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Abstract

In recent decades, preserving privacy has become vital for personal security, social freedom, and

economic prosperity. Within this context, secure multi-party computation (MPC) has gained

prominence as a key method in the privacy-preserving research field. MPC, a theoretical frame-

work, addresses collaborative computing challenges among distrustful entities without needing

a trusted third party. This framework assures both the confidentiality of inputs and the integrity

of computations. It employs cryptographic principles to safeguard participant data during com-

putations while ensuring accurate outcomes, all without a trusted third party. In this thesis, we

focus on developing efficient MPC protocols with robust functionalities that are adaptable to

various scenarios. Specifically, we introduce a novel MPC protocol tailored for applications in

e-voting, k-means clustering inmachine learning, and fluid participant environments for general

computational tasks.

Firstly, we introduce a decentralized e-voting system utilizing smart contract technology. E-

voting is a critical application of MPC that significantly impacts social activities. The integrity

of voting results and voter privacy are paramount. Our protocol integrates blockchainwith smart

contract capabilities, linkable ring signatures, and threshold encryption to ensure security and

privacy. This design effectively decentralizes trust, ensuring that the voting outcome remains

accurate even if some participants are malicious. The system is implemented on an Ethereum

private network, offering a robust solution for secure e-voting. Additionally, we provide an

analysis of the system’s feasibility, including considerations of cost in terms of both financial

and time resources.

We also present a novel two-party k-means clustering scheme designed for privacy-preserving

collaborative data mining. This field aims to extract useful knowledge from distributed datasets,
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owned by multiple entities, without leaking the privacy of the data or the results. An increasing

number of companies choose to store and process their data through third-party cloud services.

As a result, the need for efficient and secure data mining protocols becomes paramount. Ex-

isting approaches in this area, however, suffer from high computational and communication

overheads, hindering practical application. Our proposed scheme addresses these challenges

by encrypting each party’s data once before uploading it to the cloud. Our collaborative clus-

tering protocol for k-means, which prioritizes privacy, is primarily implemented in a cloud

environment. This process requires O(k(m + n)) interactive sessions involving both parties

and the cloud server. Here, m and n represent the respective total record counts from each

party. We validate the security of our protocol in both semi-honest and malicious security mod-

els, the latter considering a scenario where only one party may be corrupted during centroid

recomputation. Comprehensive theoretical and experimental analyses of our protocol are also

provided, demonstrating its efficiency and security.

Furthermore, we design a fluid MPC protocol based on SPDZ protocol for general function

computation tasks with a small preprocessing computation cost. MPC protocols traditionally

require participants to be active throughout the computation process. This requirement can

be a significant barrier, especially for complex and resource-intensive tasks. Fluid MPC, a

significant advancement presented at Crypto 2021, revolutionizes the traditional framework of

secure multi-party computation by introducing a highly adaptable and dynamic system. Unlike

conventional MPC protocols, which require a static group of parties to remain consistently

engaged throughout the computation process, Fluid MPC allows for a fluid and evolving set of

participants. This innovativemodel is specifically engineered to cater to the variable availability

of participants’ resources. We extend the Le Mans Fluid MPC protocol, which holds a heavy

preprocessing overhead. With the assumption that each computation committee and the transfer

order are fixed before the preprocessing stage, the cost of preprocessing is extremely low. In

addition, our advanced Fluid MPC protocol stands out by supporting an all-but-one dishonest

majority secure model, substantially enhancing the security framework.
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Chapter 1

Introduction

With the rapid advancement of digitalization and big data analytics, the demand for multi-party

data has surged. For example, in fields like personal credit risk assessment, the process neces-

sitates the aggregation and joint analysis of various attributes and characteristics. Private data

collected during credit evaluations includes personal identifiers (such as identity, address, and

occupation), credit transaction records (from personal loans, credit cards, and guarantees), and

indicators of credit status [94]. This information contains nearly all facets of an individual’s

private life. In this context, the importance of privacy-preserving technology has come to the

forefront. It aims to protect individual privacy while enabling the necessary data analysis, ad-

dressing the critical challenge of maintaining confidentiality amidst the expanding scope of data

collection and analysis.

Secure multi-party computation (MPC) is a cryptographic method enabling multiple parties

to collaboratively compute a goal without needing a trusted third party [39]. It ensures that par-

ticipants cannot access each other’s input information except for the final results. This concept

was proposed by Academician Andrew Yao in 1982 [89]. Over the years, MPC has evolved

into a significant branch of cryptography, offering algorithmic protocols for privacy protection.

The implementation of MPC can be divided into the following aspects:

1



CHAPTER 1. INTRODUCTION 2

1. General Protocol: This category includes protocols capable of computing any discrete

function representable as a fixed-size circuit. Examples include Yao’s garbled circuit

protocol [8], the GMW (Goldreich-Micali-Wigderson) protocol [40], and the SPDZ pro-

tocol. These are versatile and widely applicable in various cryptographic computations.

2. Specific Protocol: In contrast, specific protocols are tailored for particular functions

where general protocols may be inefficient due to significant overhead. For functions like

Private Set Intersection (PSI) [68], e-voting [68], and e-bidding [5], customized protocols

are developed to address the unique requirements and constraints of these applications.

The key protocols in Multi-party Computation (MPC) can be broadly categorized into sev-

eral distinct types, each with different features and secure models.

1. Secret Sharing (SS) [21]: Secret sharing is a method used to distribute a secret amongst a

group of participants, each of whom is allocated a share of the secret. The key idea is that

the secret can only be reconstructed when a sufficient number of shares (typically more

than a certain threshold) are combined together. When less than this specified number

of shares are amalgamated, they disclose no details about the secret. The secret sharing-

based MPC protocol usually can be divided into 3 stages:

(a) Distribution of Secret Shares: Each party’s private input is split into secret shares

using a secret sharing scheme. These shares are then distributed among all the par-

ticipating parties.

(b) Computational Operations on Shares: The participants execute calculations using

their respective shares. These operations are designed to replicate those that would

have been performed on the original inputs.

(c) Reconstruction: After the computations, the parties combine their resulting shares

to reconstruct the output of the function. Importantly, during this process, the indi-

vidual inputs of the parties are never reconstructed or revealed.
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2. Garbled Circuit (GC) [8]: This technique was introduced by Andrew Yao in the 1980s

as part of his solution to the millionaires’ problem, where two millionaires want to find

out who is richer without revealing their actual wealth. In a garbled circuit, a Boolean

circuit (representing a computational task) is turned into a garbled version where the true

functionality is obscured. The garble circuit-based MPC protocol usually can be divided

into the following stages:

(a) Circuit Construction: First, the computation to be performed is represented as a

Boolean circuit. This circuit consists of gates (like AND, OR, NOT) and wires

connecting these gates.

(b) Garbling the Circuit: One party, often called the garbler, transforms this circuit into

a garbled circuit. Each wire in the original circuit is associated with two random

keys, designated for 0 and 1 respectively. The garbler then encrypts the output keys

of each gate with the input keys in a way that only the correct combination of input

keys will decrypt the correct output key.

(c) Input Encoding: Each party encodes their inputs with the appropriate keys provided

by the garbler. In the event that a party’s input bit is 1, they utilize the key designated

for 1 on the corresponding wire, and conversely, if it’s 0, they use the 0 key.

(d) Circuit Evaluation: The evaluator, who may or may not be the same as the garbler,

then processes the garbled circuit. Without knowing the actual inputs or what each

gate is doing, the evaluator uses the keys corresponding to their inputs to progres-

sively decrypt the garbled gates and obtain keys for the next level of wires, until the

output is reached.

(e) Output Decryption: Finally, the output keys are translated back into the actual output

of the computation.

3. Homomorphic Encryption (HE) [22]: In the context of MPC, homomorphic encryption is

used to ensure that the inputs of each party remain private, even as they are being used to



CHAPTER 1. INTRODUCTION 4

compute some joint function. The process of this kind of protocol is quite straightforward.

Firstly, each party encrypts its input using a homomorphic encryption scheme. Then, the

computing entity performs the desired computations directly on the encrypted data and

gets the encrypted result. Finally, the relevant party or parties can then decrypt the result

to obtain the final plaintext output.

4. Oblivious Transfer (OT) [43]: Oblivious transfer is a foundational primitive in many

MPC protocols, especially those designed for two-party or small-number-party compu-

tations. It is used as a building block to achieve secure computation, ensuring that parties

can jointly compute a function over their inputs while keeping those inputs private.

These technologies allow for the utilization of data without exposing the original content, thus

safeguarding privacy.

Multi-party computation (MPC) finds wide-ranging applications in areas like multi-party

joint data analysis, which encompasses Private Information Retrieval (PIR) [18], Private Set

Intersection (PSI) [68], and trusted data exchanges. Additionally, specific applications such

as secure e-voting and e-bidding represent specialized forms of MPC protocols. The devel-

opment and availability of several open-source libraries, such as ABY [27], EMP-toolkit [11],

FRESCO [81], JIFF [53], MP-SPDZ [49], MPyC [79], SCALE-MAMBA [4], and TinyGar-

ble [83], have significantly contributed to the practical deployment and broader application of

MPC technologies.

1.1 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 lays the foundational elements for the content that follows, including a range

of essential notations and definitions.
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• Chapter 3 provides the e-voting protocol based on Ethereum. The discussion of the cor-

rectness of the protocol and the security analysis are also proposed.

• Chapter 4 presents the privacy-preserving collaborative k-means clustering protocol. Ad-

ditionally, it explores the protocol’s efficiency from both theoretical and experimental

perspectives.

• Chapter 5 presents a fluid MPC protocol with a small preprocessing overhead.

• Chapter 6 offers concluding remarks and potential directions for future research.

1.2 A Secure E-voting System Based on Blockchain

E-voting is widely used in social life. However, it is not obvious how to ensure the outcome

is respected when the decision is financially or politically related. The correctness, security,

and privacy are always the most important characteristics. Secure e-voting is a kind of secure

multi-party computation [39]. In the voting process, a set of people make their choices, and

their choices can be kept secret. The majority of electronic voting systems require a reliable

public bulletin board to ensure a uniform perspective for all voters. However, it is not clear to

the election administrator that the public bulletin board can be completely trusted. Some people

realize blockchain can be used as a bulletin board because the content is publicly trusted.

Blockchain [69] served as a decentralized database that provides new tools for creating a

trustless and decentralized system. In the blockchain system, there is no trusted centralized

coordinator. Instead, each node that is involved in the blockchain system holds the data block

locally. Blockchain technology is upheld by a peer-to-peer network that is decentralized and

allows open membership. At first, this technology is designed for money transfer. With the

development of it, researchers are trying to reuse Blockchain in other research areas such as

coordinating the Internet of Things [70], carbon dating [20] and health-care [33]. This sparked
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the invention of Ethereum [87], which is well known as a milestone in the development of

blockchain. It owns a Turing complete programming language, and users can realize the func-

tion by the smart contract in the Ethereum network.

Blockchain technology has the potential to serve as a trusted public bulletin board in voting

systems. In addition, the smart contract on the blockchain serves as a trusted computer whose

result is publicly trusted. However, replacing the bulletin board with blockchain is not a good

idea. Because there will be too many transactions for voters to discern and the computation on

the blockchain is very hard, this could be seen in [93].

In this paper, we propose a decentralized, trustless e-voting system based on blockchain.

The decentralized system means the computation is dependent on a decentralized blockchain.

The trustless systemmeans we do not need to rely on the election administrator; the trust is sepa-

rated from all voters. The correctness of the system depends on the whole protocol. In addition,

all voters can have cryptographic assurance that the privacy of each voter can be protected.

To ensure that nobody can tally the election result before the end of the election, the scheme

uses threshold encryption without a trusted third party [28,80]. In addition, even if the election

administrator is malicious, the tally result will not be changed. The encryption method is to set

up a pair of public-secret keys. The public key is known to all parties, while the secret key is

separated to all parties, and nobody gets the complete secret key before the key reconstruction

stage. When at least t of n parties upload their secrets, the secret key is reconstructed.

In order to identify the anonymous signature, we use the linkable ring signature [6, 63, 64].

A linkable ring signature allows a member to generate a signature from a list of public keys and

a secret key whose corresponding public key is in the list. But nobody (except the generator)

could know who generated the signature. It makes a participant to be anonymous during the

voting process. The more users involved in the signature, the more anonymous it could be. The

public checker could verify that whether two signatures on different messages are generated by
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the same signer.

The voting protocol is deployed on Ethereum by the smart contract. The Ethereum script al-

lows users to write the required smart contracts on Ethereum and implement powerful functions

through smart contracts to implement decentralized applications. All nodes of the Ethereum net-

work run the contract code independently to ensure the credibility of the final result, which is

publicly verifiable.

1.2.1 Related Work

The e-voting system was first raised by Chaum in 1981 [17]. From then on, people focused on

the e-voting system. According to cryptographic technologies, people divided the protocol into

three kinds:

• Mixed-network: E-voting system based onmixed-network was first proposed by Chaum

[17]. The basic principle is that multiple input signals are confusing through the mixed-

network, and then output multiple signals are cut off the association with the sender.

However, the implementation of the mixed-network requires a large amount of zero-

knowledge proof [35] to ensure that the servers participating in the hybrid computing

have not tampered with the votes.

• Blind/Ring signature: Chaum first introduced the concept of a blind signature in 1983

[15]. Unlike in a standard public key signature, where the signer is aware of the content

being signed, the blind signature approach differs. However, in the process of blind sig-

nature, the signer does not know the content of the file that he signed. When the file is

revealed, the signer can verify his signature and get the content of the file, but he does

not know the time of the signature generation and who sent the file. Legal voters can not

verify that their voting content is properly counted, nor can they verify the correctness
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of the counting process. The FOO protocol [36] is representative of the blind signature

electronic voting scheme. The protocol uses the blind signature to ensure the uniqueness

and privacy of the ballot, and the fairness of voting is achieved through bit commitment.

The FOO protocol is the first electronic voting solution that truly meets the basic secu-

rity needs of electronic voting, pushing electronic voting from the theoretical stage to the

practical stage. The paper referenced as [19] marks the initial application of a linkable

ring signature in an electronic voting system. These are the fundamentals of a linkable

ring signature-based e-voting system.

• Homomorphic encryption: E-voting system based on homomorphic encryption of El-

gamal [9, 51] was first proposed in 1997. Homomorphic features allow one to operate

on ciphertext without decrypting them. In the tally process, the ballots do not require a

decryption operation. This feature can greatly improve the privacy of the ballot and the

anonymity of the voting [23, 48]. The privacy of the ballots and the anonymity of the

voters depend on the security of the homomorphic encryption algorithm.

However, such voting protocols [2] need a centralized trusted party to control the voting process.

The blockchain technique and smart contracts provide new ideas for e-voting. Zhao proposed

a voting agreement in 2015 [93], which introduced a punish/reward scheme for voters’ illegal

or legal behaviors. Though the protocol is hard to carry out in the real world because each

voter needs to set up a lot of transactions, it is the first attempt to utilize blockchain to solve

the voting problem. In 2017, McCorry proposed an electronic voting protocol based on smart

contracts [66], using a homomorphic encryption scheme. However, if voters give up voting,

the whole protocol needs to be re-run. Bin proposes a practical voting system that is platform-

independent, secure, and verifiable [90]. The system is based on smart contracts on Blockchain.

In the system, the public key is mastered by the election administrator. Once the administrator

is malicious, the voting will be destroyed. This problem also happens to [52].
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1.3 Efficient Two-party Privacy-preserving Collaborative k-

means Clustering Protocol

Collaborative data mining aims to address how we can tackle the challenge of using data min-

ing methods on scattered data to extract knowledge, which is one of the most important ways

to build robust models. However, such collaboration may not be easily achieved due to pri-

vacy concerns. For example, in the US, medical data release is not allowed before the de-

identification process, as claimed in the Health Insurance Portability and Accountability Act

(HIPPA). In the European Union, it has enforced many terms to protect user privacy and pro-

hibit direct data sharing among institutions. Such enforcement creates a substantial barrier for

researchers to execute collaborative data mining and further benefits from data sharing. In terms

of the privacy concern of collaborative data mining, the idea of privacy-preserving data mining

is proposed [92]. Nowadays, there are two main techniques to achieve privacy: differential

privacy and homomorphic encryption.

