17-0.20 >20% 0.03 0.03 0.03 0.12 0.12 0.11 CO 

GBR 0.76-0.80 0.76-0.82 0.78-0.82 >20% 0.01 0.01 0.01 0.06 0.06 0.05 CO 

XGB 0.84-0.87 0.68-0.75 0.69-0.74 6.9% 0.007 0.01 0.01 0.05 0.07 0.06 CO 

RFR 0.78-0.83 0.76-0.82 0.73-0.78 7.1% 0.008 0.01 0.01 0.05 0.05 0.06 CO 

4.3 HTG process sustainability evaluation 

Process sustainability evaluation has been done by energy, economic, and environment 

life cycle assessment of the process as per procedure defined in section 3.3.8. While process 

yield performance has been done based on the effect of process parameters such as temperature, 
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pressure, and resident time on H2, NH, HHV, and LHV. Process sustainability analysis is given 

in 4.3 sub-sections. 

4.3.1 HTG energy analysis 
 

Energy feasibility analysis of the HTG process has been carried out based on the results 

of Aspen plus simulation considering section 3.3.2. Energy analysis has been performed based 

on using one ton of the feed flow (6% BM, 94% water) into the system as the function unit. 

The reactor has been fed with 3984.9 kilowatt (kW) of energy equivalent biomass, which is 

processed through the mixer before entering the main reactor. The biomass conversion reaction 

has taken place in the main reactor. Resultantly, there are certain energy losses in terms of 

material waste, heat loss, and electricity usage, as shown in Fig. 4.E with outward arrows. 

Material and heat losses are the two most common types of losses in the main reactor that are 

not used in the following process. Material loss in the form of sludge residue, which is 

reprocessed to recover energy, and wastage, which can be used in agriculture. Net biomass 

efficiency is calculated by subtracting the energy outflows from the intake energy. The overall 

Fig. 4.E HTG process energy analysis 
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net energy has reduced from 3984 kW to 2460 kW, rest is the loss. Therefore, the overall net 

energy efficiency of this process is about 61%.               

4.3.2 HTG economic analysis 
 

The methodology outlined in section 3.3.7 is used to conduct economic analysis of HTG 

process. EA is being carried out with a small-scale plant that can be installed on 10,000 square 

feet of land and produce 5-10 megawatts of electricity. In EA, the cost of the net heat steam 

produced by biomass has been compared to the cost of other commonly used fuels such as coal, 

natural gas, and distillate oil. The estimated cost of the plant taken from vendor has been 

graphically presented in Fig. 4.F [20]. According to EA, equipment and machinery have the 

major cost around 71% and 14% for shed structure cost, rest are storage, electric, transportation 

and miscellaneous costs. The cost of land and other regulatory duties are not included in this 

cost as it varies significantly for different regions.   

The cost of steam generation was determined based on both direct and indirect costs into 

account. Electricity costs, labor requirements, maintenance costs, and overhead costs were 

taken from the vendor's estimation [20]. The direct cost of materials is obtained from India and 

Pakistan's local markets. The plant usable life claim by the vendor has been subdivided to 

obtain simple depreciation cost of the plant, and this cost has been included in this computation,  

Fig. 4.F HTG capital cost analysis 
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Table 4.7 HTG Plant operational cost analysis 

Utilities Per day $ Per Month $ % Cost 

Electricity Cost  93 2790 13.0% 

Operating and Maintenance 
   

Manpower Cost (Plant Manager 1, Admin 1, 

Maintenance 1, Operator 6, Watchman 1) 

150 4500 21.0% 

Maintenance 90 2700 12.6% 

Overhead Cost 50 1500 7.0% 

Poultry litter price (10 × 2 tons) 200 6000 28.0% 

Handling transportation cost  100 3000 14.0% 

Depreciation Cost 
   

Plant depreciation/day (10 yrs.)  32 960 4.5% 

Cost based on 20 tons biomass per day 

treatment 

715 21450 
 

which is equal to 715 $ for 20 tons of poultry waste conversion. Raw material, transportation 

and manpower have the major monthly operational costs of this HTG plant which is around 

63% as per Table 4.7. 

Steam generation cost calculation methodology proposed by the United States 

Department of Energy has been used to calculate the cost of steam. Heat steam cost is 

determined by the factors, including the per unit price of fuel (natural gas, coal, distilled oil), 

fuel energy content, and percentage combustion efficiency, which is being calculated using 

boilers with feedwater economizers or air preheaters and considering, 3% oxygen in the flue 

gas. This is summarized in Eq. 4.9 and 4.10 [243] while the prices of natural gas, coal and 

distilled fuel have been taken from the international market [244]. These values have been used 

to calculate the steam cost per 1000 pounds. 
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The cost of steam for coal, natural gas, and distillate oil has been calculated at both 100% 

and real-time basis efficiency which is assumed 60% of the calculated output. In Fig. 4.G, the 

cost of steam is shown as $/1000 lbs. In both 100% and real-time basis efficiency, poultry litter-

based HTG has the lowest cost when comparing with other energy sources such as natural gas, 

coal, and distillate fuel. PL HTG process has 25%, 54%, and 79% lower cost of steam as 

compared with natural gas, coal, and distilled oil at 100% efficiency, respectively. While PL 

based HTG process has the 10%, 42%, and 74% lower cost of steam generation as compared 

with natural gas, coal, and distilled oil at real time basis efficiency, respectively [22]. The 

natural gas process is quite economical as compared with coal and distilled oil, but it is still 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐩𝐩𝐩𝐩𝐩𝐩 𝐥𝐥𝐥𝐥𝐥𝐥 (𝑺𝑺𝒄𝒄) = �
𝑷𝑷𝒄𝒄 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

𝑬𝑬𝒄𝒄𝜼𝜼
� (4.9) 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐩𝐩𝐩𝐩𝐩𝐩 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥 = 𝑺𝑺𝒄𝒄 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 (4.10) 

where, Pc fuel price per MMBTU, Ec fuel energy content BTU/sales unit, 𝜼𝜼 fuel combustion 

efficiency 

Fig. 4.G. Steam cost from HTG process 
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10% more costly as compared with PL HTG process, as illustrated in Fig. 4.G. Therefore, PL 

HTG process is more economical as compared with natural gas, coal, and distilled oil. 

4.3.3 HTG environment life cycle assessment (LCA)  

Environmental impacts of the poultry waste by comparing direct land disposal and HTG 

process treatment as per method defined in section 3.3.8. In Figs. 4.H.a, 4.H.b, and 4.H.c, LCA 

results are shown in the form of a midpoint, normalized endpoint, and single score comparison 

between direct land disposal and syngas high energy steam (HTG). The midpoint impact 

category represents the short-term environmental impact, but the endpoint impact category is 

primarily concerned with the long-term environmental impact on human health, ecosystem 

quality, climate change, and resources, all of which are derived from the midpoints [245]. The 

lower the percentage (%) and point (µPt) values in Figs. 4.H, represents the better the 

environmental performance. Therefore, the midpoints impact in Fig. 4.H.a shows that land 

disposal has a higher environmental impact in terms of respiratory organics, respiratory 

inorganics, terrestrial acidification, aquatic ecotoxicity, and aquatic acidification as compared 

to HTG (syngas generation), whereas land disposal results are better in terms of carcinogens, 

ionizing radiation, ozone layer depletion, and aquatic ecotoxicity. But these are short-term 

consequences caused mostly by a few specific characteristics. 

End point category results reveal that land disposal has a negative long-term 

environmental impact, which can have an influence on human health, ecosystem quality, and 

climatic change. HTG has a 66% better performance in terms of human health than direct land 

disposal. Similarly, HTG has a better environmental performance than land disposal in terms 

of ecosystem quality and climate change. Although, some impact points in the HTG midpoints 

impact category, such as mineral extraction, non-renewable energy, aquatic ecotoxicity, and so 

on, have higher results than land disposal, the result of the single score Fig. 4.H.c HTG with 

250 µPt and land disposal with 360 µPt shows that direct land disposal of biomass waste is 
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more environmentally damaging. Based on this environmental analysis, it can be concluded 

that the HTG process for syngas high energy steam generation is more environmentally friendly 

than direct land disposal. The LCA results of this investigation supported the LCA research of 

Raaj R. Bora et al. 2020 [210]. 

4.4 Conclusion: HTG 

In this chapter, the HTG simulation model has been used to analyze the production of syngas, 

particularly hydrogen, methane, carbon dioxide gas, and heat steam. The effect of three 

independent parameters including temperature, pressure, biomass concentration in feed has 

been analyzed using this model. Following the key findings of this case study: 

 
(a) Midpoint based environmental impact (%) 

 

 
(b) Endpoint based impact (%) 

 
(c) Single Score/Method: IMPACT 2002+ 

Fig. 4.H LCA Comparative Results 
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• HTG process has better quality of syngas with highest mole fractions of hydrogen and 

methane at 540 oC temperature, 20-25 MPa pressure, and 20% biomass concentration 

in the feed.  

• LCA results show that HTG method is environmentally friendly as compared to direct 

land disposal especially in term of human health, ecosystem quality and climate change.  

• HTG is also an energy and cost-effective conversion method with a net energy 

efficiency of about 61%, and at least 10% cheaper steam production using natural gas, 

coal, or distillated oil.  

• The economic analysis is restricted to the production of heat steam, which may then be 

used to generate electricity via a steam turbine generator. Similarly, this process is 

economical and energy-efficient, but the life cycle assessment of this process is not 

conducted in this research which will be done in future study. AI-based prediction 

models performance conclude, XGB model is better with coefficient of determinant 

from 0.85-0.95 and lower MSE, MAE, and MAPE for H2, CH4, CO2, and CO [246].  

• Correlation analysis results show that mole fractions of hydrogen, methane, and carbon 

monoxide can be increased by using biomass having more hydrogen and oxygen in 

ultimate analysis.  

• Increasing temperature and biomass resident time in the gasification process can also 

increase the mole fractions of H2 and CH4 in final syngas.  

Therefore, XGB algorithm model can be used to predict the HTG output in actual 

environment without being development of complex simulation models and experimental 

setups because it outperformed rest of the algorithms in the research scope to predict the 

amount of H2, CH4, CO2, and CO in the syngas. Similarly, HDMR model training 

performances (R2) are 0.96, 0.97, 0.99, and 0.99 for H2, NH, HHV, and LHV, respectively 

which indicates the less error in predicting output. Although the HTG-based process is 
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sustainable for high moisture or slurry biomass, severe process parameters such as high 

pressure make the process less reliable and difficult for stakeholders. Furthermore, it is only 

applicable to slurry or high moisture biomass. Therefore, other valorization processes can 

be used to solve the issues outlined in the next section.  
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5 Chapter: Gasification based poly-generation process 

Primary biomass waste gasification process has been integrated with the secondary or 

tertiary processes in this chapter to increase the overall sustainability. Different secondary and 

tertiary processes integrations have been evaluated in this section. This is the advanced 

integration of previous chapter 4 to valorize the biomass waste in a sustainable manner.  

5.1 Gasification based poly-generation process simulation development 

The gasification process simulation model has been developed for biomass waste 

valorization which has been further extended to secondary and tertiary processes are defined 

in below section 5.1.1. 

5.1.1 Process G1: Tri-generation process for gasification to SOFC, and CHP 

Integration of another secondary process with primary process has been developed to 

make process more sustainable. For this, a schematic diagram of the methods used in this 

investigation has been given in Fig. 5.A. In the current tri-generation process, the Aspen Plus 

simulation software was used to create a hybrid process simulation model that includes primary 

gasification process along with secondary solid oxide fuel cell (SOFC). Experimental study 

was used to validate the primary simulation model. To obtain data for AI-based prediction, a 

validated version of the simulation was utilized to run the multi-level factorial design. A total 

of 1372 simulations run data were collected from the validate model using a multi-level 

factorial approach. This simulation data was utilized as an input for the creation of an AI model 

for prediction and optimization as described in section 3.2. Ultimately, the Aspen Plus 

simulation model was used to obtain the energy flow values needed to perform exergy analysis.  

Gasification is the primary process 1, with auxiliary processes such as cyclones for solid 

particle removal, gas separators with filtration, and scrubbers to separate gases for hydrogen 

production as given in Fig. 5.A. In process 2, hydrogen is fed into a SOFC for direct conversion 
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to power via an oxidation reaction, while some excess hydrogen gas is extracted from the 

SOFC's output side which is added back into the hydrogen stream. In SOFC, hydrogen reacts 

with oxygen to release electrons as a result of the redox reaction between H2 and O2, as well as 

the formation of high temperature (800 oC) steam that is passed into the thermos-compressor 

to boost its kinetic energy. In process 3, this high-temperature steam is used in a steam turbine 

to generate electricity. While steam from previous operations is combined with exiting steam 

for heating and power generation by a heat exchanger and thermos-compressor before being 

used in the second steam turbine for power generation. Hence, the valorization of biomass 

waste tri-energy generation has been done through primary gasification, SOFC, and a 

combined heating process. 

Fig. 5.A Gasification, SOFC, and CHP based tri-generation process  
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Aspen Plus is a simulation model for biomass gasification and solid oxide fuel cells. In 

this simulation, certain assumptions have been made, such as the amount of fuel (hydrogen) 

and electron emission due to the oxidation process at SOFC, which is the key behind the 

working concept. Hence, these two factors were considered while determining power (current 

and voltage). Other materials, such as electrolytes, have not been considered. Striugas et al. 

2014 [247] established a primary gasification technique for biomass. Proximal and ultimate 

analysis (Table 5.1) of biomass was used as a non-conventional material in the simulation 

method. The Aspen Plus gasification simulation model was developed using the Gibbs free 

energy minimization approach [236,248,249] which has been summarized in Table 5.2. The 

Peng Robinson equation of state model was chosen for the gasification process because PR is 

a good model if the ultimate product output is light gases such as H2, CO, CO2, H2S, and N2 

[124]. The remaining parameters, such as stoichiometric data, feed rate, temperature, pressure, 

and BMR, were obtained from the literature [247,250,251]. Therefore, a gasification and SOFC 

model based on the data supplied in Tables 5.2 has been built, as shown in Appendix A4 model. 

This simulation procedure began with biomass input in RStoic reactor with determined reaction 

stoichiometry and specified temperature and pressure. The non-conventional biomass stream 

reacted in the RStoic reactor, and SEP1 separated the biomass into a gas mixture and a residue 

solid, which was then processed. Gases from the RStoic reactor are transferred to the RPlug, 

where they are mixed with air in the necessary ratio to carry out combustion and reduction 

activities [70]. Eventually, syngas reforming was performed to make this simulation process 

more realistic and to obtain higher quality syngas with a larger percentage of H2. The final gas 

is a mixture of H2, steam, carbon oxides, and a trace of higher hydrocarbons. Hydrogen gas is 

separated and transferred into the SOFC's anode, while air from the cathode side reacts to 

generate water and power through electron release in the oxidation reaction [92]. 
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Table 5.1 Proximate and ultimate analysis of poultry litter for process G1 

 Proximate analysis a Ultimate analysis a 

Poultry 
Litter 

Moisture VM FC A C H S N Ob 

7.6 63.6 15.3 13.5 43.98 5.16 0.75 4.63 31.98 

a. Dry basis 
b. Based on difference (O%= 100%－H%－C%－N%－S%－Ash%) 
FC = fix carbon, VM = volatile matter, A= Ash, C = Carbon, N = Nitrogen, H = Hydrogen, S = Sulphur, O= 
Oxygen  
 

Table 5.2 Attributes of the Gasification-SOFC based simulation model (Process G1) 

Simulation Model Properties 

•  Method Peng Robinson Equation of State (PR) 
•  Stream Class MIXCINC 
•  Density DCOALIGT 
•  Enthalpy HCOALGEN 
•  Phase system Vapor-liquid 

Simulation Model Operating Parameters 

•  Feed Rate 1000 kg/h 
•  Reactors Pressure (bar) 1-4 
•  Biomass to Air Ratio 0.25-4.00 
•  Reactors Temperature 400-1000 oC 
•  SOFC Pressure (bar) 1-4 
•  SOFC Temperature 400-1000 oC 

5.1.1.1 SOFC output calculations 

The tubular SOFC system is an advanced technology with commercialization potential. 

For output calculations, a similar 120 kW tubular SOFC model manufactured by Siemens 

Power Generation Inc. was employed in this study. The same model has been employed by 

different researchers in different studies [98,252]. While ion transfer is not achievable using 

this simulation model, the current simulation model used the same methods to reproduce the 

SOFC simulation in Aspen Plus. Therefore, the following full reaction (5.3) has occurred at 

anode [92]: 
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The important factor here is the modification of incoming air (O2) for better efficiency 

and proper SOFC use. The molar flow of H2 on the anode side and O2 on the cathode side 

should be regulated according to a 2:1 ratio. If air is utilized on the cathode side, the air molar 

flow must be adjusted proportionately. H2, cons are calculated using the fuel utilization factor 

(Uf), and then nO2, cons are modified using Eq (5.3). 

Voltage calculation has been done by calculating the ideal voltage 𝑉𝑉𝑖𝑖𝑖𝑖  at standard 

potential and pressure of the SOFC. Ideal voltage 𝑉𝑉𝑖𝑖𝑖𝑖 , and actual voltage 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎  has been 

calculated by omitting the wastages from the Nernst voltage (VNr) by incorporating the 

Activation, Ohmic, and Concentration losses at cathode and anode of the SOFC as given in Eq. 

5.4-5.13 while current and current density is being calculated using Eq. 5.14-5.17 [253,254]. 

Ideal voltage is dependent on the Gibbs free energy formation − △ 𝑔𝑔𝑓𝑓  and the Faraday’s 

constant (F) which is equal to 96485 Coulomb/mol. Finally, Eq. 5.13 represent the 𝑉𝑉𝑖𝑖𝑖𝑖 , where 

factor 2 in respective equation represents the number of electrons moles release in the anode 

half of the SOFC. For each water molecule formation as per Eq. 5.3, two electrons have been 

released for each reaction. Therefore, for one mole of water formation according to Eq. 5.2, 

releases two moles of the electrons. VNr is the equilibrium or reversible potential which is closer 

to the actual cell voltage as compared to 𝑉𝑉𝑖𝑖𝑖𝑖. VNr is being calculated using Nernst equation 

which is Eq. 5.12. This equation shows, how 𝑉𝑉𝑖𝑖𝑖𝑖 is dependent on the gas concentration and 

pressure etc. where Ȑ  is the general gas constant 8.314 J/mol. K, and T is the average 

temperature (K) of outlet and inlet stream of SOFC. Po is the reference pressure (1 bar) while 

Pi is the partial pressure of each species which is being computed based on inlet and outlet 

Water gas (reformer):                            CO + H2O → CO2 + H2 (5.1) 

Complete Reaction (SOFC):                 H2 + 0.5O2 → H2O (5.2) 

Molar flow of hydrogen to oxygen:       nH2, cons = 0.5nO2, cons    (5.3) 
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streams at the anode and cathode. The rest of the parameters have been defined in respective 

Eq. 5.14-5.17. SOFC parameters values have been taken from research studies which have been 

used for Siemens Power Generation Inc. SOFC model [92,98,252]. SOFC actual voltage, ideal 

voltage, current, current density etc. calculations have been done using Eq. 5.4 to 5.17. 

Equation-wise calculations have been given in Appendix A5.  
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Voltage Activation Losses (A=Anode, C=Cathode) 

Voltage activation loss in terms of resistance at SOFC anode is being determined by Eq. 5.4.  

[92,98,252] 

1
Ȑ𝐴𝐴,𝐴𝐴

=
2𝐹𝐹𝐾𝐾𝐴𝐴𝐴𝐴

Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜
�

𝑃𝑃𝐻𝐻2

𝑃𝑃𝑜𝑜 � 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝐴𝐴𝐴𝐴

Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜
� 

where Ȑ𝐴𝐴,𝐴𝐴 is the specific resistance of anode, F= Faraday’s constant, 𝐾𝐾𝐴𝐴𝐴𝐴  are the pre-

exponential factor of anode, Po is the reference pressure (1 bar), Pi is the partial pressure of 

each species, 𝐸𝐸𝐴𝐴𝐴𝐴 is the activation energy of anode, Ȑ𝑔𝑔is the general gas constant, 𝑇𝑇𝑜𝑜𝑜𝑜 is the 

operating temperature, and m is slope. 

(5.4) 

Voltage activation resistance due to cathode activation at SOFC is determined by Eq. 5.5.   [92,98,252]  

1
Ȑ𝐴𝐴,𝐶𝐶

=
4𝐹𝐹𝐾𝐾𝐶𝐶𝐶𝐶

Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜
�

𝑃𝑃𝑂𝑂2

𝑃𝑃𝑜𝑜 � 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝐶𝐶𝐶𝐶

Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜
� 

where Ȑ𝐴𝐴,𝐶𝐶  is the specific resistance of cathode, 𝐾𝐾𝐶𝐶𝐶𝐶 are the pre-exponential factor of cathode, 

𝐸𝐸𝐶𝐶𝐶𝐶is the activation energy of cathode. 

(5.5) 

Voltage Ohmic Losses (A=Anode, C=Cathode)   

Voltage Ohmic losses due to anode activation at SOFC is determined by the Eq. 5.6.  [92,98,252]   

𝑉𝑉𝑂𝑂,𝐴𝐴 =  
𝑗𝑗𝜌𝜌𝐴𝐴𝐴𝐴(𝐴𝐴𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚)2

8𝑡𝑡𝐴𝐴
 

where 𝑉𝑉𝑂𝑂,𝐴𝐴 is the ohmic loss of anode, j is current density, 𝜌𝜌𝐴𝐴𝑁𝑁 is the anode resistance, A 

ohmic loss, 𝐷𝐷𝑚𝑚𝑚𝑚 is cell average diameter (m),  𝑡𝑡𝐴𝐴 anode thickness (m). 

(5.6) 

Voltage Ohmic losses due to cathode activation at SOFC are determined by the Eq. 5.7.  [92,98,252]  

𝑉𝑉𝑂𝑂,𝐶𝐶 =  
𝑗𝑗𝜌𝜌𝐶𝐶𝐶𝐶(𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚)2𝐴𝐴[𝐴𝐴 + 2(1 − 𝐴𝐴 − 𝐵𝐵) 

8𝑡𝑡𝐶𝐶
 

(5.7) 
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where 𝑉𝑉𝑂𝑂,𝐶𝐶 is the ohmic loss of cathode, j is current density, 𝜌𝜌CA is the cathode resistance, A 

and B ohmic loss, 𝐷𝐷𝑚𝑚𝑚𝑚 is cell average diameter (m),  𝑡𝑡𝐶𝐶 cathode thickness (m).  

Voltage interconnection Ohmic losses has been determined by Eq. 5.8 [92,98,252] which is being 

used to calculate the actual voltage.  

𝑉𝑉𝑂𝑂,𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑗𝑗𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼(𝜋𝜋𝜋𝜋𝑚𝑚𝑚𝑚)

𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼
 

where 𝑉𝑉𝑂𝑂,𝐼𝐼𝐼𝐼𝐼𝐼  is the ohmic loss of interconnection, j is current density, 𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼  is the 

interconnection resistance, 𝐷𝐷𝑚𝑚𝑚𝑚 is cell average diameter (m),  𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼 interconnection thickness 

(m), 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼is the width of Int. 

(5.8) 

Voltage Ohmic loss of electrolyte is determined by Eq. 5.9 [19, 32, 44] 

𝑉𝑉𝑂𝑂,𝐸𝐸 =  𝑗𝑗𝜌𝜌𝐸𝐸𝑡𝑡𝐸𝐸 

where 𝑉𝑉𝑂𝑂,𝐸𝐸 is the ohmic loss of electrolyte, j is current density, 𝜌𝜌𝐸𝐸 is the electrolyte resistance, 

𝑡𝑡𝐸𝐸 electrolyte thickness (m). 

(5.9) 

Voltage Concentration Losses (A=Anode, C=Cathode) 

Voltage concentration losses at anode is determined by Eq. 5.10 [19, 32, 44] 

𝑉𝑉𝐶𝐶,𝐴𝐴 =  
Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜 

2𝐹𝐹
𝑙𝑙𝑙𝑙 �

1 − (Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜/2𝐹𝐹)(𝑡𝑡𝐴𝐴/𝐷𝐷𝐴𝐴,𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦𝐻𝐻2
0 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )𝐽𝐽

1 + (Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜/2𝐹𝐹)(𝑡𝑡𝐴𝐴/𝐷𝐷𝐴𝐴,𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦𝐻𝐻2𝑂𝑂
0 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )𝐽𝐽

� 

where Ȑ𝑔𝑔is the general gas constant, F= Faraday’s constant, PSOFC is the pressure in SOFC, 

𝑇𝑇𝑜𝑜𝑜𝑜  is the operating temperature, 𝐷𝐷𝐴𝐴,𝑒𝑒𝑒𝑒𝑒𝑒  is the diffusion co-efficient of anode, 𝑡𝑡𝐴𝐴 is anode 

thickness, 𝑦𝑦𝐻𝐻2
0   is average H2 molar fractions, 𝑦𝑦𝐻𝐻2𝑂𝑂

0   is average H2O molar fractions. 

(5.10) 

Voltage concentration losses at cathode is determined by Eq. 5.11  [92,98,252] 
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𝑉𝑉𝐶𝐶,𝐶𝐶

=
Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜 

4𝐹𝐹
𝑙𝑙𝑙𝑙 �

(𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝛿𝛿02

� ) − [(𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝛿𝛿02

� ) − 𝑦𝑦𝐻𝐻2
0 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ]𝑒𝑒𝑒𝑒𝑒𝑒[(Ȑ𝑔𝑔𝑇𝑇𝑜𝑜𝑜𝑜/4𝐹𝐹)(𝛿𝛿02𝑡𝑡𝐶𝐶/𝐷𝐷𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )

𝑦𝑦𝑂𝑂2
0 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 

where Ȑ𝑔𝑔is the general gas constant, F= Faraday’s constant, PSOFC is the pressure in SOFC, 

𝑇𝑇𝑜𝑜𝑜𝑜 is the operating temperature, 𝐷𝐷𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒  is the diffusion co-efficient of cathode, 𝑡𝑡𝐶𝐶is cathode 

thickness, 𝑦𝑦𝐻𝐻2
0   is average H2 molar fractions, 𝛿𝛿02 is oxygen density. 

(5.11) 

Nernst voltage is determined by Eq. 5.12 [19, 32, 44] by including the ideal voltage  

Nernst voltage 𝑉𝑉𝑁𝑁𝑁𝑁 =  𝑉𝑉𝑖𝑖𝑖𝑖 + Ȑ𝑇𝑇
2𝐹𝐹

𝑙𝑙𝑙𝑙
𝑃𝑃𝐻𝐻2𝑂𝑂𝑃𝑃𝑂𝑂2

0.5

𝑃𝑃𝐻𝐻2𝑂𝑂
 

where Ȑ is the general gas constant, F= Faraday’s constant, 𝑉𝑉𝑖𝑖𝑖𝑖 is ideal voltage, 𝑃𝑃𝐻𝐻2𝑂𝑂is the 

pressure of H2O, 𝑃𝑃𝑂𝑂2 is the partial pressure of oxygen. 

(5.12) 

Ideal voltage of SOFC is determined by Eq. 5.13 which is primarily based on the Gibbs free energy 

formation of the used fuel in SOFC  [92,98,252] 

Ideal voltage 𝑉𝑉𝑖𝑖𝑖𝑖 =  −△𝑔𝑔𝑓𝑓 
2𝐹𝐹

 

where − △ 𝑔𝑔𝑓𝑓  Gibbs free energy formation, F= Faraday’s constant. 

(5.13) 

Current generated by the SOFC is mainly dependent on the concentration of the fuel (H2 gas) which 

is calculated by Eq. 5.14. [92,98,252] 

Current generated by SOFC (𝐼𝐼) =  2𝐹𝐹(𝐻𝐻2,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 1000
3600

) 

where I is the current, F= Faraday’s constant, and 𝐻𝐻2,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is hydrogen concentration. 

(5.14) 

SOFC current density of the SOFC is dependent on the current produced per unit active areas of 

SOFC which can be determined by Eq. 5.15  [92,98,252] 

Current Density by SOFC (𝐽𝐽) =  𝐼𝐼 
𝐴𝐴
 

where current generated by SOFC (𝐼𝐼) and A is the SOFC active area. 

(5.15) 
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5.1.1.2 Process G1 validation: Gasification to SOFC, and CHP 

The root means square error with experimental study [247] was calculated to validate 

the basic gasification simulation model as procedure defined in section 3.3.1. Figure 5.B shows 

a bar graph comparing mole fractions and RMSE. For H2, CO2, CO, CH4, and N2, the RMSE 

of the gasification simulation result is 1.56%. Whereas the SOFC's current density (J) and 

actual voltage (Vact) are compared with previous research [98,255], which is also shown in bar 

graphs in Fig. 5.B. The present gasification and SOFC simulation findings differ slightly from 

Actual voltage generated by the SOFC is determined by the ohmic, activation, and concentration 

losses subtraction from the Nernst voltage using Eq. 5.16.  [92,98,252]    

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑉𝑉𝑁𝑁𝑁𝑁 − (𝑉𝑉𝑜𝑜 + 𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑐𝑐) 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎actual voltage of the SOFC, 𝑉𝑉𝑜𝑜ohmic voltage lose, 𝑉𝑉𝑜𝑜activation voltage losses, and 𝑉𝑉𝑐𝑐 

concentrate voltage losses. 

(5.16) 

The direct current power of the SOFC is the product of actual voltage and current generated by SOFC 

which is determined by Eq. 5.17. [92,98,252] 

  

𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐼𝐼 

DCP represents Direct Current Power, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 is actual voltage of the SOFC, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼 is current 

generated by SOFC. 

(5.17) 

Fig. 5.B Validation of process G1 model  
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the reference studies; possible causes for this difference include feedstock kinds and new 

process usage for the gasification and SOFC. 

5.1.2 Process G2: Tri- generation through gasification, DME, and CHP 

A schematic representation of the tri-generation process for PL valorization through 

gasification to DME and CHP is illustrated in Fig. 5.C based on the work of Iaquaniello et al. 

(2017) and Salman et al. (2018) [93,94]. Primary process was the gasification of PL, starting 

with the pre-drying of biomass. In the pre-drying process, it was assumed that the moisture 

content (MC) was completely removed from the biomass via evaporation. This high-energy 

MC was utilised in the steam reforming of syngas. The dried PL was transferred into the main 

gasifier, where the gasification of the PL was performed in the presence of a gasifying agent 

(air) with an equivalence ratio of ~0.25–0.30 (Ramzan et al., 2011; Striugas et al., 2014) at high 

temperature (600–800 °C). In the gasifiers, PL was converted to syngas and a small amount of 

ash [257]. The ash particles were separated upon application of a cyclone and the refined syngas 

passed through the filters, which removed other unwanted elements. Finally, the refined syngas 

was mixed with steam for the reforming process, which improves the quality of syngas by 

converting CH4 into H2 and CO. The temperature of the reformed syngas (800 °C) was reduced 

to 220 °C using a heat exchanger (HXC1) prior to further reaction in the continuous stirrer 

reactor (RSCTR1), which transfers heat into high-temperature steam to run the turbine for 

power generation. Syngas was converted into methanol along with fractions of residual syngas. 

