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Abstract

The rapid generation of information in the era of big data has made its analysis and

the application of effective strategies increasingly essential across various fields, in-

cluding business [97], healthcare [33], education [49], transportation [108], and public

administration [66]. One method that has proven its immense potential for informa-

tion gathering is crowdsourcing. However, the convenience of data collection through

crowdsourcing also brings significant privacy concerns, particularly under adverse cir-

cumstances.

Recent years have witnessed numerous data breach incidents, highlighting the vul-

nerability of personal information in centralized databases. Notable examples include

the Yahoo breaches in 2013 and 2014 affecting 3 billion users [4], the Facebook-

Cambridge Analytica scandal impacting over 50 million users [2], the Equifax leak

compromising 143 million consumers’ data [6], and the Marriott International hotels

data breach affecting up to 500 million guests [3]. These incidents underscore the

pressing need for robust privacy-preserving mechanisms, especially in adverse data

collection environments.

However, LDP faces significant challenges under adverse circumstances, particularly

in three key areas: i) The curse of high dimensionality, which compromises aggregation

accuracy. ii) Inefficient processing of sparse data with low-frequency values. iii)

Vulnerability to Byzantine attacks that introduce poisoned data.

This thesis presents a comprehensive study on enhancing LDP under adverse condi-
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tions, making the following contributions: i) We optimize privacy budget allocation

among correlated attributes to improve utility in high-dimensional data scenarios. ii)

For sparse data, we develop a novel approach using budget allocation and reinforce-

ment learning to identify top-k values efficiently. iii) To combat Byzantine attacks,

we establish robust LDP protocols that filter out poisoned data by analyzing varying

user behaviors.

Our research advances the field of secure and efficient data analytics under LDP

by introducing innovative privacy-preserving mechanisms designed to perform effec-

tively in challenging environments. This study not only addresses current limitations

but also provides a foundation for future research in improving LDP’s resilience and

applicability under adverse circumstances.
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Chapter 1

Introduction

Local differential privacy (LDP) has become popular for protecting personal data pri-

vacy, particularly in big data analysis. It has already been deployed in many real-life

data collection systems, including Google Chrome [45, 48], iOS [109], and Windows

10 [35]. By perturbing data through mechanisms such as Laplace or the LDP fre-

quency oracle protocol [17,28,39,64,114], LDP enables the data collector to aggregate

statistical values (e.g., mean or frequency) using methods such as likelihood estima-

tion [45] and regression [92], while providing deniability for users’ private data. Users

perturb their private data using mechanisms like Laplace noise addition or random-

ized response [43, 61] before transmission, enabling population statistics estimation

without revealing individual accurate data.

In the era of big data, privacy-preserving technologies are essential to collect sensitive

data and analyse their statistical features (e.g., frequency and mean) while preserving

individual’s data privacy. In an LDP protocol, users only provide perturbed data to

collectors, who then estimate some statistics, e.g., mean and frequency, the two most

fundamental from these data [8,16,41,71,84,110,114,124]. However, almost all LDP

works assume that users are at least semi-honest, that is, they honestly perturb and

send data to the collector according to the protocol. Unfortunately, this assumption

1



Chapter 1. Introduction

rarely holds in real-world scenarios — any large-scale data collection system cannot

rule out the existence of Byzantine users [14, 87, 89, 90], who are malicious users

that can collude among themselves to send fake values and influence the estimated

statistics in their favor. In particular, the estimated mean has become a popular

target in such attacks. For instance, Byzantine users have engaged in product rating

fraud for e-commerce sellers to boost their sales [58, 76, 79, 102]. The New York

Times reported businesses hiring workers on Mechanical Turk, an Amazon-owned

crowdsourcing marketplace, to post fake 5-star Yelp reviews on their businesses [76].

The implementation of LDP faces significant challenges, particularly under adverse

circumstances. This thesis focuses on three main aspects of these challenges:

1.1 The Utility of LDP in Complex Data Environ-

ments

The utility of LDP-protected data becomes critically important as data complexity

and volume increase, especially in adverse scenarios. High-dimensional data, often

derived from multiple sensors or attributes, pose unique challenges. For instance,

datasets like the Wisconsin breast cancer diagnostic dataset [1] have over 30 at-

tributes, with common correlations like temperature and humidity in a workspace.

Ensuring ε-LDP for all attributes in such complex environments often leads to sub-

stantial utility loss due to the noise introduced by privacy mechanisms.

Another significant challenge lies in the problem of top-k item discovery under LDP,

particularly in sparse data environments. Traditional LDP mechanisms struggle to

achieve satisfactory performance in these scenarios due to users’ varying numbers of

items and vast item domains. Solutions like LDPMiner [88] and SVIM [115] attempt

to address these issues but still face challenges in accurately determining padding

lengths and avoiding biased frequency estimation.

2



1.2. The Byzantine Security of LDP

1.2 The Byzantine Security of LDP

The security of LDP systems becomes particularly crucial in the presence of mali-

cious users, a common occurrence in adverse data collection circumstances. These

Byzantine users may attempt to manipulate statistical estimations by submitting

adversarial data, potentially colluding and employing opportunistic strategies. The

nature of LDP makes it challenging to identify such malicious actors, as the pertur-

bation process provides plausible deniability for adversarial submissions.

As the privacy protection level increases (i.e., as ε becomes smaller), the potential

impact of Byzantine users grows. They can inject adversarial data over a broader

domain, potentially leading to disproportionately large estimation errors - a phe-

nomenon known as the long-tail attack [135]. Traditional statistical methods for

outlier removal, such as trimming, face limitations in the LDP context due to the

lack of prior knowledge about data distributions and the risk of introducing bias by

removing legitimate perturbed data.

1.3 Contributions and Thesis Organization

This thesis presents novel solutions to enhance both the utility and security of LDP

systems under adverse circumstances. Our contributions, as presented in each chap-

ter, are as follows:

Chapter 2: A comprehensive review of relevant literature, covering exist-

ing LDP protocols, reinforcement learning techniques (focusing on multi-armed

bandits), and studies on Byzantine Attacks in privacy-preserving data collec-

tion.

Chapter 3: Introduction of fundamental concepts and preliminaries used through-

out the thesis.

3



Chapter 1. Introduction

Chapter 4: Proposal of a relaxed LDP model, univariate dominance local

differential privacy (UDLDP), designed for high-dimensional data in adverse

environments. We introduce correlation-bounded perturbation (CBP) and its

extension with sampling (CBPS) to optimize privacy budget allocation among

correlated attributes.

Chapter 5: Development of adaptive sampling schemes (ARBS and ARBSF)

based on multi-armed bandits for efficient top-k item discovery and frequency

estimation in sparse data scenarios under LDP. We also present an optimization

technique to reduce time complexity from O(n) to O(1).

Chapter 6: Introduction of a novel approach to mitigate Byzantine attacks

in LDP systems. We present the multi-group Differential Aggregation Protocol

(DAP), incorporating the Segmented Expectation-Maximization Filter (SEMF)

and its extension, Distribution Estimation-EMF (DE-EMF), to enhance distri-

bution estimation accuracy under adversarial conditions.

Chapter 7: Summary of the thesis outcomes and proposal of future research

directions for improving LDP utility and security under adverse circumstances.

This thesis aims to advance the field of LDP by addressing the critical challenges

posed by adverse data collection environments, thereby enhancing both the utility

and security of privacy-preserving data analysis systems.

4
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Literature Review

2.1 Differential Privacy

Differential privacy (DP) [42], [43], [80] is a mathematical approach to quantizing pri-

vacy protection, typically through the appropriate use of Laplace [43], Gaussian [72],

or geometric distributions [54] to randomize the results of statistical queries in in-

teractive query-response systems. DP has been extensively studied in various fields,

including theory analyses [17, 39, 64], data publication [28, 133], data publication

[28,133], machine learning [16], and systems [21]. DP works on the assumption that

a trusted third-party server is used, but this is regarded as impractical in privacy

aware crowdsourced systems.

2.2 Local Differential Privacy

Local Differential Privacy (LDP) [29, 39, 42, 43, 64, 80], a variant of DP, is a tech-

nique introduced in 1965, aiming to provide privacy guarantees for individual users

in distributed systems, particularly in untrusted environments. The inception of this

concept was marked by the proposal of the randomized response (RR) model [117],
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a simple perturbation technique by Warner.

Since its proposal, LDP has been extensively studied, applied, and successfully de-

ployed in various industries and research fields. Google’s Chrome was the first to

deploy an extension of LDP known as RAPPOR [45], making it the first client-

based practical privacy solution. This was followed by its implementation in Apple’s

iOS [105,109], Microsoft’s Windows 10 [35], and research conducted by Samsung [84].

LDP has been widely applied in multiple areas, including but not limited to multi-

attribute values estimation [37, 92], marginal release [31, 134], time series data re-

lease [127,128], graph data collection [103,125,126], key-value data analysis [56, 129,

130], and private learning (machine learning) [136,137].

2.2.1 Frequency and Mean Estimation for LDP

Mean and frequency estimations are commonly seen in LDP scenarios. Kairouz et

al. [62] proposed k-RR, which is designed to be adaptive to a wider range of values than

RR. Google, through the work of Erlingsson et al. [45], developed and implemented

RAPPOR in Chrome. This system encodes user data into a Bloom filter and applies

a randomized response to each bit of the filter, leading to more accurate decoding

outcomes. However, due to the restriction on the false positive rate of the Bloom

filter, it is necessarily sparse, leading to high communication costs.

To address these communication costs, Bassily and Smith [17] proposed a 1-bit pro-

tocol for frequency estimation. The parameter results were further improved with the

OUE protocol proposed by Wang et al., which is significantly more accurate. They

also designed the OLH protocol, which uses local hashing to provide better utility,

effectively reducing the communication cost while maintaining the same variance as

OLH.

Wang et al. [114] optimized the parameters of the basic RAPPOR by minimizing the
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variance in frequency estimation. Many studies have focused on complex data types

and analysis tasks under LDP. For instance, Bassily and Smith proposed an asymp-

totically optimal solution for building succinct histograms over a large categorical

domain under LDP, and Qin et al. [88] proposed a two-phase approach named LDP-

Miner for estimating heavy hitters (items frequently possessed by users) in set-valued

data with LDP, wherein each user can have any subset of an item domain of varying

lengths.

Several mechanisms [8, 16, 35, 71] have also been proposed for frequency estimation

under LDP. Among them, the most relevant work for estimating numerical data by

using the EM algorithm in LDP is the SW mechanism [71]. However, the SW mech-

anism is not designed to combat Byzantine attacks and therefore cannot eliminate

the impact of poison values. For mean estimation, Duchi et al. [41] propose a 1-bit

mechanism, and Wang et al. [110] propose the Piecewise Mechanism, which are the

state-of-the-art methods.

2.2.2 Multiple Attributes Collection for LDP

In addition to single attributes, a large amount of work has also studied the values

of multiple attributes. The Lopub developed by Ren et al. [92] focuses on high-

dimensional crowdsourced data publication. However, the communication costs of

this approach are relative high which send a perturbed Bloom Filter. Du et al. [37]

utilize correlations among attributes and design a more relaxed definition of LDP

to achieve better utility. Piecewise mechanism [110] leverages probability density

functions to perturb input values, thereby enhancing the precision of results, and

subsequently utilizes OLH to collect multi-attribute values.

The most similar topic to the collection of multi-attribute values is the collection of

set-value data. For the former, each user has d attributes, each attribute correspond-

ing to a value. For the latter, each user has a private set containing a subset of the
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d attributes, where the elements in the set are the attributes themselves rather than

their values. The two most relevant works are LDPminer [88] and PSFO [115]. The

goal of both methods is to identify heavy hitters and estimate the frequency of their

corresponding values in extremely sparse set-value data. LDPMiner is a frequency

publishing method targeted at heavy hitter queries. First, data are collected and the

collector determines the heavy hitter set and returns it to the user. The user then

sends data corresponding to some of the items in the set to the data collector. Based

on the LDPMiner, Wang et al. [115] examined the same problem and proposed a

more efficient framework PSFO to estimate both the frequent items and the frequent

itemsets. In general, PSFO schemes employ padding and sampling techniques to mit-

igate the variance resulting from large domains. However, these techniques introduce

bias, which has a padding length smaller than the length of the user’s private set.

Furthermore, the frequency estimation performs poorly due to the significant variance

when the padding length exceeds that of most value sets. Hence, these methods may

not be optimal for accurate frequency estimation.

2.3 Multi-armed Bandits

The classical MAB problem is a formulation of the exploration and exploitation

dilemma inherent in reinforcement learning [22]. The MAB problem [19] , which

involves decision-making under uncertainty, has been extensively studied for decades.

MAB problem has found applications in numerous fields. such as online advertis-

ing [68], clinical trials [18], networking [22,23], and pairwise ranking [9].

Most MAB studies focused on either (i) minimizing the regret (e.g., [12], [13], [53],

[22], [10], [74]) through a tradeoff between the exploration and exploitation of arms

or researching pure exploration problems, which are aimed at identifying one, or

(ii) pure exploration problems (e.g., [10, 12, 13, 13, 22, 53, 74]) where minimizing the

number of samples taken or identifying one or multiple best possible arms while
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satisfying specific conditions (e.g., within a fixed number of samples or with the least

cost). This study focus on exploring the best reward with the given cost, which

indicates that the problem is of the pure exploration type. There are already quite

a few papers [37, 52, 63, 91, 104] that use MAB methods under the LDP system to

achieve higher privacy protection. This thesis presents how Multi-Armed Bandit

(MAB) methods can be employed to enhance the performance of the existing LDP

perturbation protocol, RR, in achieving better utility for top-k estimation on set-value

data.

LDP is a newly emerged technique to provide individual privacy guarantees for dis-

tributed users. In 1965, the concept of local privacy was firstly studied, and the

randomized response (RR) model was firstly proposed by Warner [61]. To optimize

the performance of perturbation algorithms, Kairouz et al. [62] introduced k-RR,

which is adaptive to a universe of information-theoretic utility functions.

A fundamental goal of LDP functionality is frequency estimation. RAPPOR [45],

which was proposed and well-employed into Chrome by Google, encodes users’ data

into a Bloom filter and then performs RR on each bit of Bloom filter, which enables

the decoding result more accurate. However, the false positive rate of Bloom filter

shall be restricted, thus the Bloom filter is necessary to be sparse, which renders

the communication cost unsatisfactory. Bassily and Smith [17] proposed a 1-bit

protocol for frequency estimation to optimize the communication cost. However, the

data utility is still unsatisfactory. The parameter results are further optimized in

the Optimized Unary Encoding (OUE) [45] protocol, which achieves significantly

better accuracy. This literature also designed an OLH protocol, which provides much

better accuracy, but still requires an O(logn) communication cost. Note that all of

the above methods focus on LDP on a single attribute. Another interesting problem

in LDP is mean estimation over numerical data, which have been widely studied in

literature [39] [40].

LDPMiner [16] is a frequency publishing method, which is targeted at heavy hitter

9
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queries. Firstly, the data collector collects data and determines the Heavy Hitter

set, and returns it to the user. Then, the user sends data corresponding to some

of the items in the set to the data collector. Ren et al. [92] develop the Lopub,

which is focused on high-dimensional crowdsourced data publication. However, the

communication cost of this approach is very high, since the transmission of every

attribute is the size of a Bloom filter. PM and HM mechanisms [110] perturb the

input value into a probability density function to get a better result accuracy.

2.4 Byzantine Attacks

The problems of the Byzantine attacks, that is, data poisoning attacks have recently

been studied in many fields, such as crowdsourcing and crowdsensing scenarios [26,51],

applications of Internet of Things [59,93], electric power grids [75] and machine learn-

ing algorithms [25, 46, 47]. However, combating Byzantine attacks in LDP protocols

is a relatively new topic that has few state-of-the-art papers. Literature [30] figures

out that LDP is vulnerable to manipulation attacks. With a small privacy budget or

a large input domain, a few poisoned values can completely ruin the real distribution.

To combat this kind of attack, sampling is an easy but effective approach. Litera-

ture [24] formulates the data poisoning attack as an optimization problem and pro-

poses three attacking patterns to maximize their attacking effectiveness, and design

some countermeasures accordingly. Literature [120] is the first attempt at poisoning

attacks for key-value data in LDP protocols. They formulate an attack with two

objectives, which are to simultaneously maximize the frequencies and mean values

and to design two countermeasures against this attack. Literature [65] proposes a

novel verifiable LDP protocol based on Multi-Party Computation (MPC) techniques.

They propose a verifiable randomization mechanism in which the data collector can

verify the completeness of executing an agreed randomization mechanism for every

data provider. However, this method is only proposed for the categorical frequency
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oracles, such as kRR [62], OUE [114] and OLH [114] instead of mean and distribution

estimation on numerical values. Recent research [100] on LDP protocols for fre-

quency estimation presents two verifiable LDP protocols: VGRR and VOUE. These

methods, however, necessitate that users provide the aggregator with additional in-

formation about the original data. In contrast, our proposed scheme eliminates the

need for such extra information from users.
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Chapter 3

Preliminary

3.1 Local Differential Privacy

An assumption of differential privacy (DP) is the existence of a trusted server, which

is usually impractical in privacy-aware crowdsourced systems. To deal with this

problem, local differential privacy (LDP) is proposed recently to provide a stringent

privacy guarantee for crowdsourced systems when data contributors trust nobody but

themselves. A mechanismM satisfies with ε-local differential privacy (ε-LDP), where

ε ≥ 0, if and only if for any two data records S1, S2 and any possible output T ∈

Range(M), the following condition holds:

P [M(S1) = T ]

P [M(S2) = T ]
≤ eε (3.1)

This is a formal definition of LDP, where M is a non-deterministic perturbation

algorithm that maps a certain input to an output with certain probability. The set

of all possible outputs is called the value range of this perturbation algorithm. Since

P [M(S1) = T ] is very close to P [M(S2) = T ], an adversary can not determine any

individual’s true answer from observation of their outputs.
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3.2 Local Differential Privacy for High-dimensional

Data

Although the definition on scalar data is clear, extension to high-dimensional cases re-

mains non-trivial. A straightforward definition is to directly put the high-dimensional

data into Equ. 3.1. Formally, let X = {b1, b2, ...bn} and X ′ = {b1
′, b2

′, ...bn
′} denote

any two records X and X ′ from the crowd-sourced dataset. A mechanismM satisfies

with ε-LDP, if the following condition holds for any possible output Y ∈ Range(M):

Max(P [M(X) = Y ])

Min(P [M(X ′) = Y ])

=
Max(P [M(b1, ..., bn) = Y ])

Min(P [M(b′1, ..., b
′
n) = Y ])

≤eε

(3.2)

When each attribute bn has binary value, for any two data records B1 = {b1 =

0, ..., bh = 0, ..., bk = 0} and B2 = {b1 = 1, ..., bh = 1, ..., bk = 1}, the following

inequality is required to be held for any given B1, B2 and output B′:

P [M(B1) = B′]

P [M(B2) = B′]
≤ eε (3.3)

From this definition, intuitively, an adversary seeing “00000” cannot tell whether the

input is “00000” or “11111” due to the privacy provided by eε.

3.3 Randomized Response

Randomized response (RR) [117], which has been widely used in the “Yes or No”

sensitive problem, is the most straightforward perturbation algorithm to guarantee

LDP. Before answering the data collector, users flip a biased coin, send true answers
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with a certain probability q, and false answers with probability 1 − q. Due to the

existing randomness, the data collector cannot tell the true value of any user. Par-

ticularly, for the binary case, a most widely used randomized response algorithm is

given as follows:

b′ =

 b, w.p. q

1− b w.p. 1− q

3.4 Multi-armed Bandit

The MAB (or bandits) is a powerful hypothesis generation and exploration technique.

It can be considered as a collection of arms with real Bernoulli distributions D =

{D1, . . . , Dn}. Let {p1, . . . , pd} be the mean values associated with these reward

distributions. Each arm i has the value 1 with probability pi and has the value 0 with

probability qi = 1 − pi. The probability mass function f of this distribution, over a

possible output z, is

f(z; pi) =

 pi, if z = 1

qi if z = 0

The gambler iteratively plays one arm per round and observes the associated re-

ward. Finally, the decision-maker selects some arms to sample adaptively and thus

maximizes her expected gain, identifying one or multiple arms that satisfy specific

conditions, and minimizing the number of samples taken.

3.5 Hoeffding Bounds vs. Empirical Bernstein Bounds

Hoeffding bounds. Hoeffding’s inequality, as proven by Wassily Hoeffding in 1963

[21], gives an upper bound for the likelihood that the sum of constrained independent

random variables deviates from its expected value. Let {X1, . . . , Xt} be real-valued

i.i.d. random variables with the range R (R = 1 for binary data) and the mean µ,
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and let Xt = 1
t

∑i=t
i=1 Xi. With a probability of at least 1 − δ, Hoeffding’s inequality

states that:

|Xt − µ| <= R

√
log(2/δ)

2t
, (3.4)

Hoeffding’s inequality has been extensively applied to online learning scenarios due

to its generality. One limitation of the bound is that it scales linearly with the range

R, but not with the variance of Xi. In cases where the variance bound is known and

relatively small compared to the range, Bernstein’s inequality is a more appropriate

choice due to its better handling of small variance bounds. However, when there is

little prior knowledge of variance bounds, Hoeffding’s inequality is more practical.

