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Abstract

Relational facts organize human knowledge of the real world in a triplet format.
These structural facts are regarded as the way to implement conscious and logical
intelligence. Although the past three decades have witnessed the rise of text analysis
methods for extracting meaningful information from unstructured textual data, these
methods often fall short of capturing the full semantic richness and complexity of hu-
man language, particularly when it comes to understanding the relationships between
entities. Besides, textual semantics are sometimes incomplete and ambiguous, which
can cause inaccuracy and severe misleading in facts. On the contrary, the informa-
tion from other modalities (e.g., visual contents) is much more intuitive and specific.
Inspired by the human capacity to perceive and communicate through a multisensory
system, this thesis explores the potential of learning versatile multimodal represen-
tations for knowledge extraction and reasoning. This thesis delves into four critical
challenges within multimodal learning, proposing novel solutions through a series of
rigorous investigations:

(1) A Unified Multimodal Graph Learning Framework: To overcome the
prevalent issues of modality gaps and spurious alignments in multimodal knowledge
extraction, we present a novel multimodal graph learning framework. This framework
enables a comprehensive mapping of diverse elements from disparate modalities onto
a unified graph structure. By emphasizing the capture of fine-grained correlations
through semantic and structural graph alignment, we achieve improved knowledge
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extraction accuracy. Additionally, we introduce a benchmark dataset specifically
designed for this task, empirically validating the efficacy of our proposed framework.

(2) A Hierarchical Multimodal Representation Learning Method: To ad-
dress the limitations of inconsistent semantic levels between individual modality rep-
resentations, we further explore the integration of hierarchical multimodal learning by
incorporating information at different granularities (e.g., from image-level to object-
level visual features and from sentence-level to concept-level textual features). By
connecting vision and language through paths within external concept graphs, we
bridge the gap between modalities, mirroring the human association process.

(3) A Robust Data Augmentation and Estimation System: To acknowledge
the detrimental impact of misalignment issue in text-image datasets, we investigate
methods for mitigating bias and distractions caused by such misalignments. Drawing
inspiration from machine translation techniques, this work employs back-translation
and divergence estimation to identify and reduce the influence of irrelevant or partially
aligned information, leading to more robust and reliable knowledge extraction.

(4) An Iterative Refined Graph Reasoning Application: To demonstrate the
generality and versatility of the extracted multimodal knowledge graph, we incorpo-
rate multi-agent debate into multimodal reasoning to facilitate iterative refinement
of knowledge representations. The proposed Blueprint Debate on Graphs framework
utilizes a graph-based structure for representing and refining knowledge, encouraging
collaboration and competition between agents to achieve a deeper understanding of
the relationships and interactions within multimodal data.

By addressing the challenges of fine-grained alignment, hierarchical learning, bias
mitigation, and iterative refinement, this research contributes to the advancement of
multimodal learning across several tasks and benchmarks, and unlocks new possibili-
ties for understanding and utilizing the rich information embedded within multimodal
data.
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Chapter 1

Introduction

1.1 Background: Multimodal Knowledge Extrac-

tion and Reasoning

Similar to the challenges face by users in the ever-expanding landscape of the World
Wide Web, where information overload become a significant hurdle, the realm of data
management and analysis also encounters a critical juncture [120]. The exponential
growth of data, encompassing structured, semi-structured, and unstructured formats,
demands innovative approaches to organize, understand, and utilize this vast informa-
tion reservoir. Knowledge graphs [50] have emerged as a powerful solution to address
this challenge, offering a means to represent and reason about knowledge in a more
structured and interconnected manner. For example, one could derive the knowledge
triplet (Joe Biden, president of, USA) from the sentence “Joe Biden serves as the
46th president of the United States”. While early knowledge representation systems
like semantic networks and ontologies lay the groundwork, the concept of knowledge
graphs gains significant traction with the introduction of Google’s Knowledge Graph
in 2012. These large-scale knowledge graphs, composed of entities and concepts as
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nodes interconnected by diverse semantic relationships, have demonstrated immense
value across a wide spectrum of real-world applications. Examples include enhanc-
ing text understanding in natural language processing, bolstering the effectiveness of
recommendation systems [29], and powering sophisticated natural language question
answering systems [73].

The majority of current knowledge extraction (KE) methods focus on extracting
entities and their relationships from purely linguistic contexts, such as sentences, em-
ploying a discriminative approach. This means they typically classify entity types
and relations from a predefined set of categories. While these methods have yielded
significant progress [86, 82], they often overlook a crucial aspect of human cogni-
tion: our perception and interaction with the world occur through a multi-sensory
system, encompassing not just language but also visual, auditory, and other sensory
inputs. This limitation restricts the ability of existing KE methods to fully capture
and understand the rich semantics underlying relationships. To illustrate, consider
the concept of parenting. A human being’s understanding of this action stems not
solely from its textual definition but also from the lived experiences of being a parent
or observing parental relationships. Similarly, without any prior visual reference, a
person might misinterpret the photographer’s request for a hand-in-waistcoat pose,
lacking the visual understanding that it refers to a specific posture with the hand
placed inside the coat flap.

On the other hand, it is important to acknowledge the domain-specific challenges
that arise when applying these techniques to different types of data. Much of the
existing work in KE focuses on the newswire domain, where language tends to be
formal, complete, and structured. However, when dealing with user-generated content
from social media platforms, these methods often encounter limitations due to the
unique characteristics of such data [86]. For example, an image accompanying a
social media post can provide visual cues that help disambiguate entity types or
clarify the meaning of informal language. Consider a post mentioning ”the GOAT,”
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The“GOAT”MESSI.

Person? Animal?

Figure 1.1: An example of multimodal named entity recognition (MNER) in social
media posts from Twitter, where “MESSI” is the name of a Person instead of an
Animal.

accompanied by a picture of Lionel Messi. The image clarifies that ”GOAT” refers
to ”Greatest Of All Time” in the context of soccer and identifies Messi as the entity
person in question. Similarly, video content can offer additional context and insights
into events or activities mentioned in the text, enriching the understanding of the
situation. By embracing a multi-modal approach, KE methods can overcome the
limitations of domain-specific challenges and unlock the rich knowledge embedded
within social media data. This not only expands the scope of knowledge extraction
but also contributes to a more comprehensive and nuanced understanding of human
communication and interaction in the digital age.
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1.2 Motivations and Contributions

Deep Neural Networks (DNNs) have revolutionized various fields, including speech
recognition [2], computer vision [37], and natural language processing [124], by demon-
strating remarkable success in learning effective feature representations from complex
data. More recently, the advent of attention mechanisms has further propelled the
ability to model intricate correlations within and across different modalities, leading
to the emergence of Attention-based Deep Neural Networks, such as transformers
[22], as a dominant paradigm for multimodal representation learning [110], sequence
modeling [116], and generation tasks [88].

Unsurprisingly, these powerful methods have also been adopted to address the
challenges of multimodal knowledge extraction [16, 17]. However, existing approaches
often fall short by treating visual and textual information separately, encoding them
individually and then employing simple fusion techniques, such as addition or con-
catenation, to combine the resulting features. This neglects the inherent ”modality
gap” – the fundamental differences in how information is represented and processed
across different modalities – leading to suboptimal performance.

Therefore, there is a pressing need to develop a universally effective multimodal
representation learning framework that can effectively harness the power of diverse
modalities for knowledge extraction. Such a framework should go beyond shallow
fusion techniques and delve deeper into understanding the interplay and interactions
between modalities, capturing the rich semantic relationships that underpin knowl-
edge representation.

This thesis aims to address the aforementioned challenges by proposing a novel
framework for learning versatile multimodal representations specifically tailored for
knowledge extraction and reasoning tasks. The core of this framework lies in a graph
learning approach that effectively unifies diverse modalities through an efficient graph
alignment strategy. Within this overarching framework, the thesis tackles three cru-
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Multimodal Knowledge Extraction and Reasoning

A Unified Multimodal 
Graph Learning 

Framework 

Fine-grained Alignment Semantic Inconsistency Data Bias and Distortion Dynamic Modeling

A Hierarchical 
Representation 

Learning Method

A Robust Data 
Augmentation and 
Estimation System

An Iterative Refined 
Graph Reasoning 

Application

Efficient Multimodal 
Graph Alignment

(MEGA)

Cross-modal Knowledge 
Retrieval
(RECK)

Translation-motivated
Multimodal Representation
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Blueprint Debate on 
Graph Reasoning

(BDoG)

Figure 1.2: This thesis delves into four critical challenges within multimodal learning
for knowledge extraction and reasoning.

cial issues inherent in multimodal learning: (1) Semantic Level Inconsistency: Bridg-
ing the gap between the inherently different semantic levels at which vision and
language operate, ensuring a coherent and meaningful representation of information
across modalities. (2) Bias and Distortion in Multimodal Alignment Data: Address-
ing potential biases and distortions present in multimodal alignment data, ensuring
the robustness and reliability of the learned representations. (3) Iterative Refined
Multimodal Graph and Its Application in Reasoning: Developing methods for dy-
namic updates of the multimodal graph, enabling adaptive learning and facilitating
complex reasoning tasks involving multimodal knowledge. The following sections will
delve deeper into each of these key challenges and present the proposed solutions for
achieving robust and versatile multimodal representations for knowledge extraction
and reasoning.
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1.2.1 A Unified Multimodal Graph Learning Framework

The task of KE is to utilize text-related modality information (e.g., image posts)
to supplement the missing semantics of short texts. In addition to the traditional
challenges of inter-modal heterogenous gap, the task of KE faces more challenges that
it need to extract the positive auxiliary knowledge from the possible noise alignment
results. The semantic shifts of alignment of different modalities in the representations
space further misleads the entity and relation inference in the text space. How to
reduce the modality gap and obtain the knowledge from the noise alignment remains
a challenging problem. Compared to those methods devoted to complicated modality
alignment strategies in representation space, modeling the inter-modal relationships
as a unified graph before representation learning leads to more accurate modality
information transition, since it captures the dependencies among diverse modalities
by directly considering them as nodes and edges.

This research introduces MEGA (Multimodal Neural Network with Efficient
Graph Alignment), a novel framework designed for knowledge extraction in social
media posts by effectively bridging the gap between visual and textual relations.
MEGA’s core innovation lies in its sophisticated graph alignment method. This
method leverages both structural similarity and semantic agreement between visual
objects in an image and textual entities in a sentence to establish correspondences.
This distinguishes MEGA from previous multimodal approaches that rely on sim-
ple concatenation of graph representations using graph convolutional networks. By
identifying the most similar nodes across visual and textual graphs based on struc-
tural and semantic features, MEGA achieves superior alignment of visual and textual
relations.
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Cap Book Uniform Man Man

University

Education

Graduation

Sentence: JFK and Obama at Harvard.
Named Entities: JFK (PER), Obama (PER), 
Harvard (ORG)

Text-based Methods:
(Residence of, JFK, Harvard)
(Residence of, Obama, Harvard)
(Spouse, JFK, Obama)

Object-level Multimodal Method:
(Member of, JFK, Harvard)
(Member of, Obama, Harvard)
(Siblings, JFK, Obama)

Concept-driven Multimodal Method:
(Graduated at, JFK, Harvard)
(Graduated at, Obama, Harvard)
(Alumni, JFK, Obama)

Object Detection

Concept Extraction

Specific

Abstract

Figure 1.3: An example of hierarchical multimodal knowledge extraction. Compared
with text-based methods, multimodal methods can extract relations with the guidance
of visual contents. Concept-driven method bridges the semantic gap between low-level
object features and high-level concept features and achieves better results.

1.2.2 A Hierarchical Representation Learning Method

When using auxiliary modality information, the core limitation of existing multi-
modal pretraining models arises from the fact that they only focus on object-level
or image-level features, ignoring that the data of each modality exhibit hierarchi-
cal structure across individual object elements. Simple concatenation of low-level
object features and textual representations proves insufficient for modeling relations
involving higher-level semantics. For instance, consider Figure 1, where an object-
level multimodal method incorrectly predicts ”member of” and ”siblings” as relations
based on extracted visual objects like ”cap,” ”book,” ”uniform,” and ”man.” This in-
accuracy stems from the semantic disparity between low-level visual features and the
high-level textual relations they aim to represent. Drawing inspiration from visual
concept detection, this research posits that bridging this semantic gap necessitates the
incorporation of high-level concepts extracted from images. In the example of Figure
1, integrating concepts like ”education,” ”university,” and ”graduation” enables the
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accurate prediction of the correct relations – ”graduated at” and ”alumni.”

To address this challenge, this work introduces RECK (REtrieval with Cross-
modal Knowledge), a novel multimodal knowledge extraction model that leverages
external concept knowledge graphs to bridge the semantic gap between vision and
language. RECK exploits the inherent hierarchical structure of knowledge graphs,
where knowledge paths connecting low-level semantic nodes often traverse through
high-level semantic nodes. These knowledge paths serve as bridges, enriching the
semantic representation and facilitating accurate knowledge extraction.

1.2.3 A Robust Data Augmentation and Estimation System

Multimodal language understanding has garnered significant interest due to its ability
to enhance semantic understanding by leveraging cross-modal inference. Notable
examples include methods for Multimodal Named Entity Recognition (MNER) and
Multimodal Relation Extraction (MRE), both of which capitalize on collaborative
reasoning based on aligning textual and visual content. However, a critical challenge
arises from the prevalence of misalignment between images and text in commonly
used datasets, such as TRC and Twitter100k, where misalignment rates can reach as
high as 60%. This misalignment introduces noise that can mislead model training
and degrade performance.

Building upon this issue, this work introduces TMR (Translation Motivated Mul-
timodal Representation learning), a framework that generates divergence-aware cross-
modal representations. TMR achieves this by incorporating two key components:
Generative Back-translation, which generates synthetic data to address misalignment,
and High-Resource Divergence Estimation, which quantifies and accounts for the de-
gree of divergence between modalities. This approach provides a robust and effective
means to mitigate the negative impact of misalignment, enhancing the reliability and
performance of multimodal language understanding models.
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1.2.4 An Iterative Refined Graph Reasoning Application

Existing inductive reasoning schemes, where agent opinions are gleaned from dis-
parate concepts at the word level and consensus is sought through bottom-up sum-
marization, often encounter two critical limitations: the trivialization of opinions and
focus diversion. While effective in confined natural language processing tasks with
limited conceptual scope, this inductive approach falters in multimodal scenarios. The
information-rich nature of certain modalities, particularly images, increases the like-
lihood of introducing distracting concepts, amplifying semantic divergence within the
context and escalating the potential for trivialization. Moreover, employing Chain-
of-Thought (CoT) reasoning in such scenarios can further exacerbate focus diversion
by amplifying the impact of potentially biased newly introduced concepts.

To address these challenges, This research proposes a novel deductive reasoning
scheme called BDoG (Blueprint Debate on Graph). Inspired by real-world blueprint
debates, which emphasize the evaluation and refinement of a proposal (the blueprint)
to address specific issues, BDoG adopts a top-down reasoning approach. It begins by
aggregating concepts from various modalities and incorporating their relationships
into an initial graph, serving as a blueprint that delimits the scope of discussion
and prevents the infiltration of irrelevant semantics. Crucially, BDoG conducts the
debate by marking down conclusions directly on the graph, thereby preserving specific
concepts and mitigating the risk of trivialization through the merging of concepts
into generalized representations. This deductive approach ensures a more focused
and coherent reasoning process, effectively mitigating the challenges of trivialization
and focus diversion inherent in inductive multimodal reasoning schemes.
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1.3 Outline of the Thesis

This thesis explores the frontiers of multimodal knowledge extraction and reasoning,
addressing key challenges and proposing novel solutions within a unified framework.
Figure 1 provides a visual overview of the research landscape and the contributions
of this work. The thesis introduces a comprehensive graph learning framework for
multimodal knowledge extraction and explores three crucial strategies to tackle the
challenges of hierarchical learning, bias mitigation, and iterative refinement. The
remainder of this thesis is structured as follows.

Chapter 2 reviews the foundations of traditional knowledge extraction techniques
and delves into the advancements in multimodal learning methods relevant to knowl-
edge extraction and reasoning. It provides a comprehensive overview of the state-of-
the-art and sets the stage for the subsequent contributions of this thesis.

Chapter 3 introduces MEGA (Multimodal Neural Network with Efficient Graph
Alignment), a unified graph learning framework designed for efficient and effective
knowledge extraction from multimodal data. The core of MEGA lies in its novel
graph alignment strategy, which leverages both semantic and structural similarities
to establish robust correspondences between visual and textual modalities.

Chapter 4 tackles the challenge of semantic inconsistency between vision and lan-
guage, advocating for a hierarchical multimodal learning approach. It introduces
RECK (RElation extraction with Cross-modal Knowledge), a method that utilizes
external concept knowledge graphs to bridge the semantic gap by establishing con-
nections between visual and textual concepts through semantically rich knowledge
paths. Further enhancing RECK, a graph attention mechanism is incorporated to
model multi-grained multimodal information within relevant subgraphs.

Chapter 5 addresses the problem of bias and distractions arising from data mis-
alignment in multimodal knowledge extraction. It presents TMR (Translation Moti-
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vated Multimodal Representation learning), a robust and reliable technique inspired
by the principles of back-translation in machine translation. TMR leverages gen-
erative models, such as stable diffusion, to generate additional visual content that
complements the missing semantics in misaligned data. Additionally, a pretrained
vision-language model is employed to estimate the divergence caused by misalign-
ment, facilitating precise modality fusion.

Chapter 6 extends the utility of extracted multimodal knowledge graphs to the
realm of multimodal reasoning. It proposes a novel approach that incorporates multi-
agent debate to iteratively refine the initial static and coarse knowledge graph (the
blueprint). The collaborative and competitive interactions between agents foster a
deeper understanding of the knowledge, leading to more refined and insightful rea-
soning outcomes.

The final chapter concludes the thesis, summarizing the key contributions and
highlighting potential future research directions in the field of multimodal knowledge
extraction and reasoning. It underscores the significance of the proposed framework
and strategies in advancing the understanding and utilization of multimodal data for
knowledge acquisition and intelligent reasoning.

11



Chapter 2

Literature Review

In this chapter, we provide a comprehensive review of the literature related to mul-
timodal knowledge extraction and reasoning tasks. We will further discuss on the
advanced multimodal techniques that we utilized in this thesis. This taxonomy will
help elucidate the relationships between various contributions and highlight the ad-
vancements in these fields.

2.1 Multimodal Knowledge Extraction and Rea-

soning

2.1.1 Traditional Knowledge Extraction Methods

Named Entity Recognition

Named Entity Recognition (NER) is a fundamental task in Natural Language Pro-
cessing (NLP) that involves identifying and classifying named entities in text, such
as people, locations, organizations, and products. NER plays a crucial role in various
applications, such as information retrieval [109], question answering [72], and senti-
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ment analysis. It has gained significant attention from researchers due to its impact
on downstream NLP tasks, such as relation extraction and entity linking.

Neural models have been proposed and achieved state-of-the-art performance in
various domains and datasets. For instance, the End-to-End Neural Entity Recogni-
tion model proposed by Ma and Hovy [76] achieved state-of-the-art performance on
the CoNLL 2003 dataset. Similarly, the neural architecture proposed by Devlin et
al. [22], known as BERT (Bidirectional Encoder Representations from Transformers),
has achieved state-of-the-art results on various NLP tasks, including NER.

However, recognizing named entities in social media is challenging due to the
short and noisy nature of social media posts. For instance, tweets are limited to 280
characters, and users often use slang, misspellings, and abbreviations. These factors
lead to a significant deterioration in NER performance on social media.

To address this challenge, researchers have proposed various models that incor-
porate tweet-specific features such as at-mentions, hashtags, URLs, and emotions
obtained using a new labeling scheme. For instance, Gimple et al. [26] proposed a
model that incorporates tweet-specific features to improve NER performance on social
media. Ritter et al. [86] proposed a T-NER system that uses LabeledLDA to exploit
Freebase dictionaries as a source of distant supervision. However, their method only
identifies whether a span is an entity or not.

Recent studies have reported performance gains by leveraging external sources of
information, such as lexical information and several preprocessing steps. For instance,
Baldwin et al. [8] proposed a shared task that aims to improve NER performance
on social media by leveraging external sources of information. Similarly, Aguilar et
al. [5] proposed a multi-channel neural architecture that uses multiple sources of
information to improve NER performance.

Moreover, people frequently share their daily lives in social media using text and
image posts. Visual content can assist in recognizing named entities. Moon et al. [80]
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and Zhang et al. [123] proposed leveraging visual information to extract entities, and
the visual content and textual representations are related by an attention mechanism.
However, these models represent an image with a single vector trained with only one
semantic label, which limits their ability to recognize multiple entities with different
types.

Relation Extraction

Relation extraction is a critical task in Natural Language Processing (NLP), which
aims to identify and classify the semantic relationships between entities in text. This
task is essential in constructing a knowledge graph, which represents entities and
their relationships in a structured format. In recent years, there has been signifi-
cant progress in relation extraction due to the advancements in neural network-based
methods.

Early approaches to relation extraction were based on statistical methods, such
as kernel-based and distant supervision methods. However, these methods have lim-
itations in handling complex relations and suffer from low recall and precision rates.
Sequence-based methods have been proposed to address these limitations. Convolu-
tional neural networks, recurrent neural networks, and transformers have been uti-
lized to improve relation extraction performance. For instance, Wang et al. [104]
proposed a CNN-based model for relation extraction, which achieved state-of-the-
art performance on the SemEval 2010 Task 8 dataset [40]. Similarly, Zhang et al.
[125] proposed a position-aware attention-based RNN model that achieved competi-
tive performance on the same dataset. BERT, a transformer-based language model,
has recently been used for pretraining and fine-tuning for relation extraction tasks,
achieving significant improvements in performance.

Dependency-based models have also been proposed to incorporate structural in-
formation into predicting relations. These models use dependency parsing to capture
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syntactic and semantic relationships between entities. Compared to sequence-based
methods, dependency-based models are better at capturing information from long dis-
tances, such as cross-sentence relations. Various studies have proposed dependency-
based models [30], such as a framework for cross-sentence n-array relation extraction
based on graph LSTMs, a graph recurrent neural network, and a path-centric prun-
ing strategy with graph convolutional networks. Guo et al. [31] further improved the
method by incorporating attentive graph weights.

Despite the success of using dependency or external information, most existing
methods suffer from performance decline when handling social media texts with sparse
context. Social media posts, such as tweets, are typically short and contain informal
language, slang, and emojis, which pose significant challenges for relation extraction.
There is a need for more research in relation extraction on social media. Liu et al.
[71] proposed a research direction for relation extraction on social media, and Brown
et al. [10] discussed the challenges and errors in relation extraction on social media.

In conclusion, relation extraction is a crucial task in NLP that has gained sig-
nificant attention from researchers in recent years. Neural network-based methods,
such as CNNs, RNNs, transformers, and graph-based models, have shown promising
results in improving relation extraction performance. However, there is a need for
more research in handling social media texts with sparse context.

2.1.2 Multimodal Knowledge Extraction Methods

Multimodal Named Entity Recognition

Social media platforms such as Twitter and Instagram contain a vast amount of user-
generated content, encompassing a variety of topics, including news, entertainment,
and personal experiences. This data can provide valuable insights into human behav-
ior, such as sentiment analysis, opinion mining, and trend analysis. Named Entity
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Figure 2.1: An example of the Twitter dataset. The visual object with label “person”
will lead to the detection of “Ang Lee” as PER category, and objects with “trophy”
will lead to the extraction of “Oscars” as the name of an award (MISC). The object
“bottle” is irrelevant to entities in this post.

Recognition (NER) is a critical step in mining social media data as it allows for
the identification and classification of named entities, such as people, organizations,
locations, and products.

However, traditional neural-based NER models have limitations when it comes to
social media data. Social media texts are usually short and informal, lack context,
and are full of ambiguous expressions. For example, the sentence ”I’m dying to try
that new restaurant” could mean that the person is excited to try the restaurant
or that they are literally dying and want to try the restaurant before they pass
away. Therefore, to accurately identify named entities in social media data, additional
methods are needed.

One approach to address this issue is to identify entities with external knowledge
bases. For example, Ritter et al. [87] proposed a distantly supervised method that
leverages a large amount of unlabeled data and large dictionaries to identify named
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entities. Li et al. [56] introduced an iterative method to split tweets into meaningful
segments and evaluate the method on the NER task. However, these text-based
methods rely solely on text data and cannot effectively identify named entities and
their types when lacking textual context.