The temperature of the reactant mixture in the continuous stirrer (RSCTR1) was further 

reduced using a heat exchanger (HXC2) for the separation of the liquid and gas phases. 

Methanol was recovered in the liquid phase and dehydrated to obtain DME in RSCTR2 in 

secondary process. Both DME and methanol were separated, and the remaining gas phase was 

sent back to the cyclone, where it was further recovered to obtain a high yield of DME and 

methanol. The thermal energy recovered by reducing the syngas temperature from 800 to 220 



142 
 

°C and RSCTR2 was used to generate electricity through a steam turbine generator in tertiary 

process. A detailed description of this process is given in below. 

The PL valorization process for gasification and DME production was simulated using 

Aspen Plus. This was a reaction kinetics and equilibrium-based simulation process, which can 

be divided into three different processes. The first process was the gasification of PL biomass 

to produce syngas, which can be further reformed to produce methanol in the second process. 

Finally, methanol was dehydrated to obtain DME, which is refined using continuous stirrer 

reactors to obtain high-purity DME in the third process. The following assumptions have been 

considered in this process: 

• It is a steady state process. 

• It is an isothermal system assuming the temperature remains constant in the reactor 

throughout the process [256] 

• No sulphur and nitrogen compounds are produced in syngas. 

Fig. 5.C Gasification to DME production-based tri-generation process 
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• Nitrogen is considered inert. 

• Tar and higher hydrocarbon chain compounds are not considered (Emun et al., 2010). 

The Peng-Robinson (PR) equation of state method was applied to calculate the physical 

properties of the conventional compounds because of its suitability for low molecular weight 

gaseous compounds [124]. The density and enthalpy of the ash and biomass were determined 

using DCOALIGT and HCOALGEN [256]. Biomass is a non-conventional compound and 

therefore, proximate, and ultimate analyses were used as the biomass inputs. This proximate 

and ultimate analysis is given in Table 5.3 based on the work of Striugas et al. (2014) [247]. 

The primary process was developed using PL proximate and ultimate analyses, while mixed 

wood, soft wood, and sewage sludge-sawdust were used for the validation of our simulation 

model, as shown in Fig. 5.D. The DME yield was also validated by comparing it with 

experimental studies, as illustrated in Fig. 5.E. In addition, the description of the Aspen Plus 

blocks is given in Table 5.4 and the Aspen-based simulation model is given in Appendix A6.  

Table 5.3 Proximate and ultimate analysis of different types of biomasses (Process G2) 

Parameters Poultry litter 
(PL) 

Mix wood 
(MW) 

Soft wood 
(SW) 

Sewage sludge-
sawdust (SS) 

Proximate analysis 
(wt.%)    

 

Moisture 7.6 10.6 5.2 4.4 

Volatile 63.6 75.8 79.2 59.5 

Fix carbon 15.3 12.8 15.2 14.3 

Ash 13.5 0.8 0.4 21.8 
Ultimate analysis 

(wt.%)     

Carbon 43.98 48.77 49.2 41.08 

Hydrogen 5.16 5.85 6.2 5.51 

Oxygen 31.98 44.52 44.06 26.90 

Nitrogen 4.63 0.05 0.08 3.77 

Sulphur 0.75 0.01 0.06 0.94 
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Detailed descriptions of the Aspen Plus block IDs used for our simulation model of the PL 

gasification, methanol production, and DME production process are given in Table 5.4. This 

simulation model has been developed based on the literature and Aspen Plus software 

guidelines. Rstoic, Rplug, Ryield, and RCSTR reactors were used in the model development 

process, as described in similar studies reported in the literature [256,259]. The reactions 

occurring in the gasifier were split into the pyrolysis zone (PYROLYS), combustion zone 

(COMBUST), gasification zone (REDUCT), and inert char zone (DECOMP), as recommended 

in a study [256]. A schematic representation of a similar integrated downdraft gasifier has been 

proposed in an experimental study, which was used in our process validation process. A 

description of each reactor is given in Table 5.4. Furthermore, different chemical reactions 

were performed in these reactors and the details of the reaction kinetics given in Table 5.5 

[256,259,260]. Finally, DME, methanol, steam, and syngas were separated at different stages, 

as shown in Appendix A6. In this simulation, the net heat stream was also calculated by 

introducing the HEATSRM (mixer block). All heat streams (endothermic and exothermic) 

from the reactors were joined at the HEATSRM mixer block (Appendix A6), which ultimately 

calculated the net heat stream. The positive value of this HEATSRM block indicates that the 

overall heat energy was being released (exothermic) from the process. This heat energy can be 

used for power generation using a turbine and generator set-up. The whole process has been 

validated using the application of different experimental studies, as described in section 5.1.2.1. 

Table 5.4 Description of the Aspen Plus blocks for process G2 (Appendix A6) 

Aspen ID Model ID Description 

Rstoic DRIER Drying PL biomass at 100 °C for the gasification process. 

Sep H2OSP1 Separation of the moisture (H2O) from PL biomass. 

Rstoic PYROLYS Dis-integration of the PL into gases and biochar (1 bar, 600–800 °C). 
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Ssplit SEP2 
Separation of the solid particles (biochar) and gases received from 

PYROLYS. 

Ryield DECOMP Conversion of biochar into gases at 1 bar and 600–800 °C. 

Mixer MIXER 
Mixing the gases from SEP2 and SEP3 along with gasifying agent (air) 

(0.25–0.3 ER). 

Rplug COMBUST Gasification in the presence of the gasifying agent (1 bar, 600–800 °C). 

Rplug REDUCT 
Reduction of the gases to improve the H2 content in syngas (1 bar, 600–800 

°C). 

Mixer MIXER2 Mixing the syngas with steam generated from the drying process. 

Rplug CONV 
Steam reforming of syngas to convert CH4 into CO and H2 (1 bar, 600–800 

°C). 

Compr COMP Compression of syngas to increase the pressure. 

RCSTR RSTR1 
CO2 conversion into CO for methanol preparation at 600–800 °C in the 

continuous stirrer reactor. 

Heater COOL1 Reduce the temperature to 50 °C for liquid gas separation. 

Flash1 FLASH1 
Separation of the liquid and other gases for further reaction to produce DME 

and methanol. 

Heater HEAT2 Increase the temperature of the gases to 220 °C for reaction at RSTR2.  

RCSTR RSTR2 Conversion of H2 and CO to methanol and DME at 220 °C. 

Heater COOL2 Decrease the temperature to 50 °C for liquid and gases separation.  

Flash2 FLASH2 Separation of the liquid (methanol) and gases (DME, trace syngas). 

Sep SEP5 Column separator for DME and separation of the remaining gases. 

Sep SEP4 Methanol separation from H2O. 

Mixer HEATSTRM 
Calculation of the net heat stream from all the blocks in the simulation 

model. 
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Table 5.5 Reaction kinetics of process G2 

Reaction Rate 
constant (K) n 

Activation 
energy 

(cal/mol) 

Reaction 
number Block ID 

1.25C + O2 →0.5 CO + 0.75CO2 3.7 × 1010 1 35826.9 R1 

COMBUST 
CO + 0.5O2 →CO2 1.78 × 1010 0 42992.2 R2 

CH4 + 0.5O2 → CO + 2H2 1.58 × 1012 0 48246.9 R3 

H2 + 0.5O2 → H2O 1.08 × 107 0 2779.54 R4 

C + O2 → CO2 1.78 × 1010 0 42992.2 R5 

REDUCT 
C + H2O →H2 + CO 8 × 10–3 0 11918.4 R6 

CH4 + H2O →CO + 3H2 3 × 1011
 0 29855.7 R7 

C + H2O →CO + H2 0.008 0 11918.4 R8 

1.25C + O2 → 0.5CO + 0.75CO2 3.7 × 1010 1 35826.8 R9 

CONV 
CO + 0.5O2 → CO2 1.78 × 1010 0 42992.3 R10 

CH4 + 0.5O2→ CO + 2H2 1.58 × 1012 0 48246.9 R11 

H2 + 0.5O2→ H2O 1.08 × 107 0 2579.54 R12 

Equilibrium basis A B C D  

H2 + CO2→ CO + H2O 13.148 –5639.5 –1.077 0.000544 RSTR1 

2H2 + CO→ CH3OH 12.343 9143.6 –7.492 0.004076 
RSTR2 

2 CH3OH → DME + H2O –2.27 2609.5 0.00823 –8.2 × 10–6 

 

5.1.2.1 Process G2 validation: Gasification, DME, and CHP 

The simulation model for the PL gasification process was developed based on the 

descriptive details presented in Section 5.1.2. This model was validated by comparing it with 

an experimental study prior to further analysis. The process validation was performed in two 

different ways, including validation of the gasification process using the application of four 

different types of biomasses and DME yield. The results of the gasification process and related 
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experimental studies are shown in Fig. 5.D [247]. The molar fractions of syngas, including H2, 

CH4, CO, CO2, and N2, were compared. This model was validated using the experimental 

results obtained for four different types of biomasses, including PL, SW, MW, and SS. 

 The results of the model validation process (see Fig. 5.D) show that there was no 

significant difference between the simulation results and those determined in the experimental 

Fig. 5.D. Model validation using syngas composition for process G2 
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Fig. 5.E. Model validation using the DME yield (%) for process G2 
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studies for the four types of biomasses (PL, SW, MW, and SS) studied. In particular, the molar 

fraction of H2 was within ±0.02 (2%) for PL, SW, MW, and SS. The molar fractions of CH4, 

CO, CO2, and N2 were within ±2%. To validate the model of the secondary process (DME 

production), the biomass to DME yield (%) was utilised. Different types of biomasses, 

including corncob, pine saw dust (PSD), and eucalyptus saw dust (ESD), based on three 

different experimental studies were included to estimate the output of DME, as shown in Fig. 

5.E [178,261,262]. The absolute error obtained for the biomass to DME yield (%) was within 

1–3% (Fig. 5.E). Therefore, the primary gasification and secondary syngas to DME process 

have a reliable result using seven different types of biomasses because the absolute errors were 

<3%, which shows the robustness of the developed process. This validated model was further 

utilised in the optimization and sustainability evaluation based on the methodology described 

in chapter 3. 

5.1.3 Process G3: Co-gasification for blue, and green hydrogen production 

The initial phase of the study involved the gasification of both biomass and plastic waste, 

with steam serving as the gasifying agent. Steam was selected as a gasifying agent due to the 

synergistic effect of steam in production of H2 [263,264]. Subsequently, the thermal energy 

generated during the gasification process was recovered by converting it into steam, which, in 

turn, was utilized for the generation of electric power. This generated electric power was 

employed to meet the operational requirements of the system, and any surplus energy was 

directed towards the production of green hydrogen through electrolysis process by application 

of alkaline electrolysis cell (AEC). In the final step, the gases comprising H2, CH4, and CO2 

were separated from the syngas. To facilitate these processes, a simulation model for co-

gasification was developed using Aspen Plus. Fig. 5.F illustrates the process flow diagram of 

the simulation model, while the actual simulation figure can be found in Appendix A2 and A3. 



149 
 

The current simulation process is divided into four distinct stages. It begins with feedstock pre-

treatment, encompassing feedstock mixing and drying. Subsequently, the pre-treated feedstock 

is transferred to the gasifier, where gasification occurs in the presence of steam acting as a 

gasifying agent. The second section focuses on the purification and recovery of heat energy 

from the produced syngas. In this phase, the syngas is passed through a cyclone to separate tar 

particles, and steam reforming of this refined syngas is done to increase the hydrogen fraction 

while converting CO into CO2. The water-gas shift reaction is also carried out to facilitate the 

conversion of CO into CO2, which will be recovered in later stages. Subsequently, the high-

temperature reformed syngas is directed through a heat exchanger, where water is pumped to 

recover heat from the syngas. This results in the transfer of heat from the syngas to the water, 

leading to the production of high-temperature steam, which is then utilized for electricity 

generation through a steam turbine. In the third stage, any excess electricity generated in this 

process is used to produce green hydrogen through water electrolysis using AEC. Finally, in 

the fourth stage, CO2, CH4, and H2 are recovered through a series of column separators based 

on liquefaction conditions.  

The process details are outlined in below, along with the following assumptions: 

• It’s a steady state simulation. 

• No heat or pressure losses occurred during the simulation process, maintaining a closed 

system [149,265]. 
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• Ash is considered inert. 

• Tar, composed of carbon, has been eliminated and plays no role downstream. Nitrogen 

is considered an inert. 

• Feedstock decomposition produces syngas with H2, CO, CO2, and CH4 as a main 

component [150,266]. 

The simulation of co-gasification involving lignocellulose biomass and plastic waste was 

developed using Aspen Plus. However, the software lacks the inclusion of non-conventional 

(NC) compounds like biomass. To address this limitation, these compounds were defined using 

the proximate and ultimate analyses of the feedstock. The enthalpy and density of the NC 

compounds were determined using HCOALGEN and DCOALIGT setups as specified in the 

Fig. 5.F. Co-gasification and AEC based green hydrogen production process 



151 
 

material properties. The model was developed based on the principles of Gibbs free energy 

minimization and reaction kinetics [149]. For handling the complex gas-liquid equilibrium and 

small molecular weight compounds, the Peng-Robinson equation of state with the Boston 

Mathias function was applied [124,150]. This equation of state has been employed in similar 

research by various researchers. A detailed illustration of the process simulation can be found 

in Fig. 5.G. The simulation model utilized proximate and ultimate analyses for the feedstock, 

which consists of wood and high-density polyethylene (HDPE). The details are provided in 

Table 5.6, sourced from an experimental study [267,268]. 

Table 5.6 Proximate and ultimate analysis of feedstock for process G3 

Proximate analysis  

 Biomass Waste Plastic Waste 

Moisture 8% 0% 

Volatile matter 17.7% 0.3% 

Fixed carbon 73.7% 99.7% 

Ash 0.6% 0% 

Ultimate analysis 

 Biomass Waste Plastic Waste 

Carbon 50.6% 85.71% 

Hydrogen 6.5% 14.29% 

Nitrogen 0.2% 0% 

Oxygen 42% 0% 

Fig. 5.G serves as a technical representation of the simulation model, which was 

developed based on experimental and simulation studies [266,268,269]. These experimental 

and simulation-based studies have been used to develop the process and validate the model's 

integrity [266,268]. The feedstock consists of a 1:1 mixture of wood and HDPE, with a feed 

rate of 20,000 kg/h, introduced into the process at 30 °C and 1 bar pressure. The 

characterization of the non-conventional (NC) feed was determined through proximate and 

ultimate analyses, as given in Table 5.6. The initial step involves the pre-treatment of this 
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feedstock through drying at 100°C, as indicated by the stoichiometric reaction provided in 

Fig. 5.G. Process flow of simulation model 
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Table 5.7 [266,270,271]. Subsequently, the dried materials are mixed to form a homogeneous 

mixture which undergoes a gasification process in the presence of steam as the gasifying agent, 

with a feed rate of 4,000 kg/h, operating at 900°C and 1 bar pressure. During the gasification 

process, a significant amount of CH4 and CO is generated, which is further reformed through 

steam methane and water gas reforming reactions outlined in Table 5.7. The resulting reformed 

syngas is produced at a high temperature of around 900°C. To facilitate the separation of the 

desired gases from the syngas, it is necessary to reduce the temperature. To achieve this, 

thermal energy is recovered from the reformed syngas using a heat exchanger, with water 

serving as the heat transfer medium at a rate of 10,000 kg/h and 20 bars. This process 

effectively lowers the syngas temperature to below 100°C which ultimately assists in the 

separation of required gases from syngas. 

The next phase involves the separation of the primary gases from syngas starting from 

moisture or liquid removal through a flash separator before proceeding with the further 

liquefaction of H2, CH4, and CO2. Simultaneously, the steam generated through heat recovery 

from syngas is utilized for electric power generation through a steam turbine. Any excess 

electricity, beyond process requirements is employed to produce green hydrogen through an 

AEC. For CO2 recovery from syngas, temperature is gradually reduced through a series of 

coolers and compressors. Separator columns are utilized to recover various gas components. 

Starting with the recovery of CO2 in separator 1 (SEP1) at -63°C and 45 bars using cooler and 

compressor 1-2, the remaining gas undergoes further temperature reduction through cooler and 

compressor 3. The temperature and pressure of the gas have been reduced to -158°C and 5 bars, 

respectively. Resultantly, CH4 is being recovered in separator 2 (SEP2), while the remaining 

gas, primarily composed of H2, is recovered in separator 3 (SEP3) with the help of cooler and 

compressor 4. These reclaimed gases can be stored in cryogenic liquid tanks through the 

application of a compressor. For AEC, there is no standardized module available in the Aspen 
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Plus library. Therefore, literature-based data has been used to develop an AEC model stack 

through application of RSTOIC which has been given in Appendix A3. The potential of electric 

power to H2 production potential calculated through electrochemical analysis given in section 

5.1.3.1. 

5.1.3.1 Alkaline electrolysis cell (AEC) calculations 

The AEC serves as an important for the generation of H2 and O2 through electrolysis of 

water. This process occurs in the presence of a concentrated alkaline electrolyte solution, 

commonly potassium hydroxide (KOH) or sodium hydroxide (NaOH). The AEC primarily 

consists of two electrodes: a cathode and an anode, both immersed in the alkaline electrolyte 

solution. When electricity is supplied to AEC, a redox reaction occurs at the anode, leading to 

the oxidation of H2O and the release of O2 and electrons. While reduction occurs at cathode, 

resulting in the production of H2. If the electricity used to power the AEC is sourced from 

renewable resources, the resultant hydrogen is considered as green hydrogen [271,272]. 

In this study, the electricity utilized in the AEC derives from the thermal energy recovery 

process. Resultantly, the H2 produced is considered as "green hydrogen". Aspen Plus 

simulation of the AEC has been developed given in section 5.1.3. Furthermore, the hydrogen 

production potential from the AEC was calculated using the electrochemical model as given in 

Eq. 5.18-5.25 taken from literature. [271,273]. The fundamental concept underlying the 

electrochemical model involves the chemical decomposition of water molecules through the 

application of electricity. To achieve this, AEC requires electrical energy input, which 

corresponds to the Gibbs energy (⍙𝐺𝐺) of 237 kJ/mol for water [271]. Eq. 5.18-5.21 specifically 

represents the calculation of electric energy in terms of the voltage required to disintegrate a 

water molecule into H2 and O2. 
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𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 =
⍙𝐺𝐺
𝑧𝑧𝑧𝑧

 

where 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟  is reversible cell voltage, ⍙𝐺𝐺  is Gibbs energy of water, 𝐹𝐹  is Faraday 

constant (96,485 C/mol), 𝑧𝑧 is the no. of electron per reaction which is 2.  

(5.18) 

𝑉𝑉𝑡𝑡𝑡𝑡 =
⍙𝐻𝐻
𝑧𝑧𝑧𝑧

 

where 𝑉𝑉𝑡𝑡𝑡𝑡  is Thermoneutral cell voltage, ⍙𝐻𝐻  is Enthalpy change of water, 𝐹𝐹  is 

Faraday constant (96,485 C/mol), 𝑧𝑧 is the no. of electron per reaction which is 2. 

(5.19) 

𝑉𝑉= 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟+ 𝑟𝑟
𝐴𝐴

 I + s log �𝑡𝑡
𝐴𝐴

 𝐼𝐼 + 1� 

where 𝑉𝑉 is voltage, 𝑟𝑟 is the ohmic resistance parameter, 𝐴𝐴 is the area of electrodes 

(m2), 𝐼𝐼 is current while s is the coefficient for overvoltage on electrodes 

(5.20) 

𝑉𝑉= 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟+ �𝑟𝑟1+𝑟𝑟2𝑇𝑇
𝐴𝐴

 𝐼𝐼�+ s log �
𝑡𝑡1+𝑡𝑡2

𝑇𝑇� +𝑡𝑡3
𝑇𝑇2�

𝐴𝐴
 𝐼𝐼 + 1� 

where 𝑉𝑉 is voltage, 𝑟𝑟1is the ohmic resistance parameter, 𝑟𝑟2𝑇𝑇 is the ohmic resistance 

parameter with respect to temperature, 𝐴𝐴 is the area of electrodes (m2), 𝐼𝐼 is current, 

s is the coefficient for overvoltage on electrodes, 𝑡𝑡1 is the coefficient of overvoltage 

on electrodes 

(5.21) 

η𝐹𝐹 =
(𝐼𝐼

𝐴𝐴� )2

𝑓𝑓1 + (𝐼𝐼
𝐴𝐴� )2

𝑓𝑓2 

where η𝐹𝐹 is Faraday efficiency while 𝑓𝑓1 and 𝑓𝑓2 are Faraday efficiency constants 

(5.22) 

𝑛𝑛𝐻𝐻2 = η𝐹𝐹
𝑛𝑛𝑐𝑐𝐼𝐼
𝑧𝑧𝑧𝑧

 

where 𝑛𝑛𝐻𝐻2 is H2 production rate, η𝐹𝐹 is Faraday efficiency, 𝑛𝑛𝑐𝑐 is the number. of cells 

in series per stack 

(5.23) 

𝑛𝑛𝐻𝐻2𝑂𝑂 = 𝑛𝑛𝐻𝐻2 = 2𝑛𝑛𝑂𝑂2 (5.24) 
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where 𝑛𝑛𝐻𝐻2𝑂𝑂 is the amount of water, 𝑛𝑛𝐻𝐻2is the amount of hydrogen while 𝑛𝑛𝑂𝑂2is the 

amount of oxygen 

η𝑒𝑒 =
𝑉𝑉𝑡𝑡𝑡𝑡

𝑉𝑉
 

where η𝑒𝑒 is the energy efficiency while 𝑉𝑉𝑡𝑡𝑡𝑡 is Thermoneutral cell voltage (Eq. 5.19) 

(5.25) 

Table 5.7 Stoichiometric reaction in simulation model for process G3 

No. Reaction Type Process 

(i) C+H2O↔CO+H2 (+131 kJ/mol) Water-gas reaction Drying 

(ii) C+2H2↔CH4 (-74.8 kJ/mol) Hydrogasification Gasification 

(iii) C+0.5O2→2CO (-111 kJ/mol) Carbon partial oxidation Gasification 

(iv) C+O2→CO2 (-394 kJ/mol) Carbon oxidation Gasification 

(v) CO+0.5O2→CO2 (-283 kJ/mol) Carbon monoxide oxidation Oxidation 

(vi) CH4+2O2↔CO2+2H2O(-803 kJ/mol) Methane combustion Oxidation 

(vii) CO+H2O↔CO2+H2(-41.2 kJ/mol) Water-gas shift Oxidation 

(viii) C+CO2↔2CO (+172 kJ/mol) Boundard reaction Oxidation 

(ix) CH4+H2O→CO+3H2 (+206 kJ/mol) Steam methane reforming Reforming  

(x) CO+H2O→CO2+H2 Water gas (reformer) Reforming 

(xi) 2OH- →0.5O2+H2O+2e- Anode AEC 

(xii) 2H2O+ 2e-→2OH-+H2 Cathode AEC 

(xiii) H2O → H2+0.5O2 Complete reaction AEC 
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5.1.3.2 Process G3 validation: Co-gasification, blue, and green hydrogen 

Process validation has been done with the experimental and simulation study of similar 

work. Validation results show (Fig. 5.H) the robustness of the current simulation model for co-

gasification of biomass and plastic waste [266,268]. This validation process employed the 

calculation of the RMSE between the mole fractions of gases in the current model and those 

from experimental studies based on section 3.3.1 [274]. The RMSE analysis revealed a mere 

1.51% deviation, indicating strong alignment between our model and experimental findings. 

Furthermore, a detailed comparison was made between the mole fractions of H2, CO, CO2, and 

CH4 in the experimental work and simulation model as shown in Fig. 5.H. The findings 

revealed that there is minimal variation between the mole fractions of the current simulation 

model and those from the experimental studies. For instance, as shown in Fig. 5.H, the mole 

fraction of H2 in the experimental study was 0.57, while it was 0.59 in the current simulation, 

which is close to each other. Similarly, the mole fractions for CO, CO2, and CH4 in the 

experimental study were 0.28, 0.08, and 0.06, respectively which are closely aligned with the 

current simulation values of 0.26, 0.07, and 0.06 for CO, CO2, and CH4, respectively. Overall, 

Fig. 5.H. Process G3 simulation model validation 
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our current simulation model's results exhibit a closer match with the experimental study, 

surpassing the performance of another simulation study [266]. Therefore, this model has been 

utilized for further secondary process of gases liquification and sustainability analysis. 

5.2 Gasification based poly-generation process prediction, and optimization 

Gasification based poly-generation process prediction and optimization has been done 

to improve the process sustainability considering methodology defined in chapter 3. 

5.2.1 Process G1: Gasification to SOFC, and CHP parametric effect on output 

Process parameters primary and secondary processes temperature, biomass to gasifying 

agent ratio, and pressure etc. effect on the process yield has been analyzed in sections 5.2.1.1 

to 5.2.1.5. 

5.2.1.1 Effect of gasification temperature and BMR 

The temperature of the gasification process and the BMR are two essential elements that 

determine or can affect the hydrogen yield and the Gibbs Energy in the modeling process. The 

graphical representations of these behaviors are shown in Fig. 5.I.a and 5.I.b. Increased BMR 

supports higher Gibbs Energy up to 500 oC, but the trend reverses after that. In Fig. 5.I.a, lower 

BMR has higher GE, which could be due to temperature superiority over BMR on GE. In Fig. 

5.I.b, a similar pattern can be seen in the hydrogen mole fractions. Raising BMR decreases 

hydrogen moles and vice versa; this trend has become steady beyond 600 oC. There is no 

increase in hydrogen moles after 600 oC. Therefore, based on simulation data trend in Fig. 5.I, 

BMR inversely relates with GE and H2 moles while there is no significant effect of temperature 

after 600 oC. 
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(a) (b) 

Fig. 5.I Effect of gasification temperature and BMR on Gibbs energy and hydrogen moles 

5.2.1.2 Effect of gasification pressure and temperature  

Pressure is another key aspect that affects or might alter the GE and H2 moles is pressure. 

Fig. 5.J illustrates the pressure and gasification process temperature correlation on GE and H2 

moles. Pressure has an inverse relationship with GE; increasing pressure decreases GE 

regardless of temperature. However, at 500 oC and 1 bar pressure, GE had the highest value, 

which has since been reduced. A similar tendency may be seen for H2 moles, which have a 

maximum value at 500 oC regardless of pressure. Therefore, 500-600 oC and 1 bar are the best 

conditions for the GE and H2 moles.     

5.2.1.3 Effect of SOFC temperature and BMR on current and current density 

Current density is dependent on current (I); both are directly related. Hence, increasing 

current increases current density in SOFC. The influence of BMR and SOFC temperature is 

  
(a) (b) 

Fig. 5.J Effect of gasification temperature and pressure on Gibbs energy and H2 moles 
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depicted in Fig. 5.K. For all temperatures except 850-950 oC, where BMR value 0.25 

suppressed all other BMR, but BMR value 0.5 produced the best results for current and current 

density. Therefore, if the SOFC is operated between 850 and 950 oC, 0.25 BMR produces the 

best output. For the remaining SOFC operational temperatures, 0.5 BMR produces the highest 

current and current density outputs.  

  
(a) (b) 

Fig. 5.K Effect of temperature and BMR on SOFC current and current density 

5.2.1.4 Effect of SOFC parameters on actual voltage and current density 

The influence of pressure on SOFC real voltage and current density was shown in Fig. 

5.L. According to Fig. 5.L.a, increasing SOFC pressure reduces real voltage whereas 

temperature has no influence on pressure. Similarly, Fig. 5.L.b shows that pressure has no 

effect on current density. However, the maximal value of current density is between 850 and 

950 oC. Therefore, (Fig. 5.L) it can be assumed that 1 bar pressure and temperatures ranging 

from 850 to 950 oC have the best actual voltage and current density.   

  
(a) (b) 

Fig. 5.L Effect of temperature and pressure on SOFC actual voltage and current density 
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5.2.1.5 Effect of process parameters on Net-heat 

Net heat is the total amount of energy (kJ/mol) that remains after eliminating the process 

energy use. This is estimated using the Aspen Plus simulation model. To obtain the net heat 

stream, all heat fluxes from various reactors and processes were combined in the HEATSTRM 

block. The NH simulation data was used to create Fig. 5.M. Figures 5.M.a and 5.M.b show the 

effect of gasification process temperature on BMR and pressure. With decreased BMR, NH 

has been raised, but it has essentially no influence on temperature. The maximal NH is between 

0.25 and 0.33 BMR, while pressure has little impact on the NH. Therefore, to make a process 

more energy efficient, BMR should be 0.25-0.33.      

  
(a) (b) 

Fig. 5.M Effect of temperature and pressure on Net Heat 

5.2.2 Process G1: Gasification to SOFC, and CHP prediction model 

To undertake the data analysis based on the Fig. 5.A model, the extreme gradient 

boosting AI method was loaded from the Python programming library. This model was run 

using the simulation dataset.  

5.2.2.1 Process G1: Data collection for model development 

For data collection, an experiment design has been devised. The output at different 

parameters was obtained using a factorial design with multi-levels, which is difficult to acquire 

in such a systematic manner using the Aspen Plus sensitivity analysis method. A total of 1372 

simulations were run using a factorial approach, altering the elements that affect or can affect 
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syngas and SOFC production based on Fig. 5.N correlation analysis. Table 5.8 has the criteria 

that were determined after doing a literature review. For factorial design, four factors were 

selected including gasification process temperature, biomass to air ratio (BMR), SOFC 

pressure, and temperature. Temperature gasification and SOFC both have seven levels, while 

BMR and pressure have seven and four levels, respectively. Hence, a total of 1372 (7747) 

simulation runs were performed. 

To conduct process parametric analysis, Pearson correlation has been drawn based on 

1372 simulation runs results. A matrix format correlation has been drawn between input and 

output variables of the model. Fig. 5.N has the matrix diagram of this correlation results. 

Correlation value closer to the ‘1’, represents strongly direct correlation among the respective 

parameters while value closer to the ‘-1’, represents the strongly inverse correlation [51]. 