Empirical Bernstein bounds. The empirical Bernstein bound [81] provides a

tighter bound than Hoeffding’s inequality, depending on the empirical standard de-

viation σ2
t = 1

t

∑t
i=1(Xi − x̂t)

2. The empirical Bernstein bound states that with a

probability of at least 1− δ,

|Xt− µ| ≤ σt

√
2log(3/δ)

t
+

3Rlog(3/δ)

t
. (3.5)

The rate of decline for the term associated with range R is t−1, and it becomes

insignificant as the variance increases. In contrast, the square root term is dependent

on σt rather than R. Therefore, when σt is much smaller than R, the empirical

Bernstein bound is much tighter than the Hoeffding bound.

3.6 Piecewise Mechanism (PM)

LDP has been widely adopted to estimate statistics from a large population of users.

This thesis mainly focuses on state-of-the-art Piecewise Mechanism (PM) [110]

on mean estimation of numerical values. As shown in Algorithm 1, given input
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value v ∈ [−1, 1], the probability density function (PDF) of output v′ ∈ [−C,C] has

two parts: domain [l(v), r(v)] and domain [−C, l(v)) ∪ (r(v), C], where C = eε/2+1
eε/2−1

,

l(v) = C+1
2
v − C−1

2
and r(v) = l(v) + C − 1. Given input v, the perturbed value

is in range [l(v), r(v)] with high probability and in range [−C, l(v)) ∪ (r(v), C] with

low probability. Because value v′ is an unbiased estimator of input value v, the data

collector can use the mean of collected values as an unbiased estimator of the mean

of input values.

Algorithm 1: Piecewise Mechanism

Input: Original value v and privacy budget ε

Output: Perturbed value v′

1: Sample x uniformly at random from [0,1]; if x < eε/2

eε/2+1
then

2:

Sample v′ uniformly at random from [l(v), r(v)] else
3:

Sample v′ uniformly at random from [−C, l(v)) ∪ (r(v), C] EndIf

4: return v′

3.7 Square Wave Mechanism (SW)

LDP has been widely adopted to estimate statistics from a large population of users.

This thesis mainly focuses on state-of-the-art Square Wave Mechanism (SW) [71]

on distribution estimation of numerical values.

The main idea of SW is to increase the probability of output value that can provide

more information about the input value. The data collector receives perturbed values

from users and reconstructs the distribution over a discrete numerical domain. The

bucketization step to discrete can be performed either before or after applying the

randomization step. This chapter only describes the “bucketize before randomize”

here. Each user processes a floating value in the domain [0,1] and generates a value
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in [−S, 1 + S]. Assume the bucket size of input domain is d and output domain size

d′ = d + 2b (b = b εeε−eε+1
2eε(eε−1−ε)dc), given an input value in bucket v, the randomized

output can be expressed as following:

Pr[SW (v) = v′] =

p, if |v − v′| ≤ b,

q, otherwise.

(3.6)

where p = eε

(2b+1)eε+d−1
and q = 1

(2b+1)eε+d−1
. After reviving the perturbed data, the

data collector aggregates the original distribution by using the Maximum Likelihood

Estimation (MLE) [95], and reconstructs the distribution of original values. Note

that SW can estimate both the mean value and the original data distribution.

3.8 Expectation Maximization

Given a set of observed values X in a statistical model, a straightforward approach to

estimate an unknown parameter θ of it is to find the maximum likelihood estimation

(MLE). Generally, there is a θ can be obtained by setting all first-order partial deriva-

tives of the likelihood function l to zero and solve them. However, it is impossible

to attain θ in this way where latent variables Z exist — the result will be a set of

interlocking equations where the solution of θ needs the values of Z and vice versa.

When one set of equations is substituted for the other, the result is an unsolvable

equation. The expectation-maximization (EM) algorithm [11] can effectively find the

MLE by performing expectation (E) steps and maximization (M) steps iteratively

when there are latent variables.

E step produces a function Q(θ|θt) that evaluates the log-likelihood expectation of

θ given the current estimated parameters θt:

Q(θ|θt) = EZ|X,θt [log(θ;X,Z)] = EZ|X,θt [log(X,Z|θ)]

M step calculates parameters that maximize the expected log-likelihood obtained
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in the E step:

θt+1 = arg max
θ

Q(θ|θt).
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Chapter 4

Collecting High-Dimensional and

Correlation-Constrained Data with

Local Differential Privacy

With the prosperity of Internet of Things and crowdsourcing, sensor readings have

become an important source of data that drives new applications such as smart home,

smart city, smart manufacturing, and telecare [5]. For example, during the recent

COVID-19 pandemic, for a better epidemiological understanding, volunteer Hong

Kong participants who are quarantined in their homes or hospitals have been wearing

a device with built-in sensors on their upper arm 24 hours a day, through which

data including their body temperatures, respiratory rates, blood oxygen levels, and

heart rates are sent to a digital platform for real-time monitoring and analysis [107].

However, while data collected and shared between users and institutions can produce

rich knowledge about the cyber-physical space, natural phenomena, and society, they

also bring unprecedented privacy threats to the data providers. To address privacy

concerns, local differential privacy (LDP) [28] [39] [64] is proposed as a stringent

privacy guarantee for crowdsourced systems, in which sensitive data (particularly
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those associated with personal information) are collected in a perturbed manner to

estimate their statistics, such as frequency or mean. The strength of perturbation is

described and quantified by a privacy budget ε, which is typically acknowledged by

data providers.

As both the type and complexity of sensors increase, data collected from users have

been expanding with higher dimensions (or more “attributes” in the IoT terminol-

ogy). For example, some popular medical datasets, such as the Wisconsin breast

cancer diagnostic dataset, have over 30 attributes [15]. Further more, many of these

attributes have correlations among themselves, such as the temperature and humid-

ity in a working space. To satisfy ε-LDP for all attributes as a whole, this chapter

must either use sampling [16] or the composition theorem of LDP [69] to partition

the budget for all d dimensions. The former collects a single attribute from each user.

Since the number of users is diluted by dimensions, this solution requires a large

user population that is proportional to the dimensionality. The latter pessimistically

assumes a complete correlation (i.e., full dependence) between any two attributes,

which is equivalent to the collector repeatedly observing an attribute for d times.

According to the composition theorem of LDP, each attribute must be perturbed

with a smaller privacy budget (e.g., ε/d) so that the sum of all budgets is still ε. For

high-dimensional data, this incurs a large amount of noise on each attribute and thus

results in extremely poor data utility.

Our key observation is that the pessimistic assumption of a complete correlation be-

tween attributes is not necessary in practice, especially for those IoT data that come

from different types of sensors that are intrinsically independent, for example, hu-

midity sensor and luminance sensor in a working space. Even for those correlated

attributes, the correlation often has an upper bound that can be derived from histor-

ical data or apriori knowledge. This chapte quantifies the degree of correlation and

leverage it to effectively allocate the privacy budgets or sampling probabilities of all

attributes. The objective is to achieve an optimized utility for statistics estimation
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(e.g., frequency count) in high-dimensional data. To summarize, the contributions of

this chapter are three-folded.

• Correlation Quantification. This chapter presents a formal definition to

quantify the degree of correlation between a pair of attributes from aprior knowl-

edge or historical data. This lays the foundation of reducing perturbation in

LDP for high dimensional data.

• Univariate Dominance LDP (UDLDP). To further address the low utility

in high-dimensional LDP, this chapter develops a relaxed privacy model, namely,

univariate dominance LDP, to allow the definition of LDP on a single attribute.

This chapter then presents a correlation-bounded perturbation protocol (CBP)

that satisfies UDLDP.

• CBP with sampling (CBPS). This chapter extend CBP to support sampling,

a common technique in sensor networks and IoT, and present the best sampling

strategy for all attributes to achieve the best data utility.

The rest of the chapter is organized as follows. Chapter 4.1 presents the problem

definition. Chapter 4.2 presents the detailed CBP protocol. Chapter 4.3 studies CBP

with sampling. Chapter 4.4 shows the experimental results, followed by a summary

in Chapter 4.5.

4.1 Problem definition

This chapter studies the problem of privacy-preserving statistical estimation on data

records from different users with n attributes. For brevity, this chapter first refrains

ourselves on binary attributes (multi-value cases are discussed in a dedicated part

in Chapter IV) and estimate the frequency of “1” for each attribute. Since these at-

tributes have correlations among themselves, traditional LDP must use either sample
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users or partition the privacy budget ε for each attribute. Our main assumption is

three-folded. First, not all attributes are correlated. From apriori knowledge and his-

torical data, this chapter can identify attributes that are independent of the others,

which form “clusters”. Second, even in a cluster, the attributes are usually correlated

partially, rather than completely dependent on one another. Hence, it is possible

to assume an upper bound of their correlations and leverage it on privacy budget

partition. Third, as this chapter studies high-dimensional data (i.e., large n), the

notion of ε-LDP, where any two records in the high-dimensional space must not have

drastic probability difference (i.e., one being very high and one being very low), be-

comes too stringent and sometimes unnecessary as most probabilities are negligible.

To alleviate this issue, this chapter proposes a dimension-wise ε-LDP which dictates

no two records have drastic probability difference in each attribute. The rest of

this chapter gives the formal definitions of these notions.

4.1.1 Attribute Clusters

In practice, high-dimensional data are not necessarily related to each other. From

apriori knowledge, this chapter can group all attributes into several clusters, the

attributes in which are independent of those in the others. An example is shown in

Fig. 4.1, which illustrates a sensor data record (b1, b2, ..., bm) collected from a room

in a smart building system. Cluster C1 contains three attributes from an air particle

sensor, C2 has only one attribute from a carbon monoxide concentration sensor, and

Cλ has three attributes from a noxious gas sensor collecting indoor air pollution by

decoration. According to domain knowledge of building systems [85] [121], attributes

in different clusters, or inter-cluster attributes, are independent to each other.
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Figure 4.1: Attribute clusters in a smart building system

4.1.2 Intra-Cluster Attribute Correlation

To quantize the correlation between attributes inside a cluster, this chapter adopts

the correlation coefficient η, which is based on the definition of covariance [94]. η is

generally considered as an effective metric to measure how close two random variables

X, Y are related to each other: η = Cov(X,Y )√
V ar(X)V ar(Y )

. In our context, the vector X is

constituted from the values of some attribute (say, A) provided by all the n users,

thus, Xi denotes the value of some attribute A provided by the i-th user, which is

also the i-th component of vector X. Likewise, vector Y denotes the same contents

of some other attribute B.

Although the correlation coefficient can be derived from historical data, the above

definition cannot calculate the perturbation possibility, as it only describes the rela-

tionship between two vectors as an entirety, which cannot answer such question as:

“When the value of attribute A provided by a user is 1, what is the probability the

value of attribute B from the same user being?”

To solve the problem, let’s go back and see where the concept of covariance roots

from. Notice that, covariance is essentially an inner product defined on a vector

space, which differentiates two vectors by their included angles. In the definition of
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covariance, such inner product is defined as the expectation value of the multiplication

of two random variables: < X, Y >= E(XY ) =
Σn1XiYi

n
, which follows the form of

standard inner product in Euclidean space and further defines the included angle of

two vectors by its cosine value. This angle decides how correlated the two vectors

are.

In fact, in this paradigm, the definition of inner product is not specifically requested,

and the initial definition chooses the L2 norm. Given another form of inner product,

say, L1 norm, the above metric remains, while the value of correlation coefficient

varies. That is, if the inner product is given by < X, Y >′= E(|X − Y |) =
Σn1 |Xi−Yi|

n
,

the cosine value of the angle will be η′ = <X,Y >′√
<X,X>′<Y,Y >′

, which is another well-defined

correlation coefficient of two variables.

For binary cases, |Xi − Yi| degrades to simple XOR, and η′ degrades to
Σn1Xi⊕Yi

n
. Let

Pij denote the degraded η′, so the correlation of two binary attributes bi and bj in a

cluster is formulated upon the probabilistic distribution of their values as below:

Definition 1. Intra-Cluster Attribute Correlation. For attributes bi and bj

which have correlation Pij, bi is equal to bj with probability Pij, and bi differs from bj

with probability 1− Pij.  bi = bj, w.p. Pij

bi = 1− bj w.p. 1− Pij

Pij measures how probable the revealed value of one attribute can dictate the value

of the other attribute. If Pij = 1, bi is completely correlated with bj in a positive

manner; if Pij = 0, bi is completely correlated with bj in a negative manner. On the

other hand, if Pij = 0.5, bi is independent of bj.

In practical applications, it is more feasible to capture the correlation probability

between two attributes by an interval, for example, “bi is equal to bj in the scope of
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probability [0.7, 0.8]”. This leads to the following definition on the bounded correla-

tion:

Definition 2. Bounded Intra-Cluster Attribute Correlation. For attributes bi

and bj which have correlation in the scope of [P1, P2]. Let Pij = Max(|P1−0.5|, |P2−

0.5|), bi is equal to (or differs from) bj with probability bound Pij, and bi differs from

(or equals to) bj with probability bound 1− Pij.

In the rest of this chapter, Pij denotes the bounded correlation unless otherwise

stated.

4.1.3 Univariate Dominance LDP

Traditional ε-LDP is defined on all attributes, so that no two instances in the entire

attribute space have distinctive probabilities (i.e., one being very high and the other

being very low). However, as the number of attributes (i.e., dimensionality) increases,

this privacy model becomes an overkill. Our key observation is that since the number

of instances grows exponentially with dimensionality, this chapter can allow some

instances to be more probable, as long as the number of these instances is still too

large for the collector to infer the value of any attribute with high confidence. As

such, this chapter proposes a relaxed model of LDP, namely, univariate dominance

LDP, by ensuring not a single attribute has distinctive probabilities on any two values

over its univariate distribution.

Definition 3. ε-Univariate Dominance LDP. For any attribute bi and any two

inputs s and s′, a perturbation algorithm M satisfies with UDLDP, if the following

condition holds for any possible output Y from Range M

e−ε ≤ P [M(bi = s) = Y ]

P [M(bi = s′) = Y ]
≤ eε
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Although UDLDP is a relaxed privacy model of LDP, when attributes are independent

of each other (any Pij is 0.5 in binary case), observation on one attribute becomes

an independent event to that on any other attribute. Therefore, according to the

parallel composition theorem [69], an ε-UDLDP protocol on each attribute also

satisfies ε-LDP in the entire high-dimensional space. In the worst case, when

all pij = 0.5, ε-UDLDP degenerates to the original ε-LDP.

4.2 CBP: Correlation-bounded Perturbation Pro-

tocol

This chapter describes the details of the correlation-bounded perturbation protocol

to satisfy ε UDLDP. The protocol consists of a correlation bounding algorithm, a user

perturbation algorithm, and a collector calibration algorithm.

The system model is described in Fig. 5.1. First, based on historical data, the col-

lector partitions the attributes into independent clusters and calculates the bound of

correlation and perturbation probability Qt in each cluster t (step ¬). Second, each

user receives these Qt, perturbs her high-dimensional data vector accordingly, and

sends it to the data collector (step ). Finally, the data collector calibrates those

data and estimates the statistics (i.e., frequency count) of each attribute (step ®). In

what follows, this chapter presents the detailed algorithm in each step.

4.2.1 Calculating Perturbation Probability

As the first step, the data collector calculates the perturbation probability Qt in

each cluster Ct according to apriori knowledge and historical data on each attribute.

For ease of presentation, in what follows, this chapter assumes only one cluster and

calculate its perturbation probability. This chapter starts with a two-dimensional
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Figure 4.2: Correlation-bounded Perturbation Protocol

case and then generalize to multi-dimensional and multi-value cases.

Two-dimensional case. When the perturbation probability is fixed to qi, the per-

turbation algorithm of attribute bi becomes:

b′i =

 bi, w.p. qi

1− bi w.p. 1− qi

To derive a qi that satisfies definition 3, this chapter firstly needs to deduct the

probability of bi = s(s ∈ {0, 1}) upon knowing the output y(b′1, ..., b
′
i, ..., b

′
n). In fact,
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the probability of bi = s is determined by a series of observations on b′i and every

b′j(j 6= i). For observation on b′i, it is called direct observation, as it determines

bi directly. For observations on b′j(j 6= i), they are called indirect observations,

as they determine bj, from which bi can be deducted using the correlations Pij. The

overall effect of all the observations shall determine qi.

In the case n = 2, only one direct observation and one indirect observation are in-

volved. For the direct observation on b′i, bi can be determined by qi, that is, the

probability of bi = s equals to qi. As discussed in the definition of correlation and

UDLDP, observation on the other perturbed attribute b′j results in an indirect obser-

vation on bi, as bi can be deducted from bj and their correlation Pij. Let E
b′j=s

bi=s
denote

the indirect observation on b′j = s for bi = s, which can be written as:

P (E
b′j=s

bi=s
) = P (b′j = s|bi = s)

=P (bj = bi, b
′
j = bj|bi = s) + P (bj 6= bi, b

′
j 6= bj|bi = s)

=P (bj = bi)P (b′j = bj|bi = s) + P (bj 6= bi)P (b′j 6= bj|bi = s)

=Pijqi + (1− Pij)(1− qi).

(4.1)

On the basis of Equ. 4.1, the overall effect of the two observations can be calcu-

lated from the Bayes formula. For simplicity, let M1
bi=s

denote bi = s judged by the

direct observation, and M2
bi=s

denote bi = s judged by the overall effect of the two

observations, which can be calculated from:

P (M2
bi=s

) = P (M1
bi=s
|b′j = s)

=
P (M1

bi=s
)P (E

b′j=s

bi=s
)

P (M1
bi=s

)P (E
b′j=s

bi=s
) + (1− P (M1

bi=s
))P (E

b′j=s

bi=s
)

Likewise, P (M2
bi=s

) can be calculated. Inserting the observations on b′i into Definition

3, the following lemma is obtained:

Lemma 1. For any attribute bi, the algorithm satisfies ε-UDLDP in 2-dimension, if

the perturbation probability qi satisfies
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e−ε ≤
P (M2

bi=s
)

P (M2
bi=s

)
≤ eε

Multi-dimensional case. Likewise, the perturbation probabilities qi(i ∈ {1, 2, ..., n})

in multi-dimensional cases can be calculated. Let Mk
bi=s

denote the event that bi = s

upon the overall effect of the first k observations. For each attribute bi, there is one

direct observation b′i and n−1 indirect observations b′j(j 6= i). Similar to the 2D case,

the probability bi = s is judged by the overall effect of the n observations from which

a perturbation qi can be calculated. Since P (Mk
bi=s

) can be deducted with P (Mk−1
bi=s

)

and P (b′j = s) (b′j should be the k-th observation), the calculation of the perturbation

probability is summarized in the following theorem:

Theorem 1. For any attribute bi, the algorithm satisfies with ε-UDLDP in n-dimension,

if the perturbation probability qi satisfies

e−ε ≤
P (Mn

bi=s
)

P (Mn
bi=s

)
≤ eε (4.2)

where

P (Mk
bi=s

) = P (Mk−1
bi=s
|b′j = s)

=
P (Mk−1

bi=s
)P (E

b′j=s

bi=s
)

P (Mk−1
bi=s

)P (E
b′j=s

bi=s
) + (1− P (Mk−1

bi=s
))P (E

b′j=s

bi=s
)

(4.3)

for k ∈ {2, ..., n}.

Bounded Perturbation Probability. Different attribute bi can result in different

solution of qi according to Lemma 1. Although the precise perturbation probabilities

can be calculated, the involved inequalities can be computationally heavy, or worse,

may have no solution when the dimension goes high.

To simplify the calculation, the perturbation probabilities on each attribute can be

fixed at the same value.
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As such, the minimum value among all the calculated qi is chosen as the worst case

to guarantee the given privacy budget ε. In this way, the above inequalities can be

greatly simplified and lead to a bounded perturbation probability Q0:

Q0 = min{q1, q2, ..., qn}

If a series of differential eεi is obtained by substituting Q0 into Equ. 4.2, the maximum

one in eεi meets the user-acknowledged privacy budget ε, which is also guaranteed for

the rest.

Note that, Equ. 4.3 can be degraded to a completely related (or independent) situ-

ation between attributes. When all attributes are completely related, the maximum

value of P (Mn
bi=s

) will be Qn
0 and the minimum value of P (Mn

bi=s
) will be (1−Q0)n,

which is equivalent to the usual case where the privacy budget is allocated at ε
n

for

each attribute. When all attributes are independent, the maximum value of P (Mn
bi=s

)

will be Q0 and the minimum value of P (Mn
bi=s

) will be 1 − Q0. In such case, each

attribute is allocated with a privacy budgets ε.

Multi-Value case. The methodology of CBP is not limited to binary values. A cor-

relation matrix (as shown in Table 4.1) can be used to describe the correlation between

two attributes a and b defined on a domain 1, 2, ...,m at the 2-dimensional-m-value

case (and a tensor for the multi-dimensional-m-value case), in which Paibj denotes the

probability that attribute a equals to i and attribute b equals to j simultaneously. Due

to the page limit, the details have to be put into an outside document. The link can

be found here: https://github.com/accountud/udldp/blob/main/appendix.pdf

4.2.2 Perturbation and Calibration

User Perturbation Algorithm. On the user side, every user holds a binary at-

tribute array B={b1, b2, b3, ..., bn} which is divided in λ clusters with ci attributes(
∑
ci =
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Table 4.1: Correlation matrix.

Correlation

matrix
1 2 ... m

1 Pa1b1 Pa1b2 Pa1b... Pa1bm

2 Pa2b1 Pa2b2 Pa2b... Pa2bm

... ... ... ... ...

m Pamb1 Pamb2 Pamb... Pambm

n) in cluster Ct
1. Each user obtains the perturbation probability Qt(t = {0, 1, ..., λ})

of cluster Ct from the data collector.

