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Abstract

Acoustic eavesdropping presents a longstanding challenge in the realm of personal

information security and privacy preservation. In this work, we introduce a novel

eavesdropping method called JerryAttack, which repurposes an optical mouse as a

covert eavesdropping device. Specifically, we transform the mouse’s integrated low-

resolution but high-frame-rate image sensor into a high-speed camera for visual vi-

brometry, capable of capturing acoustic vibrations from nearby loudspeakers. Our

contributions are threefold: First, we utilize the ‘pixel grabber’ register as a back-

door to extract the pixel stream from the image sensor. Second, we establish an

acoustic-optical side channel that enables effective acoustic eavesdropping. Third, we

thoroughly explore two attack scenarios: voice profiling and speech reconstruction.

Our findings reveal that the sound recovered through our side channel achieves a mean

SNR of 7.3 dB, comparable to standard microphone recordings in noisy environments

like cafes. Additionally, when combined with a classification neural network, Jerry-

Attack identifies individuals with an overall accuracy of 83.27% across six languages.

Moreover, when cooperated with joint channel information, JerryAttack consistently

achieves good intelligibility, with a median STOI score exceeding 0.7 in reconstructed

results.
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Chapter 1

Introduction

Acoustic eavesdropping remains a significant security threat, employing stealthy tech-

niques to intercept private conversations. Various methods leverage diverse channels

to achieve this, such as motion sensors [1, 2, 3, 4, 5, 6, 7], wireless signals [8, 9, 10,

11, 12, 13], and camera inputs [14], each exploiting different vulnerabilities to access

sensitive audio data. Particularly, utilizing a camera to capture mechanical vibra-

tions (e.g., acoustic signals), known as visual vibrometry, has undergone extensive

research over the years [15, 16, 17, 18, 19, 20, 21, 22, 23]. Yet, not every camera is

suitable for acoustic eavesdropping. The Nyquist sampling theorem stipulates that

the sampling rate should be double that of the signal’s highest frequency. Further-

more, phonetic research indicates that vowels contain the primary energy in speech,

and distinguishing different vowels often requires comparing their first two formants,

which are distinct frequency components of the sound. The average second formant

frequency for approximately 81.25% of vowels is around 1.5 kHz or lower [24]. Con-

sequently, to perform accurate acoustic eavesdropping, a camera capable of achieving

frame rates of 3 kHz or higher is necessary.

In this work, we revisit acoustic eavesdropping through visual vibrometry by exploit-

ing an underutilized acoustic-optical side channel: the optical mouse. Common in
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Chapter 1. Introduction

computing setups, the optical mouse incorporates a low-resolution digital camera to

capture images of the surface below it. As the mouse is moved, it sequentially records

images, which are then processed by an onboard digital signal processor (DSP). The

DSP analyzes these images to detect patterns or shifts in position over time, allow-

ing it to calculate the direction and speed of the mouse’s movement. Driven by the

demands of gaming applications, modern optical mice are designed to support excep-

tionally high frame rates, often exceeding 3.7 kHz. Furthermore, the optical sensor

typically focuses on a small area (e.g., 3.1 mm2) within its pixel array (e.g., 26×26),

allowing the mouse to detect subtle variations at the sub-millimeter level induced by

structure-borne soundwaves. The high frame rate and a finely focused sensing area

characteristics highlight the significant potential of optical mice as tools for visual-

vibrometry-enabled acoustic eavesdropping, a capability that has remained largely

untapped until now.

To address this, we introduce a novel eavesdropping framework called JerryAttack,

named in tribute to ‘Jerry’ Mouse from the ‘Tom and Jerry’ cartoons. Fig. 1.1 illus-

trates the attack scenario. We envision a typical setup where a target’s workspace

includes an optical mouse adjacent to a loudspeaker device, either integrated or ex-

ternal, both placed on a shared surface like a desk. Sound from the speakers causes

vibrations that travel across the desk to the mouse, subtly altering the images cap-

tured by the mouses built-in camera. By analyzing the pixel stream from these im-

ages, an attacker can potentially detect the target’s activities or reconstruct audible

conversations during video conferences.

JerryAttack stands in stark contrast to traditional eavesdropping methods that often

necessitate noticeable alterations to the environment or the introduction of obvious

eavesdropping devices. By utilizing a commonplace computer accessory that is widely

used in settings ranging from personal workspaces to corporate offices, JerryAttack can

be integrated into daily routines without attracting attention. A demo video can be

found at https://youtu.be/zlsrEucXh9U.
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Mouse Inside: 
Taking Photos at 3700Hz

Victim Mouse

Reconstructing sound  via the 
acoustic-optical side channel

Attacker

3.1##!

Fig. 1.1: Illustration of JerryAttack. The attacker can reconstruct the sound
broadcasted from the loudspeaker via the acoustic-optical side channel.

However, effectively implementing this acoustic eavesdropping framework faces two

main challenges:

• How to extract pixel values from optical mice? An optical mouse typically in-

corporates an image sensor paired with a DSP that preprocesses images to detect

movement. This system traditionally outputs coarse-grained movement data, such as

displacements along the X and Y axes measured in pixel units. This standard setup

generally lacks the sensitivity required to detect the fine, subtle vibrations caused by

sound from speakers. Visual vibrometry necessitates access to raw texture images

captured by the sensor, but typical optical mice do not provide a high-level interface

for accessing these images directly. This limitation poses a significant challenge for

recovering sound from acoustic vibrations.

3



Chapter 1. Introduction

Upon reviewing technical datasheets, we made an unexpected discovery: mainstream

optical sensors used in the mice, such as the ADNS-3050 [25], include a special register

called the ‘pixel grabber’. Originally intended for debugging or testing, this register

captures and retains the value of a single pixel from each image frame captured by the

sensor. By accessing this register, we can tap into a continuous and stable stream of

pixel values at a high frame rate of 3.7 kHz. This access effectively turns the register

into a backdoor for data extraction. Leveraging this capability allows us to overcome

significant obstacles in accessing detailed image data, essential for sound recovery via

visual vibrometry. For more technical information, please see § 4.

• How to recover sound from the pixel stream? The economical, low-resolution image

sensors (e.g., 26×26 pixels) integrated into these mice are prone to thermal noise and

inherent harmonics, potentially masking the subtle vibrations that are indicative of

sound within the pixel data. Additionally, pixel values are quantized to 7 bits within

a grayscale limit of 127, in stark contrast to the 16-bit quantization utilized in audio

encoding. Consequently, the audio information encapsulated within the pixel stream

undergoes significant compression and loss. These aspects increase the complexities

in recovering audible signals from the acoustic-optical side channel.

To navigate this challenge, our initial approach involves leveraging traditional signal

processing methods to accurately model the channel, followed by the implementation

of a basic recovery algorithm. This foundational step sets the stage for further refine-

ment. To enhance the initial, raw audio recovery, we utilize a band-split recurrent

neural network (BSRNN) [26]. This advanced neural network architecture is specifi-

cally tailored to address the unique constraints posed by the pixel stream, such as its

limited resolution and the presence of noise. The BSRNN methodically processes the

audio data across different frequency bands, allowing for a more nuanced restoration

of the sound. Both measures greatly mitigate the losses inherent in the pixel stream

and improve the fidelity of the recovered audio. The technical details refer to § 5.
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Contribution. While the diverse applications of optical mice are well-documented,

their use for acoustic eavesdropping presents a novel innovation. Considering their

ubiquity, the potential security implications of such an attack are significant and could

be widespread. Our work introduces innovative methods for voice profiling and speech

reconstruction via the developed acoustic-optical channel. Additionally, we have suc-

cessfully validated JerryAttack on 9 optical mouse models across 7 manufacturers in-

cluding giant Logitech and Razer. We tested the system across multiple corpora in six

languages, achieving an average SNR of 7.3 dB in sound recovery micro-benchmark,

an 83.27% overall accuracy for 48 individuals identification in voice profiling, and a

median STOI of around 0.7 in joint-speech reconstruction, demonstrating the efficacy

and potential impact of our approach in real-world settings.
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Chapter 2

Related Work

The related work can be grouped into four categories:

(1) Motion Sensor Based Acoustic Eavesdropping: Motion sensor-based eaves-

dropping has emerged as a significant concern in mobile security, with several pivotal

studies shedding light on the potential for motion sensors to capture speech signals.

Michalevsky et al. [1] pioneered this field with their work on ‘Gyrophone,’ demon-

strating that smartphone gyroscopes could recognize speech from acoustic vibrations

despite the limited sampling rate of 200 Hz. Building upon this, Zhang et al. [2]

introduced ‘AccelWord,’ which utilized accelerometers to detect voice commands,

highlighting the sensitivity of these sensors to speech vibrations. Anand et al. [3] sys-

tematically analyzed the impact of speech on smartphone motion sensors, concluding

that only loudspeaker-generated speech signals transmitted through a solid surface

could significantly affect motion sensors and raising questions about the threat posed

by everyday speech scenarios.

