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Abstract 

Modular integrated construction (MiC) is widely adopted by industry and governments. 

However, its fragile and delicate logistics are still a concern for impeding project 

performance. MiC logistic operations involve rigorous multimode transportation, loading-

unloading, and stacking during storage. Such rigorous logistics may cause intrinsic damage 

to the module, leading to a safety hazard and structural deterioration during building use. 

Meanwhile, the inevitable supply chain uncertainties add to the complexities, challenging 

the just-in-time (JIT) assembly goal. Therefore, continuous monitoring of the module 

structure during MiC logistics and the building use phase is vital. Consequently, the 

objectives of this research are to (1) investigate critical factors influencing MiC logistic 

operations, (2) explore technologies for addressing the challenges of MiC logistic 

operations, (3) develop a real-time sensing system for monitoring the MiC Module, and (4) 

develop a deep learning model for the MiC module’s damage assessment.  

To achieve first objective, the factors influencing the MiC supply chain and logistics are 

investigated through systematic review, eigenvector ranking, and MICMAC analysis. The 

second objective explores potential supply chain technologies and their benefits for MiC 

logistics using an NVIVO text analytics approach. Then, the synergies between the 

technologies' benefits and MiC challenges are discussed to enlighten the most beneficial 

technologies for MiC logistics. For the third objective, a multi-sensing IoT device is 

designed and developed to monitor the module’s structure. The developed device is 

calibrated and tested to ensure accuracy. Application of the developed sensing device is 

also demonstrated for the MiC module’s damage and safety monitoring through a detailed 

field experiment. A hybrid deep learning model is developed for damage assessment in the 

fourth objective. The model's architecture integrates the convolutional and sequential deep 

learning models. Model testing and validation are performed using a damage assessment 

scenario from the MiC field experiment. 

The analysis of the influencing factors revealed critical factors, their interrelationships, and 

the themes demonstrating the factors’ influencing mechanisms. Results also highlight 

prevalent factors affecting the MiC supply chain and potential factors that need further 

research attention. The synergy analysis between technologies highlighted the most 

beneficial technologies and the least addressed MiC challenges. BIM, RFID, and 

Blockchain are widely used but still lack applications to support several other MiC 

challenges. One such challenge is ensuring modules' structural safety and damage 

monitoring during transportation and assembly.   



vi 

A multi-sensing IoT device has been developed to deal with the critical issue of real-time 

monitoring of the module structure. A compact and portable sensing device is designed to 

ensure its practicality for MiC modules while integrating an accelerometer, gyroscope, and 

strain sensors. Temperature calibration is performed using regression models to improve 

its accuracy. The device's performance prevails over the standardized commercial 

equipment, with less than a 5% difference. The application of the developed multi-sensing 

systems is successfully demonstrated for damage assessment on MiC modules using 

conventional methods, such as moving window analysis, FFT, strain histograms, etc. 

However, these analyses involve data pre-processing, excessive calculations, and the lack 

of capabilities for automated real-time assessment. The developed hybrid CNN-GRU deep 

learning model ensures the real-time automated damage assessment, having an accuracy 

(R2) of 96%, with negligible mean square error. The deep learning model prediction led to 

accurate damage level assessment and localization for damage case scenarios.  

Overall, this research theoretically contributes to the MiC, logistics supply chain, A-IoT 

sensors, and structural damage monitoring knowledge domains by (1) identifying the most 

critical influencing factors, their interrelationships, and mechanisms to influence the MiC 

supply chain; (2) identifying the most useful technologies for MiC logistics and 

highlighting the technology gap for addressing the MiC challenges; (3) integrating multiple 

structural response measurement sensors and wireless communication systems and 

establishing a robust IoT communication framework for the large data real-time 

transmissions; (4) evaluating the conventional damage assessment methods performance 

for the case of non-stationary MiC logistic operations; and (5) developing a hybrid damage 

prediction model architecture by integrating the convolutional and sequential deep learning 

models. Meanwhile, the study also offers practical contributions to the construction 

industry in the form of (1) a framework of critical MiC supply chain factors for improving 

the policies and logistic strategies, (2) identifying the most beneficial technologies 

available for improving MiC operations, (3) enabling the real-time module structural 

monitoring using the developed IoT sensing system, and (4) robust, automated damage 

prediction with the developed hybrid deep learning model.  

 

Keywords: Modular Integrated Construction (MiC), Supply Chain, A-IoT sensors, Deep 

Learning 
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1 Chapter 1          

INTRODUCTION 

1.1 Background 

Modular integrated construction (MiC) is an offsite construction method where free-

standing standardized buildings are manufactured in the factory and transported to the site 

for assembly. The buildings are manufactured as independent, standalone structural units 

called modules. The utilities, such as water pipes, fire safety systems and other fixtures, 

are pre-installed in these standalone building modules. Such fully equipped modules are 

assembled on-site to build an instant and fully functional building. Such a split construction 

approach shifts most construction activities into a controlled factory environment. The 

controlled factory operations enable automation, enhance sustainability, enable proactive 

value management, improve design precisions and built quality, and reduce labour demand 

[147]. Such technological improvements offered by modularisation can substantially boost 

the construction industry's productivity.  

By shifting most activities to the factory, the assembly process becomes streamlined, 

enabling continuous assembly and ensuring faster building completion. Such reduced on-

site construction activities substantially reduce the nuisance around the construction site, 

such as noise and dust, and relieve the people living around. Similarly, the reduced on-site 

logistic activities cause fewer obstacles and roadblocks. Such advantages are highly crucial 

for metropolitan cities, having congested spaces. Additionally, labour shortages are a 

significant concern for regions with increasing construction demand, such as Hong Kong, 
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the USA, and the UK. Adopting MiC can reduce labour demand significantly, adding to its 

desirability as an innovative and automated construction method. 

A recent study in Hong Kong reported several cost, time and sustainability-related 

advantages of MiC. A 25% time and 6-7% cost, 70% water & electricity reduction, and 

100% productivity increase were observed for manufacturing and assembly-related 

operations [134]. Such benefits encourage the increasing adoption of the MiC approach. 

However, despite the encouraging benefits of MiC, the overall project performance and 

sustainability are challenged by various supply chain operations-related barriers, such as 

cross-border transit, transportation restrictions on module dimensions, storage limitations, 

and congested assembling sites [133]. Meanwhile, the complex MiC supply chain is prone 

to high uncertainties, risking its success.  

1.1.1 MiC Supply Chain  

It is a common misapprehension that advanced manufacturing technologies and simple on-

site assembly activities make MiC project delivery less prone to systemic uncertainties. 

Yet, the MiC supply chain operations are complex and may cause delays in on-site module 

delivery, hampering the assembling rate [194,195,334]. MiC is a multimode, multi-tier, 

cross-border supply chain consisting of several fragmented segments, functioning 

independently and operated by different stakeholders [42,89,133], as shown in Figure 1-1. 

For example, a manufactured module is first transported to the shipping port on trucks, 

then after shipping arrives at the destination port, the module may need temporary storage 

before trucks transport them to the assembly site. All such supply chain segments may 

involve separate operators and stakeholders with conflicting goals and interests [359].  
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In such a situation, several other factors add to the complexity of its operations, such as  (a) 

strict geometrical and dimensional constraints for transportation, (b) uncertain storage 

requirements, (c) cross-border transition, and (d) uncertain module flow across these 

fragmented but interconnected supply chain segments [148,360,375]. MiC is uniquely 

characterized by an ambidextrous module flow, where the assembling site controls module 

flow demand while the module supply is being pushed from the manufacturing end. MiC 

SC requires a push-flow of modules to ensure undisrupted site assembling operations. At 

the same time, a strict assembling sequence requires the demand-based pull-flow of the 

modules [137].  

 

Figure 1-1. MiC supply chains’ ambidextrous charaacomplexities 

Meanwhile, MiC projects mostly follow a traditional hierarchical, restricted scheduling 

strategy with limited flexibility and inheriting systematic risks [42]. For example, the 

absence of on-site module storage adds to the need for just-in-time (JIT) delivery of 

modules [148]. For such an ambidextrous SC, the rate of assembling is critical, and site 

delays are inevitable [194]. Any assembling delay would create a snowballing effect for 

the whole supply chain, such as unwanted on-site accumulation of modules causing poor 

site space management and extensive accumulated inventories, causing excessive storage 
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costs  [359], as illustrated in Figure 1-1. Such supply chain disruptions are also evident in 

some recent cases in Hong Kong [194,195]. Therefore, MiC SC complexities demand a 

deeper understanding of its dynamics and the system of factors influencing its SC 

operational performance [147]. 

1.1.2 MiC Logistics Operations 

Considering the module flow across complex MiC supply chain segments and snowballing 

disruptions under any uncertainty, the most critical point in the MiC supply chain is the on-

site delivery of the MiC module before the assembly process. This point in the MiC supply 

chain inherits the least buffer space and flexibility in logistic operations, owing to the 

adoption of JIT assembly. The JIT assembly acquires the assembly processes to start as 

soon as the module arrives at the site to avoid additional module storage facilities and well 

manage the limited on-site space. Meanwhile, strict pre-assembly activities are conducted 

after the module's on-site arrival. Such as (a) untying and unloading from the truck, (b) 

conducting detailed inspections to check for its condition and potential damage, and (c) 

completing the repair work if needed.  

In such a situation, if a module is severely damaged and needs extensive repair work, it 

will take an unwanted additional time, disrupting the JIT assembly. Consequently, it will 

cause snowball disruption in the whole supply chain, leading to on-site accumulation of 

arriving modules and the need for additional storage. In the worst case, a module may have 

damages beyond repair. Such a module might need to be replaced or repaired in the factory, 

causing cost overruns. Meanwhile, such a situation may also disrupt the module assembly 

sequence and stop the assembly process for longer.  
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Moreover, the pre-assembly module inspection is mainly based on manual methods and 

may sometimes involve measurement instruments to check for alignment [295]. Usually, a 

site inspector annotates measurements and observations on a checklist to verify any defects 

[242]. Such inspection is time-consuming and insufficient for a thorough module 

assessment to ensure safety and accurate alignment. The undetected damages may lead to 

severe impacts during assembly and later during the building use phase, as illustrated in 

Figure 1-2. A damaged module may delay the assembly process while fixing the 

misaligned and unlevelled surfaces. Also, hidden damage beneath the surface may 

propagate into major cracks and leakages, compromising the structural durability and 

affecting the module's serviceability. A plausible critical situation could be the module’s 

structural failure during the building use phase.  Therefore, the module’s safe delivery is 

the most critical logistic operation for MiC [276,315]. 

 

Figure 1-2. Module unsafe delivery and its potential impacts 

A module is highly prone to damage during its logistics and supply chain operations, which 

involve (a) rigorous transportation, (b) recurrent loading-unloading, and (c) stacking during 

shipping and storage. Such operations expose module structure to various undetermined 
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loads and impacts, such as (a) vibrations, shocks, and wind force during transport, (b) 

strains during crane lifting, and (c) uneven pressures during storage stacking [111,276].  

Splittgerber [286] and Smith, et al. [276] reported that the structure loaded on a truck could 

be damaged if vibration exceeds three mm/s or acceleration exceeds 32 m/s2. Such critical 

logistics operations seek proper investigation and suitable solutions. However, the damage 

does not only occur due to vertical acceleration; horizontal shocks due to instant breaking 

and road roughness may also cause a severe impact on the module. Similarly, the impact 

in the form of strain due to stacking of the module during storage and loading-unloading 

operations can also cause damage to the module. Such damage causes misalignment of 

modules for assembly, causing further delays while repairing such issues. Therefore, early 

damage detection is critical for the safety and long-term performance of the structure. 

1.1.3 Real-time Module Monitoring During Supply Chain Operations 

A damaged module causes a snowball disruption in the whole supply chain while affecting 

the module assembly process. Early damage detection can avoid such supply chain 

disruptions and manage the delay losses by (a) enabling proactive decision-making, (b) 

allowing early alternate arrangements, (c) early module return and saving resources, (d) 

ensuring the module flow, and (e) ensuring safety during module handling.  

However, the MiC logistic operations are highly dynamic. Monitoring such a dynamic non-

stationary structure is challenging, where both the structure and the impacting loads are 

moving [80]. The most existing technologies and methods for damage and structural health 

monitoring (SHM) are designed for traditional stationary structures [328]. The structure of 

a traditionally constructed building is mostly monolithic, where structural response at any 
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location on the building can be sensed or estimated from any other location apart. However, 

in the case of MiC, the building comprises separate building blocks (modules), where 

damage in one module cannot be detected from any other module, as they are not joined 

monolithically. Therefore, several sensors must be installed on each module individually 

to monitor each module's structural response and performance.  

Considering the above-discussed criticality of MiC logistics and the limitations of existing 

sensing systems, there is a dire need to develop an integrated, multi-sensing device to 

continuously monitor the module's structural response throughout its logistic operations 

and the building use phase.  

Multi-sensing monitoring requires a robust integrated analysis for a holistic logistic impact 

analysis and a damage scenario evaluation. With the advancements in big data analytics 

and computing capabilities, multi-sensor data fusion and consequent damage assessment 

can be performed using deep learning tools [143,369]. Convolutional models are among 

the most powerful deep learning tools for effectively capturing spatial features from several 

sensor signals [219,303]. However, convolutional models can only extract the features in 

one dimension and learn the correlations among the sensors at each time instance. The 

sensor data consists of a time series of structural responses. For damage detection, the 

sequence of structural response in the time dimension is as important as the correlation 

among different sensors [47]. The variation in the sensor data across the time sequence 

provides important information about the change in the structural condition. Thus, temporal 

dependencies must be incorporated into the model for effective damage assessment. 

Another type of deep learning model, sequential models, exclusively learns across the 

temporal dimension of the data [260]. These models maintain hidden states across time 
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steps, capture sequential patterns, and thus model the sensor data dependencies across the 

temporal sequences. Owing to the exclusive capabilities of convolutional and sequential 

models, researchers have applied hybrid combinations of these to achieve better 

performance [72,366]. The existing studies using such methods for damage assessment are 

related to either bridges for traffic loads or traditional building structures for typical dead 

loads. The case of monitoring the MiC module structures is substantially different from 

such cases due to its moving structure during the transportation and assembly process. The 

previous research lacks any study that explores the structural damage monitoring and 

assessment of modular structures under the dynamic loadings caused by logistic operations.  

1.2 Problem Statement 

The modular integrated construction (MiC) has unique attributes related to its logistic 

operations. The existing studies rarely discuss the complex multi-tier, multimode supply 

chain and fragile logistics operations. However, the JIT supply chain demand for MiC 

assembly makes it vital to explore the dynamics of the MiC supply chain and logistics. So 

that critical influencing factors are identified and bottleneck issues are highlighted. 

Meanwhile, the latest construction industry, 5.0, demands technological solutions for 

enhanced performance and automation. Thus, exploring suitable technologies that 

effectively address the MiC logistics challenges is necessary.  

The preliminary review and discussion above highlight that one of the vital challenges in 

MiC logistic operations is the damage occurring during module transportation and 

handling, which requires continuous real-time monitoring of the MiC module’s structure 

during logistic operations.  Such monitoring requires a wireless multi-sensing system to 
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sense the structural variations and communicate effectively in real time. The existing 

technologies are unsuitable for such MiC module monitoring and recognize its need.  

Meanwhile, the existing data-driven methods for damage analysis and assessment are 

insufficient to handle the multi-sensor, non-stationary time-series data of the MiC module 

during logistic operations. Therefore, there is a dire need to develop a robust hybrid deep 

learning-based model development to enable the damage assessment of MiC modules.  

1.3 Research Objectives 

In light of the above discussion and literature gaps, the main aim of this research is to 

explore the dynamics and technological solutions for the MiC logistic challenges. To 

achieve this goal, the following objectives are determined.  

I. To explore the factors influencing MiC logistics SC operations. 

This objective explores the factors that influence the MiC supply chain, ranks those factors 

to identify the critical ones, investigates the interrelationships among the critical 

influencing factors, and consequently determines the influencing mechanism of these 

factors.  

II. To explore the potential technologies for MiC logistics and synergies among 

technologies’ benefits and MiC challenges. 

The second objective investigates (1) the key challenges of MiC logistics, (2) the most 

suitable technologies for MiC logistics, and (3) synergies among MiC challenges and 

benefits for identifying the technology gap.  
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III. To develop a Multi-Sensing IoT system for monitoring the MiC module structure 

during logistics operations. 

In the third objective, the multiple sensors and wireless communication components are 

integrated to develop a multi-sensing IoT device for monitoring the MiC module structure. 

The developed device is tested and calibrated to ensure its performance. A detailed 

application of the developed system is demonstrated for the MiC logistics.  

IV. To develop a hybrid deep learning data-driven model for damage assessment in 

MiC modules. 

This objective integrates the sequential and convolutional deep learning models to develop 

a hybrid model for MiC module damage prediction. The model is trained, tested, and 

validated from MiC logistic operations detailed field experiments.  

1.4 Research Significance 

The research aims to contribute to the MiC logistics and supply chain knowledge domains 

by investigating the factors and their influencing mechanisms on MiC logistics operations. 

Highlighting the technologies that address the MiC issues and identified technology gaps 

will enlighten the research directions. Decision-makers can benefit from the identified 

framework of critical MiC supply chain factors to improve policies and logistic strategies. 

Also, considering the determined synergies, the practitioners can rationally adopt suitable 

technologies for their relevant situations. 

The integration of multiple structural response measurement sensors and wireless 

communication components allows robust and effective real-time module structural 

monitoring. The developed multi-sensing IoT system enables the decision-maker to 
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monitor the module structure in real time and make timely decisions to avoid supply chain 

disruptions. The architecture of the hybrid damage prediction model adopts a novel 

approach to integrate the convolutional and sequential deep learning models to combine 

their exclusive capabilities. Such a hybrid model enables automated damage prediction and 

localization, which can further improve supply chain decision-making. 

1.5 Overall Methodology  

The overall methodological framework of this study is presented in Figure 1-3. For 

objective I, multiple research domains are explored to identify the influencing factors of 

MiC SC operations. Then, the significance of the identified factors is evaluated based on 

their potential influencing relationships, and the resulting themes are discussed.  

 

Figure 1-3. Overall methodological framework 

For objective II, we first explored the unique challenges of the MiC logistics and SC 

operations. Then, the application of technologies in general SC, logistics SC, and 

construction SC areas is explored to identify the possible technological solutions for the 

MiC. An IoT-based sensing tool for real-time module monitoring during logistics 
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operations is developed for objective III. The developed system is then thoroughly tested, 

and its application is demonstrated. Finally, in objective IV, a hybrid deep learning model 

architecture is designed to assess and predict the damage in the module. For this purpose, 

we evaluated different deep learning models to compare their performance.  

1.6 Thesis Structure 

This study contains a total of five chapters. After the introduction chapter, the detailed 

literature review is discussed for each objective in Chapter 2. Chapter 3 elaborates on each 

objective's methodologies, and the objectives' results are discussed in Chapter 4. Finally, 

the conclusions and future research plan for the remaining research are given in Chapter 5. 
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2 Chapter 2           

LITERATURE REVIEW 

2.1 Overview 

In the first step, a preliminary review was performed to find the relevant studies within the 

MiC research domain. Table 2-1 summarizes the existing articles on the MiC supply chain-

related factors. These studies offer a good understanding of the benefits and challenges of 

MiC adoption and implementation by identifying the relevant critical success factors 

[3,100], factors for sustainable design and assembly [147], and MiC project risks 

[138,335]. One of the recent studies explores the sustainable supply chain aspects of MiC. 

However, the study only uses bibliometrics and modelling techniques to analyze supply 

chain issues over MiC project life [147]. Other review studies examine the risks and critical 

success factors (CSFs) of supply chain management in MiC [89,335].  

However, MiC supply chain operations dynamics have not been studied before, leaving a 

critical knowledge gap. Table 2-2 lists all the studies that mention MiC-related logistic 

issues. The focus of most of these studies is on scheduling and logistics planning, such as 

sequence for storage and stacking [42] and assembly schedule optimization [128,347]. 

Similarly, Lee, et al. [175] discuss the issues related to sequencing and stacking 

prefabricated panels. Some studies briefly discussed the impact of transportation on 

prefabricated structures [111,151,276]. One most recent study used the acceleration data 

to analyse the damage in module during transportation. 
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Table 2-1. Summary of studies focusing on MiC Supply chain factors  

Article Topic Research Focus 

Hussein and Zayed 

[148] 
JIT. 

Explores the success factors for implementing the JIT 

principle in the MiC supply chain. 

Hussein, et al. 

[147] 

Modeling 

techniques 

Performs the bibliometric and scientometrics review for 

modeling tools and techniques used in offsite 

construction 

Masood, et al. 

[205] 

Company 

performance 

Identifies the factors affecting the performance of 

companies in prefabricated housing 

Correia, et al. [66] MiC adoption 
Analyze the factors influencing the decision to implement 

offsite construction in Australia 

Ekanayake, et al. 

[88] 

MiC SC 

resilience 

Identifies the capabilities or characteristics of an efficient 

MiC supply chain, such as, resourcefulness, flexibility, 

capacity, adaptability, etc. 

Ekanayake, et al. 

[87] 

MiC SC 

vulnerabilities 

Explores the critical supply chain vulnerabilities in Hong 

Kong MiC projects focusing on economic, technological, 

procedural, organizational, and manufacturing 

vulnerabilities. 

Wuni, et al. [335] 
MiC Project 

Risks 

Identified MiC project risks comprising stakeholder and 

supply chain risks, design and capabilities risks, financing 

risks, and regulatory risks. 

Fauzi, et al. [100] MiC adoption 

Explore challenges for implementing an industrialized 

building system in Malaysia's construction industry from 

a manufacturer's perspective. 

Abdullah and 

Nasir [3] 
MiC adoption 

Challenges to integrate the supply chain for the adoption 

of the industrialized building system in Malaysia 

Asri, et al. [28] JIT. 
Identifies the success factors for JIT implementation in 

industrialized building system  
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Table 2-2. Summary of studies focusing on MiC Logistics  

Study Research Focus 

Zhang, et al. [368] Assessment of carbon emissions during logistics operations 

Wu, et al. [329] Blockchain framework for cross-border logistics of modules 

Huang, et al. [145] Factory location optimization 

Yang, et al. [347] Schedule optimization of logistic operations 

He, et al. [128] Schedule optimization of modular transportation and assembling 

Yang, et al. [348] Exploring uncertainties during modular logistic operations 

Lee, et al. [175] 
Exploring issues during storage and stacking of prefabricated 

panels  

Tažiková and Struková 

[299] 

Assessing the costs of logistics and transportation of modular 

construction 

Bortolini, et al. [42] Planning the logistic operation using BIM 

Asri, et al. [29] Exploring the application of Lean for modular supply chain 

Innella, et al. [151] 
Investigating the structural performance of modules during 

transportation  

Godbole, et al. [111] 
Investigating the impact of transportation on the module’s 

structure 

Smith, et al. [276] Monitoring the impact of transportation on the module’s structure 

Valinejadshoubi, et al. 

[315] 

Monitoring transportation-induced damages in wooden modular 

houses 

Overall, the research within MiC has rarely discussed logistics and supply chain operations 

issues. Therefore, we reviewed the research areas beyond the MiC supply chain. Figure 2-1 

shows the overall structure of this review chapter, where studies from multiple supply 

chain-related industries and structural health monitoring are reviewed to investigate the 

relevant knowledge.  
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Figure 2-1. Overview of literature review 

2.2 Challenges of MiC logistic supply chain  

Logistics operations are the most critical aspect of a MiC project and, therefore, are 

considered a primary success criterion. Detailed logistic feasibility is performed at the 

early stage of the project to comprehend the challenges and their impacts. The MiC 

supply chain is complex and unique, requiring a multifaceted integration of several 

stakeholders' goals, information flow, and material flow across various independent 

supply chain segments [195,334]. Also, it involves complicated intrinsic challenges 

related to the logistic processes. This section provides insight into the challenges of the 

MiC logistic supply chain. For this purpose, research studies mainly focusing on the MiC 

and Hong Kong are reviewed, and critical challenges are identified in Table 2-3.  

 

 

                 

                

                 
              

          

                
            

                  
               

             
            

                  
          

                  
            

                  
       

              
             

           
                  

                 
                 

              



17 

Table 2-3. MiC supply chain challenges 

Challenges References 

Inventory Control 
Overproduction [137,194,232,331] 

JIT Production [25,146,147,149,330,331,347,348] 

Module Storage 

Module handling [25,194,334] 

Transit storage location [133,334,348] 

Buffer space hedging [194,195,330,332] 

Transportation 

Route and vehicle 

selection 
[133,146,147,149,348] 

cross-border regulations [194,375] 

local traffic management [133,348] 

Travel uncertainties [25,194,375] 

Assembling delays 

Delays due to equipment 

breakdown  
[137,334,348,359] 

Delays due to bad weather 

and wind  
[25,137,147,232,332,334,347,348,359] 

Delays due to 

transportation issues 
[25,73,137,147,194,333,334,359] 

Delays due to wrong 

module delivery 
[25,73,348] 

Delays due to installation 

errors and damage rework 

[25,73,330,333,348,359] 

 

Resource wastage during 

recurring handling of 

modules 

[133,348,359] 

Transportation and storage 

sequencing  
[25,73,194,348] 
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Supply chain integration 

Communication and 

coordination among 

stakeholders 

[25,195,232,330,332-334] 

 

2.2.1 Inventory control 

Inventory management is critical to ensure the continuity of the processes. The planned 

extra inventory, called safety stock, plays a crucial role in meeting the uneven demand from 

the assembly site. On the other hand, the additional inventory stock is considered a non-

value-adding activity as it causes extra storage costs [194]. Excess inventory is mainly 

caused by overproduction when the manufacturing rate is not synced with the assembly 

rate at the site. Such a demand-supply gap can be effectively managed at the planning stage 

by incorporating the demand uncertainties at the assembly site [137]. Ideally, the 

application of the just-in-time (JIT) principle can control the issue of excess inventory. 

However, applying pure JIT increases the risk of inventory shortage under uncertain 

circumstances and may affect the transportation process performed in batches. Therefore, 

Hussein and Zayed [149] proposed reducing the batch sizes and increasing the delivery 

frequencies. Moreover, inventory can be further controlled by improving the 

communication between site and logistics stakeholders [195]. 

2.2.2 Module Storage 

The inventory management and storage needs are tightly linked with each other. Typically, 

the assembly site orders the modules from the factory 4-6 days before the scheduled 

installation, when the module is transported and delivered at a site [359]. Due to the short 

lead time, the factory manufactures the modules according to the master plan and stores 
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them in factory storage until the site order is received. Also, modules are delivered to the 

site in batches, according to the floor assembly plan [194]. Luo, et al. [194] reported that 

the manufacturer started early production and stored initial inventory for 321 days. 

Moreover, the overall average storage duration of the module was 44 days after assembling 

started. Such a long storage time causes high storage costs. Also, Wuni, et al. [334] and 

Luo, et al. [195] reported that module handling during storage cause severe wear and tear 

causing extra repair costs. The MiC module size and weight range between 3-8.68m long, 

2-4.5m wide, and 7-13.5 tonnes [133]. The loading and unloading operations for such huge 

modules are critical, and excessive and frequent handling may cause damage to modules 

[334].  

Further, modules are transported in batches according to the assembling cycle [359], which 

is 6-9 days [194]. Therefore, the delivered batch of modules must be stored on-site or at 

transit storage till the completion of each cycle [359]. Moreover, in case of delays in 

assembly, the storage time would be much longer. Luo, et al. [194] observed that the 

average on-site storage time (14 days) is much higher than the transit storage time (4 days). 

However, on-site storage is not possible in several cases due to a congested site layout or 

the absence of any nearby parking lot. In such cases, the location of transit storage becomes 

more crucial for optimizing the overall project costs. Some studies proposed enhancing the 

coordination between the logistic and assembling contractors by introducing shared profit 

and penalty mechanisms against saved storage time called buffer space hedging [361,362].  
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2.2.3 Transportation 

The transportation for the MiC supply chain is characterized as multimode cross-border 

transportation. The challenges related to transportation involve the selection of 

transportation mode, choice of route, selection of vehicle/ship type, cross-border 

regulations, travel uncertainties, and traffic management [133,149,194,375]. The selection 

of route and mode of transportation depends on factors such as factory location, site 

location, size and weight of modules, batch size, road constraints, and border and traffic 

regulations [194]. Transportation by ship is considered more economical than other modes 

of transportation. Therefore, most MiC projects adopted transportation modes. For local 

road transportation in Hong Kong, vehicles carrying loads wider than 2.5m must apply for 

a Wide Load Permit (WLP) and a detailed Traffic Impact Assessment (TIA) study. 

Observing the local regulations, the MiC projects need to develop a detailed traffic 

management plan, and generally, a traffic consultant is also employed for efficient traffic 

management [133].  

2.2.4 Assembling delays 

The MiC assembly is considered the most critical part of the project, as delays in assembly 

affect the whole upstream supply chain, causing incurring costs [334]. Delays in the MiC 

assembling process are inevitable and cause schedule changes. Luo, et al. [194] reported 

that in the MiC project, assembling delays caused each assembling cycle to be delayed by 

an average of 3 days and the whole project delayed by 102 days. In the literature, late 

delivery of modules due to transport disruption is the most reported cause of assembling 

delays [73,137,194,334,359]. Some delay causes are related to the assembling process, 
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such as a crane or other equipment breakdowns [334], and slow labor productivity due to 

unskilled or untrained workers [137]. Many delays are caused by damaged modules and 

installation errors, which require excessive repair work or replacement of modules 

[73,359]. Weather and wind are also the leading causes of delays or slow assembling 

[137,334,359]. In MiC projects, delivery of the wrong module or misplacement of the 

required module type is another significant cause of delay [73]. 

In MiC projects, buildings consist of multiple modules of different sizes and weights; up 

to 9 different types of modules are used for various MiC projects [133]. The variety of 

modules in a batch makes the logistic management processes more challenging. For 

example, different sizes and weights require a different vehicle for transportation or loaders 

for loading-unloading operations. In such a scenario, processes are prone to variance, 

which causes resource wastage [359]. 

Moreover, the identification of modules and record-keeping becomes crucial [194]. 

Typically, the record is manually maintained, which is prone to errors and may cause 

serious confusion in identifying the correct module. In such a scenario, the wrong module 

can be delivered at the site or maybe misplaced in a storage place; this would cause delays 

and resource wastage in finding the correct module [73]. Therefore, it is essential to 

maintain an efficient module identification system. Moreover, the logistic contractor must 

keep the module sequence during transportation and storage according to the assembly 

sequence. This way, there will be a lesser waste of resources and a lesser chance of mistakes 

in delivering the correct module at the site.  
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2.2.5 Supply chain integration 

Generally, among other factors, supply chain integration is considered a key to an efficient 

logistic supply chain [334]. The MiC supply chain consists of several continuous segments 

that function independently, such as manufacturing, transportation, and site assembling. 

These segments are linked as a continuous flow of modules from one segment to another. 

In this case, any disturbance in the supply chain can halt the continuity of the whole supply 

chain. Uncertainty and disruptions are inevitable in the MiC supply chain and cause 

additional costs [137]. 

Moreover, multiple stakeholders are responsible for different supply chain segments, such 

as design and manufacturing contractors, third-party logistic contractors, and assembling 

contractors. In this case, a delay in assembly would cause the logistic contractor to hold 

extra stock of modules in storage, causing additional costs [194]. However, an integrated 

supply chain with effective coordination and communication among stakeholders can 

preemptively mitigate such issues.   

2.3 Review of Influencing Factors for MiC SC  

The influencing factors of the MiC supply chain were systematically reviewed. First, a 

preliminary search was conducted to (1) validate the research idea, (2) justify the need for 

this study, and (3) establish the precise research questions. Several queries were searched 

on Google Scholar and Scopus to find the relevant articles. The search queries consisted of 

several combinations of keywords and their variants related to the modular construction 

supply chain factors. As a result, ten modular construction review articles were found using 

these queries. Out of ten, only four review articles focused on the modular construction 



23 

supply chain topic. Fauzi and Correia, et al. [66] focused on successfully adopting the 

modular construction supply chain. Whereas Hussein and Zayed [148] and  Asri, et al. [28] 

focused on the implementation of the Just-in-time (JIT) approach for the modular 

construction supply chain. None of these review studies focused on studying the 

influencing factors of the modular supply chain. The preliminary search results substantiate 

this study's knowledge gap and research questions. Also, the existing review studies help 

provide a list of relevant keywords to develop a robust literature search design for 

systematic review.  

2.3.1 Article search and screening  

The performed systematic review adopts the methodology guidelines from Higgins, et al. 

[130]. The precise definition of inclusion and exclusion criteria is pivotal for a sound search 

design and reflects this study's objectives. The inclusion criteria are: (1) include studies 

related to the general supply chain management, logistics management, and modular 

construction supply chain; (2) include only those studies which contain influencing factors, 

such as critical factors, success factors, barriers, decision factors, risk factors, etc.; and (3) 

include studies from all the available years of publications, to avoid any temporal bias 

[130]. Similarly, the exclusion criteria are: (1) exclude studies from any specific industry 

or subject other than modular and prefabricated construction; (2) exclude studies that do 

not include any supply chain influencing factors; and (3) exclude inaccessible and non-

English-language articles. 

