

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ON DEEP LEARNING METHODS

FOR SPEECH SYNTHESIS APPLICATIONS

CHAN KIN LOK

MPhil

The Hong Kong Polytechnic University

2023

The Hong Kong Polytechnic University

Department of Applied Mathematics

On Deep Learning Methods for Speech Synthesis Applications

CHAN Kin Lok

A thesis submitted in partial fulfilment of

the requirements for the degree of

Master of Philosophy

August 2022

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

CHAN Kin Lok

I

Abstract

Voice Cloning is a speech processing task that aims to synthesize speech with a

specific target’s voice. There is a resemblant topic named Voice Conversion in the

field. The difference is that, while Voice Conversion techniques process existing

audio data, Voice Cloning newly synthesizes speech from text. In this thesis,

a popular open-source deep-learning-based Voice Cloning model is introduced.

The structure of the neural network layers is studied and supporting literature is

reviewed.

The objective of this project is twofold. First, we want to optimize the open-sourced

model to boost its performance, especially in low-resources cases in which only

a limited amount of data is available. The methods studied in this thesis are to

optimize hyperparameters of the speech synthesis process and to finetune the model

using a small dataset of target speakers. Improvement in speech quality and voice

similarity is observed.

Another objective is to develop potential applications of Voice Cloning techniques.

In this project, we investigate and propose an application in educational usage,

that we can detect pronunciation errors by comparing speech data from real

II

humans and synthesized speech. Existing methods in field may require either

professional language knowledge or numerous examples recorded from real humans.

Our proposed method employed a TTS model to generate reference speech so that

these are no longer necessary. In addition, applying Voice Cloning techniques could

simplify the comparison procedure between teachers’ and students’ speech data.

III

Acknowledgements

Countless people supported me in completing this thesis. I wish to express my

sincere gratitude to my supervisor Prof. Cedric Yiu for patiently answering my

questions, fruitful discussion sections, and valuable feedback. I would also like to

thank the teachers of the subjects I took in my study period for providing knowledge

and expertise, and the fellow in university for technical supports. Finally, I shall

thank my family for supporting my daily live, so that I could concentrate on my

studies.

IV

Table of Contents

CERTIFICATE OF ORIGINALITY I

Abstract II

Acknowledgements IV

Table of Contents V

List of Figures VIII

List of Tables X

1 Introduction 1

1.1 Text-to-Speech Synthesis . 1

1.2 Voice Cloning . 3

1.3 Phase Reconstruction . 4

1.4 Pronunciation Error Detection . 6

1.5 Objectives and Contributions . 7

2 Literature Review 10

2.1 Deep Learning . 10

V

2.1.1 Fully Connected Neural Network 11

2.1.2 Convolution Neuron Network 13

2.1.3 Recurrent Neural Network 14

2.2 Acoustic Features . 18

2.2.1 Fourier Analysis . 18

2.2.2 Mel Scale Frequency . 22

2.3 Voice Cloning . 24

2.3.1 Speaker Encoder . 26

2.3.2 Synthesizer . 30

2.3.3 Vocoder . 34

2.4 Attention Mechanism . 36

2.4.1 Basics of Attention Mechanism 37

2.4.2 Sequence-to-Sequence Models Using Attention Mechanism . 38

2.4.3 Self-Attention and Transformer 41

2.5 Griffin-Lim Algorithm . 44

2.5.1 Problem Definition and Algorithm 45

2.5.2 Convergence Analysis . 46

3 Methodology 49

3.1 Analysis of Griffin-Lim Algorithm 49

3.1.1 Convexity of Linear Spectrogram Approximation 50

3.1.2 Uniqueness of STFT Magnitude 52

3.1.3 Numerical Experiments . 54

3.2 Studies of Neural Network Models 58

3.2.1 Performance Indicators . 58

VI

3.2.2 Baseline Model Performance 66

4 Results and Discussions 68

4.1 Transfer Learning and Finetune of Model 68

4.1.1 Modification of STFT Window Function 69

4.1.2 Single Speaker Finetune . 70

4.2 Speech Quality . 70

4.3 Voice Similarity . 73

4.4 Attention Alignment . 75

5 Potential Applications of Voice Cloning Systems 78

5.1 Related Works . 79

5.2 Experiments . 80

5.3 Simulation Results . 83

5.4 Analysis . 86

6 Conclusion 91

A Details of Pronunciation Error Detection Simulations 94

References

VII

List of Figures

2.1 Logistic Function . 12

2.2 Rectified Linear Unit Function . 12

2.3 Simple Recurrent Neural Network 15

2.4 Digital Signal . 19

2.5 Spectrum . 20

2.6 Spectrogram . 22

2.7 Relationship between Mel scale and Hertz scale frequency 23

2.8 Model Overview . 25

2.9 Pipeline of Speaker Encoder . 28

2.10 Detailed architecture of Synthesizer 31

2.11 Detailed architecture of Vocoder . 35

3.1 Visualization of digital Mel-filterbank 50

3.2 Result of waveform reconstruction from linear spectrogram 56

3.3 Result of waveform reconstruction from Mel-spectrogram 56

3.4 Scatter plot of PESQ and NISQA score 65

4.1 MCD of synthesized audio samples generated by baseline and modi-

fied model, using GLA and neural vocoder 72

VIII

4.2 NISQA MOS prediction of synthesized audio samples generated by

baseline and modified model, using GLA and neural vocoder 72

4.3 MCD of synthesized audio samples generated by pretrained and

finetuned model, using GLA and neural vocoder 74

4.4 NISQA MOS prediction of synthesized audio samples generated by

pretrained and finetuned model, using GLA and neural vocoder . . 74

4.5 Example of a decent attention alignment 76

4.6 Example of a problematic attention alignment 77

5.1 Example of warping . 82

5.2 Example of pronunciation error detection via MCD 84

5.3 Example of pronunciation error detection in different voice 84

5.4 Example of pronunciation error detection after voice cloning 85

5.5 MCD of models trained from different amount of data 89

A.1 Results of example index 1 . 96

A.2 Results of example index 2 . 97

A.3 Results of example index 3 . 98

A.4 Results of example index 4 . 99

A.5 Results of example index 5 . 100

A.6 Results of example index 6 . 101

A.7 Results of example index 7 . 102

A.8 Results of example index 8 . 103

A.9 Results of example index 9 . 104

A.10 Results of example index 10 . 105

IX

List of Tables

3.1 Mean and 95% C.I. of synthesized audio from baseline model 66

4.1 Mean scores and 95% C.I. of synthesized audio from pretrained and

finetuned model . 71

4.2 Mean scores and 95% C.I. of synthesized audio from baseline and

modified model . 73

5.1 MCD mean and variance of the data used in simulations 87

5.2 MCD mean and 95% C.I. of models trained from different amount

of data . 88

A.1 Transcript of testing sentence set 95

X

List of Algorithms

1 Griffin-Lim Algorithm . 46

2 Fast Griffin-Lim Algorithm . 54

XI

Chapter 1

Introduction

1.1 Text-to-Speech Synthesis

Text-to-speech (TTS) synthesis is a research topic with a long history. It aims to

generate corresponding speech data according to input text. This “input text” is

often natural language, but it could also be any other type of symbolic linguistic

representation such as phonetic transcriptions. In implementations nowadays, it is

often required that TTS models should be “end-to-end”, which means both input

and output of the models should be natural languages that are understandable to

humans. It is preferred that all linguistic and mathematical processes are handled

by models, no specific knowledge should be required from users.

A traditional technique of TTS is concatenative method, which synthesizes speech

by concatenating small pieces of speech data in a database. Data stored in the

database may differ in different models: some of them may be phonemes, others

1

may be entire words or phrases. This approach could generate high-quality speech

in terms of naturalness and has long been state-of-the-art. However, its limitations

also come from its database: pronunciation, accent, and intonation of synthesized

speech are limited by the samples in the database.

Statistical parametric approaches were developed in the 1990s. The idea of this

approach could be described in three stages. The first stage is to extract features

from the input text sequence. That means building a model for computer vision so

that the TTS model could understand human languages in text format. Natural

Language Processing (NLP) skills may be applied here, but machine learning

methods are also useful. The second stage is a statistical module that predicts

acoustic features from linguistic features. Acoustic features are representations of

audio signals but are easier to process. More details about acoustic features would

be presented in Section 2.2. The last stage is constructing audio waveforms from

acoustic features. Models for this purpose are called “vocoders”. It is common

for speech processing models to handle acoustic features. Vocoder itself could be

a wide research topic that benefits many other speech processing fields. Hidden

Markov Model-based frameworks are popular among parametric methods and have

long been used until deep learning-based models become popular.

Since the 2010s, deep learning techniques have been applied to speech synthesis

field. Many neural network-based methods are developed and become one of the

main streams nowadays. Deep neural network (DNN) models are proven to have

high non-linearity and could perform well in speech processing tasks including

speech synthesis. Many attempts have been done since mid-2010s [52], [1], [44].

One of the popular models is Tacotron [53] and its improved version, Tacotron2 [42].

2

The advantage of this model is that this model could accept characters as input

and produce a spectrogram as output. Thus, users are not required to have any

linguistic knowledge nor use a specific vocoder for waveform construction. Details

of Tacotron and vocoder would be given in Section 2.3.

1.2 Voice Cloning

Voice cloning is an extended concept of TTS. Apart from synthesizing speech from

text, there is an extra target for mimicking the voice of specific target speakers. The

term “Voice Cloning” may not be wisely used in the field still. Hence, there may

be different explanations for the topic in different documents. To avoid ambiguity,

in this thesis we define this research topic by listing its main goals:

1. Perform accurate speech synthesis.

2. Mimic target speakers’ voice characteristics while synthesis.

3. Generate natural sounding audio waveform.

There is a similar research field called Voice Conversion. Voice conversion is a

speech processing problem that aims to change some of the information in speech

data while keeping other information unchanged. Changing speaker information

while keeping its content is one of the typical voice conversion problems. The two

fields seem similar, but they are not identical. One of the main differences is that

3

inputs to voice conversion models are speech data and the models directly process

the input. In contrast, we restrict the input to voice cloning models to be text and

a reference speech. Only feature extraction would be performed on the reference

speech to quantify the voice characteristic inside.

Google’s team proposed a framework for voice cloning in which transfer learning

from speaker verification studies is used for learning speaker characteristics [18].

We refer to this original paper as SV2TTS in this thesis. The proposed model

is composed of three neural network-based modules. The three modules are

independent and trained in order. However, same as in many other studies from

Google, a large set of internal speech data is used in training and no implementation

is released to the public. Real-Time-Voice-Cloning (RTVC) is an open-source

implementation of SV2TTS on Github [17]. It follows the framework proposed by

SV2TTS and is trained by only open-source resources. It also slightly modified the

architecture of neuron networks for faster training and inference. RTVC is one of

the most popular projects in the field nowadays.

1.3 Phase Reconstruction

Spectrograms are a common acoustic feature used by many signal processing

projects. The two TTS models, Tacotron and Tacotron2, mentioned above also

predict spectrogram (in Hertz-scale or Mel-scale) from input text. A spectrogram

is the magnitude of Short-Time Fourier Transform (STFT) output. STFT and

its inverse transform (ISTFT) have perfect reconstruction properties. There is

4

no information loss in between. However, the above TTS models only predict

the magnitude of STFT, extra phase information is required to reconstruct the

waveform. This phase reconstruction has long been a research problem in the

field. Many speech processing topics also face this problem since it is common to

represent signals with acoustic features instead of their time-domain waveform.

Algorithm-based method has long been state-of-the-art. Griffin and Lim [14]

proposed a simple iterative algorithm to approximate phase information from a

given fixed STFT magnitude (STFTM). We refer to this algorithm as Griffin-Lim

Algorithm or GLA in short throughout the whole thesis. Although the algorithm

only requires low computation power and does not require extra information other

than STFTM, there is a common belief that the convergence of GLA is slow,

and the quality of the approximated signal may not be satisfying. We will study

the algorithm both theoretically and practically. The details of GLA would be

presented in Section 2.5. Numerical experiments and analysis results would be

presented in Section 3.1.

Motivated by the deep-learning boom and the limitations of GLA, neural network-

based waveform construction has become an active research topic. Many different

models have been proposed since mid-2010s, such as WaveNet [34], WaveRNN [19],

WaveGlow [38], etc. Neural models are often reported to have high performance in

terms of producing natural-sounding waveforms. However, as common problems

shared by most neural networks, this type of model requires high computational

resources, including hardware such as GPUs and memory. Its performance may

also be not stable, especially when the training data used are not enough to well

generalize the network learning outcome. High time cost is also a problem in

5

training stage. Some models, such as WaveNet, are also known as slow in inference.

Despite all the problems, neural models are still a popular research direction in the

field.

1.4 Pronunciation Error Detection

With the quick development of globalization, the need of learning foreign languages

increases day by day. In the past, people needed to go to school and take classes

to learn new languages. Benefitting from the advance in technology, nowadays

people can learn at home with the help of electronic devices. Computer-assisted

language learning (CALL) has been studied over the past few decades. Compared

to learning in classes, learning with computers allows students to learn at their

own pace. There is also no pressure from teachers and classmates.

Oral practice is indispensable to language learning, no matter what the means

of learning is. If students are learning from computers, it is necessary to build a

function in CALL systems that can interact with students by providing feedback on

their speaking exercises. Computer-assisted pronunciation training (CAPT) systems

are designed to serve the purpose. It focuses on checking students’ pronunciation

and giving feedback. The core of such a system is automatic pronunciation error

detection (APED).

In addition, theories [45] have been developed that infants learn to speak by

imitating the sound they heard and improve their pronunciation through interaction

and feedback from their caregivers. Some studies [33], [9] also provided evidence

6

that infants’ hearing sense plays an essential role in their language learning, in the

sense that they must listen to their voice while practising speaking. These suggest

that infants ”learn by ear”, while many adults ”learn by eye” when they learn

foreign languages.