Further expanding the scope, Hu et al. [4] presented AccEar, an attack that employs

a conditional Generative Adversarial Network (cGAN) to reconstruct high-fidelity

audio from low-frequency accelerometer signals, marking a significant advancement

in eavesdropping capabilities by overcoming hardware limitations. In a related vein,

6



Ba et al. [5] proposed AccelEve, a deep learning-based system that recognizes and

reconstructs speech from accelerometer measurements, challenging the common be-

lief about the narrow band of speech signals that motion sensors can capture. Lastly,

Kwong et al. [6] showcased that mechanical components in magnetic hard disk drives

could act as unintended microphones, extracting and parsing human speech, which

introduces novel defense mechanisms against such cyberphysical attacks. Also worth

mentioning, Yao et al. [7] propose an on-board eavesdropping method using a smart-

phone accelerometer at an extremely low 5 Hz sampling rate, exploiting stable rhythm

features for classification tasks including scene, digit, city, and place recognition, pos-

ing a significant privacy threat despite the low sampling rate.

However, a common limitation across these studies is that the motion sensors used,

such as accelerometers and gyroscopes, typically operate within a sampling rate range

of 100 Hz to 500 Hz. In contrast, our JerryAttack leverages the mouse optical sensor,

which can easily exceed 3 kHz, providing a significantly higher sampling rate. This

enhanced capability allows for the capture of high-fidelity acoustic data, making it

better suited for precise eavesdropping in real-time scenarios.

(2) Wireless Signal Based Acoustic Eavesdropping: The field of wireless signal-

based eavesdropping has seen significant advancements, with research exploring var-

ious wireless technologies to intercept acoustic communications. Millimeter-wave

(mmWave) technology, for instance, has proven effective for high-resolution eaves-

dropping. Hu et al. [11] introduced mmEcho, a system that uses mmWave to mea-

sure micrometer-level vibrations induced by sound, enabling eavesdropping without

line-of-sight or prior knowledge of the target’s vocabulary. Also, Hu et al. [10]

developed MILLIEAR, a system capable of reconstructing audio from vibrations us-

ing generative machine learning models. In the realm of WiFi signals, Wei et al.

[9] demonstrated how acoustic eavesdropping can be achieved by extracting speaker

vibrations through WiFi. Similarly, Wang et al. [12] expanded eavesdropping ca-

pabilities through Impulse Radio Ultra-Wideband (IR-UWB) technology, with their

7
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UWHear system capable of sensing audio through walls. RFID technology has also

been explored, with Wang et al. [13] showing how audio can be intercepted via RFID

by capturing sub-mm level vibrations.

However, wireless signal-based eavesdropping systems also face some challenges that

limit their practicality. First, their performance is heavily influenced by environ-

mental factors such as ambient noise, interference, and signal attenuation. Second,

these systems often require specialized signal transceiver equipment, particularly high-

precision mmWave devices, which are very expensive.

(3) Visual Vibration Based Acoustic Eavesdropping: The field of visual vi-

brometry, which focuses on recovering sound from silent video footage, has evolved

significantly through the integration of signal processing, machine learning, and com-

puter vision techniques. Initial research by Akutsu et al. [15] explored the potential

of visual data for audio recovery, with subsequent studies like those by Fuse et al. [16]

demonstrating how vibrations captured in the video can reconstruct sound. Innova-

tions continued with Mim et al. [17] applying optical flow techniques to detect minute

vibrations in video for sound extraction. A pivotal advancement was the ‘Visual Mi-

crophone’ concept by Davis et al. [27], showcasing sound recovery by analyzing object

vibrations within video frames. This was further enhanced by high-speed video anal-

ysis [20] and the application of machine learning, particularly cross-modal generative

adversarial networks [21], which have bridged visual and auditory data, enhancing

multimedia processing. Some newer work uses high-speed cameras to observe lamp

lights [22] or small shiny objects [23] to recover sound signals. These developments un-

derscore a multidisciplinary approach combining traditional and modern audio-visual

data analysis and reconstruction techniques.

Although these visual vibration-based systems can achieve high-quality sound restora-

tion, they require expensive high-speed cameras and precise calibration before attack-

ing to accurately observe the target, which limits its application in practical scenarios.
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(4) Repurposing of Optical Mice: Recent studies have demonstrated innovative

uses of optical mice in various fields of research and technology development. Ng et

al. [28] explored the potential of optical mice in harmonic oscillator experimentation,

showcasing their utility in physics education. Similarly, Ng et al. [29] investigated

the application of optical mice as two-dimensional displacement sensors, offering a

cost-effective solution for precise measurements. Tresanchez et al. [30] repurposed

optical mouse sensors as incremental rotary encoders, highlighting their accuracy and

efficiency. Palacin et al. [31] demonstrated the use of optical mice for indoor mobile

robot odometry measurement, contributing to advancements in robotics navigation.

Lastly, Ullrich et al. [32] explored the utilization of optical sensors from mice to create

new input devices, emphasizing the versatility and adaptability of these components.

These studies collectively underline the significant potential of repurposing optical

mice for innovative applications.

Comparision with Existing Acoustic Eavesdropping Systems: We present a

detailed comparison between JerryAttack and existing systems in Table. 2.1: First,

JerryAttack outperforms motion sensor-based systems by leveraging the naturally

high sampling rate (abbreviation SR) of the optical sensor in the mouse, provid-

ing superior accuracy and efficiency. Second, unlike many existing systems, Jerry-

Attack does not require expensive professional equipment, such as millimeter-wave

transceivers or high-speed cameras, making it more accessible and cost-effective.

Third, JerryAttack utilizes a unique acoustic-optical channel to filter out ambient

airborne sound noise, a feature that several existing systems lack, ensuring more re-

Table 2.1: JerryAttack VS Existing Systems

Eavesdropping System High SR? Cheap? Noise-resistant? Easy-to-deploy?

Motion sensor-based ✗  ✗ 
Wireless signal-based  ✗ ✗ 
Visual vibration-based  ✗ ✗ ✗

JerryAttack (Our system)    

9
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liable signal detection in noisy environments. Finally, JerryAttack does not require

precise calibration before the attack, unlike visual vibration-based systems, making

it significantly easier to deploy in real-world scenarios.
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Chapter 3

Threat Model

3.1 Attack Scenarios

We envisage a scenario where the audio output from the loudspeakers creates vibra-

tions that travel through the desk to the mouse, leading to minute alterations in the

imagery recorded by the mouse’s onboard camera. The objective of the attacker in

this scenario is to clandestinely capture confidential personal information emanating

from the loudspeaker. This could encompass a variety of sensitive data as follows:

• Patterns of Media Consumption: Identifying which movies or music the user

is consuming and discerning specific preferences in content, habitual viewing, or

listening patterns.

• Response to Voice Commands: Capturing the response to spoken instructions

from voice-activated computers can reveal the user’s personal preferences, specific

commands for controlling smart home devices, or sensitive inquiries made to these

assistants.

• Insights from Virtual Meetings: Acquiring detailed content of discussions, such

as corporate strategies or private personal matters shared during online meetings

11
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Optical Sensor Micro-Controller with firmware

Control

+raw pixel stream +raw pixel stream
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Fig. 3.1: Illustration of firmware update.

on platforms like Zoom or Google Meet.

• Sensitive Online Calls: Intercepting private communications on digital plat-

forms, such as Skype and WhatsApp calls, to obtain confidential information.

In short, we can identify the victim’s behaviors or directly reconstruct human speech

from the acoustic vibrations.

3.2 Attacker’s Capabilities

One might wonder why the attacker does not hack the microphone for acoustic eaves-

dropping directly. The answer lies in the stringent permissions required to access

microphones or other acoustic sensors. Even when permissions are obtained, oper-

ating systems usually alert the user to the activation of sensors, such as displaying

microphone icons, which could warn the victim of a breach. Additionally, some

anti-recording hardware [33] can emit ultrasonic waves and interfere with the normal

12



3.2. Attacker’s Capabilities

programming interface

Wired

over-the-air(OTA) update

Wireless

(a) (b)

Fig. 3.2: Two approaches for firmware modification.

recording of the microphone based on intermodulation distortion [34]. In contrast,

JerryAttack operates with greater discretion. For the effective activation of JerryAt-

tack, the attacker is presumed to have the following two key capabilities:

• Firmware Updates: The attacker can compromise the optical mouse firmware,

allowing access to the ‘pixel grabber’ register to capture the real-time pixel stream.

To explain the fundamentals of mouse firmware, lets refer to Fig. 3.1. As depicted

in part (a), under normal conditions, the optical sensor transmits basic data such

as x and y direction displacements and motion status to the microcontroller, which

then relays this information to the computer. However, in part (b), the attacker

seeks to modify the firmware, enabling the optical sensor to transmit the additional

raw pixel stream externally.

Firmware modification can be carried out through both wired and wireless methods,

as shown in Fig. 3.2. The wired method involves using a programming interface, like

ST-Link [35], to directly inject malicious firmware into the mouses microcontroller.

The wireless method utilizes over-the-air (OTA) updates [36], where the malicious

firmware is first downloaded to the host computer via the HTTP/HTTPS protocol.

It is then injected into the mouse using either 2.4 GHz RF or Bluetooth, depending

on the mouse type.

In practice, the attacker may deceive the user into downloading the compromised

firmware by presenting a fake update prompt from a fraudulent website, which

overwrites the original firmware. Once the firmware is modified, the captured pixel

stream is then transmitted to the host computer via USB or Bluetooth.