The general supply chain domain studies mostly focus on product flow management and 

coordination. These studies mainly discussed the management strategies such as 

sustainability, supply chain flexibility, Lean, TQM, etc. On the other hand, the studies from 
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the logistics management domain mainly focus on collaboration among stakeholders and 

supply chain resource management, such as information flow, transportation management, 

storage location, etc. The construction domain contains all the studies related to modular 

construction and its similar supply chain, such as industrialized buildings, prefabricated or 

precast construction, volumetric construction, etc.  

Scopus and Web of Science (WOS) databases were used to search for relevant studies. In 

the construction and supply chain domain, these databases are considered the most up-to-

date and comprehensive [297]. An extensive search query was used to find articles from 

these databases. This query was developed considering the pre-defined inclusion and 

exclusion criteria (section 2.2.1). Further, the built-in database filters were applied to 

execute the exclusion criteria and remove irrelevant subject areas, such as medicines, 

chemicals, agriculture, arts, etc. As a result, we found 336 articles on Scopus and 248 from 

WOS. After removing the duplicates, the remaining 447 articles were further evaluated for 

eligibility.  

A detailed evaluation and screening process is elaborated in Figure 2-2. In the first step, 

the duplicates were removed, and a title and abstract-based screening was performed using 

an inclusive approach. The articles focusing on generic supply chain management, logistics 

management, or various forms of modular construction were shortlisted. Studies related to 

other industrial applications, such as agriculture, petroleum, automobile, etc., were 

excluded. Following this, a full-text evaluation of the remaining (123) studies was 

performed. During the full-text review, the eligibility criteria were further reiterated by 

evaluating the nature of factors enlisted in these studies. Only those studies that fulfilled 
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the pre-defined eligibility criteria were selected. As a result, a total of 66 relevant studies 

were found. 

 

Figure 2-2. PRISMA flow diagram for screening of studies 

Further, the forward- and backward-snowballing method was performed to extend the 

literature search. This snowballing helps reduce the database bias and overcome the 

keywords' limitations. The iterative snowballing process was conducted for every new 

study found until no new relevant study was found. As a result, 24 more articles were found 

and added to the final set of studies. 

Initially, a total of 117 factors influencing the supply chain are found. Following the type 

of factors as well as their functional prominence, factors are categorized into four main 

groups: (1) Project management and strategic level factors, (2) Organizational factors, (3) 

  
  

 
 
  
 
 
 

  
  
  
   
  
  
  
  

 
  
 

  
  
 
 
 
 

                                    

                                  
                           

                

        

                    

       

                

       

                   

              

                                     

                

       
   

              

           

             

            

   

  

             

                   

                             

       

                   

        



26 

SC operations-related factors, and (4) Product and design-related factors. The 

organizational and SC operations-related factors are the largest categories, with further 

sub-categories, as shown in Figure 2-3.  

 

Figure 2-3. Overall supply chain factors and categories 

2.3.2 Discussion on Influencing Factors of MiC Logistic Operations 

This paper only focuses on the factors directly influencing SC operations. Therefore, only 

43 SC operations-related factors are thoroughly investigated. SC operations-related factors 

are further categorized into five groups: 1) information & knowledge sharing (IKS), 2) 

supply chain management (SCM), 3) logistics (LOG), 4) manufacturing (M), and 5) site 

delivery (S). The detailed list of factors is presented in Table 2-4, and the factor’s 

occurrence frequency is given in Appendix – B.  

Supply chain Influencing 
factors (117)

Strategic and 
Policy (15)

Organizational 
(49)

HR (9)

Collaboration (11)

Technology and 
Information Sharing (9) 

Supplier (11)

Sustainability (9)

SC Operations 
(43)

Information & Knowledge 
Sharing (6)

SCM (10)

Logistics Management 
(11)

Manufacturing (8)

Site (8)

Design and 
Product (10)
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Table 2-4. List of factors influencing SC operations 

Categories Factors Description 
In

fo
rm

at
io

n
 a

n
d
 k

n
o

w
le

d
g
e 

sh
ar

in
g

 (
IK

S
) 

IKS1 Information technology tools 

Adopt technology for effective communication 

and establish an integrated information 

management system. 

IKS2 Information flow SOPs 
Adopting standardized procedures and guidelines 

for information technology use 

IKS3 Information transparency  

Ensuring the transparency and clarity of 

information flow across the SC and among the 

members of the SC 

IKS4 
Communication and 

knowledge Sharing with 3PL 

Sharing up-to-date information with 3PL and 

sharing knowledge about the processes and 

modules 

IKS5 Efficient information flow 
Establishing effective communication 

procedures and networks across the SC members 

IKS6 Real-time SC monitoring 
Ensuring real-time information, trackability, and 

traceability of flowing processes  

L
o

g
is

ti
cs

 (
L

O
G

) 

Log1 Module's handling  
Damage to modules during loading, unloading, 

and transportation processes 

Log2 Flexible transportation 
Multi-mode transportation and availability of 

alternate transportation routes  

Log3 Logistics delays Delays due to weather and natural disasters  

Log4 
Optimized transportation 

route 

Designing optimized supply chain networks and 

Vehicle routing for multi-mode transportation 

Log5 Inventory control 
Controlling rate of manufacturing and buffer 

space management at storage 

Log6 Logistics Cost 
Cost of transportation, storage, and handling of 

modules, or cost of acquiring 3PL services 

Log7 Cycle time 
Total time for module logistics operations from 

factory to site.  
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Log8 
Location and proximity of 

logistic facilities 

Availability of facilities such as temporary 

storage, repair shops, labor, and alternate 

transportation facilities near the factory and 

along the transportation route 

Log9 Transportation regulations 

Transportation and traffic restrictions for large 

trucks, Cross-border checkpoint regulations, 

Customs and excise procedures, and legal 

requirements. 

Log10 
Standardization of logistic 

activities 

Implementing SOPs for logistics activities and 

standardizing the processes. Implementing an 

integrated Logistics management system 

Log11 Green Transportation 
Use of environmentally friendly transportation 

and distribution  

S
u

p
p

ly
 c

h
ai

n
 m

an
ag

em
en

t 
(S

C
M

) 

SCM1 Robust SC 
Adaptability, accessibility, swiftness, flexibility, 

and decisiveness 

SCM2 SC integration Integration among all supply chain members 

SCM3 Management strategies 
Adopt innovative management strategies: JIT, 

Lean, continuous improvement, and QMS.  

SCM4 Performance measurement  
Implementing benchmarking and performance 

measurement system  

SCM5 SC monitoring  
Controlling the operational performance through 

effective SC monitoring systems 

SCM6 planning and scheduling 

Planning the SC elements, scheduling by 

employing comprehensive risk assessments, 

continuing monitoring to re-plan and re-schedule 

the activities 

SCM7 
Decentralized decision-

making 

Decentralization of decision-making and 

distributed control across SC elements 

SCM8 Risk Management Integration of risk management and SCM  
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SCM9 Risk Sharing 
Devising risk and reward-sharing mechanisms 

with SC members 

SCM10 Promoting sustainability  
Practices to encourage sustainability and Energy 

conservation  

M
an

u
fa

ct
u
ri

n
g
 (

M
) 

M1 Material Flow 
Material flow management, material handling, 

and quality control 

M2 Waste handling in the factory 
Waste disposal and recycling at the 

manufacturing unit 

M3 Natural hazards 
Delays due to natural factors such as weather and 

natural hazards  

M4 Worker's safety 
Indoor environment quality and workers' health 

and safety 

M5 Green Manufacturing 
Use of environmentally friendly materials and 

processes 

M6 Lead time 
Planning manufacturing rate and schedule, 

managing lead time to control the inventory 

M7 Manufacturing Delays 
Delays due to Equipment breakdown and labor 

disputes 

M8 Modules repairing 
Manufacturing delays due to defects, reworks, 

design changes, and shortage of materials 

S
it

e 
d

el
iv

er
y

 (
S

) 

S1 Demand Variability  
Dynamic variations in the assembling rate cause 

the variation in demand for modules at the site 

S2 Site Layout 
Site layout and material flow management plan 

for efficient flow of materials  

S3 Communication at site 

Passing Correct information for the required type 

of module for assembly/ following Spatial 

demand pattern 

S4 Delays due to weather Delays due to weather and natural disasters 
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S5 Equipment breakdown 
Delays due to equipment breakdown and labor 

disputes 

S6 Delayed modules delivery  Delays in the delivery of modules to the site  

S7 Worker's expertise Labor productivity, contractors experience 

S8 Assembling rework 

Installation errors, complex rectifications, 

Variations/rework, utility disruptions, and 

reworks 

 

2.3.2.1 Information and knowledge sharing factors (IKS) 

The MiC supply chain is highly information-intensive. It involves several trades and 

stakeholders that generate and acquire information for effective operational performance. 

Such information includes module specifications, locations, inventory status, storage 

availability, site assembling status, etc. Therefore, efficient information flow (IKS5) is 

critical for an effective and robust SC [220]. It can help enhance SC resilience by reducing 

SC disruptions [88] and maintaining SC agility [256]. Thus, it is imperative to establish an 

effective information flow system across the supply chain and among different SC 

organizations [233,272]. Such an effective information system can be warranted by real-

time SC monitoring (IKS6) [233,298]. For an ambidextrous SC, like MiC,  real-time SC 

monitoring is indispensable [206]. It not only offers integration of supply chain segments 

but also ensures the smooth flow of modules [256,257].  

Adopting information technology tools (IKS1) has been seen as an effective way to 

implement efficient and real-time information flow [199,241]. Such tools directly influence 

SC performance and help enhance organizational performance [169,193,217]. RFID is the 

most commonly adopted technology for real-time information flow [317]. As mentioned 
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earlier, MiC SC requires an extensive information flow along with the module flow. Such 

information includes the identification and location of the module. The RFID and GPS 

technologies record all the module-related information and share it in real-time when 

enabled with a wireless gateway [320]. This real-time information flow facilitates module 

traceability and ensures the sequence of module flow. Thus, providing the module flow 

according to the assembling works at the site so that just-in-time (JIT) delivery can be 

guaranteed [148]. This way, Information technology tools (IKS1) also support enhancing 

sustainability in the supply chain by reducing the wastage of time and resources 

[59,140,169].  

In a multi-stakeholder environment, communication and knowledge sharing with 3PL 

(IKS4) are essential to SC performance [304]. Effective communication among all SC 

organizations introduces SC resilience [238,271], responsiveness [271], integration [3], 

and flexibility [273] and also promotes sustainability [185,199]. Moreover, in an 

information-intensive MiC supply chain, loss and misuse of information could be a serious 

issue [89]. Therefore, ensuring information transparency (IKS3) is deemed essential for 

SC performance [109,283].  For this purpose, establishing information flow SOPs (IKS2) 

could be a practical element of SC performance [88,193,363]. Recently, blockchain 

technology has also been adopted to ensure information security, traceability, and 

reliability [342]. 

2.3.2.2 Logistics-related factors (Log) 

The MiC logistics operations primarily include transportation, loading and unloading, and 

storage of modules. Considering the multi-mode cross-border transportation of MiC 

modules, flexible transportation (Log2) arrangements are critical [89]. In case of 
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disruptions, an alternate transportation mode should be available in backup [88,255]. 

Moreover, the optimized transportation route (Log4) may not always be effective during 

module transportation [229]. Several critical external factors, such as logistics delays 

(Log3), might impose a change in transportation mode and route [334]. Further, the 

transportation regulations (Log9) primarily influence the decision to select the 

transportation mode and route [334,365]. Among other factors, the location and proximity 

of logistic facilities (Log8) play a crucial role in determining optimized transportation 

routes and overall SC performance [229]. Also, the factor Log8 directly influences the 

logistics cost (Log6) [264] and cycle time (Log7) [246]. 

The logistics cost (Log6) [160] and the cycle time (Log7) [172,289] are directly influenced 

by inventory control (Log5). It is one of the critical factors which can control the overall 

SC performance [148]. The optimum level of inventories may eliminate the need for 

storage [118] and hence reduce the logistics cost (Log6) and cycle time (Log7). Further, the 

module's handling (Log1) is a delicate job. Any mishandling may cause damage to 

modules, and additional repair work will be needed at the assembling site [334]. Similarly, 

the loading and stacking arrangement is critical for modules and requires additional 

attention. The wrong stacking arrangement would disrupt the unloading sequence and may 

cause additional delays. To overcome such issues standardization of logistic activities 

(Log10) is recommended [13,148,271]. 

2.3.2.3 Supply Chain Management-related factors (SCM) 

A robust SC (SCM1) is characterized by adaptability, accessibility, swiftness, flexibility, 

and decisiveness [88,271,273]. The primary function of these factors is to deal with the SC 

vulnerabilities and control the impact of disruptions [88]. Such SC capabilities are 
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governed by several other SC operational factors [341]. Among those, SC integration 

(SCM2) helps to improve the SC flexibility and decisiveness, thus increasing the SC 

robustness [8,226]. On the other hand, SC integration (SCM2) enhances communication 

and coordination among several SC organizations [100,211]. Similarly, the factor 

promoting sustainability (SCM10) involves activities to implement strategies that improve 

sustainability practices, such as waste minimization [105], energy conservation [263], 

adopting recycling [140], etc. Such practices support improving the overall sustainability 

performance of SC.  

Further, the implementation of management strategies (SCM3) such as just-in-time (JIT), 

lean and agile can potentially influence the SC robustness [28,148]. JIT and lean principles 

generally enhance SC accessibility, swiftness, and decisiveness [8,112], whereas the agile 

principle improves SC flexibility [243]. In a complex multi-stakeholder environment, 

decision-making could be tricky and have implications beyond the internal SC elements. 

In such a situation, the decentralized decision-making (SCM7) approach has been 

considered adequate [88,148]. This approach distributes the authority across the SC and 

empowers SC members to contribute to SC performance while focusing on mutual benefits. 

Further, to evaluate and administer the performance of SC members, SC monitoring 

(SCM5) and performance measurement (SCM4) are considered significant factors 

[8,294,304].  

The implementation of project management approaches is found to be an influential factor 

in enhancing SC performance. For example, implementing a risk-sharing (SCM9) 

mechanism can effectively control the performance of SC members by sharing the rewards 

and decreasing the liabilities [271,272,316]. Also, meticulous risk management (SCM8) 
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would support assessing, managing, and mitigating the SC vulnerabilities and risks 

[190,263]. Similarly, detailed planning and scheduling (SCM6) can successfully influence 

the overall execution of SC processes [2].  

2.3.2.4 Manufacturing-related factors (M) 

The efficient material flow (M1) inside the factory will lead to meeting the manufacturing 

targets and will reduce the lead time (M6) [187]. To ensure efficient material flow (M1), a 

detailed material management plan can help timely material acquisition and avoid delays 

[274]. The material management plan also focuses on green manufacturing (M5) for proper 

waste handling in the factory (M2) [351]. So that workers' safety (M4) can be ensured by 

the appropriate disposal of hazardous materials [2,326].  

The lead time (M6) is one of the most critical factors directly influencing the SC flow. It 

can delay the on-time module manufacturing, thus delaying all subsequent segments of SC 

[30,229]. The lead time (M6) can be affected by Natural hazards (M3) such as rain, 

earthquake, etc. [283,334]. Similarly, manufacturing delays (M7) due to equipment 

malfunctioning and module repair (M8) can significantly increase lead time (M6) [326].  

2.3.2.5 Site delivery-related factors (S) 

The MiC module assembling process is highly dynamic and uncertain due to several critical 

factors, such as delays due to weather (S4), equipment breakdown (S5), delayed modules 

delivery (S6), worker's expertise (S7), and assembling rework (S8). The module assembling 

process involves crane lifting, which is highly sensitive to wind and rain conditions. In case 

of high wind or rain, the crane cannot operate and, therefore, would delay the assembling 

process [148]. Similarly, equipment breakdown (S5) will stop the assembly process. The 

assembly process involves the delicate work of aligning and fixing the module joints, 
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which requires workers' expertise (S7) and sometimes needs rework to repair the joints 

correctly. In such a scenario, the assembling duration remains highly uncertain and 

unpredictable [335].  

Such uncertain delays lead to demand variability (S1), disrupting the whole supply chain, 

particularly transportation and storage in previous tiers. The efficient site layout (S2) and 

effective communication at the site (S3) can help deal with such issues. The efficient site 

layout (S2) may offer a larger working space to incorporate multiple machines or 

temporarily at the site. Thus, an efficient site layout can provide buffer space to absorb the 

impact of demand variability (S1) [326].  Similarly, real-time and effective communication 

at the site (S3) can improve the coordination among different trades to handle the 

assembling disruptions [30,229].  

2.4 Review of Technologies for Logistics and Supply Chain  

2.4.1 Article search and screening  

The review aims to investigate the application of several technologies in the logistics and 

supply chain area. Therefore, a preliminary study was conducted to identify all the 

technologies in this area. During the initial investigation, relevant review articles in the last 

five years were searched using the keywords 'technology' and 'supply chain.' These review 

articles helped establish a detailed list of logistics and supply chain technologies. Then, an 

explicit search query was generated to search all the articles related to the application of 

technologies in logistics and supply chains published since 2010. The identified list of 

technologies was included in the keyword list of the search query. The query was 

performed on Scopus and Web of Science (WOS) databases. These two databases are 
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considered sufficient for searching research articles because of their broader coverage, 

rapid indexing process, and access to recent publications compared to other databases 

[207].  

The exclusion criteria for the search are defined to consider articles related to the different 

technologies in logistics and supply chains. Therefore, the search was limited to only 

engineering journals and articles on applying technologies in logistics and supply chains. 

Articles related to medicine, social science, aerospace, automobile, etc., were also excluded 

using the database filters. As a result, a total of 2,001 articles were identified. The article 

screening process is elaborated in Figure 2-4 using PRISMA flow.  

 

Figure 2-4 PRISMA flow chart for article selection and screening 
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Articles were further evaluated by reading their title and abstracts, and 285 articles were 

found relevant. These selected articles were thoroughly read and assessed against the 

inclusion criteria: (1) the article covers the application of technology for logistics or supply 

chain operations, and (2) it highlights the benefits obtained through this application. As a 

result of the inclusion criteria screening, we shortlisted 151 articles. Further forward, 

snowballing was also conducted to exhaust the possibility of overlooking relevant 

publications on the subject matter. As a result, 157 articles were finally found for further 

review and analysis.  

2.4.2 Identified Supply Chain Technologies 

The selected articles were thoroughly studied to extract information related to the 

application of technologies and their prescribed benefits. Of the selected studies, around 

25% belong to the construction supply chain, and the remaining studies are from other 

supply chains, such as manufacturing, retail SC, food SC, etc. The overall publication 

trends of these studies are shown in Figure 2-5(a). It reveals that most of the included 

studies were published in the last five years. This indicated that the research focus in SC 

domains had been tilted toward technology application.  

Surprisingly, blockchain technology has been widely studied in the supply chain despite a 

relatively new revelation. RFID and IoT have been studied for a long time but are 

comparatively less attracted by construction studies. BIM has been thoroughly 

implemented in construction studies and applied to other supply chain areas, such as 

manufacturing. The detailed application of these technologies is discussed in the following 

sections. 
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Figure 2-5. Scientometrics trends from reviewed articles 

2.4.2.1 Blockchain and Smart Contracts 

Blockchain is a distributed ledger technology that creates a continuously growing list of 

blocks or records [180]. These blocks of records are linked and secured using cryptography. 

Its decentralized and secure nature makes it ideal for conducting transactions between two 

parties without intermediaries [338]. The blocks are saved on several connected computers, 

each having a copy of the entire ledger, thus verifying the validity of every new transaction 

or block. The blockchain can also automatically execute its operations by following a pre-

stored logical algorithm called smart contracts. Smart contracts allow automatic process 

execution when specific rules or conditions are met [161].  

Such features of blockchain make it a transformative technology that provides a secure, 

transparent, and decentralized way of conducting transactions and storing data [338]. It can 

potentially reduce costs and resource wastage [70,161,203,321], increase efficiency, and 

improve trust and transparency between parties [7,176,180,203,339], making it a 

promising technology for various industries, such as finance management, supply chain 
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management, and digital identity verification. Further details on the benefits of blockchain 

are listed in Table 2-5. 

Table 2-5. Benefits of Blockchain 

Blockchain Application and Benefits  References 

Enhanced security, trust, pseudonymity, transparency, 

and data integrity 
[7,70,176,180,203,313,321,338,339] 

automated transaction generation, decentralized 

decision-making, and data storage  
[176,180,338] 

Reduced transaction costs, audit costs, paper costs, 

verification costs, networking costs, R&D costs, and 

contracting costs; removal of nonvalue-adding 

intermediaries 

[7,70,161,203,321,339] 

Direct and real-time access data sharing and 

collaboration with stakeholders 
[161,176,180,222] 

Effectively deterring fraudulent products and Identities.  [161] 

trustworthy information management during all building 

lifecycle stages 
[180,240,313,339] 

traceability of construction project quality [161,265,339,370,372] 

 

In a blockchain, decisions are democratized and secured as transactions are performed 

through peer-to-peer endorsement and verification by a digital signature [338]. Thus, retail 

supply chains adopt blockchain for reliable delivery and to ensure error-free mass 

customization. It also significantly reduces operational costs in terms of transaction costs, 

audit costs, paper costs, verification costs, contracting costs, etc., [161]. For the same 

reasons, blockchain in construction projects is adopted to strengthen the traceability of 

materials across design and construction and ensure quality during the building 

maintenance and use phase [240,265,339,370,372]. It can also help manage the 
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information, material flow, and project documentation, thus enhancing collaboration and 

enabling automated payment systems [168,180,313]. 

2.4.2.2 IoT and Sensors 

The Internet of Things (IoT) is a network of physical devices, vehicles, buildings, and other 

objects embedded with sensors, software, and network connectivity, enabling them to 

collect and exchange data  [65,353]. An IoT system comprises two parts: (a) sensors and 

devices and (b) wireless communication. Sensors and devices in an IoT system collect data 

from the environment around them, such as temperature or motion detectors. Sensors' 

collected data is sent to an online cloud and then communicated in real-time to the other 

person or devices through the internet using Wi-Fi or cellular networks after processing 

[323] [353]. IoT has been widely applied in the logistics SC to increase efficiency, safety, 

and security of warehouses, transportation, and delivery [164]. In retail SC, it solves food 

safety problems by offering more agile and convenient merchandise management [23,188]. 

IoT has also been applied in construction for several operations, such as IoT-based material 

control systems in manufacturing facilities [323]. The list of identified benefits of IoT and 

its embedded sensors is given in Table 2-6. The following sections further discuss the 

application of different sensors in SC.  

Table 2-6 Benefits of IoT and its embedded sensors 

IoT and Sensors Application and Benefits  References 

Internet of Things (IoT)  

Increased efficiency in assembly systems [323] 

Increased efficiency, safety, and security of 

operations related to warehousing, 

transportation, and last-mile delivery 

[164] 
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Agile and convenient management of 

merchandise  
[188] 

RFID and Barcodes  

Real-time tracking of workers for safety 

monitoring 
[43,191,208] 

Efficient warehouse operations [17,85,300,319,340] 

Detecting tampering and potential theft  [44,208] 

Safety and security of merchandise [44,208]  

Tracking and traceability throughout the 

delivery process 
[162,201,208,281] 

Detecting damaged or spoiled products [44,123,162,201,208,281] 

Smart packaging, auto-checkout [63,155,208] 

Inventory control, real-time traceability of raw 

materials  

[50,63,115,132,154,155,191,208,281,319,352] 

[282,323] 

Reducing operating costs and waste [63,155,191,208] [213,323] 

Enabling just-in-time, lean, and agility [45,52,77,126,144,213] 

Enhanced logistics management  [60,82,191] 

Improved quality control [191,322] 

Tracking the hidden parts or buried assets [84,191] 

Efficient human resource management  [85,191] 

Heat and Temperature sensors  

Detect heat-stress conditions of construction 

workers.  
[85,86] 

Heat sensing in confined spaces to monitor 

health and safety 
[27,85,121,174,248,314] 

Food condition monitoring in containers  [354] 

Global Positioning System (GPS)  
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Material and equipment location tracking  [85] [21,85] 

Measuring Labor activity [85,156] 

Automated monitoring of construction sites to 

avoid clashes and accidents among moving 

equipment 

[85,227] [85,247] 

Optimum vehicle routing for material delivery [78] 

Accelerometer  

Measuring vibrations experienced by 

prefabricated modules during transportation, 

ensuring safe transportation 

[183] 

Distance, Proximity sensor  

Handling the manufacturing, warehouse, and 

indoor transportation to avoid equipment or 

good clash 

[230] 

 

RFID and Barcodes 

Radiofrequency Identification (RFID) and Barcodes are used for identifying and tracking 

objects, but they differ in their mechanisms and the types of information stored. Barcode 

technology uses manual scanning of the visual patterns, while RFID uses radio waves for 

automated data collection [45,312]. Thus, RFID can store relatively large amounts of data 

compared to a barcode. The RFID tag can store up to 128 kilobytes of data (passive 

RFID:256 bytes, active RFID: 128 kilobytes). An RFID reader can detect several tags 

simultaneously, from up to 25m distance, as it works with powerful waves with up to 5.875 

GHz frequencies [208,323]. Such advantages enable better real-time information visibility 

and traceability [115,131,191,336].  



43 

On a construction site, RFID has diverse applications, such as maintaining the material 

inventory [77,132], materials identification [208,281], and distinguishing materials in 

dusty or muddy environments [191]. RFID further enhances the monitoring of work 

progress when combined with other civil-related management software, such as 4D CAD 

and BIM [60,191,322]. It can also help track the 3D location of buried assets [84,191], 

depth of piles, pipe spools, and other valued items on construction projects [82,191]. RFID 

also has significant applications in precast production management systems [191,352]. 

RFID has been used on construction sites to monitor the worker's and machinery's 

movements to enhance health and safety [85,191,300]. It can also monitor the construction 

demolition process for proper material waste management [191].  

Heat and temperature sensors 

Heat and temperature sensors measure the heat or temperature of an object or a particular 

environment. These sensors can detect heat or temperature variations in various 

applications, such as monitoring the temperature of machinery and food during storage or 

measuring the temperature of a particular environment. These sensors have been widely 

applied in retail supply chains to monitor food conditions during delivery [354]. 

Temperature sensors, along with light and humidity sensors, are also used to monitor the 

storage conditions of perishable goods [23,310].  

In construction, heat sensors are applied to measure physical exertion and fatigue in 

workers involved in manual material handling jobs [27,121,174,314]. Wearable and e-

textile technologies are developed to monitor workers' physiology and health in real-time 

[85,86]. Also, the environmental conditions in confined spaces are monitored using these 
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sensors to enhance safety [85,248], such as for underground construction, mining, and 

tunneling projects. 

Global Positioning System (GPS) 

GPS and GIS are distinct yet related technologies typically used in various supply chain 

applications. GPS technology relying on satellite-based navigation is used to collect 

location data, which can then be integrated into GIS software to create maps and analyze 

geospatial data, such as tracking and monitoring the vehicle’s location. This information 

can be used to optimize routes [78]. In construction, GPS data can help with the automated 

monitoring of construction equipment and determine risks on job sites to avoid collisions 

[85,227,247]. Similarly, the labor movement can be monitored to improve the worker’s 

safety [85,156]. It has also been used with other technologies, such as RFID or barcodes, 

for material and equipment tracking to reduce construction waste [85]. It can also monitor 

the timely supply of resources to ensure seamless activities, such as the supply of precast 

components [21,85].  

Accelerometers 

An accelerometer is a sensor that measures the acceleration of an object, typically in three 

dimensions. Using acceleration data it determines the movement and orientation of the 

object. Accelerometers have been used in the construction supply chain to monitor the 

prefabricated components mounted on trucks [183]. Vibration and acceleration-related data 

from accelerometers can also help determine the fatigue experienced by construction 

workers [174,200]. 
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Distance and proximity sensors 

Distance and proximity sensors measure the distance or presence of a moving object. These 

sensors are commonly used in manufacturing industries, such as automotive, aerospace, 

and electronics. Several types of distance and proximity sensors are available, including 

ultrasonic, laser, infrared, and capacitive. Ultrasonic sensors are the most commonly used 

for monitoring indoor machinery movement and material handling, as they detect objects 

between 300 mm to 5000 mm distance, with an accuracy of 1mm. On the other hand, an 

infrared sensor more precisely detects between 40 mm and 300 mm and is, therefore, 

commonly used for construction machinery clash alerts [230].  

2.4.2.3 Photogrammetry 

The photogrammetry technique measures physical objects and environments using images. 

The process involves taking multiple photographs or images of an object or environment 

from different angles and using specialized software to analyze the images and generate 

accurate measurements. Its applications are wide-ranging, from creating 3D models of 

buildings and landscapes to mapping archaeological sites and developing comprehensive 

data for scientific research.  

Photogrammetry has several applications in the construction supply chain, such as 

collecting images of a built environment and developing a BIM model [69]. BIM models 

generated through photogrammetry can identify defects in the constructed components 

[184]. Similarly, CCTV images of the project site can help monitor the real-time progress 

of the project schedule [10]. This way, photogrammetry can be used as a powerful 

management and decision tool by monitoring real-time progress and quickly responding to 

changes [184]. 
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Table 2-7. Identified benefits and capabilities of photogrammetry tools in SC 

Photogrammetry Application and Benefits References 

Photogrammetry  

Generate as-built information [69] 

Assessing the quality of production, improving lead time of 

responding to changes 
[184] 

Identification of defective prefabricated units [184] 

Generate BIM models of existing buildings. [69] 

Monitoring real-time progress of project schedule [10] 

Monitoring fatigue of construction workers [174,200] 

LIDAR, Laser scanning  

Generates as-built information about a building [69] 

Detecting and recording dimensions and smoothness of 

prefabricated products  
[192] 

Generate and record as-built information of a building in the 

BIM model identify differences in building execution from 

design. 

[10] 

Computer vision  

Monitor construction progress using 4D BIM, automate rule 

checking within BIM models, automate as-built 3D 

reconstruction using computer vision, monitor construction 

performance using still images. 

[99,124,125,236,279,280,344] 

 

Identify and distinguish construction materials and equipment [85,293] 

Laser scanning 

Laser scanning helps measure objects' and surfaces' shape, size, and position in 3D space. 

It is used in several industries, including manufacturing, engineering, architecture, and 

construction, for various applications such as quality control, reverse engineering, building 
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surveys, and modeling. The accuracy of laser scanning helps generate accurate and detailed 

3D models or digital representations of objects. One of the benefits of laser scanning is its 

ability to capture data from complex and hard-to-reach areas, making it useful for 

applications such as inspecting pipelines or bridges [10]. It is also a non-destructive method 

of testing, which can be helpful when dealing with delicate or valuable objects [69]. Deep 

cameras and laser scanners in production plants are used to detect and record the 

dimensions and smoothness of prefabricated products to ensure quality [192]. 

Computer vision 

Computer vision (CV) is the latest approach for analyzing images or photogrammetry data 

using artificial intelligence. CV aims to develop algorithms that automatically and 

accurately detect, recognize, and measure the features of an object from the imagery data. 

This technology is being used for several applications, such as autonomous vehicles, facial 

recognition, object detection, medical imaging, and surveillance. In the construction 

industry, computer vision is used to identify, distinguish, or measure the construction 

materials and equipment [85,293]. It is also being used to monitor the construction 

performance using still images [99,124,125,236,279,280,344]. 

2.4.2.4 Building Information Modeling (BIM) 

Building Information Modeling (BIM) is a developing innovation that facilitates the 

creation and exchange of reliable and consistent data between various members of the 

construction supply chain. BIM enables the digital rendering of any structure, allowing for 

more efficient design, construction, and management throughout the structure’s lifecycle. 

This digital model includes crucial information concerning the building's components, such 

as geometry, quantities, spatial relationships, and material properties. BIM enhances design 
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coordination and promotes knowledge sharing among relevant stakeholders. Its built-in 

features, like clash detection visualization, scheduling, and control capabilities, improve 

construction operations [31,173]. It offers advantages not only in design management [90] 

but also in project management, resulting in reduced project time, enhanced 

communication and coordination [31], decreased costs, and fewer information returns 

[46,235].  

Table 2-8. Identified benefits and capabilities of BIM and Digital Twin in SC 

BIM and Digital Twin Application and Benefits in SC References 

Building Information Modeling (BIM)  

progress monitoring of construction projects, facility management [85,216] 

improved design coordination, knowledge sharing among relevant actors [31,173] 

visualization for clash detections, controlling and scheduling capabilities, 

facilitating construction operations 
[31,173] 

time reduction, better communication, improved coordination, lower project costs, 

reduced project information-related issues 
[46,235] 

enhancing performance of mechanical, engineering, and plumbing trades in 

construction projects 
[9,173] 

stronger SC partnerships, improving trust among SC actors [173] 

Digital Twin  

streamline and increase the productivity of production processes [288] [183] 

Identify shortcomings in systems.  [288]  

monitoring construction resources and progress  [178,183] 

occupational health and safety management  [159,183] 

Enhanced facility management [58,183]  
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 BIM plays a catalytic role in supporting construction SC stakeholders for effective supply 

chain management in construction. Such as it improves trust among all stakeholders by 

enabling consistent and real-time information-sharing [173]. Integrating with other 

technologies, such as RFID, BIM adds value to the supply chain performance. For example,  

monitoring the progress, maintenance, and facility management [85,216]. The laser 

scanning approach can help record the as-built information of a building or building 

component into a BIM model where as-built information can be compared with original 

design information, and changes or defects can be identified [10]. 