For each user’s binary attribute bj in cluster Ct, a binary value bt
′
j is generated with

probability

b′tj =

 btj, w.p. Qt

1− btj w.p. 1−Qt

Each user sends the generated value vector B′ = {B′1, B′2, ..., B′λ} to the data collector,

where B′i = {bi′1 , ..., bi
′
ci
}.

Calibration and Estimation. Data collector estimates the frequency from the

collected reports, i.e., the total number of “1”s of each attribute from N users. Let

btj denote the j-th attribute in cluster Ct, Qt denote the corresponding perturbation

probability, mj denote the number of users reporting “1” collected, and πj denote

the true proportion of users reporting “1”. The following theorem shows an unbiased

estimation of such frequency:

Theorem 2. In CBP, the frequency estimation of the j-th attribute in cluster Ct

calculated from the following formula is unbiased:

Ñbtj
=
mj − (1−Qt)N

(2Qt − 1)

1In this chapter, we mainly discuss binary case.
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Proof.

E[Ñbtj
] = E[

mj − (1−Qt)N

(2Qt − 1)
]

=
NπjQt +N(1− πj)(1−Qt)− (1−Qt)N

(2Qt − 1)
= Nπj

4.3 CBPS: Correlation-Bounded Perturbation with

Sampling

So far, this chapter has presented the CBP protocol to estimate statistics from multi-

attribute data with correlations. This chapter generalizes CBP to support sampling,

where users are partitioned into groups, and all users in the same group send their

values of the same attribute. On the one hand, sampling is a common technique

in sensor networks and the Internet of Things to reduce bandwidth costs. On the

other hand, it is also an alternative method to achieve good data utility for LDP

in multi-dimensional data. As such, it is natural to combine CBP and sampling for

better accuracy under the same privacy budget. The main challenge is that, since

existing correlations break the equality of attributes, the proportion of samples from

different attributes should no longer be equal. This chapter will derive an optimal

sampling strategy for the CBP protocol, namely CBPS, that optimizes the overall

estimation accuracy. Note that CBPS only needs to concern one cluster at a time, as

the attributes in each cluster are independent of those in the other clusters.

4.3.1 Optimal Sample Allocation

In the context of sampling among attributes, the “one-user-one-attribute” sampling

strategy is commonly believed to achieve the minimum overall variance [114], i.e., the
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best estimation accuracy. However, when sampling with CBP, the symmetry between

attributes no longer exists. As such, this sampling strategy is no longer optimal. In

fact, this sample allocation problem can be formulated as below.

Optimal Sample Allocation Problem. Let n denote the number of attributes,

N the total number of samples to be collected, and γ the number of attributes each

user is asked to collect.Without loss of generality, the n attributes can be partitioned

into g disjoint groups (G1, G2, ..., Gg), each with γ attributes and with a perturbation

probability (Q1,Q2, ...,Qg). Each user is assigned to one group and sends the per-

turbed γ attribute values of this group to the collector. The optimal sample allocation

problem is to decide Ni, the number of users in each group Gi, where ΣNi = N such

that the total variance of estimation of all attributes is minimized.

Variance Estimation. Let us first decide the minimum variance of estimation in

CBPS, where all perturbation possibilities Qi of Gi are already given:

Lemma 2. The minimum variance of estimation in CBPS V ar[π̃(B)] is determined

by the following formula:

V ar[π̃(B)] ≥ (

g∑
i=1

√
γ
Qi(1−Qi)

(2Qi − 1)2
)2/N

If and only if vector
√

γQi(1−Qi)
N(2Qi−1)2

and
√
N are linearly dependent, the inequality holds

as an equality.

Proof. The proof can be found in the same outside document linked in Chapter IV,

the “Multi-value case” part.

From Lemma 2, a natural deduction of the optimal choice of γ can be made instantly:

Corollary. If all Qis are pre-given, the minimal possible variances of all γ can be

directly calculated. An optimal γ can be chosen by simple comparison.

Optimal Proportion of Users. With Lemma 2, the optimal proportion of users

can be determined by the following theorem:
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Theorem 3. The optimal proportion of Ni is determined by the solution of the fol-

lowing g + 1 formulas, where λ is an unknown parameter to be determined in the

calculation:

λNi =

√
γQi(1−Qi)

Ni(2Qi − 1)2
,
∑

Ni = N, i ∈ {1, 2, ..., g} (4.4)

Proof. The proof can be found in the same document where Lemma 2 is proved.

4.3.2 Calibration and Estimation

Now the collector estimates the number of “1”s from the collected reports of N users.

Let bij denote attribute bj in group Gi, Qi denote the corresponding perturbation

probability, Ni denote the number of users in Gi, and mi
j denote the number of users

reporting “1”. The following theorem shows an unbiased estimation of such frequency.

Theorem 4. In CBPS, the frequency estimation of the j-th attribute in Group Gi

calculated from the following formula is unbiased.

Ñbij
=
mi
j − (1−Qi)Ni

(2Qi − 1)

Proof. The proof follows that of Theorem 2.

4.4 Experimental Results

This chapter evaluates the accuracy of the proposed methods, namely CBP and

CBPS, on both real-world and synthetic datasets. For comparison, this chapter also

evaluates the basic RAPPOR [45], optimized unary encoding (OUE, state-of-the-art

frequency estimation protocol for single attributes) [114], and Sampling (each user

randomly selecting and perturbing some attributes). The accuracy is measured by
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the mean square error MSE [83], which is the sum of the square difference between

the real frequency F (b) and the estimated frequency F (b)′ of all attribute b ∈ X.

Formally,

MSE =
1

n

∑
b∈X

(F (b)− F (b)′)2

This chapter conducts the experiments using MATLAB R2019b on a PC with AMD

Ryzen 7 2700X eight-core processor, 64GB RAM, Windows 10. All measurements are

repeated 100 times and averaged.In the following, the experimental results are shown

in four settings: (1) The performance robustness of different correlation ranges, (2) a

single cluster of multiple binary attributes, (3) multiple clusters of high-dimensional

binary attributes, and (4) a single cluster of multivalued attributes.

There are four real datasets PM2.52, TH3, CMC4 and CLAVE5, where parameters

are summarized in Table 4.2. PM2.5 is an hourly data set that consists of the PM2.5

concentration data from US embassy in Beijing between 2010 to 2014. TH consists

of the energy use data in a low energy building, i.e., the temperature and humidity

conditions. This chapter normalizes the domain of each attribute into binary values

{0,1} (by setting those below average to 0, and vice versa). CMC is a subset of

1987 National Indonesia Contraceptive Prevalence Survey, which includes 8 binary

attributes on married women, such as pregnancy. Clave consists of 16 binary at-

tributes, which are attack-point vectors where “1” indicates the substantial presence

(and “0” indicating absence) in a certain time window. These correlation ranges are

calculated using 10% of user data as prior knowledge, while the remaining 90% is

used for experimental validation.

2https://archive.ics.uci.edu/ml/datasets/Beijing
3http://mlr.cs.umass.edu/ml/datasets.html
4https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
5https://archive.ics.uci.edu/ml/datasets/Firm-Teacher-Clave-Direction-Classification
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Table 4.2: Single cluster 2 value Datasets

data dimension number of users correlation range

TH 10 19.7K 0.50-0.80

PM2.5 8 43.6K 0.50-0.85

CMC 8 1.5K 0.50-0.80

CLAVE 16 10.8K 0.50-0.55

4.4.1 Performance of CBP

Robustness of Correlation Ranges. In the first set of experiments, the trend

of MSE of CBP with respect to ε in different ranges of correlations is verified. As

synthetic data are more appropriate for such controlled experiment, four datasets

SY N2D, SY N4D, SY N7D and SY N10D with 100K users’ data and 2, 4, 7, and 10

dimensions, respectively, are generated. For the four datasets, five equal-interval

ranges of correlation are employed to observe the impact on MSE. It can be seen

from the figures that the performance between the five curves is stable in different

intervals - they decrease with the increment of ε in similar trends, and the closer the

correlation to 0.5, the smaller the MSE is.

Accuracy. Fig.4.4 shows the frequency estimation accuracy of the four candidate

methods, that is, CBP, basic RAPPOR [45], SUE [114], OUE [114] and Sampling1 (1

denotes sampling only one attribute). Notice CBP and Sampling1 are two important

cases of CBPS: The former is sampling all the attributes (aka. CBPSfull), that

is, each user sends all n attributes. The other is sampling only one attribute (aka.

CBPSsingle), in which each user sends only one attribute.

The result shows, when the privacy budget is relatively small, Sampling1(CBPSsingle)

behaves well, as the cost of utility is rather large when partitioning a small epsilon

in pure LDP protocols [114]. With the increment of privacy budget ε, the impact

of privacy partition gets weaker and the performance degrades soon. However, our
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Figure 4.3: CBP on four datasets in different intervals.

CBP (CBPSfull) benefits from the correlation between attributes to gain a better

perturbation probability, which remarkably alleviates the impact of privacy partition

when ε is small.

4.4.2 Performance of CBPS

Accuracy. Fig. 4.5 compares the performance between CBPS and Sampling. Both

CBPS and Sampling sample i(i ∈ {1, 2, ..., n}) attributes, that is, each user uploads i

attributes instead of only one. For fairness, the latter samples with the same grouping

scheme (and thus the same number of attributes to sample). Clearly, CBPS degrades

to Sampling at the 1-dimension point, while degrading to CBP at the maximal di-
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Figure 4.4: The MSE of different methods.

mension point.It is observed that the surface of CBPS’s is always lower than that

of Sampling since, while they collect the same number of dimensions, the latter has

higher perturbation probabilities and therefore has lower MSE.

Variance. The empirically measured variances are now shown to match the theo-

retical results in Lemma 2, so sampling only one attribute is not always the optimal

solution. To ensure the credibility of the measured variance, the measurement is

repeated 1000 times in all experiments below.

Fig. 4.6 shows the comparison of empirical and theoretical results of CBPS sampling

different attributes, in which EVS1 denotes the empirical variance of sampling only one

attribute, and TVS1 denotes the theoretical variance of sampling only one attribute.
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Figure 4.5: The MSE of Sampling vs. CBPS.

It can be seen from the figure that the empirical results match very well with the

theoretical results. Figs. 4.6(a), 4.6(b), and 4.6(c) show that sampling 2 attributes

outperforms others while sampling 8 attributes behaves the worst. It implies that

sampling only one attribute is not usually the best choice. Fig. 4.6(d) shows that

the variance decreases with respect to the increment of attributes, in which sampling

8 attributes outperforms others. It can be concluded that when correlations between

data are relatively weak, the more attributes sampled, the better the variance is.

User Allocation Scheme. According to Lemma 2, when n attributes are dis-

tributed to different groups, there should exist an optimal user allocation scheme

such that the minimum variance of estimation in CBPS is reached. This part com-
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Figure 4.6: The variance of Sampling vs. CBPS.

pares the performance of three different schemes where ε = 1 to show that our optimal

allocation scheme outperforms others, including our scheme (OPTallo), the uniform

allocation (UNIallo, each group has the same number of users) and the random allo-

cation (RANallo, each group has a random number of users).

From Fig. 4.7, it can be seen that OPTallo outperforms others, as there are different

perturbation parameters Qi in different groups and the scheme achieves the minimum

variance by allocating ni according to the corresponding Qi.
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Figure 4.7: The MSE of different user allocation schemes.

4.4.3 Conclusion of Experimental Results

Based on the above experimental results, the following conclusions are drawn on the

performance of CBP and CBPS. First, the weaker the correlations are, the better

accuracy of the CBP is. Second, CBP and Sampling1, two special cases of CBPS,

outperform other schemes. At most cases, Sampling1 performs better than CBP

when the privacy budget is small. Third, given the grouping scheme, CBPS is always

better than Sampling. Furthermore, the empirically measured variances of CBPS

match the theoretical results, which means that the best sampling scheme can be

chosen by comparing the theoretical variances of different sampling schemes. Finally,
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an optimal user allocation scheme of CBPS is verified to achieve a smaller MSE than

uniform allocation and random allocation.

4.5 Summary

This chapter studies how to collect correlated high dimensional data with a relaxed

privacy model of LDP, namely, UDLDP. Based on this model, correlation-bounded

perturbation (CBP) protocol and CBP with sampling (CBPS) are presented. Both of

them address the overallocated privacy budget issue from traditional LDP techniques.

The experimental results on both real-world datasets and synthetic data show the

efficiency of the proposed CBP and CBPS protocols.
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Chapter 5

Top-k Discovery under Local

Differential Privacy: An Adaptive

Sampling Approach

This chapter studies top-k item discovery in a set-valued dataset under LDP. In this

setting, each user has a set of private items, such as the music playlist, web search

history, and location trajectories. To protect the privacy, each user perturbs his data

using LDP before sending it to the data collector. The collector then analyzes the

perturbed data to identify the most frequent k items. For instance, in iOS [7], users’

emoji data is perturbed using LDP before being sent to Apple. This enables Apple

to estimate the frequency of each emoji and identify the most popular ones, without

compromising user privacy.

However, the main challenge in discovering top-k items from a set-valued dataset

by conventional LDP mechanisms lies in the fact that users have varying numbers

of items and the item domain (with size d) is usually extremely large, which leads

to poor utility of the estimation. LDPMiner [88] and SVIM [115] address these

challenges using a padding-and-sampling-based frequency oracle (PSFO) approach,
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in which a subset of users (e.g., 20%) report the perturbed size of their private sets

to determine the padding length l, which is typically set to the 90th percentile of the

former. The remaining users augment their private set with dummy items to pad to

the size of l. Then one item is randomly selected from the padded set and reported

using a frequency oracle GRR or OLH [115]. Although PSFO increases the probability

of sampling an existing item by each user, it still faces several challenges, including

inaccuracies in determining the padding length l for small datasets, excessive padding

length for most users, and biased frequency estimation due to some users with more

items than the padding length l.

Uniform sampling is an unbiased scheme that treats all items equally over time and

can effectively address PSFO issues. Each user generates a d-bit string with existing

item locations marked as 1 and all other locations marked as 0. The user then samples

and reports a bit (i.e., 0 or 1) from the string uniformly at random. However, uniform

sampling can lead to most users uploading non-existent items, which contributes little

information to the results. To overcome this limitation, the data collector can adjust

the sampling scheme based on the information collected over time. For example, less

frequent items can be sampled less often, enabling the estimation results to focus on

frequent items from the real top-k set.

Identifying the top-k items via adaptive sampling can be regarded as a Multi-armed

bandit (MAB) problem. In the MAB problem, the decision-maker encounters a d-

armed bandit, where each arm corresponds to a unique probability distribution. The

decision-maker adaptively samples from each arm to obtain its corresponding reward

and achieve their intended targets, such as returning the k arms with the highest

reward to minimize regret. The arm represents the item in top-k items estimation,

with the decision-maker as the data collector. The discovery of the top-k items of

set value data is equivalent to selecting k arms with the highest reward in a MAB

problem.

This chapter explores the problem of identifying top-k set-valued data under LDP
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settings, with the goal of returning the sets of top-k items along with their frequen-

cies, given a fixed number of samples. However, traditional MAB solutions need to

be revised due to limited sample sizes, privacy budgets, and time constraints in LDP

systems. To overcome these challenges, this chapter proposes an adaptive sampling

algorithm, namely Adaptive-RR Bandit Sampling (ARBS), which divides users into

multiple partitions and sequentially lets users in each partition report their local data

in light of the previous estimation results. Consequently, it adaptively increases the

sampling probabilities for those frequent items. On the other hand, this chapter

further introduces ARBS with frequency (ARBSF) for estimating frequencies of the

identified items and a Delay-contrained Batch Sampling algorithm (DBS) for optimiz-

ing the user allocation when given fixed rounds of interactions between the users and

the collector, ensuring both accuracy and timeliness. To summarize, our contributions

are three folded.

• To the best of our knowledge, this is the first work to formulae set-valued data

collection under LDP as an MAB problem, which inspires us to enhance the

estimation results significantly.

• This chapter proposes ARBS for identifying top-k frequent items and ARBSF

for estimating the frequencies of them, in which this chapter utilizes data char-

acteristics and adaptively adjust the sampling scheme to obtain better utility.

• This chapter proposes a minimal error scheme to ensure the constraint on lim-

ited rounds is fully satisfied, and its effectiveness is demonstrated through ex-

tensive empirical analysis.

The remainder of this chapter is organized as follows. Chapter 5.1 formally gives

the problem definition. Chapter 5.2 presents the details of the proposed adaptive

sampling scheme, followed by a delay-constrained solution in Chapter 5.3. Chapter 5.4

provides extensive experimental evaluations, and the chapter is concluded in Chapter

5.5.
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5.1 Problem Definition and Naive Solutions

5.1.1 Problem Definition

There is a data collector and n users in the system. Each user maintains a private set

of items, which of each is from the domain V = {v1, v2, ..., vd} with d distinct items.

Let pi denote the frequency of item vi, and without loss of generality, it is assumed

that

p1 ≥ p2 ≥ · · · ≥ pd. (5.1)

For the sake of privacy, each user perturbs and reports her set of items to the data

collector, by following LDP protocols. Upon receiving the perturbed data from all

users, the goals of the data collector are to identify the most frequent k items and to

estimate their frequencies.

The first goal can be formulated as a top-k discovery problem, which involves finding

a set of most frequent items while preserving a ranking that is close to the real one.

Formally, it can be defined as follows.

Definition 4. (Top-k discovery) Given the items set V = {v1, . . . , vd} with the true

frequency in decreasing order, the top-k problem finds the item set T , where T ⊆ V ,

|T | = k and for any item vi ∈ T with frequency pi and for any item vj ∈ T { = V − T

with frequency pj, therefore:

pi ≥ pj. (5.2)

In particular, given the k-th most frequent item vk’s frequency fk, it is known that

∀vi ∈ T , ∃θ ≥ 0

pi ≥ pk + θ. (5.3)

The second goal is to ensure the frequency estimation accuracy of items in T . Specif-

ically, given the top-k frequent item set T , each pi for the item vi ∈ T is estimated.

This can be defined as a top-k item frequency estimation problem as follows.
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Definition 5. (Top-k frequency estimation) The top-k frequency estimation problem

involves estimating the frequency pi of each item vi ∈ T , where T is a set of top-k

frequent items. The frequency pi is defined as the proportion of vi’s occurrences among

all users.

5.1.2 Uniform Sampling

Intuitively, each user can encode her set of items using a d bit string {0, 1}d, where 1

(resp. 0) indicates the existence (resp. non-existence) of an item in her set. Then a

bit (0 or 1) can be sampled uniformly at random, perturbed by RR mechanism, and

sent to the data collector. Then the collector estimates the frequency of each item

based on the perturbed data from all user. In particular, item vi observed by the

data collector follows a Bernoulli distribution.

fi = pi
eε

eε + 1
+ (1− pi)

1

eε + 1
(5.4)

where pi is the real frequency of item vi, and ε is the privacy budget. The above

procedure adopts a uniform sampling strategy, where each item is sampled from

the domain with equal probability. However, there are several issues that need to

be further considered. Firstly, the approach neglects the differences between items.

To be more specific, items with smaller frequencies can be sampled less frequently,

which would allow for more users to be allocated towards the frequent items. To take

this strategy further, in order to gather information on different items, the sampling

process should be carried out in multiple rounds and the sampling strategy should be

adjusted in a timely manner, thereby achieving optimal results.

5.2 Adaptive Sampling

This chapter proposes an adaptive sampling algorithm for identifying top-k items

and estimating their frequencies. The system overview of the proposed scheme is first
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Figure 5.1: Illustration of the framework

presented, and then the implementation details are described.

5.2.1 System Overview

Our proposed framework employs an adaptive by-round strategy to overcome the lim-

itations of naive solutions, as shown in Fig. 5.1. The data collection process begins

with a uniform sampling of all items from n0 users, establishing an initial knowl-

edge base called Initialization. The remaining users are subsequently divided into R

partitions, with n1, n2, . . . , nR users respectively, for R rounds of data uploading. In

each round, users in corresponding partition report their perturbed values only once

to maintain ε-LDP privacy guarantee as defined in [69]. In particular, the sampling

strategy in the upcoming round is in light of the information collected in the previous

rounds. After completing all rounds, the data collector aggregates the top-k items

and their frequencies. This chapter first considers a simplified case where there in-

volves only one user in each of R round, i.e., n1 = n2 = · · · = nR = 1. This enables

us to adjust our sampling strategy in real time.
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5.2.2 Knowledge Initialization

To estimate the frequency of each item, let ti denote the number of times item vi is

sampled and let {xi1, . . . , xiti} denote the reported values. The observed frequency is

given by f̂i = 1/ti
∑ti

j=1 x
i
j, which is an unbiased estimation of fi in Equ. 5.4. It is

unjustifiable to set different ti without any knowledge on vi. Therefore, to implement

the adaptive sampling scheme, it is crucial to establish some prior knowledge about

the items (e.g., item frequency distribution), which can be accomplished in a similar

manner as uniform sampling.

Algorithm 2 shows our idea. Note that in uniform sampling, each user randomly

selects an item to report, which generally results in each item being chosen approx-

imately the same number of times. However, there still exists some approximation

error due to randomness. Algorithm 2 corrects this by letting the data collector

directs each user to sample a specific item (and then perturb it), which effectively

controls the number of each item being sampled. Consequently, the data collector

collects each item a fixed number of times t = n0

d
(line 3), estimates the frequency for

all items (line 4) and returns f̂i as prior knowledge for further use (line 5).