13



Chapter 3. Threat Model

It is important to highlight that this capability does not rely on the attacker need-

ing significant preparation time before launching the attack. Instead, it emphasizes

the security risk posed by the ‘pixel grabber,’ which enables covert firmware mod-

ification, even at the manufacturing stage.

• Data Exfiltration: The adversary possesses the ability to transmit the acquired

pixel stream over the Internet, which is roughly 7kbps. In the context of broader

Internet bandwidths, often measured in megabits per second (Mbps), the covert

transmission of such modest amounts of data is unlikely to capture the user’s at-

tention. The attacker then reconstructs the sound signal on a separate machine

with enough computing resources. In addition, using the mouse’s wireless channel,

such as Bluetooth or 2.4 GHz RF, to directly send the pixel stream to the attacker

without affecting the victim’s normal use is also an area worth exploring.

For a Bluetooth optical mouse, implementing dual Bluetooth roles communication

in the updated firmware could be a suitable solution. This would involve configur-

ing the mouse to act as both a peripheral (connecting to the victims computer)

and a central (connecting to the attackers computer), similar to how certain de-

vices, such as the Sony WH-1000XM4 headphones [37], can simultaneously connect

to multiple devices and switch between communication channels. In this setup, the

mouse maintains its primary HID connection with the victims computer as a pe-

ripheral, while in the background, it can also initiate a Bluetooth Low Energy

(BLE) connection to the attackers computer as a central, enabling it to transmit

the pixel stream. Communication between devices is managed through dynamic

channel switching, where the mouse can switch between channels based on priority,

depending on activity. For example, when the victim is actively using the mouse,

the mouse prioritizes the HID communication. During idle periods or low-activity

moments, it can switch to the secondary communication channel to transmit data

without interrupting the victims experience. The switching mechanism must be

seamless and fast to avoid alerting the victim.

For a USB wireless optical mouse, a similar dual communication approach could

14



3.2. Attacker’s Capabilities

be implemented, but with the added complexity of handling RF (Radio Frequency)

communication in addition to Bluetooth. Commercial mouse hardware is typically

optimized for a one-to-one connection, lacking the necessary protocols and mem-

ory to manage multiple 2.4 GHz RF connections concurrently. Modifying a USB

wireless mouse to establish dual connections would require extensive hardware al-

terations, making it less feasible. In this case, the firmware could be updated

to allow the mouse to communicate with both the victim’s computer and the at-

tacker’s computer by utilizing two separate communication protocols: USB wireless

(2.4 GHz RF) for the victims device and BLE for the attackers device. Many com-

mercial mice, such as the Logitech MX Anywhere 3 [38], already support both

Bluetooth and USB wireless, which could make this approach more practical.

In our work, we operate under the assumption that the victim positions the opti-

cal mouse close to the computer (i.e., < 20cm). This assumption is reasonable in

practicality, as users typically maintain the mouse near the computer for easy use.
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Chapter 4

Transforming Mice into

High-Speed Cameras

In this chapter, we detail the operational mechanism of optical mice and subsequently

describe how to repurpose these devices into high-speed, single-pixel cameras, serving

as side channels for acoustic eavesdropping.

4.1 Background of Optical Mice

Mice, crucial peripherals for computer interaction, are available in various forms such

as mechanical (ball) and optical mice. Among these, optical mice have gained market

dominance due to their enhanced durability and reliability compared to mechanical

mice. Fig.4.1(a) illustrates the internal structure of an optical mouse, featuring com-

ponents such as an optical sensor with pixel array, a small LED, some light lens, and

a single printed circuit board (PCB) that integrates a DSP, a microcontroller, and

a communication module (PS/2, USB, or wireless). Fig.4.1(b) explains the working

principle of an optical mouse. Specifically, the LED projects light through the optical

lens onto the desk surface. The reflected light, carrying the texture of the surface,
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Fig. 4.1: Illustration of Optical Mouse

is captured by the image sensor’s pixel array, which converts these optical signals

into grayscale values that represent light intensity. The onboard DSP processes these

images to detect changes between consecutive frames, thus determining the mouses

movement direction and speed. This process ultimately translates the physical move-

ment of the mouse into cursor navigation on the computer screen, allowing users to

interact with their digital environment.

4.2 Acquiring Pixel Stream

Optical mice are equipped with a compact image sensor that comprises an array of

pixel diodes. Unlike regular cameras that boast millions of pixels, the image sensors

in optical mice have only a few hundred pixels which is enough to be used as a
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Fig. 4.2: Illustration of the ADNS image sensor. (a) shows the
schematic structure of an optical mouse equipped with an ADNS-3050
image sensor. (b) shows the primary components of the image sensor.

reference for calculating displacement. However, what these mouse cameras lack

in pixel count compared with common cameras in smartphones, they compensate

with an exceptionally high frame rate, far surpassing regular cameras. Optical mice

typically support frame rates of 3 kHz or higher, which may reach up to 20 kHz in

models designed for high-end gaming.

Optical mice come with various camera configurations. For illustrative purposes, we

will use the Logitech G402 optical mouse as an example, however, the datasheet for

its optical sensor AM-010 is not public. Fortunately, the AM-010 can be considered a

variant of the ADNS-3050 (since the AM-010 is a variant of the PMW-3320 [39], which

Table 4.1: ADNS-3050 Registers

Address Register Name Read/Write Default Value
0x00 PRODUCT ID R 0x09
0x01 REVISION ID R 0x00
0x02 MOTION STATUS R/W 0x00
0x03 DELTA X R 0x00
0x04 DELTA Y R 0x00
. . . . . . . . . . . .
0x0b PIX GRABBER R/W 0x00
. . . . . . . . . . . .
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4.2. Acquiring Pixel Stream

Algorithm 1 Acquiring pixel stream from the pixel array via the grabber register

1: Initialization: N ← 26, ImgBuff[N ×N ]
2: Initialize: SPI CONFIG, CLOCK CONFIG
3: repeat
4: SPI WRITE(0x0b, 0x01)
5: index ← 0
6: Clean ImgBuff
7: repeat
8: temp ← SPI READ(0x0b)
9: ImgBuff[index] ← temp

10: index ← index + 1
11: until index == N ×N -1
12: Send ImgBuff to PC
13: until Power Shut Down

in turn is a variant of the ADNS-3050 [40, 41]), while the biggest difference is that the

pixel array size increases from 19× 19 of ADNS-3050 to 26× 26 of AM-010. There-

fore, this paper will refer to the datasheet of the ADNS-3050 for explanations [25],

which integrates more than 30 registers. Detailed specifications of these registers are

provided in Table 4.1. For example, the registers at 0x00 to 0x01 hold the product

ID and revision number. The ‘MOTION ST’ register at address 0x02 shows motion

status, where zero indicates stillness and a non-zero value signals movement. Motion

data (∆x and ∆y) is stored from 0x02 to 0x04. A microcontroller reads these values

via the SPI bus and transmits them to the host computer.

Pixel Grabbing. During our examination of the mouse’s internal registers, we

identified a notable register known as the ‘pixel grabber,’ located at address 0x0b.

This register enables the extraction of a single-pixel value from each frame captured

by the image sensor. Each time the register is accessed, its location pointer advances

to the next pixel, moving sequentially across every location. Using this feature, an

entire frame can be constructed by continuously reading pixel values (26 × 26 reads

in this case) from the 0x0b by the SPI bus. Algorithm 1 shows the pseudo-code of

the whole process. In our experiment, we can achieve a stable readout rate of about

3.7 kHz (i.e., the operational speed of the AM-010 sensor), effectively turning the
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Chapter 4. Transforming Mice into High-Speed Cameras

mouse into a high-speed, single-pixel camera that outputs a continuous pixel stream.

The continuous pixel stream is packaged and sent to the host computer. Our custom

software monitors the serial or wireless connection to capture the complete pixel

stream and transmits it to the attacker’s server for further processing.

Ubiquity of the ‘Pixel Grabber’ register. The most crucial step in the pre-

vious pixel-grabbing process is extracting pixel values from the ’pixel grabber’ reg-

ister(Abbreviation PG). This naturally raises the question: Do mainstream mice

include such a register? To answer this, we surveyed 11 popular mice from leading

manufacturers such as Logitech and Razer. The results, presented in Table 4.2, re-

veal that 9 of these 11 mice are equipped with one of five different image sensors,

each with publicly available datasheets and PG. Furthermore, a review of PixArt’s

official website [42], a major optical sensor manufacturer, shows that all PMW and

ADNS series sensors come with public datasheets and PG. This indicates that all

mice using these sensors are susceptible to the JerryAttack, demonstrating our at-

tack’s wide applicability. The remaining two models, the high-end Logitech G903 and

Razer Viper V3 Pro feature the HERO-25K and Focus Pro-35K sensors, respectively.