We also believe that voice cloning techniques would help in language learning

because users can imitate pronunciation from words or sentences synthesized by a

model that their voices are learnt. It should be more efficient that users learn from

their own voices rather than others’ voices.

1.5 Objectives and Contributions

The motivation of this study is to explore recent achievements in text-to-speech

synthesis after the deep-learning boom in mid-2010s. We especially intended

to study voice cloning related materials, including publications and open-source

resources such as training data and pretrained models.

As a subtopic in our studies, we have also explored the performance of Griffin-Lim

Algorithm and neural vocoders. Algorithm-based vocoders have long been used

in the past few decades, but were quickly replaced by neural vocoders after the

deep-learning boom. We have studied the mathematics and theoretical backgrounds

of GLA and conducted experiments to investigate the advantages of neural vocoders

in practical cases. We found that the performance of GLA could be affected by

hyperparameters. We will introduce one hyperparameter we found essential and

demonstrate how we choose the optimal hyperparameter in Chapter 3. Also, through

7

numerical experiments, we found that GLA perform well while it is standalone,

but it could not function well as a part of a TTS system. Related results will be

presented in Chapter 4.

The main contribution of this thesis is a new approach for Automatic Pronunciation

Error Detection. APED is a task to check and score students’ pronunciation by

only machines. It is still an active study topic nowadays. One of the popular

methods nowadays is to recognize phonemes from students’ speech data using

Automatic Speech Recognition (ASR) models and then compare them with the

correct phonemes labelled by professionals. Another well-known approach is to

compare students’ attempts to teachers’ demonstrations. In this thesis, we will

show that voice cloning techniques could be useful for pronunciation error detection.

Our proposed method is a completely new approach that employs TTS models.

It does not require advanced language knowledge nor reference speech recorded

by teachers. It is also not necessary to train classification models to detect errors.

We will present the procedure of the proposed APED method, together with some

simulation results in Chapter 5.

The structure of this thesis is as followed. Chapter 2 is literature review. Basic

deep learning and signal processing related knowledge is provided in Section 2.1

and 2.2. Details of the voice cloning model used in this project are presented

in Section 2.3. Essential reference papers behind the voice cloning models are

introduced in the sub-sections under Section 2.3 and 2.4. In Section 2.5, we explore

the Griffin-Lim Algorithm and its convergence. Chapter 3 is methodology. We

judge the usefulness of GLA by reviewing its theoretic background and conducting

8

some simple numerical experiments in Section 3.1. In Section 3.2, we introduce

some metrics for TTS model evaluation. We then test the performance of the

open-source voice cloning model employed. Chapter 4 presents what can be done

for improvements with only limited resources, together with related results. We

then discuss potential applications of voice cloning techniques in Chapter 5. Details

of a new method for automatic pronunciation error detection are presented. We

also provided simulation results to support this proposed approach. Chapter 6

concludes the whole thesis and points out some possible directions for further

research.

9

Chapter 2

Literature Review

2.1 Deep Learning

Deep learning is a stream of machine learning that focuses on the usage of artificial

neural networks (ANN). ANN itself has been widely used in different types of

machine learning. Deep learning, as its name, tends to use “deep” networks that

stack numerous neural network layers in models. Deeper networks also show

higher performance in many tasks. Winners of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) would be a good example. The winner in 2012

used an 8-layer-deep network [21]. Winner in 2015 substantially increase the depth

of their model to 152 layers [15], and proved to outperform other models.

As the deep learning techniques and models applied to different research fields

are noticeably different, in this section only the basic ideas of deep learning are

10

included. Additionally, some more details about deep learning in speech processing

and the natural language processing (NLP) field would be included in the later

part.

2.1.1 Fully Connected Neural Network

Fully connected (FC) layers may be the most simple, classical and common structure

in deep learning. It has some different names in different documents, such as dense

layer. The mathematics in FC layers is relatively simple. An FC layer is defined

by formula

y = σ(Wx + b),

where x and y are the input and output of the layer, W and b denote the weight

matrix and bias vector. σ represents an activation function.

Neural networks in the early days often use Sigmoid functions as activation. Sigmoid

function in the deep learning field usually refers to Logistic function defined as

f(x) =
1

1 + e−x
.

Rectified Linear Unit (ReLU) is one of the most commonly used activation functions

nowadays. ReLU function is defined as

ReLU(x) = max(0, x).

11

Figure 2.1: Logistic Function

Figure 2.2: Rectified Linear Unit Function

12

The complexity of an FC layer is O(nl−1nl), where nl is the number of neurons in

layer l, nl−1 is the dimension of input, which also means the size of the previous

hidden layer or input layer.

2.1.2 Convolution Neuron Network

Convolution Neuron Network (CNN) is well-known for its ability in the computer

vision field. CNN is often used to learn local patterns in input features. The

philosophy of CNN is based on the assumption that recognition of patterns should

not be affected by the size and location of the patterns. For instance, a filter

that recognizes the existence of birds’ beaks in images should function equally

well, no matter whether the beak is occupying a large part or a small part of

the image, or the beak is located in the top-right or bottom-left corner. In some

cases, sub-sampling could be done between CNN layers. It is based on another

assumption that lower resolution would not affect recognition.

A convolutional layer is defined as

outputj =

Cin∑
i=1

Weight(j, i) ∗ inputi + biasj, for1 ≤ j ≤ Cout,

where ∗ is the convolution operator, Cin,Cout are the number of input, output

channels of a CNN layer respectively, i,j are the index of channel.

Using CNN layer could be beneficial in the sense that, a convolutional filter is

equivalent to an FC layer but with fewer connections between nodes and parameters

are reused. While convolution, weights in filters are fixed. Each element in output

13

feature maps is only computed from a small area of input but not the whole input

like what is done in FC layers.

Time complexity of a CNN is given by

O(
L∑
l=1

Cl−1 × kl × Cl ×ml),

where l is the index of CNN layer, L is the depth of the network, k is kernel size,

and m is output feature size. Note that this formula mainly considers the case of

1-D convolution, which is common in speech processing. In some other fields such

as image processing, 2-D convolution is also wisely used. In such cases, one should

be aware that kl and ml are in 2-D shape. For instance, k = 9 for a 3 × 3 filter.

2.1.3 Recurrent Neural Network

Recurrent Neural Network (RNN) is the variation of artificial neural networks that

could learn patterns better from data in time series structure. By introducing a

“hidden state” mechanism, the order of input would be considered and memorized.

Output feature may change according to input order.

The figure 2.3 [36] below illustrated the structure of a simple RNN. It is shown

that a hidden state ht is computed from input xt and stored in RNN cells at each

time step t. At time step t + 1, this hidden state is considered, together with the

next input xt+1, for updating hidden state ht+1. The mathematics in this RNN

14

Figure 2.3: Simple Recurrent Neural Network

structure could be summarized by

ht = σh(Whxt + Uhht−1 + bh),

yt = σy(Wyht + by),

where W , b and σ are the weight, bias and activation function.

Long Short-Term Memory

Nowadays, the term RNN used in many documents refers to Long Short-Term

Memory (LSTM) [16] instead of the “simple” RNN introduced above. LSTM can

help to overcome the gradient vanish problem in simple RNN. Gradient vanish occurs

15

because, during backpropagation, when the network is deep, partial derivatives

of loss to parameters in the previous layers become very small. Optimization of

learnable parameters could not continue since the gradient is small and could hardly

point out a decent direction.

LSTM layers are composed of an input gate, a cell gate, a forget gate and an output

gate. The four gates control the information flow in and out of the layer, and also

what to store in LSTM cells.

An LSTM layer is defined by the following equations:

it = σ(Wiixt + bii + Whiht−1 + bhi),

gt = tanh(Wigxt + big + Whght−1 + bhg),

ft = σ(Wifxt + bif + Whfht−1 + bhf),

ot = σ(Wioxt + bio + Whoht−1 + bho),

ct = it ⊙ gt + ft ⊙ ct−1,

ht = ot ⊙ tanh(ct),

where it,gt,ft,ot are the input, cell, forget and output gate at time t respectively,

ct,ht are cell state and hidden state at time t. σ is Sigmoid function, ⊙ is element-

wise product. xt denotes the input to LSTM cells. It is shown above that the

number of learnable parameters in an LSTM layer is about 4 times that in an FC

layer of the same size. It caused a larger memory and higher computation power

requirement.

16

The Time Complexity of an LSTM network is given by the following:

O(
L∑
l=1

(4Cl−1Cl + 4C2
l + 3Cl)),

where l is the index of LSTM layers, L is the depth of the network, and Cl is the

number of cells in layer l. This complexity would be double for bi-directional layers,

as the computation is done for both forward and backward directions.

Gated Recurrent Unit

As stated above, LSTM contains a relatively large number of parameters and

requires higher computation power, a variation is Gated Recurrent Units (GRU)

[4]. GRU can be considered as a simplified LSTM in the sense that it omitted the

output gate. While having fewer learnable parameters, it is reported that GRU

can achieve similar performance as LSTM. A GRU unit is defined by the following

equations:

rt = σ(Wirxt + bir + Whrht−1 + bhr),

zt = σ(Wizxt + biz + Whzht−1 + bhz),

nt = tanh(Winxt + bin + rt ⊙ (Whnht−1 + bhn)),

ht = (1 − zt) ⊙ nt + zt ⊙ ht−1,

where rt,zt,nt are the reset, update, new gate respectively, and ht is the hidden

state at time t. The input to GRU cells is xt, or the hidden state of the previous

layer for multilayer GRU.

17

2.2 Acoustic Features

Signals can be described as time series. Analog signals are usually described as

continuous waves. In contrast, digital signals are discrete data points. For audio

signals, the time series may be the amplitude of air pressure over time. Sampling

rate is the number of sample points recorded in one second. For example, the

sampling rate of CDs is typically 44.1kHz, i.e., 44100 samples per second. Direct

processing of signals in time domain is difficult since there is a lack of information

about the components of the signal. Thus, concise and precise representations of

digital signals are required. Acoustic features are the representations that we are

looking for. There are many types of acoustic features used in different fields. In

this chapter, only the features used in this project are introduced.

2.2.1 Fourier Analysis

Signals are time series as mentioned. Information that changes over time could

be easily observed by plotting the waveform. However, it is very difficult to know

the sinusoid component of the signals only from the time-domain waveforms, no

matter how high the sampling rate is. Fourier analysis can be used to compute

frequency components of signals.

Fourier transform is a mathematical method to transform signals into spectrums, a

representation of amplitudes over frequency. In other words, it transforms signals

from time domain to frequency domain. As shown in figure 2.5 below, one could

gain high resolution in frequency domain after transformation. But at the same

18

Figure 2.4: Digital Signal

time, almost all information about time is lost and can only be recovered by

applying the inverse transform to the spectrum. Note that both time-domain signal

and frequency-domain spectrum are discrete in this example, so Discrete Fourier

Transform is actually done here.

Discrete Fourier Transform and its inverse transform is given in equation 2.1 and

2.2, respectively.

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , k = 0, ..., N − 1 (2.1)

x[n] =
1

N

N−1∑
k=0

X[k]e−j2πkn/N (2.2)

where x[n] denote time-domain signals, j =
√
−1.

Note that e−j2πkn/N are the roots of unity. The transformation gives a complex

number result. Its magnitude can be drawn as “Magnitude Spectrum”, and its

phase can be drawn as “Phase Spectrum” similarly. Some documents or applications

19

Figure 2.5: Spectrum

may refer spectrum to the powered spectrum, i.e. squared magnitude. Readers

should notice the terminology difference among different documents. Without

specification, spectrum in this thesis refers to magnitude spectrum.

Fourier Transform mentioned in this thesis should be referred to as Fast Fourier

Transform (FFT). FFT is an algorithm that computes Discrete Fourier Transform

(DFT) and its inverse efficiently. Compared to the complexity of DFT O(N2), the

FFT algorithm could reduce the complexity to O(Nlog2N). It is also well-known

that the FFT algorithm could have the most efficiency when N is a power of 2.

As pointed out above, it becomes a problem that time-domain information is lost

after FFT. Since many signals in real life are not periodic, time-domain information

is still preferable in many cases. One of the solutions to this problem is Short-

Time Fourier Transform (STFT). During STFT, input signals are cut into small

20

segments by window functions along the time axis. Each segment is transformed

to frequency-domain by Fourier Transform. The output is named spectrogram and

is often visualized in heatmap format. Spectrograms become popular in signal

processing since it reserves a certain level of time-domain and frequency-domain

information at the same time. As shown in figure 2.6 below, there are three axes

in a spectrogram: time domain along the horizontal direction, frequency domain

along the vector direction, and amplitude indicated by colour. As for spectrum,

only the magnitude of the STFT result is plotted in spectrograms, so spectrograms

can also be recognized as a real number matrix.

Short-Time Fourier Transform and its inverse transform is given in equation 2.3

and 2.4, respectively.

STFT(x[n]) = X(m,ω) =
L−1∑
n=0

x[n]w[n−m]e−j2πωn/L = Aejθ (2.3)

ISTFT(X(m,ω)) = x[n] =
∑∑

X(m,ω)w[n−m]e−j2πωn/L (2.4)

where x[n] denote time-domain signal and w[n] denote window function with length

L, A is amplitude and θ is phase, j =
√
−1.

In this thesis, FFT and its inverse is done through Python package Scipy [50];

STFT, its inverse and most of the other signal processing mathematics are done

through another package librosa [28].

