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Abstract

The widespread use of social media has generated a vast amount of data, which
presents unique challenges and opportunities for information processing. This mas-
sive data, characterized by its scale and complexity, demands advanced analytics to
fully utilize its potential. Within this scenario, social event detection emerges as a
critical analytics task, which aims at identifying and categorizing significant events
from the streams of data available on social media platforms. However, the social
media data used for event detection exhibit characteristics of multimodality, informa-
tion fragmentation, cross-platform, and dynamic nature. The performance of current

social event detection methods is hindered by two major problems.

The first problem is the limited detection accuracy. Despite the rapid advance-
ment of deep learning methods, they face various challenges in handling modality het-
erogeneity inherent in multimodal social media event data and the out-of-distribution
(OOD) problem caused by information fragmentation. Existing methods, although
starting to leverage multimodal data for event detection, often struggle to identify

the correct events when faced with fragmented information.

The second problem is the insufficient generalization capability. Current super-
vised event detection methods have limited generalization capability when dealing
with different data sources and newly emerging events. Due to the cross-platform
and dynamic nature of social event data, the lack of consideration for these aspects

affects the generalizability of event detection models.



To address these problems above, our focus in this thesis is on the following ob-
jectives. Firstly, we aim to design a deep learning model to address modality hetero-
geneity and the OOD problem, thereby improving the accuracy of event detection.
Secondly, we aim to develop an innovative manner to adapt models to implement
cross-platform social event detection. Thirdly, we aim to extend existing supervised

event detection methods to discover new social events in social media.

To achieve the first objective, we introduce a Multimodal Fusion with External
Knowledge (MFEK) model. This method incorporates a text enrichment module
that leverages image semantics to enhance textual content, along with a knowledge-
aware feature fusion mechanism that effectively integrates external knowledge and
multimodal data to mitigate modality heterogeneity and the OOD problem caused
by the fragmentation of social event data. We find that such a method can bring a
significant improvement to the performance after incorporating external knowledge,

even in scenarios with fragmentation information.

To accomplish the second objective, we develop a Self-Supervised Modality Com-
plementation (SSMC) method to enhance the model’s adaptability and performance
across different social media platforms. By introducing a Missing Data Complementa-
tion (MDC) module and a Multimodal Self-Learning (MSL) module, SSMC effectively
addresses incomplete modalities and platform heterogeneity in the scenario of cross-
platform event detection. We find that such a strategy ensures robust cross-platform
event detection even in the presence of varied and incomplete data. In addition,
we validate the role of cross-platform event detection in improving the quality of

single-platform event data.

For the third objective, we propose a new task, generalized social event detection,
which requires accurately identifying predefined events and detecting emerging new
events. Specifically, we propose a Dynamic Augmentation and Entropy Optimization
(DAEO) model, which utilizes adversarial learning for learning robust multimodal

representation and introduces an adaptive entropy optimization technique with a

i



self-distillation method that promotes model adaptability to newly emerging events.
We demonstrate that this combination allows for the effective identification of both

known and new events, thereby enhancing the model’s generalization capabilities.

To summarize, in this thesis, we propose a MFEK model by introducing external
knowledge to improve the accuracy of social event detection. Furthermore, we develop
a SSMC method to enhance cross-platform adaptability and a DAEO model to tackle
generalized social event detection, thereby addressing key challenges in multimodal
social event detection and improving overall model performance and generalization.
Extensive experiments conducted on publicly available and our collected real-world
datasets demonstrate their significance in the context of social event detection, out-

performing the state-of-the-art baseline approaches.
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Chapter 1

Introduction

1.1 Background

In January 2024, DataReportal, Meltwater and We Are Social released the “Digital
2024 Global Overview Report”, which provided statistical data on global internet
usage. The report highlighted that the number of active social media users has
now surpassed the 5 billion mark, accounting for 62.3% of the global population, an
increase of 5.6% over the same period last year. It can be observed that with the
popularity of mobile devices and the mobile internet, data on social media has shown
explosive growth. Platforms such as Facebook, Flickr, and Twitter have amassed large
user bases. Through these media platforms, users can easily post comments, share
experiences, and access news. Consequently, when a social event occurs, everyone
on social networks becomes a broadcaster and commentator of the event, leading to
rapid viral discussions among a vast number of online users, and generating extensive
multimedia data. Particularly, social events refer to occurrences that happen in the
physical world and have significant impacts on public life, which are ubiquitous and
dynamic. For example, it can be natural disaster events (earthquakes, typhoons, etc.),

sports (Olympic Games, FIFA World Cup Games, etc.), political events (election
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activities, protests, etc.), and so on.

The detection of social events from social media aims to help people quickly and
accurately understand the social events they are concerned in the huge social media
data. By acquiring all kinds of news events, people can grasp the focus of society, thus
providing the necessary reference for better work, study and life. The government can
correctly guide social opinion by constantly detecting various emergency events, so as
to maintain social stability. However, the social media data used for event detection
comes from various social media platforms on the internet, and thus exhibits char-
acteristics such as multimodality, information fragmentation, cross-platform
nature, and dynamic nature. These characteristics impose higher requirements

and challenges for the detection of social events, particularly in the following ways:
1. Multimodality of Social Event Data

In the early stages of the internet, text was the most common form of data presen-
tation. With the rise of social media and mobile devices, various events are often
accompanied by a large amount of multimodal data, including images, text, and
videos. For example, during the Olympic events, users not only post and share a lot
of text information about the opening ceremony but also upload numerous images
and videos. As shown in Figure [I.1], images and videos allow users to visually un-
derstand the information about an event, while text provides more detailed analysis
of the event’s specifics. For the same event, although the text content posted by
different users on social media may vary, the visual information is likely to be similar.
Therefore, although different modalities have different expressive capabilities, these
multimodal data can complement each other, helping users to understand the event
comprehensively and in-depth. However, due to the heterogeneity between different
modalities, how to learn the feature representation from different modalities and how
to fuse these features from different modalities are current challenges that need to be

addressed.



1.1. Background

@user

The olympic opening ceremony was pretty spectacular!

21:12 PM - Aug 8, 2008

Figure 1.1: Multimodal information of the “2008 Summer Olympics Opening Cere-

mony” event.

2. Information Fragmentation of Social Event Data

Social media allows users to instantly share details related to events, but such sharing
is often spontaneous and unstructured. Due to each user’s unique perspective, knowl-
edge background, focus, and geographical location, the content they publish varies
in comprehensiveness and viewpoint, leading to information fragmentation. For in-
stance, during a sudden public incident, different witnesses might upload various
images and videos from their perspectives, accompanied by brief personal descrip-
tions of the event. These descriptions might focus on different aspects of the event;
some users might describe the causes, while others might discuss the consequences or
impacts. Moreover, due to the interactive nature of social media, information can be-
come distorted or misunderstood as it spreads among users. As shown in Figure [1.2]
multiple posts are different fragments of the same event, with each post contain-
ing partial information. The fragmentation of information not only makes it more
difficult to extract accurate and comprehensive reports from social media data but

also requires the integration of additional background knowledge to form a complete
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#BreakingNews 7.2 Magnitude Hits with It is another sad event for #Humanity, an
Thousands Feared Dead and Injured - in . Tam sorry for deaths and losses.

Death Toll Reaches 29 - Please Pray! ‘ ' earthquake

Y
| 2013 Typhoon Haiyan /\
AN

A devastating 7.2 Earthquake plus a 5.2
Praying for everyone in Haiti! aftershock rocks Haiti, about 100 miles
earthquake #praying #prayforhaiti West of the Capital. Damage and
Fatalities Expected earthquake

Figure 1.2: Fragmented information of the “2013 Typhoon Haiyan” event on social

media.

understanding of the event. How to accurately understand and detect events from

fragmented information has become an urgent problem to address.
3. Cross-platform Nature of Social Event Data

The cross-platform characteristic of social media data, also known as data multi-
source, refers to the distribution of multimedia data related to the same event across
various social media platforms. Comprehensive event detection requires gathering
data from these different platforms. Currently, there are numerous social media plat-
forms, and while they may provide similar information about events, they differ in
format. For the same event, since different platforms present data from various per-
spectives, analyzing data from a specific platform in isolation can make it difficult
to comprehensively understand the event. For example, Twitter, as a popular social
media platform, primarily features users commenting on and sharing news highlights,
usually in brief; Flickr, by contrast, focuses on sharing images, allowing users to

convey themes through photographs. Thus, data from different platforms empha-



1.1. Background

User

[ T Ge=
Smoke from California wildfires has reached Santa Barbara County
7:31AM - Aug 8, 2018 a

g U . T ,The..
Q @i;, m California Wildfires: The Holy Fire At Lake Elsinore (xuardliln

I, . On August 9, 2018
California wildfires smother state in hazardous smoke .. Family drive through flames escaping Yﬂu
5:32 AM - Aug 8, 2018 Photo by 2018.8.9 flickr California wildfire Tuhe

Figure 1.3: Cross-platform coverage of the “2018 California Wildfires” event.

size different aspects, each with unique characteristics. Utilizing the complementary
perspectives of cross-platform data can provide a more comprehensive understanding
of an event. As shown in Figure [1.3] reports and opinions about the “2018 Califor-
nia Wildfires” event quickly appear on Twitter, while Flickr and YouTube provide
supplementary information through images and videos. However, the challenge of
cross-platform event detection arises due to the varying data structures and focus of
descriptions across platforms. Designing a universal method for cross-platform event

detection has become crucial.
4. Dynamic Nature of Social Event Data

The occurrence and development of social events are ongoing and dynamic, especially
on social media where the coverage of events is continuous and each new event can
introduce fresh information and focal points for discussion. For instance, discussions
about natural disasters, major accidents, or other sudden public events can suddenly
emerge on social media, as shown in Figure These new events often appear with-
out any warning and may be completely different from previous incidents. Further-
more, the coverage of new events usually comes with a vast amount of user-generated
content, which includes various types of data (text, images, videos, etc.), making it
informative and complex. The reactions and discussions about new events by users
are diverse, involving different viewpoints and emotional expressions, which further
complicates the accurate detection and understanding of new events from these data
sources. Given this dynamic nature, the challenge for event detection technology is

how to effectively identify and respond to new events from large-scale social media
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ﬂ019—2020 Hong Kong Protests\ ﬂozz Mariupol Theater Bombinﬁ

Ws) Asia CNN International
(ot g @
Hong Kong police unleashed tear gas on A theater where hundreds of people had taken shelter in the besieged
#0ccupyCentral protesters Ukrainian city of Mariupol was bombed on Wednesday, according to

local authorities

747 AM - Sep 29,2014 5:00 AM - Mar 17,2022

2021 Osaka Building Fire 2023 Turkey-Syria Earthquake

CGTNG ‘The New York Times & Follow I8
#UPDATE Four people confirmed dead after a fire broke out at a clinic A powerful earthquake struck Turkey and Syria before dawn on Monday,
offering mental health services in the Japanese city of #Osaka on Friday. killing more than 3,800 people, destroying thousands of buildings and

are i and more fatalities shattering lives in a region already rocked by war, a refugee crisis and

are possible, Kyodo News reported. economic distress.

Figure 1.4: Dynamic emergence of new events on social media.

data.

In summary, due to social event data coming from different social media plat-
forms and possessing characteristics such as multimodality, information fragmenta-
tion, cross-platform nature, and dynamic nature, research on social event detection
from social media data is highly challenging. Considering the aforementioned charac-
teristics of social media data, studying social event detection methods, and designing

effective detection models are the main research focuses of this thesis.

In the following sections of this chapter, we first introduce the research objectives
we aim to achieve in this thesis in Section [1.2l Then, in Section [1.3] we present
our proposed solutions to these objectives. Subsequently, we summarize the main
contributions of this thesis in Section Finally, the organization of the thesis will
be outlined in Section [L.5l
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1.2 Research Objectives

Before introducing our research objectives, it is important to clarify that social event
detection in this thesis is approached as a classification problem, where we aim to
categorize social media posts into their corresponding event classes by analyzing their
multimodal content. While technically implementing a classification framework, we
use the term “detection” as it better describes our goal of discovering and identify-
ing real-world events from social media streams. This classification-based detection
approach is particularly suitable for our task as it enables learning discriminative
features to distinguish between different types of events, provides a natural frame-
work for fusing multimodal inputs, and allows extension to more complex scenarios
like cross-platform detection and new event discovery while maintaining a consistent
methodological foundation. With this framework in mind, this thesis aims to address
the challenges of multimodal social event detection by focusing on two key issues:
limited detection accuracy and insufficient generalization capability. For
the first issue, we focus on addressing the challenges of modality heterogeneity inher-
ent in multimodal social media event data and the out-of-distribution (OOD) problem
caused by information fragmentation (Objective 1), which can improve the accuracy
of event detection. Regarding the model’s generalization capability, we focus on two
aspects: enhancing the model’s adaptability and flexibility through cross-platform
capabilities (Objective 2), and improving the model’s ability to detect new events to
strengthen its performance on unknown events (Objective 3). The specific objectives

can be summarized as follows:

1. To design a deep learning model to address modality heterogeneity and the
OOD problem, thereby improving the accuracy of event detection. This ob-
jective centers on the multimodality and fragmented nature of information in
social media, which means that the model must effectively integrate diverse data

types such as text and images. Additionally, it must handle the inconsistencies
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and gaps in information that can lead to out-of-distribution scenarios, ensuring
robust performance even when the available data is incomplete or scattered.
Existing studies [65, 103} [106], 113], although beginning to use basic multimodal
fusion techniques to integrate images and text for improved detection accuracy,
still largely rely on event keywords present in the text. When faced with the
OOD problem caused by information fragmentation, their performance often

deteriorates.

2. To develop an innovative manner to adapt models to implement cross-platform
social event detection. Cross-platform social event detection can improve the
quality of single-platform event data because information from other platforms
can supplement and verify the event data on a single platform. This objective
explores effective event detection across multiple social platforms, particularly
how to overcome the differences in data distribution and modal incompleteness
between platforms. Existing works [31], [83], [IT1] typically design event detection
models for a specific platform, such as Twitter or Flickr, because their data
is relatively easy to access. However, these models often perform poorly when
applied to other platforms due to the domain gap that exists between different

platforms.

3. To extend existing supervised event detection methods to discover new social
events in social media. This objective focuses on the generalization capability
of supervised event detection models, especially on how the model can discover
and classify new types of events while maintaining accuracy in recognizing pre-
defined events. Existing studies for new event detection include methods such
as unsupervised clustering techniques [3, [, [10] and graph-based neural net-
works (GNN) [13] 20, 27, B9]. Unsupervised clustering methods attempt to
group similar events based on the intrinsic structure of the data without ex-
plicit labels, while graph-based methods leverage relationships between events

(such as similarity or temporal connections) to enhance the model’s ability to
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recognize new types of events. However, these methods have limitations. Un-
supervised clustering methods often rely on the intrinsic structure of the data,
which might make it difficult to accurately distinguish subtle differences be-
tween events or respond quickly to new events. Graph-based methods, while
able to utilize relationships between events, may not be robust enough in the
absence of sufficient training data, especially in the highly dynamic social me-
dia environment. Furthermore, due to the lack of event labels for training, the

learned event representations are often unstable.

1.3 Overview of Proposed Solutions

For the three objectives mentioned above, we propose corresponding solutions as fol-
lows. To accomplish the first objective, we use an attention model to integrate text,
images, and their corresponding external knowledge, thereby fusing multimodal data
and supplementing the incomplete event information on social media. We propose
a Multi-modal Fusion with External Knowledge (MFEK) model, which in-
corporates attention mechanisms and external knowledge from Wikipedia and large
language models (LLMs) to enhance the original data. This approach aims to supple-
ment the fragmented information in social media data with external knowledge and
integrate this knowledge into multimodal data, thereby improving the accuracy and

completeness of event detection.

To achieve the second objective, we employs domain adaptation techniques to
enhance the model’s cross-platform capabilities. We propose a Self-Supervised
Modality Complementation (SSMC) method, which not only addresses the plat-
form heterogeneity but also considers the common issue of incomplete modalities
across platforms. By leveraging self-supervised learning, this approach enables the
model to adapt to different data distributions and modalities, enhancing its flexibility

and effectiveness in diverse social media platforms.
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For the third objective, we propose a generalize social event detection task, which
requires the model to identify predefined events and distinguish various new emerg-
ing events. We design a Dynamic Augmentation and Entropy Optimization
(DAEO) model, which utilizes data from known events to learn robust multimodal
event features with a large amount of labelled data and explores different features
of new events through self-distillation learning. This enables the model to quick
recognition of known events and the discovery of new ones. This approach facilitates
the continuous adaptation of the model to new data, enabling it to respond to the

dynamic nature of social media content.

1.4 Thesis Contributions

Our main contributions in this thesis can be summarized as follows:

e We propose a MFEK model to integrate external knowledge to improve the
model’s accuracy in social event detection. The MFEK model features a text
enrichment module to enhance the textual content, a knowledge extraction mod-
ule to complement the incomplete event information, and a knowledge-aware
feature fusion module to integrate external knowledge, text, and images, while
filtering out irrelevant information. The proposed model has achieved better

performance than the compared baseline models.

e We propose a SSMC method to tackle the challenges of incomplete modalities
and platform heterogeneity presented in the cross-platform social event detec-
tion. The SSMC model consists of a Missing Data Complementation (MDC)
module to complement missing modalities with modality-shared features and
a Multimodal Self-Learning (MSL) module to tackle platform heterogeneity by
self-learning. The proposed approach has outperformed all the baselines and

achieved the new state-of-the-art performance for the cross-platform social event
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detection task.

e We propose a new task, generalized social event detection, to identify both pre-
defined events and various new emerging events, and design a DAEO model
to handle the proposed task. The DAEO model includes a multimodal aug-
mentation module to enhance the multimodal representation capability and an
adaptive entropy optimization strategy to improve the model’s ability to dis-
criminate new events. The generality and effectiveness of the proposed method

are validated through comprehensive experimental studies.

e We collect three large-scale datasets for social event detection tasks in differ-
ent scenarios, which are annotated with real-world social events verified by
Wikipedia. And we conduct extensive experiments on these datasets as well as
publicly available ones, which manifest the effectiveness of our proposed models

in terms of accuracy and generalization.

1.5 Thesis Outline

The main content and structure for this thesis are shown in Figure[I.5] In this thesis,
we are dedicated to enhancing the accuracy and generalizability of multimodal social
event detection. For research objective 1, aimed at addressing modality heterogene-
ity and the OOD problem, we propose the MFEK model that incorporates attention
mechanisms and external knowledge to tackle these issues, which is detailed in Chap-
ter 2. To enhance the model’s generalizability, we introduce tasks for cross-platform
social event detection and generalized social event detection. For cross-platform so-
cial event detection (research objective 2), we propose the SSMC model to address
the challenges of modal absence and cross-platform distribution heterogeneity. For
the detection of new events (research objective 3), we propose the generalized social

event detection task to expand the detection scope of the original predefined events,
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Figure 1.5: A summary of the thesis outline and the connection between thesis chapter

and the research objectives.
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and introduce the DAEO model to simultaneously identify both predefined and new
events. We will discuss these three models in the following chapters. The detailed

outline is as follows:

In Chapter [2| we investigate related work on social event detection, benchmark
datasets for social event detection, multimodal data fusion, and related methods for
cross-platform event detection and new event detection, including missing-modality

for multimodal learning, domain adaptation and generalized category discovery.

In Chapter [3| we propose a MFEK model for multimodal social event detection,

and conduct extensive experiments and analyses to evaluate its performance.

In Chapter[4] we propose a SSMC model for cross-platform social event detection,
and demonstrate its performance in cross-platform scenarios through experiments and

analysis.

In Chapter 5], we propose a DAEO model for generalized social event detection,

and conduct extensive experiments and analyses to evaluate its performance.