These sensors are custom-developed and lack publicly available datasheets, so it is

unclear whether they include PG. However, these mice are priced above $150 and are

Table 4.2: Survey of the ‘pixel grabber’ register on 11 mainstream mice

Manufacturer Model Image Sensor Public datasheet? With PG?
Logitech G903 HERO-25K No Unknown
Razer VIPER V3 PRO Focus Pro-35K No Unknown
Logitech G402 AM-010 Yes Yes
Logitech G100S AM-010 Yes Yes
Logitech G302 AM-010 Yes Yes
Razer DeathAdder Elite PMW-3389 Yes Yes
Madcatz RAT3 ADNS-3090 Yes Yes
Asus GT200 ADNS-3050 Yes Yes
Zowie EC1 ADNS-3060 Yes Yes
Tucano GAMEZONE Toros ADNS-3050 Yes Yes
Cool Master Lite L Combo ADNS-3050 Yes Yes
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Fig. 4.3: Illustration of images captured by the pixel sensor across dif-
ferent types of textures.

typically targeted at professional e-sports players, making them uncommon in stan-

dard office settings. Despite this, if we really want to attack a sensor without a public

datasheet, perhaps reverse engineering [43] could offer a possible solution, which may

capture the data exchanged between the sensor and the host using a protocol analyzer

and test different register settings to observe how they affect the sensors output and

functionality.

4.3 Feasibility Verification

To demonstrate the capability of transforming an optical mouse into an ultra-fast

camera, we present some initial experimental results in Fig. 4.3. In these experiments,

the mouse was placed on various materials including concrete, paper, wood, and

plastic. Each image was constructed using 26× 26 pixel values collected via the pixel

grabber. These images distinctly capture the unique textures of each surface. A
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Chapter 4. Transforming Mice into High-Speed Cameras

notable feature in the captured images is the letter ‘A’, measuring 3.1mm2, clearly

visible on the surfaces. These results convincingly validate the feasibility of extracting

pixel values from an optical mouse using the pixel grabber register.
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Chapter 5

Developing the Acoustic-Optical

Side Channel

After converting the optical mouse into an ultra-fast camera, we leverage its inherent

sensitivity to vibrational disturbances caused by sound waves. In this chapter, we

detail the development of the acoustic-optical side channel.

5.1 Channel Model

Speaker-generated vibrations manifest as structure-borne waves, a type of mechani-

cal waves that carry energy through solid materials by causing particle interactions

within the medium. There are three main propagation modes: Rayleigh waves, longi-

tudinal waves, and transverse waves [44]. Each displays unique traits affecting their

interaction with surroundings and detection mechanisms. In our scenario, the mouse

detects surface texture changes primarily induced by Rayleigh waves, which causes

the solid surface to float up and down [45] and, in turn, makes the distance between

the image sensor and desktop fluctuate accordingly. Combined with Fig. 4.1, this

interaction between the loudspeaker and the mouse forms a classic backscatter sys-
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Fig. 5.1: Illustration of the sampling process. The sampling process involves
multiplying the constant pixel offsets by the signal over time.

tem where the loudspeaker modulates the light with varying amplitudes due to the

Rayleigh waves, and the image sensor captures this amplitude-modulated (AM) data.

Next, we formally model this channel.

Single-Pixel Sampling: We first examine a simplified scenario where the acoustic-

optical channel comprises just a single pixel. In the absence of an acoustic signal,

this pixel maintains a steady light intensity, denoted as p. However, the introduction

of an acoustic signal S(t) alters the gap between the surface and the pixel, akin to

how a backscatter system operates. In this context, the acoustic signal modifies the

surface’s reflective properties, resulting in a fluctuating light intensity captured by

the pixel. As Fig. 5.1(a) shows, the sampling results are formalized as p · S(t) at the

moment t.

Muti-Pixel Sampling: We proceed to explore the scenario of multi-pixel sampling

where the image sensor contains an array of
√
N ×

√
N pixels. Given that the area

covered by the image sensor is quite small (approximately 3.1mm2) relative to the

wavelength of sound (around 5m), we can assume that the acoustic signal impacts all

pixels uniformly.

As previously mentioned, the pixel grabber sequentially selects a single pixel value

from each frame, moving from left to right and from top to bottom. Fig. 5.2 illustrates

the procedure of acquiring a pixel stream. Consequently, the sampling results are

formalized as follows:
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Fig. 5.2: Pixel Grabbing Process with a 4 × 4 Image Sensor. For every
frame, the pixel grabber extracts a single pixel value, progressing systematically
from top to bottom and left to right, at a frame rate of f Hz. The image sensor
implements a line-by-line sequential readout strategy, facilitating the capture of
an entire row of pixels in one reading cycle. As a result, pixel values are sampled
at non-uniform intervals Tf + Tl, 2Tf + Tl, 3Tf + Tl, 4Tf + Tl, 5Tf + 2Tl . . ., where
Tf represents the time to read a frame, and Tl denotes the time to read a line.
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or S̃ = MS + n (5.2)

where S̃ = [S̃(t1), S̃(t2), · · · , S̃(tN)]T corresponds to the sampled outcomes of the

acoustic signal, the set {p1, p2, · · · , pN} represents the baseline intensity offsets for

each pixel, and n = [n1, n2, · · · , nN ]
T denotes the thermal noise affecting each pixel.

Particularly, S̃(ti) = pi · S(ti). The above equation models the sampling process

over a period that includes N samples. This pattern of sampling the acoustic signal

is consistently repeated. Fig. 5.1(b) visualizes the whole sampling procedure. It is

worth noting that multi-pixel sampling captures the acoustic signal at different scales

caused by the inherent intensity offsets.

Let Tf represent the time interval between two consecutive frames. Ideally, sampling

would occur at each interval Tf . However, due to the architecture of CMOS sensors,
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Chapter 5. Developing the Acoustic-Optical Side Channel

which typically process pixel values line by line to optimize memory addressing, the

timing for capturing pixel values varies. As Fig. 5.2 shows, acquiring a pixel from the

jth line takes approximately jTl seconds, where Tl is the duration required to read a

line of pixels. Therefore, the timing for the ith sample is given by iTf+((i//
√
N)+1)Tl,

where i ranges from 1 to N , indicating that the sampling across the image sensor is

not uniform. This variation in timing can affect the precision of capturing the acoustic

signal due to slight discrepancies in the sampling intervals.

5.2 Naive Sound Recovery

Building upon Eqn. 5.2, the acoustic signal can be recovered by the following straight-

forward way:

S = M−1(S̃ − n) ≈ M−1S̃ (5.3)

This approximation is valid under two ideal conditions. First, the magnitude of each

component of S̃(ti) must significantly exceed that of ni, i.e., S̃(ti) ≫ ni. This is

typically achieved when the loudspeaker is close to the mouse, thereby providing a

high SNR. Second, the matrix M must be known and invertible. We can determine

M when the mouse is stationary before any eavesdropping begins. The idle signal

received, S̃0, can be modeled as:

S̃0 = M · 1N + n ≈ [p1, p2, p3, . . . , pN ]
T (5.4)

where 1N is a vector of N ones, indicating no acoustic signals are present, and T

represents the transpose. Besides, M is a full-ranked matrix because all pi are not 0.

The inverse of M (i.e., M−1) is defined as:

26



5.2. Naive Sound Recovery
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The above framework describes how we deduce each pixels baseline intensity from

the quiescent signal S̃0, when the mouse remains stationary.

Algorithm. The collected sequence of pixel values is first segmented into K blocks,

each denoted as {S̃1, S̃2, . . . , S̃K}. Each block contains N samples that correspond to

the N pixels, structured as follows:

S̃k = [S̃(tkN+1), S̃(tkN+2), . . . , S̃(tkN+N)]
T (5.6)

where k ranges from 0 to K − 1. The recovery of the acoustic signal from these

segments is then performed using the following steps:

Sk ≈ M−1S̃k

= [
S̃(tkN+1)

p1
,
S̃(tkN+2)

p2
, . . . ,

S̃(tkN+N)

pN
]T

= S̃k ⊘ S̃0

(5.7)

where ⊘ represents element-wise division. Concatenating these K reconstructed seg-

ments, i.e., {S1, S2, S3, . . . , SK}, allows for the comprehensive recovery of the entire

acoustic signal, ensuring a thorough and precise restoration process.
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Fig. 5.3: Pixel value distributions. This illustrates the thermal noise in a
stationary optical mouse, captured across all the 676 pixels. The y-axis represents
the standard deviation of the pixel value relative to the maximum intensity value.

5.3 Channel Characteristics

Next, we further investigate the characteristics of the acoustic-optical channel via

empirical experiments.

Characteristic I: Thermal Noise. Economical image sensors, such as those found

in optical mice, often struggle with noise management, a challenge evident in our

experimental observations. We immobilized the mouse and analyzed the values of a

26 × 26 pixel grid. The distributions of their relative standard deviations (RSTD),

which we define as the standard deviation normalized by the maximum intensity value

(e.g., 127), are illustrated in Fig. 5.3. Among these 676 pixels, we noted a maximum

RSTD of 7% and an average RSTD of 1.19%. This is in stark contrast to the RSTD

of 0.02% typically observed in standard CMOS sensors within smartphones [46], in-

dicating that thermal noise-induced fluctuations in an optical mouse’s pixel sensor

are significantly higher, about 60 times greater than those in regular sensors. Such

pronounced noise levels lead to inaccuracies in signal recovery as per Eqn. 5.3 due to

the approximation assumption.

