

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

IMPROVING THE SECURITY AND PRIVACY

OF DECENTRALIZED IDENTITY

MANAGEMENT IN MULTI-CONTROLLER

SCENARIOS

HUIJIONG YANG

MPhil

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Improving the Security and Privacy of Decentralized Identity

Management in Multi-Controller Scenarios

Huijiong Yang

A thesis submitted in partial fulfillment of the requirements for

the degree of Master of Philosophy

May 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Huijiong Yang

Abstract

Decentralized identity (DID) is pivotal to Web3 applications as it empowers users

to manage their identities and credentials without relying on any central authority,

thereby enhancing privacy, security, and user autonomy. Existing research on DID

primarily focuses on single-controller scenarios, where controllers have complete privi-

leges for identity and credential management. The multi-controller scenario is also an

important and indispensable component outlined by the W3C DID standards, while

its privacy and security issues have not yet been fully explored. These issues stem

from both existing coarse-grained identity management and the intrinsic characteris-

tics of blockchain systems, such as data transparency and high ledger-commit latency.

In this thesis, we aim to solve these problems and construct privacy-preserving and

secure identity management schemes for DID in multi-control scenarios. We carry

out the following work.

In our first work, to solve the problems caused by coarse-grained identity manage-

ment adopted current schemes, i.e., identity impersonation by malicious controllers

and high key recovery overhead, we propose MoDID, a fine-grained identity manage-

ment scheme for multiple controllers, which complies with the DID standard proposed

by W3C. Our solution allows multiple controllers to control DID subjects flexibly and

reliably through hierarchical controller management. Additionally, we design a secure

and low-overhead key recovery scheme to reduce the risk of identity loss. The con-

trollers only rely on the social control recovery in case other controllers cannot execute

i

replacing operations. Finally, we implement MoDID on the Sepolia Ethereum Test

Network to evaluate the effectiveness of our proposed scheme. The result demon-

strates that our system allows multiple controllers to manage a single identity with

lower gas consumption and time consumption than the state-of-the-art.

In our second work, we find two new attacks in multiple controller scenarios caused

by the intrinsic characteristics of blockchain systems. We also propose a privacy-

preserving and secure identity management scheme to defend against them. The

first proposed controller-correlation attack allows an attacker to infer relationships

between different subjects by correlating the public keys uploaded by controllers in

the blockchain. To avoid this kind of privacy leakage, we propose a masking scheme

based on the Merkle tree, which allows the controllers to prove their ownership over

the multi-controller identities without publicizing the plaintext of their public keys.

The other identity impersonation attack exploits insecure controller revocation caused

by high block synchronization latency. To resist this attack, we propose a lightweight

authentication scheme where the holders provide digest freshness proof and the veri-

fiers only need to download block headers. Finally, to evaluate the feasibility of our

proposed scheme, we implement our system on the Sepolia TestNet. The experimen-

tal result demonstrates that our system can prevent these attacks with acceptable

gas consumption and time consumption, compared with the state-of-the-art.

ii

Publications Arising from the Thesis

1. Huijiong Yang, Rui Song, Bing Chen, Yubo Song, and Bin Xiao “MoDID: De-

centralized Identity Management for Multiple Owners”, accepted by IEEE In-

ternational Conference on Communications (ICC)), Denver, CO, USA, 9 - 13

June 2024.

2. Huijiong Yang, Bin Xie, Jianhuan Wang, Guyue Li, and Bin Xiao “Privacy-

Preserving and Secure Decentralized Identity Management for Multiple Con-

trollers”, accepted by IEEE Global Communications Conference (GLOBECOM-

2024), Cape Town, South Africa, 8–12 Dec. 2024.

iii

Acknowledgments

Firstly, I am deeply grateful to my supervisor Prof. Bin Xiao. Prof. Xiao gave me

invaluable guidance and support throughout my thesis-writing journey. Prof. Xiao

provided me with guiding suggestions on the research direction. He also offered me

careful guidance on the problems I met during the thesis writing process.

Secondly, I would also like to thank my colleagues, Mr. Rui Song, Mr. Bin Xie, Mr.

Jianhuan Wang, Dr. Guyue Li, Dr. Zecheng Li, Mr. Zheng Tianyu, and Mr. Huang

Chengpeng. They have offered me great support for both my research and life in

Hong Kong. It has been my privilege and honor to collaborate with such exceptional

colleagues and friends.

Finally, I express my profound gratitude to my beloved family for their unwavering

love, unwavering support, and boundless confidence in me throughout the two years.

I am also grateful to my other friends who have provided generous support and

invaluable advice over the past two years. Their encouragement has been instrumental

in my academic and personal growth.

iv

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Decentralized Identity . 1

1.2 Motivation . 3

1.3 Thesis Contribution . 5

1.4 Thesis Outline . 6

2 Background 7

2.1 The Era of Web 3.0 . 7

2.1.1 The Overview of Web 1.0 and Web 2.0 7

v

2.1.2 Blockchain Technology . 8

2.1.3 The Overview of Web3 . 9

2.2 Decentralized Identity Systems . 11

2.2.1 Traditional Identity Management Solutions 11

2.2.2 Decentralized Identifier and Verifiable Credential 13

2.2.3 Researches on Decentralized Identity System 15

3 MoDID: a Fine-Grained and Secure Identity Management Scheme

for Multiple Controllers 18

3.1 Overview . 18

3.1.1 Problem Statement . 19

3.1.2 Sketch of Solution . 19

3.2 System Architecture . 21

3.2.1 Hierachical Controller Management 22

3.2.2 Verifiable Credential Management 26

3.2.3 Key Recovery Scheme . 30

3.3 Platform Implementation and Evaluation 32

3.3.1 MoDID Implementation . 33

3.3.2 Performance Analysis . 34

3.4 Chapter Summary . 37

4 Privacy and Secure Enhancement against Attacks in Multi-Controller

Scenarios 39

vi

4.1 Overview . 39

4.1.1 Problem Statement . 40

4.1.2 Sketch of Solution . 41

4.2 System Design . 43

4.2.1 System Model . 43

4.2.2 Threat Model . 44

4.2.3 Use Case . 46

4.3 Privacy-preserving Scheme for Controller Correlation Attacks 47

4.4 Identity Authentication Scheme with Secure Controller Revocation . 50

4.4.1 Credential Issuance . 51

4.4.2 Credential Presentation . 51

4.4.3 Credential Verification . 54

4.5 Platform Implementation and Evaluation 56

4.5.1 Experiment Setting . 56

4.5.2 Performance Analysis . 57

4.6 Chapter Summary . 60

5 Conclusions and Future Research 62

5.1 Conclusion . 62

5.2 Future Work . 63

References 66

vii

List of Figures

1.1 A Generic Architecture of a DID Subject with Multiple Controllers

and Credentials. 2

1.2 Organization Accounts in Instagram. 3

1.3 Problem Overview. 4

2.1 The Component of Web3. 10

2.2 Traditional Identity Management Scheme. 12

2.3 Decentralized Identity Management Scheme. 13

3.1 Hierarchical Identity Management Scheme in MoDID. 21

3.2 Identity Management Scheme in MoDID. 22

3.3 Two Ways for Root Controller Management. 24

3.4 Credential Management Scheme in MoDID. 27

3.5 Two Recovery Mechanisms for Key-Lost Controllers. 31

3.6 Time Consumption Comparison of Credential Verification. 38

4.1 An Example of Controller-correlation Attacks. 41

4.2 An Example of Identity Impersonation Attack by Revoked Controllers. 42

viii

4.3 A Privacy-preserving Scheme for Controller-correlation Resistance Based

on Merkle Tree. 49

4.4 A Secure Credential Presentation and Verification with Digest Freshness. 52

4.5 The Data Structure of the Ethereum System. 53

4.6 Time Consumption Comparison for Credential Verification. 60

ix

List of Tables

3.1 Permission of Different Controllers. 23

3.2 The Gas Used for Smart Contract Deployment. 34

3.3 Gas Consumption Comparison. 36

3.4 Transmission Delay of Credential Storage. 37

4.1 Gas Consumption Comparison and Local Time Consumption for Con-

troller Management Operations. 58

4.2 Cost for Proof Generation and Verification. 58

x

Chapter 1

Introduction

1.1 Decentralized Identity

The development of decentralized ledgers [26, 61, 77, 13] has given the birth of Web3,

which aims to establish an open and decentralized ecosystem. Identity management

plays a vital role in Web3 applications for authentication and access control. The

ForgeRock 2023 Identity Breach Report 1 reveals that approximately 1.5 billion iden-

tities have been compromised in nearly a year, resulting in incurring an average cost

of nearly $9.4 million per breach. Decentralized identity (DID) is based on decen-

tralized ledgers, which is a promising solution for Web3. DID enables the holders to

autonomously control their identity and credentials, reducing security risks associated

with data centralization in traditional authentication schemes. Especially, the issuers

and holders upload their public keys to the decentralized ledgers. These public keys

are used by the verifiers to verify credentials. Generally, DID can rely on any de-

centralized ledgers, like the InterPlanetary File System (IPFS) or blockchain system.

However, blockchain systems use hash links for immutability features compared to

1https://www.pingidentity.com/en/resources/content-library/analyst-reports/3763-2023-

forgerock-identity-breach-report.html

1

Chapter 1. Introduction

Org1

DID
controllers

Credentials

DID Subject

Credential n
Issuer

subject: org1
Claim k

Signature:issuer

Credential 2
Issuer

subject: org1
Claim 2

Signature:issuer

Credential 1
Issuer

subject: org1
Claim 1

Signature:issuer

Boss staff m staff 1

Control

Hold

Figure 1.1: A Generic Architecture of a DID Subject with Multiple Controllers and

Credentials.

other decentralized ledgers. Blockchain enables the verifiers to get the correct public

keys for verification. Thus, many DID systems introduce blockchain.

In a DID system, holders obtain credentials from issuers and selectively disclose them

to a verifier for identification or authentication [50]. Fig. 1.1 illustrates the structure

of a typical DID system in which the subject can be a person, physical entity, or

organization. The credential portrays the attributes of the DID subject, and its

controller may be the subject itself or multiple other entities. The controller manages

the subject with its private key and thus enjoys full sovereignty over credentials. Thus,

it is vital to make controllers use and manage credentials in a secure and reasonable

way.

2

1.2. Motivation

Figure 1.2: Organization Accounts in Instagram.

1.2 Motivation

Most of the existing DID schemes focus on a single-controller structure [33, 40, 15, 27]

where a subject is fully controlled by one controller. However, as elucidated in the

DID standard proposed by the World Wide Web Consortium (W3C), many applica-

tion scenarios require joint control of a subject by multiple controllers. For example,

an organization may require multiple managers to jointly manage an organization’s

credentials. For example, as shown in Fig. 1.2, there are many accounts of orga-

nizations in the Instagram application 2, such as hkuniversity and hongkongpolyu.

Identity management in multi-controller scenarios has a wide range of applications,

2https://www.instagram.com/

3

Chapter 1. Introduction

Subject
Org1

Verifier

c
Controller 2
Controller 1

Controller #

Holder

Work1
Fine-grained
access control

Work2
Privacy & security

enhancement

Blockchain system

Figure 1.3: Problem Overview.

but little work focus on this area. The uPort system [31] allows multiple controllers to

jointly control an identity. However, the uPort system only grants the same privileges

to all controllers. This can lead to serious security and privacy problems, impeding

the application of DID in multi-controller scenarios.

Even though the multi-controller scenarios have wide promising applications, there

are many serious security and privacy issues encountered by the existing DID sys-

tems. These issues stem from both coarse-grained identity management and the

intrinsic characteristics of blockchain systems, such as data transparency [8] and high

ledger-commit latency [60]. Coarse-grained identity management schemes can result

in security vulnerabilities, including identity impersonation attacks by malicious con-

trollers during the management process and unnecessary key recovery overhead due to

inflexible schemes. The inherent characteristics of the blockchain system can lead to

security and privacy issues, such as identity impersonation attacks stemming from in-

secure controller revocation in asynchronous environments and controller-correlation

attacks even from external adversaries. These issues pose a great threat to identity

security and privacy in multi-controller scenarios. Therefore, it is urgent to solve these

problems, and enable controllers to manage multi-controller identities in a secure and

privacy-preserving manner. In our first work, we concentrate on addressing security

4

1.3. Thesis Contribution

issues arising from coarse-grained identity management, while our second work aims

to tackle challenges arising from blockchain characteristics.

1.3 Thesis Contribution

The objective of the thesis is to design a W3C-standard compatible, secure, and

privacy-preserving identity management scheme for multiple controllers. This system

aims to address the security and privacy issues arising from both coarse-grained access

control mechanisms and the unique characteristics of blockchain technology. We

summarize our work in Fig. 1.3. We present the following contributions to achieve

this goal.

• In our first work, we focus on the security issues caused by coarse-grained ac-

cess control, i.e., identity impersonation by malicious controllers and high key

recovery overhead problems. To solve the problems, we propose MoDID, which

is a novel fine-grained identity management scheme for multiple controllers by

hierarchical controller management and modifying the key recovery strategy. 1)

To resist identity impersonation attacks, we propose a hierarchical controller

management scheme considering the inherent access control in the organization

scenarios. The controllers are categorized into three distinct roles based on their

reliability. 2) To reduce the key recovery overhead, we devise an optimized and

flexible key recovery scheme and reduce the risk of identity loss. Specifically,

the controllers rely on the relatively high-overhead social key recovery strat-

egy, only in instances where controllers with corresponding permission cannot

execute controller management operations.

• In our second work, we find two new attacks caused by blockchain character-

istics, i.e., controller-correlation attacks and impersonation attacks by revoked

controllers. We also propose a low-overhead scheme to defend against both

5

Chapter 1. Introduction

attacks. 1) To resist to controller-correlation attacks, we design a privacy-

preserving controller management scheme based on the Merkle tree. We allow

the controllers to provide ownership proof without publicizing their public keys.

2) To solve the insecure controller revocation problem, in our scheme, the hold-

ers provide digest freshness proof and the verifiers only need to download block

headers, rather than synchronizing heavy blocks. The verifiers can access up-

to-date public keys efficiently.