In Chapter [6], the conclusion and future work are presented.
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Chapter 2

Related Work

In this chapter, we first review some representative works for social event detection
from social media data, which will provide the background and current state of re-
search. Next, we explore works related to benchmark datasets used for social event
detection. Furthermore, we investigate the state-of-the-art methods for multimodal
data fusion. As our work also targets cross-platform event detection and new event
detection, we review the developments in missing-modality for multimodal learning,

domain adaptation and generalized category discovery.

2.1 Social Event Detection

Initially, social event detection referred to topic detection and tracking [6], aimed at
discovering real-world events from news media articles. With the development of the
internet, its search scope expanded to social media. Social event detection can be
divided into single-modal event detection and multimodal event detection based on

the modal data used.
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2.1.1 Single-modal Event Detection

Single-modal event detection [31], 34} 51, [68, 111] refers to the detection of events
using data from a single modality. These approaches can be categorized into three

main streams based on the type of data they process:

Text-based Methods: These methods focus on analyzing textual content through
various natural language processing techniques. Lee et al. [51] employed a naive Bayes
multinomial classifier with TF-IDF features for identifying distinct trending topics,
achieving efficient real-time detection but struggling with semantic understanding. In
contrast, Hu et al. [42] proposed an LSTM-based model that captures temporal de-
pendencies in text sequences, demonstrating superior performance in learning shared

event representations between different tasks through a hierarchical architecture.

Image-based Methods: These approaches leverage visual features for event de-
tection. Zaharieva et al. [I16] developed a visual content analysis framework that
combines low-level visual features with temporal information, particularly effective
for specific social events like concerts and sports. Guo et al. [31] advanced this di-
rection by proposing a hierarchical neural model that first extracts local features
using CNNs and then models temporal relationships through a hierarchical structure,

significantly improving event recognition accuracy in personal photo collections.

Video-based Methods: These methods utilize temporal visual information for
event detection. Zhang et al. [118] proposed a two-stage architecture where the first
stage extracts object-level knowledge through a pre-trained object detection network,
and the second stage integrates temporal information using RNNs, achieving state-

of-the-art performance on video event classification tasks.

However, single-modal approaches face inherent limitations in capturing com-
plete event semantics. For instance, while text-based methods excel at extracting
explicit event descriptions, they miss visual context that could be crucial for event

understanding. Similarly, image-based methods might capture visual elements but
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lack contextual information often present in text descriptions.

2.1.2 Multimodal Event Detection

Social media consists of rich unstructured data with multiple modalities that can
complement one another. They help express the complete meaning of social event
analysis. To address the limitations of single-modal event detection, multimodal
event detection [50] 65, 83, 103, 106, 1T3] 1T4] has emerged as a more comprehensive

approach. These methods can be categorized based on their fusion strategies:

Early Fusion Methods: Yang et al. [I14] pioneered the combination of video fea-
tures with metadata, using a concatenation-based fusion strategy that showed sig-
nificant improvements over single-modal approaches. However, this simple fusion

strategy often struggles with modality alignment issues.

Late Fusion Methods: Wu et al. [106] proposed a hierarchical fusion framework
that first processes each modality independently and then combines their decisions,
demonstrating better robustness to modality noise but potentially missing inter-modal

correlations.

Interactive Fusion Methods: More recent works focus on interactive fusion strate-
gies. Li et al. [56] proposed AT-CVAE, which employs a transformer-based architec-
ture to model cross-modal interactions dynamically. This approach showed superior
performance in capturing complex inter-modal relationships. Building on this, Qian
et al. [83] developed OWSEC, introducing a mask transformer network that explic-
itly models cross-modal semantic relations, achieving state-of-the-art performance on

several benchmark datasets.

However, these works do not consider the OOD problem, where the performance
deteriorates when the scenario of information fragmentation emerges. In addition,

their methods are limited to a single platform and they assume that the training and
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test events remain consistent (i.e., a closed set), and thus the performance will drop

significantly when conducting cross-platform event detection or new event detection.

2.1.3 New Event Detection

When new events emerge, classification-based methods often fail due to their closed-
world assumptions. To address this, clustering-based detection methods [3], |8 10, 13,
20, 27, [39] have been proposed. These methods can be categorized into two main

approaches:

Traditional Clustering Methods: These approaches focus on grouping similar
event data without requiring predefined labels. Becker et al. [I8] developed an in-
cremental clustering algorithm that leverages rich contextual information from social
media data, achieving good performance in detecting emerging events. Ma et al. [64]
employed K-means clustering on multimedia feature vectors, demonstrating effective-

ness in distinguishing event categories but struggling with complex event boundaries.

Graph-based Methods: These methods model events as graph structures to cap-
ture complex relationships. Zhao et al. [I19] represented social media data as an MC
graph and used transitive segmentation for event detection, showing superior perfor-
mance in capturing event evolution. Chu et al. [19] proposed a graph-shift detection
method that identifies local maxima as event indicators, effectively handling complex

event structures.

Despite the ability of these methods to discover new events, clustering-based
methods rely on the intrinsic structure and features of the data for event detection.
This means that if the data’s intrinsic structure is complex or noisy, the effectiveness of
clustering may be compromised, making it difficult to accurately distinguish between
different events, particularly for data points that are highly similar but actually belong
to different events. Additionally, most clustering algorithms require a global analysis

of the entire dataset, which is computationally expensive and results in relatively
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poor interpretability.

2.2 Benchmark Datasets for Social Event Detec-

tion

With the widespread use of social media, social event detection has shifted from tra-
ditional data like online news to diverse social media data (such as Twitter, Flickr,
etc.), providing a richer information source but also presenting more challenges. Cur-
rently, most datasets based on social media are multimodal datasets, as multimodal
data can provide more event-related elements to the model. Reuter et al. [87] col-
lected a social event detection (SED) dataset, which comprises 427,370 images from
Flickr and 1,327 videos from YouTube. Xue et al. [109] compiled a multi-modality
social event dataset (MMSE) from Flickr, consisting of 74,364 documents that en-
compass 10 types of events. Alam et al. [5] collected data on seven crisis events
that occurred worldwide in 2017, which includes 18,126 image-text pairs. Zubiaga et
al. [122] gathered a PHEME dataset that contains nine categories of events, includ-
ing 2,089 image-text pairs and 3,713 texts. Yang et al. [114] assembled a temporal
event dataset (TED), consisting of 16,589 videos and accompanying metadata from
Youtube. However, these datasets are all collected based on event keyword search,
which may overlook relevant posts due to the diversity of language use. This not
only simplifies the task but also weakens the role of other modalities, resulting in
a substantial discrepancy with real-world scenarios. In addition, these datasets are
collected from single platforms, and the event labels differ between datasets, making

them unsuitable for cross-platform social event detection.
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2.3 Multimodal Data Fusion

Multimodal data fusion refers to the process of integrating information from mul-
tiple modalities (e.g., visual, audio, textual) to improve the performance of a task,
which can help us address modal heterogeneity in social event detection. This can be
achieved through various methods, including joint-embedding-based fusion, tensor-

based fusion and attention-based fusion.

One of the common methods for multimodal data fusion is joint-embedding-
based fusion. This method aims to learn a common embedding space to capture
shared information across different modalities. For example, Pham et al. [78] pro-
posed a method that captures joint representations via cyclic translations from source
to target modalities. Hazarika et al. [35] proposed a method that factorizes modali-
ties into modality-invariant and modality-specific features in two distinct subspaces.
The advantage of joint embedding approaches lies in their ability to directly learn
shared semantic spaces. However, they face several key challenges: they typically
require extensive training data to learn effective embeddings, struggle with capturing
complex non-linear relationships between modalities, and may lose modality-specific

information during the embedding process.

Tensor-based methods represent another sophisticated approach for multimodal
data fusion. These methods treat multimodal data as tensors and leverage tensor de-
composition techniques to extract cross-modal patterns. For instance, Liu et al. [59]
proposed a multimodal fusion approach that utilizes modality-specific low-rank fac-
tors to reduce computational complexity while preserving inter-modal relationships.
Chen et al. [17] advanced this direction by introducing adaptive tensor decomposition
that automatically determines the importance of each modality. The key advantage
of tensor-based methods is their ability to capture higher-order correlations between
modalities. However, these methods face significant computational challenges with

large-scale data and often require careful preprocessing to handle missing or noisy
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inputs. Additionally, the interpretation of tensor decomposition results can be less

intuitive compared to other fusion approaches.

Recently, attention-based methods [T}, 48] 76, 102] have emerged as a power-
ful paradigm for multimodal fusion. These approaches leverage self-attention mech-
anisms to dynamically model relationships between different modalities. Kiela et
al. [48] developed a supervised multimodal transformer that learns to project image
features into text token space, enabling direct cross-modal interaction. Yao et al. [96]
extended this idea by modeling temporal dependencies in multimodal sequences.
Abavisani et al. [I] introduced a cross-attention module specifically designed to filter
out irrelevant information from weaker modalities in social event detection. Han et
al. [33] further improved fusion performance through hierarchical mutual information
maximization. Attention-based methods offer several advantages: they can capture
complex dependencies between modalities, adapt to varying input qualities, and pro-
vide interpretable attention weights. However, these benefits come with increased
computational costs and a requirement for substantial labeled training data. More-
over, attention mechanisms may struggle with very long sequences or when modalities

have significantly different temporal or spatial characteristics.

Each fusion approach offers distinct advantages and faces unique challenges in
the context of social event detection. Joint embedding methods excel at learning
shared semantic representations but may oversimplify complex relationships. Tensor-
based approaches can capture sophisticated cross-modal patterns but face scalability
issues. Attention-based methods offer flexible and interpretable fusion but require
significant computational resources. The choice of fusion strategy often depends on
specific application requirements, such as computational constraints, data availability,

and the nature of cross-modal relationships being modeled.
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2.4 Missing-modality for Multimodal Learning

The missing modality problem poses significant challenges in the field of cross-platform
social event detection. Research in this area has predominantly followed two ap-
proaches to mitigate the impact of missing modalities: 1) Generative methods [55]
50, 94] focuses on using generative models to predict or recreate the missing modalities
based on the modalities that are available. These methods leverage the power of gen-
erative models to fill in the gaps where data is incomplete, thereby ensuring that the
system can still perform its intended function despite the absence of some modalities.
For instance, Suo et al. [94] introduced a new framework focused on learning patient
similarity from multimodal healthcare data, even when some of those modalities are
missing. Li et al. [56] utilized a conditioned variational autoencoder for generating
the missing modalities, thereby facilitating event detection. 2) Joint multimodal rep-
resentation learning [52], 63, 117] focuses on creating a unified representation that
contains information from all available modalities, even in the absence of some. This
kind of method aims to leverage the shared information across modalities to infer
missing data and maintain performance. For example, Ma et al. [63] proposed us-
ing Bayesian meta-learning to estimate the latent features of data. Similarly, Lee et
al. [52] explored multimodal prompting with missing modalities for visual recogni-
tion. However, the scenarios configured by these methods typically require at least
three modalities, which proves challenging to apply in some bimodal scenarios, i.e.,

cross-platform social event detection.

2.5 Domain Adaptation

To enable the model to learn cross-platform capabilities, we introduced domain adap-
tation into cross-platform social event detection. Given a source domain and a target

domain with different distributions, the goal of domain adaptation is to learn a model
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that can generalize well on the target domain by leveraging knowledge from the source
domain. Research in this area can be divided into four categories: discrepancy-based
methods, adversarial discriminative models, adversarial generative models, and self-

supervision-based methods.

Discrepancy-based methods aim to minimize the discrepancy between source and
target domains by measuring the distance between their distributions. One popular
approach is Maximum Mean Discrepancy (MMD) [60], which minimizes the distance
between the means of the source and target feature representations. The effective-
ness of MMD lies in its ability to match distributions in high-dimensional feature
spaces through kernel tricks. Another influential approach is Correlation Alignment
(CORAL) [91], which aligns the second-order statistics between domains. CORAL
has demonstrated strong performance due to its computational efficiency and the-
oretical guarantees. Recent advances in discrepancy-based methods have focused
on incorporating local structure preservation and adaptive weighting mechanisms to

better handle complex domain shifts.

Adversarial discriminative models leverage the power of adversarial training to
learn domain-invariant features. In these approaches, a discriminator tries to distin-
guish between source and target domains, while a feature extractor aims to generate
features that are indistinguishable between the two domains. Domain Adversarial
Neural Network (DANN) [26] pioneered this direction by introducing a domain ad-
versarial loss to existing neural network architectures. This encourages the feature
extractor to learn domain-invariant features by forcing its output to be indistinguish-
able between source and target domains. Building upon DANN, Joint Adaptation
Network (JAN) [61] introduced a joint maximum mean discrepancy loss that simulta-
neously aligns the distributions of multiple network layers. This multi-layer adapta-

tion strategy has proven particularly effective for complex domain adaptation tasks.

Adversarial generative models take a different approach by generating synthetic

samples in the target domain using a generator network. These methods typically

22



2.5. Domain Adaptation

employ a generator trained to produce samples indistinguishable from the target do-
main, while a discriminator attempts to distinguish between real and synthetic sam-
ples. Adversarial Variational Domain Adaptation (AVDA) [77] combines adversarial
learning with variational inference to learn a unified latent space where source and
target domains can be effectively aligned. A notable advancement in this direction is
Cycle-Consistent Adversarial Domain Adaptation (CyCADA) [38], which introduces
a cycle-consistency constraint to ensure the preservation of semantic information dur-
ing domain translation. These generative approaches have shown remarkable success
in producing high-quality synthetic samples and improving classifier accuracy on tar-

get domain data.

Self-supervision-based methods represent a recent trend in domain adaptation,
utilizing auxiliary tasks to learn domain-invariant features. These methods exploit
the inherent structural similarities between different domains through unsupervised
or self-supervised learning techniques. Deep Reconstruction-Classification Network
(DRCN) [28] exemplifies this approach by introducing a reconstruction-based loss
that encourages the model to preserve semantic information while discarding domain-
specific details. Domain-Adaptive Meta-Learning (DAML) [115] advances this con-
cept further by employing meta-learning to adapt model parameters to new domains
with limited labeled samples. These self-supervised approaches have shown particular

promise in scenarios where labeled data is scarce.

Despite these advances, significant challenges remain in domain adaptation for
multimodal social event detection. The aforementioned approaches often struggle
when faced with substantial domain gaps, particularly in multimodal scenarios where
the complexity of the adaptation task increases significantly. Moreover, these methods
typically assume complete availability of all modalities, making them unsuitable for
scenarios involving missing modalities - a common occurrence in real-world cross-
platform settings. These limitations highlight the need for specialized adaptation

approaches that can handle both modality gaps and missing data scenarios effectively.
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2.6 Generalized Category Discovery

To extend the classification-based event detection model to recognize new events, we
proposed generalized social event detection, which is very similar in setup to gen-
eralized category discovery. The field of generalized category discovery has recently
emerged, focusing on classifying known categories while also identifying unseen, new
categories. The pioneering work in this domain was conducted by Vaze et al. [99], who
introduced the idea of leveraging a universal feature representation to discover new
categories. Specifically, they proposed fine-tuning a pre-trained DINO ViT [15] using
a combination of one supervised and one self-supervised contrastive method. This ap-
proach is further complemented by a semi-supervised clustering for label assignment.
In addition, the authors extended UNO [24] and RankStats [32] for this task, which
were originally designed for novel class discovery [24], 120]. However, these methods
employ a two-step training process, involving feature learning and clustering, which
could potentially be sub-optimal. To address this, Wen et al. [I05] suggested para-
metric approaches that construct a trainable classifier, enabling the joint optimization
of the entire network. Similar to the idea behind DINO ViT [15], their method used
the generation of pseudo cluster labels to guide the learning of new categories. This
work sparked a series of follow-up studies [72, I0T]. For example, Wang et al. [T01]
proposed the use of CLIP-generated text to guide image learning for category dis-
covery. Nevertheless, it is challenging to apply these methods directly to generalized
social event detection, which involves multimodal data and higher-level event labels.
This is because these methods rely on image data and pre-trained models developed
primarily for similar tasks, which emphasizes the need for specialized adaptation in

generalized social event detection.
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Multimodal Social Event Detection

with External Knowledge

In this chapter, we propose a novel deep learning network, MFEK, for multimodal
social event detection, which utilizes the attention mechanism and external knowl-
edge to deal with the modality heterogeneity and OOD problem, thus improving the
accuracy of multimodal social event detection. Additionally, we introduce a dataset

for multimodal social event detection and conduct extensive experimental analysis.

3.1 Introduction

Social event detection is a critical task that involves the automated monitoring, iden-
tification, and categorization of major happenings discussed on various media, espe-
cially social media. The task primarily employs Natural Language Processing (NLP)
and Machine Learning (ML) techniques to filter out the noise and identify the key
events. Applications of social event detection span various domains, including crisis
management [79], public sentiment monitoring [69], market analysis [89], and public

safety [67]. In these contexts, accurate and prompt identification of social events
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can help organizations and individuals respond more swiftly, better understand and

analyze public opinion, and manage information flow more effectively.

In recent years, significant strides have been made in the field of social event
detection research. Various studies [90} 25] (74 29] 81] have been conducted to enhance
the accuracy and efficiency of social event detection, leading to the development of
sophisticated algorithms and models. For instance, Goyal et al. [29] proposed a novel
incremental clustering algorithm to detects events and subevents within an event.
However, a common limitation across many of these studies is the reliance on single-
modal datasets, which may not fully capture the complexity and multifaceted nature

of real-world social events.

Single-modal datasets, while useful in certain scenarios, often fail to provide a
comprehensive view of social events. This is due to their inherent limitation of being
able to capture only one type of data (e.g., text, images, or audio), thereby missing
out on the rich information present in other modalities. Therefore, there is a growing
consensus in the research community about the need to adopt multimodal datasets
for a more holistic social event detection, because many events on social media are

implicit, requiring the extraction of event elements from images or other domains.

There are two primary challenges for multimodal social event detection, i.e.,
multimodal data fusion and out-of- distribution (OOD) issues. Multimodal data
fusion is a common challenge in multimodal datasets, which aims to solve the problem
of multimodal data heterogeneity. Many researchers focus on this challenge in social
event detection tasks [70] (1, 56], e.g., Li et al. [56] proposed an adaptive transformer
network to encode the feature of images and text for social event detection. However,
most research only considers directly concatenating features from different modalities,
lacking interaction between modalities. The OOD problem refers to posts containing
some important keywords not present in the training set, which could be a clue
for social event detection. This issue has been largely overlooked, possibly because

existing datasets are keyword-searched, and models can detect events based on pattern
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[Blog] Hurricane Irma: Atlantic’s seasonal hurricane devastates Third of buildings on Dutch St. Martin destroyed
Florida | Rimsha Khan

(a) CrisisMMD

Figure 3.1: Samples from CrisisMMD dataset [5] and our proposed SED dataset

about the social event of “Hurricane Irma”.

recognition of these keywords, even without additional information. However, posts
lacking event keywords are far more common, as illustrated in Figure [3.Ip. In such
cases, addressing the OOD problem becomes critical. The reason is that “Dutch St.
Martin” can serve as a significant clue to infer that the social event may be related
to “Hurricane Irma” as Hurricane Irma brought tremendous destruction to Dutch St.

Martin.

