THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

CONTRIBUTIONS TO PRIVACY-PRESERVING

TECHNOLOGY

JIAZHUO LYU

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Contributions to Privacy-Preserving Technology

Jiazhuo LYU

A thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

January 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and
belief, it reproduces no material previously published or written, nor material that has been
accepted for the award of any other degree or diploma, except where due acknowledgement has

been made in the text.

(Signed)

LYU Jiazhuo (Name of student)

jiazhuo
LYU Jiazhuo

Abstract

In recent decades, preserving privacy has become vital for personal security, social freedom, and
economic prosperity. Within this context, secure multi-party computation (MPC) has gained
prominence as a key method in the privacy-preserving research field. MPC, a theoretical frame-
work, addresses collaborative computing challenges among distrustful entities without needing
a trusted third party. This framework assures both the confidentiality of inputs and the integrity
of computations. It employs cryptographic principles to safeguard participant data during com-
putations while ensuring accurate outcomes, all without a trusted third party. In this thesis, we
focus on developing efficient MPC protocols with robust functionalities that are adaptable to
various scenarios. Specifically, we introduce a novel MPC protocol tailored for applications in
e-voting, k-means clustering in machine learning, and fluid participant environments for general
computational tasks.

Firstly, we introduce a decentralized e-voting system utilizing smart contract technology. E-
voting is a critical application of MPC that significantly impacts social activities. The integrity
of voting results and voter privacy are paramount. Our protocol integrates blockchain with smart
contract capabilities, linkable ring signatures, and threshold encryption to ensure security and
privacy. This design effectively decentralizes trust, ensuring that the voting outcome remains
accurate even if some participants are malicious. The system is implemented on an Ethereum
private network, offering a robust solution for secure e-voting. Additionally, we provide an
analysis of the system’s feasibility, including considerations of cost in terms of both financial
and time resources.

We also present a novel two-party k-means clustering scheme designed for privacy-preserving

collaborative data mining. This field aims to extract useful knowledge from distributed datasets,

il
owned by multiple entities, without leaking the privacy of the data or the results. An increasing
number of companies choose to store and process their data through third-party cloud services.
As a result, the need for efficient and secure data mining protocols becomes paramount. Ex-
isting approaches in this area, however, suffer from high computational and communication
overheads, hindering practical application. Our proposed scheme addresses these challenges
by encrypting each party’s data once before uploading it to the cloud. Our collaborative clus-
tering protocol for k-means, which prioritizes privacy, is primarily implemented in a cloud
environment. This process requires O(k(m + n)) interactive sessions involving both parties
and the cloud server. Here, m and n represent the respective total record counts from each
party. We validate the security of our protocol in both semi-honest and malicious security mod-
els, the latter considering a scenario where only one party may be corrupted during centroid
recomputation. Comprehensive theoretical and experimental analyses of our protocol are also
provided, demonstrating its efficiency and security.

Furthermore, we design a fluid MPC protocol based on SPDZ protocol for general function
computation tasks with a small preprocessing computation cost. MPC protocols traditionally
require participants to be active throughout the computation process. This requirement can
be a significant barrier, especially for complex and resource-intensive tasks. Fluid MPC, a
significant advancement presented at Crypto 2021, revolutionizes the traditional framework of
secure multi-party computation by introducing a highly adaptable and dynamic system. Unlike
conventional MPC protocols, which require a static group of parties to remain consistently
engaged throughout the computation process, Fluid MPC allows for a fluid and evolving set of
participants. This innovative model is specifically engineered to cater to the variable availability
of participants’ resources. We extend the Le Mans Fluid MPC protocol, which holds a heavy
preprocessing overhead. With the assumption that each computation committee and the transfer
order are fixed before the preprocessing stage, the cost of preprocessing is extremely low. In
addition, our advanced Fluid MPC protocol stands out by supporting an all-but-one dishonest

majority secure model, substantially enhancing the security framework.

Publications arising from the thesis

1. Jiang, Zoe L., Ning Guo, Yabin Jin, Jiazhuo Lv, Yulin Wu, Zechao Liu, Junbin Fang,
Siu-Ming Yiu, and Xuan Wang. “Efficient two-party privacy-preserving collaborative
k-means clustering protocol supporting both storage and computation outsourcing.” In-

formation Sciences 518 (2020): 168-180.

2. Jiazhuo Lyu, Zoe L. Jiang, Xuan Wang, Zhenhao Nong, Man Ho Au, and Junbin Fang.
” A secure decentralized trustless E-voting system based on smart contract.” In 2019 18th
IEEE International Conference On Trust, Security And Privacy In Computing And Com-
munications/13th IEEE International Conference On Big Data Science And Engineering

(TrustCom/BigDataSE), pp. 570-577. IEEE, 2019.

i1

Acknowledgements

First and foremost, I express my deepest gratitude to my parents for their unwavering support
and encouragement throughout my life. Over the past 27 years, their love, guidance, protection,
and inspiration have been my constant source of strength. I am eternally grateful to them for
shaping the person I have become.

I extend my sincere thanks to my supervisor, Prof. Man Ho Au, for his invaluable guidance,
support, and patience during my PhD studies. He has always encouraged me to pursue research
in my areas of interest and has generously shared his time to discuss each research question
in depth. His expertise, vast knowledge, and skills in our research field have been immensely
beneficial to me.

I am also deeply thankful to all my friends and the kind individuals who have offered their
support and assistance when needed. Their willingness to help has been a great source of com-

fort and encouragement.

v

Contents

i
Publications Arising from the Thesis iii
|Acknowledgements iv
LList of Figures viii
ist of Tables ix

1 TIntroduction 1
1.1 Thesis Outling o o 4
[1.2 A Secure E-voting System Based on Blockchainj 5
[[.2.1 Related Workl o o o e 7

[1.3 Efficient Two-party Privacy-preserving Collaborative k-means Clustering Pro-

ocol . . e 9

[[.3.1 Related Workl 10

.4 Fluild MPQ 13
[[.4.1 Related Workl 14

[1.5 Connections Between the Three Componenty 16

2 Preliminaries 18
2.1 Blockchain and Ethereum 18
R.2 Linkable Ring Signaturd 21
2.3 Threshold Encryption Without Trusted Third Party| 23

CONTENTS

2.4 Homomorphic Encryption

P2.4.1 Basic Secure Computation Primitived
R.5 Horizontal Data Partition
R.6 Secret Sharing
2.7 Oblivious Linear Evaluation
2.8 Universal Composed Securityl v oot
2.8.1 The Basic Frameworkl

An E-voting System Based on Blockchain

B.1

Voting Protocol Description

B.1.1

Voting Protocol Entities Description o o

B.1.2 Voting Protocol Description i

B.2 Voting Protocol Analysis

B.2.1

Correctness and Security Analysi§

B.2.2 Decentralized and Trustless AnalysiS

B.2.3

Time Cost Analysis v v v

B.3 Voting Protocol Comparison

Two-party k-means Clustering Protocol

B.1 Protocol Description i i
1.1 Framework and Notation o v
#.1.2 Two-party k-means Collaborative Clustering Protocol
|4. 1.3 Secure Garbled Circuit Protocol Supporting %
#.1.4 Details of the Privacy-preserving Collaborative k-means Clustering Pro-

“.2 Protocol Security Analysig

@.2.1

Security Model . .

4.2.2

Security Analysis .

.3 Protocol Performance Analysid

k3.1

Theoretical Analysig

vi

24
25
28
28
30
31
31

34
35
35
36
41
41
43
44
45

CONTENTS

“.3.2 Experimental Analysid

3.3 Analysisof Results

U4 Potential Applicationy

5§ Fluid MPQ

5.1 Protocol OVErvieW v v v v e e e

5.1.1 Secure Model

5.2 Preprocessing Phase for Dynamic Committees

5.2.1 Preprocessing Functionalityl

5.2.2 Preprocessing Protocol

5.2.3 Instantiating Multi-Party OLE

5.3 Online Stagd. o

5.3.1 Building Blocks for Online Stagd

5.3.2 Protocol of Online Staged i

5.4 Cost ANalVSIS o v o e

5.4.1 Costin Le Mans Fluid MPC Protocol

5.4.2 Costin Our Proposed Fluid MPC Protocol

5.43 Comparison and Analysi§ o

5.44 Conclusion v v v v

6 Conclusions and Suggestions for Future Research

References

vil

59

60
63

65
66
66
68
68
71
76
80
80
&3
86
86
87
88
89

90

92

List of Figures

B.1 Voting stages descriptionot 36
B.2 Running time of different operations across voter count§ 45
.1 Framework of privacy-preserving collaborative k-means clustering protocol . . 50
5.1 Framework of fluid MPC protocol 66

viil

List of Tables

.1 Comparison of existing privacy-preserving data mining protocols 12
B.1 Average running time for each operation (n =30) 44
B.2 Protocol compariSOno e 46
.1 Time complexity comparison with [65]. 58
#.2 Space complexity comparison with [65] 58
“.3 Communication complexity comparison with [65] 59
“.4 Time of encryption of the proposed protocol 60
4.5 Time of encryption of paper [65] 60
.6 Time comparison with [65] in one iteration 61
#.7 _Time of each participant in one iteration of the proposed paper 62
“.8 Time of each participant in one iteration of [65] 62
.9 Time comparison in one iteration oo e 63
#.10_Time of decryption of the proposed protocol 63

X

Chapter 1

Introduction

With the rapid advancement of digitalization and big data analytics, the demand for multi-party
data has surged. For example, in fields like personal credit risk assessment, the process neces-
sitates the aggregation and joint analysis of various attributes and characteristics. Private data
collected during credit evaluations includes personal identifiers (such as identity, address, and
occupation), credit transaction records (from personal loans, credit cards, and guarantees), and
indicators of credit status [94]]. This information contains nearly all facets of an individual’s
private life. In this context, the importance of privacy-preserving technology has come to the
forefront. It aims to protect individual privacy while enabling the necessary data analysis, ad-
dressing the critical challenge of maintaining confidentiality amidst the expanding scope of data

collection and analysis.

Secure multi-party computation (MPC) is a cryptographic method enabling multiple parties
to collaboratively compute a goal without needing a trusted third party [39]. It ensures that par-
ticipants cannot access each other’s input information except for the final results. This concept
was proposed by Academician Andrew Yao in 1982 [89]. Over the years, MPC has evolved
into a significant branch of cryptography, offering algorithmic protocols for privacy protection.

The implementation of MPC can be divided into the following aspects:

CHAPTER 1. INTRODUCTION 2

1. General Protocol: This category includes protocols capable of computing any discrete
function representable as a fixed-size circuit. Examples include Yao’s garbled circuit
protocol [8], the GMW (Goldreich-Micali-Wigderson) protocol [40], and the SPDZ pro-

tocol. These are versatile and widely applicable in various cryptographic computations.

2. Specific Protocol: In contrast, specific protocols are tailored for particular functions
where general protocols may be inefficient due to significant overhead. For functions like
Private Set Intersection (PSI) [68], e-voting [68], and e-bidding [5], customized protocols

are developed to address the unique requirements and constraints of these applications.

The key protocols in Multi-party Computation (MPC) can be broadly categorized into sev-

eral distinct types, each with different features and secure models.

1. Secret Sharing (SS) [21]: Secret sharing is a method used to distribute a secret amongst a
group of participants, each of whom is allocated a share of the secret. The key idea is that
the secret can only be reconstructed when a sufficient number of shares (typically more
than a certain threshold) are combined together. When less than this specified number
of shares are amalgamated, they disclose no details about the secret. The secret sharing-

based MPC protocol usually can be divided into 3 stages:

(a) Distribution of Secret Shares: Each party’s private input is split into secret shares
using a secret sharing scheme. These shares are then distributed among all the par-
ticipating parties.

(b) Computational Operations on Shares: The participants execute calculations using

their respective shares. These operations are designed to replicate those that would

have been performed on the original inputs.

(c) Reconstruction: After the computations, the parties combine their resulting shares
to reconstruct the output of the function. Importantly, during this process, the indi-

vidual inputs of the parties are never reconstructed or revealed.

CHAPTER 1. INTRODUCTION 3

2. Garbled Circuit (GC) [8]: This technique was introduced by Andrew Yao in the 1980s

as part of his solution to the millionaires’ problem, where two millionaires want to find

out who is richer without revealing their actual wealth. In a garbled circuit, a Boolean

circuit (representing a computational task) is turned into a garbled version where the true

functionality is obscured. The garble circuit-based MPC protocol usually can be divided

into the following stages:

(a)

(b)

(©)

(d)

(e)

Circuit Construction: First, the computation to be performed is represented as a
Boolean circuit. This circuit consists of gates (like AND, OR, NOT) and wires

connecting these gates.

Garbling the Circuit: One party, often called the garbler, transforms this circuit into
a garbled circuit. Each wire in the original circuit is associated with two random
keys, designated for 0 and 1 respectively. The garbler then encrypts the output keys
of each gate with the input keys in a way that only the correct combination of input

keys will decrypt the correct output key.

Input Encoding: Each party encodes their inputs with the appropriate keys provided
by the garbler. In the event that a party’s input bit is 1, they utilize the key designated

for 1 on the corresponding wire, and conversely, if it’s 0, they use the 0 key.

Circuit Evaluation: The evaluator, who may or may not be the same as the garbler,
then processes the garbled circuit. Without knowing the actual inputs or what each
gate is doing, the evaluator uses the keys corresponding to their inputs to progres-
sively decrypt the garbled gates and obtain keys for the next level of wires, until the

output is reached.

Output Decryption: Finally, the output keys are translated back into the actual output

of the computation.

3. Homomorphic Encryption (HE) [22]: In the context of MPC, homomorphic encryption is

used to ensure that the inputs of each party remain private, even as they are being used to

CHAPTER 1. INTRODUCTION 4

compute some joint function. The process of this kind of protocol is quite straightforward.
Firstly, each party encrypts its input using a homomorphic encryption scheme. Then, the
computing entity performs the desired computations directly on the encrypted data and
gets the encrypted result. Finally, the relevant party or parties can then decrypt the result

to obtain the final plaintext output.

4. Oblivious Transfer (OT) [43]: Oblivious transfer is a foundational primitive in many
MPC protocols, especially those designed for two-party or small-number-party compu-
tations. It is used as a building block to achieve secure computation, ensuring that parties

can jointly compute a function over their inputs while keeping those inputs private.

These technologies allow for the utilization of data without exposing the original content, thus

safeguarding privacy.

Multi-party computation (MPC) finds wide-ranging applications in areas like multi-party
joint data analysis, which encompasses Private Information Retrieval (PIR) [18], Private Set
Intersection (PSI) [68], and trusted data exchanges. Additionally, specific applications such
as secure e-voting and e-bidding represent specialized forms of MPC protocols. The devel-
opment and availability of several open-source libraries, such as ABY [27], EMP-toolkit [[11],
FRESCO [81], JIFF [53], MP-SPDZ [49], MPyC [79], SCALE-MAMBA [4], and TinyGar-
ble [83], have significantly contributed to the practical deployment and broader application of

MPC technologies.

1.1 Thesis Outline

The rest of this thesis is organized as follows:

» Chapter 2 lays the foundational elements for the content that follows, including a range

of essential notations and definitions.

CHAPTER 1. INTRODUCTION 5

* Chapter 3 provides the e-voting protocol based on Ethereum. The discussion of the cor-

rectness of the protocol and the security analysis are also proposed.

* Chapter 4 presents the privacy-preserving collaborative k-means clustering protocol. Ad-
ditionally, it explores the protocol’s efficiency from both theoretical and experimental

perspectives.

* Chapter 5 presents a fluid MPC protocol with a small preprocessing overhead.

Chapter 6 offers concluding remarks and potential directions for future research.

1.2 A Secure E-voting System Based on Blockchain

E-voting is widely used in social life. However, it is not obvious how to ensure the outcome
is respected when the decision is financially or politically related. The correctness, security,
and privacy are always the most important characteristics. Secure e-voting is a kind of secure
multi-party computation [39]. In the voting process, a set of people make their choices, and
their choices can be kept secret. The majority of electronic voting systems require a reliable
public bulletin board to ensure a uniform perspective for all voters. However, it is not clear to
the election administrator that the public bulletin board can be completely trusted. Some people

realize blockchain can be used as a bulletin board because the content is publicly trusted.

Blockchain [69] served as a decentralized database that provides new tools for creating a
trustless and decentralized system. In the blockchain system, there is no trusted centralized
coordinator. Instead, each node that is involved in the blockchain system holds the data block
locally. Blockchain technology is upheld by a peer-to-peer network that is decentralized and
allows open membership. At first, this technology is designed for money transfer. With the
development of it, researchers are trying to reuse Blockchain in other research areas such as

coordinating the Internet of Things [70], carbon dating [20] and health-care [33]. This sparked

CHAPTER 1. INTRODUCTION 6

the invention of Ethereum [87], which is well known as a milestone in the development of
blockchain. It owns a Turing complete programming language, and users can realize the func-

tion by the smart contract in the Ethereum network.

Blockchain technology has the potential to serve as a trusted public bulletin board in voting
systems. In addition, the smart contract on the blockchain serves as a trusted computer whose
result is publicly trusted. However, replacing the bulletin board with blockchain is not a good
idea. Because there will be too many transactions for voters to discern and the computation on

the blockchain is very hard, this could be seen in [93].

In this paper, we propose a decentralized, trustless e-voting system based on blockchain.
The decentralized system means the computation is dependent on a decentralized blockchain.
The trustless system means we do not need to rely on the election administrator; the trust is sepa-
rated from all voters. The correctness of the system depends on the whole protocol. In addition,

all voters can have cryptographic assurance that the privacy of each voter can be protected.

To ensure that nobody can tally the election result before the end of the election, the scheme
uses threshold encryption without a trusted third party [28,80]. In addition, even if the election
administrator is malicious, the tally result will not be changed. The encryption method is to set
up a pair of public-secret keys. The public key is known to all parties, while the secret key is
separated to all parties, and nobody gets the complete secret key before the key reconstruction

stage. When at least ¢ of n parties upload their secrets, the secret key is reconstructed.

In order to identify the anonymous signature, we use the linkable ring signature [6, 63, 64].
A linkable ring signature allows a member to generate a signature from a list of public keys and
a secret key whose corresponding public key is in the list. But nobody (except the generator)
could know who generated the signature. It makes a participant to be anonymous during the
voting process. The more users involved in the signature, the more anonymous it could be. The

public checker could verify that whether two signatures on different messages are generated by

CHAPTER 1. INTRODUCTION 7

the same signer.

The voting protocol is deployed on Ethereum by the smart contract. The Ethereum script al-
lows users to write the required smart contracts on Ethereum and implement powerful functions
through smart contracts to implement decentralized applications. All nodes of the Ethereum net-
work run the contract code independently to ensure the credibility of the final result, which is

publicly verifiable.

1.2.1 Related Work

The e-voting system was first raised by Chaum in 1981 [[17]. From then on, people focused on
the e-voting system. According to cryptographic technologies, people divided the protocol into

three kinds:

* Mixed-network: E-voting system based on mixed-network was first proposed by Chaum
[L7]. The basic principle is that multiple input signals are confusing through the mixed-
network, and then output multiple signals are cut off the association with the sender.
However, the implementation of the mixed-network requires a large amount of zero-
knowledge proof [35] to ensure that the servers participating in the hybrid computing

have not tampered with the votes.