Differential privacy, where the rigorous definition was proposed in [32], has the advantage

of efficiency while it may lose accuracy. It has been extended to various applications, such as

Naive Bayes [58] and deep learning [1]. Homomorphic encryption is a kind of encryption that

enables computation on encrypted data. It can provide accurate computation with the sacrifice

of efficiency. Moreover, only a little fully homomorphic encryption can support all kinds of

computation on ciphertext [29, 95].

With the advent of cloud computing, end-users outsource their data to cloud services to

perform data mining, which is called both data storage and computation outsourcing. In such

new infrastructure, to incentivize end-users to join in collaborative mining, privacy becomes

one of the most important obstacles [61].

Clustering is designed to group a set of objects into clusters according to some kind of mea-
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surement, such that objects within a cluster are similar while dissimilar to those in other clusters.

It has been widely used in the applications of medicine, banking, etc. In terms of privacy, many

pieces of research work have been launched to study privacy-preserving clustering protocols.

However, most of them assume that data is centralized. In this paper, a privacy-preserving

collaborative clustering protocol supporting both storage and computation outsourcing will be

proposed.

1.3.1 Related Work

The first piece of work on privacy-preserving data mining was given by [3, 60] for the ID3

decision trees classification on horizontally partitioned data using different models of privacy.

Lindell’s work [60] allows two-party to compute a decision tree based on the combined set of

data without revealing each other’s data records. Agrawal [3] developed a method allowing one

party to delegate data mining tasks to another party without disclosing private data.

Vaidya and Clifton [85] were the pioneers in introducing a multi-party privacy-preserving

k-means clustering protocol for vertically partitioned data. Their protocol maintains the con-

fidentiality of each party’s data through secure permutation and homomorphic encryption, en-

abling secure computation and comparison of distances. Jha et al. [46] proposed two privacy-

preserving protocols for two-party weighted average calculations, one based on oblivious poly-

nomial evaluation and the other on homomorphic encryption. Their homomorphic encryption

experiment successfully clustered a dataset with 5,687 samples and 12 features in about 66

seconds. Jagannathan and Wright [45] expanded this concept to arbitrarily partitioned data, a

broader category encompassing both horizontal and vertical partitions.

Bunn and Ostrovsky [14] introduced an efficient two-party k-means clustering protocol for

arbitrarily partitioned data, preserving privacy without disclosing any intermediate values using

division and random value protocols. Doganay et al. [31] suggested a novel privacy-preserving
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k-means clustering protocol, but it depended on a trusted third party for privacy assurance.

Patel et al. [72,73] later offered various schemes in the malicious model, though these were not

particularly efficient.

Liu et al. [62] devised a one-party privacy-preserving k-means clustering protocol, enabling

users to outsource storage and computation to the cloud without revealing data or mining results

to the cloud or other parties. They extended this framework in [65] to include two parties

and the cloud, although this increased the computational and interactive costs. Li et al. [59]

introduced a privacy-preserving C4.5 decision tree algorithm for horizontally and vertically

partitioned datasets. In [57], Li et al. proposed a method for a classifier owner to delegate

privacy-preserving classification services to a remote server, including two secure classification

protocols for the Naive Bayes classifier. Several protocols involve a trusted third party for

authorization, a common practice in outsourced storage systems [54, 58]. Other data mining

protocols are discussed in [55, 56, 88], with a detailed comparison presented in Table 1.1.
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1.4 Fluid MPC

Secure multi-party computation (MPC) represents a transformative approach in the realm of

privacy-preserving data analysis, allowing multiple parties to jointly compute a function based

on their inputs while safeguarding their privacy. Within a MPC protocol, the sole information

disclosed about the inputs is that which is deducible from the output of the function. This tech-

nology is applicable in various scenarios, such as secure data aggregation, confidential training

or evaluation of machine learning models, and threshold cryptography.

The core principle of MPC is to allow computation over distributed data without compro-

mising the privacy of each party’s data. This makes it invaluable in situations where sharing

raw data is either impractical or forbidden due to privacy concerns. In healthcare, for instance,

MPC can enable hospitals to collaborate on patient data for research without violating confi-

dentiality agreements. In finance, it allows for secure risk analysis and fraud detection across

multiple institutions without exposing sensitive information.

TraditionalMPC protocols assume a fixed group of participants throughout the computation,

which limits their applicability in dynamic, real-world scenarios. This static approach struggles

to accommodate situations where participants’ availability may change, such as long-running

computations or collaborative tasks across distributed networks. To overcome these challenges,

Fluid MPC was introduced with a clear motivation: to provide a flexible framework where par-

ticipants can seamlessly join or leave the computation process without disrupting its integrity.

This adaptability makes Fluid MPC particularly suited for environments requiring robustness

against participant churn, such as large-scale collaborative computations, decentralized appli-

cations, and cloud-based services.

Despite the advantages, these fluid models come with their own set of challenges, primarily

concerning increased overheads in communication and computation. In models with maximum

fluidity, every change in the participants’ roster can necessitate additional rounds of communi-
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cation and recalculations, potentially leading to inefficiencies. This trade-off between flexibility

and overhead is a crucial consideration in the practical application of these protocols. Balancing

these aspects is key to optimizing MPC for real-world use, ensuring that it remains both flexible

and efficient.

1.4.1 Related Work

Over the last decade, Multi-party Computation (MPC) has evolved from being predominantly

theoretical to a practical tool, enabling a group of participants to collaboratively compute a func-

tion using their private inputs while maintaining confidentiality. This transformation is largely

attributed to the emergence of compilers that convert high-level programming into secure oper-

ations like branching, addition, and multiplication on confidential data [30,37]. Compilers such

as Sharemind [12], the architecture proposed by Keller et al. [50], ABY [27], and Obliv-C [91]

have played a pivotal role in this advancement.

Arithmetic circuits, either operating over integers or modulo p, are preferred in a multitude

of applications for their simplicity in representation compared to binary circuit-based bitwise

operations. This preference is particularly noticeable in applications like linear programming

for satellite collision analysis, where fixed and floating-point computations are extensively uti-

lized [24, 47]. Recent research has also explored reducing storage requirements in sequential

computations across different MPC frameworks, incorporating symmetric key algorithms rep-

resented as arithmetic circuits [41, 77].

In implementing MPC, one has to choose between two primary approaches: the use of

garbled circuits [42, 76, 86] or secret sharing techniques [10, 25, 26]. This paper focuses on the

latter, especially given its aptness for evaluating arithmetic circuits, although recent theoretical

advances in garbled circuits modulo p by Ball et al. [7] are noteworthy. Our objective is to

explore secure computations in a scalable system with numerous participants, ensuring robust
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protection against malicious entities, using the SPDZ protocol.

Recent advancements in MPC have seen the development of more practical approaches,

notably Fluid MPC [7] and YOSO [38]. These innovative models introduce protocols that

accommodate a fluidly changing group of participants. They allow parties to freely join or exit

the computational process without disrupting ongoing protocols. This flexibility is particularly

advantageous for extensive, prolonged computational tasks, such as intricate scientific research

akin to Folding@home projects. In scenarios of maximal fluidity, this concept is taken to an

extreme, allowing each participant to be involved for only a single round, thus maximizing the

adaptability of potential contributors.

The YOSO (you only speak once) approach [38] extends this idea of maximally fluid MPC

protocols, introducing unique variations in its model. It diverges from FluidMPC by examining

how roles are assigned within the protocol. Their solution utilizes blockchain technology for

the random selection of a committee for each round. In this system, a committee member’s

identity remains undisclosed until their contribution has been made, significantly enhancing

security by keeping the participants’ identities concealed from potential adversaries until their

role is complete.

These methodologies both provide information-theoretically secure protocols in an honest

majority environment, wherein a majority of participants in any given round are presumed hon-

est. Fluid MPC is engineered to safeguard against abrupt terminations, effectively thwarting

attempts by malicious parties to end the protocol prematurely. In contrast, YOSO provides a

more robust assurance of guaranteed output delivery, although this heightened security comes

with a trade-off in terms of reduced efficiency.

In contrast, the study by Rachuri et al. [74] explores MPC in environments with a dishonest

majority. This approach demands only one honest participant per round, offering a more robust

security framework, albeit with greater complexity than the honest majority scenario. We will
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further discuss our contributions and provide some technical insights in the following sections.

1.5 Connections Between the Three Components

This paper presents a cohesive framework that addresses various challenges in privacy-preserving

computation through three interconnected components. Each component builds upon the others

to provide a comprehensive solution for secure and efficient computation in diverse scenarios.

First, we introduce a secure electronic voting system tailored for small-scale use cases where

strong verifiability is a critical requirement. In such scenarios, it is essential to ensure that every

vote is counted correctly while preserving voter anonymity and protecting against tampering.

By leveraging cryptographic techniques such as blind signatures and utilizing blockchain as a

trusted public bulletin board, the proposed system provides robust guarantees of transparency

and integrity. This solution is particularly suitable for applications where the correctness of each

individual transaction is paramount, such as board elections or small-scale community voting.

Second, moving to large-scale applications, such as national elections or large-scale sur-

veys, statistical analysis becomes crucial. We focus on the privacy-preserving computation of

k-means clustering for analyzing aggregated voting data. In these cases, data from multiple

parties must be processed collectively to extract meaningful patterns while ensuring that sensi-

tive information remains confidential. To address this, we propose a secure k-means clustering

protocol that outsources the computational workload to a cloud server. The protocol is designed

for horizontally partitioned datasets and incorporates homomorphic encryption and secure mul-

tiparty computation (MPC) techniques to protect individual data while enabling collaborative

analysis. This component bridges the gap between data privacy and the computational demands

of large-scale systems.

However, outsourcing computation entirely to external servers introduces additional risks



CHAPTER 1. INTRODUCTION 17

and limitations. Third, we address two critical challenges of outsourced computation: (1) the

potential for malicious behavior by all outsourced servers, which could lead to protocol termi-

nation and privacy leakage, and (2) the possibility of computational resource shortages on the

servers, hindering efficient execution. To mitigate these issues, we enhance the existing Fluid

MPC protocol and propose an optimized Dynamic SPDZ protocol. This improved protocol

ensures robustness even in adversarial settings and adapts efficiently to resource constraints.

By reducing both computational and communication overheads, the Dynamic SPDZ protocol

achieves superior performance, making it well-suited for dynamic, resource-constrained, and

adversarial environments.

Together, these three components form a comprehensive framework addressing the key

challenges in privacy-preserving computation. The secure electronic voting system lays the

foundation for strong verifiability and transparency in small-scale use cases. The k-means

clustering protocol extends the framework to large-scale statistical analysis while preserving

data privacy. Finally, the Dynamic SPDZ protocol ensures the robustness and efficiency of

outsourced computation, providing a practical solution for dynamic and adversarial scenarios.

This integrated approach demonstrates how diverse privacy-preserving techniques can be com-

bined to solve real-world problems across different scales and applications.



Chapter 2

Preliminaries

In this section, we give a brief introduction to Ethereum, which is the first blockchain to sup-

port smart contracts, linkable ring signatures, and the threshold encryption system used in the

e-voting protocol. In addition, we also review homomorphic encryption, some related cryp-

tographic primitives, and the concept of a horizontal data partition. Finally, we introduce the

oblivious linear evaluation and universal composed secure model.

2.1 Blockchain and Ethereum

Blockchain is a revolutionary technology that has garnered widespread attention for its potential

to transform various industries. At its core, blockchain is a type of distributed ledger technology

(DLT) that records transactions in a secure, transparent, and immutable manner. It consists of a

series of data blocks, each containing a list of transactions. These blocks are linked and secured

using cryptographic principles, forming a chain.

The key features of blockchain include decentralization, transparency, and immutability.

Unlike traditional systems, where a single entity controls the database, a blockchain is decen-

tralized and maintained by a network of nodes (computers), with each node holding a copy of

18
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the ledger. This structure ensures transparency, as transactions on the blockchain are visible to

all participants, fostering trust in the system. Additionally, once recorded, the data in any given

block cannot be altered retroactively without altering all subsequent blocks, which requires the

consensus of the network majority.

In terms of operation, when a transaction occurs, it is broadcast to the network and validated

by nodes through a consensus process. Once a transaction is validated, it is grouped with other

transactions to create a new block of data for the ledger. This block is then added to the existing

blockchain in a way that is permanent and unchangeable.

Blockchain technology has applications across numerous fields, including finance (with

cryptocurrencies like Bitcoin and Ethereum being the most notable examples), supply chain

management, healthcare, andmore. Its ability to provide secure, transparent, and efficient trans-

actions makes it a promising technology for the future. Ethereum is a state machine based on

orderly transactions. It depends on a distributed P2P computer network so that all the transac-

tions are broadcasted into the network. Ethereum features two distinct account types:

• Externally Owned Account: Controlled by a user through a public/secret key pair. The

user is responsible for initiating transactions within the network.

• Contract Account: Governed by the smart contract’s code. An externally owned account

deploys the smart contract onto the blockchain.

Each externally owned account is associated with a pair of keys: a secret key and its corre-

sponding public key. The secret key is employed for signing transactions, while the public key

is utilized to confirm the authenticity of the signature. In contrast, a contract account does not

have any private key. It stores the code of a smart contract that decides the flow of the ethers

in the account. Both accounts can store and spend a given number of Ethereum native tokens

called Ether. Ether is the token to pay for using network computing resources and transactions

inside the Ethereum network. The smart contract can’t execute code by itself. It must interact
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with an owned account to execute the function. Any externally owned accounts can send a

transaction to the contract address.

The structure of an Ethereum transaction is:

• From: A signature from an externally owned account address to authorize the transaction.

• To: The receiver’s address( externally owned account or contract address).

• Value: Amount of transfer ether.

• Data: Contract code used to create a new contract or execute instructions for the contract.

• Gas price: The price of each unit of gas.

• Total Gas: The maximum amount of gas that the user is willing to pay for the contract.

The Ethereum blockchain can be considered a state machine. Every change of state will cost

ether. Each block has a set of transactions. In particular, smart contracts are coding contracts

on the blockchain that automatically move digital assets according to predetermined rules. Par-

ticipants who do not trust each other are allowed to transact safely under the contract without

being affected by the third party.

Currently, each transaction in Ethereummust be mined into a block by the winner who wins

in the Proof-of-Work scheme [82]. This provides us with a decentralized computing environ-

ment. Ethereum offers a public bulletin board and an authenticated broadcast channel, both

essential for decentralized internet voting protocols to facilitate coordination among voters ef-

fectively. What’s more, almost all calculations made during the voting period are public and

can be written as smart contracts. Crucially, the security of the entire voting protocol’s execu-

tion is ensured by the blockchain’s consensus mechanism. This establishes a trusted computing

environment.
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2.2 Linkable Ring Signature

A linkable ring signature is a kind of digital signature that each signer could be anonymous,

and only a registered signer could create the signature. In 1991, Chaum and Heyst introduced

group signature [16]. A group is a set of users who have different pairs of public/secret keys.

In the group, there is a manager who manages all users in the group. For the group signature,

we need to trust the group manager. In order to solve this problem, Joseph, Victor, and Duncan

formalized a linkable ring signature, which produced a scheme without privacy revocation. The

linkable ring signature scheme satisfies three properties: (1) Anonymity: Anybody could not

knowwho generated the signature. (2) Linkability: It is possible to identify when two signatures

are produced by the same signer. (3) Spontaneity: There is not a group manager who controls

some secret

The scheme being used takes the DLP and is provable under the random oracle model,

using a cryptographic hash function as a random function. We adapted this scheme for use over

elliptic curves by hashing it into an elliptic curve.

In our implementation, we assume that Fq is a finite cyclic group whose order is a prime

number q. E(Fq) is an elliptic curve over the finite group Fq. G is a base point of the curve

E(Fq). l is the order of the base pointG. LetH1 be a cryptographic hash function that can map

a number into the finite cycle group Fq. Let H2 be a cryptographic hash function that can map

an input to a point of an elliptic curve [44].

We assume there are n users in our group, and each user has their corresponding private key

ski and their public key pki = skiG. L donates all public keys L = {pk1, pk2, ..., pkn}

Signature Generation: The user wants to sign messagem ∈ {0, 1}∗ with the secret key xi.

1. ComputeM = H2(L) andK = xiH .
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2. Choose random c ∈ Fq and compute

ui+1 = H1(L,K,m, cG, cH).