Characteristic II: Inherent Harmonics. We analyze the time-frequency spec-
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Fig. 5.4: STFT and FFT result of the pixel stream captured without
external sound stimulus

trum of the pixel stream captured from an optical mouse in the absence of any

external sound stimulus. We configured the Short-Time Fourier Transform (STFT)

with a window size of 2048 samples and an overlap of 2032 samples. Under no

excitation conditions, we expect a uniform spectrum due to stable pixel values. How-

ever, the spectrum reveals the presence of many inherent harmonics, as illustrated

in Fig. 5.4(a). To delve deeper, we show the spectrum across a single FFT window

in Fig. 5.4(b). We identified two distinct sets of harmonics, with their fundamental

frequencies being 5.47 Hz and 142.31 Hz, respectively. These harmonics stem from

residual intensity offsets and non-uniform sampling within the device.

One might be wondering how the inherent harmonics are generated. As shown in

Fig. 5.2, the periodic reading of the same pixel every 16Tf second, for instance,

(17Tf + Tl) − (Tf + Tl) = 16Tf , generates a hidden periodic signal at the frequency

of 1/16Tf . On the other hand, pixel sampling should occur uniformly at a frequency

of 1/Tf . However, due to the sequential line-by-line readout process, the sampling

of pixels on the ith line experiences a delay of Tl seconds relative to the (i − 1)th

line. This delay introduces a new periodic signal in the spectrum with an interval of

4Tf + Tl. Extending this principle to an image sensor with a
√
N ×

√
N pixel array,

the inherent frequencies are derived as 1/(NTf ) and 1/(
√
NTf + Tl). In our case,
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Fig. 5.5: Spectrum comparison between coarse-grained and fine-grained
quantification. (a) shows the STFT result of 16-bit quantized human speech
while (b) illustrates that of 7-bit.

N = 676, Tf = 1/3700 ≈ 270µs and Tl ≈ 7µs, we precisely calculate the inherent

frequencies to be 5.47 Hz and 142.31 Hz, which perfectly clarifies the origin of the

observed harmonics. To summarize, by considering each pixel as a separate sensor,

the pixel stream is effectively generated by multiple sensors operating at varying

scales. This results in the production of inherent harmonics within the data.

Characteristic III: Lossy Encoding. The image sensor in an optical mouse oper-

ates using 7-bit encoding for pixel intensity, which limits the quantization to 128 dis-

crete levels. This is a stark contrast to the 16-bit quantization employed in standard

audio processing, where 65,536 levels are available. The 16-bit standard is specifically

designed to accommodate the broad dynamic range and sensitivity of human hearing,

ensuring high-fidelity audio reproduction. When the quantization depth is reduced

to just 7 bits, as in the optical mouse’s image sensor, there is a significant decrease

in the ability to accurately capture and reproduce the fine details of audio signals.

This reduction in resolution has a direct impact on the quality of audio that can be

transmitted through this side channel.

The diminished quantization depth introduces considerable noise and distortion, mak-

ing it much more difficult to recover the original sound with clarity. This effect is
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clearly demonstrated in Fig. 5.5, where a comparison is made between speech sam-

ples quantized at 7-bit and 16-bit levels. The 7-bit quantization introduces noticeable

artifacts and a substantial increase in background noise, which degrades the overall

quality of the recovered audio. Consequently, the lower resolution not only affects

the fidelity of the sound but also complicates the process of sound recovery, making

it a more challenging task to extract intelligible audio from the quantized data.

5.4 Sound Enhancer

The acoustic-optical side channel presents significant challenges as an acoustic medium

due to the aforementioned characteristics. These obstacles make the task of sound re-

covery through traditional signal processing techniques almost impractical. Inspired

by the recent work in band-split recurrent neural networks [47, 48, 26], we employ a

specialized neural network to enhance the recovered sound. This network is designed

to refine the quality of the acoustic signal recovered through the naive algorithm. The

neural network architecture of the sound enhancer is shown in Fig. 5.6(a), with its

key components described below:

(1) Preprocessing. Initially, the pixel stream is processed through the naive sound

recovery algorithm at a frequency of 3.7 kHz. Then the time-domain acoustic signal

is transformed into a complex-valued spectrogram via the Short-Time Fourier Trans-

form (STFT). This spectrogram serves as the input for the sound enhancer. This step

is crucial for converting the raw pixel stream into a format that saves both ampli-

tude and phase information in the frequency domain, ultimately aiming to produce

a clearer and more accurate representation of the original acoustic environment.

(2) Band Splitter. The initial step involves segmenting the input spectrogram

into various spectral bands. Given a complex-valued spectrogram X ∈ CF×T , it is

segmented into K distinct frequency bands, denoted as {W1,W2, . . . ,WK}, with each
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Fig. 5.6: Neural Network Architectures for Audio Processing. (a) illus-
trates the neural network architecture designed for sound enhancement, detailing
the layers and connections utilized. (b) depicts the voice content profiling archi-
tecture, which integrates a sound enhancer followed by a Resnet-50 to categorize
sound content. (c) shows the joint speech reconstruction architecture, which uti-
lizes dual-channel information of pixel streams and low-SNR microphone record-
ings to recover high-quality speech.

Wk ∈ CFk×T . Here, Fk denotes the specific frequency range of each band, and F

is the total frequency span, i.e., F =
K

k=1 Fk, while T signifies the temporal axis.

To focus on the lower spectrums by improving their resolutions, the segmentation

into bands is executed using a non-linear approach: the frequency range 0∼1 kHz

is segmented into 10 segments of 100 Hz each, the frequency range 1 kHz∼2 kHz

is divided into 5 segments of 200 Hz each, and the remaining range is divided into

400 Hz sub-bands. Subsequently, all the frequencies sub-band Wk are transformed

into real-valued features Zk ∈ RN×T via layer normalization module (Norm) and fully

connected (FC) layer, where N donates the feature dimension. The spectral features

from all K bands are then integrated into a composite feature tensor Z ∈ RN×K×T ,

paving the way for enhanced signal representation.

(3) Correlation via RNNs. To analyze correlations both within the temporal

and spectral dimensions of the signal, we employ two distinct Recurrent Neural Net-

work (RNN) modules. Initially, for temporal correlation, an RNN module processes

the feature tensor Z along the time axis. To optimize the model’s efficiency, all K

sub-spectral features are inputted through a single RNN layer, reducing the overall
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model size. Following this, for frequency correlation, a second RNN module does

the same operation along the frequency axis of the tensor. Despite their different

operational domains, both RNN modules share a similar structure, beginning with a

batch normalization layer applied to their inputs, followed by a BiLSTM layer [49]

and a fully connected layer. A residual connection facilitates the integration of the

original input with the FC layer’s output, enhancing learning by allowing the flow

of gradients and reducing the risk of vanishing gradients in deeper architectures. By

stacking multiple such (e.g., 8) RNN modules, a more profound network capable of

capturing complex temporal and spectral dependencies is constructed, with the final

layer’s output represented as Q ∈ RN×K×T .

(4) Signal Reconstruction. The processed tensor Q, rich with interleaved tempo-

ral and spectral information, is then reintroduced to the band-splitting process for

reconstruction. At this stage, each spectral band is independently normalized and

processed through an FC layer, akin to the preprocessing stage, ensuring that the

unique characteristics of each band are maintained and enhanced. The spectral fea-

tures from all K bands are amalgamated into a unified feature set, which undergoes

a final transformation to reconstruct the acoustic signal in the time domain. This

reconstruction phase is critical for translating the multidimensional spectral-temporal

features back into an audible signal, effectively completing the sound enhancement

and recovery process. This method leverages the strengths of RNNs in capturing

sequential data patterns, offering a sophisticated approach to restoring audio signals

from noisy inputs.

(5) Loss. The network is optimized by minimizing a combined loss that incorporates

both frequency-domain and time-domain mean absolute error (MAE) as follows:

Lloss = X−X1 + ISTFT(X)− ISTFT(X)1 (5.8)

where X and X represent the spectra of the predicted and the ground truth signals,
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respectively. This dual-component loss function ensures that the recovered signal

closely matches the ground truth in the frequency spectrum and the time waveform,

enhancing both spectral fidelity and temporal accuracy.

5.5 Summary

The acoustic-optical side channel, challenged by factors like thermal noise, inherent

harmonics, and lossy encoding, struggles as an acoustic medium. Traditional signal

processing proves nearly ineffective for sound recovery due to these complexities.