Therefore, current developments in deep learning and representation learning have
led to the proposal of neural network-based multimodal NER methods. These meth-
ods utilize both image and text information for predicting named entities in social
media. For example, Zhang et al. [123] proposed an adaptive multimodal method
that combines the representations of visual objects and text to predict named enti-
ties. Moon et al. [80] proposed a multimodal neural network that learns to align
visual and textual features for named entity recognition. Lin et al. [67] proposed
a multi-task learning framework that jointly models named entity recognition and
image classification for social media data.

However, these methods have limitations. The first limitation is that they ignore
the mapping relations between visual objects and named entities. For example, in the
sentence ”Ang Lee wins Oscars”, the visual object with the label ”person” is related
to the named entity ”Ang Lee”, and the object ”trophy” is related to the named entity
”Oscars”. Previous multimodal NER methods representing the image with only one
vector trained on one semantic label will mislead their models to extract different
types of entities into the same type, resulting in inaccurate predictions.

Therefore, it is essential to utilize object-level features to distinguish entities with
different types and extract entities accurately. For example, Lu et al. [72] proposed a
visual-semantic embedding method that jointly learns image and text representations
to capture the mapping relations between visual objects and named entities.

Another limitation is that previous works ignore the distribution disparity of image
and text features. The distributions of image and text features are different, making
it challenging to align named entities with image regions accurately. Therefore, a
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Figure 2.2: General idea to achieve an improved, modality-invariant subspace em-
bedding with adversarial training. Shapes of the same color are semantically similar.

more effective method should be derived to bridge the distribution gaps for robust
multimodal representations in the social media NER task. For example, Huang et al.
[47] proposed a multi-attention network that learns to align image and text features
at different granularities for named entity recognition.

In summary, social media data provides valuable information for understanding
human behavior, and named entity recognition is a critical step in mining this data.
Traditional neural-based NER models have limitations when it comes to social media
data, and current developments in deep learning and representation learning have
led to the proposal of multimodal NER methods that utilize both image and text
information. However, these methods have limitations that need to be addressed to
accurately identify named entities in social media data.

Multimodal Relation Extraction

Relation Extraction (RE) is a natural language processing task that involves identify-
ing and extracting relationships between named entities in a sentence. Named entities
can be anything from people, organizations, and locations to products, events, and
concepts. The task of RE plays a critical role in various applications, such as question-
answering systems, information retrieval, and knowledge graph construction.
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Traditional RE methods, such as kernel-based or embedding methods, rely on
human-annotated data, which is time-consuming and challenging to generalize well.
Therefore, researchers have proposed neural network-based methods that achieve
great success in different feature extractors. These methods use a combination of
convolutional and recurrent neural networks to learn contextual embeddings of enti-
ties and relations.

However, most of these methods focus on the newswire domain, where sentences
are formal and complete. In contrast, social media posts are often short and lack
context, making it challenging to identify relations accurately. Therefore, researchers
have proposed distant supervision, which leverages the alignment of knowledge bases
and texts in sentences to automatically annotate relations. Distant supervision is a
semi-supervised learning approach that uses existing knowledge bases to label relation
instances in text corpora. However, distant supervision suffers from the problem of
wrong labeling, which is even worse when contexts are missing.

To address this issue, researchers have proposed multimodal methods that combine
visual information with text to supplement the missing semantic information. Visual
contents, such as images, can provide additional context to improve the performance
of identifying relations. For example, in a sentence like ”Steve Jobs founded Apple,”
the image of an apple can provide additional context to distinguish the named entity
”Apple” from the fruit.

Researchers have proposed several multimodal neural relation extraction models
that use both visual and textual features to identify relations accurately. For example,
Zhang et al. [124] proposed a multimodal network that uses both text and image
features to extract relations. The network first extracts visual features from images
and textual features from text, then combines them to predict the relation between
named entities.

However, the alignment of vision and language is a significant challenge in multi-
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modal relation extraction. The current methods rely on the simple concatenation of
representation vectors, which cannot effectively model the relationship of higher level
semantics. Therefore, researchers have envisaged a range of well-designed methods
and resources for such a challenge that would boost the development of multimodal
alignment towards a higher semantic level. For example, Li et al. [60] proposed
a method that uses a visual-semantic embedding to capture the mapping relations
between visual objects and named entities.

In summary, multimodal relation extraction is an emerging field that combines
visual and textual features to identify relations accurately. Traditional RE methods
rely on human-annotated data and are time-consuming and challenging to generalize.
Distant supervision is a semi-supervised learning approach that leverages the align-
ment of knowledge bases and texts in sentences to automatically annotate relations.
However, distant supervision suffers from the problem of wrong labeling, which is
even worse when contexts are missing. Therefore, researchers have proposed multi-
modal methods that combine visual and textual features to supplement the missing
semantic information. The alignment of vision and language is a significant challenge
in multimodal relation extraction, and researchers have proposed various methods to
address this challenge.

2.1.3 Multimodal Reasoning

Multimodal reasoning is a crucial component in the development of advanced artifi-
cial intelligence (AI) systems that aim to replicate human-like intelligence [73]. This
type of reasoning enables AI systems to process and analyze information from var-
ious sources and forms, such as text, images, audio, and video, in a integrated and
coordinated manner [81, 11]. The latest advancements in multimodal large language
models, such as BLIP2 [58], KOSMOS [48] and LLaVA [68] have demonstrated sig-
nificant progress in complex reasoning, as these models [126] now have the capability
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to generate step-by-step rationales prior to producing the final answer, following a
chain-of-thought (CoT) manner. Zheng et al. [132] propose a duty-distinct prompt-
ing method wherein questions are decomposed into sub-questions to enable deep-layer
reasoning. SCITUNE [43] and T-SciQ [103] aim to teach large language models to an-
swer science questions via the generation of mixed rationales derived from both large
pretrained models and human annotators. Chameleon [74] accomplishes complex
multimodal reasoning tasks by integrating various external tools (e.g., large language
models, off-the-shelf vision models, and web search engines).

To mitigate the susceptible error in CoT reasoning, Shinn et al. [92] and Madaan
et al. [77] employ model to reflect on task feedback signals that can induce better
decision-making in subsequent trials. [131] exploit previously generated answer as
hint to progressively guide towards correct answer. Although these methods effec-
tively enhance the performance of LLM, they struggle to produce novel ideas once
they have determined a response, as they rely solely on internal representations for
generation [46]. Researchers are currently developing multi-agent collaborative sys-
tems to address above issues in pure-textual scenarios [115]. By designing these
systems, large language models (LLMs) can work together to complete tasks or en-
gage in productive debates by offering contrasting perspectives [64, 13, 24]. Zhang et
al. [121] further reveal the collaboration mechanism from a social psychology view.
This thesis represents an initial endeavor to expand upon this method to facilitate
multimodal reasoning. By incorporating multiple perspectives from different multi-
modal language models, we can help address some of the limitations of individual
models.

Prior research has investigated the integration of structured graphs, such as knowl-
edge graphs (KGs), into large language models (LLMs) by embedding the knowledge
into the underlying neural networks [65, 106]. Nevertheless, embedding KGs within
LLMs may compromise the inherent explainability and adaptability associated with
knowledge reasoning and updating [44]. To tackle these challenges, recent studies have
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put forth innovative solutions. Li et al. [62] propose an adaptive query generator,
facilitating the creation of queries across various query languages (e.g., SPARQL)
to infer rationales. Wang et al. [102] devise a structured multi-round question-
answering (QA) format, which extracts external knowledge and generates coherent
reasoning traces grounded in precise answers. Sun et al. [95] introduce Think-on-
Graph (ToG), a method that sequentially reasons over KGs to locate relevant triples,
thereby supporting the LLM in predicting the final answer. In the context of multi-
modal reasoning, CCoT [78] substitutes the rationale generation process with scene
graph extraction to enhance the compositional capabilities of large multimodal mod-
els. KAM-CoT [79], on the other hand, incorporates external KGs during the two-
stage training process, yielding state-of-the-art fine-tuning outcomes in multimodal
reasoning. In contrast to existing methods that utilize static graphs, our proposed
BDoG preserves the dynamics and precision of KGs through iterative updates of
entities, attributes, and relationships, guided by a blueprint debate process.

2.2 Related Advanced Multimodal Learning Tech-

niques

2.2.1 Multimodal Pre-Training

Vision-language pretraining models are large-scale pretrained models that are capa-
ble of learning universal cross-modal representations by combining the strengths of
computer vision and natural language processing. Two of the most popular PTMs are
BERT and ViT [61], which have demonstrated remarkable success in representative
learning and have become a milestone in machine learning.

The success of PTMs in computer vision and natural language processing has
led to the development of multimodal PTMs that aim to extend this representation
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learning to the multimodal domain. These models, such as VinVL [122], VIL-T [53],
and DALL-E 2, can significantly improve the performance of downstream multimodal
tasks, such as visual question answering and image captioning.

However, despite the remarkable success of these models, text-image misalign-
ment has rarely been studied, even though it is critical in real-world applications.
Text-image misalignment refers to the mismatch between the textual and visual in-
formation, which can occur due to various factors such as image quality, description
quality, and context. As a result, bridging the gap between text and image is a cru-
cial challenge that needs to be addressed for vision-language pretraining models to
be more effective in real-world applications.

To address the challenge of text-image misalignment, recent studies have proposed
various approaches for vision-language pretraining models. One approach is to use
contrastive learning to align the text and image features in a shared embedding space.
This can be achieved by using different types of contrastive losses, such as InfoNCE
[83], SimCLR [15], and MoCo [37], which aim to maximize the similarity between the
positive image-text pairs while minimizing the similarity between the negative pairs.

Another approach is to use cross-modal attention mechanisms that can selec-
tively attend to relevant regions in the image and text. This can be achieved by
using different types of attention mechanisms, such as self-attention, cross-attention,
and multi-modal attention, which can learn to attend to relevant visual and textual
information while filtering out irrelevant information.

Moreover, some studies have proposed to incorporate additional modalities, such
as audio and video, to improve the alignment between text and image. This can be
achieved by using different types of fusion techniques, such as early fusion, late fusion,
and cross-modal fusion, which can combine the different modalities in a meaningful
way to improve the performance of the vision-language pretraining models.

Overall, the development of these approaches has shown promising results in ad-
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dressing the challenge of text-image misalignment, and it is expected that future
research will continue to explore and improve upon these methods to help vision-
language pretraining models become more effective in real-world applications.

One of the challenges in developing effective vision-language pretraining models is
the lack of large-scale multimodal datasets that capture the complexity and diversity
of real-world multimodal data. To address this, recent studies have proposed the
creation of large-scale datasets, such as Conceptual Captions, VQA, and COCO,
which provide a rich source of annotated data for training and evaluating vision-
language pretraining models.

Another challenge is the computational cost of training large-scale vision-language
pretraining models. To address this, recent studies have proposed various techniques,
such as distillation, knowledge transfer, and model compression, which aim to reduce
the computational cost of training and deploying these models without sacrificing
their performance.

Moreover, vision-language pretraining models have shown promising results in
a wide range of applications, such as image captioning, visual question answering,
and image retrieval. For example, recent studies have shown that vision-language
pretraining models can generate more semantically meaningful captions and achieve
state-of-the-art performance in image retrieval and visual question answering tasks.

In summary, the development of effective vision-language pretraining models is a
rapidly evolving field that has shown remarkable progress and potential in bridging
the gap between text and image. As the field continues to advance, it is expected
that vision-language pretraining models will become more effective and applicable in
a wide range of real-world applications.
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2.2.2 Multimodal Generative Models

Generative diffusion models are a powerful class of generative models that can be used
for a variety of downstream applications, including image synthesis, video generation,
and molecular generation. They work by modeling the diffusion process of noise
through a sequence of steps, where the noise is progressively transformed into the
desired output.

One of the key advantages of diffusion models is their ability to generate high-
quality, photorealistic images that closely resemble real-world images. This has been
demonstrated in recent studies, such as BigGAN [9] and StyleGAN [1], which use
diffusion models to generate high-quality images that are visually indistinguishable
from real images.

Moreover, diffusion models have also been used to generate other types of data
such as videos and molecules. For example, the recent work of Ho et al. [42] proposed
a diffusion-based method for video generation that can generate high-quality videos
with realistic motion and appearance. In the field of chemistry, diffusion models have
been used to generate molecular structures and predict chemical reactions.

Furthermore, diffusion models have also been used for data augmentation and
denoising tasks. For example, the recent work of Sohl-Dickstein et al. [94] proposed
a diffusion-based method for denoising images, which can recover high-quality images
from noisy inputs. Additionally, diffusion models have been used for data augmenta-
tion tasks in computer vision, such as image inpainting and super-resolution.

Overall, the development of generative diffusion models has shown remarkable
progress and potential in various domains, and it is expected that future research will
continue to explore and improve upon these models to help advance a wide range of
applications.
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2.3 Conclusion

In conclusion, the literature on multimodal knowledge extraction and multimodal
reasoning techniques reveals a rich and evolving landscape of research that addresses
the complexities of processing and understanding information from multiple sources.
The advancements in Named Entity Recognition and Relation Extraction have laid
the groundwork for more sophisticated approaches that leverage multimodal data,
particularly in the context of social media.

The integration of visual information into NER and RE tasks has shown promise
in enhancing performance, but challenges remain in aligning and interpreting the re-
lationships between different modalities. The emergence of multimodal pre-training,
generative diffusion models, and multimodal reasoning further underscores the po-
tential of combining diverse data types to improve AI systems’ capabilities.

As the field continues to evolve, ongoing research will be essential in addressing
the challenges of multimodal knowledge extraction, including the need for better
alignment techniques, high-quality datasets, and interpretable models. By tackling
these challenges, researchers can unlock the full potential of multimodal learning and
knowledge extraction, paving the way for more intelligent and capable AI systems
that can understand and interact with the world in a more human-like manner.
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A Unified Graph Multimodal
Learning Framework for
Knowledge Extraction

3.1 Introduction

The undertaking of knowledge extraction aims to ascertain the semantic connections
between two entities in an utterance. Knowledge extraction plays a crucial role in
many applications necessitating comprehension of relationships such as question an-
swering [4] and knowledge base population [49]. The majority of extant knowledge ex-
traction methods can be dichotomized into two categories: sequence-dependent mod-
els and dependency-dependent models. Compared with sequence-dependent models,
dependency-dependent methods can capture long-distance semantic dependency and
commonly achieve superior performance.

However, these methods primarily hinge on text and suffer a precipitous perfor-
mance decline in social media posts lacking context. For instance, in an utterance
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man

hair

trophy

cup

holding

has

front 

actor

Oscar

Ang Lee

Awarded

Sentence: Forget the dresses, Ang 

Lee [PER] is my favorite Oscar 

[MISC] actor.

Detected objects: man, trophy, 

hair, cup

Relation: <Ang Lee, Awarded, 

Oscar>

Relation Mapping

Figure 3.1: An example of multimodal relation extraction in Twitter. The mappings
from visual contents “man holding a trophy” to textual entities “Ang Lee” and “Os-
car” will lead to the extraction of textual relation “awarded”.

”JFK and Obama at Harvard”, given two entities ”JFK” and ”Obama”, traditional
methods can hardly detect the relation between them is ”Alumni” without other sup-
plementary information. Consequently, most methods will incorrectly extract the
relation ”couple” of the two entities since most cases in training data are labeled
with such tags. We find that image-related information can supplement the missing
context in relation extraction in social media texts. In the aforementioned case, we
can effortlessly classify the relation into ”Alumni” with an image demonstrating that
the two individuals don bachelor caps and the same school uniforms.

Exploiting visual contents to complement textual contexts has become a research
hotspot in recent studies involving multimodal learning. Multimodal named entity
recognition is one of the tasks necessitating comprehension of both vision and lan-
guage. Zhang et al. [123] propose an adaptive co-attention network which utilizes
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image-level region features to assist extracting entities in tweets. Wu et al. [110]
consider object-level features as fine-grained features and provide a novel attention
method to align visual objects and textual entities. Dissimilar from the multimodal
named entity recognition task, introducing visual information into knowledge extrac-
tion asks models not only to capture the correlations between visual objects and tex-
tual entities but also to focus on the mappings from visual relations between objects
in an image to textual relations between entities in an utterance.

In this work, we study multimodal relation extraction (MRE), a specific task of
knowledge extraction which classifies textual relations between two entities with the
assistance of visual contents. Since there is no available dataset for training and
evaluating MRE models, we present the MNRE dataset, a manually-labelled dataset
for multimodal neural relation extraction. The corpus consists of texts and image
posts crawled from Twitter. Four well-educated annotators were asked to tag both
the entities and their relations. Owing to the noisy nature of social media texts and
the limited characters of tweets, MNRE is a challenge dataset to test the multimodal
representation, fusion and reasoning abilities of existing methods.

To learn the mapping from visual relations to textual relations, we propose a Uni-
fied Multimodal Graph Learning Framework - MEGA for relation extraction in social
media posts. Following the success of dependency-dependent RE methods [10], we
parse the utterances with a dependency tree tool. Considering scene graphs can rep-
resent images in a fine-grained manner and analyze relations with a graph structure,
we apply a pretrained scene graph model to extract visual objects and their relations
preliminarily. To capture the relation mapping from visual contents (”man holding a
trophy”) to textual relations (”Ang Lee is awarded for Oscar”), we propose a graph
alignment method that incorporates structural similarity and semantic agreement
between visual objects in an image and textual entities in an utterance. Unlike pre-
vious multimodal methods simply concatenating the graph representations [123], our
method can find the most similar nodes between two graphs with structural and se-
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mantic features, resulting in superior alignment of textual and visual relations. The
corresponding visual relations can assist our model identify textual relations more
precisely.

3.2 Problem Statement

Definition 1. (Multimodal Relation Extraction): Given a social media post
with text t and image v, and a pair of entities (e1, e2) in t, extract their relation r ∈ R

where R is a predefined set of relation types.

3.3 The Proposed Framework: MEGA

In this section, we introduce the MEGA model for multimodal relation extraction,
which is shown in Figure 3.2. In order to build the model, our work can be summarized
as the following steps: (1) First, we extract the textual semantic representations with
a pretrained BERT encoder. Besides, we generate the scene graphs from images which
provide rich visual information including visual objects features and visual relations
among the objects. To represent the semantics of images, we regard the object features
in the extracted scene graph as the visual semantic features. (2) Secondly, to acquire
the structural representations, we obtain the syntax dependency tree of the input texts
which models the syntax structure of textual information. The visual object relations
extracted by scene graph can be constructed as a structural graph representation. (3)
Thirdly, to make good use of image information for multimodal relation extraction,
we respectively align the structural and semantic information of multimodal features
to capture the multi-perspective correlation between multimodal information. Then,
we effectively merge the two aligned results. (4) Finally, we concatenate the textual
representations which represent the two entities and the aligned visual representation
as the fusion feature of text and image to predict the relations of entities.

30



3.3. The Proposed Framework: MEGA

Forget the dresses, Ang 
Lee[PER] is my favorite 
Oscar[MISC] actor.

Parsed Scene Graph

Syntax Dependency Tree

Multimodal Graph Structural Alignment

1 2 3 4 5 6
1
2
3
4
5

Structure Alignment Map

2
3

1

4
5
6

2
3

1

4
5

Textual Semantic Representation

Multimodal Semantic Alignment

Q

K

1 2 3 4 5 6
1
2
3
4
5

Attention Map

2 1

5 2
…

Structure Aligned Weight

Semantic Aligned Weight

…

Textual Semantic Representation

Multimodal Feature Fusion & Prediction

Aligned Visual Representation

Concatenate

Relation Predictor

Relation: ‘per/misc/awarded’

Input Text

Input Image

Entity Representation

Ent 1

Ent 2

  Ang
Lee

is

my

favorite
Oscar

actor









man

hair

trophy

man

cup

has

holding

in front of

  man

  man   hair

  trophy  cup

Figure 3.2: The Overall Framework of Our Proposed MEGA Model. Our Model In-
troduces Visual Information into Predicting Textual Relations. Besides, We leverages
the Graph Structural Alignment and Semantic Alignment to Help Model Find the
Mapping From Visual Relations to Textual Contents.

3.3.1 Semantic Feature Representation

Textual Semantic Representation

In the MNRE dataset, each piece of data contains a text message and an correspond-
ing image from the social media posts, which is used as the input of our model. The
input text message is first tokenized into a token sequence s1. Then, to fit the BERT
encoding procedure, we add the token ’[CLS]’ to the head of the sequence and the
token ’[SEP]’ to the tail as well. In addition, following Soares et al.[93], we augment
the s1 with four reserved word pieces, [E1start], [E1end], [E2start] and [E2end] to mark
the begin and end of each entity mentioned in the relation statement and modify s1

to sequence s̃1 as shown in Eq. (3.1),

s̃1 =[w1, ..., [E1start], wi, ..., wi+n1−1, [E1end]

, ..., [E2start], wj, ..., wj+n2−1, [E2end], ..., wl]
(3.1)
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where i and j denotes the start position of the first and second entity respectively.
n1 represents the length of the first entity while n2 denotes the length of the second
one. Besides, the token sequence are trimmed to a maximum length l. We pad the
sample sequence which has less than l tokens to maximum length by [PAD] token.

Besides, we set a segment sequence to represent the segmentation of the valid to-
kens and [PAD] tokens. The segment sequence can be denoted as s2 = (1, 1, ..., 1, ..., 0, 0),
where 1 represents the token which is not a padding one, 0 represents the [PAD] token.
Therefore, the length of s2 is l the same as s̃1.

Following the success of Lample et al. [54], Ma and Hovy [75] , we represent
each word in a input text message by combining character embedding into word
embedding to obtain its textual features. We fine-tune the pre-trained BERT to get
the embedding for each token in the sequence. The two sequences s̃1, s2 are fed into
BERT to generate the embeddings. After that, each word is further transformed into
a vector of dx dimensions. And we can obtain the textual semantic representation by
transforming the whole text message into a matrix X ∈ Rl×dx , which is denoted in
Eq. (3.2),

X = BERT (s̃1, s2) (3.2)

where BERT denotes the BERT Encoder.

Visual Semantic Representation

Object-level visual features are considered as bottom-up manners in several multi-
modal tasks [6] to represents the image information. Therefore, we obtain the visual
semantic feature by extracting the objects representation to represents the semantic
of input image. In order to extract the objects from images, the input image is fed
into the pre-trained scene graph generation model(with Faster R-CNN[85] as its back-
bone) to generate the scene graph of input image. An scene graph contains several
nodes and edges connecting related nodes. The node contains the object features as
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its inner information, while the edges model the visual relation such as holding and
wearing between different objects. In order to assist the entities relation extraction,
we exploit the effective visual information while ignoring the irrelevant ones. Thus,
we solely consider the top m salient objects with the higher object classification scores
as the valid visual objects for further processing.

The input image is represented as a set of regional visual features in a bottom-
up manner contained in the extracted scene graph. Each regional visual feature
represents an object in the image with a vector yi in dimension dy . We set a confidence
threshold to the probabilities of detected objects and obtain the top m objects for
each image. Finally, an input image is transformed to a matrix Y . If the number of
detected objects in an image is less than m, we would zero-pad Y to the maximum
size m.

Y = [y1, y2, ..., ym]m×dy (3.3)

3.3.2 Structural Feature Representation

In some previous works, the structure of the sentences (i.e., dependency trees) can
provide important information which is benefit for the relation extraction models.
Inspired by this, we generate two unidirectional graphs for the input text and image
by using syntax dependency tree and scene graph generation model, which can provide
the structural information to help multimodal relation extraction. It is notable that
the visual object features plays the role as the node features in the scene graph.

Syntax Dependency Tree

Dependency tree is a structure used to express the dependency between words in a
sentence. It has been shown in many previous work that the dependency trees can
provide important information/features for the relation extraction. Each dependency
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Forget the dresses , Ang Lee is my favorite Oscar actor            .
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dep
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Figure 3.3: The Input Text Message is Performed by Syntactic Dependency Parsing.
The Word actor is the Root Node of Dependency Relations while the Words in Blue
(e.g., dep, obj) are Dependency Relations. The Direction of Arrow Indicates that
There is a Relation Between the Two Words.

corresponding to two words from a sentence can be represented as a triple as Eq.
(3.4):

Rdependency = (wg, rtype, wd) (3.4)

where wg is the governor, wd is the dependent and rtype shows how the dependent
modifies the governor. We use ELMo [84], a common dependency tree extraction tool
to obtain the dependency tree for the input text after which each word from the text
is connected by its governor and obtains its related dependency triple. For example,
the sentence Forget the dresses, Ang Lee is my favorite Oscar actor. is parsed to
obtain the relations between words(e.g., amod, cop), as shown in Figure 3.3. The
words in blue are the dependency relations. The ending of arrow indicates that this
word is a dependent as well as a modifier. The word root in purple is used to indicate
which word is the root node of dependency relations. Since each word is connected
directly by another word in the text, the graph representation of the text is generated
as G1, which consists several relation pairs among the words.