Another critical aspect to consider is the construction methods of current social
event detection datasets. The majority of existing multimodal datasets are collected
based on pre-defined event keywords, which tend to overfit to specific data character-
istics and may contain the potential biases in the data collection process. In reality,
numerous social media posts relevant to a social event do not necessarily mention the
specific keywords associated with that event. As illustrated in Figure[3.1h, the post in
the keyword-based dataset, i.e., CrisisMMD [5], inevitably contains the event keyword
“Hurricane Irma”. In fact, it is more common for posts not to include event-related
keywords. In order to illustrate this point, we conducted an empirical analysis, as

depicted in Figure [3.2h. We collected related posts for 40 social events from Twitter
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Figure 3.2: Distribution of event-related keywords in (a) Twitter posts related to 40
social events and (b) the CrisisMMD dataset.

using hashtags to simulate real-world scenarios. These posts were then analyzed using
event-related keywords (i.e., event names), with a match being counted if any key-
word appeared (excluding hashtags). Based on the collected data, we can find that
the proportion of posts containing event-related keywords in real-world scenarios is
only an average of 38%, indicating the limitations of keyword-based retrieval. At the
same time, we also utilized the same method to count the existing datasets based on
event-related keyword searches, i.e., CrisisMMD. As shown in Figure [3.2p, the pro-
portion of event keywords is close to 100%. Therefore, keyword-based datasets may
overlook relevant posts due to the diversity of language use and are subject to user
bias, thereby simplifying event detection and compromising effectiveness in real-world

scenarios.

Based on the limitations of existing work, the key objectives of this chapter
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are two-fold: (1) to design an effective model that handles these key challenges in
social event detection, which can serve as a benchmark for this task; (2) to develop a
more realistic benchmark dataset, which can enable researchers to delve deeper into

multimodal fusion and OOD challenges in multimodal social event detection task.

In this chapter, we propose a Multimodal Fusion with External Knowledge
(MFEK) model, addressing the multimodal fusion and OOD issues in social event
detection. MFEK integrates a text enrichment module, an external knowledge ex-
traction module, and a knowledge-aware feature fusion module. Specifically, the text
enrichment module primarily extracts image information (i.e., image captions and
OCR information) to enrich text information. The external knowledge extraction
module includes explicit and implicit knowledge extraction. Explicit knowledge is ob-
tained through external sources of knowledge (e.g., Wikipedia passages [100]), while
implicit knowledge is acquired using the large language model (e.g., ChatGPT [I1]).
The combination of these two knowledge types enables our model to handle the OOD
problem effectively. The knowledge-aware feature fusion module employs multiple
co-attention Transformers to integrate image, text, and knowledge data, filtering out

irrelevant knowledge.

Furthermore, we collect a real-world Social Event Detection (SED) dataset com-
prising 17,366 posts with text-image pairs from Twitter, annotated with 40 real-world
events. SED presents several advantages over existing ones. Firstly, SED leverages
user hashtags for data collection, which aligns closely with real-world scenarios and
reduces reliance on event-specific keywords. Secondly, SED encompasses a broad
scope of social event themes, including political events (e.g., elections and referen-
dums, political crises and protests), sports events (e.g., the Olympics and soccer),
natural disasters (e.g., hurricanes and floods), etc. Lastly, SED poses more signifi-
cant challenges due to the presence of numerous similar new events within each topic
category. For instance, in the category of the Olympics, the dataset includes similar

events like “2016 Summer Olympics” and “2018 Winter Olympics”.
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The main contributions of this chapter can be summarized as follows:

1. We propose a method for social event detection that incorporates both explicit
knowledge from Wikipedia and implicit knowledge from a large language model,
offering a comprehensive approach to mitigate the out-of-distribution (OOD)

problem.

2. We present a Multimodal Fusion with External Knowledge (MFEK) model,
which employs a co-attention mechanism to effectively integrate knowledge,
text, and image information, thereby enhancing the robustness and accuracy of

social event detection.

3. We contribute a Social Event Detection (SED) dataset, annotated with real-
world social event labels verified by Wikipedia. This dataset not only provides a
more realistic benchmark for social event detection, but also enables researchers

to delve deeper into multimodal fusion and OOD challenges in this domain.

4. We conduct extensive experiments on the SED dataset using various methods
for social event detection. The results serve as a robust benchmark for future

studies, promoting advancements in multimodal fusion and OOD solutions.

3.2 Problem Statement

Social events are defined as real-world occurrences that are reported through various
media channels. These events are typically characterized by their significance, timeli-
ness, and the impact they have on the public. For example, a social event could be a
political rally that took place in Washington D.C., reported through text describing

the event and images showing the crowd and key figures.

The task of multimodal social event detection aims to predict these specific social

events based on the given posts. Specifically, let us define a social event detection
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Figure 3.3: The framework of MFEK.

dataset as D = Dy, + Dy, = {(I;, T;,Y:)} Y|, where Dy,, D;, represent the training set
and the test set respectively, I;, T3, Y € {1, ..., Neyent } represent the image, text, and
social event label of the i-th input sample respectively, and N represents the total
number of samples. D, and D,. are drawn from the same distribution with ngyen:
classes. The goal of social event detection is to train a model with parameters X

using Dy, to identify the social event F; in D, through the input I; and T;.

3.3 Methodology

In this section, we introduce our proposed Multimodal Fusion with External Knowl-
edge (MFEK) method. Figure shows a framework of our method. Specifically,
MFEK consists of three main modules: a text enhancement module, a knowledge

extraction module, and a knowledge-aware feature fusion module. The text enhance-
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ment module enriches the original text by extracting the semantic features of the
image, while the knowledge extraction model utilizes Wikipedia and large language
models (LLM) to extract external knowledge from text and images. After that,
the knowledge-aware feature fusion module uses the attention mechanism to merge
knowledge, text, and images into a multimodal fusion to predict social events. In the
following, we explain the components of the MFEK method in more detail in Sections

331 B.3.2, and 3.3.2,

3.3.1 Text Enrichment Module

The text enrichment module aims to extract semantic information from images to en-
rich and supplement necessary social event elements in the text. Specifically, we con-
sider extracting two types of semantic information from images, i.e., image-level cap-
tions and token-level optical character recognition (OCR) information. For extracting
caption information from images, we utilize the state-of-the-art visual-language pre-
trained (VLP) model, namely BLIP model [54]. To extract OCR information, we
employ EasyOCR[T| which is a robust tool for text detection and recognition in im-
ages. Given the input images, denoted as {I;} |, where N is the number of samples,

we obtain the image captions C;, and OCR texts T;, as follows:
C; = BLIP(1;), (3.1)
O; = OCR(1)). (3.2)

Finally, we prepend and append identifiers, such as “<BOT>" (Beginning Of
Text) and “<EOT>" (End Of Text), to the caption and OCR text. This process

yields the enriched text, which can be represented as

T’i/ =<T;,C;,0; >, (33)

'https://github.com/JaidedAI/Easy0CR
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where <-> means a merge operation.

For feature extraction, we employ the BERT model [47], which has proven ef-
fective in various tasks, including text classification [43] and question answering [84].
Given an enriched text with input length n;, represented as 7] = {w},...,w"}, we

extract its features Fi'' = {f}, ..., f"} using the following method:

FI" = BERT(T}) € R0, (3.4)

where fz-j represents the output feature of the j-th word.

3.3.2 Knowledge Extraction Module

The incorporation of external knowledge can effectively mitigate the out-of-distribution
(OOD) issues encountered in social event detection. As illustrated in Figure (b),
“Dutch St. Martin” only appears once in the test set, and the introduction of ex-
ternal knowledge (i.e., Hurricane Irma brought tremendous destruction to Dutch St.
Martin.) can provide a clue for the model to identify the social event “Hurricane
Irma”. The introduction of external knowledge is motivated by two key observations:
1) Social media posts often contain fragmented information that requires additional
context to fully understand; 2) Many event-related concepts and entities have rich se-
mantic descriptions in knowledge bases that can help bridge information gaps. There-
fore, combining both explicit knowledge from Wikipedia and implicit knowledge from
LLMs can provide complementary contextual information for more accurate event

detection.

Explicit Knowledge Extraction

Explicit knowledge refers to the more intuitive knowledge that can be directly ob-

tained. For instance, the description “tropical/subtropical edible staple fruit” can be
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considered explicit knowledge about “banana”. We utilize Wikipedia as the source of
explicit knowledge, as it includes explanations and related materials of many concepts,
nouns, and events. Existing methods [41] primarily consider obtaining correspond-
ing explicit knowledge through text information. In contrast to existing methods,
we consider obtaining explicit knowledge from both text and images. Specifically,
for text content, we employ a text entity linkage tool, i.e., TAGME [23], which can
link entities in the text with Wikipedia entries. Notably, we take the enhanced text
T’ as input, which can take into account information from the images. For image
content, we utilize the Faster R-CNN [86] model to detect and extract important
objects appearing in the images, such as characters, symbols, etc. Subsequently, we
employ the BLIP model in a visual question answering (VQA) format to extract spe-
cific information from the images, e.g., inputting the object identified as a character
and the question “Who is he/she?”. Once this information is acquired, we utilize
a pre-trained visual entity linkage model [40] to associate image entities with their
corresponding Wikipedia entries. We ultimately link text and image entities to their

respective Wikipedia entries, resulting in M linked entities, i.e., e = {e;} ;.

Based on the retrieved entities e, we obtain corresponding entry descriptions
from the page of English Wikipedia. Specifically, we choose brief introductions from
Wikipedia as its descriptions. We encode the acquired explicit knowledge in the
format: “Entityl is Descriptionl; Entity2 is Description2; ...”. Then, we can use the
BERT model to extract features. Given an explicit knowledge word sequence of input
length n.yp, denoted as K™% = {w},...,w; "}, its features FI™" = {f}, ..., f{""} can

be obtained as follows:

Ff™ = BERT(K[™) € R0, (3.5)

where fl-j represents the output feature of the j-th word.
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Implicit Knowledge Extraction

Implicit knowledge refers to implicit commonsense knowledge, such as the knowledge
that lemons are sour. With the advancement of large-scale language models, we can
leverage these models to acquire such implicit knowledge. In this part, we utilize
ChatGPT [I1I] to obtain event-related implicit knowledge. Specifically, it can be
divided into the following five steps:

1) Obtaining an API key from OpenAl. The first step is to register an API
key from OpenAI?l After obtaining the API key, we can call the API to ChatGPT

service to get responses.

2) Formulating an appropriate prompt. To extract implicit knowledge using
ChatGPT, we need to formulate a prompt that consists of a context and a question.
Specifically, we take the enhanced text as input because it contains information from
the image. We then design a prompt X, to extract implicit knowledge using Chat-
GPT, structured as: “Context: T" (enriched text). Question: what’s the social event

occur? Answer:”.

3) Extracting generated answers. When making the APT call, we pass the
designed prompt as input to the ChatGPT model. The model will generate a response,

which in our case is a tentative answer A; to the question.

4) Extracting generated explanations. In order to obtain a correspond-
ing explanation to derive reliable implicit knowledge, we append the acquired A; to
Xgpt, and add “This is because” as a new prompt input to ChatGPT. By making an-
other API call using this updated prompt, we can get the corresponding explanation
EX; from the model. This explanation provides insights into the implicit knowledge

associated with the answer.

5) Utilizing the BERT model for feature extraction. The final implicit

’https://platform.openai.com/docs/api-reference
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knowledge is obtained by merging the tentative answer A; with the corresponding ex-
planation EX;, which can be denoted as K™ =< A;, EX; >= {w}, ..., w, ™} where
Nimp refers the word sequence of input length. Similar to explicit knowledge, we also
utilize the BERT model for feature extraction. The features F/"™ = {f}, ..., f;""}

()

can be obtained as follows:

F{™" = BERT(K;"™) € R™m»<7%, (3.6)

After obtaining the feature vectors derived from both explicit and implicit knowl-
edge, we concatenate them to form a comprehensive external knowledge feature EFF,

which can be represented as

Ek — Concat(ﬂexp, _Ffmp) € R(newp"!‘ni'mp)x’?GS’ (37)

where Concat(-) denotes the concatenation operation.

3.3.3 Knowledge-aware Feature Fusion Module

To effectively facilitate the integration of external knowledge, text, and visual con-
tent, we employ co-attention Transformers for knowledge fusion. Specifically, the
knowledge-aware feature fusion module consists of three distinct co-attention Trans-
former encoders [97], referred to as Transformer 1, Transformer 2, and Transformer 3,
as shown in Figure The first two encoders are used to incorporate the extracted
external knowledge into the text and visual content, filtering out irrelevant knowl-
edge. The last encoder further integrates the text and visual content after knowledge

fusion, filtering out content irrelevant to the task.

Within Transformer 1, the enriched text features, denoted as F & R™*768
serve as the query (@) inputs, while the features of the external knowledge, denoted

as FF € R(esrtnimp) X768 are utilized as both the key (K) and value (V) inputs in the
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Figure 3.4: Co-attention Transformer.

attention mechanism. As shown in Figure the co-attention Transformer employs
a two-part architecture, i.e., a multi-head self-attention layer and a fully connected

feed-forward network with residual connections and layer normalization.

Specifically, the multi-head self-attention layer utilizes a multi-head attention
mechanism to process the inputs (@, K and V) in parallel. It involves splitting the
inputs into h heads, where each head operates on a reduced dimension R™5 . After
processing by the attention mechanism, the outputs from all heads are concatenated
and linearly transformed by parameter matrices W4, resulting in an output dimension
that matches the original dimension of ) € R™*7®  The output of the multi-head

attention is then combined with () with layer normalization to obtain the output

O; € R™*7%8 which can be formulated as follows:

Attention(Q, K, V) ft (QKT)V (3.8)

ention(Q, K, V) = softmax(———)V, .
V.

A; = Attention(Q * W, K * Wi, V x Wy,), (3.9)

MultiHead (@, K, V) = Concat (A1, ..., Ap)Wa, (3.10)

Oy = LayerNorm(@ + MultiHead(Q, K, V")), (3.11)

where Attention(Q, K, V') and MultiHead(Q, K, V') represent the self-attention func-
tion and multi-head self-attention function. dj is the dimension of K in Eq. [3.§]

softmax(-) is the softmax function, * denotes matrix multiplication, and LayerNorm(-)
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is the layer normalization function. Finally, we obtain the output O through a fully
connected feed-forward network with residual connections and layer normalization,

which typically maintains the dimensionality of its input:

O™ = LayerNorm(O; + FNN(Oy)), (3.12)

where FNN(-) is a feed-forward neural network, typically composed of two fully con-
nected layers and an activation function (such as ReLU). Moreover, for the i-th sam-

ple, the variable O € R™*7%8 symbolizes the output derived from Transformer 1.

For Transformer 2, we take the original images as input, as the low-level features
of images can sometimes help distinguish different social event scenes compared to the
high-level features such as captions. To extract image features, we utilize the output
from a pre-trained ResNet network [36], specifically from its penultimate pooling
layer, to capture region-specific feature R; = {R},..., R} of the image, where n, =
49 represents the number of regions in the image. Since the dimension of R{ is 2048,
we use a feed-forward neural network to map it to 768 dimensions (the same as the

text) to obtain the final image feature as follows:

R; = FNN(ResNet(1;)) € R™*708, (3.13)

Similar to Transformer 1, we use the image feature R, € R™ > as ), and
the feature F}f € R(eartnimp)*xT68 of the extracted external knowledge as K and V/,
to obtain the output O¥ € R™*"8  Finally, Given the output O € R™*7% of
Transformer 1 as @, and the output O* € R" 768 of Transformer 2 as K and V', we

can get the output O € R™*7% of Transformer 3.

After obtaining the features fused from multiple modalities, each modality’s fea-
tures undergo a global average pooling process to distill the information into a unified

form, which will then be concatenated to compose the final feature vector as follows:
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Algorithm 1 MFEK Algorithm
Input: Text input 7', image input I, and their social event label y.

Output: Learned model parameters 6.

while ¢t < MaxIter

1: Extract image caption C'= BLIP(I) and OCR text O = OCR(I).

2: Enrich text: 7" =< T,C, 0 >.

3: Extract text features F7' = BERT(T") according to Eq. 3.4.

4: Extract explicit knowledge K**P from Wikipedia.

5. Extract implicit knowledge K™ from LLM.

6: Fuse knowledge F* = Concat(F¢?, F?) according to Eq. 3.7.

7. Extract image region features R using ResNet according to Eq. 3.13.

8: Apply co-attention transformers to obtain Oy, Oy, Oy according to Eq. 3.11 and
Eq. 3.12.

9: Generate final prediction through classifier according to Eq. 3.14 and Eq. 3.15.

10: Optimize using cross-entropy loss according to Eq. 3.16.

end while

O; = Concat(GAP(O%), GAP(O™*), GAP(O!")) € R, (3.14)

where GAP(-) denotes the global average pooling operation.

Ultimately, a feed-forward neural network with a Softmax activation function
projects the aggregated features into a discrete label space corresponding to different

social events:

§; = FNN(O;) € R"event (3.15)

The model is trained using a cross-entropy loss function to optimize the clas-
sification of social events, where |Dy,.| denotes the total number of samples in the

training dataset. The loss function is defined as follows:
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[ Der|

L=— Z yi log (1), (3.16)
i=1

where y; is the true social event category.

The detailed algorithm for the MFEK method is presented in Algorithm 1. The
computational complexity of MFEK can be analyzed in several main components:
1) feature extraction from BERT and ResNet with complexity O(n;) and O(n,) re-
spectively, where n; is the text length and n, is the number of image regions; 2)
knowledge extraction and fusion with complexity O(M + L), where M is the number
of Wikipedia entities and L is the LLM processing complexity; 3) co-attention trans-
former operations with complexity O(n? + n?) due to the self-attention mechanisms.
Therefore, the overall computational complexity is O(n? + n? + M + L). The space

complexity is O(n; + n,.) for storing the feature representations.

3.4 Social Event Detection (SED) Dataset

In this section, we present the collection and the statistics of the SED dataset.

3.4.1 Data Collection

Collection of Social Events

In this chapter, we utilize Wikipedia [I00] for collecting social events, since Wikipedia
operates as a crowd-sourced platform with verified social events. Specifically, we start
with Wikipedia’s event category pageE], which provides access to a collection of various

categories of public events that have occurred or are occurring in the world. They are

Shttps://en.wikipedia.org/wiki/Category:Lists_of_events
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organized into different subcategories, such as protestsﬂ disastersﬂ, sports eventsﬂ
and so on. Then, we can obtain a number of event-specific Wikipedia entries through
the corresponding subcategories, e.g., the event “2011 Thailand floods™] from the
floods subcategory pagd?]

In our dataset, we select social event entries based on the following principles:
1) diversity of social event themes - covering as many different events as possible to
mirror real-life scenarios; 2) abundant and similar sub-events under the same social
event theme - increasing the challenge of social event detection and helping enhance
the model’s capacity to extract event elements; 3) popular social events - being able
to access more multimodal data on social media platforms. Ultimately, based on
these principles, we manually collected 40 social events from 2011 to 2022, each

corresponding to a Wikipedia entry, as depicted in Figure [3.5

Collection of SED Dataset

After obtaining social event entries, most existing datasets will directly perform key-
word search matching based on these entries, acquiring posts corresponding to the
social events as the dataset. Datasets obtained from text keyword searches not only
simplify the task of social event detection but also weaken the role of non-text modali-
ties. However, it is challenging to identify event-related posts on social media without
keywords. Therefore, this chapter uses hashtags labeled by users to collect data on

social media.

Specifically, in order to obtain relevant and representative hashtags for each so-
cial event, we first directly use the social event name, location, and time of occurrence

for the collection of posts. Next, we count hashtag frequencies in the collected posts

“https://en.wikipedia.org/wiki/Category:Lists_of_protests
Shttps://en.wikipedia.org/wiki/Category:Lists_of_disasters
Shttps://en.wikipedia.org/wiki/Category:Lists_of_sports_events
"https://en.wikipedia.org/wiki/2011_Thailand_floods
Shttps://en.wikipedia.org/wiki/List_of_floods
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Figure 3.5: The distribution of SED dataset.

for each event. Finally, we manually screen out the high-frequency hashtags for each
event based on event relevance. For example, the final high-frequency hashtags for
the event “2020 Summer Olympics” are “Folympics”, “#summerolympics”, “#toky-

oolympics”, and “#olympicgames”.