* Blind/Ring signature: Chaum first introduced the concept of a blind signature in 1983
[15]. Unlike in a standard public key signature, where the signer is aware of the content
being signed, the blind signature approach differs. However, in the process of blind sig-
nature, the signer does not know the content of the file that he signed. When the file is
revealed, the signer can verify his signature and get the content of the file, but he does
not know the time of the signature generation and who sent the file. Legal voters can not

verify that their voting content is properly counted, nor can they verify the correctness

CHAPTER 1. INTRODUCTION 8

of the counting process. The FOO protocol [36] is representative of the blind signature
electronic voting scheme. The protocol uses the blind signature to ensure the uniqueness
and privacy of the ballot, and the fairness of voting is achieved through bit commitment.
The FOO protocol is the first electronic voting solution that truly meets the basic secu-
rity needs of electronic voting, pushing electronic voting from the theoretical stage to the
practical stage. The paper referenced as [[19] marks the initial application of a linkable
ring signature in an electronic voting system. These are the fundamentals of a linkable

ring signature-based e-voting system.

* Homomorphic encryption: E-voting system based on homomorphic encryption of El-
gamal [9, 51]] was first proposed in 1997. Homomorphic features allow one to operate
on ciphertext without decrypting them. In the tally process, the ballots do not require a
decryption operation. This feature can greatly improve the privacy of the ballot and the
anonymity of the voting [23,48]. The privacy of the ballots and the anonymity of the

voters depend on the security of the homomorphic encryption algorithm.

However, such voting protocols [2] need a centralized trusted party to control the voting process.
The blockchain technique and smart contracts provide new ideas for e-voting. Zhao proposed
a voting agreement in 2015 [93]], which introduced a punish/reward scheme for voters’ illegal
or legal behaviors. Though the protocol is hard to carry out in the real world because each
voter needs to set up a lot of transactions, it is the first attempt to utilize blockchain to solve
the voting problem. In 2017, McCorry proposed an electronic voting protocol based on smart
contracts [66], using a homomorphic encryption scheme. However, if voters give up voting,
the whole protocol needs to be re-run. Bin proposes a practical voting system that is platform-
independent, secure, and verifiable [90]. The system is based on smart contracts on Blockchain.
In the system, the public key is mastered by the election administrator. Once the administrator

is malicious, the voting will be destroyed. This problem also happens to [52].

CHAPTER 1. INTRODUCTION 9

1.3 Efficient Two-party Privacy-preserving Collaborative /-

means Clustering Protocol

Collaborative data mining aims to address how we can tackle the challenge of using data min-
ing methods on scattered data to extract knowledge, which is one of the most important ways
to build robust models. However, such collaboration may not be easily achieved due to pri-
vacy concerns. For example, in the US, medical data release is not allowed before the de-
identification process, as claimed in the Health Insurance Portability and Accountability Act
(HIPPA). In the European Union, it has enforced many terms to protect user privacy and pro-
hibit direct data sharing among institutions. Such enforcement creates a substantial barrier for
researchers to execute collaborative data mining and further benefits from data sharing. In terms
of the privacy concern of collaborative data mining, the idea of privacy-preserving data mining
is proposed [92]. Nowadays, there are two main techniques to achieve privacy: differential

privacy and homomorphic encryption.

Differential privacy, where the rigorous definition was proposed in [32], has the advantage
of efficiency while it may lose accuracy. It has been extended to various applications, such as
Naive Bayes [58] and deep learning [[I]]. Homomorphic encryption is a kind of encryption that
enables computation on encrypted data. It can provide accurate computation with the sacrifice
of efficiency. Moreover, only a little fully homomorphic encryption can support all kinds of

computation on ciphertext [29,95].

With the advent of cloud computing, end-users outsource their data to cloud services to
perform data mining, which is called both data storage and computation outsourcing. In such
new infrastructure, to incentivize end-users to join in collaborative mining, privacy becomes

one of the most important obstacles [61]].

Clustering is designed to group a set of objects into clusters according to some kind of mea-

CHAPTER 1. INTRODUCTION 10

surement, such that objects within a cluster are similar while dissimilar to those in other clusters.
It has been widely used in the applications of medicine, banking, etc. In terms of privacy, many
pieces of research work have been launched to study privacy-preserving clustering protocols.
However, most of them assume that data is centralized. In this paper, a privacy-preserving
collaborative clustering protocol supporting both storage and computation outsourcing will be

proposed.

1.3.1 Related Work

The first piece of work on privacy-preserving data mining was given by [3, 60] for the ID3
decision trees classification on horizontally partitioned data using different models of privacy.
Lindell’s work [60] allows two-party to compute a decision tree based on the combined set of
data without revealing each other’s data records. Agrawal [3] developed a method allowing one

party to delegate data mining tasks to another party without disclosing private data.

Vaidya and Clifton [85] were the pioneers in introducing a multi-party privacy-preserving
k-means clustering protocol for vertically partitioned data. Their protocol maintains the con-
fidentiality of each party’s data through secure permutation and homomorphic encryption, en-
abling secure computation and comparison of distances. Jha et al. [46] proposed two privacy-
preserving protocols for two-party weighted average calculations, one based on oblivious poly-
nomial evaluation and the other on homomorphic encryption. Their homomorphic encryption
experiment successfully clustered a dataset with 5,687 samples and 12 features in about 66
seconds. Jagannathan and Wright [45] expanded this concept to arbitrarily partitioned data, a

broader category encompassing both horizontal and vertical partitions.

Bunn and Ostrovsky [14] introduced an efficient two-party k-means clustering protocol for
arbitrarily partitioned data, preserving privacy without disclosing any intermediate values using

division and random value protocols. Doganay et al. [31]] suggested a novel privacy-preserving

CHAPTER 1. INTRODUCTION 11

k-means clustering protocol, but it depended on a trusted third party for privacy assurance.
Patel et al. [[72,[73] later oftered various schemes in the malicious model, though these were not

particularly efficient.

Liu et al. [62] devised a one-party privacy-preserving k-means clustering protocol, enabling
users to outsource storage and computation to the cloud without revealing data or mining results
to the cloud or other parties. They extended this framework in [65] to include two parties
and the cloud, although this increased the computational and interactive costs. Li et al. [59]
introduced a privacy-preserving C4.5 decision tree algorithm for horizontally and vertically
partitioned datasets. In [57], Li et al. proposed a method for a classifier owner to delegate
privacy-preserving classification services to a remote server, including two secure classification
protocols for the Naive Bayes classifier. Several protocols involve a trusted third party for
authorization, a common practice in outsourced storage systems [54, 58]. Other data mining

protocols are discussed in [55,56,88], with a detailed comparison presented in Table [1.1].

12

CHAPTER 1. INTRODUCTION

uonendwos Ayred-g amnoog Z 1< SNODIBIA [eIUOZLIOH sueow-y €1 1zana
IoJsueI) SNOIAI[QO
JINDIIO UOIBN[BAD S,0BX 14 1< SNORIBIA [eIUOZLIOH sueoW-y [£9] 02N
SurIeys 19109S S IIWEYS
3 JO INO WINWITUTW dINJOS T 1< 1SOUOY-TWIS [eIuoZLIOH sueowW-y [S4] y1adS
m<3ﬂwumwwwhomﬁww_wo::mm ! [4 Isauoy-Tts§ [eJUOZLIOH Sueaw- [S91 STAIT
syuoumIuIod drydiowowoy [EO1)I9A IO
SuLIByS 191095 J[qRIJLIOA 0 I< SMORIEI [eyuozZLIOH supaty [edl yirsd
uondAous osrydiowowoy I I 1SOUOY-TWAS [eIu0ZIIOY sueow-y 9] cTAGT
go_wwmﬂomwww M NWMM M o 0 I< SnomIEA [e3u0ZIIoH sugow-3 [cLl €1rdd
Surreys 101005 z< 1< 1SOUOY-TWAS Krenqry sueQW-y [#8] 0TSINN
Surreys j0109S 9ANIPPY 0 e < 1SQUOY-TWAS [EOTIOA sueoW-%y [T€] soSsda
Hnatto tonBITEAd 508X 0 1< 1SQUOY-TIAY Kreniqry suedwW-y 841 o13IS
SoIRYS WOpURY . :
1onpoid Ie[eos 9Inddg
wondA1ous 1a1y[red 0 [4 1SoUOY-TWag Areniqry sueow-y [r1] LoOd
JINOIIO UOTBN[BAD S,0BX
O — 0 [4 1souoy-Tweg Areniqry sugow-3 (Sl somr
1INOIIO UOTJBN[BAD S, 08X
vondA1ous 101][1eq 0 ¢ < Isauoy-Tis§ [eOTHPA SueaW- [S8] €00A
zujz Sunndwod 10y j000301d ' | |SOUOY-TTOG B el 5] 00SY
UONIBN[BAD JINJIID SNOIAIQQ) . :
nonauy SutzIopuLy 0 [4 1SUOY-TWRS | [BIUOZLIOH edil [091 00dT
JIofsuer) SNOIAI[QO : .
[opowt [opowt wLIose
sanbruyo9) oyderdord£Lin pnorD | sanaed A11moag uonnied pauroddng 1deg

s1090301d Sururw eyep Jurardsaid-Loeand Sunsixo jo uosuedwo)) 11 9[qeL,

CHAPTER 1. INTRODUCTION 13

1.4 Fluid MPC

Secure multi-party computation (MPC) represents a transformative approach in the realm of
privacy-preserving data analysis, allowing multiple parties to jointly compute a function based
on their inputs while safeguarding their privacy. Within a MPC protocol, the sole information
disclosed about the inputs is that which is deducible from the output of the function. This tech-
nology is applicable in various scenarios, such as secure data aggregation, confidential training

or evaluation of machine learning models, and threshold cryptography.

The core principle of MPC is to allow computation over distributed data without compro-
mising the privacy of each party’s data. This makes it invaluable in situations where sharing
raw data is either impractical or forbidden due to privacy concerns. In healthcare, for instance,
MPC can enable hospitals to collaborate on patient data for research without violating confi-
dentiality agreements. In finance, it allows for secure risk analysis and fraud detection across

multiple institutions without exposing sensitive information.

Traditional MPC protocols assume a fixed group of participants throughout the computation,
which limits their applicability in dynamic, real-world scenarios. This static approach struggles
to accommodate situations where participants’ availability may change, such as long-running
computations or collaborative tasks across distributed networks. To overcome these challenges,
Fluid MPC was introduced with a clear motivation: to provide a flexible framework where par-
ticipants can seamlessly join or leave the computation process without disrupting its integrity.
This adaptability makes Fluid MPC particularly suited for environments requiring robustness
against participant churn, such as large-scale collaborative computations, decentralized appli-

cations, and cloud-based services.

Despite the advantages, these fluid models come with their own set of challenges, primarily
concerning increased overheads in communication and computation. In models with maximum

fluidity, every change in the participants’ roster can necessitate additional rounds of communi-

CHAPTER 1. INTRODUCTION 14

cation and recalculations, potentially leading to inefficiencies. This trade-off between flexibility
and overhead is a crucial consideration in the practical application of these protocols. Balancing
these aspects is key to optimizing MPC for real-world use, ensuring that it remains both flexible

and efficient.

1.4.1 Related Work

Over the last decade, Multi-party Computation (MPC) has evolved from being predominantly
theoretical to a practical tool, enabling a group of participants to collaboratively compute a func-
tion using their private inputs while maintaining confidentiality. This transformation is largely
attributed to the emergence of compilers that convert high-level programming into secure oper-
ations like branching, addition, and multiplication on confidential data [30,37]. Compilers such
as Sharemind [|12], the architecture proposed by Keller et al. [50], ABY [27], and Obliv-C [91]

have played a pivotal role in this advancement.

Arithmetic circuits, either operating over integers or modulo p, are preferred in a multitude
of applications for their simplicity in representation compared to binary circuit-based bitwise
operations. This preference is particularly noticeable in applications like linear programming
for satellite collision analysis, where fixed and floating-point computations are extensively uti-
lized [24,47]. Recent research has also explored reducing storage requirements in sequential
computations across different MPC frameworks, incorporating symmetric key algorithms rep-

resented as arithmetic circuits [41],77].

In implementing MPC, one has to choose between two primary approaches: the use of
garbled circuits [42,[76,86] or secret sharing techniques [[10,25,26]. This paper focuses on the
latter, especially given its aptness for evaluating arithmetic circuits, although recent theoretical
advances in garbled circuits modulo p by Ball et al. [7] are noteworthy. Our objective is to

explore secure computations in a scalable system with numerous participants, ensuring robust

CHAPTER 1. INTRODUCTION 15

protection against malicious entities, using the SPDZ protocol.

Recent advancements in MPC have seen the development of more practical approaches,
notably Fluid MPC [7] and YOSO [38]. These innovative models introduce protocols that
accommodate a fluidly changing group of participants. They allow parties to freely join or exit
the computational process without disrupting ongoing protocols. This flexibility is particularly
advantageous for extensive, prolonged computational tasks, such as intricate scientific research
akin to Folding@home projects. In scenarios of maximal fluidity, this concept is taken to an
extreme, allowing each participant to be involved for only a single round, thus maximizing the

adaptability of potential contributors.

The YOSO (you only speak once) approach [38] extends this idea of maximally fluid MPC
protocols, introducing unique variations in its model. It diverges from Fluid MPC by examining
how roles are assigned within the protocol. Their solution utilizes blockchain technology for
the random selection of a committee for each round. In this system, a committee member’s
identity remains undisclosed until their contribution has been made, significantly enhancing
security by keeping the participants’ identities concealed from potential adversaries until their

role is complete.

These methodologies both provide information-theoretically secure protocols in an honest
majority environment, wherein a majority of participants in any given round are presumed hon-
est. Fluid MPC is engineered to safeguard against abrupt terminations, effectively thwarting
attempts by malicious parties to end the protocol prematurely. In contrast, YOSO provides a
more robust assurance of guaranteed output delivery, although this heightened security comes

with a trade-off in terms of reduced efficiency.

In contrast, the study by Rachuri et al. [74] explores MPC in environments with a dishonest
majority. This approach demands only one honest participant per round, offering a more robust

security framework, albeit with greater complexity than the honest majority scenario. We will

CHAPTER 1. INTRODUCTION 16

further discuss our contributions and provide some technical insights in the following sections.

1.5 Connections Between the Three Components

This paper presents a cohesive framework that addresses various challenges in privacy-preserving
computation through three interconnected components. Each component builds upon the others

to provide a comprehensive solution for secure and efficient computation in diverse scenarios.

First, we introduce a secure electronic voting system tailored for small-scale use cases where
strong verifiability is a critical requirement. In such scenarios, it is essential to ensure that every
vote is counted correctly while preserving voter anonymity and protecting against tampering.
By leveraging cryptographic techniques such as blind signatures and utilizing blockchain as a
trusted public bulletin board, the proposed system provides robust guarantees of transparency
and integrity. This solution is particularly suitable for applications where the correctness of each

individual transaction is paramount, such as board elections or small-scale community voting.

Second, moving to large-scale applications, such as national elections or large-scale sur-
veys, statistical analysis becomes crucial. We focus on the privacy-preserving computation of
k-means clustering for analyzing aggregated voting data. In these cases, data from multiple
parties must be processed collectively to extract meaningful patterns while ensuring that sensi-
tive information remains confidential. To address this, we propose a secure k-means clustering
protocol that outsources the computational workload to a cloud server. The protocol is designed
for horizontally partitioned datasets and incorporates homomorphic encryption and secure mul-
tiparty computation (MPC) techniques to protect individual data while enabling collaborative
analysis. This component bridges the gap between data privacy and the computational demands

of large-scale systems.

However, outsourcing computation entirely to external servers introduces additional risks

CHAPTER 1. INTRODUCTION 17

and limitations. Third, we address two critical challenges of outsourced computation: (1) the
potential for malicious behavior by all outsourced servers, which could lead to protocol termi-
nation and privacy leakage, and (2) the possibility of computational resource shortages on the
servers, hindering efficient execution. To mitigate these issues, we enhance the existing Fluid
MPC protocol and propose an optimized Dynamic SPDZ protocol. This improved protocol
ensures robustness even in adversarial settings and adapts efficiently to resource constraints.
By reducing both computational and communication overheads, the Dynamic SPDZ protocol
achieves superior performance, making it well-suited for dynamic, resource-constrained, and

adversarial environments.

Together, these three components form a comprehensive framework addressing the key
challenges in privacy-preserving computation. The secure electronic voting system lays the
foundation for strong verifiability and transparency in small-scale use cases. The k-means
clustering protocol extends the framework to large-scale statistical analysis while preserving
data privacy. Finally, the Dynamic SPDZ protocol ensures the robustness and efficiency of
outsourced computation, providing a practical solution for dynamic and adversarial scenarios.
This integrated approach demonstrates how diverse privacy-preserving techniques can be com-

bined to solve real-world problems across different scales and applications.

Chapter 2

Preliminaries

In this section, we give a brief introduction to Ethereum, which is the first blockchain to sup-
port smart contracts, linkable ring signatures, and the threshold encryption system used in the
e-voting protocol. In addition, we also review homomorphic encryption, some related cryp-
tographic primitives, and the concept of a horizontal data partition. Finally, we introduce the

oblivious linear evaluation and universal composed secure model.

2.1 Blockchain and Ethereum

Blockchain is a revolutionary technology that has garnered widespread attention for its potential
to transform various industries. At its core, blockchain is a type of distributed ledger technology
(DLT) that records transactions in a secure, transparent, and immutable manner. It consists of a
series of data blocks, each containing a list of transactions. These blocks are linked and secured

using cryptographic principles, forming a chain.

The key features of blockchain include decentralization, transparency, and immutability.
Unlike traditional systems, where a single entity controls the database, a blockchain is decen-

tralized and maintained by a network of nodes (computers), with each node holding a copy of

18

CHAPTER 2. PRELIMINARIES 19

the ledger. This structure ensures transparency, as transactions on the blockchain are visible to
all participants, fostering trust in the system. Additionally, once recorded, the data in any given
block cannot be altered retroactively without altering all subsequent blocks, which requires the

consensus of the network majority.

In terms of operation, when a transaction occurs, it is broadcast to the network and validated
by nodes through a consensus process. Once a transaction is validated, it is grouped with other
transactions to create a new block of data for the ledger. This block is then added to the existing

blockchain in a way that is permanent and unchangeable.

Blockchain technology has applications across numerous fields, including finance (with
cryptocurrencies like Bitcoin and Ethereum being the most notable examples), supply chain
management, healthcare, and more. Its ability to provide secure, transparent, and efficient trans-
actions makes it a promising technology for the future. Ethereum is a state machine based on
orderly transactions. It depends on a distributed P2P computer network so that all the transac-

tions are broadcasted into the network. Ethereum features two distinct account types:

* Externally Owned Account: Controlled by a user through a public/secret key pair. The

user is responsible for initiating transactions within the network.