Algorithm 2: Initialization(n0)

Input: Privacy budget ε and initialization parameter n0

Output: The aggregated frequency {f̂1, . . . , f̂d}

1: t = n0

d
for i = 1 to d do

2:

Let t users report vi by RR, denoted by {xi1, ..., xit}

3: Calculate vi’s frequency as f̂i =
∑t

j=1 x
i
j/(

n0

d
)

4: return {f̂1, . . . , f̂d}

It is critical to determine an appropriate value for n0 during initialization to ensure

accurate results. A small n0 may result in inaccurate information collected in the

initialization round, leading to error accumulation in subsequent rounds. On the

49



Chapter 5. Top-k Discovery under Local Differential Privacy: An Adaptive
Sampling Approach

contrary, with a limited number of users, an excessively large n0 may cause too many

users to be concentrated in the initialization round, resulting in fewer users learning

and utilizing prior knowledge in subsequent rounds. Previous studies have proposed

various scales for n0 [27, 63]; however, these values cannot be directly applied to

our scheme. For example, Chen et al. [27] suggest a minimum n0 of 5 to guarantee

proper prior knowledge estimation. In the LDP setting, it is not possible to establish

such a minimum n0 because when ε is closer to 0, the prior knowledge becomes less

accurate, and a larger n0 is required. Therefore, under the constraints of LDP noise

and a limited number of users, selecting a suitable n0 is essential for performance

enhancement.

To determine the optimal value of n0, the prior knowledge derived from Algorithm 2

needs to be quantified first. This is done by defining the initialization error and

confidence.

Definition 6. (Initialization error and confidence) Let e0 denote the initialization

error, and 1 − e0 denote the initialization confidence in a top-k discovery problem.

For an estimated top-k item set T̂ , let T̂ { = V − T̂ . ∃e0 ∈ (0, 1), ∀θ > 0, vi ∈ T̂ , and

vj ∈ T̂ {, we have f̂i ≥ fj − θ with the probability of 1− e0.

This definition does not take into account the order of the returned items and a

larger initialization confidence (i.e., a smaller initialization error) indicates better

performance in identifying the top-k items. The initialization error is obtained by

applying the union bound and Hoeffding’s inequality after sampling all items n0

d

times, as demonstrated in the following theorem:

Theorem 5. ∀θ > 0, the probability of error e0 of Initialization(n0) in the top-k

discovery satisfies

e0 ≤ de−
θ2n0
2d (5.5)

Proof. Recall that T is the top-k item set and items in T { are ranked below the top-k.

For any θ, according to Eqs. 5.1 and 5.3, the following connection between T and T {
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can be established:

∀i ∈ T, ∀j ∈ T { : (fi − fj > θ) (5.6)

After initialization, according to Definition 6, there exists a T̂ ⊂ V such that |T̂ | = k,

and ∀i ∈ T̂ , ∀j ∈ (V − T̂ ) : (f̂i ≥ f̂j). An item vj in T { can occur in T̂ , only if there

is some items in T such that f̂i < f̂j. In turn, Equ. 5.6 implies that the latter event

only occurs if f̂i ≤ fi − θ
2

or f̂j ≥ fj + θ
2
. In terms of probabilities, by applying the

union bound and Hoeffding’s inequality, therefore:

P (∃vj ∈ T { : (vj ∈ T̂ ))

≤ P
(
∃vi ∈ T :

(
f̂i ≤ fi − θ

2

))
+P

(
∃vj ∈ T { :

(
f̂j ≥ fj + θ

2

))
≤
∑

i∈T P
(
f̂i ≤ fi − θ

2

)
+
∑

j∈T { P
(
f̂j ≥ fj + θ

2

)
≤ |T | e−

θ2n0
2d + |T {|e−

θ2n0
2d

≤
(
|T |+ |T {|

)
e−

θ2n0
2d

≤ de−
θ2n0
2d

(5.7)

The selection of n0 is reduced to an optimization problem, with the goal of maximizing

the total initialization confidence held by all users. This problem is simplified into two

stages: the Initialization round and the subsequent rounds. During the Initialization

round, the confidence is zero, and there are n0 users involved. After initialization, the

remaining users have an initialized confidence of 1 − de−
θ2n0
2d . Thus, the selection of

n0 aims to maximize the overall initialized confidence I while considering the value

of ε. The expression for I is given as follows:

arg max
n0

I = n0 · 0 + (n− n0)(1− de−
θ2n0
2d ), (5.8)

where θ is a parameter defined as

θ =
eε

eε + 1
− 1

eε + 1
=
eε − 1

eε + 1
.
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Intuitively, as ε increases and θ decreases, a larger n0 is necessary to achieve a sat-

isfactory level of initialization confidence. While obtaining an analytical solution for

the transcendental equation presented in Equ. 5.8 is challenging, numerical methods

(e.g., Newton’s method [50]) can be used to approximate n0.

Remark. While an unbiased frequency estimate p̂i can be further derived from f̂i

(see Eq. 5.13), f̂i is chosen instead of p̂i to determine n0. Intuitively, the larger the

item frequency distances are, the less accurate top-k discovery becomes. Therefore, an

adaptive sampling scheme should be designed based on the observed item frequency

distances. Applying p̂i on an adaptive sampling scheme is good if data are collected

without perturbation. However, when perturbation exists, the data collector obtains

f̂i rather than p̂i. If p̂i is applied under LDP, items near the k-th item will be

undersampled, which degrades the utility of top-k discovery. Therefore, designing

adaptive sampling strategy based on f̂i is able to achieve better performance.

5.2.3 Top-k Items Discovery

The uniform sampling scheme samples each item equally and ignores the distribution

of items. However, when the items in T and T { are clearly separated, fewer users

are needed to identify the top-k items. In such cases, it is more effective to assign

more users to report items whose frequencies are near pk, i.e., the frequency of the

k-th most frequent item. This chapter proposes an adaptive sampling scheme, called

Adaptive-RR Bandit Sampling (ARBS), which formalizes the sampling process as

an MAB problem.

Design of ARBS. Before starting a new round, the frequency of all items has been

estimated, which should ideally be f̂1 ≥ . . . f̂d. However, due to limited statistical

counts, an accurate ordering may not be obtained. Thus, the order obtained is set as

f̂ξ1 ≥ · · · ≥ f̂ξi ≥ · · · ≥ f̂ξd , where f̂ξi denotes the i-th most frequent item estimated.

The sampling probability for each item needs to be adjusted based on this infor-
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mation. To accomplish this, inspiration is drawn from the literature [63] and the

concentration inequalities are inverted. Specifically, the error probability δi for each

item is calculated, which reflects the distance between f̂i and a boundary point µ of

T̂ and T̂ {. Intuitively, µ should be drawn from the interval [f̂ξk , f̂ ξk + 1], where f̂ ξk

can be regarded as the lower bound of item frequency in the set T̂ , while f̂ ξk+1 is

the upper bound of the set T̂ {. The closer f̂i is to µ, the more users are required to

determine whether its frequency is greater than µ.

Choosing an appropriate µ is critical, and a straightforward approach is to take the

mean value of f̂ξk and f̂ ξk + 1. However, as an item’s frequency approaches µ, more

users are required to estimate its frequency accurately. Therefore, the aim is to choose

µ in [f̂ξk , f̂ ξk + 1] that maximizes the distance between it and all fi’s. To optimize the

sampling scheme, two different values of µ are set to maximize the distance between

them. The choice of µ is described as follows:

µ =

 f̂ξk+1
, if f̂i ≤ f̂ξk

f̂ξk otherwise

The choice of µ in such two cases can maximize the distance between µ and f̂i’s and

thus optimize the sampling while retaining the relative order among items.

After the initialization round, each item vi has ti reports from users, i.e., {xi1, · · · , xiti}.

Thus, an estimated frequency can be derived f̂i = 1
ti

∑t
j=1 x

i
j, and an empirical vari-

ance σi =
√

1
ti

∑ti
j=1(xij − f̂i)2 of all reports. Bernstein’s inequality, as presented in

Eq. 3.5, is then used to derive a tighter bound than that of Hoeffding’s inequality.

The resulting formula for δi is as follows.

Definition 7. Given a frequency µ, for item vi that is observed ti times with fi, the

inverted error δi can be obtained using the inverse of Bernstein’s inequality (in Equ.

3.5).

δi = 3e(−
σ2
i
ti+σiti

√
σ2
i
+6|f̂i−µ|+3ti|f̂i−µ|
9

)2ti (5.9)

where σ2
i = 1

ti

∑ti
j=1(xij − f̂i)2 and f̂i = 1

ti

∑t
j=1 x

i
j.
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Proof. In this thesis, R = 1 and let H =
√

log(3/δi)
ti

. According to Equ. 3.5, we have

3H2 +
√

2σiH + |f̂i − µ| = 0. The solution for H2 is

H2 =
|f̂i − µ|

3
+
σi

√
σ2
i + 6|f̂i − µ|

9
+
σ2
i

9
.

Then, by eliminating H, δ can be expressed as:

δ = 3e−H
2ti = 3e(− |f̂t−µ|

3
+
σi

√
σ2
i
+6|f̂t−µ|
9

+
σ2i
9

)ti

The parameter δi reflects the error in determining whether fi is larger or smaller than

µ, and items with larger δ are more likely to require additional users. To incorporate

δi into the sampling scheme, users sample an item vi by following the probability

distribution

P (vi) =
δi∑d
j=1 δj

(5.10)

where i ∈ {1, 2, · · · , d}. Equ. 5.10 normalizes each inverted error δi values across all

items, ensuring that the sampling probabilities of all item sum up to 1. In each round

of sampling, each user samples an item vi with probability P (vi), and then update the

sampling probability distribution by Equ. 5.9 and Equ. 5.10 after the current-round

collection.

Algorithm of ARBS. The proposed ARBS scheme is given by Algorithm 3. At the

beginning of the algorithm, each item is sampled n0

d
times during Initialization (line

1). Then, the probabilities are updated based on the current knowledge using Equ.

5.10 (line 2). Next, the algorithm enters a by-round sampling phase, where only one

item is sampled in each round (line 3). Specifically, an item vs is sampled from the

item set V with probability P (vs) (line 4). The estimates are updated using Equ.

5.9 and the sampling probabilities are updated using Equ. 5.10 (lines 5-6). After all

the users upload the perturbed data, the estimated top-k items are determined by

selecting the items with the highest k frequencies (line 7).
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Algorithm 3: Adaptive-RR Bandit Sampling (ARBS)

Input: Privacy budget ε and initialization parameter n0

Output: Top-k frequent item set T̂

1: Initialization(n0);

2: Update {P (v1), , ..., P (vd)} according to Equ. 5.10; for k = n0 + 1 to n do
3:

Sample an item vs from V = {v1, ..., vd} following probability distribution

{P (v1), ...P (vd)};

4: Update δs according to Equ. 5.9;

5: Update {P (v1), ..., P (vd)} according to Equ. 5.10;

6: Find T̂ ⊂ V such that |T̂ | = m, and ∀vi ∈ T̂ ,∀vj ∈ (V − T̂ ) : (f̂i ≥ f̂j). endfor

7: return T̂

Error analysis. To address the limitation of the error bounds estimated by Equ. 3.4

and Equ. 3.5, which tend to be impractically large due to the limited number of users

available for each item, this chapter utilizes the p-value of a one-sided two-sample

T-test [98] to obtain more accurate error estimates for ARBS. The p-value is the

probability of obtaining test results that are at least as extreme as a result observed,

assuming the null hypothesis is true. For example, when testing the null hypothesis

fi ≤ fj, the p-value obtained from observing the samples vi and vj is 0.05, indicating

a 0.05 probability of rejecting the null hypothesis. The p-value of vi and vj is denoted

as pvi,j, and the following theorem is presented based on these p-values:

Theorem 6. Given the null hypothesis, i.e., ∀vi in T̂ and ∀vj in T̂ { satisfy

fi > fj

and for any pair of items {vi, vj} with p-value pvi,j, the error on the validity of this

observation can be written as:

∆ = 1−
∏i=k

i=1
(1− pvi,k+1)

∏i=d

i=k+1
(1− pvi,k).
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Given the perturbed frequency of vk is fk, and for any positive value γ, we have

fi − fk > γ for all vi in T̂ , and fk − fj > γ for all vj not in T̂ , the upper bound of

the error is:

∆worst = 1−
i=k∏
i=1

(1−
n
d∑
j=0

(
n
d

j

)
F
j
(1− (F ))

n
d
−j

j∑
g=0

(
j

g

)
F g(1− F )j−g)

i=d∏
i=k+1

(1−
n
d∑
j=0

(
n
d

j

)
f jk(1− fk)

n
d
−j

j∑
g=0

(
j

g

)
F g(1− (F ))j−g),

where F = fk + γ and F = fk − γ.

Proof. Since the k values do not need to be returned in any particular order, it is

only necessary to compare each item in T̂ with f̂k + 1 and compare those in T̂ { with

f̂k. Let δpi denote the doubt on vi. The following holds:

δpi =

 pvi,k+1, if p̂i ≤ p̂k

pvi,k if p̂i ≥ p̂k+1

Therefore, the top-k error is:

∆ = 1−
∏

(1− δpi)

= 1−
∏i=k

i=1
(1− pvi,k+1)

∏i=d

i=k+1
(1− pvi,k).

(5.11)

For the theoretical top-k error bound, the worst-case scenario is considered, where all

user frequencies are close to fk. In other words, for any γ > 0, we have fi− fk+1 > γ

(for all vi in T̂ ), and fk − fj > γ (for all vj not in T̂ ). Here, the p-value for values vk

and vj is analyzed.

Since γ is very small, the sampling count allocated to each user can be approxi-

mated by n/d. To test the null hypothesis H0 : fk > fj, two independent binomial

experiments are conducted on these two adjacent values, with: f̂k ∼ B(n
d
, fk) and

f̂ j ∼ B(n
d
, fj).
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For each possible value of g, the probability mass function P (n
d
f̂k − n

d
f̂ j = g) needs

to be calculated, and these are summed to obtain the p-value.

pvk,j = P (
n

d
f̂k −

n

d
f̂j ≥ 0 | H0)

=

n
d∑
j=0

(
n
d

j

)
f jk(1− fk)

n
d
−j

j∑
g=0

(
j

g

)
f gj (1− fj)j−g

Similarly, we obtain the p-value for pvi,k+1:

pvi,k+1 = P (
n

d
f̂i −

n

d
f̂k+1 ≥ 0 | H0)

=

n
d∑
j=0

(
n
d

j

)
f ji (1− fi)

n
d
−j

j∑
g=0

(
j

g

)
f gk+1(1− fk+1)j−g

Substituting pvk,j and pvi,k+1 into Equ. 5.11, we obtain

∆worst = 1−
i=k∏
i=1

(1−
n
d∑
j=0

(
n
d

j

)
f ji (1− fi)

n
d
−j

j∑
g=0

(
j

g

)
f gk+1(1− fk+1)j−g)

i=d∏
i=k+1

(1−
n
d∑
j=0

(
n
d

j

)
f jk(1− fk)

n
d
−j

j∑
g=0

(
j

g

)
f gj (1− fj)j−g)

Let F denote fk + γ and F denote fk − γ. We use fk solely to represent the error,

which can be rewritten as:

∆worst = 1−
i=k∏
i=1

(1−
n
d∑
j=0

(
n
d

j

)
F
j
(1− (F ))

n
d
−j

j∑
g=0

(
j

g

)
F g(1− F )j−g)

i=d∏
i=k+1

(1−
n
d∑
j=0

(
n
d

j

)
f jk(1− fk)

n
d
−j

j∑
g=0

(
j

g

)
F g(1− (F ))j−g).
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5.2.4 Frequency Estimation of Top-k Item Set

Besides the top-k discovery, this chapter further presents how to estimate their fre-

quencies. While ARBS performs well in top-k discovery, few users are assigned to

items with high frequencies, which affects the accuracy of frequency estimation. To

address this issue, this chapter presents Adaptive-RR Bandit Sampling with frequency

(ARBSF) in this chapter that can achieve accurate frequency estimation of T̂ while

also maintaining effective top-k discovery performance.

Designing of ARBSF. This chapter continues to use the ARBS algorithm to iden-

tify the top-k items, but with a modification that involves allocating some users for

estimating the frequencies of items. The items in the sets T̂ and T̂ { are treated sepa-

rately. For an item vj ∈ T̂ {, its δj is computed as in the ARBS algorithm. For items

vi ∈ T̂ , δi is computed to achieve the same variance σ0. Specifically, the variance is

first calculated based on the distribution information for items in T̂ , and the mini-

mum variance is selected as σ0. The δi values for all items in T̂ are set to achieve σ0

based on Eq. 3.5 as

σ0 =
1

ti
|fi − f̂i|2

≤ 1

ti
(σi

√
2log(3/δi)

ti
+

3log(3/δi)

ti
)2

(5.12)

Then, based on all δi(1 ≤ i ≤ d), the sampling probability for vi can be obtained ac-

cording to Eq. 5.10. This modification improves the accuracy of ARBS in estimating

the frequency of top-k items by allocating more users for the estimation.

Calibration and privacy analysis. The data collector receives perturbed data from

all users, and counts bit “1”s among the ti reports for item vi. Then the frequencies of

items in T̂ , denoted by {p̂1, . . . , p̂k} can be derived by Equ. 5.13 for noise calibration.

Theorem 7 proves that p̂i is an unbiased frequency estimation for these items.

p̂i =
f̂i − (1− eε

eε+1
)

(2 eε

eε+1
− 1)

(5.13)
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Theorem 7. p̂i in Equ. 5.13 is an unbiased estimator of the true frequency of the vi.

Proof.

E[p̂i] = E[
f̂i − (1− eε

eε+1
)

(2 eε

eε+1
− 1)

]

=
(pi

eε

eε+1
+ (1− pi)(1− eε

eε+1
))− (1− eε

eε+1
)

(2 eε

eε+1
− 1)

=
pi

eε

eε+1
+ 1− pi + pi

eε

eε+1
− eε

eε+1
− 1 + eε

eε+1

(2 eε

eε+1
− 1)

= pi

All sampling methods satisfy the ε-LDP, if each user samples only one value with a

privacy budget of ε.

Theorem 8. For sampling mechanism M, if for each user is sampled if and only

one value with single value with privacy budget ε, the sampling algorithm M satisfy

ε-LDP.

Proof. For user i, the j-th set value is collected with privacy budget ε, and thus the

data collector cannot obtain any valid information from the uncollected values, which

is equivalent to having a privacy budget of 0. Therefore:

d−1∏
i=1

e0e−ε ≤ P [M(x1, . . . , xd) = Y ]

P [M(x′1, . . . , x
′d) = Y ]

≤ eε
d−1∏
i=1

e0

Therefore, the following can be concluded:

e−ε ≤ P [M(x1, . . . , xd) = Y ]

P [M(x′1, . . . , x
′
d) = Y ]

≤ eε.

Thus, M satisfies ε-local differential privacy.

Algorithm of ARBSF. Algorithm 4 presents the ARBSF algorithm, which shares

similarities with ARBS, but with three notable distinctions. Initially, in lines 5-6,
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Algorithm 4: Adaptive-RR Bandit Sampling with frequency(ARBSF)

Input: Privacy budget ε and initialization parameter n0

Output: Top-k frequent item set T̂ , frequency estimation {p̂1, . . . , p̂k}

1: Initialization(n0);

2: Update {P (v1), ..., P (vd)} according to Equ. 5.10; for k = n0 + 1 to n do
3:

Sample an item vs from V = {v1, ..., vd} following probability distribution

{P (v1), ...P (vd)};

4: Determine the minimum variance σ0 of items in T̂ ; for k = n0 + 1 to n do
5:

If f̂i < f̂j

6: Update δs according to Equ. 5.9; else
7:

Update δs according to Equ. 5.12; endfor

8: Update {P (v1), ..., P (vd)} according to Equ. 5.10;

9: Find T̂ ⊂ V such that |T̂ | = m, and ∀vi ∈ T̂ ,∀vj ∈ (V − T̂ ) : (f̂i ≥ f̂j). endfor

10: Calculate p̂i for i ∈ {1, . . . , k} according to Equ. 5.13;

11: return T̂ , {p̂1, . . . , p̂k}

σt is determined and subsequently δi is adjusted to allocate more users to the top-k

items. Secondly, in line 9, it is necessary to estimate p̂i for items in T̂ . In the end,

the algorithm at line 10 returns the items in T̂ , and their corresponding frequencies

p̂i.

5.2.5 Large-Scale Solution

When dealing with a large domain d (e.g., tens of thousands of items), the data

collector first needs to focus on a narrower candidate set value range. This is es-

sential as sampling methods cannot accurately capture valid information from the
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entire set value range. To achieve this, users are evenly divided into two groups for

efficient processing. The first group is tasked with pruning the large domain into a

smaller range, while the second group performs adaptive sampling methods within

this reduced range.

Specifically, each user in the first group selects a value randomly from their private

value set and perturbs it using a perturbation mechanism such as OUE, OLH, etc.

This process identifies the 10k most frequent items from d.

While this process introduces a bias in frequency estimation, at this initial phase, our

primary goal is only to roughly identify the top 10k items without focusing too much

on precise frequency estimations. Additionally, this procedure satisfies ε-LDP, which

is proven in Theorem 8. It is important to note that this phase is unnecessary if the

original domain size is close to or fewer than 10k items. In the experiments, OUE

was utilized, and the results were then reported.

5.3 Delay-Constrained Solution

In traditional MAB problems, the interaction between the gambler and the arms

is relatively straightforward and short-lived. However, in the LDP setting, the in-

teraction between users and the data collector can be much more prolonged. This

means that, unlike traditional MAB problems, the multiple rounds of communication

between users and the data collector can be time-consuming, which becomes a new

challenge for both Adaptive Recommender Bandit Selection (ARBS) and Adaptive

Recommender Bandit Selection with Feedback (ARBSF). On the other hand, in each

round, a single user may only contribute limited information.