In summary, we design a W3C-standard compatible identity management scheme

for multiple controllers characterized by secure and privacy-preserving features. We

address the security and privacy issues caused by both coarse-grained access control

and blockchain characteristics. Our work promotes the application of DID in multi-

controller scenarios.

1.4 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the main

technologies we used in this thesis. Chapter 3 presents our hierarchical identity man-

agement scheme for identity impersonation and high-overhead key recovery problems.

Chapter 4 presents our secure and privacy-preserving identity management scheme

for controller-correlation attacks and insecure controller revocation problems. Finally,

we conclude the thesis and give our suggestions for future research in Chapter 5.

6

Chapter 2

Background

2.1 The Era of Web 3.0

2.1.1 The Overview of Web 1.0 and Web 2.0

Web 1.0 [54] refers to the early days of the World Wide Web, roughly from the early

1990s to the early 2000s. It is known as the static web. Few content creators can

generate figures and text information on the website. The vast majority of users are

limited to passively viewing content. They simply act as consumers of content and

communicate with the website in a one-way manner, with limited user interaction

and dynamic content.

Web 2.0 [19] emerged around the mid-2000s. It represents a significant shift in how

the web is used, focusing on user-generated content, social interaction, and dynamic,

interactive websites. A Web 2.0 website allows users to interact and collaborate with

each other through social media dialogue as creators of user-generated content in a

virtual community. The users can read and create content on the website, as well as

upload or download files stored in the database. It also catalyzes the emergence of

applications with user interoperability, like social media platforms and content-sharing

7

Chapter 2. Background

sites. However, in the Web 2.0 era, users rely on large Internet enterprises to provide

services. The centralized private data management scheme may potentially lead to

serious privacy leakage problems. These enterprises may be attacked by hackers or

sell users’ privacy for the sake of profit. For example, in 2021, Facebook was attacked

due to a code vulnerability. As a result, the privacy data of more than 533 million

users is exposed, including their phone numbers, full names, locations, as well as

birthdates [21].

2.1.2 Blockchain Technology

A blockchain system is one of the distributed ledgers based on the peer-to-peer net-

work. It contains increasing blocks with related data with immutable and traceable

characteristics. These blocks are linked together through the cryptographic hash func-

tions. Specifically, the full nodes jointly keep these blocks and pack new blocks into

the blockchain system through Byzantine fault-tolerant consensus protocol[5, 65].

Bitcoin [41] is proposed by an individual or group known as Satoshi Nakamoto in

2008. It is the first cryptocurrency. The Bitcoin system uses blocks to store the

transaction data. These blocks are linked using cryptographic hash functions to

provide the tamper-proof. Specifically, the blocks are made up of two parts, i.e.,

block header and block body. Block body contains transactions using Merkle tree

algorithms. With the block headers as commit, it is easy for the light nodes to verify

whether a transaction is contained by a block. The miners run the Proof of Work

(PoW) protocol [17] to add new blocks to the blockchain.

Ethereum [6], introduced by Vitalik Buterin in 2015, is a decentralized blockchain

platform. Central to Ethereum’s innovation is the concept of smart contracts [67, 76],

programmable self-executing agreements that enable automated transactions without

the need for intermediaries. This platform facilitates a wide array of decentralized ap-

plications [7, 9], like supply chain management and voting systems, thus significantly

8

2.1. The Era of Web 3.0

expanding the potential use cases of blockchain technology. Additionally, Ethereum

uses the proof-of-stake (PoS) algorithm to get consensus. The average block genera-

tion time on Ethereum is 15 seconds, which significantly improves the scalability of

the Ethereum system.

Apart from the two main blockchain systems, there are several other notable blockchain

platforms. For example, Ripple [2] is a blockchain platform primarily focused on

providing fast and low-cost cross-border payment solutions for financial institutions.

Solana [70] designs an innovative scheme to solve the issues related to scalability

and high transaction costs. To improve the scalability of existing blockchain sys-

tems, Polygon [48] is a Layer 2 scaling solution designed to enhance the scalability

and transaction speed, while reducing transaction costs. It aims to provide devel-

opers and users with a faster and more cost-effective transaction experience. The

development of blockchain systems makes it possible to build a web ecosystem with

decentralized characteristics.

2.1.3 The Overview of Web3

The centralized architecture in Web 2.0 raises concerns about information centraliza-

tion and data leakage. The development of blockchain technologies [57] has catalyzed

the emergence of Web3 [30, 25]. Web3 aspires to establish an open and decentralized

ecosystem, which is often described as the next phase of the internet [10]. Firstly, It

aims to provide distributed Internet services without reliance on trusted third par-

ties. It reduces the risk of privacy leakage problems caused by data centralization.

Another important characteristic is user-centralized [49]. This means that by using

cryptography algorithms, the users can have full control over their data, including

identities, credentials, as well as tokens. The users can decide when to disclose their

own information to others. It greatly reduces the risk of user privacy leakage.

9

Chapter 2. Background

Social
NFT, Gallery, Profile

DAO
Governing, DAO Tools

Social & People

Creator Economy
Audius, Mirror

Self-Improve
Governing, DAO Tools

Contents Gaming DeFi Discovery
App Store

Search Engine

Metaverse
Horizon World

GameFi
Play-to-Earn

Exchange

Credit / Lending

Payment

Derivatives

Insurance

Asset Mgmt

Data Tools
Audit, Analysis

O2O
NFT for Events
E-Commerce

Tools
Communication

Security & Privacy

Dev Tools
Token Tools

Security, Privacy

Oracle
3rd party truths

API & Gateway
Infura, Alchemy

Quicknode

Cross-Chain
Services

Composable
NFT

Identity
DID, KYC, ENS

Stablecoin
USDT, UST
DAI, OHM

Exchange
DEX

Account Smart Contract Token NFT

Layer 1 / 2 Blockchains Ethereum, Solana, Polygon, Arbitrium

Other Decentralized
Protocols

Storage
Compute

Networking

Use Cases

Components

Protocols &
Primitives

Entry point
Browser + Wallet Metamask, Brave

Figure 2.1: The Component of Web3.

Fig. 2.1 plots the elements and their relations in a Web3 ecosystem 1. There are four

layers in the ecosystems, i.e., protocols and primitives, components, use cases, and en-

try points. In the protocols and primitives layer, the Web3 ecosystem needs blockchain

systems with good scalability [56], accountability [42], and privacy-preserving char-

acteristics, due to the existence of massive users. Based on the blockchain system,

there are many basic components. For example, Oracle [32] makes it possible to ex-

tract external data securely to the blockchain. Cross-chain services [43] allow users

to interact efficiently in different blockchain systems, like transferring transactions.

Identity management plays an important role in the Web3 ecosystem, since it has a

direct impact on the users’ privacy and digital assets. In a decentralized ecosystem

without reliance on centralized services, it is challenging to allow users to control

their identities and credentials in a secure and privacy-preserving manner. There are

many challenges in the process of identity management, including Sybil attacks, the

1https://eth.mirror.xyz/eQwtbeWM8Xq37oxf0nlSxwkFpG33qoxPa8o_wb7YbbY

10

2.2. Decentralized Identity Systems

linkability of identifiers, and identity loss problems. Given the basic components, the

developers can develop several decentralized applications for different scenarios, such

as Decentralized Autonomous Organization (DAO) [66], decentralized games, and

Decentralized Finance (DeFi) [75]. As for the entry point, the users rely on wallets

[52] to use the decentralized applications. The wallets are used to securely keep the

users’ private keys, as well as their related tokens and credentials. The wallets can be

hosted wallets, non-custodial wallets, and hardware wallets. Through the wallet, the

users can interact with the blockchain systems or other corresponding decentralized

databases [4].

2.2 Decentralized Identity Systems

Identity management is critical for authentication and access control in Web ap-

plications. In the Web2 era, users rely on centralized [16] and federated identity

[58] management structures for identification and authentication. Web3 [47] aims to

achieve an open ecosystem with decentralized characteristics. The centralized nature

and high risk of privacy leakage make these schemes difficult to apply in the Web3

era. DID, based on decentralized ledgers, serves as a robust and privacy-preserving

identity infrastructure. It is a promising authentication scheme in the Web3 era.

2.2.1 Traditional Identity Management Solutions

The centralized identity and federated identity management schemes play an impor-

tant role in the Web 2.0 era.

In a centralized identity system [46], the users rely on a single centralized web ser-

vice to control and manage their identity information and credentials, as shown in

Fig. 2.2 (a). Specifically, the individuals send their personal information to the cen-

tralized web services. After verification, the web services keep the user’s credentials.

11

Chapter 2. Background

("!, $!)

("", $")

("#, $#)

…

…

…

…

…

("$, $$)

…

…

…

…

("!, $!)

("%, $%)

!"#$!

!"#$"

!"#$#

!"#$$

…

!"#$!

!"#$"

!"#$#

!"#$$

…

(a) Centralized Identity Management

Scheme.

("!, $!)

("", $")

("#, $#)

…

…

…

…

…

("$, $$)

…

…

…

…

("!, $!)

("%, $%)

!"#$!

!"#$"

!"#$#

!"#$$

…

!"#$!

!"#$"

!"#$#

!"#$$

…

(b) Federated Identity Management Scheme.

Figure 2.2: Traditional Identity Management Scheme.

However, this system raises concerns about privacy and security. For users, they

need to remember multiple usernames and passwords for authentication. While for

web services, different web services isolatedly keep the credentials, which will lead

to the waste of storage resources. Besides, a proliferation of credentials and users’

enhanced demand for privacy protection place a great burden on web services. These

web services can disclose users’ private data or credentials for-profit purposes or due

to attacks. For example, Didi Global Inc. illegally collected nearly 12 million screen-

shots and 107 million pieces of passengers’ facial recognition data, and more than 167

million records of location data in 2022 [62].

Federated identity management scheme [58, 23] allows users to use the same set of

credentials for authentication and access control across services [11], as shown in

Fig. 2.2 (b). Specifically, federated identity allows different web services to appoint

one authority as an identity provider (IdP), such as Wechat. IdP can keep users’

authentication information, such as credentials or biometric attributes. Users can

use the credentials verified by IdP to access different web services without needing

12

2.2. Decentralized Identity Systems

Ethereum

Issuer
Cred presentationCred issuance

upload
(!"!, #$!)

upload
(!"", #$")

request
(!"!, !"")

#$!,
#$"

VerifierHolder
c
…

Holder

Figure 2.3: Decentralized Identity Management Scheme.

to register or log in separately to different systems. Federated identity allows web

services to share authentication information. It also enables the users to use one

identity to access resources in different web services. However, in such schemes, the

trust relationship leaves out the individual, giving rise to privacy and data protection

concerns.

2.2.2 Decentralized Identifier and Verifiable Credential

Blockchain technology [41], and decentralized ledgers have given rise to Web3, which

is aimed at achieving an open ecosystem with decentralized characteristics. The

centralization nature and the risk of privacy leakage make centralized and federated

identity management difficult to apply in the Web3 era. DID [3] is proposed to rectify

the shortcomings of centralized identity management structures. DID system serves

as a robust and privacy-preserving identity infrastructure. DID enables the users to

autonomously control their identity and credentials, reducing security risks associated

with data centralization in traditional authentication schemes.

DID scheme allows users to have full control over their identities and credentials.

13

Chapter 2. Background

It has promising applications in the Web3 ecosystem. Since DID was proposed, its

security and privacy issues have attracted attention from researchers. In 2022, W3C

proposes the standards of DID [50, 63]. These standards clarify the participating

entities, issues, holders, and verifiers, as shown in Fig. 2.3. They also clarify the au-

thentication process and specify the credential format. According to the standards,

the holders can obtain credentials from the issuers and autonomously present them to

verifiers without the involvement of the issuers. Specifically, the issuer is responsible

for creating and issuing verifiable credentials to the holders. Issuers are usually au-

thorities, like governments or universities. The issuer verifies the individual’s identity

information and converts it into digital credentials or encrypted identity information

for secure use on the network. The holders are usually web users, who want to use

their credentials for identification and authentication. The holders can collect cre-

dentials from issuers and store these credentials in personal devices or digital wallets.

The holders can autonomously present credentials to verifiers. In the presentation

process, the holders can decide when, with whom, and which attributes to disclose.

The verifiers can be service providers, employers, and websites. They participate in

the authentication process by verifying the credentials. Different from centralized

identity and federated identity schemes, the credential verification process does not

involve the participation of issuers. After receiving the credential presentation, the

verifiers only fetch the public key recorded in the block and then verify the validation

of the credentials, such as checking digital signatures and other proofs.

DID standards [50] defines DID subject as expressed using the id property in the DID

document. DID documents record the mapping of subjects’ identifiers and public keys

of controllers. DID controllers are entities that are authorized to make changes to

DID documents. In other words, the controllers can not only use the credentials of

subjects, but also can decide who can control the identity. For some DID subjects,

the DID documents might be managed by more than one DID controller. This con-

figuration will often apply when the DID subject is an organization, corporation,

14

2.2. Decentralized Identity Systems

government agency, community, or other group that is not controlled by a single indi-

vidual. This can happen in one of two ways, independent control and group control.

In the independent control case, each controller has full power to update the DID

document independently. In the case of group control, the DID controllers are ex-

pected to act together and reach an m-of-n consensus in some fashion, such as using

cryptographic algorithms [68, 35] or an on-chain voting mechanism [20, 22].

2.2.3 Researches on Decentralized Identity System

Since DID is proposed, there are also some industrial productions, like [15, 31, 40],

which allow users to gather credentials from issuers and selectively disclose them to

verifiers. However, there are still some unresolved issues attracting attention from

the researchers.

The privacy of credentials has attracted widespread attention from researchers. In

2022, Yamamoto et al. [71] propose Linked-Data-based verifiable credentials to enable

selective disclosure among one or more verifiable credentials issued by multiple issuers.

In 2022, De Salve et al. [12] describe an applicable method, allowing users to disclose

only one attribute without invalidating the signature. CredChain [37] enables users

to disclose attributes selectively based on the Merkle tree and redactable signatures.