We utilize these selected high-frequency hashtags, along with the location and
time of the event, to collect posts once again. Then, we remove these high-frequency

hashtags used in the posts considering the following reasons:

e Avoiding Bias: Most of hashtags are user-generated and thus can be highly
subjective, often reflecting the user’s personal beliefs or sentiments rather than
the objective facts of the event. By removing them, we can minimize the influ-

ence of these subjective elements on our dataset, thereby reducing bias.

e Generalization: In practical applications, not all event-related posts will nec-
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essarily include specific hashtags. If the model becomes overly reliant on these
hashtags for social event detection, it may fail to perform adequately when en-
countering posts without these hashtags. By removing them, we enable the
model to generalize better and effectively detect social events even in the ab-

sence of hashtags.

e Noise Reduction: These hashtags often include informal language, abbre-
viations, or internet slang, which may introduce noise into our dataset. By
removing them, we can focus on the main text of the posts, which is likely to

be more informative for our news detection task.

Finally, we filtered out non-English, repetitive, and single-modal samples and
manually checked according to whether the semantics had changed and whether the
post matched the corresponding event, which ultimately obtained 17,366 samples as

our SED dataset.

Instead of using event-specific keywords, our approach leverages user-generated
hashtags to collect data. This strategy significantly increases the relevance of the
collected data to the actual social events. Hashtags, as opposed to keywords, are
a product of user engagement and provide a focused snapshot of how events are
discussed in real time on social media. They are less likely to suffer from semantic
dilution—a common issue with keyword searches where the intent and context can
be lost. Consequently, the use of hashtags preserves the integrity of the original
posts and captures the nuanced discourse surrounding social events. By adopting
this hashtag-centric collection method, our dataset can more accurately mirror the
dynamic and organic nature of how social events unfold and are talked about in

real-world scenarios.

43



Chapter 3. Multimodal Social Event Detection with External Knowledge

Table 3.1: The statistics of SED dataset. (“#” represents the number of samples.)
#Event #Text FImage Average Words

SED 40 17,366 21,117 16.12
Alex BREGMAN WINS the game! ASTROS Photos of destruction keep coming in from
Crowd gathers on Harcourt Rd chanting GOT A W!% & 12:13 in 10th inning! Shrs #Redding, #California: The "monster" is the
"Go students!". 18mins long 1 hell of a Game 5! @astros #2017 seventh most destructive wildfire in
#GoStros California history — and it keeps growing.

(a) 2014 Hong Kong protests (b) 2017 World Series (c) 2018 California wildfires

Figure 3.6: Examples of data samples in SED dataset.

3.4.2 Statistics of SED Dataset

The statistics for SED dataset are shown in Table Specifically, SED includes
17,366 samples from 2011 to 2022, annotated with 40 real-world social events. These
events cover a broad range of topics, including political events, sports events, natural
disasters, social and cultural events, and violent and terror events. To enhance the
dataset’s complexity and utility, each thematic category includes numerous closely
related events, thereby increasing the detection task’s difficulty, e.g., “Super Bowl
LI” and “Super Bowl LII” in the American football events, “Hurricane Maria” and
“Hurricane Dorian” in hurricane events. In addition, some visual examples are shown

in Figure The distributions of data and events are depicted in Figure [3.5]
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2

Table 3.2: Comparison of existing datasets. (“#” represents the number of samples.
“N.A.” for Twevent indicates Not Available as the total number of events was not

reported in the original dataset.)

Dataset Platform #Sample #Event Modality Fine-grained Keyword-based Public
CE Twitter 800 2 Single no yes no
SED-14 Flickr, Youtube  427,370/1,327 21,169  Multiple no yes yes
SW Sina Weibo 4,341 2 Single no yes no
ASO Twitter 1,100 3 Single no yes no
OSMNs Twitter 3.5M 20 Single no yes no
Twevent  Wikipedia, Twitter ~ 3.2M/4.3M N.A. Single no yes no
DHS Twitter, Tumblr 2.1M/0.3M 600 Multiple no yes no
PHEME Twitter 2,089 9 Multiple yes yes yes
CrisisMMD Twitter 18,126 7 Multiple yes yes yes
SED Twitter 17,366 40 Multiple yes no yes

3.4.3 Comparisons with Existing Datasets

Table [3.2] compares some attributes of our SED dataset and existing datasets, includ-
ing CE [80], SED-14 [87], SW [58], ASO [95], OSMNs [30], Twevent [53], DHS [46],
PHEME [122] and CrisisMMD [5]. From the table, we have some observations:

e Currently, most datasets are collected through event-related keywords, which

simplifies the task of social event detection.

e The categories of social events in existing datasets are relatively coarse-grained
(e.g., the SW dataset only distinguishes between earthquake and non-earthquake
events, and the SED dataset categorizes events broadly into conferences, sports,
festivals, etc.). For fine-grained event datasets (i.e., PHEME and CrisisMMD),
their original intent was not for the task of social event detection; thus they only
consider a limited type of social events, i.e., political and earthquake-related

events.

e Compared to other datasets, the SED dataset is collected based on hashtags,
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which avoids the disadvantages of keyword searches and is more aligned with
real-world scenarios. Additionally, the data we have gathered is fine-grained and
multimodal, which benefits researchers in their further studies. Furthermore,
we have open-sourced our dataset, with the hope of fostering the development

of the field of social event detection.

3.5 Experiment

In this section, we conduct comprehensive experiments to evaluate MFEK and val-
idate its effectiveness for multimodal social event detection. We first describe the
SED and CrisisMMD datasets and experimental settings. Then, we evaluate MFEK
through multiple aspects: 1) comparison with state-of-the-art methods to demon-
strate overall performance; 2) ablation studies to validate the effectiveness of text
enrichment, knowledge extraction, and knowledge-aware feature fusion modules; 3)
parameter analysis to demonstrate model robustness, particularly focusing on the im-
pact of attention heads and knowledge extraction methods; and 4) qualitative analysis

through case studies examining both successful and failed predictions.

3.5.1 Datasets and Data Partitioning

We evaluate MFEK with baselines on our proposed SED dataset and the publicly
available CrisisMMD dataset [5].

SED dataset. Our proposed SED dataset is selected for evaluation. We em-
ployed a stratified sampling method to ensure that each category of events is repre-
sented proportionally in the training, validation and test sets. The data is partitioned
by category randomly, allocating 55% for the training set, 10% for the validation set,
and 35% for the test set.
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CrisisMMD dataset. It is a multimodal crisis dataset collected using event-
related keywords. This dataset is composed of seven natural disaster events from
2017, i.e., Hurricane Irma, Hurricane Maria, Hurricane Harvey, Mexico earthquake,
Irag-Tran earthquakes, Sri Lanka floods, and California wildfires. Following [83], we
divide 70% of the dataset as the training set, 10% as the validation set, and 20% as
the test set.

3.5.2 Implementation Details

For text data, we initialize our BERT model using the “bert-base-uncased” config-
uration and set a maximum sequence length of 200 word tokens. For image feature
extraction, we employ a pre-trained ResNet50 model, defaulting to the first image in
a multi-image post for the experiment. To derive implicit knowledge, we utilize the
“GPT-3.5 Turbo” variant of ChatGPT. For parameter selection, we set the learning
rate to 1 x 107° for stable fine-tuning of the pre-trained model, and Lion [16] is chosen
as the optimizer. The model was trained for 200 epochs to ensure convergence. The
batch size is 30, and the head of the co-attention Transformer h is set to 4. In ad-
dition, we randomly select different 5 random seeds in the experiment, and calculate

their average as the final result.

3.5.3 Evaluation Metrics

In our experiments, we employ accuracy, macro-averaged precision, recall and F1
score to provide a more comprehensive performance evaluation, as the data from

different social events is unbalanced.
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3.5.4 Benchmarks

To validate the effectiveness of our MFEK model, we compare it against both single-

modal and multimodal benchmark methods, including multimodal fusion methods,

state-of-the-art event detection methods, and large-scale language model (LLM) meth-

ods. The specifics are as follows:

Single-modal methods:

ResNet50 [30] for image modality

BERT [47] for text modality

Multimodal methods:

MMBT [48], which utilizes Transformer modules for fusing textual and visual

features to enhance classification tasks.

COOLANT [102], which leverages a cross-modal contrastive learning frame-

work to achieve more accurate image-text alignment.

SCBD [I], which integrates the textual and visual features using a self-attention

mechanism to detect social events.

AT-CVAE [56], which exploits an adaptive Transformer-based conditioned

variational autoencoder Network for incomplete social event classification.

OWSEC [83], which designs a multimodal mask transformer network to cap-
ture cross-modal semantic relations and fuse fine-grained multimodal features

of social events.

ChatGPT [I1], which is a large-scale Transformer-based language model that
exhibits high performance across a variety of text-related domains. In our ap-

proach, we leverage it to extract implicit knowledge. In this part, we design

48



3.5. Experiment

a prompt for a fair comparison, i.e., “<instructions> <in-context examples>
Post:<caption C;> <OCR O;> <content T;>. Q:<What are the related social
events to this post:> A:”. “<instructions>" introduces the task and provides
all the social events, e.g., “You need to identify the social media platform Twit-
ter post from which of the 40 social events given below? 40 social events: 2014
FIFA World Cup, 2020 Summer Olympics, ...”. “<in-context examples>" ran-
domly selects 5 examples from the training set,e.g., “Here are five examples.
Please learn how to select the true label in these examples, and pay particular
attention to the consistent use of the answer in these below examples.\n Post:
C14+01+T:. Q: What are the related social events to this post: \n A: A; \n
Post: Cy4+09+4T5. Q: What are the related social events to this post: \n A:
Ay 7.

Table 3.3: Experiment results on the SED dataset.

Model Accuracy Precision Recall F1

ResNet50 [30] 0.507 0.421 0.365 0.381
BERT [47] 0.816 0.756 0.755  0.753
MMBT [48] 0.574 0.503 0.427  0.440
COOLANT [102] | 0.715 0.660 0.559  0.591
SCBD [1] 0.786 0.669 0.603  0.609
AT-CVAE [56] 0.814 0.748 0.750  0.747
OWSEC [83] 0.818 0.759 0.760  0.754
ChatGPT [11] 0.640 0.570 0.621  0.547
MFEK 0.855 0.824 0.796 0.809

3.5.5 Results and Analysis

Tables and present a comparative analysis of our MFEK model against the

aforementioned single-modal and multimodal methods, utilizing the SED and Crisis-
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Table 3.4: Experiment results on the CrisisMMD dataset.

Model Accuracy Precision Recall F1

ResNet50 [30] 0.482 0.519 0.455  0.477
BERT [47] 0.961 0.960 0.968  0.964
MMBT [48] 0.658 0.728 0.648 0.675
COOLANT [102] | 0.924 0.936 0.929 0.933
SCBD [1] 0.956 0.961 0.962 0.956
AT-CVAE [56] 0.961 0.961 0.968  0.964
OWSEC [83] 0.963 0.969 0972 0971
ChatGPT [I1] | 0.490 0.448 0.453  0.445
MFEK 0.972 0.976 0.978 0.977

MMD datasets for evaluation. From the table, we have the following observations:

e Our MFEK model achieves superior performance over other methods on the
SED dataset, achieving the best performance . The model’s enhanced perfor-
mance is attributed to the incorporation of external knowledge, which effectively
mitigates the OOD issues inherent in social event detection. In addition, we
designed a knowledge-aware feature fusion module to fuse and filter knowledge

with the input text and images, further improving the classification results.

e Our proposed method outperforms other state-of-the-art methods on the Cri-
sisMMD dataset, even though this dataset was collected based on event-related

keywords, which proves the robustness and generalization ability of our method.

e For single-modal methods, the text-based model (i.e., BERT) performs better
than the image-based model (i.e., ResNet50) on both SED and CrisisMMD
datasets, suggesting that text provides more effective information for social
event detection compared to images alone. Specifically, we found that this gap

is even larger on the CrisisMMD dataset, since this dataset is based on event-
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related keyword searches, which can be achieved with good performance by text

alone.

e Certain multimodal fusion approaches (e.g., MMBT and COOLANT) exhibit
lower performance compared to the single-modal BERT method (i.e., BERT).
One reason may be the introduction of the image modality, as the noise in the
image modality in the dataset is relatively large (e.g., irrelevant images for the
task). Our model utilizes the knowledge-aware feature fusion module to filter
irrelevant information from images and text, which can make good use of useful

image information to enrich features.

e The prompt-based LLM (i.e., ChatGPT) does not yield as high performance as
other methods on both SED and CrisisMMD datasets, which means that LLMs
are not yet a comprehensive substitute for the domain-specific task, i.e., social
event detection. Rather than employing ChatGPT directly for classification, our
method leverages it to distill valuable implicit knowledge, thereby enhancing the

model’s performance.

3.5.6 Model Ablation

To evaluate the contribution of each component within the MFEK model, we perform
a series of ablation studies, which involve:

e w/o Text: Remove the input text.

e w/o Image: Remove the input image.

e w/o Caption: Remove the image caption generation component.

e w/o OCR: Remove the OCR-generated text from images.

e w/o Implicit Knowledge: Remove the integration of implicit knowledge.
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Table 3.5: Classification performance on the test set for different variants of the

MFEK model.
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e w/o Explicit Knowledge: Remove the integration of explicit knowledge.
e w/o Knowledge: Remove the integration of all external knowledge.

e w/o Co-attention: Remove the co-attention Transformer module and use con-

catenation instead.

Table details the performance for each variant, illustrating the impact of re-

moving specific components. From the table, we make the following key observations:

e The performance of our model decreases significantly in the absence of text or
image inputs. This underscores that multimodal data has a complementary
function in social event detection, which plays a crucial role in supplementing

the social event elements.

e For the text enrichment module, the semantic information represented by cap-
tions or OCR text is beneficial for social event detection. This demonstrates

the advantage of using visual semantic representations to enrich text.

e The integration of external knowledge, including both implicit and explicit
knowledge, contributes to the performance. This highlights the benefit of lever-
aging external knowledge for social event detection, which can help the model

mitigate the OOD problem.

o After replacing the co-attention Transformer module with a concatenation method,
the performance of the model decreases. This proves that our designed knowledge-
aware feature fusion module can effectively integrate the obtained knowledge

with the input, filtering out some irrelevant information to the task.

3.5.7 Parameter Analysis

In our experiment, the knowledge-aware feature fusion module employs a multi-head

attention mechanism, where the number of heads h can be a power of 2. As shown
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in Figure [3.7, we evaluated this parameter using the validation set and found that
the model achieves optimal results when the number of attention heads h is set to 4,

making it our choice for the final configuration.

For extracting implicit and explicit knowledge, we utilized the “GPT-3.5 Turbo”
model and brief introductions from Wikipedia entries, respectively. While any LLMs
could potentially be used for implicit knowledge extraction, we specifically conducted
evaluations using the “GPT-4" model. For explicit knowledge extraction, we select
to evaluate using entire Wikipedia page documents as it can offer more information

about the entities. As shown in Figure [3.8] we can observe:

e Using the “GPT-4” model for implicit knowledge extraction does not improve
performance. This may be due to the “GPT-3.5 Turbo” model producing more

diverse outputs, thereby subtly enhancing more event-related information.

e Employing entire Wikipedia page documents for explicit knowledge extraction
resulted in slightly diminished performance compared to utilizing concise entity
introductions. This is because, although the page documents provide richer

information, they also introduce more noise.

3.5.8 Case Study

Figure|3.9 presents several success and failure examples using the OWSEC and MFEK
methods on the SED dataset. We also display the visual content extracted by our
model (i.e., caption and OCR text) and the external knowledge (i.e., implicit and

explicit knowledge). From the figure, we have the following observations:

e Figures and b illustrate successful predictions by both OWSEC and MFEK,
attributed to the presence of event-relevant keywords within the text, such as

“#HKDemocracy”, “#DemiXSuperBowl”, and “#LIV”. In addition, we find
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Figure 3.7: F1 score on validation dataset for MFEK model under different number
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Figure 3.8: The impact of different external knowledge extraction methods.
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that the implicit and explicit knowledge we extract can effectively supplement
the original semantics of the text, which contributes to the model’s better pre-

diction.

In Figure |3.9c, we note that the text does not contain keywords directly related
to the social event. Instead, the keywords are appeared in the contents of a
newspaper shown in the image. In this case, the OCR text becomes essential
in enriching the original text. Additionally, our proposed model, which incor-
porates external knowledge, successfully links “WTSP” to “Florida” where the
social event took place, and associates “Irma” with hurricanes, helps the model
to predict the correct event “Hurricane Irma”. Compared to other state-of-the-
art models (e.g., OWSEC), it is difficult to predict the correct event when it
comes to this OOD problem. This demonstrates the ability of our proposed
model to infer connections that are not explicitly present in the training set,

thus mitigating the OOD problem to some extent.

In Figure [3.9d, we find that the image and implicit knowledge do not provide
much useful information, while the explicit knowledge offers a greater degree
of supplementation. However, in Figure [3.9k, the explicit knowledge provides
incorrect and irrelevant information. This underscores the importance of our
proposed knowledge-aware feature fusion module in discerning and disregarding

irrelevant information to ensure accurate predictions.

In Figure [3.9f, both models fail in their predictions. The reason could be that
the model can only identify “Florida”, a region affected by “Hurricane Maria”,
as the information based on the text and image. However, the news similar
event “Hurricane Irma” also impacted this area, which highlights the challenging

nature of our proposed SED dataset.
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3.6 Conclusion

In this chapter, we propose a multimodal fusion with external knowledge (MFEK)
model for social event detection. Specifically, the text enrichment module effectively
incorporates image-derived semantic information into the text, enriching the data
context. The knowledge extraction module utilizes Wikipedia to extract explicit
knowledge and uses large language models (LLMs) to extract implicit knowledge.
Furthermore, the knowledge-aware feature fusion module fuses the acquired external
knowledge with multimodal inputs and filters out task-irrelevant information. More-
over, we propose a well-labeled social event detection (SED) dataset, which includes
multimodal data derived from the social media platform, i.e., Twitter. Compared
to existing datasets, we utilize hashtags for data collection and annotation rather
than solely relying on event-related keywords, which makes the collected data more
consistent with real-world social event detection scenarios. Extensive experiments on
the SED and CrisisMMD datasets demonstrate that the MFEK model exceeds the
performance of current state-of-the-art methods in social event detection. With a
variety of available benchmarks, the SED dataset is expected to facilitate research in

social event detection.
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Chapter 4

Robust Cross-platform Social
Event Detection via Self-supervised

Modality Complementation

In this chapter, we propose a cross-platform social event detection model, SSMC,
which aims at enhancing the model’s capability for cross-platform detection. Specif-
ically, we introduce a Missing Data Complementation (MDC) module to address the
issue of missing modalities in cross-platform scenarios. Moreover, a Multimodal Self-
Learning (MSL) approach is proposed to mitigate the domain gap between different
platforms through self-learning. Finally, we extend the SED dataset to a multi-

platform social event dataset and conduct extensive experimental analysis.

