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ABSTRACT 

Abstract of thesis entitled:  Modelling, assessment and scheduling for using building 

energy flexibility as spinning reserve in power systems 

Submitted by  : Han Binglong 

For the degree of : Doctor of Philosophy 

at The Hong Kong Polytechnic University in August, 2024 

The growing adoption of renewable energy and the increasingly frequent extreme 

weather events pose great challenges to the supply-demand balance and the reliability 

of power systems. Spinning reserve is an essential means to manage power imbalance 

due to renewable forecast uncertainties and generator failures. Traditionally, spinning 

reserve is provided by standby generators operating at part load. However, more 

spinning reserve capacity is needed while fewer standby generators are available due 

to increased renewable penetration. Buildings, particularly their air-conditioning 

systems, have great potential to provide spinning reserve due to their large electricity 

use and energy flexibility. However, there are several problems and challenges when 

using this alternative spinning reserve resource. First, effective methods are needed to 

model and quantify the energy flexibility capacity of buildings for providing spinning 

reserve. Second, the impacts of using building energy flexibility for spinning reserve 

on power systems and buildings need to be assessed. Third, the power system reserve 

scheduling should be optimized to utilize building energy flexibility in a reliable and 

economic manner.  



This PhD study, therefore, aims to comprehensively and systematically investigate 

the modelling, assessment and scheduling of building energy flexibility for 

providing spinning reserve in power systems.  

Analytical solutions are developed for energy flexibility modelling of building air-

conditioning systems. Five straightforward equations are derived from a commonly 

used second-order building thermodynamic model, which quantify the load reduction 

and subsequent load rebound of buildings at both individual and aggregated levels. 

The solutions avoid time-consuming iterative and finite difference computations of 

the existing numerical method, facilitating the integration of flexibility quantification 

in power system scheduling and dispatch. The high accuracy and computational 

efficiency of analytical solutions are verified through numerical simulations. 

The impacts of using building energy flexibility for spinning reserve are assessed and 

compared with that for load shifting, considering the operation of both power systems 

and buildings. An integrated grid-buildings model is developed to capture the dynamic 

interaction between buildings and the power supply side. The model is applied to the 

Hong Kong power system in 2035. The results show that spinning reserve provision 

not only offers higher operating cost savings for the power system but also has much 

less interference to building operation compared to load shifting. Therefore, spinning 

reserve is proposed as a priority use of building energy flexibility in smart grids. 

Buildings may fail to achieve their committed spinning reserve provision in actual 

operation due to various uncertainties. A probabilistic model is proposed for real-time 

quantification of building energy flexibility, considering uncertainties in model inputs, 

model bias, and building response failures. An analytical equation is used to quantify 

the flexibility of each building, which effectively captures the distinct characteristics 
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of diverse buildings. Test results show that the proposed model accurately quantifies 

the aggregated energy flexibility of 150 buildings in 6.7 seconds, up to 537 times faster 

than existing probabilistic models. 

A risk-averse reserve scheduling framework is proposed for power systems that 

engage building energy flexibility, considering the trade-off between cost savings and 

the risk of using building energy flexibility as spinning reserve. The framework 

leverages the outputs of the probabilistic model of building energy flexibility to 

provide risk-based decision-making. A new risk indicator, namely expected reserve 

shortage, is proposed for more accurate risk assessment. Test results show that 

adopting building energy flexibility as spinning reserve can reduce both the operation 

costs and risks of the power system, compared to using conventional generators solely. 

An optimal reserve scheduling strategy is proposed for power systems that engage 

building energy flexibility, considering the load rebound effect after demand response. 

The strategy accounts for the uncertainties in both renewable forecasts and generator 

failures, enabling more effective utilization of building flexibility potential. A two-

stage robust optimization problem is formulated for reserve scheduling considering 

load rebound. Test results show that the proposed strategy reduces the power system 

operation cost by 7.54%, compared to the strategy without considering load rebound. 
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CHAPTER 1 INTRODUCTION 

This chapter presents an outline of this thesis. The background and motivation of the 

study are presented in Section 1.1. The aim and objectives are presented in Section 

1.2. Section 1.3 presents the organization of this thesis. 

1.1 Background and motivation 

Renewable energy sources, such as wind and solar power, are increasingly integrated 

into electrical power systems to facilitate energy transitions and achieve 

decarbonization targets (Qin et al. 2023). However, the stochastic and uncontrollable 

nature of renewable generation poses significant challenges in maintaining the power 

balance and reliable operation of power systems. Extreme weather events, such as heat 

waves, exacerbate these challenges by causing higher peak loads and increased failure 

rates of power system components such as conventional generators. Spinning reserve 

is an essential means to manage power imbalances due to renewable forecast 

uncertainties and unexpected generator failures (Roos and Bolkesjø 2018). For 

instance, during the significant power supply failure in Europe in 2021, spinning 

reserve was instrumental in preventing a widespread blackout. Traditionally, spinning 

reserve has been provided by conventional generators operating at part load that can 

rapidly adjust power outputs (Frew et al. 2021). However, as renewable penetration 

increases, the need for significantly increased spinning reserve capacity arises, while 

the availability of conventional generators decreases. Although utility-scale energy 

storage can provide spinning reserve by discharging electricity as needed, its 

widespread adoption is still hindered by the high costs and safety concerns (Wald et 

al. 2023).  
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Buildings have significant potential and advantages in providing spinning reserve due 

to their large electricity use and inherent energy flexibility. The building sector 

accounts for approximately 40% of energy consumption worldwide and 90% of 

electricity consumption in Hong Kong (Tang and Wang 2023). Numerous studies have 

demonstrated that the heating, ventilation, and air conditioning (HVAC) systems in 

buildings can achieve a rapid demand reduction in response to power grid requests, 

with negligible or acceptable sacrifices in indoor thermal comfort. In fact, buildings 

can respond to power grid requests much more rapidly than the 10 minutes required 

for spinning reserve provision (Wang, Wang, and Tang 2019). Moreover, buildings 

usually incur much lower standby costs compared to conventional generators when 

providing spinning reserve. Therefore, building energy flexibility has emerged as a 

feasible and cost-effective resource for providing spinning reserve in power systems, 

especially in systems with increasing renewable energy penetration that require greater 

spinning reserve capacity. However, there are still many significant problems and 

challenges impeding the adoption of building energy flexibility for spinning reserve, 

as summarized below. 

1. To achieve optimized grid-buildings coordination when using buildings for 

spinning reserve, a large number of flexibility quantification are needed concerning 

the load reduction and load rebound of buildings. However, existing studies rely on 

finite difference and iterative computations, which are computationally intractable 

when integrating building flexibility quantification in grid scheduling and dispatch.  

2. The impacts of spinning reserve provision by buildings are not fully investigated. 

Existing studies usually assume building flexibility as a price-taker in grid service 

markets and focus on cost savings of power systems, without assessing the impact 



3 

 

of reserve provision on building operation. A comparison of using building energy 

flexibility for spinning reserve and load shifting is not found in the literature. 

3. Buildings may fail to achieve their committed spinning reserve provision in actual 

operation due to various uncertainties, such as building model inputs, model bias, 

and building response failures. Most existing studies overlook the impact of these 

uncertainties and the diversity of buildings. An effective probabilistic model is still 

lacking for real-time building flexibility quantification under uncertainties. 

4. There is a lack of an effective framework for identifying the best reserve schedule 

incorporating building energy flexibility, concerning its impact on power system 

operation cost and risk. Existing studies usually use power-based risk indicators 

which are difficult to quantify. They also overlook the risk from conventional 

generators, which may lead to an underutilization of building energy flexibility. 

5. Load rebound often occurs after activating building flexibility for spinning reserve. 

Most existing studies overlook the load rebound effect or assume it as a 

hypothetical value, which may adversely affect reliability and economy of power 

systems. They focus on uncertainties in either renewable forecasts or generator 

failures, leading to suboptimal utilization of building energy flexibility. 

1.2 Aim and objectives 

This PhD study aims to investigate the modelling and quantification of building energy 

flexibility for spinning reserve, assess the impacts of reserve provision by buildings 

on both power systems and buildings, and develop optimized reserve scheduling to 

leverage building energy flexibility in a reliable and economic manner. This will be 

accomplished by addressing the following objectives and research tasks: 
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1. Develop accurate and computationally efficient analytical solutions for energy 

flexibility modelling of building air-conditioning systems. Quantify the load 

reduction and load rebound of buildings at both individual and aggregated levels.  

2. Assess the impact of using building energy flexibility as spinning reserve on both 

power systems and buildings. Develop an effective integrated grid-buildings model 

for impact assessment. Conduct a systematic comparison of using building energy 

flexibility for providing spinning reserve and load shifting. 

3. Develop a probabilistic model for real-time quantification of building energy 

flexibility under uncertainties. The model will comprehensively consider the major 

uncertainties involved in flexibility quantification while adequately capturing the 

diversity of individual buildings. 

4. Develop a risk-averse reserve scheduling framework for power systems engaging 

building energy flexibility. This framework can provide quantified power system 

operation cost and risk for identifying the best reserve schedule. Additionally, 

develop a new risk indicator for computationally efficient and accurate risk 

assessment. 

5. Develop an optimal reserve scheduling strategy that considers load rebound for 

power systems engaging building energy flexibility. Create a robust optimization 

problem that efficiently incorporates the load rebound effect in reserve scheduling, 

considering uncertainties in both renewable forecasts and generator failures. 

1.3 Organization of this thesis 

Chapter 1 introduces the background and motivations for studying the use of building 

energy flexibility as spinning reserve. The aim and objectives of this study, as well as 

the organization of this thesis, are also presented. 
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Chapter 2 presents a comprehensive literature review on the related existing studies. 

An overview of using building energy flexibility for providing grid services is 

presented first. Then, studies on building energy flexibility quantification and impact 

assessment are discussed, followed by those on reserve scheduling of power systems 

engaging building energy flexibility. The research gaps are also summarised following 

the literature review. 

Chapter 3 presents the analytical solutions for energy flexibility modelling of 

building air-conditioning systems at both individual and aggregated levels. Five 

straightforward equations are derived from a commonly used second-order building 

thermodynamic model in demand response conditions. Both load reduction and the 

following load rebound of buildings are quantified as functions of regulation durations 

and indoor air temperature offsets. Tests are conducted to validate the solutions. 

Chapter 4 presents a comparative assessment of using building energy flexibility for 

spinning reserve and load shifting, considering the operation of both buildings and the 

power system. An integrated grid-buildings model is developed to capture the dynamic 

interaction between building flexibility and the power supply side. The model is 

applied to the Hong Kong power system in 2035, considering different generation mix 

scenarios, to comprehensively assess the impacts of building energy flexibility.  

Chapter 5 presents a probabilistic model for the real-time quantification of building 

energy flexibility. The model uses an analytical equation to quantify the flexibility of 

individual buildings, capturing their diversity. It comprehensively considers the major 

uncertainty factors in flexibility quantification. Tests are conducted to verify the 

computational efficiency and accuracy of the proposed probabilistic model. 
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Chapter 6 presents a risk-averse day-ahead reserve scheduling framework for power 

systems engaging building energy flexibility. The framework leverages the outputs of 

the probabilistic model of building energy flexibility and identifies the best alternative 

reserve schedule by balancing  power system operation costs and risks. A new risk 

indicator, namely expected reserve shortage, is proposed for risk assessment. Tests are 

conducted to validate the proposed risk-averse framework. 

Chapter 7 presents an optimal day-ahead reserve scheduling strategy for power 

systems engaging building energy flexibility, considering the load rebound effect after 

demand response. A two-stage robust optimization problem is formulated for optimal 

reserve scheduling, taking into account both the load rebound and uncertainties in 

renewable forecasts and generator failures. Tests are conducted to validate the 

effectiveness of the proposed strategy in managing load rebound proactively. 

Chapter 8 summarizes the main contributions of this PhD study and offers 

recommendations for future research on the related subjects. 

The connections among the main chapters are illustrated as shown in Figure 1.1. 

 

Figure 1.1 Connections among the main chapters of the thesis  
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CHAPTER 2 LITERATURE REVIEW 

Buildings have significant potential for energy flexibility, which can be utilized to 

provide spinning reserve to manage supply-demand imbalances in power systems. 

Accurate and real-time quantification of building energy flexibility is essential for the 

reliable and optimal operation of both buildings and power systems. Understanding 

the impact of reserve provision by buildings is crucial for adopting this approach on  

a large scale. Optimized reserve scheduling is necessary to achieve optimal power 

system operation, taking into account the coordination between building energy 

flexibility and conventional generators. 

This chapter presents a comprehensive literature review on the use of building energy 

flexibility as spinning reserve. Section 2.1 presents an overview of how building 

energy flexibility can be used to provide grid services. Section 2.2 discusses studies 

on the modelling and quantification of building energy flexibility. Section 2.3 

examines  the impact of using building flexibility for spinning reserve. Section 2.4 

explores studies on reserve scheduling in power systems that incorporate building 

energy flexibility. Section 2.5 summarizes the research gaps identified in the 

aforementioned areas. 

2.1 Overview of using building energy flexibility for grid services 

Buildings have significant potential and advantages for providing grid services due to 

their large electricity consumption and inherent energy flexibility. In Hong Kong, the 

building sector accounts for about 90% of electricity consumption, with heating, 

ventilation, and air conditioning (HVAC) systems consuming about 30% of electricity 

in non-residential buildings (Tang, Wang, and Li 2021). Moreover, the operating 
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power of HVAC systems can be flexibly controlled within an acceptable range due to 

the buffer effect of thermal inertia (passive thermal mass storage) of buildings 

(Jingjing Liu et al. 2022). With advancements in grid-interactive control, buildings 

can rapidly and consistently adjust their power demand in response to power grid 

requests, making them technically qualified to provide various grid services, including 

load shifting and spinning reserve.  

Load shifting is a conventional and well-discussed use of building energy flexibility. 

It involves shifting power demand from high-price periods to lower-price periods to 

reduce building electricity costs (Yang, Gao, and You 2024). Precooling building 

thermal mass is a common measure for shifting the flexible cooling load of buildings, 

which can reduce the power demand during peak periods. Such peak reduction can 

help defer the investment of power generation capacity and maintain power system 

reliability during extreme conditions such as heat waves (Liang et al. 2024). 