In 2020, De Salve et al. [18] propose a low-overhead selective disclosure method using

hash functions. Zero-knowledge proof is also applied to achieve more precise infor-

mation disclosure. SelfKey [15] is a platform that uses zero-knowledge proof (ZKP)

protocols to minimize information leakage. D2CDIM [69] preserves identity privacy

by the anonymous credential and zero knowledge in the cross-domain authentication

scheme. In 2023, Rosenberg et al. propose zk-creds [53] protocol for flexible and

privacy-preserving credential presentation. In 2023, Du et al. propose UCBlocker

[14]. UCBlocker allows users to prove that they are qualified for the requirements of

the verifiers without leakage of extra attributes.

15

Chapter 2. Background

In DID systems, the private key is important for a user to control their identities.

Without private keys, the controllers cannot manage the identity, as well as creden-

tials. In Web3, the problem becomes more serious. Loss of the private key translates

to a complete relinquishment of identity control, encompassing digital assets and

sensitive data. There are also some solutions to prevent the key lost. Firstly, in

some systems, the users rely on centralized authorities to maintain their private keys.

However, it necessitates users to place trust in these authorities implicitly. Secondly,

some schemes [52, 73] enable users to create a mnemonic phrase based on their pri-

vate key. The mnemonic phrase is stored in a secure medium. However, it remains

susceptible to potential loss of the storage medium. Thirdly, in some systems[33],

some committees are set to keep the users’ private keys using secret sharing schemes.

Users can regain their private keys by collecting fragments of private keys from com-

mittees. Even though a single committee cannot infer the private key information,

concluded committees can control all the users’ identities by gathering the fragments.

Besides, social recovery [31] is a common solution, allowing users to authorize a set

of guardians who can refresh or recover the users’ secret keys. The users can specify

delegates, instead of being forced to trust committees. However, if we directly apply

the social recovery scheme in the multi-controller scenarios, it can lead to unnecessary

overhead.

The above work related to DID is based on single-controller identities. Even though

identity management for multi-controller scenarios has promising applications [50], lit-

tle work has been done on identity management for multiple controllers. The uPort[31]

allows multiple controllers to jointly control an identity, but only grants the same priv-

ileges to all controllers. Especially, in the uPort system, any controller can not only

have permission for controller management, such as adding/removing a controller

for the identities, but also have access to subjects’ all credentials. Such a coarse-

grained identity management scheme may lead to problems of identity impersonation

and high key recovery overhead. impede the application of DID in multi-controller

16

2.2. Decentralized Identity Systems

scenarios. Besides, uPort also ignores the security and privacy issues arising from

the unique characteristics of blockchain technology, i.e., data transparency and high

ledger-commit latency. The missing consideration can lead to controller-correlation

attacks and insecure controller revocation problems. Thus, it is necessary to design

a fine-grained identity management scheme for multi-controller scenarios.

17

Chapter 3

MoDID: a Fine-Grained and Secure

Identity Management Scheme for

Multiple Controllers

3.1 Overview

In this chapter, we introduce MoDID, which is a fine-grained identity management

scheme for issues caused by coarse-grained access control, i.e., identity impersonation

attacks and high key recovery overhead. This chapter is structured as follows. The

system model is described in section 3.2, including our hierarchical Identity scheme

and flexible key recovery scheme. The implementation of our prototype platform and

the experiment results are described in section 3.3. Finally, we conclude this paper

in section 3.4.

18

3.1. Overview

3.1.1 Problem Statement

DID plays an essential role in the Web3 applications. Multi-controller scenarios have

been added to the W3C DID standards [50] according to the common needs of joint

control on a subject by multiple controllers. To cater to multi-controller scenarios, the

uPort system [31] allows multiple controllers to jointly control an identity. However,

it is coarse-grained, because all controllers are granted the same privileges. Espe-

cially, in the uPort system, any controller can not only have permission for controller

management, such as adding/removing a controller for the identities, but also have

access to subjects’ all credentials.

Several problems in the existing systems impede the application of DID in multi-

controller scenarios.

• Identity impersonation.An adversary controller can impersonate the identity

without raising suspicion. This is possible because they can selectively remove

other unsuspecting controllers, thereby gaining full control over the identity.

• High key recovery cost. In current key recovery schemes, all controllers

rely on delegates to regain control over the identity, which brings extra gas

consumption.

The root cause of these problems is coarse-grained identity management, which gives

all controllers the same super permission. Therefore, it is necessary to design a fine-

grained and low-overhead identity management scheme for multiple controllers.

3.1.2 Sketch of Solution

To address the above issues encountered by the existing system, in the paper, we pro-

pose MoDID, which complies with the DID standard proposed by W3C. MoDID is a

fine-grained and low-overhead identity management scheme for multiple controllers by

19

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

hierarchical controller management and modifying the key recovery strategy. Firstly,

for hierarchical controller management, we categorize controllers into three distinct

roles based on their reliability, i.e., root controllers, delegates, and basic controllers

[55]. Different controllers are responsible for different operations within the identity

management process, such as controller management, recovering keys, and using cre-

dentials. Since root controllers possess the privilege to control the identity, we design

two ways to manage them based on the collaboration of root controllers, i.e., the

independent way and the group way. Secondly, to mitigate the key recovery cost, we

devise a secure and flexible key recovery strategy. Specifically, root controllers can

assist controllers in regaining control over their identity by substituting the addresses

stored in the blockchain. Controllers resort to the social key recovery strategy, which

incurs relatively higher overhead, only in instances where root controllers cannot ex-

ecute controller management operations.

The major contributions of the work are summarized as follows.

• We propose MoDID, a novel fine-grained identity management scheme for mul-

tiple controllers. MoDID complies with the W3C DID standard. Our low-

overhead solution allows multiple controllers to maintain reliable control over

DID subjects by precise permission limits.

• We design a secure and flexible key recovery scheme for multi-controller scenar-

ios. In MoDID, controllers can regain control through an optimized key recovery

scheme to minimize identity loss while reducing the overhead.

• We build a DID prototype platform based on the Sepolia Ethereum Test Net-

work. The result demonstrates the effectiveness of our proposed scheme in terms

of gas consumption and transmission latency compared with existing systems,

e.g., uPort.

20

3.2. System Architecture

DID
controllers

Credentials Credential kCredential 1 Credential 2

Root controllers
!"Key recovery

Controller management

Access

Basic
controller_1

Basic
controller_nDelegate_1 Delegate_m

Access

Figure 3.1: Hierarchical Identity Management Scheme in MoDID.

3.2 System Architecture

In this section, we introduce MoDID and our prototype platform for multiple con-

trollers by hierarchical controller management. Since the process of identity manage-

ment involves managing controllers and managing credentials, we divide our system

into two parts, i.e., controller management and credential management, as shown in

Fig. 3.2 and Fig. 3.4 respectively. In the controller management part, we use smart

contracts in Ethereum to hierarchically manage controllers, like adding/deleting con-

trollers or giving/removing controllers’ roles. In the credential management part,

we use smart contracts to store credentials’ addresses and use the interplanetary file

system (IPFS) to store credentials for scalability consideration.

Ethereum [6], introduced by Vitalik Buterin in 2015, is a decentralized blockchain

platform that extends the capabilities of traditional cryptocurrencies like Bitcoin.

Ethereum offers a programmable blockchain, enabling the development and execu-

tion of smart contracts [67] and decentralized applications (DApps) [7]. Another

21

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

Smart ContractDID
subject IdentityManager

addRC()
remRC()

createIdentity()
remIdentity()

addDelegate()
remDelegate()

addBC()
remBC()

KeyRecovery()
control

Identity
management

Root controller
management

Delegates
management

Key
recovery

Basic controller
management

Root
controllers

!. #$

!. %$

!. &''!

('

Delegates

'. #$

'. %$

'. &''!

Figure 3.2: Identity Management Scheme in MoDID.

component in our system is IPFS. The IPFS is a distributed file system where peers

connect to each other to store files[4]. It relies on hash-addressing to avoid redundant

storage. The users are required to remember the hash addresses of their data for

retrieval.

3.2.1 Hierachical Controller Management

We design a hierarchical controller management scheme to limit controllers’ permis-

sion reliably, as shown in Fig. 3.2. According to the process of identity management,

we classify controllers into three categories, i.e., root controllers (RC), basic controllers

(BC), and delegates.

• RCs, which are usually executives in organizations, have the highest permission

for identity. They can manage other controllers and all credentials. Especially,

the controller management functions include adding/removing other controllers

and giving controllers different permission based on their reputation. The cre-

dential management operations contain collecting, usage, and storage.

22

3.2. System Architecture

Table 3.1: Permission of Different Controllers.

RC Delegate BC

Controller management X - -

Key recovery - X -

Update credentials X - X
Present credentials X - X

• Delegates are special controllers. Delegates can assist RCs in recovering control

of their identity if RCs lose their private keys. The key recovery process will be

described in 3.2.3.

• BCs, which are less trusted, are usually staff in an organization. BCs can not

perform controller management operations, but they can present the credentials

to verifiers.

From Table 3.1, we can see that the RCs have the privilege to control the identities.

Thus, we design two ways for RCs management, i.e., independent way and group way,

as shown in Fig. 3.3 (a) and Fig. 3.3 (b) respectively. This is because any malicious

RC can optionally give any entity RC’s permission or remove other controllers, which

may lead to serious credential leakage problems. In the independent management

scheme, any RC could independently do administration operations. While in a group

management scheme, RCs must reach a m-of-n consensus using on-chain ways. Espe-

cially, only if more than ✓m RCs call the smart contract, the management operations

could be performed successfully. ✓m is a threshold. Although group management may

lead to extra gas consumption, it can significantly reduce the risk of identity imper-

sonation and privacy leakage. This is because one RC can not optionally manage

other RCs before reaching a consensus with other RCs.

MoDID improves the threshold for launching identity impersonation attacks by as-

signing distinct permissions to controllers based on their reliability. We assume that

23

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

Ethereum

Add/del
a RC

(!", $""%)

Ethereum

Add/del
a RC

(!", $""%)
m-of-n

consensus

Changing root
controller

Root
controller Root controllers

$""%
&' …

$""%
&'

Changing root
controller

(a) Independent Management Way for

RC.

Ethereum

Add/del
a RC

(!", $""%)

Ethereum

Add/del
a RC

(!", $""%)
m-of-n

consensus

Changing root
controller

Root
controller Root controllers

$""%
&' …

$""%
&'

Changing root
controller

(b) Group Management Way for RC.

Figure 3.3: Two Ways for Root Controller Management.

there are r RCs, b BCs, and d delegates in a DID system. The probabilities that

a root controller, basic controller, or delegate becomes malicious are denoted as Pr,

Pb, Pd, respectively, where Pr is significantly lower than Pb and Pd. In traditional

systems, since all the controllers possess super permission, the probability of an iden-

tity impersonation attack is max{Pb, Pr}. However, in MoDID, only RCs with high

credit have the right to manage other controllers. Besides, to limit RCs’ permission,

we support both independent way and group ways for RCs. Thus, in the independent

way, the probability of an impersonation attack is Pr. In the group way, the prob-

ability that they launch identity impersonation attacks is Pr

dr✓me, where d·e denotes

the ceiling function, indicating rounding up. Both Pr and Pr

dr✓me are lower than

max{Pb, Pr}, which shows that MoDID effectively enhances system security against

identity impersonation attacks.

The overview of our hierarchical controller management in our platform is shown in

Fig. 3.2. It comprises two smart contracts, i.e., IdentityManager and Proxy. The

IdentityManagement smart contract is used for controller management. It mainly

24

3.2. System Architecture

contains eight tasks, including creating/removing identity, adding/removing RCs,

giving/revoking BCs’ permission, managing the delegate list, and key recovery. The

Proxy contract takes responsibility for identification and interaction with extra con-

tracts.

The identityManagement smart contract contains functions related to controller man-

agement. These functions are represented as follows:

createIdentity (root_controller, delegates, management) is invoked by the

RCs to create an identity. It takes the RC address, delegates list, and management

way as inputs. Firstly, the controller generates a pair of keys based on Elliptic Curve

Cryptography (ECC). To get the address, we can use the Keccak256 algorithm and

get the hash value of the public key. The last 20 bytes of the hash value serve as the

address. Due to the one-to-one binding relationship between the user address and

the public key, in our system, the controllers are required to publicize their addresses.

The delegates list contains the delegates’ addresses. The management parameter

refers to the management method of the root controller, including group way and

independent way. After executing, it creates a Proxy instance. The instance address

serves as the identification. Through the instance, controllers can call other contracts.

After that, the root controller gains the privilege to control the identity. The root

controller can invite other controllers to jointly control the identity by calling other

related functions.

addController (id, newController) and remController (id, oldController)

are executed by RCs to add/remove other root controllers. They both take identity

and controller address to be processed as inputs. Especially, in a group management

way, unless more than ✓m RCs call these functions and reach a consensus, operations

cannot take effect. In an independent management way, any root controller can add

or remove other controllers by calling the corresponding functions.

addRecovery (id, newRec) can be executed by RCs to add delegates. This func-

25

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

tion takes the identifier and delegate’s address as inputs. After execution, the corre-

sponding delegate can help the root controllers recover control over the identity when

necessary. The opposite is remRecovery (id, newRec), which is used to remove a

delegate. Like addRecovery, it is executed by RCs. After execution, the revoked

delegate cannot participate in recovering control over the identity.

addBC (id, controllerAddr) and deleteBC (id, controllerAddr), which can

only be revoked by RCs, are used for adding/removing BCs. They take the identifier

of the subject and the address of BC as input. After addBC() function execution, the

corresponding BC can present the credentials of the subject. After revoking function

deleteBC() execution, the revoked BC cannot control the identity by presenting its

credentials.

3.2.2 Verifiable Credential Management

In this part, we introduce our verifiable credential management scheme, including

collection, usage, storage, and verification. The structure of credential management

is shown in Fig. 3.4. We use the credentialManagement smart contract for 1) stor-

ing credential storage addresses, 2) checking controllers’ permission, 3) verifying the

signatures of credentials. As for credential storage, we take advantage of the IPFS

system due to the expensive gas fees of Ethereum.

Like physical credentials, verifiable credentials are issued by authorities to prove sub-

jects’ attributes. Verifiable credentials contain three parts, i.e., metadata, claims, and

signatures. Metadata contains properties of the credential, such as the issuer’s iden-

tity, the expiry date, and the UUID. The UUID is the unique identifier of credentials.