3. For j = i+ 1, .., n, 1, ..., i− 1 , choose random vj ∈ Fq and compute

ui+1 = H1(L,K,m, vjG+ pkjuj, vjM + uj)

4. Compute vi = c− skiui mod q

The linkable ring signature is (u1, v1, ..., vn, K)

Signature Verification: Any public checker checks sig(m) = (u1, v1, ..., vn, K). m donates

the message and L donates all public keys:

1. ComputeM = H2(L)

2. For i ∈ [0, n] , compute:

αi = viG+ uiyi

βi = viH + uiK

ui+1 = H1(L,K,m, αi, βi)

3. Check whether u1 = H1(L,K,m, αn, βn). If yes, accept. Otherwise, reject.

Linkability: For the same public key list L, given two signature associating with L, sig(m1) =

(u1, v1, ..., vn, K) sig(m
′
) = (u

′
1, v

′
1, ..., v

′
n, K

′
). And m and m

′ could be two different mes-

sages. Any public checker verifies whetherK = K
′ . IfK = K ′, the two signatures on different

messages are generated by the same user. Otherwise, they are generated by different users.
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In a voting system, ring signatures play a crucial role in ensuring voter anonymity and

unlinkability. By allowing a voter to generate a signature that appears indistinguishable from

those of other members in a predefined group, ring signatures prevent the identification of the

actual signer. This guarantees that the identity of the voter cannot be traced back to their vote,

providing strong privacy without requiring a trusted third party for anonymity.

2.3 Threshold Encryption Without Trusted Third Party

In the threshold encryption system, every member of the encryption group shares a pair of

public/secret keys. The public key is known by all voters, while the secret key is separated

from all voters without a trusted third party. In addition, only when some of the voters(exceed

the threshold) cooperate can the secret key be restructured. In this section, we will mainly show

how to distribute the secret key without a trusted third party.

There are n numbers in a group {Pi|i ∈ [1, n]}, Fp stands for the finite cycle group whose

order is p, and the generator of the group donates g. k is the number of threshold which means

the minimum numbers to upload their secret key.

1. Pi chooses xi ∈ Fp at random and computes hi = gxi The public key h is the sum of all

hi.

2. Pi randomly choose a polynomial fi(c) ∈ Zq(c) of degree at most k − 1 and fi(0) = xi

fi(c) = fi + fi,1c+ ...+ fi,k−1c
k−1

Pi computes Fij = gfij for j = 0, ..., k − 1 and publishes these values.

3. When everybody have published these k values, Pi sends sij = fij secretly to Pj for

j = 1, ...n

4. Pi verifies the data sij received from Pj . To make sure whether it is consistent with the
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previously published values, Pi computes that gsij =
k−1∑
l=0

F iI

jl . If this fails, stop.

5. Pi computes his share of x (donates si) as the sum of all shares received before. Let f be

the following polynomial f(c) = f1(c) + ... + fn(c). By construction si = f(i) and thus, si is

a share of f(0) = x so that they could restructure the secret key x easily, which could be found

in [80].

Threshold encryption without a trusted third party ensures that sensitive operations, such

as decrypting a result, require the cooperation of multiple parties, thus distributing trust among

them. This approach eliminates the need for a single point of failure or reliance on a trusted

entity, enhancing the security and robustness of the system. In the context of secure computation

or voting, threshold encryption enables joint decryption only when a predefined number of

participants agree, safeguarding against both insider threats and external attacks.

2.4 Homomorphic Encryption

The homomorphic encryption we use is Paillier encryption [71], which is a probabilistic asym-

metric 3-tuple encryption algorithm denoted by EncPa = {K,E,D} .

• K(1κ)→ (pk, sk) :

(1) Choose two large prime numbers p and q which satisfy that gcd(pq, (p−1)(q−1)) =

1.

(2) Calculate n = pq and λ = lcm(p− 1, q − 1).

(3) Randomly choose an integer g ∈ Zn2 .

(4) Check whether there exists u = (L(gλ modn2))−1modn where function L(µ) =

(µ− 1)/n. Then pk is (n, g) and sk is (λ, µ).
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• Epk(x, r)→ c :

Select a random r ∈ Z∗
n for the message x and the ciphertext is c = gxrn modn2.

• Dsk(c)→ x :

Decrypt the message by x = L(cλmodn2)µmodn.

In the case of no ambiguity, we remove the subscripts pk of Epk and sk of Dsk. Then, the

additive homomorphic properties of Paillier encryption are:

E(x)E(y) = E(x+ y), E(x)y = E(xy).

Homomorphic encryption is a critical component of our secure k-means clustering proto-

col, enabling computations on encrypted data without revealing the underlying plaintext. This

ensures that the privacy of each party’s data is preserved throughout the clustering process.

Specifically, addition and multiplication operations on ciphertext are utilized to compute dis-

tances, compare values, and update centroids in a secure manner. By leveraging the additive

homomorphic property of Paillier encryption, our protocol guarantees data confidentiality while

maintaining the accuracy of the clustering results.

2.4.1 Basic Secure Computation Primitives

In this section, we review a group of cryptographic primitives that will be used or adapted as

toolkits [34] for the proposed protocol. Paillier’s public key pk will be known to the public, and

the corresponding secret key sk will only be known by P.

(1) Secure Multiplication (SM ) Protocol (Protocol 1):
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With inputs (E(x), E(y)), this protocol computes the output E(xy) for C with the help

of P. The public key is pk, and the secret key is sk generated by Paillier encryption.

Protocol 1: SM(E(x), E(y))→ E(xy)

Require: C has E(x) and E(y); P has sk
1. C:

(a) Pick any two different numbers rx, ry ∈ ZN

(b) x
′ ← E(x)E(rx), y

′ ← E(y)E(ry)
(c) Send x′

, y
′ to P

2. P:
(a) hx ← D(x

′
), hy ← D(y

′
), h← hxhy mod N , h′ ← E(h)

(b) Send h′ to C
3. C:

(a) s← h
′
E(x)N−ry , s′ ← sE(y)N−rx

(b) E(xy)← s
′
E(rxry)

N−1

(2) Secure Squared Euclidean Distance (SSED) Protocol (Protocol 2):

Let X = (x1, · · · , xℓ) and Y = (y1, · · · , yℓ) denote the two ℓ-dimensional vectors, and

[X] = (E(x1), · · · , E(xℓ)) and [Y ] = (E(y1), · · · , E(yℓ)) denote the sets of the en-

crypted components of X and Y . C is with input ([X], [Y ]), and P calculates the corre-

sponding encryption value of the squared Euclidean distance. At the end of the protocol,

the final output E(|X − Y |2) =
∏ℓ

i=1 Epk((xi − yi)
2) is known only to C.

Protocol 2: SSED([X], [Y ])→ Epk(|X − Y |2)
Require: C has [X] and [Y ]; P has sk
1. C:

for 1 ≤ i ≤ ℓ do: E(xi − yi) = E(xi)E(yi)
N−1

2. C and P:
for 1 ≤ i ≤ ℓ do:
Call SM(E(xi − yi), E(xi − yi)) to compute E((xi − yi)

2)
3: C:

Compute E(|X − Y |2) =
∏ℓ

i=1 E((xi − yi)
2)

(3) Secure Minimum out of 2 Numbers (SMIN2) Protocol (Protocol 3):

Let u ∈ {0, 1}α and v ∈ {0, 1}α be two length-α bit strings, where ui and vi (1 ≤ i ≤ α)

denote each bits of u and v, respectively. Therefore, we have 0 ≤ u, v ≤ 2α − 1. Let

[u] = (E(u1), · · · , E(uα) and [v] = (E(v1), · · · , E(vα) represent that the encrypted bits



CHAPTER 2. PRELIMINARIES 27

of u and v, where (u1, uα) and (v1, vα) are the most and least significant bits of u and v,

respectively.

Protocol 3: SMIN2([u], [v]))→ [min(u, v)]
Require: C has [u] and [v], where 0 ≤ u, v ≤ 2α − 1; P has sk
1. C:

(a) Randomly choose the functionality F
(b) for i = 1 to α do: E(uivi)← SM(E(ui), E(vi))

if F : u > v then:
Wi ← E(ui)E(uivi)

N−1, Γi ← E(vi − ui)E(r̂i); r̂i ∈ ZN

else
Wi ← E(vi)E(uivi)

N−1

Γi ← E(ui − vi)E(r̂i); r̂i ∈ ZN

Gi ← E(ui ⊕ vi), Hi ← Hri
i−1Gi; ri ∈R ZN and H0 = E(0)

Φi ← E(−1)Hi, Li ← WiΦ
r
′
i
i ; r

′
i ∈ ZN

(c) Γ
′ ← π1(Γ), L

′ ← π2(L)
(d) Send Γ′ and L′ to P

2. P:
(a) Mi ← D(L

′
i), for 1 ≤ i ≤ α

(b) if ∃ j such thatMj = 1 then λ← 1
else λ← 0

(c) M
′
i ← Γ

′λ
i , for 1 ≤ i ≤ α

(d) SendM ′ and Epk(λ) to C
3. C:

(a) M̃ ← π−1
1 (M

′
)

(b) for i = 1 to l do: θi ← M̃iE(α)N−r̂i

if F : u > v then E(min(u, v)i)← E(ui)θi
else E(min(u, v)i)← E(vi)θi

(c) According to E(min(u, v)i), C can get E(min(u, v))

(4) Secure Minimum out of k Numbers (SMINk) Protocol (Protocol 4):

Let di ∈ {0, 1}α(1 ≤ i ≤ k) denote a length-α bit pattern representing a distance,

where di,j ∈ {0, 1}, 1 ≤ j ≤ α denotes a bit of di. So, 0 ≤ di ≤ 2α − 1. Let [di] =

(E(di,1), · · · , E(di,α))(1 ≤ i ≤ k) denote the encrypted vector of the bits in di. di,1 and

di,α are the most and least significant bits of di. C has k encrypted vectors ([d1], · · · , [dk])

and P has sk. At the end, no information is revealed to any party.
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Protocol 4: SMINk([d1], · · · , [dk])→ [dmin]

Require: C has ([d1], · · · , [dk]); P has sk
1. C: [d′

i]← [di], for 1 ≤ i ≤ k, num← k
2. C and P:

(a) for i = 1 to ⌈log2 k⌉:
for 1 ≤ j ≤ ⌊num

2
⌋:

if i = 1
then: [d′

2j−1]← SMIN2([d
′
2j−1], [d

′
2j]), [d

′
2j]← 0

else [d′

2i(j−1)+1]← SMIN2([d
′

2i(j−1)+1], [d
′
2ij−1]), [d

′
2ij−1]← 0

(b) num← ⌈num
2
⌉

3. C: Set [dmin] to [d
′
1]

2.5 Horizontal Data Partition

We revisit the concept of horizontal data partitioning in the context of two-party computa-

tion. Consider two parties, P1 and P2, each possessing a dataset, Dx = {x1, x2, . . . , xm}

and Dy = {y1, y2, . . . , yn} respectively. Each record xi = {xi,1, xi,2, . . . , xi,ℓ} in Dx and

yi = {yi,1, yi,2, . . . , yi,ℓ} in Dy represents an ℓ-dimensional vector, where each dimension cor-

responds to an attribute value. It is important to note that the two datasets are disjoint.

The datasets are combined to form a joint dataset D = {x1, x2, . . . , xm, y1, y2, . . . , yn},

under the condition that the ℓ attributes inDx andDy are identical and follow the same sequence.

This unified dataset D is then used for data mining and analysis purposes. The partitioning of

D into Dx and Dy exemplifies horizontal data partitioning, characterized by dividing datasets

along the rows while retaining the same attribute set across partitions.

2.6 Secret Sharing

Secret-sharing schemes were initially introduced for threshold cases by Blakley and Shamir.

In these threshold schemes, the subsets capable of reconstructing the secret are precisely those

whose size meets or exceeds a specified minimum number, known as the threshold. The exten-

sion of secret-sharing schemes to accommodate general access structures was later developed
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and constructed by Ito, Saito, and Nishizeki. These general schemes allow for more complex

configurations of subsets to be designated as authorized for secret reconstruction beyond the

simple threshold-based criteria.

Secret-sharing schemes are pivotal tools in cryptographic protocols. These schemes are

characterized by the presence of a dealer, who possesses a secret, a group of n parties, and a

specified access structure, denoted asA, which is a collection of subsets of parties authorized to

access the secret. The objective of a secret-sharing scheme tailored for A is twofold: (1)Enable

any subset of parties within A to collaboratively reconstruct the secret using their respective

shares. (2)Ensure that any subset not included in A is unable to obtain any information about

the secret, thereby preserving its confidentiality.

Initially conceptualized for secure information storage, secret-sharing schemes have since

been extensively employed in various domains of cryptography and distributed computing, un-

derscoring their versatility and significance. In this paper, we define two kinds of secret sharing.

• Additive Shares: The notation [x] represents an additive share of a secret x among a

group of parties. It signifies that the secret x is decomposed into several parts, such that

x = x1 + x2 + . . . + xn, where each xi is a share held by party Pi. In scenarios where

x is shared within a smaller subset of parties, denoted as PA, the share is specifically

represented as [x]PA . Thismethod of sharing ensures that each party only holds a fragment

of the secret, and the full secret x can only be reconstructedwhen all or a sufficient number

of these shares are combined.

• Authenticated Shares (SPDZ Shares): The notation JxK is used for an authenticated share,
often referred to as a SPDZ share. This type of share extends beyond simple additive

sharing by including authentication information to verify the integrity and authenticity of
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the shares. A SPDZ share comprises a vector of additive shares represented as:

JxK = ([x], [α], [α · x])

Here, [x] is the additive share of the secret, [α] is an additive share of a MAC key used

for authentication, and [α · x]) is an additive share of the product of the secret and the

MAC key. This structure enhances the security of the sharing scheme by enabling the

verification of shares without revealing the secret itself.

Secret sharing is a foundational technique in Fluid MPC, enabling secure and distributed

computation by dividing sensitive data into multiple shares. Each share reveals no information

individually but collectively reconstructs the secret. In Fluid MPC, secret sharing allows com-

putations to be performed collaboratively among parties without exposing their private inputs.

This approach ensures both data privacy and robustness against malicious participants, as com-

putations can proceed even if a subset of parties acts adversarially or becomes unavailable. The

use of secret sharing also facilitates dynamic resource allocation, improving the efficiency and

scalability of the protocol.

2.7 Oblivious Linear Evaluation

Oblivious Linear Evaluation (OLE) is a cryptographic building block that involves two distinct

parties: a sender and a receiver. In this primitive, the sender inputs an affine function f(x) =

a+ bx defined over a finite field F. The receiver, on the other hand, inputs an element w ∈ F.

At the conclusion of the protocol, the receiver learns the value of f(w).

A key feature of OLE is that the sender remains completely unaware of the receiver’s input

w, and the receiver, in turn, gains no knowledge about the function f beyond the specific value

f(w). This characteristic makes OLE a generalization of the well-known Oblivious Transfer
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(OT) primitive, expanding its functionality in the domain of linear algebraic operations over

finite fields.

Functionality FOLE

Parameters: Finite field Fp, two party Pi with input α and Pj with input x

Extend: On receiving (Extend, Pi, Pj, α) from Pi and (Extend, Pi, Pj, x) from Pj

1. SampleK ← Fp, ComputeM = α · x−K .

2. Output K to Pi andM to Pj .

Oblivious Linear Evaluation (OLE) plays a vital role in Fluid MPC by enabling secure and

efficient multiplication of private values. In the context of Fluid MPC, OLE allows two parties

to collaboratively compute linear operations on their secret-shared inputs without revealing the

actual values. This is particularly useful for constructing more complex functionalities, such as

matrix multiplications or polynomial evaluations, which are integral to many secure computa-

tion tasks. OLE reduces communication overhead and improves the overall efficiency of the

protocol, making it well-suited for dynamic and resource-constrained environments.

2.8 Universal Composed Security

2.8.1 The Basic Framework

TheUniversal Composability (UC) framework defines security by comparingwhat an adversary

can achieve in two different scenarios: a real-world protocol execution and an ideal process.

In the ideal process, parties simply submit their inputs to a trusted entity that runs the ideal

functionality and then receive their outputs directly from it, with no other interaction taking

place.

A protocol is said to be UC-secure if any attack in the real protocol execution (where no
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trusted party exists and the parties only interact with each other) does not provide the adversary

with more advantages than an attack in this ideal process. In other words, the behavior observed

in a real protocol execution should be ”emulatable” in the ideal process.

The term ”emulation” here is defined specifically: it means that for every adversarial strat-

egy in the real protocol, there exists a simulator in the ideal model that can produce a computa-

tionally indistinguishable output from what the adversary sees in the real protocol.