4.1 Introduction

The majority of existing works for social event detection, including single-modal and
multimodal methods [2, 4, 57, 83, 08, 111, 1T4], focus on single-platform data, which

limits the scope and diversity of the detected events. Real-world social events, how-
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Figure 4.1: As a social event develops, different platforms provide information from

different perspectives for it.

ever, manifest across multiple platforms, each offering unique perspectives and modal-
ities of information. Consider the example illustrated in Figure 4.1 where an event
“2021 Haiti earthquake” emerges. The initial wave of information often comes from
social media platforms like Twitter, offering immediate firsthand accounts and public
reactions. This is soon followed by the more structured and analytical coverage pro-
vided by online news media platforms, such as The New York Times, which brought
in-depth reports and analyses. In parallel, other platforms like Flickr capture and
share visual narratives through photographs. This progression underscores the neces-
sity of cross-platform detection to gain a comprehensive and nuanced understanding
of social events. However, current research methods tend to falter when confronted
with cross-platform scenarios, demonstrating diminished effectiveness and adaptabil-

ity in these more complex environments.
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In this chapter, we delve into the novel task of cross-platform multimodal so-
cial event detection, aiming to enhance the precision of social event detection across
different platforms. This task seeks to leverage data from source platforms with
known event labels alongside unlabeled data from target platforms, training models
to perform more effectively on unlabeled target platform data. However, it introduces

several challenges:

e Incomplete Modalities: One of the challenges in cross-platform multimodal
social event detection is the inherent issue of incomplete modalities. This refers
to the frequent scenario where certain types of data (e.g., images, text, or videos)
that may be available on one platform are absent on another. This disparity can
arise due to the differing nature of platforms. As illustrated in Figure [4.1] the
sample from image-sharing-oriented Flickr only contains images, while online

news media platforms only provide text.

e Platform Heterogeneity: Another critical challenge is platform heterogene-
ity, which denotes the diverse characteristics and user behaviors inherent to
different platforms. Each platform has its unique content presentation, user
interaction mechanisms, and data formats. For instance, the way social events
are reported and discussed on Twitter, with its character limit and emphasis
on immediacy, differs significantly from the more detailed and narrative-driven
content found on online news media. This diversity is the main reason why

most existing methods underperform when applied across platforms.

e The Scarcity of Annotated Datasets: Lastly, the scarcity of annotated
datasets poses a significant barrier to the advancement of cross-platform mul-
timodal social event detection. Annotated datasets are important for training
and evaluating machine learning models; however, the creation of such datasets
is labor-intensive and requires significant domain expertise, especially when

dealing with multimodal data across different platforms. The existing datasets
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are predominantly single-platform [80, [5 [114], and the social event labels vary

between datasets, which makes direct application challenging.

Therefore, we propose a Self-Supervised Modality Complementation (SSMC) ap-
proach designed to tackle these challenges. Specifically, our method is underpinned by
two components: a Missing Data Complementation (MDC) module and a Multimodal
Self-Learning (MSL) module. The MDC module employs a modality classifier to dif-
ferentiate between modality-specific and modality-shared features across all modali-
ties. When a modality is absent, it becomes possible to supplement it using the infor-
mation contained within the common features of another modality. The MSL module
addresses platform heterogeneity by leveraging self-learning (i.e., pseudo-labeling),
which individually exploiting the relationships of semantic, image, text, and joint
multimodal features in different spaces. In particular, it uses a nearest-neighbor clus-
tering algorithm to achieve multi-views pseudo labeling and utilizes high-confidence
pseudo labels for self-learning while self-penalizing low-confidence pseudo labels. In
addition, we collect a cross-platform social event detection (CSED) dataset for the
cross-platform multimodal social event detection task. Specifically, it contains 37,711
multimodal samples covering 40 public social events from three distinct platforms,
i.e., Twitter, Flickr and online news media. Each event within our dataset is verified
through Wikipedia, ensuring reliability and breadth of coverage across a wide range
of topics. This dataset not only facilitates the exploration of cross-platform multi-
modal social event detection but also sets a new benchmark for future research in this
domain. The experimental results on the CSED dataset demonstrate its effectiveness

in both cross-platform and missing modality scenarios.

Our contributions are summarized as follows:

e We propose a Self-Supervised Modality Complementation (SSMC) method that
effectively addresses the challenges of incomplete modalities and platform het-

erogeneity in cross-platform multimodal social event detection.
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e We compile a comprehensive Cross-platform Social Event Detection (CSED)

dataset, bridging the gap in multimodal data resources across diverse platforms.

e Through extensive experiments on the CSED dataset, we validate the effective-
ness of our SSMC method, setting a new benchmark for cross-platform multi-

modal social event detection.

4.2 Preliminaries and Problem Statement

A social event is a significant occurrence or happening that is the subject of media cov-
erage and public interest. In the digital era, such events are disseminated across vari-
ous platforms, each with its unique presentation and content format. Cross-platform
multimodal social event detection is the process of identifying and categorizing these
social events across different platforms by analyzing multimodal data, such as text

articles and images. A more formal definition of the problem is illustrated as follows.

Problem 1 (Cross-platform Multimodal Social Event Detection). Cross-
platform multimodal social event detection aims to address the identification of social
events y' in a target platform’s dataset DT based on the learning from a source plat-
form’s labeled dataset D° and the target platform’s unlabeled dataset DT. Formally,
the source dataset is denoted as D = { (1, T9,Y*)} = {(if, 17, y7) }?jl, consisting
of ng samples, where iy € R%7 and t¥ € R%T are the image and text modalities of the
i-th sample, respectively, and y7 € Y = {1,2...,C} is the labeled social event. The
target dataset, lacking such labels, is represented as DT = {([ T TT)} = {(zZT, tZT) }:L:Tl
with ny samples. Notably, in some samples, either the image [ or the text T' from
D% and DT might be missing. The goal is to predict the event labels y© € ) for

DT, effectively bridging the gap between the multimodal data representations across

platforms.
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Figure 4.2: An overview of the proposed SSMC method when the text of the target
domain is missing. The upper flow represents the source platform with labeled data
(exemplified by Twitter posts with both images and accompanying text); and the
lower flow depicts the target platform with unlabeled data (Flickr for example, where

images are prevalent without text). Best viewed in color.

4.3 Methodology

In this section, we first provide an overview of the framework. Following that, we

detail the processes of data preprocessing and the various submodules of SSMC.

4.3.1 Overview of the Framework

As illustrated in Figure our SSMC model first uses CLIP [85] to extract the
features of images and text separately. For each modality data, we design a modality-
specific layer, i.e., Fr for text and F; for image, to extract the specific modality

information, and a modality-shared layer, i.e., Fio, to extract the common information
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across different modalities. Then, we concatenate them with a residual module to fuse
these two parts of features. Finally, we use a fusion module to combine two modal
features and then proceed to classification. When a modality is missing, e.g., text
in the target domain, the text modality-specific layer Fr becomes unavailable. We
supplement it with the common features extracted from image modality, which not
only plays a complementary role but also ensures end-to-end training. For the target
platform, we utilize the semantic pseudo labels obtained from the output of the model
and structural pseudo labels extracted from the multimodal common features (e.g.,
ET) and the multimodal fusion features (i.e., ET) to perform high-quality pseudo

label screening to achieve self-learning.

4.3.2 Data Preprocessing

Different social events can originate from various countries, thereby presenting a mul-
tilingual challenge in relevant social media. As shown in Table 4.1 there are 109
languages in the posts on Twitter about 40 different social events. We directly use
Google Translation API[|to convert multiple languages into English as our approach
focuses on incomplete modalities and platform heterogeneity. Furthermore, to bring
the multimodal feature distributions closer, we utilize CLIP [85] with ViT-B-32 for
image and text feature extraction. The extracted features can be represented as E?

Er Ef and ET.

4.3.3 Missing Data Complementation (MDC)

Missing modality is common in multimodal learning. We consider supplementing the
missing modality with information from another modality. However, there exists a
modality gap between different modalities of data. To mitigate this gap, we design a

separation mechanism to obtain modality-specific and modality-shared features be-

'https://cloud.google.com/translate
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Figure 4.3: Missing Data Complementation Module.

tween modalities, and then use the common features to supplement information when
a modality is missing. Specifically, we utilize two modality-specific layers to extract
text-specific and image-specific features respectively, and one modality-shared layer

to extract information common to both modalities.

To achieve this, we design two losses, i.e., modal classification loss ¢,,. and confu-
sion loss ¢4, as shown in Figure[4.3] Specifically, the modal classification loss assumes
that if different modalities of data can be classified as that modality, then the modality

contains modality-specific features, which can be expressed as:

be== > 3 () 1og (Fue (E))). (4.1)

=1 je{I,T}
where d) represents a [1,0] or [0,1] vector when the input modalities are images (1)
or text (T'), respectively. F,. denotes the modality classifier, which is composed of
a multilayer neural network. EJ(-i) refers to the i-th features extracted by modality-
specific layers, i.e., E5, EL, ES and EL.

%) i)
The confusion loss is used to achieve the goal of common feature extraction by

confusing the modality classifier F},,., which can be represented as:

|Ds+Dr|

== > () tog (Fue (EV)). (4.2)

i=1 je{I,T}

where ) represents a [0.5,0.5] vector. EY refers to the i-th features extracted by

J

66



4.3. Methodology

Neighbors ——

ETM; Consistency
Memory |Aggregate Loss
Ef———>| Bank
T >
Bee N Self-
Prediction from Inconsistent ~ penalization
Target Domain -_— [ Consistency Checker ] —_— Loss
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the modality-shared layer, i.e., £, EL

S, EL E and EL.

When the modality is complete, we concatenate the modality-specific features
and common features for each modality, use a multilayer perceptron (MLP) for di-
mension reduction, and add the common features as a residual to form semantically

complete modality embeddings for the text domain Fj.,; and image domain Fjpqge,

which can be represented as:
Etemt = MLP(COHC&t(Ett, Etc)) + Etc; (43)

Eimage = MLP(CODC&t(EZ’i, Ezc)) + Ez'c; (44)

where Concat(-,-) represents the concatenation operation. For data with missing
modalities, we compensate by extracting common features from another modality,
e.g., B, ,, = Ei if the text is missing. Finally, we obtain multimodal features (i.e.,
ES and ET) by fusing Fiezr and Fjpqge for different platforms, and then use a shared
classifier Fg for classification. Specifically, concatenation is utilized as the fusion

method.

4.3.4 Multimodal Self-learning (MSL)

A significant domain gap exists across different platforms, especially in multimodal

data. In our model, we chose a self-supervised learning strategy for cross-platform
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adaptation because: 1) Traditional domain adaptation methods often fail when facing
large domain gaps in multimodal data; 2) Self-supervision can leverage the intrinsic
structure of unlabeled target domain data; 3) Using multiple views for consistency
checking helps generate more reliable pseudo labels even with missing modalities.
Specifically, we extract semantic pseudo labels and structural pseudo labels from

multimodal views to obtain high-quality pseudo labels for self-learning.

For semantic pseudo labels, we directly obtain them by:

@z‘se = argmkaxpi,kai = 1727 cr Ny, (45)

where p; = Fgs (EZT ) is the C-dimensional prediction and Fg denotes the shared

classifier in the last layer.

However, the reliability of this pseudo label is not high as a domain gap exists.
Therefore, we consider extracting structural pseudo labels, which make joint decisions
based on the neighboring samples in the feature space and can achieve higher relia-
bility [56]. In addition, multimodal data features have different views in the feature
space. Compared to only using the multimodal features to generate pseudo labels,
we also consider image and text features before fusion individually for extracting

structural pseudo labels.

We first establish a memory bank to update the target domain features (including
image common features E text common features EL and multimodal features E7)
and output probabilities of the model p;. Specifically, we sharpen each probability
and feature of the output via temperature scaling (i.e., pf{k = pi v/ Dok pi , Where t is
the temperature scaling parameter of sharpening) and L2-normalization, respectively.
During the training, we utilize these generated features and probabilities to update
the memory bank by the moving average strategy. When the missing modality occurs,

the memory bank only updates the features of the available modalities.

As shown in Figure [4.4] we utilize the features from the target domain to retrieve
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the memory bank for each training step. Specifically, we use cosine distance to obtain
the k-nearest samples for each sample from different feature spaces, i.e., image space

ET

1c?

text space EL and multimodal space ET. Furthermore, we find out the proba-
bilities of the nearest neighbor samples and get their corresponding probabilities in
the memory bank. Finally, we average the probabilities of the K nearest neighbor

samples to obtain the final output probabilities for each space:

o1
Q"= 1= > i (4.6)
JEN;

where M is the index of the nearest neighbors for the i-th sample. m denotes different

feature spaces, i.e., image, text and multimodal spaces.

Then, we can directly use the maximum probability prediction corresponding to

this probability as the structural pseudo label for each space:

gt = arg max i - (4.7)
After obtaining the semantic pseudo label ¢ and structural pseudo labels 7",
we perform a consistency check on them. We consider the pseudo label reliable when

all views’ pseudo labels are consistent. The consistency loss /., can be represented

as:
1 Tco

> logpig,. (4.8)
=1

gco:_

nCO
where 7; is the reliable pseudo label from voting for the i-th sample. n., denotes the

number of samples with a consistent pseudo label.

However, although the quality of pseudo labels obtained through consistency
samples is high, even in the absence of modalities, the number of samples available
for training has decreased after screening. Observations from preliminary experiments
revealed a noteworthy phenomenon: after several rounds of training, the ground-truth
label of an inconsistent sample is likely to be found among these pseudo labels gener-

ated from different perspectives. This insight led us to hypothesize that by penalizing
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Algorithm 2 SSMC Algorithm
Input: Labeled source platform: DS = {i% t5 y|i® € I°,t% € TS ¢y5 € Y5},

unlabeled target platform: DT = {iT tT|iT € [T tT € TT}, the feature extractors
Fr, F; and F¢, the modality classifier F;,,. and the shared classifier Fs.
Output: Social event Y7 from target platform.
while ¢ < MaxIter
1: Compute the features EY, EI', EY and E! by the CLIP model.
2: Compute the multimodal features £ and ET according to Eq. and Eq. .
3: Compute the pseudo-labels for the target domain from different views according
to Eq. and Eq. [4.7]
4: Perform a consistency check for these pseudo-labels and compute the consistency
loss £, and self-penalization loss £, according to Eq. 4.8 and Eq.[£.9] respectively.
5: Compute the cross-entropy loss £. , modal classification loss ¢,,. and confusion
loss ¢4 according to Eq. Eq. and Eq. respectively.
6: Optimize the overall objective in Eq. through stochastic gradient descent.

7. Update memory bank features and output probabilities.

end while

categories not present among these pseudo labels, we could potentially increase the
likelihood of the model predicting the correct category. The self-penalization loss g,

can be formulated as:

Nt—"Nco

1
(g = —— log(1 — pi.), 4.9
b= > log(l=pin) (19)

i=1

where 1; is a one-hot label, with 0 at the ¢-th position when it is in the extracted

pseudo label list and 1 elsewhere.
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4.3.5 Overall Objective

The overall objective function to be minimized can be formulated as follows:

0 ="Le+ alpe + Bla+ ANleo + Lsp), (4.10)
e——lilo | (4.11)
c — e ot gpl,yf7 .

where /. denotes the loss for the source domain. a and [ are hyperparameters. To
reduce parameter sensitivity and ease the selection of models like [75], we adopt a
gradual progressive strategy for A, which jointly weights both [, and [s, as they

complement each other in the self-learning process. The weighting parameter A is set

2

80 T —Top)

— 1, where p represents the training progress linearly changing from 0
to 1. This sigmoid-like function ensures A starts from a small value and gradually
increases, reducing the influence of potentially noisy pseudo labels in the early training
stages. This gradual increase attenuates the influence of noise inherent in the pseudo

labels during the preliminary iterations, consequently preventing the accumulation of

errors to some degree.

The detailed algorithm for the SSMC method is presented in Algorithm [2] The
computational complexity of SSMC mainly comes from: 1) CLIP feature extraction
with O(n) complexity where n is the number of samples; 2) modality classification
and fusion with O(d) complexity where d is the feature dimension; 3) nearest neighbor
search for pseudo-label generation with O(n?) complexity where n; is the number of

target samples. Therefore, the overall complexity per iteration is O(n + d + n?).

4.4 Experiment

In this section, we evaluate our proposed SSMC method for cross-platform social
event detection. We first introduce the CSED dataset, including its collection pro-

cess and statistical analysis. Then, we conduct extensive experiments from multiple
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Table 4.1: The statistics of CSED dataset.

#Event +#Sample #Words #Language
Twitter (T') 40 24,607 14.72 109
Flickr (F') 40 9,191 46.66 51
Online News (O) | 40 3,913 756.95 26

perspectives: 1) comparison with state-of-the-art domain adaptation and missing
modality methods under different missing rates; 2) ablation studies to validate the
effectiveness of the Missing Data Complementation (MDC) module and Multimodal
Self-Learning (MSL) module; 3) parameter sensitivity analysis to investigate the im-
pact of key parameters o and [3; 4) analysis of pseudo label quality during training;
and 5) visualization and case studies to demonstrate model performance across dif-

ferent platforms.

4.4.1 Cross-platform Social Event Dataset (CSED)
Collection and Statistics of the Dataset

To validate the performance of our proposed model in cross-platform social event
detection, we extend the SED dataset from a single platform to multiple platforms,
which includes 40 social events. Specifically, we choose three mainstream social me-
dia platforms for data collection, including the multimodal Twitter platform (7°),
the image-focused Flickr platform (F'), and various online news platforms (O) that
primarily feature long texts. Specifically, to avoid task simplification through direct
keyword search, for Twitter, we use event-related hashtags and the time of the so-
cial event for collection; for Flickr, we utilize event-related keywords to search for
related album sets, then collect related posts from them; for online news, we collect
through the related links in the corresponding Wikipedia entries. Ultimately, we filter

all single-modal samples and manually check whether the data semantically matches
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the corresponding events, resulting in 37,711 samples. Specifically, unlike previous
datasets including the SED dataset, we do not filter out non-English samples, consid-
ering that multilingual data could provide a more comprehensive perspective of social
events. The statistics, distribution and feature visualization of our collected CSED

dataset are shown in Table [4.1], Figure .5] and Figure [4.6] respectively.

Comparisons with Existing Datasets

Most of the current social event datasets are based on single-platform data, including
both single-modal datasets [30, 58, [80] and multimodal datasets [5, 87, 112} [114].
Moreover, the datasets they collect are mostly in English only, which, for the task of
social event detection, lacks the interpretation of different perspectives on events. Ad-
ditionally, most datasets are directly collected based on keywords, which diminishes
the value of multimodal data because texts retrieved solely by keywords can already
perform well. These datasets are difficult to use for cross-platform social event de-
tection directly as the social events are different. Therefore, we have collected a
dataset that is multi-platform, multimodal, and multilingual, hoping to advance the

development of this field.

4.4.2 Implementation Details

We evaluate all cross-platform scenarios (i.e., T—F, F—=T, T—0, O—=T, F—O and
O—F). For scenarios with missing modalities, we randomly mask the images or the
text with a missing rate on both source and target domains. The missing rate is set
at 0%, 20%, and 40%. Take 20% as an example (20% of the samples only contain
text, 20% of the samples only contain images, and 60% of the samples contain both

images and text for both source and target platforms).

For O and F', we combine the title and content as the text content. For MDC, «

and [ are set to 0.1 based on the observation of the performance of the labeled source
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domain as the target domain is unlabeled. In fact, they can be arbitrarily selected
within a certain order of magnitude; our subsequent parameter analysis demonstrates
that the results are robust to some variations of these hyperparameters. For MSL, we
set the sharpening parameter ¢ to 5 for memory bank construction, and the number
of nearest neighbors N to 3 for pseudo label generation. We employ Adam as the
optimizer, the learning rate as le-4, the batch size as 40, and the training epochs as
30. Accuracy and F1 score are used as the evaluation metric. In the experiment, we
randomly choose five different seeds and compute their average to obtain the final

result.

4.4.3 Baselines

We compare SSMC across two distinct scenarios: complete multimodal cross-platform
social event detection (with a missing rate of 0%) and cross-platform social event

detection with missing modalities (missing rates of 20% and 40%, respectively).

For the first scenario, our baselines include various domain adaptation methods

as our benchmarks.

e CORAL [92] aligns the second-order statistics of the source and target distri-

butions through a linear transformation.

e DAN [60] uses a multiple kernel variant of maximum mean discrepancies to

learn transferable features in deep networks.

e JAN [6]I] aims to learn a transfer network by aligning the joint distributions
of multiple domain-specific layers across domains using a joint maximum mean

discrepancy criterion.

e DANN [20] focuses on learning domain-invariant features by adversarial learn-

ing.
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MMDA [82] employs multiple adversarial losses to learn common multimodal

features.