Claims are expressed as key-value pairs, like {degree: Bachelor’s degree}. Is-

suers’ signatures ensure that the credentials are unmodified and issued by authorities.

In a verifiable credential system, there are three parts, i.e., issuers, holders, and

verifiers[63]. Issuers are usually authorities, like governments or universities. Holders

26

3.2. System Architecture

Smart Contract
CredentialManage

updateAddress()
getAddress()

checkIfUpload ()
checkIfPres ()
updateCR()
checkCR ()

verifySignature()

Storage

Update CR

Read or use
credentials

DID Controllers
& Related Entities

RCs

BCs

Issuers

Verifiers Verify
credentials

Access

Access

Assign permission
& use credentials

Figure 3.4: Credential Management Scheme in MoDID.

can present the verifiable credentials to verifiers. Verifiers will verify the validation

of the Verifiable credentials for identification or authentication. To be specific, when

holders want to prove their attributes to verifiers, holders request issuers to issue

verifiable credentials containing the attributes proof. Then, holders must sign with

their private keys to prove their ownership over the identity. Apart from integrity,

the signature can make the credential non-transferable. This is because other entities

without the correct private keys cannot forge the signature and cannot forge a correct

signed verifiable credential. The signed verifiable credential is then presented to

verifiers. The signed verifiable credential is called a verifiable presentation. Here is

an example of a verifiable presentation to prove the subject’s attribute of a bachelor’s

degree.

{

‘uuid’: ‘ec8910ad-b2d3-49ad-b27d-b73ed8bc9328’,

‘type’: ‘credential_type’,

‘issuerId’: ‘0x063103A47e4bd93A407d1435818d294408BAD44b’,

27

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

‘issuanceDate’: ‘2023-07-04 14:15:00’,

‘expirationDate’: ‘2023-07-11 14:15:00’,

‘credentialSubject’:

{‘id’: ‘0xcB4e66eCA663FDB61818d52A152601cA6aFEf74F’,

‘claim’:

{‘degree’: ‘bachelor degree’,

‘university’: ‘Hong Kong Polytechnic University’

}

},

‘proof of issuer’:

{‘type’: ‘ECDSA’,

‘verificationAddress’: ‘0x53d72B5B1Ba635D5fc03180701D25119Be91CB73’,

‘signature’:HexBytes(‘0x9f62062782015c77391bc507ac6416d2beaff380859425d

4aef80149b5b425e0408b049a4fcc317153551836267d59b48ac34124d3857acec05998

1b37a4b02a1c’)

},

‘proof of holder’: {

‘type’: ‘ECDSA’,

‘verificationAddress’: key_1,

‘signature’:HexBytes(‘0xa7011ae8435dc21e37d64630a842f1b0694332103eebf0ee

1b019f3361706ee17ca3984377e3a41fd717d94114f3f3557a625d285cce75977e87d56fb

28

3.2. System Architecture

2b19fd91b’)

}

}

After receiving the verifiable presentation, verifiers will check the validation of the

verifiable presentation, including 1) checking the expiry time, 2) checking revocation

information, 3) verifying the controller’s access, 4) verifying the signatures of holders

and issuers.

Apart from the usage of credentials, MoDID also supports credential revocation op-

erations. If the users misbehave or their credentials are at risk, issuers can revoke

users’ credentials. The issuers can upload the revoked UUIDs to the smart contract,

due to the public nature of the smart contract. They can call the setRevo function

to publicize the UUID of revoked credentials. Anyone can check whether a credential

is revoked or not by querying it.

Credential storage is vital for controllers. This is because using credentials is a fre-

quent operation, while pre-operations like issuing and signing for the credentials are

time-consuming. Thus, we support the holders in uploading the encrypted credential

presentation to the IPFS. The IPFS is a distributed file system where peers connect

to each other to store files [4]. IPFS uses content-addressing to uniquely identify

each file in a global namespace connecting IPFS hosts. The file system is maintained

by many nodes and thus reduces The risk of single-point failures. The decentralized

characteristic improves the scalability of the MoDID system. Especially, RCs can

use a shared secret key to encrypt the signed credentials. They can use any Data

Encryption Algorithm, like Data Encryption Standard (DES) or Advanced Encryp-

tion Standard (AES). After the access check by the smart contract, the RCs upload

the credentials to the IPFS. Since the IPFS rely on hash addressing, the users can

upload the hash address of their credentials to the smart contract to reduce the loss

29

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

of credentials. Note that, since multiple controllers have access to credentials, the

signatures in the credentials may be from different controllers.

The credentialManagement smart contract presents the following functions:

logUpdate (id, type,fileAddr) function will be invoked by RCs to store users’

credentials’ addresses. The first input is a string to allow users to store different cre-

dentials partly. The second input is the hash address of credentials in IPFS. After the

successful invocation, the mapping between the subject’s identifier, the type of cre-

dential, and the credentials’ storage address is recorded in the blockchain system. The

controllers can get the storage address if necessary. getCreAddr (id, controller,

type) is invoked by the corresponding controllers with permission to get the cor-

responding hash address. After getting the hash address, users can download the

encrypted credentials from the IPFS.

setRevo (UUID, cred) function can be invoked by issuers to revoke credentials. The

smart contract will check the validation of the signatures and then record the UUID.

The opposite is checkRevo (UUID), which anyone can query to check whether the

credential is revoked or not.

3.2.3 Key Recovery Scheme

In a DID system, users are responsible for properly storing private keys. The private

key loss means the complete loss of the identity, including private credentials and

digital assets. Thus, we design a flexible and low-overhead way for key recovery,

considering credential revocation and network delay. Like authentication systems

in Web2, we consider control recovery to help controllers recover control over their

identity and credential revocation (CR) after recovering controllers’ control to reduce

the risk of identity impersonation.

In the control recovery part, we discuss two situations based on whether the absence of

30

3.2. System Architecture

Ethereum

Add a root
controller

(!""#!"#)

Ethereum

Recovery
(!""#!"#)

m-of-n
consensus

Key-lost controller

!""#!"#
$%!"#

Root
controllers Delegates

…
!""#!"#
$%!"#

Key-lost controller

(a) RC-assisted Control Recovery.

Ethereum

Add a root
controller

(!""#!"#)

Ethereum

Recovery
(!""#!"#)

m-of-n
consensus

Key-lost controller

!""#!"#
$%!"#

Root
controllers Delegates

…
!""#!"#
$%!"#

Key-lost controller

(b) Social Control Recovery.

Figure 3.5: Two Recovery Mechanisms for Key-Lost Controllers.

the key-lost controller will affect the execution of controller management operations.

1) If the key-lost controllers are BCs, delegates, or RCs without whom the rest of the

RCs can still reach managing m-of-n consensus, the RCs can directly replace their

address to control the identity. We call this method RC-assisted control recovery, as

shown in Fig. 3.5 (a). Especially, the key-lost controller locally generates a new pair

of keys and informs RCs of their new addresses in an off-chain way. RCs can replace

the original address with the new one by calling remController and addController

functions so that the key-lost controller can use the newly generated key to control

the identity.

2) We also make use of social control recovery in some cases, as shown in Fig. 3.5

(b). Since it is high-overhead, we only rely on it for control recovery in the two cases.

Firstly, in group management, the rest of the RCs can not reach a m-of-n consensus

because of the absence of the key-lost RC. Secondly, in independent management,

without the key-lost RC, no other controllers have the right to add a new RC. In

social control recovery, we rely on delegates. Delegates, usually controllers’ friends

31

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

or relationships, can help RCs recover control over their identity. Especially, when

RCs lose their private keys, RCs can generate new key pairwises. Then, RCs inform

delegates of the new address in off-chain ways. After receiving the new address,

delegates can call Recovery function with the input identifier and new address. If

more than ✓r delegates call the function, the key-lost RCs can use the new private

key to control the identity again. ✓r is a threshold.

However, in an asynchronous environment, it is common for delegates to repeatedly

call the function to add different addresses as the identity root controller. Therefore,

we set a time threshold T . Within time T , only one controller can be added through

the key recovery scheme. If delegates successfully recover the private key for the

identity id in time T , the system will refuse any control recovery request from any

delegates.

After recovering controllers’ control, CR operations can reduce the risk of identity

impersonation. This is because anyone who stole the key may access credentials

stored in the IPFS, leading to privacy leakage and identity impersonation problems.

In MoDID, we consider controllers except for delegates, because delegates without

access to credentials cannot lead to credential leakage. Besides, rather than revoke

all credentials, we only revoke credentials signed by controllers except the key-lost

controller. This is secure because credentials signed by the key-lost controller are

invalid without the other controllers’ private keys. Especially, controllers first send

revoking requests to corresponding issuers. Secondly, issuers publicly store the UUID

in the smart contract after verification.

3.3 Platform Implementation and Evaluation

In this section, we build a DID prototype platform based on the MoDID algorithm.

Besides, in order to make our protocol platform user-friendly, we also build a user

32

3.3. Platform Implementation and Evaluation

interface (UI), which serves as a digital wallet. In our prototype system, the issuers

can create the issuers’ identity and issue credentials to the users. The users can create

identities, manage the controllers with fine granularity, and present credentials. The

verifiers can also verify the credentials presented by holders. To validate the feasi-

bility and practicality of MoDID, we compare the performance of MoDID and the

uPort system in various tasks. Firstly, we deploy our smart contract in the Ethereum

Sepolia Testnet. Secondly, for hierarchical controller management operations, rather

than time consumption, we evaluate the gas consumption, which measures the com-

putation of operations. This is because time consumption can be significantly reduced

if the users pay more gas fees to miners, while gas consumption is a relatively stable

measurement. Thirdly, We use time consumption to measure credentials management

operations, i.e., storage and verification. To prove the effectiveness of our scheme, we

implement the popular uPort system as the baseline approach.

3.3.1 MoDID Implementation

We implement MoDID using the Ethereum blockchain and the IPFS system. The

experiments are conducted on a MacBook Air with Apple M2 CPU and 8 GB of

RAM. We use Node 18.13.0. For the Ethereum system, firstly, we use Solidity 0.8.17

to compile the three smart contracts. Subsequently, we deploy and test the smart

contract on the Sepolia Ethereum Testnet using Truffle 5.7.2 and Infura. Truffle

achieves built-in smart contract compilation, linking, and deployment. Additionally,

the codes are written in Jupyter Notebook using Python 3.10.9 for other functions. We

use the Python library Web3 5.31.3 to interact with Ethereum and use the Python

library Ipfshttpclient 0.4.13.2 to update/download credentials in the IPFS system.

Besides, in order to make our protocol platform user-friendly, we also build a digital

wallet using Flask 1.1.2 for the backend interface. We use Web3.js and Vue.js for the

front page design.

33

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

Table 3.2: The Gas Used for Smart Contract Deployment.

Gas used Total cost (wei)

IdentityManage 5, 341, 907 96, 154, 326

Proxy 1, 342, 453 24, 164, 154

CredentialManage 1, 956, 325 3, 521, 385

In our DID ecosystem, there are 1, 000 DID subjects. We test our system using ar-

bitrary subjects. For the identity, there are 3 RCs, 35 BCs, and 3 delegates. There

are 200 credentials portraying the attributes of the DID subject. RCs can manage

other controllers, upload credentials to the IPFS, and present all credentials to ver-

ifiers. Since RCs’ privilege, we support two ways for RCs management, i.e., group

and independent management. In group management, RCs must reach a consensus

before admin functions take effect. While in independent management, every RC

could manage other RCs independently. Delegates take responsibility for key recov-

ery through on-chain voting way. BCs can only read and use credentials in the IPFS.

In our setting, the admin threshold ✓m and key recovery threshold ✓r are 2/3. Only

if more than 2 RCs/delegates vote do the controller management operations/key re-

covery operations take effect. For credential revocation, issuers will update revoked

UUIDs to smart contracts every 30 minute.

3.3.2 Performance Analysis

We deploy the smart contract on the Sepolia Testnet. Table 3.2 displays the creation

transaction details of the three smart contracts, identityManagement1, proxy2, and

credentialManagement3 respectively in the Sepolia Ethereum test network.

1https://sepolia.etherscan.io/address/0xCfEB869F69431e42cdB54A4F4f105C19C080A601
2https://sepolia.etherscan.io/address/0x5b1869D9A4C187F2EAa108f3062412ecf0526b24
3https://sepolia.etherscan.io/address/0xe78A0F7E598Cc8b0Bb87894B0F60dD2a88d6a8Ab

34

3.3. Platform Implementation and Evaluation

We compare the gas consumption with that of the uPort system. Table 3.3 shows

the comparison. Firstly, from the comparison of the independent management op-

erations, we can see that the gas consumption of some functions is lower than that

of the uPort system, including adding/removing an RC, adding/removing a delegate,

storing credential addresses, and key recovery. Creating identity operations, less fre-

quently used than other functions, costs more gas. This is because more traversal

statements are used to reduce the gas consumption of other functions. Secondly, the

group management and BC management functions are especially used in MoDID.

The group management scheme costs higher gas consumption than that of indepen-

dent management. However, the group management way can significantly reduce the

risk of identity impersonation. This is because RCs are required to reach an m-of-n

consensus in on-chain ways. BC management functions are used to add or remove

BCs, with gas consumption 5, 695 and 8, 490, respectively. Because MoDID consumes

less gas than the same operations in the uPort system, we can infer that our unique

functions for multi-controller scenarios are low-consumption.

As for the verifiable credential system, we evaluate the time consumption for storage

and verification. We first compare the transmission latency of uploading/downloading

credentials for storage with that of the uPort system. Because the users upload/download

text credentials files with small sizes, we use credential files ranging from 894Byte to

103KB for testing. The result is shown in Table 3.4. When the sizes of credentials are

894Byte, 2KB, and 103KB, the uploading/downloading delay is lower than that of

uPort. If the sizes are 7KB and 12KB, the uploading delay is lower, while the down-

loading delay is slightly higher. The transmission latency of uploading/downloading

in MoDID is similar to that of baseline on average, which implies that the latency

caused by credential transmission is acceptable.

We also test the efficiency of credential verification. In traditional schemes, verifiers

check the expiration, revocation, and signatures. While in MoDID, verifiers need

one additional operation, i.e., controllers’ permission check. We compare the time

35

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

Table 3.3: Gas Consumption Comparison.