This requirement for emulation ensures that a UC-secure protocol maintains its security

properties even when composed with other protocols, providing a strong guarantee of security

in complex and unpredictable real-world environments. UC security is thus a powerful concept

for designing and analyzing cryptographic protocols, ensuring they remain secure under a wide

range of conditions and compositions.

In the realm of cryptographic protocols, the standard model of computation includes not

only the parties executing the protocol but also an adversary A who controls communication

channels and can potentially corrupt parties. A crucial concept in this context is emulation.This

implies that for every adversary A targeting a real protocol execution, a corresponding ideal

process adversary or simulator S should exist. The actions of S in the ideal process should

yield outputs for the parties that are virtually indistinguishable from those in the real execution.

The Universal Composability (UC) framework builds upon this concept by introducing an

extra adversarial element, the environment Z. This environment is responsible for generating

inputs for all parties, capturing all outputs, and engaging in unlimited interaction with the adver-

sary during the computation. As the name suggests, Z symbolizes the external environment that

includes various concurrent protocol executions in addition to the specific protocol in question.

Under the UC framework, a protocol is considered to UC-realize a certain ideal functional-

ity F if, for any real-life adversary A involved with the protocol, there exists an ideal-process

adversary S. This setup should be such that no environment Z can tell apart whether it is in-
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teracting with A and the protocol-running parties, or with S and the parties engaging with F

in the ideal process. In essence, Z acts as an interactive distinguisher, attempting to differ-

entiate between a protocol execution and the ideal process that accesses F . This framework

mandates that the ideal-process adversary (or simulator) S must interact with Z throughout the

computation without the possibility of rewinding Z.



Chapter 3

An E-voting System Based on Blockchain

In this chapter, we propose a decentralized e-voting system based on Ethereum. E-voting is an

important application of MPC. Specially, we make the following contributions.

• We have designed a decentralized voting protocol capable of resisting malicious activities

from voters during certain stages of the voting process. The implementation of this voting

scheme is realized through an Ethereum smart contract. This contract utilizes threshold

encryption and linkable ring signatures, operating without the need for a trusted third

party.

• The protocol ensures maximum privacy, guaranteeing that the results cannot be tallied

before the designated end time of the voting period. Additionally, the privacy of each

voter’s choice is impeccably protected, with the only exception being in the unlikely

event of a unanimous conspiracy among all other voters.

• The tallying process is autonomously executed by the smart contract, eliminating the

need for traditional election administrators and thereby reducing the risk of human error

or manipulation.

34
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3.1 Voting Protocol Description

We present an implementation of the voting protocol over the Ethereum private network with

truffle and remix. The election administrator must set up the contract according to the voting

rules to the blockchain. Then, publish the codes and provide the contract address. Through

this method, all voters can compile the code and verify whether the published code and the

smart contract on the Blockchain are the same. The administrator should also publish the list of

eligible voters. We assume that each entity has its own Ethereum account to send transactions.

In addition, we do not need voters to register their Ethereum accounts, and voters can change

their Ethereum account during the voting period. All the data sent to the blockchain must be

together with signatures to make sure they are from eligible voters.

3.1.1 Voting Protocol Entities Description

The election system usually involves several entities. For the sake of simplicity, we consider

that each entity consists of only one individual, but note that both of them could be thresholded.

• Election administrator: Response for setting up the election; set up the smart contracts;

identify the eligible voters with their public keys; publish the list of voters’ public keys

and the list of candidates.

• Voter: The eligible voters who have a pair of private-secret keys.

The smart contract on blockchain is written in Ethereum’s Solidity language. The smart

contract has the following functions:

• Control the processing of the election

• Verify if the message is sent by an eligible voter
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Figure 3.1: Voting stages description

• Store the data of secret share

• Verify the signature (linkable ring signature) of the vote

• Reconstruct the secret key

• Encrypt the vote

• Tally the vote and publish the final result

3.1.2 Voting Protocol Description

There are six stages in our election (as we show in 3.1). The election administrator is the

designated owner of the smart contract. The duty of the administrator is to authenticate the

voters and set the list of eligible voters with their public keys to the smart contract. The contract

allows any users to send messages but only stores the data sent from eligible voters with their

signatures and casts votes with correct linkable ring signatures.

In our protocol, we assume that Fq is a finite cyclic group with the order of prime number

q. E(Fq) is an elliptic curve over the finite group Fq. G is a base point of the curve E(Fq). l is

the order of the base point G. Let H1 be a cryptographic hash function that can map a number

into the finite cycle group Fq. Let H2 be a cryptographic hash function that can map an input

to a point of an elliptic curve [44]. Each stage of the election protocol is described below:



CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 37

Register: Each voter Pi (i ∈ [1, n]) begins the registration process by generating a pair of

public and secret keys (pki, ski) using a given security parameter. The public key is computed

as pki = skiG, where G is a generator of the elliptic curve group or a corresponding parameter

in the cryptosystem. Once the key pair is generated, the voter Pi securely transmits their public

key pki to the election administrator. This ensures that the election administrator can identify

registered voters while maintaining the confidentiality of their private keys.

Setup: The election administrator initializes the voting process by performing several criti-

cal tasks. First, the administrator sends the complete list of all voters’ public keys to the smart

contract. This ensures that the contract can verify voters during the election. Additionally, the

administrator defines a series of timers to manage the progression of the election process as

follows:

• tbegingeneration: Marks the start of the key generation process. The election administrator

sets up the Ethereum contract to initiate this phase at the specified time.

• tfinishgeneration: Specifies the deadline by which all voters must upload their key genera-

tion data.

• tbeginvote: Signals the Ethereum contract to allow the casting of votes starting from this

time.

• tfinishvote: Establishes the deadline for voters to submit their votes.

• tbeginreconstruction: Defines the time at which voters can begin uploading their secret shares

for threshold decryption.

• tfinishreconstruction: Sets the final deadline for voters to complete uploading their secret

shares.
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• tpublish: Indicates the time by which the Ethereum contract must publish the final election

result.

The election administrator also specifies two key parameters for the threshold encryption

scheme:

• n: The total number of registered voters.

• t: The minimum number of secret shares required for threshold key reconstruction.

Once these setup processes are complete, the election administrator publicly announces the

address of the smart contract and any relevant election information. Additionally, the admin-

istrator may set a registration deposit d, which serves as a financial deterrent against malicious

behavior. This deposit can be forfeited as a penalty for voters who act dishonestly or fail to

comply with the protocol.

Key Generation: Each voter Pi generates their key shares and distributes them securely as

follows:

1. Random Key Selection: Voter Pi selects a random secret xi ∈ Fq uniformly from the

field Fq and computes their public key share gi = xiG, where G is a generator of the elliptic

curve group.

2. Polynomial Creation: To securely distribute xi, Pi constructs a random polynomial

fi(z) ∈ Fq[z] of degree t− 1 such that fi(0) = xi. Specifically:

fi(z) = fi,0 + fi,1z + · · ·+ fi,t−1z
t−1, where fi,0 = xi.

3. Commitments to Coefficients: Voter Pi computes the commitments Fi,j = fi,jG for

j = 0, . . . , t − 1. Each voter sends (Fi,j, i, j) along with a signature generated using their
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private key ski to the blockchain via the smart contract.

4. Secret Share Distribution: Once all Fi,j values are uploaded to the blockchain, Pi cal-

culates the secret shares s′i,j = fi(j) for j = 1, . . . , n, representing the evaluation of fi(z) at

each voter index. These shares are encrypted using the public key pkj of the recipient voter Pj ,

resulting in si,j . Pi then sends (si,j, i, j) with their signature to the blockchain.

5. Decryption and Publication: Each voter Pi can decrypt their received shares sj,i for

j ∈ [1, n] and reconstruct their portion of the secret. All commitments Fi,j are published on the

blockchain for transparency.

6. Smart Contract Verification: - The smart contract verifies the signatures of Fi,j and si,j

using pki. - If any signature fails verification, the smart contract broadcasts an error. - Upon

successful verification, all Fi,j and si,j values are published.

7. Public Key Computation: The global public key is computed as:

g =
n∑

i=1

Fi,0,

which is publicly available. However, the corresponding secret key x =
∑n

i=1 xi remains

unknown unless all participants collaborate.

This process ensures secure distribution and verification of the key shares while maintain-

ing the privacy and integrity of the key generation process.

Vote: Each voter Pi computes their vote V
′
i based on their choice and the predefined coding

rules. The vote V ′
i is then encrypted using the global public key g, producing the encrypted vote

Vi. Voter Pi sends Vi (the encryption result) along with a linkable ring signature, constructed

using the public key list L published in the smart contract on the blockchain.

The smart contract on the blockchain verifies the signatures of all votes to ensure two key
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properties: 1. No voter casts more than one ballot (i.e., prevents double voting). 2. All votes

originate from eligible voters listed in the public key list.

By leveraging the linkable ring signature, the system ensures voter anonymity while main-

taining the integrity of the election process.

Subsecret Generation: Each voter Pi obtains s
′
j,i by decrypting si,j using their private key

ski. Voter Pi verifies the consistency of s
′
j,i for j ∈ [1, n]with the published values on the smart

contract by checking the following equation:

s
′

j,i ·G =
t−1∑
l=0

Fj,l · il,

where G is the generator of the elliptic curve group and Fj,l are the commitments to the coeffi-

cients of the polynomial provided by Pj .

After successful verification, Pi computes their share of the secret x, denoted as si, by

summing up all verified s′
j,i for j ∈ [1, n]:

si =
n∑

j=1

s
′

j,i.

This process ensures that each voter correctly reconstructs their individual share of the

global secret x while maintaining consistency and correctness of the distributed secrets.

Secret Upload: Each voter Pi uploads their share si along with their identifier i to the smart

contract, signing the submission using their private key ski.

The smart contract verifies the signatures to ensure the authenticity of the submitted shares.

Once t valid shares si are received, the smart contract reconstructs the global secret key x using
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the threshold encryption system. The reconstruction is performed as follows:

x =
t∑

j=1

sj ·
t∏

h=1,h ̸=j

h

h− j
(mod l),

where l is the modulus, and sj are the received shares.

This process ensures that the secret x can be reconstructed securely using the threshold t,

without requiring all n shares, thus preserving the robustness and fault tolerance of the system.

Tally: The smart contract uses the reconstructed secret key x to decrypt all encrypted votes,

obtaining the real votes while preserving their anonymity. After decrypting, the smart con-

tract tallies the votes to calculate the final result R. The final result is then published on the

blockchain, ensuring transparency and verifiability.

3.2 Voting Protocol Analysis

3.2.1 Correctness and Security Analysis

We will discuss the protocol in the following aspects as mentioned in [36]:

• Correctness: The smart contracts deployed on the Ethereum network provide a decen-

tralized and tamper-proof computing environment, ensuring that the final result is com-

puted correctly without the possibility of alteration.

• Robustness: In our protocol, semi-honest voters cannot disrupt the voting process. Even

if some malicious voters fail to upload their secret shares during the secret upload phase,

the final result will still be computed correctly due to the threshold encryption scheme.

Transactions with incorrect signatures or invalid linkable ring signatures are automati-

cally rejected by the smart contract, further ensuring the protocol’s robustness.
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• Privacy: Each vote sent to the blockchain is accompanied by a signature generated using

a private key, with the corresponding public key already registered. The use of linkable

ring signatures ensures that no entity, including voters, candidates, or the election admin-

istrator, can identify the origin of a signature with a probability greater than 1/n, where

n is the total number of voters. This guarantees strong voter anonymity.

• Double-voting Avoidance: The linkable ring signature mechanism allows the smart con-

tract to detect and prevent double voting. Legal signature features are stored on the

blockchain, and any new signature is verified against the stored features to ensure it has

not been used before. As a result, each eligible voter can cast their vote only once.

• Validity: All eligible voters must register their public keys with the election administrator

and securely keep their private keys. Messages sent to the smart contract must be signed

with the private keys, and no valid signature can be generated without knowledge of the

corresponding private key. This ensures that all submitted ballots are valid.

• Fairness: Votes stored on the public ledger remain encrypted and are only decrypted

during the tally phase by the smart contract. This ensures that no one, including voters and

administrators, can access the results before the voting process is complete. Intermediate

results cannot be inferred, preventing any undue influence on the ongoing voting process.

• Verifiability: Anyone with access to the address of the voting smart contract can verify

that all ballots are counted correctly. Additionally, voters can check if their votes have

been successfully cast by verifying the presence of their ballots in the smart contract.

In order to show the security of our protocol, we will discuss two typical attacks.

• Man-in-middle Attacks: All messages sent by voters are signed by private key. The

correctness of messages is guaranteed by the signature algorithm. In this way, all mes-

sages could not be forged or tampered with. In addition, all public keys are recorded
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on the blockchain so that attackers cannot replace the public key to achieve the goal of

attacking.

• Dos Attacks: In our system, the attacker could not have the ability to destroy all nodes

of the blockchain network. So, our protocol could resist the Dos attack. If the network

service is provided in a relatively centralized manner, a DoS attack is feasible. In addi-

tion, the server’s ability to handle large numbers of requests is relatively limited. Dis-

tributing services on different nodes is one of the solutions for DoS attacks because it is

almost impossible for an attacker to destroy all servers. The underlying framework of the

blockchain adopted by this solution can ensure that the system resists DOS attacks.

3.2.2 Decentralized and Trustless Analysis

The voting system proposed in this paper is a decentralized voting system, mainly reflected in

two ways:

(1) The voting program in this paper is set up as a smart contract, and the smart contract

is carried on the blockchain network. The blockchain network interacts with a peer-to-peer

network. Therefore, the system proposed in this paper is a decentralized and trustless voting

system. This is why all programs deployed on the blockchain become distributed applications

(Dapps).

(2) In this voting protocol, there is no central role. The central role is that of the person who

plays a vital role in the election process. If the role maliciously destroys the voting, the entire

voting result will be tampered with. For example, in some election agreements, the election

administrator performs crucial operations in the voting process�such as decrypting the voting

result. However, there is no such role in the protocol of this paper, and the trust in the protocol

is dispersed to all voters. Therefore, from this perspective, the agreement on this topic is a

decentralized and trustless voting system.
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3.2.3 Time Cost Analysis

The implementation of each function in the protocol is written in Python. To evaluate the com-

putational performance, we tested the program on aMacBook Pro running macOS 10.13.6. The

machine is equipped with an Intel Core i5 processor (4 cores, 2.9 GHz) and 8GB DDR3 RAM.

All measurements are recorded in milliseconds for accuracy.

To analyze the scalability of the protocol, we conducted tests with varying numbers of vot-

ers, setting n = 10, 20, 30, 40. Here, n represents the total number of voters, and t = 0.7n

indicates the threshold of voters required to correctly upload their secrets. This ensures that

even with some malicious or offline voters, the protocol remains robust if t voters participate

honestly.

For n = 30, Table III provides the average computation time for each operation per voter.

The operations include key generation, polynomial computation, signature generation, verifi-

cation of other voters’ shares, subsecret reconstruction, and ballot creation.

Table 3.1: Average running time for each operation (n = 30)

Operation Description Time (ms)

A: Generate public/private key pair 36.19

B: Compute Fi,j, fi(j) with signature 4,900.23

C: Verify fi(j) from other voters 0.23

D: Compute global public key 4.01

E: Reconstruct subsecret 0.08

F: Create ballot with signature 558.08

To investigate how the computation time scales with the number of voters, we measured the

running time for different operations at n = 10, 20, 30, 40. These results are visualized in Figure

3, where the x-axis represents the number of voters, and the y-axis shows the computation time
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(in milliseconds) on a logarithmic scale.
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Figure 3.2: Running time of different operations across voter counts

From Figure 3, it is evident that the computation times for most operations, such as key gen-

eration (A) and ballot creation (F), remain constant as the number of voters increases. This indi-

cates these operations are independent of n. In contrast, operations such as polynomial compu-

tation (B) and global public key computation (D) scale linearly with n, as they involve data from

all voters. Verification (C) and subsecret reconstruction (E) are computationally lightweight,

even with increasing n, highlighting their efficiency.

Overall, the execution times for all operations remain within acceptable levels, ranging from

milliseconds to a few seconds. This ensures the protocol is practical and efficient, even for

moderately sized elections, and provides a seamless voting experience for all participants.

3.3 Voting Protocol Comparison

In this section, we compare our protocol with other protocols based on smart contracts.