* Contract Account: Governed by the smart contract’s code. An externally owned account

deploys the smart contract onto the blockchain.

Each externally owned account is associated with a pair of keys: a secret key and its corre-
sponding public key. The secret key is employed for signing transactions, while the public key
is utilized to confirm the authenticity of the signature. In contrast, a contract account does not
have any private key. It stores the code of a smart contract that decides the flow of the ethers
in the account. Both accounts can store and spend a given number of Ethereum native tokens
called Ether. Ether is the token to pay for using network computing resources and transactions

inside the Ethereum network. The smart contract can’t execute code by itself. It must interact

CHAPTER 2. PRELIMINARIES 20

with an owned account to execute the function. Any externally owned accounts can send a

transaction to the contract address.

The structure of an Ethereum transaction is:

* From: A signature from an externally owned account address to authorize the transaction.

* To: The receiver’s address(externally owned account or contract address).

» Value: Amount of transfer ether.

» Data: Contract code used to create a new contract or execute instructions for the contract.

* Gas price: The price of each unit of gas.

 Total Gas: The maximum amount of gas that the user is willing to pay for the contract.

The Ethereum blockchain can be considered a state machine. Every change of state will cost
ether. Each block has a set of transactions. In particular, smart contracts are coding contracts
on the blockchain that automatically move digital assets according to predetermined rules. Par-
ticipants who do not trust each other are allowed to transact safely under the contract without

being affected by the third party.

Currently, each transaction in Ethereum must be mined into a block by the winner who wins
in the Proof-of-Work scheme [82]. This provides us with a decentralized computing environ-
ment. Ethereum offers a public bulletin board and an authenticated broadcast channel, both
essential for decentralized internet voting protocols to facilitate coordination among voters ef-
fectively. What’s more, almost all calculations made during the voting period are public and
can be written as smart contracts. Crucially, the security of the entire voting protocol’s execu-
tion is ensured by the blockchain’s consensus mechanism. This establishes a trusted computing

environment.

CHAPTER 2. PRELIMINARIES 21

2.2 Linkable Ring Signature

A linkable ring signature is a kind of digital signature that each signer could be anonymous,
and only a registered signer could create the signature. In 1991, Chaum and Heyst introduced
group signature [16]. A group is a set of users who have different pairs of public/secret keys.
In the group, there is a manager who manages all users in the group. For the group signature,
we need to trust the group manager. In order to solve this problem, Joseph, Victor, and Duncan
formalized a linkable ring signature, which produced a scheme without privacy revocation. The
linkable ring signature scheme satisfies three properties: (1) Anonymity: Anybody could not
know who generated the signature. (2) Linkability: Itis possible to identify when two signatures
are produced by the same signer. (3) Spontaneity: There is not a group manager who controls

some secret

The scheme being used takes the DLP and is provable under the random oracle model,
using a cryptographic hash function as a random function. We adapted this scheme for use over

elliptic curves by hashing it into an elliptic curve.

In our implementation, we assume that /7, is a finite cyclic group whose order is a prime
number g. E(F}) is an elliptic curve over the finite group F,. G is a base point of the curve
E(F,). lis the order of the base point G. Let H; be a cryptographic hash function that can map
a number into the finite cycle group F}. Let [be a cryptographic hash function that can map

an input to a point of an elliptic curve [44].

We assume there are n users in our group, and each user has their corresponding private key

sk; and their public key pk; = sk;G. L donates all public keys L = {pky, pks, ..., pk,}

Signature Generation: The user wants to sign message m € {0, 1}* with the secret key ;.

1. Compute M = Hy(L) and K = x;H.

CHAPTER 2. PRELIMINARIES 22

2. Choose random ¢ € Fj, and compute

Ujr1 = H1<L,K,m,CG, CH)

3.Forj=14¢+1,.,n,1,...,i — 1, choose random v; € [and compute

Ujr1 = H1<L, K,m,ij +pl€jUj,UjM + Uj)

4. Compute v; = ¢ — sk;u; mod ¢

The linkable ring signature is (uy, vq, ..., Uy, K)

Signature Verification: Any public checker checks sig(m) = (uq, vy, ..., v,, K). m donates

the message and L donates all public keys:
1. Compute M = H,(L)

2. Fori € [0,n] , compute:

a; = UiG + U;Y;

Ui+1 = Hl(La K,m, Oéi;ﬁi)

3. Check whether u; = Hy (L, K, m, o, B,). If yes, accept. Otherwise, reject.

Linkability: For the same public key list L, given two signature associating with L, sig(m;) =
(uy,v1, ..., 00, K) sig(m’) = (uy,vy,...,v,, K'). And m and m’ could be two different mes-

sages. Any public checker verifies whether K = K. If K = K, the two signatures on different

messages are generated by the same user. Otherwise, they are generated by different users.

CHAPTER 2. PRELIMINARIES 23

In a voting system, ring signatures play a crucial role in ensuring voter anonymity and
unlinkability. By allowing a voter to generate a signature that appears indistinguishable from
those of other members in a predefined group, ring signatures prevent the identification of the
actual signer. This guarantees that the identity of the voter cannot be traced back to their vote,

providing strong privacy without requiring a trusted third party for anonymity.

2.3 Threshold Encryption Without Trusted Third Party

In the threshold encryption system, every member of the encryption group shares a pair of
public/secret keys. The public key is known by all voters, while the secret key is separated
from all voters without a trusted third party. In addition, only when some of the voters(exceed
the threshold) cooperate can the secret key be restructured. In this section, we will mainly show

how to distribute the secret key without a trusted third party.

There are n numbers in a group { P;|i € [1,n]}, F), stands for the finite cycle group whose
order is p, and the generator of the group donates g. k is the number of threshold which means

the minimum numbers to upload their secret key.

1. P; chooses z; € F), at random and computes h; = g** The public key A is the sum of all

h;.
2. P, randomly choose a polynomial f;(c) € Z,(c) of degree at most £k — 1 and f;(0) = z;
fi(c) = fi+ firc+ o+ figac®!
P; computes F;; = g/ii for j = 0,..., k — 1 and publishes these values.

3. When everybody have published these k values, P; sends s;; = f;j secretly to P; for

7=1,..n

4. P, verifies the data s;; received from P;. To make sure whether it is consistent with the

CHAPTER 2. PRELIMINARIES 24
k=1

previously published values, P; computes that g*7 = > F7;, . If this fails, stop.
1=0

5. P, computes his share of = (donates s;) as the sum of all shares received before. Let f be
the following polynomial f(c) = fi(c) + ... + fu(c). By construction s; = f(i) and thus, s; is
a share of f(0) = x so that they could restructure the secret key x easily, which could be found

in [80].

Threshold encryption without a trusted third party ensures that sensitive operations, such
as decrypting a result, require the cooperation of multiple parties, thus distributing trust among
them. This approach eliminates the need for a single point of failure or reliance on a trusted
entity, enhancing the security and robustness of the system. In the context of secure computation
or voting, threshold encryption enables joint decryption only when a predefined number of

participants agree, safeguarding against both insider threats and external attacks.

2.4 Homomorphic Encryption

The homomorphic encryption we use is Paillier encryption [[71]], which is a probabilistic asym-

metric 3-tuple encryption algorithm denoted by Encp, = {K,E,D} .

o K(1%) — (pk, sk) :
(1) Choose two large prime numbers p and ¢ which satisfy that gcd(pq, (p—1)(¢g—1)) =
1.
(2) Calculaten =pgand A =lem(p — 1, — 1).
(3) Randomly choose an integer g € Z,,2.

(4) Check whether there exists u = (L(¢* modn?))~*modn where function L(;) =

(& — 1)/n. Then pk is (n, g) and sk is (A, p).

CHAPTER 2. PRELIMINARIES 25

o E(x,r)—c:

Select a random r € Z for the message x and the ciphertext is ¢ = ¢g°r™ mod n?.

° Dsk<0) — T

Decrypt the message by 2 = L(c*mod n?)y mod n.

In the case of no ambiguity, we remove the subscripts pk of £, and sk of Dg;. Then, the

additive homomorphic properties of Paillier encryption are:

Homomorphic encryption is a critical component of our secure k-means clustering proto-
col, enabling computations on encrypted data without revealing the underlying plaintext. This
ensures that the privacy of each party’s data is preserved throughout the clustering process.
Specifically, addition and multiplication operations on ciphertext are utilized to compute dis-
tances, compare values, and update centroids in a secure manner. By leveraging the additive
homomorphic property of Paillier encryption, our protocol guarantees data confidentiality while

maintaining the accuracy of the clustering results.

2.4.1 Basic Secure Computation Primitives

In this section, we review a group of cryptographic primitives that will be used or adapted as
toolkits [34] for the proposed protocol. Paillier’s public key pk will be known to the public, and

the corresponding secret key sk will only be known by P.

(1) Secure Multiplication (SM) Protocol (Protocol [I)):

CHAPTER 2. PRELIMINARIES 26

With inputs (E(x), E(y)), this protocol computes the output F(zy) for C with the help

of P. The public key is pk, and the secret key is sk generated by Paillier encryption.

Protocol 1: SM(E(z), E(y)) — E(zy)
Require: C has F(z) and E(y); P has sk
1. C:
(a) Pick any two different numbers r,, r, € Zy
()« — E2)E(ra).y E(y)E(r,)
c)Sendz ,y toP

(
2. P:
(
(

a) hy < D(x), hy < D(y), h < hyh, mod N, h' + E(h)
b) Send A’ to C
3. C:
(a) s < W E(z)N="v, s « sE(y)N "=
(b) BE(zy) < s E(ryr,)N 7!

(2) Secure Squared Euclidean Distance (SSED) Protocol (Protocol P):

Let X = (21, - ,z¢) and Y = (y1,--- ,ye) denote the two /-dimensional vectors, and
(X] = (E(x1), -+, E(x¢)) and [Y] = (E(y1), -+, E(ye)) denote the sets of the en-
crypted components of X and Y. C is with input ([X], [Y]), and P calculates the corre-
sponding encryption value of the squared Euclidean distance. At the end of the protocol,

the final output E(|X — Y|?) = [T-_, Ep((z; — v;)?) is known only to C.

Protocol 2: SSED([X],[Y]) = Ex(|X —Y|?)
Require: C has [X] and [Y]; P has sk
1. C:
for 1 <) < ¢ do: E(l’l — yz) = E(Q?JE(ZJI)N_I
2. Cand P:
for 1 <i < /do:
Call SM(E(z; — vi), E(x; — v;)) to compute E((x; — y;)?)
3. C:
Compute E(|X — Y[?) = [T, E((z; — v:)?)

(3) Secure Minimum out of 2 Numbers (SMIN,) Protocol (Protocol 3):

Letu € {0,1}* and v € {0, 1}* be two length-« bit strings, where u; and v; (1 < i <)
denote each bits of v and v, respectively. Therefore, we have 0 < u,v < 2% — 1. Let

[u] = (E(uy),- -, E(u,) and [v] = (E(v1), -, E(v,) represent that the encrypted bits

CHAPTER 2. PRELIMINARIES 27

of v and v, where (u1, u,) and (v1, v,) are the most and least significant bits of v and v,

respectively.

Protocol 3: SMINy([u], [v])) — [min(u,v)]
Require: C has [u| and [v], where 0 < u,v < 2% — 1; P has sk
1. C:
(a) Randomly choose the functionality F'
(b) for i = 1to o do: E(uv;) < SM(E(u;), E(v;))
if F': u > v then:
Wi + E(u)E(uv) V"4 Ty < E(v; —w)E(5); 7 € Zn
else
VVi — E(UZ')E(UiUi)N_l
I'; + E(UZ — UZ)E(fz),fZ € In
G; E’(UZ D Ui), H; + Hzrile;Tz €r Zy and Hy = E(O)

®; « E(-1)H;, L; + W;®[%; 7, € Zy
(¢) T« m (D), L' < mo(L)
(d) Send " and L' to P
2. P:
(
(

a) M; + D(L;), for1 <i<a
b) if 3 j such that M; = 1 then \ + 1
else A <0
(c) M <~ T} forl1 <i<a
(d) Send M and E,(\) to C
3.C.
(a) M = ' (M)
(b) for i = 1to [do: 6; « M;E(a)N~"
if F: v > v then E(min(u,v);) < E(u;)0;
else £ (min(u,v);) < E(v;)0;
(¢) According to F/(min(u,v);), C can get E(min(u,v))

(4) Secure Minimum out of k¥ Numbers (SMINy) Protocol (Protocol 4):

Let d; € {0,1}*(1 < i < k) denote a length-« bit pattern representing a distance,
where d; ; € {0,1},1 < j < o denotes a bit of d;. So, 0 < d; < 2% — 1. Let [d;] =
(E(d;n), -+, E(dia))(1 < i< k) denote the encrypted vector of the bits in d;. d; ; and
d; o, are the most and least significant bits of d;. C has k encrypted vectors ([dy], - - - , [dk])

and P has sk. At the end, no information is revealed to any party.

CHAPTER 2. PRELIMINARIES 28

Protocol 4: SMIN([d1],- -, [dk]) = [dimin]
Require: C has ([dy], - - [k]); P has sk
1. C: [d)] + [2],or1<z<knumek
2. Cand P:

(a) for i = 1to [log, k1:
for 1 <j < [™7]:
ifi=1
then: [d/2] 1] < SMIN ([d2j 15 [dlzj])’ [dlzj] <0
else [dm(] 1) € SMIN,([d. 2i(—1)+1)> [dlzz‘j—l])s [d;ij—l] <0
(b) num < [

3. C: Set [dyin] to [dll]

2.5 Horizontal Data Partition

We revisit the concept of horizontal data partitioning in the context of two-party computa-
tion. Consider two parties, P; and Py, each possessing a dataset, D, = {z1,22,...,Zn}
and D, = {y1,v2,...,Yyn} respectively. Each record z; = {z;1,%;2,...,2;¢} in D, and
Yi = {¥i1,Yi2, .., ¥} in D, represents an (-dimensional vector, where each dimension cor-

responds to an attribute value. It is important to note that the two datasets are disjoint.

The datasets are combined to form a joint dataset D = {x1,Z2, ..., ZTm,Y1,Y2, -, Yn}>
under the condition that the ¢ attributes in D, and D, are identical and follow the same sequence.
This unified dataset D is then used for data mining and analysis purposes. The partitioning of
D into D, and D, exemplifies horizontal data partitioning, characterized by dividing datasets

along the rows while retaining the same attribute set across partitions.

2.6 Secret Sharing

Secret-sharing schemes were initially introduced for threshold cases by Blakley and Shamir.
In these threshold schemes, the subsets capable of reconstructing the secret are precisely those
whose size meets or exceeds a specified minimum number, known as the threshold. The exten-

sion of secret-sharing schemes to accommodate general access structures was later developed

CHAPTER 2. PRELIMINARIES 29

and constructed by Ito, Saito, and Nishizeki. These general schemes allow for more complex
configurations of subsets to be designated as authorized for secret reconstruction beyond the

simple threshold-based criteria.

Secret-sharing schemes are pivotal tools in cryptographic protocols. These schemes are
characterized by the presence of a dealer, who possesses a secret, a group of n parties, and a
specified access structure, denoted as A, which is a collection of subsets of parties authorized to
access the secret. The objective of a secret-sharing scheme tailored for A is twofold: (1)Enable
any subset of parties within A to collaboratively reconstruct the secret using their respective
shares. (2)Ensure that any subset not included in A is unable to obtain any information about

the secret, thereby preserving its confidentiality.

Initially conceptualized for secure information storage, secret-sharing schemes have since
been extensively employed in various domains of cryptography and distributed computing, un-

derscoring their versatility and significance. In this paper, we define two kinds of secret sharing.

e Additive Shares: The notation [z] represents an additive share of a secret z among a
group of parties. It signifies that the secret x is decomposed into several parts, such that
x = 2' + 2% + ... + 2", where each 2° is a share held by party P;. In scenarios where
x 1s shared within a smaller subset of parties, denoted as P4, the share is specifically
represented as [2]74. This method of sharing ensures that each party only holds a fragment
of'the secret, and the full secret z can only be reconstructed when all or a sufficient number

of these shares are combined.

e Authenticated Shares (SPDZ Shares): The notation [z] is used for an authenticated share,
often referred to as a SPDZ share. This type of share extends beyond simple additive

sharing by including authentication information to verify the integrity and authenticity of

CHAPTER 2. PRELIMINARIES 30

the shares. A SPDZ share comprises a vector of additive shares represented as:

[2] = ([«], [a], [- z])

Here, [x] is the additive share of the secret, [«] is an additive share of a MAC key used
for authentication, and [« - z]) is an additive share of the product of the secret and the
MAC key. This structure enhances the security of the sharing scheme by enabling the

verification of shares without revealing the secret itself.

Secret sharing is a foundational technique in Fluid MPC, enabling secure and distributed
computation by dividing sensitive data into multiple shares. Each share reveals no information
individually but collectively reconstructs the secret. In Fluid MPC, secret sharing allows com-
putations to be performed collaboratively among parties without exposing their private inputs.
This approach ensures both data privacy and robustness against malicious participants, as com-
putations can proceed even if a subset of parties acts adversarially or becomes unavailable. The
use of secret sharing also facilitates dynamic resource allocation, improving the efficiency and

scalability of the protocol.

2.7 Oblivious Linear Evaluation

Oblivious Linear Evaluation (OLE) is a cryptographic building block that involves two distinct
parties: a sender and a receiver. In this primitive, the sender inputs an affine function f(z) =
a + bz defined over a finite field FF. The receiver, on the other hand, inputs an element w € F.

At the conclusion of the protocol, the receiver learns the value of f(w).

A key feature of OLE is that the sender remains completely unaware of the receiver’s input
w, and the receiver, in turn, gains no knowledge about the function f beyond the specific value

f(w). This characteristic makes OLE a generalization of the well-known Oblivious Transfer

CHAPTER 2. PRELIMINARIES 31

(OT) primitive, expanding its functionality in the domain of linear algebraic operations over

finite fields.

Functionality Fo g
Parameters: Finite field I,,, two party P; with input « and P; with input

Extend: On receiving (Extend, P;, Pj,) from P, and (Extend, P, P;, x) from P;
1. Sample K «+ F,, Compute M = -2 — K .

2. Output K to P; and M to P;.

Oblivious Linear Evaluation (OLE) plays a vital role in Fluid MPC by enabling secure and
efficient multiplication of private values. In the context of Fluid MPC, OLE allows two parties
to collaboratively compute linear operations on their secret-shared inputs without revealing the
actual values. This is particularly useful for constructing more complex functionalities, such as
matrix multiplications or polynomial evaluations, which are integral to many secure computa-
tion tasks. OLE reduces communication overhead and improves the overall efficiency of the

protocol, making it well-suited for dynamic and resource-constrained environments.

2.8 Universal Composed Security

2.8.1 The Basic Framework

The Universal Composability (UC) framework defines security by comparing what an adversary
can achieve in two different scenarios: a real-world protocol execution and an ideal process.
In the ideal process, parties simply submit their inputs to a trusted entity that runs the ideal
functionality and then receive their outputs directly from it, with no other interaction taking

place.