Functions MoDID UPort system

Independent

management

Create an identity 1, 418, 356 748, 422

Add a RC 34, 319 85, 447

Remove a RC 17, 240 48, 591

Add a delegate 34, 493 36, 046

Remove a delegate 17, 016 17, 160

Key recovery 166, 245 202, 486

Add a BC 5, 695 -

remove a BC 8, 490 -

Group

management

Create an identity 1, 350, 036 -

Add a RC 128, 733 -

Remove a RC 112, 404 -

Credential
Upload credential address 75,001 84,830

Revoke credentials 52, 477 -

consumption of credential verification in MoDID with the traditional scheme. Fig. 3.6

plots the variation of time consumption with the number of revoked credentials. The

average time consumption of credential verification increases from 0.0441s to 0.0528s

because of the addition of permission checks. Although the operations bring an extra

average 0.0086s time consumption, it reduces the risk of identity impersonation and

privacy leakage.

MoDID has good scalability. First, the decentralized nature of identity management

enables MoDID with promising scalability. We use Ethereum to store users’ mapping

of identifiers and addresses. The users rely on IPFS to store the credentials. The IPFS

is a distributed file system with low uploading/downloading latency. Multiple nodes

jointly maintain identity-related data. In large-scale scenarios, when some nodes fail,

36

3.4. Chapter Summary

Table 3.4: Transmission Delay of Credential Storage.

Credential

size

MoDID UPort system

Uploading Downloading Uploading Downloading

2 KB 6.9260 ms 6.1218 ms 7.9848 ms 7.4203 ms

7 KB 8.9459 ms 8.2831 ms 8.9601 ms 8.1121 ms

12 KB 9.8459 ms 8.0857 ms 9.4342 ms 8.4042 ms

103 KB 121.5538 ms 17.2641277 ms 123.5351 ms 18.7418 ms

the whole system can also function normally. Secondly, mechanistic security makes

MoDID able to be applied to large-scale scenarios. We propose a hierarchical identity

management scheme, enabling fine-grained controller access control and optimized

key recovery mechanisms. MoDID resists impersonation attacks and reduces the key

recovery overhead. Thirdly, through the experimental results, we can conclude that

MoDID is low-overhead. MoDID consumes much less gas consumption than state-

of-the-art. Even though the time consumption of verification is slightly higher than

that of traditional models, it makes our system resist impersonation attacks caused

by malicious or misbehaving controllers. Thus, MoDID has promising scalability.

3.4 Chapter Summary

In this chapter, we propose MoDID, a fine-grained and W3C-standard compatible

identity management scheme for multiple controllers. To address the identity imper-

sonation issues not considered in existing schemes, MoDID establishes a hierarchical

identity management system, allocating different levels of credential access and con-

troller management permission to distinct controllers. Besides, MoDID proposes a

flexible key recovery scheme for multi-controller scenarios with less overhead than

existing systems. We also develop a prototype system to validate the feasibility and

37

Chapter 3. MoDID: a Fine-Grained and Secure Identity Management Scheme for
Multiple Controllers

Figure 3.6: Time Consumption Comparison of Credential Verification.

practicality of MoDID. The evaluation shows that MoDID allows multiple controllers

to securely control identities while incurring less time and gas consumption than the

uPort system.

38

Chapter 4

Privacy and Secure Enhancement

against Attacks in Multi-Controller

Scenarios

4.1 Overview

In Chapter 3, to solve the problems caused by coarse-grained identity management,

we propose MoDID, a fine-grained and low-overhead identity management scheme.

However, the security and privacy issues have not been completely addressed. In this

chapter, we focus on the issues stemming from blockchain’s characteristics, i.e., data

transparency and high ledger-commit latency. We find two attacks for multi-controller

identities caused by the blockchain’s characteristics, i.e., controller-correlation attacks

and identity impersonation attacks by revoked controllers. We also propose a privacy-

preserving and secure decentralized identity management scheme to resist the two

attacks. This chapter is structured as follows. In Section 4.2, we give a detailed

description of our proposed problems in multi-controller scenarios, i.e., controller-

correlation attacks and identity impersonation attacks by revoked controllers. To

39

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

mitigate controller correlation attacks, we present a privacy-preserving scheme and

its detailed designs in Section 4.3. To reduce the risk of identity impersonation

attacks, we propose a lightweight identity authentication scheme, which is introduced

in Section 4.4. Finally, we conclude this chapter in Section 4.6.

4.1.1 Problem Statement

DID is a robust and privacy-preserving identity management scheme in Web3 ap-

plications. In 2022, W3C defines the DID application to multi-controller scenarios.

There is research on decentralized identity management in multi-controller scenarios.

The uPort [39] allows multiple controllers to control an identity. But uPort is coarse-

grained on privilege allocation. Based on the uPort system, we propose MoDID in

Chapter 3, which is a hierarchical identity management scheme with fine-grained con-

troller access control. controllers are divided into three distinct roles based on their

reliability, i.e., root controllers (RC), delegates, and basic controllers (BC). Different

controllers are responsible for different operations within the identity management

process, such as controller management, key recovery, and credentials presentation.

Despite these advancements, current solutions do not pay attention to the preva-

lent linkability of controllers and the demanding real-time retrieval of public keys in

multi-controller scenarios. The root cause of this oversight lies in the failure to con-

sider the characteristics of blockchain systems, namely data transparency and high

ledger-commit latency.

The missing consideration of the controller likability and real-time retrieval require-

ment may lead to serious privacy and security problems.

• Controller-correlation attacks. It is common practice for controllers to use

a single key pair to control multiple subjects in traditional solutions. The bad

thing is that controllers directly upload the plaintext of public keys to the

blockchain[50]. Due to the data transparency nature of blockchain systems, the

40

4.1. Overview

18031 18032 18033 18034 18035

Blockchain

Id Controller
!"! (#$", #$# , #$$)

!"% #$"
!"& #$#
!"' #$$
!"((#$$, &'')
… …

Controller
correlation

attacks
Adversary

Relationship privacy

!"% and !"& have
colleague

relationship in !"!

!"! and !"(have
the same staff !"'

2. Inference

1. Extract

Figure 4.1: An Example of Controller-correlation Attacks.

public keys are linkable. This insufficient consideration leads to the leakage of

user privacy. Adversaries can correlate the public keys and infer relationships

between different subjects, like colleague relationships, as shown in Fig. 4.1.

• Identity impersonation attacks by revoked controllers. The verifiers are

assumed to retrieve real-time public keys for verification, which is impracticable.

The verifiers with capability-limited devices experience long-time block synchro-

nization latency to synchronize blocks. They may retrieve stale public keys in

the verification process [28, 24]. Consequently, the revoked controllers can im-

personate the identity, and access illegal resources, as shown in Fig. 4.2. This

problem becomes more severe for multiple-controller scenarios due to frequent

revocation operations on the controllers.

4.1.2 Sketch of Solution

To address the above issues encountered by the existing system, we propose a privacy-

preserving and secure identity management scheme for multiple controllers, which

41

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

18031 18032 18033 18034 18035

Global
blockchain

18031 18032 18033

Verifier
synchronized

blocks

1. Revoke
controller 2

2. Present

Signature (!"!)

cred

Holder
org

cController 1
($%", '%")

cController 2
($%#, '%#)

Verifier
3. Valid !"!

4. Verify
successfully

Figure 4.2: An Example of Identity Impersonation Attack by Revoked Controllers.

complies with the W3C DID standards [50]. We can prevent external adversaries

from inferring the relation between different DID subjects. Besides, our system en-

ables the verifiers to access fresh public keys without compromising system avail-

ability. To resist to controller-correlation attacks, we design a privacy-preserving

controller management scheme based on the Merkle tree. Specifically, the controllers

of multi-controller identities locally construct a Merkle tree containing the controllers’

public keys and permission. Subsequently, they upload the digest of the Merkle tree

to the blockchain. By concealing controllers’ public keys behind the digest, adver-

saries are unable to deduce relationships between identities by correlating controllers’

public keys. To solve the insecure controller revocation problem, in our scheme, the

verifiers only download lightweight block headers regularly, rather than synchroniz-

ing heavy blocks. The holders take responsibility for providing the freshness proof,

proving that their digest is included in the newest block. With the proof and block

42

4.2. System Design

headers, the verifiers can access up-to-date public keys efficiently, reducing the risk

of impersonation attacks from revoked controllers.

The major contributions of the work are summarized as follows.

• We find two new attacks caused by multiple controllers toward DID manage-

ment, i.e., controller correlation attacks and impersonation attacks caused by

controller revocation. These attacks may lead to serious privacy leakage and

insecure authentication problems.

• We propose a privacy-preserving and secure identity management scheme for

multiple controllers to resist the two attacks. Our scheme allows the controllers

to prove ownership over the identities without publicizing their public key. Be-

sides, our secure authentication strategy allows the verifiers to access up-to-date

public keys without synchronizing heavy blocks

• We build a DID prototype platform based on the Sepolia TestNet. The result

demonstrates the effectiveness of our proposed scheme in terms of gas consump-

tion, and cost of proof generation and verification compared with the state-of-art

work.

4.2 System Design

4.2.1 System Model

Our system contains four different roles. We summarize the roles and their functions

in the following.

• Ethereum system: The Ethereum system supports smart contracts. It serves

as a public ledger to maintain the mapping between users’ identifiers and public

43

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

keys. The parties participating in the authentication process, as well as any

external parties, can fetch the public key with the input identifiers.

• Issuer: Issuers refer to the centralized authorities, like governments or univer-

sities. These authorities can issue verifiable credentials to the holders.

• Holder: The holders are usually users in the Web3 era. They can collect

verifiable credentials from issuers and keep these credentials in their own wallets.

If they want to get authentication, they can present the verifiable credentials

to the verifiers. The presented verifiable credentials are also called verifiable

presentation.

• Verifier: The verifiers are usually web service. They participate in the au-

thentication process by verifying the verifiable presentation presented by the

holders. Apart from checking basic information, the verifiers are required to

fetch public keys from the blockchain system, and then verify the signatures of

both issuers and holders. After credential verification, the verifiers can provide

web resources for the qualified holders.

4.2.2 Threat Model

We find two attacks that may arise in the existing DID systems, which impede the

application of DID in multi-controller scenarios. In this section, we describe the two

attacks, i.e., controller correlation attacks, and identity impersonation attacks.

Controller correlation attacks

We assume that the adversary can access the data recorded in the blockchain. The

adversary’s goal is to infer the relationship privacy between different subjects by

correlating the controllers’ public keys in the blockchain. We assume that the verifiers

are not curious about the relationship privacy. We also assume that the adversary

44

4.2. System Design

can not eavesdrop on the communication between the holders and verifiers due to the

high cost.

The adversary can implement controller-correlation attacks. This is because the con-

trollers upload the plaintext of mapping(id, pk) to the blockchain. The controllers

may use a single key pair to control multiple subjects. The adversary can fetch public

keys recorded in the blockchain and infer the relationship between different identities

by linking public keys. Fig. 4.1 illustrates an implementation example of the pro-

posed controller-correlation attacks. By correlating pk1 and pk2, the adversary may

infer that the id2 subject and the id3 subject are colleagues in the organization with

id1. Besides, by correlating pk3, the adversary can infer that organizations with id1

and id5 have the same staff with id4.

Identity Impersonation Attacks

We assume that the adversary previously had control over the multi-controller iden-

tity, but this access was recently revoked. The adversary’s goal is to impersonate

the identity and enjoy the illegal resources, even though he is removed. Besides,

we assume that the verifiers are full nodes and take part in the ledger-commitment

process.

The adversary can launch the identity impersonation attacks. In DID systems, con-

trollers’ public keys are recorded in the blocks. Due to high block synchronization

latency, the verifiers with capability-limited devices may experience long-time latency

in synchronizing the latest blocks. Thus, the verifiers may have difficulty in retrieving

the real-time public keys. Due to the stale public key retrievals, the adversary may

impersonate the identity after revocation and enjoy illegal resources. Fig. 4.2 shows

an example of identity impersonation attacks. The revocation operation of controller

2 is executed in block 18034. After the emergence of block 18035, controller 2 presents

the organization’s credential to the verifier with only the first 18033 blocks. Despite

45

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

the revocation, the verifier incorrectly validates the credentials. This is because,

without the latest two blocks, the verifier mistakenly considers that controller 2 still

retains control over the identity.

4.2.3 Use Case

Our system provides a strong privacy and security guarantee. Thus, our system has

a wide range of use cases. We list several examples of what our system brings to the

Web3 ecosystem.

Know Your Customer (KYC). Laws in various jurisdictions require service providers

to meet strict compliance responsibilities to identify or qualify their customers, for

example, through KYC [38]. Authentication often requires the user to provide per-

sonally identifiable information (PII). However, there are no universal identifiers for

authentication. Credentials with different schemas can increase the burden of the

verifiers. Our system serves as a decentralized and universal identity management

scheme, which makes it possible for users to use universal identifiers and credentials

for authentication.

Decentralized social networks in Web3. Apart from the web services, the users may

also need authentication and control of access to build healthy social networks1. Cus-

tomizable access control is important in the Web3 era. For example, it is a common

need for users to block unwanted calls from unknown numbers [14] or block spam

from unknown senders [1]. Traditionally, centralized service providers, like telephone

operators or email operators, can classify wanted or unwanted social requests using

artificial intelligence technologies [29]. However, the centralized strategy is difficult to

apply directly to the Web3 era, due to its potential privacy leakage and data central-

ization. Secondly, achieving customizable access control leads to high overhead. In

our system, everyone can define individual access policies using low overhead. They

1https://www.kaleido.io/blockchain-blog/use-cases-for-decentralized-identity.

46

4.3. Privacy-preserving Scheme for Controller Correlation Attacks

can verify the provided credentials using the public keys recorded in the blockchain

system and authenticate the other individuals’ identities easily in a decentralized and

privacy-preserving manner.

4.3 Privacy-preserving Scheme for Controller Corre-

lation Attacks

Existing systems for multi-controller scenarios may lead to controller-correlation at-

tacks. In our system, we propose a privacy-preserving scheme based on the Merkle

tree for the controller registry. Our scheme allows controllers to prove their ownership

over an identity without publicizing their public keys.