2.4.2.5 Digital Twin 

A digital twin is a digital model and a virtual replica of an object or process. It utilizes 

advanced technologies such as machine learning algorithms, the Internet of Things (IoT), 

and sensor data to simulate the behavior and characteristics of real-world objects or 

systems. Various industries, such as healthcare, manufacturing, and transportation, utilize 

digital twins to improve performance, optimize processes, and reduce costs. With the use 

of digital twins, real-time data can be monitored and analyzed to identify potential issues 

and simulate different scenarios for better decision-making. 

In retail supply chain management, digital twins can be employed to optimize processes, 

streamline production, and identify production bottlenecks. By identifying potential system 

shortcomings, Digital Twins can help improve future change proposals before 

implementation [288]. For construction projects, integrating IoT data with BIM has 

become a fundamental approach in creating digital twin applications that enhance 

productivity [183]. These applications have been widely utilized for monitoring 

construction resources and progress [178,183], occupational health and safety management 
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[159,183], construction logistics and supply chain management [183,373], and facility 

management [58,183]. 

2.5 Sensing Technologies for Damage Monitoring 

For structural health monitoring (SHM), numerical modeling is time-consuming and 

expensive, but it is still unreliable; for accurate modeling, precise data of each point on the 

structure and each damage scenario is required in advance. Therefore, structural response 

under a particular loading or force is measured to assess the effect on the structure. For this 

purpose, several sensing technologies are used to monitor the loadings and structural 

response. The vibration-based, strain-based, guided waves, and acoustic emissions 

technologies are most common for buildings and bridges SHM [120]. The table 2-9 below 

summarizes the commonly used sensors and features of each sensing technology. 

Table 2-9. Commonly used technologies for SHM  

Technology Sensors Features 

Vibration-

based 
Accelerometers 

Global range, limited resolution, sensitive to 

environmental conditions and disturbances 

Strain-based 

Foil Strain Gauge, 

Piezoelectric Sensors,  FBG 

Sensors 

Local range, limited resolution, high sensitivity, 

sensitivity to environmental conditions, 

accurate damage quantification, 

Guided 

waves 
Piezoelectric Sensors  

Mid-range, high sensitivity, not suitable for 

thick composite materials, sensitive to noise 

Acoustic 

emission 

PZT acoustic wave sensors, 

AE probes 

Mid-range, not suitable for thick composite 

materials, sensitive to noise 
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2.5.1 Vibration-based 

The vibration method or modal analysis is usually used to improve finite element models 

(FEM) using experimental vibration data. These methods have limited resolution for 

structural damage detection, making them suitable only for identifying large cracks that 

significantly alter the first frequencies and modal shapes [117]. Also, the accuracy of this 

method is easily affected by environmental conditions, uncertainties, and measurement 

errors [75]. However, analyzing large data can certainly overcome such a limitation of 

accuracy and efficiently detect damage at the global structural level [113]. For acceleration 

data, modal strain energy and damping ratio are considered better damage indicators than 

natural frequencies [120]. 

2.5.2 Strain-based 

The strain-based method measures the displacement that occurs at any point under loading. 

Several strain sensors are available for measuring the strain in the structural elements, such 

as resistive strain gauges, piezoelectric, and FBG sensors [120]. The main disadvantage of 

this method is that strain detection is only significant near the sensor position. Any strain 

away from the sensor will have little impact on the sensing [152]. The strain mapping 

approach has been used to deal with this issue. It detects changes in the strain field caused 

by the local loss of stiffness and subsequent strain redistribution and, hence, assesses the 

damage in a larger area [12]. 

2.5.3 Guided Waves 

This method is more commonly used in aeronautics due to its potential to detect minor 

damage, which is critical for an aircraft. The common guided wave sensor is piezoelectric 
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material in ultrasound transducers (PZT). When attached to the structure, the PZT sensor 

emits a short ultrasonic pulse of a few hundred kHz, propagating through the structure as 

an elastic wave, and is received by a secondary PZT sensor. Any signal distortion indicates 

a change in structure between two sensors. This technique effectively detects even minor 

damages in flat surfaces like cylindrical tubes. However, its application is challenging for 

thicker and condensed structures [12]. The waves change their characteristics (such as 

mode, shape, speed, etc.) in thick composite materials because of rigorous reflection or 

refraction at every interface [214]. 

2.5.4 Acoustic Emissions 

In the acoustic emission method, an inaudible acoustic signal is released at one end of the 

structure's surface, and change in response is measured at the other end. This method 

captures elastic waves produced by growing cracks that liberate energy [209]. Therefore, 

it's more effective for detecting fatigue in structural elements. PZT acoustic wave sensors 

are commonly used for this method as they are smaller, less expensive than standard 

probes, and less sensitive [228]. The issues in this method are similar to the guided wave, 

such as wave reflection, distortion, and damping. However, guided waves actively release 

controlled signals of the same shape, whereas acoustic signals are short packages of 

frequency, intensity, and duration information. Therefore, there are different processing 

algorithms for both methods. Also, noise is more critical in acoustic emissions; hence, an 

additional preamplifier is installed near the sensor to eliminate noise and improve signal 

quality [120].  
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2.6 Damage Detection During Transportation and Handling 

Early damage detection is critical for the long-term safety and performance of the structure. 

In prefabricated modules, the damage is initiated mainly during logistics operations, such 

as transportation and module handling [276]. Godbole, et al. [111] studied the acceleration 

impact on the module during transportation and found that vertical acceleration can reach 

up to 32 m/s2 (3.3g). Therefore, the module design should be able to incorporate this 

impact. Alternatively, the vibration dampers could be installed below the module floor to 

dampen the truck-induced vibrations. However, the damage is not caused only by vertical 

acceleration; horizontal shocks due to instant breaking and road roughness may also cause 

a severe impact on the module. In addition, the impact in the form of strain can also damage 

the module components during its loading-unloading operations.  

In this context, the MiC logistic operations cause a dynamic and non-stationary structural 

response that can be measured and analyzed to detect structural changes or damage. Several 

sensors are installed at different locations to monitor the MiC module structure. The most 

convenient and commonly used sensors for SHM are accelerometers that sense the 

acceleration or vibrations along all three axes.  The statistical methods are used to analyze 

the accelerometer data for damage assessment. These methods follow the principle of 

structural response variation under similar loading conditions, causing vibrations in the 

structure. The existing damage assessment methods are mostly suitable for stationary data. 

These methods compare the two states of a structure (undamaged and damaged) by 

comparing the sensor response measured under static conditions. A non-stationary scenario 

contains high noise in the data, which is impossible to distinguish and remove from the 
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sensor signal. Also, achieving similar loading or motion conditions during MiC logistic 

operations is highly unlikely.    

Further, the module is exposed to several linear and rotational motions under logistic 

operations. Therefore, a gyroscope and an accelerometer are needed to capture the module's 

movement fully during logistic operations. Like an accelerometer, a gyroscope measures 

rotational motion along three axes: roll, pitch, and yaw. Although, the combination of 

acceleration and gyroscope can effectively capture the motion of the structure. However, 

it is still impossible to distinguish the variations in these sensor signals due to changes in 

structural conditions occurring during highly dynamic logistic operations. Once the 

damage occurs, the structural response measured by these sensors will show some variation 

but not significant enough to be distinguished, particularly in the presence of high 

amplitudes in the sensor signals caused by the logistic motions. Also, the inertia measuring 

sensors (accelerometer and gyroscope) are more suitable for measuring the variations in 

the structural response at the global level, and locating the damage position requires 

additional probabilistic assessment.  

In this context, the strain gauge sensor can measure the structural deformation locally, more 

precisely, while directly indicating its position. The strain gauge sensors are attached to the 

structure and measure the structural deformation based on the change in the flowing current 

levels. When there is any significant change in the structural condition due to damage, the 

affixed strain sensor shows a substantial change in the flowing current, indicating that 

damage. However, the strain sensor measured response is highly local and can only 

accurately detect damage occurring closer to the installed location. Also, strain 
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measurements do not provide any information related to the loadings impacting the 

module.  

Considering the features and limitations of the above-discussed sensors, it can be seen that 

all these sensors provide essential information required for assessing the structural response 

during logistic operations. Also, the combination of these sensors can allow us to capture 

the module's motion effectively, while the local damage can also be directly analyzed. 

However, the dynamic loading and structural response-related information these multiple 

sensors capture requires an integrated analysis. So that a holistic logistic impact can be 

analyzed and a damage scenario can be evaluated.  

2.7 Damage Assessment Methods 

Overall, the relevant studies of SHM can be summarized in two main categories based on 

their methodological approaches: model-based monitoring and data-driven monitoring. 

These approaches are further discussed in the following sections and presented in Figure 

2-6.  

 

Figure 2-6. Common damage assessment approaches in SHM 
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2.7.1 Model-Based vs. Data-Driven Damage Detection Methods 

Damage detection or Structural Health Monitoring (SHM) approaches can be broadly 

categorized into model-based and data-driven Approaches [110,215]. A model-based 

(physics-based) approach identifies damage by monitoring changes in the simulated 

measurements from a mathematical structure model. Such a mathematical model links a 

structure's input and output parameters using the structure's known or assumed physical 

and material properties. The finite element model (FEM) is the most popular model-based 

method due to its ability to handle complex geometries. When using the model-based 

approach, the FEM parameters are updated according to the applied conditions, or 

scenarios are simulated. The FEM model calculates an optimized solution of mass, 

stiffness, and damping matrices for new conditions and evaluates the consequent structural 

response. However, for efficient damage detection, these approaches have several 

limitations [369]: (a) model accuracy and reliability, (b) handling uncertainties, (c) 

flexibility to update the model under dynamic scenarios, and (d) requiring specialized 

knowledge about structural dynamics and conditions. 

On the other hand, data-driven (signal-based) methods solely rely on statistical sensor data 

analysis to evaluate the structural response. These methods don't require the structure's 

material or physical properties, thus making them more desirable. The model-based 

methods have inherent uncertainties due to model assumptions and accuracy concerning 

real-world scenarios. Meanwhile, the time-series sensor data provides more accurate and 

realistic information about actual scenarios and reduces uncertainties [224]. Data-driven 

methods can adapt to new data without changing a predefined model. These methods can 

handle large amounts of data more efficiently than model-based methods. This is 



57 

particularly important in SHM, where sensor data is often collected continuously over long 

periods [92]. In addition, data-driven methods can usually provide real-time monitoring, 

which is difficult with model-based methods. 

2.7.2 Data-Driven Methods 

With recent technological advancements, sensors can provide large amounts of time series 

data related to the loading impacts on structures and the consequent structural changes. 

Analyzing such data enables real-time and automated damage detection and structural 

health monitoring. The data-driven methods can be broadly categorized into two main 

categories: (a) traditional statistical paradigm and (b) Machine learning methods. 

2.7.2.1 Traditional Statistical Analysis 

Statistical Features and Modal Parameters 

Generally, damage detection approaches assess the structural response under different 

loading environments and evaluate the variations. In this perspective, two types of 

structural responses can be static and dynamic. Assessing static responses such as stress 

and strain is straightforward but less reliable for evaluating structural changes [81]. 

Generally, the methods to determine static response focus on extracting the statistical 

features directly from the raw data. These features provide the signal's characterization and 

properties, such as mean, variance, skewness, and kurtosis of the signal, as well as the 

energy and entropy of the structure [182].  

In the case of dynamic response assessment, the signal's modal parameters are more 

efficient [51,358]. The modal parameters, such as frequencies, mode shape, damping, etc., 

are more sensitive towards both rapid and steady structural variations. Therefore, they are 



58 

more reliable than static features for detecting the structure's critical damage and lifecycle 

deterioration [97]. However, dynamic response assessment is difficult as it requires 

controlled operations and environmental effects to obtain the desired accuracy [110]. Also, 

the performance of such methods is inefficient for a real-world complex 3-D civil structure 

that poses nonlinear behavior under a dynamic loading environment, as these methods are 

only suitable for linear systems that exhibit proportionality between applied forces and 

structural responses [245].  

Time Series Analysis 

Time series analysis models the temporal behavior and provides insights into its dynamic 

behavior. These statistical tools simulate the dynamic characteristics using historical trends 

of the measured data. The most commonly used time series analysis models are the 

AutoRegressive (AR) and its moving average integrated variation called ARIMA, wavelet 

transform, and spectral analysis [143,250]. The AR model expresses the current value as a 

linear combination of past values. In contrast, ARIMA integrates the moving average into 

the AR to incorporate the weighted average of past error terms in the time series data [186]. 

Therefore, ARIMA is more suitable for handling non-stationary scenarios [250]. While 

ARIMA models are highly accurate under certain scenarios, they require manual parameter 

selection and tuning, making them computationally expensive [143]. Also, they rely on 

stationarity and invertibility assumptions and require excessive data preprocessing to deal 

with it [324]. 

Wavelet transforms, and spectral analysis tools such as Fast Fourier Transformation (FFT) 

and Power spectral density (PSD) are considered better than ARIMA, as these methods 

don't require conversion of stationarity [250]. These methods analyze the frequency and 
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energy components and highlight the dominant frequencies in the signal. Therefore, they 

can distinguish between the amplitudes of different frequencies in the raw signal data. 

However, it is still challenging to differentiate between the frequencies related to the non-

stationary loadings and those caused by the damaging condition [26]. Additionally, these 

methods have limited resolution to distinguish among minor variations, aliasing the 

frequencies at spectrum ends and sensitivity for noise-related issues [186].  

2.7.2.2 Machine Learning methods 

With the advancements in big data analytics and computing capabilities, machine learning 

methods are being adopted for SHM and damage detection [143,369]. The machine 

learning paradigm supports the development of regression models for large sensor data, 

which is impossible for traditional statistical tools. These machine learning methods are 

broadly categorized into statistical pattern recognition and deep learning models for 

damage detection.  

Statistical Pattern Recognition 

Pattern recognition methods compare the undamaged state with the new state under 

observation to assess any deviation. The pattern recognition approach, also known as 

unsupervised or novelty detection, is commonly used to identify the damage. These 

methods use the data's statistical distribution to determine the damage [290]. The simplest 

pattern recognition approach is to examine the control chart for any deviation in the pattern 

of the damage-sensitive feature [278]. More sophisticated methods include pattern 

recognition algorithms that use the statistical distribution of the data to identify the novelty 

[290].  
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Among conventional pattern recognition algorithms, k-means is one of the most commonly 

used algorithms for classifying vibration signal features [218]. It follows partition-based 

clustering to discover specified clusters in an unlabeled multi-dimensional dataset. It 

iteratively positions the centroid of clusters, starting from an initial set of centroids, where 

centroids represent the average of all the points in that cluster [11,268]. For k-mean, the 

optimal number of clusters is usually estimated using the silhouette or elbow methods 

[292,355]. This approach has been widely used for monitoring the performance of concrete 

bridges [79] and multi-story buildings [234]. Similar to the k-mean method, mean shift 

clustering is partition-based clustering. The main advantage of this method is it 

automatically estimates the optimal number of clusters based on the kernel density 

estimation (KDE) of input data. Also, this method does not impose any predefined shape 

on the data clusters.  

Zhou, et al. [376] evaluated the performance of the agglomerative clustering method for 

damage classification of a concrete bridge. These studies reported better classification 

results than other methods regarding false-positive or false-negative. Despite its reported 

effectiveness, the agglomerative method cannot work with missing data and may produce 

arbitrary decisions. Some studies applied the density-based spatial clustering of 

applications with noise (DBSCAN) method for damage classification[93,129,181]. Heravi, 

et al. [129] evaluated the performance of modal strain energy as a damage feature using 

the DBSCAN method. [93] applied this method for damage detection and localization, and 

Li, et al. [181] used it to auto-identify the modal parameters. [315] developed an 

accelerometer-based system to collect data on prefabricated modules during transportation. 

Then, the acceleration-time series data was compared, and the performance of different 
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statistical clustering methods was compared. He found that the DBSCAN classification 

was the most accurate [91,98]. Despite successfully demonstrating pattern recognition 

methods, they struggle with accuracy due to limited training data and scenarios [35,221]. 

These methods are less effective against a new class of damage incurred or are highly 

sensitive to noise. Also, these methods have limited capabilities to handle large-scale 

complex data and perform sensor fusion for multiple sensor data [308]. 

Deep Learning Methods 

The deep learning paradigm has the potential to deal with complex data sequences, extract 

useful features, and model deep relations across multiple strings of sensor data. A deep 

learning approach helps incorporate a range of features from various sensor data streams 

and also extracts hidden features by exploring the correlation among the given set of 

features. Recently, several studies adopted deep learning methods for damage assessment 

and prediction [55,153,157,167,262]. Generally, using deep learning methods, a model is 

developed using data from the healthy, undamaged state of the structure. The trained model 

is then used to predict features for the new state according to input data. The accuracy of 

the predictions indicates the deviation of the structural condition from a healthy state  [202]. 

Such an unsupervised approach is also known as the out-put-only model [107].  

The most basic class of such deep learning models belongs to artificial neural networks 

(ANN) [262]. Due to its biological neurons-based solving algorithm, ANN has been 

identified as a powerful and reliable modeling approach for solving complex problems such 

as classification and pattern recognition [101,116]. Since the 1980s, different types of 

ANNs have been developed and applied effectively to SHM. Such algorithms include back‐

propagation NN [357,374], self‐evolving NN [306], radial basis function NN [225], 
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Bayesian NN [311], ANN predictive control algorithm [158], ensemble neural networks 

[95], general regression neural network [197], and auto-associative NN [119,139,189,374]. 

In addition to the raw sensor data, these methods also use modal parameters, such as modal 

frequencies, time-series coefficients, frequency response functions, etc., to detect damage.   

a) Convolutional Neural Network  

Despite the large application of ANN for damage detection, its performance is limited due 

to gradient descent issues, nonconvex errors, large data set requirements, and extensive 

computational resources for complex data structures [48]. A more advanced, convolutional 

neural network (CNN) performs better when dealing with such issues [219,303]. CNN 

architecture consists of convolutional, pooling, and fully connected layers. The 

convolutional layers apply filters (called kernels) to the input data streams and extract 

spatial hierarchies of features by analyzing the patterns and relationships across data 

streams. Pooling layers reduce the spatial dimensions of the input data, making it 

computationally more efficient and improving accuracy [309]. The connected layers (dense 

layers) combine high-level features and generate output layers [301]. Such powerful 

architecture showed promising results in several studies for damage detection 

[219,301,303,309,366].  

Despite its successful application in many studies, CNN cannot incorporate the relations 

across several time intervals. CNN is inherently designed for learning in the spatial 

dimension only, i.e., capturing the relations among the features at each instance [18,302]. 

In the case of structural damage detection, the time series data also has temporal 

dependencies that need to be incorporated into the model for efficient performance [47]. 

From this perspective, a modified one-dimensional CNN architecture can learn the features 
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of a single temporal dimension [309]. The filters in the one-dimensional CNN learn the 

features in a given sequence window instead of individual instances, making it more robust 

than the typical CNN architecture. One-dimensional CNN poses better generalization and 

reduces overfitting issues. However, this CNN variant can only explore the data 

dependencies within a short range of a sequence and does not learn the dependencies across 

different sequences in a time series. Therefore, it is still less effective for the time-series 

data where dependencies occurs not only within a short sequence but also among different 

sequences. 

b) Recurrent Neural Networks 

A recurrent neural network (RNN) method is considered an alternative to CNN, as it 

overcomes CNN's limitations. RNN is a type of neural network that learns across the 

temporal dimension of the data [260]. These models maintain hidden states across time 

steps, capture sequential patterns, and thus model the sensor data dependencies across the 

temporal sequences. In contrast to one-dimensional CNN, RNN methods are suitable for 

capturing long-range dependencies in a time series. RNN has a simple architecture with 

feedback connections that consider the activations from previous instances in the sequence 

to influence output. In other words, it has a mechanism to remember and use previous 

information for processing the next instance. This approach makes RNN better suited for 

time series data of structural damage detection. However, RNNs struggle with vanishing 

gradients problems, especially in long sequences. During training, RNN uses gradient 

descent to update weights for optimal solutions. However, the gradients become small 

during backpropagating errors, causing poor weight updating. This issue causes poor 

capturing of long-term dependencies in the data and slow model convergence. 
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Long short-term memory (LSTM) and gated recurrent units (GRU) are more advanced 

models in the RNN paradigm that resolve the issues faced by RNNs. These models have 

more complex architecture, enabling them to handle longer sequences by maintaining 

memory over time. The architectures are presented in Figure 2-7. The LSTM architecture 

consists of additional input, output, forget gates, and memory cells [275]. The input gate 

(𝑖𝑡) controls the new information flow to the memory cell (𝐶𝑡), activated by the current 

input (𝑥𝑡) and the previous hidden state (ℎ𝑡−1). Forget gate (𝑓𝑡) controls the irrelevant 

information to be discarded from the memory cell. Meanwhile, the output gate (𝑜𝑡) 

determines the data to be passed to the LSTM output. Typically,  the 𝑡𝑎𝑛ℎ (-1,1) and 𝜎 

(0,1) functions are used to control the information flow across the input, output, and forget 

gates and memory cells.  

 

Figure 2-7. Comparison of RNN, LSTM, and GRU architectures  

A dedicated memory cell in LSTM improves its efficiency in handling long-term memory; 

however, it makes it computationally more expensive. In contrast, GRU has a simplified 

architecture containing only a reset (𝑟𝑡) and update (𝑧𝑡) gate. It combines the roles of input 

and memory gates in the reset (𝑟𝑡) gate, which decides how much the previous hidden state 

is to forget and new input is to be included [254]. Meanwhile, the update (𝑧𝑡) The gate 

decides to retain the part of the previous state information and pass it on to output. Such an 
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approach reduces the need for a memory call and makes it computationally more efficient 

than LSTM while maintaining accuracy.  

Although the RNN class models perform better for the timer series data, these models still 

lack the efficiency to learn the features across multiple series of features. For example, 

these models will capture dependencies across time dimensions only for data containing 

several feature time series. However, it lacks the ability to capture the correlation across 

spatial dimensions, i.e., correlation among variables or features [254]. To deal with this 

issue, researchers have applied combinations of CNN and RNN class models to detect 

structural damage accurately. The combined CNN-LSTM model was used for damage 

detection in the structural components while utilizing this combination's spatial feature 

extraction and long-term sequential memory capabilities [72,366]. In this approach, CNN 

captures the relations among the features at the local level, whereas LSTM captures the 

dependencies in global sequences.  

Some studies preferred GRU over LSTM due to its faster and more efficient architecture. 

With fewer parameters, GRU is less affected by the overfitting issue while effectively 

training across sequences. Some studies effectively combined CNN and GRU for structural 

health assessment [170,346]. In such hierarchical architecture, the first spatial features are 

extracted using CNN and are passed to GRU for further reinforcement learning across the 

temporal sequences. However, in some cases, the hierarchical combination of CNN and 

GRU experienced gradient disappearance issues [47]. A more advanced variant, a bi-

directional gated recurrent unit (BiGRU) model, is used to deal with such issues [345]. A 

BiGRU model includes two GRU cells working together in opposite directions (forward 

and backward) to improve learning across the temporal dimension.  
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Palaell vs. Hierarchical Architecture of Combined Deep Learning Models 

For combining the effect of two deep learning models, they can be either linked in parallel 

or in a hierarchy. In this context, the choice of architecture mainly depends on the data 

characteristics and objective to focus on either spatial or temporal dimensions. For parallel 

combination, the input data is provided to CNN and GRU simultaneously, and both models 

work exclusively to generate output. Each sub-model extracts different features, such as 

CNN extracting spatial features and GRU capturing information in temporal sequences. 

Then, the output from both models is merged by multiplication and average pooling to 

generate a combined output [345]. Several studies have applied parallel architecture to 

incorporate the effect of different deep learning models [47,345,367,378]. Although 

parallel architectures equally focus on both dimensions, they are more complex, 

computationally expensive, and less efficient for large data sets [266].  

Considering this, some other studies adopted hierarchical architecture [346,371]. In 

hierarchical combination, CNN is first applied to the input data to extract spatial features 

from raw data. Then, CNN output is passed to the GRU model to capture the information 

further along the temporal sequences. This approach allows CNN to focus on local spatial 

patterns at each time instance, whereas the GRU focuses on capturing the variation across 

the temporal sequences. Such an approach is more desirable when the input data contains 

a dynamic hierarchy and the objective is to explore across hierarchies in all dimensions 

[38,49].  
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2.8 Knowledge Gap 

The critical findings and knowledge gaps identified from the reviewed literature are 

summarised below. 

a) The research focuses very little on the logistic operations of modular construction 

projects. Notably, the impact of logistics operations on the module's structural performance 

has not been investigated.  

b) FEM-based structural performance assessment is impractical as the simulated 

loading scenarios cannot represent accurate and actual logistics operations. Also, these 

approaches cannot monitor structural performance in real-time. On the other hand, data-

driven methods acquire large data points for the damaged state of the module. 

c) When selecting any damage assessment model, defining the damage level intended 

to be assessed correctly is important. In a freshly manufactured structure, some damage at 

the material level always exists, which is commonly called a defect. Such defects can grow 

into larger structural-level damage under exposure to new loadings. This structural-level 

damage can further increase to the extent that the structure loses its intended function, 

which is called failure. Typically, the damage detection approach should be able to detect 

the damage which may lead to failure. 

d) The time between damage initiation and detectable damage development is very 

significant. Therefore, the sensing platform should be capable of recording all the critical 

data. 

e) Data-driven damage assessment methods must mostly compare structure states to 

evaluate change. The unsupervised algorithms can assess the damage occurrence and its 
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location. However, exact damage quantification can only be obtained by using supervised 

algorithms. 

f) Supervised algorithms need damaged state data for training, which is normally 

unavailable for MiC logistics operations. Unsupervised approaches can be trained using 

undamaged state data only.  

g) Raw sensor data do not help to assess the damage. Therefore, extracting the 

damage-sensitive feature and transforming the raw data of sensors into damage-related 

information is essential. A sensitive damage feature is also sensitive to changing 

environmental conditions. So, the damage-sensitive feature should be intelligently 

selected.   

h) The algorithm that is sensitive to damage is also sensitive to noise. Therefore, the 

noise reduction phase of an algorithm is vital; for example, if there is a high range of 

frequency excitation, the detectable damage size will be reduced, and the complexities of 

the structure will increase with increasing damage. 

i) The deep learning convolutional models only learn features in one direction, i.e., 

among the different sensors at individual timesteps. However, the sensor data for dama 

assessment have significant correlations among the sequences in the time domain.  

j) The Sequential deep learning models capture correlations across the time 

dimensions.  
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3 Chapter 3           

RESEARCH METHODOLOGY 

This chapter elaborates on the methodology of the proposed objectives. Each objective has 

its discrete methodological steps to achieve the goals. The methods of each objective are 

explained in detail in the subsequent section.  

3.1 Methodology for Analyzing the Influencing Factors of MiC 

Logistic Operations  

(Objective I)  

The overall methodology of the first objective is illustrated in Figure 3-1. The first part of 

this methodology, “the article search and screening,” is discussed in section 2.2.1. Further 

methods for analyzing the factors are presented in the following sections. 

 
Figure 3-1. Overview of methodology for exploring influencing factors of MiC logistics SC 

3.1.1 Extracting the factors related data 

The selected studies were thoroughly reviewed, and qualitative data were extracted. To 

highlight the comprehensiveness of selected articles, the focus of reviewed studies (such 
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as sustainability, SC collaboration, and risk, etc.) and the nature of factors in those studies 

(such as success factors, barriers, risk factors, influencing factors, etc.) was evaluated. For 

this purpose, the authors assessed the scope and connotation of the studies after reading 

each research article. Afterward, an inductive qualitative coding process was adopted for 

factor extraction. The inductive qualitative coding process is a bottom-up iterative 

approach in which raw data is extracted, analyzed, and coded to develop a consistent 

narrative [305]. Following this approach, all the factors mentioned in each study were listed 

in a structured Excel sheet. Then, after analyzing the description and connotation, the 

factors in each study were coded. The systematic and iterative coding process established 

a concise and consistent list of factors. Finally, the coding in each study was used to 

calculate the factor's frequency of occurrence.  

3.1.2 Analyzing the Factors of MiC Logistic Operations 

A quantitative interpretive research approach is adopted to examine the influencing factors 

of MiC SC. This approach explores a system in reality through subjective intervention and 

interpretation [136]. In the quantitative interpretive approach, the statistical data and 

modeling tools are integrated to discover the underlying knowledge by exploring the 

causality of data. Such an approach can yield more meaningful and comprehensible results 

for establishing a knowledge base and developing policy [33].  

This study uses the factors' co-occurrences in the literature for analysis. The co-occurrence 

of factors defines their significance and potential associations with each other [57]. It is 

assumed that factors are closely related to each other if they appear together in a greater 

number of studies [377]. Such co-occurrence-based associations draw a semantic network, 
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which helps analyze the relationships between different elements, concepts, or ideas [102]. 

Co-occurrence networks are commonly used in various research disciplines.  

The bibliometric & scientometrics reviews [57] and information sciences [177] related 

studies have used this approach to study the themes of knowledge and draw critical trends. 

Similarly, in social sciences [135] and health sciences [150], studies performed factor 

analysis and explored the association of different elements. This paper utilized a co-

occurrence network of factors to investigate their association levels and further categorized 

them to identify the critical factors. First, the significance of factors is estimated using 

eigenvector weight calculations. Then, the MICMAC (the cross-impact matrix 

multiplication applied to classification) analysis tool is used to develop a co-occurrence 

network. The detailed methodology of eigenvector and MICMAC is explained in sections 

2.4.2 and 2.4.3. 

3.1.2.1 Ranking of factors using Eigenvector weight 

In systematic reviews, frequency of occurrence is the most common metric for ranking the 

factors [114,277,337]. However, only using occurrence data can yield misleading results, 

particularly for an extensive list of factors, where a factor's occurrence is inconsistent 

across the scale. Moreover, the factors' transitivity may also affect the true significance of 

the factors [252]. Adopting a relative occurrence approach with a principal eigenvector in 

such a scenario can provide the best ranking on a ratio scale [106,251]. Faqih, et al. [96] 

also adopted a similar approach for calculating the factor's ranking. 

For estimating the eigenvector weighting, a cross-sectional matrix (𝐴) is developed. Each 

value in the rows (𝑖) of the matrix (𝐴) represents the relative difference of occurrences 

corresponding to other factors in each column (𝑗). The relative difference in frequency (𝑎𝑖𝑗) 
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is the frequency in a row (𝑎𝑖) divided by frequency in column (𝑎𝑗) [96]. Consequently, the 

matrix 𝐴 is a 𝑛 × 𝑛 matrix of 𝑎𝑖𝑗, where 𝐴 ∈  R𝑛×𝑛
 (Equation 3-1). Also, matrix 𝐴 fulfills 

the conditions in equations 3-2 to 3-4, as required by the eigenvector method [251].  

𝐴 =

[
 
 
 
 

 

1 𝑎12 𝑎13 … 𝑎1𝑛

1 𝑎12⁄ 1 𝑎23 … 𝑎2𝑛

1 𝑎13⁄ 1 𝑎23⁄ 1 … 𝑎3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑎𝑛1⁄ 1 𝑎𝑛2⁄ 1 𝑎𝑛3⁄ … 1 ]

 
 
 
 

     Equation 3-1 

𝑎𝑖𝑖 = 1         Equation 3-2 

𝑎𝑖𝑗  > 0        Equation 3-3  

𝑎𝑖𝑗 = 
1

𝑎𝑗𝑖
       Equation 3-4  

𝑤𝑖 =
1

𝑛
∑

𝑎𝑖𝑗

∑ 𝑎𝑘𝑗
𝑛
𝑘=1

𝑛
𝑗=1         𝑤ℎ𝑒𝑟𝑒   𝑖, 𝑗 = 1,2, … , 𝑛       Equation 3-5  

Further, for calculating the factor weights (𝑤𝑖) first, the column vectors of the matrix 

(𝐴) are normalized, and corresponding rows are added. Then, the matrix is further 

normalized to get the eigenvector weights 𝑤𝑖 (Equation 3-5).  

3.1.2.2 Factors classification using MICMAC Analysis 

MICMAC efficiently classifies the factors based on their influencing relationships [259]. 