In protocol II (McCorry [66]), if any voter behaves maliciously during the voting process,

the entire election can be disrupted, and the votes cannot be tallied correctly. In contrast, proto-

col I (our protocol) is robust against malicious voters. Any malicious behavior can be detected,



CHAPTER 3. AN E-VOTING SYSTEM BASED ON BLOCKCHAIN 46

Table 3.2: Protocol comparison

Protocol Handles Malicious Voters Self-Tally Requires Whitelist Rounds
I: Our protocol Yes Yes No 3
II: McCorry [66] No (Destroyed) Yes Yes 2
III: Yu [90] Yes No Yes 1

and such voters can be excluded from the protocol. Moreover, during the key generation phase,

even if some voters act maliciously, as long as there are enough honest voters (exceeding the

threshold set by the election administrator) who upload their subsecrets, the protocol can still

produce a correct final result.

Another distinction lies in the tallying process. In protocol I, the tallying is performed au-

tonomously by the smart contract, ensuring decentralization and removing reliance on a single

party. In protocol III (Yu [90]), however, the tallying process is handled by an election admin-

istrator. If the administrator fails to act, the entire voting process will be compromised.

Protocol I also eliminates the need for a whitelist containing all eligible Ethereum addresses.

Instead, the protocol uses signatures to verify voter identities, allowing voters to change their

Ethereum addresses during the voting process, which enhances voter privacy. This functionality

is a key advantage over protocols like II and III, which rely on fixed whitelists.

However, protocol I involves three communication rounds, making it slightly more complex

than the other protocols. Despite this, it provides stronger privacy protections compared to the

alternatives.



Chapter 4

Two-party k-means Clustering Protocol

In this chapter, we present an efficient two-party privacy-preserving collaborative k-means clus-

tering protocol with the following properties.

• Each party’s database is stored in its encrypted form in the cloud.

• The k-means clustering protocol needs to work on the combined set of records of both

parties (i.e., the overall dataset is horizontally partitioned to the two parties).

• The encrypted clustering result is sent to each party for decryption so as to keep it private

from the cloud or any other party.

To achieve the above properties, the underlying encryption algorithm has to support some

specific operations, including distance computation, distance comparison, and centroids re-

computation on encrypted data. In this paper, we use Paillier encryption as the underlying

encryption algorithm and extend it to support various operations.

47
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4.1 Protocol Description

The high-level idea is as follows. For distance computation, we consider Euclidean distance.

We require that both addition and multiplication operations are performed on ciphertext, and

the result is also encrypted. However, Paillier encryption only supports additive homomorphic

operation, i.e. E(x)E(y) = E(x + y). We adopt the Secure Multiplication (SM ) protocol

introduced in [34] to output E(xy), with one-round interaction with the corresponding secret

key owner, given input of E(x) and E(y). Then E((x− y)2) can be computed by running SM

with input E(x− y) and E(x− y), where E(x− y) = E(x)E(y)N−1.

For distance comparison, it requires order-preserving encryption. Paillier encryption is ob-

viously not appropriate. The idea is to compare two distance values bit by bit, from the most

significant bit to the least one in encrypted form.

For centroid re-computation, we can deduce it to a protocol with input x1 by P1, x2 by P2,

x∗
3 by C to output x1+x2

x∗
3

to both P1 and P2 but not C. According to the protocol introduced

in [75] with the same input as the proposed protocol’s, output x1+x2

x∗
3

to P1, P2 and C. We then

set up a garbled circuit to compute x1+x2

x3⊕x4
and regard SHA256 as the commit method to meet

the requirement.

In addition to the functionalities discussed above, efficiency is another important aspect.

First of all, the encryption algorithm used for each data owner should not be complicated. The

corresponding encrypted data size should be as small as possible. Then, to cluster the encrypted

data, both the total number of interactions among P1, P2 and C, and the computation executed

on P1, P2 and C should be as little as possible. Lastly, the communication payload (the data

transferred among P1, P2 and C) should be low, although this may not be as important as other

concerns.

In the design, each party executes Paillier encryption once. The total number of interactions



CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 49

is bounded by O((m + n)k), where m and n are the total numbers of records provided by P1

and P2, respectively, for each iteration in k-means clustering. In the step of k centroids re-

computation, we choose to use the garbled circuit to achieve the computation of x1+x2

x∗
3

. Once

the corresponding garbled circuit is built, the computation is very fast.

4.1.1 Framework and Notation

The framework is illustrated in Figure 4.1. P1 has secret key sk1 and P2 has secret key sk2. Each

has a dataset, Dx and Dy, respectively. Dx has m data points and Dy has n data points. Every

data point is a ℓ-dimensional vector. In other words, every data point has ℓ attributes. (1) To

outsource the storage while guaranteeing privacy,Dx andDy are encrypted by pk1 and pk2, and

uploaded to C by P1 and P2, respectively. (2) C randomly chooses k centroidsM for k clusters.

(3) C computes distances between each centroid and each record in Dx and Dy, with the help

of P1 and P2. (4) By distance comparison, all records can be clustered to the nearest centroid.

(5) C, P1 and P2 jointly re-compute the new set of k centroids. Note that the k centroids are

known only to P1 and P2. Once the distances of the new k centroids to the previous k centroids

are all within a threshold value vector τ = {τc|1 ≤ c ≤ k}, P1 and P2 will request C for the

clustering records for decryption. Then the protocol ends. Otherwise, P1 and P2 encrypt the

new k centroids by their public keys and upload the ciphertext to C, respectively. Then P1 and

P2 ask C to compute distances again.

We allow the dataset D to be horizontal partitioned between P1 and P2, each of which has

Dx andDy. If not explicitly specified, the Euclidean distance is used in our k-means clustering

algorithm. Only numerical data is supported. The threshold value vector to end our protocol τ

should be fine-tuned according to the applications. Paillier Encryption is used to encrypt data.

(pk1, sk1) and (pk2, sk2) are P1 and P2’s public and secret key pairs generated by K.
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Figure 4.1: Framework of privacy-preserving collaborative k-means clustering protocol

4.1.2 Two-party k-means Collaborative Clustering Protocol

k-means clustering algorithm is a classical clustering algorithm based on distance. To support

clustering under our setting, we extend it to collaborative clustering here. Denote the training

data of the two parties, P1 and P2, by {xi ∈ N ℓ|1 ≤ i ≤ ℓ} and {yi ∈ N ℓ|1 ≤ i ≤ ℓ}. The

algorithm is illustrated in Protocol 5. We shall focus on how to execute the computations, such

as multiplication, addition, comparison, etc., in ciphertext mode.

Protocol 5: Two-party k-means collaborative clustering algorithm
1. P1 and P2 share k centroidsM = {µc ∈ N ℓ|1 ≤ c ≤ k} randomly selected.
2. Repeat the following algorithm to converge {

For each i ∈ {1, · · · , ℓ}, compute argminc||xi − µc||2, 1 ≤ c ≤ k,
Cx

c = Cx
c

⋃
{xi} which records all xi’s that has the nearest distance to µc.

Similarly compute argminc||yi − µc||2, 1 ≤ c ≤ k, and Cy
c = Cy

c

⋃
{yi}.

For every cluster c, recompute the new centroid µc :=
sumx+sumy

|Cx
c |+|Cy

c |
, where

sumx =
∑

xi∈Cx
c

xi, sumy =
∑

yi∈Cy
c

yi,

|Cx
c | and |Cy

c | denote the numbers of xi’s and yi’s in Cx
c and Cy

c . }
* || · || denotes the Euclidean distance.
* The condition to converge is that Cx

c and Cy
c keep fixed.
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4.1.3 Secure Garbled Circuit Protocol Supporting x1+x2

x∗
3

We symbolize the three parties in the protocol by P1, P2 and C, their respective inputs by x1,

x2 or x∗
3 and their collective output by y. They collaborate to compute the following function

securely, y = f(x1, x2, x
∗
3) =

x1+x2

x∗
3

. To simplify the problem, we assume that |xi| = |y| = m.

In the following, we target the following: P1 and P2 can learn the same output y while C cannot

get the output y with these garbled values. This protocol uses a scheme of garbling, a four-

tuple algorithm δ = (Gb,En,De,Ev), as the underlying algorithm. Gb is a randomized garbling

algorithm that performs the transformation. En and De are encoding and decoding algorithms,

respectively. Ev is the algorithm that derives garbled output on the basis of garbled input and

garbled circuit.

We firstly transform division to multiplication. We use the SHA256 hash function as the

commit method. f ′ is the function of a+b
c⊕d

which a, b, c and d are all 32 bits and the result is 65

bits. We also set up a garble circuit F by using AND/NOT/OR/XOR gates whose total number

is 12,470. The details of the protocol are described in Protocol 6.

4.1.4 Details of the Privacy-preserving Collaborative k-means Clustering

Protocol

In this section, we present the detailed steps of the proposed privacy-preserving collaborative

k-means clustering protocol.

Step 1 P1 and P2 upload encrypted data

P1 and P2 encrypt their data Dx and Dy to Cx and Cy, and upload to the cloud C, re-

spectively.

Cx = {Cxi
|1 ≤ i ≤ m}, where Cxi

= {Cxij
= Epk1(xij)|1 ≤ j ≤ ℓ}

Cy = {Cyi |1 ≤ i ≤ n}, where Cyi = {Cyij = Epk2(yij)|1 ≤ j ≤ ℓ}
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Protocol 6: SC(x1, x2, x
∗
3)→ y

Require: In our experiment, we calculate x1+x2

x∗
3

which P1 has x1, P2 has x2 and C has x∗
3. We

use SH256 as the commit method. f ′ is the function of a+b
c⊕d

which a, b, c and d are all of 32
bits and the result is of 128 bits.
1. C:

(a) Sampling a common random string, can also be expressed as crs for the commitment
scheme and randomly secret-shares his input x∗

3 as x∗
3 = x3 ⊕ x4.

(b) Send x3 to P1 and x4 to P2 and broadcast common random string b to both parties.
2. P1:

Choose random pseudo-random function seed r ← {0, 1}k and send it to P2.
3. P1 and P2:

(a) Garble the function f ′ via Gb1(1λ, f ′
)→ (F, e, d) where F is the garble circuit, e is

the encoding array and d is the decoding array.
(b) For j ∈ [0, 128], a ∈ {0, 1}. generate the following commitments:

σa
j = e[j, b[j]⊕ a], Ca

j = hash(σa
j )

(c) Both P1 and P2 send the following values to C:

(b[65...128], F, {Ca
j }j,a)

4. C:
Abort if P1 and P2 report different values for these items.

5. P1 and P2:
(a) P1 sends de-commitment σ

x1[j]⊕b[j]
j and σx3[j]⊕b[2m+j]

2m+j to C
(b) P2 sends de-commitment σ

x2[j]⊕b[m+j]
m+j and σx4[j]⊕b[3m+j]

3m+j to C
6. C:

(a) For j ∈ [128], compute Ca′
j = hash(σa

j ), check Ca′
j = Ca

j , for the appropriate o[j]. If
not, then abort. Similarly, C knows the values b[2m+ 1, · · · , 4m], and aborts if P1 or P2 did
not open the “expected” commitments σx1[j]⊕b[2m+j]

2m+j and σx1[j]⊕b[3m+j]
3m+j corresponding to the

garbled encodings of x3 and x4

(b) Run Y ←− Ev(F,X) and broadcast Y to P1 and P2

7. P1 and P2:
Compute y = De(d, Y ). If y ̸= ⊥, then output y. Otherwise, abort
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Step 2 Cloud C randomly chooses k centroids for k clusters

C randomly chooses the set of k centroids Φ = {µc|1 ≤ c ≤ k}, where each µc =

{ucj|1 ≤ j ≤ ℓ}. Encrypt it using P1 and P2
′s public keys, pk1 and pk2, respectively,

and store as C1
µ and C2

µ.

C1
µ = {C1

µc
|1 ≤ c ≤ k}, where C1

µc
= {C1

µcj
= Epk1(µcj)|1 ≤ j ≤ ℓ}

C2
µ = {C2

µc
|1 ≤ c ≤ k}, where C2

µc
= {C2

µcj
= Epk2(µcj)|1 ≤ j ≤ ℓ}

C1
µ and C2

µ are sent to P1 and P2, respectively. After decryption, Φ is stored by P1 and

P2, respectively, for comparison use later in Step 5.

Step 3 Cloud C computes distances

C computes all encrypted distances between each recordCxi
and each centroid C1

µc
, and

distances between each record Cyi and C2
µc
, as follows.

CD1 = {CD1
i = {cd1ic = SSED(Cxi

, C1
µc
)|1 ≤ c ≤ k}|1 ≤ i ≤ m}

CD2 = {CD2
i = {cd2ic = SSED(Cxi

, C2
µc
)|1 ≤ c ≤ k}|1 ≤ i ≤ m}

Specifically, C and P1 run SSED to compute the distance between each xi and µc in

encrypted form, denoted by cd1id. Similarly, C and P2 run SSED to compute the distance

between each yi and µc in encrypted form, denoted by cd2ic. All distances from xi to µc

are stored in CD1
i , and those from yi to µc are stored in CD2

i .

Step 4 Cloud C clusters records to k clusters for P1 and P2

By comparing the distances inCD1
i andCD2

i , xi and yiwill be clustered to the cth cluster

if and only if cd1ic and cd2ic are the smallest distance in CD1
i and CD2

i , respectively. For

encrypted distance comparison, C runs SMINk(CD1
i ) with P1 and SMINk(CD2

i ) with

P2, as follows. Then, Cxi
and Cyi will be assigned to CL1

c and CL2
c , respectively. As a

result, each CL1
c stores the encrypted data Cxi

whose distance to the cth centroid µc is
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the shortest among all the k centroids. In other words, xi belongs to the cth cluster. The

same as CL2
c .

CL1 = {CL1
c = {Cxi

|cd1ic = min(CD1
i ) = SMINk(CD1

i )}|1 ≤ c ≤ k}

CL2 = {CL2
c = {Cxi

|cd2ic = min(CD2
i ) = SMINk(CD2

i )}|1 ≤ c ≤ k}

Step 5 Cloud C, P1 and P2 jointly re-compute k centroids

Now, C is required to find the new centroid within each cluster, given all the data in the

cluster. Note that there are two sub-clusters in each cluster CL1
c and CL2

c as the data in

those two sub-clusters are encrypted by different public keys pk1 and pk2. Therefore,

the computation of µ′
cj =

∑
i,s.t.,Cxi∈CL1

c
xij+

∑
i,s.t.,Cyi∈CL2

c
yij

|CL1
c |+|CL2

c |
in not straightforward. Our

idea is to send CL1
c and CL2

c to P1 and P2 for decryption first. Let L1
c and L2

c denote the

decrypted data in the cth cluster owned by P1 and P2, respectively. Then we have

L1
c = {xi = {xij = Dsk1(Cxij

)|1 ≤ j ≤ ℓ}|Cxi
∈ CL1

c}

L2
c = {yi = {yij = Dsk2(Cyij)|1 ≤ j ≤ ℓ}|Cyi ∈ CL2

c}

Then, P1, P2 and C jointly run SC(
∑

i,s.t.,Cxi∈CL1
c
xij,

∑
i,s.t.,Cyi∈CL2

c
yij,

A|L1
c |+ |L1

c |) to calculate each component of the c-th centroid µ
′
cj . SC guarantees both

P1 and P2 can get all the new k centroids in plaintext. Let Φ′
= {µ′

c|1 ≤ c ≤ k},

where µ′
c = {µ

′
cj|1 ≤ j ≤ ℓ}. Denote Φ − Φ

′
= {|µc − µ

′
c||1 ≤ c ≤ k} the distance

set of the newly generated k centroids to the previous k centroids, where |µc − µ
′
c| =∑i

j=1(|µcj − µ
′
cj|).

Step 6 P1 and P2 decrypt CL1 and CL2 or go to Step 3.

Once |µc − µ
′
c| ≤ τc for each c, P1 and P2 request C for the clustered records CL1 and

CL2 for decryption, respectively. Then, the protocol ends. Otherwise, P1 and P2 encrypt
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the new k centroids by their public keys and upload them to C. Then go to Step 3 and

iterate.

4.2 Protocol Security Analysis

4.2.1 Security Model

During the first 4 steps described in Section 3.4, P1 and P2 interact with C, respectively, with

no interactions between P1 and P2 or among P1, P2, and C. Note that P1 and P2 outsource

the encrypted distance computation and comparison to C. Since traditional Paillier encryption

cannot support the above two operations at the same time, help from P1 and P2 is required, which

introduces the extra interactions between P1 and C, P2 and C. Therefore, the security underlying

is essentially secure computation outsourcing. In a semi-honest model, the honest-but-curious

cloud will honestly execute the outsourced computation protocols while being motivated to

learn any information of P1 and P2’s raw data or the computation result for financial gains.