MCC [44] introduces a minimum class confusion constraint to achieve transfer

learning.

ATDOC [56] alleviates classifier bias by introducing an auxiliary classifier

specifically for target data, thereby improving the quality of pseudo labels.

ENT [I08] integrates domain adversarial training into entropy minimization to

enhance pseudo-label accuracy.

CDCL [104] presents a method based on contrastive self-supervised learning
aimed at feature alignment to minimize the domain gap between the training

and testing datasets.

RCE [21] introduces a training method that aligns with risk consistency, al-
lowing the model to learn information from noisy pseudo-labeled data without

compromising the performance.

Additionally, we report the performance of direct training on the source platform

without applying domain adaptation methods, i.e., image-only, text-only, and

image+text configurations. We also report the results of training and testing using

the target domain, which serves as the upper bound (following an 8:2 split between

the training and testing sets on the target platform).

For the second scenario, our baselines involve methods tailored for missing modal-

e DAL [12] proposes incorporating available category information and adversarial
training to enable the model to generate more informative domain information

despite missing modalities.
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e DVAE [45] introduces dual-aligned variational autoencoders to learn modality-

invariant representations, addressing the challenge of missing modalities in data.

e AT-CVAE [56] proposes an adaptive transformer-based conditioned variational
autoencoder network for incomplete social event classification, leveraging the
capabilities of variational autoencoders and transformers to handle incomplete

data.

4.4.4 Comparison with the State of the Arts

Table[d.2]and Table [4.3]summarize the performances of various methods on the CSED

dataset. From the results, we have the following observations:

e Compared with other domain adaptation and missing modality methods, our
method can simultaneously handle cross-platform and incomplete modalities
and achieve the best performance, indicating our model’s strong generalization

ability for the cross-platform multimodal social event detection task.

e Many domain adaptation methods have declined results compared to those not
using domain adaptation, possibly due to a large domain gap for the cross-

platform multimodal social event detection task causing negative transfer.

e As the missing rate increases, the degree of decline in our method is relatively
small compared to other models, which demonstrates the effectiveness of the

proposed MDC.

e Our model performs relatively poorly when the target platform is Twitter com-
pared to other platforms. This is due to Twitter having a larger number of
posts and a wider variety of languages compared to other social media plat-

forms, which inevitably contains more noise.
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Table 4.2: Accuracy (Acc) on CSED dataset for cross-platform multimodal social

event _detection.
Methods T—F | F=T | T—0 | O=T | F-0 | O—=F | Average

Missing Rate: 0%
Image Only 0.470 | 0.481 | 0.441 | 0.485 | 0.418 | 0.467 | 0.460
Text Only 0.669 | 0.593 | 0.784 | 0.653 | 0.828 | 0.725 | 0.709
Image+Text 0.761 | 0.669 | 0.784 | 0.692 | 0.818 | 0.804 | 0.755
CORAL [92] 0.766 | 0.667 | 0.780 | 0.689 | 0.813 | 0.805 | 0.753

DAN [60] 0.749 | 0.675 | 0.780 | 0.690 | 0.785 | 0.807 | 0.748
JAN [61] 0.724 | 0.647 | 0.694 | 0.637 | 0.723 | 0.788 | 0.702
DANN [26] 0.737 | 0.667 | 0.776 | 0.684 | 0.803 | 0.803 | 0.745
MMDA [82] 0.741 | 0.684 | 0.781 | 0.688 | 0.783 | 0.807 | 0.747
MCC [44] 0.763 | 0.665 | 0.811 | 0.709 | 0.825 | 0.792 | 0.761
ATDOC [56] 0.724 | 0.718 | 0.775 | 0.686 | 0.794 | 0.745 | 0.740
ENT [10§] 0.743 | 0.668 | 0.791 | 0.713 | 0.749 | 0.800 | 0.744
CDCL [104] 0.810 | 0.713 | 0.855 | 0.716 | 0.824 | 0.802 | 0.787
RCE [21] 0.826 | 0.704 | 0.843 | 0.693 | 0.812 | 0.806 | 0.781
SSMC 0.839 | 0.746 | 0.857 | 0.749 | 0.826 | 0.814 | 0.805

Upper Bound | 0.957 | 0.893 | 0.934 | 0.893 | 0.934 | 0.957 | 0.928

Missing Rate: 20%

DAL [12] 0.648 | 0.580 | 0.682 | 0.627 | 0.639 | 0.695 | 0.645
DVAE [45] 0.665 | 0.594 | 0.702 | 0.608 | 0.698 | 0.690 | 0.659
AT-CVAE [56] | 0.683 | 0.609 | 0.706 | 0.625 | 0.716 | 0.706 | 0.674
SSMC 0.736 | 0.686 | 0.779 | 0.681 | 0.737 | 0.740 | 0.727

Missing Rate: 40%

DAL [12] 0.506 | 0.519 | 0.609 | 0.557 | 0.575 | 0.595 | 0.561
DVAE [45] 0.555 | 0.518 | 0.618 | 0.536 | 0.608 | 0.589 | 0.571
AT-CVAE [56] | 0.609 | 0.542 | 0.641 | 0.558 | 0.634 | 0.616 | 0.600
SSMC 0.644 | 0.611 | 0.692 | 0.597 | 0.653 | 0.652 | 0.641
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Table 4.3: F1 Score on CSED dataset for cross-platform multimodal social event

detection.
Methods T—F | F=T | T—0 | O=T | F=0 | O—F | Average

Missing Rate: 0%
Image Only 0.413 | 0.385 | 0.411 | 0.426 | 0.359 | 0.418 | 0.402
Text Only 0.658 | 0.532 | 0.764 | 0.602 | 0.793 | 0.712 | 0.677
Image+Text 0.685 | 0.595 | 0.753 | 0.645 | 0.767 | 0.748 | 0.699
CORAL [92] 0.682 | 0.596 | 0.749 | 0.642 | 0.766 | 0.750 | 0.697

DAN [60] 0.663 | 0.582 | 0.749 | 0.630 | 0.735 | 0.738 | 0.683
JAN [61] 0.645 | 0.539 | 0.679 | 0.606 | 0.676 | 0.713 | 0.643
DANN [26] 0.660 | 0.587 | 0.749 | 0.638 | 0.672 | 0.735 | 0.674
MMDA [82] 0.667 | 0.592 | 0.748 | 0.634 | 0.730 | 0.741 | 0.685
MCC [44] 0.676 | 0.577 | 0.762 | 0.625 | 0.774 | 0.714 | 0.688
ATDOC [56] 0.666 | 0.640 | 0.743 | 0.658 | 0.749 | 0.684 | 0.690
ENT [I0§] 0.675 | 0.628 | 0.763 | 0.655 | 0.748 | 0.727 | 0.699
CDCL [104] 0.741 | 0.635 | 0.813 | 0.649 | 0.781 | 0.744 | 0.727
RCE [21] 0.742 | 0.620 | 0.795 | 0.630 | 0.766 | 0.727 | 0.713
SSMC 0.762 | 0.670 | 0.819 | 0.680 | 0.797 | 0.769 | 0.750

Upper Bound | 0.897 | 0.841 | 0.921 | 0.841 | 0.921 | 0.897 | 0.886

Missing Rate: 20%

DAL [12] 0.573 | 0.493 | 0.643 | 0.575 | 0.535 | 0.618 | 0.573
DVAE [45] 0.594 | 0.510 | 0.656 | 0.553 | 0.632 | 0.621 | 0.594
AT-CVAE [56] | 0.612 | 0.525 | 0.676 | 0.577 | 0.660 | 0.655 | 0.617
SSMC 0.674 | 0.601 | 0.734 | 0.607 | 0.693 | 0.686 | 0.666

Missing Rate: 40%

DAL [12] 0.554 | 0.436 | 0.576 | 0.503 | 0.476 | 0.542 | 0.514
DVAE [45] 0.506 | 0.436 | 0.585 | 0.480 | 0.566 | 0.537 | 0.518
AT-CVAE [56] | 0.563 | 0.454 | 0.614 | 0.505 | 0.582 | 0.575 | 0.549
SSMC 0.603 | 0.530 | 0.645 | 0.535 | 0.602 | 0.612 | 0.588
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Table 4.4: Ablation Study. M and G indicate M2M-100 model [22] and Google API

respectively (T — F', missing rate: 20%).

H | lpe lg lyp o | M G | Accuracy F1

1 x v v vV |x V 0.717 0.636
21 v x Vv V| Ix V 0.723 0.639
3| x x Vv VvV | x V 0.709 0.630
4|1 v v x VvV |x Vv 0.722 0.652
51 v Vv v x| x V 0.715 0.650
6| v Vv x x|x V 0.708 0.649
TV Vv vV V| Xx X 0.693 0.622
8| v Vv Vv VvV |V X 0.709 0.636
9|/ v Vv v VvV | x YV 0.736  0.674

4.4.5 Ablation Study

To investigate the effectiveness of the various modules, we conduct an ablation exper-

iment. Specifically, we consider removing each of our proposed modules to test the

performance, i.e., without (w/o) the modal classification loss ¢,,., confusion loss ¢4,

self-penalization loss /,, and consistency loss £,. As illustrated in Table we select

one of the cross-platform scenarios with missing rate as 20%, i.e., T — F. From the

table, we observe that:

e The performance of our model declines after removing any module, demonstrat-

ing the effectiveness of each module we proposed.

e The significant impact is on the consistency loss, as it provides high-quality

pseudo labels that directly facilitate learning in the target domain.

Furthermore, we also conducted ablation studies on the translation module. Al-

though our method does not focus on this part, it exists in our dataset, and here we
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Figure 4.7: Sensitivity of o and 5 (T — F, missing rate: 40%).

show the impact of this part on our model’s results. Specifically, we choose another

multilingual translation model, i.e., M2M-100 [22], for comparison. As shown in Ta-
ble [£.4] we observe that the Google API performs better than the M2M-100 model,
which is why we select it as our preprocessing module.

4.4.6 Impact of Parameters a and (3

We analyze the impact of parameters o and 5 on our model. When testing the value

of a, we set § to 0.1; when testing £, we set a to 0.1. The choice of 0.1 is based
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Figure 4.8: Accuracy of pseudo label during training (7" — F', missing rate: 20%)

on observing the performance of the source domain data, as we cannot access the
target data. Here, we observe the performance of SSMC on the target platform as
« and f vary. As shown in Figure [4.7] our research indicates that our method is
robust within a certain range of different o or § values, with performance at o or § =
0.08 even surpassing the performance reported in the Table and Table [4.3] Note
that we did not conduct ablation studies on A since it automatically adapts during
training through a predefined function rather than being a fixed hyperparameter.
The effectiveness of this adaptive strategy was instead validated through the ablation

studies on [, and [y, that A\ weights.

4.4.7 Evaluating the Effectiveness of MSL

To further explore the effectiveness of the consistency loss and self-penalization loss
proposed in our MSL, we observe the accuracy of pseudo labels from different per-
spectives on the target domain during the training process. As shown in Figure [£.§]

we find that compared to other pseudo labels, our method’s consistency pseudo labels
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Figure 4.9: Length of consistent and inconsistent samples during training (7" — F,

missing rate: 20%, batch size: 40)

achieve an accuracy rate close to 100% after several rounds of training, even with a
missing rate of 20%, which proves the high quality of our proposed pseudo labels.
Meanwhile, as shown in Figure the proportion of these high-quality samples is
only 25% as mentioned in Section [4.3.4] Therefore, we use the self-penalization loss
to learn from the remaining inconsistent samples. In Figure 4.8 we also visualized
the accuracy between inconsistent samples’ labels and the pseudo labels list obtained
from different perspectives. We can find the accuracy rate is relatively high (around
80%) compared to other pseudo labels, which verifies our previous assumption. There-
fore, by combining these two strategies, our model can utilize all samples for training,

which results in good performance.

4.4.8 Visualization

To validate the effectiveness of MDC, we employ t-SNE to visualize the common
features and the modality-specific features from the target domain. As shown in

Figs. 4.10h and b, we can observe that the common features of images and texts are
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(a) T — F (b) T — O

Figure 4.10: Visualization of common features and modality-specific features from

the target domain under 7' — F and T'— O (missing rate: 20%).

ES

(a) AT-CVAE (b) SSMC

Figure 4.11: Visualization of multimodal features from source and target domains

under 7' — O (missing rate: 20%).
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Mass. gov: No unexploded bombs at Multiple Fires in Greece Linked to Arson,
Boston Marathon BOSTON (AP) — Suspects Arrested Multiple people have
Massachusetts Gov. Deval Patrick says no been linked to arson across Greece, as
unexploded bombs were found at the fires rage through nearly every region of
Boston Marathon. He says the only the country. Two people were arrested in
explosives were the ones that went off Agios Stefanos, where fires are still
Monday. Three people were killed, currently spreading. The suspects were
including an 8-year-old boy, by two apprehended by the bridge of Agios
explosions just seconds apart near the Smefal:?os on Athinaias Street with a can of
finish line ... % gasoline ... m
DVAE: 2016 World Series DVAE: Typhoon Mangkhut DVAE: 2016 Brussels bombings DVAE: Beirut explosion
AT-CVAE: UEFA Euro 2016 AT-CVAE: 2011 Thailand Floods AT-CVAE: 2016 Brussels bombings AT-CVAE: 2020 Beirut explosion
SSMC: 2017 World Series SSMC: Typhoon Hagibis SSMC: Boston Marathon bombing SSMC: 2017-2018 Iranian protests
GT: 2017 World Series GT: Typhoon Hato GT: Boston Marathon bombing GT: 2021 Greece Wildfires
(€] () © (d)

Figure 4.12: Success and failure examples induced by SSMC on the CSED dataset

from two different scenarios, i.e., T'— F and T' — O (missing rate: 20%).

mixed together, while the modality-specific features do not overlap at all, which in-
dicates the effectiveness of our proposed MDC module. In addition, we also visualize
the multimodal features from both the source and target domains by using different
methods. As illustrated in Figs. and b, the boundaries of our SSMC’s fea-
tures from the source and target domains are clearer compared to AT-CVAE, which

validates the effectiveness of our proposed MSL module.

4.4.9 Case Study

Figure presents several success and failure examples in different scenarios. From

the figure, we have the following observations:

e Figures and c illustrate successful predictions by SSMC, which demon-
strates that our model can make correct judgments based on another modality

when one modality is missing.

e As shown in Figure [4.12b, when the target platform lacks text, if the image
information does not contain more elements about the corresponding social
event, our model is prone to errors (e.g., although it predicts a typhoon event

based on the collapse of trees, it is still a different event).
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Typhoon Haiyan: UN Praises Viet Nam for
High State of Preparedness - Viet Nam Ha Noi,
12 November — As northern Viet Nam
recovers from the impact of Typhoon Haiyan,
which killed thousands in the Philippines, the
UN praises the Government of Viet Nam’s
proactive prestorm measures, which have
helped to save lives and mitigate impact.
Although Haiyan made landfall in Hai
Phong and Quang Ninh...

WATCH the latest on #Typhoon
with Helen Willetts, as it nears
the #Philippines

Super Typhoon Haiyan, one of the strongest
storms ever seen, hit the Philippines with
record force Super Typhoon Haiyan hit the
Philippines at 4am local time today with winds
near 195 mph, making it the strongest tropical
cyclone to make landfall in recorded world
history, according to satellite estimates. That
astounding claim will need to be verified by

Our thoughts & prayers are with

the people of the #Philippines... actual measurements at ground level, which
Super #Typhoon | Typhoon damage in the Philippines should be collected over the coming days...
Twitter Flickr Online News

Figure 4.13: Samples detected by using SSMC for the “Typhoon Haiyan” event with

Twitter as the Source platform and Flickr and Online News as the Target platforms.

o As illustrated in Figure [4.12d, When the target platform lacks images, the
lengthy texts in online news may contain many descriptions unrelated to the
event, which misleads our model (e.g., the example describes extensively the

causes of a fire without describing wildfires).

In addition, to verify that cross-platform event detection can improve the quality
of event data from a single platform, we use the SSMC model for cross-platform event
detection. Specifically, we take Twitter as the source platform, and Flickr and Online
News as the target platform to detect the “Typhoon Haiyan” event. As shown in
Figure we can find that Twitter, as the source platform, mainly consists of
real-time updates and alert information rapidly posted by users during the natural
disaster. The detected samples from target platforms like Flickr focus more on high-
quality post-disaster photos showing the damage, while online news provides textual
descriptions of the entire natural disaster. Therefore, by combining data from cross-

platform sources, we can overcome the limitations of a single platform and obtain
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more comprehensive information, which validates the importance of cross-platform

event detection.

4.5 Conclusion

In this chapter, we propose a Self-Supervised Modality Complementation (SSMC)
method that effectively addresses the challenges of missing modality and cross-platform
scenarios in the cross-platform multimodal social event detection task. A missing data
complementation module is designed to use modality-shared features to supplement
missing modality scenarios, and a multimodal self-learning module generates reliable
pseudo labels from multiple perspectives to achieve self-learning and self-penalization
in the target domain. We have also introduced a comprehensive Cross-platform Social
Event Detection (CSED) dataset, encompassing diverse platforms and a wide range
of public social events. Experimental results on the CSED dataset validate the ef-
fectiveness of our proposed method and demonstrate the role of cross-platform event

detection in improving the quality of event data on a single platform.
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Chapter 5

Generalized Social Event Detection
via Dynamic Augmentation and

Entropy Optimization

In this chapter, we propose a generalized social event detection task, which aims
to leverage labeled event data to learn more generalized features for detecting both
known and newly occurring events. Specifically, we introduce a deep learning network,
DAEQ, to achieve this. On one hand, it utilizes a multimodal augmentation module
to learn more robust multimodal event features. On the other hand, it combines
self-distillation learning and adaptive entropy optimization to detect new events. Ad-
ditionally, we expand the SED dataset by increasing the number of event types and

samples, and conduct extensive experimental analysis.

5.1 Introduction

The current research [2 56] 57, 112, 121] in social event detection primarily focuses

on utilizing multimodal approaches due to the richer information provided by the
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Figure 5.1: Different settings for social event detection. Events 4 and 5 are new events

that do not occur in the training set.

multimodal data. However, a significant limitation of these studies is their reliance
on a closed-set assumption, which greatly diminishes their applicability in practical
scenarios. As illustrated in Figure [5.Th, under a closed setting, the focus is mainly
on identifying social events that are already known, like cyclical or long-term events,
which have happened before. This kind of approach falls short when it comes to
detecting novel events that emerge over time. In response to this limitation, some
researchers [83] have proposed shifting towards an open setting, aiming to identify
novel events as they occur as shown in Figure [5.Ib. Yet, as the volume of new events
grows in real life, merely distinguishing whether an event is unknown or not is often
insufficient. This has led to the exploration of the generalized social event detection
problem, which seeks to extend beyond the binary classification of new events as either

known or unknown. This task aims at not only recognizing previously occurred social
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events but also differentiating among events that have not yet occurred, referring to
this capability as general category discovery [99]. As shown in Figure , it requires

the model to both identify known events and categorize new events.

However, the task of generalized social event detection presents several chal-
lenges. The first challenge lies in dealing with multimodal features. When identifying
social events, it’s possible that only one modality, either text or image, provides
useful information, or both modalities offer complementary insights. This variabil-
ity requires the effective integration and utilization of each modality, especially for
events that are closely related or similar in nature. The second challenge involves
utilizing knowledge of previously occurred events to identify new events. This ne-
cessitates a model capable of distinguishing subtle differences between known and
new events. Lastly, the challenge of dataset scarcity compounds the difficulty of this
task. A comprehensive dataset, rich in both volume and variety of events, including
temporal information, is crucial for this task. As illustrated in Figure [5.1} temporal
information plays a crucial role in the division of datasets. Unfortunately, existing
datasets [57, R3] lack this temporal metadata, leading to the use of random splits
for training and test sets, which can not reflect the real-world scenario where events

unfold over time.