The Merkle tree algorithm [34] is proposed by Ralph Merkle in 1979, which is a vec-

tor commitment scheme [45]. The algorithm is widely applied in blockchain systems

for its efficient data verification and privacy preservation. The basic structure of the

Merkle tree is the tree data structure. It can be a binary tree or a polytree. Here, we

use the binary tree as an example. We define the input of the Merkle tree as vector

V = (m1,m2, ...,mn), which can be data with arbitrary length. Firstly, to get the leaf

nodes, we compute the hash value of each element mi. Due to the one-way character-

istic of the hash function, it is difficult to infer mi based on the hash value. Secondly,

the Merkle tree hashes all elements in V and then recursively hashes the result in

a pairwise manner using the defined hash function until obtaining a single element

called Merkle root or digest. The Merkle root serves as the commitment of the vector.

Given the Merkle root, We can determine whether an arbitrary element is contained

by vector V in an efficient and privacy-preserving manner. For membership proof,

we only obtain the sibling nodes of the targeting leaf nodes. Opposite, we compute

the hash value of the Merkle proof in a pairwise manner and compare the computed

digest with the given one. Thus, The time complexity of proof generation and veri-

47

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

fication is both O(logn). The Merkle tree can also be used for privacy preservation.

Besides, it can also be used to protect users’ privacy. This is because it allows users

to certify that potential candidates are an element of a certain set without revealing

the other members of the set.

We consider a hybrid DID system, including single-controller identities and multi-

controller identities. For single-controller identities, the controller just uploads the

plaintext public keys to the blockchain, because they are not linkable. For multi-

controller identities, the controllers can build a pk Merkle tree containing the con-

trollers’ public keys. They only upload the digest of public keys to the blockchain.

Due to the one-wayness of the hash function, adversaries cannot infer public key

information from the digest.

Specifically, for multi-controller identities, the controllers locally build pk Merkle tree

and upload the digest to the blockchain system.

• Local digest computing. We define the controller vector V = {v1, v2, ..., vn}.

To be compatible with the hierarchical scheme in the MoDID system, we de-

fine controller i using vi = {pki, ri}. pki is the public key. ri is the role of

the controller. Controllers with different roles have distinct access to identity

management operations. With V as input, the controllers build the pk Merkle

tree. Firstly, the controllers compute every leaf node. leafi = hash(vi). They

can use arbitrary hash functions. Here, we use the SHA256 algorithm as an

example. The controllers hash all leaves and recursively hash the result in a

pairwise manner until obtaining a single element called digest or Merkle root.

With the pk Merkle tree, any controller can efficiently prove their ownership

over the identity without leaking other controllers’ public keys.

• Digest upload. After obtaining the digest, any controller i owning high permis-

sion with vi uploads the mapping to the smart contract. Firstly, the controller

i calls the corresponding function in the smart contract. The controller is also

48

4.3. Privacy-preserving Scheme for Controller Correlation Attacks

called smart contract caller. Apart from identifier and digest, the smart con-

tract caller is required to provide Merkle proof ⇢pk of the pk Merkle tree. The

Merkle proof proves that vi is a member of V , which means that the smart

contract caller possesses the privilege to control the identity. Specifically, the

Merkle proof is the hash value of the encountered sibling nodes along the path

upwards, starting from the target leaf node. Then, the smart contract verifies

Merkle proof ⇢pk with the given digest, and then records the mapping(id, digest)

in the blockchain.

Ethereum

Id pk

!"! "!#$%&!
!"" '(!
!"# '("
!"$ "!#$%&$
!"% '(#
!"& '($
!"' "!#$%&&
… …

Upload digest

!"#$%&

('(!, *!) ('(", *") ('(#, *#) ('($, *$)

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

"!#$%&!
(ℎ!"#$)

Organization
with !"!

'!"

Verifier

Figure 4.3: A Privacy-preserving Scheme for Controller-correlation Resistance Based

on Merkle Tree.

Fig. 4.3 shows an example of the registry process of an identifier with four controllers.

The controllers construct a pk Merkle tree with input {(pk1, r1), ..., (pk4, r4))}. Then,

they upload digest1 to the blockchain. If the controller with (pk1, r1) wants to prove

their ownership over the identity, they can provide the Merkle proof ⇢ = {h2, h34} for

ownership verification. After that, the controllers can use the identity for authenti-

cation by providing the membership proof ⇢pk of the pk Merkle tree.

49

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

We also support controller changes. 1) Controller addition. If the controllers want to

invite other controllers with (pkj, rj) to jointly control the identity, they can modify

the local Merkle tree. Then upload the newly generated digest to the blockchain. Af-

ter execution, the controller with (pkj, rj) can control the identity with corresponding

permission. 2) Controller revocation. It is similar to controller addition operations.

The controllers remove the corresponding leaf nodes in pk Merkle tree and obtain a

new digest. Then the controllers upload the newly generated digest to the blockchain.

Security analysis. Our system can resist to controller-correlation attacks. In our

system, the controllers locally build the pk Merkle tree by recursively hashing nodes.

They only upload the digest to the blockchain. The one-wayness of the hash function

means that we cannot infer public key information from the digest. Thus, the adver-

saries can not infer a relation between different identities by correlating the public

keys recorded in the blockchain.

4.4 Identity Authentication Scheme with Secure Con-

troller Revocation

In Section 4.3, we propose a privacy-preserving scheme based on the Merkle tree

structure for controller-correlation attacks. However, frequent controller changes con-

tradict the difficulty for verifiers to access the latest block data in an asynchronous

environment. The revoked controllers may impersonate the identity and access illegal

resources. To address this problem, we design a lightweight identity authentication

scheme. Specifically, instead of synchronizing all heavy blocks, the verifiers only

download block headers regularly. The holders are required to provide digest fresh-

ness proof, which proves that the digest is contained by the newest block.

50

4.4. Identity Authentication Scheme with Secure Controller Revocation

4.4.1 Credential Issuance

The issuers can issue credentials to the holders. The credentials contain three parts,

i.e., metadata, claim, and signature. Metadata contains credential properties, such as

the identifier of the issuer and holder, and the unique identifier of credentials. Claims

are expressed as key-value pairs, like {age: 25}. The signature sigI of the issuers

can guarantee the integrity of the credentials. The signature also proves that the

credential is issued by authorities. This is because the adversary cannot forge the

signature without the authorities’ private keys. Then, the issuers send the generated

credentials to the controllers.

4.4.2 Credential Presentation

To make the credentials non-transferable and resist impersonation attacks caused by

revoked controllers, as shown in Fig. 4.4, the holders are required to provide digest

freshness proof prvdigest, pk validation proof prvpk, and ownership proof prvown, when

presenting credentials. prvdigest proves that the proving digest is contained by the new

block. prvpk proves the validation of the public key used for credential verification.

prvown proves the ownership over the credential.

The digest freshness proof prvdigest proves that the providing digest is the latest.

To resist impersonation attacks, the verifiers regularly download the newest block

headers rather than synchronize blocks. The controllers are required to prove that

the corresponding mapping(id, digest) is contained by the newest block of Ethereum.

The proof can be obtained from the full nodes, like Infura.

The data structure of the Ethereum system is account-based. Fig. 4.5 plots the un-

derlying storage of the mapping. Specifically, the Ethereum system takes advantage

of three trees to keep the transaction and smart contract information, i.e., transaction

tree, receipt tree, and state tree. The roots of the three trees are recorded in the block

51

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

Full node

Blockchain
system

Blocks

!"#!"#$%&

!"#'(

$%&'(), +%&& , +%&)

!,, -'(

Block
headers

Verifier

⋮
/ block
headers

Holder !"#*+,

0"'$, (%&12)3"'

verification

Figure 4.4: A Secure Credential Presentation and Verification with Digest Freshness.

headers. The transaction tree and receipt tree contain all the transaction information

and receipt information respectively. State tree records all the accounts and their

state, including the mapping between the smart contract account and its state. The

mapping(id, digest), as well as other data related to the smart contract, is stored in

the storage tree. The root of the storage tree is maintained in the corresponding state

field of the smart contract account. The account-based feature makes the traditional

Merkle tree data structure difficult to apply directly in the Ethereum system. This

is because frequent updates of account state may lead to high storage overhead or

inconsistent status of blocks. Thus, the Ethereum system adopts Merkle Patricia Trie

(MPT) [74]. MPT is a special Merkle tree that efficiently stores key-value pairs by

compressing the keys. It has high retrieval efficiency and supports efficient member-

52

4.4. Identity Authentication Scheme with Secure Controller Revocation

Block N header

Receipt rootTransaction rootState Root

Block numTimestampPrev Hash

! Transaction
MPT

! Receipt
MPT

Nonce Balance CodeHash Storage root

Code

str 29

Block N+1 header

Receipt rootTransaction rootState Root

Block numTimestampPrev Hash

Transaction
MPT for block

N+1

Receipt MPT
for block N+1

Nonce Balance CodeHash Storage root

25Merkle-Patricia state trie
for block N

Merkle-Patricia state trie
for block N+1

Figure 4.5: The Data Structure of the Ethereum System.

ship proof. Thus, the digest freshness proof comprises two Merkle proofs of MPT

�str and �stt. �str proves that mapping(id, digest) is maintained in the storage tree

of the smart contract. �stt proves that the smart contract and its state are stored in

the state tree. Like Merkle proof, the membership proof of MPT is the hash value of

the encountered sibling nodes along the path upwards, starting from the target leaf

node. With the state root recorded in the block header, the validation of the digest

can be verified.

pk validation proof prvpk proves that the public key is validated for credential verifi-

cation. Specifically, the controllers generate the Merkle path ⇢pk of the latest digest.

This can prove that the public key is valid since his public key is contained by the

digest with good freshness.

The ownership proof prvown is used to prove the ownership over the presented creden-

tials. The above two proofs only prove the validation of the public key, but cannot

prove that the person presenting the credential holds the corresponding private key.

Thus, the controllers can sign for the credentials using their private key and get sigH .

53

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

The signature can guarantee the integrity of the credentials. The signature also proves

that the signer has the correct private key to control the identity. The credentials

are non-transferable because only controllers with the correct private key can use the

credentials.

Thus, the credential presentation (VP) is made up of verifiable credentials and proof

from controllers, which can be defined as equation 4.1.

vp = {metadata, claim, sigI , �str, �stt, ⇢pk, sigH}. (4.1)

4.4.3 Credential Verification

After receiving the presented credentials, the verifiers verify the validation of the

credentials. To make the identity system resist controller-correlation attacks and

identity impersonation attacks caused by insecure controller revocation, the verifiers

are required to regularly download block headers from full nodes and successively

verify digest freshness proof, pk validation proof, and ownership proof.

In our system, the verifiers only maintain several fresh block headers for credential

verification. In traditional systems, the verifiers are required to synchronize all heavy

blocks. They may have difficulty in promptly synchronizing the latest blocks, and

thus obtain stale digest for verification, due to long block synchronization latency

in an asynchronous environment. In our system, the verifiers regularly download

block headers from full nodes and locally keep a certain number of block headers for

verification. Block headers are accessible, because of their lower block propagation

latency. The transmission latency is lower because of its small size. The propagation

of block headers does not require verification, which leads to less latency.

However, in an asynchronous environment, strict freshness can reduce the system’s

availability. This is because the time consumption for proof generation and data trans-

mission is not negligible, leading to unavoidable authentication failure. We make a

54

4.4. Identity Authentication Scheme with Secure Controller Revocation

tradeoff of freshness and availability. The verifiers can keep a list with several block

headers. The number of block headers retained by the verifiers is denoted by ↵.

Specifically, the verifiers regularly update the block header list. If the difference be-

tween the current timestamp and the timestamp in the latest local block header is

larger than the average block generation time, the verifiers modify the network con-

figuration to get the latest global block header. This ensures that the verifiers have

fresh block headers for credential verification. Our scheme substantially reduces stor-

age overhead. In traditional systems, verifiers must store all blocks; in contrast, our

approach only requires them to store a limited number of block headers. Let N rep-

resent the total number of blocks in Ethereum. According to statistics2, the average

size of Ethereum blocks is 20 KB. The average size of Ethereum block headers3 is

approximately 0.496 KB. Thus, we reduce the storage overhead for verification from

20N KB to 0.496↵ KB, where 0.496↵ KB is much lower than 20N KB.

With the state root rs in the block headers, the verifiers verify the digest freshness

proof, pk validation proof, and the ownership proof in sequence, which is defined as

the equation 4.2.

V erify(rs, sigI , �str, �stt, ⇢pk, sigH)
?
= 1. (4.2)

For digest freshness verification, the verifiers compute the storage root with �str and

digest. Then, they verify �str with the computed storage root and the state roots in

the local block header list. After verifying, the verifiers believe that the given digest

is fresh enough for authentication. To verify the pk validation proof, the verifiers

compute the digest by recursively computing the hash of ⇢pk. If the computed digest

equals the proved one, the verifier considers the proved public key to be valid. Thirdly,

the verifiers verify the signatures of both the controller and issuer. The signatures

ensure the integrity of credentials. Besides, after the controller’s signature verification,

the verifiers believe the controller’s ownership over the credential. After verifying the

2https://github.com/Ice-Storm/structure-and-interpretation-of-blockchain/blob/master/6_2.md
3https://blog.csdn.net/nina_1314521/article/details/130035921

55

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

issuer’s signature, the verifiers believe that the credential is issued by authorities.

Security analysis. Our system achieves secure controller revocation. In our system,

instead of synchronizing heavy blocks, the verifiers only download lightweight block

headers regularly. The holders take responsibility for providing the freshness proof.

The verifiers can verify the freshness of the digest. Thus, the revoked controllers

cannot impersonate the identities.

4.5 Platform Implementation and Evaluation

In this section, we build a DID prototype platform to evaluate the performance of

our system. To prove the effectiveness of our scheme, we implement the MoDID

system, as the baseline. This is because in our first work, MoDID, we conduct a

performance comparison with the state-of-art work. The experiments demonstrate

the effectiveness of MoDID. In our second work, we mainly focus on the functional

comparison with MoDID.

Firstly, we deploy our smart contract for identity management in the Sepolia Test-

net. Secondly, for controller management operations, we test both time consump-

tion for local pk Merkle tree modification and gas consumption for digest update.