Additionally, load shifting can reshape power system load profiles, reducing 

renewable curtailment and the overall power system operating cost (Patteeuw et al. 

2015).  

The large-scale, real-world implementation of building load shifting remains limited, 

particularly when exploiting the flexibility of HVAC systems (Seatle and McPherson 

2024). Buildings users usually require high incentives to regulate HVAC systems for 

providng grid flexibility, which can cause a sacrifice in thermal comfort for occupants 

(Z. Wang et al. 2023). Recent studies have shown that the cost savings of power 

systems from load shifting may not outweigh the payments required to incentivize 

buildings (Barani et al. 2023). Moreover, load shifting could lead to unnecessary 

energy loss and additional electricity cost if the predicted peak does not occur in real-

time operation (Tina, Aneli, and Gagliano 2022).  
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Another promising use of building energy flexibility is providing spinning reserve. 

Spinning reserve is an essential grid service for managing uncertainties in generator 

failures and renewable forecasts. It has traditionally been provided by generators 

operating at part load, which can adjust their power output rapidly. Buildings can also 

provide spinning reserve by quickly curtailing power demand upon grid requests. Field 

tests have demonstrated the response quality of HVAC systems providing spinning 

reserve, with a response speed faster than the 10-min required by grid operators 

(MacDonald 2014). Unlike load shifting, which requires frequent and actual flexibility 

activation, spinning reserve only requires buildings to be in a standby state most of the 

time, with a low probability of actual response in real-time operation (Gade et al. 2024). 

A series of control strategies have been proposed to achieve fast and stable operating 

power reduction of HVAC systems to proivide spinning reserve. A fast demand 

response control strategy was proposed by shutting down operating chillers (Xue et al. 

2015). However, conventional HVAC controls could lead to excessive speeding up of 

chilled water pumps in situations with reduced cooling supply, resulting in a 

diminished effect of load reduction. A supply-based feedback control was proposed 

for achieving a stable power reduction during demand response (Wang and Tang 

2017). Dai et al. (Dai et al. 2024) proposed a reconfigurable feedback control strategy 

to achieve smooth control transition between normal operation and demand response 

modes.  

The above literature indicates the needs and feasibility of using building energy 

flexibility for providing various grid services including spinning reserve. However, 

the modelling, impact assessment and scheduling of building energy flexibility 

requires further investigation to promote its adoption as a provider of spinning reserve 

for power systems in a reliable and economic way. 
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2.2 Studies on quantification of building energy flexibility 

Accurate and real-time quantification of building energy flexibility is crucial for the 

reliable and optimal operation of both buildings and power grids. Currently, building 

flexibility must demonstrate a high level of performance predictability to provide grid 

services. For example, buildings must guarantee a minimum success probability of 95% 

when providing spinning reserve (Vindel et al. 2023). Failing to meet this mandatory 

requirement results in disqualification from providing spinning reserve service. The 

flexibility quantification needs to be rapid for buildings to participate in grid service 

markets. This is because load aggregators are required to quantify building flexibility 

and submit bids to the grid service market based on the updated information of 

buildings (Song et al. 2020).  

The basis of building energy flexibility quantification is the development of effective 

models that accurately describe the dynamics of individual buildings. These models 

can be physics-based, data-driven, or a combination of both (grey-box) (Li and Hong 

2022). Physics-based models consider detailed building physics but are time-

consuming to solve. Data-driven models utilize statistical or machine learning 

methods, offering faster computational speed (Bampoulas et al. 2023). A data-driven 

building thermodynamic model was used to control a cluster of heat pumps for 

spinning reserve provision (Bünning et al. 2023). However, data-driven models 

require extensive training data and may lack generalization beyond the training dataset.  

Grey-box models incorporate the basic principles of building physics while requiring 

less data for calibration, thus facilitating real-world implementation. Among various 

grey-box models, resistance and capacitance (RC) models are widely used. The first-

order RC model assumes the entire building thermal mass as a single thermal 
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capacitance. Despite their simple structure, these models have been proven to be 

inaccurate for flexibility quantification (Reynders, Diriken, and Saelens 2014). 

Second-order RC models characterize the dynamics of indoor air and internal mass 

separately, offering adequate accuracy (Zhan, Dong, and Chong 2023). The 

aggregated flexibility of buildings is quantified by modeling each building with a 

second-order model (Amadeh, Lee, and Max Zhang 2023) (Dong et al. 2018).  

In the aforementioned studies, the RC models are solved numerically based on a 

discrete-time state space formulation, which is time-consuming. Moreover, because 

the values of temperature cannot be aggregated directly, it poses challenges to 

simultaneously optimize the collective operation of numerous buildings characterized 

by diversified specifications. If each building is individually modelled as an agent with 

time-dependent states, i.e., the indoor air temperature, it becomes intractable to solve 

the optimization problem due to the involvement of a considerable number of decision 

variables and constraints (Dong et al. 2024). 

A well-established building dynamic model does not guarantee accurate prediction of 

actual building flexibility due to various uncertainties such as uncertainties in model 

inputs, model bias, and potential building response failures (Luo, Peng, and Yin 2023). 

These uncertainties can cause buildings to fail to achieve the expected flexibility in 

actual operation. Quantifying building flexibility under uncertainties is challenging 

due to the high computational burden. Some studies estimate the aggregated flexibility 

of buildings using archetype-based models (Martinez, Vellei, and Le Dréau 2022a) 

(Wang, Li, and You 2018) (Hu and Xiao 2020). These studies use a few building 

archetypes to represent the entire building cluster to reduce computational time. The 

archetypes representing these groups are used to estimate aggregated flexibility.  
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Although archetype-based models can serve as tools for preliminary planning 

purposes, they may lack adequacy and accuracy for control applications in highly 

diverse building clusters where buildings have distinct characteristics. To address this 

issue, the first-order RC model is transformed into an equivalent virtual battery model, 

so that the flexibility of individual buildings can be quantified analytically (Song et al. 

2018). Several studies have quantified the aggregated flexibility of buildings by 

modelling each building as a virtual battery, considering uncertainties in model inputs 

and response failures (Qi et al. 2023) (Zhang and Domínguez-García 2018). However, 

these studies rely on the first-order RC model that ignores the dynamic interaction 

between the indoor air and building internal mass, thus lacking sufficient accuracy.  

The above literature indicates that there is a lack of an accurate and efficient model 

for quantifying building energy flexibility under uncertainties. Existing models are 

either archetype-based, which inadequately capture the distinct characteristics of 

diverse buildings, or developed based on the first-order RC model that has been proven 

inaccurate. Several studies quantify the aggregated flexibility by characterizing each 

building using second-order models, but these models are solved numerically, which 

is computationally intractable for power grid scheduling and dispatch. 

2.3 Studies on impacts of using building energy flexibility as 

spinning reserve 

Using building energy flexibility as spinning reserve may have significant impacts on 

the operation of both power grids and buildings. Understanding such impacts is crucial 

for informing market design, policy support, and technology development. The 

financial benefits for buildings from reserve provision have been assessed based on 
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service market prices (Zhou, Hale, and Present 2022) (Gade et al. 2024). But these 

studies are limited to specific scenarios with a small number of buildings, because they 

do not consider the impact of building flexibility engagement on market prices.  

Some studies have used power grid dispatch models to assess cost savings from using 

large-scale demand flexibility for spinning reserve (Roos and Bolkesjø 2018) 

(Karangelos and Bouffard 2012) (Mimica, Boras, and Krajačić 2023). But these 

studies inadequately consider the temporal availability of building flexibility, treating 

it as a static proportion of total building power use. Moreover, they focus solely on 

power system cost savings without assessing the impact on building operation.  

Adjustments in power use profiles for providing spinning reserve can interfere with 

the normal operation of HVAC systems. Currently, no studies evaluate the year-round 

operational impact on buildings when they provide spinning reserve.  

Both load shifting and spinning reserve provision can engage buildings in facilitating 

power balance. However, it is still unclear which service is more suitable and 

beneficial for utilizing building energy flexibility. Load shifting relies on reshaping 

load profiles for managing generation-demand mismatches that can be roughly 

predicted, while spinning reserve requires buildings to manage uncertain power 

imbalances that have a low probability of occurring in real-time operation (Aryandoust 

and Lilliestam 2017). Therefore, it seems more acceptable for building users to 

provide spinning reserve compared to load shifting, concerning the potential 

interference to building operations.  

Some studies have compared the technical capacity of massive buildings for providing 

spinning reserve and load shifting, considering shifting duration constraints (Müller 

and Möst 2018). Other studies have compared the revenues that buildings can obtain 
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from grid service provision under service market prices (Gade et al. 2024) (Sun et al. 

2022). However, their results are not applicable to scenarios with a large number of 

buildings, since the buildings may alter the market prices (Qin et al. 2023). It was 

claimed that building flexibility providing spinning reserve yields higher cost savings 

for power systems compared to load shifting (Roos and Bolkesjø 2018). But this study 

lacks a quantitative comparison. A quantitative comparison of using large-scale 

building energy flexibility for spinning reserve and load shifting is not found in the 

literature.  

2.4 Studies on reserve scheduling of power systems engaging 

building flexibility 

2.4.1 Problem reformulation of reserve scheduling 

When massive buildings are engaged in spinning reserve provision, the coordination 

between buildings and traditional reserve providers (i.e., conventional generators) is 

crucial for achieving optimal system performance. Scenario-based stochastic 

optimization was applied for coordinating buildings and conventional generators to 

provide spinning reserve for managing renewable forecast uncertainties (Zhang et al. 

2022) (Le et al. 2022). However, these studies overlook the reserve for unexpected 

generator failures, although such failures have a significant adverse impact on power 

system reliability.  

A robust scheduling strategy was proposed for demand flexibility to provide both types 

of spinning reserve (Ji et al. 2021). The optimal reserve schedule was obtained by 

solving a robust optimization problem. Stochastic reserve scheduling was also 

proposed for integrated electricity and heating systems, with flexibility provision by 
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heat pumps considering both types of spinning reserve (Tan et al. 2021). The optimal 

schedule was obtained by solving a chance-constrained programming problem. 

However, these studies lack detailed modelling of building energy flexibility. 

Furthermore, the cost of using building flexibility (e.g., the compensation to buildings) 

is not considered.  

2.4.2 Managing uncertainties related to demand response 

There are different alternative reserve schedules when considering building flexibility 

as a spinning reserve provider (Zhao et al. 2013). All alternative reserve schedules can 

fulfill power system reserve requirements, but they correspond to different reserve 

commitment combinations of buildings and conventional generators. Therefore, it is 

essential to quantify the risks of these alternative schedules for optimized decision-

making (Herding et al. 2024).  

Typical risk indicators such as expected energy not served (EENS) are used, as found 

in (Jia et al. 2019) (Ding et al. 2019). However, such indicators focus on power 

imbalances. It is time-consuming to capture and quantify power imbalance events due 

to uncertain reserve provision, because spinning reserve is activated infrequently (Q. 

Wang et al. 2023). Some studies have used reserve shortages to quantify the risk of 

scheduling improper reserve capacities within power systems, where reserve shortages 

are considered as deterministic values (Q. Wang et al. 2023) (Lavin et al. 2020). A 

probabilistic formulation of reserve shortage was proposed (Stover, Karve, and 

Mahadevan 2023). However, this study solely focuses on the uncertain reserve 

requirements of power systems. Moreover, conventional generators also have a 

response failure probability when their committed reserve is called on. However, none 

of the studies consider the response failures of conventional generators, which may 
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lead to underutilization of building energy flexibility (Herre, Pinson, and 

Chatzivasileiadis 2022).  

2.4.3 Managing load rebound after demand response 

The load rebound associated with building energy flexibility is acritical issue that has 

been widely overlooked in the literature. Load rebound refers to the phenomenon 

where building power demand often exceeds the normal levels after a load reduction, 

when the HVAC system controls return to their normal setting (Burgio et al. 2023). It 

occurs because of the increased indoor air temperature of buildings during the period 

of reduced cooling supply (Georges et al. 2017). This load rebound, if not managed 

effectively, may cause new power imbalance in real-time operation.  

Load rebound can be balanced by increasing the power output of online conventional 

generators in real-time operation (Ding et al. 2019). However, conventional generators 

may operate at high partial load levels without sufficient regulation capacity to manage 

load rebound, leading to severe power imbalances. Some studies have incorporated 

the load rebound effect into the power system reserve scheduling problem (Karangelos 

and Bouffard 2012) (Liu and Tomsovic 2014) (Paterakis et al. 2018). These studies 

suggest that considering load rebound leads to a reduced reserve commitment for 

buildings. But these studies assume load rebound as a hypothesis proportion of the 

previous load reduction, limiting their practical applicability.  

To explicitly model the load rebound of buildings, a dynamic load baseline method 

was proposed by (Wei et al. 2020) to establish a coupling between the load rebound 

and the previous load reduction. But this method is not suitable for large-scale power 

systems, as power grid operators cannot directly incorporate the thermal dynamics of 

massive buildings into their daily dispatch schedules. To address this issue, the first-
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order building thermodynamic model was transformed into an equivalent virtual 

energy storage model (Hao et al. 2018). By doing so, only the aggregated power 

information (e.g., the maximum load reduction of buildings) is communicated to grid 

operators. Trovato et al. (Trovato, Teng, and Strbac 2018) quantified the aggregated 

load rebound of buildings by modelling buildings as a single virtual energy storage 

based on their averaged parameters, which is not suitable for highly diverse building 

clusters. 

The literature review above shows that most existing studies focus on using building 

energy flexibility for spinning reserve, considering either renewable forecast 

uncertainties or generator failures, leading to suboptimal flexibility utilization. These 

studies usually overlook the uncertainties in building demand response or the response 

failures of conventional generators, which hinders the identification of the best reserve 

schedule. The load rebound effect associated with utilizing building HVAC systems is 

seldom considered, which may adversely affect the reliability and economy of power 

systems. Although a few studies consider load rebound in reserve scheduling, they 

estimate the magnitude of load rebound based on either hypothetical values or 

averaged parameters of buildings, lowering their applicability.  