21

Figure 2.6: Spectrogram

2.2.2 Mel Scale Frequency

It is common in speech processing to use Mel-spectrograms instead of the linear

spectrograms introduced above. Mel-spectrograms differ from linear spectrograms

in the scale of frequency domain. Human hearing sense is nonlinear, which means

the pitch heard by human ears is not linearly related to the frequency. For instance,

the frequency difference between 400 Hz and 500 Hz, and 10400 Hz and 10500 Hz,

is the same, i.e., 100 Hz. However, human is hard to detect the difference between

the latter pair, compared to the former pair. It is observed that humans are more

sensitive to lower frequencies than higher frequencies. This nonlinearity can be

better observed in music. The frequency of standard A440, as known as A4 in

Scientific Pitch Notation (SPN), is 440 Hz. The frequency of A3 and A5 is 220

22

Figure 2.7: Relationship between Mel scale and Hertz scale frequency

Hz and 880 Hz respectively. In human perception, the difference of pitches is 1

octave, but the difference measured in Hertz is not the same. It is observed that

the frequency in Hz would be doubled for every octave higher.

The Mel-scale is developed to adapt to human hearing senses. The transformation

between Mel-scale and Hertz-scale is given by

m = 2595 log10

(
1 +

f

700

)
,

where m and f represent the frequency in Mel-scale and Hertz-scale. Similarly,

humans do not hear the amplitude of sound linearly but logarithmically. It is also

common to indicate amplitude in Decibel scale in spectrograms.

Spectrogram is a kind of basic acoustic feature. It is very popular in deep learning

methods of speech processing since it can keep most of the information in audio

and it is easy to compute. Mel-spectrogram is mainly used in this report.

23

2.3 Voice Cloning

The ultimate goal of voice cloning is to generate output speech in which the voice is

similar to that of input reference speech and the content is the same as input text.

The SV2TTS model [18] proposed by Google’s team approaches the goal in three

steps, using three independent neural network modules, namely Speaker Encoder,

Synthesizer and Vocoder. The Speaker encoder extracts speaker information from

reference speech, the synthesizer predicts spectrogram from speaker embedding

and input text, and the vocoder generates waveform from spectrograms. This

pipeline is shown in the figure 2.8 below. The three blocks represent the three

neural networks, and the items not in boxes are either input, intermediate product

or output of the model.

Encoder aims to extract speaker information from utterances. It takes speech data

as input. Input audio data are first preprocessed to log Mel spectrogram. The

filterbank energies are fed to the encoder network. Network output is a speaker

embedding vector to represent voice characteristics. This vector is used for a

speaker verification task while training. By feeding back the loss, it is expected

that the network can learn to extract speaker information.

Synthesizer is a typical network used in TTS that predicts Mel spectrogram from

input text. It is a sequence-to-sequence model, using an encoder-decoder structure

with an attention mechanism. Input character sequence is first mapped to character

embedding sequence by a learnable lookup table, then transformed to a hidden

representation by the encoder layers. Speaker embeddings are concatenated to the

hidden representations and are used as the memory in the attention mechanism.

24

Figure 2.8: Model Overview

25

The decoder consumes the memory and predicts Mel spectrogram frames with

assistance from attention. The decoder also determines when to terminate the

decoding procedure by itself.

Vocoder is another typical component in speech processing that reconstruct signals

from acoustic features. Spectrogram is a popular acoustic feature in many kinds

of speech processing. However, it is also known that phase information is lost in

spectrograms. The Vocoder module in this thesis is used to predict the original

waveform from spectrograms.

2.3.1 Speaker Encoder

The first neural network, namely Speaker Encoder, aims to represent speaker

information in an utterance with a vector. This vector is also known as speaker

embedding. Extracting speaker information is an essential task in speaker verifica-

tion and speaker recognition field. SV2TTS performed transfer learning from those

fields to voice cloning field. In this section, we introduce what are the common

methods to calculate speaker embeddings, and how the Speaker Encoder is trained.

Before the development of deep learning-based methods, it was common to use

i-vector to represent human voice characteristics [7]. It represents the speaker

information of an utterance as a fixed and low dimensional vector, typically 400

dimensions, using Gaussian mixture model. d-vector is a neural network-based

method. Its performance is compatible to i-vector [48]. Utterances are cut into

small frames and each frame is fed into a deep neural network (DNN). The output

26

of the last layer is then used in the output layer for speaker recognition task, in

which the label is a one-hot vector that represents speaker identities. It is expected

that the DNN learns to output vectors that are highly relative to speaker voice

characteristics so that those vectors can be used for identity classification. The

average of those outputs from each utterance frame is called d-vector and is often

considered as the speaker embedding of that utterance.

A potential limitation of d-vector is that only frame-level information is considered

by the network while training. x-vector is proposed for improvement, and it

outperformed the traditional i-vector method [43]. One of the modifications made

is that statistical pooling is done after feeding frames to neural networks. For

example, the mean and variance of the output vectors are calculated and used as

input to another neural network to perform utterance-level consideration. x-vector

is the last activation before the output layer. This idea is the same as d-vector.

The model used in SV2TTS and RTVC is General End-to-End [51]. As shown in

Figure 2.9 below, the network is constructed by a 3-layer LSTM and one linear

projection layer. Using dense layers in the network, as done in the d-vector method,

may cause a problem that the model only accepts input with fixed length. The

d-vector method introduced above cut audio into small fixed-length pieces before

input to the model. Using LSTM instead of dense layers may avoid this problem.

There is no information about what the projection layer should be in the original

paper. It is assumed to be a fully connected linear layer in RTVC implementation.

The number of cells in each LSTM layer is also reduced in RTVC implementation.

Training data in each mini-batch is a set of audio clips that includes N speakers

27

Figure 2.9: Pipeline of Speaker Encoder

and M utterances from each speaker. The data are pre-processed to 40-channel

Mel spectrograms. Log filterbank energies are the input to the neural network.

Data are denoted as xji ,where 1 ≤ j ≤ N, 1 ≤ i ≤ M , corresponding speaker

embeddings are denoted as eji.

For any speaker k, centroid can be calculated from all his speaker embeddings as

ck =
1

M

M∑
m=1

ekm.

While training, cosine similarity can be calculated from each pair of embedding

and centroid, scaled by learnable weight and bias as below:

Sji,k = ω · cos(eji, cK) + β.

This Sji,k is then put into Softmax function. It is expected that, for positive

examples, i.e., when embedding and centroibelonggs to the same speaker, this Sji,k,

could be as close to 1 as possible. Similarly, for negative examples, i.e. embedding

and centroid belonging to different speakers, this value should be close to 0.

28

Cross entropy is used in loss function. For each pair of embedding and centroid,

the loss is given as followed:

L (eji) = −Sji,j + log
N∑
k=1

exp (Sji,k) .

Hence, the total loss is given by:

LG(x;w) =
∑
j,i

L (eji) .

It is worth mentioning that, to avoid bias in the calculation of similarity, for positive

examples, i.e. j = k, Sji,k is given by the following modified equation:

c
(−i)
j =

1

M − 1

M∑
m=1
m̸=i

ejm,

Sji,k = ω · cos(eji, c
(−i)
j) + β.

The loss encourages speaker embeddings to be close to the centroid of the speaker,

at the same time far away from other speakers’ centroids. While inference, the

similarity part is omitted as we are not interested in speaker verification. eji is

named ”speaker embedding” and its usage will be mentioned in the following parts.

29

2.3.2 Synthesizer

The second network is the synthesizer, which predicts Mel spectrograms from input

text. Tacotron 2 [42] is used but without the WaveNet vocoder. This network

should be trained after finished training the speaker encoder. A trained speaker

encoder is needed to generate embeddings for each utterance in training data. The

speaker encoder is frozen and used as a black box in this stage. Text in the transcript

of training data is another input to the network for training. Tacatron2 has an

encoder-decoder architecture. The encoder converts input text to a hidden feature

representation. The decoder predicts Mel-spectrogram by this representation and

attention mechanism. Apart from the original papers, many of the details and

notation in this report are based on an open-source implementation [27]. Tacotron

2 is a complicated TTS model, we summarized its architecture in Figure 2.10.

Input character sequences are first converted to character embeddings by a learnable

lookup table and then are passed through 3 convolutional layers. The output of the

last convolutional layer is passed to a bi-directional LSTM. A bi-direction LSTM is

actually two independent RNNs, one read the input sequence in order, and another

read in reverse order. Using bi-directional LSTM allows the network not only to

consider the input text sequence from left to right but also from right to left. The

output of the forward and backward RNN are concatenated together, then further

concatenate to speaker embeddings for the encoder hidden state. This hidden state

is used as memory in the attention module after being concatenated with speaker

embeddings.

The attention module is a hybrid attention mechanism [5] which combined content

30

Figure 2.10: Detailed architecture of Synthesizer

based [3] and location based [13] attention. The attention mechanism calculates

context vectors from each encoder annotation, current decoder hidden state and

location features.

Decoder steps start from feeding the previous predicted Mel spectrogram frame

to a Pre-Net, which is constructed by 2 fully connected layers, making the model

autoregressive. In contrast, while training, the corresponding ground truth Mel

spectrogram of the previous decoding step is used instead of the predicted one.

This idea is called “Teacher forcing” and is often used in the training of recurrent

neural networks (RNN).

The output of Pre-Net is concatenated with the previous context vector and then

feed to a decoder RNN network of 2 LSTM layers. This decoder hidden state is

31

used to compute a new context vector as mentioned in the attention part above.

Then the hidden state and the context vector are concatenated together. On one

hand, this new vector is input to a projection layer to predict a new frame of Mel

spectrogram. On the other hand, it is also put into another projection layer to

compute Stop Token, which determines whether the whole decoding process is

finished or not.

The attention mechanism is summarized here with the help of mathematical

representations. Denote encoder hidden state sequence as {hj}. For each decoding

step i, the decoder output of the previous step yi−1 is first fed into Pre-Net. The

output of Pre-Net pyi, concatenated with context vector ci−1, is then feed into the

LSTM layers for a new decoder hidden state si.

In attention module, attention energy is given by

eij = vT tanh (Wasi + Vahj + Uafi,j + ba) ,

where Wa, Va, Ua and ba are learnable weights and bias. Location feature fi,j is

given by a convolution operation

fi,j = Fa ∗ cαi−1,

where

cαi−1 =
i−1∑
j=1

αi,j.

Attention weights can be computed after having attention energies by putting them

32

into Softmax function:

αij =
exp (eij)

T∑
k=1

exp (eik)

.

Finally context vector is a linear combination of encoder hidden state based on

attention weights:

ci =
T∑

j=1

αijhj.

After finished decoding, the predicted Mel spectrogram would pass through a

Post-Net to improve overall quality. The Post-Net is constructed by 5 convolution

layers with tanh function as activation, and a projection layer. Residual connection

is done as the final step of Post-Net.

The loss of synthesizer is the sum of L1 and L2 loss of spectrogram before Post-Net,

L2 loss after Post-Net and cross entropy of stop token. L2 regularization is used

additionally but excludes all types of bias and parameters in RNN, projections and

embeddings layers. The training target is the ground truth Mel spectrogram of the

training data. The loss function is summerized as

loss =
1

n

n∑
i=1

(yreal,i − yi)
2 +

1

n

n∑
i=1

|yreal,i − yi| +
1

n

n∑
i=1

(yreal,i − yfinal,i)
2

+ λ

p∑
j=1

ω2
j +

1

N

N∑
n=1

(
−
∑
i

ylabel,ilog (ys,i)

)
,

where the subscript real denotes the ground truth training target, final denotes

the Post-Net output.

33

2.3.3 Vocoder

In SV2TTS, the authors used WaveNet as the vocoder of the framework. It was a

modified WaveNet in which the slow inference speed is overcome, and spectrograms

can be used as input instead of the high-level acoustic features mentioned in the

original document. However, there is no public implementation or codes available as

usual. In RTVC, the developer used a modified version of WaveRNN instead. This

vocoder is made open-source on Github but is not supported by any publication.

The details can only be found in the codes. Some explanations can also be found

in the thesis of RTVC.

The predicted Mel spectrograms generated by the above synthesizer and the ground

truth audio waveform are split into small segments. While training, the inputs to

the model are the Mel spectrogram segment of time t and the waveform segment

t− 1. Output is the corresponding audio waveform in time t. Based on the released

code, the loss function used is cross entropy.

The pipeline of the vocoder is illustrated in Figure 2.11. Input Mel spectrogram

is used in two parallel processes, called ResNet and Up-sampling network. In the

up-sampling network, the Mel spectrogram is up-sampled to match the length of

the target waveform by 2d-convolution layers. In ResNet, the Mel spectrogram is

first fed to a 1D convolution network, then passed to several Residual Blocks. The

exact number of Residual Blocks used is set by users in advance. Each Residual

Block is composed of a convolution layer, with batch normalization and ReLU

activation function, followed by another convolution layer with batch normalization.

Finally, residual connection is done before output. The overall output is fed to

34

Figure 2.11: Detailed architecture of Vocoder

35

a convolution layer again. The output feature would be split into four equal

parts along the channel dimension and are used to condition the upsampled Mel

spectrogram mentioned above. At this point, the previous waveform segment,

the upsampled Mel spectrogram and the first feature segment are concatenated

and used as input to the later layers. The main body of vocoder is composed of

six neural networks. Those are 1 fully connected network, 2 GRU networks, and

another 3 fully connected networks, in order. The three other feature segments are

added into the network after the first GRU layer, after the second GRU layer, and

after the second FC layer, respectively.

The training target is ground truth waveform compressed to 9-bit using mu-law.

Thus, the model considers the signal generation problem as a 512-class classification

problem. The probability distribution of the 512 classes is given by putting model

output to Softmax function. While inference, this 9-bit output would be decoded

using mu-law.

2.4 Attention Mechanism

As supplementary information, we explore the initiation and development of atten-

tion mechanism (AM) in this section. It will cover two main types of attention:

cross-attention and self-attention.