In the last step, where F (x1, x2, x
∗
3) =

x1+x2

x∗
3

is required with each input x1, x2, x
∗
3 of P1, P2

and C, it is indeed a three-party secure computation. We adapt the model of 1-out-of-3 active

security where C is actively corrupted [67].

4.2.2 Security Analysis

As for Paillier encryption, we cannot decrypt the ciphertext without the private key. So, each

date owner encrypts the data they own. Both the cloud and any other party cannot decrypt it.

Due to the semantic security of the Paillier cryptosystem, one party’s input is protected from

the other party.

Here, the security of the scheme under the semi-honest model is verified mainly by attack
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mode, and in the secure circuit protocol, even if either party is a malicious party, the scheme

is still safe. There are two main types of attacks: two-party attacks and attacks from the cloud

platform.

P1 and P2’s data are encrypted with their own public keys and uploaded to the cloud server.

Even if they get the other party’s ciphertext, they still cannot get the plaintext through the ci-

phertext. Cloud platforms may have some background knowledge about the data, so a statistical

attack may be feasible. First, because Paillier is a non-deterministic encryption, even if it is the

same plaintext, the encrypted ciphertext is different. During the implementation of the protocol,

the data obtained by the cloud platform is in the form of a ciphertext, so the cloud cannot obtain

any information in the plaintext through the ciphertext.

We can prove the SC protocol is secure against one single malicious party as follows:

Assume that P1 is corrupted (the case for P2 is similar). The other two parties are honest. We

need to prove that all environments cannot be distinguished whether the protocol is executed

under actual conditions or in an ideal situation. The information available to the environment

consists mainly of two parts: the information sent by the malicious party and the final output

of the protocol based on the information it obtains. As long as the information obtained by the

environment cannot be used to distinguish the two conditions (actual and ideal), the environment

cannot be distinguished whether the protocol is executed under an actual condition or an ideal

condition.

The simulator takes the role as honest P2 and C obtaining their inputs x2 and x3∗ on their

behalf. Then the simulator sends a random value rcrs and a random share rx3 to P1; it can abort if

P1 has changed the commitment; otherwise it extracts x1 = o⊕b[1...m] and sends it to the ideal

functionalityFf . It receives y, and sends Y to P1. We can get the V iewenv
real = {crs, x3, Y, y} and

V iewenv
ideal = {rcrs, rx3 , Y, y}. Because crs and x3 are pseudorandom numbers and rcrs and rx3

are random numbers, all environments cannot distinguish them with non-negligible probability.
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Next, we consider a corrupted C: The simulator takes the role as both honest P1 and P2. It

extracts x∗
3 = x3 ⊕ x4 and sends it to Ff , obtaining the output y in return. Then it produces

a simulated garbled circuit/input(F,X) using y. We can get the V iewenv
real = {C

o[j]
j , o, y} and

V iewenv
ideal = {C

ro[j]
j , ro, y}. Because o are pseudorandom numbers and rcrs and ro are random

numbers, all environments cannot distinguish them with non-negligible probability.

Therefore, the SC protocol is secure against a single malicious party.

4.3 Protocol Performance Analysis

The time consumption of the k-means clustering algorithm with privacy protection is mainly

divided into three parts: time consumption of the client, communication consumption, and time

consumption of the server, where the client and server time consumption include the time con-

sumption of the initialization phase and the protocol running phase. Because this paper is dif-

ferent from the method used in [65], it can only be compared from a macro perspective. The

comparison mainly includes two aspects: one is theoretical complexity analysis, including time

complexity, space complexity, and communication complexity, and the other is the compar-

ison of test results in experiments. The number of different iterations will affect the overall

performance of the experiment, so one iteration will be considered.

4.3.1 Theoretical Analysis

In the paper, we assume that cloud C has extensive computational power. Thus, the computa-

tional time used by C is not considered. Each data owner does not need to store the ciphertext;

they just encrypt the message with the public key and decrypt the ciphertext with the private

key.

Every iteration, data owners will provide some information and this information will be
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Table 4.1: Time complexity comparison with [65]

this paper [65]
Encryption O(n ∗ l) O(n ∗ l)
Euclidean
distance

O(n ∗ k ∗ l) O(n ∗ k ∗ l)

Minimum
distance

O(n ∗ k ∗ α) O(n ∗ k)

x1+x2

x∗
3

O(4m ∗ k ∗ l) O(n)

* Euclidean distance and minimum distance correspond to SSED and SMINk, respectively in
this paper.

Table 4.2: Space complexity comparison with [65]

this paper [65]
Encryption O(n ∗ l) O(l ∗ n)
Euclidean
distance

O(n ∗ k ∗ l) O(n ∗ k ∗ l)

Minimum
distance

O(n ∗ k) O(n ∗ k)

x1+x2

x∗
3

O(k ∗ l) O(k ∗ l)

computed in each iteration, and P1, P2 and C will recalculate the cluster. We assume that t is the

times of iteration, n is the data size of P1 and P2, l is the dimension of the data, α is the binary

bits of the data,m is the bits of the garbled circuit.

In each iteration, firstly, each data owner will execute SEED protocol and SMINk protocol

with C. There are two interactions in SEED protocol and two interactions in SMINk protocol.

Then, P1, P2 and C will execute 6 times interactions in SC protocol. Finally, each data owner

will execute 1 times interactions when they upload new centroids to C. The time complexity

comparison with [65] is shown in Table 4.1.

When P1 and P2 both upload the encrypted data to the cloud, two parties can delete the data

without storing the plaintext data or ciphertext data. They only need to store their public and

private keys. Cloud C needs to store all ciphertexts. For each data point, center point distance,

and round of iterative categorization, the cloud C needs the required storage space to record the

clustering results. The space complexity comparison with [65] is shown in Table 4.2.
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Table 4.3: Communication complexity comparison with [65]

this paper [65]
Encryption O(1) O(1)
Euclidean
distance

O(n ∗ l ∗ k) O(1)

Minimum
distance

O(n ∗ k) O(k + n)

x1+x2

x∗
3

O(k ∗ l) O(1)

In the first step and the second step, P1 and P2 upload their own data and the encrypted cluster

center to the cloud, respectively, which requires four iterations. The following is an analysis of

the communication complexity for each iteration. In the third step, P1 and P2 are respectively

executed in the secure distance calculation protocol with the cloud. In the fourth step, P1 and P2

need to interact with each other when executing security comparison protocol with the cloud. In

the fifth step, P1, P2 and cloud execute a secure circuit protocol that recalculates the clustering

center. The communication complexity comparison with [65] is shown in Table 4.3.

4.3.2 Experimental Analysis

The framework used by the k-means clustering algorithm with privacy protection proposed

in this paper was first proposed in the [65]. Compared with the clustering algorithms in other

frameworks, the clustering algorithm under the same framework can be easily compared. There-

fore, we mainly compare the protocol with the [65]. In order to ensure the reliability of the

experimental comparison, both schemes were run in the same experimental environment. The

evaluation criteria of the two schemes will be introduced below, and a comparative analysis of

the experimental results will be carried out.
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Table 4.4: Time of encryption of the proposed protocol

data size 3-dimension(ms) 7-dimension(ms)
500 1,730 4,227
1,000 3,603 8,330
2,000 7,504 16,287
5,000 17,690 35,917
10,000 34,929 80,543

Table 4.5: Time of encryption of paper [65]

data size 3-dimension(ms) 7-dimension(ms)
500 2,391 5,084
1,000 4,587 11,468
2,000 9,413 21,487
5,000 20,657 43,186
10,000 40,894 87,461

4.3.3 Analysis of Results

In theory, the performance of the protocol is better than those in the literature in terms of time

complexity, space complexity and communication complexity [65]. Now, we want to verify

the results based on experiments. We first compare the encryption time consumption of the

two schemes. In the two encryption methods used in [65], all plaintext data must be encrypted

once by the improved Liu encryption scheme and once by Paillier encryption scheme. All the

plaintext data in this paper’s scheme only needs one Paillier encryption. In theory, the encryp-

tion time in the scheme in this paper should be faster than the literature [65]. And because

Paillier’s operation is on the group, there are many exponential operations, and the improved

Liu encryption scheme is linear, so most of the encryption time is consumed by Paillier encryp-

tion. Therefore, the encryption time consumption in this paper will be slightly less than the

encryption time consumption in [65], but there is no order of magnitude difference in time. The

experimental results provide strong support for this conclusion. The encryption time consump-

tion in [65] is shown in Table 4.5. The encryption time consumption of this paper is shown in

Table 4.4.

Next, we counted and compared the time spent in an iteration. In theory, the cloud platform
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Table 4.6: Time comparison with [65] in one iteration

data size this paper(ms) [65](ms)
500 23,872 13,279
1,000 25,095 20,528
2,000 25,572 27,276
5,000 32,640 33,508
10,000 42,746 51,324

introduced in this paper has improved the powerful computing power and should be slightly

better than the operating efficiency in the literature [65]. Because the cloud platform is com-

posed of 30 PCs and one server, it is necessary to perform task division, task scheduling, and

data recovery for each machine during the processing of tasks. These operations also consume

part of the time. When there are more data points, the time of one iteration will be longer, and

the proportion of time consumed by operations such as task division will be lower. When the

point size is small, the efficiency of one iteration in [65] will be higher than that in this paper.

When the data point size is larger than a certain threshold, the efficiency of one iteration of this

paper will be higher than that of the literature [65]. In the solution, as the data scale becomes

larger and larger, the efficiency advantage of the scheme in this paper will become more and

more obvious. The experimental results are a good demonstration of the point of view. At the

same time, the experimental results show that the threshold of the data point size is about 5,000

data points. When the data size is larger than 7000, the paper has less time to consume in one

iteration. When the data size is less than 5,000, In the literature [65], the scheme consumes less

time in one iteration. The time-consuming pairs of the two schemes are shown in Table 4.6.

In one iteration, we are not only concerned with the time consumption in this iteration but

also hope that in each iteration, server C can take on more tasks and have a higher consumption

time ratio. As the size of the data increases, such programs will become more efficient. For

the client, the main thing to do is the encryption and decryption operations. In both operations,

the number of encryption and decryption of the client is basically the same. However, in the

[65] scheme, the ciphertext distance calculation and the ciphertext distance comparison size are
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Table 4.7: Time of each participant in one iteration of the proposed paper

data size C(ms) P1(ms) P2(ms)
500 20,923 385 354
1,000 23,296 747 691
2,000 24,381 1,501 1,328
5,000 24,639 3,564 3,276
10,000 31,618 6,301 6,247

Table 4.8: Time of each participant in one iteration of [65]

data size C(ms) P1(ms) P2(ms)
500 12,503 294 304
1,000 19,370 327 348
2,000 25,357 412 426
5,000 31,076 621 607
10,000 49,814 652 658

improved Liu encryption, all operations of the encryption are linear operations, and the scheme

in this paper adopts the Paillier encryption algorithm. The decryption of the algorithm requires

exponential and modular operations on the group. For clients with less computing power, the

improved Liu encryption algorithm should take less time than the Paillier encryption used in

this paper. Therefore, theoretically, under the same-scale data set, the time spent by the client

in the [65] will be lower than the time consumed by the client in the scheme of this paper. As

the size of the data increases, the time spent in one iteration of this paper is relatively small, and

the time consumed by the client is relatively large. Therefore, when the data size gets larger

and larger, the client time consumption in this paper scheme is more and more large, and the

occupation time of the server is relatively smaller. The time consumption of each participant in

one iteration of the two schemes is shown in Table 4.7 and Table 4.8.

Finally, the time of k-means clustering algorithm with privacy protection and the classic

k-means algorithm in one iteration is given. It can be seen that the time consumption caused by

encryption is relatively large. However, as the size of the data increases, the ratio of the time

consumption of an iteration to the classic k-means time consumption gets smaller and smaller.

The time spent on this paper and the classic k-means algorithm in one iteration is shown in

Table 4.9. The decryption time consumption of this paper is shown in Table 4.10.



CHAPTER 4. TWO-PARTY k-MEANS CLUSTERING PROTOCOL 63

Table 4.9: Time comparison in one iteration

data size encryption(ms) no encryption(ms)
500 23,872 7
1,000 25,095 7
2,000 25,572 9
5,000 32,640 24
10,000 42,746 50

Table 4.10: Time of decryption of the proposed protocol

data size 3-dimension(ms) 7-dimension(ms)
500 93 111
1,000 149 278
2,000 169 294
5,000 352 760
10,000 629 1,443

4.4 Potential Applications

The proposed privacy-preserving k-means clustering protocol has significant potential for ap-

plications in various scenarios where sensitive data needs to be analyzed collaboratively without

compromising privacy. Some representative use cases include:

• Large-Scale Voting Statistics: In large-scale elections or surveys, analyzing voting pat-

terns or producing statistical results often requires collaboration among multiple regions

or organizations. Privacy-preserving clustering ensures that individual votes and sensi-

tive data remain confidential while enabling accurate statistical analysis.

• Healthcare and Medical Research: Hospitals and research institutions can collabo-

rate on analyzing patient records to identify disease patterns or classify patients into risk

groups without compromising the confidentiality of individual records.

• Financial Services: Banks and financial institutions can leverage the protocol to perform

collaborative analyses such as fraud detection, customer segmentation, and credit risk

assessment while maintaining data privacy.
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• Cross-Industry Collaboration: Organizations from different sectors, such as supply

chain management or smart city planning, can jointly analyze data without exposing pro-

prietary or personal information.

These examples demonstrate the versatility of the protocol in addressing privacy concerns

while enabling secure and meaningful collaboration. Further research can focus on adapting the

protocol to specific domain challenges and optimizing its efficiency in large-scale applications.



Chapter 5

Fluid MPC

In this chapter, we propose a fluid MPC protocol that supports dynamic participation. In this

work, we study MPC with dynamically evolving parties in the dishonest majority setting. This

gives much stronger security guarantees since we only require that in any given round of the

computation, there is at least one honest party taking part. However, it is also more challenging

than the honest majority. We now elaborate on our contributions.

• In this paper, we propose a multi-party computation called dynamic SPDZ, which sup-

ports a dishonest majority secure model. In addition, the set of parties involved during

the execution could be changed.

• We first propose a 1-to-n oblivious linear evaluation protocol in the all but one dishonest

majority secure model based on the 1-to-1 oblivious linear evaluation protocol structured

from lattice learning with error.

• Compared to other fluid MPC protocols, the computation and communication costs are

extremely low.

65
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5.1 Protocol Overview

The whole protocol serves as a client-server model. We regard the parties who hold private

input as clients and the parties who carry out computation tasks as servers.

The protocol is divided into four parts: preprocessing, input, execution, and output. The

execution stage is divided into epochs. Each epoch includes two phases: the computation phase

and the hand-off phase.

Figure 5.1: Framework of fluid MPC protocol

5.1.1 Secure Model

To effectively model fluid Multi-party Computation (MPC), we employ the arithmetic black

boxmodel (ABB), represented as an ideal functionalityFABB within the universal composability

framework. This functionality enables a set of parties, P1, . . . , Pn, to input values. The set of

parties Psetj execute computations and retrieve outputs. Crucially, FABB is parameterized by

a finite field Fp, and inherently supports the native operations of addition and multiplication

within this field.

The FDABB functionality thus provides a robust framework for multiparty computations,
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ensuring that all operations are conducted securely, accurately, and efficiently in a distributed

environment. This protocol involves a set of parties, denoted as Pinit = {P1, . . . , Pn}, who

engage in a series of computational steps, each governed by well-defined parameters and pro-

cedures.

Central to this functionality is the process of initialization, where the initial set of parties,

Pinit, is established as the client set for the commencement of computations. As the protocol

progresses, it adeptly handles inputs from various parties, ensuring the accurate and secure in-

corporation of each participant’s data. A dynamic transition mechanism updates the current set

of active parties, Pcurr, facilitating flexible and adaptive participation throughout the computa-

tion process.

The core of FDABB lies in its ability to perform fundamental arithmetic operations, such as

addition and multiplication, on the inputs provided. The results of these operations are metic-

ulously stored, laying the groundwork for subsequent steps or outputs. In the final stage, the

functionality is equipped to output the results of the computation, involving a meticulous pro-

cess of retrieving and delivering these results to either the participating parties or an adversary,

based on specific conditions, thereby maintaining the integrity and confidentiality of the entire

process.