Deep learning emerges as a potent solution, adept at tackling the unique challenges

of using optical mice for acoustic sensing. To demonstrate the efficacy of our signal

enhancer, Fig. 7.3 shows the original, recovered, and enhanced spectrograms of three

short speeches, where the enhanced versions closely resemble the original except for

slightly attenuated high-frequency components.
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Micro-Benchmark

The experiment design for evaluating JerryAttack is structured into three key com-

ponents: a micro-benchmark and two distinct attack scenarios, which are introduced

in Chapter 7. (1) The micro-benchmark focuses on assessing the feasibility and ver-

satility of JerryAttack while also investigating the influence of various environmental

factors, including distance, material, ambient noise, and orientation, on the system’s

performance. (2) The first attack scenario, voice profiling, aims to test JerryAttacks

effectiveness in performing relatively simple tasks, such as gender identification, indi-

vidual recognition, and digit classification, providing insights into its capabilities in

basic voice analysis. (3) The second attack scenario, speech reconstruction, evaluates

JerryAttack’s performance on a more complex and challenging task, reconstructing

speech when cooperated with joint channel information, offering a deeper understand-

ing of the system’s potential vulnerabilities. Together, these components form the

basis for a comprehensive evaluation of JerryAttack’s overall performance and re-

silience. In this chapter, we first introduce the implementation of JerryAttack and

then present the details of the micro-benchmark.
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6.1 Implementation

JerryAttack has been developed with a comprehensive suite of 2.1k lines, encompassing

both C++ and Python code. A visual depiction of our experimental setup is presented

in Fig. 6.1. Functionally, JerryAttack operates across both the client (optical mouse)

and server environments.

Attack Devices and Setup. For our attack methodology, we selected the Logitech

G402 optical mouse [50] as our primary device. This technique is adaptable to any op-

tical mouse equipped with the ‘pixel grabber’ register, such as some models within the

Logitech G-series range [51]. On the client end, the G402 model integrates an STM32

microcontroller unit (MCU) with its mouse optical sensor. To facilitate the extrac-

tion of pixel values from the sensor, we implemented modifications to the firmware

within the MCU. The core segment of this customized firmware is illustrated in Algo-

rithm 1. In practice, we used an ST-Link for direct hardware programming through

the connection pins. Notably, over-the-air (OTA) updates, as discussed in 3.2, are

also feasible for our attack, allowing for wireless firmware updates similar to those

used by Razer mouse [52]. However, we utilized ST-Link to ensure the stability and

convenience of the experiment.

On the software and hardware integration front, our setup included a Lenovo R7000P

running Ubuntu 20.04 as the host system. Audio output was managed through an

Adin speaker [53], which connects to the host via USB or Bluetooth. By default,

the mouse was positioned in close proximity to the speaker, typically within a 20cm

radius, to ensure optimal capture of audio-induced vibrations.

Server Configuration: Our neural networks are trained on a high-performance

server equipped with an Intel(R) Xeon(R) Gold 6348 CPU@2.60 GHz, 256 GB of

RAM, and three NVIDIA 4090 GPUs, tailored for demanding tasks such as signal

enhancement, classification, and speech reconstruction. Audio data is segmented

into 6-second clips with an initial rate of 3.7 kHz, upscaled to 8 kHz for processing.
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Fig. 6.1: Experimental Setup

We allocate 80% of these segments for training and 20% for validation and testing.

Training employs the Adam optimizer and a cosine learning rate scheduler adjusting

from 10−5 to 10−3. We use a batch size of 28, running our dataset through 500 epochs,

each lasting about 8 hours, to ensure both efficiency and accuracy.

Experimental Setup We use the AudioMNIST dataset [54], a publicly available

resource that includes 30,000 audio samples of spoken digits (0-9) by 60 different

speakers, to train and validate the model. The SNR is the primary criterion for

sound quality, defined by the equation:

SNR = 10 log10


|Sgt|2

|Spt − Sgt|2


(6.1)

where Spt and Sgt represent the predicted and ground truth time-domain acoustic

signals, respectively. This metric helps quantify the effectiveness of our sound en-

hancement and behavior recognition system, highlighting improvements in clarity

and accuracy of the audio output used for inference.
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6.2 Overall Sound Quality

In this experiment, we captured sound across three distinct environments: an office,

a home, and a cafe, with respective ambient noise levels of 35, 65, and 85 dBA.

By default, the optical mouse was positioned 10 cm away from the speaker. For

benchmarking purposes, we also recorded the data using a conventional microphone

to establish a baseline comparison.

(1) Sound Quality across Scenes. Fig. 6.2 compares the sound quality out-

comes from Naive Sound Recovery (NSR), Network Enhanced Recovery (NER), and

Microphone-Based Recovery (MBR). Our analysis yields several key insights. Firstly,

MBR achieved significantly higher SNRs in quieter environments like the home and

office, registering mean SNRs of 13.41 dB and 12.09 dB, respectively. Conversely, in

the noisier caf setting, the SNR noticeably decreased to about 7.72 dB. Secondly, the

SNRs for NSR and NER remained more consistent (3.43 dB and 7.35 dB), showing

resilience to ambient noise. This stability is attributed to the acoustic-optical chan-

nels unique ability to bypass background noise. Remarkably, the performance of NER

in noisy conditions nearly matched that of the conventional microphone, validating

the efficiency of JerryAttack. Third, incorporating a neural network led to an average

SNR improvement of approximately 3.92 dB, increasing from 3.43 dB to 7.35 dB.

This demonstrates the power of neural networks to identify the patterns caused by

the inherent harmonics and other flaws of the side channel.

(2) Sound Quality across Samples. Further detailed in Fig. 6.3, the SNR distribu-

tions for NER in the three environments demonstrate a consistent pattern. More than

50% of the cases achieved an SNR of at least 6.69 dB, with the lowest recorded SNR

being 4.13 dB. The 90th percentile reached up to 8.62 dB. These findings emphasize

the acoustic-optical channels stability and reliability.
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6.3 Versatility

Table 6.1 details the specifications of optical mice examined in our study, featuring 9

models across 7 manufacturers. The optical sensors used in these models include the

AM010, PMW3389, and various ADNS-series sensors. Notably, the ‘pixel grabber’

register address may vary across different optical sensors. This highlights that varying

parameters are required to execute the attack across different models successfully. Our

experimental results confirm the effectiveness of JerryAttack on all tested devices,

Table 6.1: Experiment Devices and Results

Manufacturer Model Image Sensor Addr. FPS SNR (dB)
Logitech G402 AM010 0x0b 3700 7.32
Logitech G100S AM010 0x0b 3700 7.21
Logitech G302 AM010 0x0b 3700 7.29
Razer DeathAdder Elite PMW3389 0x64 3600 7.31
MADCATZ RAT3 ADNS3090 0x40 3500 7.19
ASUS GT200 ADNS3050 0x0b 3000 7.03
ZOWIE EC1 ADNS3060 0x40 3200 7.08
Tucano Gamezone Toros ADNS3050 0x0b 3000 6.95
Cool Master Lite L Combo-Mouse ADNS3050 0x0b 3000 6.98
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with frame rates ranging from 3 kHz to 3.7 kHz, and the performance disparity

remaining below 0.4 dB. This consistency underlines the adaptability and robustness

of JerryAttack across a diverse array of optical mice.

6.4 Impact Analysis

(1) Impact of Distance: To assess the effectiveness of JerryAttack in relation to

varying distances, we positioned the optical mouse at different proximities to the

speaker, ranging from 5 cm to 50 cm in 5 cm increments. For each distance setting,

20 measurements were recorded. The resulting SNRs are depicted in Fig. 6.4. Notably,

for distances less than 20cm, the SNR remains at a relatively high level (>6 dB). But

when the distance exceeds 20cm, the SNR drops rapidly until it reaches 0.44 dB at

50cm. This trend suggests that the success of such an eavesdropping attack is heavily

dependent on the optical mouse being placed near the speaker.

(2) Impact of Materials: In our exploration of the acoustic properties of various

desktop materials using JerryAttack, we assessed the performance across six different

surfaces: wood, steel, plastic, concrete, glass, and rubber. The results, displayed

in Fig. 6.5, reveal significant variations in performance. Glass and rubber surfaces

showed notably poor results, with a median SNR of only 2.56 and 2.81 dB respec-

tively. This inefficiency of glass is attributed to its transparency, which allows light

to pass through rather than reflect, effectively rendering optical mice non-functional

on such surfaces. Rubber, known for its energy-absorbing properties, similarly im-

pedes efficient sound recovery by dampening vibrations. Conversely, the remaining

materials demonstrated comparably higher and consistent SNR values around 6.39

dB.

(3) Impact of Orientation: Next, we assess the impact of the orientation of the

optical mouse. The mouse was rotated from 0◦ to 315◦ in increments of 45◦, relative
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to the loudspeaker. The resulting SNRs are shown in Fig. 6.6. Notably, there was

no significant difference observed among these orientations. This lack of variability is

attributed to the wavelength of the structure-borne waves being considerably larger

than the dimensions of the image sensor. Consequently, it can be inferred that all

pixels within the sensor receive nearly uniform influence from the acoustic vibrations,

resulting in minimal differences in performance across various orientations. This find-

ing suggests that orientation is not a critical factor that could influence performance.

(4) Impact of Background Noise: Finally, we assessed the impact of background

noise on the effectiveness of the attack. The results are shown in Fig. 6.7. Consistent

with previous findings, background noise had no discernible effect on the attack’s

efficacy. This is because the vibrations detected by the mouse are transmitted through

solid materials rather than air, rendering airborne noise irrelevant. This characteristic

distinguishes JerryAttack from microphone-based eavesdropping, which is susceptible

to interference from sound masking devices.
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Attack

7.1 Attack Scenario I: Voice Profiling

In this section, we detail an attack scenario where voice profiling is used to determine

a victim’s identity or habits through recovered audio. To this end, high-fidelity audio

recordings are not necessarily required. Instead, we deploy a ResNet [55] in conjunc-

tion with the sound enhancer for classification, as depicted in Fig.5.6(b). This setup

enables us to extract valuable information from the speech.