In this method, first, a factor's co-occurrence matrix is developed. Then, the relative co-

occurrences of factors are calculated using the z-score normalization approach [239] 

(Equation 3-6). Each value in the normalized influence matrix (𝑤𝑐𝑖𝑗) explains the degree 

of influence, such as, 0 not influencing, 1 slightly influencing, 2 moderately influencing, 

and 3 highly influencing.  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑐𝑖𝑗 = 
𝑤𝑐𝑖𝑗−min𝑤𝑐𝑖

max 𝑤𝑐𝑖 − min𝑤𝑐𝑖
 × 3        Equation 3-6 
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𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑛𝑔  𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝑤𝑐𝑖𝑗
𝑛
𝑗=1      Equation 3-7 

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝑤𝑐𝑖𝑗
𝑛
𝑖=1       Equation 3-8 

The relative co-occurrences of factors indicate the co-occurrences among two factors with 

respect to the total occurrences of a factor. This way, the influence power indicates the 

capacity of a factor to impact other factors. In contrast, the dependence power indicates the 

tendency of a factor to be affected by other factors. The direct influence and dependence 

powers are determined using Equations 3-7 and 3-8, respectively. Then, the indirect 

influencing and dependence powers are calculated after iteratively increasing the power of 

the matrix till the stable matrix is achieved. The indirect influence matrix reduces the 

number of factors in the system by removing the factors having indirect influences. Finally, 

the direct and indirect analysis results are plotted on influence maps, classifying them into 

four categories based on their influence and dependence powers. For further interpretation, 

MICMAC results are compared with eigenvector weights and co-occurrence ratios (CoR) 

of factors. Such a combined analysis approach provides additional depth for a better 

interpretation of results [4,241]. Also, the influencing relationships among factors in each 

category are analyzed. The categories are interpreted into four themes, which explain the 

influencing system of factors. 
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3.2 Methodology for Exploring Technologies for MiC 

Logistics Supply Chain  

(Objective II) 

The overall review methodology has three phases (see Figure 3-2). A detailed systematic 

approach was adopted in the first phase to select and screen the relevant articles. Text 

analytics were then used to extract the relevant data from the selected articles. Finally, the 

data was analysed and synthesised in the third phase to determine the synergies among 

MiC challenges and potential technologies. Further details are discussed in the following 

sections. 

 

Figure 3-2. Overview of methodology for exploring technologies for MiC logistics SC 

3.2.1 Article search and screening  

The review aims to investigate the application of contemporary technologies in the logistics 

and supply chain area. In the first step, we determined a preliminary list of technologies 

for the supply chain. The keywords 'technology' and 'supply chain' were used to search a 

thorough list of articles (1457). The author-provided keywords in these articles were listed, 

and an exhaustive list of 19 technologies was identified among these keywords. Based on 

the identified technologies, an explicit search query was generated to search all the articles 
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related to the application of technologies in logistics and supply chain published since 

2010. The identified list of technologies was included in the keyword list of the search 

query.  

The query was performed on Scopus and Web of Science (WOS) databases. These two 

databases are considered adequate and sufficient for searching research articles because of 

their broader coverage, rapid indexing process, and access to recent publications compared 

to other databases [207]. The exclusion criteria for the search are defined to focus only on 

the articles related to different technologies in logistics and supply chains. The search was 

limited to engineering journal articles about applying technologies in logistics and supply 

chains. Articles related to medicine, social science, aerospace, automobile, etc., were 

excluded using the database filters. As a result, a total of 2,001 articles were identified. The 

article screening process follows the PRISMA flow (see Figure 3-3).  

Articles were further evaluated based on their focus and scope relevancy by reading titles 

and abstracts. Resultantly, only 285 articles were found relevant (removing n=1716). These 

selected articles were thoroughly read and assessed against the two inclusion criteria: (1) 

the article covers the application of technology for logistics or supply chain operations, and 

(2) it highlights the benefits obtained through technology application. As a result of the 

inclusion criteria screening, 151 articles are shortlisted. Subsequently, forward and 

backward snowballing was also conducted to exhaust the possibility of overlooking 

relevant publications on the subject matter. As a result, 157 articles were finally selected 

for further review and analysis.  
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Figure 3-3. PRISMA flow chart for article selection and screening 

3.2.2 NVIVO text analytics-based data extraction  

The text analytics approach helps to systematically extract valuable information and 

insights from large amounts of unstructured text data. An effective qualitative data analysis 

tool in this regard is NVIVO, known for its ability to manage and analyse qualitative data 

and conduct literature reviews [36]. NVIVO ensures consistency and transparency of 

analysis, allowing tracking of records and helping interpret the results. This tool was 

therefore employed to perform text mining of the screened studies, and it helped identify, 

organise, and analyse the benefits and attributes of supply chain technologies.  

In this study, text mining is performed only to identify relevant excerpts (or statements) 

from literature where technologies' benefits, advantages, and positive outcomes were 
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mentioned. For this purpose, a dictionary-based sentiment analysis approach in NVIVO 

was employed. This approach adopts pre-defined words or phrases to identify the extracts 

with positive or negative sentiments. All the excerpts having positive connotations were 

identified (5765). Among these excerpts, many contained insignificant, trivial information. 

The authors manually evaluated these excerpts and shortlisted only those containing 

significant information about technologies' benefits, advantages or positive applications. 

Around 750 such extracts were shortlisted and coded for further analysis and evaluation.   

3.2.3 Technologies' chains of actions and Synergy analysis 

A qualitative synergy analysis evaluates the potential interactions or nexus between 

different elements in a system or process [108]. Such analysis has been used in business 

and scientific research to integrate various systems' components for enhancing 

performance, efficiency, and effectiveness [41,64,296,318]. In this study, we adopted the 

synergy analysis technique to systematically evaluate the suitability of different 

technologies to address various MiC challenges. In the first step, the excerpts identified 

from the text analytics in NVIVO were further analysed to determine the chains of action 

of any benefit (see Figure 3-4). A "chain of action" explains how any technology supports 

achieving any specific benefit at the local or global level in any supply chain. These chains 

of actions highlight features, capabilities, and processes contributing to a particular 

technology benefit. 

The purpose of identifying the chain of actions is to understand the mechanism of 

technologies that impact the system and deliver any particular benefit. For instance, as 

shown in Figure 3-4, one excerpt related to Blockchain advocated that its 'function' is to 

improve delivery reliability, which helps improve profit. Initially, 110 chains of actions 
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were established by evaluating all the excerpts related to all the technologies (given in 

Appendix–C). Similar chains of actions with common synergies with the challenges were 

grouped to provide 57 benefits from different technologies. 

 

Figure 3-4. Process of extracting technology-related benefits from sentiment analysis 

These chains of actions were further used to assess the synergies between any technology 

and MiC challenge. This approach of associating a technology's chain of action with a 

challenge is more systematic and assertive. It helps to relate a challenge with a technology's 

functional attribute instead of any subjective benefit-related statement. A detailed table of 

synergies is developed, indicating all the substantial synergies between technology benefits 

and challenges, as shown in Appendix – D. These synergies highlight the relevance and 

importance of any technology for MiC logistic operations. The review study has also 

discussed the current state of technologies suitable for MiC challenges, technology gaps, 

and future ways forward. 
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3.3 Methodology for Developing IoT-based Sensing Tool  

(Objective III) 

The IoT Sensing devices' development process consists of five phases, as elaborated in 

Figure 3-5. The existing sensing technologies are reviewed in the first phase, and suitable 

sensors are selected. Then, different manufacturers' alternatives were compared for the 

selected sensors to choose the high-performance, low-power consumption alternative.  

 

Figure 3-5. IoT Sensing System Development Methodology 

In the third phase, the selected sensors’ functions and connections were understood for the 

integration. After that, the PCB was designed to integrate all the sensors, their essential 

supporting components, and IoT communication modules. Following that, the sensing 

devices were assembled. The developed sensing devices were thoroughly tested for noise 

evaluation in the next phase. Then, a temperature compensation model was developed to 

calibrate the strain measurements. Finally, in the last phase, a detailed field experiment was 

demonstrated to the application of the developed system for MiC logistic operations.  
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3.3.1 Sensor Selection  

To monitor the MiC module's damage, safety, and structural health, it is essential to 

measure its structural response continuously. However, the MiC module generates a non-

stationary structural response during highly dynamic logistic operations. Monitoring such 

non-stationary structures is highly challenging, where both the structure and the impacting 

loads are moving [80]. The most existing technologies and methods for damage and 

structural health monitoring (SHM) are designed for traditional stationary structures [328]. 

The structure of a traditionally constructed building is mostly monolithic, where structural 

response at any location on the building can be sensed or estimated from any other location 

apart. However, in the case of MiC, the building comprises separate building blocks 

(modules), where damage in one module cannot be detected from any other module, as 

they are not joined monolithically. Therefore, several sensors must be installed on each 

module individually to monitor each module's structural response and performance.  

The most commonly used sensing technologies for SHM are (a) Vibration-based, (b) strain-

based, (c) guided waves, and (d) acoustic emissions [120]. Table 3-1 summarizes the 

sensors and features of each sensing technology. The acoustic emission and guided wave 

technologies follow an active signal response estimation principle [53]. A short 

pulse/signal is induced in the structure, and the sensors installed at different locations sense 

the response. The variation in the sensor's measured response leads to an estimate of the 

variation in the structural condition. These techniques are considered suitable for mid-

range assessment and acquiring sophisticated equipment and a static environment for signal 

induction. Thus, using these technologies for MiC module structure monitoring during 

highly dynamic and non-stationary logistic operations is unsuitable.  
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Table 3-1. Commonly used sensing technologies for structural response monitoring. 

Technology Sensors Features 

Vibration-based Accelerometers 
Global range, limited resolution, sensitive to 

environmental conditions and disturbances 

Strain-based 

Foil Strain Gauge, 

Piezoelectric 

Sensors, FBG 

Sensors 

Local range, limited resolution, high 

sensitivity, sensitivity to environmental 

conditions, accurate damage quantification, 

Guided waves Piezoelectric Sensors 
Mid-range, high sensitivity, not suitable for 

thick composite materials, sensitive to noise 

Acoustic emission 
PZT acoustic wave 

sensors, AE probes 

Mid-range, not suitable for thick composite 

materials, sensitive to noise 

On the other hand, the strain gauge and the vibration sensors don't require any standard 

signal induction, and they measure variation in the structural response under different 

environmental and loading conditions. The strain gauge sensors can directly estimate the 

structural deformation or displacement locally. Meanwhile, the variations in the vibration 

response can help assess global structural changes. Also, the linear vibrations and rotational 

speed variations effectively capture the structural movement, which can help estimate the 

impact of loadings induced by the motion. A multi-metric sensor containing an 

accelerometer and gyroscope would be beneficial for monitoring such motion. Since the 

module lifting, loading-unloading, and assembly operations involve the tilt and rotation 

movement of the module, its impact on the structure and corresponding response must be 

monitored [287].  

Considering sensors' sensitivity, range, and portability, the accelerometer for vibration, 

gyroscope for rotational speed measurement, and strain gauges are most suitable for 

monitoring MiC modules during logistic operations. However, the commercially available 
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accelerometer and strain sensors are not integrated and have separate control, support, and 

communication systems, such as computers, wireless gateways, and battery or power 

supply. Each MiC module requires a dense array of sensors to monitor logistic operations 

effectively. Installing several large commercially available sensing systems on a single 

MiC module is impractical.  

3.3.2 Selected Sensors’ Damage Monitoring Approache and Scope 

Three sensors, strain, accelerometer, and gyroscope, are selected to monitor the module's 

structure. A strain sensor is capable of measuring the direct variations in the structure. 

However, further analyses are required to understand and estimate whether the variation is 

substantial, highlighting the damage or whether such variation is within the material 

plasticity range. On the other hand, the accelerometer and gyroscope primarily measure the 

force impacting the structure as linear and rotational accelerations. Meanwhile, such 3-

directional accelerations can also indicate the structural variations indirectly. Such an 

approach has been widely adopted for structural health monitoring and leak detection 

through signal analysis [117,141].    

This signal analysis approach evaluates the signal's excitation (vibration) patterns under a 

specific force (loading conditions). A particular impacting force will have a specific 

vibration pattern corresponding to the structural properties. Under the same impact, the 

vibration response will differ if any structural variation occurs. Comparison of such 

variations across multiple sensors installed at various locations can help assess the level of 

damage.  
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3.3.2.1 Relative sensor data vs Materials’ threshold-based approach 

In this context, comparing a strain variation with the material plasticity threshold can also 

play a significant role in identifying the damage. However, such a comparison is only 

possible if the sensor is installed exactly over the damaged location. In such a case, 

installing enough sensors to cover the whole module structure is impractical. Therefore, 

we adopt a relative sensor data assessment approach. For example, suppose eight sensors 

are installed at the corners of a module, and one indicates different variations than the other 

seven under the same impact conditions. In that case, such a sensor must indicate an 

abnormality near its installed location. As illustrated in Figure 3-6, sensor S6 shows a 

different response than all other sensors, suggesting a potential structural abnormality 

closer to this location.  

 

Figure 3-6. Example illustration of relative sensor response-based damage monitoring 

Following such an approach, the statistical comparison of sensor data can provide further 

details about the level of abnormality and its relative location. Statistical and signal analysis 

methods can sufficiently help evaluate the factors' response, such as moving windows and 

strain field histograms.  

Following are some other advantages of the relative sensor data approach over plasticity 

threshold: (a) it can monitor the whole structure with fewer sensors, (b) it offers effective 
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assessment under varying loading conditions during logistic operations, (c) it offers more 

generalisability for all kinds of material structures, (d) material plasticity thresholds lack 

accuracy, even materials with the same compositions and properties may possess different 

plasticity ranges, (e) the relative sensor data approach can also be used for other indirect 

structural response measuring sensors (accelerometer and gyroscope), and (f) a consistent 

approach for multiple sensors can enable sensor fusion approach to measure the structural 

response more effectively. 

3.3.2.2 IoT sensing system damage sensitivity and scope  

Microscopic defects can always exist inside the materials of a manufactured or constructed 

structure. These minor defects often go undetected by commonly used instruments. Such 

defects typically do not cause concern as they remain within the materials' plasticity range. 

However, these defects start causing internal deterioration in certain conditions, and a crack 

initiation phase begins, as shown in Figure 3-7. In the crack propagation phase, such 

internal deterioration grows beyond the plasticity range, and cracks become visible. 

Finally, such cracks can further lead to structural-level damage or failure.  

 

Figure 3-7. IoT sensing system damage assessment sensitivity. 
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Typically, a damage detection approach should be able to detect the damage as early as 

possible. The developed sensing system is sensitive enough to assess the damage at the 

crack initiation phase. However, such an assessment will require an in-depth, detailed 

analysis of the sensors’ data to confirm any defect at a minor level. If the damage is within 

the crack propagation phase or beyond, the raw sensor data from the sensing system can 

show such structural variations in real.   

Considering the capabilities and sensitivities of the developed multi-sensing system, it is 

competent enough for lifecycle structural health monitoring of MiC modules. Once 

installed on the module during manufacturing, it can monitor all the module handling 

within the factory. Therefore, it can also be used to inspect the structural performance of 

freshly manufactured modules. During the transition, it can monitor the structural response 

as well as the level of any impact on the module. During storage, it can monitor the 

impacting strains on the structure and warn about any uneven and unsafe stacking situation. 

It offers real-time module safety during assembly and other loading and unloading 

operations. Most importantly, the sensing system will remain installed on the module and 

continue structural monitoring during the building use phase. 

 

Figure 3-8. IoT sensing system lifecycle damage monitoring. 
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3.3.3 Sensing Device Design Rationale 

Recent advancements in the Internet of Things (IoT), sensing technologies, and 

microcontrollers enabled the development of integrated sensing systems. Following this,  

Spencer, et al. [285] developed modular-type sensor boards (nodes) for acceleration and 

strain measurement. Each node has a different sensor or module connected to each other to 

make a fully functional sensing system. Fu, et al. [104], Won, et al. [327], and Sarwar, et 

al. [258] expanded this system and demonstrated different application scenarios for bridges 

and precast structures monitoring. These application scenarios highlighted that the system 

has lesser portability, larger size, and higher power consumption. It has no sensors to 

measure rotational speed or tilt, which is essential for monitoring the MiC logistic 

operations [287]. Besides, it requires a PC-based base station closer to the monitoring site 

for real-time data acquisition. More recently, Khayam, et al. [166] developed a similar 

sensing system for monitoring the lifting of prefabricated girders. This system adopts more 

advanced MCUs and analog-to-digital converters (ADCs) to enhance strain measurement 

efficiency. However, the installed accelerometer range (±2g) is not enough to measure the 

impact of transportation scenarios. Also, the system lacks real-time data transmission and 

relies only on built-in SD card storage.  

The MiC module requires installing several sensing units on each module to monitor the 

module structure effectively. Thus, the form factor of the sensing units is critical. Visibly 

large sensing units installed on the module may attract the building occupants' attention 

and cause interruption. However, the size of the previously developed sensing systems was 

significantly higher and less desirable for MiC Modules. Also, MiC logistics monitoring 
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requires long-range communication to ensure the real-time monitoring of modules during 

transportation from remote areas.  

3.3.4 IoT Sensing System Architecture  

Considering the above-discussed requirement for MiC logistics and the limitations of 

existing sensing systems, the sensing devices are designed. The overall architecture of the 

proposed IoT-based sensing platform is presented in figure 3-9. As mentioned in the 

literature review, the IoT system has two parts: sensing and communication. The sensing 

part includes (a) an Accelerometer – MPU6050, (b) a Strain gauge – HX711, and (c) a 

Temperature & humidity sensor – DHT22. The accelerometer and strain gauge sense the 

structural response, whereas the temperature and humidity sensor allows the calibration of 

other sensors against the change in environmental conditions. The strain gauge has analog 

input and needs an additional amplifier (HX711) to transform its signal. 

The communication part of the IoT platform includes (a) a Microcontroller, (b) a LTE 

transmission module – SIM7600CE-T, and (c) a Data logger – DFR0229. The 

communication part enables the storage and real-time transmission of sensor data. The 

proposed components of the IoT system are carefully selected among several commercially 

available variants to ensure the system's sophistication, capabilities, battery life, and 

platform size. The approximate size and weight of the proposed IoT sensing platform 

should be less than 3x2x1 inches and 150 gms after packing in the casing. 
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Figure 3-9.  The overall architecture of the IoT-based sensing platform 

3.3.5 IoT Sensing System Performance Testing 

Different tests and calibrations are conducted to ensure the developed sensing system's 

performance and accuracy, as shown in Figure 3-10. IoT Sensing System Performance 

Testing. First, tests in a vibration-free static environment are conducted to assess the noise 

in the accelerometer and gyroscope. Followed by the required calibrations to improve the 

performance and accuracy. The strain sensor is tested under varying temperature conditions 

in the second phase. The strain drift under varying temperatures is resolved by developing 

the regression models to calibrate the sensor. Finally, the sensor performance is compared 

with a commercially available standardized universal testing machine (UTM). 

 

Figure 3-10. IoT Sensing System Performance Testing 
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3.3.6 IoT Sensing System Demonstration for MiC Logistics Damage 

Monitoring 

This study presents various analyses to demonstrate how the sensor-measured response can 

be used to identify and estimate the damage in the module. These analyses analyze the real-

time response of different sensors and evaluate the variations to detect any structural 

variation, deformation, or damage. The damage assessment strategy has two phases, as 

shown in Figure 3-11. In Phase 1, the damage and safety assessment analyses utilizing the 

real-time sensors' responses are presented. Different individual analyses are performed for 

each sensor type to identify the structural variations sensed by it. First, moving average 

and expanding average windows analysis are performed for strain sensors to determine the 

damage from the real-time sensors' response. Then, the strain field histograms and the Fast 

Fourier Transformation (FFT) spectrum magnitudes for the accelerometer and gyro are 

calculated. Finally, the results of all individual analyses will be compared and fused to 

confirm and validate the identified damage and assess its location.  

Other than critical damage or cracks in the module, there could be undetectable 

deterioration in the overall module structure caused by the impacts of logistic operations. 

Such deterioration may reduce the module's useful life and require early unanticipated 

maintenance. In the second phase, the sensor fusion approach is adopted to estimate the 

overall impact on the module's health. Sensor fusion involves aggregating the relative 

impact sensed by each installed sensor. The impact is calculated based on the anomalies in 

the sensor's response. First, the anomaly detection approach identifies all the significant 

anomalies in the sensors' measured response. Then, these anomalies are systematically 
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aggregated for different sensors to calculate the overall impact on module walls. Further 

details of the damage assessment processes are discussed along with the results in the 

following section.  

 

Figure 3-11. Damage Assessment Methodology 
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3.4 Methodology for Developing Hybrid Deep Learning 

Damage Assessment Model  

(Objective IV) 

The overall methodological framework is presented in Figure 3-12. In the first step, sensor 

data is obtained. Several sets of sensors should be installed on a module to fully sense the 

structural response of all the module elements, such as walls and joints. A set of sensors at 

each location includes an accelerometer, gyroscopes, and strain gauge, sensing seven time-

series signals at each location. The acquired data is split into test and train portions in the 

second step, and the data shape is transformed into required sequences for training. The 

model architecture dictates the input shape and is crucial for the model to process data 

effectively.  

 

Figure 3-12. The overall methodological framework adopted in this study 

In the proposed model architecture (section 3.2), the CNN model requires a "sequence 

window x number of training features" input shape. There are six input sensor signals 

representing the training features. For time series data, a sequence window must describe 
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an event to be trained. In this case, we selected a sequence window of six timesteps 

representing a discrete event of MiC logistics. A sequence length that is too short may not 

fully incorporate the dynamics of the event. Meanwhile, a too-long sequence may contain 

a combination of events within one sequence, making it hard for the model to learn the 

features and correlations accurately. Meanwhile, a one-time step stride was fixed to 

incorporate a moving window over the whole time series.  

3.4.1 Damage Assessment Framework  

The proposed deep learning model for damage assessment follows a one-class anomaly 

detection approach. The model is trained for an undamaged module condition under 

different MiC logistic operations scenarios. The trained model then makes predictions for 

an undamaged module. So, any variations from the predictions should indicate the 

structural variations and, hence, structural damage. The deep learning model (𝑀), given in 

the equation 3-9, considers the accelerometer and gyroscope readings at a specific time 

instance (𝑡) and out the strain values (𝑆𝑡
𝑢) of an undamaged module component. The model 

trains a regression problem, considering six input variables: three directional acceleration 

(𝑎𝑥𝑡 , 𝑎𝑦𝑡, 𝑎𝑧𝑡) time series and rotations time series (𝑔𝑥𝑡 , 𝑔𝑦𝑡 , 𝑔𝑧𝑡). These input variables 

comprehensively represent the module motion during logistic operations and correspond 

to the consequent strain values (𝑆𝑡
𝑢).  

After model training, the model is tested for its accuracy and performance. Accuracy 

metrics, consisting of mean square error (MSE), mean absolute error (MAE), coefficient 

of determination (R2), and Pearson correlation, are evaluated. A trained model for the 

undamaged module can predict the strain values (𝑆𝑡
𝑝
) for other observed variables 
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(𝑎𝑥𝑡
′ , 𝑎𝑦𝑡

′, 𝑎𝑧𝑡
′, 𝑔𝑥𝑡

′ , 𝑔𝑦𝑡
′, 𝑔𝑧𝑡

′) at all the time instances (𝑡)  in new conditions. Thus, the 

difference between the predicted strain (𝑆𝑡
𝑝
) and the undamaged strain (𝑆𝑡

𝑢) in the newly 

observed scenario, which represents the structural variations. The significant variation 

indicates the damage can be visualized in a comparison plot of strain. Moreover, root mean 

square error (RMSE) is a commonly used variation indicator for quantitatively evaluating 

the level of variation. The RMSE measures the average difference between a predicted 

strain (𝑆𝑡
𝑝
) and the undamaged strain (𝑆𝑡

𝑢). Mathematically, it's a residul's standard 

deviation, as given in the equation 3-10.  

𝑀(𝑎𝑥𝑡 , 𝑎𝑦𝑡 , 𝑎𝑧𝑡 , 𝑔𝑥𝑡 , 𝑔𝑦𝑡 , 𝑔𝑧𝑡) = 𝑆𝑡
𝑢   Equation 3-9  

𝑉𝐼𝑐𝑖
= [∑

(𝑆𝑡
𝑝
−𝑆𝑡

𝑢)
2

𝑁
𝑁
𝑡=1 ]

1/2

    Equation 3-10 

𝐷𝐼𝑐𝑖
=

𝑉𝐼𝑐𝑖−min(𝑉𝐼𝑐𝑖)

min(𝑉𝐼𝑐𝑖)
,         ∀  𝑖 ∈ 1,2,3,… , 8  Equation 3-11 

To determine whether the variation indication (𝑉𝐼𝑐𝑖
) values are significant enough to 

indicate damage or evaluate the damage level; a comparative evaluation across the sensors 

installed at several locations on the structure is conducted. Such as the relative 𝑉𝐼𝑐𝑖
 for 

each set of sensors installed at a corner (𝑐𝑖) of a wall is calculated using Equation 3-11. The 

𝐷𝐼𝑐𝑖
 considers the lowest  𝑉𝐼𝑐𝑖

 among all the sensor locations as a baseline and calculates 

the other 𝐷𝐼𝑐𝑖
 relative to that. The critical corners of the structure having potential damage 

can be identified by comparing all the 𝐷𝐼𝑐. Similarly, the difference between different 𝐷𝐼𝑐 

also suggests the level of variation or damage level.  

Further, a weighted average strain value approach is adopted to determine the potential 

damage location at each wall, following the principle of damage proximity near higher 
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strain values [171,231]. Equations 3-12 and 3-13 provide the 𝑥𝑑𝑊
 and 𝑦𝑑𝑊

 cooridnates of 

damage location on each wall, by evaluating the average weights of 𝐷𝐼𝑐𝑖
 at each corner 

with respect to distances 𝑥𝑖 and 𝑦𝑖 between the sensor installed locations on the same wall.  

𝑥𝑑𝑊
= 

∑ 𝐷𝐼𝑐𝑖
𝑁
𝑖=1 .𝑥𝑖

∑ 𝐷𝐼𝑐𝑖
𝑁
𝑖=1

,     ∀  𝐿 ∈ LW, RW, BW, FW  Equation 3-12 

𝑦𝑑𝑊
= 

∑ 𝐷𝐼𝑐𝑖
𝑁
𝑖=1 .𝑦𝑖

∑ 𝐷𝐼𝑐𝑖
𝑁
𝑖=1

,     ∀  𝐿 ∈ LW, RW, BW, FW  Equation 3-13 
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4 Chapter 4           

RESULTS AND DISCUSSION 

4.1 Analysis of Influencing Factors of MiC Logistics SC 

(Objective I) 

4.1.1 Introduction 

After a detailed review of the identified articles and factor extraction, the articles and 

factors were analyzed to investigate the different attributes of articles and factors' 

interrelationships further. The following section discusses the results of these analyses. 

4.1.2 Scientometric Analysis  

This section discusses the scientometrics of selected studies, such as publication trends, 

research domains, research focus, and the type of factors explored in each included study. 

The detailed scientometrics of 90 studies is presented in Appendix – A. The results 

highlight that the attributes of the selected studies sufficiently satisfy the research 

objectives of this study. Figure 4-1(a) shows the trend of publications over the years. More 

than 90% of the selected studies have been published in the last ten years. Most studies 

(25) were published during 2016-2019. Also, only seven studies were published before 

2010. 

Similarly, Figure 4-1(b) shows that most included studies (86%) are published in 53 

journals. In contrast, only 14% of included studies are published in 8 conference 
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proceedings. Such trends indicate that the selected literature sources are diverse, reliable, 

and up-to-date.  

Figure 4-1. Distribution of selected studies by publication years and type of source 

The research domains of the included studies are summarized in Figure 4-2(a). The final 

set of studies belongs to the domains of the general supply chain (64%), logistics 

management (19%), and modular construction (17%). The general supply chain domain 

contains the highest number of studies, as it is a seasoned and well-established research 

domain. In contrast, modular construction is a relatively new research domain; therefore, 

this domain contains only 15 relevant studies. In the modular construction domain, nine 

studies focus on MiC in Hong Kong and Malaysia, while the remaining focus is on 

prefabricated housing in other countries. Further, there is a vast amount of literature 

published in the logistics management domain, but only a limited number of studies (19%) 

could pass the eligibility criteria for this study. 

 Figure 4-2(b) shows the distribution of studies according to their research focus. The 

included studies concentrate on supply chain performance (28%), sustainability, and green 

supply chain (24%).  Also, a significant number of selected studies focus on collaboration 

and third-party logistics (19%), which justifies the inclusion of the logistics management 
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domain. Also, a few studies focus on a range of topics, such as information technology 

tools, knowledge management, risks, flexibility, agility, etc., highlighting the diversity of 

the included studies. Furthermore, Figure 4-2(c) summarizes the type of factors explored 

in selected studies. Most studies have listed the supply chain's influencing factors (54%) 

and success factors (37%), while the remaining studies explored the barriers or failures 

(6%) and risk factors (3%) for the supply chain.  

  

Figure 4-2. Research domain and research focus of selected studies 

4.1.3 Ranking of MiC SC influencing factors  

4.1.3.1 Weights of factors 

Eigenvector weights are calculated to rank these factors. The overall eigenvector weights 

are shown in Figure 4-3(a). The 17 factors have eigenvector weights above the mean value 

(2.3%). The factor promoting sustainability (SCM10) has the highest weight (5.8%), 

followed by communication and knowledge sharing with 3PL (IKS4) and robust SC 

(SCM1), both having 5.4% weight. A significant number of published studies promote 

sustainability factors to enhance the overall performance of the supply chain 

[199,274,326,351]. Similarly, in the supply chain management domain, some studies 
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focused on the factors related to supply chain resilience [341], decisiveness [229], and 

flexibility [273], for a robust supply chain.  

 

 

 

 

Figure 4-3. Eigenvector weights of factors and categories 
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Overall, there is little focus on the factors related to transportation, storage, manufacturing, 

and site delivery that influence supply chain performance. Such factors are more abundant 

in the studies related to modular construction [148,326,334]. A total of 10 factors have the 

lowest weights significantly (0.7%): Log9, Log10, SCM6, SCM7, M4, M7, M8, S5, S6, and 

S7. 

4.1.3.2 Weights of factor's categories 

Further, the overall importance of factor categories is analyzed by determining the 

eigenvector weights of each category. Figure 4-3(b) shows that the SCM category is the 

most critical (32%), whereas logistics management and information & knowledge sharing 

are moderately weighted, with 21% eigenvector weight. At the same time, the categories 

of site delivery (11%) and manufacturing (15%) have the lowest weights. 

4.1.3.3 Distribution of factor weights in research domains 

The distribution of categories' weights within the research domains is analyzed in Figure 

4-3(c). These weights are calculated based on the factor's occurrences within each research 

domain. In the construction domain, the SCM category has the highest weight (24.7%), 

whereas IKS (11.2%) is the least weighted category. Similarly, in the general supply chain 

domain, SCM (35.26%) is the most weighted category, and site delivery (5.77%) is the least 

weighted category. In the logistics management domain, logistics and SCM both have the 

highest weights (31.7%), whereas IKS (12.2%) and site delivery (9.76%) are the least 

weighted categories.  

4.1.3.4 Influence of research domains on factor categories 

In Figure 4-3(d), fractional weights are calculated based on the factor's occurrence in each 

category per number of studies in each research domain. Estimated weights highlight the 
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influence of the research domain in each factor's category. Results reveal that the 

construction domain primarily promotes site delivery (75.45%) and manufacturing 

(67.4%). However, site delivery factors are least promoted by the logistics management 

(14.79%) and general SC domains (9.76%). Similarly, the factors in IKS are promoted 

mainly by the general SC domain (44.68%) and construction (38.4%). Interestingly, 

logistics factors are most encouraged by the construction domain (43.82%), whereas the 

domain of logistics management (33.51%) is second. Similarly, SCM is primarily promoted 

by the construction domain (45.73%) instead of the general SC domain (29.29%). 

4.1.4 Influence maps of factors – MICMAC Analysis 

The MICMAC structural analysis is performed to map the influence relationships among 

factors (as explained in section 2.4.2). The top 33 significant factors are considered in 

MICMAC analysis. To improve the focus and quality of this analysis, factors with the 

lowest eigenvector weights (i.e., less than 0.7%) are excluded. Such factors occurred in 

less than two studies, thus deemed less relevant.  

Firstly, direct influence analysis is performed using the 'MICMAC structural analysis 

software. The results are plotted on a direct influence map in Figure 4-4(a). Based on the 

level of influencing and dependence powers, the map is divided into four sections 

intersecting at the mean level  [34]. The factors in section A have a strong influence and 

weak dependence power. Figure 4-4(a) shows this section has ten factors: Log1, Log2, 

Log5, S2, S3, S8, M5, IKS2, IKS3, and SCM8. Similarly, section B has three factors (Log3, 

M3, S4): strong dependence and strong influencing powers. The factors in section C have 

weak influence and strong dependence and consist of seven factors: SCM1, SCM10, M1, 

M2, M6, Log4, and S1. All remaining factors are laid out in section D. These factors are 



101 

mostly disconnected from the system, as they have weak influences and low dependencies 

on other factors. Therefore, it is recommended that these factors be removed from the 

system. The direct influence analysis combines the factors' direct and indirect influences 

to determine the powers. For example, if A affects B and B affects C, A should transitively 

affect C. In this case, the direct influence analysis also counts the transitive influence. 

However, this approach undermines the minimum edge adjacency principle and the 

transitivity concept [5]. The indirect influence analysis deals with such issues and reduces 

the number of influencing factors in the system while increasing the system's sensitivity 

[259]. For conducting this analysis, the matrix power is increased iteratively. After two 

iterations, the stabilized results were achieved, which are presented in Figure 4-4(b). As a 

result, SCM8 and IKS2 are moved to section D from A, factor Log2 is moved to section B 

from A, and factor SCM2 is moved to section C from D.  

 

 

Figure 4-4. The Influence Map of MiC Supply Chain Influencing Factors 
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4.1.5 Themes of MiC Logistics Factors  

The MICMAC analysis distributes the factors into four categories. For the semantic 

interpretation of these categories, it is vital to understand the intrinsic relationships and 

characteristics of a factor in each category. Therefore, the influential relationship among 

factors is discussed to understand their influencing mechanism over the MiC SC. Also, the 

factor's influencing and dependence powers are compared with the eigenvector weights 

and co-occurrence ratios (CoR). As a result, the logical interaction of identified themes is 

illustrated in Figure 4-5. 