Cross-attention was developed in the mid-2010s for sequence-to-sequence Natural

Language Processing (NLP) problems using encoder-decoder type models. Atten-

tion is proposed to assist the alignment between features extracted by encoder

36

and outputs predicted by decoder. Another major function of attention is that it

helps the model determine output length, which is critical in sequence-to-sequence

models. The encoder-decoder structure is commonly used since then.

Self-attention further extended the mechanism in the sense of using attention

inside the encoder or decoder. Recent research results show that training the

encoder solely could build a good foundation model that could be applied to

many different downstream tasks with a relatively light finetune. Mathematical

representations would be given in this section to briefly summarize the computation

of the mechanisms.

2.4.1 Basics of Attention Mechanism

Attention could be described as the correlation matrix between two sets of vectors.

In this session, we generally introduce the computations inside AM. Technical

details of its applications would be given in the latter part.

Consider a vector q and a sequence of vector K = {k1, k2, . . . , kJ}. The vector q

is called query and the vectors in set K are called keys. The first step of AM is

to calculate a correlation score between each pair of q and kj. This score is called

energy in some documents, and different methods may be used for the calculation.

A simple and typical method is calculating the inner products of the vectors as

below:

ej = q · kj.

37

Another typical method is additive method as below:

ej = wT tanh (q + kj) .

Notice that ej obtained in this stage are scalars and should be normalized, for

instance, using Softmax function:

αj =
exp (ej)∑J
j=1 exp (ej)

.

The αj here is called alignments or attention weights. Since Softmax function is

used, the attention weight could be considered as a probability distribution of

related items in the set of keys, and the sum of αj equals to 1. This alignment is

used to compute context vector c, which is a representation that contains weighted

relative information inside, for further process. This context vector can also be

considered as a linear combination as shown below:

c =
∑
j

αjhj.

2.4.2 Sequence-to-Sequence Models Using Attention Mech-

anism

Sequence-to-Sequence (seq2seq) models solved the problem that in some cases

output length is not fixed and cannot be determined in advance. Consider a simple

classification problem example like sentiment analysis of polarity, models trained

for this task only need to output a scalar indicating which class the input belongs

38

to. More specifically, the models output a probability distribution of each class,

and this distribution can be stored in a single vector, thus the size of model output

is always fixed. Another type of problem is that output length could be computed

in advance. An example from NLP may be Part-of-Speech (POS) tagging. Models

for this task may simply take each word in the input sequence as a token and

output one POS for each token, i.e., the number of output equals to the number of

input tokens. However, many NLP tasks do not have this property. For instance,

in machine translation, it is necessary to determine output size based on context.

Many seq-to-seq models shared an encoder-decoder structure linked by AM, such as

[3] and [5]. There is a common idea that the input sequence is processed to latent

representations by the model encoder network, and the decoder network predicts

the output sequence by considering the latent representations with assistance from

AM. There is no definite structure for the encoder and decoder network, while Long

Short-Term Memory (LSTM) layers and convolutional layers are commonly used.

We now explain the AM using mathematic representations. Denote input sequence

with length J as X = {x1, x2, . . . , xJ}. Each xj could be a scalar or vector in a

fixed dimension. Encoder network extract features from input sequence to latent

representation hj. It is denoted as:

H = {h1, h2, . . . , hJ} = encoder(X).

This representation is sometimes called encoder hidden state. Note that in general,

the length of this representation sequence is the same as the input sequence, while

the dimension of each vector inside may be different.

39

Decoder network has an autoregressive structure, which means that decoder output

in each step would be fed back to the decoder network as input in the next step.

Neural network layers in the decoder network generate a vector, namely decoder

hidden state, and pass it to AM for alignment. For every step i,

si = decoder (yi−1) ,

where yi and si denote decoder output and decoder hidden state at step i.

In attention module, encoder hidden states are used for computing key vectors.

Query vector is computed from decoder hidden state at each step, and AM returns

context vector to the decoder. This context vector would be projected to decoder

output by an extra neural network layer.

We can summarize the process as following equations together with the process

introduced in the previous session, using inner product energy as an example:

kj = Wkhj,

qi = Wqsi,

ei,j = ⟨qi, kj⟩ ,

αi,j =
exp (ei,j)∑J
j=1 exp (ei,j)

,

ci =
∑
j

αi,jhj,

yi = Wp [si; ci] ,

where Wk,Wq,Wp are learnable parameters. Note that their shapes are determined

40

by hyperparameters in advance.

It is worth mentioning that, in general, the first input fed to the decoder is a special

token denoting the start of decoding or simply a zero vector. Similarly, a special

token is set to be a possible output from the decoder, representing the termination

of the decoding procedure. Seq-to-seq is achieved from the mechanism that the

model decides whether to stop decoding using the stop token at every step.

2.4.3 Self-Attention and Transformer

Transformer model [49] extended the function of AM. Apart from just linking

encoder-decoder, AM can be used as a kind of deep neural network layer. The pro-

posed architecture is named self-attention. To avoid ambiguity, the AM introduced

in the previous section would be called cross-attention. In this section, we describe

the mechanism of self-attention and its application in the Transformer model.

Self-attention is calculated from almost the same procedure as cross-attention.

Denote a vector sequence as X = {x1, x2, . . . , xN}, where it could be either the

raw input sequence or output of previous hidden layers. Similar to cross-attention,

key vectors are driven from each xi, but in contrast, query vectors in self-attention

are also given by xi. Attention energy and alignment are calculated with the same

method, but the context vector is computed from linear projection, namely value

vector, instead of from xi directly. The procedure is presented explicitly with

41

mathematical notations below:

qi = Wqxi,

kj = Wkxj,

vj = Wvxj,

ei,j = ⟨qi, kj⟩ ,

αi,j =
exp (ei,j)∑J
j=1 exp (ei,j)

,

ci =
∑
j

αi,jvj.

This process would be repeated for every vector in the input sequence in each

self-attention layer. Thus, the complexity of computing attention energy is O(N2).

Transformer kept the encoder-decoder architecture introduced in the previous

session, meaning Transformer is also built for seq-to-seq usage. One of the major

changes made in Transformer is that the encoder and decoder are mainly composed

of self-attention layers.

The encoder of Transformer contains multiple identical blocks, each block is com-

posed of two sub-layers. The first sub-layer is Multi-Head Self-Attention. The idea

is the same as the self-attention presented, but computing multiple sets of queries,

keys, and context vectors, then projecting to a final output sequence.

For a Multi-Head Self-Attention with H heads, the three vectors, qi, kj and vj , are

computed for each h, 1 ≤ h ≤ H. Correspondingly, eij, αij and ci are computed

42

for each h. Finally, the context vector of each h is combined as below:

ci = Wo

([
c1i , . . . , c

H
i

])
,

where Wo is learnable weights.

Transformer then perform residual connection [15] and layer normalization [2] to

output sequence. Residual connection could be written as

y = F (x;W) + x,

where F is a set of neural network layers with parameter set W . Layer normalization

could be described as normalizing all vectors in layer output y by

y
′

i =
yi − µ

σ
,

where yi is the i-th vector component in y, µ and σ denote mean and standard

deviation of the elements in yi. The second sub-layer of the Transformer encoder

is simply a fully connected (FC) network, with residual connection and layer

normalization. This block is stacked serval times in the encoder. For the original

Transformer, the authors mentioned they stacked six blocks in their model.

Decoder of Transformer shared a similar structure of stacking sub-layers. Before

going into the blocks, it is worth mentioning that, the decoder of Transformer may

not be autoregressive. A non-autoregressive decoder may be achieved by simply

feeding a long sequence of START tokens to the decoder and ignoring outputs after

the STOP token in the output sequence. Another method may be using an extra

43

model to predict output length.

The first sub-layer is masked multi-head self-attention. Transformer proposed

causal masking in the decoder, which means forcing the decoder not to attend to

keys in subsequent positions. For instance, under causal masking, query vector

qi could only attend to key vectors before position i. The second sub-layer is

multi-head cross-attention, which aligns encoder hidden states and outputs of the

previous sub-layer. By integrating the details of cross-attention and multi-head

attention introduced multiple times in this chapter, readers could easily understand

this concept. Thus, the details are omitted here. The last sub-layer is an FC layer,

as of encoder structure. Note that residual connection and layer normalization are

added after each sub-layer.

Transformer and self-attention techniques are further developed to BERT [8]. One

important feature in BERT-like models is that the models first learn from big data

by self-supervised learning, and then are finetuned for different downstream tasks.

BERT-like models are reported to be especially good at NLP and have become

state-of-the-art nowadays. Details would not be provided in this thesis as it is not

closely related to our studies.

2.5 Griffin-Lim Algorithm

Spectrogram is a commonly used acoustic feature, especially for neural-network-

based models. Spectrograms, in both Hertz-scale and Mel-scale, have been applied

to different research topics in speech processing, such as Text-to-Speech Synthesis

44

(TTS) [53], [42], Voice Conversion (VC) [6], Speaker verification [51].

Spectrograms are given by taking the absolute value of the amplitude of the Short-

Time Fourier Transform (STFT). It does not contain any phase information. To

reconstruct waveform by Inverse Short-Time Fourier Transform (ISTFT), phase

information is necessary. Otherwise, the speech intelligibility of reconstructed

waveform would be low. However, predicting phase from its corresponding amplitude

is difficult. Griffin-Lim Algorithm (GLA) [14] is an iterative algorithm that retrieves

phase from spectrogram only. It is a common alternative to neural vocoders in neural

network-based speech processing models. However, GLA takes only spectrograms

in Hertz-scale as input. For models that generate Mel-spectrogram as output, it

requires an extra step to convert Mel-spectrogram to a linear spectrogram. There

is no analytic method for this transformation, only approximation could be found.

Phase retrieval is more difficult in this case.

2.5.1 Problem Definition and Algorithm

In this chapter, we review related mathematics of GLA. Denote spectrogram as

S = |STFT (x[n])|. Phase retrieval problem is defined as followed:

Problem 1 Given S, find a signal x∗ that solve the following optimization problem:

min
x

∥|X| − S∥

s.t.X ∈ S

where X is time-frequency domain representation of x, S is a set of spectrograms

45

whose amplitude is the same as given spectrogram S.

Griffin-Lim Algorithm is described in Algorithm 1, proof of global convergence

followed.

Algorithm 1 Griffin-Lim Algorithm

Input: Spectrogram S
Output: Signal xi

Randomly initialize phase p0
Construct signal x0 = ISTFT (Sejp0)
for each iteration i do

STFT (xi−1) = si−1e
jpi−1

Replace si−1 by S
xi = ISTFT (Sejpi−1)

Until converge

2.5.2 Convergence Analysis

GLA is proved to have global convergence to a critical point by the authors [14],

by showing the distance to critical point decreases in each iteration. We simplify

the proof of convergence and present it below.

Denote time domain signal x(n), xw(mS, l) = w(mS− l)x(l). Its STFT Xw(mS,ω)

and inverse transform are given by Discrete-Time Fourier Transform (DTFT) and

Inverse DTFT (IDTFT) in formula 2.5 and 2.6. S is a positive integer representing

sampling period of Xw(n, ω) in n, w(n) is window function. In this proof, we name

this Xw(n, ω) as complex spectrogram for convenience.

Xw(mS,ω) =
∞∑

l=−∞

xw(mS, l)e−jωl (2.5)

46

xw(mS, l) =
1

2π

∫ π

−π

Xw(mS,ω)ejωldω (2.6)

While we can do STFT to an arbitrary x(n) for its Xw(n, ω), any arbitrary Xw(n, ω)

may not be a valid complex spectrogram in the sense that there may not exist a

real signal x(n) whose STFT is Xw(n, ω).

Lemma 1 We define the distance between a signal and a complex spectrogram as

followed.

D [x(n), Yw (mS,ω)] =
∞∑

m=−∞

1

2π

∫ π

−π

|Xw (mS, ω) − Yw (mS,ω)|2 dω

=
∞∑

m=−∞

∞∑
l=−∞

[xw (mS, l) − yw(mS, l)]2

Given a fixed Yw(mS,ω), minimization of D[x(n)] can be solved by taking gradient

with respect to x(n) and solve the equation of that gradient equals to zero, which

gives:

x(n) =

∞∑
l=−∞

w(mS − n)yw(mS, n)

∞∑
l=−∞

w2(mS − n)
.

While initializing GLA, we have a fixed |Yw(mS,ω)| as input. This spectrogram

can be considered as a circle on polar complex plane. Its centre is the origin, and

its radius is the magnitude of Yw(mS,ω). This circle can also be considered as the

constraint of solution set.

In the i-th iteration of GLA, we have a time-domain signal xi(n) and its corre-

sponding X i
w(mS,ω). To minimize the distance D[xi(n), |Yw(mS,ω)|], the solution

47

is the followed:

X̂ i
w (mS,ω) = |Yw (mS,ω)| X i

w (mS,ω)

|X i
w (mS,ω)|

.

However, as discussed above, X̂ i
w (mS,ω) may not be a valid complex spectrogram.

We can find the next iteration signal xi+1(n) by minimizing D
[
xi+1(n), X̂ i

w (mS,ω)
]

using Lemma 1. Thus, we have the following relationship:

D
[
xi+1(n), X̂ i+1

w (mS,ω)
]
≤ D

[
xi+1(n), X̂ i

w (mS,ω)
]

≤ D
[
xi(n), X̂ i

w (mS,ω)
]
.

Since the phase of X i
w(mS,ω) and X̂ i

w (mS,ω) is the same, the distance between is

only determined by their magnitude. D
[
xi(n), X̂ i

w (mS,ω)
]

can be written as

D
[
xi(n), X̂ i

w (mS,ω)
]

=
∞∑

m=−∞

1

2π

∫ π

−π

∣∣∣∣X i
w (mS,ω) − |Yw (mS,ω)| X i

w (mS,ω)

|X i
w (mS,ω)|

∣∣∣∣2 dω
=

∞∑
m=−∞

1

2π

∫ π

−π

[∣∣X i
w (mS,ω)

∣∣− |Yw (mS,ω)|
]2
dω.