Thirdly, for the verifiable credential subsystem, we simulate the interactions between

the credentials holders and verifiers. Specifically, we focus on parameters such as time

consumption of proof generation and verification, as well as proof size.

4.5.1 Experiment Setting

We implement our system using the Ethereum blockchain. The experiments are

conducted on a MacBook Air with Apple M2 CPU and 8 GB of RAM. For the con-

troller management operations, firstly, we use Solidity 0.8.17 to compile the IdManage

56

4.5. Platform Implementation and Evaluation

smart contract. Subsequently, we deploy and test the smart contract on the Sepolia

Ethereum Testnet using Truffle 5.7.2 and Infura. Additionally, for credential pre-

sentation and verification operations, the codes are written in Visual Studio Code

1.74. We use Python 3.12.0. We use the Python library Web3 6.4.0 to interact with

Ethereum and use the Python library Pymerkle 6.1.0 for operations related to the

Merkle tree, including building, proof generation, and verification.

In our DID ecosystem, there are 1, 000 DID subjects, including both single-controller

identities and multiple-controller identities. To be compatible with MoDID, we also

divided the controllers into three distinct roles, RC, delegate, and BC. We test our

system using arbitrary multi-controller identity. For the identity, there are 3 RCs and

13 BCs. There are 20 credentials portraying the attributes of the DID subject. Due

to the same operation process between BC and delegate management, we only choose

BC as an example to test the system performance. The controllers locally maintain

a pk Merkle tree containing the controllers’ public keys and permission. The digest

of the Merkle tree is uploaded to the blockchain.

4.5.2 Performance Analysis

Firstly, we deploy and test the IdManage4 smart contract on the Ethereum Sepolia

Testnet. The gas consumption is 1480024. The total gas fee consumption is around

0.00165 ETH.

For controller management operations, we evaluate the time consumption for local

pk Merkle tree modification. Subsequently, we compared the gas consumption of

our system with a baseline. Table 4.1 illustrates the gas consumption comparison

alongside local time consumption. Firstly, for the time consumption, we can see that

the time consumption ranges from 0.0019ms to 0.2260ms. The results prove that the

operations related to the Merkle tree do not introduce significant time consumption.

4https://sepolia.etherscan.io/address/0xf2e93663F877AA4B333C2773b57c1BB33ECd8496

57

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

Table 4.1: Gas Consumption Comparison and Local Time Consumption for Controller

Management Operations.

Operations
Our system MoDID

Time

overhead

Gas

overhead

Gas

overhead

Create an identity 0.1600 ms 98,776 1,418,356

Add a RC 0.0458 ms 42,587 34,319

Del a RC 0.1221 ms 46,491 17,240

Add a BC 0.1130 ms 36,414 5,695

Del a BC 0.2260 ms 40,406 8,490

Table 4.2: Cost for Proof Generation and Verification.

Proof

type

Proof

size (KB)

Proof generation

time (ms)

Verification

time (ms)

MoDID prvown 0.419 4.804 20.193

Our

system

prvown 0.419 5.515 6.328

prvdigest 2.000 23.226 2.602

prvpk 0.337 0.011 0.010

Secondly, from the gas consumption comparison, we can see that the gas consumption

of identity creation operations is much less than the baseline. Regarding RC and BC

management operations, they result in slightly higher gas consumption compared to

MoDID. Even though the computation of the Merkle tree leads to extra time and gas

consumption, our scheme can make the identity management system reduce the risk

of privacy leakage.

In the authentication process, we evaluate the cost of credential presentation and

verification process. We evaluate the proof size, and time consumption involved in

58

4.5. Platform Implementation and Evaluation

these processes. Table 4.2 presents the comparison of the cost for proof generation and

verification. Firstly, the comparison reveals that in our system, the proof size exceeds

the baseline by 2.337 KB. This increase is attributed to the additional requirements

of providing digest freshness proof (prvdigest) and pk validation proof (prvpk) alongside

the ownership proof. Despite the resultant increase in proof size, our system effectively

mitigates controller-correlation and impersonation attacks. Secondly, compared with

MoDID, our system leads to higher proof generation time consumption. This is

because to resist identity impersonation attacks, the holders are required to prove

that their digest is contained in the newest block. The digest freshness generation

requires retrieving the data from the whole blocks. Thirdly, our system consumes less

verification time. In our system, rather than retrieving public keys and permission

from the whole blocks, the verifier only performs a series of hash operations locally

for verification. The results indicate that the system has good overall performance.

This is because a holder occasionally initiates authentication requests, while a verifier

handles substantial verification work.

Specifically, we conduct detailed tests on the efficiency of the credential verification

scheme. In the MoDID system, the verifier retrieves the controllers’ public key and

permission from the blockchain, and then verifies the signatures. While in our sys-

tem, verifiers verify the digest freshness proof, check the controller’s public key and

permission, and verify the signatures. The verification process in our system does not

involve time-consuming on-chain data retrieval operations. Since we do not consider

credential revocation in our second work, we only compare the time consumption for

credential revocation without revocation checks. Fig. 4.6 plots the variation of time

consumption with the number of credentials. We can see that time consumption in-

creases with the number of verifying credentials. Additionally, the growth rate in our

system was significantly lower than the MoDID system. Thus, our credential verifica-

tion scheme is low-overhead. The high verification efficiency for identity management

enables our system with promising scalability.

59

Chapter 4. Privacy and Secure Enhancement against Attacks in Multi-Controller
Scenarios

Figure 4.6: Time Consumption Comparison for Credential Verification.

4.6 Chapter Summary

In this chapter, we present a secure and privacy-preserving identity management

scheme for multiple controllers, to address relationship privacy leakage and iden-

tity impersonation issues that existing DID systems have not adequately addressed.

First, to address the relationship privacy leakage issues caused by the linkability of

public keys, we develop a Merkle tree-based masking mechanism. This mechanism

obscures identity association by transforming public keys into digests. Second, to

resist identity impersonation attacks caused by high block synchronization latency,

we introduce a lightweight authentication scheme. Our scheme reduces the risk of

identity impersonation by liberating verifiers from the burden of synchronizing heavy

blocks. Finally, comprehensive evaluations demonstrate that our scheme significantly

enhances security and privacy while maintaining high throughput and low overhead,

60

4.6. Chapter Summary

compared with state-of-the-art work.

61

Chapter 5

Conclusions and Future Research

5.1 Conclusion

In this thesis, we propose a secure and privacy-preserving identity management scheme

for multiple controllers. We focus on the issues caused by both existing coarse-grained

identity management and the intrinsic characteristics of blockchain systems. We solve

the two kinds of issues in our first and second work respectively.

• We propose MoDID to solve the problems caused by coarse-grained identity

management, i.e., identity impersonation by malicious controllers and high key

recovery overhead. MoDID is a fine-grained and W3C-standard compatible

identity management scheme for multiple controllers. To address the identity

impersonation issues in the existing DID system, we propose a hierarchical

identity management system, allocating different levels of credential access and

controller management permission to distinct controllers. Additionally, we pro-

pose an optimized key recovery scheme for multi-controller scenarios with less

overhead than existing systems. To validate the feasibility and practicality of

MoDID, we develop a prototype system. The experimental result shows that

62

5.2. Future Work

MoDID allows multiple controllers to securely control identities while incurring

less time and gas consumption than the uPort system.

• We find two new attacks caused by blockchain’s characteristics, i.e., controller

correlation attacks and identity impersonation attacks by revoked controllers.

To resist the two problems in the existing systems, we propose a privacy-

preserving and secure identity management scheme. For controller-correlation

attacks, we design a privacy-preserving controller management scheme, enabling

the controllers to prove their ownership over the multi-controller identities with-

out publicizing their public keys. Additionally, to resist the identity imperson-

ation caused by insecure controller revocation, we design a lightweight authen-

tication scheme with secure controller revocation, freeing the verifiers from syn-

chronizing heavy blocks to reduce the risk of identity impersonation. Finally,

we implement our system on the Sepolia TestNet to evaluate the practicality of

our proposed scheme. The result demonstrates that our system allows multiple

controllers to control an identity in a secure and privacy-preserving manner with

acceptable gas and time consumption, compared with the state-of-art work.

5.2 Future Work

Even though we propose a secure and privacy-preserving identity management scheme

for multiple controllers, our current work certainly has some limitations. In future

work, we will focus on further improving the security performance of the current

systems for multiple controllers.

• Controller-correlation attacks from the verifiers. Even though we pro-

pose a privacy-preserving scheme to resist controller-correlation attacks from

inferring the relationship between different identities, we assume that the veri-

fiers are not curious about the relationship privacy between different identities.

63

Chapter 5. Conclusions and Future Research

However, it is possible for verifiers to obtain relationship information by link-

ing different public keys and hashes of public keys in the credentials. In our

scheme, the controllers expose the identifiers, public keys, and Merkle proof to

the verifiers. The Merkle proofs contain the hashes of public keys. The public

key and hash value correspond one-to-one. Thus, after long-time accumulation

or collusion with other verifiers, the verifiers can launch controller-correlation

attacks by linking the public keys and the hash of public keys. In the future, we

plan to combine the zero-knowledge proof [64] and the accumulator algorithms

[51], which can allow the controllers to prove ownership over the multi-controller

identities even without their public keys or the hash values of public keys to the

verifiers.

• Identifier-correlation attacks. Apart from the linkability of controllers’ pub-

lic keys, the linkability of the identifiers may also lead to serious privacy leakage

problems. Although the users can disclose minimal information to verifiers for

authentication, it is possible for the verifiers to launch identifier-correlation at-

tacks and to access extra privacy information by concluding with other verifiers

by colluding with other verifiers. Specifically, it is common for users to present

credentials containing distinct privacy information to multiple verifiers. Dif-

ferent verifiers can correlate the received credentials by linking the identifiers

recorded in the credentials. This can pose a great threat to the privacy data of

users. Thus, it is important to hide the identifier in the authentication process.

In the future, We can take advantage of anonymous credentials [14, 72, 44, 36]

by using cryptography technologies. This can allow the users to present creden-

tials for authentication without disclosing their identifiers. Thus, the verifiers

cannot infer the privacy of the users by correlating the identifiers recorded in

the credentials.

• Sybil attacks. Sybil attacks impede the application of DID in multi-controller

scenarios. The Sybil attack means that the attacker can create multiple iden-

64

5.2. Future Work

tities to access web resources at a relatively low cost. Many Web3 applica-

tions, such as airdrop distributions, require identity systems that are resilient

to Sybil attacks. This is because a successful Sybil attack could potentially

lead to huge property losses for airdrop campaigns. Existing Sybil-resistance

solutions normally rely on the biometric attributes of human beings 1 or rely

on the current identifier of authorities [59, 33]. These solutions cannot be ap-

plied in multi-controller scenarios directly. We plan to propose a low-overhead

Sybil-resistance scheme to improve the threshold to launch Sybil attacks for

multi-controller scenarios.

1https://zh-cn.worldcoin.org/

65

References

[1] Andronicus A Akinyelu. Advances in spam detection for email spam, web spam,

social network spam, and review spam: Ml-based and nature-inspired-based tech-

niques. Journal of Computer Security, 29(5):473–529, 2021.

[2] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef,

and Erik Zenner. Ripple: Overview and outlook. In Trust and Trustworthy Com-

puting: 8th International Conference, TRUST 2015, Heraklion, Greece, August

24-26, 2015, Proceedings 8, pages 163–180. Springer, 2015.

[3] Oscar Avellaneda, Alan Bachmann, Abbie Barbir, Joni Brenan, Pamela Dingle,

Kim Hamilton Duffy, Eve Maler, Drummond Reed, and Manu Sporny. De-

centralized identity: Where did it come from and where is it going? IEEE

Communications Standards Magazine, 3(4):10–13, 2019.

[4] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561, 2014.

[5] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A

Kroll, and Edward W Felten. Sok: Research perspectives and challenges for

bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and privacy,

pages 104–121. IEEE, 2015.

[6] Vitalik Buterin. Ethereum: platform review. Opportunities and Challenges for

Private and Consortium Blockchains, 45, 2016.

66

References

[7] Vitalik Buterin et al. A next-generation smart contract and decentralized appli-

cation platform. white paper, 3(37):2–1, 2014.

[8] Diego Cagigas, Judith Clifton, Daniel Diaz-Fuentes, and Marcos Fernández-

Gutiérrez. Blockchain for public services: A systematic literature review. IEEE

Access, 9:13904–13921, 2021.

[9] Wei Cai, Zehua Wang, Jason B Ernst, Zhen Hong, Chen Feng, and Victor CM

Leung. Decentralized applications: The blockchain-empowered software system.

IEEE access, 6:53019–53033, 2018.

[10] Chuan Chen, Lei Zhang, Yihao Li, Tianchi Liao, Siran Zhao, Zibin Zheng,

Huawei Huang, and Jiajing Wu. When digital economy meets web3. 0: Applica-

tions and challenges. IEEE Open Journal of the Computer Society, 3:233–245,

2022.

[11] Jan De Clercq. Single sign-on architectures. In International Conference on

Infrastructure Security, pages 40–58. Springer, 2002.

[12] Andrea De Salve, Andrea Lisi, Paolo Mori, and Laura Ricci. Selective disclosure

in self-sovereign identity based on hashed values. In 2022 IEEE Symposium on

Computers and Communications (ISCC), pages 1–8, 2022.

[13] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and

Ji Wang. Untangling blockchain: A data processing view of blockchain systems.

IEEE transactions on knowledge and data engineering, 30(7):1366–1385, 2018.

[14] Changlai Du, Hexuan Yu, Yang Xiao, Y Thomas Hou, Angelos D Keromytis, and

Wenjing Lou. UCBlocker: Unwanted call blocking using anonymous authenti-

cation. In 32nd USENIX Security Symposium (USENIX Security 23), pages

445–462, 2023.

[15] Paul Dunphy and Fabien AP Petitcolas. A first look at identity management

schemes on the blockchain. IEEE security & privacy, 16(4):20–29, 2018.

67

References

[16] Ji Fang, Cao Yan, and Chen Yan. Centralized identity authentication research

based on management application platform. In 2009 First International Confer-

ence on Information Science and Engineering, pages 2292–2295. IEEE, 2009.