V1 = {ti|i ∈ [1, l0]} (3.5)
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E1 = {ei = [t∗i , ti]|i ∈ [1, l0]} (3.6)

G1 = (V1, E1) (3.7)

ti represents the node corresponding to the ith token in the original text message
which are not padded. t∗i represents the governor of the ith token. l0 represents the
length of token sequence.

Scene Graph Generation

We obtain m objects and the visual relation between them from the input image by
scene graph generation model. Since every relation between two objects is unidirec-
tional, similar to the dependency tree, each object is also pointed by its governors
from the image. Therefore, we can obtain the graph representation G2 of the input
image. G2 consists several relation pairs of objects detected in the image and can be
denoted as follows:

V2 = {oj|j ∈ [1,m0]} (3.8)

E2 = {ej,jr = [oj, o
∗
jr ]|j ∈ [1,m0], jr ∈ [0, r]} (3.9)

G2 = (V2, E2) (3.10)

where oj represents the node corresponding to the jth object detected in the image.
m0 represents the number of detected objects. o∗jr denotes the jrth object which is
related to jth object. r ∈ [0,m0 − 1] denotes the dynamic number of objects related
to the jth object. After generating G1 and G2, we obtain the graph representation
of the input text and image.

3.3.3 Multimodal Feature Alignment

To make full use of the obtained multimodal representation, we align the two graphs
above from the structural perspective and use attention mechanism to align the tex-
tual and visual features from the semantic perspective.
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Algorithm 1 Multimodal Graph Alignment
Input: Text graph Gt, Visual graph Gv

Output: Aligned graph Ga

1: Initialize alignment matrix A ∈ R|Vt|×|Vv |

2: for each node pair (vt, vv) ∈ Vt × Vv do
3: Aij ← α · simstruct(vt, vv) + (1− α) · simsem(vt, vv)

4: end for
5: Ga ← GraphFusion(Gt, Gv, A) return Ga

Graph Structure Alignment

We exploit the node and edge information to extract the structure similarity of mul-
timodal graph representation for structural alignment. First, as shown in Equation
(7) and (10), we set G1(V1, E1) and G2(V2, E2) as two graphs mentioned above with
node sets V1 and V2; edges sets E1 and E2 respectively. Let n be the number of nodes
among two graphs, which means n = |V1|+ |V2|. The steps of structure alignment can
be summarized as follows: (1) obtain the node embeddings, conceptually by factor-
izing a similarity matrix of the node identities; (2) align nodes between two graphs
by greedily matching the embeddings with an efficient data structure that allows for
fast identification of the most similar embeddings from the other graph.

Following [39], we first set V1 and V2 into a union U shown as Eq. (3.11). In
order to extract the node structural identity, we compute the counts of node degrees,
including both in and out degrees of k-hop neighbors for each node u in U , which is
shown as Eq. (3.11) and Eq. (3.12),

U = V1 ∪ V2 (3.11)

dku = CountDegreeDistributions(Rk
u) (3.12)

du =
K∑

k=1

δk−1dku (3.13)
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where k ∈ [1, K], K is a graph diameter set by us and δ ∈ (0, 1] is a discount factor.
And we compute the similarity between node a and node b in U as Eq. (3.14),

sim(a, b) = exp[−γs · ||da − db||22] (3.14)

where γs is a scalar parameter controlling the effect of the structural identity. Then,
we randomly select p ≪ n “landmark” nodes chosen across both graphs G1 and G2

and compute their similarities to all n nodes in these graphs using Eq. (3.15). This
yields an n× p similarity matrix C, from which we can extract a p× p landmark-to-
landmark submatrix Wp. Meanwhile, W †

p is the pseudoinverse of Wp, a p× p matrix
consisting of the pairwise similarities among the landmark nodes (it corresponds to
a subset of p rows of C). It is a theorem that[39] given graphs G1(V 1, E1) and
G2(V 2, E2) with n × n structural similarity matrix S ≈ PZT , its node embedding
matrix P can be approximated as

P̃ = CUΣ1/2 (3.15)

whereW †
p = U

∑
V T is the full rank singular value decomposition of the pseudoinverse

of the small p× p landmark-to-landmark similarity matrix Wp. Now P and P̃ is the
matrix with node embeddings as rows and its approximation. The p-dimensional
node embeddings of the two input graphs G1 and G2 are then subsets of P̃ : P̃1 and
P̃2, respectively. We use Eq. (3.16) to obtain P̃1 and P̃2, which are the separate
representations for nodes in G1, G2.

P̃1, P̃2 = D(N(P̃ )) (3.16)

where D represents the dividing operation of P̃ by the number of |V1| and |V2| in
order and N is used to normalize the magnitude of the embeddings and make them
more comparable based on Euclidean distance. Finally, the last step is to efficiently
align nodes using their representations, assuming that two nodes i ∈ V1 and j ∈ V2

may match if their embeddings in G1, G2 are similar. We find the alignments for each
node by computing all pairs of similarities between node embeddings (i.e., the rows

37



Chapter 3. A Unified Graph Multimodal Learning Framework for Knowledge
Extraction

of P̃1 and P̃2) and choose the top-1 for each node. Here, we define the similarity aij

between the p-dimensional embeddings of nodes i and j as follows:

aij = sim(P̃1[i], P̃2[j]) = e−||P̃1[i]−P̃2[j]||22 (3.17)

After the structural alignment of multimodal graphs, for each node in the text,
its most similar node in structure from the image and their similarity score would be
identified effectively. When finishing graph structure alignment, the two graphs are
transformed into a feature matrix α,

α = ( aij )|V1|×|V2| (3.18)

where aij represents the structural similarity between the ith word of the input
text and the jth object of the input image. In our model, we only keep the most
structurally similar object for each word while the elements corresponding to other
objects except the most similar one are all represented by 0 in the matrix.

Semantic Features Alignment

In order to align the semantic of textual and visual information, we implement the
guided-attention mechanism to capture the correlation between multimodal semantic
features. The input of scale dot-product attention consists of queries and keys of
dimension dkey, and keys of dimension dvalue. For simplicity, we set dkey and dvalue

to the same number da. We calculate the dot products of the query with all keys,
divide each by

√
da and apply a softmax function to obtain the attention weights on

the values. Given a query q ∈ R1×da , n key-value pairs (packed into a key matrix
K ∈ Rn×da and a value matrix V ∈ Rn×da), the semantic aligned feature ya ∈ R1×da

is obtained by weighted summation over all values V with respect to the attention
learned from q and K:

ys = A(q,K, V ) = softmax(
qKT

√
da

)V (3.19)
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In practice, to obtain the semantic aligned features of all visual objects Ys ∈ Rm×da ,
we compute the attention function on a set of m queries Q = [q1, q2, ..., qm] ∈ Rm×da

seamlessly by replacing q with Q, which represents the visual semantic information
guided by the textual features.

After obtaining the multimodal features representation, the input text is trans-
formed into the matrix X ∈ Rl×dx and the input image is transformed into the
matrix Y ∈ Rm×dy . We employ three learnable matrix Wk ∈ Rl×da , Wq ∈ Rm×da and
Wv ∈ Rl×da to generate the feature from X and Y for attention mechanism. In detail,
the calculation process is shown from Eq. (3.20) to Eq. (3.22),

K = WkX + bk (3.20)

Q = WqY + bq (3.21)

V = WvX + bv (3.22)

where bk, bq, bv are the learnable biases. As a result, we implement the semantic
alignment by obtaining the semantic aligned weight β by calculation of Q and K as
Eq. (3.23).

β=softmax(
QKT

√
d

) (3.23)

Alignment Fusion

To fully use the structural and semantic alignment information, we integrate the
aligned information by Eq. (3.24) to obtain the aligned visual features.

Y ∗ = (αT + β)V = αTV + Ys (3.24)

As we merge the structural and semantic alignment results, the final aligned visual
features representation guided by the text is obtained as matrix Y ∗ ∈ Rm×da .
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3.3.4 Relation Classification

To fully exploit the aligned visual information of all objects, we integrate the aligned
object features to a vector representation, shown as Eq. (3.25),

ŷ =
m∑

i=1

y∗i (3.25)

where y∗i ∈ R1×da represents the ith object feature in matrix Y ∗.

Since we need to extract the relation between two entities from the text, we
concatenate the representation v[E1start] and v[E2start] of their start position marker in
feature V as the textual representation v̂ ∈ R1×2da for multimodal fusion, which is
shown as Eq. (3.26),

v̂ = [v[E1start] , v[E2start]] (3.26)

We combine the guided visual information and the textual information from the
two entities to obtain the final representation for the text and image by concatenating
v̂ and ŷ into z, which is shown as:

z = concat(v̂, ŷ) (3.27)

Finally, we input z into an MLP to complete the final task of relation classification
and obtain the output as shown in Eq. (3.28),

output = softmax(MLP (z)) (3.28)

where output ∈ Rnc represents the classification probability of all nc relation cate-
gories.
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3.4 Experimental Settings

3.4.1 Dataset

To provide empirical results for the effectiveness of our model, we construct a multi-
modal neural relation extraction dataset (MNRE) from scratch. The original corpus
is built on three sources: two available multimodal named entity recognition datasets
- Twitter15[72] and Twitter17[123], and crawling data from Twitter 1. The posts were
selected and filtered by annotators with different topics, such as music, sports and
social events. We employed 12 well-educated annotators to label the relations be-
tween entity pairs and filter out the wrong samples tagged by automatic NER tools.
The dataset contains 15,484 samples and 9,201 images with 23 relation categories.
We split the dataset into training, development and testing set with 12247, 1624 and
1614 samples, respectively. The statistics of MNRE compared with a widely-used
relation extraction dataset SemEval-2010 Task 8 [40] are listed in Table 3.1.

Table 3.1: The Statistics of MNRE Dataset Compared to SemEval-2010 Task 8
Dataset. # indicates Numbers.

Statistics SemEval-2010 MNRE

# Word 205k 258k
# Sentence 10,717 9,201
# instance 8,853 15,485
# Entity 21,434 30,970
# Relation 9 23
# Image - 9,201

We also show the distribution of relation categories in our MNRE dataset in Figure
3.4. We start tagging relation types depending on the entity types. For example, the

1https://archive.org/details/twitterstream
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Figure 3.4: The Distribution of Relation Categories in Our MNRE Dataset.

relations between one person and another person can be classified into “alumni”,
“couple” and “relative” et al. We choose this labeling method since we expect the
entity types and visual objects can be aligned and help to understand texts better.

3.4.2 Baseline Methods

We compare our methods with several relation extraction baselines. To validate the
effectiveness of incorporating visual information into text-based RE models, we also
provide several variants of the proposed MEGA model.

Glove+CNN Glove+CNN [118] is a classic CNN-based model for relation extrac-
tion. We use a improved version of this model [82] which concatenates word embed-
dings with position embeddings.

PCNN PCNN [117] is a distantly supervised relation extraction model which lever-
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ages external knowledge graphs to automatically label sentences with same entities
contained.

Matching the Blanks (MTB) MTB [93] is an RE-oriented pretraining model based
on BERT. Our method is built on the MTB model which, in turn, is the text-based
version of the proposed MEGAmodel without visual features and the graph alignment
strategy. We fine-tune it on our MNRE dataset as a text-based baselines.

BERT+SG The pretrained language model Bert [22] has shown its strong generaliza-
tion in multiple tasks. We simply concatenate the fine-tuning BERT representations
with visual features to show the improvement of introducing visual information. The
visual features are extracted by a pretrained scene graph (SG) tool [97].

BERT+SG+Att. A variant of our proposed MEGA model which considers only the
semantic similarity between visual graph (scene graph) and textual contents. Here
we adopt the attention mechanism to compute the semantic similarity.

MEGA MEGA is our proposed multimodal relation extraction model with efficient
graph alignment which considers both structural similarity and semantic agreement
between visual and textual graphs.

3.4.3 Parameter Settings

We implement our model on the open-source and extensible relation extraction toolkit
OpenNRE[34]which is based on PyTorch framework. To acquire the textual semantic
representation, we initialize the textual representation by pretrained BERT and set
the dimension dx at 768. Besides, the dimension dy of visual objects features extracted
from scene graph is 4096. The latent dimension da of semantic alignment is set at 1536.
The maximum number of token sequence and objects are 128 and 10 respectively. Our
model is trained with Adamw optimizer, where we set the base learning rate at 2e-5
(following settings from previous works [34]) and the batch size at 10. The dropout
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rate in experiment is 0.5.

3.5 Results and Discussion

3.5.1 Overall Results

We conduct the experiments on the MNRE dataset. Table 3.2 shows the overall results
on the test set of MNRE. We report accuracy, precision, recall and F1 value as the
evaluation metrics. Compared to the traditional sequence-based CNN method [82],
the distantly supervised RE model PCNN [117] achieves better results in all metrics.
Since the MNRE dataset is collected with short social media texts, most words in
training or testing set are novel words. In such case, a distantly supervised model
will perform better with external KGs. However, the distantly supervised method will
suffer the wrong labeling problem and the performance is restricted. Benefiting from
the better generalization of pretraining language model representations, the MTB
model [93] outperforms PCNN with a higher recall (64.46%) and F1 value (57.81%).

Table 3.2: The Overall Performance of Our Models and Other State-of-the-art Meth-
ods (Acc.: Accuracy, Prec.: Precision). * Indicates the Difference Against the F1 of
Our Baseline Variant (MTB) is Statistically Significant by One-Tailed Paired t-test
with p < 0.01.

Model Acc. Prec. Recall F1

Glove+CNN [82] 70.32 57.81 46.25 51.39
PCNN [117] 72.67 62.85 49.69 55.49
MTB [93] 72.73 64.46 57.81 60.96
BERT+SG 74.09 62.95 62.65 62.80∗

BERT+SG+Att. 74.59 60.97 66.56 63.64∗

MEGA 76.15 64.51 68.44 66.41∗
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The other part of Table 3.2 is the performance of our MEGA model and its
variants. All the variants of our methods outperform pevious text-based methods,
which demonstrate the effectiveness of introducing visual information to supplement
the missing text semantics. We use a pretrained scene graph parser to extract the fine-
grained visual objects and their relations. Compared to simply concatenation of visual
and textual features, a added semantic similarity module with attention mechanism
will contribute to an improved recall value. We propose a more efficient alignment
method which considers both structural and semantic similarity. Our model can align
the visual and textual relations precisely and find more possible textual relations. As
a result, the final MEGA model improves the precision and recall value (from 62.65%
to 68.44%) in a large margin.

3.5.2 Performance on Categories

We also report the category results of our MEGA model compared to MTB model
[93] in Table 3.3. Our model gains the highest results on all the six main categories
on the MNRE test set. These categories involve the relations of person-to-person,
person-to-organization or person-to-misc. Our model achieves relatively higher im-
provement in relation “Peer” and “Present_in”. The two relations cover abundant
visual information like “wearing the same uniform” or “appearing in a dance show”.
Our model introduces the visual information and utilize the mapping from visual
relations to textual contents to help model extract relations precisely. However, text-
based methods perform poor in these categories due to a lack of text contexts. The
lower performance on location-related relations is due to: (1) Limited visual cues for
location relations in images, (2) Implicit nature of location relationships requiring
external knowledge, (3) Small number of training samples for these categories.
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Table 3.3: Our Results on Six Main Categories Compared to MTB [93] on the MNRE
Test Set.

Category Count MEGA (Acc.) MTB (Acc.)

Peer 156 76.28 63.46
Member_of 110 70.90 63.63
Contain 99 91.91 88.89

Present_in 74 74.32 51.35
Locate_at 46 45.65 41.30

Place_of_residence 29 37.93 31.03

Table 3.4: The Performance of Our MEGA Model on the MNRE Test Set Influenced
by Different Number of Aligned Relations.

Aligned Relation Num. Prec. Recall F1

Top-1 64.51 68.44 66.41
Top-5 64.13 64.53 64.33
Top-10 62.65 64.89 63.75

3.5.3 Parameter Sensitivity

Table 3.4 describes the results of our proposed MEGA model influenced by choosing
different number of aligned relations. Top-1 indicates that for each word in a sentence,
the most related visual object will be chosen. As mentioned before, we leverage the
structural and semantic similarity to align the visual and textual features. However,
there may be more than one visual relations related to textual contents. For example,
we can ensure that two people are alumni with both “person wearing school uniform”
and “person at the same school gate” visual contents. We find that in MNRE dataset,
choosing the aligned relations with highest confidence will contribute to the best
performance.
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Cavs hosted a workout for Alabama 

guard Collin Sexton today , per 

@mcten

Selected objects: 

man, shorts, jacket, number

Text-based MTB Model:

<Collin Sexton,  

place_of_residence, Alabama>

Our MEGA Model:

<Collin Sexton,  member_of, 

Alabama>

Cecilia Bolocco with very famous 

trasparent dress . Vineyard of Sea 

Festival , 2016

Selected objects:

man,shirt,light

Text-based MTB Model:

<Cecilia Bolocco,None,Vineyard of 

Sea Festival>

Our Mega Model:

<Cecilia Bolocco, Present_in, 

Vineyard of Sea Festival>

Alvarez , Sotto on stage ahead of 

third State of the Nation Address . 

# SONA2018

Selected relations: 

<man,wearing,shirt>,<man,wearing,

shirt>,<man,in front of,curtain>

BERT+SG Model:

<Alvarez,None,Sotto>

Our MEGA Model:

<Alvarez,peer,Sotto>

Loris Karius is reported to feel let 

down by the signing of Alisson and 

wants to leave Liverpool .

Selected relations:

<man,wearing,shirt>,<man,wearing,

shirt>

BERT+SG Model:

<Loris Karius,None,Alisson>

Our MEGA Model:

<Loris Karius,peer,Alisson>

Figure 3.5: The Results of Our Method (MEGA) Comparing to Text-based MTB [93]
model and BERT+SG Model on the MNRE Test Set. Objects and Relations from
Images are Detected in the Left Column, We Present the Relation Extraction Results
with Related Objects and Visual Relations in the Right Column. The GroundTruth
Labels are in Blue and the Detected Objects or Relations are in Green. Our Model
Extracts Relations Precisely with Efficient Alignment between Images and Texts.

3.5.4 Case Study

Figure 3.5 shows the case study of comparing our MEGA model with the text-based
MTB model [93] and BERT+SG model. With the help of efficient alignment between
visual and textual relations, our model performs better in all cases. To evaluate the
effectiveness of utilizing visual information, we compare our model with MTB model
which only depends on textual information. On the left side of Figure 3.5, our model
extract the relation “member_of” correctly with the guidance of visual objects “man,
shorts, number”. These objects indicate that the man is a player which is the member
of a team. However, without the guidance of visual information, text-based method
extracts the wrong relation “place_of_residence”. Similarly, our model extracts the
relation “present_in” with the guidance of visual objects “man, shirt and light” while
the text-based method identifies it as “no relation”.
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On the right side of Figure 3.5, we compare our MEGA model with a variant of
our model BERT+SG. BERT+SG model simply concatenates the visual and textual
representations and ignores the mappings from visual relations to textual contents.
For example, the BERT+SG model cannot classify the correct relation “peer”, how-
ever, our MEGA model finds the two people wearing the same uniform and extract
the relation with alignment of visual and textual relations.

3.6 Conclusion

In this work, we present the multimodal relation extraction (MRE) task which lever-
ages visual information to supplement the missing textual semantics in social media
posts. To tackle this problem, we first provide a human-annotated dataset - MNRE
which consists of 15000+ sentences with 23 relation categories. Then, we propose a
multimodal relation extract neural network with efficient graph alignment (MEGA).
MEGA uses graph-structured visual information to guide the extraction of textual
relations with considering both structural and semantic graph similarity. The ex-
perimental results demonstrate that our model outperforms previous state-of-the-art
methods in terms of precision, recall and F1 values.
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A Hierarchical Multimodal
Representation Learning Method
for Knowledge Extraction

4.1 Introduction

Given a pair of entities in a sentence, relation extraction (RE) task is to identify the re-
lation between the two entities. Existing relation extraction datasets [125, 35, 40, 23]
mostly concern on newswire domain where texts are formal and sentences are com-
plete in semantics structures. However, these methods pose major limitations when
sentences are too short to provide enough contexts, causing difficulties in figuring out
the most possible relations, especially in social media. Figure 4.1 shows an example
from Twitter where we may not predict the relations accurately between “Obama”
and “JFK” or “Obama” and “Harvard” when the sentence gives no more external
information. As a result, traditional RE approaches [118, 93] tend to determine the
relationship between “JFK” and “Obama” as “None” based on category statistics.
Vision and language (VL) learning draws significant attention in the past few years,
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Figure 4.1: An example of multimodal relation extraction with cross-modal knowl-
edge paths. We bridge semantic gaps between low-level visual objects and high-level
textual relations. We also provide some direct evidences for relation extraction. As
a result, our method can generate the correct relations with corresponding reasons.

with the proliferation of many VL benchmarks. Specifically, images in social media
posts can provide complementary information to supplement the missing semantics
of short texts.

Although some methods have been proposed to address the problem of multimodal
RE [129, 128], there are several issues remaining challenging. When using auxiliary
visual information, these methods only focus on visual objects, hence ignore that
visual objects are quite specific and naturally in a lower semantic level than abstract
textual relations. This inconsistency of semantic levels causes an incorrect alignment
between vision and language, leading to final degrade of model performance. For
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example, in Figure 4.1, the ground-truth relation “Alumni” is quite abstract and
has a semantic gap with specific objects “cap” and “book”. Therefore, these objects
may not directly indicate that “JFK” and “Obama” are “Alumni”, resulting in the
incorrect prediction.

Human beings can handle these challenges by developing proper imagination and
reasoning around vision and language based on their prior knowledge. Motivated
by this, many methods attempt to leverage external knowledge as supplementary
information. However, existing knowledge-based methods model external knowledge
as discrete points from single modality [109, 4], which inhibits the interactions between
different modalities. As a result, visual information cannot be passed as a guidance
to find reasonable knowledge for detecting textual relations. As shown in Figure
4.1, there are many knowledge paths among the two entities “Obama” and “JFK”.
Without the guidance of visual contents, previous works tend to introduce much
irrelevant information, and leading to inferior performance. Therefore, it is necessary
to construct knowledge paths connecting two modalities with textual entities and
visual contents.

In this work, we propose RECK - a multimodal relation extraction model with
cross-modal knowledge representations. To address the semantic gap problem across
vision and language, we propose to utilize the external concept knowledge graphs
to build a bridge. We observe a phenomenon in the knowledge graph that there
are some knowledge paths which might go through the high semantic level nodes
when they connect two low semantic level ones. These knowledge paths can be
used as the bridge to benefit the relation extraction. As shown in Figure 4.1, we
construct several knowledge paths which include concepts “education”, “graduation”
and “degree”. These concepts are closer to the correct relation “Alumni” in semantics.
Considering that some points in the retrieved knowledge paths may be irrelevant or
less important to our target relations, we apply a graph attention mechanism to filter
out noisy visual information. Finally, we can fuse the knowledge representation with
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Figure 4.2: The overall framework of our proposed RECK. RECK consists of three
main components, including multimodal semantics extraction, cross-modal knowledge
semantics extraction and the module of fusion and prediction.

visual and textual features to identify textual relations.

4.2 Problem Statement

Definition 1. (Cross-modal Knowledge Path Learning): Given text t, image
v, and external knowledge graph G, construct knowledge paths P = {p1, ..., pk} that
bridge the semantic gap between visual objects O = {o1, ..., om} and textual entities
E = {e1, ..., en}.
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4.3 The Proposed Method: RECK

4.3.1 Overview

In this section, we introduce our proposed model RECK as shown in Figure 4.2.
There are three components in RECK, including multimodal relation extraction and
representation, cross-modal knowledge semantic extraction and representation, and
representation fusion and prediction. The overall workflow of our model can be sum-
marized into three steps: (i) we select knowledge paths from ConceptNet Database
based on the text-image pairs, and further integrate the paths into knowledge-aware
graphs, we then implement Graph Attention Network to extract the joint cross-modal
knowledge representation for the integrated graphs, (ii) we employ the pre-trained
BERT and ResNet to obtain textual and visual semantics representation for the text
and image, and further adopt the cross attention mechanism to guide the model to
learn the mixed multimodal features, (iii) we fuse all the feature representations to
identify the relations among the entities.