Whereas correlation value closer to ‘0’ shows that there is insignificant correlation among the 

Fig. 5.N Pearson Correlation with process G1 parameters 
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respective parameters. Therefore, reactor temperature (TR) has a correlation with only net heat 

(NH) while it has insignificant correlation with other parameters. BMR has strong inverse 

correlation with NH which shows increasing BMR, decreases NH while it has a little  

Table 5.8 Multilevel factorial design for process G1 

GT (oC) BMR (ratio) P (bar) SOFC (oC) Total (1372) 

400 0.25 1 400 7×7×4×1 = 196 

500 0.33 2 500 7×7×4×1 = 196 

600 0.50 3 600 7×7×4×1 = 196 

700 0.75 4 700 7×7×4×1 = 196 

800 1.00  800 7×7×4×1 = 196 

900 1.33  900 7×7×4×1 = 196 

1000 2.0  1000 7×7×4×1 = 196 

correlation with actual voltage and Gibbs Energy. Pressure (P) has no significant correlation 

with dependent variable with the exception of actual voltage and Gibbs Energy, where it 

inversely correlates. H2 has a strong direct correlation with current, current density, actual 

voltage, and Gibbs Energy. GE is responsible for better Va. Hence, correlation results show 

that higher pressure in SOFC contributes to better performance, but it has no effect on primary 

gasification process. Similarly, higher BMR generates more GE but at the cost of lower net 

heat. 
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5.2.2.2 XGB Model Performance Analysis 

The performance of the XGB model was assessed using the R2, MSE, and MAE. For the 

evaluation, section 3.2 was used. Instead of evaluating or calculating with a calculator, built-in 

programming code has been utilized. The performance of the XGB model was evaluated using 

three different types of training and testing datasets. Combinations of 90:10, 80:20, and 70:30 

training and testing data sets were used to achieve the best results for the model in terms of R2, 

MSE, and MAE. Table 5.9 shows the detailed results of these various parameters. The XGB 

algorithm was used to estimate the H2, Current (I), and Current Density (J) for training and 

testing data sets of 90:10, 80:20, and 70:30. According to Table 5.9, XGB predicts better for 

90:10 training-testing datasets due to higher R2 (0.97-0.99), lower MSE, and MAE values when 

compared to 80:20 and 70:30 training-testing datasets. MAE shows the model's correctness 

because it has a greater R2 (near to 1) and a lower MSE. Therefore, XGB has the better R2, 

MSE, and MAE in the prediction of H2, I, and J at 90:10. 

Table 5.9 XGB model results at different parameters 

Model 

Type 

R2  

(90-10) 

R2  

(80-20) 

R2  

(70-30) 

MSE 

(90-10) 

MSE 

(80-20) 

MSE 

(70-30) 

MAE 

(90-10) 

MAE 

(80-20) 

MAE 

(70-30) 
Element 

XGB 0.97-0.99 0.95-0.96 0.94-0.97 <0.01 0.04 0.05 <0.01 0.10 0.11 H2 

XGB 0.97-0.99 0.95-0.96 0.94-0.97 14.99 20.16 25.31 1.56 2.51 2.93 Current (I) 

XGB 0.97-0.99 0.95-0.96 0.94-0.97 0.04 <0.01 <0.01 0.16 <0.01 <0.01 Current Density 
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   The graphical analysis of the XGB model findings is shown in Fig. 5.O. In Fig. 5.O.a 

hydrogen projection based on TR, P, BMR, and TC. The hydrogen experimental test and 

predicted data graph demonstrated that, with a few exceptions, the model is almost able to 

predict the data, with BMR being the most significant factor among all input values that affect 

the hydrogen moles, while P, TR, and TC have no significant effect on the H2 results. Similar 

Fig. 5.O.b, 5.O.d, and 5.O.f, BMR remains a significant factor when compared to TR, P, and 

TC, all of which can influence the output results of current (I) and current density (J). Hence, 

BMR is the most important element in predicting datasets. 

Fig. 5.O XGB model results analysis (90:10) 
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5.2.3 Process G2: Gasification, DME, and CHP; PSO based optimization 

Process optimization was performed by applying PSO with MATLAB and Aspen Plus 

integration using the Component Object Model in the ActiveX Automation Server for which 

the methodology has been defined in Section 3.2.2.2 [275]. A total of 300 iterations of the PSO 

were performed to obtain the optimum DME output. After 150 iterations, the output of DME 

becomes almost stable, as shown in Fig. 5.P. The process parameters are summarised in Table 

5.10. In the gasification process, the optimum operating conditions were determined to be 800 

°C, 1 bar, and an air in-flow of 20000 kg/h with a feed rate of 10000 kg/h of PL. The base 

process produces 1908 kg/h of DME with a net heat of 46422 kJ/s. However, the results of the 

PSO model show that the optimum operating conditions (667 °C, 2 bar, and air in-flow of 

17832 kg/h in the gasifier and 400 °C in RSTR1 to 100 °C in RSTR2 for DME) can help to 

produce more DME as the output. Under these optimum operating conditions, 2426 kg/h of 

DME was produced along with a net heat of 44146 kJ/s, as summarised in Table 5.10. The 

simulation error of the current model was negligible because it is an integration of PSO in 

Aspen Plus, which runs the simulation models at a faster rate to obtain the optimum value 

without any human interference. Therefore, the maximum amount of DME can be produced 

Fig. 5.P. PSO optimization results. 
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by setting the parameters (see Table 5.10) in the process without significantly compromising 

the net heat stream, which is an indicator of an energy-efficient process. 

Table 5.10 Estimated optimum process parameters using PSO 

Parameter Range Normal 
operation*  

Optimum 
solution 

Gasification temperature 400–800 ℃ 800 ℃ 667 ℃ 

Gasification pressure 1–4 bar 1 bar 2.0 bar 

RSTR1 temperature 400–800 ℃ 800 ℃ 400 ℃ 

RSTR2 temperature 100–300 ℃ 220 ℃ 100 ℃ 

Air flow rate 2500–40000 kg/h 20000 kg/h 17832 kg/h 

Flow rate of DME - 1908 kg/h 2426 kg/h 

PL biomass 10000 kg/h - - 

Net heat stream - 46422 kJ/s 44146 kJ/s 

*[256,259,260] 

 

5.2.4 Process G3: Co-gasification, blue, and green hydrogen 

Green hydrogen production relies on renewable energy sources, including a range of 

options such as biochemical, photoelectric, thermal-biological, photo-thermal, thermal, 

electrical, etc. In this process, green hydrogen was produced through the utilization of an 

alkaline electrolysis cell for which some reference values have been taken from different 

studies [271,272]. This process involved the use of excess electricity derived from renewable 

energy sources (waste) to electrolyze water, yielding H2 and O2, as described in section 5.1.3. 
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Electrochemical analysis was employed to assess the potential H2 output based on the 

electricity input, and the final results are summarized in Table 5.11. According to these 

calculations, the current process exhibits the potential to generate approximately 213.5 kg/day 

of H2 using the surplus electricity produced from renewable resources (as described in section 

5.1.3). The energy efficiency of this electrolysis cell is estimated at around 73%. This 

production of green hydrogen significantly contributes to the overall economic viability of the 

process.     

Table 5.11 Green hydrogen production potential 

Variables Value Variables Values 

V (res) 1.230 V 𝑓𝑓2 0.96 

Current density 4000.0 A/m2 Cell number 12.0 

Process temperature 70.0 C Active electrode area 0.10 m2 

𝑟𝑟1 4.4515×10-5ohm m2 H2O conversion 4.604 kmol/h 

𝑟𝑟2 7.0×10-9ohm m2/C Molar mass of H2O 18.015 kg/mol 

S 0.33824 V Fraction conversion of H2O 0.141779706 

𝑡𝑡1 -0.01539 m2/A P(Stack) 5×105 W 

𝑡𝑡2 2.00181 m2C/A 

H2 Production 

1.2789 mol/s 

𝑡𝑡3 15.2418 m2C/A 4.60 kmol/h~9.3 kg/h 

V (Cell) 2.026 V 213.5 kg/day 

Thermoneutral cell volt Vtn 1.482 V Energy Efficiency 73% 

𝑓𝑓1 250 Faraday Efficiency 92% 
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5.3 Gasification based poly-generation process sustainability evaluation 

Gasification based poly-generation process sustainability evaluation in terms of energy, 

exergy, economic, environmental, and safety analysis have been performed in this section.   

5.3.1 Gasification energy analysis 

Energy analysis of the process simulation modeling has been performed to calculate the 

overall process energy efficiency.  

5.3.1.1 Process G2: Gasification, DME, and CHP Energy analysis 

The Sankey diagram was developed based on the process-related energy input values 

from Aspen Plus. Heat, material, steam/water loss, and electricity utilisation have been 

considered in the Sankey diagram for our energy efficiency calculations. The efficiency of the 

steam turbine was set to 35% for power generation [276]. Therefore, the Sankey diagram for 

the base process is shown in Fig. 5.Q considering these aspects and the methodology defined 

in section 3.3.2. According to the results presented in the Sankey diagram, the net energy 

efficiency of the existing gasification process was 45%, which could be increased to 57% using 

the tri-generation process of thermal energy utilisation for power generation along with DME 

Fig. 5.Q. Energy analysis of the base model of process G2 
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and methanol production. In addition, the final products (DME and methanol) of the current 

tri-generation process also have commercial value and can be sold as commercial fuels.  

Energy analysis of the optimized process for DME production from PL was conducted 

by adjusting the process parameters given in Table 5.10. These optimized parameters were set 

in the Aspen simulation model to perform energy analysis under the optimum operating 

conditions. According to the results presented in Fig. 5.R, the energy efficiency of the 

gasification process was reduced to 39%, while the energy efficiency of the DME and methanol 

production process increased to 25%. Finally, the thermal efficiency (heat recovered) of the 

process was also reduced to 28%. Therefore, the energy efficiency of the optimized process 

was 4% lower when compared to the existing base process due to less thermal energy, but the 

DME output was improved from 23 to 25% due to the increased DME production, which was 

the objective of PSO. 

Fig. 5.R. Energy analysis of the optimized model of process G2 



171 
 

5.3.2 Gasification exergy analysis  

Simulation process exergy analysis has been performed to identify the lowest exergy 

efficient component; hence, it can be targeted to improve the overall process exergy efficiency. 

5.3.2.1 Process G1: Gasification to SOFC, and CHP Exergy analysis 

Sankey diagram has been created for exergy efficiency based on section 3.3.3. The 

calculations were performed in kilowatts of energy generated per ton of biomass. Several 

assumptions have been made regarding the power consumption of the reactors. The gasification 

process reactor has a capacity of 10 tons and a power consumption of 50 kW. Similarly, the 

efficiency of SOFCs and turbines has been estimated to be 70% and 65%, respectively 

[277,278]. Exhaust steam with low kinetic energy (KE) has been reused by increasing KE using 

a heat exchanger and compressor. The Aspen Plus simulation model was used to calculate 

material and heat losses (enthalpy). Exergy efficiencies of gasification, SOFC, and tri-

generation through turbines have been estimated and given in Fig. 5.S. The gasification process 

has an overall net exergy efficiency of 63%, which has been enhanced to 69.8% by the use of 

SOFCs. However, if tri-generation through turbines is used, this method has overall 34.6% 

Fig. 5.S Exergy efficiency analysis of process G1 
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efficiency. Therefore, the suggested tri-generation process is more exergy efficient than the 

gasification process. 

5.3.2.2 Process G3: Co-gasification, blue, and green hydrogen exergy analysis 

Exergy analysis of the process was performed to identify the components with the greatest 

exergy destruction which highlighted the potential areas of improvement in terms of exergy. 

The exergy analysis was done based on the methodology outlined in section 3.3.3, and the final 

results are presented in Table 5.12. These results encompass both calculated values and data 

sourced from the Aspen Plus simulation model. The exergy analysis reveals that the gasifier, 

heat exchanger, and steam turbine emerge as the components with the lowest exergy 

efficiencies of 62.2%, 64.2%, and 61.0%, respectively. Therefore, these particular components 

need to be focused to enhance the overall exergy efficiency of the process. This strategic 

improvement effort can ultimately contribute to improving the overall sustainability of the 

entire process.   

Table 5.12 Exergy analysis of process G3 

 
Input Exergy  

(𝑬𝑬𝑬𝑬𝒊𝒊𝒊𝒊) 𝒌𝒌𝒌𝒌 

Output Exergy  
(𝑬𝑬𝑬𝑬𝒐𝒐𝒐𝒐𝒐𝒐) 𝒌𝒌𝒌𝒌 

Exergy 

destruction (𝑬𝑬𝑫𝑫) 

kW 

Efficiency  

(η) 

Drier 23345 19065 4280 81.7% 

Gasifier 26407 16427 9979.5 62.2% 

Compressor 1 44340 44333 7.0 100.0% 

HeatXC 25808 16563 9245 64.2% 

Steam Turbine 35088 21404 13684 61.0% 

AEC 7100 5183 1917 73.0% 

Flash Sep 25808 25228 580 97.8% 

Cooler 1 26025 25228 797 96.9% 

Compressor 2 26025 26020 5.0 100.0% 
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Compressor 3 26536 26020 516 98.1% 

Separator 1 26536 26097 439 98.3% 

Cooler 3 2478 1911 567 77.1% 

Separator 2 2622 2478 144 94.5% 

Cooler 4 1540 1018 522 66.1% 

Separator 3 1687 1540 147 91.3% 

 

5.3.3 Process G3: Exergoeconomic analysis 

Economic co-relation and cost-effectiveness associated with exergy production and 

destruction within the process have been assessed through exergoeconomics analysis. The 

conclusive outcomes of this exergoeconomics analysis, including destruction costs and 

investment costs are given in Process G3 economic analysis in section 5.3.5 which has been 

calculated based on Appendix A7. The results of the exergoeconomics destruction cost analysis 

reveal that the highest destruction cost is due to the AEC, around $6,647.0 per hour, followed 

by the gasifier at approximately $6,561.3 per hour, and the heat exchanger $6,541.9 per hour 

in Table 5.13. Especially, the cost of destruction for the AEC is high, primarily due to the 

substantial investment costs associated with it around 28.6% of the total investment cost (as 

given in section 5.3.5, Table 5.16). Among these costs, $4,852.3 per hour apply to endogenous 

destruction, while the remaining is exogenous destruction. Therefore, the primary factor 

driving the high destruction cost in the AEC is its significant self-associated factors. While the 

cost of destruction for the gasifier, heat exchanger, and steam turbine is higher due to the 

considerable advanced exergy destruction within these components. However, it is significant 

that the exogenous destruction costs for the gasifier, heat exchanger, and steam turbine surpass 

that of the AEC, around $2,479.6, $2,343.4, and $2,538.8 per hour, respectively (Table 5.13). 

Therefore, the investment costs in these alternative components have a substantial impact on 

reducing the destruction costs associated with them.  
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Table 5.13 Exergoeconomics cost destruction analysis for process G3 

 𝒄𝒄𝑭𝑭,𝒌𝒌 
($/h) 

𝑪𝑪𝑫𝑫,𝒌𝒌
𝑬𝑬𝑬𝑬  

($/h) 
𝑪𝑪𝑫𝑫,𝒌𝒌

𝑬𝑬𝑬𝑬  
($/h) 

𝑪𝑪𝑫𝑫,𝒌𝒌
𝒂𝒂𝒂𝒂  

($/h) 
𝑪𝑪𝑫𝑫,𝒌𝒌

𝒖𝒖𝒖𝒖  
($/h) 

𝑪𝑪𝑫𝑫,𝒌𝒌
𝒂𝒂𝒂𝒂,𝑬𝑬𝑬𝑬 

($/h) 
𝑪𝑪𝑫𝑫,𝒌𝒌

𝒂𝒂𝒂𝒂,𝑬𝑬𝑬𝑬 
($/h) 

𝑪𝑪𝑫𝑫,𝒌𝒌
𝒖𝒖𝒖𝒖,𝑬𝑬𝑬𝑬 

($/h) 
𝑪𝑪𝑫𝑫,𝒌𝒌

𝒖𝒖𝒖𝒖,𝑬𝑬𝑬𝑬 
($/h) 

Drier 6513.2 5319.1 1194.1 5861.9 651.3 5315.7 546.2 3.4 647.9 

Gasifier 6561.3 4081.7 2479.6 6233.2 328.1 -2375.3 8608.5 6457.0 -6128.9 

Compressor 1 6508.4 6507.4 1.0 5857.6 650.8 0.0 5857.6 6507.4 -5856.6 

Heat XC 6541.9 4198.4 2343.4 6476.4 65.4 -2492.2 8968.7 6690.7 -6625.2 

Steam Turbine 6509.9 3971.1 2538.8 5858.9 651.0 -844.2 6703.1 4815.3 -4164.3 

AEC 6647.0 4852.3 1794.7 3921.7 2725.3 -1152.9 5074.6 6005.2 -3279.9 

Flash Separate 6507.0 6360.8 146.2 5856.3 650.7 -3.3 5859.5 6364.0 -5713.3 

Cooler 1 6509.9 6310.5 199.4 3905.9 2603.9 -6.0 3911.9 6316.5 -3712.6 

Compressor 2 6512.7 6511.5 1.3 5861.4 651.3 0.0 5861.4 6511.5 -5860.2 

Compressor 3 6512.7 6386.1 126.6 6121.9 390.8 -2.4 6124.4 6388.5 -5997.7 

Separator 1 6535.0 6426.9 108.1 5881.5 653.5 -1.8 5883.3 6428.7 -5775.2 

Cooler 3 6509.9 5020.3 1489.5 6184.4 325.5 -307.5 6491.9 5327.8 -5002.3 

Separator 2 6535.0 6176.1 358.9 6273.6 261.4 -19.2 6292.8 6195.3 -5933.9 

Cooler 4 6509.9 4303.3 2206.6 6184.4 325.5 -648.2 6832.6 4951.5 -4626.0 

Separator 3 6535.0 5965.6 569.4 6273.6 261.4 -47.6 6321.2 6013.1 -5751.7 

 

In terms of exergoeconomics investment costs, the AEC ranks as the highest, with a 

value of $193.60 per hour, followed by the gasifier at $107.89 per hour in Table 5.14 based on 

Appendix A7. AEC and gasifier both exhibit higher endogenous investment costs, with the 

AEC at $141.33 per hour and the gasifier at $67.11 per hour, compared to the other components. 

Furthermore, the exogenous investment costs for the AEC and gasifier are also higher $52.27 

and $40.77 per hour, respectively. These results show the substantial influence that investments 

in other components can reduce the exergoeconomics advanced investment costs of the AEC 

and gasifier. Therefore, allocating investments to the other components within the valorization 

plant can play a pivotal role in reducing the overall exergoeconomics investment costs for these 
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specific components, ultimately contributing to the enhanced sustainability of the entire 

process. 

Table 5.14 Exergoeconomic advanced investment analysis for process G3 

 𝐼𝐼 
($/h) 

𝐼𝐼𝑘𝑘
𝐸𝐸𝐸𝐸 

($/h) 
𝐼𝐼𝑘𝑘

𝐸𝐸𝐸𝐸 
($/h) 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎 

($/h) 
𝐼𝐼𝑘𝑘

𝑢𝑢𝑢𝑢 
($/h) 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 
($/h) 

𝐼𝐼𝑘𝑘
𝑎𝑎𝑎𝑎,𝐸𝐸𝐸𝐸 
($/h) 

𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 
($/h) 

𝐼𝐼𝑘𝑘
𝑢𝑢𝑢𝑢,𝐸𝐸𝐸𝐸 
($/h) 

Drier 59.89 48.91 10.98 53.90 5.99 48.88 5.02 0.03 5.96 

Gasifier 107.89 67.11 40.77 102.49 5.39 -39.06 141.55 106.17 -100.78 

Compressor 1 55.03 55.02 0.01 49.53 5.50 0.00 49.53 55.02 -49.52 

Heat XC 88.46 56.77 31.69 87.57 0.88 -33.70 121.27 90.47 -89.58 

Steam Turbine 56.46 34.44 22.02 50.81 5.65 -7.32 58.13 41.76 -36.12 

AEC 193.60 141.33 52.27 114.22 79.38 -33.58 147.80 174.91 -95.53 

Flash Separate 53.60 52.40 1.20 48.24 5.36 -0.03 48.27 52.42 -47.06 

Cooler 1 56.46 54.73 1.73 33.87 22.58 -0.05 33.93 54.78 -32.20 

Compressor 2 59.31 59.30 0.01 53.38 5.93 0.00 53.38 59.30 -53.37 

Compressor 3 59.31 58.16 1.15 55.76 3.56 -0.02 55.78 58.18 -54.62 

Separator 1 81.60 80.25 1.35 73.44 8.16 -0.02 73.46 80.27 -72.11 

Cooler 3 56.46 43.54 12.92 53.63 2.82 -2.67 56.30 46.21 -43.38 

Separator 2 81.60 77.12 4.48 78.34 3.26 -0.24 78.58 77.36 -74.09 

Cooler 4 56.46 37.32 19.14 53.63 2.82 -5.62 59.26 42.94 -40.12 

Separator 3 81.60 74.49 7.11 78.34 3.26 -0.59 78.93 75.08 -71.82 

 

5.3.4 Electricity production from thermal energy 

Gasification process thermal energy has been transferred into steam turbine generators to 

estimate the potential electricity generation. The following section has the details of it. 

5.3.4.1 Process G3: Electric power potential analysis 

The syngas generated within the current process contains a substantial amount of thermal 

energy. This energy has been recuperated through a heat exchanger employing water as the 

medium for energy transfer. Consequently, this process yields high-temperature and high-

pressure steam. To assess the potential for steam-to-electricity conversion, the methodology in 
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section 3.3.6 has been applied. The analytical findings, as given in Fig. 5.T, indicate that the 

current process has an electricity generation potential of approximately 1079 kW through the 

recovery of heat from syngas. This is accomplished by employing a turbine with an efficiency 

of 60% and an attached generator with an efficiency of 90%. Most of the recovered thermal 

energy has been wasted in the steam turbine. The electricity production capacity of the plant is 

approximately 579 kWh (as indicated in Table 5.16), leaving an excess power of 500 kW that 

can be harnessed for the production of green hydrogen using an electrolysis cell.    

5.3.5 Gasification process economic analysis 

5.3.5.1 Process G2: Gasification, DME, and CHP economic analysis 

Economic analysis (EA) of the PL to DME process was performed based on the 

methodology presented in Section 3.3.7. The EA results are summarised in Table 5.15 with the 

breakdown given in Appendix A8. A cost-benefit analysis was performed for a pilot plant with 

a 1 t/h biomass valorization capacity with the assumption that the maximum plant working 

time was 23 h/day with a 1-hour breakdown time. According to the results presented in Table 

Fig. 5.T. Steam to electricity potential for process G3 
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5.15, only 2861 USD/d revenue can be generated from the conversion of PL to DME without 

process optimization, and the cost of DME was ~0.54 $/kg. However, 3,683 USD/d revenue 

can be generated from the conversion of PL to DME after process optimization, and the cost 

of DME was ~0.43 $/kg, which is <1.66 $/kg from the direct system synthesis [22], and is also 

market competitive (0.65 $/kg) [23]. In addition, the breakdown of the plant capital cost was 

performed, as shown in Fig. 5.U. It was apparent that the gasifier and electric power generation 

set-up cover almost half of the total capital cost. Similarly, the cost of raw materials and 

manpower accounts for 50% of the total operating costs, as shown in Fig. 5.V. Sensitivity 

analysis of the economic performance of PL in the DME production process was carried out 

by applying the IRR as an economic indicator according to the method presented in Section 

3.3.7. 

According to the results of our sensitivity analysis (see Fig. 5.W), the maximum IRR was 

15.1% at 100% plant efficiency for the base DME production process, whereas it was 26.8% 

for the optimized process. However, it is difficult to achieve 100% plant process efficiency and 

therefore, different efficiency points were selected for our IRR calculations. At 90% plant 

process efficiency (Fig. 5.W), the IRR was ~5% for the base process and 22.6% for the 

optimized process. When the efficiency is <90%, DME production in the base process was not 

feasible until it is subsidized, while the optimized process remains feasible up to an 80% 

process efficiency with an IRR of 3.3%, which is quite low. Therefore, another scenario was 

incorporated for economic analysis, which included a subsidy of $50 per ton basis. The results 

for $50 per ton subsidy on biomass waste valorization were quite encouraging. According to 

these results (Fig. 5.W), the IRR of the subsidized base process was 30.2% at 100% process 

efficiency, which varies from 27.7 to 5.3% when the process efficiency varies from 90 to 50%. 

The IRR of the subsidized optimized process was 35.4% at 100% process efficiency, which 

varies from 33.2 to 17.5% when the process efficiency varies from 90 to 50%. Therefore, the 
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optimized process using PSO was more economically stringent than the base process, while 

the energy efficiency was slightly compromised.  

Table 5.15 Cost-benefit analysis of 23 t/d plant capacity for process G2. 

Cost category Cost ($) 

Capital cost 424400 

Operational cost/day 2385 

Estimated revenue DME (tons) Market value Cost $/t 

DME (base process) ratio 0.1908  4.3884 2861 652 

DME (optimum) ratio 0.2426 5.5798 3638 
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Fig. 5.V. Operational cost ($) of the PL to DME process (process G2) 

0

100

200

300

400

500

600

700

800

Raw Material Labor Overhead Maintenance Plant
Depreciation

Transportation

$/
da

y

Operational Cost ($/d)



179 
 

 

5.3.5.2 Process G3: Co-gasification, blue, and green hydrogen economic analysis 
 

The economic analysis of the process was conducted following the methodology outlined 

in section 3.3.7. The economic analysis utilized data sourced from literature and equipment 

suppliers, summarized in Table 5.16. Specifically, the capital cost estimation is focused on a 

primary plant with a capacity of 20 t/h, and secondary equipment such as 1.5-megawatt steam 

turbine, a generator, and an electrolysis cell with a 500-kWh capacity. Certain assumptions 

were considered during the economic analysis, as described in section 3.3.7. Furthermore, the 

revenue cost of the product (Table 5.18) is estimated based on the average or lowest product 

Fig. 5.W. Process payback period and IRR (process G2) 
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prices due to price fluctuation in different regions as given in Table 5.18. According to 

estimates, the capital cost assessment for the 20 t/h plant was around 1.726 million USD. 

Particularly, the electrolysis cell, column separator, and gasifier collectively accounted for 

more than half of the total investment. The daily operational costs of the plant are summarized 

in Table 5.17. Within these operational costs, the primary cost drivers are the raw materials. 

Developing strategies aimed at minimizing these costs, especially during site selection and 

transportation phases, can significantly contribute to reducing raw material expenses. 

Transportation costs often represent a major portion of raw material expenses. Therefore, 

implementing effective supply chain strategic planning can mitigate the costs incurred in 

acquiring raw materials, ultimately leading to reduced operational cost.  

Considering the capital and operational costs (as summarized in Tables 5.16 and 5.17), the 

IRR was calculated and given in Fig. 5.X. The IRR results indicate that the current process is 

economically viable, achieving an IRR of 37% at a process efficiency of 90%. It should be 

noted that this efficiency threshold may be considered high for processes of a similar nature 

[279]. Therefore, the current process which involves sustainable waste valorization may be 

eligible for subsidies in the form of carbon credits. To explore this possibility, an alternative 

economic scenario was analyzed, assuming a subsidy of 10 $/t for waste valorization. In this 

scenario, as shown in Fig. 5.X, the subsidized process becomes economically feasible at a plant 

efficiency level of 60%, achieving an IRR of 8%. Therefore, the subsidized process presents a 

more economically attractive option for developing this process.        
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Table 5.16 Capital cost of waste valorization plant for process G3 

Item Qty Price/unit Cost (%) Equipment 

($000) 

Power 

(kW) 

Ref. 

Drier 1 32,000 1.9% 32 37 [280] 

Gasifier 1 200000 11.6% 200 40 [281] 

Steam Pump 2 15000 1.7% 30 44 [282] 

Feedstock mixer 2 22500 2.6% 45 180 [283] 

Heat Exchanger 1 132000 7.7% 132 0 [284] 

Flash Separator 1 10000 0.6% 10 10 [285] 

Column Separator 3 108000 18.9% 324 0 [286] 

Air Valve 3 6000 1.0% 18 0 [287] 

Compressor 3 10000 1.7% 30 18.5 [288] 

Water Pump 1 15000 0.9% 15 100 [289] 

Cooler 2 20000 2.3% 40 130 [290] 

Steam Turbine 1 20000 1.2% 20 0 [291] 

Generator (1.5 MW) 1.5 120000 10.5% 180 0 [292] 

Cryogenic liquid tank 5 20000 5.8% 100 0 [293] 

AEC Electrolysis cell 500 1000 28.6% 500 (500) [294] 

Shed Area (m2) 1000 50 2.9% 50 20 [295] 

Grand total  
   

1726 1079.5  

 

Table 5.17 Operational cost per day basis for process G3 

Items QTY Cost ($/day) Cost (%) Ref.  

Biomass ($/day) 240 12000 14.3% [296]  

Plastic Waste ($/day) 240 60000 71.5% [297]  

Labor ($/day) - 4500 5.4% [298]  

Overhead ($/day) 1 2000 2.4% [298]  

Maintenance/Engineering ($/day) 1 4500 5.4% [298]  

Utility (kW) 579.5  Self-sufficient (Table 5.16)  

Water ($/day) 160 400 0.5% [299]  

Plant linear depreciation ($/day) 
 

491 0.6% Table 5.16  

Total (Cost/day) 
 

83,891  
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Table 5.18 Process revenue per day basis for process G3 

Items QTY Market Value ($) Price ($) Ref. 

Hydrogen (Blue)  32.20 ton 64400 ~2000/ton [300] 

Hydrogen (Green) 213.4 kg 1280 ~6/kg [300] 

LPG (Methane)  23.92 ton 4784 ~200/ton [301] 

CO₂ (Liquid) 175 ton 35000 ~200/ton [302] 

Total (Revenue/day)  105464   

 

 

Fig. 5.X. Internal rate of return (IRR) for process G3 at different efficiencies 
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5.3.6 Gasification process environment life cycle assessment 

5.3.6.1 Process G2: Gasification, DME, and CHP Environment LCA 

The LCA results including LCA midpoint, endpoint, and single scores for PL to 

gasification, and PL to DME processes are given in Fig. 5.Y to 5.AA, respectively. A higher 

process score negatively impacts the environment. According to the midpoint results shown in 

Fig. 5.Y, the PL gasification process has better performance in carcinogens, non-carcinogens, 

ozone layer depletion, respiratory organics, and aquatic eutrophication when compared with 

the other three processes. The PL to DME process has lower performance than the gasification 

process in terms of carcinogens, non-carcinogens, non-carcinogens, ozone layer depletion, 

Fig. 5.Y. Midpoint LCA of PL gasification vs. PL gasification to DME (Process G2) 
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respiratory inorganics, and non- renewable energy. However, the endpoint impact analysis 

showed a different result, as presented in Fig. 5.Z. The results determined by the endpoint 

(damage category) approach show that the PL to gasification process has a higher score for 

Fig. 5.AA. LCA single score PL gasification vs. PL gasification to DME (Process G2) 
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climate change. PL to DME production has a higher resource score. Therefore, based on both 

the midpoint and endpoint results, the PL-to-gasification process appears to be more 

environmentally friendly than the DME production process.   