A protocol is said to be UC-secure if any attack in the real protocol execution (where no

CHAPTER 2. PRELIMINARIES 32

trusted party exists and the parties only interact with each other) does not provide the adversary
with more advantages than an attack in this ideal process. In other words, the behavior observed

in a real protocol execution should be ”emulatable” in the ideal process.

The term “emulation” here is defined specifically: it means that for every adversarial strat-
egy in the real protocol, there exists a simulator in the ideal model that can produce a computa-

tionally indistinguishable output from what the adversary sees in the real protocol.

This requirement for emulation ensures that a UC-secure protocol maintains its security
properties even when composed with other protocols, providing a strong guarantee of security
in complex and unpredictable real-world environments. UC security is thus a powerful concept
for designing and analyzing cryptographic protocols, ensuring they remain secure under a wide

range of conditions and compositions.

In the realm of cryptographic protocols, the standard model of computation includes not
only the parties executing the protocol but also an adversary A who controls communication
channels and can potentially corrupt parties. A crucial concept in this context is emulation. This
implies that for every adversary A targeting a real protocol execution, a corresponding ideal
process adversary or simulator S should exist. The actions of S in the ideal process should

yield outputs for the parties that are virtually indistinguishable from those in the real execution.

The Universal Composability (UC) framework builds upon this concept by introducing an
extra adversarial element, the environment Z. This environment is responsible for generating
inputs for all parties, capturing all outputs, and engaging in unlimited interaction with the adver-
sary during the computation. As the name suggests, Z symbolizes the external environment that

includes various concurrent protocol executions in addition to the specific protocol in question.

Under the UC framework, a protocol is considered to UC-realize a certain ideal functional-
ity F'if, for any real-life adversary A involved with the protocol, there exists an ideal-process

adversary S. This setup should be such that no environment Z can tell apart whether it is in-

CHAPTER 2. PRELIMINARIES 33

teracting with A and the protocol-running parties, or with S and the parties engaging with F'
in the ideal process. In essence, Z acts as an interactive distinguisher, attempting to difter-
entiate between a protocol execution and the ideal process that accesses F'. This framework
mandates that the ideal-process adversary (or simulator) S must interact with Z throughout the

computation without the possibility of rewinding Z.

Chapter 3

An E-voting System Based on Blockchain

In this chapter, we propose a decentralized e-voting system based on Ethereum. E-voting is an

important application of MPC. Specially, we make the following contributions.

» We have designed a decentralized voting protocol capable of resisting malicious activities
from voters during certain stages of the voting process. The implementation of this voting
scheme is realized through an Ethereum smart contract. This contract utilizes threshold

encryption and linkable ring signatures, operating without the need for a trusted third

party.

* The protocol ensures maximum privacy, guaranteeing that the results cannot be tallied
before the designated end time of the voting period. Additionally, the privacy of each
voter’s choice is impeccably protected, with the only exception being in the unlikely

event of a unanimous conspiracy among all other voters.

 The tallying process is autonomously executed by the smart contract, eliminating the
need for traditional election administrators and thereby reducing the risk of human error

or manipulation.

34

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 35

3.1 Voting Protocol Description

We present an implementation of the voting protocol over the Ethereum private network with
truffle and remix. The election administrator must set up the contract according to the voting
rules to the blockchain. Then, publish the codes and provide the contract address. Through
this method, all voters can compile the code and verify whether the published code and the
smart contract on the Blockchain are the same. The administrator should also publish the list of
eligible voters. We assume that each entity has its own Ethereum account to send transactions.
In addition, we do not need voters to register their Ethereum accounts, and voters can change
their Ethereum account during the voting period. All the data sent to the blockchain must be

together with signatures to make sure they are from eligible voters.

3.1.1 Voting Protocol Entities Description

The election system usually involves several entities. For the sake of simplicity, we consider

that each entity consists of only one individual, but note that both of them could be thresholded.

* Election administrator: Response for setting up the election; set up the smart contracts;
identify the eligible voters with their public keys; publish the list of voters’ public keys

and the list of candidates.

» Voter: The eligible voters who have a pair of private-secret keys.

The smart contract on blockchain is written in Ethereum’s Solidity language. The smart

contract has the following functions:

» Control the processing of the election

» Verify if the message is sent by an eligible voter

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 36

Election administrator Voter P;
% 1. Register %
S

& 6. Tally
N X

Figure 3.1: Voting stages description
+ Store the data of secret share
 Verify the signature (linkable ring signature) of the vote
* Reconstruct the secret key
* Encrypt the vote

* Tally the vote and publish the final result

3.1.2 Voting Protocol Description

There are six stages in our election (as we show in B.1)). The election administrator is the
designated owner of the smart contract. The duty of the administrator is to authenticate the
voters and set the list of eligible voters with their public keys to the smart contract. The contract
allows any users to send messages but only stores the data sent from eligible voters with their

signatures and casts votes with correct linkable ring signatures.

In our protocol, we assume that F}, is a finite cyclic group with the order of prime number
q. E(F,) is an elliptic curve over the finite group F;,. G is a base point of the curve E(F,). [is
the order of the base point G. Let H; be a cryptographic hash function that can map a number
into the finite cycle group F,. Let H; be a cryptographic hash function that can map an input

to a point of an elliptic curve [44]. Each stage of the election protocol is described below:

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 37

Register: Each voter P, (i € [1,n]) begins the registration process by generating a pair of
public and secret keys (pk;, sk;) using a given security parameter. The public key is computed
as pk; = sk;G, where G is a generator of the elliptic curve group or a corresponding parameter
in the cryptosystem. Once the key pair is generated, the voter P; securely transmits their public
key pk; to the election administrator. This ensures that the election administrator can identify

registered voters while maintaining the confidentiality of their private keys.

Setup: The election administrator initializes the voting process by performing several criti-
cal tasks. First, the administrator sends the complete list of all voters’ public keys to the smart
contract. This ensures that the contract can verify voters during the election. Additionally, the
administrator defines a series of timers to manage the progression of the election process as

follows:

* thegingeneration: Marks the start of the key generation process. The election administrator

sets up the Ethereum contract to initiate this phase at the specified time.

* ttinishgeneration: Specifies the deadline by which all voters must upload their key genera-

tion data.

* theginvote: Signals the Ethereum contract to allow the casting of votes starting from this

time.
* tfinishvote: Establishes the deadline for voters to submit their votes.

* theginreconstruction: Defines the time at which voters can begin uploading their secret shares

for threshold decryption.

* tfinishreconstruction: S€ts the final deadline for voters to complete uploading their secret

shares.

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 38

* tpupiish: Indicates the time by which the Ethereum contract must publish the final election

result.

The election administrator also specifies two key parameters for the threshold encryption

scheme:

* n: The total number of registered voters.

* {: The minimum number of secret shares required for threshold key reconstruction.

Once these setup processes are complete, the election administrator publicly announces the
address of the smart contract and any relevant election information. Additionally, the admin-
istrator may set a registration deposit d, which serves as a financial deterrent against malicious
behavior. This deposit can be forfeited as a penalty for voters who act dishonestly or fail to

comply with the protocol.

Key Generation: Each voter P, generates their key shares and distributes them securely as

follows:

1. Random Key Selection: Voter P; selects a random secret x; € Fj uniformly from the
field F, and computes their public key share g, = x;G, where G is a generator of the elliptic

curve group.

2. Polynomial Creation: To securely distribute x;, P; constructs a random polynomial

fi(z) € F,|#] of degree t — 1 such that f;(0) = z;. Specifically:

fi(z) = fio+ firz+---+ fi,t—lzt_la where f; o = ;.

3. Commitments to Coefficients: Voter P; computes the commitments F;; = f; ;G for

j = 0,...,t — 1. Each voter sends (F;;,,7) along with a signature generated using their

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 39

private key sk; to the blockchain via the smart contract.

4. Secret Share Distribution: Once all F; ; values are uploaded to the blockchain, P; cal-
culates the secret shares s} ; = fi(j) for j = 1,...,n, representing the evaluation of f;(z) at
each voter index. These shares are encrypted using the public key pk; of the recipient voter P;,

resulting in s; ;. P; then sends (s; ;, ¢, j) with their signature to the blockchain.

5. Decryption and Publication: Each voter P; can decrypt their received shares s;; for
J € [1,n] and reconstruct their portion of the secret. All commitments F; ; are published on the

blockchain for transparency.

6. Smart Contract Verification: - The smart contract verifies the signatures of F; ; and s; ;
using pk;. - If any signature fails verification, the smart contract broadcasts an error. - Upon

successful verification, all F; ; and s; ; values are published.

7. Public Key Computation: The global public key is computed as:

g = Z E,Oa
=1

which is publicly available. However, the corresponding secret key =) ., z; remains

unknown unless all participants collaborate.

This process ensures secure distribution and verification of the key shares while maintain-

ing the privacy and integrity of the key generation process.

Vote: Each voter P; computes their vote V; based on their choice and the predefined coding
rules. The vote V; is then encrypted using the global public key g, producing the encrypted vote
V;. Voter P; sends V; (the encryption result) along with a linkable ring signature, constructed

using the public key list L published in the smart contract on the blockchain.

The smart contract on the blockchain verifies the signatures of all votes to ensure two key

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 40

properties: 1. No voter casts more than one ballot (i.e., prevents double voting). 2. All votes

originate from eligible voters listed in the public key list.

By leveraging the linkable ring signature, the system ensures voter anonymity while main-

taining the integrity of the election process.

Subsecret Generation: Each voter P; obtains s;z by decrypting s; ; using their private key
sk;. Voter P; verifies the consistency of s;z for j € [1, n] with the published values on the smart

contract by checking the following equation:

t—1
’ -l
Sj,z"G:ZFjJ'“
1=0
where G is the generator of the elliptic curve group and F}; are the commitments to the coeffi-

cients of the polynomial provided by P;.

After successful verification, P, computes their share of the secret x, denoted as s;, by

summing up all verified s, for j € [1,n]:

This process ensures that each voter correctly reconstructs their individual share of the

global secret while maintaining consistency and correctness of the distributed secrets.

Secret Upload: Each voter P, uploads their share s; along with their identifier ¢ to the smart

contract, signing the submission using their private key sk;.

The smart contract verifies the signatures to ensure the authenticity of the submitted shares.

Once ¢ valid shares s; are received, the smart contract reconstructs the global secret key = using

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 41

the threshold encryption system. The reconstruction is performed as follows:

where [is the modulus, and s; are the received shares.

This process ensures that the secret can be reconstructed securely using the threshold ¢,

without requiring all n shares, thus preserving the robustness and fault tolerance of the system.

Tally: The smart contract uses the reconstructed secret key = to decrypt all encrypted votes,
obtaining the real votes while preserving their anonymity. After decrypting, the smart con-
tract tallies the votes to calculate the final result R. The final result is then published on the

blockchain, ensuring transparency and verifiability.

3.2 Voting Protocol Analysis

3.2.1 Correctness and Security Analysis

We will discuss the protocol in the following aspects as mentioned in [36]:

* Correctness: The smart contracts deployed on the Ethereum network provide a decen-
tralized and tamper-proof computing environment, ensuring that the final result is com-

puted correctly without the possibility of alteration.

* Robustness: In our protocol, semi-honest voters cannot disrupt the voting process. Even
if some malicious voters fail to upload their secret shares during the secret upload phase,
the final result will still be computed correctly due to the threshold encryption scheme.
Transactions with incorrect signatures or invalid linkable ring signatures are automati-

cally rejected by the smart contract, further ensuring the protocol’s robustness.

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 42

* Privacy: Each vote sent to the blockchain is accompanied by a signature generated using
a private key, with the corresponding public key already registered. The use of linkable
ring signatures ensures that no entity, including voters, candidates, or the election admin-
istrator, can identify the origin of a signature with a probability greater than 1/n, where

n is the total number of voters. This guarantees strong voter anonymity.

* Double-voting Avoidance: The linkable ring signature mechanism allows the smart con-
tract to detect and prevent double voting. Legal signature features are stored on the
blockchain, and any new signature is verified against the stored features to ensure it has

not been used before. As a result, each eligible voter can cast their vote only once.

* Validity: All eligible voters must register their public keys with the election administrator
and securely keep their private keys. Messages sent to the smart contract must be signed
with the private keys, and no valid signature can be generated without knowledge of the

corresponding private key. This ensures that all submitted ballots are valid.

 Fairness: Votes stored on the public ledger remain encrypted and are only decrypted
during the tally phase by the smart contract. This ensures that no one, including voters and
administrators, can access the results before the voting process is complete. Intermediate

results cannot be inferred, preventing any undue influence on the ongoing voting process.

* Verifiability: Anyone with access to the address of the voting smart contract can verify
that all ballots are counted correctly. Additionally, voters can check if their votes have

been successfully cast by verifying the presence of their ballots in the smart contract.

In order to show the security of our protocol, we will discuss two typical attacks.

* Man-in-middle Attacks: All messages sent by voters are signed by private key. The
correctness of messages is guaranteed by the signature algorithm. In this way, all mes-

sages could not be forged or tampered with. In addition, all public keys are recorded

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 43

on the blockchain so that attackers cannot replace the public key to achieve the goal of

attacking.

* Dos Attacks: In our system, the attacker could not have the ability to destroy all nodes
of the blockchain network. So, our protocol could resist the Dos attack. If the network
service is provided in a relatively centralized manner, a DoS attack is feasible. In addi-
tion, the server’s ability to handle large numbers of requests is relatively limited. Dis-
tributing services on different nodes is one of the solutions for DoS attacks because it is
almost impossible for an attacker to destroy all servers. The underlying framework of the

blockchain adopted by this solution can ensure that the system resists DOS attacks.

3.2.2 Decentralized and Trustless Analysis

The voting system proposed in this paper is a decentralized voting system, mainly reflected in

two ways:

(1) The voting program in this paper is set up as a smart contract, and the smart contract
is carried on the blockchain network. The blockchain network interacts with a peer-to-peer
network. Therefore, the system proposed in this paper is a decentralized and trustless voting

system. This is why all programs deployed on the blockchain become distributed applications

(Dapps).

(2) In this voting protocol, there is no central role. The central role is that of the person who
plays a vital role in the election process. If the role maliciously destroys the voting, the entire
voting result will be tampered with. For example, in some election agreements, the election
administrator performs crucial operations in the voting process! Isuch as decrypting the voting
result. However, there is no such role in the protocol of this paper, and the trust in the protocol
is dispersed to all voters. Therefore, from this perspective, the agreement on this topic is a

decentralized and trustless voting system.

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 44

3.2.3 Time Cost Analysis

The implementation of each function in the protocol is written in Python. To evaluate the com-
putational performance, we tested the program on a MacBook Pro running macOS 10.13.6. The
machine is equipped with an Intel Core 15 processor (4 cores, 2.9 GHz) and 8§GB DDR3 RAM.

All measurements are recorded in milliseconds for accuracy.

To analyze the scalability of the protocol, we conducted tests with varying numbers of vot-
ers, setting n = 10, 20, 30,40. Here, n represents the total number of voters, and ¢ = 0.7n
indicates the threshold of voters required to correctly upload their secrets. This ensures that
even with some malicious or offline voters, the protocol remains robust if ¢ voters participate

honestly.

For n = 30, Table III provides the average computation time for each operation per voter.
The operations include key generation, polynomial computation, signature generation, verifi-
cation of other voters’ shares, subsecret reconstruction, and ballot creation.

Table 3.1: Average running time for each operation (n = 30)

Operation Description Time (ms)

A: Generate public/private key pair 36.19

B: Compute F; ;, f;(j) with signature | 4,900.23

C: Verify f;(j) from other voters 0.23
D: Compute global public key 4.01
E: Reconstruct subsecret 0.08
F: Create ballot with signature 558.08

To investigate how the computation time scales with the number of voters, we measured the
running time for different operations at n = 10, 20, 30, 40. These results are visualized in Figure

3, where the x-axis represents the number of voters, and the y-axis shows the computation time

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 45

(in milliseconds) on a logarithmic scale.

10° | [— T - P :
—o— A: Key Generation
o —a— B: Polynomial Computation
é O ¢ ¢ ¢ 7" —o— C: Verification
qé 10 */y/_/*//* —— D: Compute Public Key
= —— E: Subsecret Reconstruction
‘/./_/0/—/" -e- F: Ballot Creation
10_1 n ?/’///g/—ﬁ
|

| | | |
0O 5 10 15 20 25 30 35 40
n: number of voters (t = 0.7n)

Figure 3.2: Running time of different operations across voter counts

From Figure 3, it is evident that the computation times for most operations, such as key gen-
eration (A) and ballot creation (F), remain constant as the number of voters increases. This indi-
cates these operations are independent of n. In contrast, operations such as polynomial compu-
tation (B) and global public key computation (D) scale linearly with n, as they involve data from
all voters. Verification (C) and subsecret reconstruction (E) are computationally lightweight,

even with increasing n, highlighting their efficiency.

Overall, the execution times for all operations remain within acceptable levels, ranging from
milliseconds to a few seconds. This ensures the protocol is practical and efficient, even for

moderately sized elections, and provides a seamless voting experience for all participants.

3.3 Voting Protocol Comparison

In this section, we compare our protocol with other protocols based on smart contracts.

In protocol II (McCorry [66]), if any voter behaves maliciously during the voting process,
the entire election can be disrupted, and the votes cannot be tallied correctly. In contrast, proto-

col I (our protocol) is robust against malicious voters. Any malicious behavior can be detected,

CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 46

Table 3.2: Protocol comparison

Protocol Handles Malicious Voters | Self-Tally | Requires Whitelist | Rounds
I: Our protocol Yes Yes No 3
II: McCorry [66] No (Destroyed) Yes Yes 2
III: Yu [90] Yes No Yes 1

and such voters can be excluded from the protocol. Moreover, during the key generation phase,
even if some voters act maliciously, as long as there are enough honest voters (exceeding the
threshold set by the election administrator) who upload their subsecrets, the protocol can still

produce a correct final result.

Another distinction lies in the tallying process. In protocol I, the tallying is performed au-
tonomously by the smart contract, ensuring decentralization and removing reliance on a single
party. In protocol III (Yu [90]), however, the tallying process is handled by an election admin-

istrator. If the administrator fails to act, the entire voting process will be compromised.

Protocol I also eliminates the need for a whitelist containing all eligible Ethereum addresses.
Instead, the protocol uses signatures to verify voter identities, allowing voters to change their
Ethereum addresses during the voting process, which enhances voter privacy. This functionality

is a key advantage over protocols like I and III, which rely on fixed whitelists.

However, protocol I involves three communication rounds, making it slightly more complex
than the other protocols. Despite this, it provides stronger privacy protections compared to the

alternatives.

Chapter 4

Two-party k-means Clustering Protocol

In this chapter, we present an efficient two-party privacy-preserving collaborative k-means clus-

tering protocol with the following properties.

 Each party’s database is stored in its encrypted form in the cloud.

* The k-means clustering protocol needs to work on the combined set of records of both

parties (i.e., the overall dataset is horizontally partitioned to the two parties).

» The encrypted clustering result is sent to each party for decryption so as to keep it private

from the cloud or any other party.