  

Figure 4-5 Illustration of factor's themes based on their relationship 

The semantic terms for these themes are logically selected based on the influencing 

relationships among factors and categories. The "dominating factors" occupy the system's 

core while predominantly influencing the supply chain performance and indirectly 
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impacting all other supply chain factors. On the other hand, the "external factors" are 

autonomous in nature and influence several other factors that affect the supply chain 

performance. The "symbiotic factors" are resultant or supportive factors that transmit the 

influence of other factors over the supply chain. Finally, the "potential influencing factors" 

are relatively new and require more research in the future to explore their influencing 

mechanism. Further details of these themes are discussed in the sections below. 

4.1.5.1 Dominating factors 

The factors in MICMAC section A are interpreted as dominating factors. These factors have a high 

co-occurrence ratio and influencing power, whereas their dependence is low. Such factors define 

the dynamics of the whole system of factors, as any change in these factors will have a snowballing 

effect across the system. Therefore, these factors can be considered input factors for the SC 

performance system. These factors are primarily focused on when making any decisions or 

strategies [62]. Figure 4-6(a) shows the critical relationship of dominating factors with other 

factors.  

The site layout (S2) and communication at site (S3) would directly affect the assembling process 

of modules [148]. Any delay in assembling would halt all the previous supply chain segments. 

Similarly, assembling reworks (S8) would create critical delays and subsequently affect the whole 

supply chain, particularly in the case of JIT delivery of modules [148,205]. Also, it can be seen in 

Figure 4-6(a) that factors site layout (S2), communication at site (S3), assembling reworks (S8), 

and inventory control (log5) are directly influencing the lead time (M6) [334]. Moreover, the factor 

module's handling (Log1) and information transparency (IKS3) are strongly connected with the 

logistics delays (Log3). Similarly, green manufacturing (M5) directly influences promote 

sustainability (SCM10) [326]. 
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Figure 4-6. Themes of factors based on their influential relationships 
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4.1.5.2 External factors 

The factors in section B are external factors. These factors have high influencing power 

and average cooccurring ratio. Factors in this theme directly impact the overall supply 

chain flow and indirectly influence the decisions related to other supply chain factors. 

External factors include natural hazards (M3), natural disasters (S4), and logistics delays 

(Log3). These factors are related to the delays caused by the weather or other natural 

disasters. Such factors directly influence a supply chain's exposed activities, such as 

material flow (S1), module handling (Log1), and assembling rework (S8). Therefore, external 

factors critically halt the whole supply chain [283]. However, according to the relationship 

map of external factors (see Figure 4-6(b)), factor information transparency (IKS3) can 

significantly help manage the impact of such external factors [298].  

4.1.5.3 Symbiotic factors 

Factors in section C having low influence, high co-occurrence ratio, and high dependence 

are interpreted as 'symbiotic factors.' The symbiotic factors predominantly exist in the 

presence of certain other factors, as they have high dependence. Such factors could be a 

(1) link in a cause-effect chain of other factors, (2) resultant of other factors, or (3) play a 

supportive role in snowballing the influence of other factors. Therefore, these factors may 

control and manage the overall dynamics of the system by reducing the negative impacts 

or enhancing the positive effects.  

In Figure 4-6(c), the factors robust supply chain (SCM1) and promoting sustainability 

(SCM10) are highly dependent. These factors take the central position as resultant factors 

[271,349]. For example, promoting sustainability (SCM10) factor is primarily resulting 

from efficient material flow (M1) [87], waste handling in factory (M2) [20], green 
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transportation (Log11) [351], green manufacturing (M5) [274] and performance 

measurement (SCM4) [263]. Similarly, the factor robust supply chain (SCM1) mainly 

depends upon risk management (SCM8) [341], inventory control (Log5) [148], and lead 

time (M6) [246].  

4.1.5.4 Potential influencing factors 

The factors in section D are realized as 'potential influencing factors.' These factors have 

weak influences and weak dependencies on other factors. It can be seen in Figure 4-6(d) 

that only Log6 and Log8 have significant influence; Most of the other factors in this theme 

are disconnected or have a fragile connection. The MICMAC analysis proposes to remove 

such factors as they have minimal impact, and their absence would not affect system 

performance [34,241].  

In contrast, the eigenvector evaluation performed in this study suggests that most of these 

factors have significant importance. For instance, IKS1, IKS4, IKS5, IKS6, Log6, SCM4, 

and SCM5 have above-average eigenvector weights. Despite high eigenvector weights, 

these factors have relatively low co-occurrences (CoR less than 2.0). This result suggests 

that these factors are mostly studied in separate literature. Also, some of these factors are 

relatively new in the literature and have a smaller footprint and low co-occurrence [193]. 

However, the literature suggests significant potential relationships between such factors to 

influence the MiC SC performance [88]. Consequently, the authors propose these factors 

as "potential influencing factors" that require more investigation in future research. The 

potential relationships among these factors are further discussed in Sections 7.4.1 and 7.4.2.   
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Logistics and SCM-related potential influencing factors 

The relationship map in Figure 4-6(d) highlights that most of the potential influencing 

factors belong to the categories of Logistics (Log) and Information and Knowledge Sharing 

(IKS). Among logistics-related factors, the logistics cost (Log 6), cycle time (Log7), and 

location and proximity of logistic facilities (Log 8) are significantly related to each other 

[118,229]. The factory and storage locations can impact the delivery time and directly 

influence the overall logistics cost. Therefore, such factors play a crucial role in selecting 

3PL companies [246]. The implication of cost and time in literature is mainly studied for 

optimized transportation routes (Log 4) [229]. The influence of cost and time over the other 

SC performance parameters is not discussed in detail. However, there could be potential 

implications, such as the optimized transportation route (Log 4), which can help ensure 

green transportation (Log 11) by reducing fuel-based emissions [291].  

The relationship map shows a significant relationship between green transportation (Log 

11) and Management strategies (SCM 3). However, very little research is available to 

explain the supply chain’s strategy for improving green transportation (Log 11)  [351]. 

Similarly, SCM-related factors, such as management strategies (SCM3) and SC monitoring 

(SCM5), are primarily studied in isolation [28,103,148,243]. However, there is a potential 

relationship among such factors, which requires a more detailed investigation of their 

influencing mechanisms [298]. 

Information and knowledge sharing (IKS) related potential influencing factors 

The factors related to information and knowledge sharing (IKS) are primarily discussed in 

independent studies, and their influence over other supply chain factors is rarely discussed 

[233,238]. However, Figure 4-6(d) shows some relationships between these factors 
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(weaker links). For example, information technology tools (IKS 1) can ensure real-time SC 

monitoring (IKS 6). RFID is one of the most common technologies used for real-time SC 

monitoring (IKS 6) [317]. It can ensure module inventory control (Log 5) by keeping a 

unique electronic record of each module.  

Identifying the correct module and sequencing during logistics handling is a challenge in 

MiC SC. RFID technology can help to manage such challenges effectively. In addition, 

real-time information flow enables quick decision-making according to the latest status of 

SC flow. Further, the MiC assembling site is prone to uncertainties due to unpredictable 

events, such as assembling reworks (S 8). Such assembling site disruptions can affect the 

whole SC. In this case, real-time SC monitoring (IKS 6) provides additional control to 

manage the module flow and make critical decisions on time [317].   

For a complex supply chain, communication and knowledge sharing with 3PL (IKS 4) are 

critical [217]. A multi-stakeholder, multi-mode, and multi-tier MiC SC is an information-

intensive supply chain that acquires the continuous and efficient information flow (IKS 5) 

across the supply chain. The 3PL company holds critical information about transported or 

stored modules, such as location, module health, module type, delay time, etc. Such 

information is helpful at multiple levels for effective SC performance measurement (SCM 

4) [294,304]. Moreover, effective communication and knowledge sharing with 3PL (IKS 

4) can also provide opportunities to effectively implement innovative management 

strategies (SCM 3), such as Lean or JIT [148].   

In a complex supply chain, information flow is also multi-stream and complicated, 

especially with advanced information technology, the information quantity increases. In 

such a scenario, information management is essential. The proper information flow SOPs 
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(IKS 2) should be implemented to ensure timely and correct information flow. In this 

regard, blockchain technology has been adopted to provide a secure and efficient 

information flow (IKS 5) across all the stakeholders in SC [56]. 

4.1.6 Summary (Objective I) 

Multiple research domains are explored extensively to identify a comprehensive set of 

influencing factors. The critical factors are determined using a rigorous eigenvector 

weighting approach based on factors abundance in the literature. Moreover, the influence 

of factors on each other is studied according to their co-occurrence in the literature. Then, 

factors are classified based on their influence using MICMAC analysis. The interactions 

among factors are investigated, and the influence mechanism of factors is realized to 

propose themes of factors. The summary of all the analysis results for the top 10 factors is 

presented in Table 4-1.  

The eigenvector-based ranking signifies the importance of factors based on the abundance 

of literature. However, it does not incorporate the individual interaction among factors and 

their strength of influence over the supply chain performance. Most top-ranked factors 

belong to the SCM category, as extensive literature has been published in this domain. The 

second most top-ranked factors belong to the information and knowledge management 

(IKS) category. Studies across all the research domains promote the information-related 

factors for an effective supply chain. However, MICMAC analysis results suggest that such 

factors have fewer connections with other SC factors. Generally, in the published literature, 

the factors related to the IKS and SCM are considered managerial. Therefore, past studies 
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have mainly explored the interactions of these factors with administrative or organizational 

factors [193,233].  

Table 4-1. Summary of analysis results 

Rank 
Top Ranked factors –  

Eigenvector weights 

Most influential Factors 

– MICMAC 

Most influential Factors – 

Combined analysis 

1 
Promoting sustainability 

(SCM10) 

Module's handling 

(Log1) 
Site layout (S2) 

2 Robust SC (SCM1) 
Assembling reworks 

(S8) 

Communication at site 

(S3) 

3 

Communication and 

Knowledge Sharing with 

3PL (IKS4) 

Delays due to weather 

(S4) 
Module's handling (Log1) 

4 Lead time (M6) Logistics delays (Log3) Assembling reworks (S8) 

5 
Efficient information flow 

(IKS5) 

Natural hazards at 

factory (M3) 

Flexible transportation 

(Log2) 

6 
Information technology 

tools (IKS1) 

Flexible transportation 

(Log2) 

Information transparency 

(IKS3) 

7 
Performance measurement 

(SCM4) 

Inventory control 

(Log5) 
Logistics delays (Log3) 

8 SC integration (SCM2) 
Information 

transparency (IKS3) 

Natural hazards at factory 

(M3) 

9 
Optimized transportation 

route (Log4) 
Site layout (S2) Delays due to weather (S4) 

10 
Real-time SC monitoring 

(IKS6) 

Green manufacturing 

(M5) 
Material Flow (M1) 
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On the other hand, the 'logistics' and 'site delivery' related factors are more influential for 

the MiC supply chain performance. For example, module handling,  flexible 

transportation, and inventory control demonstrate strong influential relations with other 

supply chain factors. Similarly, the factors of site delivery, such as assembling reworks, 

delays due to weather, and site layout, are dynamically influencing the supply chain 

performance. It is because these factors occur at the supply chain's endpoint and control 

the flow, particularly in the case of JIT delivery. Moreover, factors related to natural causes, 

such as logistics delays due to weather and natural hazards, are autonomous and strongly 

impact the MiC supply chain performance. The top influential factors in the overall 

combined analysis are similar to the MICMAC analysis. However, their ranking is 

different. 

The identified themes of factors based on the combined analysis conclude this study's 

findings and demonstrate the influencing system of factors. The dominating factors define 

the influencing system's dynamics as input variables, while the symbiotic factors control 

the influence of the dominating factors. The external factors are autonomous and cannot 

be controlled but are managed by improving the positive impacts of symbiotic factors. The 

potential influencing factors are abundant in literature but are primarily studied in isolation.  
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4.2 Exploring Technologies for MiC Logistics Supply Chain 

(Objective II) 

4.2.1 Introduction 

After the review of selected articles and identified technologies and their benefits, synergy 

analyses are performed to investigate the most suitable technologies and technology gaps 

further. The following section discusses the results of synergy analyses. 

4.2.2 Synergies Between SC Technologies and MiC Challenges 

To understand the application of technologies in different supply chains for a beneficial 

impact, we identified the chain of actions for each benefit of technology. The main purpose 

of identifying these chains of actions is to evaluate the features and capabilities of 

technologies for MiC logistics. For this purpose, we analyzed the extracted content from 

the text analytics. The developed chains of action are presented in Appendix – C. Following 

the chain of actions, we inferred the application of technologies for MiC logistics by 

establishing synergies between the benefits of technologies and the challenges of MiC.  

The detailed table of synergies between each benefit of technologies and the MiC 

challenges is presented in Appendix – C and is further discussed in the following sections. 

The overall results of synergy analysis can be summarized in two ways: (a) how many 

technologies are responding to MiC challenges? and (b) how many MiC challenges each 

technology responds to? The overall summary results of synergy analysis are presented in 

Figure 4-7. The highest number of technology benefits, ten and nine, are found for the 

challenges “delays due to installation errors” and “communication and coordination among 

stakeholders, respectively.  Whereas no identified benefit of technology is responding to 
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the “module handling” and “local traffic management.” On the other hand, RFID, 

blockchain, and IoT respond to a maximum number of challenges, 13,8,8, respectively.  

 

 
Figure 4-7. Overall results of synergy analysis  

4.2.2.1 Blockchain for MiC logistics 

Figure 4-8 below lists the benefits of IoT and sensors for several MiC challenges. Among 

these benefits, Enhanced security, trust, pseudonymity, transparency, and data integrity are 

most useful in dealing with (3) MiC challenges. For example, data security can reduce the 

chances of mislabeling modules and ensure correct delivery. Similarly, the trust and 

transparency of data will enhance the coordination among the stakeholders to improve the 

project's performance. Also, blockchain-based organized data can help better manage 

cross-border transit. Among other blockchain benefits, trustworthy information 

management and direct and real-time data access can improve stakeholder communication 

and coordination. 
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Figure 4-8. Blockchain benefits for MiC logistics. 

4.2.2.2 IoT and sensors for MiC logistics 

Figure 4-9 below lists the benefits of blockchain for several MiC challenges. Among these 

benefits, IoT has responded to most MiC logistics challenges. IoT is generally meant to 

implement real-time communications; thus, it can resolve several problems in any supply 

chain by enabling quick decision-making. Also, real-time communication improves the 

supply chain's agility; hence, the overproduction, storage, and Just-in-time (JIT) issues can 

be better managed for MiC logistics. Among sensors, the RFID sensor is found to be most 

impacting the MiC supply chain, as ten of its benefits are responding to 13 different MiC 

challenges, including correct module delivery, improving the safety during assembling, 

warehouse management, tracking the delivery, etc. GPS tracking also supports MiC 

logistics by improving delivery tracking, route optimization, and managing JIT delivery at 

the site. Other sensors are being used in different supply chains; however, they don't add 

value to MiC logistics for the same benefits.  
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Figure 4-9. IoT and sensors benefits for MiC logistics. 

4.2.2.3 Photogrammetry for MiC logistics 

Figure 4-10 below lists the benefits of photogrammetry for several challenges of MiC. 

Most of these benefits are useful for construction site operations and thus can improve MiC 

operations. However, the literature does not report their direct value for logistics 

operations. From their benefits, we noticed that photogrammetry could be used to monitor 

the quality of manufactured modules and compare the module’s condition after logistic 

operations, as LiDar and computer vision approaches can detect cracks or damages to some 

extent. Therefore, comparing pre and post-logistic models can reveal the potential damages 

that occurred during the transportation and handling of modules.  

 

Figure 4-10. Photogrammetry benefits for MiC logistics. 
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4.2.2.4 BIM and Digital Twin for MiC logistics 

Figure 4-11 below lists the benefits of blockchain for several MiC challenges. Among these 

benefits, Despite a wide range of BIM applications and benefits in the supply chain, it does 

not directly respond to particular MiC logistic challenges.  However, its application for site 

management helps monitor the MiC assembling operations to support logistic-related 

challenges. Also, collaborative data management in BIM can help supply chain actors 

collaborate easily and quickly to changes. Similarly, Digital Twin is a powerful supply 

chain tool but has found less response towards MiC logistics challenges. However,  its 

capabilities offer a great deal for overall MiC logistics management.  

 

Figure 4-11. BIM and Digital Twin benefits for MiC logistics. 
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operations, responding to the highest number of challenges, 13, 8, and 8, respectively. 

These technologies support real-time tracking and improve communication, the most 

promoted interventions for integrating the supply chain segments and improving 

performance [84,161,164,191]. These technologies primarily respond to the MiC logistic 

challenges related to transportation and supply chain coordination [78,84,191]. Also, these 

technologies are comparatively more developed, and their application has been widely 

reported in different supply chains [21,85,164,338].  

Although BIM and digital twins offer significant functionalities and capabilities, their 

applications are limited and only respond to four MiC challenges. These critical challenges 

include equipment breakdowns and enhanced coordination among stakeholders. BIM and 

digital twin provide platforms for managing the detailed data related to project and module 

structural attributes [85,216]. These features enable stakeholder collaboration for swift 

decision-making and progress monitoring and facilitate tracking the variations in modules' 

structural attributes [31,173]. Also, the visualisation capabilities of such technologies can 

simulate real-time supply chain operations to improve the productivity and safety of MiC 

logistics [159,183]. 

 
Figure 4-12. Most influential technologies for MiC Challenges 
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On the other hand, Photogrammetry, LiDar, and computer vision offer promising benefits. 

These technologies can help monitor the MiC structural variations during logistic 

operations, thus helping to reduce the delays due to installation errors and damage repair. 

LiDar and computer vision technologies can help assess the manufactured quality of the 

built module [69,236,280]. As well as they can be used to measure geometrical and surface 

defects at any point [125,344]. Similarly, accelerometers and distance sensors show 

potential benefits by tracking the precise module motion tracking during MiC logistics 

operations. Thus, these sensors can help improve the module's structural safety by 

monitoring the impacts and avoiding clashes. However, such applications for MiC logistics 

need further evaluation, as the literature lacks such studies. 

The technology gaps and most addressed MiC challenges are highlighted in Figure 4-13. 

The most addressed challenges associated with nine different technology benefits are the 

'communication and coordination among stakeholders' and 'delays due to installation 

errors'. These technologies mainly benefit from real-time communication and tracking to 

handle uncertain situations, such as IoT, RFID and blockchain, which are the most 

influential technologies. It is important to note that such technologies do not offer any 

support to avoid events like 'installation errors'. Instead, they manage the event after it 

occurs through improved communication and coordination.  
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Figure 4-13. Technology Gaps for MiC Challenges 

The MiC challenges, such as overproduction, JIT production, equipment breakdown, 

module sequence and wrong module delivery, have strong technological support in the 

form of blockchain, RFID and IoT. Many of these technologies' benefits can handle such 

challenges effectively and help improve the associated MiC supply chain operations. Other 

challenges like optimum transit storage location, managing cross-border transit 

regulations, delays due to equipment breakdown, and travel uncertainties have partial 

support from some technologies. Some of the technology capabilities are suitable for 

managing these challenges; however, these challenges have not yet been applied to handle 

these challenges. Thorough frameworks are still needed to use these technologies to 

manage such challenges properly.  

There is a critical technology gap for MiC challenges' module handling'. This challenge 

involves vital issues during the storage and stacking of modules, such as module structural 
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deformation, damages and overall structural health. Such critical issues can further trigger 

other challenges of MiC logistics, such as 'delays due to installation errors and damage 

repair'. Also, any accident during module handling can lead to hidden structural damage, 

which can cause a severe safety hazard and require additional repair time before assembly. 

Therefore, this gap requires critical technological attention.  

4.2.4 Proposed Technology Framework 

Considering the functional benefits of technologies, an integrated technology application 

framework is proposed for the most neglected challenge of MiC logistics, 'module 

handling'. As presented in Figure 4-14, the framework integrates IoT sensors, LiDar, 

computer vision, and digital twin technologies to monitor the impact of logistic operations, 

including module handling, on the module structure. This integrated technologies 

application can help improve logistic operations' productivity and safety and monitor the 

module's structural health. A manufactured module will be scanned using a LiDar, and 

computer vision can further process this scan to reveal the module's structural attributes, 

such as alignment and material finishes, to assess the manufacturing quality. Such pre-

logistics scanned information, along with other structural properties and attributes, will 

help to develop an initial digital twin of all the modules. 

In the second stage, the technologies for real-time logistics monitoring include IoT sensors, 

such as accelerometer, tilt, distance measurement, and temperature and moisture sensors. 

These sensors can monitor the MiC module's motion in real-time during module handling, 

such as loading and unloading, storage stacking, and transportation. Thus, these sensors 

can provide real-time motion data to the digital twin and enable the 3D simulated 
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visualisation of any logistic operation, improving the safety and productivity of these 

operations. Meanwhile, the distance sensor can initiate an immediate warning before any 

collision. Also, real-time motion data can help estimate the impact level during any 

accident or collision, –  providing early information about potential damage, – and reducing 

the delays due to inspections and damage reworks. 

 

Figure 4-14. Application of technologies for MiC module structural safety and health during 

logistics 

Additionally, such real-time motion data can be used with advanced structural modelling, 

such as Finite Element Methods (FEM) or with deep learning models to predict the changes 

in the module structure that may lead to any crack or damage in future. Such assessments 

can help develop proactive maintenance plans and improve the overall structural life of 

MiC buildings. To aid this, a post-logistic digital twin update using LiDar and computer 

vision can be performed to assess any structural variations during logistic operations. The 

comparison of initial and post-logistic digital twin will help assess the overall structural 
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health deterioration during the logistics. Also, it can help reduce manual module 

inspections and facilitate module alignment before assembly. 

4.2.5 Summary (Objective II) 

The study contributes to the body of knowledge by identifying the MiC supply chain 

challenges, critical Supply chain technologies, and their benefits and drawing synergies 

between the technologies' benefits and MiC challenges. A powerful text analytical 

approach helped to effectively investigate the vast literature and identify the use and 

benefits of supply chain technologies. RFID, IoT, GPS, and Blockchain technologies are 

among the most popular technologies in supply chain studies. These technologies also 

address some of the MiC logistic challenges. For example, communication and 

coordination among supply chain stakeholders, delays due to installation errors, equipment 

breakdown and wrong module delivery, JIT delivery, etc.  

On the other hand, some technologies are not being used to utilize their full potential in 

resolving supply chain issues. For example, tools like BIM and Digital Twin have vast 

capabilities to manage and organize multi-spectrum information at all levels of the supply 

chain. Thus, such tools can address several critical supply chain challenges. However, 

existing studies lack research on adopting such tools to address the most vital challenges. 

Similarly, several MiC challenges got limited attention and support from technologies, 

such as delays due to transportation issues, module handling, travel uncertainties, buffer 

space hedging, etc. The proposed framework incorporated technologies with vast potential 

to address several unattended MiC supply chain challenges comprehensively.   
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4.3 Developing a Multi-Sensing IoT System for Monitoring the 

MiC Module Structure  

(Objective III) 

4.3.1 Introduction 

In this study, (1) a smart wireless sensing system is developed that adopts microsensing 

technologies, integrates them in a compact small device that can be easily installed on a 

module, and enables IoT-based communication. (2) The developed system is tested and 

calibrated to ensure high precision and accuracy. (3) A field experiment demonstrates its 

detailed application for real-time damage assessment and health monitoring of the MiC 

module during logistics operations. The following section discusses the development of 

the IoT sensing system and its demonstration with a field experiment. 

4.3.2 Developing IoT sensing system 

The standard IoT system's architecture consists of three essential layers, as shown in  

Figure 4-15 [196]. The first perception layer is the IoT physical node, which consists of 

intelligent sensors that gather the required information. The second network layer is the 

active communication layer, which transforms the physically sensed information into 

organized and logical information and transmits it. This layer stores and processes the 

received data, presenting it in more logical knowledge for the application.  
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Figure 4-15. The basic IoT architecture 

Following this IoT architecture, the developed system comprises peripheral sensing units 

(SU) and a central communication unit (CU) representing the perception layer and network 

layers of IoT, respectively. The peripheral sensing units are small integrated sensing 

devices installed over the MiC module structure, as shown in  

Figure 4-16. These units monitor the structural strains, acceleration, and tilt angle at several 

points on the structure. Each peripheral unit is wirelessly synced with the CU and sends 

real-time data. The central communication unit (CU) then processes all the received data 

from all the installed SUs, stores data backup, and transmits it to a web server. Further 

particulars of the developed system are detailed in the following sections. 

 

Figure 4-16. Developed IoT sensing system. 

 
(a) Peripheral Sensing Unit (SU) 

 
(b) Central Communication Unit (CU) 
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4.3.2.1 Peripheral Sensing Unit 

The design rationale for the peripheral sensing unit (SU) is based on practical constraints 

during MiC logistics and building use phases. Each MiC module needs several SUs for 

effective monitoring of structural performance; hence, a large number of SUs are required 

for the whole building. Thus, the development cost for SUs is primarily focused, and 

cheaper available components are utilized. Further, the form factor of SU is kept minimal, 

making it practically invisible when installed in a module, thus avoiding any interference 

to or from the building occupants. First, a double-sided printed circuit board (PCB) was 

designed to ensure a minimum form factor for SU development. The components, 

microcontroller (MCU), accelerometer, gyroscope, strain gauge analog-to-digital converter 

(ADC), wheatstone bridge, battery, and some connectors, are mounted on the designed 

PCB for manufacturing the SU.  

The Xiao ESP32S3 is used as an MCU to control IMU and ADC functions and further 

process the data. The Xiao ESP32S3 is a tiny but robust MCU offering a 240MHz 32-bit 

LX7 dual-core processor, enabling enough computational power to handle complex 

machine-learning models as well. It supports integrated 8M PSRAM & 8MB Flash, WiFi 

2.4, and Bluetooth 5.0 while consuming 108mA power at peak performance and 14μA in 

sleep mode. The LSM6DS3 inertial measuring unit (IMU), containing an integrated 3-axis 

accelerometer and gyroscope sensors, is used. It's a high-performance, low-noise IMU that 

consumes 0.42-1.25 mA power while measuring up to ±16g acceleration and ±2000 dps 

angular/ rotational speed [24].  

An HX711 ADC is utilized to read signals from two strain gauges. HX711 is a two-channel 

ADC widely used as a load cell and is a cheaper alternative. This 24-bit signal amplifier 
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converts the strain signal from strain gauges to digital values (0 - 1023) [284]. A four-wire 

whetstone bridge configuration is required to connect a strain gauge to the ADC. Quarter 

wheatstone bridges are configured for each strain gauge, connecting a strain gauge and 

three 120-ohm resistors in series.  

Moreover, to reduce the current noise and improve the sensor readings, three 100nf 

capacitors are connected to each component. The JST Ph2.0 connectors are used to connect 

the detachable strain gauges and battery. A 1200mAh lipo battery is attached to the circuit 

and placed in a compact case. The battery capacity can be enhanced depending on the 

requirements. The overall size of the sensing unit is around 35x35x15 millimeters, and it 

weighs about 160 grams.   

The SU firmware is programmed using the Arduino IDE. ESP-NOW wireless 

communication protocol is employed in firmware for data transmission between SUs and 

CU, enabling peer-to-peer communication. ESP-NOW is highly suitable for continuous 

data transmission scenarios as it offers low latency and consumes significantly low power 

for peer-to-peer communication [94].  

4.3.3 Central Communication Unit 

The CU is the central unit that connects to all the peripheral units. It can monitor and control 

the SU's functioning, such as battery status, switching to low power mode, 

activating/deactivating any sensor, and requesting data transmission. The primary function 

of CU is to collect sensor data from all the SUs and transmit that to the server. A built-in 

module was used to develop CU, which integrates ESP32 MCU, SIM7600 cellular module, 

GPS, SD, and WiFi. The CU is also equipped to support large-capacity lipo batteries and 
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solar charging to enhance its portability. A mini OLED display is attached to the CU to 

monitor the status of connected SUs and control other functions. ESP32 MCU processes 

the received data from all the SUs, indexes the data streams, and stores it in the built-in SD 

card module as a backup. Meanwhile, the SIM7600 module enables real-time data 

transmission using a 4G internet network, ensuring seamless transmission from remote 

areas and sites where the availability of WiFi could be an issue. The sensor data 

communication and storage framework is elaborated in Figure 4-17.  

   
Figure 4-17. Sensor data communication and storage framework 

The CU firmware programming employs the MQTT (Message Queuing Telemetry 

Transport) protocol for cellular network transmission. MQTT is highly suitable for IoT-

based and high-latency networks as it offers lightweight, asynchronous data transmission 

and can retain the messages in the queue [350]. An MQTT-based server is established on 

a local computer to receive and log the data. The logged data is conveniently accessible 

through .txt, .csv, or Excel file formats for further processing and analysis. Additionally, 

the web server publishes the incoming data's real-time plots to monitor the data visually. 

Meanwhile, the damage analysis algorithms are programmed in Python, which accesses 

the sensor data from the server and publishes the results on the web portal.  
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4.3.4 IoT Sensing System Performance Testing and Calibration 

Different tests and calibration are conducted to ensure the developed sensing system's 

accuracy. The following section explains the evaluation process and results.  

4.3.4.1 Performance testing 

For performance testing, the SU was placed in a relatively static environment where 5-

meter surroundings were restricted to avoid external interference. The readings measured 

in a static environment represent the noise in the accelerometer and gyroscope, shown in 

Figure 4-18(a, b). The 100-minute measurements show that acceleration noise in the ±2g 

sensing range has a root mean square error (RMSE) of 0.01, mostly between 0.02 to -0.02g. 

Similarly, the gyroscope has an RMSE of 0.0023, ranging between 0.003 to -0.003 rad/sec. 

Considering the non-ideal static environment conditions, these results are reasonably 

comparable with the standard specifications of LSM6DS3 IMU [24]. In addition to the 

noise, there is another inherent limitation of any gyroscope, called a Turn-On Bias [68]. 

When a gyroscope is switched on, there will be unstable measurements initially, causing 

drift and offset [39]. It can be seen in Figure 4-18(b) that the gyroscope measurements 

show some drift in the beginning. To deal with this bias, the SU is programmed to record 

the unstable measurements at startup and then reduce offset based on initial unstable 

readings. Thus, the remaining measurements become stable, and the offset is reduced to 

0.001 rad/sec. Such a minor offset in angular velocity measurements does not affect the 

relatively calculated rotations and angles.  

Further, the strain gauge measurements were tested against temperature variation. For this 

purpose, the SU was placed in a room where a 24°C ambient temperature was maintained. 

When SU starts, its components (mainly MCU) generate heat due to continuous operations. 
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This heat causes the overall device temperature to rise above ambient temperature until a 

balance between ambient temperature and heat dissipation is reached. The time to achieve 

such a balance is critical for strain measurements, as strain readings are highly sensitive to 

temperature variations, as shown in Figure 4-18(c). The SU temperature kept growing for 

the initial thirty minutes and caused the strain values to drift despite no external load being 

applied. The drift in strain measurement was stopped after the balance between ambient 

temperature and device heat dissipation was reached, and the temperature was sustained at 

36°C. Similar to the SU's internal heat dissipation, in real-world scenarios, variations in 

the surrounding temperature can also cause disruptions to the strain measurements. 

 

 

 

Figure 4-18. IoT sensing system performance tests under static conditions. 

Temperature Compensation 

A model to compensate for the effect of temperature variation is developed to deal with 

the strain drift issue. The drifted strain values were measured against the varying 

temperature (24-36°C) for 100 minutes. The setup was ensured to be static and vibration-
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free so that the actual strain remained zero. Then, a second-degree polynomial regression 

model of drifted strain against varying temperatures was developed, as shown in Figure 

4-19(a). The coefficient of determination (𝑅2) for the regression model is 0.9397. This 

regression model gives the calibration factor to further calculate the actual strain values 

(𝑆𝑎), as given in Equation 4-1, where 𝑆𝑑 is the drifted strain, and 𝑥 is the temperature. The 

actual strain values for this test were calculated using this calibration model and are shown 

in Figure 4-19(b). It can be seen that the resultant actual strain values have no drift and are 

now closer to zero, with RMSE 0.000254µε. 

𝑆𝑎 = 𝑆𝑑 + 0.000006𝑥2 − 0.00008𝑥 − 0.0011  Equation 4-1 

 

 

Figure 4-19. Strain drift and temperature affect compensation. 

Performance comparison with UTM 

Finally, the accuracy of SU is tested by comparing its results with a standard universal 

testing machine (UTM). For this purpose, a compression test under cyclic loading on a 
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Figure 4-20(d) show that SU and UTM strain gauges show minor differences in strain 

values, with just 0.005µε RMSE. Then, the concrete block started developing cracks on the 

SU strain gauge side after 2nd cycle of loading (115 seconds). After five loading cycles 

(300 seconds), the major crack failure occurred, visible in both SU and UTM strain values. 

Overall, test results showed promising performance of SU strain measuring, with 0.011µε 

RMSE, despite early cracks on the SU strain side.  