4.3.2 Cross-modal Knowledge Representation Extraction

To bridge the semantic gaps, RECK extracts the cross-modal knowledge paths by
following the flowchart of knowledge paths generation as shown in Figure 5.5.

Seed Concepts Extraction

To extract paths from ConceptNet, we need to generate query words for text and
image first. These query words would be used as the start and end points of the paths.
Following Chen et al. [14], we regard the query words as seed concepts. For the text
input, since we want to bridge the semantic gaps for the textual relation between
entities and the visual objects, we use the two entities as the textual seed concepts

53



Chapter 4. A Hierarchical Multimodal Representation Learning Method for
Knowledge Extraction

Figure 4.3: The procedure of the cross-modal knowledge path generation, taking the
paths from text to vision as an example.

intuitively. In general, the case of words can affect the retrieval of ConceptNet. Thus,
for uppercase words in texts, we keep their uppercase and lowercase states at the same
time. As shown in Figure 5.5, “JFK” and “jfk” are both regarded as seed concepts.
Besides, for the relation extraction task, the type of entity plays an important role in
distinguishing the relationships among the entity-pairs. Therefore, we also regard the
types as part of the seed concepts of text. For example, “person” is added to the seed
concept candidates in Figure 5.5. As for other words of the sentence, not all of them
are related to the target relation, so we do not regard them as the seed concepts.
This is helpful to reduce noises brought from ConceptNet. Finally, the seed concept
can be described as t = [ts, tsl, tst, to, tol, tot], where s, l, t, o represent subject (the
first entity), the lowercase state, the type of entity and object (the second entity),
respectively.
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For the image input, we adopt a generic concept detection model Clarifai1 to
extract seed concepts. Compared to the frequently-used RCNN series model, Clarifai
can not only detect objects of the image, but also provide words that describe the
whole image. All these words will be regarded as seed concepts of the image. For
example, “person” and “university” can be extracted from the same image by Clarifai.
The words like “university” can help us better find a path in external knowledge to
bridge the semantic gap and obtain better cross-modal knowledge representation,
since more visual information is introduced. In particular, these words can hardly
be detected from RCNN based models. In most cases, only the salient concepts are
related to the MNRE task. Therefore, for each image, top k seed concepts with the
highest score will be chosen, denoted as c = [c1, c2, ..., ck].

Knowledge Paths Retrieval

To bridge the gap among different semantic levels of different modalities, we select
the external knowledge paths from ConceptNet Database based on the seed concepts
as mentioned above.

We first expand the semantics bridging from text to vision. In details, we take
every seed concept t from the input text as the starting point, and every seed concept
ci from the corresponding image as the end point. Then we search the top n shortest
paths connecting the two concepts in ConceptNet as effective semantic bridging paths.
Quite a part of the external concepts on the inference path can help fill the semantic
level gap between low-level visual contents and high-level textual entity relations.
For example, in Figure 4.1, when connecting “JFK” and “book”, word “education”
would be introduced and it is closer to “alumni” at the semantic level. Besides, word
“education” appears on the path from “JFK” to “book” and “Obama” to “book”,
which provides indirect evidence for inferring that “JFK” and “Obama” are alumni.

1https://www.clarifai.com/
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Reversely, we also take every seed concept ci of the image as the starting point, and
every seed concept t of the text as the end to form an opposite semantic bridging path.
Because in ConceptNet, the connections of the nodes are directed edges, this indicates
that building connectivity paths in both directions can bring more information and
help fill in the semantic gaps from different perspectives. Finally, we denote the ith

knowledge path from text to vision as Pti,vi and knowledge paths from vision to text
as Pvi,ti , where t and v denote the text and vision modality, respectively.

Knowledge Representation Extraction

As described previously, we bridge the semantic gap by constructing knowledge paths.
However, not all the concepts from the paths are relevant for the reason that Con-
ceptNet inevitably introduces noise knowledge. Therefore, we need to find out the
more positive and relevant concepts from the paths. In other words, it is necessary
to re-evaluate the effect of each introduced concept on relation extraction.

In detail, we first integrate all possible knowledge paths extracted into a knowledge-
aware graph, where each concept on a path denotes a node in the knowledge-aware
graph. Then we adopt Graph Attention Network (GAT) [100] to re-weight the con-
cepts relevance.

The concepts with higher weight scores indicate that they are more relevant to
the relation extraction.

As we have obtained two kinds of knowledge paths previously, two kinds of
knowledge-aware graphs can be generated, as depicted by Eq. (4.1):

KG(M1,M2) =
⋃

i∈NM1M2

PM1i,M2i
(4.1)

The symbol KGM1,M2 denotes that the knowledge-aware graph consists of all the
knowledge paths from modality M1 to modality M2. NM1M2 denotes the number of
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the corresponding knowledge paths. For instance, KGv,t indicates the knowledge-
aware graph from vision modality to text modality and Nvt is the number of these
knowledge paths. Such graphs contain abundant external knowledge with higher-
level semantics, based on which the semantic gap between different modalities can be
eliminated. To represent such a graph, we following Yang et al. [112] by choosing
not to use the specific relation (e.g., RelatedTo, Antonym) between any two concepts
from the graph. Instead, for the ith concept node of a graph, we first transform it
into a knowledge graph embedding vector gi supported by ConceptNet [69], which
has fused the semantic information of edges. Thus, two graphs KGt,v and KGv,t can
be transformed into two matrices: Gt,v ∈ RNCtv×dl and Gv,t ∈ RNCvt×dl , where dl

represents the dimension of knowledge graph embedding, NCtv and NCvt represent
the number of concepts in KGt,v and KGv,t, respectively. As the following operations
on a denoted graph are the same, we use G to denote any of the knowledge-aware
graphs in subsequent discussion. We build an adjacency matrix A = {aij|aij ∈ {0, 1}}

for each graph, in which 1 represents that there is a directed edge between nodes i

and j, while 0 means that the two nodes are not connected. We update G to G∗ by
concatenating G and A. Then, we employ a multi-head GAT to update the concept
node features for each graph. Specifically, the attention weight between two concepts
can be calculated by Eq. (4.2),

eij = SA(Wgg
∗
i ,Wgg

∗
j ) (4.2)

where SA represents the self attention mechanism and Wg represents a learnable
matrix. In order to make the coefficients easier to compare between different nodes,
we normalize eij by Eq. (4.3),

αij = softmax(eij) (4.3)

After that, the normalized attention coefficient and its corresponding concept
feature are linearly combined by the multi-head GAT to get the graph based repre-
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sentation Ĝ, as denoted by the equation below:

ĝi =
m

∥
k=1

σ(
N̂∑

j=1

αk
ijW

kg∗j ) (4.4)

where σ is a activation function and W k is a learnable matrix. N̂ denotes the node
number in Ĝ and m denotes the multi-head number of GAT.

Cross-modal Representation Generation

We integrate the feature representations of all nodes in each graph into a vector
representation. As a result, the final representation vector g̃ of one knowledge-aware
graph G is shown as Eq. (4.5),

g̃ =
Ñ∑

i=1

ĝi (4.5)

where the vector g̃ can be regarded as the filter results of graph G.

Finally, to get the joint external reasoning information, we concatenate g̃t,v and
g̃v,t and put the result into a fully connected layer, as shown in Eq. (4.6),

g̃ = FC(concat(g̃t,v, g̃v,t)) (4.6)

where the FC represents the fully connected layer.

The result g̃ is the final cross-modal representation of each text-image pair.

4.3.3 Multimodal Semantic Extraction

Textual Semantic Extraction

For this process, any input text is first divided into a token sequence denoted as s1.
Following the criteria of BERT [21] encoding procedure and the success of Soares et
al. [93], the token “[cls]” is added to the beginning of the sequence and the token
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“[sep]” is appended to the tail. Meanwhile, four more reserved word pieces, “[E1start]”,
“[E1end]”, “[E2start]” and “[E2end]” are added into s1 to record the begin and end of
the first and second entity. Further more, to unify the length of all the sequences,
we pad the sequence which has less than maximum length l tokens to l by adding
“[pad]” tokens. Thus, sequence s1 would be transformed into sequence s̃1 as shown
in Eq. (4.7),

s̃1 =[w1, ..., [E1start], wi, ..., wi+n1−1, [E1end]

, ..., [E2start], wj, ..., wj+n2−1, [E2end], ..., wl]
(4.7)

where i and j represents the start position of the first entity and second entity,
respectively, while n1 and n2 denotes the length of the two entities.

Since token ’[pad]’ is added to s̃1, we also construct a segment sequence s2 to
distinguish between valid tokens and ’[pad]’ tokens, as shown in Eq. (4.8),

s2 = (1, 1...1...0, 0) (4.8)

where 1 represents that the token is not a padding one. Correspondingly, the length
of s2 is also l.

Inspired by Lample et al. [55], Ma and Hovy [76], we obtain each token’s textual
features by combining character embedding into word embedding. To achieve that,
s̃1, s2 are fed into a fine-tuned pre-trained BERT to generate the embedding for each
token. As a result, each token is further transformed into a vector x of dx dimensions.
Meanwhile, the textual semantic representation can be obtained by transforming the
whole text into a matrix X ∈ Rl×dx , shown as Eq. (4.9),

X = BERT (s̃1, s2) = [x1, x2, ..., xl] (4.9)

where BERT denotes the fine-tuned pre-trained BERT encoder.
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Visual Semantics Extraction

Visual objects are demonstrated as a fine-grained image representation and contribute
to many multimodal tasks such as VQA [27], multimodal named entity recognition
[130] and vision-language pretraining [57]. Following the great success of Chen et al.
[17, 16], we apply a visual grounding tool [114] to extract three objects with highest
detection scores from the image. Then, we extract the detection boxes corresponding
to the objects and re-enlarge them to the size of the original image. Combined with
the original one, we obtain four images for each instance. Similar to previous handling,
all the images are denoted as c. To obtain the features representation, we feed c into
the fine-tuned pre-trained ResNet50 [38]. By extracting the input features of the last
layer of the model, we also generate a vector y of dy dimensions for each image of
the instance. As a result, the visual semantics representation can be obtained by
transforming the images vector into a matrix Y ∈ R4×dy , as shown in Eq. (4.10),

Y = ResNet50(c) (4.10)

where ResNet50 denotes the fine-tuned pre-trained ResNet50 model.

Cross-modal Attention Mechanism

Inspired by the scale dot-product attention proposed in [99], we employ the cross-
attention mechanism to find out the hidden correlation between textual and visual
semantics representation. There are three kinds of input for guided attention: queries
of dimension dq, keys of dimension dk and values of dv. In particular, we set the three
dimensions to be the same number dg. We first calculate the dot products of the
query with all keys. Then the product is divided by

√
dg and entered into a softmax

function to obtain the guided-attention weights on the values. Besides, we pack n

key-value pairs into two matrix K ∈ Rn×dg and V ∈ Rn×dg . Given a query q ∈ R1×dg ,
a guided feature yg ∈ R1×dg for an image from c is obtained by weighted summation
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over all values V with respect to the attention learned from q and K, as shown in
Eq. (4.11),

yg = CA(q,K, V ) = softmax(
qKT

√
dg

)V (4.11)

where CA represents the cross attention mechanism.

Correspondingly, we compute Eq. (4.11) on a set of k queries Q = [q1, q2, ..., qk] ∈

Rk×dg seamlessly by replacing q with matrix Q.

In the previous two sections, the text and image are respectively converted to the
matrix X ∈ Rl×dx and matrix Y ∈ R4×dy . To get the guided features of the image,
we employ three learnable matrices Wkv ∈ Rdg×dx , Wqv ∈ Rdy×dg , Wvv ∈ Rdx×dg and
three corresponding bias bkv, bqv, bvv ∈ Rð to help generate Kv, Qv and Vv. After that,
we can align the text-guide-image semantic information according to Eq. (4.12) to
Eq. (4.15),

Qv =YWqv
T + bqv (4.12)

Kv =XWkv
T + bkv (4.13)

Vv =XWvv
T + bvv (4.14)

Y ∗=softmax(
QvKT

v√
dg

)Vv (4.15)

Correspondingly, in order to acquire the guided textual features, we also employ
three more learnable matricesWkt ∈ Rdg×dy ,Wqt ∈ Rdg×dx andWvt ∈ Rdg×dy and three
corresponding bias bkt, bqt, bvt ∈ Rð to help generate Kt, Qt and Vt. And then, we can
also align the image-guide-text semantic information by the following equations.

Qt =XWqt
T + bqt (4.16)

Kt =YWkt
T + bkt (4.17)

Vv =YWvt
T + bvt (4.18)

X∗=softmax(
QtKT

t√
dg

)Vt (4.19)
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Inspired by BERT, we set up a twelve-layer cross attention mechanism to get the
text-guide-image and image-guide-text feature representations.

4.3.4 Fusion and Prediction

Inspired by the success of Soares et al. [93], we concatenate the output semantic
features of two entities from matrix X∗ to represent the final semantics representation
of the text, as shown in Eq. (4.20),

x̃ = concat(x∗
E1start , x

∗
E2start) (4.20)

where concat(∗) represents the vector concatenation.

Besides, we integrate the aligned visual features to a vector ỹ to obtain the final
visual semantic features, as shown in Eq. (4.21),

ỹ =
k∑

i=1

y∗i (4.21)

In the end, we concatenate the textual features x̃, visual features ỹ and cross-modal
knowledge-aware graph features g̃ as the final representation for the text-image pair,
depicted by Eq. (4.22) bellow:

z = concat(x̃, ỹ, g̃) (4.22)

Finally, we set z into a multi-layer perception to realize the relationship classifi-
cation of the entity pair. The output feature is shown as Eq. (4.23),

output = softmax(MLP (z)) (4.23)

where MLP means multi-layer perception, output ∈ Rnr represents the classification
probability of all nr relation categories.
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4.4 Experimental Settings

4.4.1 Dataset

In this section we perform a set of experiments based on the MNRE [129] dataset,
a manually-labeled dataset for multimodal relation extraction. The texts and image
posts are crawled from three sources: two open-source multimodal named entity
recognition datasets - Twitter15 [72] and Twitter17 [123] and the crawling posts from
twitter2. To preserve the timeliness and diversity of data, they do not pick some
certain topics but randomly choose samples with a large time span in crawling twitter
data. As for the entities, they use a pretrained named entity recognition model3 to
extract entities.

The dataset contains 15,484 samples and 9,201 images with 23 relation categories.
It is split into training, validating, and testing set with 12247, 1624 and 1614 samples,
respectively. Relation types are tagged depending on the entity types. For example,
the relations between one person and another person can be classified into “colleague”,
“couple” and “relative”, etc.

4.4.2 Implementation Details

We implement our model on the open-source relation extraction toolkit OpenNRE [33]
which is based on PyTorch framework. The text input is trimmed to the maximum of
128 words. We extract the textual features from pre-trained BERT with dimensions
of 768, and the visual features from pre-trained ResNet50 with dimensions of 2048.
As for the cross-attention mechanism, we set dg as 768.

The concept features are initialized by 300-D ConceptNet KG embedding, includ-

2https://archive.org/details/twitterstream
3https://allennlp.org/elmo
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ing the seed concepts from two modalities and external knowledge path concepts.
About the GAT, the hidden and output dimensions are set at 512 and 768, respec-
tively, and the number of head is set at 4. The dropout rate is 0.05 to avoid over-fitting
in GAT. And we use a LeakyReLU optimizer with 0.01 alpha value for GAT.

Table 4.1: The Settings of HYPER-PARAMETERS.

Parameter Value Parameter Value

max text length 128 BERT hidden dim dx 768
ResNet50 hidden dim dy 2048 CA hidden dim dg 768

KG embedding dim dl 300 GAT hidden dim 512
GAT output dim 768 GAT head number 4
GAT dropout rate 0.05 GAT alpha value 0.01

batch size 4 epoch number 8
optimizer AdamW learning rate 1e-5

For all the experiments, we set the batchsize at 16 and training epoches at 10.
Besides, we use AdamW optimizer with the base learning rate of 1e-5. We select
the seed concepts extracted from the image with top-5 degree of confidence and top-
3 shortest paths between two seed concepts from text and vision. As same as other
classification tasks, we adopt precision, recall, F1 score and accuracy as the evaluation
metrics. In details, all the default setting of the model is depicted in Table 4.1.

4.4.3 Compared Baselines

We compare our model with several state-of-the-art (SOTA) neural relation extraction
models based on single-modality and multi-modality.

• GloVe+CNN [82] is a classic CNN-based neural relation extraction model
which combines the position embedding and word embedding to represent the
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textual sentence.

• PCNN [117] is a distant supervision model for relation extraction which cap-
tures the structural features between entity pairs more effectively.

• MTB [93] is a RE-oriented pre-trained model which implements the entity
markers for textual relation extraction.

• RECK(Single modal) is the single-modal version of our model RECK, using
only the text and the external knowledge introduced by entity seed concepts.
In detail, we construct knowledge paths between two seed concepts extracted
from two textual entities.

• MTB+SG [128] is a strong multimodal baseline which extracts the visual
scene graph from to capture the correlation of visual objects and concatenates
the multimodal features for prediction.

• MEGA [128] is a graph-based model which considers both structural similarity
and semantics agreement between visual and textual graphs.

• MKGformer [16] is a multimodal model leveraging a hybrid transformer ar-
chitecture with unified input-output for diverse multimodal tasks, including
MRE.

• HVPNeT [17] is a model which works for MNER and MRE, regarding visual
representation as pluggable visual prefix to guide the textual representation for
error insensitive forecasting decision.

Besides, we also evaluate the performance of pre-trained multimodal model in
the multimodal relation extraction task. ViLT [53] is a pre-trained multimodal
model which cuts the image into patches and captures the modality interaction by
Transformer-based structure. Besides, Chen et al. [16] adopt the pre-trained mul-
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timodal model VisualBert [61] on MRE task. We also introduce their results for
comparison.

4.4.4 Ablation Experiments Setting

To fully evaluate the impact of each module of our model, we set up ablation experi-
ment for each module module separately. In details, the ablation setting is shown as
follows:

• RECK(text only): This model solely relies on textual input in RECK, in-
dicating that only the semantic representation of text is utilized for relation
classification, and there is no incorporation of image or external knowledge.

• RECK(image only): This model exclusively uses image information from
the instances to perform relation classification and does not rely on textual
information or external knowledge.

• RECK(KG only): This model focuses solely on using external knowledge
from both image and text to perform relation classification. It is equivalent to
solely utilizing the “Cross-modal Knowledge Semantic Representation” mod-
ule in Figure 4.2, while ignoring the “Multimodal Semantic Representation”
module. Additionally, the GAT module is not used in this model.

• RECK(text+image): To enhance the RECK model that solely relies on tex-
tual input, this model incorporates visual features. Specifically, it only utilizes
the “Multimodal Semantic Representation” module in Figure 4.2 to perform
relation classification.

• RECK(text+KG): This model extends RECK(text only) by incorporating
knowledge features. It is identical to the RECK model with a single modality,
as described in section IV-C.
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• RECK(text+image+KG): This model adds external knowledge semantic
features to RECK(text+image). Compared to RECK, it does not use GAT for
further deep feature extraction. Instead, it just feeds them into full connection
neural network layers to get advanced features.

• RECK(text+image+KGv,t+GAT ): RECK model without incorporating
features from the knowledge graph, which is constructed from the knowledge
paths connecting textual seed concepts and visual seed concepts.

• RECK(text+image+KGt,v+GAT ): RECK without incorporating features
from the knowledge graph constructed based on the paths from visual seed
concepts to textual seed concepts.

Besides, in order to verify the influence provided by the cross-modal knowledge
more comprehensively, we set up three kinds of ablation experiments from the fol-
lowing perspectives: (i) using different number of visual seed concepts, (ii) using
different source of textual seed concepts, and (iii) using different number of extracted
paths between one seed-concept pair. Firstly, we successively extract m visual seed
concepts for ablation experiments, where m = 1, 3, 5, 7, 9. Secondly, different from
the proposed model, we take all the words from the text input except for the stop
words as the textual seed concepts to compare the performance of the model. Thirdly,
we also choose the shortest n paths for ablation experiments, where n = 1, 2, 3, 4, 5,
successively.

4.5 Results and Discussion

4.5.1 Statistics of Introduced Knowledge

In total, we have incorporated 17561 cross-modal concepts from ConceptNet over
all the instances. In order to demonstrate the diversity of concepts in image posts,
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Table 4.2: The Overall Performance of Our Models and Other State-of-the-art Meth-
ods (Acc.: Accuracy, Prec.: Precision). * Indicates that the Difference Against F1
Value Between Our Model and Previous Baselines is Statistically Significant By One-
Tailed Paired t-test with p < 0.01.

Modality Model Acc. Prec. Rec. F1.

Text Only

GloVe+CNN (Nguyen et al. 2015) [82] 70.32 57.81 46.25 51.39

PCNN (Zeng et al. 2015) [117] 72.67 62.85 49.69 55.49

MTB (Soares et al. 2019) [93] 72.73 64.46 57.81 60.96

Text+Image

VisualBERT(Li et al. 2019) [61] - 56.34 58.28 57.29

ViLT (Kim et al. 2021) [53] 73.30 62.80 52.50 57.19

MTB+SG (Zheng et al. 2021) [128] 74.09 62.95 62.65 62.80

MEGA (Zheng et al. 2021) [128] 76.15 64.51 68.44 66.41

HVPNeT (Chen et al. 2022) [17] - 83.64 80.78 81.85

MKGformer (Chen et al. 2022) [16] - 82.67 81.25 81.95

RECK (Our method) 95.11 88.77 88.91 88.84∗
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Figure 4.4: Analysis of the introduced concept distribution. We show a few of selected
concepts with the top numbers of proportion. Different colors are used to indicate
different concepts.

we show the concept distributions in Figure 4.4. As can be seen there, our dataset
involves a variety of topics such as portrait, business, competition, and city, etc. We
observe that concepts are nearly uniformly distribution which implies the concept
balance in our dataset.

Moreover, we visualize the word cloud of top-50 most frequent introduced concepts
in Figure 4.5. Among them, both generic (e.g. play) and domain-specific (e.g. busi-
ness) words are included, and such abundant cross-modal external knowledge surely
helps the model to find a path bridging the semantic gap between two modalities.
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Figure 4.5: Word cloud of concepts extracted from ConceptNet. We show word cloud
for top-50 most frequent introduced concepts.

4.5.2 Comparison with Existing Methods

Table 4.2 shows the evaluation results of our RECK model and other existing models
on the MNRE dataset from single-modality and multi-modality. There are several
findings from the table:

• Firstly, rows 1 to 3 are the results of text based models. Without exploiting the
visual information, they suffer from the loss of contexts caused by the extremely
short text, leading to unsatisfactory performance.

• Secondly, compared to the previous multimodal models (in rows 4 to 9) which
ignore the modality semantic gap and implicitly fuse the information of the two
modalities, our method exploits the knowledge paths to bridge the semantic gap
and connects the two modalities explicitly via external cross-modal knowledge.
The model performance improves because of bridging the modality semantic
gap and the more efficient use of multimodal information. As a result, RECK
significantly outperforms the state-of-the-art method MKGformer in all metrics,
increasing the precision by 6.10%, recall by 7.66% and F1 score by 6.89%.
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Figure 4.6: The experimental results of five specific categories in the dataset. The
comparison models include: RECK, RECK w/o KG, MKGformer, MEGA.

• Thirdly, we find that multimodal pre-trained model like VisualBert and ViLT
do not achieve great performance in the MNRE task. Compared to the text
based pre-trained model MTB, they even obtain worse scores in most of the
metrics. We think the reason might be due to the great semantic gap between
textual entities and visual patches, making it hard to capture the modality
interaction. Another reason may be that the pre-training datasets they used
are quite different from MNRE.