To address these challenges, this chapter proposes a batch processing method, which

can help reduce the system delay. By processing user contributions in batches, the

issues caused by the prolonged interaction between users and the data collector in
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the LDP setting can be mitigated.

5.3.1 Delay-Constrained Solution

To reduce communication overhead between users and the data collector, an intuitive

solution is to let a batch of users send reports in a round, thus reducing the total

rounds needed. However, simply allocating the same number of users in each round is

not an optimal solution, as the impact of the data collected in earlier rounds is greater

than that of the later rounds. A more effective sampling scheme is to allocate fewer

users in earlier rounds to allow for timely adjustments, while ensuring sufficiently

accurate information collected from these rounds. Striking a balance between these

trade-offs is critical in developing an optimal sampling scheme. This chapter proposes

the Delay-contrained Batch Sampling algorithm (DBS), which models and derives

an optimal user allocation scheme when the number of rounds is fixed to R. RBS

guarantees both high accuracy of top-k discovery and low communication overhead

by dynamically allocating users based on each user’s potential to contribute to the

discovery of top-k items.

User allocation in each round. Let ni denote the number of users in round i and

Nr denote the number of remaining users after r−1 rounds, which can be written as:

Nr = n− n0 −
∑r−1

i=1
ni.

As shown in Equ. 5.9, δi represents the inverted error for vi. Let eIr−1 denote the

cumulative error obtained from δi after the r − 1 rounds:

eIr−1 =
∑d

i=1
δi. (5.14)

The ideal user allocation scheme would be to minimize the overall error over all rounds

by dynamically assigning a batch of users to each round. However, this information

can only be obtained after each round of data collection, which is not feasible. There-

fore, a greedy search is applied to determine the optimal number of next-round users
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based on the current-round information. Specifically, the r-th round and the (r+ 1)-

th round are combined and split into two virtual phases to simulate the upcoming

sampling process. In phase I, nIr users are collected to simulate the occurrence of

round r, and in phase II, nIIr users are collected to simulate the occurrence of round

r + 1. The total number of users for these two virtual phases is denoted by n(r,r+1),

and the following holds:

n(r,r+1) = nIr + nIIr (5.15)

Let ti represent the number of reports from users for vi before the virtual phase I,

and it changes to t′i after the virtual phase I and can be calculated as

t′i = ti + nIrP (vi),

where P (vi) can be calculated by Equ. 5.10.

Since the virtual process is not actually implemented, the variance of each item in

virtual phase I cannot be obtained. Therefore, the error after virtual phase I is pro-

cessed by using the inverse of Hoeffding’s inequality instead of Bernstein’s inequality,

as:

δ′i =
2

exp(2t′i(f̂i − µ)2)
, (5.16)

where f̂i and µ are set based on the latest real knowledge obtained in round r − 1.

Similar to Eq. 5.14, the cumulative error eIIr−1 after virtual phase I can be simulated

based on δ′i. Specifically,

eIIr−1 =
∑d

i=1
δ′i.

Theorem 9. eIIr−1 is a theoretical lower bound, such that all items simultaneously

satisfy |f̂i − µ| ≤ Bi, where Bi =
√

2 log(2/δ′i)

t′i
.

Proof. The error bound reflects our overall requirement for all items to simultaneously

satisfy the condition |f̂i − µ| ≤ Bi, therefore:

P (|f̂1 − µ| ≤ B1, |f̂2 − µ| ≤ B2, ..., |f̂d − µ| ≤ Bd) ≥ 1− δ,

63



Chapter 5. Top-k Discovery under Local Differential Privacy: An Adaptive
Sampling Approach

where δ is the overall error tolerance, which represents our required confidence level

for the joint probability. And Bi =
√

2 log(2/δ′i)

t′i
.

According to the Boole inequality, the joint probability is bounded from below by one

minus the sum of the individual probabilities. Specifically, therefore:

P (|f̂1 − µ| ≤ B1, |f̂2 − µ| ≤ B2, ..., |f̂d− µ| ≤ Bd) ≥ 1−
d∑
i=1

δ′i.

To find the optimal number of users allocated to the current round, the problem

is formalized as minimizing the cumulative user error, i.e., the sum of cumulative

errors for certain users, in the two virtual phases. Specifically, in phase I, nIr users’

data are collected with cumulative error eIr−1, while nIIr users’ data are collected with

cumulative error eIIr−1 in phase II. The cumulative user error for nIr and nIIr users can

be expressed as:

arg min
nIr

nIre
r−1
1 + nIIr e

r−1
2 , (5.17)

s.t. sup(n(r,r+1)) =
2Nr

R− (r − 1)

Here, sup(n(r,r+1)) denotes the upper bound on the combined number of users across

the two virtual phases. This condition can be inferred from the following equation

according to nr < nr+1, r ∈ {1, . . . , R− 1} established in Theorem 10:

n(r,r+1) ≤ nr + nr+1

≤ Nr

R− (r − 1)
+
Nr − Nr

R−(r−1)

R− (r − 1)

=
2Nr

R− (r − 1)
.

According to Eq. 5.17, a numerical solution for n1
r is obtained, which represents the

number of users allocated to round r. The number of users allocated to round r + 1
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can be estimated using either n1
r+1 from phase I results or n2

r from phase II results in

round r. n1
r+1 is selected as it has aggregated more information. Formally, we have:

nr = n1
r (5.18)

Algorithm of DBS. The batchwise procedure, as presented in Algorithm 5, can be

summarized as follows. Specifically, when a new round r commences, the number of

users nr allocated to the current round is determined (line 4). Subsequently, nr users

are collected based on the current P (vi) (lines 5-6). The frequency estimation f̂i, the

inverted error, and sampling probability P (vi) are independently updated at the end

of each round in both ARBS and ARBSF (lines 7-9).

Algorithm 5: Delay-contrained Batch Sampling (DBS)

Input: Privacy budget ε, initialization parameter n0 and number of round R

Output: Top-k frequent item set T̂ , frequency estimation {p̂1, . . . , p̂k}

1: Initialization(n0);

2: Update {P (v1), ..., P (vd)} according to Equ. 5.10; for r = 1 to R do
3:

Calculate nr according to Equ. 5.17 and 5.18; for i = 1 to nr do
4:

Sample an item vs from V = {v1, ..., vd} following probability distribution

{P (v1), ...P (vd)}; endfor

5: ARBS: Update δs according to Equ. 5.9;

6: ARBSF: Determine the minimum variance σ0 of the items in T̂ ; Update δs

according to Equ. 5.9 or Equ. 5.12;

7: Update {P (v1), ...P (vd)} according to Equ. 5.10;

8: Find T̂ ⊂ V such that |T̂ | = m, and ∀vi ∈ T̂ ∀vj ∈ (V − T̂ ) : (f̂i ≥ f̂j). endfor

9: Calculate p̂i for i ∈ {1, . . . , d} according to Equ. 5.13.

10: return ARBS: T̂ ;

11: ARBSF: T̂ , {p̂1, . . . , p̂k}
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Monotonicity analysis. In DBS, nr progressively increases with each round. This

growth pattern results in a smaller cumulative user error for all users compared to

other sampling orders, as demonstrated in the following theorem:

Theorem 10. Given a set of numbers of sampled users in each round n1, ..., nR, the

ordering that satisfies the inequality

n1 < · · · < nr < · · · < nR.

guarantees an optimal cumulative user error for all users.

Proof. With each round, the number of collected users increases, which leads to a

continuous decrease in the error. Recall er−1
1 denotes the cumulative error for all items

after r − 1 rounds (same as Equ. 5.14). This establishes the following inequality:

er−1
1 > er1, r ∈ {1, . . . , R}.

In a similar manner to Equ. 5.17, which defines the cumulative user error for all

users, we can propose the following equation:

M = n1e
0
1 + n2e

1
1 + ...+ nR−1e

R−1
1 . (5.19)

For every choice of real numbers n1 < n2 < · · · < nR and nξ1 , nξ2 , . . . , nξR is a

permutation of n1, ..., nR, the rearrangement inequality [57] leads us to the following

inequality:

nRe
0
1 + nR−1e

1
1 + ...+ n1e

R−1
1 >

nξ1e
0
1 + nξ2e

1
1 + · · ·+ nξhe

R
1 >

n1e
0
1 + n2e

1
1 + · · ·+ nRe

R−1
1 .

Therefore, it is deduced that in order to achieve the minimal error for Eq. 5.19, the

sampling sequence should satisfy

n1 < · · · < nr < · · · < nR.
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5.4 Experimental Results

5.4.1 Experimental Setup

This chapter conducts evaluations of the proposed schemes, ARBS and ARBSF, on

both synthetic and real-world datasets to validate their accuracy. For comparison

purpose, the results of uniform sampling (i.e., each user randomly selects and perturbs

one item), SVIM (based on either GRR or OLH) [115] and Mwheel (designed for

multiset frequency estimation) [138] are also shown. The experiments are conducted

on a PC equipped with an AMD Ryzen 7 2700X eight-core processor, 64GB RAM,

and Windows 10, using MATLAB R2019b and Python 3.10. All datasets and code

are available online1.

5.4.1.1 Experiment Design

The experiments are repeated 50 times and then averaged. The following are some

parameters related to the performance of the adaptive schemes, and this chapter will

conduct experiments to study their impacts on ARBS and ARBSF.

1. The number of rounds R. Due to the delay limitation, the aim is to establish

whether satisfactory results can be achieved with a relatively small number of

rounds.

2. Item frequency distribution. The performance of top-k estimation relies on the

item frequency, and the lower the frequency is, the smaller the estimated error

becomes.

3. Privacy budget ε. A larger ε leads to less perturbation noise and thus more

accurate estimation result.

1https://github.com/RONGDUGithub/ARBSF
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4. The size of frequent item set k. The proposed adaptive schemes should reveal

the robustness for identifying frequent item set with varying k.

5. Data sparsity s. It affects the final experimental results, and the scheme is

expected to perform better when the data are not very sparse.

5.4.1.2 Utility Metrics

This chapter applies normalized cumulative rank (NCR) and mean square error

(MSE) to measure the accuracy of top-k item discovery and frequency estimation,

respectively.

• NCR [115] is proposed to reveal the true rank information of the top-k values.

For each item vi, the ranked value Vi as

Vi =
q(vi)|vi ∈ T
q(vi)|vi ∈ T̂

=
q(vi)|vi ∈ T
k(k + 1)/2

where q(·) is a quality function defined as

q(vi) =

 k − i+ 1, if vi ∈ T

0, if vi ∈ T̂

Then NCR is calculated based on the ranked values across all items. Formally,

NCR =

∑
vi∈T̂ Vi∑
vj∈T Vj

.

• MSE [82] measures the frequency estimation accuracy in terms of squared errors

as

MSE =
1

k

∑
vi∈T

(pi − p̂i)2,

where the estimated frequencies p̂i are set to 0 for items that are not successfully

identified by the protocol.
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Table 5.1: Statistics of datasets

Dataset
Number

of users
Domain

Minimum

Count

Maximum

Count

Linear 10000 100 5 28

Beta 10000 100 2 27

Gamma 100000 10000 436 641

Laplace 100000 9883 29 92

Worldgoogle 10000 26 1 13

Worldmit 10000 26 1 7

Retail 540455 2602 1 7

Kosarak 990002 41270 1 2498

5.4.1.3 Datasets

The experiments are conducted over four synthetic datasets and four real datasets.

The dataset statistics are detailed in TABLE 5.1. The last three columns are the

minimum, maximum and average numbers of items possessed by each user.

Synthetic Datasets. This chapter generates two synthetic datasets with 10,000

users and 100 items. Users’ item ownership follows different distributions: Linear

and Beta. Additionally, this chapter generates two large-scale datasets with 100,000

users and 10,000 items, where users’ item ownership follows Gamma and Laplace

distributions, respectively.

Real Datasets. This chapter uses four publicly available set-valued datasets as

follows. Wordgoogle
2 contains the 10,000 most frequent English words sorted by fre-

quency, and this chapter estimates the letter frequency among these words. Wordmit

is similar to Wordgoogle and contains 10,000 words from 26 letters. Retail3 contains

all the transactions occurring between 2010 and 2011 for a UK-based and registered

non-store online retail, including merchant transactions for half a million users in

2https://github.com/first20hours/google-10000-english
3https://archive.ics.uci.edu/dataset/352/online+retail
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2,603 categories. Kosarak4 contains click streams on a Hungarian website that con-

tains around one million users and 42 thousand categories.

The impact of ε. Fig. 5.2 illustrates the performance of various algorithms in terms

of NCR and MSE by varying ε, with k fixed at 30 for all datasets. The histograms

show the NCR for top-k discovery, while the curves indicate the MSE for frequency

estimation. The results indicate that a larger ε leads to a higher NCR and a lower

MSE across all five algorithms. In most cases, ARBS and ARBSF outperform SVIM,

Mwheel and uniform sampling, achieving much higher NCR and lower MSE. This

is because SVIM introduces a large error when the dataset is not sparse, leading

to poor performance. Furthermore, the adaptive sampling schemes of ARBS and

ARBSF perform better than uniform sampling by constantly learning and applying

new knowledge to update their sampling schemes.We can observe that Mwheel per-

forms poorly across all datasets. This is because Mwheel utilizes principles similar to

PEM [116] to find the corresponding top-k data, and PEM tends to perform poorly

for small ranges of d. Moreover, this scheme is designed to handle multi-value sets,

where the same set may contain duplicate data, and it may perform better in such

scenarios. Although our set-value is a special case of multi-value sets, it cannot lever-

age the advantages of Mwheel. In terms of NCR, ARBS generally performs better

than ARBSF, while ARBSF performs slightly better in terms of MSE. This suggests

that the two adaptive schemes have different objectives. Overall, these results suggest

that adaptive sampling algorithms such as ARBS and ARBSF can improve the utility

of differentially private data analysis tasks, even for large-scale datasets.

In addition to NCR and MSE, this chapter also uses another metric for measuring

accuracy: the hit rate [101], as shown in TABLE 5.2. The hit rate is used to describe

the proportion of correctly identified or classified instances. Unlike NCR, which fo-

cuses on the ranking of accurate values, the hit rate is concerned with the quantity

of accurate values. From the data presented in the table, it is evident that our adap-

4https://github.com/cpearce/HARM/blob/master/datasets/kosarak.csv
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ARBS ARBSF Uniform SVIM Mwheel
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Figure 5.2: The results of NCR & MSE w.r.t. ε on synthetic datasets

tive sampling methods achieve a higher hit rate. In most cases, ARBSF outperforms

ARBS, and its performance is generally consistent with NCR. Moreover, the larger

the value of ε, the higher the hit rate.

The impact of k. To investigate the impact of k on the performance of different

algorithms, this chapter conducts an experiment where the chapter varies k while

keeping ε fixed at 2. Fig. 5.3 illustrates that all algorithms achieve better MSE as

k increases, since more low-frequency items are estimated and the distance between

the estimated frequency and the actual frequency becomes smaller. The performance

of the NCR algorithm is heavily influenced by different datasets. For the Beta
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Figure 5.3: The results of NCR & MSE w.r.t. k on synthetic datasets

dataset, where the frequency difference between items is constant, the difficulty of

distinguishing the items remains the same, and the NCR for ARBS and ARBFS does

not change significantly with respect to k.

The impact of s. Fig.5.4 demonstrates the impact of dataset sparsity s from 0.2

to 0.9. Here, as s increases, the data becomes more sparse. When s = 0.2, 20% of

the data in the original dataset is removed, resulting in sparsity. As expected, as s

increases, the utility (measured by both NCR and MSE) decreases, indicating that

all algorithms perform worse when the dataset is sparse. However, since both the

original data and estimated amounts decrease, leading to a smaller interpolation, the
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Figure 5.4: The results of NCR & MSE w.r.t. s on synthetic datasets
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Table 5.2: Hit rate of real datasets
Dataset Scheme ε = 1 ε = 1.5 ε = 2 ε = 2.5 ε = 3

ARBS 0.68 0.74 0.8 0.83 0.82

ARBSF 0.65 0.72 0.79 0.79 0.81

Uniform 0.58 0.63 0.76 0.74 0.78

SVIM 0.51 0.60 0.7 0.73 0.78

linear

Mwheel 0.23 0.23 0.22 0.21 0.22

ARBS 0.77 0.82 0.87 0.91 0.91

ARBSF 0.73 0.85 0.84 0.91 0.91

Uniform 0.71 0.77 0.85 0.89 0.89

SVIM 0.55 0.67 0.76 0.83 0.85

Beta

Mwheel 0.25 0.24 0.24 0.25 0.25

ARBS 0.54 0.67 0.75 0.83 0.77

ARBSF 0.66 0.80 0.83 0.88 0.81

Uniform 0.58 0.62 0.68 0.78 0.75

SVIM 0.02 0.05 0.12 0.25 0.41

Gamma

Mwheel 0.07 0.07 0.05 0.06 0.07

ARBS 0.62 0.67 0.78 0.79 0.80

ARBSF 0.67 0.75 0.77 0.82 0.86

Uniform 0.53 0.67 0.69 0.73 0.76

SVIM 0.02 0.03 0.05 0.08 0.14

Laplace

Mwheel 0.001 0.001 0.002 0.002 0.003

MSE might decrease. To enable a fair comparison of MSE across different values of

s, this chapter proposes a normalization of MSE.

Specifically, assume that the original frequency of a dataset is f , and the estimated

frequency is f̂ . Given s, the expected estimate should be (1− s)f , and if the actual

estimate is denoted by (1 − s)f̂ , the difference in the MSE expressions before and
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after normalization is:

MSE =
1

n

n∑
i=1

((f̂i)− fi)2 =
1

(1− s)2

(1− s)2

n

n∑
i=1

((f̂i)− fi)2

=
1

(1− s)2

1

n

n∑
i=1

(((1− s)f̂i)− (1− s)fi)2

=
1

(1− s)2
MSEs

(5.20)

where MSEs is the experimental result, and our normalization is to multiply the

calculated experimental result MSEs by 1/(1− s2).

The experimental results show that as the data becomes sparser, NCR decreases,

and MSE increases. This is because a sparse dataset has fewer available data points

for each user, making it more difficult to estimate the user’s preference accurately.

In most cases, our proposed schemes outperform the others under different s values.

Although SVIM shows better NCR performance on the linear, its MSE is still worse

than that of our methods.

5.4.2 Overall Results on Real Datasets

This chapter conducts experiments on the estimation of top-k items using four real

datasets with varying ε and k. The bar charts represent the NCR results, while

the line plots represent the MSE results. To evaluate the performance on Retail

and Kosarak, this chapter first prunes the domain, and the specific process can be

referred to in Chapter 5.2.5.

The impact of ε. Fig. 5.5 depicts the accuracy of frequency estimation with respect

to ε. Consistent with the synthetic data, an improvement in utility is observed as

ε increases. It can be observed that for the dataset, Mwheel performs the worst.

Mwheel’s set domain length is an exponential of 2, which is different from the domain

length of the data. After converting the data into binary, values with the same lower

bits may be recovered simultaneously, leading to inaccurate results. Furthermore,
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the dataset does not have repeated values within a single set, so Mwheel cannot take

advantage of its strengths. Even in Figures 5.5 (c)-(d), its NCR values are close to

0. Additionally, for small-scale datasets, the query NCR results of other methods

are similar. However, for the large-scale Retail and Kosarak dataset, the adaptive

schemes generally perform better than other approaches. This proves the effectiveness

of the handling of large-scale data in Chapter 5.2.5.

Regarding MSE, it can be observed that ARBSF performs optimally in most cases,

as this method allocates a portion of the sampling budget to the discovered top-k

values, thus outperforming ARBS. Furthermore, the sampling-based schemes achieve

better MSE than SVIM because the methods guarantee unbiasedness, resulting in

more accurate frequency estimates.

The impact of k. The Fig. 5.6 presents the NCR and MSE values by varying k,

and our adaptive algorithms demonstrate superior performance in most cases. The

MSE consistently decreases as k increases, while the NCR performance is influenced

by the characteristics of the dataset. In particular, for Wordgoogle and Wordmit,

NCR improves as k increases. However, for Retail and Kosarak, NCR worsens as

k increases. This discrepancy arises because the first two datasets have relatively

uniform data frequency distributions. In contrast, for the latter two datasets, as k

increases, the density of data points around k also increases, making it more chal-

lenging to accurately distinguish the true top-k values, thereby leading to a decline

in NCR performance.

In Fig. 5.6 (c), when k = 10, 40, 50, SVIM achieves the best NCR performance.

However, as k decreases, the proposed schemes outperform SVIM. This indicates that

while SVIM is not as proficient as the proposed schemes in estimating the counts

for extremely high-frequency values. Additionally, since SVIM is not an unbiased

estimator, its corresponding MSE performance is also inferior to that of the proposed

schemes.
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Figure 5.5: The results of NCR & MSE w.r.t. ε on real-world datasets.

The hit rate on real datasets with varying k is also tested, and the results are shown in

TABLE 5.3. Consistent with the NCR results, in most cases, our adaptive sampling

method yielded superior results. However, the trend of the hit rate with varying k

is related to the distribution of the dataset itself. When there are more items with

frequencies similar to the k-th item, the accuracy tends to be lower, and vice versa.