Hence, the convergence of GLA is proved by showing the distance between the

sequence {xi(n)} and a fixed |Yw (mS,ω)| decreases in every iteration, written as

D
[
xi+1(n), |Yw (mS,ω)|

]
≤ D

[
xi(n), |Yw (mS,ω)|

]
.

48

Chapter 3

Methodology

3.1 Analysis of Griffin-Lim Algorithm

In this chapter, we will judge the usefulness of GLA in our project, especially as

an alternative to neural vocoder for phase retrieval and waveform reconstruction

from Mel-spectrogram. As stated in Chapter 2, the voice cloning model used in

this project predicts Mel-spectrogram from text and speaker embeddings, and

GLA predicts phase information from linear spectrogram magnitudes with global

convergence to a critical point. We will describe the process of constructing

waveform from Mel-spectrogram using GLA in this section. We will first show that

linear spectrogram can be uniquely solved from Mel-spectrogram, then we will show

that under certain conditions, STFT magnitude is a unique representation of signal.

Hence, we conclude that there is a unique solution for waveform construction from

Mel-spectrogram.

49

Figure 3.1: Visualization of digital Mel-filterbank

3.1.1 Convexity of Linear Spectrogram Approximation

Mel-spectrograms are given by simply passing linear spectrograms to a set of

Mel-filterbank. Mel-filterbank is known as a set of triangular filters set according

to Mel-scale. Figure 3.1 illustrated the idea of Mel-filterbank. The filter bank

can be considered as a linear operator that transforms the frequency domain of a

spectrogram from Hertz-scale to Mel-scale.

To the best of my knowledge, there is no analytic method to inverse the process.

However, it is possible to solve the linear spectrogram from a given Mel-spectrogram

50

and Mel-filterbanks. We define the linear spectrogram approximation problem as

below:

Problem 2 Find a real number matrix S∗ such that the Mel-spectrogram generated

from it and the given Mel-spectrogram should be as close as possible.

S∗ = argmin ∥FS −M∥22 s.t. S ≥ 0

where F denote given Mel-filterbank, M denote given Mel-spectrogram. All elements

in S must be non-negative.

As a priori knowledge, it is also known that elements in both F and M are all

non-negative by definition. Hence the problem can be redefined as a non-negative

least squares (NNLS) problem at frame level as followed:

argmin
s≥0

(
1

2
sTQs + cT s

)

where Q = F TF , c = −F Tm. s and m is one frame of linear and Mel-spectrogram

respectively.

NNLS problems have been proved to be convex due to the non-negativity constraints

and Q being positive semi-definite [10]. Since every frame of spectrogram could

be solved by convex optimization, we conclude that there exists a unique solution

for linear spectrogram approximation, given a fixed Mel-spectrogram and Mel-

filterbank.

51

3.1.2 Uniqueness of STFT Magnitude

The next step is to show the uniqueness of STFT magnitude (STFTM) to digital

signal so that the critical point that GLA converge to is actually an optimum.

Related work could be found in [32]. This work showed that under certain conditions,

STFTM is a unique representation of signal. We present the key ideas in this

section.

Lemma 2 Denote x[n] as a digital signal in the interval 0 ≤ n ≤ N . Assume

there are all zeros outside the interval and x[0] is non-zero. The spectrum |X(ω)|

and the first P samples points of x[n], 0 ≤ n ≤ P ≤ N , uniquely specify the entire

signal x[n] if and only if P ≥ ⌈(N + 1)/2⌉.

Proof 3.1.1 First consider the case P = ⌈(N + 1)/2⌉, where M = N + 1. Auto-

correlation R[n] of x[n] is given by

R[n] = x[n] ∗ x [−n] =
M−1−n∑
m=0

x[m]x [n + m].

On the other hand, according to Wiener–Khinchin Theorem, this autocorrelation

can also be computed from power spectra. Combined with the knowledge of the first

52

P samples in x[n] a system of linear equations can be formed as the following:

x[0] 0 0 0

x[1] x[0] 0 0

...
...

. . .
...

x [(M/2) − 1] x [(M/2) − 2] . . . x[0]

x [M − 1]

x [M − 2]

...

x [M/2]

=

R [M − 1]

R [M − 2]

...

R [M/2]

.

Since the large matrix is a lower triangular matrix and x[0] ̸= 0 by assumption, there

is unique solution for x[n] for n = M/2, . . . ,M − 1. The cases P > ⌈(N + 1)/2⌉

can be proved similarly.

With the help of Lemma 2, the following conditions are proposed for ensuring

uniqueness of STFTM:

1. Window function w[n] has finite length Nw > 2

2. No zero in window function w[n] for 0 ≤ n ≤ Nw

3. At least 50% overlapping for window functions, denote as L ≤ ⌊Nw/2⌋

4. Signal is one-sided

5. At most L consecutive zeros between any two non-zero sample points

6. Knowing first L consecutive samples of the signal starting from the first

non-zero sample

53

With the help of Lemma 2, for any time index t, signal segment xt can be solved

from signal segment xt−1 and spectrogram frame st. Condition 6 above helps

to solve the first segment according to the original work [32], but some scholars

mentioned that condition 6 is not always necessary and claim that the above

conditions are rather sufficient conditions than necessary conditions [46].

3.1.3 Numerical Experiments

Combining section 3.1.1 and 3.1.2, we concluded that GLA is sufficient for waveform

reconstruction from Mel-spectrogram, at least conditionally. In this section, we

justify the practical performance of GLA by conducting some numerical experiments.

Before presenting the experiment settings and results. It is necessary to state that

in the later part of this thesis, if there is no ambiguity, GLA would refer to the

Fast-GLA [37]. The calculation is done by Python package librosa [28].

Algorithm 2 Fast Griffin-Lim Algorithm

Input: Spectrogram S
Output: Signal xi

Define ci = Sejpi

Randomly initialize phase p0
Fix c0 = Sejp0

for each iteration i do
ti = STFT (ISTFT (ci−1))
ci = ti + αi(ti − ti−1)
Update αi

Until converge

It can be easily shown that when α = 0, Fast GLA reduces to the ordinary GLA.

Readers may refer to the original document for the analysis of the value of α. In

this thesis, it is set at α = 0.99.

54

We present waveform reconstruction results measured by PESQ with different sizes

of window function below. PESQ [39] is known as the international standard ITU-T

P.862 that mimics Mean Opinion Score (MOS) in subjective listening test. In

ITU-T P.862, PESQ is defined as a real-number score in the range [1, 4.5] that

measure speech quality in narrow-band between 300-3400 Hz. In P.862.2, a function

is introduced to map PESQ to MOS score. In P.862.3, the PESQ-MOS is extended

to wide-band assessment between 50-7000 Hz.

In all the experiments, sampling rate is fixed at 16000, hop size is set at one-quarter

of window size, and the number of Mel Filter Bank Channel is fixed to be 80.

Results presented below are calculated by a Python implementation of P.862.3

named pesq. Readers should also note that, due to the PESQ-MOS mapping

function, the actual range of MOS is about [1.04, 4.64]. We call the scores presented

as PESQ, although it is actually the MOS mapped.

The first experiment is to test the reconstruction ability of GLA from spectrograms

computed with different window sizes. Considering the algorithm efficiency and

sampling rate of signal, the window size we tested is from 28 to 211, meaning 16 ms

to 128 ms in time domain. Additionally, we also tested window size 400 and 800,

corresponding to 25 ms and 50 ms length. Fast GLA is run on an evaluation set of

22 speech data. Mean PESQ is plotted in Figure 3.2 every 10 iteration, from 10 to

200.

As shown in Figure 3.2, after 200 iterations, the algorithm converged or approached

to a neighbourhood of optimum. The best performance is achieved by setting the

window size to 512, resulting mean PESQ 4.47. Window sizes ranging from 400 to

55

Figure 3.2: Result of waveform reconstruction from linear spectrogram

Figure 3.3: Result of waveform reconstruction from Mel-spectrogram

56

1024 have slightly lower performance, while extremely large or small windows, i.e.,

256 and 2048, perform the worst.

We further arrange another experiment to investigate how approximating linear

spectrogram from Mel-spectrogram affect the reconstruction ability of GLA. Results

are plotted in Figure 3.3. The approximation is done by the method introduced in

chapter 3.1.1. It is observed that a relatively small window size performs better

in this task. Window length 512 is still one of the best window sizes in terms of

PESQ, while length 400 is compatible with it in higher iterations. Note that length

800 and 1024, which have high scores in the previous test, perform significantly

worse than other window lengths. Length 2048 performs the worst in both tests.

We argue that GLA, or at least Fast GLA, performs well, given that input spectro-

grams are accurate and under appropriate settings. The parameter optimized in

the experiments is the window size of STFT. It is observed that L = 512 is the best

window size under the current experiment environment. It resulted in high PESQ

in both tests, suggesting that it can adapt to models that produce either linear or

Mel-spectrogram. Window size 400 is the main competitor. However, considering

the computation efficiency of FFT, setting window size as a power of 2 should be

the first choice.

Moreover, reconstruction from Mel-spectrogram is in general less satisfying that

that from linear spectrogram. It leads to a conjecture that convergence of GLA

heavily depends on the input spectrogram since the algorithm aims to find a time-

domain signal that could give an STFT outcome same as the input spectrogram.

Hence, GLA does not function well if its input contains errors. We will investigate

57

this problem in the later part of the thesis.

3.2 Studies of Neural Network Models

In this section, we investigate the performance of RTVC, the popular open source

model on the Internet, and present how we tried to improve the voice mimicking

ability.

3.2.1 Performance Indicators

Before studying the model, we introduce the performance indicators used in this

thesis. In many documents, the metric used for measuring the quality of generated

speech is Mean Opinion Score (MOS). MOS is given by a subjective listening test

by a group of listeners. However, it is time-consuming and costly for conducting a

subjective listening test. Objective measurements are developed for quick evaluation.

PESQ used in the previous section is one of those objective measures. It is widely

used internationally but it is developed mainly for telecommunication situations.

Some main limitations are: PESQ only accept audio in sampling rate of 8 kHz

or 16 kHz; it requires a reference speech and is very sensitive to time alignment

between reference and tested speech. In speech synthesis, it is rare that reference

speech is available and synthesized speech could have a good time alignment with

reference. Thus, PESQ is not a suitable metric in our case.

One commonly used objective metric is Mel Cepstral Distortion (MCD) [11], [47],

58

[22]. It is mainly used in voice conversion field. It first calculates Mel Cepstral

Coefficients (MCEPs) from each frame of reference and tested speech, then compute

root mean squared error (RMSE) among the two sets of MCEPs. Finally, MCD

is given by taking average along frames and transforming into decibel scale. For

reference, it is believed that automatic speech recognition (ASR) models could

correctly recognize speech data whose MCD are below 8 [54]. In our thesis, we

calculate MCEPs with the help of python packages pyworld [31], [30] and pysptk.

M -th order MCEPs cα(m) is given by

H(z) = exp
M∑

m=0

cα(m)
∼
z
−m

, (3.1)

where

∼
z
−1

=
z−1 − α

1 − αz−1
.

α here is the all-pass constant to be set by users. According to the manual of

pysptk, 0.42 is set for audio samples in 16k Hz sampling rate. M denotes the order

of MECP. In our case, M is set at 25. Furthermore, the dimension of a M -th order

MCEP vector is M + 1. The extra zeroth cepstral dimension at i = 0 is said to be

related to overall signal power [20].

Mel Cepstral Distortion is given by

10
√

2

ln 10

1

T

∑
t

√∑
i

(
Cti − Ĉti

)2
, (3.2)

where Cti and Ĉti denote the MCEPs of frame t in reference and tested, i denotes

the order of MCEPs taken from one frame.

59

MCD measures similarity by calculating the error between the acoustic features of

two audio samples. One may notice that in equation 3.2, the length of reference

and tested speech must be the same. It can be evaded by aligning reference and

tested speech by Dynamic Time Wrapping (DTW) [40], [41] and calculate the

normalized distance along the alignment path as an indicator.

DTW is a simple algorithm for aligning two time series. It detects similar patterns

with different phases by shifting data points of the series. Given two time series

X = {x1, x2, . . . , xI} and Y = {y1, y2, . . . , yJ}, where I, J ∈ N, X and Y could

be series of scalars or vectors. We can then define a distance measure between the

data points in the two series as

d (i, j) = ∥xi − yj∥ .

By comparing all the data point pairs in the two sequences, we could have a local

cost matrix

C ∈ RI×J : ci,j = d (i, j) .

One may notice from this definition that the complexity of DTW is O(IJ).

The DTW algorithm aims to align the two sequences by finding a path which runs

through the low-cost areas in the cost matrix. The alignment path is a sequence of

points P = {p1, p2, . . . pK} where pk = (i, j). There are several constraints for this

path:

1. Boundary condition: p1 = (1, 1), pK = (I, J)

60

2. Monotonic condition: ik−1 ≤ ik and jk−1 ≤ jk

3. Continuity condition: ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1

Combining the above conditions, we can conclude that the relation between two

consecutive points in the alignment path must be one of the followings:

pk−1

(ik, jk−1)

(ik−1, jk)

(ik−1 , jk−1

)
We can then define a cost function as the weighted sum of cost along the alignment

path:
K∑
k=1

d (pk) · wk.

wk is a nonnegative weighting coefficient according to the step pattern used.

Definitely, a longer sequence would result in a higher total cost. Thus, the objective

of the DTW optimization is the time-normalized distance as followed:

D (X, Y) = min
P

K∑
k=1

d (pk) · wk

K∑
k=1

wk

.

Since wk is independent with the path P , the above objective function can be

rewrite as

D (X, Y) =
1

N
min
P

K∑
k=1

d (pk) · wk,

61

where N =
K∑
k=1

wk.