To address the aforementioned challenges, we introduce a Dynamic Augmenta-
tion and Entropy Optimization (DAEQO) model. For the first challenge, we design a
multimodal augmentation module to learn more robust multimodal event features,
which implicitly leverages the label information of events to learn the relationship
between different modalities. It utilizes adversarial learning to not only encourage
the generation of multimodal features that can distinguish between different simi-
lar events but also ensure the generated features are as diverse as possible. For the
second challenge, we learn a unified prototypical classification head for all new and
known classes with self-distillation learning. Unlike previous methods [105] that used

entropy maximization for all samples, we introduce an adaptive entropy optimiza-
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tion technique. Specifically, we generate various pseudo labels using a multi-view
approach, including single-modal random augmentations (e.g., image augmentations)
and outputs from the multimodal augmentation module. Then, when there is con-
sistency across multiple views, the model is optimized to minimize entropy, thereby
enhancing confidence in identified known events. Conversely, when views differ, en-
tropy maximization is employed to encourage further exploration of the new events.
Furthermore, we collect a multimodal social event detection (MSED) dataset for gen-
eralized social event detection from Twitter, comprising 161,350 multimodal samples
annotated with 66 real-world events. Reflecting the temporal characteristics of social
events, we define and collect three types of social events: short-term, cyclical, and
long-term events. To ensure diversity, each event type encompasses a broad range of
sub-events, including short-term events like natural and man-made disasters, terror-
ist attacks; cyclical events such as sporting events, political elections, international
summits; and long-term events covering political conflicts, economic/social crises,
and environmental /health issues. Experimental results on the MSED dataset demon-
strate the effectiveness of our proposed method, validating its capability to address

the challenges of generalized social event detection efficiently.

The contributions of this chapter can be summarized as follows:

e We formulate the task of generalized social event detection and introduce a
Dynamic Augmentation and Entropy Optimization (DAEO) model designed to
tackle this task.

e We propose a multimodal augmentation module and an adaptive entropy opti-
mization strategy aimed at improving the representation of multimodal features

and enhancing the ability to uncover new events, respectively.

e We collect a comprehensive multimodal social event detection (MSED) dataset
deigned for social event detection, which encompasses a wide array of events

categorized into long-term, cyclical, and short-term events, providing a rich
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resource for the research community:.

e Extensive experimental results on the MSED dataset demonstrate the effective-

ness of our proposed model.

5.2 Preliminaries and Problem Statement

Problem 1 (Generalized Social Event Detection). Given a dataset D contains
two parts: Dy containing known events and Dy including both known and new events,
organized chronologically. A model is expected to be developed that can accurately

categorize both known and new events in Dy .

More specifically, Dy, = {(x;,y;)}Y, constitutes a labeled dataset containing mul-
timodal instances z;, each labeled with y; from the set Y7, of known event categories.
Dy = {(x;)}}L, represents an unlabeled dataset with multimodal instances x;, which
are to be associated with labels from an expanded set Y. The set Yy includes new,
unseen event categories denoted by Y., and a subset of Y7, designated as Yy,
which represents a subset of Y7, that will continue to happen in the future. Hence,
the relationship Yy = Yiew U Yiuure, With Yiuure € Y7 as not all events from Y7, are
expected to reoccur. During training, the model is concurrently trained on both Dy,
to learn from the historical occurrence of events, and Dy, to anticipate and categorize

future, unseen events.

In addition, in order to ensure that there are enough event types and relationships
that can be used for generalized social event detection, we define three types of social
events based on their temporal attributes: short-term, cyclical, and long-term events.

The following are the formal definitions:

Definition 1: (Short-term Event). A short-term event is characterized by
its ephemeral nature, typically unfolding and concluding within a brief time span.

Examples of such events include natural disasters, sudden political upheavals, or
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unexpected public incidents. These events are transient and unpredictable, hence
they have a high probability of falling into both Y, \ Yyuure (elements present in Y7,
but absent in Yy,uure) and Y., since they may not have occurred in the past or might

represent entirely new scenarios.

Definition 2: (Cyclical Event). Cyclical events are those that occur at regular
intervals, marked by their predictability and periodicity. An example of a cyclical
event is the Olympic Games, which recur on a four-year cycle. These events are

anticipated and are typically encompassed within Y7, due to their recurrent nature.

Definition 3: (Long-term Event). Long-term events span extended periods,
often unfolding over months, years, or even decades. Wars, economic recessions, or
major policy reforms are examples of long-term events. These events persist over

such durations that they may be present in both Y7 and Y.

5.3 Methodology

In this section, we first provide an overview of the framework. Following that, we will

introduce the various submodules of DAEO.

5.3.1 Overview of the Framework

As illustrated in Figure[5.2) our DAEO model begins by leveraging a pretrained CLIP
model [85] to extract features from both images and texts, which are then concate-
nated to form multimodal event features E. Specifically, to enable self-learning from
unlabeled data, we apply random data augmentation to the images of the input posts
to obtain an augmented post for distillation learning. The multimodal augmentation
module then employs adversarial learning to generate robust multimodal augmented

features E4", which enhances the classifier’s ability to distinguish between similar
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Figure 5.2: The framework of the proposed Dynamic Augmentation and Entropy
Optimization (DAEO) model.

events. Then, we adopt a multilayer perceptron (MLP) as classifier f to obtain
the output. For labeled data, we employ standard supervised learning techniques
using the labels; for unlabeled data, we utilize distillation learning for training. Ad-
ditionally, the adaptive entropy optimization module uses the generated multi-view
pseudo-labels for consistency checking to selectively optimize entropy. This approach
not only encourages the detection of new events but also improves the accuracy of

known events.

5.3.2 Multimodal Event Feature Extraction

According to [99], it is crucial to adopt a robust pretrained model to discover new
category, like DINO ViT [15]. However, most pretrained models are primarily focused
on image data. Thanks to the cross-modal alignment training on very large-scale
image-text pairs, CLIP [85] demonstrates strong zero-shot performance, evidencing
its powerful generalization capability for multimodal joint embedding. Therefore,
given an input sample x;, we utilize the pretrained CLIP ViT-B/16 model to generate

features for both the images and texts. These features are then concatenated to form
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Figure 5.3: Multimodal augmentation module.

our multimodal event feature F;, which can be represented as:

5.3.3 Multimodal Augmentation

In generalized social event detection, it is important for a model to distinguish sim-
ilar social events finely, such as different earthquakes in disaster events. Previous
methods [99] utilize the supervised contrastive learning and self-contrastive learning
method to widen the decision margins between different categories. However, apply-
ing random data augmentation for contrastive learning on single modalities, such as
text or images, does not seem to enhance model performance for multimodal data (see
Sec. . A possible reason is that random augmentation, especially for text, might
lead to the loss of event-related clues, causing negative optimization. For social event
detection tasks, the relationship between images and text can be complementary,

related, or unrelated.

In our model, we adopt a different approach to learn robust features, i.e., the mul-

timodal augmentation module, by generating multimodal augmented features through
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the adversarial method [62] at the feature level. On one hand, we aim for the gen-
erated multimodal augmented features to closely approach the decision boundary,
which improves the classifier’s ability to distinguish between similar events. On the
other hand, we strive to ensure that the generated multimodal features retain the

original event semantics, which prevents negative optimization.

As shown in Figure [5.3| we employ a Variational Autoencoder (VAE) model [49]
as the generative model, denoted as G, which includes an encoder and a decoder.
The VAE model has been proven effective in generating features. We utilize the
KL divergence [37] to make the encoder’s output as close to a standard Gaussian
distribution as possible. Based on the properties of KLL divergence between Gaussian
distributions, this divergence is always non-negative and can be formulated in closed

form as:
N

1
Lir = =55 . (1 +log(o7) — i = o7) (5.2)

=1
where 4 and o are the mean and standard deviation parameters output by the encoder,
respectively. Furthermore, we use a residual module to retain more of the original

multimodal feature semantics. The augmented features EZA “9 can be formulated as:

EM = G(E;) + E;. (5.3)

For learning to generate robust multimodal augmented features, we perform the
adversarial training consisting of two parts. In the first part, as shown in Figure [5.2]
we fix the parameters of the multimodal augmentation module GG and train the CLIP
and classifier model f to minimize the cross-entropy loss between the output and
the true event labels, which ensures that augmented features retain their original

semantics. It can be formulated as:

L = == > L F(EM), 1)), (5.4)

where £..(-) represents the cross-entropy loss function.
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In the second part, as shown in Figure[5.3] we fix the parameters of the CLIP and
classifier models and train G, on one hand, maximize the cross-entropy loss between
the output and the true event labels as much as possible to generate more discrim-
inative features, and on the other hand, minimize the consistency loss to align the
semantics of the augmented and original multimodal feature outputs. The consistency

loss can be formulated as:

Femas = =37 32 1) gl () (55)

To achieve the adversarial goal, we want the optimal parameters éCL[p, ég and

éf to jointly satisfy

(éCL[p, éf) = arg min Lé%g + LCE; (56)
Ocrip,9f
(éG) = arg I%gX Lé%‘g - LC’onsis - LKL, (57)
1 & ,
Lop = =55 D Lee f (B, y1)): (5.8)

In this way, the generated features E-"Y will be close to the decision boundary,
which further helps the classifier f to distinguish the class with some ambiguous

decision boundaries.

5.3.4 Adaptive Entropy Optimization

The proposed adaptive entropy optimization strategy is designed based on several key
insights: 1) When predictions from different views are consistent, it likely indicates
the model has found meaningful patterns that should be reinforced; 2) Inconsistent
predictions often suggest uncertainty about new categories that should be explored
further; 3) Balancing between entropy minimization and maximization helps maintain

accuracy on known categories while discovering new ones.
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To identify new categories, we train a unified prototypical classification head for
all new and known classes using a self-distillation framework. For self-distillation, we
perform simple augmentations on images to obtain augmented images. Considering
the potential for existing random text augmentation methods to change semantics
and cause negative optimization, we compose augmented multimodal data directly
from augmented images and original texts. Through the CLIP model, we obtain two
different views of multimodal features, F; and E; Then, we map these multimodal
features to K-dimensional vectors as outputs using a function f, where K = |Y, UYy|
is the total number of event categories. For labeled data, we optimize using a cross-
entropy function in Eq. For unlabeled data, we employ self-distillation learning.
Specifically, we first randomly initialize a set of prototypes C' = {¢1,...,cx}, each
representing one category. During training, we compute the cosine similarity between
the output features and prototypes to obtain soft labels p;/g; for each view, which

can be formulated as:

ROy (7 (F(ED)/ILf (Ei)ll2)" (cr/llex]l2))
C Xeexp (ZUAE)/IFEN)T (ew/llewl2)

where 7 is a temperature parameter for p; and a sharper version for another view g;.

(5.9)

The distillation loss can be formulated as:

M
1
Lpistin = _M E qilog p;. (5~10)
i=1

We also adopt a entropy maximization regularizer [9] for the unsupervised ob-

jective, which can be formulated as:

M
1
LNt = _M E pilog p;, (5-11)
i=1

However, we found that maximizing entropy, while encouraging the exploration of
new categories, also decreases the model’s confidence in known categories, ultimately

sacrificing accuracy on known categories (see Sec. [5.4.6)).
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To address this issue, we propose an adaptive entropy optimization strategy,
aiming for the model to actively explore new categories while maintaining accuracy
on known categories. Specifically, we use pseudo-label consistency across four views to

decide on entropy optimization. For a sample, on one hand, we generate two pseudo-

labels using p; and its augmented view ¢;; on the other hand, we generate pf“g
q;4 " as two additional views using the multimodal augmentation module mentioned

and

earlier, which provides a more challenging perspective as the generated feature is more
discriminative. We then use a consistency checker to perform consistency checks on
the pseudo-labels from these four different views for entropy optimization, which can

be formulated as:

aLENT ifn=4
L pgapt = (5.12)

_BLENT if n < 4,
where n represents the number of consistency for the pseudo-labels, o and g are

hyperparameters.

Through this strategy, when the model’s predictions are completely consistent
across different views, we increase the model’s confidence in its judgment by mini-
mizing entropy; when there is a discrepancy in the model’s judgments across views,
we encourage further exploration by maximizing entropy as we want the model to
explore new events as much as possible when there is uncertainty, rather than blindly

gravitating towards known events.

5.3.5 Overall Formulation and Optimization

In this study, we optimize a minimax problem via a straightforward back-propagation
way. To summarize the previous discussions, the overall objective function of DAEO

can be formulated as follows:
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Algorithm 3 DAEO Algorithm

Input: Labeled data: Dy = {(x;,y;)},, unlabeled data: Dy = {(z;)}?,, the

=1

CLIP model, the multimodal augmentation model G and the MLP classifier f.

Output: Learned model parameters éCL]_P, éf and ég.

while ¢t < MaxIter

1:

2:

3:

9:

Compute the multimodal features F; according to Eq. [5.1]

Compute the augmented multimodal features E"Y according to Eq. [5.3]
Compute the pseudo-labels from four different views.

Perform a consistency check for these pseudo-labels and compute the adaptive
entropy 1oss L agep according to Eq.

Compute the cross-entropy loss Log and Lé%g and distill loss Lp;sin according
to Eq. .8 Eq. and Eq. respectively.

Optimize the objective in Eq. 5.13

Recompute the multimodal features E; and the augmented multimodal features

EX9 according to Eq. and Eq. , respectively.

Recompute the cross-entropy loss Lé}f;g , KLL divergence loss Ly, and consistency

loss Leonsis according to Eq. [5.4] Eq. .2l and Eq. [5.5] respectively.
Optimize the objective in Eq. [5.14

end while
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(bcrip, éf) = arg ming Lé%g + Lce + Lpistin + L adapt, (5.13)
crip,9f
(éG) = arg r%ax Lé%‘g - LConsis - LKL' (514)
G

The detailed algorithm for the DAEO method is presented in Algorithm [3] The
computational complexity of DAEO consists of: 1) multimodal feature extraction via
CLIP with O(n) complexity; 2) feature augmentation through the generator with O(d)
complexity where d is the feature dimension; 3) consistency checking across views
with O(nk) complexity where k is the number of views. The total computational

complexity per iteration is O(n + d + nk).

5.4 Experiment

In this section, we present extensive experiments to evaluate our DAEO model for
generalized social event detection. We first introduce the MSED dataset, which con-
tains various types of events across different time periods. Then, we conduct com-
prehensive experiments: 1) comparison with state-of-the-art methods on both known
and new event detection; 2) ablation studies to validate the effectiveness of multi-
modal augmentation and adaptive entropy optimization; 3) parameter analysis to
demonstrate model robustness to different hyperparameter settings; 4) visualization
analysis to examine the learned feature representations; and 5) case studies to analyze
model performance on different event types. Additionally, we validate our method’s

generalization capability on the public CrisisMMD dataset.

5.4.1 Multimodal Social Event Detection (MSED) Dataset

In this section, we first present the collection and statistics of the MSED dataset.

Then, we detail the implementation details, baselines, and extensive experimental
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analysis. Finally, we also analyze the model’s performance on a public dataset.

Collection of Social Events

The collection of social events plays a crucial role in generalized social event detection,
demanding a diverse array of relationships among different social events to encom-
pass various possibilities. For instance, when using time as a divider to separate the
training and test sets, the relationship between events can be identical, subset, in-
tersecting, or entirely distinct, depending on the type and time of the event. In this
chapter, we define short-term events, cyclical events, and long-term events, which
are designed to cover various event relationships and align with real-world scenarios.
Specifically, we collect a variety of events ranging from 2011 to 2023 for each type
of event from a crowd-sourced platform Wikipedia, e.g., short-term events include
natural, human-made disasters, etc.; cyclical events encompass sports competitions,
political elections, etc.; long-term events involve political conflicts, social movements,
etc. Ultimately, our collection comprises 66 social events, including 42 short-term

events, 13 cyclical events and 11 long-term events.

Collection and Statistics of the Dataset

For data collection and statistics, we select Twitter as our primary source due to its
extensive user base. We employ event-related hashtags and temporal searches to avoid
oversimplification of the task. For long-term events, we sample important sub-events
based on Wikipedia, e.g., ‘Syrian Civil War’ containing ‘Ghouta Chemical Attack’,
‘US Troops Withdrawing from Northern Syria’, and so on. Subsequently, we filter
out single-modality data samples and manually verified the semantic relevance of the
samples for the corresponding event, resulting in a multimodal social event detection
(MSED) dataset of 161,350 samples. Data statistics and sample distribution are
shown in Table [5.1] Figure [5.4] and Figure [5.5]
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Table 5.1: Statistic of the MSED dataset.
#Events | #Text | #Image | Average Words | #Language

66 161,350 | 196,543 | 17.645 63
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Figure 5.4: Distribution of the MSED dataset over time.
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Figure 5.5: Distribution of the MSED dataset for different types of events over time.
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Comparisons with Existing Datasets

Table compares our MSED dataset with other existing datasets. From this com-

parison, we have the following observations:

e Most current datasets do not include temporal metadata, which is a crucial at-
tribute for social event detection tasks. This omission is typically because these
datasets are designed for the closed-setting event detection, where training and
test sets are randomly split based on event categories rather than by time. In
our work, we advocate for splitting training and test sets based on chronological
order, which more accurately reflects the temporal nature of real-world social

event detection tasks.

e Most existing datasets have relatively few samples, which is not conducive to
learning social event features effectively. Events, representing complex semantic
entities, require a substantial number of samples to capture their nuances fully.
For the SED-14 dataset, it includes a large volume of data but is limited to
coarse-grained event labels such as parties and festivals. In contrast, our dataset
not only provides a large number of more fine-grained event categories but also
categorizes these events into short-term, cyclical, and long-term events. This
categorization is beneficial for models to learn distinctive features associated

with different types of events.

e The majority of existing datasets predominantly consist of English posts. This
is because the collection process intentionally filters out other languages to
simplify the analysis. However, social event detection tasks inherently involve
events from diverse countries, implying that multiple languages are common
and that the local language of the event can offer a more authentic perspective
for interpreting the event. Thus, our dataset retains posts in various languages,
which, while increasing the complexity of the task, also provides multiple view-

points that aid the model in understanding the event more comprehensively.
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Table 5.2: Comparison of existing datasets. (“#” represents the number of samples.)

Dataset Platform #Sample #Event Modality Fine-grained Temporal Metadata Multilanguage Public
CE [80) Twitter 800 2 Single no yes no no
SED-14 [87) Flickr, Youtube  427,370/1,327 21,169  Multiple no yes no yes
ASO [95] Twitter 1,100 3 Single no no no no
OSMNs [30] Twitter 3.5M 20 Single no yes no no
Twevent [53]  Wikipedia, Twitter ~ 3.2M/4.3M N.A. Single no no no no
DHS [6] Twitter, Tumblr 2.1M/0.3M 600 Multiple no no no no
PHEME [122] Twitter 2,089 9 Multiple yes no no yes
NED [57] Twitter 17,366 40 Multiple yes no no yes
CrisisMMD 5] Twitter 18,126 7 Multiple yes no no yes
MSED Twitter 161,350 66 Multiple yes yes yes yes

Table 5.3: The division of the MSED dataset in the experiments. ‘#New’ refers to

the number of new events.

Training set Test set
Proportion
#Sample | #Event | #Sample | #Event | #New
25% 32,270 27 121,013 | 55 39
50% 64,540 43 80,675 42 23
75% 96,810 56 40,338 23 10

Data Partitioning

Different from other classification tasks, the generalized social event detection task
inherently involves a temporal dimension. Therefore, we organize all posts chrono-
logically and then split the dataset into training and test sets based on sequential
proportions. For this purpose, we divide the dataset into training and test sets by
selecting three different time points—corresponding to 25%, 50%, and 75% of the
timeline of the collected data—to determine the chronological length of the training
set relative to the entire dataset. As for the validation set, we allocate 20% of the
The specifics of this division are

training set, chosen randomly across categories.

summarized in Table B.3]
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5.4.2 FEvaluation Metric

To evaluate our model’s performance, we employ a clustering accuracy (ACC) followed
by [99]. This metric is calculated as follows:
| M
ACC = max — > Uy =p(ii)}, (5.15)

peP(Yy) M —

where P represents the set of all possible permutations that align the model’s pre-
dicted labels g; with the actual ground truth labels y;, which utilizes the Hungarian
method [50] for optimal matching. We apply this metric across three sets: the com-
plete unlabeled set denoted as “All”, a subset called “Known” which contains samples
from classes already known to the model, and “New”, comprising samples from classes

not previously seen by the model.