2.5 Summary of research gaps 

This chapter presents a comprehensive review of existing studies on the modeling, 

quantification, impact assessment, and scheduling of using building energy flexibility 

for providing spinning reserve in power systems. From this review, several research 

gaps can be identified and summarized: 
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1. Model Complexity and Computation Efficiency: Most existing studies use a first-

order building thermodynamic model for flexibility quantification, which may lack 

accuracy. Some studies use second-order (or even higher-order) building 

thermodynamic models, but these rely on numerical method, specifically finite 

difference and iterative computations. Such approaches are time-consuming for 

real-time online applications. 

2. Uncertainty and Building Diversity: While most studies overlook the impact of 

uncertainties in quantifying building energy flexibility, the major uncertainties are 

seldom comprehensively considered. Although some studies address these 

uncertainties, they depend on archetype-based models to reduce computational 

times, which may not adequately characterize building diversity.  

3. Impact on Building Operations: The impacts of using building energy flexibility as 

spinning reserve are not fully investigated. Existing studies primarily focus on the 

cost savings of power systems and seldom assess the impact of reserve provision 

on building operation. A comprehensive and quantitative comparison between 

spinning reserve provision and load shifting by buildings is still lacking. 

4. Risk Assessment and Framework Development: An effective framework is needed 

to identify the best reserve schedule, considering the trade-off between cost savings 

and the risk of using building flexibility. Existing risk indicators struggle to 

quantify the risks from buildings. Moreover, no study considers the risk from 

conventional generators in reserve scheduling, which may lead to the 

underutilization of building energy flexibility. 

5. Simultaneous Uncertainties and Load Rebound: Existing studies on reserve 

scheduling seldom consider uncertainties in renewable forecast and generator 

failures simultaneously. This oversight could lead to the underutilization of 
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building energy flexibility. The load rebound effect is often overlooked or assumed 

to be a hypothetical value in reserve scheduling, which may adversely affect the 

reliability and economy of power systems.  
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CHAPTER 3 ANALYTICAL SOLUTIONS FOR 

ENERGY FLEXIBILITY MODELLING OF 

BUILDING AIR-CONDITIONING SYSTEMS  

This chapter presents the analytical solutions for modelling the energy flexibility of 

building air-conditioning systems at both individual and aggregated levels. Five 

straightforward equations are derived from a commonly used second-order building 

thermodynamic model in demand response conditions. Both load reduction and the 

subsequent load rebound of buildings are quantified, facilitating the integration of 

building flexibility quantification into power grid scheduling and real-time dispatch. 

Section 3.1 discusses the problem formulation and the current numerical solution 

method. Section 3.2 introduces the analytical solutions. Section 3.3 evaluates the 

performance evaluation of these analytical solutions. Section 3.4 provides a summary 

of this chapter. 

3.1 Problem formulation and numerical solution  

3.1.1 Problem formulation  

We are considering a demand response problem involving a large number of 

heterogeneous buildings, each cooled by a HVAC system with continuously 

adjustable operating power. The dynamic process of a building’s demand response 

event is illustrated in Figure 3.1. It consists of a load reduction for a duration Δts 

followed by a load rebound for a duration Δtr. For convenience, the start and end time 

of the load reduction period are denoted as t0 and t1, respectively. The end time of the 
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load rebound period is denoted as t2. Accordingly, the indoor air temperature increases 

first by ΔTin from time t0 to t1, and then returns to the baseline value Tin,base at time t2.  

 

Figure 3.1 Illustration of the load reduction and load rebound of a building 

The following assumptions are made, as commonly used in energy flexibility 

quantification: (i) the indoor air temperature remains at its baseline value in the normal 

operation scenario (i.e., without the demand response event); (ii) in demand response 

scenario, the reduction and rebound of HVAC operating power are kept constant 

during the respective durations, which aligns with the common practice in electricity 

market clearing and power system scheduling problems (Salgado-Bravo, Negrete-

Pincetic, and Kiprakis 2023); (iii) the building heat gains are not affected by the 

implementation of demand response. Note that in Figure 3, constant power lines are 

used only for illustration purpose. The flexibility quantification methods discussed in 

this study are valid under time-varying boundary conditions (e.g., outdoor weather). 

The fundamental problem is to quantify the magnitude of load reduction ΔPs and load 

rebound ΔPr for individual buildings during the reduction and rebound durations (Δts 

and Δtr), respectively, at a given indoor air temperature offset ΔTin, as shown in Eqs. 

(3.1) and (3.2). The aggregated energy flexibility of buildings can then be quantified 

based on the energy flexibilities of individual buildings. Note that Δts is typically 
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assigned by power grid operators. ΔPr or Δtr should be properly set to avoid either a 

high load rebound for the power grid or slow temperature restoration for buildings.   

∆𝑃s = 𝑃nor(∆𝑡s) − 𝑃dr(∆𝑡s) (3.1) 

∆𝑃r = 𝑃dr(∆𝑡r) − 𝑃nor(∆𝑡r) (3.2) 

3.1.2 Building thermodynamic model 

Building HVAC systems are considered to provide energy flexibility, because they are 

the major power consumers in buildings and can effectively utilize building thermal 

mass. Unlike the first-order building thermodynamic model used in most existing 

studies, second-order building thermodynamic models take into account the dynamic 

interaction of indoor air and building internal mass, which results in significantly 

improved modeling accuracy (Zhang et al. 2013). This study adopts a commonly used 

second-order building thermodynamic model to characterize the thermal dynamics of 

buildings and determine the operating power of HVAC systems, as illustrated in 

Figure 3.2.  

 

Figure 3.2 Illustration of the second-order building thermodynamic model 

The governing equations of the second-order building thermodynamic model are 

shown in Eqs. (3.3) and (3.4).  

𝐶in
𝑑𝑇in

𝑑𝑡
=

𝑇out − 𝑇in

𝑅out
+

𝑇m − 𝑇in

𝑅m
+ 𝑄in − 𝐶𝑂𝑃 ∙ 𝑃ac (3.3) 

𝐶m
𝑑𝑇m

𝑑𝑡
=

𝑇in − 𝑇m

𝑅m
+ 𝑄m (3.4) 
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Where, t is the time. R, C and T refer to thermal resistance, thermal capacitance, and 

temperature, respectively. The superscripts, i.e., in, m, and out, denote the indoor air, 

building structure mass, and outdoor air, respectively. Qin and Qm are the heat gains of 

indoor air and building structure mass, respectively. Pac and COP represent the 

operating power and the overall coefficient of performance of the HVAC system, 

respectively. 

The model is appropriate for buildings in cooling-dominated regions, which typically 

feature light outer walls but relatively heavy internal mass. If the building thermal 

mass is primarily in the outer walls, other second-order RC models would be more 

suitable (Dong et al. 2018). Note that this study employs a deterministic building 

thermodynamic model because it focuses on quantifying energy flexibility based on 

given building parameters. In real-world applications, a challenge in identifying 

building thermal parameters lies in the presence of data noise. To address this, a 

stochastic building thermodynamic model employing stochastic differential equations 

could enable more robust parameter estimation using actual operational data (Bacher 

and Madsen 2011).  

A limitation of building thermodynamic model used in this study is that it overlooks 

the effect of humidity on HVAC operation power. Hong Kong is hot and humidity, 

and dehumidification energy consumption could be significant. Future work could 

consider the humidity/latent load in building thermodynamic model. 

A single second-order building thermodynamic model may not accurately reflect the 

thermal dynamics of individual thermal zones of a complex multi-zone building. 

However, a “single-zone equivalent” second-order model would adequately represent 

the volume-averaged zone temperature and the total cooling load of these zones, as 
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demonstrated in (Shamsi et al. 2021) (Guo et al. 2021). For buildings with highly 

diverse thermal zones, multiple second-order models could be used to model the 

representative zones. In such cases, the last term of Eq. (3.3), i.e., COP · Pac, could be 

replaced by the cooling load of individual zones. The impact of varied COP during 

demand response periods can be addressed using Eq. (3.3) to calculate the cooling 

load. As this study concentrates on the aggregated flexibility of a large number of 

buildings, a constant COP is assumed for each HVAC system during demand response 

periods.  

3.1.3 Numerical solution 

The problem presented in Section 3.1.2 is currently solved using a numerical approach. 

The building thermodynamic model is transformed into its discrete-time state space 

formulation, as shown in Eq. (3.5).  

𝑥(𝑗 + 1) = 𝐴𝑥(𝑗) + 𝐵 ∙ 𝑃ac(𝑗) + 𝐶𝛾(𝑗) (3.5) 

where, x=[Tin, Tm]T is the state vector. j is the time step. γ=[Tout, Qin, Qm]T is the 

disturbance vector. The disturbances include the outdoor aim temperature and the heat 

gains of the indoor air and building structure mass. Matrices A, B, and C can be easily 

derived from Eqs. (3.3) and (3.4). 

The indoor air temperature at time t1 can be determined using the finite difference 

method, as commonly used for implementing model predictive control (Zhan et al. 

2023). Iterative computations (e.g., binary search) are then employed to find the 

appropriate ΔPac that corresponds to the desired ΔTin. To clarify, with the initial 

condition x(t0) and a trial value of Pac, the indoor air temperature at time t1, i.e., Tin(t1), 

can be determined using Eq. (3.5) by tracking the temperature evolution in the load 
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reduction duration Δts. The value of Pac is adjusted until Tin(t1) matches the specified 

ΔTin. The load rebound ΔPr is quantified using similar methods. 

The above numerical solution relies on time-consuming iterative and finite difference 

computations. However, it is not feasible to integrate building energy flexibility 

quantification into power grid scheduling and real-time dispatch. This is because a 

large number of flexibility quantification computations are necessary for optimizing 

the coordination between buildings and conventional generators, particularly 

concerning the load reduction and load rebound of buildings. Furthermore, multiple 

flexibility quantifications are required to optimize the regulation tasks of individual 

buildings and to coordinate their contribution to providing the required demand 

response in real-time operation. Therefore, there is an urgent need for a 

computationally efficient and accurate solution for energy flexibility modelling and 

quantification. 

3.2 Analytical solutions 

This section presents the analytical solutions of the energy flexibility quantification 

problem introduced in Section 3.1. First, analytical solutions for the energy flexibility 

of individual building are derived. Then, analytical solutions for the aggregated energy 

flexibility of a large number of buildings are derived. 

3.2.1 Solution for individual buildings 

Revisiting the second-order building thermodynamic model 

The second-order building thermodynamic model can be expressed by a second-order 

differential equation, as shown in Eq. (3.6), and solved as shown in Eq. (3.7) (Amadeh 

et al. 2023).  
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𝑎
𝑑2𝑇in

𝑑𝑡2
+ 𝑏

𝑑𝑇in

𝑑𝑡
+ 𝑐𝑇in = 𝑑 (3.6) 

𝑇in(𝑡) = 𝐴1𝑒𝑟1𝑡 + 𝐴2𝑒𝑟2𝑡 + 𝑑/𝑐 (3.7) 

where,  𝑎 = 𝐶in𝐶m𝑅m, 𝑏 = (1 + 𝑅m 𝑅out⁄ )𝐶m + 𝐶in 

    𝑐 = 1 𝑅out⁄ ,  𝑑 = 𝑇out 𝑅out⁄ + 𝑄m + 𝑄in − 𝐶𝑂𝑃 ∙ 𝑃ac  

    𝑟1 = (−𝑏 + √𝑏2 − 4𝑎𝑐) 2𝑎⁄ ,  𝑟2 = (−𝑏 − √𝑏2 − 4𝑎𝑐) 2𝑎⁄  

    𝐴1 = [𝑑𝑇in 𝑑𝑡⁄ (0) + (𝑑 𝑐⁄ − 𝑇in(0))𝑟2] (𝑟1 − 𝑟2)⁄  

    𝐴2 = [𝑑𝑇in 𝑑𝑡⁄ (0) + (𝑑 𝑐⁄ − 𝑇in(0))𝑟1] (𝑟2 − 𝑟1)⁄ . 

Remark: For Eq. (3.7), the parameters a, b, c, r1 and r2 are constants, depending on 

the thermal parameters of a building. These parameters have no physical meaning. The 

time-derivative term dTin/dt(0) is determined by Eq. (3.3). The variables d, A1 and A2 

depend on the HVAC system operating power Pac. Therefore, for a given initial time 

(condition), the indoor air temperature after a duration of Δt is a function of two 

variables, denoted as φ (Δt, Pac).  

Load reduction of individual building 

The HVAC operating power is first reduced by ΔPac from its normal value Pac,base for 

a duration of Δts in the demand response scenario. In contrast, the indoor air 

temperature remains at the baseline value in the normal operation scenario. 

Considering t0 as the initial time, the indoor air temperature at t1 in the two scenarios 

can be described as follows. 

                       𝑇in,reg(𝑡1) = 𝜑(∆𝑡s, 𝑃nor − ∆𝑃s),  𝑇in,reg(𝑡0) = 𝑇in,base                     (3.8) 

                                 𝑇in,nor(𝑡1) = 𝜑(∆𝑡s, 𝑃nor),   𝑇in,nor(𝑡0) = 𝑇in,base                          (3.9) 
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The implementation of load reduction results in an increase of indoor air temperature 

by ΔTin, which gives Eq. (3.10). 

𝑇in,reg(𝑡1) − 𝑇in,nor(𝑡1) = ∆𝑇in (3.10) 

The load reduction ΔPac is quantified as shown in Eq. (3.11), by combining Eqs. (3.7)-

(3.10). It is a function of the indoor air temperature offset ΔTin, the load reduction 

duration Δts, and the parameters of a building. This finding aligns with the numerical 

simulation results reported by (Wang et al. 2019). Note, analytical solutions of other 

second-order thermodynamic models can be easily derived in a similar approach. 

∆𝑃ac = 𝛼(∆𝑡s) ∆𝑇in    (3.11) 

where α is denoted as the load reduction coefficient. 

        𝛼(∆𝑡s) =
(𝑟1 − 𝑟2)𝐶in∆𝑇in

[𝑒𝑟1∆𝑡 − 𝑒𝑟2∆𝑡 + 𝐶in𝑅out(𝑟1 − 𝑟2 + 𝑟2𝑒𝑟1∆𝑡 − 𝑟1𝑒𝑟2∆𝑡)] ∙ 𝐶𝑂𝑃
 

Load rebound of individual building 

After the load reduction period ends, the HVAC operating power will be higher than 

that in the normal operation scenario in order to restore the indoor air temperature to 

its baseline value. The load rebound ΔPr for the rebound duration Δtr causes the 

restoration of indoor air temperature at time t2. 