Overall, the FDABB functionality offers a robust and versatile framework for multiparty

computations, ensuring that all activities, from data input to result output, are conducted with

utmost security, accuracy, and efficiency in a distributed computing environment.
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Functionality FDABB

Parameters: Finite field Fp, a set of parties Pinit = {P1, ..., Pn} which hold private input.

Sever sets of server parties denote Pset1 , Pset1 , ..., Psetk carry out computation task. All par-

ties have agreed upon identifiers idx for each variable x used in the computation.

Initialise: On input (Init, Pinit) from every Pi ∈ Pinit and set Pinit as client set, Pcurr :=

Pinit.

Input: On input (Input, idx, x) from Pi ∈ Pinit, and (Input, idx) from all other parties in

Pinit , store the pair (idx, x).

Trans: On input (Trans, Pcurr, Psetk) from all Pi ∈ Pcurr ∪ Psetk , update Pcurr := Psetk .

Add: On input (Add, idz, idx, idy) from Pi , for every Pi ∈ Pcurr, compute z = x+ y and

store (idz, z).

Multiplication: On input (Mult, idz, idx, idy) from every Pi ∈ Pcurr, compute z = x · y

and store (idz, z).

Output:On input (Output, idz) from every Pi ∈ Pcurr, where idz has been stored previ-

ously, retrieve (idz, z) and send it to the adversary. Wait for input from the adversary, if it

is Deliver, send the output to every Pi ∈ Pcurr. Otherwise, abort.

5.2 Preprocessing Phase for Dynamic Committees

5.2.1 Preprocessing Functionality

Firstly, we give the definition of the Functionality Fprep protocol, a sophisticated cryptographic

framework designed for secure distributed computing within a finite field Fp. The protocol

involves key participants, namely a set of initiating parties, Pinit = {P1, P2, . . . , Pn}, holding

private inputs, and multiple server party sets, Psetk , responsible for processing and securely
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exchanging these inputs.

The protocol’s primary functions include:

• Initialization: Generating and distributing a unique MAC key for each participant to

authenticate communications and computations.

• Input Random Process: Securely sampling and distributing random values among par-

ties, maintaining data integrity.

• Inner Random Process: Generating a collective random value from individual random

inputs of the parties, crucial for randomness in distributed computations.

• Inner Triple Process: Generating authenticated random triples, where each party holds

a part of the triple and the sum forms the actual triple values.

• Transfer Random Process: Facilitating the secure transfer of random values between

different server party sets, preserving data security and integrity.

Overall, the Functionality Fprep protocol is a cornerstone for secure, authenticated, and dis-

tributed computations, enabling collaborative computing over shared data without compromis-

ing security and privacy.

Functionality Fprep

Parameters: Finite field Fp. Parties Pinit = {P1, P2, ..., Pn} who hold the private input.

Psetk , (k ∈ [1,m]), arem sets of server parties.

Functionality: Generate authenticated random triples and authenticated random values

used for different stages.

Init: When receiving Init from all Pi where Pi ∈ Pinit ∪ Psetk , generate a MAC key

αi ← Fp for Pi and sends it to Pi.
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Input Random: On input (InPut, Pi, Pset1) from Pi, and (InPut, Pi, Pset1) every Pj ∈

Pset1 ,

1. Sample ri ← Fp for Pi.

2. For each Pj ∈ Pset1 , sample Ki
j ← Fp, and compute M j

i = ri · αj +Ki
j , where αj

is the MAC key belongs to Pj .

3. Return ri,M j
i to Pi, andKi

j to Pj .

Inner Random : On input (InRand, Psetk) from all Pi ∈ Psetk ,

1. Sample ri ← Fp for Pi ∈ Psetk .

2. Compute r =
∑

ri, R = r ·
∑

αi, where αi is the MAC key belongs to Pi.

3. Sample Ri ← Fp for Pi ∈ Psetk such that R =
∑

Ri.

4. Return JrK = {ri, Ri} to Pi.

Inner Triple: On input (InTriple, Psetk) from all Pi ∈ Psetk ,

1. Sample ai, bi ← Fp for Pi ∈ Psetk .

2. Compute a =
∑

ai, b =
∑

bi, c = a · b,

3. Compute A = a ·
∑

αi, B = b ·
∑

αi, C = c ·
∑

αi where αi is the MAC key

belongs to Pi.

3. Sample ci, Ai, Bi, Ci ← Fp for Pi ∈ Psetk , where c =
∑

ci, A =
∑

Ai, B =
∑

Bi,

C =
∑

Ci.

4. Return JaK = {ai, Ai}, JbK = {bi, Bi}, JcK = {ci, Ci} to Pi.



CHAPTER 5. FLUID MPC 71

Transfer Random : On input (TrRand, Psetk , Psetk+1
) from all Pi ∈ Psetk , and Pj ∈

Psetk+1
:

1. Sample ri ← Fp for Pi ∈ Psetk .

2. Compute r =
∑

ri, R = r ·
∑

αi, where αi is the MAC key belongs to Pi.

3. Sample Ri ← Fp for Pi ∈ Psetk , where R =
∑

Ri.

4. For each Pj ∈ Psetk , sample r′j, R′
j ← Fp, such that

∑
r′j = r,

∑
R′

j = r ·
∑

αj .

5. SampleMi, Kj ← Fp forPi ∈ Psetk andPj ∈ Psetk+1
, such that,Z =

∑
Mi+

∑
Kj ,

where αj is the MAC key belongs to Pj .

6. Return JrKPsetk = {ri, Ri} to Pi, and JrKPsetk+1 = {r′i, R′
i} to Pj .

5.2.2 Preprocessing Protocol

In order to realize theFprep, we introduce two building blocks: a 1−n oblivious linear evaluation

function (F1−nOLE) and a n − n oblivious linear evaluation (FnOLE). we elaborate on these

below and show how they can be realized.

Firstly, we give the definition of F1−nOLE . The F1−nOLE functionality is a critical compo-

nent in cryptographic computations, particularly designed for secure operations in a distributed

environment. Operating within a finite field Fp, this functionality involves a specific party Pi

and a set of parties Pset1 , each holding a unique MAC key for authentication purposes.

The core operation, termed as Extend, is initiated by Pi and entails a series of computations

and exchanges with the parties in Pset1 . This process includes sampling of random values and

generating authenticated messages, ensuring both the secrecy and integrity of the exchanged

data. The F1−nOLE functionality is thus instrumental in extending the capability of the system

to handle secure, authenticated, and distributed computations effectively.
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Functionality F1−nOLE

Parameters: Finite field Fp. A party Pi and a set of parties Pset1 . Each party Pj ∈ Pset1

holds a MAC key αj .

Extend: On receiving (Extend, Pi, Pset1) from Pi, and (Extend, Pi, Pset1 , αj) from ev-

ery Pj ∈ Pset1 , execute the following construct:

1. Sample ri ← Fp for Pi.

2. For each Pj ∈ Pset1 , sample Ki
j ← Fp, and compute M j

i = ri · αj +Ki
j , where αj

is the MAC key belongs to Pj .

3. Return ri,M j
i to Pi, andKi

j to Pj .

Secondly, the protocol of the preprocessing phase is also built based on the following function,

called FV OLE . The Functionality FnOLE involves a set of operations within a finite field Fp. It

includes two distinct sets of parties: Psetk and Psetk+1
. Each party in the second set, denoted as

Pj where Pj ∈ Psetk+1
, is assigned a unique MAC (Message Authentication Code) key αj .

The core operation of this functionality is defined as the ’Extend’ process. This process is

triggered when specific inputs are received from the parties in both Psetk and Psetk+1
. Specifi-

cally, the ’Extend’ operation commences upon receiving inputs in the form of (Extend, Psetk ,

Psetk+1
, xi) from all parties Pi ∈ Psetk , and (Extend, Psetk , Psetk+1

, αj) from all parties Pj ∈

Psetk+1
.
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Functionality FnOLE

Parameters: Finite field Fp. Two sets of parties Psetk , Psetk+1
. Each party Pj ∈ Psetk+1

holds a MAC key αj .

Extend: On receiving (Extend, Psetk , Psetk+1
, xi) from all Pi ∈ Psetk , and (Extend,

Psetk , Psetk+1
, αj) from all Pj ∈ Psetk+1

, execute the following construct:

1. For each Pi ∈ Psetk , Pj ∈ Psetk+1
, sample Ki

j ← Fp and computeM j
i = xi · αj .

2. ReturnM j
i to Pi, andKi

j to Pj .

Finally, we will show our protocol πPrep, which UC-secure utilizes Fprep.

The ΠPrep protocol is a sophisticated framework for secure multi-party computations in Fp.

It involves initial parties Pinit = {P1, P2, . . . , Pn} holding private inputs, divided into n sets

Pseti , i ∈ [1, n]. The protocol progresses through several stages:

- Initialization: Sets up the protocol with the assumption of sufficient random numbers and

triples for the computation.

- Inner Random Values Setup: Generates shared random values JrK within each Psetk ,

involving cryptographic interactions for secure computation.

- Inner Triples Setup: Produces triples JaK, JbK, JcK where c = a · b, based on previously

generated values.

- Transfer Random Value Setup: Creates random values for data transfer between Psetk

and Psetk+1
.

- Input Random Value Setup: Generates random values for sharing private inputs from Pi

to Pset1 .

The protocol includes functions for retrieving inner random values, inner triples, transfer
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random values, and input random values, which are crucial for the secure and efficient execution

of MPC.

Protocol ΠPrep

Parameters: Finite field Fp. Parties Pinit = {P1, P2, ..., Pn} who hold the private input.

Pseti , (i ∈ [1, n]) are n sets of server parties.

Init: run the following step among all parties, supposem random numbers and triples are

enough to support the whole computation.

Inner Random values setup: To generate JrK among Psetk ,

1. For all Pi ∈ Psetk generate a random value ri ← Fp.

2. Pi call FnOLE with input (Extend, Psetk , Psetk , xi) and (Extend, Psetk , Psetk , αi).

3. On receiving Kj
i ,M

j
i , Pi computes Ri =

∑
(M j

i + Kj
i ), where R =

∑
Ri =∑

ri ·
∑

αi = r · αsetk . This format JrK = [r], [R]

Inner Triples setup: To generate JaK, JbK, JcK among Psetk , where c = a · b,

1. Suppose Psetk already hold JaK, JbK from Inner Random values setup stage.

2. Pi ∈ Psetk call FnOLE with input (Extend, Psetk , Psetk+1
, ai) and Pj ∈ Psetk+1

call

FnOLE with input (Extend, Psetk , Psetk+1
, bj).

3. On receiving Kj
i ,M

j
i , Pi computes ci =

∑
(M j

i +Kj
i ), where c =

∑
ci =

∑
ai ·∑

bi = a · b. This format [c].

4. For each Pi ∈ Psetk call FnOLE with (Extend, Psetk , Psetk , ci), and (Extend,

Psetk , Psetk , αj).

5. On receiving Kj
i ,M

j
i , Pi computes Ci =

∑
(M j

i + Kj
i ), where C =

∑
Ci =∑

ci ·
∑

αi = c · αsetk . This format [c · αsetk ].
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Transfer Random Value setup: To generate random values used for transferring data be-

tween Psetk and Psetk+1
,

1. Suppose Psetk already hold JrKsetk from Inner Random values setup stage. Pi ∈ Psetk

call FnOLE with input (Extend, Psetk , Psetk+1
, ri) and Pj ∈ Psetk+1

call FnOLE with input

(Extend, Psetk , Psetk+1
, αj).

2. On receiving M j
i , Pi computes Mi =

∑
M j

i . On receiving Ki
j , Pj computes

Kj =
∑

Ki
j .

Input Random Value setup: To generate random value used for sharing private input of

Pi to Pset1 ,

1.Pi generate a random ri ← Fp, Pi call F1−nOLE with input (Extend, Pi, Pset1 , ri) and

all Pj ∈ Pset1 with input (Extend, Pi, Pset1 , αj). And then, Pi receivesM j
i and Pj receives

Ki
j , whereM

j
i = ri · αj +Ki

j .

Inner Random: On receiving (InRandom, Psetk) from all Pi ∈ Psetk ,

1. Let JrK be the secret sharing generated in Inner Random values setup stage, and has

not been used before.

2. Return ri, Ri to Pi.

Inner Triple: On receiving (InTriple, Psetk) from all Pi ∈ Psetk ,

1. Let JaK, JbK, JcK be the triple generated in Inner Triples setup stage, and has not been

used before.

2. Return ai, bi, ci, Ai, Bi, Ci to Pi.
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Transfer Random: On receiving (TrRandom, Psetk , Psetk+1
) from all Pi ∈ Psetk , and

(TrRandom, Psetk , Psetk+1
) from all Pj ∈ Psetk+1

,

1. Return JrK,Mi to Pi, and Kj to Pj .

Input Random: On receiving (InRandom, Pi, Pset1) from Pi and all Pj ∈ Pset1 ,

1. Return ri,M j
i to Pi, and Ki

j to Pj .

5.2.3 Instantiating Multi-Party OLE

In this section, we will show how to realize two different kinds of oblivious linear evaluation

called Π1−nOLE and ΠnOLE .

The Π1−nOLE protocol, as detailed in this document, is a comprehensive cryptographic

scheme designed to facilitate secure and verified computations within a finite field Fp. This

protocol involves a primary party, Pi, and a set of parties, Pset1 , each possessing a private MAC

key, αj , crucial for ensuring the integrity and confidentiality of the computations.

At the heart of theΠ1−nOLE protocol is the Extend function, which is triggered upon specific

requests from the parties involved. The process involves the generation of random numbers,

secure interactions between pairs of parties, and a series of consistency checks to guarantee the

integrity of inputs across the protocol.

The protocol is designed with a focus on ensuring that all parties involved can verify the

consistency and authenticity of the computations, making it an essential tool in environments

where secure multiparty computation is required. It carefully balances the need for security

with the efficiency of cryptographic operations, ensuring that the protocol is both robust and

practical for real-world applications.
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Protocol Π1−nOLE

Parameters: Finite field Fp. A party Pi and a set of parties Pset1 , Each party Pj ∈ Pset1

hold private mac key αj .

Extend: On receiving (Extend, Pi, Pset1) from Pi, and (Extend, Pi, Pset1 , αj) from all

Pj ∈ Pset1 .

1. Pi generate a random number ri ← Fp.

2. Each pair of parties (Pi, Pj), where Pj ∈ Pset1 call FOLE with Pi input (Extend, Pi,

Pj, ri) and Pj input (Extend, Pi, Pj, αj). And Pi getsM j
i and and Pj getsKi

j .

3. Consistency check: All parties need to complete the consistency check to guarantee

Pi input the same ri:

(a) All parties belong to Pi ∪ Psetk generate a sequence of random numbers λ1, ..., λm,

and for Pj ∈ Pset1 compute Zj = λj ·Ki
j . Pj rerandomizes Ki

j locally by sending a zero

share to the other parties, and Pj getsKj . Pj broadcastKj and computeK =
∑

Kj .

(b) Pi compute M =
∑

λj ·M j
i , Z = (M −K)−1. Pi generate Z =

∑
Zj and sends

Zj to Pj secretly.

(c) Pj ∈ Psetk computes Yj = Zj − λj · αj . Pj rerandomizes Yj locally by sending a

zero share to the other parties, and Pj gets Y ′
j . Pj broadcast Y ′

j , compute Y =
∑

Y ′
j , and

check Y = 0. If the check fails, abort.

The ΠnOLE protocol, as described in this document, is a robust cryptographic mechanism

designed to facilitate secure and efficient computations within a finite field Fp. The protocol

involves two sets of parties, Psetk and Psetk+1
, with each party in Psetk+1

possessing a private

MAC key, αj , essential for the authentication and integrity of the computations.

Central to theΠnOLE protocol is the Extend function, which is activated upon receiving spe-
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cific inputs from all parties in both sets. This function includes a series of pairwise operations

between the parties, leading to the generation of key values and a comprehensive consistency

check. The protocol ensures that each party inputs consistent data through a sequence of calcu-

lated broadcasts and local computations.

The ΠnOLE protocol is tailored for environments where secure multiparty computation is

critical. Its design emphasizes the verification of the authenticity and consistency of the com-

putational inputs and outputs, thereby serving as a key tool in distributed computing scenarios

where data integrity and security are paramount.
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Protocol ΠnOLE

Parameters: Finite field Fp. Two sets of parties Psetk , Psetk+1
. Each party Pj ∈ Psetk+1

holds a MAC key αj .