While the comparison of the PL gasification to DME production process with the PL to 

gasification process, the results obtained using the LCA single score approach have been 

determined to obtain the breakdown of the 15 LCA indicators in terms of µPt instead of a 

percentage. According to the single point score presented in Fig. 5. AA, the negative impacts 

of gasification on the environment are mainly caused by ozone layer depletion and respiratory 

inorganics. The PL to DME manufacturing process from syngas has higher single scores 

because of the non-renewable energy utilisation for PL processing. Therefore, if renewable 

energy is generated from the PL gasification-based tri-generation process used in the PL to 

DME process, then this process could be more eco-friendly than the PL gasification process. 
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5.3.7 Gasification process safety analysis 

The total process safety total scores (PSTS) for each thermal technology (HTG, 

gasification, and pyrolysis) have been calculated based on section 3.3.9, and the individual 

score with respect to each parameter has also been determined, as presented in Fig. 5.BB. The 

HTG has a total process safety score of 210.2, followed by pyrolysis (226.4) and gasification 

(228.5). The PSTS of conventional gasification is the highest followed by pyrolysis process, 

while HTG has the lowest score. Lower scores represent safer processes; hence, HTG is the 

safest among these three technologies. When temperature scores are compared between HTG, 

conventional gasification, and pyrolysis, HTG has the lowest individual temperature score 

since its operating temperature lies in 374-400 oC, which is lower than those of the other two 

thermal processes. Therefore, lower operating temperature usually means that the process is 

safer while pressure score of HTG is higher compared with others because the pressure required 

by HTG is 20-25 MPa. Hence, higher pressure means that more hazards will exist in the process, 

resultantly, process safety score of pressure is higher. Heat of reaction for gasification and 

Fig. 5.BB. Process safety total score for HTG, Gasification, and Pyrolysis 
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pyrolysis are higher than that of the HTG as both processes are more exothermic compared 

with HTG, thus gasification and pyrolysis have higher PSTS than HTG which represents that 

these processes have higher level of hazards than HTG. Finally, process inventory in terms of 

yield which has almost equivalent score, consequently all these processes have same level of 

hazards in term of process inventory. Therefore, HTG process has outperformed gasification 

and pyrolysis in temperature and heat of reaction scores despite having higher PSTS due to 

pressure. For all these processes, the process inventory score is nearly equal. Based on these 

findings, it can be concluded that HTG process is safer than gasification and pyrolysis in this 

case. 

5.4 Conclusion: Gasification G1, G2, and G3 Process 

In process G1: Gasification to SOFC, and CHP economic analysis an Aspen Plus 

simulation-based tri-generation approach has been devised for biomass waste valorization. 

Following the key findings of process G1:  

• XGB model predictions of H2, I, J, theR2 value is greater than 0.97, indicating that the 

XGB model has good prediction accuracy.  

• Optimization research reveals that the gasification process at 600 oC, 1 bar pressure, 

0.25-0.33 BMR, and 850-950 oC SOFC temperature produces the best results when 

compared to other parameters.  

• Pressure has no effect on the gasification process; however, it has the inverse result on 

SOFC real voltage and Gibbs Energy.  

• BMR is the most significant factor influencing H2, I, and J among all input parameters, 

followed by SOFC temperature and pressure.  

• Exergy efficiency analysis results demonstrate that this tri-generation method is energy 

efficient, with a 34.6% higher exergy efficiency than gasification process [303]. 
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Therefore, these findings are based on a simulation model with supporting evidence 

from the literature. Similarly, economic analysis of this trigeneration is not performed 

in this chapter because our primary research focus is on prediction and optimization, as 

well as exergy analysis. Based on exergy research, it appears that this tri-generation 

method could be more cost effective than gasification in terms of converting biomass 

waste to energy, but at the cost of a greater plant capital expenditure. 

Process G2: Gasification, DME, and CHP is mainly focused on tri-generation process 

design, optimization, energy, environment, and economic analysis for converting PL to DME. 

Following the key findings of process G2: 

• PSO-based optimization results have a better DME yield from 190.8 kg/t to 242.6 kg/t 

of biomass.  

• The energy efficiency of the tri-generation process is 57%, which is comparatively 

higher (45%) than that of the gasification process. It was 53% for the optimized tri-

generation process and 39% for the gasification process.  

• The PL to DME process is economically feasible and the IRR of the optimized process 

varies from 26.8 to 3.3% when the process efficiency drops from 100 to 70%, whereas 

the base process is not feasible when the process efficiency is <90%.  

• Subsidized optimized process, the IRR varies from 30.2 to 17.5% when the process 

efficiency decreases from 100 to 50%. However, the IRR of the base process varied 

from 30.2 to 5.3% when the process efficiency varied from 100 to 50%.  

• The cost of DME produced by this process ranges from 0.43 to 0.54 $/kg, which is 

market competitive, and the optimized process is more sustainable than the base process 

due to its higher SI score of 0.290.   
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Process G3: An innovative process for the integrated production of blue and green 

hydrogen have been developed through the co-gasification of biomass and plastic waste. 

Sustainability analysis has been conducted which include the economic considerations, energy 

potential, exergy, advanced exergy, and exergoeconomics aspects [304]. Following the key 

findings of process G1: 

• The process demonstrates economic feasibility when operational efficiency is more 

than 90%, yielding an IRR of 37%. For the subsidized process, economic viability is 

maintained within a process efficiency of 100-70%, and IRR of ranging from 49% to 

8%.  

• The process has a potential to generate 1079 kW of electricity from syngas thermal 

energy, with 500 kW of surplus electricity available for use in the electrolysis cell, 

resulting in the production of around 213.5 kg/day of H2.  

• Gasifier, heat exchanger, and steam turbine exhibit higher exergy destruction levels 

compared to other components, with values around 62.2%, 64.2%, and 61.0%, 

respectively.  

• Advanced exergy analysis indicates that the steam turbine and gasifier experience the 

most substantial exergy destruction around 13,684 kW and 9,979.54 kW, respectively. 

The AEC incurs the highest destruction cost $6,647.0 per hour, followed by the gasifier 

at $6,561.3 per hour, and the heat exchanger at $6,541.9 per hour. 

The gasification process for valorizing biomass waste is widely used, and its technology 

is more mature than that of other sustainable thermal processes. Although the gasification 

process is sustainable, it can be made more environmentally friendly by incorporating 

secondary or tertiary processes, as proposed in section 5.1. The high moisture content of 

biomass waste makes the gasification process less sustainable, but this can be overcome by 
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incorporating pre-processing methods such as torrefaction. However, the gasification process 

is preferred over HTG, and the decision-making model (Section 8) in this study also supports 

gasification. Though, additional processes, such as plasma gasification and pyrolysis 

integration, have been investigated in chapter 6 and 7. 
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6 Chapter: Plasma gasification-based tri-generation process 

In this chapter plasma gasification-based valorization process of biomass waste has been 

developed and its sustainability evaluation has been done. PG is more versatile to valorization 

of feedstock types with lower emissions due to better disintegration of feedstock organic 

pollutant at higher temperature. 

6.1 Plasma gasification simulation process development 
 

The schematic diagram of the PG based tri-generation process is developed and given in 

Fig. 6.A based on the work of Wang et. al 2011 [261]. The dry biomass is transferred into 

plasma gasifier where plasma torch at high temperature converts PL biomass into syngas and 

aggregate (biochar). The temperature of plasma gasifier torch is up to 3000 oC due to which 

biomass has been converted into syngas with a negligible amount of the tar particles production, 

which is a non-conventional (NC) component consist of C, H, N, S and O (Table 6.1) at this 

high temperature. In this process, leftover aggregate particles in syngas have been considered 

as a tar which have been separated from the syngas through cyclone before being used at the 

next process where reaction has been taken place to convert syngas into methanol. This 

methanol further dehydrated to form a DME at gaseous phase. A mixture of DME and syngas 

has been produced which has a high temperature of around 1000 oC. For the synthesis of DME 

from syngas, the temperature of the gas has been reduced to less than 100 oC by transferring 

the gas heat into water through heat exchanger. This syngas (mainly include H2) and DME 

mixture has been transferred to the flash separator where DME has been separated while the 

syngas has been transferred to the DME reactor for further recovery. Heat recovery from the 

syngas converts the water into high temperature and pressure (~212 oC, ~20 bar) steam which 

has been transferred into the steam turbine for power generation. This electric power can be 

further utilized in the plant operations. While the low temperature and pressure steam has been 
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further transferred to the heat exchanger to get thermal energy from the syngas, hence, it is a 

cyclic process. DME which has been produced in this process will be stored into the bowser at 

high pressure generated through compressor. 

The PG tri-generation process simulation model for PL valorization has been developed 

by using Aspen Plus. The process flow of the developed model has been given in Appendix 

A11 and the description and the key parameters of the used blocks have been given in Table 

6.2 based on existing literature [305–308]. PL biomass has been used as a feedstock in this 

developed model. The proximate and ultimate analysis of PL feedstock given in Table 6.1 has 

been used as an input in the simulation model [247,309]. Furthermore, different simulation 

blocks have been utilized which have been described in Table 6.2. In this simulation model, 

the following assumptions have been considered [307]:  

• It is a steady state simulation; 

• Isothermal process with no heat loss; 

Fig. 6.A. Plasma gasification schematic diagram 
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• C, H, O, S and N elements have been taken as an NC biomass input; 

• All C, H, O, and N elements (reactants) conversion have been taken place; 

• Inorganic material like S is inert; and 

• Due to high temperature, negligible tar and ash have been produced which has no 

effect on the reactions. 

Table 6.1 Proximate and ultimate analysis for plasma gasification model 

Proximate analysis wt. % Ultimate analysis wt. % 

 Biomass Biochar  Biomass Biochar 

Moisture 7.6  Carbon 43.98 46.4 

Fixed Carbon 15.3 46.7 Hydrogen 5.16 0.7 

Volatile Matter 63.6 7.9 Nitrogen 4.63 2.0 

Ash 13.5 47.9 Sulphur 0.75 0.02 

HHV (MJ/kg) 16.8  Oxygen 31.98* 2.8 

*Based on difference     

PL biomass introduced at the rate of 10 t/h, the temperature of 30 oC and the pressure of 

1 bar is dried by using the RSTOIC block at the temperature of 100 oC. The Peng Robinson 

equation of state with Boston-Mathias modification (PR-BM) has been used in the simulation 

process when the output is in the form of low molecular weight compounds [124,310]. The 

moisture separated from the biomass and dried biomass (PL) reacted further at 1000 oC which 

breakdown the PL into C, H, O, N, and low molecular compounds. Finally, the PG has been 

established in the presence of air as a gasifying agent with equivalence ratio of 0.3-0.6 [247]. 

The produced syngas has been further reacted at the RCSTR-1 for steam reformation as given 

in Table 6.2. At this phase, the temperature of the syngas is around 1000 oC which is extremely 

high for methanol to DME production, therefore, the temperature has been reduced by 

transferring the thermal energy into the water which produces a steam of around 212 oC and 20 
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bars through heat exchanger. This steam can be further utilized in the steam turbine to generate 

electricity while the cooled syngas can further react at the temperature range of 200-220 oC to 

form methanol and DME. The temperature of these mixed gases has been reduced further for 

DME separation through flash separator. A detailed description of the parameters has been 

given in Table 6.2 and the stoichiometric data were presented in Table 6.3 [306,307,311–313].    

Table 6.2 Aspen Plus model specifications for base model of plasma gasification to DME 

ID Block Parameters 

DRIER RSTOIC Biomass drying at 100 oC, 1 bar  

H2OSP1 SEP Steam and dry biomass separation 

PYROLYS RSTOIC Temperature 1000 oC, 1 bar 

GSFA HEAT1 Air as a gasifying agent 0.3-0.6 ER at 1000 oC, 1 bar 

MIXER MIXER Air mixture with gas 

PLASMA RPLUG PG at 1000 oC, 1 bar (reaction kinetics in Table 6.3) 

RSTR1 RCSTR Water gas at 1000 oC, 1 bar 

HXC1 HXC Steam production10000 kg/h 20 bars from heat transfer 

FLASH1 FLASH2 Gas and solid particles (tar) separator 

HXC2 HXC Heat transfer to gas for DME production at > 200 oC, 1 bar 

RSTR2 RCSTR Methanol to DME at 220 oC, 1 bar (reaction kinetics Table 6.3) 

COOL COOL Cool down to less than 60 oC DME separation from other gases  

FLASH2 FLASH2 To separate DME and other gases 
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Table 6.3 Reaction kinetics of PL plasma gasification to DME production 

Reaction Rate 
Constant (K) n Activation 

Energy (cal/mol) 
1.25C + O2 →0.5 CO + 0.75CO2 3.7×1010 1 35826.9 

CO + 0.5O2 →CO2 1.78×1010 0 42992.2 

CH4 + 0.5O2 → CO + 2H2 1.58×1012 0 48246.9 

H2 + 0.5O2 → H2O 1.08×107 0 2779.54 

C + H2O →H2 + CO 8.0×10-3 0 11918.4 

CH4 + H2O →CO + 3H2 3.0×1011
 0 29855.7 

C + CO2 →2CO 1.05×1023 0 32244.2 

CH4 + H2O → CO + 3H2 3.0×1011 0 2985.7 

CO + H2O → CO2 + H2 295000 0 900 

CH4 + 0.5O2→ CO + 2H2 1.58×1012 0 48246.9 

  T (oC) *A (i) *B (i) 

2H2 + CO→ CH3OH  220 3.48×10-6 54,689 

2 CH3OH → CH3OCH3 + H2O  220 -2.27 2609.5 

*Factors of reaction     

 

6.1.1 Plasma gasification process validation 

PG model validation has been performed by comparing the results determined in the 

experimental studies with those determined by the simulation model before having further 

analysis. There are two types of validations which have been done: syngas has been validated 

through different experimental studies with different types of biomasses while DME yield (%) 

validation has been done through two different types of biomasses. For validation purpose, the 

cross comparison of the produced syngas mole fractions in simulation model have been 

compared with that determined in the reference studies which are illustrated in Fig. 6B.a 

[305,307]. While biomass to DME yield (%) has been compared through experimental studies 
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(eucalyptus (ESD) and pine saw dust (PSD)) as given in Fig. 6B.b [178,262]. The root-mean-

square error between simulation model and reference model output for syngas has been 

calculated by using section 3.3.1 [189]. According to the results presented in Fig. 6B.a, the 

RMSE of the results in the experimental study about softwood-sewage sludge (SW-SS, with 

ratio of 70-30%) PG and that determined by the simulation model in this study is less than 1% 

while it is also less than 4% in case of municipal waste. PG output of the developed model is 

quite good and very close to the results in the reference studies. Similarly, the RMSE with 

respect to biomass to DME yield (%) for eucalyptus saw dust (ESD) and pine saw dust (PSD) 

are also within 3-4%. Therefore, the simulation model validation results are quite good, and 

the results can be used for further analysis. 

Fig. 6B.a. PG syngas validation Fig. 6B.b. PG to DME validation 

Fig. 6.B. PG simulation model validation 
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6.2 Plasma gasification process optimization 

Process optimization has been carried out by importing Aspen Plus simulation file into 

MATLAB program. The results have been illustrated in Fig. 6.C while the pseudocode is given 

in Appendix A12 of the supplementary data. On the x-axis, there are a number of simulations 

runs to get the optimized value of DME (kg/h). The optimum result is found between 1800-

1900 kg/h, to get the minimum value. It reaches a stable value with less than 50 objective 

function evaluations, which shows the high efficiency of the optimization method. Furthermore, 

each reset of surrogate model through the distribution of initial sampling points is random, i.e., 

the adaptive points converge quickly, indicating that the local minimum point can be easily 

found by radial basis function-based surrogate. Considering the computational cost, the 

maximum number of function evaluations was set up to 1000 and it could be found that the 

Fig. 6.C. Process of radial basis function-based surrogate optimization 
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minimum value of objective reaches around 1890 kg/h (i.e., it means that that the maximum 

flowrate of DME is 1890 kg/h) stably even when the surrogate is reset repeatedly.  

The comparison of the optimum solution with the base solution is listed in Table 6.4. 

After optimization, the best temperature of PG (the temperature of PYROLYS reactor and the 

temperature of PLASMA reactor) is found to be 1147.6 ℃ while other variables reach the 

given bound. In the operational range, higher temperature of RSTR1 is helpful to produce more 

DME as per model result. Compared with the base solution, the DME flowrate of the optimum 

solution has been increased by ~6% from 1783 kg/h to 1890 kg/h, showing the positive effect 

of process optimization. Though the temperature of generated steam (heat generated) is higher 

in optimum solution while its gasification temperature (heat consumed) is also higher than that 

in the base solution due to which the energy efficiency is also affected in the optimization 

model as given in section 6.3.  

Table 6.4 PG model optimization results 

  

Variables Range Base  
solution 

Optimum 
solution 

Temperature of PG/℃ 1000-3000 1000 1147.6 

Temperature of RSTR1/℃ 200-1000 1000 1000 

Temperature of RSTR2/℃ 150-350 150 150 

Air flowrate kg/h 100-2000 100 170 

DME flowrate kg/h - 1783 1890 

Temperature of generated steam/℃ - 195 198 
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6.3 Plasma gasification process sustainability analysis 

Plasma gasification-based sustainability analysis has been done considering energy, 

exergy, economic, and environmental analysis.  

6.3.1 Plasma gasification energy analysis 

The comparative energy analysis of the DME tri-generation base and optimized model 

has been done. The energy efficiency of the base and the optimized process has been calculated 

based on some assumptions as given in section 3.3.2. According to the energy analysis results 

given in Fig. 6.D, the overall energy efficiency of the base process was around 48%, while it 

is around 44% for the optimized process. The energy efficiency after optimization is lower 

compared with that in the base case, and the possible reason could be that the increase of plasma 

gasifier temperature and more gasifying agent introduction in the process which assist in the 

production of more output (DME) but at the cost of some reduction in the energy efficiency. 

Therefore, the process efficiency after process optimization is less compared with that in the 

base case but there is around 6% additional DME produced which ultimately creates a 

significant impact on the economic output.  

  

 

Fig. 6.D. PG energy analysis of the base process and optimized process 
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6.3.2 Plasma gasification exergy analysis 

The exergy analysis of the PL-based biomass valorization in PG tri-generation process 

has been conducted based on the first and the second law of thermodynamics using section 

3.3.3 methodology. All calculations have been done by using the unit kilowatt (kW). According 

to the exergy calculation results, the exergy efficiency of the base process is around 41% while 

the optimization process has a relatively higher exergy efficiency (42%) as given in Fig. 6.E. 

Therefore, there is no such a significant difference between the exergy analysis of the base and 

optimized process, but the overall exergy efficiency of the tri-generation process is higher 

compared with the single PG process.     

 

 

Fig. 6.E. PG exergy analysis of the base process and optimized process  
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6.3.3 Plasma gasification thermal energy to electric power potential 

Thermal energy of the syngas has been transferred into water to convert it into high 

pressure steam which has been further utilized in the steam turbine to generate power by 

assuming that inlet mass flow is equal to the outlet mass flow. To calculate the potential of 

electrical power generation, the detailed processes have been summarized in section 3.3.6. The 

final calculation results have been summarized in Table 6.5. According to the results, the 

overall power output potential is 1271.8 kW by using the single stage steam turbine with the 

isentropic efficiency of 60% and the generator with efficiency of 93%. Therefore, the electrical 

energy generated in this process is enough to meet the plant energy demand which is around 

1000 kW based on the vendor’s estimation [314].   

Table 6.5 Single stage steam turbine-based power calculation  

Inlet Properties Outlet Properties 

Steam Pressure 20 bar (290 psig) Steam Pressure 4.9 (71 psig) 

Steam Temperature 212 oC (413 oF) Specific Entropy 0.545 btu/lbm/R 

Specific Enthalpy 356.9 btu/lbm 
Specific Enthalpy 

(Ideal) 

353.4 btu/lbm 

(0.22 kWh) 

Energy Flow 786.9 MMBtu/h Specific Enthalpy  
354.8 btu/lbm 

(0.23 kWh) 

Efficiency Temperature 158.2 oC (316.8 oF) 

Isentropic efficiency [204] 60% Energy Out  4.7 MMBtu/h 

Generator efficiency [204] 90-93% Power Out  1271.8 kW 
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6.3.4 Plasma gasification economic analysis 

The economic analysis of PG to DME manufacturing process has been done based on 

the biomass waste valorization rate of 10 t/h (plant treatment capacity). For this purpose, the 

data has been taken from the related vendors and literatures by using methodology defined in 
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section 3.3.7. The detailed calculation of the data has been given in Appendix A13 of the 

supplementary material. The capital cost payback period of the installed process has been 

calculated based on the revenue and operational cost. According to the estimation presented in 

Fig. 6.F, the overall capital cost for the 10 t/h PG to DME processing process is around US 

$ 0.5 million without including any regulatory duties and taxes etc. as summarized in section 

3.3.7. Gasifier and generator have the major equipment cost 15% and 27%, respectively. While 

raw material cost is the highest in operational cost which is account for 63% followed by utility 

and labor (manpower) as given in Fig. 6.G. The payback period has been calculated, 

considering that the process has been installed and operated at fully operational condition. 

Sensitivity analysis of the payback period has been conducted based on the process output 

efficiency. According to the results of sensitivity analysis as presented in Fig. 6.H, the payback 

period of the base process is 2.44 years at 100% efficiency while it is 6.12 yrs. at 90% efficiency. 

When the efficiency is lower than 90%, the base process is not feasible without any subsidies 

or external financial support. The scenario is different for the optimized process, according to 

the results of sensitivity analysis as shown in Fig. 6.H, the payback period for capital cost is 

between 1 to 7.2 yrs. with process efficiency (from 100% to 70%). However, the optimized 
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process is not feasible when the efficiency is lower than 70%. Therefore, the optimized process 

is more economical and faster in capital return which is feasible when the process efficiency is 

greater than 70% as compared with the base process which is not feasible when the process 

efficiency is lower than 90%. 

6.3.5 Plasma gasification environmental life cycle assessment 
 

Life cycle assessment of the proposed process has been done by using IMPACT 2002+ 

method in SimaPro software without considering the infrastructure of the process. As for life 

cycle inventory analysis, the data has been taken from the SimaPro and literatures [210,315]. 

The LCA inventory data have been given in the supplementary data. The environmental 

analysis of the developed processes has been done by comparative analysis of (i) PG of the PL 

verses PL composting process and (ii) DME manufacturing from coal verses syngas produced 

from plasma gasification of PL (PL-PG). The single score impact categories of 15 different 

LCA indicators have been given in Fig. 6.I. According to the results presented in Figs. 6.I and 

6.J DME production through PG syngas of PL is more environmentally friendly compared with 

the DME production from coal. The score for DME-coal case is higher compared with the 

DME-PL. The most significant reason leading to the high score of DME-coal in Fig. 6.J is 

caused by the non-renewable energy utilization in DME production because coal is a non-

renewable energy source. Furthermore, the overall score of PL-PG is lower compared with that 

of the PL composting process because there are high emissions of GHG (especially CH4 and 

CO2) in PL composting process due to which its global warming potential and respiratory 

inorganics scores are higher. While composting process has higher global warming, aquatic 

eutrophication, and acidification potential as compared with syngas and DME production, but 

relatively lower impact in term of carcinogens and non-carcinogens, as presented in Fig. 6.J. 
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Therefore, dimethyl ether from poultry litter (DME-PL) process is more eco-friendly 

comparing with DME manufacturing from coal (DME-Coal), while PG of PL process has 

overall better environmental performance comparing with PL composting process.        
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6.4 Conclusion: Plasma gasification 

In this research, the PG based tri-generation process for PL valorization to produce DME 

and electrical power generation has been developed. The developed process is feasible based 

on 4E (energy, exergy, economic, and environmental) analysis of the process. The following 

are the key conclusions of this study: 

• DME efficiency has been improved to 6% after process optimization. 

• The energy efficiency in the base case is 48% which is better than that in the optimized 

process (44%). 

•  No significant difference of the exergy efficiency of the base from that of the optimized 

process. 

• The thermal energy to electrical power generation capacity of the proposed process 

through steam is around 1271 kW. 

• The optimized process has a shorter payback period as compared with the base process, 

and it is feasible when the process efficiency is equal to or greater than 70%while the 

base process is not economically feasible when the process efficiency is lower than 90%. 

• The environmental performance of DME production from PL syngas is better than DME-

coal while PL composting process has a worse environmental performance as compared 

with PL-PG valorization.  

This study provides an overview of a new way to decision-makers, specifically the tri-

generation for biomass waste valorization. The PG-based tri-generation technique has shown 

good performance in 4E analysis. Consequently, this technique has the potential to effectively 

valorize biomass waste. However, this process needs severe temperatures, which increases 

process safety risk and has an impact on the process's energy efficiency. Therefore, chapter 7 

includes an assessment of the sustainability of the integrated pyrolysis and gasification process. 
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7 Chapter: Pyrolysis-gasification based integrated process 

In this chapter, pyro-gasification based valorization process for biomass waste has been 

developed and its sustainability analysis has been done.    

7.1 Pyrolysis process simulation development 

Aspen plus was used to simulate the biomass waste valorization process. The integrated 

pyrolysis and gasification process is given (Fig. 7.A). The proximal and final analyses of PL 

biomass were employed as a reference in the current approach. Whereas the created model has 

been evaluated using three different types of biomasses at six different temperatures as 

indicated by the relevant experimental studies [316–318] in section 7.2. This validated model 

has been extended to include the secondary gasification and carbon dioxide liquefaction 

processes. The actual process, as shown in Appendix A14, can be separated into three stages: 

pyrolysis, gasification (including turbine steam generation), and carbon dioxide liquefaction. 

This approach was developed using the parameters defined in Fig. 7.B and which has been 

primarily obtained from different studies [316–319]. For economic analysis, the feed rate is 

Fig. 7.A Pyro-gasification based process schematic diagram 
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estimated to be 10,000 kg/h based on the capacity of the selected plant. In terms of the basic 

process, biomass was pyrolyzed at 600 oC and 1 atm, which yields approximately 4235 kg/h of 

biochar along with pyro-gas, which was then reacted with air for gasification, which increased 

the temperature due to combustion. This combustor heat has been transferred to water in a heat 

exchanger with a flow rate of 18,000 kg/h, resulting in high-pressure steam of approximately 

25 atm and 540 oC. During combustion syngas contains a significant amount of H2O, N2, and 

CO2. By application of coolers and valve application, the temperature of the syngas has been 

decreased, and H2O has been separated in the first phase at a rate of around 4903 kg/h. While 

the temperature of the syngas had dropped to -50 oC, CO2 was liquified (about 3246 kg/h) and 

separated from N2. Biochar and CO2 have immediate economic value, whereas this high 

temperature and pressure steam has the potential to generate approximately 2302 kW of electric 

Fig. 7.B. Pyro-gasification base simulation process parameters 
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power, calculated based on section 3.3.6. In this basic model, the parameters were taken from 

the previously published literatures [316–319], and this process has been further optimized by 

using different optimization algorithms (see section 3.2.2 for the details). Therefore, this novel 

process has been optimized and different scenarios have been considered to provide a clear 

overview to the decision-makers/stakeholders. 

7.2 Pyrolysis process validation 

Pyrolysis model validation has been done by comparative analysis with the experimental 

studies [316–318]. For model validation, experiments focusing on the treatment of various 

forms of biomass such as rice straw (RS), sugar bagasse (SB), poultry litter (PL), and dry 

poultry litter (DLP) were used. These biomasses were compared to the simulation models' 

outputs at six different temperatures (ranging in 300-800 oC). Fig. 7.C depicts the findings of 

the comparison analysis. The errors for the yield for all biomasses determined by the simulation 

model are between 0 and 9%, which is fairly good for such a complex process.  Possible reasons 

Fig. 7.C. Pyro-gasification model validation  
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for these variances could be biomass composition and differences in the equipment utilized in 

this experimental research. Most of the time, the yield determined by the simulation model is 

lower than the yield determined by the actual research. Therefore, the limitations in the current 

simulation model appear to be more stringent toward the final goods, but these are acceptable 

and do not significantly vary from the actual conditions. Therefore, this validated model can 

be used for further study. 

7.3 Pyro-gasification process sustainability evaluation 

A multi-scenario sustainability analysis has been developed to assess the sustainability 

of the developed process by incorporating energy (section 3.3.2), economic (section 3.3.7), and 

safety (section 3.3.9) EES aspects simultaneously. The basic model and multi-scenarios pattern 

search based optimized model considering section 3.2.2 have been established for comparative 

analysis purpose. These determined process parameters can be further used for sustainability 

analysis by considering the EES indicators. There are three scenarios in this study, as defined 

in Table 7.1. The first scenario aims to focus on the “maximization of biochar production” 

considering the constraints as given in Table 7.1. The second scenario aims to focus on the 

“maximization of the electric power generation by application of process thermal energy and 

CO2 liquefication as an economic indicator” with the defined constraints of scenario 2 as shown 

in Table 7.1. The third scenario aims to focus on the “optimum yield of biochar, liquified CO2 

and electric power simultaneously”. All these scenarios have been evaluated based on the EES 

index which has been calculated according to section 3.3.10.2. The energy, economic, and 

safety criteria have been incorporated in the EES index by introducing the weighting factor for 

each criterion. The EES index has a score in the range of 0 to 1, and the closer to 1, the more 

sustainable the process will be. The methodology of energy, economic, and process safety 

methods are given in sections 3.3.2, 3.3.7, and 3.3.9, respectively. Therefore, a scenario which 
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has a better EES score due to higher energy efficiency, economic (IRR) return, and safety score 

is sustainable for biomass waste valorization.    