   

(a) Concrete block 50x50mm     (b) Testing with UTM & SU     (c) Cracked block after test 

 

Figure 4-20. Strain test of the concrete block under cyclic load 

4.3.5 IoT Sensing System Demonstration for MiC Logistics Damage 

Monitoring 

A field experiment was conducted to demonstrate the effectiveness of the developed IoT 

sensing system. During the field experiment, the structure safety was monitored in real-

time for any potential damage during MiC logistic operations. Besides any critical damage, 

the overall impact of logistics operations on the module's structure is also determined, 

which is helpful for proactive maintenance during the building use phase.  
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4.3.5.1 Experimental setup 

The experimental setup was designed to emulate the real-world MiC logistic operations. 

The following sections explain the particulars of the subject module, the sensor installation 

process, and the observed logistic scenarios.  

4.3.5.2 MiC Module 

Considering the time and cost-effectiveness, a small wooden frame-based structure was 

built to be used as a module. The design of the wooden module was ensured to resemble 

the actual MiC module structure. The structural frame of this module was built using timber 

bars having a cross-section of 16x36 millimeters, ensuring reasonable structural strength 

for the module. The overall dimensions of this module were around 1600x500x500 

millimeters, having a total weight of around 80 lbs., as shown in Figure 4-21(a,b). The 

module walls were built using thin balsa plywood with a thickness of 4mm, whereas the 

bottom base floor was 16 millimeters thick. Two timber base supports of 50x90 millimeters 

cross-section were also affixed at the bottom. The properties of the materials used are given 

in Table 4-2. 

Table 4-2. Material properties of the built module 

Materials Elastic modulus Density Poison's Ratio 

Timber Frame 14000 MPa 750 Kg/m3 0.18 

Balsa Plywood Walls 4000 MPa 300 Kg/m3 0.35 
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4.3.5.3 SU installation 

The eight SUs were installed on all corners of the module so SUs could sense the whole 

structure. This arrangement is considered for demonstration and experimental purposes in 

this study. In other cases, fewer SUs may be installed in selected critical and vulnerable 

positions on the module. Figure 4-21(c, d) highlights installed SUs' position as S1, S2, …, 

and S8. The SU's accelerometer will measure the vibrations in three directions, X, Y, and 

Z. Besides, the SU's gyroscope will measure the angular movements in three directions: 

roll, pitch, and yaw, as shown in Figure 4-21(e). For this study, the accelerometer and 

gyroscope were set to record measurements at 100Hz. However, the SU is programmed to 

transform the data streams into 1Hz by taking the mean of 100Hz data. This approach 

facilitates data syncing, real-time transmission, and managing the quantum of data while 

ensuring measurement accuracy [165]. 

Further, each SU can handle two strain gauge sensors installed on adjacent walls at each 

corner, as highlighted in Figure 4-21(c, d). The 15 cm long foil strain gauge sensors, having 

gauge factor 2, are installed at each wall corner. Such a long stain gauge sensor shall cover 

a larger corner wall area and sense the maximum strains in the walls. Besides, the strain 

gauge sensors are positioned at 45 degrees at each wall corner, as shown in Figure 4-21(c). 

The transportation and lifting operations of the module induce critical shear forces in the 

corners, causing cracks in walls [111]. Thus, installing strain sensors at 45 degrees will be 

capable of sensing the maximum possible strain. Hence, the installed strain gauges can 

sense any deformation anywhere in the structural element. The value of the measured strain 

will indicate the relative impact at the installed position of the strain and may not directly 

indicate the damage but the deformation. However, the relative strain impact of all the 
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installed strains can be used to measure and locate the possible damage in the structural 

element.  

     

 
 

Figure 4-21. The SU and strain gauge installation on the built wooden module 

4.3.5.4 Logistic Operations  

The transportation and crane lifting processes were carried out to demonstrate the MiC 

logistic operations. For the first 600 seconds, a crane lifting operation was conducted. 

Hooks were installed on the four top corners of the module to tie the crane ropes. The 

module was lifted from the resting platform and hoisted around for a few minutes. The 

module was moved rigorously in all directions during the hoisting process that simulated 

the MiC assembly process. Then, the crane placed the module on a 4-wheel transportation 

trolly to simulate truck hauling. The module was transported around 200 meters away to 

the final destination. The transportation track involved a ruff tile-based track and a 

relatively smooth asphalt track. Also, it included several turns and inclined surfaces. The 

transportation speed varied at different points corresponding to the conditions, taking a 

total transportation time of around 800 seconds. 
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4.3.6 Damage Assessment Results and Discussion 

During the field experiment, the IoT system provided a real-time response from all the 

sensors installed on the module. The real-time sensor response is plotted to analyze the 

events of logistic operations. The variations in the sensors' response help estimate the 

nature of the operation and any significant anomaly in that operation. The acceleration and 

gyro time series plots, shown in Figure 4-22, indicate various module movements during 

crane lifting and transportation operations. The crane lifting operation (between 0-600 

seconds) was slow and smooth; thus, low acceleration variations were observed compared 

to transportation.  

Similarly, the gyro response indicates restricted roll rotation as the module was tied on four 

corners during the lifting operation. On the other hand, the slight variations in yaw and 

pitch values during 150 to 300 seconds indicate the free movements of the hanging module. 

During transportation, the rough road section is highlighted by the high acceleration and 

gyro response in all directions from 770 to 1220 seconds. 

 

  

Figure 4-22. Time-Series of Acceleration and Gyroscope  

The strain sensors' real-time response is shown in Figure 4-23. Despite the rigorous module 

movements in multiple directions, low strain variation is observed during the crane lifting. 

This was due to the low-hanging weight of the wooden module and the relatively smooth 
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lifting operation. The sensors installed at the back and front module walls observed 

comparatively slight variation. However, these variations reach a maximum of 0.0045µε, 

which is insignificant for a wooden module considering its material flexibility and cannot 

be confirmed as damage without detailed investigation. 

Similarly, the strain values observed significant variation at the end of the crane operation 

as the module was placed on the transportation trolly. Such variation could be due to re-

adjusting wooden parts according to the new support conditions, or it may indicate some 

damage. However, distinguishing such variations as damage requires additional analysis 

and investigation. Following that, during transportation, some of the sensors observed a 

slight drift that could indicate damage propagation under the vibrations induced by the 

rapid movement on the road.  

 

 

 

 

Figure 4-23. Time-Series of Strain Measurements 
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4.3.6.1 Real-time Damage and Safety Assessment 

Several real-time exploratory analyses are performed to identify the potential damage and 

its location. These analyses can help the decision-makers investigate the sensors' response 

in detail and assess the possible damages while evaluating the relative response of sensors 

installed at various locations on the module. Further evaluation and comparison of all these 

analyses confirm the damage and its locations on the module.  

Moving Average Window 

The general sensors' response trends visualizations may not be helpful enough to predict 

damage in the module. Thus, the moving average window (MAW) is further analyzed to 

investigate the real-time sensor's response. This analysis represents the mean sensor 

response of a short period, called a window. This approach reduces the noise in the sensor 

response and represents actual changes that occurred in the structure [15,163]. A 30-second 

window is selected so that any point in the plot represents a structural change during that 

period. Such an approach is highly useful for real-time safety monitoring [76].  

It can be seen in the moving average window plot, shown in Figure 4-24, that a significant 

strain change starts during transportation operations. For the right and back walls, the strain 

change remains less than -0.008 µε for all the sensors. On the other hand, the left and front 

walls experienced significant strain changes for most of the sensors attached. The sensors 

S2B_t show high strain displacement at the beginning of the transportation operation but 

later return to the average strain trend. The S7A_b shows moderate strain displacement 

reaching -0.01µε. The sensors S7B_b, S4A_t, S3B_t, and S6B_b show the most critical 

response, where strain displacement keeps propagating and reaches up to 0.014 µε. 
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Figure 4-24. Moving Average Window Analysis 

Expanding Average Window  

Like the moving average window, the expanding average window (EAW) calculates the 

mean strain values. However, instead of using a window moving, all the previous data is 

considered to calculate the mean strain value for every new point. Such increasing window 

size optimally smoothens the window and helps estimate the accumulated variation in the 

sensor response [163]. Thus, the expanding average window analysis shows a net structural 

deformation occurring at any plot point.  

The expanding window plot in Figure 4-25 highlights critical sensors similar to the moving 

average window. However, it shows more evident variations in the sensor response and 

indicates mean net structural deformations. The lines remain horizontal and closer to zero 

strain, indicating a net-zero deformation in the structure, and lines moving away from the 

zero signify structural deformations. The sensors installed on the right and back walls 

mostly show nearly horizontal closer to zero lines, thus revealing insignificant deformation 

in the adjacent walls. On the front wall, three sensors, S3B_t, S6B_b, and S7B_b, show a 
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sharply deviating structural response indicating an evident deformation. Similarly, sensors 

S4A_t and S7A_b on the left wall show significant deformation. 

 
Figure 4-25. Expanding Window Analysis 

Strain Field Histograms 

The strain field histogram (SFH) helps to compare the frequencies of the discrete strain 

response values measured over time. Peak strain frequency indicates the amplitudes of 

various strain measurements, highlighting the variation in the measured response of several 

installed sensors [127]. Such variations may indicate the change in structural conditions 

near those sensors [15,16,307]. The SFH plots shown in Figure 4-26 suggest that the strains' 

range or spread is higher in the sensors installed on the left and front walls, reaching up to 

-0.0150 µε. The sensors installed on the right and back walls measured the maximum strain 

displacement around -0.0075 µε. The sensors S4A_t and S7A_b on the left wall and S3B_t 

and S7b_t on the front wall notably measured an abnormal response compared to other 

sensors. Also, unlike other sensors, the sensor S2B_t measured abnormal strain values up 

to 0.0025 µε. The identified discrepancies in the sensor response led to estimating and 

locating the damages on the module walls.  
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Figure 4-26. Histograms of Strain Measurements 

Fast Fourier Transformation  

A Fast Fourier Transformation (FFT) analysis is conducted to evaluate the acceleration and 

gyro sensors' response. The FFT magnitude provides the relative strength of various 

frequency components measured by each sensor. In the FFT spectrum, a distinguished 

higher magnitude frequency component called the dominant frequency represents the 

essential characteristics of the logistic operations [54]. In other words, the dominant 

frequencies indicate the primary structural response under the operations. Thus, if the 

dominant frequencies of sensors installed at various locations show any variation, it would 

suggest a change in the structural conditions at that point, i.e., structural damage [76,270].   

Figure 4-27 shows the FFT spectrums of acceleration and gyro response observed for SU-

S8. The FFT of each sensor shows multiple dominant frequencies (peaks) representing the 

non-stationary dynamic characteristics of MiC logistic operations. During all logistic 

operations, most module movements were along the vertical direction and the shorter side 

of the module, i.e., the x and z-axis, respectively. Thus, acceleration in the x and z-

directions have more dominating frequencies. Meanwhile, the y-acceleration has only one 
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distinguished high magnitude frequency (nearly 0Hz, called DC component), representing 

a dominant average structural response. The modules mostly remained tied along the y-

axis and didn't experience any significant movements along this axis. For the same reasons, 

the roll rotation has fewer distinguished frequency components for gyro than the pitch and 

yaw rotations.   

 

 

 

 

 

 

Figure 4-27. FFT of Acceleration and Gyroscope Measurements – S8 

The FFT plots provide complex information, so comparing visualizations may not easily 

highlight or distinguish any variation. Therefore, all the installed sensors' interquartile 

Acceleration Y 

Acceleration Z 

Yaw rotation 

Pitch rotation 

Roll rotation 

Acceleration X 
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ranges (IQR) are calculated to compare and evaluate the dominant frequencies. The values 

higher than the 3rd quartile can easily accommodate a signal's significant dominant 

frequencies. Similarly, the standard deviation (SD) of an FFT magnitude highlights the 

spread of the FFT magnitudes across the signal; any considerable variation in SD would 

indicate a change in structural response near that sensor. Thus, the SD and 3rd quartile can 

be critical indicators of the variation in the structural response [22,270]. Comparing these 

indicators of sensors installed at different locations can highlight the structural change. 

Table 4-3 presents the 3rd quartile and standard deviations (interquartile range) of all the 

acceleration and gyro sensors. 

Along the x-axis, the acceleration and yaw rotations don't differ much across different 

sensors. Due to a complicated dynamic structural response in this direction, it has high 

noise and several distinguishing FFT magnitude peaks, leading to high SD and 3rd quartile 

values. Therefore, these sensors may not be suitable for detecting abnormalities. In 

contrast, along the y and z-axis, the acceleration and rotations have comparatively less 

noise and clear FFT magnitude peaks, thus revealing apparent differences across the 

sensors. The y-acceleration 3rd quartiles (61.47 a. units) and SD (27.80 a. units) of S1 are 

significantly higher than the other sensors. Similarly, the roll and pitch rotations of S7 and 

S8 showed minor differences. 

To compare the discrepancies systematically and statistically at the location of different 

sensors, the normalized impacts of all the 3rd quartiles and SDs are combined by calculating 

net mean z-scores, as given in Table 4-3. The highest z-score of S6 (1.03) indicates that 

most variation has been sensed near this location, followed by S5 (0.97), S7 (0.90), and S8 

(0.87). The 3rd quartile and SD values of acceleration and rotations for these sensors seem 
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significantly abnormal compared to other sensors. Thus, damage is suspected closer to the 

location of these sensors.  

Table 4-3. FFT Spectrum Interquartile Range 

SU 

X-accel Y-accel Z-accel Yaw Roll Pitch Net Z-

scores std 3rd Q std 3rd Q std 3rd Q std 3rd Q std 3rd Q std 3rd Q 

S1 380.89 133.82 27.80 61.47 32.30 46.68 3.22 5.54 3.25 3.23 2.06 4.60 0.83 

S2 408.98 147.20 20.57 37.61 35.54 51.35 3.10 5.38 2.98 3.98 1.85 4.14 0.80 

S3 383.45 123.39 17.06 39.90 35.38 87.06 3.33 5.60 3.15 4.78 1.89 3.01 0.61 

S4 383.45 123.35 17.06 39.85 35.38 86.91 3.33 5.60 3.15 4.77 1.89 3.01 0.61 

S5 376.62 142.55 14.02 33.62 23.22 46.66 3.30 5.44 3.25 5.05 4.76 3.30 0.97 

S6 374.30 121.07 13.20 29.72 42.03 52.94 3.55 5.76 2.92 3.05 2.34 4.68 1.03 

S7 381.55 120.93 15.08 32.02 22.77 53.75 3.34 5.44 2.07 5.07 1.54 3.17 0.90 

S8 385.82 125.09 26.06 28.75 29.65 75.08 3.10 5.34 2.73 3.34 3.07 4.99 0.87 

 

4.3.6.2 Damage Localization – Analyses Fusion 

The analyses above highlight the potential damage in the structure while highlighting the 

critical sensors that sensed the most abnormal variations in the structural response. As a 

result, each identified critical sensor could have sensed the same damage from a distant 

location, or each analysis could have indicated different damage. Therefore, analyses 

fusion was performed to combine and compare all analysis results to confirm the damage 

and their respective locations. First, the critical sensors identified by each analysis are 

categorized into high, moderate, and low categories based on their variation criticality. 

Sensors in each category indicate that, for instance, the damage is either minor or away 
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from the sensor location. Then, categorized sensors in each analysis are compared and 

combined as analyses fusion in Table 4-4.  

The results highlight that the front and back walls experienced high and moderate levels of 

damage, respectively. On the front wall, the sensors S6, S6B_b, and S3B_t indicate high 

response variations, confirming critical damage on this wall closer to these sensors. The 

sensors S7 and S7B_b sensed moderated variations on the front wall, thus indicating 

damage location away from them. Similarly, the sensor S2B_t also sensed a low variation 

response on this wall, thus indicating the location of critical damage away from it. 

Considering the locations and relative impact sensed by these sensors, the approximate 

location of the damage can be estimated using a triangulation approach [67]. The high 

variations sensed by S6B_b and S3B_t imply the damage location in the middle of the 

diagonal between these two sensors. The moderate and low variation sensed by S7B_b and 

S2B_t suggests that the damage should be a little left and lower than the middle diagonal 

of S6B_b and S3B_t, as highlighted in the illustration in Table 4-4. 

On the left wall, sensor S4A_t sensed a high response variation, indicating significant 

damage on this wall. Similarly, the sensors S7 and S7A_b, installed on the bottom right 

corner of this wall, also sensed moderate response variation. The S8 sensed low variations 

at the bottom left corner of this wall. Now, triangulating the relative impact sensed by each 

of these sensors, the approximate location of the damage is predicted, as illustrated in Table 

4-4(a).  The back and right walls didn't experience any significant damage. Only FFT 

analysis highlighted sensors S5 and S8 attached on the corners of the back and right walls. 

However, variations in these sensors are confirmed to be related to the front and left walls. 

The above-identified damage on the module walls can also be realized in the actual module, 
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as shown in the pictures added in Table 4-4(b-d). Due to the wooden material of the module, 

they are hard to see visually.  The damage and location predicted on the left wall are similar 

to the actual damage in the module. However, the predicted location of damage to the front 

wall is lower than the actual location. This assessment variation is possibly due to the 

module's loosely fixed top roof plane during the experiment, which interrupted the sensors' 

response installed at the top corners. 

Table 4-4. Analyses Fusion for Locating Damages 

Category MAW EAW SFH FFT Analyses Fusion 

Impact Location 

Front Right Back Left 

High 

S4A_t, 

S6B_b, 

S3B_t 

S4A_t, 

S6B_b, 

S3B_t 

S4A_t, 

S3B_t 
S6 

S4A_t, S6B_b, 

S3B_t, S6 
✓✓✓ ✓  ✓ 

Moderate 
S7B_b, 

S7A_b 

S7A_b, 

S7B_b 

S6B_b, 

S7A_b, 

S7B_b 

S5, 

S7 

S7B_b, S7A_b, 

S5, S7 
✓✓ ✓ ✓ ✓✓ 

Low S2B_t - S2B_t S8 S2B_t, S8 ✓  ✓ ✓ 

 

 

  

  
  

  

  

    

  

 

 

 

 

 
  

 

 
 

 
 

 
  

 
 

    

     

(a) Predicted Damage Locations (b) Left wall (c) Right wall
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4.3.6.3 Module's Health Impact Assessment 

Besides any critical crack or damage in the module structure, some hidden, intrinsic 

underlying, minor latent damages could remain undetectable. Such minor damages are 

induced in the structure due to rigorous MiC logistic operations and can further propagate 

into critical damages during the building use phase. Therefore, it is essential to assess the 

overall impact of logistic operations on the health of the module structure. Such an 

assessment can help devise a proactive maintenance schedule for the module and improve 

the module's useful life.  

 

  

  

  

  

Figure 4-28. Detected anomalies (as red dots) by sensor S6. 
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The adopted approach exploits the typical anomaly detection approach, as all the abnormal 

logistic impacts are accumulated to calculate the relative impact over different module 

parts. For anomaly detection, any sensor response in a moving window exceeding the 

defined threshold is identified as an anomaly [76,325]. Considering a 30-second moving 

window and one SD (standard deviation) as a threshold, all the anomalies sensed by each 

sensor were detected. A programmed model detected all the anomalies in real-time during 

the logistic operations, as shown in Figure 4-28. The weight of each anomaly during 

logistic operation is assessed and categorized as high, moderate, and low according to their 

relative weights. Anomalies are systematically aggregated to calculate a total weighted sum 

of anomalies for each category at each module wall.  

Table 4-5 compares the high, moderate, and low impacts experienced by each type of 

sensor for all the module walls. The strain sensor results coincide with the real-time safety 

assessment in the previous section. It indicates the significant impacts on the front and left 

walls, 22.90% and 10.89%, respectively. However, the accelerometer suggests different 

patterns of impact on the module walls. It indicates the highest impact on the right wall 

(17.52%) and no impact on the left. The impacts on the front and back walls also vary from 

the strain sensor assessment. Such variation could be due to the high precision of the strain 

sensor for assessing closer impacts in contrast to the accelerometer, which can also assess 

the response from farther locations. Thus, the strain gauge should be considered more 

relevant for evaluating significant local damage, such as cracks or deformations. However, 

the acceleration-based assessment could be more useful when assessing the overall 

structural changes during the stationary building use phase. 
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Table 4-5. Overall Module's Health Impact Based on Sensor Fusion Scenarios 

Impact Level Right Wall Back Wall Left Wall Front Wall 

Strain Only Impacts 

High 9.35% 0.00% 13.55% 22.90% 

Moderate 1.25% 10.89% 9.64% 0.00% 

Low 1.56% 0.03% 0.00% 1.53% 

Total Impact 12.15% 10.92% 23.19% 24.42% 

Acceleration Only Impacts 

High 17.52% 8.91% 0.00% 8.61% 

Moderate 8.65% 5.08% 0.00% 3.57% 

Low 0.00% 1.81% 2.31% 0.50% 

Total Impact 26.17% 15.81% 2.31% 12.67% 

Gyro Only Impacts 

High 5.14% 1.81% 0.00% 3.33% 

Moderate 0.00% 1.06% 2.95% 1.90% 

Low 0.67% 0.00% 1.40% 2.07% 

Total Impact 5.82% 2.87% 4.35% 7.30% 

 

Sensor Fusion 

Each type of sensor has varying sensitivity to different kinds of motion during logistic 

operations. An accelerometer, measuring linear acceleration impacts, has significant 

sensitivity to linear motion, such as transportation. Therefore, the acceleration-based 

anomalies would be considerable for interpreting the damage induced by any transportation 

motion. Similarly, the gyroscope, measuring the rotational velocity impacts, is mainly 

appropriate for interpreting the lifting, loading, and unloading operations. On the other 
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hand, the strain gauge, measuring the direct structural variations, should be relevant to 

interpret impacts from all logistic operations. The previous section also observed such 

assessment patterns for strain, accelerometer, and gyro sensors.  

Therefore, we propose the weighted average-based sensor fusion to determine the overall 

impact on the module. The sensor fusion-based impact (𝐼𝑓𝑢𝑠𝑖𝑜𝑛) can be calculated using 

Equation 4-2, where 𝑆, 𝐴 and 𝐺 represents the measured impacts and 𝑤𝑠, 𝑤𝑎 and 𝑤𝑔 

represents the corrosponding weights. The decision maker can select the appropriate 

weights according to the type of logistic operations. For example, if logistic operations 

involve only transportation, the strain and accelerometer impacts can be considered with 

(0.5) weights each, neglecting the gyro impact.  On the other hand, if logistic operations 

are mainly lifting or loading and unloading, the strain and gyro impacts can be considered, 

ignoring the accelerometer.  

𝐼𝑓𝑢𝑠𝑖𝑜𝑛 =  𝑆. 𝑤𝑠 + 𝐴.𝑤𝑎 + 𝐺.𝑤𝑔  Equation 4-2 

As our field experiment involved both crane lifting and transportation logistic operations, 

we selected equal weights (0.33) for all the sensors and calculated the fusion-based 

impacts. Table 4-6 shows the sensor fusion results. Overall, the front and right walls 

experienced the most impact, 8.79%, and 8.70%, respectively. Significantly, the right wall 

didn't experience any critical damage, as assessed in the previous section. However, the 

anomalies assessed on this wall highlighted the possible effect on the overall health of this 

wall compared to the left wall. 
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Table 4-6. Sensor fusion-based module health assessment 

Impact Level Right Wall Back Wall Left Wall Front Wall 

High 7.09% 0.00% 0.94% 8.04% 

Moderate 1.48% 3.85% 2.38% 0.00% 

Low 0.13% 0.00% 0.62% 0.75% 

Total Impact 8.70% 3.85% 3.94% 8.79% 

 

4.3.7 Summary (Objective III) 

The study embraces the real-time monitoring of the module’s structure during MiC logistic 

operations. A smart, integrated, portable, IoT-based sensing system is designed to ensure 

its practicality for MiC logistics. A smaller form factor of sensing units is achieved to keep 

it practically invisible while installed on a module. The developed sensing system was 

calibrated by incorporating temperature compensation factors and turn-on bias elimination. 

The sensing system performance is thoroughly tested in different conditions, and accuracy 

is found to be comparable to that of standard commercial equipment like UTM.  

The module's real-time structural condition monitoring enables early damage detection, 

allowing timely decisions to avoid supply chain disruptions. Also, it can improve the on-

site safety inspection process while providing more insights into the module’s structural 

condition, increasing inspection speed, and highlighting the latent damages. Moreover, the 

safety of the real-time assembly process can be monitored. The sensing system provides 

detailed structural response data of logistic operations, which is useful for predicting the 

module's structural creep and forecasting maintenance during the building use phase. Thus, 
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the system helps to ensure the JIT supply chain for MiC assembly, enhances assembly 

process safety, and helps to improve the module’s service life.  

The application of the developed sensing system is demonstrated with a field experiment, 

and various analyses are presented to detect critical damage and assess the overall impact 

on the module’s health. The demonstrated field experiment not only evaluated the system's 

effectiveness but also highlighted the effectiveness of different sensors in assessing the 

structural condition. The strain sensors are found to be more sensitive toward structural 

deformation and are directly helpful for determining the critical damage and its location. 

On the other hand, acceleration data is less sensitive but more helpful for assessing global 

structural deformations and overall structural health assessment. The gyroscope sensor's 

accuracy in predicting damage advocates its relevance but shows a complex relationship 

requiring deeper and more complicated analyses. Such insight can help understand the 

optimum number of sensing units required during the logistics and building use phases and 

the most suitable location for installing sensors. However, further elaboration needs future 

research with this perspective in particular. Such future elaboration can also help improve 

the device and its performance. Moreover, the developed system is demonstrated using a 

wooden module for cost-effectiveness. However, further validation is needed for steel and 

concrete types of modules.  

The developed sensing system employs state-of-the-art micro technologies, which can 

embed Artificial intelligence (AI) algorithms on the device. This feature allows for 

instantly sensing, assessing, and predicting the structure condition on the device, reducing 

the raw sensor data transmission and processing requirement and, hence, improving 

portability. The sensing system opens new research avenues for researchers by accessing 
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detailed information on structural response during logistic operations. It will help to 

understand the structural dynamics under various scenarios of module handling during 

logistic operations. It will help improve the structural design and the module logistics 

strategies to save cost and time. Also, in the future, the sensing device can be further 

developed to facilitate the automation of the assembling process.  
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4.4 A Hybrid Deep Learning Model for Damage Assessment in 

MiC Modules  

(Objective IV) 

4.4.1 Introduction 

This study opts to develop an integrated CNN-GRU deep-learning model for MiC damage 

assessment of MiC module during logistic operations. The proposed deep learning model 

incorporates multi-sensor time series data,  effectively incorporating the spatial 

correlations among the loading impacts, corresponding structural responses, and variation 

along the time sequences. The following section discusses the developed architecture and 

the model implementation. 

4.4.2 CNN-GRU Combined Model Architecture  

There are two main approaches to combining the CNN  and GRU models: parallel and 

hierarchical. Both approaches have benefits and limitations, and selection depends on the 

data type, model objectives, and preferences. Some studies adopted the parallel approach, 

in which sensor data is simultaneously passed to CNN and GRU, and both outputs are 

combined [47,345,367,378]. In the hierarchical approach, first, the CNN model extracts 

the features and learns the correlations and patterns among multiple sensor signals within 

a given time sequence. Then, CNN output is reshaped and passed to the GRU model, which 

learns the long-term dependencies among the time sequences [346,371]. However, parallel 

architectures equally focus on both dimensions, and they are more complex, 

computationally expensive, and less efficient for large data sets [266]. In this context, the 

hierarchical approach is more desirable when the input data contains a dynamic hierarchy 
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and the objective is to explore across hierarchies in all dimensions [38,49]. Thus, this study 

adopts a hierarchical combination approach for combining CNN and GRU.  

 

Figure 4-29. Proposed CNN-GRU architecture for structural strain prediction regression model. 

The developed architecture is a sequential neural network where layers are stacked 

sequentially, as shown in Figure 4-29. It combines CNN and GRU for feature extraction 

and sequence modeling.  The shaped sequences and corresponding features (6 sensor 

signals) are passed to the first CNN convolutional layer. This layer learns to recognize local 

patterns in the input sequences, resulting in a feature map as output (𝑧𝑖). The Equation 4-3 

below represents the operation of the convolutional layer. Where, 𝑧𝑖 represents the output 

at position 𝑖, 𝑥𝑖+𝑗 denotes the input signal value, and 𝑤𝑗 represents the weight of the filters, 

and 𝑏 is the bias term.  

𝑧𝑖 = ∑ 𝑥𝑖+𝑗. 𝑤𝑗 + 𝑏5
𝑗=0     Equation 4-3 

The convolutional layer is set to have 512 filters that slide over each input sequence to 

extract specific patterns. A higher number of filters allows more diverse feature learning 

but increases model complexity. The kernel size in this layer is set as 𝐹 = 6, meaning 

filters will slide over all six input features in each sequence. Larger kernel sizes capture 
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broader features, while smaller sizes focus on finer details. A LeakyReLU activation 

function is adopted to prevent the vanishing gradient by considering a small negative slope 

(0.01). The resulting feature map from the convolutional layer is passed to the max-pooling 

layer. This layer is an essential part of CNN to reduce the spatial dimensions of the feature 

map and computational expense.  This model sets the pool size as one, as no reduction was 

required.  

Another batch of convolutional and max-pool layers was added to enhance the model 

complexity and deepen the learning. This time, the convolutional layer was set to have 256 

filters, with kernel size 𝐹 = 1. Due to a smaller kernel size, this layer refines spatial 

features and trains more fine details. Following this, a dropout layer (rate 0.01) is added to 

prevent overfitting during training by randomly deactivating a fraction of neurons. Then, 

the resulting feature map output is transformed to match the required shape with the next 

layer. For this purpose, first, a flattening layer is added that converts the two-dimensional 

feature map into a one-dimensional vector, followed by a reshaping layer to get the required 

shape.  

The reshaped feature map extracted by CNN layers is then passed to the GRU layer for 

sequence modeling. The GRU then extracts the features to learn the long-term 

dependencies among the input sequences. Similar to the CNN, two GRU layers are added 

for robust training. The first GRU layer has 512, and the second layer has 256 filters with 

a LeakyReLU activation. Equations 4-4 to 4-6 explain how the GRU processes the input 

data and generates the output. Where, 𝑥𝑡 is the input matrix, 𝑧𝑡, 𝑟𝑡 and ℎ𝑡 denote update 

gate, reset gate, and hidden state, and 𝑤𝑧, 𝑤𝑟 and 𝑤ℎ are their respective weights. The 𝜎 
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and 𝑡𝑎𝑛ℎ are sigmoid and hyperbolic tangent activation functions that calculate and make 

decisions for 𝑧𝑡 and  𝑟𝑡. 

𝑧𝑡 = 𝜎(𝑤𝑧. [ℎ𝑡−1, 𝑥𝑡  ] + 𝑏𝑧)      Equation 4-4 

𝑟𝑡 = 𝜎(𝑤𝑟. [ℎ𝑡−1, 𝑥𝑡  ] + 𝑏𝑟)      Equation 4-5 

ℎ𝑡 = (1 − 𝑧𝑡). ℎ𝑡−1 + 𝑧𝑡 . (𝑡𝑎𝑛ℎ(𝑤ℎ . [𝑟𝑡. ℎ𝑡−1, 𝑥𝑡  ] + 𝑏ℎ)))  Equation 4-6 

GRU maintains a hidden state that keeps updating with new inputs. The update gate (𝑧𝑡) 

and reset gate (𝑟𝑡) control how much information from the previous hidden state should be 

retained and how much to forget. The hidden state (ℎ𝑡) combines the previous hidden state 

and the new information, controlled by the update gate. So that, if 𝑧𝑡is near zero, most new 

information is updated in the ℎ𝑡, or if it's closer to one, information from the previous state 

is retained. The output of a GRU layer is the last hidden state at each time step. This GRU 

output is passed to the dense, fully connected layers. Dense layers learn the complex 

mappings from the previous layer's features and apply a linear transformation followed by 

a nonlinear LeakyReLU activation function. The proposed architecture contains a dense 

layer with 512 filters, followed by a single filter layer that converges to the output layer. 

4.4.3 Experimental Results and Analysis 

4.4.3.1 Experimental Setup 

A field experiment was conducted to collect the sensor data related to MiC logistic 

operations. A MiC module was designed with dimensions 1.6 × 0.5 × 0.4 meters, weighing 

around 35 kg. The design followed a frame structure to ensure structural resemblance with 

the actual MiC module structure, as shown in Figure 4-30(a). However, the module frame 

was built using timber wood, while the walls, floor, and roof were made of balsa plywood. 
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The experimental cost and convenience rationalized the choice of material for this 

experiment, as the purpose is to demonstrate the developed deep learning model and 

damage assessment frameworks.  

The experiment was conducted in two phases. A healthy (undamaged) module recorded 

deep learning model training data in the first stage. In the second stage, a damaged module 

was used to collect data to compare and evaluate damage. The transportation and crane 

lifting processes were performed during this experiment, imitating the actual MiC logistic 

operations. For the training and test data, logistic operations were carried out for 25 

minutes, and the structural response from the module was recorded. For the first 10 

minutes, a crane lifting operation was performed. The data for several module hoisting, 

lifting, placing, hanging, and swaying steps were captured during this operation.  