(1) Speech Classification. We trained the classification network to classify digi-

tized speech from the AudioMNIST dataset [54], which consists of audio samples of

single-digit numbers. This model was tested to determine if the recovered sounds

could be accurately classified. The results are depicted in Fig. 7.1, which includes

a confusion matrix illustrating the network’s performance. Overall, we achieved an

accuracy of 82.2% across the ten digits. The highest accuracy, 97%, was observed

for the digit one, whereas the lowest, 66%, was for the digit three. Notably, the digit

three often got misclassified as four, accounting for a 20% error rate, likely due to

their similar pronunciations.
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Fig. 7.1: Digit Classification Results

(2) Gender Classification. We trained our network to identify the gender of speak-

ers across multiple languages, including English, Spanish, French, Chinese, German,

and Italian. The used speech data was selected from three public datasets, including

ASR corpus [56] for English speech, THCHS-30 [57] for Chinese speech, and Multilin-

gual LibriSpeech(MLS) [58] for another 4 languages. Results are presented in Fig 7.2.

With only two possible outcomesmale or femalethis task is inherently simpler than

multi-category classifications. The overall accuracy achieved 99.13%, with the highest

recorded accuracy reaching 100%.

(3) Human Identification. We further leveraged the same dataset for individual

identification, encompassing a cohort of 48 distinct speakers. Each speaker con-

tributed an average of 379 training speech samples and 162 test speech samples.

The specific data distribution is detailed in Fig 7.2. Our network was trained to

discern the identity of speakers from these samples. Consequently, we achieved an
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# Gender Length (s) Train Sample Test Sample SNR (dB) Gender (%) Individual (%)
1 1505 351 150 6.54 68.67
2 1208 281 120 8.27 90
3 1503 350 150 7.05 75.33
4 1503 350 150 8.14 88.67
5 1511 352 151 7.31 82.12
6 1441 336 144 8.54 89.58
7 1503 350 150 7.3 79.33
8 1502 350 150 7.29 79.33
9 1255 292 125 7.59 87.2
10 2225 519 222 7.15 86.49
11 1585 369 158 7.57 82.91
12 1658 386 165 7.41 84.24
13 1470 343 147 6.95 78.91
14 1806 421 180 6.74 73.89
15 1585 369 158 8.45 89.87
16 1430 333 143 8.11 86.01
17 2238 522 223 7.9 88.34
18 1940 452 194 8.08 90.21
19 1246 290 124 8.4 87.9
20 2393 558 239 7.32 81.17
21 2395 558 239 6.97 81.17
22 1251 291 125 8.09 88
23 1509 352 150 8.37 90
24 1794 418 179 7.62 87.15
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# Gender Length (s) Train Sample Test Sample SNR (dB) Gender (%) Individual (%)
25 1271 296 127 7.79 87.4
26 1940 452 194 7.43 82.99
27 1310 305 131 7.45 87.02
28 1296 302 129 7.94 88.37
29 1381 322 138 7.88 86.96
30 1563 364 156 7.82 85.26
31 1330 310 133 8.32 87.97
32 1464 341 146 8.05 87.67
33 1512 352 151 7.12 82.12
34 1793 418 179 7.6 87.15
35 1327 309 132 6.84 74.24
36 1795 418 179 8.16 86.03
37 1788 417 178 7.21 76.4
38 1791 417 179 7.53 84.92
39 1791 417 179 7.51 88.27
40 1240 289 124 7.4 82.26
41 1365 318 136 7.77 82.35
42 1568 365 156 7.29 79.49
43 1998 466 199 5.92 67.84
44 2323 542 232 7.5 81.03
45 2001 466 200 6.95 70
46 1572 366 157 8.25 85.99
47 1800 420 180 8.16 87.78
48 1449 338 144 7.63 83.33
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Fig. 7.2: Gender and Human Classification Result on Multilingual Datasets

overall accuracy of 83.27%. The mean accuracies for identification across the six lan-

guagesEnglish, Spanish, French, Chinese, German, and Italianare reported as 81.37%,

83.59%, 86.22%, 86.48%, 83.01%, and 79.2% respectively.

Summary. The success of these classification tasks highlights that the sound cap-

tured and reconstructed through the acoustic-optical side channel preserves the vital

attributes of the original audio. This confirms the practicality of JerryAttack as a vi-

able tool for acoustic eavesdropping, capable of effectively extracting key information

from audio data.

7.2 Attack Scenario II: Speech Reconstion

While the recovered sound maintains a relatively high SNR and retains features rec-

ognizable by neural networks, it may not always be comprehensible to humans. To

evaluate speech intelligibility, we use the Short-Time Objective Intelligibility (STOI)

measure, which correlates the amplitude envelopes of clean and processed speech

across various frequency bands to assess intelligibility.
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7.2. Attack Scenario II: Speech Reconstion

7.2.1 Speech Intelligibility

To examine the relationship between SNR and STOI, experiments were conducted

by introducing various levels of noise to a pristine voice sample. Fig. 7.4 displays the

resulting STOI scores as a function of SNR, with values ranging from 0 (completely

unintelligible) to 1 (perfect intelligibility). Speech quality is categorized as ‘poor’

(below 0.5), ‘fair’ (0.5-0.6), ‘good’ (0.6-0.8), and ‘excellent’ (above 0.8) based on the

STOI scores. The findings indicate that speech achieves ‘good’ intelligibility only

when the SNR is above 7.21 dB. Additionally, the figure shows the SNR distribution

(depicted with a red line) of speeches recovered from the Multilingual dataset, pre-

dominantly ranging between 6 and 9 dB, aligning with ‘fair’ and ‘good’ quality. This

limited intelligibility is largely attributed to inherent harmonics in the system that

replicate voice frequencies, complicating the clarity of the speech.

To improve intelligibility, we propose a joint attack that combines the side channel
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Fig. 7.3: Spectrogram Comparison of Speech Processing. Each row represents
a different speech sample. The first column displays the original sound’s spectrogram.
The second and third columns illustrate the spectrograms after processing by the naive
recovery algorithm and the sound enhancer, respectively. The fourth column shows the
sound recovered using a microphone at a distance. The final column presents the results
from the joint reconstruction. All samples have been well-marked the SNR and STOI with
respect to original sound.
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Chapter 7. Attack

with a direct eavesdropping channel, such as a microphone. In this scenario, the

attacker strategically positions a microphone at a significant distance from the victim,

potentially attaching it to an exterior wall or using a directional microphone array to

capture sound from afar. Due to this distant placement, the SNR of the direct channel

is often too low for effective speech reconstruction on its own. We concurrently capture

the same speech through both the side and direct channels and then reconstruct the

speech using a joint neural network, as depicted in Fig. 5.6(c). Each channel processes

a spectrogram and outputs an enhanced version. The goal is to merge the enhanced

outputs from both channels, aiming for their combined result to closely align with the

ground truth spectrum. This strategy leverages the strengths of both audio sources,

potentially overcoming the limitations of each channel when used independently and

achieving a more precise reconstruction of the speech.

7.2.2 Results

We assess the reconstruction efficacy from three aspects:

(1) Visual Representation. To clarify the mechanics of the attack, Fig. 7.3 shows

spectrograms of speeches captured by the side and direct channels in the third and

fourth columns, respectively. Notably, the direct channel’s spectrogram is heavily

obscured by noise, which nearly overwhelms the entire spectrum. The joint recon-

struction results, shown in the fifth column, demonstrate a significant improvement

in SNR compared to the side channel alone. This improvement is due to the side

channel’s ability to provide a complementary spectrum that enhances the signal com-

ponents and suppresses the noise elements from the direct channel.

(2) Speech Quality. To assess the reconstructed speech quality, we evaluated 300

speech samples from the previously mentioned multilingual dataset using both the

direct channel (D) and the side channel (S). The STOI distribution of the recon-

structed results is illustrated in Fig. 7.5. Key insights include: Firstly, using the side
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channel alone, we achieved a median STOI of approximately 0.58, indicating ‘fair’ in-

telligibility. Secondly, the direct channel provides an additional boost in intelligibility

when the SNR exceeds 2.64 dB, improving speech quality from ‘fair’ to ‘good,’ even

with a weak direct channel SNR of 3.97 dB. Generally, the direct channel increases

STOI by 0.04 per 1 dB increment in SNR. Finally, when the SNR of the direct chan-

nel surpasses 5.54 dB, speech intelligibility reaches ‘excellent’ levels, marking a great

enhancement in speech clarity.

(3) Speech-to-Text Accuracy. We also used the AssemblyAI Speech-to-Text

Recognition API [59] to gauge the intelligibility of the reconstructed speech indi-

rectly. As depicted in Fig. 7.6, a similar trend emerges across different languages

where a direct channel SNR of 7.1 dB helps achieve an average accuracy of up to

90%. Conversely, a 4.83 dB SNR yields an accuracy slightly above 60%, showcasing

the positive impact of higher SNR levels on speech recognition accuracy.