For the Retail and Kosarak datasets, as k increases, the frequency of items near

the k-th item is lower but there are more such items, resulting in a lower hit rate

accuracy.
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Figure 5.6: The results of NCR & MSE w.r.t. k on real-world datasets.
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Table 5.3: Hit rate of synthetic datasets

Dataset Scheme
k

3(10)

k

6(20)

k

9(30)

k

12(40)

k

15(50)

ARBS 0.73 0.87 0.937 0.95 0.91

ARBSF 0.80 0.83 0.96 0.92 0.89

Uniform 0.73 0.83 0.96 0.92 0.91

PFSO 0.66 0.79 0.95 0.93 0.94

Wordgoogle

Mwheel 0.08 0.198 0.26 0.27 0.29

ARBS 0.67 0.87 0.98 0.90 0.92

ARBSF 0.73 0.90 1.00 0.90 0.92

Uniform 0.67 0.87 0.93 0.93 0.89

PFSO 0.64 0.82 0.96 0.90 0.93

Wordmit

Mwheel 0.05 0.21 0.23 0.30 0.28

ARBS 0.86 0.74 0.58 0.545 0.48

ARBSF 0.94 0.81 0.65 0.6 0.51

Uniform 0.86 0.75 0.58 0.47 0.47

PFSO 0.90 0.78 0.67 0.61 0.55

Retail

Mwheel 0.006 0.006 0.008 0.013 0.020

ARBS 0.96 0.84 0.71 0.60 0.52

ARBSF 0.98 0.87 0.79 0.63 0.56

Uniform 0.92 0.86 0.65 0.60 0.52

PFSO 0.89 0.63 0.46 0.37 0.30

Kosarak

Mwheel 0.015 0.013 0.003 0.009 0.010

5.4.3 Performance of Adaptive Schemes

Finally, the performance of the adaptive schemes is studied in terms of sampling

times allocation, error and the number of rounds. For a more intuitive understanding,

the schemes are mainly executed on Linear 45°, where there are 10,000 users with

100 items and the frequency monotonically increases at equal intervals from 0 to

1. Moreover, the experiments are also executed on data following the Beta(2,5)

distribution.
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5.4.3.1 Time Analysis

In Table 5.4, the time complexity across different datasets is analyzed. Since the

interaction process of the data collector cannot be accurately simulated, the numbers

of interaction between a user and the data collector are used as a basic unit, and the

performance for different schemes is analyzed. If the sampling probability distribution

is the same, multiple users can interact with the data collector simultaneously, which

can be considered a single interaction.

Without batch operations, the data collector needs to adjust the sampling probability

after collecting data from each individual user, so the number of interactions equals

the number of users. This means users cannot upload data synchronously because

each user must wait for the previous user to finish uploading before the data collector

updates the sampling probability, making the process excessively time-consuming.

However, with the batch scheme, the data collector can collect data from a group

of users simultaneously and then update the sampling probability before interacting

with the next group of users. This approach significantly reduces the time complexity

by enabling synchronous data uploads.

This chapter then discusses the number of interactions for different datasets in two

categories: when the dataset range is relatively small, such as Linear and Beta,

the number of interactions is equal to R; when the dataset range is relatively large,

such as Retail and Kosarak, the number of interactions is R + 1. According to

Chapter 5.2.5, half of the users will first interact with the data collector to prune the

domain. These users can interact with the data collector simultaneously, and then

the remaining interactions are added, resulting in a total of R + 1 interactions.
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Table 5.4: Number of interactions for different datasets

Dataset No Batch
Round

5

Round

10

Round

R

Linear 10000 5 10 R

Beta 10000 5 10 R

gamma 100000 6 11 R + 1

laplace 100000 6 11 R + 1

Wordgoogle 10000 5 10 R

Wordmit 10000 5 10 R

Retail 270229 6 11 R + 1

Kosarak 990002 6 11 R + 1

5.4.3.2 Top-k Discovery Error ∆

In Fig. 5.7, a one-sided two-sample T-test is utilized to assess the error ∆ in the top-k

discovery, as mentioned in Theorem 6. Since only ARBS, ARBSF, and Uniform collect

data from users one by one or across multiple rounds, their frequency distributions

can be dynamically captured. For the other methods, data is collected in a one-time

process, and aggregation can only be performed after all data has been collected. A

higher ∆ is indicative of a decrease in the estimation’s accuracy. The yellow line

represents the performance of the uniform sampling technique, which exhibits the

highest error among the sampling algorithms considered. Furthermore, the error

decreases slowly as the number of users increases. On the other hand, the ARBS

and ARBSF schemes, shown in blue and red, respectively, exhibit lower error and

decrease dramatically as the number of collected users increases. It is important to

note that the error does not always decrease with an increasing number of collected

users, as p̂k and p̂k+1 may change during the data collection process. However, the

error gradually reduces when pk and pk+1 remain constant. Our scheme adapts to

changing probabilities and increasing information by dynamically updating pk and
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pk+1, providing both flexibility and accuracy.
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Figure 5.7: The results of error estimated by T-test.

5.4.3.3 Impact of Number of Rounds

Fig. 5.8 shows the impact of the number of rounds (i.e., 5, 10, 15, and 20) on the

overall results. A continuous increase in accuracy with increasing ε is observed, as

evidenced by the gradual increase in NCR and decrease in MSE. However, the effect

of increasing the number of rounds on NCR is not particularly significant, especially

for larger privacy budgets (e.g., ε > 2). In fact, as the number of rounds increases,

the final result may not necessarily exhibit a monotonic increase in accuracy. This

is due to the data-dependent nature of the experiments and the potential variation
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in the number of users assigned to each round. Such differences can impact the

learning outcomes in each round and ultimately affect the final accuracy. However,

it is observed that MSE with more rounds generally performs better. If there are

no constraints on communication overhead, increasing the number of rounds would

enhance accuracy.

5.4.3.4 Impact of Allocated User Number Per Item

The histograms in Fig. 5.9 depict the number of users allocated to different items by

the ARBS and the ARBSF. The items are sorted from the smallest to the largest,

and k is set to 30. The yellow line representing uniform sampling is flat, indicating

that naive sampling treats all items equally. The blue curve represents ARBS and

includes a small peak around the 70-th item, which indicates that more sampling

probability is given to the items nearby the k-th item. The red curve represents

the ARBSF scheme, and rises between the items of 70 and 100, illustrating how the

aim is to achieve higher statistical frequency accuracy while ensuring that the top-

k discovery is generally correct. The experimental results are consistent with the

intention described in Chapter 5.2.

5.4.3.5 Impact of Allocated User Number per Round

In Fig. 5.10, it can be observed that the number of collected users increases with

each round, thereby illustrating the correctness of Theorem 10. It is worth noting

that the last round typically has the highest number of users in each figure. This is

because the scheme is locally optimal, and after the first (r − 1) rounds, it would be

desirable to allocate all the remaining data to the final round. This ensures that the

maximum amount of information is obtained from the dataset. It is noteworthy that

when R = 20, the number of users in the final three rounds remains almost constant.

This is because the decrease in error during these rounds is insignificant for Linear,
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leading to an inconsequential effect on the number of users. Nevertheless, this scenario

still adheres to a progressively increasing nr, as demonstrated in Theorem 10.

5.4.3.6 Robust analysis

Fig. 6.15 shows the changes in the estimated results as the number of rounds increases.

The overall trend of the frequency estimation after the first round (represented by the

blue line) is already close to the ground truth (indicated by the dashed line). This

is because in the initialization process, each user collected data n0

d
times, providing

an initial frequency estimation that is relatively accurate. However, there are many

outliers in the blue line, representing cases where the frequency estimation is highly

inaccurate after the initialization round.

As the number of rounds increases, the frequency estimation is gradually corrected

and approaches the true results. This demonstrates that the mechanism can effec-

tively rectify the frequency errors introduced during the initialization process. This

is because each sample has a probability of being sampled, and the difference in these

probabilities is not too large.

5.5 Summary

In this chapter, the focus is on top-k estimation for set-valued data under LDP.

First, a comprehensive overview of existing LDP techniques and an evaluation of

their suitability for set-valued data are provided. Then, a new perspective is offered

and an unbiased and adaptive study of top-k estimation under LDP is presented.

Specifically, two adaptive sampling methods are deeply investigated: ARBS for identi-

fying top-k items and ARBSF for both top-k item discovery and frequency estimation

on these items. Additionally, an optimization to reduce computational complexity

while maintaining low communication overhead is proposed. The theoretical and
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experimental results demonstrate the effectiveness of the proposed methods.

For future work, the plan is to explore multi-dimensional data for identifying and

estimating top-k items and design suitable sampling strategies. Additionally, the

development of a dynamic recommendation algorithm for streaming user data, which

extends from this work by adaptively updating top-k items and continuously revising

the sampling strategy in real time, is also planned.
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Figure 5.8: The results of NCR & MSE w.r.t. ε with different round.
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Figure 5.9: The number of users allocated on each item.
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Figure 5.10: The number of users allocated in each round.
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(b) Linear 45°, ε = 3, R = 10.
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(d) Linear 45°, ε = 3, R = 20.

Figure 5.11: The results of NCR & MSE w.r.t. ε with different round.
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Chapter 6

Distribution Estimation under

LDP against Arbitrarily

Distributed Attacks

In today’s voting or product rating scenarios, LDP is commonly employed to pro-

tect user privacy [99, 118, 123]. However, the inherent data perturbation feature of

LDP presents any user with the opportunity to deny or disprove poison values. This

introduces a novel challenge in detecting Byzantine users through traditional meth-

ods [77, 122]. A recent work shows how poor the performance of an LDP protocol

can be under a malicious model assumption [30]. Although a few works have pro-

posed some countermeasures to address these Byzantine attacks in LDP [24, 120],

they all require prior knowledge of either the attacking pattern or the poison value

distribution, which is impractical as they can be easily evaded by the attackers.

This chapter studies distribution estimation under LDP model against a general ma-

licious threat model where attackers are opportunistic and colluding. “Op-

portunistic” means that such attackers, whose objective is to increase the frequency

or proportion of certain values in the distribution, can manipulate their poison values
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in their best interests. “Colluding”, also known as Sybil attacks, means the attackers

can share their strategy and orchestrate their poison values. This is practical as these

attackers can arise from a single Botnet launched by a single attacker. This threat

model is more generic than any existing threat model in that it does not limit the

attacking strategy, nor does it assume the collector know about the attacking strategy

or probabilistic distribution of poison values.

Our prior study [38] introduces an innovative strategy in which an adversary is capable

of executing arbitrary attacks within a predefined threshold range. This method is

distinct from conventional methods such as trimming, as it does not attempt to

differentiate a poison value from regular ones. Rather, it estimates and mitigates

the aggregate impact of poison values. This unique strategy eliminates the need

to establish a fixed trimming threshold. The fundamental technique adopted is the

Expectation Maximization Filter (EMF) algorithm, based on which sophisticated

techniques, collectively called EMF for mean estimation (ME-EMF for short), were

developed to estimates Byzantine features from collected data. These features help

probe and filter the overall impact of poison values on collected data. However,

ME-EMF is limited to mean estimation only for the following reasons:

• Due to the nature of mean estimation, Byzantine users incline to add poison

values on one side of the mean. However, this is no longer applicable to dis-

tribution estimation, where Byzantine users can add noise across the entire

domain.

• ME-EMF pre-determines an overestimated mean to identify the range of the

poison values’ location. As a result, data from normal users may be misclassified

as Byzantine ones, leading to a poor distribution estimation.

• ME-EMF can only identify poison values that are biased to one side. When

some poison values are injected into the other side of the mean, false positives

occur and result in inaccurate distribution estimation.
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To investigate the problem of LDP-based distribution estimation in the presence of

Byzantine users, this chapter first introduces the General Byzantine Attack (GBA)

as our threat model. In order to mitigate the impact of poison values under this at-

tack, and to accurately estimate the data distribution for normal users, this chapter

proposes a building block, namely, the Segmented Expectation-Maximization Filter

(SEMF). It leverages the EMF’s ability to extract information about poison values

and roughly determine their locations, by partitioning the domain into several seg-

ments and detecting poison values in these individual segments. To determine the

optimal number of segments, this chapter also devises an adaptive method that pro-

gressively increases the number of segments to achieve the most precise localization

of poison values.

Based on SEMF, this chapter then presents the Distribution Estimation-EMF (DE-

EMF), specifically engineered to estimate the distribution of poison values by simulta-

neously determining the distribution and proportion of Byzantine users. To optimize

the performance of DE-EMF, this chapter introduces two post-processing methods:

DE-EMF* and DE-REMF*. The former aims to further mitigate the effects of poi-

son values, while the latter takes advantage of the estimated number of Byzantine

users. Interestingly, all these techniques need a small privacy budget to accurately

estimate the Byzantine users’ proportion, and meanwhile need a large privacy bud-

get to accurately estimate the distribution. To get the better of both worlds, this

chapter proposes the Differential Aggregation Protocol (DAP) , which divides users

into groups, each with a different privacy budget ε. The collector estimates the dis-

tribution for each group and then combines these estimates by minimizing the Mean

Squared Error (MSE).

To summarize, our main contributions in this chapter are as follows:

• This chapter introduces a general threat model for Byzantine attacks in LDP,

the first of its kind that can adapt to arbitrary attacking patterns. Under this

92



6.1. Problem Definition and Framework Overview

threat model, this chapter proposes SEMF, a dynamic method that can roughly

identify the location of poison values.

• This chapter designs DE-EMF, along with two post-processing methods, DE-

EMF* and DE-REMF*, to accurately estimate the distribution in the presence

of colluding malicious attackers.

• This chapter devises a multi-group differential aggregation protocol. This pro-

tocol implements a group-wise distribution aggregation scheme, assigns varying

privacy budgets and weights to each group, and strives to optimize distribution

estimation while minimizing the MSE.

The rest of this chapter is organized as follows. Chapter 6.1 formally defines our

threat model and describes the framework. Chapter 6.2 introduces SEMF to estimate

the approximate range of poison values. Chapter 6.3 proposes three methods to

estimate the distribution for normal users. This chapter then presents the Differential

Aggregation Protocol, a more secure and effective protocol for distribution estimation,

in Chapter 6.4. The experimental results are shown in Chapter 6.5, and Chapter 6.6

concludes this chapter.

6.1 Problem Definition and Framework Overview

An essential assumption of most existing LDP works is that users will report their

values honestly, which is impractical in real-world applications. Some recent studies

show that LDP protocols are vulnerable to Byzantine attacks [24,30] and the situation

becomes even worse when the perturbation is more substantial, i.e., with a smaller

privacy budget ε.1 This chapter first presents our threat model, based on which this

chapter then introduces a framework for data distribution estimation in the context

of LDP.

1ε is usually no more than 5.0 in existing LDP schemes, and no more than 3.0 in these attacks.
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6.1.1 Threat Model

This chapter assumes an unknown number2 of colluding Byzantine users know the

LDP perturbation mechanism and the privacy budget ε, so they can send arbitrary

values in the perturbation output domain [DL, DR] to the data collector to undermine

the data distribution. This chapter formalizes this attack as the threat model below.

Definition 8. General Byzantine Attack (GBA). Given a normalized perturba-

tion value domain [DL, DR] and m colluding Byzantine users UB with original values

VB = {v1, ..., vm}, a general Byzantine attack from UB, denoted by GBA(UB), re-

ports arbitrary poison values V ′B = GBA(VB, DL, DR) to the collector, where V ′B ∈

[DL, DR]m.

GBA is a general model which also covers input manipulation attacks3, where Byzan-

tine users further perturb poison values using the same LDP protocol as normal users,

since the perturbed poison values still fall within the range [DL, DR].

6.1.2 System Model and Framework

Fig. 6.1 shows the system model and our aggregation framework. There are N

users, among which n are normal users (in green) and m are Byzantine users (in red).

Normal users perturb and normalize their values vi into v′i ∈ [DL, DR] according to an

LDP perturbation mechanism, and report them to the data collector for aggregation.

Byzantine users conduct GBA attacks by choosing and reporting poison values to the

data collector (step ¬). The goal of the data collector is to estimate the distribution

of normal users. In contrast to existing detection-based methods [67, 73, 96], in

our framework the data collector first probes collected values to approximate the

2To achieve Byzantine fault tolerance (BFT), the proportion of Byzantine users is bounded by

1/2.
3In our previous work [38], we design a strategy to combat this kind of attack, and obtained

promising experimental results.
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Figure 6.1: System model and aggregation framework

poison segments where the poison values V ′B are located (step ), and then accurately

estimates the aggregated distribution by mitigating the influence of V ′B. The main

notations used in this chapter are listed in Table 6.1.

The rest of this chapter will illustrate how this framework can be used for distribution

aggregation under LDP privacy model where Byzantine users exist. In Chapter 6.2,

this chapter presents a method for probing poison segments and, based on this, es-

timating the distribution in Chapter 6.3. Then a security-enhanced protocol will be

further proposed in Chapter 6.4.

6.2 Probing Poison Segments

This chapter proposes a method to approximate the location of poison values, which

are referred to as ”poison segments” throughout the chapter. In particular, this chap-

ter first introduces Expectation-Maximization Filter (EMF) assuming the segment in-

formation is provided, and then propose Segmented Expectation-Maximization Filter

(SEMF) to precisely identify the required poison segments. In what follows this chap-

ter illustrates our algorithms using SW mechanism as the perturbation mechanism,

and thus perturbation output domain [DL, DR] becomes [−b, 1 + b].
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Table 6.1: Notations

Symbol Description

U the set of users

UB the set of Byzantine users

N the number of users in U , ||U || = N

ui the i-th user in U

vi the original value of ui

v
′
i the perturbed value of ui

V the original values V = {v1, ..., vi, ..., vN}

VB the original values of Byzantine users

V ′B the collected values from Byzantine users

n the number of normal users

m the number of Byzantine users

γ the proportion of Byzantine users γ = m
N

m̂ the estimated number of Byzantine users

γ̂ the estimated proportion of Byzantine users γ̂ = m̂
N

u the number of buckets for normal users

w the number of buckets of perturbed values

Gt the t-th group Gt

εt the privacy budget in Gt

Dt the estimated distribution for normal users in Gt

D̃ the aggregated distribution for normal users
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6.2.1 Expectation-Maximization Filter

Recall that normal users perturb their values by SW Mechanism (i.e., Equ. 3.6),

whereas Byzantine users report poison values directly. Such a difference inspires us to

probe some features of poison values and then reconstruct the original distribution.

Hereafter, this chapter presents EMF to estimate such information by Maximum

Likelihood Estimation (MLE) [71]. The chapter uses a w× (u+w) transform matrix

M to characterize the randomization process.

Design of M. The chapter discretizes the original value domain [0, 1] into u buck-

ets, and discretizes the perturbed value domain [−b, 1 + b] into w buckets, respec-

tively. For normal users, the frequency histogram of their original values in buckets

Bx = Bx1 , ..., Bxu is denoted as x = x1, ..., xu, and the frequency histogram of their

perturbed values in buckets Bb = Bb1 , ..., Bbw is denoted as b1, ..., bw. Since Byzan-

tine users can inject arbitrary values from [−b, 1 + b], the frequency histogram of the

poison values in buckets By = By1 , ..., Byw is denoted as y = y1, ..., yw.

Let V = {v1, v2, ..., vN} denote the users’ original values, and V ′ = {v′1, v′2, ..., v′N}

denote the collected ones. The left-hand side of M is a w × u matrix for normal

users, where each element is of the form Mi,j = Pr[v′ ∈ Bbi|v ∈ Bxj ](i ∈ {1, ..., w}, j ∈

{1, ..., u}), indicating the transition probability from an input Bxj to an output Bbi .

More specifically, given the original value v falling in Bxj , let p (as defined in Equ.

3.6) denote the probability that the perturbed value v′ falls in a bucket Bbi within

the range [v − b, v + b], with q denoting the probability otherwise. For example, as

illustrated in Fig. 6.2, given an original value in bucket Bx3 , M1,3 = q signifies that

the conditional probability of the output falling into bucket B′b1 is q.

The right-hand side of the transform matrix M is a w × w matrix for poison values,

where Mi,j+u = Pr[v′ ∈ Bbi |v ∈ Byj ] for i, j ∈ 1, ..., w. The buckets that contain true

poison values are referred to as ”poison buckets”, and the corresponding set is labeled

as Bp. Additionally, a broader set Bp+ is tested as the potential buckets where poison
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Figure 6.2: Transform matrix M

values might locate, satisfying Bp ⊂ Bp+ ⊂ By. Since Byzantine users send poison

values directly to the data collector, for each poison bucket i ∈ Bp, Mbiyi = 1, and

the remaining elements in the right-hand matrix are set to 0.

Procedure of EMF. With the transformation matrix M, the next step for the

EMF (Expectation-Maximization with Frequency estimation) is to reconstruct the

frequency histogram F, involving the frequency counts of both normal users x and

poison values y in the original value domain. That is, F = x, y = x1, ..., xu, y1, ..., yw.

To adopt maximum likelihood estimation, the log-likelihood function of F is obtained

as follows:

l(F ) = lnPr[V
′ |F ] = ln

N∏
i=1

Pr[v′i|F ] =

N∑
i=1

ln(
u∑
k=1

xkPr[v′i|vi ∈ Bxk ] +
∑

Byj∈Bp+
yjPr[v′i|vi ∈ Byj ])

(6.1)

where Pr[v′i|vi ∈ Bxk ] and Pr[v′i|vi ∈ Byj ] are constants, thus l(F ) is a concave function

and EM algorithm can converge to the maximum likelihood estimator [20].

The EMF is designed to reconstruct the frequency histogram, where normal values are

denoted as x̂ and poison values as ŷ, and the specific steps are outlined in Algorithm 6.