There are two basic types of step patterns: symmetric and asymmetric. For

symmetric form, the weighting coefficient is defined as

wk = (ik − ik−1) + (jk − jk−1) .

For asymmetric form, the weighting coefficient is defined as

wk = ik − ik−1.

One may notice from the above definition that, the sum of weighting coefficient

would be N = I + J for symmetric form and N = I for asymmetric form. Equiv-

alently, one may also define wk = jk − jk−1 and the sum of weighting coefficient

would be N = J .

For the evaluation in our experiments, the symmetric step pattern is used. We

used a python package dtw-python for DTW computation in this thesis [12].

Another objective metric used in this thesis is NISQA [29]. There are a few

different versions of NISQA models. We employ the version built for TTS. It is a

deep-learning-based method predicting subjective MOS from audio samples. The

authors also addressed the problem that subjective listening tests for MOS are

costly and existing objective assessment models such as PESQ and POLQA are

not suitable for quality evaluation for synthetic speech since they are designed for

transmission distortions.

62

Input signals to the model are first transformed into Mel spectrograms. Window

functions of length 20 ms and hop size 10 ms are used in the computation. The

Mel spectrograms are in 48 channels with a maximum frequency of 8 kHz as

the training data used are mainly in 16 kHz sampling rate. The authors also

mentioned that normalization of speech levels of input signals is not performed so

that preprocessing procedure could be simplified, and the model would learn to

handle it automatically. The spectrograms are then divided into segments with a

fixed length of 150 ms as input to the network. As mentioned, the hop size of the

spectrograms is 10 ms, resulting in an input size of 48 × 15.

NISQA model is composed of CNN and LSTM layers. The CNN consists of 6

convolutional layers. The number of filters in each layer is 16, 32, and 64 for the

last 4 layers. The output features are then passed to a fully connected layer for

a 20-dimensional vector representation before being passed into the LSTM layer.

The LSTM layer is bi-directional with 128 cells. It considers the time dependencies

in the feature sequence and evaluate the overall speech quality. Some common

training techniques such as pooling, dropout and batch normalization are used. The

authors made their codes open-sourced, readers may refer to the original documents

and the codes for details.

Training and validation were done with numerous corpora such as data from

Blizzard Challenge and Voice Conversion Challenge. For Blizzard Challenge, data

of all the challenges from 2008 to 2019 are used except for 2017 and 2018. Similarly,

for Voice Conversion Challenge, data from the 2016 and 2018 challenge were used.

It is worth mentioning that, before training on synthetic speech quality evaluation,

the authors pretrained the model with datasets from speech communication network

63

degradation domain. POLQA scores of those telecommunication datasets are used

as MOS estimation in this pretraining. Using such a large amount of data resulted

in a high correlation between predicted scores and subjective MOS. The authors

reported an average correlation of 0.77 in testing data.

To study the evaluation ability of NISQA, we carried out a numerical simulation.

We randomly chose 30 audio samples from the dataset and computed spectrograms

from the samples. Then we reconstructed audio waves using Fast-GLA for 10

iterations and saved the reconstructed wave in each iteration. Thus, in total there

are 300 products for scoring. Finally, we calculated PESQ and NISQA scores for

each product.

Results are plotted as a scatter plot in Figure 3.4. The correlation coefficient is

about 0.433. It is observed that there is a medium level of correlation between

PESQ and NISQA. After performing linear regression analysis, a significant linear

relationship between the two scores can be shown. However, the R2 of the regression

model is only 0.18, suggesting that the speech quality measured by PESQ and

NISQA is not the same.

Another open source MOS prediction model is MOSNet [26]. After comparing the

two models, we employ NISQA in this thesis since MOSNet tends to output scores

around 3, as mentioned in the original paper.

Among the two indicators, MCD could mainly measure pronunciation and voice

similarity, while NISQA focuses on the naturalness of speech, as mentioned in the

original paper. MCD is calculated from MCEPs, but we consider that the idea could

be similarly applied to other frame-level acoustic features, such as spectrograms.

64

Figure 3.4: Scatter plot of PESQ and NISQA score

65

In this sense, we made the claim above since MCD focuses on the components of

signals and NISQA is a regression model mimicking human perception. It is also

supported by evaluation results presented later in this section.

3.2.2 Baseline Model Performance

In this subsection, we evaluate the baseline model accessible online with the

indicators introduced above. MCD and NISQA are calculated from 30 synthesized

audio samples. Those samples are mimicking 17 different speakers, including both

male and female speakers. Mean and 95% confidence interval are reported in table

3.1.

In subjective listening, it is very clear that audio samples generated from GLA are

full of artefacts, although the content is still audible. On the other hand, audio

samples generated by neural vocoder have a lower level of artefacts.

Table 3.1: Mean and 95% C.I. of synthesized audio from baseline model

MCD NISQA
GLA 7.25 ± 0.343 1.47 ± 0.199
Neural Vocoder 5.86 ± 0.379 3.12 ± 0.110

As shown in table 3.1, a significant difference is recorded in mean NISQA scores,

while the difference of MCD is relatively small. It could be explained by the

introduction of evaluation measurements mentioned in the previous subsection

that, MCD reflects pronunciation and voice similarity, and NISQA reflects the

naturalness of speech. GLA generate samples have a similar mean MCD as neural

66

vocoder samples due to the audible content and similar voice characteristics. In

contrast, the gap in NISQA comes from the high level of artefacts.

Despite the theoretical potential and the simulation results we presented in section

3.1, GLA could not show satisfactory performance in practical cases. This becomes

one of the main topics we would like to study in this thesis. Another main topic is

that for speakers unseen in training data, or the accent to mimic is different from

training data, the model may not clone the voice well. Without developing new

network architecture or gathering big data for further training, we hope to search

if there are ad hoc methods to solve or alleviate the above problems.

67

Chapter 4

Results and Discussions

4.1 Transfer Learning and Finetune of Model

The method we employed to tackle the problems mentioned in the last part of

Chapter 3 is transfer learning. Transfer learning helps to save costs, including

the cost of data collection, computation power, training time, etc., by utilizing

existing learning outcomes in the baseline model as initialization of new models.

Good initialization is important in nonlinear optimization. Transfer learning could

provide a certain level of guarantee on the learning outcome of the new model. In

this section, we summarize the transfer learning done in our studies.

68

4.1.1 Modification of STFT Window Function

The first transfer learning trial is motivated by narrowing the performance gap

of GLA between the simulation results in section 3.1.3 and the practical results

in 3.2.2. The baseline model is trained with audio data in 16 kHz sampling rate,

STFT window size used is 800 with frame shift 200. According to simulation results

in section 3.1.3, it is shown that under this sampling rate and overlapping rate,

window size 512 is a better choice in terms of phase retrieval. We reasoned that

the low performance of GLA in section 3.2.2 is caused by the improper choice of

hyperparameters, at least partially.

Thus, the first modification we made to the model is to finetune the model under

this set of modified hyperparameters. Training data used in this trial is Librispeech

[35]. This dataset is open-sourced and is also used by the baseline model. We

made use of the two clean training data sets, namely clean-100 and clean-300, that

included around 400 hours of English speech data. We aimed to investigate how

the window function setting would affect synthesis results, and therefore passed the

synthesized Mel spectrogram to GLA for waveform reconstruction. In this sense,

neural vocoders are not necessary. However, if readers are not using GLA and want

to keep the neural vocoder structure used in the baseline model, it is necessary

to train a neural vocoder correspondingly, since they must share the same set of

hyperparameters.

69

4.1.2 Single Speaker Finetune

The second transfer learning we have done aims to boost the mimicking ability of

the model. The learning outcome of baseline model may not generalize well, since

it is trained with only the Librispeech corpus, in which speakers are mainly using

the US accent, and the amount of data is not very sufficient. Synthesis quality may

be unsatisfactory if the voice characteristic of the target speaker that users want

to mimic is not similar to the speakers in training data.

We search for ad hoc methods, given there are only limited data on the target

speaker. Using a model pretrained in large corpora as initial guess, and finetune

using a small dataset is the method we studied in this thesis. The benefits of

transfer learning are stated above. We expect that the pretrained model would have

enough learning on basic TTS tasks, and extra training with the target speaker’s

data would specialize the model to the specific speaker. The training data used

here could be relatively small, for instance, around 20 minutes. We consider this an

ad hoc method used when the model on hand is unsatisfactory. If the users could

afford it, training a model with large corpora that includes data from numerous

speakers for well-generalized learning outcomes would be preferable.

4.2 Speech Quality

The first transfer learning done is very simple. Training data are preprocessed with

a new set of hyperparameters and would be used to train a new synthesizer model,

using baseline model parameters as initialization. This modified model is trained

70

for about 120k training steps. Although hyperparameters are changed in the hope

of improving audio quality outputted by GLA based on the simulation result in

section 3.1.3, we still prepared a neural vocoder for comparison.

Resulting MCD and NISQA MOS prediction can be found in Figure 4.1 and 4.2,

respectively. From each model, 30 speech samples are synthesized by the baseline

model and the modified model we trained. The set of 30 sentences is randomly

sampled from 17 different speakers from the test corpus of LibriSpeech and the

data are unseen in training. Scores calculated are presented in the form of box

plot so that readers can have a more comprehensive idea of the distribution. Mean

scores and 95% C.I. can also be found in Table 4.1. Note that the scores of baseline

model have already been presented in section 3.2.2.

Table 4.1: Mean scores and 95% C.I. of synthesized audio from pretrained and
finetuned model

MCD NISQA
Baseline with GLA 7.25 ± 0.343 1.48 ± 0.199
Baseline with Vocoder 5.86 ± 0.379 3.12 ± 0.110
Modified with GLA 7.14 ± 0.448 2.30 ± 0.219
Modified with Vocoder 5.54 ± 0.426 3.25 ± 0.138

MCD is not affected much by this finetuning process. It is shown in Figure 4.1 that

MCDs of samples from both the baseline model and modified model are similar or

slightly improved. However, using neural vocoder instead of GLA may lead to a

certain level of improvement. For both models, samples generated using GLA have

a mean MCD of around 7.2, and that of samples from neural vocoder is around 5.8

and 5.5.

On the other hand, the mean MOS predicted by NISQA is considerably improved

71

Figure 4.1: MCD of synthesized audio samples generated by baseline and modified
model, using GLA and neural vocoder

Figure 4.2: NISQA MOS prediction of synthesized audio samples generated by
baseline and modified model, using GLA and neural vocoder

72

by this modification. From Figure 4.2, it is shown that the predicted MOS scores

are originally about 1.5 in the baseline model and are enhanced to 2.3 in our

modified model. Despite this significant difference, this result is still not yet lived

up to our expectations. For comparison, audio samples generated using neural

vocoder could have a mean predicted MOS slightly higher than 3.

4.3 Voice Similarity

The second transfer learning aims to boost voice similarity and speech naturalness

for one single speaker by finetuning the model with only the target speaker’s speech

data. Training data used in this transfer learning experiment is from a female

speaker chosen from the train-other-500 dataset of LibriSpeech. In total there are

about 24 mins speech data from this female speaker. We split it into training and

testing sets, in which the length of testing data is around 5 mins.

For convenience, we call the model trained in section 4.1 as the “pretrained” model,

and the single-speaker model trained in this section the “finetuned” model. The

MCD and MOS predicted by NISQA is shown in Figure 4.3 and 4.4 as box plot,

respectively. Mean and 95% C.I. is shown in Table 4.2.

Table 4.2: Mean scores and 95% C.I. of synthesized audio from baseline and
modified model

MCD NISQA
Pretrained with GLA 6.34 ± 0.207 2.78 ± 0.067
Pretrained with Vocoder 6.55 ± 0.223 3.22 ± 0.051
Finetuned with GLA 5.90 ± 0.139 2.82 ± 0.063
Finetuned with Vocoder 6.20 ± 0.135 3.10 ± 0.086

73

Figure 4.3: MCD of synthesized audio samples generated by pretrained and fine-
tuned model, using GLA and neural vocoder

Figure 4.4: NISQA MOS prediction of synthesized audio samples generated by
pretrained and finetuned model, using GLA and neural vocoder

74

After single-speaker finetune, MCD improved from 6.3 to 5.9 when using GLA for

waveform construction. MOS predicted by NISQA remained at around 2.8. On the

other hand, if neural vocoder is used, MCD is slightly higher than that of GLA,

while MOS predicted by NISQA is better than GLA.

4.4 Attention Alignment

In this section, we wish to mention and discuss one more improvement brought by

finetuning. From both literature and practical cases, it is known that the alignment

generated in attention mechanism is an important performance indicator, in both

training and testing time. However, there is no indicator for measuring its learning

outcome and thus it can only be used as a brief impression of model convergence.

For speech processing problems, it is often required that the attention alignment

should be monotonic, like a diagonal line. That means, the attention mechanism

should concentrate on only a small set of key vectors at each decoding step, and

it should gradually shift its concentration from the beginning to the end of input

sequence. Figure 4.5 is an example of expected attention alignment. It can be

observed that high attention weights are distributed to only a few key vectors,

and the high weight values are shifting monotonically through the whole decoding

process. In contrast, figure 4.6 shows an example of negative example. In the

middle of decoding process, roughly between step 50 and 125, it is obvious that the

attention mechanism lost its concentration and allocated relatively low attention

weights to a large group of key vectors. As a result, a long pause is produced

75

Figure 4.5: Example of a decent attention alignment

between the first and second half of synthesized speech.

It is found that the problematic attention alignment often happened in the pre-

trained model, and has been improved after the finetuning process. As stated, there

is a lack of objective indicators for measuring the condition of attention alignment.