5.4.3 Implementation Details

We utilize the CLIP ViT-B/16 backbone to train all methods, with fine-tuning the
final block and linear projection layer of the text and visual encoders. The SGD
optimizer [7] is employed with an initial learning rate of 0.001 and then decayed
following a cosine schedule. The models are trained over 100 epochs with a batch
size of 128. In alignment with [I05], the temperature value for distillation learning
is set to 0.1 and the sharper version starts at 0.07, then is gradually warmed up to
0.04 using a cosine schedule in the starting 10 epochs. The hyperparameters a and
[ are set to 0.03 and 2.3, respectively. For non-English text, we utilize the Google
Translation API|to translate the content into English. For posts containing multiple
images, we only use the first image. The process of tuning and testing is carried out
on a separate validation set, facilitating the selection of the best hyperparameters for
optimal performance. All experiments are conducted on an NVIDIA GeForce RTX
A6000.

'https://cloud.google.com/translate
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5.4.4 Baselines

To investigate the effectiveness of our proposed method, we compare it with three

different baseline approaches to provide a comprehensive evaluation.

e K-means method [66]. This baseline extracts the image and text features from
the pretrained CLIP model and concatenates them to form the multimodal fea-
tures, followed by the K-means clustering algorithm. Previous event detection
methods mostly use such unsupervised clustering approach for detecting new

events.

e Novel category discovery baselines (i.e., UNO [24] and RankStats [32]).
These are strong baselines from the field of novel category discovery. Following
the setup in [99], we configure one classification head to the total number of

classes in order to adapt these models to fit the task.

e The state-of-the-art methods in generalized category discovery (i.e.,
GCD [99] and SimGCD [105]). GCD utilizes semi-supervised K-means cluster-
ing based on learned features, and SimGCD employs a parametric classifier for
distillation learning, which has demonstrated impressive results across various

image recognition tasks.

5.4.5 Comparison with the State of the Arts

Table [5.4] shows the experimental results of our proposed DAEO method and other
comparison methods on the generalized social event detection task. From these re-

sults, we observe that:

e DAEO outperforms all baselines across most scenarios with different dataset

proportions, validating the effectiveness of our model for generalized social event
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detection. It’s noteworthy that when the training proportion is 25%, our model’s
performance does not surpass that of the K-means baseline. This is because the
relatively small amount of training data, which hinders the model’s ability to
learn robust event features effectively. In fact, the likelihood of encountering
such a limited amount of data is lower in real-world scenarios, especially with

the continuous generation of social events.

e Employing K-means clustering directly on features extracted by the pretrained
CLIP model yields impressive results, underscoring the significance of utilizing

a robust pretrained model.

e Parametric learning methods (i.e., SimGCD) outperform non-parametric clus-
tering approaches (i.e., GCD). This is attributed to the joint training of the

entire model, which avoids potentially being sub-optimal.

e In the scenario of generalized social event detection, compared to the tradi-
tional unsupervised new event detection setting (performance of the K-means
method under the “All” setting), our proposed DAEO model not only achieves
high accuracy on known events but also performs well on new events, which

demonstrates the significance of our proposed setting.

5.4.6 Ablation Study

The proposed DAEO model contains two key modules: multimodal augmentation and
adaptive entropy optimization. To validate their effectiveness, we conducted ablation
studies on these components. We denote Multimodal Augmentation as ‘MA’, the
entropy minimization and maximization terms in L ggep as ‘Entmin’ and ‘Entmax’,
respectively, and ‘Adapt’ to represent L agqp, with ‘Ctr’ indicating self-contrastive
learning and supervised contrastive learning. From the results in Table [5.5] we have

the following observations:
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Table 5.5: Ablation study on the different components of our approach with the
proportion of 50%.

# | MA  Entmin Entmax Adapt Ctr | Known New All

1| x v v v X 0.821  0.578 0.715
2| v X v v X 0.807  0.631 0.730
3| Vv v X v X 0.742  0.220 0.513
4| v X v X X 0.568  0.659 0.608
5| v X X X X 0.793  0.267 0.562
6| v v v v v 0.804 0.620 0.723
7TV v v v X 0.823 0.622 0.735

e The absence of multimodal augmentation (#1 and #7) leads to a decrease in
accuracy, which underscores the contribution of the multimodal augmentation

module in learning more robust features.

e By comparing #4 and #5, we note that the entropy maximization term boosts
the model’s performance on recognizing new events but adversely affects its
ability to identify known events. The inclusion of L4g4q, and Entmin (#4 and
#7) not only retains the model’s capacity to recognize new events but also
improves its accuracy on known events. This demonstrates the efficacy of the
adaptive entropy optimization strategy in balancing the model’s performance

across known and new events.

e The addition of self-contrastive learning and supervised contrastive learning (#6
and #7) does not enhance our model’s performance, which could be attributed

to negative optimization introduced by random augmentations.

In addition, we also investigate the effect of the model’s backbone, the handling
of multilingual text in the dataset, the conditions for L 444, and the performance of

our model under different event types.
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Table 5.6: Ablation experiment for Backbone with the proportion of 50%.
Backbone | Known New All

ViT-B/32 | 0.803 0.570 0.701
ViT-B/16 | 0.823 0.622 0.735
ViT-L/14 | 0.841 0.611 0.740

Table 5.7: Ablation experiment for multilingual processing with the proportion of

50%.

Method Known  New All

wo Translation | 0.819 0.587  0.717
Translation 0.823 0.622 0.735
M-CLIP [14] 0.821  0.621 0.733

e As shown in Table 5.6, employing larger pretrained models as the backbone im-

proves performance, underscoring the importance of a robust pretrained model.

e Regarding multilingual text processing, we experiment with using the M-CLIP
model [14], which is pretrained on multiple languages. According to the results
in Table 5.7 utilizing such model does not outperform a straightforward ap-
proach of employing the Google Translate API for language translation, thus

we select the translation method.

e For the condition of Laget, loosening the criteria (i.e., using a consistency
threshold across different views to determine entropy minimization /maximization)
leads to reduced recognition rates for new events, as shown in Table[5.8 There-

fore, we select the condition of consistency across all views.

e Asshown in Figure[5.9] the model has a high recognition rate for cyclical events,
due to their high degree of similarity and predictable recurrence. However, for
long-term events, the ongoing evolution of the events makes the recognition of

even known events as challenging as that of short-term events.
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Figure 5.6: Parameter sensitivity on the MSED dataset with the proportion of 50%.
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Table 5.8: Ablation experiment for condition of L 444+ With the proportion of 50%.
Condition | Known New All

n > 2 0.826 0.465 0.668
n>3 0.825 0.552 0.706
n =4 0.823 0.622 0.735

Table 5.9: Results of our approach for different event types with the proportion of
50%.

Type Known New  All

Short-term Event | 0.891 0.642 0.656
Cyclical Event 0.853 - 0.853
Long-term Event | 0.662 0.527 0.600

5.4.7 Parameter Analysis

To delve into the impact of parameters a and [ on the model’s performance, we
conducted experiments varying « from 2.0 to 2.4 and S from 0 to 0.04. As depicted
in Figure [5.6] we observe that an increase in « tends to enhance the accuracy for new
events at the expense of slightly reducing accuracy for known events, while 5 exhibits
an inverse relationship. Overall, the model demonstrates moderate sensitivity to these

parameters, leading to the selection of a = 2.3 and g = 0.01 as the optimal settings.

Regarding the parameter K, which denotes the number of prototypes, we assume
that the number of events is known following [105] in our model. We investigate
its effect on our model using different values. As shown in Figure [5.6, although the
performance on new events slightly decreases with increasing K values, the fluctuation
remains minimal, which shows our model’s robustness to variations in the number of

prototypes.
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Figure 5.7: TSNE visualization of multimodal features from selected social events

with the proportion of 50%.

5.4.8 Data Visualization

To further investigate the effectiveness of our proposed method, we employ t-SNE [03]
visualization to illustrate the multimodal event features learned by the model. We se-
lect eight similar events, including both known and new events, for visualization. As
shown in Figure we have the following observations: 1) Compared to SimGCD,
the features from our proposed method have clearer boundaries between different
events, which proves the effectiveness of our approach. 2) For similar events, such
as attack events, our model demonstrates a strong capability to differentiate between
them, which is attributed to our multimodal augmentation module that utilizes ad-

versarial learning to generate discriminative features.
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i 10 days passed .. how do we get some .+ [First match today at 24:00!] Mexico i | Protestors aiming to surround

normality back to our lives... | | National Team Team Introduction... i LegCo...

Ours: 2019 Sri Lanka Easter Bombings : : Ours: Olympic Games Ours: 2022 U.S. Capitol Attack

iGT: 2020 Beirut Explosion { {GT: FIFA World Cup GT: Hong Kong Protests
Short—term Event Cyclical Event Long—term Event

Figure 5.8: Failure examples of DAEO on the MSED dataset with the proportion of
50%.

5.4.9 Case Study

Despite the excellent performance of DAEQO, Figure [5.8 shows three failure cases from
different event types. We observe that their misclassification mainly stems from the
lack of distinctive elements in the provided images and texts. Specifically, the first case
comes from the ‘2020 Beirut Explosion’. Due to the absence of key information about
the Beirut explosion, the event is mistakenly classified as a general explosion event.
The second case, ‘FIFA World Cup’, included a team photo, which is common in other
sports events, such as the ‘Olympic Games’. The third case, ‘Hong Kong Protests’,
featured many protesting people, leading the model to mistakenly categorize it as
an attack event. These failure cases illustrate the complexity and challenges of the

generalized social event detection.
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Table 5.10: The division of the CrisisMMD dataset. ‘#New’ refers to the number of

new events.
Training set Test set
#Sample | #Event | #Sample | #Event | #New
6,047 3 10,567 7 4

5.4.10 Experiments on the Public Dataset

To validate the generalization capability of our proposed Dynamic Augmentation and
Entropy Optimization (DAEQO) model, we conduct experiments on a public dataset,

i.e., the CrisisMMD dataset [5].

CrisisMMD Dataset

This dataset is a multimodal crisis dataset that encompasses seven natural disaster
events from 2017, including Hurricane Irma, Hurricane Maria, Hurricane Harvey,
the Mexico earthquake, the Irag—Iran earthquakes, the Sri Lanka floods, and the
California wildfires. Detailed statistics of the dataset are shown in Table [5.2

Data Partitioning

Given the analysis in Section [5.4.1] the CrisisMMD dataset lacks temporal informa-
tion, which is used for closed-setting event detection [56]. Therefore, we are not able
to divide the training and test sets according to time for the generalized social event
detection task. Following [99], we extract the first three categories of events as known
events from the dataset. We set 50% of the data from these categories for the training
set. The remaining 50% of data from these categories, along with all event samples
from the other four categories, constitute the test set. For the validation set, we select

20% of the training set, chosen randomly across categories. The specific partitioning

details are depicted in Table [5.10}
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Table 5.11: Results on the CrisisMMD dataset.
Method Known New All

K-means [66] 0.315  0.526  0.375
RankStats [32] | 0.854  0.425  0.732
UNO [24] 0.946 0.531 0.828
GCD [99] 0.391 0.462 0.363
SimGCD [105] | 0.962 0.610 0.862

DAEO 0.968 0.669 0.883
A +0.006  +0.060 +0.021

Performance on the CrisisMMD Dataset

Table shows the experimental results of our DAEO model on the CrisisMMD

dataset. From these results, we observe the following:

e Our model achieves the best performance on this public dataset compared to

other methods, which validates its strong generalization ability.

e Our model exhibits high accuracy on known classes on the CrisisMMD dataset.
This is partly due to the use of random partitioning to define known and un-
known events, which simplifies the task to some extent. This result also under-
scores the importance of partitioning training and test sets based on time to
prevent potential future information leakage, which is crucial for realistic event

detection tasks.

e Our model also performs well on new categories, indicating that the features
generated by the proposed multimodal augmentation module are robust even

for new events.
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Table 5.12: Experimental results on the CrisisMMD dataset with closed setting (with-

out new events).
Measure | -CLSWGAN [[07] TCGAN [73) CADA-VAE [E§] DAVAE [5 MDL-DR [7I] Multi-RC [[[0] SCBD [f] AT-CVAE [G] OWSEC [§3] DAEO
Accuracy | 0.7582 0.8954 0.7412 0.7977 0.8677 0.8395 0.9366 0.9718 0.9672 0.9722
Macro F1 | 0.7578 0.8936 0.7406 0.7873 0.8573 0.8223 0.9510 0.9709 0.9709 0.9758

Performance on the CrisisMMD Dataset under Closed Setting

To validate the effectiveness of our proposed multimodal augmentation module in
generating robust features, we also compare its performance in a closed-setting event
detection scenario. Following [56], we divide 70% of the CrisisMMD dataset as the
training set, 10% as the validation set, and 20% as the test set. The evaluation

metrics used are accuracy and macro-averaged F1 score.

As shown in Table [5.12], we have the following observations:

e Our DAEO model outperforms other event detection methods, which can be
attributed to our multimodal augmentation module that employs adversarial
techniques. The adversarial approach in feature generation effectively enhances
the variability and representational capacity of the features, which in turn im-
proves the classifier’s ability to discriminate between different event types ac-

curately.

e Combined with Table .11, we observe that the accuracy for known events in
our model under the generalized setting remains very close to the accuracy un-
der a closed setting, even after the addition of new events. This is attributed
to our adaptive entropy optimization strategy, which selectively optimizes for
both known and new events. By maintaining accuracy for known events while
encouraging exploration of new events, this strategy ensures that the model re-
mains effective across all categories without compromising its ability to identify

events it has previously learned.
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5.5 Conclusion

In this chapter, we introduce a Dynamic Augmentation and Entropy Optimization
(DAEO) model designed specifically to tackle the challenges of generalized social
event detection. A multimodal augmentation module is designed to employ adversar-
ial learning to generate distinctive multimodal features, which improves the model’s
ability to discern between similar event categories. An adaptive entropy optimization
strategy with a self-distillation method leverages pseudo-labels from different views
to adaptively optimize entropy, thereby enhancing the model’s ability in recognizing
both new and known events. Additionally, we contribute to the field by introduc-
ing the Multimodal Social Event Detection (MSED) dataset, which contains various
event types and serves as a valuable resource for researchers. Extensive experiments
conducted on the MSED dataset validate the effectiveness of our proposed model
and demonstrate the superiority of our proposed generalized social event detection

setting.
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Chapter 6

Conclusion and Future Work

In this chapter, we first summarize the key contributions of this thesis and then

outline potential directions for future research.

6.1 Conclusion

In this thesis, we focus on learning robust features to enhance the accuracy and

generalizability of multimodal social event detection models.

First, we propose a deep learning algorithm, MFEK, which addresses the out-of-
distribution (OOD) and multimodal fusion issues in event detection by incorporating
external knowledge and attention mechanisms. To achieve this, we use a knowledge
extraction module to extract event-related explicit and implicit knowledge from ex-
isting knowledge bases and large language models. Then, we integrate the extracted
knowledge into multimodal data using attention mechanisms to improve the accuracy
of the social event detection task. We find that incorporating external knowledge sig-
nificantly improves the performance of the proposed MFEK model compared to other
state-of-the-art methods, allowing it to accurately identify events even in scenarios

with information fragmentation.
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Second, we explore cross-platform social event detection to enhance the gener-
alizability of the learned features. To this end, we propose a novel transfer learning
model, SSMC, which addresses the issues of missing modalities and heterogeneous
distributions in cross-platform scenarios. We first design a missing data complemen-
tation module to learn modality-shared features that supplement the missing modality
information. Next, we introduce a multimodal self-learning module that adapts the
model to target platform data by generating reliable pseudo labels, thereby reducing
the distribution gap between different platforms. Our studies indicate that the pro-
posed SSMC outperforms other existing state-of-the-art methods. Additionally, we
verify the effectiveness of cross-platform event detection in improving the quality of

single-platform event data.

Furthermore, we introduce a new task, generalized social event detection, to ex-
plore new event detection and enhance the generalizability of the learned features. To
address this task, we propose a new multimodal deep learning algorithm, DAEQO. This
algorithm leverages adversarial learning to learn discriminative multimodal features
from known event data. Additionally, it employs an adaptive entropy optimization
strategy combined with a self-distillation method, which allows the model to cluster
and detect unknown events while maintaining high accuracy for known events. Our
findings show that the proposed method not only achieves high accuracy in detecting
known events but also surpasses traditional unsupervised methods in new event detec-
tion. This success is attributed to the more robust multimodal features learned from

known event data, which facilitate the identification and clustering of new events.

6.2 Future Work

In future research, we plan to improve and extend existing data representation learn-
ing models to further enhance the accuracy and generalizability of multimodal social

event detection models. There are many promising directions for future research,
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which we summarize as follows:

e Increasing the diversity of multimodal data: Social media data encom-
passes various types of media, including social links, geographic information,
and more. This thesis mainly focuses on detecting social events using multi-
modal content such as images and text. Utilizing additional attributes of social
media (e.g., tags, spatial, and temporal information) can further enhance the
diversity of multimodal data. Therefore, the next step should consider how to

leverage more available data to improve model detection accuracy.

e Multisource and multimodal social event detection: The cross-platform
detection method in this thesis is currently limited to two platforms: source
and target domains. In future work, we plan to extend this method to support
multi-platform detection. Specifically, we will research multi-platform domain
adaptation techniques to develop models capable of handling data from multiple
platforms simultaneously, thereby further enhancing the comprehensiveness and

robustness of event detection.

e Real-time multimodal social event detection in open domains: De-
tecting social events requires timely responses for rapid decision-making and
emergency handling. This thesis introduces generalized social event detection,
which aims to extend existing methods from detecting limited types of events to
detecting all types of events without specific categories. However, the real-time
nature of the algorithm leaves much room for improvement. Therefore, consid-
ering the real-time nature of the algorithm is crucial for emergency response and
decision support, as it can significantly improve the efficiency and effectiveness

of emergency handling.

e Improving the quality of raw data: The quality of raw data determines the

accuracy of subsequent tasks such as detection and analysis. However, raw data
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often has potential issues like incompleteness, sparsity, and imbalance. This the-
sis collect three datasets related to event detection, which also exhibited these
issues. Although sampling algorithms were used to address the imbalance prob-
lem, how to collect and process more complete and balanced datasets remains
a key focus of this research. Therefore, better addressing the issues of data
imbalance and poor completeness remains one of the primary research focuses

for the next stage.

e Studying the impact of multilingualism: Social event detection often re-
quires data from various social media platforms, with users from around the
world using different languages. Relying on data from a single language may re-
sult in missing critical event information. Additionally, many social events have
clear regional and localized characteristics, with information typically published
in the local language. Without studying multilingual event detection, impor-
tant localized information may be missed. Although this thesis attempted to
address multilingual issues by translating data into a single language, it heavily
depends on the reliability of translation models. Therefore, in-depth research on
multilingualism for social event detection has significant practical importance

and value.

e Enhancing the interpretability of social event detection models: Cur-
rent social event detection models are mostly black-box models that transform
data information into representation vectors, lacking reasonable interpretability
for the final analysis results. Although this thesis introduces external knowledge
to provide some level of explanation, the models remain black-box. Therefore,
future research should focus on improving the interpretability of social event

analysis models.
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