Extend: On receiving (Extend, Psetk , Psetk+1
, xi) from all Pi ∈ Psetk , and (Extend,

Psetk , Psetk+1
, αj) from all Pj ∈ Psetk+1

,

1. For each pair (Pi, Pj)wherePj ∈ Psetk+1
callFOLE withPi input (Extend,Pi, Pj, xi)

and Pj input (Extend, Pi, Pj , αj). And Pi getsM j
i and and Pj getsKi

j .

2. Consistency check: All parties need to complete the consistency check to guarantee

Pi input the same ri and Pj input the same αj:

(a) All parties belong toPsetk∪Psetk+1
generate a sequence of randomnumbersλ1, ..., λm,

and for Pi ∈ Psetk computeMi =
∑

λj ·M j
i . Pi broadcastsMi and computeM =

∑
Mi.

(b) Pj ∈ Psetk+1
compute Kj =

∑
λj · Kj

i locally. Pj broadcasts Kj and computes

k =
∑

Kj .

(c) Pi rerandomizes ri locally by sending a zero share to the other parties, and Pi gets

r′i. Pi broadcasts r′i and computes r =
∑

r′i.

(d) Pj computes Zj = λj · αj . Pj rerandomizes Zj locally by sending a zero share to

the other parties, and Pj gets Z ′
j . Pj broadcasts Z ′

j and computes Z =
∑

Z ′
j .

(e) All party check Z · r +M = K. If the check fails, abort.
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5.3 Online Stage

5.3.1 Building Blocks for Online Stage

In this section, we describe the online stage of the dynamic SPDZ protocol. Before introducing

the online stage, we first introduce two protocols called Πkey−switch and ΠMac−check.

The protocol section described involves a switch mechanism for transferring a shared value

JxK between two sets of parties, Psetk and Psetk+1
, in a finite field Fp. The shared value JxKPsetk

includes a value [x] and a multiplication authentication code (MAC) [αsetk ·x], with αsetk being

the sum of individual αi values for each party Pi in Psetk.

The process to switch JxK to Psetk+1
is as follows:

Preparation Phase: Each party Pi in Psetk initiates a call to a function Fprep with parameters

(TrRand, Psetk , Psetk+1
). As a result, Pi receives a part of the shared random value JrKPsetk

specific to Psetk , and similarly, each Pj in Psetk+1
receives their part of JrKPsetk+1 .

Computation and Opening Phase: Parties in Psetk collaboratively compute and then reveal

the value of Jx + rKPsetk . Subsequently, both sets of parties, Psetk and Psetk+1
, execute the

Πreshare protocol to securely reshare [x] from Psetk to Psetk+1
.

Final Computation Phase: Each partyPj inPsetk+1
computes their share of theMAC [αPsetk+1 ·

x] using the formula [αPsetk+1 ] · (x+ r)− [αPsetk+1 · r]. At the end of this process, Psetk+1
col-

lectively holds both the value [x] and its associated MAC [αPsetk+1 · x].

This protocol section ensures the secure and verifiable transfer of a shared value and its

MAC between two different sets of parties within a secure multi-party computation frame-

work.



CHAPTER 5. FLUID MPC 81

Protocol Πkey−switch

Parameters: Finite field Fp. Two sets of parties Psetk , Psetk+1
. JxKPsetk = ([x], [αsetk · x]).

αsetk =
∑

αi, where Pi ∈ Psetk .

Switch: To get JxKPsetk+1 = ([x], [αsetk+1
· x]). αsetk+1

=
∑

αj , where Pj ∈ Psetk+1
.

1. Each Pi ∈ Psetk call Fprep with (TrRand, Psetk , Psetk+1
), Pj ∈ Psetk call Fprep with

(TrRand, Psetk , Psetk+1
). Pi receives JrKPsetk = {ri, Ri}, and Pj receives JrKPsetk+1 =

{r′j, R′
j}.

2. Parties in Psetk compute and open Jx + rKPsetk . Parties in Psetk ∪ Psetk+1
run

Πreshare([x]
Psetk , Psetk , Psetk+1

) to get [x]Psetk+1 .

3. Finally, Pj can compute its share of the MAC [αPsetk+1 · x] as [αPsetk+1 ] · (x + r) −

[αPsetk+1 · r]. Psetk+1
holds [x], [αPsetk+1 · x].

The protocol section titledΠMac−check outlines a procedure used by a set of parties, denoted

as Psetk , to verify the integrity of Multiplication Authentication Codes (MACs) on a series of

values (a1, a2, ..., am). Each party in Psetk possesses a share of the product of each value aj

and a collective key αsetk , denoted as Aj,i. Here’s an explanation of how the MAC check is

performed:

Random Number Generation: All parties first generate a sequence of random numbers

(r1, r2, ..., rm). These random numbers are crucial for ensuring the randomness and unpre-

dictability of the verification process.

Public Value Computation: Each party computes a public value a, which is the sum of the

products of each random number rj with the corresponding value aj (i.e., a =
∑

rj · aj).

Individual Computation and Broadcasting: For each party Pi in Psetk , they compute a value

Ki which is the sum of the products of each random number rj with their share of the MAC for

aj (i.e., Ki =
∑

rj · Aj,i). Subsequently, they computeMi = Ki − αi · a and broadcastMi to
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all other parties.

Verification and Abort Condition: After receiving the broadcasted values from each party,

the parties sum up these values (i.e., M1 +M2 + ... +Mn). If the sum is not equal to zero, it

indicates a discrepancy in the MACs, and the parties abort the protocol.

ThisMAC check protocol is a crucial aspect of secure multi-party computation, as it ensures

the integrity and authenticity of shared values among parties, preventing malicious activities or

errors in the computation process.

Protocol ΠMac−check

Usage: Parties in Psetk want to check the MACs on values (a1, a2, ..., am) opened to them.

Each Pi ∈ Psetk holds share of aj · αsetk denotes Aj,i.

MACCheck(a1, ..., at):

1. All parties get a sequence of random numbers r1, ..., rm.

2. Each party computes the public value a =
∑

rj · aj

3. For each party Pi, Pi computesKi =
∑

rj ·Aj,i,Mi = Ki−αi · a. Pi broadcastMi

4. IfM1 + ...+Mn ̸= 0 , the parties abort.

The protocol Πshare is a sub-protocol of Πkey−swith, which is used to share a value xi to a set of

parties in additive sharing format.
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Protocol share

Parameters: Finite fields Fq. Party Pi with private input xi and a set of parties Pset1 .

Each pair of parties (Pi, Pj) , where Pj ∈ Pset1 , has a common PRG seed Si,j . Suppose

Pset1 = {P1, P2, ..., Pm}.

Functionality: To get [xi]
Pset1 = {xi,j}Pj∈Pset1

Share:

1. Pi computes xi,j ← PRG(Si,j), for j = 2, 3, ...,m. Pi defines xi,1 = xi−
∑m

j=2 xi,j .

2. Pi sends xi,1 to P1 ∈ Pset1 . Each Pj ∈ Pset1 defines its shares as [xi] = xi,j which

forms [xi]
Pset1 .

5.3.2 Protocol of Online Stage

The online stage includes Input, Computation, Hand-off and output phases. TheΠonline protocol

is a comprehensive framework designed for secure multi-party computation (MPC) in a finite

field Fq. It involves a set of clients, Pinit, each with a private input, and several sets of server

parties, Psetk , who execute the computation tasks in different stages. Each server party also

possesses a private MAC key, αj . Here’s an overview of the protocol stages:

Input Sharing:

Each client Pi and server party Pj in Pset1 call a preparation function Fprep. Clients compute

and share their inputs with the server parties. The shared inputs are in the format J·K, which
includes both the input value and its MAC. Server parties perform calculations to obtain the

MAC of the random value associated with each input. Computation Phase:

The protocol supports four basic operations: addition, addition by constant, multiplication

by constant, and multiplication. For addition, parties locally add their shares of the input values.

In addition by constant, a designated party modifies the shared value by adding the constant, and
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all parties adjust theirMAC shares accordingly. Formultiplication by constant, each party scales

their input share and corresponding MAC share by the constant. Multiplication of two values is

handled by a dynamic multiplication protocol, Πdynamic−Mult. Hand-off Between Server Sets:

This process involves transferring the computation from one set of server parties to another,

Psetk to Psetk+1
. They utilize a key-switching protocol,Πkey−switch, to ensure that the new set of

parties correctly receives the shared values along with their updatedMACs. Output Generation:

The final stage involves generating the output of the computation, which is not elaborated

upon in the provided description. This protocol is designed to ensure privacy and integrity

of computations in a multi-party setting, leveraging MACs for authenticity and supporting a

variety of operations fundamental to MPC.

Protocol Πonline

Parameter: Finite field Fq. Initially, each data owner called client Pi ∈ Pinit has a private

input xi. Several sets of server parties denote Psetk , which carry out the computation task

in different stages. In addition, each server party Pj owns a private mac key αj

Input: To share input xi belongs to user Pi ∈ Pinit to a set of parties Pset1 in J·K format :
1. For each Pi call Fprep with input (InPut, Pi, Pset1) and Pj ∈ Pset1 with input

(InPut, Pi, Pset1). And then, Pi receives ri,M j
i and Pj receives Ki

j , where M j
i = ri ·

αj +Ki
j .

2. Pi computes Mi =
∑

M j
i , where Pj ∈ Pset1. And then Pi execute Πshare(Mi) and

Πshare(xi) with Pset1 . Pj ∈ Pset1 receives [M ] = M i
j and [xi] = xi

j . In addition, Pi public

Y = xi + ri to Pset1.

3. For each party Pj ∈ Pset1, receivedM i
j from party Pi ∈ Pinit. Pj computes [α · r] =

[M ]− [K] = M i
j −Ki

j .

4. For each Pj ∈ Pset1 computes [xi · α] = αj · Y − [α · ri] which format JxiKPinit
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Computation: In the computation phase, the protocol supports 4 kinds of operations among

a set of parties denoting Psetk , including addition, addition by constant, multiplication by

constant, and multiplication.

Addition: To execute the addition operation in the circuit, z = x+ y , each Pi ∈ Psetk

locally adds their share of x and y to get share of z, JzK = JxK + JyK.
Addition by Constant: To execute the addition by constant operation, z = x + c, a

designed party Pj ∈ Psetk adds c to [x] to get [x+ c] and for all party Pi ∈ Psetk add αi · c

to [x · α] to get [(x+ c) · α].

Multiplication by Constant: To compute, z = x · c, each Pi ∈ PSetk locally compute

[x · c] = [x] · c, [α · (x · c)] = [α · x] + αi · c

Multiplication: To compute, z = x · y, run Πdynamic−Mult among Psetk

Hand-off: There are two sets of parties Psetk , Psetk+1
. Every party Pi ∈ Psetk hold shares

JxuK = {[xu], [xu · αsetk ]}. The two sets of parties run Πkey−switch and parties Pj ∈

Psetk+1
receives JxuK = {[xu], [xu · αsetk+1

]}. In addition, the set of parties Psetk also run

ΠMac−check. If ΠMac−check fails, rejects.

Output: To output the final result, for each output wire z, they open JzK by broadcast-

ing their shares to the other parties and running ΠMac−check. If ΠMac−check fails, rejects.
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Protocol Πfluid−Mult

Usage: Psetk wants to compute multiplications z = x · y

1. For every partiesPi ∈ Psetk callFprepwith (InTriple, Psetk) and receives JaK, JbK, JcK.
Pi computes JϵK = JxK− JaK, JρK = JyK− JbK.

2. Pi open JϵK, JρK and get ϵ, ρ.
3. Pi compute Jx · yK = JcK + ϵ · JbK + ρ · JaK + ϵ · ρ

5.4 Cost Analysis

In this section, we analyze the efficiency of our proposed protocol compared to the Le Mans

fluid MPC protocol. To facilitate this comparison, we define the following parameters:

• L: The number of layers in the computation circuit.

• P : The total number of multiplication gates in the circuit.

• n: The total number of parties participating in the computation stage.

• k: The number of sets into which the n parties are divided.

• q: The number of parties within each set.

• m: The number of private input holders.

5.4.1 Cost in Le Mans Fluid MPC Protocol

In the Le Mans fluid MPC protocol, the computational costs are structured as follows:
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• Preprocessing Stage: To generate a shared random value ⟨r⟩ among all m + n parties,

(m + n)2 oblivious linear evaluations (OLEs) are required. Additionally, generating a

random multiplication triple ⟨a⟩, ⟨b⟩, ⟨c⟩ (where c = a · b) requires 3(m+ n)2 OLEs.

• Input Stage: Each of the m private input holders incurs a cost of m random number

sharings.

• Hand-off Stage: If each set contains q parties, each hand-off operation incurs a cost of q

random number sharings.

• Multiplication Gates: For each multiplication gate, a random triple sharing is required.

5.4.2 Cost in Our Proposed Fluid MPC Protocol

Our protocol optimizes the costs through efficient random value sharing mechanisms:

• Preprocessing Stage: We define four types of random value sharing:

1. Input random value sharing: Costs q OLEs.

2. Inner random value sharing: Costs q2 OLEs.

3. Inner random triple value sharing: Costs 3q2 OLEs.

4. Transfer random value sharing: Costs q2 OLEs.

The total preprocessing cost ismq + q3 + pq2.

• Input Stage: Form private input holders, the total cost ism random number sharings.

• Hand-off Stage: Each operation incurs a cost of q transfer random number sharings.

• Multiplication Gates: Each multiplication gate requires a random inner triple sharing.
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5.4.3 Comparison and Analysis

The preprocessing cost for the Le Mans fluid MPC protocol is:

Le Mans Fluid MPC Preprocessing Cost = m(m+ n)2 + q(m+ n)2 + 3p(m+ n)2.

In contrast, our proposed protocol reduces the preprocessing cost to:

Our Protocol Preprocessing Cost = mq + q3 + pq2.

Efficiency Comparison

Let us consider a practical example with the following parameters:

• m = 10: Number of private input holders.

• n = 20: Number of participating parties.

• q = 5: Number of parties in each set.

• p = 50: Number of multiplication gates.

The costs are computed as follows:

• Le Mans Fluid MPC Preprocessing Cost:

10(10 + 20)2 + 5(10 + 20)2 + 3(50)(10 + 20)2 = 9000 + 4500 + 135000 = 148500.

• Our Protocol Preprocessing Cost:

(10)(5) + (5)3 + (50)(52) = 50 + 125 + 1250 = 1425.
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5.4.4 Conclusion

The results clearly demonstrate that our proposed protocol significantly reduces the prepro-

cessing cost, lowering it from 148500 to 1425 under the given parameters. This reduction is

achieved through the efficient use of random value sharing mechanisms, making our protocol

particularly suitable for large-scale secure computations. At the same time, the input sharing,

hand-off, and multiplication gate costs remain comparable, ensuring that the overall efficiency

is not compromised.
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Conclusions and Suggestions for Future

Research

In this thesis, we addressed key privacy challenges in secure multi-party computation (MPC)

across various computational scenarios. Our proposed protocols enhance both the practicality

and security of collaborative computing among untrusted entities, eliminating the need for a

trusted third party.

First, we introduced a decentralized e-voting system that integrates blockchain technology,

smart contracts, linkable ring signatures, and threshold encryption. This design safeguards voter

privacy and ensures the integrity of election results. An Ethereum private network implemen-

tation demonstrates feasibility in terms of cost and time efficiency.

Second, we proposed a two-party k-means clustering scheme for privacy-preserving data

mining. By optimizing data encryption and leveraging cloud-based execution, the protocol ef-

ficiently handles O(k(m + n)) rounds of interaction and addresses high computational and

communication overheads. The scheme is validated under both semi-honest and malicious se-

curity models, underscoring its robust privacy guarantees.

90
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Finally, we developed a fluid MPC protocol, extending the SPDZ protocol to accommo-

date dynamic participant involvement in complex computations. This protocol’s minimal pre-

processing requirements and adaptability significantly lower barriers for large-scale, resource-

intensive tasks. Its security in an all-but-one dishonest majority model broadens applicability

in diverse computational settings.

Overall, we not only tackled existing MPC issues but also established a foundation for fur-

ther research into more efficient, secure, and adaptable privacy-preserving protocols. The in-

novations we presented in e-voting, collaborative data mining, and fluid MPC underscore the

potential for real-world deployment and ongoing academic exploration, ultimately aiming to

safeguard privacy in the digital age.
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