Table 7.1 Pyro-gasification base process optimization scenarios 

Scenario 1 

Objective: Maximization of biochar production  
𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑏𝑏 

Constraints:  

𝑠𝑠. 𝑡𝑡. �

400 ≤ 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 800
400 ≤ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 800
0.1 ≤ 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0.5

𝑁𝑁𝑁𝑁 > 0

 

Scenario 2 

Objective: Maximization of electric power generation by application of process thermal 
energy and CO2 liquefication an economic indicator  

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐹𝐹𝐶𝐶𝑂𝑂2) 
Constraints:  

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧

400 ≤ 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 800
400 ≤ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 800
0.1 ≤ 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0.5

𝑁𝑁𝑁𝑁 > 0
300 ≤ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 600

 

Scenario 3 

Objective: To get an optimum yield of biochar, liquified CO2, and electric power 
simultaneously 

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐹𝐹𝐶𝐶𝐶𝐶2) 
Constraints: 

𝑠𝑠. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧

400 ≤ 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≤ 800
400 ≤ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 800
0.1 ≤ 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0.5

𝑁𝑁𝑁𝑁 > 0
300 ≤ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 600

 

where 𝑃𝑃𝑏𝑏  is flowrate of biochar, kg/h; 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the pyrolysis temperature, ℃; 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  is 
reformer temperature; 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 is the ratio of air to biomass; 𝑁𝑁𝑁𝑁 is net heat, kW; 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 
steam temperature, ℃; 𝐹𝐹𝐶𝐶𝐶𝐶2 is the flowrate of liquid CO2, kg/h. 
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7.3.1 Basic case 

The basic process was established by employing the parameters defined in Fig. 7.B that 

were obtained through different studies [316–319]. This basic scenario was assessed in terms 

of energy efficiency, economic performance (IRR), process safety, and prospective power 

generation. The baseline scenario's sustainability index has been derived using the 

aforementioned criteria. The basic scenario has an overall process energy efficiency of 

approximately 59%, according to the energy efficiency results shown in Fig. 7.D. The heat 

exchanger and the pyrolysis process have both lost the most energy. The thermal energy of the 

process was turned into electrical power by the use of steam turbine generating, as described 

in section 3.3.6. According to the results shown in Appendix A15, the basic process has the 

ability to generate nearly 2302 kWh of electricity from the thermal energy produced. While the 

basic process's process safety index score is high (approximately 13 out of 16 (81%)) in Fig. 

7.E, this represents the increased hazards inherent in this process. The basic process has been 

economically evaluated at various process efficiencies (100 to 50% or till IRR is negative), as 

shown in Fig. 7.F. Whereas the effects of various subsidy scenarios on IRR are also examined. 

The basic process is economical (IRR ranges from 37 to 2%) when the process efficiency is 

reduced from 100 to 80% without undermining any subsidies, but the IRR is too low (2%) 

when the process efficiency is reduced to 80%. If a subsidy of 17.5 $/t is provided, which is 

50% of the cost of waste handling in low-income countries [208], the basic process is 

economically viable with an IRR of 13% when the process efficiency is up to 70%, and the 

process is economically viable with an IRR of 19% when the subsidy is 50 $/t, and the plant is 

up to 50%. Finally, the sustainability index (SI) was computed using the methodology 

described in section 3.3.10.2. (see Appendix A16). The fundamental process's BWM-based SI 

score is 0.503 out of 1.0, and it is 0.428 when all indications are given equal weightage, which 

is significantly lower (Appendix A16) when compared to other scenarios. Hence, process 
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optimization is required to make the basic process more sustainable in terms of economic, 

safety, and energy. 

 

  

7.3.2 Results of Scenario 1 (Maximization of biochar production) 

Scenario 1 seeks to maximize biochar production by changing process parameters. The 

basic process has been optimized for this purpose by using the Pattern search algorithm 

described in section 3.2.2.4. The pyrolysis process temperature is 516 oC, the reformer 

temperature is 600 oC, and the air flow is 3500 kg/h, according to the optimization results. The 

Fig. 7.D Pyro-gasification Base process energy efficiency 
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Fig. 7.F Pyro-gasification Base process EA 
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process can create the most biochar (approximately 423.2 kg/t of biomass) with 411.2 kg/t of 

CO2 and 20,000 kg/h of high temperature (605 oC) and pressure (25 atm) steam under these 

operating parameters. This steam may be utilized to generate approximately 2788 kW of 

electricity (see Appendix A15). Scenario 1's overall process efficiency is 66% (see Fig. 7.G), 

which is pretty good and better than the basic process, and also the process safety index score 

(Fig. 7.H) is about the same (13 out of 16) as the basic process. Furthermore, the economic 

performance (as measured by IRR) of Scenario 1 is superior to that of the fundamental process 

(see Fig. 7.I). Even without any subsidies, the optimized process in Scenario 1 is economically 

viable with an IRR of 38 to 6% when the process efficiency is reduced from 100% to 80%. It 

is economically possible with an IRR ranging from 44 to 14% when the subsidy is 17.5 $/t and 

the process ranges from 100 to 70%. Similarly, when the subsidy becomes 50 $/t, the improved 

process in Scenario 1 becomes economically viable, with an IRR ranging from 51 to 19% when 

the process efficiency falls from 100 to 50%. According to the weights obtained by the BWM, 

the sustainability index score of the optimized process under scenario 1 is 0.563, which is 

likewise higher than that of the basic process (see Appendix A16). Hence, as compared to the 

basic process, the optimized process under Scenario 1 seems to be more sustainable in terms 

of economic, energy, and electric power generating potential. 
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7.3.3 Results of Scenario 2 (Maximization of thermal power and CO2 liquefaction) 

The pattern search algorithm method was used for process optimization with the goal of 

maximization of thermal power generation and CO2 production. The final optimization results 

are shown in Appendix A17, and the best one with the best CO2 and thermal power production 

has been chosen. The pyrolysis temperature is 800 oC, the reformer temperature is 512.5 oC, 

and the air flowrate is 3125 kg/h, according to the optimization results. These ideal operating 

Fig. 7.G Pyro-gasification energy efficiency of the optimized process under scenario 1 
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parameters can generate the most CO2 (6268.5 kg/h) and steam (30,000 kg/h at 579.5 oC), 

which is more than the basic and optimized processes under scenario 1. Moreover, the energy 

efficiency of this process is only 47% (see Fig. 7.J), which is lower than the basic and improved 

processes under Scenario 1, but its thermal to electric energy potential is significantly larger 

(around 4044 Kw). In terms of economics, the IRR of the non-subsidized process (see Fig. 7.L) 

ranges from 44 to 28% when process efficiency changes from 100 to 80%, which is higher than 

the IRRs of the basic and optimal processes under Scenario 1. However, when the process 

efficiency is less than 80%, this optimized process (scenario 2) is not economically feasible 

without a subsidy. When the process efficiency changes from 100% to 70%, the IRR ranges 

dropped from 48% to 29%, with a subsidy of 17.5 $/t. But with the subsidy 50 $/t, it ranges 

dropped from 54 to 28%. The optimized process under scenario 2 has a slightly higher process 

safety index score (14 out of 16) than the basic process and the optimized process under 

scenario 1 (Fig. 7K). The final sustainability index score of the optimized process under 

scenario 2 by using BWM weights is 0.534 (see Appendix A16), which is greater than the basic 

process and the scenario 3 optimized process. In terms of economic, energy, power generation 

potential, and safety indicators, the optimized process of scenario 2 is a more sustainable 

process than the basic process and the optimal process of scenario 3.  
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7.3.4 Results of Scenario 3 (Economic gain by optimization of biochar, CO2, and electric 

power) 

Scenario 3, economic advantage has been maximized by optimizing the production of 

biochar, CO2, and electric power generation. To develop this, the pattern search technique 

described in section 3.2.4 was applied. The evaluation results are given in Appendix A18. The 

production of biochar and that of CO2 have an inverse correlation, due to which the optimal 

results have been selected in which the yields of CO2, biochar, and steam can reach a balance. 

Fig. 7.J Energy efficiency of the optimized process under scenario 2 
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Increasing one reduces the yield of another. Resultantly, the optimum values of the parameters 

were chosen when the yields of both products could be balanced. The optimal operating 

conditions are 775 oC pyrolysis temperature, 800 oC reformer temperature, and 3562.5 kg/h 

airflow. In this case, the improved process in scenario 3 produces around 5946.9 kg/h of CO2, 

3471.2 kg/h of biochar, and 10 t/h steam from biomass at 582.6 oC (see Appendix A18). 

Considering the process parameters, the energy efficiency of the optimized process in scenario 

3 can also be computed. According to the energy efficiency statistics, the energy efficiency of 

the optimized process under scenario 3 is 46% (see Fig. 7.M), the lowest of all scenarios 

(including the basic process, the optimized process under scenario 1 and the optimized process 

under scenario 2). Similarly, the PSI score is 14 (see Fig. 7.N), which is comparable to the 

optimized process in scenario 2 but lower than the basic and optimized processes in scenario 

1. A high PSI score highlights the process's increased safety-related risks. One likely reason is 

because scenario 3's goal is to maximize economic gain while taking safety performance into 

account. Therefore, the IRR has been calculated to assess economic sustainability performance. 

According to the IRR results (see Fig. 7.O), the optimized process under scenario 3 is an 

economically feasible process with an IRR ranging from 43 to 27% when process efficiency is 

up to 80% without considering any process subsidies. When the process efficiency is reduced 

from 100% to 70%, the optimized process under scenario 3 is economically sustainable with 

an IRR ranging from 48 to 28% (see Fig. 7.O). If the subsidy is 50 $/t, this process performs 

better with a maximum IRR of 54% at 100% process efficiency and is also economically viable 

with an IRR of 28% until process efficiency reaches 50%. Hence, the economic performance 

of the optimized process in scenario 3 outperforms all other scenarios. Ultimately, the 

optimized process's sustainability index under scenario 3 has been determined using energy, 

safety, economic, and power generation factors. According to the weights derived by the BWM 

technique, the sustainability index score of the optimized process under scenario 3 is 0.517 (see 
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Appendix A16), which is higher than that of the basic process. Therefore, it is lower than the 

improved process's sustainability index in scenarios 1 and 2. Hence, in terms of process 

sustainability, the optimized process under scenario 3 is inferior to the optimized processes 

under scenarios 1 and 2.          
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Fig. 7.M Energy efficiency of the optimized process under scenario 3 
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7.3.5 Pyro-gasification process sensitivity analysis  

The process inputs and outputs under different scenarios have been summarized in Table 

7.2. The feed rate of biomass has been set the same for all the scenarios, which is 10 t/h. For 

basic cases, the simulation parameters have been set in Fig. 7.B taken from experimental 

studies. The sustainability index score of the basic process is 0.503 according to the weights 

determined by the BWM which is the lowest among all the scenarios in this study. The 

sustainability index of the optimized process under scenario 3 is ranked third position in terms 

of sustainability performance with a SI score of 0.517. The SI score of the optimized process 

under scenario 2 has been ranked in the second position with 0.534, and the optimized process 

under scenario 1 has the highest SI score of 0.563 with a major contribution by its performance 

regarding energy and economic aspect. Sensitivity analysis of the sustainability index score 

calculation has been done in Appendix A16 by assigning different weights to the indicators. 

Sensitivity analysis results show the basic process has the lowest sustainability index score in 

all cases. Among all scenarios, the optimized process under scenario 2 has the highest SI score-

0.534 (see Appendix A16) due to its better performances in energy efficiency, economics, and 

power generation aspect. Therefore, the optimized processes are more sustainable as compared 

with the basic process, but the optimized process under scenario 2 is the most sustainable 

among all these processes when all sustainability indicators have equal preferences.      

Table 7.2 Summary of pyro-gasification process inputs and outputs  

Scenarios Basic Scenario 1 Scenario 2 Scenario 3 

Biomass Flow Rate (kg/h) 10000 10000 10000 10000 

Pyrolysis Temp. °C 600 516 800 775 

Reformer Temp. °C 600 600 512 513 

Steam Flow Rate (kg/h) 18000 20000 30000 30000 
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Steam Pressure (atm) 25 25 25 25 

Steam Temp. °C 540 605 579 532 

Air Flow (kg/h) 2000 3500 3125 3562 

CO₂ (kg/h) 3246 4112 6268 6096 

Biochar (kg/h) 4235 4332 3397 3471 

Electric Power (kW) 2302 2788 4044 3796 

Energy Efficiency (%) 59% 66% 47% 46% 

IRR (%) No subsidy (η=100-80%) 37 to 2% 38 to 6% 44 to 28% 43 to 27% 

Process Safety Risk (%) 81% 81% 88% 88% 

Sustainability Index (BWM) 0.503 0.563 0.534 0.517 

Sustainability Index 

(E1 (0.25), E2 (0.25), E3 (0.25), E4 (0.25)) 
0.428 0.477 0.507 0.488 

Sustainability Index  

(E1 (0.4), E2 (0.2), E3 (0.2), E4 (0.2)) 
0.460 0.514 0.499 0.482 

Sustainability Index  

(E1 (0.2), E2 (0.4), E3 (0.2), E4 (0.2)) 
0.380 0.420 0.429 0.414 

Sustainability Index  

(E1 (0.2), E2 (0.2), E3 (0.4), E4 (0.2)) 
0.456 0.520 0.605 0.578 

Sustainability Index  

(E1 (0.2), E2 (0.2), E3 (0.2), E4 (0.4)) 
0.415 0.455 0.493 0.477 

 

7.4 Conclusion: Pyro-gasification 

In this chapter, pyrolysis and gasification process integration basis sustainable process for 

biomass waste valorization has been established. Process optimization has been done and 

evaluated using energy, economic, and process safety indicators. Following the principal 

findings of this chapter: 
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• When compared to the basic process, the optimized process performs better in all 

scenarios. 

• The basic process and the optimized process under scenarios 1-3 have an energy 

efficiency of 59%, 66%, 47%, and 46%, respectively with an electric power potential 

of 2304 kW, 2788 kW, 4044 kW, and 3796 kW in the respective case. 

• In the non-subsidized situation, when the process efficiency varies from 100% to 80% 

in the economic evaluation, the IRR (%) varies between 37-2%, 38-6%, 44-28%, and 

43-27% for the basic process and the optimized process under scenarios 1-3, 

respectively. 

• Process safety risk (%) of the basic and scenario 1 optimized process is lower than that 

optimized scenarios 2-3. 

• The optimized process under scenarios 1 has the highest SI score 0.563 based on the 

weights determined by the BWM, followed by the optimized process under scenarios 2 

with a sustainability index score of 0.534, the optimized process under scenarios 3 with 

a sustainability index score of 0.517, and basic process with a sustainability score of 

0.503.    

Although the current integrated process of pyrolysis and gasification process is sustainable but 

still some other sustainability aspects need to be explored. All case studies included in this 

research work seem sustainable but overall sustainability analysis results will be varied with 

respect to regional constraint and stakeholder’s interest. Therefore, to assess this variation and 

stakeholders’ interest, a multi-criteria decision-making framework has been utilized in chapter 

8 by application of both subjective and objective approach to identify the sustainable 

valorization process.   
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8 Chapter: Multi-criteria for sustainable valorization process selection  

The current model has been implemented to assess its efficacy in addressing real-time 

issues. In this context, a sustainable waste valorization process, considering economic, 

environmental, technological, and socio-governance aspects, has been identified. Further 

elaboration on this is provided in Sections 3.3.10.1.  

8.1 Problem statement 

In this study, the selection of waste valorization processes is focused on developing 

countries, specifically targeting India, Pakistan, and Bangladesh. These countries collectively 

account for approximately one-fourth of the global population [320]. Consequently, substantial 

amounts of MSW are generated within these countries. According to various institutional 

estimates, India produces an average of approximately 165 million tons of MSW, Pakistan 

produces 30 million tons, and Bangladesh produces around 7.4 million tons [321–323]. But a 

considerable proportion of this waste is not managed in an environmentally sound manner. The 

generated waste harbors significant potential for sustainable energy production. For instance, 

an estimation suggests that poultry litter waste alone in India, Pakistan, and Bangladesh has the 

potential for daily electricity production of 8745, 8893, and 4803 MW, respectively [324]. 

Despite this potential, challenges arise due to a lack of technological advancement and financial 

constraints in these countries, hindering the implementation of sustainable valorization 

processes for waste management. Consequently, selecting a sustainable waste valorization 

technique based on economic, environmental, technological, and socio-governance 

considerations becomes paramount to address and harness the potential of this waste in an 

appropriate and sustainable manner.     
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8.2 Alternatives and selection criteria 

The primary objective of this research is to find the most suitable and sustainable process 

for the valorization of MSW. The study focuses on the comparison of primary biological and 

thermal techniques, exploring four alternatives as depicted in Fig. 8.A while the application 

methodology is defined in section 3.3.10.1, ‘Research framework’. Among the primary 

biological methods, AND is considered, involving the biological conversion of waste into 

biogas and slurry, both of which can serve as valuable sources of energy and fertilizer [325]. 

Within the thermal techniques, gasification, pyrolysis, and hydrothermal gasification have been 

shortlisted as alternatives. Gasification specifically entails the transformation of MSW into 

syngas within the constraints of a limited amount of gasifying agent. The final output of this 

procedure is syngas, which can be subsequently employed in secondary processes such as 

methanol, dimethyl ether, hydrogen, etc. [279]. The pyrolysis process transforms MSW into 

either bio-oil or char, contingent upon the operational parameters governing the process in the 

absence of a gasifying agent. The ultimate product of pyrolysis can undergo further refinement 

to yield a fuel of higher quality, thereby contributing to meeting energy requirements [326]. 

Fig. 8.A. Decision making model structure for biomass waste valorization processes 
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HTG represents a type of gasification process applicable to liquid biomass, under supercritical 

conditions of water—specifically, at pressures ranging from 20 to 30 MPa and temperatures 

between 350 and 450 oC. The principal output of this process is primarily hydrogen [327]. 

Therefore, these four biological and thermal processes have been shortlisted based on the 

economic, environment, and technological advantages as described in literature while 

environment, economic, technological, and social governance have been utilized as a criterion 

to select an optimum process from different alternatives. 

There are primarily four major criteria—environmental, economic, social-governance, 

and technological—that have been thoroughly identified from the existing literature. These 

criteria have been shortlisted through a systematic way which included following steps: 

Step 1: A primary discussion related to MSW valorization process has been conducted with 

three academic experts who have more than 10 years of relevant research experience in this 

field.  

Step 2: A systematic literature review has been carried out to identify and shortlist criteria 

based on snowball approach of inclusion and exclusion criteria adopted in previous research 

[220,324]. Different keywords like “waste valorization”; “sustainable waste valorization 

processes”; “decision making models”; “pyrolysis process sustainability”; “gasification 

process”, “hydrothermal gasification”; “thermal valorization 3E analysis”; “anaerobic 

digestion”; “carbon neutral waste disposal”; “Fuzzy logics”; “CODAS” etc. have been 

searched in Scopus, Google Scholar, Elsevier database. 

Step 3: Finally, these shortlisted criteria have been shared with three academic experts for their 

opinion and based on which ‘16’ criteria have been finalized.  
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Each primary criterion has been further divided into four sub-criteria. Consequently, a total of 

16 sub-criteria have been employed in this research for evaluative purposes, with references 

cited in Table 8.1. The economic criteria, denoted as C1-C4, encompass various facets. 'C1' 

pertains to the 'Capital cost and operational cost of the process,' representing a cash outflow. 

'C2' focuses on the 'Marketability of the final products,' serving as an indicator for a more 

favorable return on investment; a higher final product price or market demand correlates with 

improved returns. 'C3' involves the 'Rate of return on investment,' which integrates the IRR as 

an indicator for investment return. 'C4' addresses 'Maintenance and personnel cost,' serving as 

an indicator of the operational challenges associated with the process, with higher costs 

generally indicative of more technical or less mature processes. The environmental criteria, 

designated as C5-C8, include 'C5,' which examines 'GHG/Particulate matter emissions' 

originating from the relevant process. The eco-sustainability of a process is inversely 

proportional to its emissions; higher emissions correspond to lower eco-sustainability, and vice 

versa. 'C6' assesses 'Soil/Land/Aquatic pollution' resulting from the operational activities of the 

process, where elevated pollution levels indicate reduced eco-sustainability. 'C7' evaluates 

'Land use,' with processes necessitating greater land considered less eco-friendly due to the 

assumed increased likelihood of land contamination and environmental damage. 'C8' focuses 

on 'Product emission throughout the product life cycle,' where a higher final product price is 

indicative of economic sustainability. However, it is essential that the environmental impact of 

the product is minimized for overall sustainability. These environmental criteria are derived 

from the existing literature. 

Technological criteria, denoted as C9-C12, encompass several dimensions. 'C9' evaluates 

'Process energy and exergy recovery,' serving as an indicator of the overall energy efficiency 

of the process. 'C10' analyses the 'Access and technology adaptability' of the pertinent process, 

with increased technological maturity enhancing the likelihood of process sustainability. 'C11' 
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assesses 'Waste treatment effectiveness and volume reduction,' where the greater reductions in 

waste volume correlate with improved process sustainability. 'C12' considers the 

'Diversification of material handling,' recognizing that certain processes are sensitive to the 

type of material involved. For instance, processes like HTG and anaerobic digestion are limited 

in valorizing solid waste until it undergoes conversion into slurry or liquid. Hence, gasification 

and pyrolysis are suitable for solid or dry waste. Therefore, the availability of the requisite 

material that can be valorized by these processes is deemed a crucial factor.  

Social-governance criteria, identified as C13-C16, are instrumental in the evaluation of 

available alternatives. 'C13' pertains to 'Process occupational safety hazards,' recognizing that 

processes with intense operational parameters may entail heightened occupational safety 

hazards. Consequently, 'C13' is incorporated into the evaluation criteria. 'C14' addresses 'Public 

acceptance and employment generation,' acknowledging that certain processes may necessitate 

more manpower and garner public acceptance due to their operational or environmental 

sustainability. Therefore, it is included in the analysis. 'C15' and 'C16' encompass 'Political 

support through existing policies' and 'Promoting social responsibility (Carbon credit),' 

respectively. Hence, processes receiving support through various policies and promoting social 

responsibility, particularly through mechanisms such as carbon credits, are considered superior 

in comparison to their counterparts. 
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Table 8.1 Selection criteria for biomass waste valorization processes 

No. Criteria Category Ref. 

C1 Capital cost and operational cost of process Economic [328,329] 

C2 Marketability of the final products Economic [328,329]  

C3 Rate of return on investment Economic [328,330]  

C4 Maintenance and personnel cost Economic [328] 

C5 GHG/Particulate matter emissions Environment [329,331] 

C6 Soil/Land/Aquatic pollution Environment [328,332] 

C7 Land use Environment [333] 

C8 Product emission throughout product life cycle Environment [327,334] 

C9 Process energy and exergy recovery Technological [327,335] 

C10 Access and technology adaptability Technological [330] 

C11 Waste treatment effectiveness and volume reduction Technological [336] 

C12 Diversification of material handling Technological [329] 

C13 Process occupational safety hazards Social-Governance [337] 

C14 Public acceptance and employment generation Social-Governance [328,330] 

C15 Political support through existing policies  Social-Governance [328,330] 

C16 Promoting social responsibility (Carbon credit) Social-Governance This study 

 

8.3 Data collection and analysis 

Data collection and evaluation based on the problem statement defined in section 8.1 and 

alternatives and criteria selection based on section 8.2 has been divided into different steps. 

Step 1: The study data was acquired through the development of a survey, the details of which 

are provided in Appendix A19. All available alternatives underwent a comprehensive 

evaluation based on the '16' criteria outlined in Table 8.1. The survey construction and 

evaluation were conducted with the guidance of experts as defined in section 8.2. The entire 

research framework is given in Fig. 8.A, starting from survey development to data collection 
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and final analysis. For this particular study, '7' experts were selected from '3' distinct developing 

countries, including Pakistan and Bangladesh. These experts comprised individuals with 

backgrounds in academia and industry, each possessing a minimum of '8' years of relevant 

experience with graduation. To facilitate data collection through the survey, an online survey 

link was shared with the experts. The survey sought their relative assessments of the processes 

based on the economic, environmental, technological, and social-governance criteria given in 

Table 8.1. This survey includes the criteria comparison based on IVFFS and also relative 

comparison among the criteria to prioritize them based on AHP. A sample of this survey is 

given in Appendix A19. Thorough measures were taken to ensure that all experts completed 

the surveys accurately and comprehensively. Final survey results are given in Appendix A20.  

Step 2: For analysis purposes, all data of AHP weights calculation and IVFFS, in the form of 

expert opinions, underwent systematic analysis. For AHP weights, experts’ opinions have been 

converted into crisp values, and further analysis has been done. The consistency index of the 

AHP has been identified as less than 0.10. After that expert opinions regarding IVFFS which 

were initially presented in linguistic form, an initial conversion was executed, transforming 

them into IVFFS -based crisp values as detailed given in Appendix A20.  

Step 3: Aggregated decision matrix has been calculated through Eq. 3.80-3.87 given in section 

3.3.10 while results are summarized in Table 8.3 which has been normalized through Eq. 3.91 

and final normalized results are given in Table 8.4. The calculation of weights, as outlined in 

Section 3.12.1.3 and final weights calculation are presented in Table 8.2 and Appendix A21. 

These weights were utilized to compute the weighted normalized matrix in Table 8.5 based on 

the normalized aggregated Interval Fermatean fuzzy values (Table 8.4). Shannon Entropy (Eq. 

3.92 and 9.93) and CRITIC weights are also included based on main criteria for sensitivity 

analysis. Primarily, AHP weights have been utilized for the analysis of results while entropy, 
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CRITIC, and equal weights have been only utilized for sensitivity analysis purpose which are 

given in section 8.5. The Dombi operator (0.1-1) has been utilized to calculate the aggregate 

score of the Interval Value Fermatean Fuzzy Numbers (IVFFS) based on the methodology 

defined in section 3.3.10.1 as given in Table 8.3. 

Step 4: Subsequently, the negative ideal solution has been calculated based on the weighted 

normalized decision matrix in Table 8.5. 

Table 8.2 Criteria’s weights based on different methods 

 AHP   AHP Local  AHP Global  

Economic 0.4426 

C1 0.2315 0.1025 

C2 0.1906 0.0844 

C3 0.3245 0.1436 

C4 0.2534 0.1121 

Environment 0.2242 

C5 0.3547 0.1570 

C6 0.2546 0.1127 

C7 0.1987 0.0879 

C8 0.1920 0.0850 

Social 0.1264 

C9 0.2879 0.1274 

C10 0.2976 0.1317 

C11 0.1434 0.0635 

C12 0.2711 0.1200 

Technology 0.2068 

C13 0.3357 0.1486 

C14 0.1876 0.0830 

C15 0.2597 0.1149 

C16 0.2170 0.0960 
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Table 8.3 Aggregate decision matrix of IVFFS 

 Economic Environment Technology Social Governance 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

Gasification  

ϑ−
 0.704 0.683 0.607 0.631 0.552 0.519 0.567 0.573 0.626 0.593 0.679 0.672 0.612 0.619 0.581 0.623 

ϑ+
 0.767 0.747 0.674 0.686 0.607 0.575 0.643 0.647 0.697 0.656 0.741 0.725 0.674 0.685 0.639 0.672 

σ −
 0.389 0.510 0.563 0.544 0.624 0.650 0.595 0.556 0.495 0.595 0.435 0.538 0.553 0.490 0.584 0.574 

σ +
 0.495 0.579 0.618 0.586 0.685 0.695 0.656 0.630 0.587 0.659 0.499 0.564 0.617 0.556 0.648 0.629 

Pyrolysis 

ϑ−
 0.691 0.616 0.613 0.638 0.623 0.619 0.576 0.616 0.620 0.662 0.646 0.601 0.667 0.652 0.595 0.601 

ϑ+
 0.741 0.679 0.677 0.703 0.685 0.675 0.616 0.675 0.686 0.726 0.692 0.650 0.740 0.708 0.646 0.650 

σ −
 0.489 0.548 0.551 0.450 0.515 0.574 0.627 0.540 0.530 0.588 0.574 0.587 0.407 0.561 0.622 0.587 

σ +
 0.529 0.617 0.612 0.514 0.584 0.613 0.675 0.610 0.591 0.645 0.603 0.636 0.508 0.605 0.645 0.636 

HTG 

ϑ−
 0.712 0.644 0.680 0.681 0.573 0.570 0.594 0.585 0.630 0.490 0.664 0.671 0.693 0.620 0.588 0.610 

ϑ+
 0.749 0.708 0.731 0.745 0.649 0.594 0.644 0.628 0.692 0.566 0.709 0.733 0.753 0.669 0.636 0.668 

σ −
 0.496 0.481 0.536 0.435 0.555 0.660 0.597 0.613 0.486 0.649 0.583 0.493 0.470 0.566 0.606 0.582 

σ +
 0.547 0.548 0.577 0.499 0.628 0.705 0.639 0.660 0.553 0.715 0.614 0.551 0.537 0.612 0.654 0.641 

AND 

ϑ−
 0.574 0.663 0.595 0.640 0.637 0.604 0.626 0.666 0.579 0.682 0.626 0.549 0.644 0.682 0.656 0.685 

ϑ+
 0.646 0.701 0.664 0.704 0.704 0.683 0.691 0.729 0.640 0.745 0.666 0.602 0.682 0.741 0.719 0.732 

σ −
 0.559 0.561 0.540 0.512 0.511 0.515 0.515 0.518 0.587 0.448 0.601 0.628 0.610 0.474 0.477 0.535 

σ +
 0.646 0.594 0.622 0.581 0.570 0.587 0.584 0.576 0.645 0.545 0.645 0.685 0.647 0.541 0.545 0.561 

Table 8.4 Normalized decision matrix of IVFFS 

 Economic Environment Technology Social Governance 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

Gasification  

ϑ−
 0.389 0.683 0.607 0.544 0.624 0.650 0.595 0.556 0.626 0.593 0.679 0.672 0.553 0.619 0.581 0.623 

ϑ+
 0.495 0.747 0.674 0.586 0.685 0.695 0.656 0.630 0.697 0.656 0.741 0.725 0.617 0.685 0.639 0.672 

σ −
 0.704 0.510 0.563 0.631 0.552 0.519 0.567 0.573 0.495 0.595 0.435 0.538 0.612 0.490 0.584 0.574 

σ +
 0.767 0.579 0.618 0.686 0.607 0.575 0.643 0.647 0.587 0.659 0.499 0.564 0.674 0.556 0.648 0.629 

Pyrolysis 

ϑ−
 0.489 0.616 0.613 0.450 0.515 0.574 0.627 0.540 0.620 0.662 0.646 0.601 0.407 0.652 0.595 0.601 

ϑ+
 0.529 0.679 0.677 0.514 0.584 0.613 0.675 0.610 0.686 0.726 0.692 0.650 0.508 0.708 0.646 0.650 