To achieve the above properties, the underlying encryption algorithm has to support some
specific operations, including distance computation, distance comparison, and centroids re-
computation on encrypted data. In this paper, we use Paillier encryption as the underlying

encryption algorithm and extend it to support various operations.

47

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 48

4.1 Protocol Description

The high-level idea is as follows. For distance computation, we consider Euclidean distance.
We require that both addition and multiplication operations are performed on ciphertext, and
the result is also encrypted. However, Paillier encryption only supports additive homomorphic
operation, i.e. F(z)E(y) = E(xz + y). We adopt the Secure Multiplication (SM) protocol
introduced in [34] to output E(xy), with one-round interaction with the corresponding secret
key owner, given input of E(z) and E(y). Then E((z — y)?) can be computed by running S M

with input F(x — y) and E(x — y), where E(z —y) = E(z)E(y)V L.

For distance comparison, it requires order-preserving encryption. Paillier encryption is ob-
viously not appropriate. The idea is to compare two distance values bit by bit, from the most

significant bit to the least one in encrypted form.

For centroid re-computation, we can deduce it to a protocol with input z; by Py, x5 by P,
x3 by C to output %:2 to both P; and P, but not C. According to the protocol introduced
in [[75] with the same input as the proposed protocol’s, output % to Py, P, and C. We then
set up a garbled circuit to compute % and regard SHA256 as the commit method to meet

the requirement.

In addition to the functionalities discussed above, efficiency is another important aspect.
First of all, the encryption algorithm used for each data owner should not be complicated. The
corresponding encrypted data size should be as small as possible. Then, to cluster the encrypted
data, both the total number of interactions among P, Py and C, and the computation executed
on Py, Py and C should be as little as possible. Lastly, the communication payload (the data
transferred among Py, Py and C) should be low, although this may not be as important as other

concerns.

In the design, each party executes Paillier encryption once. The total number of interactions

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 49

is bounded by O((m + n)k), where m and n are the total numbers of records provided by Py

and P,, respectively, for each iteration in k-means clustering. In the step of k centroids re-

computation, we choose to use the garbled circuit to achieve the computation of % Once
3

the corresponding garbled circuit is built, the computation is very fast.

4.1.1 Framework and Notation

The framework is illustrated in Figure #.1. P has secret key sk; and P, has secret key sk,. Each
has a dataset, D, and D,, respectively. D, has m data points and D, has n data points. Every
data point is a /-dimensional vector. In other words, every data point has ¢ attributes. (1) To
outsource the storage while guaranteeing privacy, D, and D, are encrypted by pk; and pks, and
uploaded to C by P; and P», respectively. (2) C randomly chooses k centroids M for £ clusters.
(3) C computes distances between each centroid and each record in D, and D,, with the help
of P, and P,. (4) By distance comparison, all records can be clustered to the nearest centroid.
(5) C, Py and P, jointly re-compute the new set of k£ centroids. Note that the k centroids are
known only to P; and P,. Once the distances of the new k centroids to the previous & centroids
are all within a threshold value vector 7 = {7.|1 < ¢ < k}, P; and P, will request C for the
clustering records for decryption. Then the protocol ends. Otherwise, P; and P, encrypt the
new k centroids by their public keys and upload the ciphertext to C, respectively. Then P; and

P5 ask C to compute distances again.

We allow the dataset D to be horizontal partitioned between P, and P5, each of which has
D, and D,. If not explicitly specified, the Euclidean distance is used in our k-means clustering
algorithm. Only numerical data is supported. The threshold value vector to end our protocol 7
should be fine-tuned according to the applications. Paillier Encryption is used to encrypt data.

(pk1, skq) and (pks, sko) are Py and Py’s public and secret key pairs generated by K.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 50

Cloud C

Step 5 re-compute k centroids

P1 P2

Figure 4.1: Framework of privacy-preserving collaborative k-means clustering protocol

4.1.2 Two-party k-means Collaborative Clustering Protocol

k-means clustering algorithm is a classical clustering algorithm based on distance. To support
clustering under our setting, we extend it to collaborative clustering here. Denote the training
data of the two parties, P; and Py, by {x; € N*|1 < i < ¢} and {y; € N¥|1 < i < (}. The
algorithm is illustrated in Protocol fj. We shall focus on how to execute the computations, such

as multiplication, addition, comparison, etc., in ciphertext mode.

Protocol 5: Two-party k-means collaborative clustering algorithm

1. P, and P, share k centroids M = {u. € N*|1 < ¢ < k} randomly selected.
2. Repeat the following algorithm to converge {
Foreachi € {1,---,(}, compute argmin,||z; — u.||?,1 < ¢ < k,
C* = C%|J{x;} which records all x;’s that has the nearest distance to /..
Similarly compute argmin_||y; — pc||*, 1 < ¢ < k, and CY = CY J{v: }

For every cluster ¢, recompute the new centroid f, := %, where
SUMyG = Y Ti, SUMy =y Y,
ziGCacc yiECi’
|C%| and |CY| denote the numbers of z;’s and y;’s in C¥ and CY. }
* || - || denotes the Euclidean distance.

* The condition to converge is that C% and C? keep fixed.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 51

4.1.3 Secure Garbled Circuit Protocol Supporting Z-t%2

m
L3

We symbolize the three parties in the protocol by Py, Py and C, their respective inputs by 1,
x9 or x5 and their collective output by y. They collaborate to compute the following function
securely, y = f (1,22, 2%) = %:2 To simplify the problem, we assume that |z;| = |y| = m.
In the following, we target the following: P; and P; can learn the same output y while C cannot
get the output y with these garbled values. This protocol uses a scheme of garbling, a four-
tuple algorithm § = (Gb, En, De, Ev), as the underlying algorithm. Gb is a randomized garbling
algorithm that performs the transformation. En and De are encoding and decoding algorithms,
respectively. Ev is the algorithm that derives garbled output on the basis of garbled input and

garbled circuit.

We firstly transform division to multiplication. We use the SHA256 hash function as the
commit method. f' is the function of %2 which a, b, ¢ and d are all 32 bits and the result is 65
bits. We also set up a garble circuit F' by using AND/NOT/OR/XOR gates whose total number

is 12,470. The details of the protocol are described in Protocol .

4.1.4 Details of the Privacy-preserving Collaborative k-means Clustering

Protocol

In this section, we present the detailed steps of the proposed privacy-preserving collaborative

k-means clustering protocol.

Step 1 P, and P, upload encrypted data

P; and P, encrypt their data D, and D, to C, and C,, and upload to the cloud C, re-

spectively.

Cp = {0, |1 < i <m}, where Gy, = {Cy

= By, (35)[1 < j < 0}

C, ={C,,|1 <i<n},where C), = {Cy,. = Ep,(v;;)|1 < j <}

Yij

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 52

Protocol 6: SC(x1, 29, 25) — y

Require: In our experiment, we calculate 2522 which Py has x4, P; has 25 and C has z3. We
3

use SH256 as the commit method. f is the function of %Z which a, b, c and d are all of 32
bits and the result is of 128 bits.
1. C:

(a) Sampling a common random string, can also be expressed as c¢rs for the commitment
scheme and randomly secret-shares his input x5 as x5 = 23 @ x4.

(b) Send x3 to P; and x4 to Py and broadcast common random string b to both parties.
2. Pll

Choose random pseudo-random function seed r < {0, 1}" and send it to P;.
3. P; and Py:

(a) Garble the function f* via Gb(lA,) = (F,e,d) where F is the garble circuit, ¢ is
the encoding array and d is the decoding array.

(b) For j € [0,128], a € {0, 1}. generate the following commitments:

o = e[, bl7] @ al, Cf = hash(a;)

(¢) Both Py and P; send the following values to C:

(b[65...128], F, {C})
4. C:
Abort if P; and P, report different values for these items.
5. P; and Ps: o
(a) Py sends de-commitment o;-“b o] and o

z2[j]®b[m+j
m-+j

x3[j]P®b[2m+j
s
z4[j]Bb[3m+]] to C

]
and o3,

(b) Py sends de-commitment o
6. C:

(a) For j € [128], compute C¢" = hash(c?), check C¢" = C¢, for the appropriate o[j]. If
not, then abort. Similarly, C knows the values b[2m + 1, - - - ,4m/, and aborts if P; or Py did
not open the “expected” commitments o>-U 2 H] gpd 2 UIOMBmEI] oo responding to the

2m-+j 3m+j
garbled encodings of x3 and x4

(b) Run' Y <— Ev(F, X) and broadcast Y to P; and P
7. P; and Py:

Compute y = De(d,Y). If y # L, then output y. Otherwise, abort

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 53

Step 2

Step 3

Step 4

Cloud C randomly chooses k centroids for k clusters

C randomly chooses the set of & centroids ® = {u.|1 < ¢ < k}, where each p, =
{uc;|1 < 5 < £}. Encrypt it using Py and Py’s public keys, pk; and pk,, respectively,

and store as C’; and CEL.

CL={C,.N <c<k},where C) ={C, = Ey, (e;)]1 <j < (3}

cj

Cr={C} |1 <c<k},where C} = {C2 = Ep,(1c;)|1 < j <}

cj
C’; and C’ﬁ are sent to P, and Py, respectively. After decryption, @ is stored by P; and

P,, respectively, for comparison use later in Step 5.

Cloud C computes distances

C computes all encrypted distances between each record C,, and each centroid C' ;C, and
distances between each record C), and Cﬁc, as follows.

CD' ={CD} = {cd;, = SSED(C,,, C,)1 < ¢ < k}|1 <i < m}

ic T

CD? = {CD} = {cd;, = SSED(C,,, C; |1 < ¢ < k}|1 <i < m}

ic T

Specifically, C and P; run SSED to compute the distance between each z; and p. in
encrypted form, denoted by cd},. Similarly, C and Py run SSED to compute the distance
between each y; and .. in encrypted form, denoted by cdZ. All distances from z; to s,

are stored in C'D}, and those from y; to s are stored in C' D?.

Cloud C clusters records to k clusters for P; and Py

By comparing the distances in C'D} and C' D?, x; and y; will be clustered to the cth cluster
if and only if cd}, and cd?, are the smallest distance in C' D} and C' D2, respectively. For
encrypted distance comparison, C runs SMIN,(C'D}) with P; and SMIN,(C'D?) with
Py, as follows. Then, C,, and C,, will be assigned to C'L! and C'L2, respectively. As a

result, each C'L] stores the encrypted data C,, whose distance to the cth centroid s, is

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 54

the shortest among all the k& centroids. In other words, z; belongs to the cth cluster. The

same as C'L2.

CL, = {CL! = {C,,|cd., = min(CD}) = SMIN,(CD)}|1 < ¢ < k}

CLy = {CL? = {C,,|cd% = min(CD?) = SMIN,(CD})}|1 < ¢ < k}

Step 5 Cloud C, P, and P jointly re-compute £ centroids

Now, C is required to find the new centroid within each cluster, given all the data in the
cluster. Note that there are two sub-clusters in each cluster C'L! and C'L? as the data in

those two sub-clusters are encrypted by different public keys pk, and pks. Therefore,

%,8.t.,Cqp ij 1,8.t., .
2isuc ;ecLl” I CyecL? Yii
|[CLE+ICLE|

the computation of ;/cj = in not straightforward. Our
idea is to send C'L! and C'L? to Py and P, for decryption first. Let L} and L? denote the

decrypted data in the cth cluster owned by P; and P,, respectively. Then we have

Then, Py, Py and C jointly run SC(Zi,S.t.,CZZ.eCLg Lij Zi,s.t.,CinCLg Yij

A|LL| + |L}|) to calculate each component of the c-th centroid //Cj. SC guarantees both
P, and P, can get all the new k centroids in plaintext. Let ® = {u.|l < ¢ < k},
where i, = {p;|1 < j < (}. Denote ® — & = {|p. — p1,]|1 < ¢ < k} the distance

set of the newly generated k centroids to the previous k centroids, where |, — j,| =

> imr (g = pegl):
Step 6 P, and P, decrypt C'L, and C'L, or go to Step 3.

Once |p. — pfc| < 7, for each ¢, P, and P, request C for the clustered records C'L; and

C L, for decryption, respectively. Then, the protocol ends. Otherwise, P; and P, encrypt

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 55

the new k centroids by their public keys and upload them to C. Then go to Step 3 and

iterate.

4.2 Protocol Security Analysis

4.2.1 Security Model

During the first 4 steps described in Section 3.4, P; and P, interact with C, respectively, with
no interactions between P; and Py, or among P, Py, and C. Note that P; and P, outsource
the encrypted distance computation and comparison to C. Since traditional Paillier encryption
cannot support the above two operations at the same time, help from P, and P; is required, which
introduces the extra interactions between P; and C, P, and C. Therefore, the security underlying
is essentially secure computation outsourcing. In a semi-honest model, the honest-but-curious
cloud will honestly execute the outsourced computation protocols while being motivated to

learn any information of P; and Py’s raw data or the computation result for financial gains.

In the last step, where F'(z1, x2, 2%) = % is required with each input z1, x5, x5 of Py, Py
and C, it is indeed a three-party secure computation. We adapt the model of 1-out-of-3 active

security where C is actively corrupted [67].

4.2.2 Security Analysis

As for Paillier encryption, we cannot decrypt the ciphertext without the private key. So, each
date owner encrypts the data they own. Both the cloud and any other party cannot decrypt it.
Due to the semantic security of the Paillier cryptosystem, one party’s input is protected from

the other party.

Here, the security of the scheme under the semi-honest model is verified mainly by attack

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 56

mode, and in the secure circuit protocol, even if either party is a malicious party, the scheme
is still safe. There are two main types of attacks: two-party attacks and attacks from the cloud

platform.

P, and P,’s data are encrypted with their own public keys and uploaded to the cloud server.
Even if they get the other party’s ciphertext, they still cannot get the plaintext through the ci-
phertext. Cloud platforms may have some background knowledge about the data, so a statistical
attack may be feasible. First, because Paillier is a non-deterministic encryption, even if it is the
same plaintext, the encrypted ciphertext is different. During the implementation of the protocol,
the data obtained by the cloud platform is in the form of a ciphertext, so the cloud cannot obtain

any information in the plaintext through the ciphertext.
We can prove the SC protocol is secure against one single malicious party as follows:

Assume that Py is corrupted (the case for P, is similar). The other two parties are honest. We
need to prove that all environments cannot be distinguished whether the protocol is executed
under actual conditions or in an ideal situation. The information available to the environment
consists mainly of two parts: the information sent by the malicious party and the final output
of the protocol based on the information it obtains. As long as the information obtained by the
environment cannot be used to distinguish the two conditions (actual and ideal), the environment
cannot be distinguished whether the protocol is executed under an actual condition or an ideal

condition.

The simulator takes the role as honest P, and C obtaining their inputs x5 and x3+ on their
behalf. Then the simulator sends a random value 7., and a random share r,, to Py; it can abort if
P, has changed the commitment; otherwise it extracts x; = 0@ b[1...m| and sends it to the ideal

functionality F. Itreceives y, and sends Y to P;. We can get the View?™, = {crs, z3,Y,y} and

real —

env

ViewSts, = {rers, Ty, Y, y}. Because crs and z3 are pseudorandom numbers and 7,.s and 7,

are random numbers, all environments cannot distinguish them with non-negligible probability.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 57

Next, we consider a corrupted C: The simulator takes the role as both honest P; and P5. It
extracts x5 = w3 @ x4 and sends it to Ff, obtaining the output y in return. Then it produces

a simulated garbled circuit/input(F, X') using y. We can get the View(), = {C7 bl o, y} and

real —

EeENnv

Viewgph, = {C}* il ., y}. Because o are pseudorandom numbers and r.,; and r, are random

numbers, all environments cannot distinguish them with non-negligible probability.

Therefore, the SC protocol is secure against a single malicious party.

4.3 Protocol Performance Analysis

The time consumption of the k-means clustering algorithm with privacy protection is mainly
divided into three parts: time consumption of the client, communication consumption, and time
consumption of the server, where the client and server time consumption include the time con-
sumption of the initialization phase and the protocol running phase. Because this paper is dif-
ferent from the method used in [65], it can only be compared from a macro perspective. The
comparison mainly includes two aspects: one is theoretical complexity analysis, including time
complexity, space complexity, and communication complexity, and the other is the compar-
ison of test results in experiments. The number of different iterations will affect the overall

performance of the experiment, so one iteration will be considered.

4.3.1 Theoretical Analysis

In the paper, we assume that cloud C has extensive computational power. Thus, the computa-
tional time used by C is not considered. Each data owner does not need to store the ciphertext;
they just encrypt the message with the public key and decrypt the ciphertext with the private

key.

Every iteration, data owners will provide some information and this information will be

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 58

Table 4.1: Time complexity comparison with [63]

this paper [65]
Encryption O(n*1) O(n 1)
Euclidean O(nx*kxl) O(nx*kxl)
distance
Minimum O(n*k*) O(n k)
distance
% O(dm x k *1) O(n)
* Euclidean distance and minimum distance correspond to SSED and SMIN,, respectively in
this paper.

Table 4.2: Space complexity comparison with [65]

this paper [65]
Encryption O(nx*1) O(lxn)
Euclidean O(nxkxl) O(nx*kxl)
distance
Minimum O(n k) O(n x k)
distance
% O(k *1) O(k *1)

computed in each iteration, and P, Py and C will recalculate the cluster. We assume that ¢ is the
times of iteration, n is the data size of P; and Py, [is the dimension of the data, « is the binary

bits of the data, m is the bits of the garbled circuit.

In each iteration, firstly, each data owner will execute SEED protocol and SMIN, protocol
with C. There are two interactions in SEED protocol and two interactions in SMIN, protocol.
Then, Py, P, and C will execute 6 times interactions in SC protocol. Finally, each data owner
will execute 1 times interactions when they upload new centroids to C. The time complexity

comparison with [65] is shown in Table BT

When P; and P, both upload the encrypted data to the cloud, two parties can delete the data
without storing the plaintext data or ciphertext data. They only need to store their public and
private keys. Cloud C needs to store all ciphertexts. For each data point, center point distance,
and round of iterative categorization, the cloud C needs the required storage space to record the

clustering results. The space complexity comparison with [65] is shown in Table E=2.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 59

Table 4.3: Communication complexity comparison with [65]

this paper [65]
Encryption O(1) O(1)
Euclidean O(nxlxk) O(1)
distance
Minimum O(n * k) O(k +n)
distance
%;2 O(k 1) O(1)

In the first step and the second step, P; and P upload their own data and the encrypted cluster
center to the cloud, respectively, which requires four iterations. The following is an analysis of
the communication complexity for each iteration. In the third step, P; and P, are respectively
executed in the secure distance calculation protocol with the cloud. In the fourth step, P, and P,
need to interact with each other when executing security comparison protocol with the cloud. In
the fifth step, Py, P, and cloud execute a secure circuit protocol that recalculates the clustering

center. The communication complexity comparison with [65] is shown in Table Z=3.