• Fourthly, HVPNet and MKGformer adopt a different method to extract visual
features compared to other multimodal models and achieve a huge improve-
ment in performance. However, they just focus on how to better extract visual
information, ignoring the semantic differences between images and texts. In
contrast, for multimodal tasks, our model can improve the performance not
only by mining the information of images and texts, but also by mining the
explicit relations or connections between them.
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4.5.3 Performance Analysis of Different Categories

In this subsection, we select five categories based on the number distribution from
the dataset for specific performance analysis.

They are “/per/per/peer”, “/per/org/member_of”, “/org/loc/locate_in”, “ /per
/misc /present _in ” and “/misc/loc/held_on”. Unlike “/per/per/family”, “/per /per
/couple” and other relations which are easily reflected in visual objects from image or
words from text, relations like “/misc/loc/held_on/” require deeper understanding
about the text-image pairs. Here, we choose RECK, RECK w/o KG, MKGformer
and MEGA for performance comparison.

As shown in Figure 4.6, our model performs the best in all the mentioned cat-
egories. Especially in the last four categories, RECK has obvious advantages. We
think the incorporated external knowledge plays an important role for the improved
performance. For example, to identify the relation “present_in”, we need to figure
out that the scenery is related to “activity” or “show”, other than just rely on the
extracted objects “person” or “light”. However, the previous methods fail to do well
because they ignore the semantic gap between modalities. In comparison, RECK still
perform well even on such abstract categories.

4.5.4 Analysis of Computation Cost

As we incorporate external knowledge into our model, efficiency may become a sig-
nificant concern. Hence, we present a computational cost analysis of our methods
(RECK and its variants) compared to multimodal RE baselines within Figure 4.7.
We measure computational cost by the time it takes to classify all instances in the
test set. For the sake of accuracy, the time mentioned is the average duration needed
for conducting test set inference ten times. Firstly, we illustrate the time cost of
visual information and external knowledge by removing image representation and
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Figure 4.7: Anlysis of computation cost between our proposed model RECK with
other SOTA models. Under the same experimental conditions, we use the running
time comparison on all the samples from test set to show the computation cost dif-
ferences between RECK and other models.

knowledge graphs. The outcomes indicate that incorporating visual and knowledge
information leads to an increase in computational cost by 1.58 and 1.36 times. It
also suggests that visual information imposes a greater computational burden than
external knowledge. Secondly, RECK is comparable in computation cost to other
SOTA models, which consist of multi-layer transformers or complex graph structural
alignment, such as MEGA and MKGformer. And in Table 4.2, RECK outperforms
these two models with F1 scores improvement of 22.43% and 6.89%, respectively.
Therefore, we think the increase in computational cost is acceptable compared to the
improvement in F1 scores.

4.5.5 Ablation Study

We now conduct several ablation studies on the proposed method to illustrate the
contribution of each model component.
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Table 4.3: The ablation experiment results of RECK variants. BOLD: THE BEST
PERFORMANCE IN THE COLUMN. KG means knowledge graph composed of
knowledge paths.

Method Acc. Prec. Recall F1.

RECK(text only) 75.34 64.40 63.59 63.99
RECK(image only) 73.17 33.60 32.34 32.96
RECK(KG only) 62.27 51.25 32.03 39.42
RECK(text+image) 92.01 82.00 81.09 81.54
RECK(text+KG) 78.87 69.07 71.88 70.44
RECK(text+image+KG) 93.99 86.54 86.41 86.47
RECK(text+image+KGv,t+GAT ) 94.67 88.09 87.81 87.95
RECK(text+image+KGt,v+GAT ) 94.49 87.85 87.03 87.44

RECK 95.11 88.77 88.91 88.84

Effect of Model Components

We first discuss the effect of the model components in RECK. As shown in Table
4.3, all the components in our model play important roles in improving the perfor-
mance. Based on the results, we have the following findings:

• To begin with, when comparing the first, fourth, and last rows, it is evident that
the model’s performance improves significantly as visual and external knowledge
information is sequentially added, in contrast to the text-only model. As per our
initial aim, RECK outperforms RECK(text+image) by a considerable margin.
The inclusion of external knowledge enhances RECK’s F1 score from 81.54 to
88.84. It is indeed compelling that knowledge paths can effectively bridge the
semantic gap between the modalities by integrating them, enabling the model
to comprehend multimodal information more effectively.

• Next, we proceeded to segment the model’s three primary inputs to execute the
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relation classification task individually. The outcomes of the three inputs are
presented in the first, second, and third rows, respectively. The results indicate
that the use of textual features alone yields the best performance, with an F1
score of 63.99, followed by knowledge features alone and visual features alone.
We believe this is reasonable because the relationship between entities is heav-
ily reliant on the text’s syntactic and semantic information for reasoning. In
comparison to text, visual or knowledge features do not contain robust seman-
tic information. Moreover, since knowledge is more closely related to textual
semantics than visual semantics, RECK(KG only) outperforms RECK(image
only).

• Thirdly, upon comparing the fourth and fifth rows, we observe that RECK(text+
image) outperforms RECK(text+KG) despite RECK(KG only) surpassing RECK(image
only). Our speculation is that this is due to the cross-modal attention mecha-
nism, which facilitates the interaction and alignment of textual and visual fea-
tures, whereas textual and knowledge features are merely concatenated. The
former approach proves to be more effective in integrating cross-modal infor-
mation than the latter.

• Fourthly, we can draw a conclusion by comparing the fourth, sixth, and last
rows that even when GAT is not used, the introduced external knowledge has
a beneficial effect on relation classification, with the F1 score increasing from
81.54 to 86.47. By comparing the fifth and last rows, we can observe that the
use of GAT further enhances the F1 score from 86.47 to 88.84. This indicates
that GAT has a positive impact on capturing underlying semantic dependencies
and extracting crucial information from external knowledge by adjusting the
concept feature representation.

• Finally, comparing the seventh, eighth, and last rows, we can see that both
cross-modality knowledge-aware graphs KGt,v and KGv,t play a crucial role in
bridging semantic level discrepancies. While the performance improvement is
similar when each graph is used alone, using KGv,t alone has a slightly better
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Table 4.4: The results of ablation study based on different number of visual seed
concepts. Top-m denotes that there are m seed concepts with highest confidence
introduced into the our model for knowledge path retrieval.

Visual Seed Acc. Prec. Recall F1.
Concepts Num

RECK(text+image) 92.01 82.00 81.09 81.54
+ Top-1 94.30 87.78 86.41 87.09
+ Top-3 94.80 89.08 87.97 88.52
+ Top-5 95.11 88.77 88.91 88.84
+ Top-7 94.80 89.30 87.34 88.31
+ Top-10 92.81 83.46 89.06 86.17

effect. When both graphs are used together in the model, the performance
increases to 88.84, compared to 87.95 and 87.44 when only using one of them.
This indicates that constructing knowledge paths from different directions in
ConceptNet can help fill the semantic gap from various perspectives. This two-
way approach can introduce more concepts at a high semantic level and exploit
more comprehensive information to fill the semantic gap.

Analysis of External Knowledge Extraction

After discussing the impact of different modules of RECK, we consider the influence
of the method of knowledge path extraction. On the one hand, introducing too much
external knowledge will bring noise; on the other hand, presenting only a small part
of external knowledge will lead to insufficient use of auxiliary information and fail
to bridge the semantic gap. Therefore, to explore the appropriate way to introduce
knowledge, we set up three kinds of experiments based on (i) the different number
of visual seed concepts, (ii) different sources of textual seed concepts, and (iii) the
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Table 4.5: The results of ablation study based on different source of textual seed
concepts. RECK ALL means all the non stop words from text input are used as
textual seed concepts, which is different from RECK itself.

Textual Seed Acc. Prec. Recall F1.
Concept Resource

RECK(text+image) 92.01 82.00 81.09 81.54
RECK ALL 93.25 84.05 84.84 84.45

RECK 95.11 88.77 88.91 88.84

different number of knowledge paths between each paired text-image seed concepts.

As shown in Table 4.4, the model performance increases gradually when the num-
ber of the introduced concepts increases within an appropriate range. We find that
the model performs the best when the top-5 visual seed concepts are in use. The
visual seed concepts with low confidence may bring some noise knowledge paths ir-
relevant to the textual information. However, the F1 score drops significantly when
we take top-10 seed concepts into account, compared with the one with top-5 seed
concepts (from 88.84% to 86.17%).

Besides, when the number of visual seed concepts is 3, 5, or 7, we find that
the model’s performance is similar. This may be because the extracted visual seed
concepts are similar in these cases, resulting in a large number of coincident nodes
in each path. Therefore, the constructed knowledge graph becomes similar to each
other.

As shown in Table 4.5, when we use all non-stop words in the text as the textual
seed concepts, taking F1 as an example, the performance decreases from 88.84 to
84.45. This indicates that although taking more words as seed concepts can introduce
more external knowledge, keeping doing so will also lead to more noise, which will
degrade the model’s performance. Not all the words in a sentence are related to the
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Figure 4.8: Two examples for illustrating the effectiveness of incorporating cross-
modal knowledge representations and the graph attention mechanism. We export
subgraphs of external knowledge graphs for showing the related cross-modal concepts,
and visualize the attention weights of graph attention network, where the deeper the
color, the higher the attention weights.

relationship between entities. This also hints that when using external knowledge
to connect multimodal information, the concepts of indexing knowledge need to be
designed independently for different multimodal tasks.

As shown in Table 4.6, the overall results achieve the best when the number of
knowledge paths is 3. The performance also increases gradually when the number of
introduced concepts increases within an appropriate range. However, compared to
Table 4.4, the model performance based on the different number of paths is similar.
This is because the shortest n paths connecting two concepts in ConceptNet are gen-
erally similar, having only a few nodes different between paths, thereby introducing
similar knowledge.
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Table 4.6: The results of ablation study based on different number of knowledge paths
connected by each textual and visual seed concept pair. Shortest-n denotes that there
are n shortest knowledge paths between each seed concept pair introduced into the
our model for knowledge path retrieval.

Knowledge Paths Acc. Prec. Recall F1.
Num

RECK(text+image) 92.01 82.00 81.09 81.54
+ Shortest-1 94.73 87.10 88.13 87.92
+ Shortest-2 94.73 88.63 87.66 88.14
+ Shortest-3 95.11 88.77 88.91 88.84
+ Shortest-4 94.80 88.99 87.19 88.08
+ Shortest-5 94.67 88.05 87.50 87.78

4.5.6 Case Study

As a case study, we compare our model with baseline methods which leverage the
low-level visual object information while ignoring the semantic gap of visual objects
and textual relations. In Figure 4.8(a), the example depicts that previous methods
incorrectly identify the relation between “Meghan Markle” and “Harry” as “peer”,
due to that they ignore the visual information related to concepts “wedding” or
“ceremony”. In contrast, our model makes the right prediction with the guidance
of these high-level concepts. Moreover, we can see that our graph attention network
gives higher weights (i.e., with darker colors) on visual concepts which are more
related to the ground-truth relation “Couple”.

The example in Figure 4.8(b) also reveals that previous methods cannot figure
out the relation “present in” with only a person extracted as supplementary object
information. Nevertheless, we can learn from the knowledge graph that there is a
person related to art or music (showing that she may be a singer), appearing on
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Text: RT @ReignOfApril: Taylor just beat 
out Bey for Best Tour of the Year. Best. 
Tour. #AMAS

Related Textual Concepts:
Taylor, person, Best Tour, miscellaneous

Related Visual Concepts:
portrait, actress, woman, room, person…

Baseline Models:
{Taylor, /per/misc/present_in, Best Tour}

Our Model:
{Taylor, /per/misc/present_in, Best Tour}

Ground Truth:
{Taylor, /per/misc/awarded, Best Tour}

Text: RT @WACommunity : Menthol 
Architects ' Z - loft won the WA Award in the 
14th Cycle.

Related Textual Concepts:
WA Award, miscellaneous, 14th Cycle

Related Visual Concepts:
architecture, composite, hybrid, mixed…

Baseline Models:
{WA Award, None, 14th Cycle}

Our Model:
{WA Award, /misc/misc/part_of, 14th Cycle}

Ground Truth:
{WA Award, None, 14th Cycle}

(a) (b)

Figure 4.9: An error analysis was conducted to compare our proposed RECK model
with the baseline method. Images are displayed on the left side, while the detected
textual and visual concepts, along with the predictions, are presented on the right
side. Two specific scenarios were examined in these cases: 1) both the baseline model
and RECKmade incorrect predictions, and 2) the baseline model produced the correct
prediction while RECK failed.

a show/opera which is related to performance. Such auxiliary information strong
indicates the relation between “BlackSabbath” and “Technical Ecstasy” as “present
in”, rather than “None” as indicated by other compared baseline methods.

4.5.7 Error Analysis

We also show some examples failed by RECK and previous baseline methods in Figure
4.9. The first case in Figure 4.9(a) reveals that when both the text and image can
not provide enough information to identify the relation, our model may output an
incorrect result based on limited contents. In this example, our model extracts the
relation “present in” between “Taylor” and “Best Tour” with the auxiliary visual
information “a person in the room”. However, it cannot find any clues to indicate the
ground-truth label “awarded”.

The second example in Figure 4.9(b) presents another case that external knowl-
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edge has the opposite effect on relation extraction. Our model incorrectly predicts the
relation “part_of” since some related concepts (e.g., composite, hybrid and mixed) are
extracted, although the two entities show no relation under the predefined categories.
On the contrary, baseline methods without incorporated knowledge can output the
ground truth label.

4.6 Conclusion

In this work, we propose a novel model called RECK for multimodal knowledge
extraction. Our model leverages cross-modal knowledge representation to bridge the
semantic gaps between visual contents and textual relations of entity pairs. We
first extract seed concepts from text and image input and then retrieve knowledge
paths from external knowledge base. In addition, we adopt GAT module to filter the
knowledge and generate the cross-modal knowledge representation.

The experimental results on the MNRE dataset demonstrate that our model out-
performs the state-of-the-art methods by successfully bridging the gap. For future
work, we plan to develop and devise more efficient and explainable filtering methods
and path selection strategies.
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Chapter 5

A Robust Data Augmentation and
Estimation System for Knowledge
Extraction

5.1 Introduction

Multimodal language understanding has received intensive attention recently for its
advantage of mining semantics by collaborating the cross-modal inference [113]. Ex-
amples include methods for multimodal name entity recognition (MNER) [123] and
multimodal relation extraction (MRE) [128]. Both benefit from the collaborative
reasoning based on the alignment of textual and visual content. However, statistics
on commonly adopted text-image relation benchmarks (e.g., TRC [101] and Twit-
ter100k [45]) shows that the misalignment rate between images and texts is as high
as 60%. Noise introduced by the misalignment can mislead the learning and degrade
the performance of resulting models.

As shown in Fig. 5.1, the misalignment can be categorized into partial and irrele-
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A pair (!!,"!) of Irrelevant AlignmentA pair (!","") of Partial Alignment

Taylor Swift sets
new AMAs record,
urges people to vote
via @ReutersTV.

Entities:
Taylor Swift (MISC)

Predictions w/o knowing misalignment

Entities:
Taylor Swift (PER)

“Fair trade now
fool trade,” Trump
vents anger on
NATO allies.

Entities: Trump (PER), NATO (PER)
Relations: <Trump, peer, NATO>

Entities: Trump (PER),
NATO (ORG)
Relations: <Trump,
member_of, NATO>

!("!,#!) !("",#") 

!(#!" |"!) !(##" |"#)

Predictions with the back-translation as the reference and aware of misalignments

Back-translation Back-translation!("!,#!,#!" ) !("# ,## ,##" ) 

Figure 5.1: Partial (left) and irrelevant (right) alignments in text-image pairs and the
results of using generative back-translation to help the inference in multimodal entity
and relation extraction tasks.

vant alignment. In case of incomplete alignment, textual entities (e.g., NATO) might
be mismatched to the visual evidence (e.g., person) which results in incorrect labels
(e.g., PER). This further leads to underline relations between entities (e.g., <Trump,
president of, USA), <USA, member of, NATO>) missing from the extractions. In
case of irrelevant alignment, the textual entities might be randomly matched to visual
evidence (e.g., MISC) resulting in dirty data for inference. While the misalignment
with the ambiguity/distraction it brings to the learning has long been noticed, it has
been rarely studied and addressed [96]. The challenge is that it is nearly impossible
to know the degree of misalignment prior to the inference. Otherwise, the inference
may has already been done.

In this work, we conduct a pilot study to address this problem. The motivation
is that the misalignment of cross-modal pairs is a similar problem to the divergence
of cross-lingual machine translations [12]. The problem can thus be transformed by
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treating the text-image pairs in MNER/MRE as translations to each other. The diver-
gence problem is more widely studied and existing solutions such as back-translation
[25] can be borrowed.

While this sounds appealing, it introduces new challenges as follows.

Modality Gap: The cross-lingual divergence is defined in a monomodal setting.
The divergence can be measured explicitly by using features such as difference of sen-
tence lengths, ratio of aligned words, and number of unaligned contiguous sequences
[12]. However, those features are not available in a cross-modal setting. We address
it in an implicitly way in which disalignment of cross-lingual words (e.g., textual
words and visual patches) is indicated by the divergence of their representations in
the embedded space.

Parallelism: The detection/assessment of cross-lingual divergence relies on large-
scale parallel corpora, in which the sentences are aligned into word-level. The align-
ment is symmetric which makes high quality back-translation possible. However, in
the cross-modal setting, MNER/MRE benchmark datasets are with a small scale due
to the high cost of name entities labeling. The datasets are not well paralleled and
there is no word-level alignment. We address those problems by taking advantage of
the latest development of diffusion-based generative models [89]. Those models are
trained on large-scale and better paralleled datasets, with which the back-translation
can be conducted in a generate-to-translate way, in a sense that, for each text sen-
tence, we can generate an image as its visual language “translation”. Visual grounding
[114] can then be employed to make the alignment into word-level. More details will
be given in Section 5.3.2.

Low-Resource Benchmarks: The assessment of the divergence needs datasets
on large-scale. This is not the case in MNER/MRE scenario. We borrow the idea
of using high-resource corpora as a bridge to address the low-resource learning issue
[32, 28]. In this papaer, a new multimodal dataset is constructed for multimodal diver-
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Text Input
Sentence: “Fair trade now
fool trade,” Trump vents
anger on NATO allies.

Language
Corpus

Image
Set

Unified
Vision-language
Transformer
with SCL

High-Resource Divergence Estimation

Strengthen

Complement

Weaken

Correlation Scores

Language
EncoderImage Input

Visual Grounding
based on
Noun Phrases

Image
Generator

Language
Encoder

Vision
Encoder

Vision
Encoder

Patches Regions

Tokens Phrases

Divergence-aware
Multimodal Fusion

NER Output RE Output

B-PER
O
B-ORG
…

<Trump
Member_of
NATO>
…

Stren.
Scores

Comp.
Scores

Stren.
Scores

Comp.
Scores

Generative Back-translation

Figure 5.2: The framework of the proposed Translation motivated Multimodal
Representation learning (TMR), which generates divergence-aware cross-modal rep-
resentations by introducing two additional streams of Generative Back-translation
and High-Resource Divergence Estimation.

gence estimation. An estimator is built which generates fine-grained confidence scores
over 3 alignment categories of strengthen, weaken, and complement. It enables better
argumentation for MNER/MRE than the simple similarity-based filtering schemes
adopted previously. It also preserves the text-image pairs that are not well-aligned
but with complementary evidence. More details will be given in Section 5.3.3.

5.2 Problem Statement

Definition 1. (Multimodal Translation) Give a pair of a sentence t and an image
v, our interest is the joint probability p(t, v), on the basis which the “translation” using
either modality as the source “language” can be obtained/evaluated (e.g., using p(t | v)

or p(v | t)) [12].
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However, in the multimodal information extraction scenario, the translation is not
a goal. We use it as a conceptual solution-seeking mindset. Specifically, our target is
to build a function g(t, v) which learns the representations of p(t, v). We propose to
make the learner aware of the modality misalignment (divergence) using

• Back-Translation: a generative diffusion model is employed as a predictor for
p(v′ | t) which generates the back-translation of v. The divergence can be
embedded by integrating the representations of v and v′;

• High-Resource Divergence Estimation: we learn a function d(t, v) to estimate
the cross-modal divergence. The function is learned on a high-resource corpora
independently and can be used to adjust p(t, v).

5.3 The Proposed System: TMR

In this section, we introduce a general process for learning the representation
first (i.e., g(t, v)), and then p(v′ | t) and d(t, v) can be implemented. Once the
representation is obtained, multimodal information extraction tasks such as NER and
MNRE can be conducted by learning the probability of p(l | g(t, v)) where l represents
the label of name entities or relations depending on the task. The framework is shown
in Fig. 5.2.

5.3.1 Multi-Grained Representation Learning

To ease the description, let us denote the resulting representation of a text-image
pair as G = g(t, v). It can be implemented using a Transformer model [51] as long
as t and v can be tokenized (e.g., into words or patches) and embedded, so that
the joint representation is learned regarding the cross-model correlation (ensured by
the multi-head attention). Denote T and V as the tokenized embedding of t and v,
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respectively, the representation can be learned as

G =
∑

softmax

(
WdV T⊤
√
d

)
T , (5.1)

where d is the dimension of textual embedding T and Wd is a cross-model attention
matrix which is learned during the training.

However, granularity is a concern when the representation is cross-modal, because
of the aforementioned Modality Gap and Parallelism challenges. We propose to build
a multi-grained representation learning scheme, in which a 2-level of granularity is
adopted so that a text is tokenized into words and phrases and an image is tokenized
into patches and regions. We assume that the cross-modal representation can be
generated on a fine scale based on word-patch correlations and the representation is
coarse-grained when built on phrase-region correlations [63].

Let us denote T w and T p as the tokenized embedding of the text t at word and
phrase level, respectively, in which the phrases is obtained using Stanford Parser fol-
lowing the method in [119]. The embedding are encoded using BERT [51]. Similarly,
we denote V s and V r as the tokenized embedding of the image v at patch and re-
gion level, respectively, in which patches are obtained using fixed grid and regions
are obtained using the visual grounding method toolkit [114]. We set the numbers
of patches and regions as 49 and 3, respectively, by following the previous studies
[17, 16]. ResNet50 [38] is then employed to generate the visual embedding. The 2
levels of pairs (T w,V s) and (T p,V r) are then be substituted into Eq. (5.1), resulting
in the cross-modal representations Gf and Gc at fine and coarse level, respectively.
A multi-grained representation G can then be generated as

G = Gf + Gc. (5.2)
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5.3.2 Cross-Modal Back-Translation

We borrow the idea of back-translation from traditional machine translation meth-
ods [25], in which the result in the target language is translated back to the source
language to verify the quality or divergence. In our case, we treat the text t as a
translation from an image v. A back-translation v′ can then obtained by using

v′ = argmax p(v̂ | t), (5.3)

where v̂ is an image hypothesis. However, back-translation usually requires parallel
corpora to learn the probability of p(v̂ | t), which is not available in any NER/MNRE
settings. We address this problem by taking advantage of recent advance in diffusion-
based generative models [89]. Those models are trained using large-scale paralleled
text-image pairs to learn the ability to generate an image contained on a give text
prompt. The objective of those models is thus conceptually similar to Eq. (5.3). In
our case, we use stable diffusion [88], which is trained on a subset of LAION-5B [90]
dataset. Upon back-translation, we feed the text t as a prompt to stable diffusion. The
modal generates a v′ which can be used as an approximation of the back-translation
from t.

To assess the divergence of translation, we cannot compare v′ to v like in text
translation, because the cross-modal misalignment is at the semantic level and in-
dicated by the correlation rather than the content. We thus compose a new pair
(t, v′) and use the process introduced in Section5.3.1 to generate a back-translated
cross-modal representation G′. Since v′ is generated directly from t, the alignment
between them is better guaranteed than those sampled from user generated content
on web or social media. It can be used a pseudo-paralleled pair. Therefore, the orig-
inal pair (t, v) is better aligned if G is similar to G′ or otherwise less aligned. There
are different ways to use these two representations complementarily. Examples will
be given in Section 5.3.4 under MNER/MRE scenario.