σ −
 0.691 0.548 0.551 0.638 0.623 0.619 0.576 0.616 0.530 0.588 0.574 0.587 0.667 0.561 0.622 0.587 

σ +
 0.741 0.617 0.612 0.703 0.685 0.675 0.616 0.675 0.591 0.645 0.603 0.636 0.740 0.605 0.645 0.636 

HTG ϑ−
 0.496 0.644 0.680 0.435 0.555 0.660 0.597 0.613 0.630 0.490 0.664 0.671 0.470 0.620 0.588 0.610 
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ϑ+
 0.547 0.708 0.731 0.499 0.628 0.705 0.639 0.660 0.692 0.566 0.709 0.733 0.537 0.669 0.636 0.668 

σ −
 0.712 0.481 0.536 0.681 0.573 0.570 0.594 0.585 0.486 0.649 0.583 0.493 0.693 0.566 0.606 0.582 

σ +
 0.749 0.548 0.577 0.745 0.649 0.594 0.644 0.628 0.553 0.715 0.614 0.551 0.753 0.612 0.654 0.641 

AND 

ϑ−
 0.559 0.663 0.595 0.512 0.511 0.515 0.515 0.518 0.579 0.682 0.626 0.549 0.610 0.682 0.656 0.685 

ϑ+
 0.646 0.701 0.664 0.581 0.570 0.587 0.584 0.576 0.640 0.745 0.666 0.602 0.647 0.741 0.719 0.732 

σ −
 0.574 0.561 0.540 0.640 0.637 0.604 0.626 0.666 0.587 0.448 0.601 0.628 0.644 0.474 0.477 0.535 

σ +
 0.646 0.594 0.622 0.704 0.704 0.683 0.691 0.729 0.645 0.545 0.645 0.685 0.682 0.541 0.545 0.561 

Table 8.5 AHP weighted normalized decision matrix of IVFFS 

 Economic Environment Technology Social Governance 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

Gasification  

ϑ−
 0.040 0.058 0.087 0.061 0.098 0.073 0.052 0.047 0.080 0.078 0.043 0.081 0.082 0.051 0.067 0.060 

ϑ+
 0.051 0.063 0.097 0.066 0.108 0.078 0.058 0.054 0.089 0.086 0.047 0.087 0.092 0.057 0.073 0.065 

σ −
 0.072 0.043 0.081 0.071 0.087 0.058 0.050 0.049 0.063 0.078 0.028 0.064 0.091 0.041 0.067 0.055 

σ +
 0.079 0.049 0.089 0.077 0.095 0.065 0.057 0.055 0.075 0.087 0.032 0.068 0.100 0.046 0.075 0.060 

Pyrolysis 

ϑ−
 0.050 0.052 0.088 0.050 0.081 0.065 0.055 0.046 0.079 0.087 0.041 0.072 0.060 0.054 0.068 0.058 

ϑ+
 0.054 0.057 0.097 0.058 0.092 0.069 0.059 0.052 0.087 0.096 0.044 0.078 0.076 0.059 0.074 0.062 

σ −
 0.071 0.046 0.079 0.072 0.098 0.070 0.051 0.052 0.068 0.077 0.036 0.070 0.099 0.047 0.072 0.056 

σ +
 0.076 0.052 0.088 0.079 0.108 0.076 0.054 0.057 0.075 0.085 0.038 0.076 0.110 0.050 0.074 0.061 

HTG 

ϑ−
 0.051 0.054 0.098 0.049 0.087 0.074 0.052 0.052 0.080 0.065 0.042 0.081 0.070 0.052 0.068 0.059 

ϑ+
 0.056 0.060 0.105 0.056 0.099 0.079 0.056 0.056 0.088 0.075 0.045 0.088 0.080 0.056 0.073 0.064 

σ −
 0.073 0.041 0.077 0.076 0.090 0.064 0.052 0.050 0.062 0.086 0.037 0.059 0.103 0.047 0.070 0.056 

σ +
 0.077 0.046 0.083 0.084 0.102 0.067 0.057 0.053 0.070 0.094 0.039 0.066 0.112 0.051 0.075 0.062 

AND 

ϑ−
 0.057 0.056 0.085 0.057 0.080 0.058 0.045 0.044 0.074 0.090 0.040 0.066 0.091 0.057 0.075 0.066 

ϑ+
 0.066 0.059 0.095 0.065 0.089 0.066 0.051 0.049 0.082 0.098 0.042 0.072 0.096 0.061 0.083 0.070 

σ −
 0.059 0.047 0.078 0.072 0.100 0.068 0.055 0.057 0.075 0.059 0.038 0.075 0.096 0.039 0.055 0.051 

σ +
 0.066 0.050 0.089 0.079 0.111 0.077 0.061 0.062 0.082 0.072 0.041 0.082 0.101 0.045 0.063 0.054 

 

Step 5: Negative ideal solution has been identified (Table 8.6) based on weightage normalized 

decision matrix (Table 8.5) through application of Eq. 3.99. The advanced CODAS method, as 

described in Section 3.3.10.1.a, was applied for the computation of Euclidean and Hamming 

distances (Eq. 3.100 and 3.101) in Table 8.7 and 8.8, respectively. The relative assessment 
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matrix has been calculated based on Table 8.7 and 8.8 summarized in Table 8.9 based on Eq. 

3.102-3.104. Finally, based on this matrix (Table 8.9), Relative Assessment Matrix (Rm) of the 

alternative ranks were determined, and using Eq. 3.105 final assessment score have been 

calculated given in Table 8.10. Further CODAS method validation performed, results of which 

are given in Section 8.5.  

Table 8.6 Negative Ideal Solution 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

ϑ−
 0.0399 0.0519 0.0855 0.0488 0.0803 0.0580 0.0453 0.0440 0.0738 0.0646 0.0397 0.0659 0.0604 0.0514 0.0668 0.0577 

ϑ+
 0.0507 0.0573 0.0953 0.0560 0.0895 0.0661 0.0513 0.0490 0.0815 0.0745 0.0423 0.0722 0.0755 0.0556 0.0731 0.0624 

σ −
 0.0729 0.0473 0.0808 0.0764 0.1000 0.0697 0.0551 0.0566 0.0748 0.0855 0.0381 0.0754 0.1029 0.0470 0.0715 0.0564 

σ +
 0.0786 0.0521 0.0893 0.0835 0.1106 0.0769 0.0607 0.0619 0.0822 0.0941 0.0410 0.0821 0.1118 0.0508 0.0751 0.0616 

Table 8.7 Euclidean distance calculation Ei 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

ϑ−
 0.012 0.004 0.006 0.008 0.009 0.012 0.007 0.004 0.005 0.018 0.002 0.011 0.019 0.003 0.004 0.004 

ϑ+
 0.008 0.003 0.005 0.007 0.010 0.009 0.006 0.004 0.006 0.017 0.003 0.011 0.013 0.003 0.005 0.004 

σ −
 0.007 0.004 0.003 0.004 0.008 0.006 0.004 0.006 0.009 0.014 0.005 0.010 0.007 0.005 0.009 0.003 

σ +
 0.006 0.003 0.003 0.005 0.009 0.008 0.004 0.006 0.008 0.013 0.005 0.011 0.008 0.004 0.006 0.004 

 

Table 8.8 Hamming distance calculation Hi 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

ϑ−
 0.039 0.012 0.016 0.023 0.025 0.038 0.024 0.013 0.018 0.061 0.007 0.036 0.061 0.008 0.011 0.011 

ϑ+
 0.024 0.010 0.013 0.021 0.029 0.028 0.019 0.015 0.020 0.057 0.009 0.036 0.041 0.010 0.011 0.012 

σ −
 0.017 0.012 0.009 0.015 0.025 0.018 0.012 0.019 0.032 0.042 0.013 0.032 0.023 0.014 0.023 0.007 

σ +
 0.017 0.011 0.008 0.016 0.027 0.023 0.015 0.020 0.026 0.039 0.014 0.036 0.024 0.011 0.014 0.009 

Table 8.9 Relative Assessment Matrix (Rm) 

 Gasification Pyrolysis HTG AND 

Gasification 0.000 0.014 0.024 0.025 

Pyrolysis -0.014 0.000 0.010 0.012 

HTG -0.024 -0.010 0.000 0.002 

AND -0.025 -0.012 -0.002 0.000 
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Table 8.10 Assessment score calculation (AHP weights) 
 

As Rank 

Gasification 0.063 1 
Pyrolysis 0.009 2 

HTG -0.033 3 
AND -0.039 4 

 

8.4 Results and discussions on multi-criteria sustainability assessment 

According to the Dombi operator based IVFFS-CODAS method, alternative ranks were 

computed. AHP results highlight the economic criteria as most important as compared to other. 

Similarly, for the entropy and CRITIC weights from the quantitative data from literature 

support this by attaining highest weights to the economic criteria. Among economic criteria, 

experts proposed ‘C3’ rate of return on investment with highest weight followed by ‘C4’ 

process maintenance and personnel cost. While ‘C5’ GHG/Particulate matter emissions in 

environment, ‘C10’ Access and technology adaptability in technology, and ‘C13’ Process 

occupational safety hazards in social governance have been ranked highest weights by the 

experts. Final ranked results of AHP-IVFFS proposed the gasification process as first ranked 

due to highest positive value, succeeded by pyrolysis and HTG, with the anaerobic digestion 

process attaining the lowest rank, as given in Table 8.10. Consequently, the gasification process 

is deemed the optimal choice among all alternatives, considering the economic, environmental, 

technological, and social-governance criteria.  

Different studies have consistently demonstrated the better economic sustainability of 

thermal valorization processes compared to AND. Thermal processes typically offer a shorter 

payback period on investments than AND [324]. Furthermore, thermal processes tend to 

achieve greater reductions in GHG emissions compared to AND. According to estimates, 

thermal processes exhibit an average GHG reduction ranging from 63% to 66%, with 

gasification processes achieving approximately 66% reduction, whereas the reduction is 
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around 23% for AND [338,339]. The energy efficiency of thermal processes typically ranges 

from 45% to 60%, with gasification processes achieving approximately 50% to 60% efficiency 

across various studies [340]. The favorable economic, environmental, and energy performance 

of the gasification process may account for its highest assessment score (as indicated in Table 

8.10), resulting in its top ranking. To enhance the robustness and validity of the findings, a 

sensitivity analysis of the data is presented in Section 8.5. 

8.5 Validation through sensitivity analysis 

The validation of the entire decision-making process was undertaken through a three-

fold approach, incorporating both subjective and objective weightages, variations in the Dombi 

operator, and the rank reversal method. Fig. 8.B presents illustrative results in the form of a 

spider graph. According to Fig. 8Ba, with a Dombi operator value of 0.1, the gasification 

process consistently secured the 1st rank regardless of the application of AHP, equal, entropy, 

or CRITIC weightages (as detailed in Appendix A21). However, there was a change in the 

ranking of the pyrolysis process, transitioning from 2nd to 3rd and 4th positions in the case of 

entropy (QT Analysis) and equal weights, respectively. Conversely, altering the Dombi 

operator from 0.1 to 0.3 (Fig. 8Bb) yielded no significant impact on the rankings of the 

alternatives. While when criteria 9 and 16 were omitted, the gasification process consistently 

secured the 1st rank. Meanwhile, the rankings of AND and pyrolysis experienced a reversal, 

with AND occupying the 2nd rank and pyrolysis falling to the 3rd position. Tables 8.11 and 8.12 

provide a comprehensive summary of the sensitivity analysis under various parameters. In all 

three-fold validation cases, involving variations in the Dombi operator or the omission of 

criteria at different weights, the gasification process consistently held the 1st rank, followed by 

pyrolysis and AND at the 2nd or 3rd positions, while HTG consistently ranked at the bottom. 

This trend of HTG may be attributed to the lack of process  
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maturity, extreme temperature and pressure requirements, and the necessity for liquid waste 

feed, which is not frequently available in the case of MSW. Therefore, based on this sensitivity 

analysis, it can be concluded that the gasification process is more sustainable compared to 
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pyrolysis, HTG, and AND, considering economic, environmental, technological, and social-

governance aspects.   

Table 8.11 Sensitivity analysis at different Dombi Operator and weights 

  Dombi Operator Equal Wt.  Entropy Wt.  AHP Wt.  CRITIC Wt.  

Gasification 

0.1 

1 1 1 1 
Pyrolysis 4 3 3 2 

HTG 3 4 3 4 
AND 2 2 4 3 

Gasification 

0.2 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 3 4 
AND 2 2 4 3 

Gasification 

0.3 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 3 4 
AND 2 2 4 3 

Gasification 

0.4 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 3 4 
AND 2 2 4 3 

Gasification 

0.5 

1 1 1 1 
Pyrolysis 4 3 3 3 

HTG 3 4 4 4 
AND 2 2 2 2 

Gasification 

0.6 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 4 4 
AND 2 2 3 3 

Gasification 

0.7 

1 1 1 1 
Pyrolysis 3 3 2 2 

HTG 4 4 4 4 
AND 2 2 3 3 

Gasification 

0.8 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 4 4 
AND 2 2 3 3 

Gasification 

0.9 

1 1 1 1 
Pyrolysis 3 3 2 2 

HTG 4 4 4 3 
AND 2 2 3 4 
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Table 8.12 Sensitivity analysis of ranking results with skipped criteria and different weights 

  Criteria 
skipped Equal Wt.  Entropy Wt.  AHP Wt.  CRITIC Wt.  

Gasification 

16 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 4 4 
AND 2 2 3 3 

Gasification 

13 

1 1 1 1 
Pyrolysis 4 3 2 2 

HTG 3 4 4 4 
AND 2 2 3 3 

Gasification 

9 

1 1 1 1 
Pyrolysis 4 3 3 2 

HTG 3 4 4 4 
AND 2 2 2 3 

Gasification 

8 

1 1 1 1 
Pyrolysis 4 3 3 2 

HTG 3 4 4 4 
AND 2 2 2 3 

 

8.6 Conclusion: Multi-criteria for decision making 

MSW constitutes a significant environmental concern; however, the prospect of 

converting this waste into a valuable resource emerges through effective valorization processes. 

For this first time, this study is conducting an in-depth analysis that integrates economic, 

environmental, technological, and social-governance considerations to assess gasification, 

pyrolysis, hydrothermal gasification, and anaerobic digestion. Following the key findings of 

decision making: 

• The utilization of IVFFS-COADS with Dombi operator integration reveals 

“gasification” as the most sustainable process across economic, environmental, 

technological, and social-governance criteria, compared with HTG, which ranks as the 

least sustainable. Pyrolysis secures the 2nd rank, with AND following in 3rd place.  

• A threefold sensitivity analysis, encompassing weightage, Dombi operator, and rank 

reversal methods, consistently corroborates the finding that gasification stands out as 
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the most sustainable process, while HTG consistently ranks as the least sustainable. 

Pyrolysis and AND interchange between 2nd and 3rd positions under different scenarios.  

These findings underscore the pivotal role of government policies and public support in 

influencing the success of such waste valorization projects. Hence, governmental interventions, 

such as awareness campaigns and incentivization, can be pivotal in garnering public interest 

and ensuring the success of these projects, ultimately fostering a mutually beneficial outcome 

for all stakeholders involved.  

Quantitative value weights calculations which are used in the sensitivity analysis are limited to 

the main criteria due to data limitations. All sixteen data criteria were not available, therefore, 

to perform sensitivity analysis equal number criteria weights have been calculated from the 

literature. Furthermore, to limit the scope of research only primary processes of MSW 

valorization have been compared in this study while secondary processes like gasification to 

methanol or dimethyl ether etc. are not the part of this research. In future, maybe an advanced 

MCDM model can be developed to integrate qualitative and quantitative data simultaneously 

to make an informed decision. 

9 Policy and managerial implications 

Governments can address biomass waste disposal issues along with sustainable energy 

production by using thermal valorization technologies. This is especially effective in remote 

areas where livestock and poultry farms produce a lot of biomass waste. However, specific 

policies and actions in the form of subsidies, tax breaks, or direct financial assistance are 

required to carry out the biomass waste valorization approach. There is also a need to adopt 

hybrid models by focusing on specific places for the proper usage of existing biomass waste 

potential to meet energy and agricultural needs. Furthermore, supply chain optimization along 

with geographical analysis can be utilized to determine the best locations for the installation of 
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these plants based on the availability of biomass feedstock and market demand to minimize the 

emissions. 

Thermal valorization technologies offer better returns, more eco-friendly compared to 

direct land disposal of biomass waste. Among thermal processes; pyrolysis and gasification 

provide economic advantages over biological methods. However, they require significant 

capital investment and entail substantial operational costs. In South Asian countries, although 

legislation and plans exist for biogas plants, other conversion methods, such as pyrolysis and 

gasification, have been largely overlooked by governments. Therefore, to attract stakeholder 

interest, it is essential to commercialize final products like biochar, biofuel, and biogas, and to 

provide financial incentives for these technologies. 

Another aspect of this study is the valorization of biomass through the integration of 

pyrolysis and gasification processes to enhance sustainability in terms of energy efficiency, 

economic viability, process safety, and power generation potential. Different scenarios for 

process optimization have been explored in chapter 4-7 to identify the most sustainable 

approach based on economic performance, electric power potential, energy efficiency, and 

safety. The sustainability index is evaluated by assigning different preference weights for SI 

score calculation using the BWM. Economic analysis indicates that the government should 

provide a subsidy per ton basis to make this process economically attractive to investors, as the 

process remains economically feasible at this subsidy level even if efficiency drops from 100% 

to 70%. Policymakers can prioritize indicators based on these scenarios, while investors can 

adjust process input parameters to enhance sustainability. Therefore, the analysis of economic 

performance, safety, electric power potential, and energy efficiency offers valuable insights for 

policymakers to develop policies that attract investors and promote the sustainable valorization 

of biomass waste. 
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A novel approach has been developed and applied to evaluate different waste valorization 

methodologies. The IVFFS method, integrated with CODAS, has been used to identify and 

rank these processes. This study offers insights for stakeholders on selecting sustainable waste 

valorization methods for biomass. Specifically, the study identifies the optimal alternative 

based on four criteria: economic, environmental, technological, and social governance. These 

criteria were identified from the literature and evaluated by experts. Based on the results, short-

term, intermediate-term, and long-term action plans are proposed which are also depicted in 

Fig. 9.A: 

Short-term actions: Current waste valorization processes necessitate substantial investments 

and technical assistance. However, solely relying on investor contributions may not be feasible. 

Consequently, there is a requirement to advocate for the establishment of technical support 

programs and investment opportunities that encompass not only individual investors but also 

financial institutions. By involving financial institutions, interested parties seeking to 

implement waste valorization processes can benefit both technically and financially, thereby 

Fig. 9.A. Policy framework 
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fostering a more conducive environment for the adoption and execution of these biomass waste 

valorization processes. Furthermore, environment-based incentives awareness and incentive 

programs need to be initiated. As 100% operational efficiency of the installed capacity does 

not seem feasible to achieve and therefore, operational efficiency-based scenarios can be 

analysed considering the economic aspects. Stakeholders can estimate the economic results of 

this process at different efficiencies to estimate realistic economic conditions. 

Intermediate-term actions: Regulatory institutions hold a pivotal responsibility with public 

sector support to plan the establishment of pilot projects for waste valorization. This entails not 

only the execution of pilot initiatives but also the implementation of workforce training 

programs within these projects. The active involvement of academic and industrial experts 

becomes imperative to ensure the efficacy and success of these pilot endeavors. These pilot 

projects, besides serving as platforms for workforce development, carry the added benefit of 

incentivizing investors to deploy waste valorization plants strategically. Integration of AI can 

be done with these valorization processes to optimize the process sustainability. To make these 

technologies more affordable, regulators might introduce give-and-take schemes. The 

government will provide subsidies and financial benefit through carbon credits against these 

installations, which will cost at least $40-100 per 1000 kg CO2 [210] and cost saving in the 

form of litter disposal. 

Long-term actions: The significance of public awareness stands as a decisive factor that can 

either make or break initiatives of this nature. To ensure a sustained impact and foster a long-

term perspective, comprehensive awareness and training programs should be initiated in the 

targeted areas. This needs not only the establishment of development and training modules 

within technical institutes but also the incorporation of waste technologies and related 

awareness into educational textbooks. Furthermore, periodic awareness campaigns should be 

conducted to actively promote these action plans and strategies, thereby fostering a continuous 
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and informed engagement with the community. Optimal plant location is a crucial factor in the 

implementation of biomass waste processes. Redesign of supply chain network along with 

application of geo-graphical information system (GIS). Furthermore, governmental support 

can be extended through subsidies to incentivize investors participating in these setups, further 

strengthening the viability and attractiveness of biomass waste processes. Similarly, long-term 

regulatory framework can also be a part of this policy framework. 

The implementation of these short-term, intermediate, and long-term plans assumes a crucial 

role in expediting the biomass waste valorization process within developing countries. This 

multifaceted approach not only addresses immediate needs but also establishes a framework 

for sustained progress and advancement in waste management practices. The strategic 

incorporation of comprehensive planning across various temporal horizons serves to enhance 

the efficiency and effectiveness of biomass waste valorization endeavors, contributing 

significantly to the overarching goal of sustainable waste management in developing nations. 

10 Research conclusions, limitations, and future directions  

10.1 Major contribution 

This study evaluated biomass thermal and biological conversion technologies and land 

disposal in South Asia, focusing on economic feasibility, SWOT-PEST analysis, and 

environmental impact. A complete summary of this study is given in Table 10.1. Findings 

indicate that utilizing 60% of poultry litter could provide significant electricity potential—8893 

MW/d in Pakistan, 8745 MW/d in India, and 4803 MW/d in Bangladesh. Fast pyrolysis 

emerged as economically and technologically feasible, but it is hindered by insufficient policies, 

while anaerobic digestion benefits politically. The HTG simulation model showed that HTG is 

environmentally friendly and efficient, though less sustainable compared to gasification, which 

ranked highest in a comprehensive analysis integrating economic, environmental, 
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technological, and social-governance criteria. Gasification was found to be the most sustainable 

process, while HTG was the least, with pyrolysis and anaerobic digestion varying between 

second and third place depending on the scenario. Government policies and public support are 

crucial for the success of waste valorization projects.  

The tri-generation processes for biomass waste valorization, including G1: Gasification to 

SOFC and CHP, G2: Gasification to DME and CHP, and G3: Co-gasification for hydrogen 

production, demonstrate significant advancements in energy efficiency and sustainability. The 

G1 process, optimized using AI model, shows a 34.6% improvement in exergy efficiency over 

traditional gasification, although it requires higher capital investment. The G2 process, 

optimized through PSO, achieves 57% energy efficiency and produces DME at competitive 

market rates, proving economically feasible with an IRR up to 26.8%. The G3 process for 

hydrogen production is economically viable at operational efficiencies above 90%, with 

potential to generate substantial electricity and hydrogen, despite high exergy destruction costs 

in key components. These findings (Table 10.1) underline the potential for sustainable biomass 

valorization through advanced tri-generation methods, highlighting the need for further 

economic analysis and optimization to enhance feasibility and attractiveness to investors. 

PG-based tri-generation process has been developed for PL valorization to produce DME 

and electrical power using a comprehensive 4E (energy, exergy, economic, and environmental) 

analysis. The optimized process improved DME efficiency by 6%, achieved a thermal energy 

to electrical power capacity of 1271 kW, and demonstrated economic feasibility at efficiencies 

of 70% or higher. Environmentally, DME production from PL syngas is better than coal-based 

DME and PL composting. Furthermore, the integration of pyrolysis and gasification for 

biomass waste valorization showed better performance across all scenarios compared to the 

basic process, with energy efficiencies of 46%-66% and electric power potentials of 2304-4044 

kWh. The process safety risks were lower for the optimized scenario 1, which had the highest 
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sustainability index score (0.563). These findings are summarized in Table 10.1 which provide 

valuable insights for policymakers and stakeholders on sustainable biomass valorization. 

CNN, ANN, GBR, XGB, and RFR based AI-models have been developed to predict H2, 

CH4, CO2, and CO levels in syngas produced by the gasification process. Using different 

dataset combinations, the study aimed to find the most reliable prediction model with higher 

R² and lower MSE, MAE, and MAPE. A 90:10 training-to-testing dataset ratio yielded the best 

results across all AI algorithms. The XGB model outperformed others, achieving coefficients 

of determination between 0.85 and 0.95 with low error metrics. AI results indicate that 

hydrogen, methane, and carbon monoxide mole fractions can be increased by using biomass 

with higher hydrogen and oxygen content and by increasing temperature and biomass residence 

time during gasification. Hence, the XGB algorithm is recommended for predicting gasification 

outputs, as it surpassed other models in accuracy without requiring complex simulations or 

experimental setups. 

Table 10.1 Summary of the research work  

Study Phase Novelty Process Output Study Conclusion 

[324] 1 SWOT, economic, electric 
potential and environment 
analysis of waste valorization 
techniques 

AND, FP, SP, 
AD 

SWOT, EA, 
LCA, and 
power (MW) 

FP payback period is 299 days, while SP 5036, and 
AND in loss. 
AND is eco-friendly compared to FP and SP. 
Pakistan, India, and Bangladesh have a potential of 
8893 MW/d, 8745 MW/d, and 4803 MW/d 
electricity 

[327] 2 HTG PL economic, environment, 
energy analysis 

HTG Syngas, steam 10% cheaper steam production compared to coal or 
gas from PL HTG 
Energy efficiency of process is 61.3% 
 
HTG is eco-friendly with 250 µt 
as compared to land disposal 360 µt 

[158] 2 H2 Prediction through Neural 
Network, optimize H2, HHV, 
LHV 

Gasification H2, HHV, LHV PSO, RSM, CNN models applied to predict output 
with process R2>0.95 and MSE<0.01  

[246] 2 Quality syngas prediction in 
HTG process; CNN, ANN, GBR, 
XGB, RFR. 

HTG H2, CO2, CO, 
CH4 

CNN, ANN, GBR, XGB, and RFR models applied 
but XGB model has better predictability results. R2 

0.85-0.95, MAE 0.05-0.15, MAPE 0.4-7.1%. 
Hence, XGB is a better predictability algorithm for 
similar processes. 

[303] 2 PL to gasification process by 
integration of SOFC, CHP, XGB 
prediction model for H2, steam, 
electric power 

Gasification, 
SOFC, CHP 

H2, steam, 
electric power 

Process Exergy efficiency is 34.6% and XGB model 
(R2>0.97) is suitable for process prediction. 
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[337] 2 HTG, gasification, pyrolysis 
safety analysis and strategies for 
risk reduction. 

Gasification, 
Pyrolysis, 
HTG 

NuDIST safety 
score, and 
Hierarchy of 
risk control 

SI for HTG is 210.2 while it is 
228.5, 226.4 for Gasification and pyrolysis. A 
hierarchy of risk control in these processes was also 
proposed.  

[193] 3 Develop a novel multi-
generation valorization process 
for syngas utilization in SOFC, 
CO2 liquification, and CHP 

Gasification, 
SOFC, CHP 

Electric power, 
CO2 

Process payback period is 1888 days at 100-90% η; 
while 610 days at 5$ subsidy 
IRR of process is 7% for base and 20% subsidy at 
100% η; 
Process steam to electric power potential is 1331 
kW for 10 t/h  

[170] 2 Prediction and optimization of 
yield (H2), HHV, and LHV  

HTG Optimization of 
H2, LHV, HHV 

HDMR model optimization MAE  
0.02-0.05, MSE 0.001-0.009, and MAPE 1.9-
3.49%. Hence, this optimization model can be 
applied for waste valorization. 

[41] 1 Gasification process review 
including technological, process 
parameters routes for output 
optimization 

Gasification Optimized 
parameters, 
technology, 
catalyst, LCA 

LCA concludes that biomass waste gasification 
process can reduce 60 to 75 CO2 as compared to land 
disposal. China, USA, Brazil, Pakistan, India, and 
Bangladesh have the potential to reduce CO2 by 
68.8, 71.3, 45.6, 10.1, 9.9, and 5.4 million t/yr by 
only application of poultry litter gasification as 
compared to land disposal. 
 

[64] 1 Critical review of cause-and-
effect analysis, economic, 
environment, safety analysis 

HTG HTG review 
analysis from 
literature 

Syngas quality can be improved by managing 
process parameters such as 500-550 oC, 25-28 MPa, 
120-150 min resident time, and 10-20% of the solid 
biomass content. H2 cost 1.94 to 7.0 $/kg with a 
payback period of 3.3-5.16 yrs. 
 

[279] 2,3 PL gasification to DME process 
has been developed and 3E, 1S 
Sustainability analysis of this 
process has been performed by 
optimization of PSO.  

Gasification, 
DME, CHP 

DME, CHP, 
and CO2  

The IRR of PSO based optimized model is 16% at 
80% η with energy efficiency of 57%. LCA predict 
DME 442 µt 
PL gas 309 µt. This tri-generation process exhibits 
57% energy efficiency, which is 12% higher than 
that of PL gasification (45%) 
 

[334] 2,3 Plasma gasification tri-
generation for DME, CHP has 
been developed and its 
sustainability analysis in terms of 
techno-economic, environment, 
energy, exergy, and emergy have 
been done. This process has been 
optimized by radial base 
function. 

PG, DME, 
CHP 

DME, power Process PBP is 2.21 yrs. for optimized process while 
it is not feasible without optimization below 90% η. 
Process energy efficiency is 44.3-48.5% and exergy 
efficiency are 41.3-42.7%. 
LCA (µt) DME PL is eco-friendly with 191 µt as 
compared to DME Coal 599 µt.  
Thermal energy to electric power potential is 1271 
kWh per 10 t/h 
 
 

[335] 2,3
, 
4 

BM waste valorization by the co-
generation of pyrolysis and 
gasification processes through 
techno-economic, energy, and 
safety analysis. Process 
sustainability enhanced by 
pattern search algorithm. 

Pyro-
gasification, 
CHP, CO2 

DME, power, 
CO2 

IRR (%) of the basic process varies from 37 to 2% 
when the process efficiency dropped from 100 to 
80%, and it varies from 44 to 6% for the optimized 
process without any subsidy. The optimized process 
has a potential of 2,788-4,044 kW of electric power 
generation from the thermal energy of the process 
while it is only 2,302 kW for basic scenario. 
 

[304] 2,3 To produce blue H2, and green H2 
by comixing feedstock 
comprising biomass and plastic 
waste. Furthermore, an advanced 
exergy and exergoeconomics 
analysis have been performed.  