Summary. The speech reconstructed solely from the side channel reaches a ‘fair’

level of intelligibility. However, integrating a direct channel significantly enhances

intelligibility, as it helps verify and reduce the impact of inherent harmonics, thereby

improving the clarity and accuracy of the reconstructed speech.
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Chapter 8

Conclusion and Future Works

In this chapter, we reflect on the key findings of this thesis and explore potential fu-

ture directions for expanding and improving the work. The conclusion will summarize

the contributions of JerryAttack, an innovative acoustic eavesdropping technique that

repurposes optical mice, and highlight the significance of this research in uncovering

security vulnerabilities in common devices. Following this, the future works section

will present two promising research directions: first, expanding the attack scenarios

to accommodate dynamic mouse movement, and second, exploring robust counter-

measures to mitigate the security risks posed by such attacks. These discussions aim

to provide a clear roadmap for further research in enhancing mobile security practices

and developing more resilient systems against unconventional threats.

8.1 Conclusion

This thesis introduces a novel eavesdropping technique that repurposes optical mice

as covert acoustic surveillance devices. By utilizing the optical sensor embedded in

a standard optical mouse, we demonstrated how this widely available device could

be adapted to capture vibrations and convert them into audio signals, a technique
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we have termed ‘JerryAttack’. This approach leverages the high frame rates and

sensitivity of optical mouse sensors, which are typically designed for precise move-

ment tracking, to detect subtle vibrations caused by sound waves. The findings from

this research reveal the potential security risks posed by everyday computing periph-

erals when repurposed for malicious purposes, emphasizing the need for heightened

awareness and preventive measures.

The idea of using non-traditional devices for acoustic eavesdropping has been ex-

plored in various forms in prior research. Techniques such as exploiting smartphone

gyroscopes, Wi-Fi signals, and high-speed cameras to capture sound by analyzing

mechanical vibrations have been studied extensively. However, these methods often

require specialized equipment or access to devices that are closely monitored for se-

curity breaches. For example, visual vibrometry using high-speed cameras has shown

promise in recovering sound from video footage of vibrating objects, but these ap-

proaches typically involve expensive equipment and are limited by the visibility of

the target object.

In contrast, JerryAttack offers a novel, cost-effective solution by repurposing ubiqui-

tous optical mice as acoustic sensors. This method presents several key advantages

over existing techniques as follows:

Stealth and Ubiquity: Optical mice are widely used in both personal and corporate

environments, making them ideal for covert operations. Their common presence in

everyday settings means they are unlikely to arouse suspicion, unlike more specialized

surveillance equipment.

High Frame Rate for Accurate Sound Recovery: The optical sensors in mice,

with frame rates often exceeding 3 kHz, can capture fine surface vibrations caused by

sound waves. This high frame rate allows JerryAttack to recover sound with a mean

SNR comparable to standard microphones, especially in noisy environments.

Robustness to Environmental Noise: Unlike traditional acoustic sensors that
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capture air-borne sound waves, JerryAttack focuses on structure-borne sound waves

transmitted through solid surfaces. This unique characteristic makes it highly robust

to environmental noise, effectively filtering out background noise typically carried by

air, and ensuring clearer sound recovery in diverse settings.

Low-Cost Implementation: JerryAttack requires minimal hardware, only simple

firmware modifications of the mouse’s microcontroller that could be implemented

via the OTA method, making it a cost-effective alternative to more specialized and

expensive surveillance technologies.

Enhanced Performance Through Machine Learning: The integration of ad-

vanced machine learning techniques for signal enhancement and classification, sig-

nificantly improves the intelligibility of reconstructed speech. This capability makes

JerryAttack highly effective for practical eavesdropping applications.

The broader implications of these findings underscore a significant privacy risk, as

commonly used devices like optical mice are not typically scrutinized for security

vulnerabilities. This work not only introduces a new attack vector but also highlights

the urgent need for robust countermeasures. By advancing our understanding of how

everyday devices can be repurposed for surveillance, this thesis makes a significant

contribution to the field of mobile security. It emphasizes the importance of vigilance

and innovation in developing protective measures against emerging threats. The

insights gained from this research open new avenues for securing devices that are

not traditionally viewed as security risks, thereby helping to protect personal and

corporate privacy in an increasingly interconnected world.
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8.2 Future Works

8.2.1 Expanding Potential Attack Scenarios: Transitioning

the Mouse from Static to Dynamic

In this thesis, JerryAttack requires the optical mouse to remain static during the

eavesdropping process for effective sound recovery. However, expanding the attack

scenario to allow the mouse to move dynamically, as it would during normal usage,

presents an intriguing challenge. The main difficulty arises from the fact that the

optical sensor in the mouse, modeled as a multi-sampler system, has samplers that

correspond to fixed physical positions. When the mouse moves, the baseline light

intensity bias pi for each sampler changes continuously, which can significantly impact

the performance of sound recovery. To address these challenges and make JerryAttack

feasible in dynamic scenarios, we propose the following potential solutions:

Leveraging Mouse Displacement Registers: Modern optical mice store displace-

ment data in two registers, ∆x and ∆y, which track movement along the x and y

axes, respectively, over short intervals (e.g., 1ms, based on the mouse’s polling rate).

By utilizing this real-time displacement data, it may be possible to infer the current

positions of the samplers and dynamically adjust the pi array. This method would

allow us to compensate for the shifting baseline intensity biases caused by mouse

movement, ensuring more accurate sound recovery. Future work could focus on de-

veloping algorithms to incorporate displacement data into the sound recovery model,

enabling continuous recalibration of the sensor positions in real time.

Separating High-Frequency Vibrations from Low-Frequency Movements:

In dynamic scenarios, distinguishing between high-frequency, small-amplitude vibra-

tions caused by structure-borne sound waves (the target of JerryAttack) and low-

frequency, large-amplitude vibrations from normal mouse movement is crucial. The

key challenge is isolating these subtle sound-induced vibrations from the noise created
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by mouse movement. Future research could explore advanced signal processing tech-

niques or machine learning models capable of filtering out low-frequency movement

noise while preserving the high-frequency vibrations containing acoustic information.

Successfully extracting these high-frequency vibrations would allow sound recovery

even when the mouse is in active use.

These approaches, leveraging real-time displacement data to infer the pi array and

separating vibrations based on frequency and amplitude, offer promising solutions for

extending JerryAttack to dynamic usage scenarios. Future research in these areas

could greatly improve the flexibility and effectiveness of the attack, enabling it to

function even when the mouse is being used normally. This would significantly expand

the range of potential attack vectors and increase the real-world applicability of the

method.

8.2.2 Countermeasures Exploration

To address the security risks associated with optical mice being repurposed for acous-

tic eavesdropping, one of the future research topics should focus on developing and

implementing a range of hardware-based and software-based countermeasures. These

countermeasures aim to mitigate the vulnerabilities identified in this thesis and en-

hance overall mobile security practices.

Hardware Modifications: The ‘pixel grabber’ register within optical mice, origi-

nally intended for debugging and sensor integration testing, remains inactive during

standard operations. This feature, although seemingly harmless, provides a poten-

tial entry point for unauthorized access, acting as a ‘backdoor’ for eavesdropping. To

mitigate this vulnerability, manufacturers should consider disabling or securely encap-

sulating this testing interface in commercial products. This could involve hardware-

level changes that render the register inaccessible or reprogramming the firmware to

prevent unauthorized access to pixel data. By eliminating this backdoor, the risk of
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data breaches through optical mice can be significantly reduced.

Operating System Enhancements: Operating systems (OS) have the potential

to monitor and flag unusual device behaviors, such as atypical data transmissions

between the optical mouse and the host computer. Future work should focus on

enhancing the OS’s ability to recognize these anomalies and alert users to potential

security threats. Developing advanced monitoring algorithms that can detect unusual

data patterns indicative of eavesdropping attempts would provide an additional layer

of security. These algorithms could employ machine learning techniques to continu-

ously learn and adapt to new forms of eavesdropping, improving detection accuracy

and reducing false positives.

Physical Countermeasures: Employing anti-vibration materials on mouse pads or

other surfaces can significantly reduce the transmission of sound vibrations to opti-

cal mice. This measure is particularly crucial in high-security environments, where

sensitive conversations or activities occur frequently. By absorbing vibrations that

could otherwise be detected and analyzed, these materials create a physical barrier

to potential eavesdropping attempts. Future research should investigate the effective-

ness of various materials and designs to enhance their protective capabilities against

acoustic surveillance.

Awareness and Training: Raising awareness about the security risks posed by

seemingly innocuous devices like optical mice is essential to strengthening overall

mobile security practices. Training programs and informational campaigns should be

developed to educate users, IT professionals, and manufacturers about the potential

for optical mice to be exploited for eavesdropping. Emphasizing the importance of

regular device audits, firmware updates, and cautious use of peripheral devices can

help mitigate risks and foster a more security-conscious environment.

By combining these specific countermeasures, a comprehensive defense strategy against

acoustic eavesdropping via optical mice can be developed. This multi-layered ap-
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proach addresses both the hardware and software vulnerabilities identified in this

study, providing robust protection against this unconventional but significant secu-

rity threat in the context of mobile security.
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