4.3.2 Experimental Analysis

The framework used by the k-means clustering algorithm with privacy protection proposed
in this paper was first proposed in the [65]. Compared with the clustering algorithms in other
frameworks, the clustering algorithm under the same framework can be easily compared. There-
fore, we mainly compare the protocol with the [65]. In order to ensure the reliability of the
experimental comparison, both schemes were run in the same experimental environment. The
evaluation criteria of the two schemes will be introduced below, and a comparative analysis of

the experimental results will be carried out.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL

Table 4.4: Time of encryption of the proposed protocol

data size 3-dimension(ms) | 7-dimension(ms)
500 1,730 4,227
1,000 3,603 8,330
2,000 7,504 16,287
5,000 17,690 35,917
10,000 34,929 80,543

Table 4.5: Time of encryption of paper [65]

data size 3-dimension(ms) | 7-dimension(ms)
500 2,391 5,084
1,000 4,587 11,468
2,000 9,413 21,487
5,000 20,657 43,186
10,000 40,894 87,461

60

4.3.3 Analysis of Results

In theory, the performance of the protocol is better than those in the literature in terms of time
complexity, space complexity and communication complexity [65]. Now, we want to verify
the results based on experiments. We first compare the encryption time consumption of the
two schemes. In the two encryption methods used in [65], all plaintext data must be encrypted
once by the improved Liu encryption scheme and once by Paillier encryption scheme. All the
plaintext data in this paper’s scheme only needs one Paillier encryption. In theory, the encryp-
tion time in the scheme in this paper should be faster than the literature [65]. And because
Paillier’s operation is on the group, there are many exponential operations, and the improved
Liu encryption scheme is linear, so most of the encryption time is consumed by Paillier encryp-
tion. Therefore, the encryption time consumption in this paper will be slightly less than the
encryption time consumption in [65], but there is no order of magnitude difference in time. The
experimental results provide strong support for this conclusion. The encryption time consump-
tion in [65] is shown in Table 3. The encryption time consumption of this paper is shown in

Table 4.

Next, we counted and compared the time spent in an iteration. In theory, the cloud platform

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 61

Table 4.6: Time comparison with [65] in one iteration

data size this paper(ms) [65](ms)
500 23,872 13,279
1,000 25,095 20,528
2,000 25,572 27,276
5,000 32,640 33,508
10,000 42,746 51,324

introduced in this paper has improved the powerful computing power and should be slightly
better than the operating efficiency in the literature [65]. Because the cloud platform is com-
posed of 30 PCs and one server, it is necessary to perform task division, task scheduling, and
data recovery for each machine during the processing of tasks. These operations also consume
part of the time. When there are more data points, the time of one iteration will be longer, and
the proportion of time consumed by operations such as task division will be lower. When the
point size is small, the efficiency of one iteration in [65] will be higher than that in this paper.
When the data point size is larger than a certain threshold, the efficiency of one iteration of this
paper will be higher than that of the literature [65]. In the solution, as the data scale becomes
larger and larger, the efficiency advantage of the scheme in this paper will become more and
more obvious. The experimental results are a good demonstration of the point of view. At the
same time, the experimental results show that the threshold of the data point size is about 5,000
data points. When the data size is larger than 7000, the paper has less time to consume in one
iteration. When the data size is less than 5,000, In the literature [65], the scheme consumes less

time in one iteration. The time-consuming pairs of the two schemes are shown in Table 8.

In one iteration, we are not only concerned with the time consumption in this iteration but
also hope that in each iteration, server C can take on more tasks and have a higher consumption
time ratio. As the size of the data increases, such programs will become more efficient. For
the client, the main thing to do is the encryption and decryption operations. In both operations,
the number of encryption and decryption of the client is basically the same. However, in the

[65] scheme, the ciphertext distance calculation and the ciphertext distance comparison size are

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL

Table 4.7: Time of each participant in one iteration of the proposed paper

data size C(ms) Py (ms) Py(ms)
500 20,923 385 354
1,000 23,296 747 691
2,000 24,381 1,501 1,328
5,000 24,639 3,564 3,276
10,000 31,618 6,301 6,247

Table 4.8: Time of each participant in one iteration of [65]

data size C(ms) P;(ms) Py(ms)
500 12,503 294 304
1,000 19,370 327 348
2,000 25,357 412 426
5,000 31,076 621 607
10,000 49,814 652 658

62

improved Liu encryption, all operations of the encryption are linear operations, and the scheme
in this paper adopts the Paillier encryption algorithm. The decryption of the algorithm requires
exponential and modular operations on the group. For clients with less computing power, the
improved Liu encryption algorithm should take less time than the Paillier encryption used in
this paper. Therefore, theoretically, under the same-scale data set, the time spent by the client
in the [65] will be lower than the time consumed by the client in the scheme of this paper. As
the size of the data increases, the time spent in one iteration of this paper is relatively small, and
the time consumed by the client is relatively large. Therefore, when the data size gets larger
and larger, the client time consumption in this paper scheme is more and more large, and the
occupation time of the server is relatively smaller. The time consumption of each participant in

one iteration of the two schemes is shown in Table E=4 and Table E=R.

Finally, the time of k-means clustering algorithm with privacy protection and the classic
k-means algorithm in one iteration is given. It can be seen that the time consumption caused by
encryption is relatively large. However, as the size of the data increases, the ratio of the time
consumption of an iteration to the classic k-means time consumption gets smaller and smaller.
The time spent on this paper and the classic £-means algorithm in one iteration is shown in

Table B-9. The decryption time consumption of this paper is shown in Table E—T0.

CHAPTER 4.

TWO-PARTY k-MEANS CLUSTERING PROTOCOL

Table 4.9: Time comparison in one iteration

data size encryption(ms) no encryption(ms)
500 23,872 7
1,000 25,095 7
2,000 25,572 9
5,000 32,640 24
10,000 42,746 50

Table 4.10: Time of decryption of the proposed protocol

data size 3-dimension(ms) | 7-dimension(ms)
500 93 111
1,000 149 278
2,000 169 294
5,000 352 760
10,000 629 1,443

4.4 Potential Applications

63

The proposed privacy-preserving k-means clustering protocol has significant potential for ap-

plications in various scenarios where sensitive data needs to be analyzed collaboratively without

compromising privacy. Some representative use cases include:

* Large-Scale Voting Statistics: In large-scale elections or surveys, analyzing voting pat-

terns or producing statistical results often requires collaboration among multiple regions

or organizations. Privacy-preserving clustering ensures that individual votes and sensi-

tive data remain confidential while enabling accurate statistical analysis.

* Healthcare and Medical Research: Hospitals and research institutions can collabo-

rate on analyzing patient records to identify disease patterns or classify patients into risk

groups without compromising the confidentiality of individual records.

* Financial Services: Banks and financial institutions can leverage the protocol to perform

collaborative analyses such as fraud detection, customer segmentation, and credit risk

assessment while maintaining data privacy.

CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 64

* Cross-Industry Collaboration: Organizations from different sectors, such as supply
chain management or smart city planning, can jointly analyze data without exposing pro-

prietary or personal information.

These examples demonstrate the versatility of the protocol in addressing privacy concerns
while enabling secure and meaningful collaboration. Further research can focus on adapting the

protocol to specific domain challenges and optimizing its efficiency in large-scale applications.

Chapter 5

Fluid MPC

In this chapter, we propose a fluid MPC protocol that supports dynamic participation. In this
work, we study MPC with dynamically evolving parties in the dishonest majority setting. This
gives much stronger security guarantees since we only require that in any given round of the
computation, there is at least one honest party taking part. However, it is also more challenging

than the honest majority. We now elaborate on our contributions.

* In this paper, we propose a multi-party computation called dynamic SPDZ, which sup-
ports a dishonest majority secure model. In addition, the set of parties involved during

the execution could be changed.

» We first propose a 1-to-n oblivious linear evaluation protocol in the all but one dishonest
majority secure model based on the 1-to-1 oblivious linear evaluation protocol structured

from lattice learning with error.

* Compared to other fluid MPC protocols, the computation and communication costs are

extremely low.

65

CHAPTER 5. FLUID MPC 66

5.1 Protocol Overview

The whole protocol serves as a client-server model. We regard the parties who hold private

input as clients and the parties who carry out computation tasks as servers.

The protocol is divided into four parts: preprocessing, input, execution, and output. The
execution stage is divided into epochs. Each epoch includes two phases: the computation phase

and the hand-off phase.

Client Set Server Set 1 Server Set 2 Server Set k

: 88 ¢
% % g % =

% ¥ g
Input Stage % handoff g handoff g

Compautation Compurtation Computation
stage stage stage

Figure 5.1: Framework of fluid MPC protocol

5.1.1 Secure Model

To effectively model fluid Multi-party Computation (MPC), we employ the arithmetic black
box model (ABB), represented as an ideal functionality F5gg within the universal composability
framework. This functionality enables a set of parties, Py, ..., P,, to input values. The set of
parties P, execute computations and retrieve outputs. Crucially, Fapp is parameterized by
a finite field IF,, and inherently supports the native operations of addition and multiplication

within this field.

The Fpapp functionality thus provides a robust framework for multiparty computations,

CHAPTER 5. FLUID MPC 67

ensuring that all operations are conducted securely, accurately, and efficiently in a distributed
environment. This protocol involves a set of parties, denoted as Py = {Py,..., P,}, who
engage in a series of computational steps, each governed by well-defined parameters and pro-

cedures.

Central to this functionality is the process of initialization, where the initial set of parties,
P, 1s established as the client set for the commencement of computations. As the protocol
progresses, it adeptly handles inputs from various parties, ensuring the accurate and secure in-
corporation of each participant’s data. A dynamic transition mechanism updates the current set
of active parties, P, facilitating flexible and adaptive participation throughout the computa-

tion process.

The core of Fp4pp lies in its ability to perform fundamental arithmetic operations, such as
addition and multiplication, on the inputs provided. The results of these operations are metic-
ulously stored, laying the groundwork for subsequent steps or outputs. In the final stage, the
functionality is equipped to output the results of the computation, involving a meticulous pro-
cess of retrieving and delivering these results to either the participating parties or an adversary,
based on specific conditions, thereby maintaining the integrity and confidentiality of the entire

process.

Overall, the Fpapp functionality offers a robust and versatile framework for multiparty
computations, ensuring that all activities, from data input to result output, are conducted with

utmost security, accuracy, and efficiency in a distributed computing environment.

CHAPTER 5. FLUID MPC 68

Functionality Fpapp
Parameters: Finite field IF,, a set of parties P;,;; = { P, ..., P, } which hold private input.
Sever sets of server parties denote Py, , Psety, ---, Pset,, carry out computation task. All par-

ties have agreed upon identifiers ¢d, for each variable = used in the computation.

Initialise: On input (Init, P;,;) from every P; € P;,;; and set P,,;; as client set, P :=
Pinit.

Input: On input (Input, id,,x) from P; € Py,;, and (Input, id,) from all other parties in
Pyt , store the pair (id,,).

Trans: On input (Trans, Puy, Pset,) from all P; € P, U Py, , update Py i= P, -
Add: On input (Add, id., id,, id,) from P, , for every P, € P.,,, compute z = x + y and
store (id., z).

Multiplication: On input (Mult,id,,id,,id,) from every P, € P.,,,, compute z = z - y
and store (id,, z).

Output:On input (Output,id,) from every P, € P.,.., where id, has been stored previ-
ously, retrieve (id., z) and send it to the adversary. Wait for input from the adversary, if it

is Deliver, send the output to every P; € P,,... Otherwise, abort.

5.2 Preprocessing Phase for Dynamic Committees

5.2.1 Preprocessing Functionality

Firstly, we give the definition of the Functionality F,, protocol, a sophisticated cryptographic
framework designed for secure distributed computing within a finite field IF,. The protocol
involves key participants, namely a set of initiating parties, Py = {P1, P, ..., P,}, holding

private inputs, and multiple server party sets, P, , responsible for processing and securely

CHAPTER 5. FLUID MPC 69

exchanging these inputs.
The protocol’s primary functions include:
+ Initialization: Generating and distributing a unique MAC key for each participant to
authenticate communications and computations.

* Input Random Process: Securely sampling and distributing random values among par-

ties, maintaining data integrity.

* Inner Random Process: Generating a collective random value from individual random

inputs of the parties, crucial for randomness in distributed computations.

* Inner Triple Process: Generating authenticated random triples, where each party holds

a part of the triple and the sum forms the actual triple values.

* Transfer Random Process: Facilitating the secure transfer of random values between

different server party sets, preserving data security and integrity.

Overall, the Functionality F, protocol is a cornerstone for secure, authenticated, and dis-
tributed computations, enabling collaborative computing over shared data without compromis-

ing security and privacy.

Functionality £,
Parameters: Finite field F,. Parties P,,,;; = {Py, [%, ..., P,,} who hold the private input.

Pier,, (k € [1,m]), are m sets of server parties.

Functionality: Generate authenticated random triples and authenticated random values

used for different stages.

Init: When receiving Init from all P, where P, € P,,;; U P, generate a MAC key

o' < T, for P; and sends it to P;.

CHAPTER 5. FLUID MPC 70

Input Random: On input (InPut, P;, Py,) from P;, and (InPut, P;, P;.,,) every P; €

Psetla
1. Sample r; < F, for F;.

2. For each P; € P, , sample K} < F,, and compute MZ =r; 05 + K}, where o

is the MAC key belongs to P;.

3. Return 7;, M/ to P,, and Kito P;.

Inner Random : On input (InRand, Py,) from all P, € Py,
1. Sample r; < I, for P; € Py, .
2. Compute r = > 1y, R=1->_ «a;, where «; is the MAC key belongs to P;.
3. Sample R; < F, for P, € P, suchthat R =) R,.

4. Return [r] = {r;, R;} to P;.

Inner Triple: On input (InTriple, Py,) fromall P, € Py,
1. Sample a;, b; < F, for P; € Py, .
2. Compute a = Y a;,;b=> b,c=a-b,

3. Compute A = a-> «o;, B=0b-> «a;, C = c¢- > «; where «; is the MAC key

belongs to P;.

3. Sample ¢;, A;, B;, C; < F, for P, € Py, wherec =Y ¢;, A=> A, B=)_ B,

4. Return [[CL]] = {ai,Ai}, [[b]] = {bl, Bl}, [[C]] = {Ci, Cz} to H

CHAPTER 5. FLUID MPC 71

Transfer Random : On input (TrRand, Pyet, , Pset,,,) from all P; € Py, and P; €

Piet,, ..
1. Sample r; < F), for P; € Py, .
2. Compute r = > 1y, R=1r"->_ «;, where «; is the MAC key belongs to P;.
3. Sample R; + F, for P, € Py, , where R = > R,.
4. For each Pj € Py, , sample v, R < Fp, suchthat) ri =r, Y R, =73 a;.

5. Sample M;, K; < F, for P, € Py, and P; € P, suchthat, Z = > M;+>_ K;,

etpi1o

where «; is the MAC key belongs to P;.

6. Return [r]"<t = {r;, R;} to P,, and [r]"™>+1 = {7}, R} to P;.

5.2.2 Preprocessing Protocol

In order to realize the £},,.,, we introduce two building blocks: a 1—n oblivious linear evaluation
function (/' _,org) and a n — n oblivious linear evaluation (F,o;g). we elaborate on these

below and show how they can be realized.

Firstly, we give the definition of F_,org. The Fi_,orp functionality is a critical compo-
nent in cryptographic computations, particularly designed for secure operations in a distributed
environment. Operating within a finite field IF,, this functionality involves a specific party P;

and a set of parties P, , each holding a unique MAC key for authentication purposes.

The core operation, termed as Extend, is initiated by P; and entails a series of computations
and exchanges with the parties in Pi,. This process includes sampling of random values and
generating authenticated messages, ensuring both the secrecy and integrity of the exchanged
data. The F_,or g functionality is thus instrumental in extending the capability of the system

to handle secure, authenticated, and distributed computations effectively.

CHAPTER 5. FLUID MPC 72

Functionality F, ,o.x
Parameters: Finite field IF,. A party F; and a set of parties Ps.;,. Each party P; € Py,

holds a MAC key «;.

Extend: On receiving (Extend, P;, Py,) from P, and (Extend, P;, Py, , ;) from ev-

ery P; € Py, execute the following construct:
1. Sample r; < [, for F;.

2. For each P; € P, , sample K} <+ F,, and compute Mf =71 a; + K]’:, where «;

is the MAC key belongs to P;.

3. Return 7;, MZ] to P;, and K} to P;.

Secondly, the protocol of the preprocessing phase is also built based on the following function,
called Fyyorg. The Functionality F, o1k involves a set of operations within a finite field IF,,. It

includes two distinct sets of parties: Py, and P Each party in the second set, denoted as

elpy1-

P; where P; € P is assigned a unique MAC (Message Authentication Code) key «;.

etp419

The core operation of this functionality is defined as the *’Extend’ process. This process is
triggered when specific inputs are received from the parties in both Py, and P, ,,. Specifi-
cally, the ’Extend’ operation commences upon receiving inputs in the form of (Extend, P, ,
Pict, .., x;) from all parties P; € Py, and (Extend, Py, , Peer,,, ., ;) from all parties P; €

P

etp41°

CHAPTER 5. FLUID MPC 73

Functionality F),o; 5
Parameters: Finite field F,. Two sets of parties Py, , Pscr,,,,- Each party P; € Pey, .|
holds a MAC key «;.

Extend: On receiving (Extend, Pse, , Ps z;) from all P, € Py, , and (Extend,

etp419

Pietys Psety 15 aj) fromall P; € Py, ., execute the following construct:

1. For each P; € Py, Pj € Py, ., sample KJ’: < F}, and compute Mf =T - Q.

2. Return M/ to P;, and K} to P;.

Finally, we will show our protocol 7p,.,, which UC-secure utilizes F),.,.

The Ilp,, protocol is a sophisticated framework for secure multi-party computations in [f),.
It involves initial parties Py = {Py, Ps, ..., P,} holding private inputs, divided into n sets

Py, © € [1,n]. The protocol progresses through several stages:

- Initialization: Sets up the protocol with the assumption of sufficient random numbers and

triples for the computation.

- Inner Random Values Setup: Generates shared random values [r] within each Py,

involving cryptographic interactions for secure computation.

- Inner Triples Setup: Produces triples [a], [0], [¢] where ¢ = a - b, based on previously

generated values.

- Transfer Random Value Setup: Creates random values for data transfer between P,

and P,

etpy1°

- Input Random Value Setup: Generates random values for sharing private inputs from P;

to Pset1~

The protocol includes functions for retrieving inner random values, inner triples, transfer

CHAPTER 5. FLUID MPC 74

random values, and input random values, which are crucial for the secure and efficient execution

of MPC.

Protocol I1p,.,
Parameters: Finite field F,. Parties P,,,;; = { Py, I, ..., P,,} who hold the private input.
Piet,, (1 € [1,n]) are n sets of server parties.
Init: run the following step among all parties, suppose m random numbers and triples are

enough to support the whole computation.

Inner Random values setup: To generate [r] among P, ,
1. For all P; € P, generate a random value r; < F,,.
2. P, call F,,org with input (Extend, Py, , Pset,,, x;) and (Extend, Pset, s Pset,,, ;).