𝑇in,reg(𝑡2) = 𝑇in,nor(𝑡2) (3.12) 

Considering t1 as the initial time, the indoor air temperature at t2 in the two scenarios 

can be described as follows. 

                     𝑇in,reg(𝑡2) = 𝜑(∆𝑡r, 𝑃nor + ∆𝑃r),   𝑇in,reg(𝑡1) = 𝑇in,base + ∆𝑇in          (3.13) 

                                    𝑇in,nor(𝑡2) = 𝜑(∆𝑡r, 𝑃nor),     𝑇in,nor(𝑡1) = 𝑇in,base                  (3.14) 
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Solving Eqs. (3.13)-(3.14) involves the difference in dTin/dt(t1) between the demand 

response scenario and the normal operation scenario. This difference can be 

determined based on Eq. (3.3) and is expressed by Eq. (3.15). 

𝑑𝑇in

𝑑𝑡
(𝑡1)|

nor

reg =
1

𝐶in
(

∆𝑇m

𝑅m
−

∆𝑇in

𝑅out
−

∆𝑇in

𝑅m
− 𝐶𝑂𝑃 ∙ ∆𝑃r) (3.15) 

where, ΔTm is the difference in the temperature of the building internal mass at time t1 

between the two scenarios. It is determined by applying the energy balance equation 

for the entire building, as shown in Eq. (3.16). 

𝐶m∆𝑇m + 𝐶in∆𝑇in + ∫
𝑇out − 𝑇in

𝑅out

𝑡1

𝑡0

= ∆𝑃s∆𝑡s 𝐶𝑂𝑃 (3.16) 

where, the left side represents the cooling energy released from the indoor air and 

building internal mass, and the reduced heat gain from ambient during the reduction 

duration Δts. The right side is the accumulated reduction in the HVAC cooling supply. 

The load rebound ΔPr is quantified as shown in Eq. (3.17), by combining Eqs. (3.12)-

(3.16).   

∆𝑃r = 𝛽(∆𝑡s, ∆𝑡r) ∆𝑇in (3.17) 

where, β is denoted as the load rebound coefficient. 

𝛽(∆𝑡s, ∆𝑡r) =
[𝐶in𝛼(∆𝑡s) ∙ 𝑝(∆ts) ∙ 𝑐 ∙ COP 𝑎⁄ − ℎ](𝑒𝑟1∆𝑡r − 𝑒𝑟2∆𝑡r) + 𝐶in𝑞(∆𝑡r)

[𝑒𝑟1∆𝑡r − 𝑒𝑟2∆𝑡r + 𝐶in𝑅out(𝑟1 − 𝑟2 − 𝑞(∆𝑡r))] ∙ COP
 

𝑝(∆𝑡s) =
(1 − 𝑒𝑟1∆𝑡s) (

1
𝐶in + 𝑟2𝑅out)

(𝑟1 − 𝑟2)𝑟1
+

(1 − 𝑒𝑟2∆𝑡s) (
1

𝐶in + 𝑟1𝑅out)

(𝑟2 − 𝑟1)𝑟2

 

𝑞(∆𝑡r) = 𝑟1𝑒𝑟2∆𝑡r − 𝑟2𝑒𝑟1∆𝑡r, ℎ =
𝐶 in

𝐶m𝑅m
−

1

𝑅out
−

1

𝑅m
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3.2.2 Solution for aggregated buildings 

To quantify the aggregated flexibility of a large number of buildings, the temperature 

offset ratio (TOR) is introduced to coordinate the actual indoor air temperature offset 

ΔTin of individual buildings (Dong et al. 2023). The TOR is defined by Eq. (3.18). 

𝑇𝑂𝑅𝑘 = ∆𝑇𝑘
in ∆𝑇𝑘

in,max⁄ (3.18) 

where, k is the index of a building. ΔTin,max is the maximum allowable indoor air 

temperature offset of a building. 

To ensure the fairness in the thermal comfort compromise among individual buildings, 

the TOR and the durations of load reduction and load rebound are controlled to be 

identical for all buildings. 

𝑇𝑂𝑅̅̅ ̅̅ ̅̅ = 𝑇𝑂𝑅1 = 𝑇𝑂𝑅2 = ⋯ = 𝑇𝑂𝑅𝑁 (3.19) 

The aggregated load reduction Psr and load rebound Preb are quantified by Eqs. (3.20) 

and (3.21) respectively. They are the sum of load reduction and load rebound, 

respectively, of all individual buildings.  

𝑃sr = ∑ ∆𝑃𝑘
s

𝑘

= ∑ 𝛼𝑘(∆𝑡s)∆𝑇𝑘
in

𝑘

(3.20) 

𝑃reb = ∑ ∆𝑃𝑘
r

𝑘

= ∑ 𝛽𝑘(∆𝑡s, ∆𝑡r)∆𝑇𝑘
in

𝑘

(3.21) 

Combining Eqs. (3.19)-(21), the consensus TOR of buildings is determined as shown 

in Eq. (3.22). 

𝑇𝑂𝑅̅̅ ̅̅ ̅̅ =
𝑃sr

∑ 𝛼𝑘(∆𝑡s)∆𝑇𝑘
in, max

𝑘

(3.22) 

The regulation tasks of individual buildings in the load reduction and rebound periods 

are then determined by Eqs. (3.23) and (3.24), respectively.  
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∆𝑃𝑘
s =

𝛼𝑘(∆𝑡s)∆𝑇𝑘
in,max

∑ 𝛼𝑘(∆𝑡s)∆𝑇𝑘
in,max

𝑘

𝑃sr (3.23) 

∆𝑃𝑘
r =

𝛽𝑘(∆𝑡s, ∆𝑡r)∆𝑇𝑘
in,max

∑ 𝛼𝑘(∆𝑡s)∆𝑇𝑘
in,max

𝑘

𝑃sr (3.24) 

The coupling between the aggregated load reduction and load rebound of buildings is 

explicitly represented by Eq. (3.25).  

𝑃reb

𝑃sr
=

∑ 𝛽𝑘𝑘 (∆𝑡s, ∆𝑡r)∆𝑇𝑘
in,max

∑ 𝛼𝑘𝑘 (∆𝑡s)∆𝑇𝑘
in,max

(3.25) 

Remark: Eqs. (3.11) and (3.17) quantify the load reduction and rebound, respectively, 

of individual buildings as functions of load reduction/redound durations and indoor 

air temperature offset.  Eqs. (3.23) and (3.24) enable the convenient allocation of an 

assigned demand response task among buildings. Eq. (3.25) enables the convenient 

incorporation of aggregated building energy flexibility of a large number of buildings 

into power grid scheduling and real-time dispatch. Note that the proposed analytical 

solutions are not suitable for real-time dynamic load control problems, such as power 

tracking for frequency regulation, while buildings need to follow a time-varying signal. 

The flexibility computations for real-time control can be fulfilled by numerical method. 

3.3 Performance evaluation of analytical solutions 

Numerical simulations are performed to verify the accuracy and computational 

efficiency of proposed analytical method using 5000 buildings. The parameters of 

buildings and HVAC systems are based on (Dong et al. 2023). All buildings have an 

indoor air temperature of 24℃ in normal operation, with a maximum allowable offset 

of 2 K. Outdoor conditions are chosen as a typical summer day in Hong Kong. Both 
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load reduction and rebound durations are set to 3600 seconds. The simulations are 

conducted using MATLAB on a PC with an eight-core Intel Core i7 CPU.  

3.3.1 Accuracy 

We first validate the proposed analytical model by comparing its outputs with those 

of the high-resolution numerical solution method. For this purpose, the time step of 

the numerical solution method is set to 1 second. We find that the differences between 

the temperatures and aggregated energy flexibility of buildings computed by the two 

methods are less than 0.0001 K and 0.01%, respectively. Such negligible differences 

prove that the analytical solutions are accurate and correct.  

The analytical solutions are valid under time-varying boundary conditions (e.g., 

outdoor temperature), although constant boundary conditions are assumed for 

individual buildings when deriving the second-order differential equation, Eq. (3.6). 

This is because, as observed from Eq. (3.6), the evolution of indoor air temperature of 

a building has two time constants, which only depend on building parameters, not on 

boundary conditions. Besides, the indoor air temperature offset is determined based 

on the normal operation and demand response scenarios, where terms related to 

boundary conditions are offset. Therefore, the assumption of constant boundary 

conditions does not affect the validity of the solution.  

To validate the solution, numerical simulation is conducted on a building under time-

varying boundary conditions. The time-varying outdoor temperature and building heat 

gains are generated using trigonometric functions. The HVAC power reduction is 

assumed to be constant during demand response, according to typical requirement of 

power grid operators. The demand response event is assumed to begin at 3600s and 

ends at 7200s. The subsequent load rebound ends at 14400s. Firstly, the load reduction 
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and load rebound of the building are computed using analytical solutions, considering 

an indoor air temperature offset of 2 K. The HVAC operating power in the demand 

response scenario is obtained, as shown in Figure 3.3 (a). Using the operating power 

as input to Eqs. (3.3) and (3.4), the evolution of indoor air temperature during demand 

response periods is computed numerically. As shown in Figure 3.3 (b), the indoor air 

temperature increases from 24 ℃ to 26 ℃ at the end of load reduction period, and 

then restores to 24 ℃ at the end of load rebound period. This indicates the solution is 

valid under time-varying boundary conditions. 

 

Figure 3.3 HVAC operating power and indoor air temperature in demand response  

 

3.3.2 Computational efficiency  

Firstly, we consider a demand response event with an indoor air temperature offset of 

2 K for all buildings. We quantify the aggregated energy flexibility of buildings using 

the analytical solutions and conventional numerical solution, respectively. The time 

step of the numerical solution method is set to 5 minutes to properly balance the 

accuracy and computational efficiency. As shown in Table 3.1, the numerical solution 

takes 8.83 seconds to obtain flexibility quantification results, while the analytical 

solutions only take 0.000009 seconds, which is 980,000 times faster than the 
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numerical solution. Note that a shorter time step (1 second) for numerical method can 

give more accurate results but longer computational time. The higher computational 

efficiency of our analytical solutions is particularly advantageous in optimized power 

grid scheduling and real-time dispatch, where a large number of flexibility 

quantification computations are involved (Liu et al. 2024). Furthermore, the 

requirement for data storage is lower due to the significantly fewer variables involved. 

Table 3.1 Computational results of flexibility quantification  

Method Psr (MW) Preb (MW) Time (s) 

Analytical 2.042 0.449 0.000009 

Numerical-1s 2.042 0.449 525.3 

Numerical-5min  2.066 0.446 8.83 

We further examine a scenario that involves a regulation task allocation among 

buildings. It is assumed that an aggregated load reduction target of 1.6 MW is assigned 

to buildings in real-time operation. The task allocation problem is equivalent to 

determining the consensus TOR for buildings. As shown in Table 3.2, the analytical 

solution gives a solution of TOR in 0.000006 second, facilitating timely demand 

response in real-time operation. In contrast, the numerical solution method takes 57.6 

seconds to find a solution, because it requires time-consuming iterations to quantify 

the aggregate load reduction of buildings and to find the correct TOR under the given 

load reduction target.  

Table 3.2 Computational results in regulation task allocation 

Method TOR Time (s) 

Analytical 0.783 0.000006 

Numerical-5min  0.774 57.6 
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3.4 Summary 

This chapter presents the analytical solutions for energy flexibility modeling and 

quantification of building air-conditioning systems. Five straightforward equations are 

derived from a second-order building thermodynamic model. The first two equations 

quantify the load reduction and the subsequent load rebound of individual buildings, 

respectively, as functions of regulation durations and indoor air temperature offsets. 

The next two equations allocate the aggregated load reduction and rebound tasks, 

respectively, among buildings. The fifth equation explicitly represents the coupling 

between the aggregated load reduction and load rebound of buildings.  

The analytical solutions can accurately quantify the energy flexibility of buildings at 

both individual and aggregated levels with dramatically reduced computation time, 

facilitating the integration of building flexibility quantification into power grid 

scheduling and real-time dispatch. Numerical experiments show that the analytical 

solutions only take 0.000009 seconds to quantify the flexibility of 5000 buildings, 

which is 980,000 times faster than the numerical solution method. 
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CHAPTER 4 COMPARISON OF USING BUILDING 

ENERGY FLEXIBILITY FOR SPINNING RESERVE 

AND LOAD SHIFTING 

This chapter presents a comparative assessment of using building energy flexibility 

for providing spinning reserve and load shifting (conventional demand response), 

considering the operation of both buildings and power systems. Unlike existing studies 

relying on predefined service market prices, an integrated grid-buildings optimization 

model is developed to capture the dynamic interaction between buildings and the 

power supply side. The model is applied to the Hong Kong power system in 2035, 

considering different generation mix scenarios. The results can provide more 

extensive and practical insights into building flexibility utilization.  

Section 4.1 outlines the integrated grid-buildings model. Section 4.2 presents the 

optimization problem formulation. Section 4.3 presents the models for the power 

system and buildings. Section 4.4 introduces the Hong Kong power system and 

buildings. Section 4.5 presents the assessment results of using building energy 

flexibility for spinning reserve and load shifting. Section 4.6 discusses the policy 

implications. Section 4.7 gives a summary of this chapter. 

4.1 Outline of integrated grid-buildings model 

An integrated grid-buildings optimization model is developed to assess the impact of 

using building flexibility for providing grid services, as illustrated in Fig. 4.1. Firstly, 

a building load model is used to quantify the flexibility capacity of buildings. With the 

generation mix and quantified building flexibility capacity as inputs, an hourly-
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resolution grid dispatch model is then used to simulate the optimal dispatch of supply-

side resources (e.g., conventional generators) and building flexibility. The simulation 

is conducted for an entire year to capture the variability of renewable generation, 

electricity demand and building flexibility over different days and seasons. The main 

outputs include the operating cost of the power system and the total amount of 

activated building flexibility (MWh). The impacts of using building flexibility for 

providing grid services are quantified by comparing the outputs (operating cost and 

activated flexibility) before and after engaging building flexibility. Building flexibility 

is incorporated into the grid dispatch model through reserve balance constraint and 

power balance constraint, respectively, to assess the impact of reserve provision and 

load shifting by buildings. The model is applicable for other cities and regions, with 

only adjustments in the parameters representing the power system and buildings, such 

as the generation mix of power systems.   