Co-
gasification, 
AEC, CHP 

Blue H2, green 
H2, CH4, CO2 
and power 

Process IRR is 8% at 70% η $10 subsidy; while 47-
37% at 100-90% η no subsidy. Exergy efficiency 
loss at the gasifier is around 40%, and 36% for 
HeatXC. Therma energy has a potential of 1079 
kWh electricity per 20 t/h 

[339] 4 Identification of economic, 
environment, technological, and 
social governance indicators for 
selection and CODAS for 
ranking of the sustainable 
valorization process by 
comparing quantitative and 
Qualitative criteria  

HTG, 
gasification, 
pyrolysis, 
AND 

Gasification is 
sustainable 
with AS of 
0.063. 

The thermal valorization technique gasification 
identified as the sustainable process with assessment 
score (As) of 0.063, followed by pyrolysis and HTG 
with As of 0.009 and -0.033, respectively. The 
threefold validation, encompassing weights 
variation, rank reversal, and changing DO, 
consistently supported the finding that gasification 
stands out as the most sustainable process. 
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[341] 2,3 Gasification process for ethanol 
and acetaldehyde production has 
been developed which is techno-
economic and energy 
sustainable. Prediction and 
optimization have been done 
through ANN. 

Gasification, 
Ethanol, 
Acetaldehyde
, CHP 

Acetaldehyde, 
power, ethanol 

Process sustainability analysis demonstrated an 
energy efficiency of 64% while economic viability 
up to 80% process efficiency with an IRR of 6% and 
a PBP of 2107 days with energy efficiency 64%. 
 
700 kWh of electricity has been produced from 10 
t/h ANN prediction performance is R2 0.92-0.98,  
MAE 0.03-0.1, and MAPE 0.1-1.12% 

Quantitative and qualitative decision-making analyses related to biomass waste 

valorization process, supported by expert opinion and existing literature, identify the 

gasification process as the most reliable and sustainable option among pyrolysis, hydrothermal 

gasification, and anaerobic processes in the developing countries. Therefore, a gasification-

based thermal process is recommended for biomass waste valorization due to its biomass waste 

type processing flexibility, scalability, energy efficiency, economic viability, and technical 

process maturity. 

Table 10.2 Summarized causes and effect relation of gasification process  

Parameters H2 CO CO2 CH4 Tar Char CGE CCE LHV HHV ROR 

Temperature ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ 

Pressure ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ 

Gasifying Agent ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ 

Resident Time ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ 

Particle Size ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ 

Target (H2) Catalyst ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ 

Table 10.2 [41] represents the general relationship between process parameters and 

gasification output through a cause-and-effect analysis based on this research findings with 

some exceptions. In Table 10.2, arrows pointing in the same direction between parameters and 
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output attributes indicate a directly proportional relationship (green color), whereas arrows 

pointing in opposite directions denote an inverse correlation (red color). According to the 

findings in Table 10.1, an increasing process temperature correlates with increased yields of 

H2 and CO, while reduction in the quantities of CO2 and CH4. Furthermore, it also increases in 

CGE, CCE, LHV, HHV, and the rate of reaction (ROR) are observed, accompanied by 

reduction in tar and char generation from BM. While pressure does not have significant impact 

on syngas yield, it reduces the rate of reaction, contributing to a higher percentage of tar and 

char in the syngas. The influence of various GAs on the gasification process exhibits variability, 

specifically with O2 and steam demonstrating a more concrete effect in enhancing the syngas 

quality compared to air. Otherwise, all GAs follows similar patterns, but the quantity of GA 

correlates with increased yields of H2 and CO, simultaneously lessening the quantities of CO2, 

CH4, tar, and char in the syngas. Furthermore, there is an improvement observed in CCE, CGE, 

and the rate of reaction. 

10.2 Limitations and future directions 

All case studies from chapter 4-7 are based on some assumptions which have been 

summarized in methodology chapter 3. Economic analysis is limited to small-scale plants with 

some assumptions mentioned in chapter 3 and LCA is limited to system boundaries from waste 

transportation to final production at waste valorization plant while civil infrastructure work 

LCA is not being incorporated. Similarly, the social aspects of the valorization process, 

including plant location selection and occupational safety assessment, are not part of this study 

while only process safety index have been covered. But that was a macro-level study of the 

primary processes rather than the tri-generation process [342]. Electric power potential 

calculations relied on claimed efficiencies of steam turbines and generators, subject to change 

with improved component efficiencies. Therefore, the social aspects of the valorization process, 
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plant location selection, and operational occupational safety assessment will be incorporated 

in our future work to make this process more sustainable and safer. 

An analysis has been conducted on the sustainability of gasification, focusing on its energy, 

economic, and safety aspects. There are some other social aspects in terms of job generation, 

contributions toward society, and macro/micro level contribution of the work towards the 

environment are still missing in the work, which will be covered in future work. Furthermore, 

due to regional aspects and techno-economic variations, some assumptions have been 

considered in the calculation of all indicators given in the respective sections. In current work, 

different tri-generation processes related to SOFC, dimethyl ether, methanol, carbon dioxide, 

hydrogen etc. production has been developed. Similarly, these processes can be optimized by 

the application of PSO (section 3.2.2.2) and pattern search algorithms (section 3.2.2.4). 

Decision making modeling regarding poly-generation optimal techniques selection based on 

energy, exergy, economic, environment, and safety perspectives. PESTL criteria are also under 

consideration which will be presented in future work. Furthermore, valorization process plant 

location selection is also an important factor which is also not included in this current work. 

Therefore, these works will be included in the future work. 
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Appendix   

A1. Description of 1-9 Likert scale for AHP  

Likert scale  Meaning of the number 

1 Equal importance 

2 Somewhat between equal and moderate importance 

3 Moderately more important than 

4 Somewhat between moderate and strong importance 

5 Strongly more important than 

6 Somewhat between strong and very strong importance level 

7 Very strongly more important than 

8 Somewhat between the very strongly and absolute level of higher importance 

9 Absolutely more important than 

 

A2. Aspen Plus process simulation for waste co-gasification to produce green H2  
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A3. Aspen Plus process simulation for alkaline electrolysis cell to produce green H2  

A4. Aspen Plus process simulation for Gasification, SOFC, and CHP based process  
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A5. Solid Oxide Fuel Cell Voltage and Current Calculations 

Voltage and Current Calculations for SOFC [98,252,270] 

Voltage Losses R A,A F (C/mol) R (J/mol.K) TOP (K) KAN PH2 (bar) PO2 (bar) EAN m(slope) 
  

Anode 4.91628E-05 96485 8.314 1073 2.13E+08 1 1 110000 0.25 
  

 
RA,C F (C/mol) R (J/mol.K) TOP (K) KCA PO2 (bar) PO 

(bar) ECA (J/mol) m(slope) 
  

Cathode 9.54848E-05 96485 8.314 1073 1.49E+10 1 1 160000 0.25 
  

Ohmic VOA 
 

PAN (mῼ) J tA (m) Dma (m) A 
    

Anode 0.000596263 
 

8.14343E-06 18.98908 0.0001 0.022 0.804 
    

 
VOC 

 
PCA (mῼ) J tC (m) Dma (m) B A 

   

Cathode 0.000549935 
 

0.000141933 18.98908 0.0022 0.022 0.13 0.804 
   

 
VO,INT 

 
PINT (mῼ) J TINT (m) Dma (m) Wint 

    

Interconnection 0.000309722 
 

0.025 18.98908 0.000085 0.022 0.009 
    

 
VO,E 

 
PE (mῼ) J tE (m) 

      

Electrolyte 3.90625E-08 
 

5.14276E-05 18.98908 0.00004 
      

Concentration VC,A F (C/mol) R (J/mol.K) TOP (K) tA (m) DA,eff (m) YH2 (moles) YH2O (mole) Psofc J 
 

Anode 0.0076 96485 8.314 1073 0.0001 0.022 0.04862 0.048622 1 18.989 
 

 
VC,C F (C/mol) R (J/mol.K) Psofc dO2 (kg/m3) YO2 

(moles) 

TOP (K) Dc,eff (m) J tc Psofc 

Cathode 0.000645 96485 8.314 1 1.429 0.0243 1073 0.022 18.989 0.0022 1 

Ideal Voltage Vid Vid F (C/mol) Gibb Dgf 

(J/mol) 

        

 
1.115 96485 -215210 

        

Nernst Voltage 

VNr 

VNr Vid Vid R (J/mol.K) T(K) PH2 (bar) PH2O (bar) PO2 (bar) 
   

 
1.115 96485 1.115 8.314 1073 1 1 1 

   

Current (I)  I (A/m2) F H2,cons   
      

 
1824.409751 96485 0.034035731   

      

Current Density 

(J)  

J I (A) A (m2) mA/cm2 
       

 
18.989 1824.41 96.077 189.891 

       

Diffusion 

Coefficient Dik  

Dik TOP (K) Mi (molc. wt. at 

anode) 

Mk (molc. wt. 

at cathode) 

P(bar) Vi Vk  
   

 
1.61E-01 1073 2.016 32 1 0.0098 0.00055  

   

Actual Voltage  Vact (V) Vnr (V) Vo (V) Va (V) Vc (V)    
   

 
0.775 1.115 0.00031 0.0070 0.000645    
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DC Power  DCP Vact I      
   

 
1414.11 0.775107153 1824.41      

   

where Ȑ𝑨𝑨,𝑨𝑨 is the specific resistance of anode, F= Faraday’s constant, 𝑲𝑲𝑨𝑨𝑨𝑨 are the pre-exponential factor of anode, Po is the reference pressure (1 bar), Pi is the 

partial pressure of each species, 𝑬𝑬𝑨𝑨𝑨𝑨 is the activation energy of anode, Ȑ𝒈𝒈is the general gas constant, 𝑻𝑻𝒐𝒐𝒐𝒐 is the operating temperature, and m is slope, Ȑ𝑨𝑨,𝑪𝑪 is the 

specific resistance of cathode, 𝑲𝑲𝑪𝑪𝑪𝑪 are the pre-exponential factor of cathode, 𝑬𝑬𝑪𝑪𝑪𝑪is the activation energy of cathode, 𝑽𝑽𝑶𝑶,𝑨𝑨 is the ohmic loss of anode, j is current 

density, 𝝆𝝆𝑨𝑨𝑨𝑨 is the anode resistance, A ohmic loss, 𝑫𝑫𝒎𝒎𝒎𝒎 is cell average diameter (m),  𝒕𝒕𝑨𝑨 anode thickness (m), 𝑽𝑽𝑶𝑶,𝑪𝑪 is the ohmic loss of cathode, j is current density, 

𝝆𝝆𝐂𝐂𝐂𝐂 is the cathode resistance, A and B ohmic loss, 𝑫𝑫𝒎𝒎𝒎𝒎 is cell average diameter (m),  𝒕𝒕𝑪𝑪 cathode thickness (m), 𝑽𝑽𝑶𝑶,𝑰𝑰𝑰𝑰𝑰𝑰 is the ohmic loss of interconnection, j is 

current density, 𝝆𝝆𝑰𝑰𝑰𝑰𝑰𝑰 is the interconnection resistance, 𝑫𝑫𝒎𝒎𝒎𝒎 is cell average diameter (m),  𝒕𝒕𝑰𝑰𝑰𝑰𝑰𝑰 interconnection thickness (m), 𝑾𝑾𝑰𝑰𝑰𝑰𝑰𝑰is the width of Int., 𝑽𝑽𝑶𝑶,𝑬𝑬 is the 

ohmic loss of electrolyte, j is current density, 𝝆𝝆𝑬𝑬 is the electrolyte resistance, 𝒕𝒕𝑬𝑬 electrolyte thickness (m), Ȑ𝒈𝒈is the general gas constant, F is Faraday’s constant, 

PSOFC is the pressure in SOFC, 𝑻𝑻𝒐𝒐𝒐𝒐 is the operating temperature, 𝑫𝑫𝑨𝑨,𝒆𝒆𝒆𝒆𝒆𝒆  is the diffusion co-efficient of anode, 𝒕𝒕𝑨𝑨is anode thickness, 𝒚𝒚𝑯𝑯𝟐𝟐
𝟎𝟎   is average H2 molar 

fractions, 𝒚𝒚𝑯𝑯𝟐𝟐𝑶𝑶
𝟎𝟎   is average H2O molar fractions, 𝑫𝑫𝑪𝑪,𝒆𝒆𝒆𝒆𝒆𝒆  is the diffusion co-efficient of cathode, 𝒕𝒕𝑪𝑪is cathode thickness, 𝒚𝒚𝑯𝑯𝟐𝟐

𝟎𝟎   is average H2 molar fractions, 𝜹𝜹𝟎𝟎𝟐𝟐 is 

oxygen density, 𝑽𝑽𝒊𝒊𝒊𝒊 is ideal voltage, 𝑷𝑷𝑯𝑯𝟐𝟐𝑶𝑶is the pressure of H2O, 𝑷𝑷𝑶𝑶𝟐𝟐 is the partial pressure of oxygen, − △ 𝒈𝒈𝒇𝒇 Gibbs free energy formation, current generated by 

SOFC (𝑰𝑰) and A is the SOFC active area, 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂actual voltage of the SOFC, 𝑽𝑽𝒐𝒐ohmic voltage lose, 𝑽𝑽𝒐𝒐activation voltage losses, and 𝑽𝑽𝒄𝒄 concentrate voltage losses. 

 

A6. Aspen Plus simulation model for DME and Methanol (Process G2)  
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A7. Advanced exergy and exergoeconomics analysis (Process G3) 

 

Exergy 

Analysis 

Exergy 

(Drier) 

Exergy 

(Gasifier) 

Exergy 

(Comp. 1) 

Exergy 

(Heat 

XC) 

Exergy 

(Turbine) 

Exergy 

(AEC) 

Exergy 

(Flash Sep) 

Exergy 

(Cool 1) 

Exergy 

(Comp. 2) 

Exergy 

(Comp. 3) 

Exergy 

(Sep. 1) 

Exergy 

(Cool 3) 

Exergy 

(Sep. 2) 

Exergy 

(Cool 4) 

Exergy 

(Sep. 3) 

Destructive 

Exergy 
4280 9979.540724 7 9245 13684 1917 580 797 5 516 439 567 144 522 147 

Exergy In 23345 26407 44340 25808 35088 7100 25808 26025 26025 26536 26536 2478 2622 1540 1687 

Exergy Out 19065 16427.45928 44333 16563 21404 5183 25228 25228 26020 26020 26097 1911 2478 1018 1540 

Chemical Exergy 2144.881124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Physical Exergy 7.664 syngas 0 0 0 0 0 0 0 0 0 0 0 0 0 

Product Exergy 19065 5512 44333 4018 21404 4018 25228 25228 26020 26020 26097 1911 2478 1018 1540 

Fuel product 

exergy 
9380.386989 20895 7 21790 13684 3082 580 797 5 516 439 567 144 522 147 

Fuel exergy 28445.38699 26407 44340 25808 35088 7100 25808 26025 26025 26536 26536 2478 2622 1540 1687 

Product exergy 19065 5512 44333 4018 21404 4018 25228 25228 26020 26020 26097 1911 2478 1018 1540 

endogenous 

irreversibility  
3495.318055 6208.145523 6.998894903 5933.235237 8347.364797 1399.41 566.9652821 772.5924 4.999039 505.9662 431.7374 437.2627 136.0915 345.0623 134.1909 

exogenous 

irreversibility  
784.6819447 3771.3952 0.001105097 3311.764763 5336.635203 517.59 13.03471792 24.40765 0.000961 10.03377 7.262624 129.7373 7.908467 176.9377 12.80913 

irreversibility at 

real condition 
4280 9979.540724 7 9245 13684 1917 580 797 5 516 439 567 144 522 147 

unavoidable 

irreversibility  
428 498.9770362 0.7 92.45 1368.4 785.97 58 318.8 0.5 30.96 43.9 28.35 5.76 26.1 5.88 

unavoidable 0.183336903 0.377912702 0.000157871 0.358222257 0.38999088 0.27 0.022473652 0.030624 0.000192 0.019445 0.016544 0.228814 0.05492 0.338961 0.087137 

avoidable 

irreversibility 
3852 9480.563688 6.3 9152.55 12315.6 1131.03 522 478.2 4.5 485.04 395.1 538.65 138.24 495.9 141.12 

unavoidable 

endogenous 

irreversibility 

2.216311361 9820.922854 6.998895077 9455.289751 10121.99848 1731.907295 567.2549771 773.3286 4.99904 506.1595 431.8565 464.0469 136.5144 397.0394 135.2612 

endogenous 

irreversibility 

product 

0.34 6208.145523 6.998894903 5933.235237 8347.364797 1399.41 566.9652821 772.5924 4.999039 505.9662 431.7374 437.2627 136.0915 345.0623 134.1909 

unavoidable 

exogenous 

irreversibility  

425.7836886 -9321.945818 -6.298895077 -9362.839751 -8753.598482 -945.9372952 -509.2549771 -454.529 -4.49904 -475.199 -387.957 -435.697 -130.754 -370.939 -129.381 

avoidable 

endogenous 

irreversibility  

3493.101744 -3612.777331 -1.74449E-07 -3522.054513 -1774.633685 -332.4972952 -0.289695065 -0.73626 -1.8E-07 -0.19324 -0.11917 -26.7842 -0.42284 -51.977 -1.07029 

avoidable 

exogenous 

irreversibility  

358.8982561 13093.34102 6.300000174 12674.60451 14090.23369 1463.527295 522.2896951 478.9363 4.5 485.2332 395.2192 565.4342 138.6628 547.877 142.1903 

irreversibility 

rate of 

mexogenous 

784.6819447 3771.3952 0.001105097 3311.764763 5336.635203 517.59 13.03471792 24.40765 0.000961 10.03377 7.262624 129.7373 7.908467 176.9377 12.80913 

Exergoeconomic 

analysis 

Exergy 

(Drier) 

Exergy 

(Gasifier) 

Exergy 

(Compressor 

1) 

Exergy (Heat 

XC) 

Exergy (Steam 

Turbine) 
Exergy (AEC) 

Exergy (Flash 

Separator) 

Exergy 

(Cooler 1) 

Exergy 

(Compressor 2) 

Exergy 

(Compressor 

3) 

Exergy 

(Separator 

1) 

Exergy 

(Cooler 3) 

Exergy 

(Separator 

2) 

Exergy 

(Cooler 4) 

Exergy 

(Separator 

3) 
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endogenous 

exergy 

destruction cost   

22765720.92 40733.38925 45551.77679 38814.35124 54340115.66 9301.872119 3689240.598 5029.462 32.55729 329.5211 282.1402 2846.516 889.3576 2246.305 876.9368 

cost per unit 6513.204396 6561.281319 6508.424176 6541.852747 6509.852747 6646.995604 6506.995604 6509.853 6512.71 6512.71 6534.996 6509.853 6534.996 6509.853 6534.996 

endogenous 

irreversibility  
3495.318055 6208.145523 6.998894903 5933.235237 8347.364797 1399.41 566.9652821 772.5924 4.999039 505.9662 431.7374 437.2627 136.0915 345.0623 134.1909 

exogenous 

exergy 

destruction cost 

-22759207.72 -34172.10793 -39043.35262 -32272.49849 -54333605.8 -2654.876514 -3682733.603 1480.39 6480.153 6183.189 6252.855 3663.337 5645.638 4263.548 5658.059 

endogenous 

investment cost  
3.737949121 425289.5046 30.40595399 457175.1193 77062.1979 235998.0627 4216.057037 6051.381 39.88473 4036.841 4724.842 45213.56 15685.13 66978.7 24886.31 

endogenous 

irreversibility 

product 

0.34 6208.145523 6.998894903 5933.235237 8347.364797 1399.41 566.9652821 772.5924 4.999039 505.9662 431.7374 437.2627 136.0915 345.0623 134.1909 

Total investment 209600 377600 192600 309600 197600 677600 187600 197600 207600 207600 285600 197600 285600 197600 285600 

Product exergy 19065 5512 44333 4018 21404 4018 25228 25228 26020 26020 26097 1911 2478 1018 1540 

endogenous 

investment cost 

flow 

209596.2621 -47689.50465 192569.594 -147575.1193 120537.8021 441601.9373 183383.943 191548.6 207560.1 203563.2 280875.2 152386.4 269914.9 130621.3 260713.7 

avoidable exergy 

destruction cost 
25088.86333 62204.64541 41.00307231 59874.63436 80172.74249 7517.951438 3396.651705 3113.012 29.30719 3158.925 2581.977 3506.532 903.3978 3228.236 922.2186 

avoidable 

irreversibility 
3852 9480.563688 6.3 9152.55 12315.6 1131.03 522 478.2 4.5 485.04 395.1 538.65 138.24 495.9 141.12 

unavoidable 

exergy 

destruction cost 

14.4352889 64437.83766 45.55177793 61855.11323 65892.71963 11511.98018 3691.125643 5034.255 32.55729 3296.47 2822.181 3020.877 892.1208 2584.668 883.9311 

unavoidable 

endogenous 

irreversibility 

2.216311361 9820.922854 6.998895077 9455.289751 10121.99848 1731.907295 567.2549771 773.3286 4.99904 506.1595 431.8565 464.0469 136.5144 397.0394 135.2612 

unavoidable 

investment cost 
29588.22042 27230.28355 44343.28177 19050.24079 50927.22568 16043.16566 26391.57075 26869.41 26030.38 27092.27 27150.77 5523.465 3216.083 6071.611 2427.549 

Product Exergy 19065 5512 44333 4018 21404 4018 25228 25228 26020 26020 26097 1911 2478 1018 1540 

avoidable 

investment cost 
180011.7796 350369.7164 148256.7182 290549.7592 146672.7743 661556.8343 161208.4293 170730.6 181569.6 180507.7 258449.2 192076.5 282383.9 191528.4 283172.5 

cost of 

unavoidable 

endogenous 

14.4352889 64437.83766 45.55177793 61855.11323 65892.71963 11511.98018 3691.125643 5034.255 32.55729 3296.47 2822.181 3020.877 892.1208 2584.668 883.9311 

unavoidable 

endogenous 

irreversibility 

2.216311361 9820.922854 6.998895077 9455.289751 10121.99848 1731.907295 567.2549771 773.3286 4.99904 506.1595 431.8565 464.0469 136.5144 397.0394 135.2612 

avoidable 

endogenous 
22751.28563 -23704.44841 -1.13539E-06 -23040.76199 -11552.60397 -2210.10806 -1.885044514 -4.79292 -1.2E-06 -1.2585 -0.77875 -174.361 -2.76323 -338.363 -6.99432 

avoidable 

endogenous 

irreversibility  

3493.101744 -3612.777331 -1.74449E-07 -3522.054513 -1774.633685 -332.4972952 -0.289695065 -0.73626 -1.8E-07 -0.19324 -0.11917 -26.7842 -0.42284 -51.977 -1.07029 

unavoidable 

exogenous 
2773.216192 -61163.90895 -40.995881 -61250.31894 -56984.63713 -6287.641043 -3313.719898 -2958.91 -29.3009 -3094.84 -2535.29 -2836.32 -854.479 -2414.76 -845.505 
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unavoidable 

exogenous 

irreversibility  

425.7836886 -9321.945818 -6.298895077 -9362.839751 -8753.598482 -945.9372952 -509.2549771 -454.529 -4.49904 -475.199 -387.957 -435.697 -130.754 -370.939 -129.381 

avoidable 

exogenous 
2337.577699 85909.09382 41.00307344 82915.39636 91725.34647 9728.059498 3398.53675 3117.805 29.3072 3160.183 2582.756 3680.894 906.161 3566.599 929.2129 

avoidable 

exogenous 

irreversibility  

358.8982561 13093.34102 6.300000174 12674.60451 14090.23369 1463.527295 522.2896951 478.9363 4.5 485.2332 395.2192 565.4342 138.6628 547.877 142.1903 

unavoidable 

endogenous 

investment  

1.273458602 134.0143891 1.000539218 106.5534601 80.50513359 28.228336 1.206326547 1.305621 1.000708 1.175224 1.150237 11.61953 1.69987 43.23192 2.415742 

endogenous 

irreversibility 

product 

0.34 6208.145523 6.998894903 5933.235237 8347.364797 1399.41 566.9652821 772.5924 4.999039 505.9662 431.7374 437.2627 136.0915 345.0623 134.1909 

unavoidable 

exogenous 

investment 

29586.94697 27096.26916 44342.28123 18943.68733 50846.72054 16014.93732 26390.36442 26868.1 26029.38 27091.09 27149.62 5511.846 3214.384 6028.379 2425.133 

unavoidable 

investment cost 
29588.22042 27230.28355 44343.28177 19050.24079 50927.22568 16043.16566 26391.57075 26869.41 26030.38 27092.27 27150.77 5523.465 3216.083 6071.611 2427.549 

avoidable 

endogenous 

investment 

2.464490519 425155.4903 29.40541477 457068.5659 76981.69277 235969.8344 4214.85071 6050.076 38.88402 4035.665 4723.691 45201.94 15683.43 66935.47 24883.89 

avoidable 

exogenous 

investment 

180009.3151 -74785.77381 148227.3128 -166518.8066 69691.08155 425587 156993.5785 164680.5 181530.7 176472.1 253725.5 146874.6 266700.5 124592.9 258288.6 

 

A8. Process G2: DME economic analysis 

Dimethyl Ether Economic Analysis  

Capital Cost 
Items QTY Cost ($) Cost (%) Ref. 

Equipment 
  

63%  
Gasifier 1 120000 28% [343] 

Separator 4 12000 3% [344] 
Compressor (200 m3/min) 2 12000 3% [345] 

Stirrer Reactor 2 40000 9% [346] 
Heat Exchanger 2 10000 2% [347] 

Gas Storage 1 10000 2% [348] 
Liquid Storage 1 10000 2% [349] 

Column Separator 1 30000 7% [350] 
Supplementary Equipment 1 21400 5%  

Civil Work/Building 
   

 
Shed Area (10000 sq. ft) 10000 29000 7%      

 
Electrical Installations 

   
 

Steam Turbine 1 10000 2% [351] 
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Generator 1 120000 28% [351] 
Total (CAP) 

 
424400 

 
     
 

Operational Cost  
Items QTY Cost ($/d) Cost (%) Ref 

Raw Material ($/d) 23 690 29% [343] 
Labor ($/d) - 500 21% [352] 

Overhead ($/d) 1 424 18% [352] 
Maintenance/Engineering ($/d) 1 424 18% [352] 

Plant Depreciation ($/d) 
 

116 5%  
Transportation ($/d) 

 
230 10%  

Total (OPR/d) 
 

2385 
 

 
Revenue  

Items QTY 
(ton) 

Market Value ($) Market 
Price $/ton 

 

DME (Normal) at 0.1908 kg/kg 4.3884 2861 652 [23] 
DME (Optimum) at 0.2426 kg/kg 5.5798 3638 

 
 

DME Price /kg 
  

$ Price/kg  
DME (Normal) 4388.4 4388.4/2861 = 0.54  

DME (Optimum) 5579.8 5579.8/3638 = 0.43  
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A9. Process G2: DME Sustainability Index calculation 

Sustainability index calculation for IRR 
Efficiency Base Optimized Remarks 

100% (Without Subsidy) 15.1% 26.8% Below 80% 
efficiency not 

included because 
IRR <0 in base 

process 
90% (Without Subsidy) 5.0% 22.6% 

100% (With subsidy) 30.2% 35.4%  

90% (With subsidy) 27.7% 33.2%  

80% (With subsidy) 24.7% 30.6%  

70% (With subsidy) 20.8% 27.4%  

60% (With subsidy) 15.3% 23.3%  

50% (With subsidy) 5.3% 17.5%  
    

Average 18.01% 27.10%  

x1 0.180 0.271  

    
Sustainability index calculation for environment  

LCA LCA scores mean   

Midpoint (average) DME 64.03%  
 

Endpoint (average) DME 56.86%  

Average 60.45%   

 Base Optimized  

Yield of DME 19.08% 24.26%  
 11.53% 14.66%  
 8.670 6.819  

Environment Factor x2 0.087 0.068  

    
Sustainability index without weightage  

 Base Optimized  

Economic 0.180 0.271  

Environment 0.087 0.068  

Energy 0.570 0.530  
 0.837 0.869  
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A10. Process G2: DME Sustainability Index sensitivity analysis 

Sustainability index equal weightage 
 Weightage Base Optimized 

Economic 0.333 0.060 0.090 
Environment 0.333 0.029 0.023 

Energy 0.333 0.190 0.177 
  0.279 0.290 

Sustainability index different weightage 
 Weightage Base Optimized 

Economic 0.450 0.081 0.122 
Environment 0.275 0.024 0.019 

Energy 0.275 0.157 0.146 
  0.262 0.286 

Sustainability index different weightage 
 Weightage Base Optimized 

Economic 0.275 0.050 0.075 
Environment 0.450 0.039 0.031 

Energy 0.275 0.157 0.146 
  0.245 0.251 

Sustainability index equal weightage 
 Weightage Base Optimized 

Economic 0.275 0.050 0.075 
Environment 0.275 0.024 0.019 

Energy 0.45 0.257 0.239 
  0.330 0.332 

 

A11. Plasma gasification to DME simulation model 
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A12. Plasma gasification surrogate model pseudocode 
 

Procedure Optimization 
Initial 
Set process=Aspen Plus model, x0=[1000,1000,227,300], x.lo= [1000,200,150,100] 

x.lo= [3000,1000,350,2000], maxFun=1500 
Defined function ObjFun (input, process) 
    Let values of selection operations of process=input,  

S=running sate of process, 
output=Flowrate of DME in Aspen Plus result 

Run process 
    If S = ‘error’ 
      output=0 
    else 
      output=-output 
    end 
    Return output 
end 
Configure surrogate optimization problem by using x0, x.lo, x.up, maxFun, 
ObjFun 
Do surrogate optimization by calling MATLAB function ‘surrogateopt’ 
Return optimum solution and objective value 

 

A13. Plasma gasification to DME economic analysis 

Capital Cost (10 ton/h capacity) 

Items QTY Cost ($) Cost (%) Ref. 
Equipment   63%  

Gasifier 1 65000 15% [314] 
Separator 5 25000 6% [344] 

Compressor (200 m3/min) 2 12000 3% [345] 
Stirrer Reactor 2 30000 7% [346] 
Heat Exchanger 2 20000 5% [347] 

Gas Storage Bowser 1 10000 2% [353] 
Column Separator 1 30000 7% [350] 

Heater 1 20000 5% [354] 
Gas Cooler (condenser) 1 20000 5% [355] 

Supplementary Equipment 1 38400 9%  
Civil Work/Building     

Shed Area (10000 sq. ft) 10000 29000 7% [356] 
Electrical Installations     

Steam Turbine 1 20000 5% [203] 
Generator 1 120000 27% [357] 

Total (CAP)  439400   
     

Operational Cost  
Items QTY Cost ($/d) Cost (%)  
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Raw Material ($/d) 230 9200 64%  
Labor ($/d) - 1500 10%  