Thus, we count the frequency of problematic alignment so that readers can have a

brief impression. While synthesizing test data with the pretrained model, about

64% of the attempts faced this blurred alignment problem. On the other hand, the

frequency of encountering this problem was reduced to about 19% in the case of

finetuned model. It is worth mentioning that the percentage is counted regardless

of the length of pause and the severity degree of bad attention. The counting

also ignored the necessity of such pauses since there is no objective measure for it.

76

Figure 4.6: Example of a problematic attention alignment

Hence, there is a possibility that not every pause is undesirable.

77

Chapter 5

Potential Applications of Voice

Cloning Systems

For applications of voice cloning, one may easily think of examples such as ”deep-

fake”, which refers to a kind of synthetic media that one’s looks, facial expression,

voice, etc., are replaced by someone else’s. Certainly, this kind of application would

cause many ethical and legal arguments that should be avoided in our studies.

In this chapter, we would like to propose a potential application of voice cloning for

educational purposes, which is Automatic Pronunciation Error Detection (APED).

Section 5.1 reviews the recent development in this field and introduces commonly

used APED methods. Details of the proposed approach and experiment settings

are presented in Section 5.2. Section 5.3 discusses the usefulness of the proposed

approach, and its advantages and disadvantages over the existing methods.

78

5.1 Related Works

APED methods in the field could be divided into two streams: either based on

automatic speech recognition (ASR) technology or based on acoustic phonetics.

However, the two streams could be complementary to each other. Hence, readers

should not be restricted to the boundary of the two streams while reading related

literature or developing new APED methods.

ASR-based methods utilized ASR models to predict phonemes from inputting

speech. The systems then determine whether there are pronunciation errors or not

by comparing the recognized phonemes sequences with the phonemes sequences

transformed from the target text that the speakers are expected to pronounce.

Recent research has put efforts into training better ASR models. There are

studies on the usage of attention-based sequence-to-sequence models such as [55]

or transformer-like models such as [56].

Phonetics-based methods directly compare features extracted from students’ at-

tempts with reference speech recorded by teachers. The features to be compared

in this approach could be acoustic features, perceptual features, etc. One common

choice is Mel-frequency cepstral coefficients (MFCCs). After feature extraction,

DTW is usually used to align data from students and teachers. An extra classifica-

tion model is required for determining the existence and location of pronunciation

errors. Some studies employed support vector machine (SVM) such as [23] and

[24]. Deep belief network is also employed in some studies such as [25].

The advantage of ASR-based methods is that they can transfer learning from the

79

very active ASR field. Models and techniques of ASR are developed rapidly recently

due to the deep learning boom, and many of them are also beneficial to APED.

As an example, HMM-based ASR modules are replaced by DNN-based models.

However, it is stated that ASR-based methods are slow since they require a large

amount of computation, especially for deep neural networks.

In comparison, phonetics-based methods may be lighter, but there are still disad-

vantages. One of them may be the need of learning a classification model. This

classification task may not share knowledge with other research topics, which leads

to slower development and lesser resources such as training corpora. Another

limitation is that reference speech is required to be compared. Students might

only be able to practise the examples in database since no feedback could be given

without reference data for comparison.

5.2 Experiments

Speech data of which the pronunciation to be checked are named query data in this

chapter. Similarly, data that are known to contain correct pronunciation are named

reference data. Pronunciation error detection is done by measuring the distance

between query data and reference data. Data are segmented by window functions

into small frames. Acoustic features are extracted from the frames and form vector

sequences. Distance measures are then done between the two sequences. In our

trials, MCD mentioned in equation 3.2 is used as the metric.

While the MCD calculation in equation 3.2 averaged the distortion in both feature

80

and time axes, in this application we aim to search for potential pronunciation

errors by checking the locations where high distance are measured. Thus, MCD

is calculated between the pairs of vectors from query and reference sequence and

does not take average in the time direction.

It is predictable that in reality, the length of query and reference sequence may

not be identical and equation 3.2 could not be applied directly. In Chapter 3, we

employed the normalized distance of DTW [40] to avoid the problem. In contrast,

in this chapter, we want to warp the reference sequence to fit into the shape of the

query sequence. Therefore, asymmetric step pattern is used in DTW calculation so

that each vector in the reference sequence is aligned with one vector in the query

sequence.

As illustrated in figure 5.1a, if the reference sequence is shorter than the query,

one can simply duplicate the vectors in the reference sequence to fit the size of the

query sequence.The case of long reference is slightly more complicated. One query

vector could be aligned to multiple reference vectors. In our trials, we kept the

middle aligned vector and ignore the rest, as illustrated in figure 5.1b, so that the

number of vectors left in the reference sequence consists of that in the query.

After rectifying the shape of the reference, MCD is computed for each pair of

vectors from the warped reference and query. The purpose of the whole process is

to check how likely or unlikely is each vector in the query to exist in reference.

We conduct a series of simulations to support the usefulness of this approach.

First, a set of testing sentences, including ten examples, is prepared. To mimic

mispronunciation, one word in each testing sentence is replaced by another word

81

(a) Shorter reference

(b) Longer reference

Figure 5.1: Example of warping

with similar pronunciation. Both versions of the sentences are synthesised by the

finetuned model mentioned in Chapter 4.2. Speech data synthesized from testing

sentences are named as reference, and that from modified sentences are named as

query in the following part.

Considering that there may be random errors in the synthesis process, for example,

random initialization of GLA or the random sampling in neural vocoder, reference

sentences were synthesized ten times and MCD is computed between each pair of

reference and query so that random errors would be averaged out.

It is expected that the highest MCD would appear at the location of the exchanged

word in the query since pronunciation errors would cause high acoustic feature

errors. We evaluate our proposed approach by accuracy rate of error detection.

82

5.3 Simulation Results

In this section, we present the result of one example from the testing sentence set.

Details of the testing sentence set and results of other examples in the set could be

found in appendix.

The testing sentence used in this example is ”I HAVE PUT THE DATE OF THE

PARTY DOWN IN MY DIARY”, the modified version replaced ”DIARY” by

”DAIRY”. MCD calculation along query sequence is plotted in figure 5.2. The

peak of MCD is recorded at frame index 260. One can check the correctness of this

error detection by listening to the query audio around this frame index number.

From only the figure, it is difficult to ensure this peak is at the exact location, but

readers may briefly compare the location of the MCD peak and the location of

exchanged words.

It could be easily imagined that errors in acoustic features might be caused by

many factors, including the difference in voice characteristics, accent, intonation,

etc. As a control group, we repeated the simulation with query speech synthesized

by Google Translate. MCD computed is plotted on figure 5.3. The zeros after

frame index 350 come from long silence. Still, the high values of MCD are not

located in the changed part of the sentence. We considered this error detection

failed.

In our first simulation, the MCD peak is found at the changed word for all 10

examples. In comparison, only 6 out of 10 success is recorded in the second

simulation.

83

Figure 5.2: Example of pronunciation error detection via MCD

Figure 5.3: Example of pronunciation error detection in different voice

84

Figure 5.4: Example of pronunciation error detection after voice cloning

Voice Cloning techniques might be helpful in the sense that, by learning the voice

of the speaker, errors from the difference in voice characteristics, accent, intonation,

etc., would be minimized, and only the error comes from pronunciation differences,

and maybe some random errors, would be left.

To justify this claim, we have trained another synthesis model to learn the voice of

Google Translate and repeated the simulation again. Figure 5.4 shows the result of

MCD matching after learning. It can be observed that the MCD peak is located

at the exchanged word, and the value of the peak is relatively high and clearly

distinguished from the others. After learning the voice characteristic, the correct

rate returned to 10 out of 10. We consider this result shows that voice cloning

plays a vital role in this pronunciation error detection.

85

5.4 Analysis

In the former part of this chapter, it is stated that the voice characteristic would

affect the accuracy of pronunciation error detection. Analysis of the MCD values

of synthesized speech data is done to support this statement.

As mentioned in the previous section, we have conducted 3 simulations to support

our proposed method in total. In the first simulation, we synthesized both the

reference and query data set with a random female speaker voice learnt by the

finetuned TTS model discussed in chapter 4. In simulation 2, reference data set was

the same as that in simulation 1 while the query data set was newly synthesized

in another female voice using a service from Google. In the last simulation, we

learnt the female voice provided in Google’s service with our TTS model, and

synthesized a new set of reference data. To summarize, in both simulation 1 and

3, the voice characteristic is expected to be similar in both reference and query

data. In contrast, voice characteristic in reference and query set of simulation 2 is

different.

MCD mean and variance of the data used in the above simulations can be found in

table 5.1. The single speaker finetuned model in Chapter 4.2 is directly reused in

simulation 1. Both reference and query data are synthesized speech and there is no

ground truth speech for the calculation MCD. Thus, the mean and variance recorded

here are repeated from the results in Chapter 4.2. The other two simulations are

done between the speech data from Google Translate and our own synthesized

speech. MCD is newly calculated using the method introduced in Chapter 3. For

simulation 2, in which the voice of reference and query is not the same, the mean

86

Table 5.1: MCD mean and variance of the data used in simulations

Simulation 1 Simulation 2 Simulation 3
Mean 6.19523 7.797666 4.559118

Variance 0.396654 0.273756 0.297676

MCD is about 7.8.

The voice of Google Translate is nicely cloned, supported by a mean MCD score of

4.5. This results in a higher distinguishing power in our error detection application.

From the plots in appendix, we observed that in simulation 1, the value of the

MCD peaks is around 2 to 2.5 in most cases, while the values other than the peak

are around 1 to 1.5. On the other hand, peak values in simulation 3 are often

higher than 3, even up to 4, resulting in a relatively larger difference between peak

and other values.

From all these results, we have an inference that there exists a threshold that

speech data with similarity above this threshold would result in detection failure.

In our cases, similarity is measured by MCD and the highest mean score recorded

without detection failure is 6.2 from the model used in simulation 1. Since the

accuracy drops to 60% in simulation 2, where the mean score is 7.8, it is expected

that the MCD threshold would be in between.

In our simulations, about 20 mins of data are used for the training of simulation

1 and about 17 mins of data are used for the training of simulation 3. However,

considering real-life applications, it might be difficult to collect such an amount

of data from users for finetuning models. Hence, we studied the effects of using

fewer training data in the hope of finding out the minimum level of training data

87

Table 5.2: MCD mean and 95% C.I. of models trained from different amount of
data

Data (mins) MCD
0 5.171 ± 0.096
1 5.162 ± 0.092
2 4.967 ± 0.102
4 4.653 ± 0.097
8 4.623 ± 0.104
17 4.559 ± 0.107

necessary.

Reduced amounts of training data were used to finetune new models, and the

resulting MCDs are shown in table 5.2. Data of 0 mins shown on the first row

of the table refers to the pretrained model without finetuning. Finetuning with

more data would result in better MCD, but the experiments on data amount of 4

minutes or more resulted in similar MCD. This trend is plotted in figure 5.5.

It is worth mentioning that, the number of epochs trained for each model in the

table is not the same. Especially for small data cases, such as 1 min and 2 mins,

a long training would cause side effects like mispronunciation or distortion of

attention alignment. The results presented in this section are snapshots of the

models before such problems appear.

Although the MCDs from all the models are relatively small, it is suggested to use

no less than 4 minutes of data for finetuning. Using the 0, 1 and 2-minute model

to repeat the APED simulations would result in large random errors that affect

88

Figure 5.5: MCD of models trained from different amount of data

the accuracy of APED. Still, this may be avoided by using a well generalized and

robust TTS model, so that finetuning is not necessary or finetuning with small

dataset would not damage the learning outcome in pretrained model.

Compared to phonetics-based methods introduced in Section 5.1, the proposed

approach is more flexible in the sense that phonetics-based methods need to record

examples from teachers while the proposed approach could synthesize by itself.

The feature comparison part is also simpler. Classifiers models, such as SVM, are

needed to be trained in phonetics-based methods but distance functions are used

instead in the proposed approach.

On the other hand, the proposed approach is easier to use compared to ASR-based

methods because it does not require language knowledge like phonemes. The

89

proposed approach also shares the advantage of rich transfer learning opportunities

since TTS is a topic as popular as ASR.

However, there are also limitations to the proposed approach. One of them is the

long inference time. In our experiment, we synthesized 10 examples from each

transcript and compared the examples to students’ attempts. ASR-based methods

only require one forward pass from their recognition model, but the proposed

approach requires ten forward passes, which is very time-consuming. Another

limitation is that a relatively large amount of data is required from the students

for finetuning the TTS model. It is shown in our simulation that at least around 4

minutes of data would be necessary. However, this result came from a good initial

state that MCD is already 5.2 before finetuning. In general cases, it is expected

more data would be required.

90

Chapter 6

Conclusion

In this thesis, we provided a definition of voice cloning and introduced a popular

open-source deep learning-based model. We have explored the history and literature

of the neural network modules. We have also reviewed some necessary background

knowledge in the signal processing field. We believe that the information provided

in the thesis is sufficient for laymen to understand the development in the field.

One of the contributions made by this thesis is that we showed that the performance

of the Griffin-Lim Algorithm varies with window function size in Short-Time

Fourier Transform. Griffin-Lim Algorithm was a low-budget option for constructing

waveforms from acoustic features synthesized by Text-to-Speech models in the

past. However, along with the advance of deep learning-based vocoder, neural

network-based models have become the major choice nowadays. Neural network-

based models are powerful, but it is based on large training data and long training

time. Extra training may also be required whenever users want to change the

91

hyperparameters inside for a new application. Compared to neural network-based

models, Griffin-Lim Algorithm does not require training in advance and therefore

is universal to spectrograms computed under any STFT setting.

The quality of speech constructed by Griffin-Lim Algorithm is considered to be

inferior that that of neural vocoders. In this thesis, the quality of audio from

Griffin-Lim Algorithm is improved by optimized the window size used in data

preprocessing. Although the quality is still not as good as that of neural vocoder

outputs, we have significantly narrowed the gap between. Since we have only

optimized the window size in our studies, there is still a possibility that other

factors that affect Griffin-Lim Algorithm performance could be found in future

studies, so that Griffin-Lim Algorithm could again become a cost-saving alternative

to neural vocoders.