 

Figure 4.1 Outline of the integrated grid-buildings model 

Compared to existing counterparts, the model incorporates a more detailed description 

of the characteristics of conventional generators (e.g., startup cost) and building 
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energy flexibility (e.g., temporal availability). To assess the operating cost savings of 

the power system under different levels of building flexibility activation (MWh), the 

model considers the cost of activating building flexibility by introducing an incentive 

paid to buildings for flexibility activation (€/MWh). As a preliminary assessment, this 

study only leverages this incentive to adjust the cost-effectiveness of building 

flexibility to grid operators. Increasing the incentive can result in a lower amount of 

building flexibility utilized by grid operators but does not affect the flexibility capacity 

that buildings are willing to provide. When the incentive is set to zero, the cost savings 

quantified by the model are equivalent to those in existing studies, where building 

flexibility is freely activated for power system cost minimization. 

4.2 Optimization problem formulation  

In this study, two optimization problems are formulated to obtain the optimal operation 

of the power system using building flexibility for providing grid services.  

Spinning reserve provision 

The objective function for using building flexibility to provide spinning reserve, as 

shown in Eq. (4.1), aims to minimize the total power system cost. This includes the 

operating cost of conventional generators (Cgen) and the cost of activating building 

flexibility for spinning reserve provision (Cbui,SR). It is subject to spinning reserve 

balance constraint, as shown in Eq. (4.2).  

min ∑(𝐶𝑗
gen

+ 𝐶𝑗
bui,SR

𝑗

) (4.1) 

𝑆𝑅𝑗
gen

+𝑆𝑅𝑗
bui+𝑆𝑅𝑗

ES = 𝑆𝑅𝑗
req (4.2) 

where, j represents the time interval. SRgen, SRbui and SRES are the spinning reserve 
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provided by conventional generators, building flexibility, and utility-scale energy 

storage, respectively. SRreq is the spinning reserve requirement of the power system. 

This study focuses on the energy flexibility of HVAC systems in buildings. The 

spinning reserve capacity of buildings (SRbui), as shown in Eq. (4.3), is constrained by 

the maximum load reduction of HVAC systems for a predefined service duration (1 

hour in this study). Note that only upward reserve is considered because downward 

reserve can be easily obtained by ramping down conventional generators or curtailing 

renewable generation (Roos and Bolkesjø 2018). 

𝑆𝑅𝑗
bui ≤ 𝑃𝑗

ac, base − 𝑃𝑗
ac, min (4.3) 

where Pac,base and Pac,min are the baseline and minimum operating power of HVAC 

systems, respectively, considering the baseline setting and the allowable maximum 

offset of indoor air temperature during demand response.  

The cost of using building flexibility for spinning reserve is determined by Eq. (4.4), 

using the method proposed by (Trovato 2023). Here, pSR is the probability of spinning 

reserve activation, which can be derived from historical data of the power system. cact 

is the incentive for activating flexibility of buildings (€/MWh).   

𝐶𝑗
bui,SR = 𝑝SR𝑐act𝑆𝑅𝑗

bui (4.4) 

Load shifting 

The objective function when using building flexibility for load shifting, as shown in 

Eq. (4.5), aims to minimize the total power system cost, including the operating cost 

of conventional generators (Cgen) and the cost of activating building flexibility for load 

shifting (Cbui,LS), subject to power balance constraint, as shown in Eq. (4.6). At each 

time interval, the system power balance must be maintained by coordinating the 
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dispatch of conventional generators, renewable generation, utility-scale energy storage 

and building energy flexibility.  

min ∑(𝐶𝑗
gen

+ 𝐶𝑗
bui,LS)

𝑗

(4.5) 

𝑃𝑗
dem + 𝑃𝑗

bui,ch + 𝑃𝑗
ES,ch = 𝑃𝑗

gen
+ 𝑃𝑗

RE + 𝑃𝑗
ES,dis + 𝑃𝑗

bui,dis (4.6) 

where, Pdem is the electricity demand of the power system. Pbui,ch and Pbui,dis represent 

the load increase and reduction of buildings from the baseline load profile, respectively. 

PES,ch and PES,dis are the charging power and discharging power of utility-scale storage, 

respectively. Pgen and PRE are the power supply from conventional generators and 

renewable energy, respectively. 

To model the load shifting associated with regulating HVAC systems, the passive 

thermal mass storage of buildings is modeled as a generic virtual energy storage, as 

also adopted by (Barani et al. 2023) (Seatle and McPherson 2024). The governing 

equations are shown in Eqs. (4.7)-(4.10).  

𝐸𝑗
bui = 𝐸𝑗−1

bui + 𝜂𝑃𝑗
bui,ch − 𝑃𝑗

bui,dis (4.7) 

𝐸𝑗
bui,min ≤ 𝐸𝑗

bui ≤ 𝐸𝑗
bui,max (4.8) 

0 ≤ 𝑃𝑗
bui,ch ≤ 𝑃𝑗

ac, max − 𝑃𝑗
ac, base (4.9) 

0 ≤ 𝑃𝑗
bui,dis ≤ 𝑃𝑗

ac, base − 𝑃𝑗
ac, min (4.10) 

where, Ebui represents the energy state of building passive thermal mass storage. Pac,max 

is the maximum operating power of HVAC systems in buildings. η represents the 

energy loss percentage when shifting the HVAC load through precooling the building 

thermal mass. This parameter reflects the energy storage efficiency of building thermal 

mass, and can be easily calculated using analytical solutions in Chapter 3. A building 
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with heavier thermal mass has a larger value of η. 

The cost of activating building flexibility for load shifting is determined by Eq. (4.11). 

The total amount of activated building flexibility is half of the accumulated values of 

Pbui,ch and Pbui,dis, because the other half represents the load recovery of buildings 

(Barani et al. 2023). 

𝐶𝑗
bui,LS = 𝑐act(𝑃𝑗

bui,ch + 𝑃𝑗
bui,dis)/2 (4.11) 

4.3 Models for the power system and buildings 

4.3.1 Building load model  

This study focuses on the energy flexibility of HVAC systems in commercial buildings, 

given that HVAC systems are major electricity consumers in Hong Kong, a high-

density and cooling-dominated city. A commonly-used second-order R-C (resistance–

capacitance) model is used to determine building thermal dynamics and the operating 

power of HVAC systems. The governing equations of the model are shown in Eqs. 

(4.12) and (4.13).  

𝐶in
𝑑𝑇in

𝑑𝑡
=

𝑇out − 𝑇in

𝑅out
+

𝑇m − 𝑇in

𝑅m
+ 𝑄in − 𝐶𝑂𝑃 ∙ 𝑃ac (4.12) 

𝐶m
𝑑𝑇m

𝑑𝑡
=

𝑇in − 𝑇m

𝑅m
+ 𝑄m (4.13) 

where, t is the time. R, C and T refer to thermal resistance, thermal capacitance, and 

temperature, respectively. The superscripts, i.e., ‘in’, ‘m’, and ‘out’, denote the indoor 

air, building structure mass, and outdoor air, respectively. Qin and Qm are the heat gains 

of indoor air and building structure mass, respectively. Pac and COP are the operating 

power and the overall coefficient of performance of the HVAC system, respectively. 
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4.3.2 Grid dispatch model 

A typical unit commitment model is employed to simulate the dispatch of the power 

supply side, accounting for operational constraints of conventional generators, as 

detailed in (Mallapragada, Sepulveda, and Jenkins 2020). In this model, individual 

generators are grouped into clusters based on their types, assuming that the generators 

in each cluster have identical characteristics (e.g., capacity size). A single integer 

variable (Non) is used to represent the number of online generators in each cluster.  

The day-ahead commitment cost of each cluster is determined using Eq. (4.14). Where, 

i represents the cluster type and j represents the time interval. SC, MC and VC are the 

startup cost, operating cost at minimum power output, and output-dependent operating 

cost of generators, respectively. Nstart is the number of generators being started.  

𝐶𝑖,𝑗
gen

= 𝑆𝐶𝑖𝑁𝑖,𝑗
start + 𝑀𝐶𝑖𝑁𝑖,𝑗

on + 𝑉𝐶𝑖𝑃𝑖,𝑗
gen (4.14) 

The number of online generators (Non) is constrained by the installed number of 

generators in the cluster, as shown in Eq. (4.15). The constraints for generator startup 

and shutdown actions are shown in Eq. (4.16). The maximum and minimum power 

output constraints for each cluster are given by Eq. (4.17). The minimum up and down 

time constraints for each cluster are shown in Eqs. (4.18) and (4.19), respectively. 

𝑁𝑖,𝑗
on ≤ 𝑁𝑖

install                                                              (4.15) 

𝑁𝑖,𝑗
on = 𝑁𝑖,𝑗−1

on + 𝑁𝑖,𝑗
start − 𝑁𝑖,𝑗

shut (4.16) 

𝑁𝑖,𝑗
on𝑃𝑖

min ≤ 𝑃𝑖,𝑗
gen

≤ 𝑁𝑖,𝑗
on𝑃𝑖

max                                                 (4.17) 

𝑁𝑖,𝑗
on ≥ ∑ 𝑁𝑖,𝑗

start𝑗
𝑗=𝑗+1−𝑀𝑂𝑇𝑖

                                                        (4.18)  

𝑁𝑖
install − 𝑁𝑖,𝑗

on ≥ ∑ 𝑁𝑖,𝑗
shut𝑗

𝑡=𝑗+1−𝑀𝐷𝑇𝑖
(4.19)  

The capacity of each cluster for providing spinning reserve (SRgen) is constrained by 
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the upward ramping capacity of online generators in the cluster, considering the 

required response time issued by grid operators (10 min in this study), as shown in Eq. 

(4.20). The ramping up and down capacity constraints for each cluster between two 

consecutive time intervals are shown in Eqs. (4.21) and (4.22), respectively.  

𝑆𝑅𝑖,𝑗
gen

≤ 𝑚𝑖𝑛(𝑁𝑖,𝑗
on𝑃𝑖

max − 𝑃𝑖,𝑗
gen

, 𝑁𝑖,𝑗
on𝑅𝑈𝑖

10min) (4.20) 

𝑃𝑖,𝑗+1
gen

− 𝑃𝑖,𝑗
gen

≤ 𝑁𝑖,𝑗
on𝑅𝑈𝑖 + 𝑁𝑖,𝑗+1

start 𝑃𝑖
min − 𝑁𝑖,𝑗

shut𝑃𝑖
min (4.21) 

𝑃𝑖,𝑗
gen

− 𝑃𝑖,𝑗+1
gen

≤ (𝑁𝑖,𝑗
on − 𝑁𝑖,𝑗

start + 𝑁𝑖,𝑗
shut)𝑅𝐷𝑖 − 𝑁𝑖,𝑗

start𝑃𝑖
min (4.22) 

4.4 Outline of the Hong Kong power system and buildings 

4.4.1 Description of the power system 

The power system in Hong Kong, a relatively standalone and mid-scale power system, 

is used as a reference case. The supply side consists of wind power, solar photovoltaic 

(PV), biopower, nuclear power, gas-fired power, including combined cycle gas turbine 

(CCGT) and open cycle gas turbine (OCGT), and utility-scale energy storage. Given 

the high uncertainty in renewable energy adoption in Hong Kong, four different 

generation mix scenarios for the year of 2035 are studied, as illustrated in Figure 4.2.  

 

Figure 4.2 Generation mix scenarios of the Hong Kong power system  
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The low RE scenario corresponds to the installed capacities of solar and wind power 

planned by the Hong Kong Climate Action Plan. The Mid RE and High RE scenarios 

are derived by scaling up the installed capacities of renewables in the Low RE scenario 

by factors of two and three, respectively. The annual renewable penetrations under 

these three scenarios are approximately 15%, 25%, and 35%, respectively, which are 

below the maximum renewable penetration potential of about 39% in Hong Kong (Jia 

Liu et al. 2022).  

To investigate the impact of utility-scale energy storage on the benefit and utilization 

of building energy flexibility, we further examine a High RE/Storage scenario that 

includes 4-hour battery storage with a 1 GW capacity, corresponding to approximately 

10% of power system peak loads. This storage capacity is considered sufficiently high 

given the examined renewable penetration of 15-35% (Mallapragada et al. 2020). The 

installed capacity of nuclear power is set to the value in the year 2024.   

The peak loads of Hong Kong are about 10 GW, which usually occur in summer due 

to the high cooling load of buildings. The electricity demand profiles of Hong Kong 

are obtained by scaling up the measured hourly demand profiles to the year 2035, 

based on the projected variation in total electricity demand. The power system 

spinning reserve requirement is set at the installed capacity of the largest generator 

(600 MW) plus a fraction of hourly renewable generation, following common 

practices in utility management. The average probability of spinning reserve activation 

is based on the historical data from U.S. power systems (MacDonald 2014). The 

technical specifications of conventional generators are shown in Table 4.1 

(Mallapragada et al. 2020) (Chyong and Newbery 2022).  
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Table 4.1 Technical specifications of conventional generators 

Technology 
Plant Size 

(MW) 

Rated 

Efficiency 

Startup 

Cost 

[€/MW] 

Min. 

Stable 

Output 

Hourly 

Ramp 

Rate 

Min. 

Up/Down 

Time [h] 

Nuclear 500 / 1,000 50% 25% 12/12 

OCGT 100 0.36 25.7 20% 80% 1/1 

CCGT 350 0.56 64 40% 60% 4/4 

4.4.2 Description of reference buildings 

Commercial buildings account for over 70% of electricity use in Hong Kong, an 

international high-density city with a service-oriented economy and thousands of high-

rise buildings. In this study, HVAC systems in commercial buildings are engaged in 

providing grid services, which are suitable for grid-interactive control due to existing 

building automation systems. First, using the building load model, the hourly load 

profiles (including baseline, maximum and minimum load profiles) of a prototype 

commercial building (i.e., International Commerce Centre) are simulated for the full 

year. This building is chosen because its design parameters and electricity usage 

pattern are typical and representative of the high-density city (Jia Liu et al. 2022). The 

densities and schedules of occupants, lighting, equipment and air-conditioning can be 

found in (Wang et al. 2019). The baseline indoor air temperature is set at 24 ℃, with 

an offset of up to 2 K allowed during flexibility activation. The maximum load shifting 

duration is chosen as two hours to avoid an unacceptable sacrifice in indoor thermal 

comfort (Aryandoust and Lilliestam 2017). Based on this, the aggregated load profiles 

of the entire commercial building sector in Hong Kong are obtained by scaling the 

load profiles of the prototype building to match publicly available data. The 

aggregated energy flexibility of buildings for providing spinning reserve is also 

quantified. 
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4.5 Assessment results 

4.5.1 Benefits of using building flexibility for spinning reserve 

This section analyzes the impact of using building energy flexibility for spinning 

reserve on power system operations across different generation mix scenarios. As 

shown in Figure 4.3(a), the commercial building sector can contribute up to 520 MW 

of spinning reserve during cooling seasons, which meets up to 86.7% of the spinning 

reserve required to manage unexpected generator failures (600 MW) in Hong Kong.  