[17] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. On the security and performance of proof of work

blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer

and communications security, pages 3–16, 2016.

[18] Harry Halpin. Nym Credentials: Privacy-preserving Decentralized Identity

with Blockchains. In 2020 Crypto Valley Conference on Blockchain Technology

(CVCBT), pages 56–67. IEEE, 2020.

[19] Tom Heath and Enrico Motta. Ease of interaction plus ease of integration:

Combining web2. 0 and the semantic web in a reviewing site. Journal of Web

Semantics, 6(1):76–83, 2008.

[20] Friðrik Þ Hjálmarsson, Gunnlaugur K Hreiðarsson, Mohammad Hamdaqa, and

Gísli Hjálmtỳsson. Blockchain-based e-voting system. In 2018 IEEE 11th inter-

national conference on cloud computing (CLOUD), pages 983–986. IEEE, 2018.

[21] Aaron Holmes. 533 million Facebook users’ phone numbers and personal data

have been leaked online, 2021.

[22] Jun Huang, Debiao He, Mohammad S Obaidat, Pandi Vijayakumar, Min Luo,

and Kim-Kwang Raymond Choo. The application of the blockchain technology

in voting systems: A review. ACM Computing Surveys (CSUR), 54(3):1–28,

2021.

[23] Jian Jiang, Haixin Duan, Tao Lin, Fenglin Qin, and Hong Zhang. A federated

identity management system with centralized trust and unified single sign-on. In

2011 6th International ICST Conference on Communications and Networking in

China (CHINACOM), pages 785–789. IEEE, 2011.

68

References

[24] Minsu Kim, Sungho Lee, Chanwon Park, Jemin Lee, and Walid Saad. Ensuring

data freshness for blockchain-enabled monitoring networks. IEEE Internet of

Things Journal, 9(12):9775–9788, 2022.

[25] Yiwei Lai, Jingyi Yang, Mingzhe Liu, Yibei Li, and Shanlin Li. Web3: Exploring

decentralized technologies and applications for the future of empowerment and

ownership. Blockchains, 1(2):111–131, 2023.

[26] Laphou Lao, Xiaohai Dai, Bin Xiao, and Songtao Guo. G-PBFT: a location-

based and scalable consensus protocol for iot-blockchain applications. In 2020

IEEE international parallel and distributed processing symposium (IPDPS),

pages 664–673. IEEE, 2020.

[27] Jan Lauinger, Jens Ernstberger, Emanuel Regnath, Mohammad Hamad, and

Sebastian Steinhorst. A-poa: Anonymous proof of authorization for decentralized

identity management. In 2021 IEEE International Conference on Blockchain and

Cryptocurrency (ICBC), pages 1–9. IEEE, 2021.

[28] Sungho Lee, Minsu Kim, Jemin Lee, Ruei-Hau Hsu, and Tony QS Quek. Is

Blockchain Suitable for Data Freshness? An Age-of-information Perspective.

IEEE Network, 35(2):96–103, 2021.

[29] Xiaoxu Liu, Haoye Lu, and Amiya Nayak. A spam transformer model for sms

spam detection. IEEE Access, 9:80253–80263, 2021.

[30] Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,

Bihan Wen, Qi Li, and Yih-Chun Hu. Make web3. 0 connected. IEEE transac-

tions on dependable and secure computing, 19(5):2965–2981, 2021.

[31] Christian Lundkvist, Rouven Heck, Joel Torstensson, Zac Mitton, and Michael

Sena. Uport: A platform for self-sovereign identity. URL: https://whitepaper.

uport. me/uPort_ whitepaper_DRAFT20170221. pdf, 2017.

69

References

[32] Kamran Mammadzada, Mubashar Iqbal, Fredrik Milani, Luciano García-

Bañuelos, and Raimundas Matulevičius. Blockchain oracles: A framework for

blockchain-based applications. In Business Process Management: Blockchain and

Robotic Process Automation Forum: BPM 2020 Blockchain and RPA Forum,

Seville, Spain, September 13–18, 2020, Proceedings 18, pages 19–34. Springer,

2020.

[33] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander

Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew

Miller. Candid: Can-do decentralized identity with legacy compatibility, sybil-

resistance, and accountability. In 2021 IEEE Symposium on Security and Privacy

(SP), pages 1348–1366. IEEE, 2021.

[34] Ralph C Merkle. A digital signature based on a conventional encryption function.

In Conference on the theory and application of cryptographic techniques, pages

369–378. Springer, 1987.

[35] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisig-

natures. In Proceedings of the 8th ACM Conference on Computer and Commu-

nications Security, pages 245–254, 2001.

[36] Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegatable anony-

mous credentials with controlled and fine-grained delegation. IEEE Transactions

on Dependable and Secure Computing, 2023.

[37] Rahma Mukta, James Martens, Hye-young Paik, Qinghua Lu, and Salil S Kan-

here. Blockchain-based Verifiable Credential Sharing with Selective Disclosure.

In 2020 IEEE 19th International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 959–966. IEEE, 2020.

[38] Ryan R Mullins, Michael Ahearne, Son K Lam, Zachary R Hall, and Jeffrey P

Boichuk. Know your customer: How salesperson perceptions of customer rela-

70

References

tionship quality form and influence account profitability. Journal of Marketing,

78(6):38–58, 2014.

[39] Nitin Naik and Paul Jenkins. Uport Open-source Identity Management System:

An Assessment of Self-sovereign Identity and User-centric Data Platform Built

on Blockchain. In 2020 IEEE International Symposium on Systems Engineering

(ISSE), pages 1–7. IEEE, 2020.

[40] Nitin Naik and Paul Jenkins. Sovrin network for decentralized digital identity:

Analysing a self-sovereign identity system based on distributed ledger technology.

In 2021 IEEE International Symposium on Systems Engineering (ISSE), pages

1–7, 2021.

[41] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized

business review, 2008.

[42] Ricardo Neisse, Gary Steri, and Igor Nai-Fovino. A blockchain-based approach

for data accountability and provenance tracking. In Proceedings of the 12th

international conference on availability, reliability and security, pages 1–10, 2017.

[43] Wei Ou, Shiying Huang, Jingjing Zheng, Qionglu Zhang, Guang Zeng, and Wen-

bao Han. An overview on cross-chain: Mechanism, platforms, challenges and

advances. Computer Networks, 218:109378, 2022.

[44] Cavit Ozbay and Albert Levi. Blacklisting based anonymous authentication

scheme for sharing economy. IEEE Transactions on Dependable and Secure Com-

puting, 2023.

[45] Ilker Ozcelik, Sai Medury, Justin Broaddus, and Anthony Skjellum. An overview

of cryptographic accumulators. arXiv preprint arXiv:2103.04330, 2021.

[46] Daniela Pöhn and Wolfgang Hommel. An overview of limitations and approaches

in identity management. In Proceedings of the 15th International Conference on

Availability, Reliability and Security, pages 1–10, 2020.

71

References

[47] Rui Qin, Wenwen Ding, Juanjuan Li, Sangtian Guan, Ge Wang, Yuhai Ren, and

Zhiyou Qu. Web3-based decentralized autonomous organizations and operations:

Architectures, models, and mechanisms. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 53(4):2073–2082, 2022.

[48] Sumit K Rana, Arun K Rana, Sanjeev K Rana, Vishnu Sharma, Umesh Kumar

Lilhore, Osamah Ibrahim Khalaf, and Antonino Galletta. Decentralized model

to protect digital evidence via smart contracts using layer 2 polygon blockchain.

IEEE Access, 2023.

[49] Partha Pratim Ray. Web3: A comprehensive review on background, technologies,

applications, zero-trust architectures, challenges and future directions. Internet

of Things and Cyber-Physical Systems, 2023.

[50] Drummond Reed, Manu Sporny, Dave Longley, Christopher Allen, Ryan Grant,

Markus Sabadello, and Jonathan Holt. Decentralized Identifiers (DIDs) v1.0.

World Wide Web Consortium (W3C), 2019.

[51] Yongjun Ren, Xinyu Liu, Qiang Wu, Ling Wang, Weijian Zhang, et al. Crypto-

graphic accumulator and its application: A survey. Security and Communication

Networks, 2022, 2022.

[52] Hossein Rezaeighaleh and Cliff C Zou. New secure approach to backup cryptocur-

rency wallets. In 2019 IEEE Global Communications Conference (GLOBECOM),

pages 1–6. IEEE, 2019.

[53] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. zk-creds:

Flexible Anonymous Credentials from zkSNARKs and Existing Identity Infras-

tructure. In 2023 IEEE Symposium on Security and Privacy (SP), pages 790–808.

IEEE, 2023.

[54] Margaret Rouse. What is Web 1.0? - Definition from Techopedia. (2018, July

13).

72

References

[55] Ravi S Sandhu. Role-based access control. In Advances in computers, volume 46,

pages 237–286. Elsevier, 1998.

[56] Abdurrashid Ibrahim Sanka and Ray CC Cheung. A systematic review of

blockchain scalability: Issues, solutions, analysis and future research. Journal

of Network and Computer Applications, 195:103232, 2021.

[57] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification

of peer-to-peer architectures and applications. In Proceedings first international

conference on peer-to-peer computing, pages 101–102. IEEE, 2001.

[58] Simon SY Shim, Geetanjali Bhalla, and Vishnu Pendyala. Federated identity

management. Computer, 38(12):120–122, 2005.

[59] Divya Siddarth, Sergey Ivliev, Santiago Siri, and Paula Berman. Who watches

the watchmen? a review of subjective approaches for sybil-resistance in proof of

personhood protocols. Frontiers in Blockchain, 3:46, 2020.

[60] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing

in bitcoin. In Financial Cryptography and Data Security: 19th International

Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised

Selected Papers 19, pages 507–527. Springer, 2015.

[61] Rui Song, Shang Gao, Yubo Song, and Bin Xiao. zkDET: A traceable and

privacy-preserving data exchange scheme based on non-fungible token and zero-

knowledge. In 2022 IEEE 42nd International Conference on Distributed Com-

puting Systems (ICDCS), pages 224–234. IEEE, 2022.

[62] Zen Soo. China’s Didi Global fined $1.2 billion for data violations. (2022, July

21).

[63] Manu Sporny, Dave Longley, and David Chadwick. Verifiable Credentials Data

Model 2.0. World Wide Web Consortium (W3C), 2023.

73

References

[64] Xiaoqiang Sun, F Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie, and Xiang

Peng. A survey on zero-knowledge proof in blockchain. IEEE network, 35(4):198–

205, 2021.

[65] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical

survey on decentralized digital currencies. IEEE Communications Surveys &

Tutorials, 18(3):2084–2123, 2016.

[66] Shuai Wang, Wenwen Ding, Juanjuan Li, Yong Yuan, Liwei Ouyang, and Fei-Yue

Wang. Decentralized autonomous organizations: Concept, model, and applica-

tions. IEEE Transactions on Computational Social Systems, 6(5):870–878, 2019.

[67] Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and Fei-Yue

Wang. Blockchain-enabled smart contracts: architecture, applications, and fu-

ture trends. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

49(11):2266–2277, 2019.

[68] Yue Xiao, Peng Zhang, and Yuhong Liu. Secure and efficient multi-signature

schemes for fabric: An enterprise blockchain platform. IEEE Transactions on

Information Forensics and Security, 16:1782–1794, 2020.

[69] Yi Xiong, Shixiong Yao, and Pei Li. D2CDIM: DID-Based Decentralized Cross-

Domain Identity Management with Privacy-Preservation and Sybil-Resistance.

In International Symposium on Emerging Information Security and Applications,

pages 191–208. Springer, 2022.

[70] Anatoly Yakovenko. Solana: A new architecture for a high performance

blockchain v0. 8.13. Whitepaper, 2018.

[71] Dan Yamamoto, Yuji Suga, and Kazue Sako. Formalising linked-data based

verifiable credentials for selective disclosure. In 2022 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW), pages 52–65. IEEE, 2022.

74

References

[72] Rupeng Yang, Man Ho Au, Qiuliang Xu, and Zuoxia Yu. Decentralized black-

listable anonymous credentials with reputation. Computers & Security, 85:353–

371, 2019.

[73] Weining Yang, Ninghui Li, Omar Chowdhury, Aiping Xiong, and Robert W

Proctor. An empirical study of mnemonic sentence-based password generation

strategies. In Proceedings of the 2016 ACM SIGSAC conference on computer

and communications security, pages 1216–1229, 2016.

[74] Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi, Sheng Wang,

and Xiaokui Xiao. Analysis of indexing structures for immutable data. In Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management

of Data, pages 925–935, 2020.

[75] Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. Decentralized finance

(defi). Journal of Financial Regulation, 6:172–203, 2020.

[76] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian

Weng, and Muhammad Imran. An overview on smart contracts: Challenges,

advances and platforms. Future Generation Computer Systems, 105:475–491,

2020.

[77] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.

Blockchain challenges and opportunities: A survey. International journal of web

and grid services, 14(4):352–375, 2018.

75

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Decentralized Identity
	Motivation
	Thesis Contribution
	Thesis Outline

	Background
	The Era of Web 3.0
	The Overview of Web 1.0 and Web 2.0
	Blockchain Technology
	The Overview of Web3

	Decentralized Identity Systems
	Traditional Identity Management Solutions
	Decentralized Identifier and Verifiable Credential
	Researches on Decentralized Identity System

	MoDID: a Fine-Grained and Secure Identity Management Scheme for Multiple Controllers
	Overview
	Problem Statement
	Sketch of Solution

	System Architecture
	Hierachical Controller Management
	Verifiable Credential Management
	Key Recovery Scheme

	Platform Implementation and Evaluation
	MoDID Implementation
	Performance Analysis

	Chapter Summary

	Privacy and Secure Enhancement against Attacks in Multi-Controller Scenarios
	Overview
	Problem Statement
	Sketch of Solution

	System Design
	System Model
	Threat Model
	Use Case

	Privacy-preserving Scheme for Controller Correlation Attacks
	Identity Authentication Scheme with Secure Controller Revocation
	Credential Issuance
	Credential Presentation
	Credential Verification

	Platform Implementation and Evaluation
	Experiment Setting
	Performance Analysis

	Chapter Summary

	Conclusions and Future Research
	Conclusion
	Future Work

	References