88



5.3. The Proposed System: TMR

5.3.3 High-Resource Divergence Estimation

In this subsection, we implement an independent divergence estimator d(t, v). Ex-
isting methods address the issue by setting an attention mask on the reasoner trained
on low-resource NER/MNRE benchmarks which simply filters out the less attended
pairs [123, 110]. We argue that the training is easy to be biased by replying low-
resource benchmarks which are neither sufficient on scale nor designed for divergence
assessment purpose. More importantly, the filtering scheme also ignores pairs that
are less aligned but with complementary evidence (e.g., Fig. 5.1). We construct a
high-resource corpora which serves as a bridge to train the estimator independently.
Furthermore, the estimator generates for each pair 3 confidence scores (αs,αc,αw)
over the category set {strengthen, complement, weaken} for a more detailed diver-
gence estimation. It can then be utilized as an augmenter (instead of a filter) for
better representations of G and G′ as

⎡

⎣G∗

G′∗

⎤

⎦
⊤

=

⎡

⎢⎢⎢⎣

αs

αc

αw

⎤

⎥⎥⎥⎦

⊤ ⎡

⎢⎢⎢⎣

Gf G′f

Gc G′c

0 0

⎤

⎥⎥⎥⎦
,

w.r.t. αs + αc + αw = 1.

(5.4)

High-Resource Corpora Construction Different from [96] using limited data
crawled from social media (e.g., Twitter), we collect data from large-scale public
image-text datasets to enhance the generalization of our estimator. We randomly
select 100k data from MSCOCO [66] as the “Strengthen” samples, since the dataset
contains fine-grained aligned image-text pairs designed for tasks like Visual ground-
ing and Scene graph generation. LAION-400M [91] is chosen as the “Complement”
dataset since it is built on web paired data and no strict rules are applied for the
alignment between image contents and text tokens. Similar to MSCOCO, we select
100k image-text pairs from LAION-400M as training samples. We generate nega-
tive samples as the “Weaken” (unaligned) data by substituting the images in the
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Unified Vision-Language Transformer

…

Image patches Text tokens

z1 z2 zi… zi+1 zi+2 zn

Bridge over stream

Linear Projection Word Embedding

Pooling Layer

FC FC

Supervised Contrastive Learning

Positive
Sampling

Negative
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zp za

Figure 5.3: Architecture of our Multimodal Divergence Estimator (MDE), which is
trained on high-resource vision-language datasets, and Supervised Contrastive Learn-
ing (SCL) is applied to enhance the generalization.

“Strengthen” and “Complement” data with a different image randomly sampled from
the two datasets. Finally, we accumulate 400k training samples, with 100k, 100k,
200k for “Strengthen”, “Complement” and “Weaken”, respectively. To verify the ef-
fectiveness and generalization, we further construct a in-domain test set of 10k data
sampled from the two datasets and a out-of-domain test set of 1k data from the SBU
dataset which contains both fine-grained and coarse-grained aligned text-image pairs.

Model Design We adopt the same structure as ViLT [53] that leverages a unified
transformer to encode visual and textual contents. To be more specific, the input
image v (or its back-translation v′) is sliced into patches and flattened. Then a linear
projection is applied to transfer the visual features to the same dimensions of token
embeddings. The text and image embeddings are concatenated into a sequence Z
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and iteratively updated through D-dimensional Transformers. We get the pooled
representations of the multimodal input sequence M as final output z. Details can
be found in Figure 5.3 and Section 5.5.3.

Supervised Contrastive Learning Conventional supervised methods use Cross-
entropy Loss to distinguish samples with different classes. However, since our pre-
training data are constructed on different datasets, simply applying cross-entropy loss
will lead the model to learn a short-cut by utilizing the domain difference other than
the semantic alignment. This results in poor generalization performance. To tackle
this problem, we propose to use the supervised contrastive learning [52] instead to
push away the distance between anchors and negative samples generated from the
positive classes “Strengthen” and “Complement”.

A self-supervised learning loss can be written

Lself = −
∑

i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i)

exp(zi · za/τ)
(5.5)

where z is the output of our estimator model, τ is a scalar temperature parameter.
i, j, a denote the anchor point, positive and negative samples, respectively. We can
simply generalize the Eq. (5.5)to incorporate supervision as:

Lsup =
∑

i∈I

−1
|P (i)|

∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i)

exp(zi · za/τ)
(5.6)

where P (i) is the set of indices of positives and |P (i)| denotes its cardinality.

5.3.4 Multimodal Knowledge Extraction

We use the augmented representations G∗ and G′∗ for two tasks of NER and MNRE.

Named Entity Recognition Following [17, 116], we adopt the CRF decoder to
perform the NER task. We fuse the G∗ with its back-translation G′∗ using using
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multi-head extension [51] and denoted the final representation for a pair (t, v) as

Ḡ = Multihead(G∗,G′∗) ∈ Rn×d (5.7)

which consists of the representation of n words from the text t. NER is then a task to
predict probabilities of those words over a set of predefined entity labels (e.g., PER,
ORG). Let us denote this label set as L = {l}. The probabilities are then denoted as
Y = [y] ∈ Rn×|L| and calculated as

p
(
y | Ḡ

)
=

∏n
i=1 Fi(yi−1, yi, Ḡ)∑

lj∈L
∏n

i=1 Fi(yi−1,j, yi,j, Ḡ)
, (5.8)

where yi,j denotes the probability of the ith word over the jth label, and F represents
potential functions in CRF. We use the maximum conditional likelihood estimation
as the loss function

Lner = −
n∑

i=1

log
(
p(y|Ḡ)

)
. (5.9)

Relation Extraction We merge the representations of textual entities, fine-grained
and coarse-grained image-text pairs, as well as noun phrases to predict final relations.
For a given pair of entities (ei, ej) corresponding to the ith and jth words from t, we
generate its representation as

G̈i,j = Ti ⊕ Tj ⊕ p⊕ h (5.10)

where Ti and Tj denote the embeddings of the two entities, respectively, ⊕ indi-
cates the concatenation operation, p denote the summed features of noun phrases in
the text t, and h denotes the summed representation of the text-image pair and its
back-translation (i.e., h = G∗ + G′∗). We can then aggregate the likelihoods of this
representation over a set of relation labels R = {r} as p(r | G̈i,j) = softmax(G̈i,j).
Finally, we can calculate the RE loss with cross-entropy loss function

Lre = −
n∑

i=1

log
(
p(r | G̈i,j)

)
. (5.11)

92



5.4. Experimental Settings

Modality Methods
Twitter-2015 Twitter-2017

Prec. Rec. F1 Prec. Rec. F1

Text

CNN-BLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37

BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44
PCNN - - - - - -
MTB - - - - - -

Text+Image

AdapCoAtt 69.87 74.59 72.15 85.13 83.20 84.10
OCSGA 74.71 71.21 72.92 - - -
RpBERT 71.15 74.30 72.69 - - -

UMT 71.67 75.23 73.41 85.28 85.34 85.31
UMGF 74.49 75.21 74.85 86.54 84.50 85.51

VisualBERT 68.84 71.39 70.09 84.06 85.39 84.72
MEGA 70.35 74.58 72.35 84.03 84.75 84.39

HVPNeT 73.87 76.82 75.32 85.84 87.93 86.87
MKGFormer - - - 86.98 88.01 87.49

TMR w/o BT. 74.99 75.18 75.08 84.89 88.16 86.49
TMR w/o MDE. 74.70 76.05 75.37 85.53 87.93 86.72

TMR (our method) 75.26 76.49 75.87 88.12 88.38 88.25∗

Table 5.1: The Overall Performance of TMR compared to several baselines on three
benchmark datasets for MNER. We show the prediction results of TMR variants
(without Back Translation (BP) or Multimodal Divergence Estimation (MDE)) in
the bottom rows. * Indicates that the Difference Against F1 Value Between Our
Model and Previous Baselines is Statistically Significant By One-Tailed Paired t-test
with p < 0.01.

5.4 Experimental Settings

5.4.1 Datasets and Metrics

We adopt three publicly available datasets for evaluating our proposed method on
MNER and MRE, including: 1) Twitter15 [72] and Twitter17 [123] are two datasets
for MNER, which include user posts on Twitter during 2014-2015 and 2016-2017, re-
spectively. 2) MNRE [128] is a manually-annotated dataset for MRE task, where the

93



Chapter 5. A Robust Data Augmentation and Estimation System for Knowledge
Extraction

texts and images are crawled from Twitter and a subset of Twitter15 and Twitter17.
We use precision, recall and F1 value as the default evaluation metric and compare
such results in the following sections.

5.4.2 Baselines

We compare our method with two groups of state-of-the-art (SOTA) methods as
follows.

Text-based Methods: CNN-BLSTM-CRF [76], HBiLSTM-CRF [55], and BERT-CRF
[51] are classical sequence-labeling methods which show excellent prediction results on
NER in newswire domain. PCNN [117] is a distantly-supervised method for relation
extraction, leveraging the knowledge from external knowledge base. MTB [93] is a
SOTA method for many text-based RE tasks.

Previous SOTA Multimodal Approaches: AdapCoAtt [123] is the pioneer work that
extracts named entities with co-attention mechanism. RpBERT [96] explicitly calcu-
lates image-text similarities by learning a classifier on Twitter data. OCSGA [110],
UMT [116], UMGF [119], and MEGA [128] are the NER/RE methods that align
fine-grained object features with textual representations with Transformers or Graph
Neural Networks. VisualBERT [61] is a vision-language pretraining model that can
be applied for MNER and MRE tasks. HVPNet [17] and MKGFormer [16], the latest
SOTA for MNER and MRE, which develops a hierarchical structure to learn visual
prefix from multiple views.
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Modality Methods
MNRE

Prec. Rec. F1

Text

CNN-BLSTM-CRF - - -
HBiLSTM-CRF - - -

BERT-CRF - - -
PCNN 62.85 49.69 55.49
MTB 64.46 57.81 60.86

Text+Image

AdapCoAtt - - -
OCSGA - - -
RpBERT - - -

UMT 62.93 63.88 63.46
UMGF 64.38 66.23 65.29

VisualBERT 57.15 59.48 58.30
MEGA 64.51 68.44 66.41

HVPNeT 83.64 80.78 81.85
MKGFormer 82.67 81.25 81.95

TMR w/o BT. 88.13 84.69 86.37
TMR w/o MDE. 89.45 86.09 87.73

TMR (our method) 90.48 87.66 89.05

Table 5.2: The Overall Performance of TMR compared to several baselines on three
benchmark datasets for MRE. We show the prediction results of TMR variants (with-
out Back Translation (BP) or Multimodal Divergence Estimation (MDE)) in the bot-
tom rows.

5.5 Results and Discussion

5.5.1 Comparison to SOTA

The results are shown in Table 1. It is easy to see our method outperforms other
SOTA methods on on all datasets.

When compared to models relying on pure textual information, visual features
contribute to the performance gain by 5% on MNER and 20% on MRE. Due to the
short and ambiguous characteristics of texts in social media, it is difficult to identify
entities and their relations in limited context.
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Incorporating multi-grained visual and textual information performs better than
relying on object or image level information solely. The SOTA method HVPNeT
and our MTR gain better results (88.35% and 86.87% in Twitter-2017 dataset) than
UMGF (85.51%) and UMT (85.31%) which align image and text in fine-grained
object-level.

Our model outperforms HVPNet and MKGFormer which leverage hierarchical
visual representations or powerful vision-language pretraining embeddings, in a rela-
tively large margin (from 82% to 89%) on the MRE task. We observe a more obvious
performance improvement on MRE datasets compared to that on MNRE. The dif-
ference comes from the different distributions of MRE and MNRE datasets. Our
statistics show that the proportion of complementary cases is significantly higher in
MRE (51.5%) than in MNRE (15.7%). As mentioned in the work, the proposed
back-translation helps the two tasks by providing additional contextual information
for inference. This benefits the complementary cases the most because it makes the
identification of indirect relationships possible (otherwise, those cases will be consid-
ered as misalignments or used incorrectly like in the similarity-based methods).

5.5.2 Ablation Study

In this section, we conduct extensive experiments with the variants of our model to
analyze the effectiveness of each component.

Back-translation: We ablate the procedure of generating back-translation images
and the results in Table 1 show the component can boost model performance by 1-3%
in MNER and MRE. Still, our ablated model gains comparable or superior perfor-
mance against baselines which demonstrates the effectiveness of back-translation.

Multimodal Divergence Estimation: Compared with similarity-score based method
RpBERT, our model shows stronger extraction and generalization performance with
3.18% improvement on Twitter-2015 dataset. Also, our model achieves significant
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improvements (3% to 7%) over attention-based methods, revealing that TMR can
improve conventional NER/RE methods by decomposing the divergence into fine-
grained level.

5.5.3 Other Essentials of the Model

Low-resource Performance

We conduct experiments in low-resource scenarios following the setting of [17], by
randomly sampling 5% to 50% from original training set. From the results in Fig-
ure 4, we can observe: 1) The methods utilizing multi-grained features (HVPNet
and TMR) consistently outperform object-level models in MNER (UMGF) and MRE
(MEGA). Multi-grained features can provide global and local views and help models
infer entities and relations efficiently. 2) Moreover, our proposed TMR model per-
forms better than HVPNet with external knowledge from generative diffusion models,
which addresses the information lack problem in low-resource scenarios.

Twitter-2017 MNRE

Figure 5.4: Performances in low-resource setting on MNER and MRE tasks.

Improvements on Complementary Cases

To demonstrate the effectiveness of correlation decomposition, we further compare
our method with SOTA method HVPNeT on complementary cases of MNRE test
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set. We argue that previous similarity-based methods ignore the cross-modal diver-
gence, especially when texts and images are complementary. We export 832 cases with
“complement score” higher than 0.5 from 1614 test samples. Our model achieves sig-
nificant improvements against HVPNeT, especially on some categories (e.g., Present
in, Locate at and Residence) that rely on deeper understanding of visual scenarios.

Table 5.3: Our results on complementary cases compared to HVPNeT [17] on the
MNRE test set. Six main categories are selected for comparison.

Category Count TMR HVPNeT

Peer 98 91.00 89.30

Member_of 46 97.87 82.11

Contain 33 98.46 95.65

Present_in 44 91.95 79.01

Locate_at 18 97.14 75.68

Residence 13 83.87 66.67

Overall 832 87.37 77.93

Generalization Performance of Multimodal Divergence Estimator

We extend conventional similarity score into fine-grained level and weight the impor-
tance of incorporated visual information based on the pretrained divergence estima-
tor. To verify the generalizations to data in other domain, we first construct test
set collected with in-domain data (i.e., by sampling on MSCOCO and LAION400M).
Then, We first request 2 annotators to label 1k test samples on out-of-domain data
and then ask other 2 to review and rectify the test set. As shown in Table 5.4, we
compare the estimator trained with different loss function. The results indicate that
the model with cross-entropy loss suffers the generalization problem when transferred
into out of domain data. The possible reason is that the model may learn a shortcut
from the difference of image/text style on the data from the two datasets, other than
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taking the image-text correlation into consideration. We improve it by introducing
negative sampling on in-domain data to reduce the style bias and the F1 value on
out-of-domain data increases from 61.8 to 80.01. We further apply the supervised
contrastive learning to pull together the positive samples and push apart negative
ones, resulting in better generalization performance. The lower in-domain perfor-
mance but better generalization of supervised contrastive learning can be attributed
to: (1) Contrastive learning focuses on learning robust features rather than fitting
training distribution, (2) Cross-entropy tends to overfit to training domain-specific
features, (3) The learned feature space from contrastive learning better captures se-
mantic similarities.

Model Setting In Domain Out of Domain

Cross-entropy 98.56 61.80

Negative Sampling 92.57 80.01

Supervised Contrastive 93.26 86.21

Table 5.4: The generalization experiment of the Multimodal Divergence Estimator
(MDE). Origin. is the dataset with 10k data sampling from pretraining data, while
SBU is the 1k dataset for human evaluation. F1 value is used for evaluation metric.

Case Study

To validate the effectiveness and robustness of our method, we conduct case analysis
for multimodal divergence estimation. Previous works simply calculate the image-text
similarity with attention mechanism (HVPNeT) or pretrained classifier (RpBERT).
As a result, visual information with low similarity score will be filtered out. We
notice that our model and RpBERT can identify entities correctly when images are
well-aligned with sentence in S1. However, RpBERT fails to extract the ORG en-
tity “Foran” since it outputs a much lower similarity score. Our model successfully
captures the semantics of “team competition” and it can be used to complement the
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S1: A beautiful Timber Frame bridge
over a stream in Auburn (LOC), PA
(LOC).

S2: Cross country: Foran (ORG)’s
Mia Williams (PER), Kevin Preneta
take firsts.

S3: Taylor Swift (PER) sets new
AMAs (MISC) record, urges
people to vote via @ReutersTV.

Strengthen Complement Weaken

Relational Triplet:
(Auburn, contain, PA)

Relational Triplet:
(Mia Williams,member_of, Foran)

Relational Triplet:
(Taylor Swift, awarded, AMAs)

Similarity Score: 0.76
MDE Score -
Strengthen: 0.954
Complement: 0.045
Weaken: 0.001

Similarity Score: 0.24
MDE Score -
Strengthen: 0.000
Complement: 0.927
Weaken: 0.072

Similarity Score: 0.14
MDE Score -
Strengthen: 0.000
Complement: 0.073
Weaken: 0.926

RpBERT: Auburn (LOC), PA
(LOC)
Ours: Auburn (LOC), PA (LOC)

RpBERT: Foran (PER), Mia
Williams (PER)
Ours: Foran (ORG), Mia
Williams (PER)

HVPNeT:
(/per/misc/present_in)

Ours: (/per/misc/awarded)

Figure 5.5: The first line shows the three correlation categories, and the second row
indicates representative samples with their ground-truth entity and relation types.
The third line presents the comparison between our decomposed multimodal diver-
gence estimation (MDE) score and conventional similarity score, and the bottom is
the prediction results of our model and corresponding baselines.

missing semantics, which helps extract “Foran” as a name of organization and the
relation “member_of” between the two entities. Another case is that when the image
is irrelevant to textual contents in S3, HVPNeT gives the wrong prediction due to
the misleading of the image. Our method can address this problem by generating
a back-translation image of “Taylor Swift” and the “awarding scene”, as shown in
Figure 1.
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5.6 Conclusion

We have revisited the misalignment issue in multimodal benchmarks. By borrowing
the ideas from translation methods, we have implemented multimodal versions of
back-translation and high-resource bridging, which provide a multi-view to the mis-
alignment between modalities. The method has been validated in the experiments
and outperforms 14 SOTA methods.
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Chapter 6

An Iterative Refined Blueprint
Debate Paradigm for Knowledge
Reasoning

6.1 Introduction

Multimodal reasoning depends on two key aspects: the creation of a unified repre-
sentation of semantics from different modalities and the integration of these diverse
semantics while ensuring logical consistency. While the advancement in large lan-
guage models (LLMs) has made it possible to represent the semantics in natural
languages [3, 98], the integration of diverse semantics remains a challenging issue,
even in exclusive NLP tasks. One approach to tackle this challenge is multi-agent
debate (MAD), where multiple LLMs act as agents, each contributing their own per-
spectives on the target topic and reaching a consensus through debates [64, 13]. This
scheme could be adopted by incorporating a specific LLM for each modality as an
agent.

102



6.1. Introduction

While being relatively unexplored in the multimodal domain, MAD encounters
numerous challenges in a broader context. It may suffer from the trivialization of
opinions, resulting from the summarization step performed at the conclusion of each
debating round. The objective of this step is to seek agreement among the partic-
ipating agents regarding their opinions. Consequently, this process can lead to the
debate’s focus being directed towards a general concept, serving as an adaptation to
accommodate the diverse range of semantics. One example can be observed in the
reasoning of the Multimodal Large Language Model (MLLM) depicted in Figure 6.1,
where the image modality presents a diverse range of semantics, including bear sedge,
earthworm, collared lemming, and others. As a consequence, this can result in the
context and summary being trivialized, shifting the emphasis from lichen to a more
generalized concept of the tundra ecosystem, wherein both bilberry and mushroom ex-
hibit a high degree of correlation. Similar issue exists when MAD is employed, where
the summarizer concludes the diverse semantics into general words like ecosystem
and food web, making the conclusion less specific. In addition, MAD may encounter
the issue of focus diversion, which occurs when Chain-of-Thoughts (CoT) is utilized
and new concepts introduced are highly correlated with a particular concepts (e.g.,
mathematical model [19]), leading to an increased weighting of that concept within
the context.

We argue that these challenges arise due to the inductive nature of existing debat-
ing schemes, wherein agent opinions are gathered from disparate concepts at word-
level and consensus is achieved through bottom-up summarization. This approach
may be effective in confined NLP tasks [36, 41], where the topic is often limited to a
small number of concepts and the application of CoT remains constrained. However,
in a multimodal scenario, certain modalities (e.g., images) are information-rich and
have a higher likelihood of introducing distracting concepts [73]. Consequently, it
increases the semantic divergence within the context and the likelihood of trivializa-
tion. The semantic divergence increases further when the impacts of those concepts
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Input

Which of these organisms 
contains matter that was 
once part of the lichen?

(A) Bilberry
(B) Mushroom

Baselines

MLLM:
Both the bilberry and the mushroom contain 
matter that was once part of the lichen.

MLLM-CoT:
Rationale: The image shows a food relation 
between several animals and plants in a tundra
ecosystem… The lichen is a composite organism 
that consists of a fungus and an alga. The fungus 
provides the physical structure of the lichen, 
while the alga provides the food for the fungus..
(Focus Diversion)
Answer: Both are correct.

BDoG

Blueprint:
earthworm

caribou

Consumed
by

mushroom

lemming

arctic
fox

bilberry
bear

lichen

eat eat

eat eatprey
on

prey on

decompose decompose

----------------First-round Debate--------------
Affirmative Graph: Negative Graph:

lichen

Is eaten
by

Is eaten by

Is
decomposed
into

caribou

bear

soil

decomposed
lichen

Is eaten
by bear

Is eaten
by

contain

soil

mushroom

gets
nutrients
from

lichen

---------------Second-round Debate------------

Affirmative Graph:

mushroom
lichen

contains

Negative Graph:

Blueprint Debate-on-Graph:
Rationale: The lichen is decomposed into soil. 
The mushroom gets its nutrients from the soil. 
So the mushroom contains matter that was once 
part of the lichen.
Answer: (B) mushroom

----------------Debate Termination--------------

----------------Debate Initialization-------------

caribou

mushroom
lichen

contains

MAD
----------------First-round Debate--------------

The lichen is at the bottom of the food web, so 
the matter… Therefore, all of these organisms 
contain…

Affirmative Side:

Negative Side:

The lichen is eaten by the lemming, … the lichen 
will be found in the lemming,….

The debate solution is correct in… The matter 
that was ..ecosystem and is used by many 
different organisms. The food web is a delicate 
balance, and…, it can have a ripple effect on the 
entire system. (Trivialization of Opinion).

Summarizer:

---------------Second-round Debate------------

Answer: (A) bilberry.

We could use a mathematical model to track the 
movement of matter …

Affirmative Side:

Negative Side:

Humans are a part of the ecosystem, and they 
can have a significant impact on the movement 
of matter through the ecosystem…
Summarizer:

We could use a combination of mathematical 
modeling and experimentation to track the 
movement of matter through … (Focus Diversion)

Figure 6.1: Comparison results from ScienceQA dataset of direct answer from MLLM,
Multimodal Chain-of-Thought (CoT), Multi-agent Debate (MAD) and our Blueprint
Debate on Graph (BDoG). BDoG confines debates to a blueprint and stores evidence
in graph branches, which mitigates word-level opinion trivialization and distractions
caused by irrelevant concepts.

are amplified through CoT, particularly when the newly introduced concepts exhibit
biases towards certain concepts, resulting in focus diversion.

To address these issues, we propose an deductive reasoning scheme called Blueprint
Debate on Graph (BDoG, pronounced bee-dog). BDoG is inspired by the blueprint
debate that has been employed in real-world debates, which distinguishes itself from
other debates by its concentration on evaluating and refining a proposal (e.g., blueprint)
to address specific challenges or issues. BDoG begins by aggregating concepts from
modalities and incorporating with their relationships into an initial graph. This graph
serves as a blueprint that confines the scope of the discussion rather than having it
open to irrelevant semantics as in existing schemes. More importantly, BDoG con-
ducts the debate in a top-down manner by marking down conclusions on the graph.
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This prevents trivialization as specific concepts are preserved rather than merged into
general ones. This can be found from the example shown in Figure 6.1, where the
scope is limited to the tundra ecosystem while specific concepts like mushroom and
lichen are retained. Furthermore, the graph provide a compact and high-level guid-
ance for the discussion process. The newly introduced concepts are incorporated into
relevant branches instead of remaining as a word-level thoughts within the context.
This reduces the likelihood of focus diversion since, in BDoG, the competition of se-
mantics occurs at the branch level rather than the word level. This can be seen from
Figure 6.1, where the most relevant branches related to the soil and caribou standout
from the competition, eliminating the irrelevant semantics effectively. In addition to
the advantages of scope-confined guidance and branch-level competition, BDoG also
increases explainability, allowing for the tracking of discussion progress (Figure 6.1).