 
 

Figure 4.3 Capacity and impacts of building flexibility providing spinning reserve  

By engaging building flexibility in spinning reserve provision, fewer thermal 

generators are committed and operated at part load, resulting in reduced start-up costs 

and part-load efficiency losses, as illustrated in Figure 4.3(b). This also allows 

enhanced renewable integration by lowering curtailment of renewables that would 

otherwise be displaced by gas-fired reserve generation. Consequently, the annual 
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operating cost of the power system decreases by 0.60%-1.55% (5.7-16.9 M€) 

compared to relying solely on the power supply side, as seen in Figure 4.3(c). 

It is important to note that the cost savings achieved by utilizing buildings for spinning 

reserves are highly robust. Unlike building thermodynamic models, which rely on 

numerous simplifications of physical processes and propagate many uncertainties, the 

power system dispatch model used in this study involves far less uncertainty 

propagation. The operating cost of thermal generators is primarily driven by factors 

such as fuel cost and part-load efficiency, which are well supported by real-world data.  

In scenarios without utility-scale energy storage, the cost saving increases as 

renewable penetration increases. This is because fewer baseload generators (CCGTs) 

are required for electricity supply, while more spinning reserve capacity is needed to 

manage renewable forecast uncertainties. In this case, high-cost peaking generators 

(OCGTs) are frequently dispatched to address short-duration reserve shortages. The 

engagement of building energy flexibility mainly displaces peaking OCGTs rather 

than baseload CCGTs, as seen in Figure 4.3(d), which increases the value of per-unit 

building flexibility as spinning reserve.  

However, the cost saving decreases after adopting utility-scale storage in the High 

RE/Storage scenario. Energy storage replaces thermal generators as the primary 

provider of spinning reserve due to its near-zero operating cost during reserve 

provision. Consequently, less gas-fired reserve generation can be displaced by 

building flexibility providing spinning reserve, as seen in Figure 4.3(d). Nonetheless, 

the cost saving is still considerable at 5.7 M€. It should be noted that the 1 GW storage 

capacity in the High RE/Storage scenario is already a sufficiently high value. 
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Therefore, grid operators can anticipate sustainable and substantial cost savings by 

adopting building energy flexibility as spinning reserve. 

4.5.2 Comparison of spinning reserve provision and load shifting 

This section presents a comparison of the impacts of using building flexibility for 

spinning reserve versus load shifting on both the power system and buildings. Unlike 

most previous studies that assume building flexibility can be freely activated, our 

analysis incorporates the potential payment to buildings for activating flexibility, 

which varies from 0.001 to 150 €/MWh, to achieve different levels of flexibility 

activation (i.e., interference to building operation).  

As shown in Figure 4.4, using building flexibility for providing spinning reserve leads 

to a relatively consistent annual operating cost saving of the power system, even when 

the incentive varies significantly. Providing spinning reserve only requires buildings 

to be on standby in most time periods, with actual activation occurring infrequently 

(typically 20 times per year). In contrast, as the incentive increases from 0.001 to 50 

€/MWh, the cost saving of the power system from load shifting decreases dramatically, 

as does the total amount of activated building flexibility. Each instance of load shifting 

requires actual activation of building energy flexibility. Consequently, a large portion 

of technically available flexible load is not economically viable to be shifted. For 

instance, no observed load shifting occurs to reduce part-load efficiency losses of 

baseload CCGTs, when a 50 €/MWh incentive is assumed. On the other hand, high-

value load shifting actions, such as those for absorbing curtailed renewables, can 

provide a relatively consistent cost saving for the power system, even when the 

incentive is increased from 100 to 150 €/MWh. 
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Figure 4.4 Comparison of using building energy flexibility for spinning reserve and 

load shifting  

The power system operating cost saving from load shifting is much lower than that 

obtained from using building flexibility for spinning reserve in most examined 

generation mix scenarios, particularly when setting a high incentive for activating 

flexibility in buildings. For instance, in the Low RE scenario with an incentive of 0.001 

€/MWh, the annual operating cost saving from using building flexibility for spinning 

reserve is 4.9 times that for load shifting, while the total accumulated amount of 

activated building flexibility for spinning reserve provision is only 2.4% of that for 

load shifting. Although the operating cost saving from load shifting is slightly higher 

(less than 5%) in the High RE/Storage scenario, the resulting total amount of activated 

building flexibility is 215 times that from providing spinning reserve, as shown in 

Figure 4.4.  

Considering a comparable level of building flexibility activation (i.e., interference to 

building operation), such as setting the incentive at 100 €/MWh in the High RE and 

High RE/Storage scenarios, the cost savings from using building flexibility for 

spinning reserve are approximately 5 and 4 times those from load shifting, respectively. 

This indicates that utilizing building flexibility for spinning reserve offers a higher 
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operating cost saving for the power system but also interferes far less with building 

operations compared to load shifting.  

To further illustrate the advantage of providing spinning reserve over load shifting 

when utilizing building flexibility, we estimate the cost saving associated with per-

unit activated building flexibility (€/kWh) by assuming building flexibility can be 

freely activated and all cost savings from demand response go back to buildings 

(Seatle and McPherson 2024). This metric is calculated as the power system cost 

saving divided by the total amount of activated building flexibility throughout the year. 

For load shifting, the unit cost saving ranges from 22 to 40 €/MWh. Given that the 

typical incentive for activating building flexibility is 150 €/MWh in real-world load 

shifting programs, implementing load shifting in daily operation seems economically 

unviable (Seatle and McPherson 2024). In contrast, the unit cost saving from spinning 

reserve provision is 4522-6315 €/MWh, up to 205 times that for load shifting. This 

shows that spinning reserve provision has much better economic viability than load 

shifting in real-world scenarios where a reward must be paid to buildings for activating 

flexibility. 

4.6 Policy implications  

Based on the assessment results presented in Section 6.3, we discuss the following key 

policy implications. 

Building energy flexibility as an alternative reserve resource for power systems  

Engaging building energy flexibility in spinning reserve provision can offer several 

operational benefits to power systems beyond the cost saving. First, it can reduce 

power system carbon emissions by enhancing renewable absorption and part-load 
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efficiency of thermal generators. Second, it can enable faster frequency restoration in 

the power system after contingency events (e.g., generator failures), because buildings 

can respond more rapidly to grid requests than most power generators with ramping 

limits (Wang et al. 2019). Third, it can reduce the variability of electricity prices by 

reducing the dispatch of high-cost peaking generators, thereby benefiting all electricity 

consumers. Fourth, aggregating massive diverse buildings can provide a more reliable 

spinning reserve capacity compared to conventional generators, even though 

individual buildings have higher response failure rates than individual generators 

(Herre et al. 2022).  

Spinning reserve as a priority use of building energy flexibility in smart grids  

In addition to the higher operating cost benefit and lower interference with building 

operation, using building flexibility for spinning reserve has several advantages over 

load shifting. First, load shifting often involves precooling building thermal mass to 

reduce the power demand during subsequent peak periods. This could cause 

unnecessary energy loss and additional electricity cost if the predicted peak does not 

occur in real-time due to forecast uncertainties (Tina et al. 2022). In contrast, providing 

spinning reserve requires buildings to be on a standby state and avoids the cost of 

precooling. Second, load shifting may increase carbon emissions when the flexible 

load is shifted towards cheaper but carbon-intensive coal-fired power. In contrast, 

buildings providing spinning reserve can reduce both operating cost and carbon 

emissions, which avoids the trade-off between cost reduction and emission increase, 

facilitating engineering practice. Third, the actual response duration of spinning 

reserve provision is typically much shorter than that of load shifting, which enhances 

the acceptance of building owners. For instance, 80% of reserve activation in the US 
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markets last less than 20 minutes, but load shifting typically requires a response 

duration of 2 hours (MacDonald 2014). 

Prioritizing spinning reserve does not mean disregarding the benefits of load shifting.   

Spinning reserve is a more effective use of building flexibility in daily operation, 

however, this does not mean that spinning reserve provision can completely replace 

load shifting. Our analysis only examines the operational impacts of building 

flexibility, without considering the impact on long-term planning. Load shifting (e.g., 

precooling buildings) can effectively reduce power system peak loads. Such peak 

reduction can not only help defer the investment of power generation capacity but also 

maintain power system reliability during extreme conditions (e.g., heat waves) (Navidi, 

El Gamal, and Rajagopal 2023). There are also certain cases where load shifting can 

provide a high operating cost benefit with minimal interference with building 

operation, e.g., precooling buildings during unoccupied periods with curtailed 

renewables. Therefore, more focused rather than broad implementation of load 

shifting is recommended, as also suggested by (Müller and Möst 2018). 

Generality of the presented results to other power systems 

As the first comparative impact assessment of city-scale building flexibility, this study 

assumes that the entire commercial building sector participates in grid service 

provision, representing an upper bound of the associated cost saving. The results are 

case-specific and influenced by contextual factors such as supply-side flexibility. The 

cost saving may be lower than estimated if electricity trading with neighbours and 

utility-scale energy storage capacity exceed the levels examined.  

The qualitative insights from this study can be applied to other power systems with 

comparable generation mixes and building flexibility potential. The findings suggest 
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that providing spinning reserve is a more suitable use of building energy flexibility, 

particularly when building users request high incentives to activate flexibility. 

Currently, most spinning reserve markets do not allow building flexibility to 

participate. Therefore, market reforms and policy support are recommended to engage 

buildings in spinning reserve markets, thereby better exploiting building energy 

flexibility. Besides, spinning reserve provision requires rapid demand reduction in 

response to grid requests. Unlike conventional load shifting (precooling), such fast 

demand response control necessitates further research to enable buildings for spinning 

reserve provision.  

4.7 Summary 

This chapter presents a comparative assessment of using large-scale building energy 

flexibility for spinning reserve and load shifting, focusing on the Hong Kong power 

system in 2035 as a reference case. An integrated grid-buildings optimization model 

is developed to capture how building energy flexibility affects the operations of both 

the power system and buildings. 

The results show that adopting the flexibility of commercial buildings for spinning 

reserve can reduce the annual operating cost of the power system by 0.60%-1.55% 

(5.7-16.9 M€), compared to using conventional generators exclusively. The cost 

savings depend on the generation mix scenario. These savings increase as renewable 

energy penetration increases, but decrease after the adoption of utility-scale energy 

storage. 

The annual cost saving from using building flexibility for spinning reserve are up to 

4.9 times greater than those for load shifting, while the total accumulated amount of 
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activated building flexibility for spinning reserve provision is only 2.4% of that for 

load shifting. This indicates that spinning reserve provision not only offers higher cost 

savings for the power system but also causes much less interference with building 

operation compared to load shifting. Therefore, spinning reserve is proposed as a 

priority use of building energy flexibility in smart grids. 
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CHAPTER 5 A PROBABILISTIC MODEL FOR REAL-

TIME QUANTIFICATION OF BUILDING ENERGY 

FLEXIBILITY  

This chapter presents a probabilistic model for real-time quantification of building 

energy flexibility under uncertainties. The model considers the major uncertainties 

involved in flexibility quantification, enabling buildings to serve as a reliable provider 

of grid flexibility. An explicit equation is used to analytically quantify the flexibility 

of individual buildings, effectively capturing the characteristics of diverse buildings. 

The model is computationally efficient for real-time online application, facilitating the 

participation of building energy flexibility in grid service markets.  

Section 5.1 presents the proposed probabilistic model. Section 5.2 presents the 

validation test arrangement. Section 5.3 presents the test results to validate the 

performance of the proposed model. Section 5.4 discusses the real-world 

implementation of the proposed model. Section 5.5 summarizes this chapter. 

5.1 Proposed probabilistic model  

5.1.1 Outline of the model 

The proposed probabilistic model for quantifying the aggregated energy flexibility of 

a cluster of buildings under uncertainties is outlined in Figure 5.1. This model 

combines a straightforward equation to directly quantify the flexibility of each 

individual building with a sampling-based uncertainty analysis to obtain the 

distribution of their aggregated flexibility. To the best of our knowledge, this model 
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represents the first attempt to achieve real-time flexibility quantification of building 

clusters using a bottom-up approach, while comprehensively considering the major 

uncertainties in flexibility quantification and second-order building thermal dynamics. 

 

Figure 5.1 Outline of the proposed probabilistic model 

5.1.2 Basic deterministic model of building energy flexibility 

Modelling individual buildings is the basis for quantifying their aggregated flexibility. 

In this study, the thermal dynamics of each building and the operating power of each 

HVAC system (Pac) are characterized by a second-order thermodynamic model. The 

governing equations of the model are shown in Eqs. (5.1) and (5.2).  

𝐶in
𝑑𝑇in

𝑑𝑡
=

𝑇out − 𝑇in

𝑅out
+

𝑇m − 𝑇in

𝑅m
+ 𝑄in − 𝐶𝑂𝑃 ∙ 𝑃ac (5.1) 

𝐶m
𝑑𝑇m

𝑑𝑡
=

𝑇in − 𝑇m

𝑅m
+ 𝑄m (5.2) 

where, t is the time. R, C and T refer to thermal resistance, thermal capacitance, and 

temperature, respectively. The superscripts, i.e., in, m, and out, denote the indoor air, 
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building structure mass, and outdoor air, respectively. More details can be found in 

Section 3.1. 

Existing studies (Wang et al. 2018) (Hu and Xiao 2020) usually rely on a few building 

archetypes to represent the entire building cluster in order to reduce the computational 

time of quantifying the aggregated flexibility of massive buildings under uncertainties. 