These steps are derived based on the methodology detailed in the literature [71]. Note

that bi in E-step denotes the count of perturbed values from V ′ in bucket Bbi . First,
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Algorithm 6: Expectation-Maximization Filter

Input: Collected values histogram b = {b1, b2, ..., bw}

Poison buckets Bp+

Output: Frequency histograms x̂ and ŷ

1: Initialization: x̂k = ŷj = 1
u+|Bp+| while not converge do

2:

E-step: ∀Bxk when Byk /∈ Bp+

3: Pxk = x̂k
∑w

i=1 bi
Mi,k∑u

t=1Mi,tx̂t

4: ∀Bxk when Byk ∈ Bp+

5: Pxk = x̂k
∑w

i=1 bi
Mi,k∑u

t=1Mi,tx̂t+Mi,i+uŷi

6: ∀ Byj ∈ Bp+

7: Pyj = ŷj
∑w

i=1 bi
Mi,j+u∑u

t=1Mi,tx̂t+Mi,i+uŷi

8: M-step: ∀ Bxk ∈ Bx

9: x̂k =
Pxk∑u

i=1 Pxi+
∑w
j=w/2+1 Pyj

10: ∀ Byj ∈ Bp+

11: ŷj =
Pyj∑u

k=1 Pxk+
∑w
i=w/2+1 Pyi

12: return x̂, ŷ

the algorithm assigns some non-zero initial values to x̂ and ŷ, subject to x̂ + ŷ = 1

(line 1). Next, it executes the EM algorithm, alternating the E-step and the M -step.

The E-step evaluates the log-likelihood expectation by the observed counts bi and

the current x̂ and ŷ (lines 3-8), and the M -step updates x̂ and ŷ that maximize the

expected likelihood (lines 9-12) as inputs for the next round E-step. Finally, the

algorithm returns the estimated frequency histogram x̂ and ŷ when the convergence

condition is met (line 13).

Regarding the selection of Bp+, which includes all poison buckets, the following the-

orem shows Bp+ cannot be equal to By. Furthermore, the closer Bp+ is to Bp, the

more accurate the result will be.
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Theorem 11. Given Bp+ = By, ∃ε : R+ → R+ such that when |Bp+| − |Bp| → δ,

the deviation of normal users’ distribution is bounded by ε(δ).

Proof. Recall that Bp exclusively includes all poison buckets, and the set we are

probing is denoted as Bp+. The chapter starts from the state where Bp+ = By, and

reconstruct the frequency histogram for poison values in [−b, 1 + b]. The likelihood

estimator in Equ. 6.1 becomes:

l(F ) =
N∑
i=1

ln(
u∑
k=1

x̂kPr[v
′
i|vi ∈ Bxk ] +

w∑
j=1

ŷjPr[v
′
i|vi ∈ Byj ])

=
w∑
t=1

btln(
u∑
k=1

x̂kMt,k +
w∑
j=1

ŷjMt,j).

Note that
∑u

k=1 x̂k +
∑w

j=1 ŷj = 1, the Lagrangian multiplier method is employed to

derive the extreme. The Lagrangian function can be written as:

L(F ) = l(F ) + λ(
u∑
k=1

x̂k +
w∑
j=1

ŷj − 1).

Let all first-order partial derivatives of L w.r.t. x̂k and ŷj equal zero

∂L(F )

∂x̂k
=

w∑
t=1

btMt,k∑u
k=1 x̂kMt,k + ŷt

+ λ = 0, k ∈ {1, ..., u}

∂L(F )

∂ŷj
=

w∑
t=1

btMt,j+u∑u
k=1 x̂kMt,k + ŷt

+ λ = 0, j ∈ {1, ..., w}

Threrefore:

x̂k = 0, k ∈ {1, ..., u}, ŷj =
bj
N
, j ∈ {1, ..., w}, λ = −N.

This result shows all collected values converge to poison values when Bp+ = By, and

therefore:

(
u∑
k=1

x̂k +
∑

Byj∈Bp
ŷj)

∣∣∣∣
yi 6=0,i∈{1,...,w}

=
∑

Byj∈Bp

bj
N
.

Let Bc = By − Bp and Bc = {Byθ,1 , ..., Byθ,|Bc|}. When we remove the bucket Byθ,1

(by setting yθ,1 = 0) in Bc and carry out EMF, the collected values in B′bw can only

converge to Bxk(k ∈ {1, ..., u}), but not By. Hence, every x̂k will increase. Therefore,

removing Byθ,1 leads to the increase of all x̂k, which in turn results in the decrease of
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all ŷj. However, since the decrease of Bp is a part of increment of x̂, we can figure

out (
∑u

k=1 x̂k +
∑

Byj∈Bp
ŷj)

∣∣∣∣
yi 6=0,i∈{1,...,w}

≤ (
∑u

k=1 x̂k +
∑

Byj∈Bp
ŷj)

∣∣∣∣
yθ,1=0

. Removing

all buckets one by one in BC similarly, we have: (
∑u

k=1 x̂k +
∑

Byj∈Bp
ŷj)

∣∣∣∣
yi 6=0,i∈{1,...,w}

≤ (
∑u

k=1 x̂k +
∑t

j=1 ŷj)

∣∣∣∣
yθ,1=0

≤ ... ≤ (
∑u

k=1 x̂k +
∑

Byj∈Bp
ŷj)

∣∣∣∣
yθ,1=0,...,yθ,|Bc|=0

.

When the number of buckets removing in Bc increases, the corresponding interference

of By−Bc decreases. Therefore, the collected values more accurately converge to the

buckets that they should belong to, and thus achieve a better convergence result.

After removing all buckets in Bc, all collected values will convergence to normal values

and poison values in Bp and we can infer that (
∑u

k=1 x̂k+
∑

Byj∈Bp
ŷj)

∣∣∣∣
yθ,1=0,...,yθ,|Bc|=0

,

which is the optimal case where none of the collected values will converge to buckets

in Bc.

6.2.2 Segmented Expectation-Maximization Filter

So far, this chapter has proposed EMF on the assumption that Bp+ is known, but

in practice the buckets selected by Byzantine users are usually unknown. To address

this challenge, this chapter introduces SEMF, which combines domain partitioning

with EMF.

SEMF begins by partitioning the output domain into several segments. Each segment

is then individually probed for poison values, assuming only the currently probed

segment might contain poison values, while all other segments are considered poison-

free. If a segment does not contain poison values, all poison values should converge

to x̂. To align the perturbation results of x̂ closely with the collected data V ′, the

values corresponding to this segment are also mapped to x̂. As a result, if a probed

segment does not contain poison values, the EMF will detect a minimal number of

poison values.
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Let’s use an example to show how SEMF identifies the approximate range of poison

values. If the domain is partitioned into four segments and the probing result is

[0,0,0,1], this suggests that only the fourth segment is a poison segment containing

poison values. Accordingly, Bp+ will include all the buckets that are located within

the poison segments.

A challenge arises from determining an appropriate number of segments, denoted

by ns. A large ns is computationally hard, while a small ns make it difficult to

find poison value-free segments. To address this challenge, this chapter proposes an

adaptive method that starts at ns = 2 and increases it until a Bp+ (rather than By) is

found. Let S(ns, i) denote the set of all buckets in the i-th segment when the domain

is partitioned into ns segments. The details of this process are presented in Algorithm

7.

Algorithm 7: SEMF Algorithm

Input: Buckets set for collected data By

Number of segments ns, Collected histogram b

Output: Poison set Bp+

1: Initialize: ns = 2, flag=0, Bp+ = By while flag==0 & ns < τ do
2:

Fori = 1 to ns

3: x̂, ŷ = EMF(b, S(ns, i)) if sum(ŷ) < T then
4:

Bp+ = Bp+ − S(ns, i); flag=1 EndIf

5: ns = 2 ∗ ns EndFor EndWhile if flag==1 then
6:

Find the segment k with the smallest sum(ŷ)

7: Bp+ = Bp+ − S(ns, k)

8: EndIf

9: Return Bp+

The algorithm first initializes ns = 2 and Bp+ = By (line 1). It then partitions the w

buckets into ns segments, applying EMF to each segment (line 2). Specifically, when
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the algorithm checks whether the i-th segment is a poison segment, it applies the

EMF and adjusts M based on that segment (line 4). If the number of poison values

in a segment falls below a threshold T , all buckets within this segment are removed

from Bp+. Otherwise, ns is doubled for the next iteration, and the process is repeated

(lines 5-7). If an available Bp+ cannot be found within the maximum allowable value

τ , the segment with the smallest sum of estimated distribution is removed from the

poison set (lines 8-10). The final poison set Bp+ is then returned (line 11). The

procedure of SEMF probing the range of poison values is similar to a binary search

with probing, with a complexity of O(log n).

6.3 Distribution Estimation under GBA

The previous discussion introduces EMF and a more practical version SEMF, for

identifying the poison segments. This chapter leverages the information derived from

poison segments and employ the EMF-based approach to estimate the distribution

for normal users. This primarily includes DE-EMF and two post-processing methods,

namely DE-EMF* and DE-REMF*, to enhance the performance of the distribution

estimation.

6.3.1 DE-EMF

Distribution Estimation. DE-EMF is an intuitive solution for distribution estima-

tion, by first adopting SEMF for identifying poison segments and then applying EMF

for estimating the data distribution. The process is outlined in Algorithm 8. The

data collector uses SEMF to find a Bp+ (line 1) first, then utilizes the information

from Bp+ as the probing buckets set and estimate the distribution of normal users

with EMF (line 2). The result x̂ represents the distribution for normal users and ŷ

represents that for Byzantine users.
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Algorithm 8: DE-EMF Algorithm

Input: Collected histogram b = {b1, b2, ..., bw}

Output: Frequency histograms x̂ and ŷ

1: Run SEMF and obtain Bp+

2: x̂, ŷ = EMF(b, Bp+)

3: Return x̂, ŷ

The proportion of Byzantine users γ̂ can also be derived from ŷ, the estimated fre-

quency histogram of poison values by DE-EMF:

γ̂ =
∑

Bbj∈B
p+

ŷj =
m̂

N
≈ m

N
= γ, (6.2)

where m̂ denotes the estimated number of Byzantine users, and γ denotes the true

proportion of Byzantine users.

When ε→ 0, the estimated frequency histogram x̂ of normal users converges to a uni-

form distribution, whereas that of Byzantine users ŷ converges to the true distribution

of poison values. Thus, Equ. 6.2 can be proved by the following theorem:

Theorem 12. Let a = {a1, ..., a|Bp+|} denote the count of poison values in correspond-

ing buckets from Bp+. When ε → 0, the convergence results are x̂k = n
Nd

(for Bxk ∈

Bx) and ŷj =
aj
N

(for Byj ∈ Bp+).

Proof. When ε→ 0, all inputs from normal users are equally perturbed into w buckets

with probability 1
w

, which leads to a uniform distribution. Let a = {a1, ..., a|Bp+|}

denote the count of poison values in corresponding buckets from Bp+, and we have

bt → n
w
, Bxt /∈ Bp+ and bt → n

w
+ at, Bxt ∈ Bp+.

Note that
∑u

k=1 x̂k +
∑

Bxj∈Bp+
ŷj = 1, the Lagrangian function of Equ. 6.1 can be

written as:

L(F ) = l(F ) + ω(
u∑
k=1

x̂k +
∑

Bxj∈Bp+
ŷj − 1).
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Let all first-order partial derivatives of L w.r.t. x̂k and ŷj equal zero

∂L(F )

∂x̂k
=

w∑
t=1

bt

1
w∑u

k=1 x̂k
1
w

+ ω, Bxk , Byk /∈ Bp+

∂L(F )

∂x̂k
=

w∑
t=1

bt

1
w∑u

k=1 x̂k
1
w

+ ŷt
+ ω, Bxk , Byk ∈ Bp+

∂L(F )

∂ŷj
= bj

1∑u
k=1 x̂k

1
w

+ ŷj
+ ω, Byj ∈ Bp+

we have:

x̂k →
n

Nd
, ŷj →

aj
N
,Byj ∈ Bp+, ω → −N. (6.3)

According to the deduction results, the frequency histogram x̂ of normal users con-

verges to a uniform distribution, while that of Byzantine users ŷ converges to the true

distribution of poisoned values.

6.3.2 Post-processing Methods

DE-EMF seeks to extract {x̂, ŷ}, a unified distribution for all users, from collected

values. Clearly, the convergence result of ŷ influences that of x̂. Furthermore, when

epsilon is large, the number of Byzantine users can be overestimated or underesti-

mated, leading to inaccurate distribution estimation. To overcome these challenges

and improve the accuracy of the distribution estimation for normal users, the chapter

develops two optimized methods DE-EMF* and DE-REMF*, by combining DE-EMF

with a post-processing step.

During the DE-EMF process, estimating the poison value distribution negatively

impacts that of the normal users. Therefore, this chapter proposes DE-EMF*, which

incorporates a post-processing step that involves re-running EMF after removing

poison values.

The specific steps, as outlined in Algorithm 9, involve removing the poison values

(obtained from DE-EMF) from the results of DE-EMF (line 2), then setting Bp+ to
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an empty set (line 3), effectively assuming the system no longer contains Byzantine

users. The convergence result ŷ will be a zero vector, and x̂ represents the refined

distribution of data for normal users (line 4).

Algorithm 9: DE-EMF* Algorithm

Input: Poison histogram ŷ = {y1, y2, ..., yw}

Collected histogram b = {b1, b2, ..., bw}

Output: Estimated histogram for normal users x̂

1: Obtain x̂, ŷ by running DE-EMF

2: Collected histogram for normal users b = b− ŷ

3: Bp+ = ∅

4: x̂, ŷ = EMF(b, Bp+)

5: Return x̂

DE-REMF*. Once the proportion of Byzantine users γ̂ probed from Equ. 6.2 is

known4, it can be utilized to improve the convergence process, by imposing
∑
ŷ = γ̂,∑

x̂ = 1− γ̂ as two additional restrictions in EMF. This idea leads to the optimized

method DE-REMF*. Accordingly, the maximization problem in M steps of EMF

becomes:

arg max
x̂,ŷ

u∑
k=1

Pxk ln x̂k +
∑

Byj∈Bp+
Pyj ln ŷj,

subject to
u∑
k=1

x̂k = 1− γ̂,
∑

Byj∈Bp+
ŷj = γ̂

(6.4)

Algorithm 10 shows the pseudo-code of DE-REMF*, where the M-step from EMF

has been modified with the results of Theorem 13. In addition, this chapter runs

Algorithm 9 once again at line 12 to further eliminate the influence of poison values

on the distribution estimation.

DE-REMF* can improve DE-EMF/DE-REMF* in terms of the accuracy of converged

4A more precise estimate of γ̂ can either be obtained from pre-existing knowledge or acquired by

executing the DE-EMF algorithm with a small epsilon.
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Algorithm 10: DE-REMF* Algorithm

Input: Transform matrix M

Collected values V ′

Output: Frequency histograms x̂ and ŷ

1: Initialization: Obtain x̂, ŷ by running DE-EMF

2: x̂, ŷ = DE-EMF

3: γ̂ =
∑
ŷ while not converge do

4:

E-step:

5: Same as the E-step in EMF in Algorithm 6

6: M-step:

7: ∀ Bxk ∈ Bx

8: x̂k = (1− γ̂)
Pxk∑u
i=1 Pxi

9: ∀Byj ∈ Bp+

10: ŷj = γ̂
Pyj∑

Byj∈B
p+ Pyi

11: EndWhile

12: Run Algorithm 9

13: return x̂, ŷ

poison value histogram because the additional restrictions eliminate those infeasible

poison values. To resolve Equ. 6.4, the following theorem is shown:

Theorem 13. The maximum in Equ. 6.4 is reached when the output frequency his-

tograms are

x̂k = (1− γ̂)
Pxk∑u
i=1 Pxi

, ŷj = γ̂
Pyj∑

Bbi∈B
p+ Pyi

.
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Proof. We apply Lagrangian multiplier method to derive maximal value of Euq. 6.4. Let

L =
u∑
k=1

Pxk lnx̂k +
∑

Byj∈Bp+

Pyj lnŷj

+ λ1(

u∑
k=1

x̂k − 1 + γ̂) + λ2(
∑

Byj∈Bp+
ŷj − γ̂),

where λ1 and λ2 are two constants and the first-order partial derivatives of L w.r.t. x̂k and

ŷj are

∂L
∂x̂k

=
Pxk
x̂k

+ λ1,
∂L
∂ŷj

=
Pyj
ŷj

+ λ2.

Let ∂l
∂x̂k

and ∂l
∂ŷj

be zero, and we have

Pxk + λ1x̂k = 0, Pyj + λ2ŷj = 0. (6.5)

From the restrictions in Equ. 6.4, we can deduce that

λ1 =

∑u
i=1 Pxi
γ̂ − 1

, λ2 =

∑
Byi∈Bp+

Pyi

−γ̂
.

Replacing them in Equ. 6.5, we can reach that

x̂k = (1− γ̂)
Pxk∑u
i=1 Pxi

, ŷj = γ̂
Pyj∑

Byi∈Bp+
Pyi

.

6.4 Differential Aggregation Protocol

Utilizing DE-EMF, DE-EMF* and DE-REMF* with a smaller ε allows for a more precise

estimation of the proportion of poison values, while a larger ε leads to a more accurate

distribution. To leverage the benefits provided by different ε values, this chapter introduces

a multi-group collection protocol, named Differential Aggregation Protocol (DAP), in this

chapter. Our idea is to randomly assign users into h groups, each with its own privacy

budget setting. The collector performs SEMF (i.e., Algorithm 7) in each group to probe

poison segments. And then the collector estimates a distribution from each group, based

on which an inter-group distribution is aggregated. There advantages are three-fold. First,

Byzantine users cannot differentiate if their values are used for probing or estimation and

thus take the above strategy. Second, there is no need to split privacy budgets for users,
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Figure 6.3: Differential Aggregation Protocol

which can improve the estimation accuracy. Third, this protocol can naturally handle users

with different privacy budgets.

As illustrated in Fig. 6.3, the work flow of DAP has five stages:

1. Grouping. The data collector allocates users into groups and assigns each group

with a dedicated privacy budget.

2. Perturbation. Users in each group perturb their values according to their assigned

privacy budgets and send them to the data collector.

3. Probing. The data collector executes REMF* for each group to probe Bp+.

4. Intra-group Estimation. The data collector attains a distribution estimation from

each group with DE-EMF/DE-EMF*/DE-REMF*.

5. Inter-group Aggregation. The data collector aggregates estimated distributions

from all groups into one.

6.4.1 Grouping

First of all, the data collector determines a minimal acceptable privacy budget ε0 to bound

the perturbation noise of normal values according to the privacy budget ε for users. Then

data collector creates h = dlog2(ε/ε0)e+1 equal-sized groups, denoted by {G1, ..., Gt, ..., Gh},

with decreasing budgets {ε, 1
2ε,

1
4ε, ..., εt, ..., ε0}.

5 Users are randomly assigned to the groups

5Without loss of generality, we assume ε/ε0 is a power of 2.
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by the collector and perturb their values according to the εt of the groups they belong to.

To guarantee all users have the same privacy budget, those assigned with smaller εt perturb

and report multiple times until the overall privacy budget is depleted. Let V ′t denote the

collected values from group Gt and Nt = εN
εth

denote the number of collected values from

group Gt.

6.4.2 Aggregating Inter-group Estimations

Upon completing the intra-group distribution estimations, as detailed in Chapter 6.3, the

individual estimations are consolidated into one unified distribution. However, the naive

method of averaging all of them in equal weights does not provide the optimal data utility

— values perturbed with larger εt have higher accuracy. Hence, the group they belong to

deserves higher weight.6 At the end of this chapter, inspired by [132], this chapter proposes

an aggregation strategy that can linearly combine all estimated intra-group distributions

{D1, ..., Dt, ..., Dh} into D̃, while achieving minimal overall MSE. Since the MSE is related

to the true value which is unknown, this chapter thus only considers the minimal MSE

under the worst-case, i.e., when all the original values are either 0 or 1.

Algorithm 11: Distribution Aggregation

Input: Distribution {D1, ..., Dt, ..., Dh}

Privacy budgets {ε1, ..., εt, ..., εh}

Output: The aggregated distribution D̃

1: Initialization: wt = 0, t = {1, 2, ..., h} for t = 1 to h do
2:

wt = [Bt
∑h

i=1
1
Bi

]−1, see Theorem 6.1 for Bt. EndFor

3: D̃ =
∑h

t=1wtMt

4: return D̃

Algorithm 11 shows the detailed optimization procedure of such aggregation. Specifically,

the estimated numbers of normal users in Gt can be obtained from n̂t = Nt−m̂t. All weights

6We ignore the influence of poison values, which have been addressed in the previous steps.
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wt of group Gt are initially set to 0 (line 1). Then they are assigned by the formula in line

3, based on which all distributions are combined in line 4. This aggregation satisfies ε-LDP

according to the parallel composition theorem of LDP [69]. The following Theorem 14

guarantees the weight assignment in line 3 is optimal. Note that Lemma 3 below proves

the worse-case variance of SW mechanism for Theorem 14.

Theorem 14. The MSE of M̃ reaches the minimum MSE(M̃)min = [
∑h

t=1
n̂t

2

Bt
]−1, if the

following formula holds:

wt =
1

Bt
∑h

i=1
1
Bi

,

where Bt = dV arworst(v
′
tj).