Another contribution of this thesis is a newly proposed application of voice cloning

techniques for education purposes. We found that pronunciation error detection by

calculating the distance between acoustic features of reference speech and that of

testing speech is not robust, because the difference in acoustic features could be

caused by many factors, and pronunciation error may not be the dominating term.

We have shown that by learning from the speakers’ speech samples, synthesis models

could minimize the difference in voice characteristics, accent and intonation, and

the acoustic feature error made by pronunciation mistakes could therefore dominate

the total feature distance. This claim is supported by a series of simulations. The

simulations provided evidence in the sense that the accuracy rate of pronunciation

error detection is remarkably improved after voice cloning.

92

There are still limitations in this study and they suggest directions for further

studies. First, only one acoustic feature is employed in our simulation. Other

types of acoustic features should also be tested to understand their strengths and

weaknesses. It may suggest the optimal choice of feature under different scenarios.

Second, we have still not yet found the threshold of similarity level necessary

for robust detection, while we have gained some idea about the sufficient level.

Knowing this threshold could help to save training resources as it helps to monitor

the learning process of voice cloning. Early stop after the minimum amount of

training becomes possible with this standard.

Moreover, in our simulation setting, it is known in advance that there is only one

pronunciation error in each example so that we can focus on only the location from

which the maximum feature distance is measured. In real-life cases, multiple errors

may exist in the same audio, or there could be no error. It is necessary to study

the value of distance measured to distinguish pronunciation mistakes from other

differences.

Last but not least, the voice cloning model itself has room for improvement. The

model used in this thesis has a classical encoder-decoder sequence-to-sequence

structure. Using a more advanced model may lead to better results. For example,

self-attention is a very active research topic in the field and has also been applied

to speech synthesis tasks. Limited training resources, including training data and

computation resources, may also be a problem. While this thesis is studying a

row-resource case, the lack of resources may limit the model performance.

93

Appendix A

Details of Pronunciation Error

Detection Simulations

Here is the transcript of the test sentence set mentioned in Chapter 5. For

each sentence, one of the words is replaced by the word in blanket to mimic

mispronunciation. Results of each example sentence in the three simulations are

attached in this chapter.

94

Table A.1: Transcript of testing sentence set

Index Transcript
1 I NEVER GOT FURTHER (FARTHER) THAN THE FIRST FIVE

PAGES
2 THE PRESIDENT HAS BEEN APPRISED (APPRAISED) OF THE

SITUATION
3 THE PREFECTS (PERFECT) ARE KEY TO THE RUNNING OF

THE SCHOOL
4 I HAD A VERY STRANGE DREAM (GYM) LAST NIGHT
5 HE SAT DOWN AND WIPED THE SWEAT (SWEET) OFF HIS

FOREHEAD
6 FRESH OR DRIED FRUIT MAKES AN IDEAL SNACK (SNAKE)
7 I HAVE PUT THE DATE OF THE PARTY DOWN IN MY DIARY

(DAIRY)
8 HE LOVES CHILDREN AND HAS A CERTAIN EMPATHY (SYM-

PATHY) WITH THEM
9 THE ACCENT (ASCENT) FALLS ON THE FINAL SYLLABLE
10 HE HAS BEEN UNDER A LOT OF PRESSURE (PLEASURE)

RECENTLY

95

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.1: Results of example index 1

96

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.2: Results of example index 2

97

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.3: Results of example index 3

98

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.4: Results of example index 4

99

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.5: Results of example index 5

100

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.6: Results of example index 6

101

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.7: Results of example index 7

102

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.8: Results of example index 8

103

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3

Figure A.9: Results of example index 9

104

(a) Simlulation 1

(b) Simlulation 2

(c) Simlulation 3, note that the word ”recently” is not synthe-
sized in this simulation

Figure A.10: Results of example index 10

105

References

[1] S. Ö. Arık, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang,

X. Li, J. Miller, A. Ng, J. Raiman, et al. Deep voice: Real-time neural text-

to-speech. In International Conference on Machine Learning, pages 195–204.

PMLR, 2017.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties

of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014.

[5] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-

based models for speech recognition. Advances in neural information processing

systems, 28, 2015.

[6] J.-c. Chou, C.-c. Yeh, and H.-y. Lee. One-shot voice conversion by separat-

ing speaker and content representations with instance normalization. arXiv

preprint arXiv:1904.05742, 2019.

[7] N. Dehak, R. Dehak, P. Kenny, N. Brümmer, P. Ouellet, and P. Dumouchel.

Support vector machines versus fast scoring in the low-dimensional total

variability space for speaker verification. In Tenth Annual conference of the

international speech communication association, 2009.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[9] M. K. Fagan. Why repetition? repetitive babbling, auditory feedback, and

cochlear implantation. Journal of experimental child psychology, 137:125–136,

2015.

[10] V. Franc, V. Hlaváč, and M. Navara. Sequential coordinate-wise algorithm

for the non-negative least squares problem. In International Conference on

Computer Analysis of Images and Patterns, pages 407–414. Springer, 2005.

[11] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai. An adaptive algorithm for

mel-cepstral analysis of speech. In icassp, volume 92, pages 137–140, 1992.

[12] T. Giorgino. Computing and visualizing dynamic time warping alignments in

r: the dtw package. Journal of statistical Software, 31:1–24, 2009.

[13] A. Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[14] D. Griffin and J. Lim. Signal estimation from modified short-time fourier

transform. IEEE Transactions on acoustics, speech, and signal processing,

32(2):236–243, 1984.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[17] C. Jemine et al. Master thesis: Real-time voice cloning. 2019.

[18] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen, R. Pang,

I. Lopez Moreno, Y. Wu, et al. Transfer learning from speaker verification

to multispeaker text-to-speech synthesis. Advances in neural information

processing systems, 31, 2018.

[19] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart,

F. Stimberg, A. Oord, S. Dieleman, and K. Kavukcuoglu. Efficient neural

audio synthesis. In International Conference on Machine Learning, pages

2410–2419. PMLR, 2018.

[20] J. Kominek, T. Schultz, and A. W. Black. Synthesizer voice quality of new

languages calibrated with mean mel cepstral distortion. In SLTU, pages 63–68,

2008.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25, 2012.

[22] R. Kubichek. Mel-cepstral distance measure for objective speech quality

assessment. In Proceedings of IEEE pacific rim conference on communications

computers and signal processing, volume 1, pages 125–128. IEEE, 1993.

[23] A. Lee and J. Glass. A comparison-based approach to mispronunciation

detection. In 2012 IEEE Spoken Language Technology Workshop (SLT), pages

382–387. IEEE, 2012.

[24] A. Lee and J. Glass. Pronunciation assessment via a comparison-based system.

In Speech and Language Technology in Education, 2013.

[25] A. Lee, Y. Zhang, and J. Glass. Mispronunciation detection via dynamic

time warping on deep belief network-based posteriorgrams. In 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, pages

8227–8231. IEEE, 2013.

[26] C.-C. Lo, S.-W. Fu, W.-C. Huang, X. Wang, J. Yamagishi, Y. Tsao, and H.-M.

Wang. Mosnet: Deep learning based objective assessment for voice conversion.

arXiv preprint arXiv:1904.08352, 2019.

[27] R. Mama. Tacotron-2. https://github.com/Rayhane-mamah/Tacotron-2,

2019.

[28] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and

O. Nieto. librosa: Audio and music signal analysis in python. In Proceedings

of the 14th python in science conference, volume 8, pages 18–25, 2015.

https://github.com/Rayhane-mamah/Tacotron-2

[29] G. Mittag and S. Möller. Deep learning based assessment of synthetic speech

naturalness. arXiv preprint arXiv:2104.11673, 2021.

[30] M. Morise. D4c, a band-aperiodicity estimator for high-quality speech synthesis.

Speech Communication, 84:57–65, 2016.

[31] M. Morise, F. Yokomori, and K. Ozawa. World: a vocoder-based high-quality

speech synthesis system for real-time applications. IEICE TRANSACTIONS

on Information and Systems, 99(7):1877–1884, 2016.

[32] S. Nawab, T. Quatieri, and J. Lim. Signal reconstruction from short-time

fourier transform magnitude. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 31(4):986–998, 1983.

[33] D. K. Oller and R. E. Eilers. The role of audition in infant babbling. Child

development, pages 441–449, 1988.

[34] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative

model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[35] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr

corpus based on public domain audio books. In 2015 IEEE international

conference on acoustics, speech and signal processing (ICASSP), pages 5206–

5210. IEEE, 2015.

[36] J. Patterson and A. Gibson. Deep learning: A practitioner’s approach. ”

O’Reilly Media, Inc.”, 2017.

[37] N. Perraudin, P. Balazs, and P. L. Søndergaard. A fast griffin-lim algorithm.

In 2013 IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics, pages 1–4. IEEE, 2013.

[38] R. Prenger, R. Valle, and B. Catanzaro. Waveglow: A flow-based generative

network for speech synthesis. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3617–

3621. IEEE, 2019.

[39] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra. Perceptual

evaluation of speech quality (pesq)-a new method for speech quality assessment

of telephone networks and codecs. In 2001 IEEE international conference on

acoustics, speech, and signal processing. Proceedings (Cat. No. 01CH37221),

volume 2, pages 749–752. IEEE, 2001.

[40] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for

spoken word recognition. IEEE transactions on acoustics, speech, and signal

processing, 26(1):43–49, 1978.

[41] P. Senin. Dynamic time warping algorithm review. Information and Computer

Science Department University of Hawaii at Manoa Honolulu, USA, 855(1-

23):40, 2008.

[42] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,

Y. Zhang, Y. Wang, R. Skerrv-Ryan, et al. Natural tts synthesis by conditioning

wavenet on mel spectrogram predictions. In 2018 IEEE international conference

on acoustics, speech and signal processing (ICASSP), pages 4779–4783. IEEE,

2018.

[43] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur. X-

vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE

international conference on acoustics, speech and signal processing (ICASSP),

pages 5329–5333. IEEE, 2018.

[44] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner, A. Courville, and

Y. Bengio. Char2wav: End-to-end speech synthesis. 2017.

[45] C. Stoel-Gammon. Relationships between lexical and phonological development

in young children. Journal of child language, 38(1):1–34, 2011.

[46] N. Sturmel, L. Daudet, et al. Signal reconstruction from stft magnitude: A

state of the art. In International conference on digital audio effects (DAFx),

pages 375–386, 2011.

[47] K. Tokuda, T. Kobayashi, S. Imai, and T. Chiba. Spectral estimation of

speech by mel-generalized cepstral analysis. Electronics and Communications

in Japan (Part III: Fundamental Electronic Science), 76(2):30–43, 1993.

[48] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez.

Deep neural networks for small footprint text-dependent speaker verification. In

2014 IEEE international conference on acoustics, speech and signal processing

(ICASSP), pages 4052–4056. IEEE, 2014.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[50] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0:

fundamental algorithms for scientific computing in python. Nature methods,

17(3):261–272, 2020.

[51] L. Wan, Q. Wang, A. Papir, and I. L. Moreno. Generalized end-to-end loss

for speaker verification. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4879–4883. IEEE, 2018.

[52] W. Wang, S. Xu, B. Xu, et al. First step towards end-to-end parametric tts

synthesis: Generating spectral parameters with neural attention. In Interspeech,

pages 2243–2247, 2016.

[53] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,

Y. Xiao, Z. Chen, S. Bengio, et al. Tacotron: Towards end-to-end speech

synthesis. arXiv preprint arXiv:1703.10135, 2017.

[54] C. Yan, G. Zhang, X. Ji, T. Zhang, T. Zhang, and W. Xu. The feasibility of

injecting inaudible voice commands to voice assistants. IEEE Transactions on

Dependable and Secure Computing, 18(3):1108–1124, 2019.

[55] L. Zhang, Z. Zhao, C. Ma, L. Shan, H. Sun, L. Jiang, S. Deng, and C. Gao.

End-to-end automatic pronunciation error detection based on improved hybrid

ctc/attention architecture. Sensors, 20(7):1809, 2020.

[56] Z. Zhang, Y. Wang, and J. Yang. Text-conditioned transformer for automatic

pronunciation error detection. Speech Communication, 130:55–63, 2021.

	CERTIFICATE OF ORIGINALITY
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Text-to-Speech Synthesis
	Voice Cloning
	Phase Reconstruction
	Pronunciation Error Detection
	Objectives and Contributions

	Literature Review
	Deep Learning
	Fully Connected Neural Network
	Convolution Neuron Network
	Recurrent Neural Network

	Acoustic Features
	Fourier Analysis
	Mel Scale Frequency

	Voice Cloning
	Speaker Encoder
	Synthesizer
	Vocoder

	Attention Mechanism
	Basics of Attention Mechanism
	Sequence-to-Sequence Models Using Attention Mechanism
	Self-Attention and Transformer

	Griffin-Lim Algorithm
	Problem Definition and Algorithm
	Convergence Analysis

	Methodology
	Analysis of Griffin-Lim Algorithm
	Convexity of Linear Spectrogram Approximation
	Uniqueness of STFT Magnitude
	Numerical Experiments

	Studies of Neural Network Models
	Performance Indicators
	Baseline Model Performance

	Results and Discussions
	Transfer Learning and Finetune of Model
	Modification of STFT Window Function
	Single Speaker Finetune

	Speech Quality
	Voice Similarity
	Attention Alignment

	Potential Applications of Voice Cloning Systems
	Related Works
	Experiments
	Simulation Results
	Analysis

	Conclusion
	Details of Pronunciation Error Detection Simulations
	References