However, this approach inadequately considers the distinct characteristics of diverse 

buildings, compromising the modeling accuracy.  

To address this issue, we apply the analytical solution to quantify the load reduction 

ΔPac of each individual building,  as shown in Eq. (5.3). The derivation process of this 

equation has been presented in Section 3.2.1. The load reduction of a building is a 

function of the indoor air temperature offset ΔTin, demand response duration Δt, and 

the parameters of this building.  

∆𝑃ac =
(𝑟1 − 𝑟2)𝐶in∆𝑇in

[𝑒𝑟1∆𝑡 − 𝑒𝑟2∆𝑡 + 𝐶in𝑅out(𝑟1 − 𝑟2 + 𝑟2𝑒𝑟1∆𝑡 − 𝑟1𝑒𝑟2∆𝑡)] ∙ 𝐶𝑂𝑃
(5.3) 

where,  𝑎 = 𝐶in𝐶m𝑅m, 𝑏 = (1 + 𝑅m 𝑅out⁄ )𝐶m + 𝐶in, 𝑐 = 1 𝑅out⁄ ,   

             𝑟1 = (−𝑏 + √𝑏2 − 4𝑎𝑐) 2𝑎⁄ ,  𝑟2 = (−𝑏 − √𝑏2 − 4𝑎𝑐) 2𝑎⁄  

Eq. (5.3) only characterizes the magnitude of load reduction ΔPac of a building. In 

practice, individual buildings may fail to respond to power grid requests in real-time 

operation due to various reasons, such as the random behaviour of building occupants, 

grid-building communication failure due to malicious cyberattacks, and malfunction 

of building control systems. Besides, the second-order building thermodynamic model 

is only an approximation of the real system, due to missing physics, overlooked input 

variables, numerical approximations, and incorrect hypotheses. These two factors 

should also be considered when quantifying building energy flexibility. 
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The aggregated energy flexibility of a cluster of buildings (EFagr) is quantified using 

Eq. (5.4). It is determined by the sum of flexibilities of all individual buildings in the 

building cluster. This bottom-up approach can better represent the specific 

characteristics of diverse buildings, compared to the archetype-based approach. 

Moreover, the building response failure and the model bias are considered in Eq. (5.5), 

enabling a more realistic flexibility quantification.  

𝐸𝐹agr = ∑ 𝐸𝐹𝑘
bui𝑁bui

𝑘=1 (5.4)  

𝐸𝐹𝑘
bui = 𝜔𝑘∆𝑃ac(𝑥𝑘) + 𝑒𝑘 (5.5) 

𝑓(𝜔𝑘) = {
𝑝𝑘

bui, 𝜔𝑘 = 0

1 − 𝑝𝑘
bui,    𝜔𝑘 = 1

(5.6) 

where, k refers to the index of individual buildings. Nbui is the number of buildings in 

the building cluster. The binary variable, ωk, represents the response activation state 

of the building, which is modeled as a Bernoulli distribution, as shown in Eq. (5.6). A 

value of 0 indicates a failed response, and a value of 1 indicates a successful response. 

pbui
 is the response failure rate of the building, which can be derived from empirical or 

historical data. xk and ek are the inputs and bias of the building thermodynamic model. 

5.1.3 Probabilistic modelling based on Monte Carlo simulation 

The above deterministic model can provide a deterministic output for the aggregated 

building flexibility based on a given set of inputs. To account for the impact of 

uncertainties, a sampling-based uncertainty analysis method, i.e., Monte Carlo 

simulation, is applied to obtain the distribution of the aggregated building flexibility.   

The uncertainty analysis consists of four procedures, as illustrated in Figure 5.1. First, 

the major uncertain parameters are quantified, including the inputs and bias of the 

building thermodynamic model, and the response failure rates of buildings. Each 
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uncertain parameter is assigned an appropriate probability distribution based on the 

available data. Second, Latin Hypercube Sampling is used to generate a set of samples, 

each representing a possible realization of these uncertain parameters, which are 

sampled randomly from their respective probability distributions. Third, the uncertain 

parameters in each sample are imported into the deterministic quantification model to 

propagate the combined effect of uncertainties. Finally, the values of aggregated 

flexibility across all samples are collected, and the distribution of aggregated building 

flexibility of buildings is obtained.  

The probability that buildings can successfully achieve a specific committed flexibility 

capacity (EFcom) in actual operation can be determined using Eq. (5.7), where, pagr is 

the distribution of the aggregated building flexibility. 

𝑃(𝐸𝐹agr ≥ 𝐸𝐹com) = ∫ 𝑝agr
+∞

𝐸𝐹com

(5.7) 

By varying the demand response duration, a set of probability-capacity curves can be 

obtained. These curves serve as a valuable tool for effectively designing demand 

response programs. By setting the success probability to a desired confidence level 

(e.g., 99.9%), building energy flexibility can be leveraged in a reliable manner, similar 

to conventional generators. 

5.2 Validation test arrangement 

5.2.1 Description of reference buildings  

In this study, a building cluster consisting of 150 large-sized commercial buildings is 

chosen to provide demand-side flexibility. Commercial buildings are considered due 

to their feasibility of implementing advanced grid-interactive control using existing 

building automation systems. The building cluster is generated based on a prototype 
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commercial building in Hong Kong, following the method adopted by (Dong et al. 

2018). The design parameters and normal usage pattern (e.g., occupancy profile) of 

the prototype building can be found in (Wang et al. 2019). The overall COP of the 

HVAC system of the prototype building is assumed to be equal to 3. With simulation 

data from the software TRNSYS, the thermal parameters of the prototype building are 

estimated for characterizing its second-order thermal dynamics.  

For the building cluster, the parameters (e.g., thermal resistance and COP) of each 

building are randomly sampled from uniform distributions, with a ±20% variation 

range around the parameters of the prototype building. This large variation range is 

chosen to ensure diversity among individual buildings. The randomization process for 

generating the building cluster is conducted only once. After randomization, each 

building has unique thermal parameters, HVAC system, and normal usage pattern. 

The validation tests are conducted using the weather data on a typical summer day in 

Hong Kong, when the building HVAC systems are in operation. The maximum 

allowable indoor air temperature offset for each building is assumed to be 2 K during 

the demand response period. Individual buildings are assumed to have independent 

controls, enabling them to respond to grid requests independently.  

5.2.2 Description of major uncertainties  

Building energy flexibility quantification involves various uncertainties. Based on the 

previous studies on sensitivity analysis of building parameters (Martinez, Vellei, and 

Le Dréau 2022b), the following uncertain inputs of the second-order building 

thermodynamic model are considered: the thermal resistance between the indoor air 

and the building structure mass, and the actual indoor air temperature offset during the 
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demand response. These uncertainties are assumed to follow normal distributions with 

mean values corresponding to their deterministic values.  

In practical operation, buildings may fail or choose not to respond to power grid 

requests due to communication and control issues. The uncertainty in response failures 

is quantified using the response failure rate, which is assumed to follow a binomial 

distribution based on data from a real-world demonstration project in Germany 

(Müller and Jansen 2019). The bias of the second-order building thermodynamic 

model is assumed to follow a normal distribution with a zero mean and a standard 

deviation that is 5% of the deterministic predicted value (Amadeh, Lee, and Zhang 

2022). Table 5.1 provides detailed information on the probability distributions of 

major uncertain parameters involved in flexibility quantification. 

Table 5.1 Major uncertain parameters and their distributions  

Group Parameter Probability distribution 

Building parameters Thermal resistance Normal (Rdet ,0.05 Rdet) 

Indoor air temperature offset  Normal (ΔTin
det ,0.25) 

Response state Response failure rate Binomial (Nbui, 0.1) 

Model bias Building model bias Normal (0, 0.05 Pdet) 

Note: Normal (μ, σ) refers to a normal distribution with mean μ and standard deviation σ. 

5.2.3 Outline of flexibility quantification models  

Four different models are tested and compared to verify the effectiveness and 

advantages of the proposed model in quantifying the aggregated flexibility of 

buildings, as listed below. 

• Deterministic model: This model does not consider uncertainties in flexibility 

quantification. It quantifies the aggregated flexibility by modeling each individual 

building in the building cluster, as described in 5.1.2. 
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• Proposed model: This model considers the major uncertainties in flexibility 

quantification. It quantifies the aggregated flexibility by modeling each individual 

building, using the analytical equations introduced in Section 5.1.3. 

• Probabilistic numerical model: This model is extended from the deterministic 

model by considering the major uncertainties. It quantifies the aggregated 

flexibility by modeling each individual building, using the numerical solution 

method described in Section 3.1.2. 

• Archetype-based model: This model considers the major uncertainties. It estimates 

the aggregated flexibility by classifying the building cluster into a few groups (i.e., 

archetypes) (Wang et al. 2018). The flexibility of each archetype is quantified using 

the numerical solution method described in Section 3.1.2. 

5.3 Performance evaluation of proposed model 

This section presents the flexibility quantification results of the proposed probabilistic 

model. The accuracy and computational efficiency of the proposed model are 

demonstrated and compared with the deterministic model and other probabilistic 

models respectively. All flexibility quantification models are implemented in Matlab 

on a PC with an eight-core Intel Core i7 CPU. The number of samples for the Monte 

Carlo simulation is chosen as 5,000 to ensure convergence. This number provides a 

proper balance between computational efficiency and the accuracy of the results.   

5.3.1 Quantification results and comparison with deterministic model  

Figure 5.2 shows the distribution and cumulative distribution function (CDF) of the 

aggregated building flexibility of the building cluster during a 1-hour demand 

response event, as quantified by the proposed probabilistic model. The aggregated 
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flexibility capacity ranges from about 160 MW to 210 MW under uncertainties. In 

contrast, the deterministic model, which overlooks uncertainties, gives a single output 

of 183 MW, which corresponds to 47.5% of the CDF. This indicates a high probability 

(i.e., 52.5%) of overestimating the aggregated flexibility when using the deterministic 

model, posing a significant risk to the power grid if such flexibility capacity is 

committed by buildings. Therefore, it is necessary to consider and quantify the impact 

of uncertainties on building energy flexibility. 

 

Figure 5.2 Distribution of the aggregated flexibility of buildings 

Based on the quantified distribution of aggregated building flexibility, probability-

capacity curves are generated for different demand response durations, as shown in 

Figure 5.3. It can be observed that for a given demand response duration, a higher 

committed flexibility capacity corresponds to a lower probability of successfully 

achieving the committed flexibility in actual operation. On the other hand, for the same 

desired success probability, buildings can provide more energy flexibility with shorter 

demand response durations, which aligns with the findings reported in (Zhang and 

Domínguez-García 2018). Therefore, the demand response duration should be 

carefully determined to optimize the coordination of building energy flexibility and 

power grids. 
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Figure 5.3 Probability-capacity curves for different demand response durations 

The flexibility provided by buildings achieves a very high probability of success (i.e., 

99.99%) when the committed capacity is below a certain threshold (e.g., 160 MW for 

a response duration of 1 hour). The success probability is even higher than that of most 

conventional generators (i.e., 99.9%) (Doherty and O’Malley 2005). This can be 

attributed to the aggregating effect of multiple buildings, which offers three significant 

benefits: First, it mitigates the impact of uncertainties of individual buildings on their 

aggregated flexibility. Second, even if a subset of buildings cannot provide adequate 

flexibility, the other buildings can compensate for this temporary shortage (Zhang, 

Saloux, and Candanedo 2024). Third, the flexibility committed by buildings can be 

flexibly adjusted as needed, unlike conventional generators with fixed and large-rated 

capacities. Therefore, buildings can serve as a reliable complement to conventional 

generators for providing grid services in smart grids. 

5.3.2 Accuracy and scalability of proposed model 

The accuracy of the proposed probabilistic model is verified by comparing its output 

with that of the numerical probabilistic model commonly used in the literature, which 

relies on a numerical solution method to solve the building thermodynamic model. For 

this purpose, the time step of the numerical model is set to 1 second to obtain an 
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accurate solution. However, using such a small time step increases the computational 

intensity of the numerical model when applied to the 150 buildings. To simplify the 

comparison, a random sample of uncertainties is utilized. It is found that the difference 

between the aggregated flexibility obtained from the two models, using this sample, 

is less than 0.01%. This negligible difference confirms the accuracy of the proposed 

probabilistic model.  

The scalability of the proposed model is demonstrated by applying it to quantify the 

aggregated flexibility of building clusters consisting of different numbers of buildings 

(i.e., 10, 100, 500, 1000, and 2000). Figure 5.4 illustrates the computational time 

measured under different numbers of buildings. It can be seen that even when dealing 

with 2000 buildings, the proposed model only takes about 140 seconds to give a 

solution, confirming its scalability. This means that even if we use ten second-order 

RC models for modeling the 150 buildings, the computation time of the proposed 

model is still very fast (less than 2 minutes). This computational time can satisfy the 

application requirements of power grid real-time dispatch and engaging building 

flexibility into real-time electricity market, which  usually have a time interval of 15 

minutes. Furthermore, the measured computational time exhibits a linear growth trend, 

which aligns with the theoretical trend inferred from the bottom-up structure of the 

proposed model. 
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Figure 5.4 Computational time of the proposed model under different number of 

buildings 

5.3.3 Comparison with existing probabilistic models 

The superior computational accuracy and efficiency of the proposed probabilistic 

model is confirmed by comparing it with two existing probabilistic models, i.e., the 

probabilistic numerical model and the archetype-based model. The demand response 

duration is set to 1 hour for comparison.  

The time step of the probabilistic numerical model is set to 1 and 5 minutes, 

respectively. The probabilistic numerical model with a 1-minute time step takes 

3605.6 seconds to give a solution, as shown in Table 5.2. In contrast, the proposed 

model only takes 6.7 seconds, which is 537 times faster than the numerical model. The 

probability-capacity curves given by these two probabilistic models are very close, as 

shown in Figure 5.5. Their differences in flexibility capacities at success probabilities 

of 0.999 and 0.95 are less than 1.8%. For the probabilistic numerical model with a 5-

minute time step, the computational time is 1503.2 seconds, and the estimated 

flexibility capacity at a success probability of 0.999 is 4.4% lower compared to that of 

the proposed model. Although this deviation may seem small on its own, it may 

significantly affect power grid scheduling. It could lead grid operators to schedule an 
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additional large-scale conventional generator to meet the flexibility requirement, 

increasing the operational cost of the power system. Note that these differences are 

attributed to the discrete-time state space formulation of the probabilistic numerical 

model. The outputs of the proposed model have been demonstrated to be accurate and 

correct in Section 5.3.2.  