6.2 Problem Statement

Definition 1. (Blueprint-guided Reasoning): Given question q, image i, context
c, and a multi-agent system A, generate a reasoning path through iterative blueprint
graph refinement to derive answer a.

6.3 The Proposed Paradigm: BDoG

6.3.1 Preliminary

We begin by outlining existing approaches for tackling the multimodal reasoning
problem. Figure 6.2 shows the specific distinction among them. Formally, given a
question Q consisting of t tokens, our goal is to identify the correct answer A from
a set of candidate answers. In the context of multimodal reasoning, the expected
answer is intended to be inferred based on a visual context I and a textual clue C,

105



Chapter 6. An Iterative Refined Blueprint Debate Paradigm for Knowledge
Reasoning

in addition to the question itself.

Vanilla Prompting. Vanilla prompting approaches aim to predict an answer A by
augmenting the input with illustrative examples D in addition to the question Q,
visual context I, and textual clue C.

Multimodal CoT. As noted by Lu et al. [73], incorporating intermediate rea-
soning steps (rationales) can aid in predicting the correct answer, especially for
complex multimodal reasoning tasks. To address this, we first generate a rationale
R = {r1, r2, ..., rk} given the input. The generated rationale R is then concatenated
with the original language input to update the language representation. This aug-
mented language input is fed together with the original visual input I into the same
model to infer the final answer.

DDCoT. The Duty-Distinct Chain of Thought framework proposes a novel approach
for deconstructing questions into fundamental sub-questions, similar to breaking down
reasoning into elementary steps. Contrary to prior work on conversational agents,
Zheng et al. [132] employ the instruction to acquire the sub-question sequence
Q1, Q2, ..., Qt in a single interaction. Within this framework, the final response A

is obtained by aggregating the answers Ai to each sub-question Qi and the generated
CoT rationale Ri.

Self-Correction. Self-correction techniques [108] endeavor to iteratively enhance
model predictions by leveraging feedback generated from the model itself. In partic-
ular, a feedback function f : R → R′ is adopted to iteratively map model outputs to
the refined responses.

MAD. MAD [64] presents a promising framework that fosters discursive exchange
and cross-pollination of ideas between conversational models. Consider a debate com-
prising j rounds amongst a set of large language models acting as interlocutors, the
proponent generates a rationale R′

p and response Ap revised in the light of rationales
Ro presented by the opponent in prior turns.
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Figure 6.2: Comparison of CoT, Duty-Distinct CoT (DDCoT), Self-Correction, Multi-
agent Debate (MAD) and Our proposed Blueprint Debate on Graph (BDoG). Q: input
question, I: input image, C: context or hint, A: answer, R: rationale, G: blueprint.

6.3.2 Overall Architecture

In this section, we introduce Blueprint Debate-on-Graph (BDoG). As illustrated in
Figure 6.2, BDoG takes a deductive approach instead of inducing answers from word-
level thoughts. It utilizes graphs to structure the opinions and proposals provided by
agents. This graph-level structuring of the debating context helps to minimize opinion
trivialization and focus diversion. Furthermore, BDoG adopts a top-down approach
which improves multimodal reasoning by iteratively refining an initial proposal, rep-
resented as a blueprint graph. This integrates opinions from diverse perspectives
through the competition and cooperation among multiple agents.

The BDoG at the ith round can be formulated as a quadruple

T i = (Gi,S,A,F) (6.1)

where, given a multimodal source set S = {Q, I, C}, the debating is conducted among
a set of agents A = {aj}, j ∈ Z+, in which each agent uses operations from the set
F = {fk}, k ∈ Z+ to propose opinions by refining the graph-of-thoughts Gi. At the
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end of the ith round, Gi is updated to Gi+1 to initiate the next round.

Question:
Which type of force
from the baby’s hand
opens the cabinet
door?

Options:
A. Pull B. Push

Context:
A baby wants to 
know what is inside 
of a cabinet. Her 
hand applies a force 
to the door, and the 
door opens.

Image:

Cabinet
doors

baby

Locks
box

push

front 

has

w

Graph Condensation

Debate On Graph Debate On Graph Debate

Entity Update

Vi Vj
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Answer:
A. Pull

Blueprint
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Figure 6.3: An overview of our Blueprint Debate-on-Graph (BDoG) framework. It
iteratively refines the blueprint with a multi-agent debate paradigm.

6.3.3 Blueprint Initialization

To initiate the debating, we need to convert the multimodal sources into a blueprint
graph. This conversion is achieved through the operation function f0 ∈ F : S -→ G0.
To implement f0, we define two additional sub-functions ft and fv for extracting
entities and relations from the textual sources (i.e., Q and C) and visual source (i.e.,
I), respectively. The implementation of f0 is formulated as

f0 : S -→ G0

ft(Q) ∪ fv(I) ∪ ft(C) -→ ⟨V0, E0⟩

w.r.t Size, Relevance (6.2)
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where ∪ denotes the union of two sets of graphs. The 2 constraints are as follows:
1) Size Constraint: The size of G0 needs to be restricted within a specific range to
prevent an excessive number of clues that could distract the inference or an insufficient
number to answer the question effectively. 2) Relevance Constraint: We should
merge the relationships extracted from I and C towards those of the question Q,
ensuring all the knowledge encapsulated in G0 is relevant to the question. Extensive
libraries are available for ft and fv, as they have been extensively researched (e.g.,
named entity recognition [110], relation extraction [128] for ft, image captioning [127],
visual grounding [59] for fv). However, the recent advancements in multimodal large
language models (MLLM) have made it convenient to implement these sub-functions
using in-context learning based prompts. For example, to extend the query I in the
context, we can employ CoT to implement ft as

ft(Q): Given the question {Q}, please provide the necessary steps to answer this
question.

where the { } denotes the placeholder in the prompt.

For fv(I), its implementation varies depending on LLMs used. For GPT-4, the
image needs to be encoded in Base64 format. Gemini utilizes PIL for image encoding.
InstructBLIP offers its EVA-G encoder to convert the image into an eigenvector. The
f0 can then be implemented as

f0: Given the image {fv(I)} and question {ft(Q)}, generate a scene graph with
evidence to answer the question. Please ensure adherence to following constrains:
{Size}, {Relevance}.

where two exemplar constraints are

Size : The graph must not be empty. Please restrict the maximum number of
objects in the graph to 20.
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Relevance : The objects and relations within the graph should be pertinent to
addressing the question.

It worth mentioning that although we provide some exemplar implementations
of functions and constraints, the effectiveness of prompts can vary significantly de-
pending on the MLLM used. The success of multimodal reasoning relies more on
the development of guiding principles for prompting the models and constraints for
regularizing the resulting graph. Therefore, in the rest of this section, our focus lies
on discussing these guiding principles and constraints. Our prompt implementations
will be provided in Appendix.

6.3.4 Agents and Roles

In the debate, we can treat each LLM as an agent that participates in the discussion by
refining the blueprint graph G0. Just like in a real debate, each agent aj ∈ A has a dis-
tinct role assigned. We define three roles as a set ofR = {Proponent, Opponent,Moderator}.
These roles not only help structure the discussion but also promote critical thinking
and ensure a comprehensive and in-depth exploration of the topic.

Proponent agents advocate and defend the current blueprint by refining current
Gi into an affirmative evidence graph G+. A debating function is assigned for this
purpose as

Proponent f+ : Gi × S -→ G+

⟨V i, E i⟩ ∪ ft(Q) ∪ fv(I) -→ ⟨V+, E+⟩

w.r.t Size, Relevance, Compactness (6.3)

An exemplar implementation is
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f+: As {personality}, you are assigned as an affirmative debater and have been
provided with an evidence graph {Gi} for answering the question {ft(Q)} related
to the image {fv(I)}. Try to enhance the graph by incorporating your insights
towards an optimal solution. Please ensure adherence to following constrains:
{Size}, {Relevance}, {Compactness}.

Note that we have incorporated the conclusion from [24, 115] that the agent’s un-
derstanding of the role can be improved by using the {personality} for targeted per-
sonality injection. Furthermore, the personality can be tailored to be specific, such
as “Ben, a high school student with an impressive academic record and respected by
peers for your knowledge and logical thinking.” The Proponent debate adheres to the
Size and Relevance constraints defined in Eq. (6.2), and it also includes the Com-
pactness Constraint: The refined graph should be as concise as possible, ensuring
that the blueprint remains focused.

Opponent agents challenge and present arguments against the blueprint G+ by
updating it into a negative evidence graph G− as

Opponent f− : G+ × S -→ G−

⟨V+, E+⟩ ∪ ft(Q) ∪ fv(I) -→ ⟨V−, E−⟩

w.r.t Size, Relevance, Compactness (6.4)

An exemplar implementation is
f+: As {personality}, you are assigned as a negative debater and have been
provided with an affirmative evidence graph {G+} for answering the question
{ft(Q)} regarding the image {fv(I)}. Try to detect potential flaws and drawbacks
of the graph and update it with your insights. Please ensure adherence to following
constrains: {Size}, {Relevance}, {Compactness}.

The utilization of the functions f+ and f− fosters an adversarial dynamic between
the Proponent and Opponent, ensuring a diverse and comprehensive discussion.
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To facilitate the debating, Moderator agents synthesize the arguments and opin-
ions presented by both the proponent and opponent by merging the G+ and G− into
a conclusion G∗ as

Moderator f∗ : G+ ∪ G− -→ G∗

⟨V+, E+⟩ ∪ ⟨V−, E−⟩ -→ ⟨V∗, E∗⟩

w.r.t Size, Relevance, Compactness (6.5)

An exemplar implementation is

f∗: As {personality}, you are assigned as a moderator in a debate and have
been provided with an affirmative evidence graph {G+} and a negative evidence
graph {G−} to address the question {ft(Q)} regarding the image {fv(I)}. Try to
consolidate the two graphs into a single graph towards the optimal solution, and
provide a conclusive answer to the question.

6.3.5 Debate Progress and Graph Condensation

Initialization and Role Assignment: Once the blueprint G0 has been initialized,
the debate commences with the assignment of roles to agents in A. Denote the
assignment of a role r ∈ R to an agent aj as aj := r, to ensure a balanced debate,
an equal number of agents are assigned as Proponents and Opponents, with only one
agent assigned as the Moderator. The Role Assignment Regulation is

∥∥{aj|aj := Proponent}
∥∥ =

∥∥{ak|ak := Opponent}
∥∥,

∥∥{al|al := Moderator}
∥∥ = 1.

Debating: After roles are assigned, the debate can be conducted iteratively between
the Proponents and Opponents as illustrated in Figure 6.2. The initial blueprint
G0 is then updated in subsequent debate rounds. In each round, the Moderator
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Algorithm 2 BDoG
Input: Input S = (question Q, image I and context C), Multimodal LLM agents

A = (a0, a1, ..., an), Max debate round Rmax.
Initialize blueprint G0 ← Extract_Entity_Relation_Attribute (a, S), proponent
ap, opponent ao, and moderator am with different personalities, G← G0.
while R ≤ Rmax do

◃ Affirmative Graph Generation
Gp ← Graph_Condensation (ap, G, S)

G← Gp

◃ Negative Graph Generation
Go ← Graph_Condensation (ao, G, S)

G← Go

◃ Debate Termination
if Gp = Go or R = Rmax then

G← [Gp, Go]

Answer (am, G, S)

break
end if

end while

summarizes the affirmative and negative graphs in a conclusion graph on the basis
of which a tentative answer is also provided. If the debate is not concluded, the
Moderator initiates the next round by assign G− as the blueprint Gi+1. Otherwise,
the Moderator’s answer is considered final and adopted.

Stopping Criteria: The condition to conclude the debate can be determined by
assessing the modifications made to the evidence graph compared to the previous
round as

d(Gi+1 − Gi) ≤ ϵ (6.6)

where d is a distance metric defined on the graphs. The rationale is that with each
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successful round of debate, the evidence becomes more concise, leading to the conden-
sation of the evidence graph. Therefore, we can quantify the modification by tallying
the number of entities (relations) that have been updated and pruned as

d(Gi+1 − Gi) =d(⟨V i+1, E i+1⟩ − ⟨V i, E i⟩)

=d({V i+1 ∩ V i}) + d({E i+1 ∩ E i})

+d({V i − V i+1 ∩ V i}) + d({E i − E i+1 ∩ E i}). (6.7)

6.4 Experimental Settings

6.4.1 Backbone Models

To evaluate its performance and generalizability, we have implemented Blueprint
Debate-on-Graph (BDoG) using different prevalent multimodal large language mod-
els as backbones, including 1) GeminiProVision [98], an extensively parameterized
model developed by Google, 2) InstructBLIP [20] and LLaVA-v1.5 [68], which
possesses more constrained dimensions and computational resources relative to al-
ternative architectures, and 3) GPT-4 [3] which is the fourth iteration of the GPT
model developed by OpenAI.

6.4.2 Datasets and Metrics

In line with the general setup described in [132, 74], we perform our experiments
using two extensively adopted multimodal question answering (QA) datasets. These
datasets are widely recognized as standard benchmarks, specifically designed to eval-
uate the performance and effectiveness of models in addressing multimodal reasoning
tasks. The two benchmarks are: 1) ScienceQA-IMG (SQA-IMG) [73] represents
the first multimodal scientific question-answering corpus comprising 21,000 inquiries
paired with multiple choices and accompanying images. As a training-free approach,
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we solely utilize the TEST and DEV partitions of ScienceQA-IMG following prior
work [73] for comparative assessment. 2) MMbench [70] offers a more systematic
and robust means for zero-shot reasoning evaluation compared to existing bench-
marks such as VQAv2 [27] or COCO Captions [18]. We employ the official data split
(MMBench-Dev) and code released by the originating authors. We report the ac-
curacy metric through a heuristic matching procedure, following the same setting of
the official benchmark [73]. Table 6.1 provides an overview of the size and diversity
of datasets used in the work, including the number of instances, subjects, categories,
and the average question length. These statistics can help in understanding the com-
plexity and challenges posed by these datasets for multimodal reasoning-based QA
systems.

Dataset Instance Subject Category Avg. Ques.

SQA-Test [73] 2017 3 65 9.3

SQA-Dev [73] 2097 3 66 9.6

MMBench-Dev [70] 4329 6 20 8.9

Table 6.1: The statistics of ScienceQA test and dev set and MMbench dev set. Avg.
Ques. = average counts of tokens in questions.

6.4.3 Model Deployment

The specifics of model deployment and hyperparameter configurations for the In-
structBLIP system are detailed in Table 6.2. Experimental evaluations are conducted
leveraging the computational resources of two NVIDIA A100 GPUs. Consistent with
prior work [20], we employ the Vicuna-13B as the large language model and the
EVA-CLIP as the vision encoding module. It is noteworthy that InstructBLIP im-
poses constraints on the overall input length; consequently, we set the output limits
for graph generation and candidate answer production to 128 and 50 tokens, respec-
tively. For outputs exceeding 256 tokens in length, we apply truncation techniques.
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Setting Value

LLM Vicuna-13B

Vision Encoder EVA CLIP-G/14

Hardware Requirement 2x A100 (40GB)

Truncation Mode Left

Number of Beams 5

Temperature 1.0

Top-p 0.9

Data Type float32

Image Resolution 224x224

Maximum Input Length 256

Maximum Output Graph Length 128

Maximum Output Answer Length 50

Maximum Debate Round 4

Inference Time for SQA 4.7 s/sample

Inference Time for MMBench 5.4 s/sample

Table 6.2: Detailed model and experiment settings for InstructBLIP used in this
work.

Furthermore, we report the inference time metrics for the ScienceQA (SQA) and
MMBench datasets. Although the average question token count for MMBench is
lower than SQA, the inference time required is higher. A plausible explanation for this
discrepancy may be the inherently greater complexity of questions in the MMBench
dataset, necessitating the generation of more intricate output graphs.

For the GeminiProVision and GPT-4V systems, we utilize their official APIs with-
out employing any pre-processing or post-processing techniques.
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Model Size SQA-IMG MMBench

MiniGPT-4 [133] 7B 37.7 24.3

Qwen-VL [7] 7B 58.6 (67.1) 38.2

Qwen-VL-Chat [7] 7B 68.6 (68.2) 60.6

mPLUG-Owl2 [111] 8B 63.9 66.5

CogVLM-Chat [105] 17B 69.6 63.7

InstructBLIP [20] 13B 59.2 (63.1) 44.0

InstructBLIP+BDoG 13B 63.5 55.8

LLaVA-v1.5 [68] 13B 71.6 68.2

LLaVA-v1.5+BDoG 13B 72.0 71.1

GPT-3.5+CoT [107] 175B 67.4 -

GPT-3.5+DDCoT [132] 175B 72.5 -

GPT-4+CoT [107] 175B+ 71.5 75.1

GPT-4+BDoG 175B+ 77.2 79.2

GeminiProVision [98] 175B+ 76.5 75.2

GeminiProVision+BDoG 175B+ 81.1 81.3

Table 6.3: Overall zero-shot results on ScienceQA-IMG test set and MMBench dev
set. Size = backbone model size. There are limited zero-shot results previously
published on ScienceQA-IMG, so we reimplemented above models and report our
findings. Where possible, we include results from the LLaVA paper for comparison
(shown in parentheses). For MMBench, we refer to the scores listed on the official
public leaderboard.

6.5 Results and Discussion

6.5.1 Performance Comparison to SOTA Methods

In contrast to the few-shot methodology, which exhibits susceptibility to the specific
examples selected for training, we have opted for the zero-shot setting. This approach
circumvents potential biases introduced by a limited sample size, ensuring a more
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Model Method
ScienceQA-IMG-Dev ScienceQA-IMG-Test

NAT SOC LAN Avg NAT SOC LAN Avg
MniGPT-4 [133]

Base

42.9 30.6 43.7 38.4 42.0 30.1 50.0 37.7
Qwen-VL [7] 52.1 59.8 58.3 55.0 55.7 62.0 77.3 58.7

Qwen-VL-Chat [7] 60.9 67.4 62.5 63.3 67.7 69.6 75.0 68.6
mPLUG-Owl2 [111] 60.6 68.0 45.8 62.8 62.5 66.2 61.4 63.9
CogVLM-Chat [105] 63.1 69.2 77.1 65.6 68.0 72.2 70.4 69.7

LLaVA-v1.5 [68] 66.1 74.9 72.9 69.4 70.1 74.2 81.8 71.9

InstructBLIP [20]

Base 53.7 57.3 47.9 54.8 58.1 61.0 61.4 59.2
+ BDoGDebate 59.7 55.6 54.2 58.1 63.1 58.2 72.7 61.4
+ BDoGGraph 58.1 61.3 52.1 59.0 60.6 62.6 68.2 61.5
+ BDoG 61.1 64.0 52.1 61.9 61.1 66.5 75.0 63.5

GeminiProVision [98]

Base 68.9 81.6 75.0 73.7 72.9 81.5 88.6 76.5
+ BDoGDebate 73.3 81.1 77.1 76.2 75.3 82.8 93.2 78.5
+ BDoGGraph 69.8 84.8 87.5 75.6 74.7 86.8 88.6 79.6
+ BDoG 73.6 86.2 85.4 78.4 76.6 87.4 93.2 81.1

Table 6.4: Ablation study on ScienceQA-IMG dev and test set. Question classes:
NAT = natural science, SOC = social science, LAN = language science.

robust and generalizable model. We evaluate the proposed method by by comparing
it against two sets of SOTA approaches as follows:

• Open-Source Multimodal LLMs with Relatively Moderate Parameters
including MiniGPT-4 [133], Qwen-VL and Qwen-VL- Chat [7], CogVLM-Chat
[105], mPLUG-Owl2 [111], LLaVA-v1.5 [68], and InstructBLIP [20], with param-
eter scales ranging from 7B to 17B.

• Closed-Source Multimodal LLMs with Large-Scale Parameters: GPT-
3.5 [107], GPT-4V [3] and GeminiProVision [98]. Following the general standard,
GPT-3.5 and GPT-4 have been incorporated with the CoT [107] or DDCoT [132]
(built based on image captioning results). These models are known for their pa-
rameter scales above 175B and are considered to have the best performance.

The results are shown in Table 6.3. The integration of BDoG has resulted in a signif-
icant improvement across different backbones, as evidenced by the performance gains
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Model Method
MMBench-Dev

LR AR RR FP-S FP-C CP Avg
MniGPT-4 [133]

Base

7.5 31.3 4.3 30.3 9.0 35.6 24.3
Qwen-VL [7] 16.1 44.7 34.8 35.2 39.2 46.6 38.2

Qwen-VL-Chat [7] 32.2 59.8 43.5 66.2 48.3 79.4 60.6
mPLUG-Owl2 [111] 32.2 72.4 60.9 68.6 60.1 79.4 66.5
CogVLM-Chat [105] 29.7 65.8 60 66.9 58 76.7 63.7

LLaVA-v1.5 [68] 44.1 67.3 60.0 72.0 59.4 82.1 68.2

InstructBLIP [20]

Base 19.1 54.2 34.8 47.8 24.8 56.4 44.0
+ BDoGDebate 22.9 60.3 52.2 54.3 28.0 68.9 52.4
+ BDoGGraph 58.8 65.5 41.2 51.2 18.6 46.1 51.1
+ BDoG 63.3 71.9 37.8 56.3 20.3 59.1 55.8

GeminiProVision [98]

Base 55.9 80.4 73.9 79.5 61.5 82.1 75.2
+ BDoGDebate 71.1 85.1 83.1 78.9 71.9 81.3 79.3
+ BDoGGraph 75.0 84.5 80.7 81.4 73.0 83.6 80.7
+ BDoG 74.0 84.8 83.4 81.3 73.7 84.4 81.3

Table 6.5: Ablation study on MMBench dev set. Question classes: LR = Logical Rea-
soning; AR = Attribute Reasoning; RR = Relation Reasoning; FP-S = Fine-grained
Perception (Single Instance); FP-C = Fine-grained Perception (Cross Instance); CP
= Coarse Perception.

of 4.3% ∼ 5.7% on SQA-IMG and 6.1% ∼ 11.8% on MMBench. Notably, when com-
bined with GeminiProVision, BDoG achieves SOTA performance on the ScienceQA-
IMG test set and MMBench development set, achieving accuracies of 81.1% and
81.3%, respectively. Other observations that indicate BDoG’s advantage over SOTA
methods include:

BDoG helps reduce the performance gap between large and small models.
It is commonly believed that models with larger parameter scales tend to perform
better than smaller ones. This observation generally holds true, as shown in Table 6.3
for models without BDoG. However, the introduction of BDoG has led to a reduction
in the performance gap between these two types of models. This can be seen in the
improvement achieved by InstructBLIP, which has experienced a boost of 4.3% and
achieves an accuracy of 63.5% on SQA-IMG, comparable to that of GPT-3.5. Similar
results can be found in LLaVA-v1.5 with BDoG which gains the 71.1% accuracy in
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MMBench, comparable to the GPT-4 model.

BDoG reinforces the multimodal reasoning. Form Table 6.3, we can also ob-
serve the advantage of direct multimodal reasoning (e.g., open-source VL models,
and GeminiProVision) over indirect multimodal reasoning (e.g., GPT3.5+CoT and
GPT3.5+DDCoT due to their nature of obtaining visual information through image
captioning). Even the open-source VL models of the former group achieves compa-
rable performance to those of the latter one, with much smaller parameter scales.
With BDoG, which reinforces multimodal reasoning by graph regulation, the perfor-
mance of direct multimodal reasoning of InstructBLIP and GeminiProVision have
been improved by 6.1% and 11.8% on the MMBench dataset.

6.5.2 Ablation Study

In order to gain a comprehensive understanding of BDoG, we conduct an ablation
study by decomposing BDoG into two variants:

• BDoGDebate: we remove the graph regulation and constraints, resulting in a
debate-only approach (i.e., vanilla multi-agent debate) for investigating the spe-
cific contribution of the debating component of BDoG.