Overhead ($/d) 1 220 2%  
Maintenance/Engineering ($/d) 1 439 3%  

Utility ($/d)  3000 21%  
Plant Depreciation ($/d)  120 1%  

     
Total (OPR/d)  14479   

     
Revenue  

Items QTY Market 
Value ($) 

Cost 
$/ton 

 

DME (Normal) @ 0.15 kg/t 34.5 17975 521  
DME (Optimum) @ 0.18 kg/t 41.4 21569   

Total (REV)     
 

A14. Pyrolysis-gasification process simulation model 
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A15. Pyrolysis-gasification process electric power potential 

Assumption: Inlet and outlet mass flow is equal  
Base Process Scenario 1 Scenario 2 Scenario 3 

 Inlet Stream Inlet Stream Inlet Stream Inlet Stream 
Turbine Efficiency 60-62 60-62 60-62 60-62 
Generator efficiency 89-90 89-90 89-90 89-90 
Inlet Pressure 25 bars 25 bars 25 bars 25 bars 
Inlet Temperature 540 C 605 C 579 C 532 C 
Mass Flow 18000 kg/hr 20000 kg/hr 30000 kg/hr 30000 kg/hr 
Isentropic Efficiency 61 61 61 61 
Generator efficiency 89-90 89-90 89-90 89-90  

Outlet Stream Outlet Stream Outlet Stream Outlet Stream 
Outlet Pressure  1.04 1.0 1.0 1.0 
Outlet Temperature 283 C 332 C 312 C 277 C 
Phase  Gas Gas Gas Gas 
Mass Flow 18000 kg/hr 20000 kg/hr 30000 kg/hr 30000 kg/hr 
Energy Flow 

  
  

Power Out 2302 kW 2788 kW 4044 kW 3796 kW 
 

A16. Pyrolysis-gasification process sustainability Index Score 

Scenarios Basic Scenario 1 Scenario 2 Scenario 3 Weightage Weightage 
1 

Weightage 
2 

Energy 0.59 0.66 0.47 0.46 0.25 0.4 0.2 
Safety 0.19 0.19 0.12 0.12 0.25 0.2 0.4 
Power 0.57 0.69 1.00 0.94 0.25 0.2 0.2 

Economic 0.36 0.37 0.44 0.43 0.25 0.2 0.2 
Sustainability 

Index (Equal Wt.) 0.428 0.477 0.507 0.488 Weightage 3 Weightage 
4 BWM 

Sustainability 
Index (W1) 0.460 0.514 0.499 0.482 Energy 0.2 0.2 0.507 

Sustainability 
Index (W2) 0.380 0.420 0.429 0.414 Safety 0.2 0.2 0.081 

Sustainability 
Index (W3) 0.456 0.520 0.605 0.578 Power 0.4 0.2 0.189 

Sustainability 
Index (W4) 0.415 0.455 0.493 0.477 Economic 0.2 0.4 0.223 

Sustainability 
Index (BWM) 0.503 0.563 0.534 0.517 

   
Best criterion: E2 (economic) and worst criterion: E3 (power) 

Criteria Number = 4 Criterion 1 Criterion 2 Criterion 3 Criterion 4 
  

Names of Criteria Economic Energy Power Safety 
  

Select the Best Economic       
  

Select the Worst Power       
  



315 
 

Best to Others Economic Energy Power Safety 
  

Economic 1 2 5 3 
  

Others to the Worst Power       
  

Economic 5       
  

Energy 3       
  

Power 1       
  

Safety 2       
  

Weights Economic Energy Power Safety 
  

0.22297297 0.50675676 0.18918919 0.08108108 
  

Input-Based CR 0.05 

Associated Threshold 0.1994       
  

 

A17. Pyrolysis-gasification process Scenario 2 optimization results 

Pyrolysis ℃ Reformer ℃ Air flowrate (kg/h) CO2 (kg/h) Steam Temp. ℃ 

800 478.2 3559.5 6285.1 573.5 
800 478.2 3559.5 6285.1 573.5 
800 478.2 3559.5 6285.1 573.5 
800 478.2 3559.5 6285.1 573.5 
800 478.2 3559.5 6285.1 573.5 
800 478.3 3559.5 6285.1 573.5 
800 479.3 3560.5 6284.6 573.6 
800 481.3 3562.5 6283.6 574.0 
800 512.5 3125.0 6268.5 579.5 
800 437.5 4875.0 6304.1 566.3 
800 543.8 2187.5 6253.0 584.9 
800 450.0 2500.0 6298.3 568.5 
800 418.8 1937.5 6312.8 563.0 
800 575.0 1250.0 6237.0 590.4 
800 556.3 4312.5 6246.7 587.1 
800 606.3 2812.5 6220.7 595.8 
800 625.0 3750.0 6210.6 599.0 
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A18. Pyrolysis-gasification process Scenario 3 optimization results 

Pyrolysis ℃ Reformer ℃ Air Flowrate (kg/h) CO2 (kg/h) Steam Temp. ℃ Biochar 
(kg/h) 

706.3 481.3 3562.5 5366.8 323.5 3774.3 
706.3 800.0 3562.5 5253.4 386.4 3774.3 
706.3 400.0 3562.5 5388.1 307.2 3774.3 
712.5 800.0 1625.0 5328.5 407.8 3742.4 
712.5 662.5 1625.0 5385.8 381.3 3742.4 
712.5 400.0 1625.0 5470.4 329.4 3742.4 
718.8 800.0 2187.5 5401.9 428.7 3711.0 
718.8 400.0 2187.5 5550.7 351.1 3711.0 
718.8 543.8 2187.5 5505.9 379.4 3711.0 
725.0 575.0 1250.0 5570.0 406.3 3680.2 
725.0 800.0 1250.0 5473.4 449.0 3680.2 
725.0 400.0 1250.0 5628.8 372.2 3680.2 
731.3 800.0 2812.5 5542.5 468.6 3650.2 
731.3 400.0 2812.5 5704.3 392.6 3650.2 
731.3 606.3 2812.5 5630.2 432.3 3650.2 
737.5 800.0 4875.0 5609.2 487.4 3621.2 
737.5 437.5 4875.0 5764.3 419.5 3621.2 
737.5 400.0 4875.0 5776.9 412.2 3621.2 
740.6 715.6 1000.0 5683.6 481.1 3607.0 
743.8 400.0 3437.5 5846.5 431.0 3593.2 
743.8 800.0 3437.5 5673.0 505.4 3593.2 
743.8 768.8 3437.5 5689.2 499.8 3593.2 
750.0 450.0 2500.0 5894.4 458.4 3566.3 
750.0 800.0 2500.0 5734.0 522.6 3566.3 
750.0 400.0 2500.0 5912.8 449.0 3566.3 
756.3 800.0 1062.5 5791.9 539.0 3540.6 
756.3 400.0 1062.5 5975.8 466.0 3540.6 
756.3 731.3 1062.5 5828.6 526.7 3540.6 
762.5 800.0 3125.0 5846.7 554.4 3516.2 
762.5 400.0 3125.0 6035.3 482.1 3516.2 
762.5 512.5 3125.0 5989.5 502.8 3516.2 
768.8 800.0 4687.5 5898.3 569.0 3493.0 
768.8 400.0 4687.5 6091.4 497.2 3493.0 
768.8 468.8 5000.0 6063.2 509.9 3493.0 
768.8 693.8 4687.5 5956.4 550.3 3493.0 
775.0 800.0 3562.5 5946.9 582.6 3471.2 
775.0 400.0 1862.5 6144.0 511.5 3471.2 
775.0 625.0 3750.0 6041.6 552.0 3471.2 
775.0 400.0 3750.0 6144.0 511.5 3471.2 
775.0 800.0 3750.0 5946.9 582.6 3471.2 
781.3 800.0 4312.5 5992.2 595.4 3450.6 
781.3 400.0 4312.5 6193.1 524.8 3450.6 
781.3 556.3 4312.5 6122.9 552.9 3450.6 
793.8 400.0 1937.5 6281.6 548.8 3413.4 
793.8 418.8 1937.5 6273.3 552.2 3413.4 
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800.0 418.8 1937.5 6312.8 563.0 3396.7 
800.0 625.0 2512.5 6210.6 599.0 3396.7 
800.0 481.3 3562.5 6283.6 574.0 3396.7 
800.0 606.3 2812.5 6220.7 595.8 3396.7 
800.0 543.8 2187.5 6253.0 584.9 3396.7 
800.0 500.0 2700.0 6274.6 577.3 3396.7 
800.0 575.0 1250.0 6237.0 590.4 3396.7 
800.0 437.5 4875.0 6304.1 566.3 3396.7 
800.0 450.0 2500.0 6298.3 568.5 3396.7 
800.0 512.5 3125.0 6268.5 579.5 3396.7 
800.0 425.0 1962.5 6309.8 564.1 3396.7 
800.0 550.0 3275.0 6249.8 586.0 3396.7 
800.0 556.3 4312.5 6246.7 587.1 3396.7 
800.0 575.0 3937.5 6237.0 590.4 3396.7 
800.0 575.0 4387.5 6237.0 590.4 3396.7 

 

 

A19. Survey sample for biomass waste valorization processes 

Criteria <Process Name i.e., HTG, AND> AL VL L ML EE MH H VH AH 

The capital cost and operational cost of the process (-)          
Marketability (demand) of the final products (+)          

Rate of return on investment (+)          
Process maintenance and personnel cost (-)          

GHG/Particulate matter emissions (-)          
Soil/Land/Aquatic pollution (-)          

Land use for the process (-)          
Product emission throughout product life cycle (-)          

Process energy and exergy recovery (+)          
Access and technology adaptability (+)          

Waste treatment effectiveness and vol. reduction (+)          
Diversification of material handling (+)          
Process occupational safety hazards (-)          

Public acceptance and employment generation (+)          
Political support through existing policies (+)          

Promoting social responsibility (+)          
Absolutely low (AL), Very low (VL), Low (L), Medium low (ML), Exactly equal (EE), Medium high (MH), High (H), 
Very high (VH), Absolutely high (AH) 
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A20. Fuzzy score based on experts’ opinions for waste valorization process selection 
  

Economic Environment Technology Social Governance   
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

Gasification  α −
 

0.35 0.75 0.6 0.25 0.35 0.25 0.25 0.35 0.45 0.6 0.45 0.6 0.35 0.45 0.45 0.5 

Expert 1 α +
 

0.45 0.85 0.75 0.35 0.45 0.35 0.35 0.45 0.6 0.75 0.6 0.75 0.45 0.6 0.6 0.5 

 
β −

 
0.4 0.05 0.1 0.5 0.4 0.5 0.5 0.4 0.15 0.1 0.15 0.1 0.4 0.15 0.15 0.5 

 
β +

 
0.55 0.15 0.2 0.6 0.55 0.6 0.6 0.55 0.25 0.2 0.25 0.2 0.55 0.25 0.25 0.5 

Pyrolysis α −
 

0.45 0.5 0.45 0.45 0.45 0.45 0.5 0.45 0.45 0.35 0.45 0.45 0.6 0.5 0.5 0.45 

Expert 1 α +
 

0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.45 0.6 0.6 0.75 0.5 0.5 0.6 

 
β −

 
0.15 0.5 0.15 0.15 0.15 0.15 0.5 0.15 0.15 0.4 0.15 0.15 0.1 0.5 0.5 0.15 

 
β +

 
0.25 0.5 0.25 0.25 0.25 0.25 0.5 0.25 0.25 0.55 0.25 0.25 0.2 0.5 0.5 0.25 

HTG α −
 

0.45 0.45 0.25 0.45 0.35 0.5 0.5 0.5 0.35 0.15 0.5 0.25 0.6 0.25 0.25 0.35 

Expert 1 α +
 

0.6 0.6 0.35 0.6 0.45 0.5 0.5 0.5 0.45 0.2 0.5 0.35 0.75 0.35 0.35 0.45 

 
β −

 
0.15 0.15 0.5 0.15 0.4 0.5 0.5 0.5 0.4 0.6 0.5 0.5 0.1 0.5 0.5 0.4 

 
β +

 
0.25 0.25 0.6 0.25 0.55 0.5 0.5 0.5 0.55 0.75 0.5 0.6 0.2 0.6 0.6 0.55 

AND α −
 

0.35 0.5 0.35 0.5 0.45 0.45 0.45 0.45 0.45 0.45 0.35 0.25 0.5 0.45 0.35 0.45 

Expert 1 α +
 

0.45 0.5 0.45 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.45 0.35 0.5 0.6 0.45 0.6 

 
β −

 
0.4 0.5 0.4 0.5 0.15 0.15 0.15 0.15 0.15 0.15 0.4 0.5 0.5 0.15 0.4 0.15 

 
β +

 
0.55 0.5 0.55 0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.55 0.6 0.5 0.25 0.55 0.25 

Gasification  α −
 

0.6 0.6 0.35 0.45 0.15 0.25 0.45 0.25 0.6 0.35 0.45 0.5 0.6 0.45 0.35 0.35 

Expert 2 α +
 

0.75 0.75 0.45 0.6 0.2 0.35 0.6 0.35 0.75 0.45 0.6 0.5 0.75 0.6 0.45 0.45 

 
β −

 
0.1 0.1 0.4 0.15 0.6 0.5 0.15 0.5 0.1 0.4 0.15 0.5 0.1 0.15 0.4 0.4 

 
β +

 
0.2 0.2 0.55 0.25 0.75 0.6 0.25 0.6 0.2 0.55 0.25 0.5 0.2 0.25 0.55 0.55 

Pyrolysis α −
 

0.5 0.45 0.45 0.5 0.45 0.45 0.25 0.45 0.6 0.75 0.5 0.35 0.6 0.6 0.5 0.35 

Expert 2 α +
 

0.5 0.6 0.6 0.5 0.6 0.6 0.35 0.6 0.75 0.85 0.5 0.45 0.75 0.75 0.5 0.45 

 
β −

 
0.5 0.15 0.15 0.5 0.15 0.15 0.5 0.15 0.1 0.05 0.5 0.4 0.1 0.1 0.5 0.4 

 
β +

 
0.5 0.25 0.25 0.5 0.25 0.25 0.6 0.25 0.2 0.15 0.5 0.55 0.2 0.2 0.5 0.55 

HTG α −
 

0.75 0.45 0.75 0.6 0.45 0.5 0.45 0.35 0.45 0.25 0.75 0.6 0.45 0.5 0.45 0.25 

Expert 2 α +
 

0.85 0.6 0.85 0.75 0.6 0.5 0.6 0.45 0.6 0.35 0.85 0.75 0.6 0.5 0.6 0.35 

 
β −

 
0.05 0.15 0.05 0.1 0.15 0.5 0.15 0.4 0.15 0.5 0.05 0.1 0.15 0.5 0.15 0.5 

 
β +

 
0.15 0.25 0.15 0.2 0.25 0.5 0.25 0.55 0.25 0.6 0.15 0.2 0.25 0.5 0.25 0.6 
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AND α −
 

0.35 0.5 0.45 0.6 0.6 0.45 0.45 0.75 0.5 0.75 0.5 0.35 0.25 0.75 0.6 0.5 

Expert 2 α +
 

0.45 0.5 0.6 0.75 0.75 0.6 0.6 0.85 0.5 0.85 0.5 0.45 0.35 0.85 0.75 0.5 

 
β −

 
0.4 0.5 0.15 0.1 0.1 0.15 0.15 0.05 0.5 0.05 0.5 0.4 0.5 0.05 0.1 0.5 

 
β +

 
0.55 0.5 0.25 0.2 0.2 0.25 0.25 0.15 0.5 0.15 0.5 0.55 0.6 0.15 0.2 0.5 

Gasification  α −
 

0.75 0.15 0.25 0.5 0.35 0.25 0.25 0.35 0.35 0.35 0.6 0.6 0.5 0.35 0.35 0.6 

Expert 3 α +
 

0.85 0.2 0.35 0.5 0.45 0.35 0.35 0.45 0.45 0.45 0.75 0.75 0.5 0.45 0.45 0.75 

 
β −

 
0.05 0.6 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.4 0.1 0.1 0.5 0.4 0.4 0.1 

 
β +

 
0.15 0.75 0.6 0.5 0.55 0.6 0.6 0.55 0.55 0.55 0.2 0.2 0.5 0.55 0.55 0.2 

Pyrolysis α −
 

0.6 0.35 0.35 0.45 0.35 0.25 0.5 0.35 0.25 0.15 0.25 0.25 0.45 0.6 0.25 0.25 

Expert 3 α +
 

0.75 0.45 0.45 0.6 0.45 0.35 0.5 0.45 0.35 0.2 0.35 0.35 0.6 0.75 0.35 0.35 

 
β −

 
0.1 0.4 0.4 0.15 0.4 0.5 0.5 0.4 0.5 0.6 0.5 0.5 0.15 0.1 0.5 0.5 

 
β +

 
0.2 0.55 0.55 0.25 0.55 0.6 0.5 0.55 0.6 0.75 0.6 0.6 0.25 0.2 0.6 0.6 

HTG α −
 

0.45 0.35 0.75 0.75 0.25 0.15 0.45 0.25 0.45 0.15 0.6 0.6 0.75 0.45 0.5 0.25 

Expert 3 α +
 

0.6 0.45 0.85 0.85 0.35 0.2 0.6 0.35 0.6 0.2 0.75 0.75 0.85 0.6 0.5 0.35 

 
β −

 
0.15 0.4 0.05 0.05 0.5 0.6 0.15 0.5 0.15 0.6 0.1 0.1 0.05 0.15 0.5 0.5 

 
β +

 
0.25 0.55 0.15 0.15 0.6 0.75 0.25 0.6 0.25 0.75 0.2 0.2 0.15 0.25 0.5 0.6 

AND α −
 

0.15 0.6 0.25 0.35 0.6 0.45 0.35 0.5 0.35 0.35 0.6 0.5 0.75 0.75 0.6 0.6 

Expert 3 α +
 

0.2 0.75 0.35 0.45 0.75 0.6 0.45 0.5 0.45 0.45 0.75 0.5 0.85 0.85 0.75 0.75 

 
β −

 
0.6 0.1 0.5 0.4 0.1 0.15 0.4 0.5 0.4 0.4 0.1 0.5 0.05 0.05 0.1 0.1 

 
β +

 
0.75 0.2 0.6 0.55 0.2 0.25 0.55 0.5 0.55 0.55 0.2 0.5 0.15 0.15 0.2 0.2 

Gasification  α −
 

0.75 0.6 0.45 0.45 0.25 0.25 0.6 0.25 0.35 0.15 0.75 0.5 0.25 0.45 0.5 0.35 

Expert 4 α +
 

0.85 0.75 0.6 0.6 0.35 0.35 0.75 0.35 0.45 0.2 0.85 0.5 0.35 0.6 0.5 0.45 

 
β −

 
0.05 0.1 0.15 0.15 0.5 0.5 0.1 0.5 0.4 0.6 0.05 0.5 0.5 0.15 0.5 0.4 

 
β +

 
0.15 0.2 0.25 0.25 0.6 0.6 0.2 0.6 0.55 0.75 0.15 0.5 0.6 0.25 0.5 0.55 

Pyrolysis α −
 

0.45 0.45 0.6 0.45 0.45 0.5 0.35 0.35 0.45 0.75 0.5 0.5 0.6 0.6 0.45 0.5 

Expert 4 α +
 

0.6 0.6 0.75 0.6 0.6 0.5 0.45 0.45 0.6 0.85 0.5 0.5 0.75 0.75 0.6 0.5 

 
β −

 
0.15 0.15 0.1 0.15 0.15 0.5 0.4 0.4 0.15 0.05 0.5 0.5 0.1 0.1 0.15 0.5 

 
β +

 
0.25 0.25 0.2 0.25 0.25 0.5 0.55 0.55 0.25 0.15 0.5 0.5 0.2 0.2 0.25 0.5 

HTG α −
 

0.9 0.6 0.5 0.6 0.45 0.15 0.25 0.25 0.45 0.25 0.45 0.75 0.75 0.5 0.35 0.6 

Expert 4 α +
 

0.9 0.75 0.5 0.75 0.6 0.2 0.35 0.35 0.6 0.35 0.6 0.85 0.85 0.5 0.45 0.75 

 
β −

 
0.1 0.1 0.5 0.1 0.15 0.6 0.5 0.5 0.15 0.5 0.15 0.05 0.05 0.5 0.4 0.1 
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β +

 
0.1 0.2 0.5 0.2 0.25 0.75 0.6 0.6 0.25 0.6 0.25 0.15 0.15 0.5 0.55 0.2 

AND α −
 

0.45 0.5 0.45 0.6 0.5 0.6 0.6 0.6 0.35 0.75 0.5 0.25 0.5 0.35 0.45 0.75 

Expert 4 α +
 

0.6 0.5 0.6 0.75 0.5 0.75 0.75 0.75 0.45 0.85 0.5 0.35 0.5 0.45 0.6 0.85 

 
β −

 
0.15 0.5 0.15 0.1 0.5 0.1 0.1 0.1 0.4 0.05 0.5 0.5 0.5 0.4 0.15 0.05 

 
β +

 
0.25 0.5 0.25 0.2 0.5 0.2 0.2 0.2 0.55 0.15 0.5 0.6 0.5 0.55 0.25 0.15 

Gasification  α −
 

0.45 0.5 0.45 0.5 0.25 0.5 0.35 0.45 0.35 0.5 0.5 0.5 0.35 0.45 0.35 0.35 

Expert 5 α +
 

0.6 0.5 0.6 0.5 0.35 0.5 0.45 0.6 0.45 0.5 0.5 0.5 0.45 0.6 0.45 0.45 

 
β −

 
0.15 0.5 0.15 0.5 0.5 0.5 0.4 0.15 0.4 0.5 0.5 0.5 0.4 0.15 0.4 0.4 

 
β +

 
0.25 0.5 0.25 0.5 0.6 0.5 0.55 0.25 0.55 0.5 0.5 0.5 0.55 0.25 0.55 0.55 

Pyrolysis α −
 

0.5 0.15 0.5 0.45 0.35 0.6 0.35 0.5 0.35 0.6 0.5 0.35 0.35 0.25 0.45 0.35 

Expert 5 α +
 

0.5 0.2 0.5 0.6 0.45 0.75 0.45 0.5 0.45 0.75 0.5 0.45 0.45 0.35 0.6 0.45 

 
β −

 
0.5 0.6 0.5 0.15 0.4 0.1 0.4 0.5 0.4 0.1 0.5 0.4 0.4 0.5 0.15 0.4 

 
β +

 
0.5 0.75 0.5 0.25 0.55 0.2 0.55 0.5 0.55 0.2 0.5 0.55 0.55 0.6 0.25 0.55 

HTG α −
 

0.25 0.45 0.45 0.45 0.45 0.35 0.5 0.5 0.45 0.25 0.5 0.45 0.35 0.35 0.45 0.35 

Expert 5 α +
 

0.35 0.6 0.6 0.6 0.6 0.45 0.5 0.5 0.6 0.35 0.5 0.6 0.45 0.45 0.6 0.45 

 
β −

 
0.5 0.15 0.15 0.15 0.15 0.4 0.5 0.5 0.15 0.5 0.5 0.15 0.4 0.4 0.15 0.4 

 
β +

 
0.6 0.25 0.25 0.25 0.25 0.55 0.5 0.5 0.25 0.6 0.5 0.25 0.55 0.55 0.25 0.55 

AND α −
 

0.45 0.45 0.35 0.45 0.45 0.25 0.35 0.35 0.25 0.35 0.35 0.25 0.5 0.5 0.5 0.5 

Expert 5 α +
 

0.6 0.6 0.45 0.6 0.6 0.35 0.45 0.45 0.35 0.45 0.45 0.35 0.5 0.5 0.5 0.5 

 
β −

 
0.15 0.15 0.4 0.15 0.15 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.5 0.5 0.5 0.5 

 
β +

 
0.25 0.25 0.55 0.25 0.25 0.6 0.55 0.55 0.6 0.55 0.55 0.6 0.5 0.5 0.5 0.5 

Gasification  α −
 

0.6 0.6 0.25 0.45 0.45 0.25 0.25 0.45 0.6 0.25 0.6 0.45 0.45 0.45 0.15 0.45 

Expert 6 α +
 

0.75 0.75 0.35 0.6 0.6 0.35 0.35 0.6 0.75 0.35 0.75 0.6 0.6 0.6 0.2 0.6 

 
β −

 
0.1 0.1 0.5 0.15 0.15 0.5 0.5 0.15 0.1 0.5 0.1 0.15 0.15 0.15 0.6 0.15 

 
β +

 
0.2 0.2 0.6 0.25 0.25 0.6 0.6 0.25 0.2 0.6 0.2 0.25 0.25 0.25 0.75 0.25 

Pyrolysis α −
 

0.75 0.45 0.25 0.6 0.6 0.25 0.25 0.6 0.45 0.1 0.6 0.45 0.6 0.35 0.1 0.45 

Expert 6 α +
 

0.85 0.6 0.35 0.75 0.75 0.35 0.35 0.75 0.6 0.1 0.75 0.6 0.75 0.45 0.1 0.6 

 
β −

 
0.05 0.15 0.5 0.1 0.1 0.5 0.5 0.1 0.15 0.9 0.1 0.15 0.1 0.4 0.9 0.15 

 
β +

 
0.15 0.25 0.6 0.2 0.2 0.6 0.6 0.2 0.25 0.9 0.2 0.25 0.2 0.55 0.9 0.25 

HTG α −
 

0.45 0.6 0.45 0.45 0.25 0.25 0.25 0.45 0.6 0.25 0.15 0.45 0.45 0.6 0.15 0.6 

Expert 6 α +
 

0.6 0.75 0.6 0.6 0.35 0.35 0.35 0.6 0.75 0.35 0.2 0.6 0.6 0.75 0.2 0.75 
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β −

 
0.15 0.1 0.15 0.15 0.5 0.5 0.5 0.15 0.1 0.5 0.6 0.15 0.15 0.1 0.6 0.1 

 
β +

 
0.25 0.2 0.25 0.25 0.6 0.6 0.6 0.25 0.2 0.6 0.75 0.25 0.25 0.2 0.75 0.2 

AND α −
 

0.45 0.75 0.6 0.45 0.15 0.15 0.45 0.25 0.45 0.6 0.5 0.35 0.35 0.45 0.6 0.6 

Expert 6 α +
 

0.6 0.85 0.75 0.6 0.2 0.2 0.6 0.35 0.6 0.75 0.5 0.45 0.45 0.6 0.75 0.75 

 
β −

 
0.15 0.05 0.1 0.15 0.6 0.6 0.15 0.5 0.15 0.1 0.5 0.4 0.4 0.15 0.1 0.1 

 
β +

 
0.25 0.15 0.2 0.25 0.75 0.75 0.25 0.6 0.25 0.2 0.5 0.55 0.55 0.25 0.2 0.2 

Gasification  α −
 

0.6 0.45 0.5 0.6 0.5 0.25 0.25 0.45 0.45 0.45 0.45 0.6 0.45 0.5 0.45 0.5 

Expert 7 α +
 

0.75 0.6 0.5 0.75 0.5 0.35 0.35 0.6 0.6 0.6 0.6 0.75 0.6 0.5 0.6 0.5 

 
β −

 
0.1 0.15 0.5 0.1 0.5 0.5 0.5 0.15 0.15 0.15 0.15 0.1 0.15 0.5 0.15 0.5 

 
β +

 
0.2 0.25 0.5 0.2 0.5 0.6 0.6 0.25 0.25 0.25 0.25 0.2 0.25 0.5 0.25 0.5 

Pyrolysis α −
 

0.75 0.6 0.35 0.45 0.5 0.5 0.35 0.35 0.5 0.45 0.6 0.5 0.45 0.5 0.45 0.5 

Expert 7 α +
 

0.85 0.75 0.45 0.6 0.5 0.5 0.45 0.45 0.5 0.6 0.75 0.5 0.6 0.5 0.6 0.5 

 
β −

 
0.05 0.1 0.4 0.15 0.5 0.5 0.4 0.4 0.5 0.15 0.1 0.5 0.15 0.5 0.15 0.5 

 
β +

 
0.15 0.2 0.55 0.25 0.5 0.5 0.55 0.55 0.5 0.25 0.2 0.5 0.25 0.5 0.25 0.5 

HTG α −
 

0.5 0.5 0.5 0.5 0.35 0.5 0.35 0.35 0.5 0.45 0.5 0.5 0.5 0.45 0.5 0.5 

Expert 7 α +
 

0.5 0.5 0.5 0.5 0.45 0.5 0.45 0.45 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.5 

 
β −

 
0.5 0.5 0.5 0.5 0.4 0.5 0.4 0.4 0.5 0.15 0.5 0.5 0.5 0.15 0.5 0.5 

 
β +

 
0.5 0.5 0.5 0.5 0.55 0.5 0.55 0.55 0.5 0.25 0.5 0.5 0.5 0.25 0.5 0.5 

AND α −
 

0.35 0.35 0.35 0.35 0.45 0.45 0.5 0.6 0.25 0.45 0.35 0.35 0.35 0.45 0.45 0.5 

Expert 7 α +
 

0.45 0.45 0.45 0.45 0.6 0.6 0.5 0.75 0.35 0.6 0.45 0.45 0.45 0.6 0.6 0.5 

 
β −

 
0.4 0.4 0.4 0.4 0.15 0.15 0.5 0.1 0.5 0.15 0.4 0.4 0.4 0.15 0.15 0.5 

 
β +

 
0.55 0.55 0.55 0.55 0.25 0.25 0.5 0.2 0.6 0.25 0.55 0.55 0.55 0.25 0.25 0.5 

 

A21. Weights calculation for biomass waste valorization processes 
AHP Weights Calculations for main criteria and sub-criteria (One expert sample) 

 Economic Environment Technological Social 
Governance 

 
Normalize 
Weights 

Consistency 
Check 

NW/CC CI 

Economic 1.00 3.00 5.00 3.00 2.59 0.5112 2.1116 4.1305 0.0382 
Environment 0.33 1.00 5.00 1.00 1.14 0.2243 0.9274 4.1351 

 

Technological 0.20 0.20 1.00 0.33 0.34 0.0670 0.2799 4.1741 CR 
Social 

Governance 
0.33 1.00 3.00 1.00 1.00 0.1974 0.79349 4.0189 0.043 

     
5.067 

 
Lambda_max 4.1147 

 

Subjective and Objective Weights 
 Equal Entropy CRITIC AHP 
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 Main Criteria Weights 
Economic 0.2500 0.3794 0.4597 0.4426 

Environment 0.2500 0.1972 0.2698 0.2242 
Social 0.2500 0.1335 0.0885 0.1264 

Technology 0.2500 0.2898 0.1820 0.2068 
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