Following the crane lifting, the transportation process continued for 15 minutes. The 

module was placed on a truck and hauled at different speeds on smooth and rough road 

tracks. Sharp turns and accidental breaking scenarios were also included to capture 

representative data for MiC road transportation. The total duration for the second phase of 

the field experiment was 10 minutes, consisting of five minutes of crane lifting and five 

minutes of transportation operation. 

4.4.3.2 Data Acquisition System: 

A multi-sensing IoT-based system was developed to sense the structural response of the 

module during logistic operations. This system consists of two devices: (a) a sensing unit 

and (b) a communication unit, as shown in Figure 4-30(c, d). The sensing unit (SU) is a 

portable, compact device that integrates multiple sensors: an accelerometer, a gyroscope, 

and a strain sensor analog-to-digital converter (ADC). The in-built microcontroller and 
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wireless communication modules enable this device to control the sensed information from 

the sensor and wirelessly transmit it. Several SUs installed on a module transmit real-time 

sensor data to the communication unit (CU). The CU is a power communication and data 

management device that receives data from all the installed SUs, processes and organizes 

the sensor data, saves data in the in-built memory, and transmits it to the internet-based 

server. Further details of the development of the IoT sensing system and its features and 

performance are provided in [26]. 

For the experiment, a total of eight SUs were installed at each module corner, as shown in 

Figure 4-30(b). The 15cm long foil strain gauges were installed on the inner wall surfaces 

at a 45-degree angle to measure the maximum shear strain in the wall. Each SU can connect 

two strain gauges, connecting a total of sixteen strain gauges fixed at each wall corner. 

Such an arrangement effectively measures the structural response from the whole module 

structure. The accelerometer in the SU measures up to ±16 g acceleration in the 3-axis (x, 

y, and z), and the gyroscope measures the roll, pitch, and yaw angles at ±2000 dps 

angular/rotational speed. The SU was set to measure the sensors' reading at 100 Hz. 

However, the high-frequency sensor data was transformed into mean amplitude at 1 Hz 

while maintaining the data accuracy. Such a reduction in data quantum is essential to 

effectively manage the high quantum of data transmission, storage, and syncing [165].  
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Figure 4-30. Experimental setup: (a) the designed wooden module, (b) the module during logistic 

operations, (c) the communication unit (CU), (d) the sensing unit (SU).  

4.4.3.3 Deep Learning Model  Training and Testing 

The data acquired from the field experiment contained sixteen combinations of sensor data 

from all locations on the module. All these data sets were combined by stacking over each 

other to obtain a large data set for model development. The sensor data is a time series 

where sequential dependencies are important. Therefore, traditional data splitting for 

training and testing is not suitable in this case. Instead, sensor data collected from one 

location was reserved for testing. Following the data preprocessing, as explained in the 

model architecture, the model was trained.   The Adam optimizer and the mean absolute 

error (MAE) loss function were used for compilation.  

The training is controlled by a learning schedule and early stoppage callback functions to 

avoid overfitting. The dynamic learning schedule allowed the 0.001 for the first five epochs 
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and, after that, reduced the learning rate (𝐿𝑅) based on the Equation 4-7. Where the initial 

rate (𝐼𝑟) is 0.001, the drop rate (𝑟𝑑𝑟𝑜𝑝) is 0.5, and epochs drop (𝑒𝑑𝑟𝑜𝑝) is 10.  

𝐿𝑅 = 𝐼𝑟 ∗ (𝑟𝑑𝑟𝑜𝑝 ∗ (1 + 𝑒𝑝𝑜𝑐ℎ𝑠)/𝑒𝑑𝑟𝑜𝑝)   Equation 4-7 

The patience for the early stop function was set as three so that model training 

automatically stopped when there was no improvement in the loss for three consecutive 

epochs. The model training was completed after 83 epochs, as shown in Figure 4-31. The 

model training had a training loss of 0.011 and a validation loss of 0.000146. Here, the gap 

between the training validation loss is due to the use of dropout regularization layers in the 

training, which deactivates the weak neurons. Such regulation shows a difference in 

training losses but significantly improves the model resilience.  

 

Figure 4-31. Deep learning model training loss-epochs plot 

Test data Predictions  

Further, test data predictions are generated from the model to evaluate the accuracy. The 

comparison of the actual and the predicted strain values is plotted in Figure 4-32(a). It can 

be seen that the strain values are predicted accurately, as the trend of the predicted values 

exactly follows the actual values, with only a few exceptions. Similarly, the residual plot 
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in Figure 4-32(b) also highlights the model accuracy, as most residuals remain along the 

center line, having a 2.5x10-5 mean value.  

 

 

 

 

Figure 4-32. Test data predictions  

Model performance evaluation metrics 

The performance of standalone CNN and GRU models is compared with the developed 

hybrid CNN-GRU model for evaluation. For comparison, the model parameters are kept 

consistent for these standalone and hybrid models. Several performance statistical metrics 

are determined and compared to evaluate the model's accuracy. The coefficient of 

determination (R2), mean absolute error (MSE), root mean square error (RMSE), mean 

square error (MAE), standard deviation of residuals (SDR), and Pearson correlation 

coefficient are widely used metrics for the evaluation of a regression model. The hybrid 

CNN-GRU model outperformed the standalone CNN and GRU models across all 

performance metrics, as shown in Table 4-7.  
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The coefficient of determination (R2) explains the level of relationship between the 

prediction and input features, indicating the variance proportion. R2 score 0 means that the 

predictions do not relate to the input features, whereas R2 score 1 means the predictions are 

100% representative of the inputs. The R2 score of the test result predictions from the CNN 

model is 0.6, indicating that the CNN model results could partially relate to the input 

features. The GRU model encompassed a substantial (0.88 R2) relation among predictions 

and features. Meanwhile, the developed hybrid model showed 0.9625 R2, highlighting that 

the model is performing well and that the predictions from the developed model highly 

relate to the input features.  

Table 4-7. Deep learning model performance metrics 

Metrics R2 MSE RMSE MAE SDR PCC 

CNN-GRU 0.9625 1.074 x 10-7 0.000328 0.000146 0.000327 0.98 

GRU 0.8824 3.384 x 10-7 0.000582 0.000322 0.000581 0.94 

CNN 0.6003 1.144 x 10-6 0.001069 0.000530 0.001059 0.84 

The mean square error (MSE) is also a reliable metric of model performance that quantifies 

the average squared difference between predicted and actual values, measuring the model's 

prediction quality. MSE for the developed deep learning model has a very low value (1.074x 

10-7) compared to CNN and GRU models. Such a low MSE suggests the model's predictions 

are very close to the actual values. RMSE is the root of MSE that provides an interpretable 

measure of the average error in the units of the target variable. Compared with the actual 

test data range (max: 0.000634, min: -0.004051), a 0.000328 RMSE indicates only a 0.93% 

prediction error. Like RMSE, MAE is also more unadorned to interpret since it's in the 

same units of the target variable. MAE represents the average magnitude of prediction 
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errors, calculated as the average absolute difference between predicted and actual values. 

A small MAE value of 0.000146 indicates only a  0.89% error in the predictions, 

highlighting negligible absolute differences between predicted and actual values.  

Standard Deviation of Residuals SDR measures the variability or dispersion of the 

residuals. A higher SDR indicates that the model's predictions have more variability around 

the actual values, whereas a lower SDR suggests that the model's predictions are more 

consistent. The SDR value of 0.000327 is too small compared to the standard deviation of 

test data (0.001692),  suggesting that the residuals are close to the regression line, 

indicating a good model fit. Another model performance metric, the Pearson correlation 

coefficient, measures the linear relationship between predicted and actual values. A high 

correlation coefficient (0.98) indicates a strong linear relationship, reflecting the model's 

ability to capture the underlying patterns in the data. The plot of Pearson correlation 

between actual and predicted, shown in Figure 4-32(c), also indicates a linear relationship, 

as 98% of data points are clustered around the centre diagonal line.  

4.4.4 MiC Module Damage Assessment 

Another field experiment was performed with a damaged module to validate the developed 

model with unseen data and demonstrate the damage assessment method. During the 

logistic operations, two different damages were introduced in the module structure at two 

different times. The first damage was introduced during the crane lifting at the top corner 

of the left and back wall at the 96th second of the logistic operations. Such damage was 

opted to simulate a joint failure and was activated by removing a nail from that corner of 

the structure. The second damage was introduced during the transportation operation by 
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introducing a critical crack in the front wall at the 430th second of the logistic operations. 

The damage locations on the modules are illustrated in the Figure 4-33. 

 

Figure 4-33. Location of damages on the module 

The developed deep learning model then predicted the strain values for the logistic 

operations. The model predicts the expected strains for those logistic operations for an 

undamaged module. If the actual measured strain values show significant variation from 

the predicted values, indicate damage. The comparison of the predicted strain values with 

the actual measured strain values for each sensor location is plotted in Figure 4-34. It can 

be seen that the predicted and actual strain values of S4 on the left wall start showing 

maximum variation after the time 96 seconds when the damage was introduced. The S8 on 

the bottom left wall showed no significant variation after the damage occurred until the 

module was placed on the ground after completing the crane operation at around 300 

seconds. The S8 location is away, so there were no immediate variations. However, the 

damage occurrence changed its constraint conditions, and damage was revealed after the 

state of loads was altered significantly after placing it on the ground.  
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Figure 4-34. Plot of measured strain values with predicted strain values 

Similarly, the S3 shows marginal variation at the time of damage and after putting it on the 

ground. The S7, away from the damaged location, shows almost no variation. A similar 

pattern can be seen on the back wall, where the actual measured strain values of S4 show 
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significant variation after the first damage, and S8 revealed variation at the end of the crane 

operation. The S5 and S1 on the back wall showed negligible variations, as they are away 

from the location of the first damage.  The right wall had no damage nearby; thus, all the 

installed senor locations showed measured strain following the predicted strain value.  

The second damage was introduced in the front wall closer to the S3 and S7 locations. 

Therefore, it can be seen in Figure 4-34 that the strain values measured at the sensor 

locations S2 and S6 tend to follow the predicted strains, showing no significant damage. 

In contrast, S3 and S7 start showing substantial variation after 430 seconds when the 

second damage occurred.  Notably, the measured strain values of S2 and S6 generally 

follow the trend of the predicted strain values. However, a minor mismatch in individual 

instances is visible in the plots.  

Such behavior is also visible at other locations due to the natural heterogenetic properties 

of wood. Heterogeneity is due to the wood's varying density and moisture content at 

different times, causing varying strain responses. Wood is also a complex cellular 

structure-based material, where some fibers may show different strain responses at 

different times, causing irregular variations.  Despite such limitation of wood material, the 

damage assessment is based on the overall strain trend, reflecting the overall structural 

strengths.  

As for the evaluation of structural damage assessment,  the strain sequence trend is more 

important than the variation at individual time instances. The predicted strains and 

measured strain trend lines are compared in Figure 4-35, where a higher slope and intercept 

difference indicates a higher level of damage. For the left wall, the difference between the 

trend lines for S4 is too high, while  S3 and S7 measured strain trends are similar to the 
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predicted strain. This indicates visible structural variations experienced at S4. For S8, the 

trend lines are significantly different, highlighting potential damage in the left wall.   

 

 

 

 

Figure 4-35. The measured strain and predicted strain trend line plots 
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Similarly, only the S8 and S4 sensor locations on the back wall highlight a significant 

variation in the trend line. The prediction and measured values trend lines for S1 and S5 

are the same, showing no sign of damage. All the sensor locations on the right wall, S1, 

S2, S5, and S6, show the same trend lines for predicted and measured strains, indicating 

no structural condition variation or damage. For the front wall, the sensor locations S3 and 

S7 show clear differences in the trend line, indicating clear structural deformation near 

these sensor locations. However, the trend lines for S2 and S6 have no visible differences 

in the trends of predicted strain and measured sequences.  

The overall damage assessment results for trend lines are the same as discussed with the 

actual raw measured strain plots. However, the trend line offers a clear visualization of 

variation for evaluating the overall structural variations. Therefore, trend evaluation can be 

more useful for decision-makers to get an easy, simple, and clear idea about the overall 

condition and damage. Still, a raw strain measured plot comparison is needed to understand 

the time of damage and pattern of variations. 

4.4.4.1 Damage Level Assessment and Localisation 

Apart from visual inspection of the predicted strain trends, the damage level is statistically 

determined using the damage indicator (𝐷𝐼𝑐𝑖
), as given in Equations 3-11. This indicator 

helps compare and assess the damage level at each sensor installed location. Similarly, to 

further confirm the damage location on each wall, the 𝑥𝑑𝑊
 and 𝑦𝑑𝑊

 damage coordinates 

are determined using the Equations 3-12 and 3-13. The determined damage coordinates 

correspond to the standard coordinate system, where the bottom left corner of each wall is 

considered an origin with 𝑥: 0, 𝑦: 0 coordinations. The resulting 𝐷𝐼𝑐𝑖
 for all the sensor 

locations and the coordinates of potential damage are given in Table 4-8.  
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The sensor locations S4 on the left wall sensed the highest level of damage (7.4), indicating 

critical damage at this point. All other sensor locations showed far lower damage levels 

than this location. Such damage variations across the wall strongly suggest that, while the 

damage is critical, it is most close to this location. The determined (𝑥𝑑𝐿𝑊
=

7.7𝑐𝑚, 𝑥𝑑𝐿𝑊
= 30.1𝑐𝑚) damage coordinates on the left wall also strongly suggest that the 

damage location is at the corner of this wall. A similar case is for the back wall, which 

shows the highest damage (4.62) at S4, while all other damage levels are far lower than 

this location. Whereas the coordinates of the critical damage (𝑥𝑑𝐵𝑊
= 9.4𝑐𝑚, 𝑥𝑑𝐵𝑊

=

31.7𝑐𝑚) also suggests the damage location near this corner. Thus, the adjacent wall corners 

showing damage confirm a corner failure type of damage.  

Table 4-8. Damage indicators and coordinates. 

Left Wall Back Wall Right Wall Front Wall 

LW-S3 1.32 BW-S1 0.16 RW-S1 0.00 FW-S2 0.18 

LW-S4 7.40 BW-S4 4.62 RW-S2 0.00 FW-S3 4.38 

LW-S7 0.47 BW-S5 0.20 RW-S5 0.23 FW-S6 0.79 

LW-S8 2.38 BW-S8 1.06 RW-S6 0.77 FW-S7 2.43 

Coordinates  

𝑥𝑑𝐿𝑊 7.7 𝑥𝑑𝐵𝑊 9.4 𝑥𝑑𝑅𝑊 11.5 𝑥𝑑𝐹𝑊 20.1 

𝑦𝑑𝐿𝑊 30.1 𝑦𝑑𝐵𝑊 31.7 𝑦𝑑𝑅𝑊 0.0 𝑦𝑑𝐹𝑊 23.5 

For the right wall, all the sensor locations indicate very low values, suggesting no 

significant structural variation. Though such low variations do not indicate any damage, 

they may suggest minor intrinsic deformations, or in this case, these variations could be 

due to the heterogeneous properties of the wooden module. On the other hand, the front 

wall indicates a distinguished damage level for two sensor locations, S3 (4.38) and S7 
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(2.43). In contrast, the other two sensors on the front wall indicate a very low variation. 

Further calculation of damage coordinates (𝑥𝑑𝐹𝑊
= 20.1𝑐𝑚, 𝑥𝑑𝐹𝑊

= 23.5𝑐𝑚) suggests a 

damage location between sensors S3 and S7.  

4.4.5 Summary (Objective IV) 

The study develops a robust hybrid deep learning model architecture for predicting the 

damage in the MiC module during logistic operations. The developed architecture 

integrates convolutional and sequential deep learning models to capture the higher-level 

complex relationships among the multiple sensor data streams. The convolutional model 

(CNN) effectively learns the relationship in various sensor data measurements at each 

timestep. In contrast, the sequential model learns the relationship across the time sequences 

at short and long periods. Thus, the hybrid model is able to predict the structural variations 

in the MiC module during the dynamic non-stationary logistic operations. The test results 

of the developed architecture reveal high efficiency for the predictions for all the model 

performance metrics: RMSE 1%, MAE 1%, R2 96%, and Pearson Correlation Coefficient 

98%. The field experiment, including the damaged module scenario, highlighted the 

developed model's efficiency for the unseen data. 

The developed hybrid deep-learning model performance is at par with MiC module 

structural monitoring requirements. However, the developed architecture is trained and 

tested for a wooden module due to limited resources. Generally, a model working 

efficiently with noisy data, like wood material, should perform better for compact materials 

like concrete and steel. Still, validating the developed model with other representative 

materials is needed. The model training and validation data are also collected through a 
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small field experiment in a relatively controlled environment. A real project field 

environment may have additional aspects and complexities, adding more variety to the 

logistics operation scenarios. 
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5 Chapter 5           

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Introduction 

This research explores the dynamics, challenges, and technological solutions for improving 

the MiC logistic operations. MiC, being the latest construction approach and a relatively 

new research area, lacks critical knowledge related to its logistic operations. While being 

the bottleneck of a JIT assembly, the MiC logistics operations play a crucial role in the 

project performance. This strongly indicates the need to explore the dynamics of MiC 

logistic operations and technological solutions to meet the existing challenges. The 

research findings further adhere to the structural monitoring and damage assessment of the 

MiC modules during logistic operations for ensuring a seamless supply chain and JIT 

assembly.   

In this context, the following objectives are determined to achieve the main aim of this 

study: (1) exploring the critical factors, their interrelationships, and mechanisms to 

influence the MiC logistics operations, (2) investigating the technologies suitable for MiC 

supply chain and explore the technological gap in addressing the MiC challenges, (3) 

develop an IoT based multi-sensing system to monitor the MiC module’s structure during 

the logistic operations, (4) develop a hybrid deep learning model for robust damage 

predictions.  

The relevant literature for each objective is reviewed and discussed in Chapter 2. Then, 

rigorous methods are adopted to achieve each one of these objectives. These methods are 
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discussed in detail in Chapter 3. The detailed results of all objectives are discussed in 

Chapter 4.  

5.2 Summary of the Findings 

Objective 1: Exploring the factors influencing MiC logistics 

This research first explored the factors influencing MiC's logistic operations and supply 

chain. Multiple research domains are explored extensively to identify a comprehensive set 

of influencing factors. The critical factors are identified using a rigorous eigenvector 

weighting approach based on factors abundance in the literature. Moreover, the influence 

of factors on each other is studied according to their co-occurrence in the literature. Then, 

factors are classified based on their influence using MICMAC analysis. The interactions 

among factors are investigated, and the influence mechanism of factors is realized to 

propose themes of factors.  

The eigenvector-based ranking signifies the importance of factors based on the abundance 

of literature. However, it does not incorporate the individual interaction among factors and 

their strength of influence over the supply chain performance. Most top-ranked factors 

belong to the SCM category, as extensive literature has been published in this domain. The 

second most top-ranked factors belong to the information and knowledge management 

(IKS) category. Studies across all the research domains promote the information-related 

factors for an effective supply chain. However, MICMAC analysis results suggest that such 

factors have fewer connections with other SC factors. Generally, in the published literature, 

the factors related to the IKS and SCM are considered managerial. Therefore, past studies 
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have mainly explored the interactions of these factors with administrative or organizational 

factors [193,233].  

On the other hand, the logistics and site delivery factors are more influential in the MiC 

supply chain performance. For example, module handling, flexible transportation, and 

inventory control demonstrate strong influential relations with other supply chain factors. 

Similarly, the factors of site delivery, such as assembling reworks, delays due to weather, 

and site layout, are dynamically influencing the supply chain performance. It is because 

these factors occur at the supply chain's endpoint and control the flow, particularly in the 

case of JIT delivery. Moreover, factors related to natural causes, such as logistics delays 

due to weather and natural hazards, are autonomous and strongly impact the MiC supply 

chain performance. The identified themes of factors based on the combined analysis 

conclude this study's findings and demonstrate the influencing system of factors. The 

dominating factors define the influencing system's dynamics as input variables, while the 

symbiotic factors control the influence of the dominating factors. The external factors are 

autonomous and cannot be controlled but are managed by improving the positive impacts 

of symbiotic factors. The potential influencing factors are abundant in literature but are 

primarily studied in isolation. 

Objective 2: Investigating the technologies for MiC logistic challenges 

The second part of the study identifies the MiC supply chain challenges, critical Supply 

chain technologies, and their benefits and draws synergies between the technologies' 

benefits and MiC challenges. A powerful text analytical approach helped to effectively 

investigate the vast literature and identify the use and benefits of supply chain technologies. 

RFID, IoT, GPS, and Blockchain technologies are among the most popular technologies in 
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supply chain studies. These technologies also address some of the MiC logistic challenges. 

For example, communication and coordination among supply chain stakeholders, delays 

due to installation errors, equipment breakdown and wrong module delivery, JIT delivery, 

etc.  

On the other hand, some technologies are not being used to utilize their full potential in 

resolving supply chain issues. For example, tools like BIM and Digital Twin have vast 

capabilities to manage and organize multi-spectrum information at all levels of the supply 

chain. Thus, such tools can address several critical supply chain challenges. However, 

existing studies lack research on adopting such tools to address the most vital challenges. 

Similarly, several MiC challenges got limited attention and support from technologies, 

such as delays due to transportation issues, module handling, travel uncertainties, buffer 

space hedging, etc. The proposed framework incorporated technologies with vast potential 

to address several unattended MiC supply chain challenges comprehensively. This 

framework highlights that critical delays in the MiC supply chain may occur due to 

structural damages occurring in the MiC module structure during the logistics and supply 

chain operations. However, this vital challenge has not been addressed by any previously 

developed technological solutions.  

Objective 3: Developing an IoT multi-sensing system 

Therefore, the third part of the study developed a smart, integrated, portable, IoT-based 

multi-sensing system. The sensing devices in the system are designed to ensure its 

practicality for MiC logistics. A smaller form factor of sensing units is achieved to keep it 

practically invisible while installed on a module. The developed sensing system was 

calibrated by incorporating temperature compensation factors and turn-on bias elimination. 
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The sensing system performance is thoroughly tested in different conditions, and accuracy 

is comparable to standard commercial equipment like UTM.  

The module's real-time structural condition monitoring enables early damage detection, 

allowing timely decisions to avoid supply chain disruptions. Also, it can improve the on-

site safety inspection process while providing more insights into the module’s structural 

condition, increasing inspection speed, and highlighting the latent damages. Moreover, the 

safety of the real-time assembly process can be monitored. The sensing system provides 

detailed structural response data of logistic operations, which is useful for predicting the 

module's structural creep and forecasting maintenance during the building use phase. Thus, 

the system helps to ensure the JIT supply chain for MiC assembly, enhances assembly 

process safety, and helps to improve the module’s service life.  

The application of the developed sensing system is demonstrated with a field experiment, 

and various analyses are presented to detect critical damage and assess the overall impact 

on the module’s health. The demonstrated field experiment evaluated the system's 

effectiveness and highlighted the efficacy of different sensors in determining the structural 

condition. The strain sensors are found to be more sensitive toward structural deformation 

and are directly helpful for determining the critical damage and its location. On the other 

hand, acceleration data is less sensitive but more helpful for assessing global structural 

deformations and overall structural health assessment. The gyroscope sensor's accuracy in 

predicting damage advocates its relevance but shows a complex relationship requiring 

deeper and more complicated analyses. Such insight can help understand the optimum 

number of sensing units required during the logistics and building use phases and the most 

suitable location for installing sensors.  
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The field experiment demonstrated several traditional methods for monitoring the module 

structural variation and assessing the damage, such as moving windows, histograms, FFT, 

etc. Although these conventional damage assessment methods can effectively monitor 

structural variations, they require intensive statistical analysis and data processing. Such 

requirements make these methods less reliable and suitable for real-time monitoring and 

quick decision-making, which are essential for MiC logistic operations.  

Objective 4: Developing a hybrid deep learning model 

A robust hybrid deep learning model architecture is developed in the final part of this study. 

The developed architecture integrates convolutional and sequential deep learning models 

to capture the higher-level complex relationships among the multiple sensor data streams. 

The convolutional model (CNN) effectively learns the relationship in various sensor data 

measurements at each timestep. In contrast, the sequential model learns the relationship 

across the time sequences at short and long periods. Thus, the hybrid model is able to 

predict the structural variations in the MiC module during the dynamic non-stationary 

logistic operations. The test results of the developed architecture reveal high efficiency for 

the predictions for all the model performance metrics: RMSE 1%, MAE 1%, R2 96%, and 

Pearson Correlation Coefficient 98%. The field experiment, including the damaged module 

scenario, also highlighted the developed model's efficiency for the unseen data.  

Overall, this study developed a complete and practical solution for the construction 

industry, especially for MiC projects. The project stakeholders, particularly contractors, 

can benefit from the developed multi-sensing IoT system and the deep learning model to 

monitor the structural health of the module and asses the damage before its arrival on the 

site. Such real-time information enables them to make timely decisions to avoid supply 
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chain disruptions. Also, this system will ensure the module's safety during the assembly 

process.  

5.3 Research Contributions 

Overall, this research theoretically contributes to the structural health monitoring and 

prefabricated and modular construction and research domains. The findings of this research 

bridge the research gap in exploring modular construction supply chain dynamics and 

investigating its logistic operations. The outcomes of this study, in the form of frameworks, 

models and technologies, lead to enhanced productivity, safety, innovation, and 

sustainability in the construction industry. Further specific theoretical and practical 

contributions of all the research outcomes are summarised below. 

5.3.1 Influencing factors of MiC logistics 

This part of the research identifies the most critical influencing factors and their 

interrelationships to influence the supply chain. Considering influencing mechanisms, the 

factors are distributed into functional categories, highlighting (a) the core factors 

(dominating) responsible for supply chain performance, (b) factors playing a symbiotic 

role in transferring the effects on supply chain performance and (c) factors that need further 

investigation to explore their impact on the supply chain. These outcomes are highly 

beneficial for understanding the dynamics of MiC logistic operations and can be utilized 

by researchers and industry practitioners, such as: 

• The identified factors’ relationships and influencing mechanisms highlight the 

role and gravity of each factor in affecting the supply chain performance under 

any uncertainty.  
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• The highlighted core supply chain performance factors lead towards a larger 

framework for MiC supply chain performance assessment.  

• The identified potential influencing factors offer new research directions for 

improving MiC supply chain performance.  

• Industry practitioners can use the highlighted framework of influencing factors 

to improve supply chain policies and devise logistic strategies. 

• Supply chain managers can improve supply chain productivity and 

sustainability by focusing on identified core dominating and symbiotic factors.  

5.3.2 Technologies for MiC logistics 

This study contributes to the body of knowledge by exploring the synergies between MiC 

challenges and existing technologies. The rigorous review and analyses conducted in this 

research highlight the (a) benefits and capabilities of existing technologies for supply chain 

and logistics management, (b) suitability of these technologies for MiC and (c) technology 

gaps in addressing the MiC challenges. (d) Meanwhile, the proposed technology adoption 

framework for the MiC module lifecycle structural monitoring introduces a novel research 

direction. Overall, the study highlights the current state of technology applications for the 

MiC supply chain and logistics operations and offers future directions. Meanwhile, it 

promotes technology adoption to enhance construction automation in MiC by highlighting 

the relevant technologies and their benefits. Also, the outcomes have very pertinent 

utilisation for research and industry: 
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• The identified technology gaps highlight MiC challenges that require immediate 

technology attention. Researchers can focus on these areas and develop innovations 

to improve MiC productivity and sustainability.  

• The research elaborates on the suitability of technologies for MiC challenges. Thus, 

industry users can use this study to select the most suitable technology.  

5.3.3 Multi-sensing IoT System 

This research part develops an integrated multi-sensing technology for monitoring the 

module structure throughout its life cycle. In contrast to the previously existing structural 

health monitoring sensors, (a) the developed technology integrates multiple sensors in one 

portable device, (b) the device has a small form factor, making it perfectly suitable for MiC 

modules, (c) it incorporates short and long-range communication capabilities, making it 

suitable for remote area monitoring, (d) it incorporates novel communication protocols to 

handle large data transmission with negligible latency and data loss, and (e) it has powerful 

processing capabilities to handle on-device embedded deep-learning models.  

Such a robust technology opens further avenues for MiC research and offers several 

industry applications: 

• Multi-sensing logistics monitoring can provide large amounts of data from real-

field scenarios. Such data will be highly beneficial in investigating the dynamics of 

MiC logistic operations. Such insights can help improve logistic strategies and the 

design of the MiC modules. 
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• Real-time structural monitoring offered by the developed sensing system enables 

proactive decision-making. Early decision-making can help improve the supply 

chain flow, save resources, and improve productivity.  

• The sensing system offers detailed structural health assessment that can 

significantly improve the pre-assembly inspection process, consequently improving 

the assembly productivity, speed and safety.  

• Meanwhile, it improves the construction quality of MiC buildings by providing a 

detailed structural assessment of newly built structures and enabling proactive and 

accurate maintenance schedules.   

5.3.4 Deep Learning Damage Assessment 

This study develops a hybrid integrated model for predicting the damage in the MiC 

module during logistic operations. The developed novel model architecture (a) integrates 

the convolutional (CNN) and sequential (GRU) deep learning models and (b) enables the 

sensor fusion of multivariate time-series data. Such an integrated model successfully 

modelled the correlations among the MiC module motion and structural variations during 

logistics operations. This developed model architecture contributes to the research by 

enabling the structural assessment of non-stationary structures. Also, it offers  several 

benefits for MiC: 

• It enables the structural monitoring of non-stationary structures by effectively 

capturing the correlation between motion and structural variations.  

• This model improves the pre-assembly module inspection by offering detailed 

structural assessment and predicting critical damages. Consequently, it enhances 
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assembly speed, saves time, enhances quality and safety, and enables proactive 

maintenance. 

5.4 Research Limitations 

The first part of the research explores the influencing factors and discusses the prospective 

relationships of potential influencing factors with other SC factors. However, future studies 

should investigate their detailed mechanism influencing the MiC SC performance. Due to 

limited MiC SC literature, the study mainly explores the factors prevalent in MiC SC from 

the general SC and logistics management literature. Future researchers can collect more 

specific analytical information on MiC SC to analyze such influencing factors. Moreover, 

this study adopted the interpretive analysis approach through co-occurrence matrixes to 

analyze the MiC SC influencing factors, limiting this study's findings. In the future, 

empirical and analytical data on MiC SC factors should be collected to examine their 

influencing mechanism. The findings of this study are not limited to any country or region. 

However, further evaluation of identified factors can be performed to obtain region-

specific results. 

The developed IoT sensing system accurately assesses the structural response in real time. 

Although, it tried to address the issues related to the form factor and power consumption. 

Still, long-term power backup is impossible without increasing the sensing device's form 

factor. The integrated sensor accuracy is up to the standards and comparable with the 

standardized commercial equipment. However, simultaneously acquiring high-frequency 

data (above 200Hz) from multiple integrated sensors can compromise the sensed data 

quality. Though such limitation doesn’t affect the MiC module structural monitoring, other 
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applications may require data above 200Hz. Also, in its current form, it lacks any water- 

and dustproofing; thus, using it for long periods may require maintenance and special 

supervision.  

The developed hybrid deep-learning model performance is at par with MiC module 

structural monitoring requirements. However, the developed architecture is trained and 

tested for a wooden module due to limited resources. Generally, a model working 

efficiently with noisy data, like wood material, should perform better for compact materials 

like concrete and steel. Still, validating the developed model with other representative 

materials is needed. The model training and validation data are also collected through a 

small field experiment in a relatively controlled environment. A real project field 

environment may have additional aspects and complexities, adding more variety to the 

logistics operation scenarios.  

5.5 Future Work and Recommendations 

The potential improvements and recommendations for future research work are presented 

in this section. The suggested recommendations are categorized into two groups: 

Enhancement of the existing research 

The first objective successfully explored the influencing factors and their dynamics; 

however, the current research only extracts the factors and their impacts from the existing 

literature. Future studies can incorporate a more comprehensive approach based on the 

opinions of industrial experts to explore these factors. The comparison of such 

investigation with the current literature-based investigation can provide interesting 
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propositions.  Similarly, for investigating the benefits of technology, technology user 

opinions should be incorporated to get an additional perspective compared to the literature.      

The IoT sensing device can be further developed to enhance its robustness and reliability 

and improve its practicality. Further sensor optimization and circuit integration can be 

improved to reduce its power consumption while maintaining the form factor. A more 

detailed integrated circuit design, where individual supporting components of each sensor 

are integrated into a single circuit, can help achieve a further reduced form factor and power 

consumption. In this context, further optimization of the sensing device’s programming 

algorithm can also help improve power consumption. In addition, such optimization can 

also help increase the frequency of data acquisition, enabling its application for other uses. 

In its current form, the developed sensing device requires careful and supervised 

installation. Improving its casing design to add the water- and dust-proofing features will 

make it more robust and rigid for commercial uses.   

Moreover, the developed deep learning architecture is demonstrated using a wooden 

module for cost-effectiveness. Validating the developed model with other representative 

materials is required to ensure model generalizability.   

Extension of the existing research 

The findings of the first part of the study provide valuable considerations in the form of 

themes and factors influencing behaviour. However, future research can elaborate more on 

understanding the effect of factors on SC performance across different phases. Thus, 

practitioners can effectively consider the critical factors when devising strategies during 

the planning phase. For instance, the impact of harmful external factors can be influenced 

by effectively managing symbiotic factors. Also, the dominating factors have a core effect 
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and can impact the SC at multiple levels. Therefore, considering the critical influencing 

factors and their relations, a detailed framework can be developed for devising MiC supply 

chain and logistic strategies.  