3. On receiving K7, M/, P, computes R; = > (M + K7), where R = >. R; =

Y orie Yy =71 Qge,. This format [r] = [r], [R]

Inner Triples setup.: To generate [a], [0], [¢] among Pk, , where ¢ = a - b,
1. Suppose P, already hold [a], [b] from Inner Random values setup stage.

2. Py € Py, call F,org with input (Extend, Py, , Ps a;) and P; € Py call

etpi1o et

Frore with input (Extend, Py, , Peet, ,,, bj).

3. On receiving K7, M7, P, computes ¢; = S (M7 + K7), wherec = S ¢; = Y a; -

1

> b; = a - b. This format [c|.

4. For each P, € Py, call F,org with (Extend, P, , Pset,,¢:), and (Extend,

Psetkypsetkaa/j)'

5. On receiving K7, M7, P, computes C; = S (M! + K7), where C = Y. C; =

Z C; - Z o = C- a/setk~ ThlS fOrmat [C : Oésetk]'

CHAPTER 5. FLUID MPC 75

Transfer Random Value setup: To generate random values used for transferring data be-

tween Py, and Py,

1. Suppose P,.;, already hold [r]|**'* from Inner Random values setup stage. P; € P,
pp k k

call Fl,orp with input (Extend, Py, , Pset, ., i) and P; € P, call F,,orr with input

eli41

(E.l’tend, Psetka Psetk+1a aj)'

2. On receiving M/, P, computes M; = S M/. On receiving K}, P; computes

Input Random Value setup: To generate random value used for sharing private input of

-Pi to Psetla

1. P, generate arandom r; < F},, P; call F'_,orr with input (Extend, P;, Py, , ;) and
all P; € Py, withinput (Extend, P;, Pset,, ;). And then, P, receives MZJ and P; receives

K}, where M} = r; - o; + K.

Inner Random: On receiving (InRandom, Py,) from all P; € Py,

1. Let [r] be the secret sharing generated in Inner Random values setup stage, and has

not been used before.

2. Return r;, R; to P;.

Inner Triple: On receiving (InT'riple, Py,) from all P; € Py, ,

1. Let [a], [6], [c] be the triple generated in Inner Triples setup stage, and has not been

used before.

2. Return a;, bi, Ci, Ai, Bi, Cz to R

CHAPTER 5. FLUID MPC 76

Transfer Random: On receiving (T'r Random, Py, , Peet,,,) from all P; € Py, , and

(T'r Random, Py, , Peey,,, ,) from all P; € P,

etpi1o

1. Return [r], M; to P, and K to P;.

Input Random: On receiving (InRandom, P;, Py,) from P, and all P; € Py,

1. Return 7, MZJ to P, and K} to P;.

5.2.3 Instantiating Multi-Party OLE

In this section, we will show how to realize two different kinds of oblivious linear evaluation

called Hl—nOLE and HnOLE-

The I1;_,0rE protocol, as detailed in this document, is a comprehensive cryptographic
scheme designed to facilitate secure and verified computations within a finite field IF,. This
protocol involves a primary party, F;, and a set of parties, Py, , €ach possessing a private MAC

key, «;, crucial for ensuring the integrity and confidentiality of the computations.

Atthe heart of the I1; _,,o, g protocol is the Extend function, which is triggered upon specific
requests from the parties involved. The process involves the generation of random numbers,
secure interactions between pairs of parties, and a series of consistency checks to guarantee the

integrity of inputs across the protocol.

The protocol is designed with a focus on ensuring that all parties involved can verify the
consistency and authenticity of the computations, making it an essential tool in environments
where secure multiparty computation is required. It carefully balances the need for security
with the efficiency of cryptographic operations, ensuring that the protocol is both robust and

practical for real-world applications.

CHAPTER 5. FLUID MPC 77

Protocol 11, _,.01.5
Parameters: Finite field [F,. A party F; and a set of parties Py, Each party P; € Py,

hold private mac key «;.

Extend: On receiving (Extend, P;, Py,) from P;, and (Extend, P;, Pyet,, ;) from all

-Pj € Psetl-
1. P; generate a random number r; < F},.

2. Each pair of parties (P;, P;), where P; € Py, call For g with P, input (Extend, P,

P;,r;) and P; input (Extend, P;, P;, ;). And P; gets M/ and and P; gets K.

3. Consistency check: All parties need to complete the consistency check to guarantee

P, input the same 7;:

(a) All parties belong to P; U P, generate a sequence of random numbers Ay, ..., A,
and for P; € Py, compute Z; = A; - sz P; rerandomizes Kj locally by sending a zero

share to the other parties, and P; gets K. P; broadcast /; and compute K =) Kj.

(b) P, compute M = S"\; - M/, Z = (M — K)~'. P, generate Z = 5" Z; and sends

Zj to P; secretly.

(c) P; € Py, computes Y; = Z; — A; - ;. Pj rerandomizes Y; locally by sending a
zero share to the other parties, and P; gets Y. P; broadcast Y}, compute Y = > Y}, and

check Y = 0. If the check fails, abort.

The 11,01 protocol, as described in this document, is a robust cryptographic mechanism
designed to facilitate secure and efficient computations within a finite field I,. The protocol

involves two sets of parties, Py, and P, with each party in P, ,, possessing a private

e 19

MAC key, o, essential for the authentication and integrity of the computations.

Central to the I1,,o 1 g protocol is the Extend function, which is activated upon receiving spe-

CHAPTER 5. FLUID MPC 78

cific inputs from all parties in both sets. This function includes a series of pairwise operations
between the parties, leading to the generation of key values and a comprehensive consistency
check. The protocol ensures that each party inputs consistent data through a sequence of calcu-

lated broadcasts and local computations.

The 11,07, protocol is tailored for environments where secure multiparty computation is
critical. Its design emphasizes the verification of the authenticity and consistency of the com-
putational inputs and outputs, thereby serving as a key tool in distributed computing scenarios

where data integrity and security are paramount.

CHAPTER 5. FLUID MPC 79

Protocol 11,05

Parameters: Finite field F,,. Two sets of parties Ps.,, , Ps Each party P; € P

etpy1 - etiy1

holds a MAC key «;.

Extend: On receiving (Extend, Py, , Pset,,,, ;) from all P € Py, and (Extend,

Pictys Psety,1, ;) fromall P; € P,

etp419

1. For each pair (P, P;) where P; € P, call Fprp with P, input (Extend, P;, P;, ;)

etit1

and P; input (Extend, P;, P;, ;). And P; gets Mf and and P; gets K;

2. Consistency check: All parties need to complete the consistency check to guarantee

P; input the same 7; and P; input the same «;:

(a) All parties belong to Py, UPqc;, ., generate a sequence of random numbers Ay, ..., Ay,

and for P, € P, compute M; =) ;- Mf . P, broadcasts M; and compute M = > M,.

(b) P; € Py

k:ZKJ

compute K; = 3" \; - K7 locally. P; broadcasts K; and computes

etrt1

(¢) P, rerandomizes r; locally by sending a zero share to the other parties, and P; gets

/ / = !
ri. P, broadcasts r; and computes r =) _ 7.

(d) P; computes Z; = A; - ;. P; rerandomizes Z; locally by sending a zero share to

the other parties, and P; gets Z. P; broadcasts Z; and computes Z =) 7.

(e) All party check Z - r + M = K. If the check fails, abort.

CHAPTER 5. FLUID MPC 80

5.3 Online Stage

5.3.1 Building Blocks for Online Stage

In this section, we describe the online stage of the dynamic SPDZ protocol. Before introducing

the online stage, we first introduce two protocols called II;c,— switer, and azae—check-

The protocol section described involves a switch mechanism for transferring a shared value

[] between two sets of parties, P, and P in a finite field F},. The shared value [z]7*¢*

etpy19

includes a value [z] and a multiplication authentication code (MAC) [y, - x], With sy, being

the sum of individual «; values for each party P; in Psety.

The process to switch [z] to P is as follows:

elit1

Preparation Phase: Each party P, in P, initiates a call to a function £, with parameters
(T'rRand, Pyey,,, Peet, .,). As a result, P; receives a part of the shared random value [r] Psety

specific to P, , and similarly, each P; in P receives their part of [r] Paety i1

etri1

Computation and Opening Phase: Parties in Py, collaboratively compute and then reveal
the value of [z + r]]P =<', Subsequently, both sets of parties, Py, and P, ,,, execute the

I, eshare protocol to securely reshare [x] from Py, to Picy,

Final Computation Phase: Each party P; in P computes their share of the MAC [aP Sk

elp41
z] using the formula [a**%+1] - (z 4 1) — [a"**"+1 - 7]. At the end of this process, Py, ,, col-

lectively holds both the value [z] and its associated MAC [a/**s+1 - z].

This protocol section ensures the secure and verifiable transfer of a shared value and its
MAC between two different sets of parties within a secure multi-party computation frame-

work.

CHAPTER 5. FLUID MPC 81

Protocol 11, suitcn
Parameters: Finite field F,,. Two sets of parties Puey, , Pect, ., - [2] Peety = ([2], [cvset, - @])-
Qset, = Y, v, Where P, € Py, .

Switch: To get [[x]]PSCtk+l = ([I‘], [asetk+1 ’ ZL’]) Asetyr = Z aj, where ‘P] S Ps

elg41*

1. Each P, € Py, call F,, with (T7Rand, Poy,, Peet,.,,) Pj € Poey, call Fye, with
(I'rRand, Pyet,,, Peet, ,,). P receives [r]7==t = {r;, R;}, and P; receives [r]Feeten =

{rl, RS}

2. Parties in Py, compute and open [z + r]7t. Parties in Py, U Ps run

etki1

Hreshare([x]PSEtk) Psetk7 Psetk+1) to get [$]P56tk+1 .

3. Finally, P; can compute its share of the MAC [a/**+1 - z] as [a"**%+1] - (v + 1) —

[t . 7). P, holds [z], [*+1 - 2],

eti+1

The protocol section titled 1154 cnect: OUtlines a procedure used by a set of parties, denoted
as P, , to verify the integrity of Multiplication Authentication Codes (MACs) on a series of
values (a1, as, ..., a,,). Each party in P, possesses a share of the product of each value a;
and a collective key o, , denoted as A;;. Here’s an explanation of how the MAC check is

performed:

Random Number Generation: All parties first generate a sequence of random numbers
(r1,72,...,7m). These random numbers are crucial for ensuring the randomness and unpre-

dictability of the verification process.

Public Value Computation: Each party computes a public value a, which is the sum of the

products of each random number r; with the corresponding value a; (i.e., a =) r; - a;).

Individual Computation and Broadcasting: For each party P, in P, , they compute a value
K; which is the sum of the products of each random number 7; with their share of the MAC for

aj (i.e., K; =Y r;j- A;;). Subsequently, they compute M; = K; — «; - a and broadcast M; to

CHAPTER 5. FLUID MPC 82

all other parties.

Verification and Abort Condition: After receiving the broadcasted values from each party,
the parties sum up these values (i.e., My + My + ... + M,,). If the sum is not equal to zero, it

indicates a discrepancy in the MACs, and the parties abort the protocol.

This MAC check protocol is a crucial aspect of secure multi-party computation, as it ensures
the integrity and authenticity of shared values among parties, preventing malicious activities or

errors in the computation process.

Protocol I1,;,.—check
Usage: Parties in P;.;, want to check the MACs on values (a1, as, ..., a,,) opened to them.
Each P; € P;., holds share of a; - a, denotes A, ;.

MACCheck(ay, ..., a;):
1. All parties get a sequence of random numbers 7, ..., 7',.
2. Each party computes the public value a = > 7} - a;
3. For each party P, P, computes K; = > r;- Aj;, M; = K; — ;- a. P, broadcast M;

4. If My + ... + M,, # 0, the parties abort.

The protocol IL,4, 18 @ sub-protocol of 11, switn, Which is used to share a value x; to a set of

parties in additive sharing format.

CHAPTER 5. FLUID MPC 83

Protocol ;.
Parameters: Finite fields IF,. Party P, with private input z; and a set of parties Py, .
Each pair of parties (P;, P;) , where P; € Pi,, has a common PRG seed S*/. Suppose
Piet, = {P1, Ps, ..., Py }.
Functionality: To get [x;]™ = {z;;}pep,..,

Share:
1. P, computes z; ; < PRG(S%7),forj = 2,3,...,m. P, defines z;; = xi—zzﬁ:Q T

2. P;sends x;; to P, € Py,,. Each P; € Py, defines its shares as [z;] = x;; which

forms [;] Pt

5.3.2 Protocol of Online Stage

The online stage includes Input, Computation, Hand-off and output phases. The I1,,,;;,,. protocol
is a comprehensive framework designed for secure multi-party computation (MPC) in a finite
field Fq. It involves a set of clients, Pinit, each with a private input, and several sets of server
parties, Py, , who execute the computation tasks in different stages. Each server party also

possesses a private MAC key, ;. Here’s an overview of the protocol stages:
Input Sharing:

Each client F; and server party P; in Py, call a preparation function F,,,. Clients compute
and share their inputs with the server parties. The shared inputs are in the format [-], which
includes both the input value and its MAC. Server parties perform calculations to obtain the

MAC of the random value associated with each input. Computation Phase:

The protocol supports four basic operations: addition, addition by constant, multiplication
by constant, and multiplication. For addition, parties locally add their shares of the input values.

In addition by constant, a designated party modifies the shared value by adding the constant, and

CHAPTER 5. FLUID MPC 84

all parties adjust their MAC shares accordingly. For multiplication by constant, each party scales
their input share and corresponding MAC share by the constant. Multiplication of two values is

handled by a dynamic multiplication protocol, I14y,qmic—nrue- Hand-off Between Server Sets:

This process involves transferring the computation from one set of server parties to another,

Py, to P They utilize a key-switching protocol, Ilxe,—switch, to ensure that the new set of

elpy1”

parties correctly receives the shared values along with their updated MACs. Output Generation:

The final stage involves generating the output of the computation, which is not elaborated
upon in the provided description. This protocol is designed to ensure privacy and integrity
of computations in a multi-party setting, leveraging MACs for authenticity and supporting a

variety of operations fundamental to MPC.

Protocol I1,,,;;,,c

Parameter: Finite field IF,. Initially, each data owner called client P; € P;,;; has a private
input ;. Several sets of server parties denote Pk, , which carry out the computation task
in different stages. In addition, each server party P; owns a private mac key «;

Input: To share input x; belongs to user P; € Py,;; to a set of parties P, in -] format :

1. For each P, call F),., with input (InPut, P;, Py,) and P; € Py, with input
(InPut, P;, Py,). And then, P; receives r;, MZJ and P; receives K;, where sz =7 -

% +KJZ

2. P, computes M; = > Mf , where P; € P,.;. And then P; execute 11, (1;) and
ohare(2;) With Py, Pj € Pagy, receives [M] = M} and [x;] = . In addition, P; public

Y =x;+7; to Psetl.

3. For each party P; € Py, received M ; from party P, € P,,;,. P; computes [- 7] =

(M) — [K] = Mi — K.

4. For each Pj € Py computes [z; - o] = ;- Y — [a - r;] which format [a;] 7ot

CHAPTER 5. FLUID MPC

Computation: Inthe computation phase, the protocol supports 4 kinds of operations among
a set of parties denoting P, , including addition, addition by constant, multiplication by

constant, and multiplication.

Addition: To execute the addition operation in the circuit, z = x + y , each P; € Py,

locally adds their share of x and y to get share of z, [z] = [z] + [v].

Addition by Constant: To execute the addition by constant operation, z = = + ¢, a
designed party P; € P, adds c to [z] to get [« + ¢| and for all party P, € Py, add «; - ¢

to [x - o to get [(z + ¢) - a.

Multiplication by Constant: To compute, 2 = x - ¢, each P, € Ps,, locally compute

[z-c]=[z] ¢, [a-(x-¢)]=|a 2]+ ;¢

Multiplication: To compute, z = x - y, Tun gy,amic—rrue among Peey,

Hand-off: There are two sets of parties P, , Ps Every party P; € P, hold shares

etpy1-
[z] = {[zu], [Ty - @ser,]}. The two sets of parties run Ili.,—gypicn and parties P; €

Piet, ., receives [x,] = {[xu], [xu - Xset,,, |} In addition, the set of parties Pi.;, also run

HMac—check- If HMac—check fallsv re.]eCts'

Output: To output the final result, for each output wire z, they open [z] by broadcast-

ing their shares to the other parties and running I/4.—cneck- If Hnzac—check fails, rejects.

85

CHAPTER 5. FLUID MPC 86

Protocol 14— nruie

Usage: P, wants to compute multiplications z =z - y

1. Forevery parties P; € Pk, call Fy,,., with (InTriple, Py,) and receives [a], [b], [¢].

F; computes [¢] = [z] — [a], [l =[] — [b]-
2. P; open [e], [p] and get €, p.

3. P,compute [z -y =[c] +€-[b] +p-[a] +€-p

5.4 Cost Analysis

In this section, we analyze the efficiency of our proposed protocol compared to the Le Mans

fluid MPC protocol. To facilitate this comparison, we define the following parameters:

L: The number of layers in the computation circuit.

P: The total number of multiplication gates in the circuit.

* n: The total number of parties participating in the computation stage.

k: The number of sets into which the n parties are divided.

* ¢: The number of parties within each set.

* m: The number of private input holders.

5.4.1 Costin Le Mans Fluid MPC Protocol

In the Le Mans fluid MPC protocol, the computational costs are structured as follows:

CHAPTER 5. FLUID MPC 87

* Preprocessing Stage: To generate a shared random value (r) among all m + n parties,
(m + n)? oblivious linear evaluations (OLEs) are required. Additionally, generating a

random multiplication triple (a), (b), {c) (where ¢ = a - b) requires 3(m + n)* OLEs.

 Input Stage: Each of the m private input holders incurs a cost of m random number

sharings.

» Hand-off Stage: If each set contains g parties, each hand-off operation incurs a cost of ¢

random number sharings.

* Multiplication Gates: For each multiplication gate, a random triple sharing is required.

5.4.2 Cost in Our Proposed Fluid MPC Protocol

Our protocol optimizes the costs through efficient random value sharing mechanisms:

* Preprocessing Stage: We define four types of random value sharing:

1. Input random value sharing: Costs ¢ OLEs.
2. Inner random value sharing: Costs ¢> OLEs.
3. Inner random triple value sharing: Costs 3¢*> OLEs.

4. Transfer random value sharing: Costs ¢*> OLEs.
The total preprocessing cost is mq + ¢> + pg>.
* Input Stage: For m private input holders, the total cost is m random number sharings.
» Hand-off Stage: Each operation incurs a cost of ¢ transfer random number sharings.

* Multiplication Gates: Each multiplication gate requires a random inner triple sharing.

CHAPTER 5. FLUID MPC

5.4.3 Comparison and Analysis

The preprocessing cost for the Le Mans fluid MPC protocol is:

Le Mans Fluid MPC Preprocessing Cost = m(m + n)? + qg(m +n)? + 3p(m + n)?.

In contrast, our proposed protocol reduces the preprocessing cost to:

Our Protocol Preprocessing Cost = mq + ¢* + pg°.

Efficiency Comparison

Let us consider a practical example with the following parameters:

* m = 10: Number of private input holders.