Proof. Let D̃t[j] denote the j-th value in group Gt, v
′
tj the median value in D̃t[j], and D̃t

the distribution in Gt. As deducted in literature [42], therefore:

MSE
(
D̃
)

=

d∑
j=1

Var
[
D̃[j]

]

=

d∑
j=1

h∑
t=1

ω2
t

[
D̃t[j]

]
=

d∑
j=1

h∑
t=1

ω2
t V ar(v

′
tj)

(6.6)

where
∑
wt = 1.

Since V ar(v′tj) relies on the input of each user, the worst-case at the maximum variance

is considered, i.e., all inputs vtj are either 1 or 0. To simplify, the worst-case variance

V arworst(v
′tj) is considered, which can be found in Theorem 3. Let Bt = dV arworst(v′tj)

and Equ. 6.7 can be obtained as follows:

MSE(D̃) =
d∑
j=1

h∑
t=1

ω2
t kVar(v′tj) =

h∑
t=1

ω2
tBt (6.7)

We regard the variance as a function of wt, and the minimal variance is the extreme point

of Equ. 6.7. By the Lagrangian method, we have:

L =

h∑
t=1

w2
tBt + C0(1−

h∑
t=1

wt).

The first partial derivatives of L w.r.t. wt is ∂L
∂wt

= 2wtBt − C0. Let ∂L
∂wt

= 0, then we have

wt = C0n̂t
2

2Bt
. Through the restriction

∑h
t=1wt = 1, we figure out

C0 =
2

n̂t
2∑h

t=1
1
Bt

, wt =
1

Bt
∑h

i=1
1
Bi

,
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and the minimal variance of M̃ :

MSE(D̃)min = [

h∑
t=1

n̂t
2

Bt
]−1.

Lemma 3. When an input value v is perturbed by SW, it yields a perturbed value v′ such

that

E[v′] = 2bpv +
1

2
q(2v2 − 4bv + 2b+ 1),

and

V ar[v′] =
q
(
b3 − (b− v)3

)
3

+
q
(
(b+ 1)3 − (b+ v)3

)
3

+

p
(
(b+ v)3 + (b− v)3

)
3

−

(
q
(
2v2 − 4bv + 2b+ 1

)
2

+ 2bpv

)2

When v = 1, it achieves the largest variance.

V arworst = V ar(v′|v = 1)

=
p
(
(b− 1)3 + (b+ 1)3

)
3

−
q
(
(b− 1)3 − b3

)
3

−
(

2bp− q(2b− 3)

2

)2

.

(6.8)

Proof. Based on the SW perturbation mechanism in Algorithm 3.6, we can infer the fol-

lowing:

E[v′] = q

∫ v−b

−b
v′dv′ + p

∫ v+b

v−b
v′dv′ + q

∫ 1+b

v+b
v′dv′

=
v − 2b

2
qv + 2bpv +

v + 1 + 2b

2
q(1− v)

= 2bpv +
1

2
q(2v2 − 4bv + 2b+ 1)

E[v′2] = q

∫ v−b

−b
v′2dv′ + p

∫ v+b

v−b
v′2dv′ + q

∫ 1+b

v+b
v′2dv′

=
1

3
(q((v − b)3 − (−b)3) + p((v + b)3 − (v − b)3)

+ q((1 + b)3 − (v + b)3)).

Further more,

V ar[v′] = E[v′2]− (E[v′])2

=
1

3
(q((v − b)3 − (−b)3) + p((v + b)3 − (v − b)3)+

q((1 + b)3 − (v + b)3))− (2bpv +
1

2
q(2v2 − 4bv + 2b+ 1))2
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When v = 1, it achieves the largest variance.

V arworst = V ar(v′|v = 1) =
p
(
(b− 1)3 + (b+ 1)3

)
3

−
q
(
(b− 1)3 − b3

)
3

−
(

2bp− q(2b− 3)

2

)2 (6.9)

In order to keep the expression concise, only b, p, and q are listed here.

p =
eε

2beε + 1
, q =

1

2beε + 1
, b =

εeε − eε + 1

2eε(eε − 1− ε)
The parameters b, p, and q are all uniquely determined as functions of the variable ε.

6.5 Experimental Results
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Figure 6.4: Normalized frequencies of datasets

This chapter evaluates the performance of DAP, on both real-world and synthetic datasets.

Experiments were conducted using MATLAB R2021a on a PC with Intel i7-10700K RTX

3090 eight-core processor, 128GB RAM, and Windows 10 OS. The source code and datasets

are available in [36].
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6.5.1 Experiment Setup

Datasets. This chapter adopts two synthetic and two real-world numerical datasets.

Beta(2,5) and Beta(5,2) are two synthetic datasets drawn from Beta distribution [60],

each with 1,000,000 samples in the interval [0, 1]. Taxi [86] is the pick-up time in a day

extracted from 2018 January New York Taxi data, which contains 1,048,575 integers from

0 to 86,340 (the number of seconds in 24 hours). Retirement [44] is extracted from the

San Francisco employee retirement plans, which contains the salary and benefits paid to

city employees since fiscal year 2013. The total compensation, which comprises a subset of

606,507 items in the interval [10000, 60000], is employed. All these datasets are then nor-

malized into interval [0, 1]. The normalized frequency histograms of all datasets are plotted

in Fig. 6.4.

Parameter Setting. This chapter uses SW as our default perturbation mechanism and

therefore, the poison values are injected into [−b, 1 + b]. This chapter partitions this range

into nd segments, and choose np of them to inject poison values, denoted by Poi(nd,np). To

ensure the robustness of the attack, this chapter tests different combinations of np segments

as poison segments and calculate average of the experimental results. This chapter varies

the percentage of Byzantine users and poison value distributions to evaluate the scalability

of our protocol and adjust nd and np according to specific poison patterns.

This chapter compares the proposed methods, including DE-EMF, DE-EMF* and DE-

REMF*, with two existing solutions Ostrich and ME-EMF. Ostrich is the baseline scheme

where the existence of Byzantine users is ignored. For the ME-EMF [38], the data collector

first identifies the poison side (i.e., left or right), estimates the poison value’s distribution

there, removes their influence, and then uses EMF-based algorithms (DE-EMF, DE-EMF*,

and DE-REMF*) to determine the poison value’s distribution. EMF-based algorithms are

utilized in DAP, where the minimum privacy budget ε0 is uniformly set to 1/16 across all

groups, and the values of ε are chosen from {1/4, 1/2, 3/2, 4/2, 5/2}.

The proportion of Byzantine users is set to 25% and the poison values are uniformly dis-

tributed in selected segments by default. The termination condition for EMF-based algo-

rithms is |l(F )t − l(F )t+1| < ξ, where ξ is set to 0.01eε. This chapter chooses u = b
√
Nc
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and w = d(1 + 2S)ue. In Algorithm 7, the parameter τ is set to 64. The threshold T for

determining whether there are poison values in the segment is set as 0.02 ∗ IQR [34].

Performance Metric. The Mean Squared Error (MSE) is widely used in the field of

machine learning and statistics to measure the average of the squares of the errors, i.e., the

average squared difference between the estimated values and the actual one. Or formally,

MSE is defined as

MSE =
1

r

r∑
i=1

(Yi − Ŷi)2,

where r represents the number of data points. As the MSE in our experiments estimates

the mean values, here, the value of r corresponds to the number of experimental rounds.

For the experiments, r is chosen as 50. Yi denotes the actual values, and Ŷi represents the

predicted values.

The Jensen-Shannon Divergence (JSD) [78] is a measurement of the similarity between two

probability distributions P and Q. It is defined based on the Kullback-Leibler Divergence

(KLD) [32] and additionally requires the divergence symmetry, i.e., the divergence from

distribution P to Q is the same as the divergence from Q to P. Specifically, the JSD between

P and Q is defined as follows:

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M),

where DKL(P ||M) and DKL(Q||M) are the Kullback-Leibler Divergences of P and Q from

M, respectively, and M is the average of P and Q:

M =
1

2
(P +Q)

In this context, the Kullback-Leibler Divergence is defined as:

DKL(P ||Q) =
∑
i

P (i)log
P (i)

Q(i)

6.5.2 Overall Results

Percentage of Byzantine Users. In the first set of experiments, the accuracy of the

proportion of Byzantine users obtained by DE-EMF with respect to ε is verified in Fig. 6.5.
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γ = 0.25 and compare the five poison pattern Poi(8,1), Poi(8,2), Poi(8,3), Poi(8,5) and Poi(8,6)

with varying ε in Fig. 6.5 (a) (b). When ε is large, the estimated proportion γ̂ deviates

from γ. As ε decreases, the result becomes more accurate. This is because, according to

Theorem 12, when ε becomes smaller, EMF distinguishes normal and poison values better.

In these figures, regardless of poison values’ ranges, datasets and γ, |γ̂ − γ| converges to 0

as ε→ 0.

In Fig. 6.5 (c) and (d), γ̂ is evaluated with varying γ. It can be observed that as γ

increases, the estimated value γ̂ also increases. In most cases, the difference between γ̂

and γ falls within the range of [0.02, 0.04]. However, in the case Poi(8,6), the poison values

are distributed across a wide range of the domain, making probing challenging and leading

to inadequate estimation performance. Especially when γ = 0, which means that there

is no poison value, the γ estimated by EMF is equivalent to the false positive rate (fpr).

In our observation of both of Beta(2,5) and Beta(5,2), with ε0 = 1/16, the range of

false positives is quite small (from 0 to 0.03), from which we assure that there are no

Byzantine users. This illustrates the robustness of our schemes in scenarios where there are

no Byzantine users in the system. Even if a few Byzantine users that are actually normal

users are misidentified, the impact appears to be negligible.

It is important to note that when γ̂ is close to 0, there is either no Byzantine users or they

successfully evade. Two evasion cases, including input manipulation and random sampling,

are considered. Since the latter uniformly increases all data points, this attack has minimal

impact on the distribution. As such, only the former is discussed in Chapter 6.16.

Performance of Distribution Estimation. In Fig. 6.10, the JSD is compared with

varying ε. In most cases, all EMF-based schemes outperform Ostrich as they are somehow

able to identify poison values. Among the three proposed schemes, DE-EMF* generally

performs better than DE-EMF as it recovers a more precise distribution. Moreover, DE-

REMF* performs better than DE-EMF*, which may remove an inappropriate number of

values.

In Figs. 6.10 (b) and (c), it is observed that ME-EMF outperforms others. This is because

the poison values are skewed to one side, and the size of Bp+ is smaller compared to other
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Figure 6.5: The proportion of Byzantine users estimated by EMF

schemes. However, this advantage disappears once nd exceeds 1, whereby ME-EMF neglects

some poison values and worsens the result.

Performance of Mean Estimation. The protocol can restore both the distribution and

the mean of normal users. After obtaining the distribution of raw data, the mean of the

distribution can be calculated based on the obtained distribution. In Fig. 6.11, in most

cases, both DE-REMF* and DE-EMF* outperform the others. They probe and remove

poison values compared to Ostrich, and further mitigate the impact of poison values during

convergence compared to DE-EMF. In most cases, DE-REMF* outperforms DE-EMF*

because it leverages additional information from γ̂, leading to a reduction in the error of

the convergence result. ME-EMF occasionally outperforms (as shown in Fig. 6.11 (e) and

(g)) due to its correspondence with fewer EMF buckets. Particularly, it shows enhanced
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Figure 6.6: The results for JSD w.r.t. ε

performance when Byzantine users focus their attack on a single segment.

6.5.3 Robustness Study

Fig. 6.15 studies the robustness of different methods, by varying different datasets, propor-

tions of Byzantine users and distributions of poison values at ε = 2.

Robustness on Datasets. Fig. 6.15 (a)-(d) demonstrate that our proposed schemes yield

lower JSD than both Ostrich and ME-EMF across all datasets. However, the final JSD

performance is highly correlated with the distribution of each dataset. Specifically, the

Taxi presents the lowest JSD, while other datasets show relatively higher values. This is

due to the smaller kurtosis of the Taxi dataset (indicating a more uniform distribution),

which makes poison values easier to probe. Conversely, the latter three distributions display

significantly larger kurtosis. When poison values are near the peak of these distributions, our
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Figure 6.7: The results for JSD w.r.t. ε

schemes perform less effectively, resulting in worse performance than on the Taxi dataset.

Furthermore, the symmetric nature of the beta(2,5) and beta(5,2) distributions leads to

similar JSD results for both.

Robustness on Poison Pattern. Fig. 6.15 (e)-(h) demonstrate the robustness on dif-

ferent poison patterns in Beta(2,5) with privacy budget ε = 2. In Fig. 6.15 (e), when

np = 1 and the poison pattern is Poi(2,1), ME-EMF performs the best. This is because its

selected Bp+ is closer to Bp than those selected in DE-EMF*/DE-REMF*. However, the

performance of ME-EMF declines as nd increases and Bp+ deviates increasingly from Bp.

In Fig. 6.15 (f)-(h), different poison patterns at the same np/nd are compared. When nd

is relatively small, poison values are more concentrated, and the performance of Ostrich

is rather poor. However, as nd increases, the attack capability of poison values decreases,

and the performance of Ostrich improves. The changes in nd have little impact on DE-

EMF and DE-EMF*. Even in situations such as Poi(32,16), where the poison values are
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Figure 6.8: The results for JSD w.r.t. ε

almost uniformly distributed across the domain, reducing the impact of the attack, probing

becomes challenging and thus Ostrich performs best. Nonetheless, the proposed schemes

achieve comparable performance to Ostrich. This shows the robustness of the scheme in

cases where poison values are difficult to distinguish from normal values.

In Fig. 6.15 (h), nd is set to 8, and the poison patterns are set between Poi(8,1) and Poi(8,7)

inclusive. Ostrich performs better as np increases and the poison values become sparser.

However, DE-EMF* and DE-REMF* still outperform Ostrich. Particularly, the proposed

schemes perform well even when the poison values almost occupy the entire domain in the

Poi(8,7) poison pattern.

Robustness on Distribution of Poison Values. Fig. 6.15 (i)-(l) show how JSD varies

with respect to different distributions of poison values. It can be observed that the per-

formance greatly varies with different distributions, and the proposed schemes consistently

outperform the others. It is noteworthy that all schemes have a higher JSD when the attack
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Figure 6.9: The results for JSD w.r.t. ε

distribution is Gaussian, whose unique shape can be characterized by a high peak in the

middle that tapers off to lower values at the tails. It becomes significantly challenging to

effectively identify and probe the poison values that are located near the peak. In contrast,

the nearly flat uniform distribution simplifies the identification of poison values, leading to

a lower JSD. Similarly, Beta(1,6) and Beta(6,1) distributions, which do not have any peak,

also result in a better performance.

Robustness on Proportion of Byzantine Users. Fig. 6.15 (m)-(p) demonstrate that,

even with increasing Byzantine users, the proposed schemes still effectively eliminate the

impact of Byzantine attacks. As the number of Byzantine users increases (even when the

proportion γ = 0.5), the performance of Ostrich worsens while the proposed schemes are

quite stable. In Fig. 6.15 (n) and (o), DE-EMF performs worse than Ostrich. This is due

to the bias introduced in the distribution for normal users when estimating the distribution

for Byzantine users. However, both the optimized methods DE-EMF* and DE-REMF*
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Figure 6.10: The results for JSD w.r.t. ε

correct these errors and achieve lower JSD.

6.5.4 Discussion.

Combating Input Manipulation Attacks. Let’s consider the scenario where Byzantine

users are aware of our proposed DAP technique and attempt to evade it by employing an

input manipulation attack (IMA) [70]. Specifically, Byzantine users generate poison data

within the range of [0, 1] and then perturb them using an LDP mechanism to make them

less detectable before sending to the data collector.

In Fig. 6.16 (a), the number of Byzantine users γ̂ is evaluated under the IMA. More

specifically, when Byzantine users inject their poison values as 1 and then perturb them like

normal users. It is observed that for all four datasets with ε0 = 1/16, the false positives range

from 0.02 to 0.04, indicating a relatively low rate. This suggests that there are either no
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Figure 6.11: The results for mean estimation w.r.t. ε

Byzantine users or the Byzantine users successfully evade, making it challenging for EMF

to filter out these Byzantine users due to the perturbation. However, the utility can be

further enhanced by utilizing existing detection techniques, such as k-means clustering [70],

as illustrated in Fig. 6.16 (b).

Fig. 6.16 (b) evaluates the IMA on Taxi, i.e., Byzantine users generating an input poison

value g and then strictly following the perturbation mechanism to make it less detectable.

To integrate EMF with the existing k-means-based defense, EMF is first used to determine

whether γ̂ is relatively small (i.e., evading), as shown in Fig. 6.16 (d). Then, EMF is

employed to estimate the input distribution by setting γ̂ = 0, and finally, the mean is

evaluated using k-means. Fig. 6.16 (b) demonstrates that through this integration (referred

to as EMF-based), the estimation accuracy under IMA can be further enhanced. When g =

−1, the mean squared error (MSE) of the EMF-based approach ranges between 1.40×10−7
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Figure 6.12: The results for JSD with different parameters

to 1.44× 10−7, while the MSE of k-means alone ranges between 1.77× 10−7 to 1.88× 10−7,

resulting in a 28

Frequency Estimation on Categorical Data. DAP is not limited to numerical data

and can be generalized to categorical data, e.g., frequency estimation for categorical data.

This is because x̂ derived in Algorithms 6 and 8 is essentially the frequency histogram of

numerical/categorical data. To exemplify how to use DAP to estimate the frequency of

categorical data, let’s consider k-RR [62, 112], a common LDP mechanism for categorical

data.

The schemes are evaluated under frequency estimation on categorical data using the COVID-

19 dataset, which records the number of coronavirus disease 2019 deaths for females in

California as of December 14, 2022, by age [106]. All death records are divided into 15 age

groups, and every record is perturbed locally by k-RR. In Fig. 6.16 (c), Byzantine users
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Figure 6.13: The results for JSD with different parameters

are injected into the 10th group only, and it is observed that the MSE of Ostrich is about

0.1 and keeps steady regardless of ε, while that of the proposed schemes is lower than 0.01

and decreases significantly with respect to ε. When Byzantine users uniformly inject poison

values into the 10th, 11th, and 12th groups, as shown in Fig. 6.16 (d), the MSE of Ostrich

still significantly underperforms the proposed schemes. This experiment shows that the

DAP schemes can also work well in other statistics and data types than mean estimation

on numerical data.

6.6 Summary

This chapter studies the problem of distribution estimation while addressing arbitrarily

distributed Byzantine attacks in LDP. Unlike previous solutions, the proposed approach
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Figure 6.14: The results for JSD with different parameters

does not require any prior knowledge about the attack methods or the distribution of poison

values. A new algorithm, SEMF, is developed that can approximately identify the range

of these poison values. Based on this information, the distribution is estimated through

DE-EMF and two additional optimized methods, DE-EMF* and DE-REMF*.

To further improve performance and security, a group-based method called DAP is in-

troduced, which optimizes the estimates and reduces MSE. Through extensive experiments

with both simulated and real-world data, it is demonstrated that DAP is effective, accurate,

and robust against various attack settings in LDP systems.
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Figure 6.15: The results for JSD with different parameters

127



Chapter 6. Distribution Estimation under LDP against Arbitrarily Distributed
Attacks

1/16 1/8 1/4 1/2 1 2 
0

0.1

0.2

0.3

0.4

0.5

(a) IMA, γ = 0.25.

0.1 0.3 0.5 0.7 0.9

10-8

M
S

E

EMF-based(g=-1) 
EMF-based(g=1) 
EMF-based(g=0)

K-means(g=-1)
K-means(g=1)
K-means(g=0)

(b) Taxi, IMA, γ = 0.25.

1/4 1/2 1 3/2 2
10-3

10-2

10-1

M
S

E

DAP
EMF

DAP
EMF*

DAP
CEMF* Ostrich

(c) COVID-19, Poi10.

1/4 1/2 1 3/2 2
10-3

10-2

10-1

M
S

E

DAP
EMF

DAP
EMF*

DAP
CEMF* Ostrich

(d) COVID-19, Poi10,11,12.
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frequency estimation for (c) (d)

128



Chapter 7

Conclusions and Future Works

In this thesis, we have conducted an in-depth study on LDP under adverse circumstances, fo-

cusing on enhancing both utility and security. Our research addresses several key challenges

that represent challenges for LDP systems: the utility degradation in high-dimensional data

scenarios, where we optimized privacy budget allocation among correlated attributes; the

inefficiency in processing sparse data with low-frequency values, where we developed meth-

ods to identify top-k values through budget allocation and reinforcement learning; and the

vulnerability to Byzantine attacks, where we established robust LDP protocols by filtering

out poisoned data based on varying user behaviors. Our comprehensive study demonstrates

that our proposed solutions significantly outperform existing approaches, both theoretically

and experimentally. These methods effectively improve utility and enhance the security of

data collection in LDP systems under adverse circumstances.

Looking ahead, we aim to emphasize three critical directions that will shape the trajectory

of future research on LDP, focusing on both utility and security:

Personalized Privacy Developing adaptive LDP frameworks that allow for personalized

privacy settings based on individual user preferences or legal requirements can ensure a

more tailored privacy experience.

Interplay with Other Privacy Technologies Exploring how LDP can work in conjunc-

tion with other privacy-preserving technologies, such as secure multi-party computation
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(MPC) [55] and homomorphic encryption (HE) [131], could lead to hybrid systems that

leverage the strengths of multiple approaches.

Robustness against Inference Attacks Although LDP provides strong privacy guaran-

tees, sophisticated inference attacks [119] can still pose risks. Investigating new threats and

enhancing the robustness of LDP mechanisms against such attacks is vital for maintaining

user trust.
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