• BDoGGraph: we remove the debating rounds, resulting in a graph-based reasoning
method for investigating the specific contribution of the graph regulation compo-
nent of BDoG.

Moreover, we analyze the performance of the two variants on the benchmarks by
breaking it down into subcategories. This analysis allows us to investigate the prefer-
ences of these two variants for different types of questions. The results are presented
in Table 6.5, where it can be observed that both variants demonstrate comparable
performance across various benchmarks. This suggests that the debate and graph
components of BDoG contribute to its effectiveness in a similar manner. Through
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the combination of these two components in BDoG, the performance has experienced
further improvement compared to the individual variants. However, when consid-
ering specific categories, distinctions in the contributions of the debate and graph
components become apparent.

Which country is highlighted?
Options:
A. Haiti
B. Dominica
C. the Dominican Republic
D. Trinidad and Tobago

Round 1
BDoGDebate:
The highlighted country is the Dominica. 
Dominica is an island country in the 
Caribbean Sea, … There are a few possible 
solutions to the problem of Dominica's lack 
of economic development. One solution is to 
focus on developing the tourism industry…

BDoG:

Round 2

Round 3

I believe that these three solutions would 
help to address the problem of Dominica‘s 
lack of economic development. .. a long-term 
commitment from the government and the 
people of Dominica.

BDoGDebate :

BDoGDebate :
I think the highlighted country is Barbados. 
It is an island country located in the 
Caribbean Sea. It is known for its beautiful 
beaches ,.. and friendly people. The country 
is also a popular tourist destination.

Dominica
Dominica
Republic

Haiti

Trinidad
and Tobago

Located_in

Located
_in

Caribbean Sea

BDoG:

Dominica

GreenHaiti Color

ColorTrinidad
and
Tobago

Highlighted

Is

Notes: image specific 
information has been 
joined into the graph.

BDoG:

Dominica
Highlighted

IsColor

Green
Type

Country

Notes: compact and 
question specific 
graph obtained.

Answer:
B. Dominica

Are the two candy jars in the picture
the same shape?
Options:
A. Same
B. Not the same
C. Can’t judge

Round 1

Round 2

Round 3

BDoGDebate :
The two candy jars in the picture are
not the same shape. The first candy jar 
is a cylinder, while the second candy 
jar is a sphere... Despite these similarit,
they are different in height, diameter, 
and shape.

BDoGDebate :
The two candy jars in the picture are 
the same shape. They are both 
cylindrical jars with .. The only 
difference is that the jar on the left is 
taller than the jar on the right.

BDoGDebate :
I think that the best solution to this 
problem is to use a different type of 
candy jar. There are many different 
types of candy jars…, so that is the 
same shape as the other candy jar.

BDoG:

Jar1

Contains
Candy1

Square
Small

Blue

Jar2

Contains
Candy2

Round
Small

Purple

BDoG:

Jar1
Contains

Candy1

Shape

Cylinder5cm

Radius

Jar2
Contains

Candy2

Shape

Cylinder
5cm

Radius

Jar1

Jar2
Same

BDoG: Notes: two subgraphs 
are integrated as a 
refined evidentiary 
graph.

Answer:
A. Same

Shape

Cylinder

Cylinder

Notes: a blueprint 
is initialized by 
pure geographic 
information. 

Notes: a 
blueprint is 
initialized by 
general 
knowlegde. 

Notes: graph 
focuses on 
question 
specific 
information. 

Figure 6.4: Case study of our proposed Blueprint Debate on Graph (BDoG) and
vallina Multi-agent Debate (BDoGDebate) on ScienceQA-IMG (left) and MMBench
(right) datasets. Green color indicates the correct answer/rationale and Red means
incorrect/irrelevant predictions.

Impact of the debate component: BDoGDebate demonstrates consistent improve-
ments across both benchmarks with a debate-only setting, which encourages LLM
agents to collaboratively refine and correct prior responses. For science questions,
BDoGDebate facilitates the model’s focus on specific errors, such as direction, size, and
position, leading to improved performance in the natural science domain (boosting
accuracy from 53.7 to 59.7 for InstructBLIP and 68.9 to 73.3 for GeminiProVision).
However, the debate-only nature has limitations, including trivialization and focus
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diversion issues. Without the graph regulation, overall performance decreases from
55.8 to 52.4 for InstructBLIP, particularly when addressing questions that require
attention to multi-hop logistic reasoning (LR) and specific attributes (AR).

Impact of the graph regulation: With a graph-regularized knowledge base for the
discussion, BDoGGraph also demonstrates consistent improvement of 2.3% ∼ 7.1%

overs the base models on both benchmarks. Compared to the text-based and debate-
only method BDoGDebate, it performs evidently better on the logistic reasoning and
attributes reasoning questions by addressing the opinion trivialization and diversion
with initialized blueprint. Although incorporating fact-related graph information
proves beneficial in BDoGGraph, the absence of the iteratively refined debate proce-
dure results in decreased performance due to the coarse and distorted extraction of
blueprint information.

Impact of combining the debate and graph components: By combining the
two components, BDoG achieves gains across nearly all categories. In the ScienceQA-
IMG dataset, BDoG exhibits consistent and steady improvements, averaging around
5% compared to the baseline models. This suggests that BDoG is robust and general-
izes well for science-related questions. Remarkably, BDoG significantly outperforms
the baseline model (InstructBLIP) on the MMBench-Dev set, particularly in the areas
of Logical Reasoning (LR) with a margin of 44.2%, Attribute Reasoning (AR) with a
margin of 17.7%, and Relation Reasoning (RR) with a margin of 3%. BDoG enhances
logical reasoning (LR) through a mechanism that refines the reasoning process itera-
tively, emphasizing the importance of multi-step reasoning rationales. The blueprint
graph structure of BDoG, which explicitly models objects, attributes, and relations,
contributes to improved reasoning abilities in Attribute Reasoning (AR) and Relation
Reasoning (RR). The GeminiProVision model also exhibits comparable performance
improvements, with BoG contributing to enhanced fine-grained perception across in-
stances (FP-C), resulting in a gain of 12.2%. This improvement can be attributed
to the connections established between various objects within the debate-on-graph
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framework.

Which of these states is farthest south?
Options:
A. Kansas
B. Connecticut
C. Ohio
D. South Dakota

Which trait did Ursus spelaeus have? Select 
the trait you can observe on the fossil.
Options:
A. Rounded ears
B. Brown fur covering most of its body
C. Long legs

MAD :
Affirmative Side: The fossil evidence 
suggests that Ursus spelaeus was a large, 
carnivorous animal that... It had long and 
sharp claws, a large ribcage, a thick layer of 
fur, and a large braincase. These traits 
would help it to survive in the harsh 
conditions of the Ice Age ...

BDoG:

Legs

Fossil

Fur

Long

MAD:
Affirmative Side: This map shows that Kansas 
is located at a lower latitude than South 
Dakota, Ohio, and Connecticut. This means 
that Kansas is closer to the equator than the 
other three states. I hope that this visualization 
helps to illustrate the debate solution.

BDoG:

Negative Side: The debate solution is 
incorrect. The state of Kansas is not the 
farthest south. The state of Connecticut is the 
farthest south. The image shows a map of the 
United States … Kansas is in the central part 
of... Connecticut is in the southeast.

Summarizer: The state of Connecticut is the 
farthest south because it is the closest to the 
equator.

Answer: B. Connecticut

Blueprint:

South
Dakota

Kansas

border

border

borderOhio

Connecticut

border

border

Proponent:

South
Dakota

Kansas

border

borderOhio
Connecticut

border

Opponent:

border

Latitudes

Connecticut

41.000

Ohio
South Dakota

44.00040.000

Kansas

38.000

Negative Side: Ursus spelaeus had a number 
of adaptations that helped it to survive in its 
environment. Its thick fur helped to protect 
it from the cold weather. And its long claws
were well-suited for digging and 
climbing....

Summarizer: it is important to note that the 
fossil evidence is incomplete. We do not 
know for sure what Ursus spelaeus looked 
like ... Therefore, it is possible that Ursus 
spelaeus had other traits that we do not 
know about..

Answer: B. Brown fur covering most if 
its body

Blueprint:

Brown

Ears

Rounded

Legs

Fossil

Teeth

Long

carnassial

Skull

RoundedProponent:

Legs

Fossil
Teeth

Long
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Skull

RoundedOpponent:

CaveFound In

Is a
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Figure 6.5: Intra-round case study comparing the proposed Blueprint Debate-on-
Graph (BDoG) and vallina Multi-agent Debate (MAD) on ScienceQA-IMG (left)
and MMBench (right) datasets. Green color indicates the correct answer/rationale
and Red means incorrect/irrelevant predictions.

A case study for the iterative improvement on the blueprint: BDoG leverages
the advantages of both structured evidence through graph regulation and iterative
refinement through debating. This is evident in the consistent improvement observed
on the blueprint graph, showcasing the combined benefits of these two components.
Figure 6.4 provides running examples demonstrating the superior reasoning perfor-
mance of our proposed BDoG framework compared to the BDoGDebate method.

The left case draws from the ScienceQA dataset, testing geographic knowledge and
map interpretation. While BDoGDebate correctly answered Dominica is highlighted, it
also generated irrelevant information about Dominica’s economic development. This
misguided the agents into off-topic discussion, concluding incorrectly with Barbados.
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In contrast, BDoG concentrated on the question and options, iteratively refining the
blueprint entities and relations to arrive at the right answer of Dominica.

The example on the right comes from the MMBench dataset requiring cross-
instance perception. As the image contained both candies and jars, it posed a chal-
lenge. With BDoGDebate relying on text alone, agreement was rarely reached as
responses changed over debate rounds. However, BDoG first generated a blueprint
defining image objects and attributes. This established the discussion scope. BDoG
then pruned irrelevant candy information, focusing discussion on the specific object -
jars. It output the final answer by comparing and connecting the two jar sub-graphs.

In summary, Figure 6.4 demonstrates that BDoG beats BDoGDebate on both
datasets through its blueprint-driven approach. This concentrates graph-based rea-
soning on salient topics and prunes irrelevant details to arrive at well-supported con-
clusions.

Figure 6.5 depicts the running examples within a debate round that compares
BDoG with MAD on ScienceQA-IMG andMMBench datasets. Our proposed Blueprint
debate on graph (BDoG) is a more effective way to present information than the vanilla
Multi-agent debate (MAD). It is more structured, more visual, and more interactive.
This makes it easier to follow the flow of the debate, to identify the key points that
are being made, and to explore the information in more detail.

The first case utilizes the ScienceQA dataset, evaluating geographic knowledge and
map interpretation skills. The correct response (identifying the southernmost state)
necessitates comparing the locations of various states. In the multi-agent debate
scenario, despite the affirmative agent’s accurate prediction of the relative position,
the negative side overwhelmingly opposes it. Due to the widespread issue of hallu-
cination in large language models (LLMs), detecting such misinformation demands
significant effort. Instead of engaging in debate solely on the final answer, our model
facilitates debate at the fact level. By strategically modifying blueprint nodes, BDoG
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demonstrates that the final answer should be derived by comparing the attributes
(latitudes) of each candidate. BDoG offers the additional advantage of facilitating
easier monitoring of changes, resulting in a more reliable system.

In the second case, drawn from the MMBench dataset, the task requires reasoning
about attributes to answer the posed question. While the MAD method generates
rationales incorporating extensive inherent knowledge and imagination, this leads
to the erroneous inference of a live Ursus, distinct from the fossil depicted in the
image. Notably, the question demands direct observation of the image, from which
the correct answer – ”Long legs” – can be readily inferred. The extraneous information
generated by MAD misguides the model towards irrelevant concepts. Conversely, our
BDoG method commences by analyzing the image, the associated question, and the
candidate options. This effectively restricts the scope of analysis to the attributes of
the fossil. Subsequently, BDoG incorporates additional observed features and refines
potentially inaccurate nodes, ultimately leading to the accurate prediction.

Round
ScienceQA-IMG-Test MMBench-Dev

BDoG-S BDoG-L BDoG-S BDoG-L

1 60.5 80.6 51.6 81.0

2 63.5 80.9 54.6 81.1

3 63.1 81.1 55.8 81.3

4 63.3 81.4 55.8 80.9

Table 6.6: Model performance with respect to the iteration round of debate. BDoG-S:
InstructBLIP with BDoG, BDoG-L: GeminiProVision with BDoG.

6.5.3 Monitoring The Debating Progress

We evaluate the model’s performance against the termination criteria across multiple
debate rounds based on the data in Table 6.6. Our analysis shows that for models with
smaller parameters like InstructBLIP, moving from a single round to two rounds led
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Figure 6.6: Statistics of intra-round (left) and inter-round (right) Blueprint condensa-
tion of BDoG with GeminiProVision for ScienceQA-IMG test set. #Update: number
of updated attributes; #Prune: number of pruned entities/relations; #Add: number
of newly-added entities/relations.

to significant gains in performance. This improvement is particularly notable when
increasing the number of rounds from one to two. However, for larger models that may
reach agreement more easily, the performance enhancement is relatively modest when
amplifying the number of debate rounds. In general, we find the model’s performance
tend to converge within the second or third round. This can be attributed to the
underlying reasoning typically being able to answer questions within 2-3 steps.

Additionally, Figure 6.6 illustrates the number of updated attributes, newly added
or removed entities or relations between and within rounds. A strength of our pro-
posed BDoG framework is its ability to quantify the debate process by inspecting
graph changes. This demonstrates the effectiveness of dynamically adjusting the
initial graph based on the discussion. The results in Figure 6.6 are also consistent
with our hypothesis that disagreements and errors can be decreased as the debate
progresses.
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6.5. Results and Discussion

Figure 6.7: Effectiveness vs. efficiency results, comparing our proposed Blueprint
Debate-on-Graph (BDoG) and vanilla Multi-agent Debate (BDoG (Debate)) on Gem-
iniProVision. The bar chart indicates the inference time on three datasets and lines
indicate the zero-shot performance (Accuracy).

6.5.4 Efficiency Analysis

We further compare the effectiveness versus efficiency of our BDoG framework against
BDoGDebate, as shown in Figure 6.7. Maintaining concise content focuses on key
aspects, the graph structure of BDoG demonstrates superior efficiency, requiring
approximately 50% less inference time than BDoGDebate. By first generating a
blueprint, BDoG defines the scope of the current state, thereby improving model
efficiency by filtering irrelevant information. Concurrently, Figure 6.7 shows BDoG
outperforms BDoGDebate in effectiveness, achieving over 5 percentage higher accu-
racy than BDoGDebate across three test sets. This enhanced effectiveness can be
attributed to BDoG’s concentrating on salient knowledge rather than generational
textual content without guidance, as in BDoGDebate.
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Figure 6.8: Human evaluation on the effect of blueprint quality for the GeminiPro-
Vision model.

6.5.5 Effect of Blueprint Quality

We conduct a human evaluation to assess the impact of blueprint quality, as
illustrated in Figure 6.8. A random sample of 200 predictions from the MMBench
dataset is selected for evaluation. Due to the absence of a standardized metric for
evaluating generated graph quality, three annotators are tasked with classifying each
blueprint as either high or low quality. The results reveal that 56% of the initial
blueprints were classified as low-quality. This finding aligns with expectations, given
the complexity of the questions and the potential for the MLLM to generate coarse
and imprecise direct answers.

To address the limitations of low-quality blueprints, we propose BDoG, a novel ap-
proach that iteratively refines the blueprint to enhance its conciseness and ultimately
converge towards a correct answer. As demonstrated in the left panel of Figure
6.8, the final correctness rate is strongly correlated with blueprint quality. Notably,
for questions with high-quality initial blueprints, the final correctness rate reaches
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93.2%, highlighting the importance of a well-constrained initial graph. Furthermore,
it is noteworthy that 67.8% of instances with low-quality blueprints ultimately result
in correct predictions, demonstrating the effectiveness of BDoG’s iterative refinement
capabilities.

6.6 Conclusion

This work has presented a pioneering pilot study that introduces multi-agent debate
into the realm of multimodal reasoning. We tackled two prominent challenges faced
in this context: the issue of opinions being trivialized and focus diversion. By recog-
nizing the limitations of existing debating schemes, we propose Blueprint Debate on
Graphs (BDoG), which confines debates to a blueprint graph and stores evidence in
graph branches, to address the challenges of word-level opinion trivialization and dis-
traction caused by irrelevant concepts. Extensive experiments conducted in Science
QA and MMBench validate the efficacy of BDoG, surpassing previous methods and
establishing new state-of-the-art results.
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Chapter 7

Conclusion and Future Work

In this thesis, we undertake a comprehensive investigation into four critical challenges
in multimodal knowledge extraction and reasoning tasks: (1) achieving fine-grained
alignment between visual and textual modalities, (2) addressing inconsistencies across
different semantic levels, (3) mitigating biases and distortions in multimodal align-
ment data, and (4) enhancing dynamic refined knowledge graphs and knowledge-based
reasoning. This chapter synthesizes our solutions to these challenges and suggests av-
enues for future research.

7.1 Conclusion

We introduce novel frameworks and methodologies designed to improve multimodal
knowledge extraction and reasoning. Our contributions can be summarized as follows:

• MEGA (Multimodal Neural Network with Efficient Graph Alignment): By
leveraging a sophisticated graph alignment method based on structural similar-
ity and semantic agreement, MEGA effectively bridges the gap between visual
and textual relations. This approach surpasses previous methods that relied on
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simple concatenation of graph representations, leading to superior alignment
and knowledge extraction.

• RECK (REtrieval with Cross-modal Knowledge): RECK addresses the seman-
tic gap between vision and language by incorporating high-level concepts from
external knowledge graphs. This enriched semantic representation facilitates
more accurate knowledge extraction, particularly in scenarios where traditional
methods fall short due to simple concatenation of low-level features.

• TMR (Translation Motivated Multimodal Representation learning): TMR mit-
igates the negative impact of misalignment between images and text by em-
ploying Generative Back-translation and High-Resource Divergence Estimation.
These components generate synthetic data to correct misalignments and quan-
tify the degree of divergence, thereby enhancing the reliability of multimodal
language understanding models.

• BDoG (Blueprint Debate on Graph): Inspired by real-world blueprint debates,
BDoG introduces a deductive reasoning scheme that aggregates concepts from
various modalities into an initial graph. This approach prevents the infiltration
of irrelevant semantics and preserves specific concepts, effectively addressing the
challenges of trivialization and focus diversion inherent in inductive reasoning
schemes.

In conclusion, this thesis has contributed novel insights and practical solutions
to the field of multimodal representation learning, moving us closer to the goal of
universally effective multimodal AI systems capable of robust knowledge extraction
and reasoning.
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Figure 7.1: The interplay between our four works in this thesis.

7.2 Discussion

In this section, we discuss the relationship between our four multimodal representation
methods within a unified graph learning framework, as illustrated in Figure 7.1.

The core thesis of our work posits that the graph modality serves as a bridge
between vision and language by explicitly mapping different modalities into a unified
multimodal knowledge graph. Each of our four approaches addresses distinct aspects
of graph learning: alignment, traversal, completion, and condensation.

MEGA introduces an efficient method for semantic and structural graph align-
ment, which aligns graphs extracted from different modalities. This approach necessi-
tates a fine-grained understanding of the provided images and sentences. Building on
the aligned knowledge graph, RECK explores a graph traversal theory that retrieves
knowledge paths linking visual objects and textual entities. These knowledge paths
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mimic human associative thinking, connecting concepts from abstract to specific.

Given that the extracted graph can be incomplete (due to biases and distortions),
TMR addresses this issue by performing graph completion. This method supple-
ments missing semantics by generating back-translation images as augmentation and
estimating the divergence caused by such misalignments.

To overcome the limitations of static graphs, which hinder knowledge reasoning
capabilities, BDoG constructs dynamic graphs. By iteratively refining the knowledge
graphs (i.e., blueprints) using a multi-agent debate paradigm, BDoG significantly
enhances multimodal reasoning abilities.

However, these methods have obvious limitation on efficiency issue. The complex-
ity analysis is shown as follows:

• EGA: O(|Vt||Vv|) for graph alignment

• RECK: O(k|V |2) for k-hop knowledge path extraction

• TMR: O(mn) for m tokens and n image patches

• BDoG: O(rd) for r debate rounds and d graph density

Although they are acceptable considering the performance improvement, we plan to
optimize such efficiency issue in our future work.

Among these four methods, MEGA, RECK, and TMR primarily focus on the
graph construction process. To demonstrate the effectiveness of the constructed mul-
timodal knowledge graph, we employ the graph reasoning task as a real-world ap-
plication. BDoG operates based on the given knowledge graph and reveals that
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graph-based multimodal reasoning holds potential for numerous downstream tasks
requiring complex reasoning.

7.3 Future Work

The emergence of Large Language Models (LLMs) has revolutionized the field of Ar-
tificial Intelligence, particularly in Natural Language Processing (NLP). LLMs like
GPT-4 and LLaMA exhibit remarkable capabilities in understanding and generating
human-quality text, opening doors for a wide range of applications. One exciting
avenue of exploration lies in leveraging LLMs for multimodal reasoning, where infor-
mation from various modalities like text, images, and audio is integrated to achieve a
more comprehensive understanding of the world. However, the complexity and het-
erogeneity of multimodal data pose significant challenges. Individual LLMs, while
powerful, may not possess the specialized knowledge or reasoning abilities required
to effectively process and integrate information across different modalities. This is
where the concept of multi-agent collaboration becomes crucial.

In this thesis, we have explored the knowledge graph motivated multi-agent col-
laboration, including the multimodal knowledge graph construction (MEGA, RECK
and TMR), and then we propose a novel paradigm called BDoG (blueprint debate on
graph) that boost the multi-agent debate with a specified graph structure. Despite
its potential, LLM-based multi-agent collaboration for multimodal reasoning presents
several challenges that require further research: (1) Agent Communication and Coor-
dination: Developing efficient and effective communication protocols for information
exchange and action synchronization among agents. (2) Knowledge Representation
and Sharing: Establishing a common knowledge representation framework that facil-
itates information sharing and understanding across different modalities and agents.
(3) Learning and Adaptation: Enabling agents to learn from their interactions and
experiences, improving their individual and collective performance over time. (4)
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Evaluation Metrics: Defining appropriate metrics to evaluate the effectiveness of
multi-agent collaboration in multimodal reasoning tasks.

Addressing these challenges will pave the way for the development of robust and
versatile LLM-based multi-agent systems capable of tackling complex multimodal
reasoning tasks, unlocking new possibilities in AI applications. In future work, we
will go deeper into LLM-based multi-agent collaboration for multimodal reasoning.
Specifically, we plan to conduct the research in the following directions:

(1) Design and Develop a Collaborative Multi-agent Framework: This
framework will integrate multiple LLMs with diverse expertise in different modali-
ties (e.g., vision, language, knowledge graphs) as collaborative agents, forming the
foundation for multimodal reasoning.

(2) Establish Effective Inter-agent Communication Protocols: We will
investigate and implement various communication protocols, such as structured mes-
sages, knowledge graphs, and natural language dialogues, to facilitate efficient infor-
mation exchange and knowledge sharing among the LLM agents.

(3) Develop Synergistic Reasoning Mechanisms: This objective involves
designing strategies for agents to combine their individual reasoning processes and
insights to achieve a more comprehensive and accurate understanding of the problem.

(4) Implement Conflict Resolution Techniques: To address potential dis-
agreements and inconsistencies among agents, we will explore and implement con-
flict resolution techniques such as negotiation strategies, voting mechanisms, and
knowledge-based arbitration to reach a consensus and maintain consistency in rea-
soning.

(5) Address Modality Gap and Data Limitation Challenges: We will in-
vestigate techniques to bridge the modality gap, which arises due to the inherent
differences in information representation across modalities. Additionally, we will ad-
dress the challenge of limited training data by exploring techniques such as transfer
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learning, multimodal pre-training, and data augmentation.

(6) Prototype Development and Evaluation: We will build a prototype sys-
tem for multimodal question answering, showcasing the capabilities of the proposed
framework. We will then rigorously evaluate its performance on benchmark datasets
like ScienceQA-IMG and MMBench, comparing it to existing state-of-the-art ap-
proaches.

(7) Explore Broader Applications: We will investigate the applicability of the
framework in other multimodal tasks such as image captioning, visual storytelling,
and human-AI interaction, highlighting its potential for general-purpose multimodal
reasoning and its versatility in addressing diverse challenges.
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