* n = 20: Number of participating parties.

q = 5: Number of parties in each set.

p = 50: Number of multiplication gates.

The costs are computed as follows:

* Le Mans Fluid MPC Preprocessing Cost:

10(10 + 20)? 4 5(10 + 20)? 4 3(50)(10 + 20)% = 9000 + 4500 + 135000 = 148500.

* Our Protocol Preprocessing Cost:

(10)(5) + (5)% + (50)(5%) = 50 + 125 + 1250 = 1425.

88

CHAPTER 5. FLUID MPC 89

5.4.4 Conclusion

The results clearly demonstrate that our proposed protocol significantly reduces the prepro-
cessing cost, lowering it from 148500 to 1425 under the given parameters. This reduction is
achieved through the efficient use of random value sharing mechanisms, making our protocol
particularly suitable for large-scale secure computations. At the same time, the input sharing,
hand-off, and multiplication gate costs remain comparable, ensuring that the overall efficiency

is not compromised.

Chapter 6

Conclusions and Suggestions for Future

Research

In this thesis, we addressed key privacy challenges in secure multi-party computation (MPC)
across various computational scenarios. Our proposed protocols enhance both the practicality
and security of collaborative computing among untrusted entities, eliminating the need for a

trusted third party.

First, we introduced a decentralized e-voting system that integrates blockchain technology,
smart contracts, linkable ring signatures, and threshold encryption. This design safeguards voter
privacy and ensures the integrity of election results. An Ethereum private network implemen-

tation demonstrates feasibility in terms of cost and time efficiency.

Second, we proposed a two-party k-means clustering scheme for privacy-preserving data
mining. By optimizing data encryption and leveraging cloud-based execution, the protocol ef-
ficiently handles O(k(m + n)) rounds of interaction and addresses high computational and
communication overheads. The scheme is validated under both semi-honest and malicious se-

curity models, underscoring its robust privacy guarantees.

90

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 91

Finally, we developed a fluid MPC protocol, extending the SPDZ protocol to accommo-
date dynamic participant involvement in complex computations. This protocol’s minimal pre-
processing requirements and adaptability significantly lower barriers for large-scale, resource-
intensive tasks. Its security in an all-but-one dishonest majority model broadens applicability

in diverse computational settings.

Overall, we not only tackled existing MPC issues but also established a foundation for fur-
ther research into more efficient, secure, and adaptable privacy-preserving protocols. The in-
novations we presented in e-voting, collaborative data mining, and fluid MPC underscore the
potential for real-world deployment and ongoing academic exploration, ultimately aiming to

safeguard privacy in the digital age.

References

[1] Martin Abadi, Andy Chu, lan Goodfellow, H. Brendan McMahan, llya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 308-318, 2016.

[2] Ben Adida. Helios: Web-based open-audit voting. In Usenix Security Symposium, pages

335-348, 2008.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. ACM,

2000.

[4] Abdelrahaman Aly, Karl Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Oliver Scherer, Peter Scholl, Nigel P Smart, Titouan Tanguy, et al. Scale-mamba

vl. 14: Documentation. Documentation. pdf, 2021.

[5] Gokhan Arslan, Mustafa Tuncan, M Talat Birgonul, and Irem Dikmen. E-bidding proposal
preparation system for construction projects. Building and Environment, 41(10):1406—

1413, 2006.

[6] Man Ho Au, Joseph K Liu, Tsz Hon Yuen, and Duncan S Wong. Id-based ring signature
scheme secure in the standard model. In International Workshop on Security, pages 1-16,

2006.

92

REFERENCES 93

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arith-
metic circuits. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 565-577, 2016.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proceedings of the 2012 ACM conference on Computer and communications security,

pages 784-796, 2012.

Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended ab-

stract). In Twenty-Sixth ACM Symposium on Theory of Computing, pages 544-553, 1994.

Rikke Bendlin, Ivan Damgérd, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 169—188. Springer, 2011.

Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi. Supporting private data on hy-
perledger fabric with secure multiparty computation. IBM Journal of Research and De-

velopment, 63(2/3):3—1, 2019.

Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Computer Security-ESORICS 2008: 13th European Sympo-
sium on Research in Computer Security, Malaga, Spain, October 6-8, 2008. Proceedings

13, pages 192-206. Springer, 2008.

Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Mollering, Melek Onen, and
Thomas Schneider. Privacy-preserving density-based clustering. In Proceedings of the

2021 ACM Asia Conference on Computer and Communications Security, pages 658—671,

2021.

Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In the 14th ACM

conference on Computer and communications security, pages 486-497. ACM, 2007.

REFERENCES 94

[15] David Chaum. Blind signatures for untraceable payments. In Advances in cryptology,

pages 199-203, 1983.

[16] David Chaum and Eugéne Van Heyst. Group signatures. In Workshop on the Theory and

Application of of Cryptographic Techniques, pages 257-265, 1991.

[17] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84-90, 1981.

[18] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information

retrieval. Journal of the ACM (JACM), 45(6):965-981, 1998.

[19] Sherman SM Chow, Joseph K Liu, and Duncan S Wong. Robust receipt-free election

system with ballot secrecy and verifiability. In NDSS, volume 8, pages 81-94, 2008.

[20] Jeremy Clark and Aleksander Essex. Commitcoin: Carbon dating commitments with
bitcoin. In International Conference on Financial Cryptography and Data Security, pages

390-398, 2012.

[21] Ronald Cramer, Ivan Damgérd, and Ueli Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 316-334. Springer, 2000.

[22] Ronald Cramer, Ivan Damgérd, and Jesper B Nielsen. Multiparty computation from
threshold homomorphic encryption. In Advances in Cryptology—EUROCRYPT 2001 :
International Conference on the Theory and Application of Cryptographic Techniques

Innsbruck, Austria, May 6—10, 2001 Proceedings 20, pages 280-300. Springer, 2001.

[23] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally ef-
ficient multi-authority election scheme. In International Conference on Theory and Ap-

plication of Cryptographic Techniques, pages 103—118, 1997.

REFERENCES 95

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Ivan Damgard, Kasper Damgard, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas Toft.
Confidential benchmarking based on multiparty computation. In International Conference

on Financial Cryptography and Data Security, pages 169—187. Springer, 2016.

Ivan Damgérd, Martin Geisler, Mikkel Kreigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In International workshop

on public key cryptography, pages 160—179. Springer, 2009.

Ivan Damgérd, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Annual Cryptology Conference, pages 643—

662. Springer, 2012.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient

mixed-protocol secure two-party computation. In NDSS, 2015.

Hongmei Deng, Anindo Mukherjee, and Dharma P Agrawal. Threshold and identity-
based key management and authentication for wireless ad hoc networks. In Information
Technology: Coding and Computing, 2004. Proceedings. ITCC 2004., pages 107-111,

2004.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, EUROCRYPT 2010, pages 2443, 2010.

Jack Doerner, David Evans, and Abhi Shelat. Secure stable matching at scale. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 1602—-1613, 2016.

Mabhir Can Doganay, Thomas B Pedersen, Yiicel Saygin, Erkay Savas, and Albert Levi.
Distributed privacy preserving k-means clustering with additive secret sharing. In the

2008 international workshop on Privacy and anonymity in information society, pages 3—

11. ACM, 2008.

REFERENCES 96

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 9(3—4):211-407, 2014.

Ariel Ekblaw, Asaph Azaria, John D Halamka, and Andrew Lippman. A case study for
blockchain in healthcare:“medrec” prototype for electronic health records and medical

research data. In Proceedings of IEEE open & big data conference, page 13, 2016.

Yousef ElImehdwi, Bharath K Samanthula, and Wei Jiang. Secure k-nearest neighbor query
over encrypted data in outsourced environments. In Data Engineering (ICDE), 2014 IEEE

30th International Conference on, pages 664—675. IEEE, 2014.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of

Cryptology, 1(2):77-94, 1988.

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for
large scale elections. Proc Auscrypt92 Gold Coast Queensland Australia Dec, 718:244—

251, 1992.

Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. Privacy-preserving distributed linear regression on high-

dimensional data. Cryptology ePrint Archive, 2016.

Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal
Rabin, and Sophia Yakoubov. Yoso: You only speak once: Secure mpc with stateless
ephemeral roles. In Annual International Cryptology Conference, pages 64—93. Springer,

2021.

Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78,

1998.

REFERENCES 97

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in np have zero-knowledge proof systems. Journal of the ACM

(JACM), 38(3):690-728, 1991.

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P Smart.
Mpc-friendly symmetric key primitives. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 430—443, 2016.

Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits
under standard assumptions. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 567-578, 2015.

Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-combiners via
secure computation. In Theory of Cryptography Conference, pages 393—411. Springer,

2008.

Thomas Icart. How to hash into elliptic curves. In Advances in Cryptology-CRYPTO

2009, pages 303-316. 2009.

Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 593-599, 2005.

Somesh Jha, Luis Kruger, and Patrick Mcdaniel. Privacy preserving clustering. In Eu-
ropean Symposium on Research in Computer Security, ESORICS 2005, pages 397417,

2005.

Liina Kamm and Jan Willemson. Secure floating point arithmetic and private satellite

collision analysis. International Journal of Information Security, 14(6):531-548, 2015.

REFERENCES 98

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and appli-
cations to electronic voting. In International Conference on the Theory and Applications

of Cryptographic Techniques, pages 78-92, 2001.

Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceed-

ings of the 2020 ACM SIGSAC conference on computer and communications security,

pages 1575-1590, 2020.

Marcel Keller, Peter Scholl, and Nigel P Smart. An architecture for practical actively
secure mpc with dishonest majority. In Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security, pages 549-560, 2013.

Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy. Lecture

Notes in Computer Science, 2274:141-158, 2002.

Meeser F L. Decentralized, transparent, trustless voting on the ethereum blockchain, 2017.

Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin, Mayank
Varia, and Azer Bestavros. Accessible privacy-preserving web-based data analysis for
assessing and addressing economic inequalities. In Proceedings of the 1st ACM SIGCAS

Conference on Computing and Sustainable Societies, pages 1-5, 2018.

Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-an, and Heng Ye. Significant
permission identification for machine learning based android malware detection. /[EEE

Transactions on Industrial Informatics, 2018.

Ping Li, Jin Li, Zhengan Huang, Chong Zhi Gao, Wen Bin Chen, and Kai Chen. Privacy-
preserving outsourced classification in cloud computing. Cluster Computing, 21(1):1-10,

2017.

REFERENCES 99

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Ping Li, Jin Li, Zhengan Huang, Tong Li, Chong Zhi Gao, Siu Ming Yiu, and Kai Chen.
Multi-key privacy-preserving deep learning in cloud computing. Future Generation Com-

puter Systems, 74(C):76-85, 2017.

Tong Li, Zhengan Huang, Ping Li, Zheli Liu, and Chunfu Jia. Outsourced privacy-
preserving classification service over encrypted data. Journal of Network and Computer

Applications, 106:100-110, 2018.

Tong Li, Jin Li, Zheli Liu, Ping Li, and Chunfu Jia. Differentially private naive bayes

learning over multiple data sources. Information Sciences, 444:89-104, 2018.

Ye Li, Zoe L. Jiang, Lin Yao, Xuan Wang, S. M. Yiu, and Zhengan Huang. Outsourced
privacy-preserving c4.5 decision tree algorithm over horizontally and vertically parti-

tioned dataset among multiple parties. Cluster Computing, (2):1-13, 2017.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Annual Interna-

tional Cryptology Conference, CRYPTO 2000, pages 36—54, 2000.

Bin Liu, Yurong Jiang, Fei Sha, and Ramesh Govindan. Cloud-enabled privacy-preserving
collaborative learning for mobile sensing. In Proceedings of the 10th ACM Conference on

Embedded Network Sensor Systems, pages 57-70, 2012.

Dongxi Liu, Elisa Bertino, and Xun Yi. Privacy of outsourced k-means clustering. In
the 9th ACM symposium on Information, computer and communications security, pages

123-134. ACM, 2014.

Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous
group signature for ad hoc groups. In Australasian Conference on Information Security

and Privacy, pages 325-335, 2004.

REFERENCES 100

[64] Joseph K Liu and Duncan S Wong. Linkable ring signatures: Security models and new
schemes. In International Conference on Computational Science and Its Applications,

pages 614-623, 2005.

[65] Xiaoyan Liu, Zoe L Jiang, Siu-Ming Yiu, Xuan Wang, Chuting Tan, Ye Li, Zechao Liu,
Yabin Jin, and Junbin Fang. Outsourcing two-party privacy preserving k-means clustering
protocol in wireless sensor networks. In Mobile Ad-hoc and Sensor Networks (MSN), 2015

11th International Conference on, pages 124—133. IEEE, 2015.

[66] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for boardroom
voting with maximum voter privacy. In International Conference on Financial Cryptog-

raphy and Data Security, pages 357-375, 2017.

[67] Payman Mohassel, Mike Rosulek, and Ni Trieu. Practical privacy-preserving k-means

clustering. Proceedings on privacy enhancing technologies, 2020.

[68] Daniel Morales, Isaac Agudo, and Javier Lopez. Private set intersection: A systematic

literature review. Computer Science Review, 49:100567, 2023.

[69] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[70] B Ortutay. Ibm to invest -billion in new ‘internet of things’ unit. Globe and Mail, 2015.

[71] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International Conference on the Theory and Applications of Cryptographic Techniques,

pages 223-238. Springer, 1999.

[72] Sankita Patel, Viren Patel, and Devesh Jinwala. Privacy preserving distributed k-means
clustering in malicious model using zero knowledge proof. In International Conference

on Distributed Computing and Internet Technology, pages 420—431. Springer, 2013.

REFERENCES 101

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Sankita Patel, Mitali Sonar, and Devesh C Jinwala. Privacy preserving distributed k-
means clustering in malicious model using verifiable secret sharing scheme. International

Journal of Distributed Systems and Technologies (IJDST), 5(2):44-70, 2014.

Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for dishonest majority.

In Annual International Cryptology Conference, pages 719—749. Springer, 2022.

Fang-Yu Rao, Bharath K Samanthula, Elisa Bertino, Xun Yi, and Dongxi Liu. Privacy-
preserving and outsourced multi-user k-means clustering. In Collaboration and Internet

Computing (CIC), 2015 IEEE Conference on, pages 80—89. IEEE, 2015.

Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with
{Online/Offline} dual execution. In 25th USENIX Security Symposium (USENIX Security

16), pages 297-314, 2016.

Dragos Rotaru, Nigel P Smart, and Martijn Stam. Modes of operation suitable for com-
puting on encrypted data. IACR Transactions on Symmetric Cryptology, pages 294324,

2017.

Jun Sakuma and Shigenobu Kobayashi. Large-scale k-means clustering with user-centric

privacy-preservation. Knowledge and Information Systems, 25(2):253-279, 2010.

Berry Schoenmakers. Mpyc—python package for secure multiparty computation. In

Workshop on the Theory and Practice of MPC. https://github. com/lschoe/mpyc, 2018.
Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—-613, 1979.

Seung Won Shin, Phillip Porras, Vinod Yegneswara, Martin Fong, Guofei Gu, and Mabry
Tyson. Fresco: Modular composable security services for software-defined networks. In

20th annual network & distributed system security symposium. Ndss, 2013.

REFERENCES 102

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.
In International Conference on Financial Cryptography and Data Security, pages 507—

527, 2015.

Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. Tinygarble: Highly compressed and scalable sequential garbled cir-

cuits. In 2015 IEEE Symposium on Security and Privacy, pages 411-428. IEEE, 2015.

Maneesh Upmanyu, Anoop M Namboodiri, Kannan Srinathan, and CV Jawahar. Effi-
cient privacy preserving k-means clustering. In Pacific-Asia Workshop on Intelligence

and Security Informatics, pages 154—166. Springer, 2010.

Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over vertically
partitioned data. In ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 206215, 2003.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security, pages 21-37, 2017.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 151:1-32, 2014.

Lei Xu, Chunxiao Jiang, Jian Wang, Jian Yuan, and Yong Ren. Information security in

big data: privacy and data mining. /EEE Access, 2:1149—-1176, 2014.

Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foun-

dations of computer science (sfcs 1982), pages 160—164. IEEE, 1982.

Bin Yu, Joseph K. Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba, and
Man Ho Au. Platform-independent secure blockchain-based voting system. In Infor-

mation Security: 21st International Conference,, page 369, 2018.

REFERENCES 103

[91] Samee Zahur and David Evans. Obliv-c: A language for extensible data-oblivious com-

putation. Cryptology ePrint Archive, 2015.

[92] Justin Zhan. Privacy-preserving collaborative data mining. IEEE Computational Intelli-

gence Magazine, 3(2):31-41, 2008.

[93] Zhichao Zhao and T.-H. Hubert Chan. How to vote privately using bitcoin. In Information

and Communications Security, pages 82-96, 2016.

[94] Chaoshun Zuo, Zhigiang Lin, and Yinqian Zhang. Why does your data leak? uncovering
the data leakage in cloud from mobile apps. In 2019 IEEE Symposium on Security and

Privacy (SP), pages 1296—-1310. IEEE, 2019.

[95] Vinod Vaikuntanathan Zvika Brakerski. Efficient fully homomorphic encryption from

(standard) lwe. SIAM Journal on Computing, 43(2):831-871, 2011.

	Abstract
	Publications Arising from the Thesis
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Thesis Outline
	A Secure E-voting System Based on Blockchain
	Related Work

	Efficient Two-party Privacy-preserving Collaborative k-means Clustering Protocol
	Related Work

	Fluid MPC
	Related Work

	Connections Between the Three Components

	Preliminaries
	Blockchain and Ethereum
	Linkable Ring Signature
	Threshold Encryption Without Trusted Third Party
	Homomorphic Encryption
	Basic Secure Computation Primitives

	Horizontal Data Partition
	Secret Sharing
	Oblivious Linear Evaluation
	Universal Composed Security
	The Basic Framework

	An E-voting System Based on Blockchain
	Voting Protocol Description
	Voting Protocol Entities Description
	Voting Protocol Description

	Voting Protocol Analysis
	Correctness and Security Analysis
	Decentralized and Trustless Analysis
	Time Cost Analysis

	Voting Protocol Comparison

	Two-party k-means Clustering Protocol
	Protocol Description
	Framework and Notation
	Two-party k-means Collaborative Clustering Protocol
	Secure Garbled Circuit Protocol Supporting x1 + x2x3*
	Details of the Privacy-preserving Collaborative k-means Clustering Protocol

	Protocol Security Analysis
	Security Model
	Security Analysis

	Protocol Performance Analysis
	Theoretical Analysis
	Experimental Analysis
	Analysis of Results

	Potential Applications

	Fluid MPC
	Protocol Overview
	Secure Model

	Preprocessing Phase for Dynamic Committees
	Preprocessing Functionality
	Preprocessing Protocol
	Instantiating Multi-Party OLE

	Online Stage
	Building Blocks for Online Stage
	Protocol of Online Stage

	Cost Analysis
	Cost in Le Mans Fluid MPC Protocol
	Cost in Our Proposed Fluid MPC Protocol
	Comparison and Analysis
	Conclusion

	Conclusions and Suggestions for Future Research
	References