Additionally, relying on the identified factors, a MiC supply chain performance mechanism 

can be evaluated further to improve the MiC SC operations.  Moreover, a group of factors, 

potential influencing factors, needs further exploration. The results of the investigation of 

technologies suggested a comprehensive framework for the lifecycle module structural 

monitoring by integrating the sensing system data with a digital twin. The current research 

focused on the development of the sensing system. In the future, the developed sensing 

system can be integrated with a digital twin to enable lifecycle structural monitoring of 

MiC modules.  

Further experimentation and analyses should be performed to analyze the behaviour of the 

accelerometer, gyroscope, and strain in different scenarios of MiC logistic operations, 

which can help to understand their efficiency in structural variation assessment. Such 

analysis can lead to the development of more robust structural assessment models. 

Additionally, a simulation of MiC logistics scenarios can be performed to identify the 

critical locations on the module. Consequently, a more accurate and rationalized sensing 

device installation location can be determined. It can also reduce the number of sensing 

devices required for each module and improve the damage assessment.   

The developed hybrid deep-learning model integrates the convolutional and sequential 

models to achieve the best results. Future studies can enhance this approach further by 

incorporating an additional model for data enhancement, such as generative networks, to 

improve the model's generalisability and performance in unseen scenarios. Similarly, 
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detailed data representing the logistic scenarios can be simulated using structural 

simulation software. Such an approach can help to incorporate the additional logistics 

scenarios and enhance the model performance.  
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APPENDICES 

Appendix – A. Scientometrics extracted from studies 

No. Studies Source Title Research Domain Research Focus 
Type of 

Factors 

1 Power, et al. [243] 
International Journal of Physical Distribution 

and Logistics Management 
General SC 

Flexibility and 

Agility 

SC Success 

Factors 

2 Ngai, et al. [220] Production Planning & Control General SC IT Tools 
SC Success 

Factors 

3 [193] Information and Management General SC 

Information and 

Knowledge 

management 

SC Success 

Factors 

4 Tarokh and Soroor [298] 

2006 IEEE International Conference on 

Service Operations and Logistics, and 

Informatics 

General SC 

Information and 

Knowledge 

management 

SC Barriers 

and Failures 

5 
Zhang and Dhaliwal 

[363] 

International Journal of Production 

Economics 
General SC SC Performance 

SC 

Influencing 

Factors 
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6 Hu and Hsu [140] Management Research Review General SC 
Sustainability and 

Green SC 

SC Risk 

factors 

7 Lu [190] Applied Mechanics and Materials General SC 
Risk and 

Uncertainty 

SC 

Influencing 

Factors 

8 Duan, et al. [83] Asia-Pacific Journal of Operational Research Construction SC Performance 
SC Success 

Factors 

9 Lao, et al. [172] Measuring Business Excellence Logistics 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

10 
Meidute and 

Raudeliuniene [210] 
Business: Theory and Practice Logistics SC Performance 

SC 

Influencing 

Factors 

11 Shukor, et al. [269] 

Association of Researchers in Construction 

Management, ARCOM 2011 - Proceedings 

of the 27th Annual Conference 

Construction SC Performance 
SC Barriers 

and Failures 

12 Huam, et al. [142] African Journal of Business Management General SC SC Performance 
SC Success 

Factors 

13 Kim and Rhee [169] International Journal of Production Research General SC 
Sustainability and 

Green SC 

SC Success 

Factors 
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14 Zhang and Wang [365] Applied Mechanics and Materials Logistics SC Performance 

SC 

Influencing 

Factors 

15 Liu, et al. [185] Applied Mechanics and Materials General SC 
Sustainability and 

Green SC 

SC 

Influencing 

Factors 

16 Li and Bian [179] Advanced Materials Research General SC SC Performance 

SC 

Influencing 

Factors 

17 Patil and Kant [237] 
IEEE International Conference on Industrial 

Engineering and Engineering Management 
General SC 

Information and 

Knowledge 

management 

SC Success 

Factors 

18 Mothilal, et al. [217] International Journal of Production Research Logistics 
SC collaboration 

and 3PL 

SC Success 

Factors 

19 Shen [264] ICLEM 2012 Logistics 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

20 Patil and Kant [237] 
IEEE International Conference on Industrial 

Engineering and Engineering Management 
General SC 

Information and 

Knowledge 

management 

SC Success 

Factors 

https://www.scopus.com/sourceid/4700151914?origin=resultslist
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21 Liu [187] Lecture Notes in Electrical Engineering General SC 
Risk and 

Uncertainty 

SC 

Influencing 

Factors 

22 Zhang, et al. [364] Applied Mechanics and Materials General SC SC Performance 

SC 

Influencing 

Factors 

23 Singh [272] Measuring Business Excellence General SC 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

24 Anand, et al. [19] Applied Mechanics and Materials General SC 
Sustainability and 

Green SC 

SC 

Influencing 

Factors 

25 Anand, et al. [20] Applied Mechanics and Materials General SC 
Sustainability and 

Green SC 

SC 

Influencing 

Factors 

26 Malviya and Kant [198] 
IEEE International Conference on Industrial 

Engineering and Engineering Management 
General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 

https://www.scopus.com/sourceid/19700186822?origin=resultslist
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27 Patil and Kant [238] Journal of Modelling in Management General SC 

Information and 

Knowledge 

management 

SC Success 

Factors 

28 Masood, et al. [204] Sustainable Cities and Society Construction SC Performance 
SC Success 

Factors 

29 Avelar-Sosa, et al. [30] Journal of Applied Research and Technology General SC 
Risk and 

Uncertainty 

SC 

Influencing 

Factors 

30 Vilko, et al. [316] Procedia-Social and Behavioral Sciences General SC 
SC collaboration 

and 3PL 

SC Risk 

factors 

31 Saen [253] Acta Polytechnica Hungarica Logistics 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

32 
Rikalovic and Cosic 

[249] 
Acta Polytechnica Hungarica General SC SC Performance 

SC 

Influencing 

Factors 

33 Mello, et al. [211] 
International Journal of Operations and 

Production Management 
Construction 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 



192 

34 
Behera and Mukherjee 

[37] 

International Journal of Information Systems 

and Supply Chain Management 
General SC 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

35 Talib, et al. [294] EuroMed Journal of Business General SC SC Performance 
SC Success 

Factors 

36 Fu, et al. [103] 
International Journal of Logistics 

Management 
Logistics IT Tools 

SC 

Influencing 

Factors 

37 Sangari, et al. [257] Measurement General SC 
Flexibility and 

Agility 

SC Success 

Factors 

38 Singh [271] 
Journal of Manufacturing Technology 

Management 
General SC 

Flexibility and 

Agility 

SC 

Influencing 

Factors 

39 Gandhi, et al. [105] 
International Journal of Logistics Research 

and Applications 
General SC 

Sustainability and 

Green SC 

SC Success 

Factors 

40 Singh, et al. [274] Competitiveness Review General SC 
Sustainability and 

Green SC 

SC Barriers 

and Failures 

41 Sangari, et al. [256] 
International Journal of Industrial and 

Systems Engineering 
General SC 

Flexibility and 

Agility 

SC Success 

Factors 
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42 Malviya, et al. [199] 
International Journal of Logistics Systems 

and Management 
General SC 

Sustainability and 

Green SC 

SC Success 

Factors 

43 
Vishvakarma and 

Sharma [317] 

Proceedings of the International Conference 

on Industrial Engineering and Operations 

Management 

General SC IT Tools 

SC 

Influencing 

Factors 

44 [28] 
International Journal of Supply Chain 

Management 
Construction SC Performance 

SC Success 

Factors 

45 Singh, et al. [273] Journal of Modelling in Management General SC 
Flexibility and 

Agility 

SC 

Influencing 

Factors 

46 
Chiappetta Jabbour, et 

al. [59] 
Production Planning and Control General SC 

Sustainability and 

Green SC 

SC Success 

Factors 

47 
 Meidute and 

Raudeliuniene [210] 
International Journal of Business Excellence Logistics 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

48 
Ab Talib and Muniandy 

[1] 
World Applied Sciences Journal Logistics 

Sustainability and 

Green SC 

SC Success 

Factors 

49 Song, et al. [283] Journal of Cleaner Production General SC 
Sustainability and 

Green SC 

SC Risk 

factors 
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50 Zailani, et al. [356] Review of Managerial Science Logistics 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

51 Abdullah and Nasir [3] Malaysian Construction Research Journal Construction SC Performance 
SC Barriers 

and Failures 

52 [289] 
The Journal of Asian Finance, Economics 

and Business 
General SC 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

53 Wibowo, et al. [326] 
Journal of Industrial Engineering and 

Management 
Construction 

Sustainability and 

Green SC 

SC Success 

Factors 

54 
Sandeepa and Chand 

[255] 
Uncertain Supply Chain Management General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 

55 Grine, et al. [118] 

Proceedings of the International Conference 

on Industrial Engineering and Operations 

Management 

Logistics SC Performance 

SC 

Influencing 

Factors 

56 
Sureeyatanapas, et al. 

[291] 
Journal of Cleaner Production General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 
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57 Gupta, et al. [122] Vision General SC 
SC collaboration 

and 3PL 

SC Success 

Factors 

58 
Bienhaus and Haddud 

[40] 
Business Process Management Journal General SC IT Tools 

SC Barriers 

and Failures 

59 Fauzi, et al. [100] 
IOP Conference Series: Materials Science 

and Engineering 
Construction SC Performance 

SC Barriers 

and Failures 

60 Oláh, et al. [226] Polish Journal of Management Studies Logistics 
SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

61 Yan, et al. [343] The Engineering Economist General SC IT Tools 

SC 

Influencing 

Factors 

62 
Ghafourian and 

Shirouyehzad [109] 

International Journal of Services and 

Operations Management 
General SC 

Sustainability and 

Green SC 

SC Success 

Factors 

63 Wuni, et al. [334] 
International Journal of Construction 

Management 
Construction 

Risk and 

Uncertainty 

SC 

Influencing 

Factors 

64 Mehdi and Ahmed [206] 
International Journal of Logistics Systems 

and Management 
General SC SC Performance 

SC 

Influencing 

Factors 
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65 Onstein, et al. [229] Transport Reviews General SC SC Performance 

SC 

Influencing 

Factors 

66 Pan, et al. [233] 
International Journal of Logistics 

Management 
General SC 

Information and 

Knowledge 

management 

SC 

Influencing 

Factors 

67 Pan, et al. [233] 
International Journal of Quality and 

Reliability Management 
General SC SC Performance 

SC 

Influencing 

Factors 

68 Meng, et al. [212] 
IEEE International Conference on Industrial 

Engineering and Engineering Management 
General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 

69 ŞENOL, et al. [261] Politeknik Dergisi General SC SC Performance 

SC 

Influencing 

Factors 

70 Sharma, et al. [263] 
Clean Technologies and Environmental 

Policy 
General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 

71 Abas, et al. [2] 
International Journal of Construction 

Management 
Construction 

Risk and 

Uncertainty 

SC Success 

Factors 
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72 Yadav and Singh [342] Resources, Conservation and Recycling General SC IT Tools 

SC 

Influencing 

Factors 

73 Prasad, et al. [244] Transportation Research Procedia General SC 
Sustainability and 

Green SC 

SC 

Influencing 

Factors 

74 Correia, et al. [66] 
Journal of Engineering, Design and 

Technology 
Construction SC Performance 

SC 

Influencing 

Factors 

75 Yazdi, et al. [351] 
International Journal of Logistics Systems 

and Management 
Logistics 

Sustainability and 

Green SC 

SC Success 

Factors 

76 Wuni, et al. [335] 
International Journal of Construction 

Management 
Construction 

Risk and 

Uncertainty 

SC 

Influencing 

Factors 

77 Karamasa, et al. [160] 
Decision Making: Applications in 

Management and Engineering 
Logistics 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

78 [241] 

Proceedings of the International Conference 

on Industrial Engineering and Operations 

Management 

Logistics 
SC collaboration 

and 3PL 

SC Success 

Factors 
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79 Alsadi, et al. [14] 
International Journal of Information Systems 

and Supply Chain Management 
General SC IT Tools 

SC 

Influencing 

Factors 

80 Yang, et al. [349] 
Environment, Development and 

Sustainability 
General SC 

Sustainability and 

Green SC 

SC 

Influencing 

Factors 

81 Ekanayake, et al. [88] 
Engineering, Construction and Architectural 

Management 
Construction SC Performance 

SC Success 

Factors 

82 
Hussein and Zayed 

[148] 
Journal of Cleaner Production Construction SC Performance 

SC Success 

Factors 

83 
Nilsson and Göransson 

[223] 
Journal of Cleaner Production General SC 

Sustainability and 

Green SC 

SC Success 

Factors 

84 Ahmed Khan, et al. [8] 
IEEE Transactions on Engineering 

Management 
General SC SC transformation 

SC Success 

Factors 

85 Ekanayake, et al. [87] 
Engineering, Construction and Architectural 

Management 
Construction SC Performance 

SC Success 

Factors 

86 Alomari [13] Uncertain Supply Chain Management General SC SC Performance 
SC Success 

Factors 
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87 Yadav and Samuel [341] Journal of Modelling in Management General SC SC Performance 

SC 

Influencing 

Factors 

88 Chai and Li [56] Tehnički vjesnik General SC IT Tools 

SC 

Influencing 

Factors 

89 Dang, et al. [71] 
The Journal of Asian Finance, Economics 

and Business 
Logistics 

SC collaboration 

and 3PL 

SC 

Influencing 

Factors 

90 Thai, et al. [304] 
International Journal of Logistics 

Management 
Logistics 

SC collaboration 

and 3PL 

SC Success 

Factors 
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Appendix – B. Factors occurrence in studies 
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1 
Power, et al. 

[243] 
                                           

2 Ngai, et al. [220]            x          x                      

3 [193] x                  x                         

4 
Tarokh and 

Soroor [298] 
   x       x       x       x           x        

5 
Zhang and 

Dhaliwal [363] 
    x           x                            

6 
Hu and Hsu 

[140] 
     x            x x x  x           x           

7 Lu [190]                                            

8 Duan, et al. [83]                       x    x    x             

9 Lao, et al. [172]                x x   x       x x x   x            

10 

Meidute and 

Raudeliuniene 

[210] 

    x                                       
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11 
Shukor, et al. 

[269] 
     x  x  x                                  

12 
Huam, et al. 

[142] 
         x x x x x    x               x   x  x      

13 
Kim and Rhee 

[169] 
    x       x  x    x                          

14 
Zhang and Wang 

[365] 
     x                                      

15 Liu, et al. [185]                                            

16 
Li and Bian 

[179] 
           x  x    x                          

17 
Patil and Kant 

[237] 
    x  x x x             x     x x x x x x  x x  x x x x x   

18 
Mothilal, et al. 

[217] 
                 x x                         

19 Shen [264]        x  x        x           x       x        

20 
Patil and Kant 

[237] 
   x            x  x        x                  

21 Liu [187]                                            

22 
Zhang, et al. 

[364] 
x     x                                      
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23 Singh [272] x   x               x  x      x                 

24 Anand, et al. [19]                   x  x      x x    x            

25 Anand, et al. [20]                   x              x   x        

26 
Malviya and 

Kant [198] 
           x          x                      

27 
Patil and Kant 

[238] 
                                x     x      

28 
Masood, et al. 

[204] 
                          x                 

29 
Avelar-Sosa, et 

al. [30] 
   x x x                                      

30 
Vilko, et al. 

[316] 
                          x  x               

31 Saen [253]                x                x            

32 
Rikalovic and 

Cosic [249] 
     x                                      

33 
Mello, et al. 

[211] 
                                x           

34 
Behera and 

Mukherjee [37] 
    x              x x      x x                 
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35 Talib, et al. [294]            x x     x               x           

36 Fu, et al. [103] x           x                x     x           

37 
Sangari, et al. 

[257] 
        x      x       x        x      x   x     

38 Singh [271]    x                       x  x               

39 
Gandhi, et al. 

[105] 
                                           

40 
Singh, et al. 

[274] 
x x   x           x    x x                       

41 
Sangari, et al. 

[256] 
x                  x                         

42 
Malviya, et al. 

[199] 
    x                x                       

43 
Vishvakarma and 

Sharma [317] 
   x  x                                      

44 Asri, et al. [28]            x                                

45 
Singh, et al. 

[273] 
                                           

46 

Chiappetta 

Jabbour, et al. 

[59] 

            x     x               x           
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47 

Meidute and 

Raudeliuniene 

[210] 

                                           

48 
Ab Talib and 

Muniandy [1] 
    x                    x                  x 

49 Song, et al. [283] x                    x      x                 

50 
Zailani, et al. 

[356] 
         x         x  x    x  x                 

51 
Abdullah and 

Nasir [3] 
  x      x         x         x  x x      x   x     

52 Suong [289]                                            

53 
Wibowo, et al. 

[326] 
                                   x        

54 
Sandeepa and 

Chand [255] 
         x x           x                      

55 
Grine, et al. 

[118] 
   x                      x                  

56 
Sureeyatanapas, 

et al. [291] 
   x  x                                      

57 
Gupta, et al. 

[122] 
     x                                      
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58 
Bienhaus and 

Haddud [40] 
         x       x               x            

59 
Fauzi, et al. 

[100] 
                                           

60 Oláh, et al. [226]                     x      x                 

61 Yan, et al. [343] x           x                                

62 

Ghafourian and 

Shirouyehzad 

[109] 

         x   x                               

63 
Wuni, et al. 

[334] 
   x            x  x        x       x           

64 
Mehdi and 

Ahmed [206] 
 x         x                         x        

65 
Onstein, et al. 

[229] 
                                           

66 Pan, et al. [233]                                            

67 Pan, et al. [233] x x                x   x x     x                 

68 
Meng, et al. 

[212] 
x   x        x          x              x        

69 
ŞENOL, et al. 

[261] 
x                    x                       
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70 
Sharma, et al. 

[263] 
                                           

71 Abas, et al. [2]                    x                        

72 
Yadav and Singh 

[342] 
x x                                          

73 
Prasad, et al. 

[244] 
                    x       x                

74 
Correia, et al. 

[66] 
   x x                                       

75 
Yazdi, et al. 

[351] 
     x                x                      

76 
Wuni, et al. 

[335] 
    x x                                      

77 
Karamasa, et al. 

[160] 
  x       x                                  

78 [241]          x           x x                      

79 Alsadi, et al. [14]                                            

80 Yang, et al. [349]    x      x x     x  x x x x   x x        x    x       

81 
Ekanayake, et al. 

[88] 
                                x    x       
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82 
Hussein and 

Zayed [148] 
                                           

83 
Nilsson and 

Göransson [223] 
x x      x  x x       x     x x x  x x x    x         x x 

84 
Ahmed Khan, et 

al. [8] 
  x    x x x                  x x  x    x  x   x x   x 

85 
Ekanayake, et al. 

[87] 
                                           

86 Alomari [13]    x   x  x      x    x           x   x  x    x  x x x 

87 
Yadav and 

Samuel [341] 
   x               x                         

88 Chai and Li [56]    x                                        

89 Dang, et al. [71]     x               x                        

90 Thai, et al. [304]     x                    x                   
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Appendix – C. Technologies chains of action for delivering benefits  

Benefit’s Chains of Action References 

Blockchain  

Blockchain > trust-free, transparency, pseudonymity, democracy, automation, decentralization, and security [338] 

Smart contracts > automated transaction generation, decision-making, and data storage  [338] 

Blockchain > delivery reliability; mass customization > increasing profitability of manufacturing organizations [161] 

Blockchain > savings in transaction costs, audit costs, paper costs, verification costs, networking costs, R&D 

costs, and costs of contracting 
[161] 

Blockchain > Ensuring simplified audits [161] 

Blockchain > removal of nonvalue-adding intermediaries> reduce waste > improves SC leanness [161] 

Blockchain > ensuring direct access to a more significant number of stakeholders through connected blockchain 

networks 
[161] 

Blockchain > Effectively Deterring fraudulent identities and products [161] 

Blockchain > information about products/transactions traceable to the point of origin [161] 

Blockchain > Ensuring data integrity for collaborative computer-aided design (CAD) environments [176,180] 

Blockchain > facilitating security, liability, transferability, and live data collection in BIM projects [180,222] 

Blockchain > efficient storage of project documentation > trustworthy infrastructure for information management 

during all building lifecycle stages 
[180,313] 
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Blockchain > efficient storage of product data related to the source, characteristics, manufacturing, shipping, 

installation, and maintenance > contributing to the circular economy 
[180,267] 

Blockchain > simplify and integrate economic, information, and material flows > speed up construction 

processes; combat delivery failures, delays, and withheld payments 
[168,180] 

Smart contracts > Solving interim payment issues in construction projects [6,61,74,339] 

Blockchain > traceability of construction project quality [265,339,370,372] 

Blockchain > efficient information flow management [240,339] 

Smart contracts > reducing paperwork, instant payment, secured payments, lower transaction costs, and increased 

trust between partners 
[7,70,203,321,339] 

RFID 

RFID tags for heat sensing > detecting heat exposures in supply chains; transportation mishandling of heat-

sensitive items 
[32] 

RFID > track proximity of construction workers and equipment operators > effective safety alert system [85,300] 

RFID>workable in a dusty or muddy environment [191] 

RFID > real-time tracking; safety monitoring; efficient warehouse operations > increased Supply Chain 

efficiency > 

increase in sales volumes; improved profitability for suppliers and retailers 

[43,208] 

RFID > detecting tampering and potential theft; spoilage or damage of goods > safety and security of merchandise [44,208] 

RFID > efficient management of short shelf-life goods, container transport, and automated delivery tracking 

system 
[162,201,208,281] 
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RFID > ensure quality control during production [162,201,208,281] 

RFID > tracing the precise location of tagged materials on construction sites [208,281] 

RFID > detecting and flagging damaged products [123,208] 

RFID > contributing to smart packaging, automatic checkout, smart appliances, smart recycling, and marketing [63,155,208] 

RFID > improves security, productivity, inventory control, and traceability and results in capital and operational 

savings 
[63,155,208] 

RFID > results in capital and operational savings [63,155,208] 

RFID > reducing labor costs, claims, and returns > reducing operating costs [208] 

RFID > efficient goods receiving, stocking, and maintenance [132] 

RFID > mitigating adverse effects of inventory misplacement [50] 

RFID > real-time traceability and visibility > supporting just-in-time, lean/responsive manufacturing, and mass 

customization. 
[126,144] 

RFID + 4D-CAD > supporting logistics and progress management [60,191] 

RFID > enhancing construction quality inspection and management [191,322] 

RFID > efficient precast production management system [191,352] 

RFID > track construction assets [115,154,191] 

RFID > tracking the 3D location of buried assets [84,191] 

RFID > efficient on-site inspection support system [82,191] 

RFID > track depth of piles; identify anti-counterfeit materials > improve construction quality [191] 
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RFID > efficient management of C&D waste [191] 

RFID tags in safety gears > improving safety conformance on construction sites. [191] 

RFID-enabled safety precaution system > informing workers of potential risks on site [191] 

RFID > tracks machines, help regulate machine operation, and help manage the maintenance records > Efficient 

management of machinery 
[191] 

RFID > reduction of the lead times of various activities, including inbound logistics, storage, pick, and dispatch 

products > reduces warehouse costs. 
[319] 

RFID > enabling real-time traceability information > improving decision making > Improvement of Customer 

Relationship Management 
[319] 

RFID > enabling real-time traceability information > Improved recall management [319] 

RFID > cost saving in construction supply chains [77] 

RFID > efficient inventory management in warehouses [17,340] 

RFID > automated data collection; assurance of data dependencies; improvements in production and inventory 

visibility > help achieve leaner manufacturing 
[45] 

RFID in production system > enabling real-time information about the parts included in the system > improving 

production efficiency and reducing costs 
[213] 

RFID in production system > helping decentralize the system information > flexible and agile production process [213] 

RFID > tracking site access of construction workers > efficient and accurate access control and labor attendance 

record system 
[85,191] 

Barcode 
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barcode + GPS > identify and locate items [282,323] 

barcode use on construction sites > cost savings [323] 

barcode use > monitoring material flow in manufacturing enterprises [52] 

Heat and Temperature sensors 

Heat sensors in wearable technology > detect heat-stress conditions of construction workers > generate early 

warnings > improve health and safety 
[85,86] 

Heat sensors in confined spaces > Monitoring space temperature > improve health and safety [85,248] 

Heat sensors in food containers > Monitoring space temperature > Helping ensure product quality  [354] 

Heat sensors in wearable technology > measure physical exertion and fatigue in construction workers > generate 

early warnings > improve health and safety 
[27,121,174,314] 

GPS 

Barcode + GPS > material and equipment tracking > reduction in construction waste [85] 

RFID + GPS > track construction site resources [21,85] 

GPS > measuring Labor activity [85,156] 

GPS > automated tracking of construction equipment 
[85] 

 

GPS > automated tracking of vehicles on construction site > helping avoid accidents [85,227] 

GPS > proximity analysis > determining risks on job sites [85,247] 

GIS > providing shortest routes of material delivery > contributing to Construction Supply Chain Management [78] 
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IoT  

IoT > increased efficiency in assembly systems [323] 

IoT > increased efficiency, safety, and security of operations related to warehousing, transportation, and last-

mile delivery > improved logistics 
[164] 

IoT > agile and convenient management of merchandise (including foods) > solving food safety problem [188] 

IoT > efficient shop floor material control system [323] 

Wireless Network 

Wireless Network + Heat Sensors > communicating temperature information of food products > preventing food 

losses and wastage 
[23] 

Distance and Proximity sensor 

Distance and Proximity sensors > material handling in the warehouse; indoor transportation in the warehouse [230] 

Lidar and Laser scanning 

Laser scanning > generates as-built information about a building [69] 

Laser scanning > detecting and recording dimensions and smoothness of prefabricated products > quality 

performance 
[192] 

Laser scanning > generate as-built information of a building > record as-built information in BIM model > 

identify differences in building execution from design 
[10] 

Photogrammetry 

Photogrammetry > generate as-built information [69] 
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Photogrammetry > track the real-time status of prefabricated components > ease in making managerial decisions; 

calculating the remaining time to the site; assessing the quality of production; improving lead time of responding 

to changes 

[184] 

Photogrammetry > identification of defective prefabricated units [184] 

Photogrammetry > generate BIM models of existing buildings [69] 

Photogrammetry > monitoring live progress of project schedule [10] 

Accelerometer > Monitoring fatigue of construction workers [174,200] 

Accelerometer > measuring vibrations experienced by prefabricated modules during transportation > ensuring 

safe transportation 
[183] 

Computer vision 

Machine Learning> monitor construction progress using 4D BIM; automate rule checking within BIM models; 

automate as-built 3D reconstruction using computer vision; monitor construction performance using still images 

[99,124,125,236,279,280,344] 

 

Computer vision > Identify and distinguish construction equipment [85,293] 

BIM  

BIM + RFID > progress monitoring of construction projects; facility management [85,216] 

BIM > improved design coordination; knowledge sharing among relevant actors [31,173] 

BIM > visualization for clash detections; controlling and scheduling capabilities > 

facilitating construction operations 
[31,173] 

BIM > time reduction; better communication; improved coordination > lower project costs; reduced project 

information-related issues 
[46,235] 
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BIM > SC actors' collaboration; early joint decision-making among SC actors; collaborative planning and 

operations > enhancing performance of mechanical, engineering, and plumbing trades in construction projects 
[9,173] 

BIM > consistent project information sharing > stronger SC partnerships; improving trust among SC actors [173] 

Digital Twin 

digital twins > depict processes in simulation models > optimize processes > streamline and increase productivity 

of production processes 
[288] 

Digital twins > depict processes in simulation models > identify bottlenecks in production; identify shortcomings 

in systems > help improve systems based on previous performance data 
[288] 

digital twins > enhance construction productivity [183] 

IoT + BIM > Digital Twin for construction projects [183] 

Digital Twin> monitoring construction resources and progress  [178,183] 

Digital Twin> occupational health and safety management  [159,183] 

Digital Twin> Construction logistics and supply chain management  [183,373] 

Digital Twin> Facility management [58,183] 
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Appendix – D. Synergies between technologies and MiC logistics challenges 

Benefits                                                                    

Challenges 
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Blockchain                   

Enhanced security, 

trust, pseudonymity, 

transparency, and data 

integrity 

      x      x    x [7,70,176,180,203,313,321,338,339] 

automated transaction 

generation, 

decentralized decision-

making, and data 

storage 

                x [176,180,338] 

Reduced transaction 

costs, audit costs, paper 
              x   [7,70,161,203,321,339] 



217 

costs, verification 

costs, networking 

costs, R&D costs, and 

contracting costs; 

removal of nonvalue-

adding intermediaries 

Direct and real-time 

access data sharing and 

collaboration with 

stakeholders 

                x [161,176,180,222] 

Effectively deterring 

fraudulent products and 

Identities 

               x  [161] 

trustworthy 

information 

management during all 

building lifecycle 

stages 

                x [180,240,313,339] 

traceability of 

construction project 

quality 

                 [161,265,339,370,372] 

IoT                   
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increased efficiency in 

assembly systems 
                x [323] 

increased efficiency, 

safety, and security of 

operations related to 

warehousing, 

transportation, and last-

mile delivery 

 x       x x x x      [164] 

agile and convenient 

management of 

merchandise 

x                 [188] 

RFID                   

real-time tracking of 

workers for safety 

monitoring 

         x        [43,191,208] 

efficient warehouse 

operations 
x                 [17,85,300,319,340] 

detecting tampering 

and potential theft 
                 [44,208] 

safety and security of 

merchandise 
             x    [44,208]  
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Goods tracking and 

traceability throughout 

the delivery process 

            x   x  [162,201,208,281] 

detecting damaged or 

spoiled products 
x                 [44,123,162,201,208,281] 

Smart packaging, auto-

checkout 
            x   x  [63,155,208] 

inventory control, real-

time traceability of raw 

materials 

x x                
[50,63,115,132,154,155,191,208,281,319,352] 

[282,323] 

reducing operating 

costs and wastage 
              x   [63,155,191,208] [213,323] 

Enabling just-in-time, 

lean, and agility 
 x                [45,52,77,126,144,213] 

Enhanced logistics 

management 
                x [60,82,191] 

Improved quality 

control 
                 [191,322] 

tracking the hidden 

parts or buried assets 
                 [84,191] 
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efficient human 

resource management 
                 [85,191] 

Heat and 

Temperature sensor 
                  

Detect heat-stress 

conditions of 

construction workers 

                 [85,86] 

Heat sensing in 

confined spaces to 

monitor health and 

safety 

                 [27,85,121,174,248,314] 

food condition 

monitoring in 

containers 

                 [354] 

GPS                   

material and equipment 

location tracking 
     x       x     [85] [21,85] 

measuring Labor 

activity 
             x    [85,156] 

automated monitoring 

of construction sites to 
         x        [85,227] [85,247] 
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avoid clashes and 

accidents among 

moving equipment 

Optimum vehicle 

routing for material 

delivery 

     x            [78] 

Accelerometer                   

measuring vibrations 

experienced by 

prefabricated modules 

during transportation, 

ensuring safe 

transportation 

             x    [183] 

Distance, Proximity 

sensor 
                  

handling the 

manufacturing, 

warehouse, and indoor 

transportation to avoid 

equipment or good 

clash 

             x    [230] 

Photogrammetry                   
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Generate as-built 

information 
             x    [69] 

Assessing the quality 

of production, 

improving lead time of 

responding to changes 

 x            x    [184] 

identification of 

defective prefabricated 

units 

             x    [184] 

Generate BIM models 

of existing buildings 
                 [69] 

monitoring real-time 

progress of project 

schedule 

                 [10] 

Monitoring fatigue of 

construction workers 
                 [174,200] 

LIDAR, Laser 

scanning 
                  

generates as-built 

information about a 

building 

                 [69] 
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detecting and recording 

dimensions and 

smoothness of 

prefabricated products 

             x    [192] 

Generate and record 

as-built information of 

a building in the BIM 

model, identify 

differences in building 

execution from design 

             x    [10] 

CV                   

monitor construction 

progress using 4D 

BIM; automate rule 

checking within BIM 

models; automate as-

built 3D reconstruction 

using computer vision; 

monitor construction 

performance using still 

images 

                 
[99,124,125,236,279,280,344] 
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Identify and distinguish 

construction materials, 

and equipment 

             x    [85,293] 

progress monitoring of 

construction projects, 

facility management 

                 [85,216] 

BIM                   

improved design 

coordination, 

knowledge sharing 

among relevant actors 

                 [31,173] 

visualization for clash 

detections, controlling 

and scheduling 

capabilities, facilitating 

construction operations 

         x        [31,173] 

time reduction, better 

communication, 

improved coordination, 

lower project costs, 

reduced project 

                x [46,235] 
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information-related 

issues 

enhancing performance 

of mechanical, 

engineering, and 

plumbing trades in 

construction projects 

                 [9,173] 

stronger SC 

partnerships; 

improving trust among 

SC actors 

                x [173] 

Digital Twin                   

streamline and increase 

the productivity of 

production processes 

                x [288] [183] 

Identify shortcomings 

in systems 
                 [288]  

monitoring 

construction resources 

and progress 

                 [178,183] 

occupational health and 

safety management 
                 [159,183] 
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Enhanced facility 

management 
                 [58,183]  
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