Table 5.2 Computational results of different probabilistic models  

Model 
Capacity at Prob. 

0.999 (MW) 

Capacity at Prob. 0.95 

(MW) 

Computational  

time (s) 

Proposed 160 171 6.7 

Prob. Numerical (1-min step) 162 174 3605.6 

Prob. Numerical (5-min  step) 153 165 1503.2 

Archetype-based 141 147 54.5 

 

Figure 5.5 Probability-capacity curves given by different probabilistic models 

The performance of the archetype-based model, as adopted in (Martinez et al. 2022a) 

(Wang et al. 2018) (Hu and Xiao 2020), is also tested and compared. The archetype-

based model has been extended to incorporate the building response failures. In this 

model, 150 buildings in the building cluster are classified into 5 groups based on their 

characteristics. The numerical time step is set to 5 minutes. As shown in Table 5.2, 

although the archetype-based model reduces the computational time by using a few 
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building archetypes to represent the entire building cluster, it still requires 54.5 

seconds to give a solution. This computational time is about 8 times that of the 

proposed model (6.7 seconds). Moreover, the archetype-based model generates a 

probability-capacity curve that significantly deviates from the correct curve, as shown 

in Figure 5.5. It gives a flexibility capacity of 147 MW for a success probability of 

0.95, which is 14% lower than the correct value. The lower accuracy of the archetype-

based model is due to its inadequate consideration of the characteristics of individual 

buildings. In summary, the proposed model outperforms the existing models in terms 

of both accuracy and computational efficiency. 

5.4 Real-world implementation feasibility analysis 

This study presents a novel probabilistic model for real-time quantification of the 

aggregated flexibility of buildings under uncertainties. The model can be used by load 

aggregators to quantify the flexibility of a building cluster and perform bidding in the 

real-time electricity and grid service markets, which requires flexibility providers to 

have a minimum reliability of 95%. Additionally, the outputs of this probabilistic 

model can be directly used by grid operators for optimized power grid scheduling and 

real-time dispatch incorporating building flexibility, as widely studied in smart grid 

fields. For instance, the quantified distribution of the aggregated flexibility of 

buildings under uncertainties can serve as a basis for risk assessment and stochastic 

scheduling of the power system adopting building flexibility as operating reserve.  

To implement this model on a building cluster, the following steps are required. Firstly, 

smart devices should be installed in each building to enable effective communication 

and interaction between the power grid and the buildings. Secondly, the parameters 
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(e.g., thermal resistance and thermal capacitance) of each building are required. These 

parameters can be identified either locally by individual buildings or centrally by grid 

operators. Existing software tools (e.g., CTSM-R) can be employed to facilitate 

parameter estimation based on the measured data in each building (Bacher and Madsen 

2011). Finally, the proposed model is applied to quantify the aggregated building 

flexibility based on the collected information. The probability-capacity curves of the 

aggregated building flexibility can then be utilized by load aggregators or power grid 

operators. 

There are several potential challenges related to the real-time application of the 

proposed model for building flexibility quantification. First, the model requires each 

building to communicate its operational parameters to grid operators or load 

aggregators. This may raise concerns regarding the reliability of communication 

protocols and the privacy of the data being transmitted. Second, the thermal zones 

within a building may be highly diverse, necessitating the use of multiple 

thermodynamic models to represent each zone. In such cases, the proposed model can 

still provide real-time flexibility quantification due to its verified scalability, but 

obtaining the cooling load of each thermal zone for training the thermodynamic model 

is challenging, because typically only the HVAC operating power is measured. Third 

the thermal parameters of a building may change over time. Ignoring this issue in 

model development can compromise the accuracy of energy flexibility quantification. 

To tackle this issue, the thermodynamic models should be trained adaptively in real-

time application to continuously update their parameters and accommodate the time-

varying conditions (Hua et al. 2023). 
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5.5 Summary 

This chapter presents a novel probabilistic model for real-time quantification of the 

aggregated flexibility of buildings under uncertainties. The model applies an explicit 

equation to analytically quantify the flexibility of individual buildings, eliminating the 

need for time-consuming iterative and finite difference computations. The uncertainty 

analysis accounts for the major uncertainties in flexibility quantification, including 

model inputs, model bias, and building response failures. Validation tests are 

conducted using a building cluster consisting of 150 buildings. Based on the test 

results, main conclusions are drawn as follows: 

• The proposed probabilistic model can provide a more robust quantification of the 

aggregated building flexibility by considering uncertainties, compared to the 

deterministic model. For a demand response duration of 1 hour, the flexibility 

capacity estimated by the deterministic model has a high probability of 52.5% of 

being overestimated.  

• The proposed model outperforms the existing probabilistic models in terms of both 

accuracy and computational efficiency. It can accurately quantify the aggregated 

flexibility in 6.7 seconds, which is 535 times faster than the probabilistic model 

solved numerically. Furthermore, it is 8 times faster than the archetype-based model 

while offering significantly higher accuracy. 

• The scalability of the proposed probabilistic model is validated. The proposed 

model only takes 140 seconds to quantify the aggregated flexibility of 2000 

buildings, which can satisfy the real-time application requirements of power grid 

scheduling and dispatch.   

• The aggregated flexibility of buildings has a very high success probability (e.g., 
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99.99%) when the committed capacity is below a certain threshold (e.g., 160 MW 

for a 1-hour response duration). This reliability level is even higher than that of 

conventional generators (i.e., 99.9%). Therefore, buildings can provide reliable grid 

services by properly setting their committed flexibility capacity. 

The proposed model can quickly and accurately generate probability-capacity curves 

for the aggregated building flexibility in real-time applications, facilitating the active 

engagement of building energy flexibility into electricity and grid service markets. 
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CHAPTER 6 A RISK-AVERSE RESERVE 

SCHEDULING RAMEWORK FOR POWER 

SYSTEMS  ENGAGING BUILDING FLEXIBILITY  

This chapter presents a risk-averse day-ahead reserve scheduling framework for power 

systems engaging building energy flexibility. The framework leverages the outputs of 

the probabilistic model of building energy flexibility, as presented in Chapter 5, to 

provide a risk-averse reserve schedule. In this framework, a set of alternative reserve 

schedules with different levels of building reserve commitment are generated. The 

best reserve schedule is identified by balancing the power system operation cost and 

risk under alternative reserve schedules. A new risk indicator, namely the expected 

reserve shortage, is proposed for more accurate and efficient risk assessment.  

Section 6.1 presents the outline of the framework. Section 6.2 presents the generation 

procedures of alternative reserve schedules. Section 6.3 presents the proposed risk 

indicator and risk assessment method. Section 6.4 presents the validation test 

arrangement. Section 6.5 presents the test results to evaluate the performance of the 

proposed framework. Section 6.6 gives a summary of this chapter. 

6.1 Outline of the framework 

There are various alternative day-ahead reserve schedules incorporating building 

energy flexibility, each of which has a specific combination of reserve commitments 

from buildings and conventional generators, as illustrated in Figure 6.1. All of these 

schedules can meet the power system reserve requirement in the day-ahead reserve 

commitment stage, but they have different risk levels concerning real-time power 
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system operation. This is because that buildings may fail to realize their committed 

reserve provision in the real-time operation stage due to various uncertainties, which 

could adversely affect power system reliability. Therefore, it is essential to identify 

the best reserve schedule that properly balances the operation cost and risk of the 

power system using building energy flexibility. 

 

Figure 6.1 Reserve balance of a power system engaging building flexibility 

To identify the best reserve schedule among various alternative reserve schedules, four 

main functional components or steps are involved in the proposed risk-averse reserve 

scheduling framework, as illustrated in Figure 6.2.  

In Step 1, the probability distribution of building energy flexibility under uncertainties 

is obtained using the probabilistic building flexibility model introduced in Chapter 5. 

For spinning reserve provision, the building demand response duration is chosen as 

one hour, according to the typical requirement of power grid operation.  

In Step 2, a set of alternative reserve schedules is generated by incorporating the 

probabilistic forecasts of building energy flexibility into the existing deterministic 

reserve scheduling model. The power system operation cost under each schedule is 

also obtained.  
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In Step 3, the risk associated with each reserve schedule is assessed using the proposed 

risk indicator, namely the expected reserve shortage, considering uncertainties of both 

buildings and conventional generators.  

In Step 4, the best reserve schedule is identified by balancing the power system 

operation cost and risk under alternative schedules.  

 

Figure 6.2 Main steps of the risk-averse reserve scheduling framework 

The details on Step 1 has been presented in Chapter 5. The Step 4, as a decision-making 

component, depends on the specific preference of power grid operators on cost saving 

and risk management. The Step 2 and Step 3 are elaborated in the following sections.  

6.2 Alternative schedule generation 

Based on the probabilistic quantification results of building energy flexibility, a set of 

alternative reserve schedules with different levels of building reserve commitment can 

be obtained. This can be achieved using two approaches. The first approach, as found 

in (Wang, Wang, and Guan 2013), relies on stochastic optimization to solve the 

reformulated stochastic reserve scheduling problem, where demand flexibility is 

described by stochastic variables. This approach often requires complex modifications 



74 

 

to existing deterministic reserve scheduling problem, which hinders their practical 

engineering application.  

The second approach, as suggested in (Q. Wang et al. 2023), transforms probabilistic 

information (e.g., renewable generation forecasts) into multiple deterministic values, 

each of which corresponds to a certain confidence threshold, i.e., satisfying a certain 

confidence level. In this study, the second approach is used because it offers greater 

ease of implementation and avoids the complex modification to the existing 

deterministic reserve scheduling problem.  

The detailed procedures of alternative schedule generation are as follows. First, the 

probabilistic building energy flexibility is transformed into multiple deterministic 

building flexibility capacities for providing spinning reserve, each of which 

corresponds to a certain confidence threshold (e.g., 99.9%) of building reserve 

commitment. Second, the deterministic building flexibility capacities are respectively 

incorporated into the deterministic reserve scheduling problem through the reserve 

balance constraints. An alternative reserve schedule, along with the corresponding 

power system operation cost, is obtained by solving the reformulated deterministic 

reserve scheduling problem that includes the cost of engaging buildings. By varying 

the confidence level with a certain interval (e.g., 5%) and repeating the above process, 

a set of alternative reserve schedules can be obtained.  

The confidence level of buildings in achieving a specific reserve commitment 

(SRbui,com) when the reserve is called on in real-time operation is determined using Eq. 

(6.1). Where, pSR,bui is the probability distribution of building energy flexibility for 

providing spinning reserve under uncertainties.  

𝑃(𝑆𝑅bui ≥ 𝑆𝑅bui, com) = ∫ 𝑝SR,bui
+∞

𝑆𝑅bui, com

(6.1) 
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Reformulation of the deterministic reserve scheduling problem  

To consider the cost of engaging building energy flexibility, the deterministic reserve 

scheduling problem is formulated as shown in Eqs. (6.2) and (6.3), based on the typical 

deterministic reserve scheduling problem for determining the commitment status of 

conventional generators. The revised objective is to minimize the total expected power 

system cost, including the operation cost of conventional generators (Cgen) and the cost 

of using building energy flexibility (Cbui), subject to reserve balance constraints.  

𝑚𝑖𝑛(𝐶gen + 𝐶bui) (6.2) 

𝑆𝑅𝑗
gen

+𝑆𝑅𝑗
bui,com = 𝑆𝑅𝑗

req (6.3) 

where, j represents the time interval. SRgen and SRbui,com is the spinning reserve 

committed by conventional generators and buildings respectively. SRreq is the power 

system spinning reserve requirement.  

Note, in Eq. (6.3), SRbui,com is a deterministic value when generating each alternative 

schedule, without introducing additional stochastic variables. Therefore, the above 

problem reformulation is minor and suitable for engineering practice. 

The cost of using building flexibility is determined by Eq. (6.4). Where, pSR is the 

activation probability of power system spinning reserve, which can be derived from 

historical data of power system operation. rc and ra are reserve commitment and 

activation price of buildings, respectively.  

𝐶bui = ∑ 𝑆𝑅𝑗
bui,com(𝑟𝑐 + 𝑟𝑎 ∙ 𝑝SR)𝑗 (6.4)                               

The operation cost and constraints of conventional generators are determined using a 

commonly used power grid dispatch model, as presented in Section 4.3.2. 
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6.3 Risk assessment and risk-averse reserve scheduling 

The power system operation risk associated with each alternative reserve schedule is 

assessed based on a newly proposed risk indicator, i.e., expected reserve shortage 

(ERS). The main novelties and advantages of this indicator are as follows. 

• ERS is based on the amount of spinning reserve, rather than power imbalance. 

Therefore, it can efficiently quantify the risk of adopting building energy flexibility 

for providing spinning reserve, even in cases where the reserve activation is 

infrequent. 

• ERS quantifies the expected amount of reserve shortage, rather than a deterministic 

amount. Therefore, it can effectively consider the risk due to uncertain provision of 

spinning reserve. Moreover, the proposed formulation focuses on the uncertainty in 

reserve provision rather than the uncertainty in power system reserve requirement. 

• ERS considers the uncertainty in reserve provision from both conventional 

generators and buildings, enabling a more accurate and realistic risk assessment of 

adopting building energy flexibility as spinning reserve, compared to that solely 

focusing on the risk resulting from using building energy flexibility.  

ERS can be quantified using Eqs. (6.5)-(6.7). A higher value of ERS indicates a higher 

operation risk, and vice versa. To quantify ERS under a given alternative reserve 

schedule, random samples for the reserve commitment of buildings and conventional 

generators under this schedule are generated using Monte Carlo simulation, based on 

the quantified distribution of building energy flexibility under uncertainties and the 

response failure probabilities of conventional generators. A two-state model is used to 

describe the response failures of conventional generators, similar to that of buildings 

(Qi et al. 2022). Here, m and N represent the index and total number of samples, 
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respectively. I represents the reserve shortage under a sample. SRava is the total 

spinning reserve actually provided by conventional generators and buildings under a 

sample. 

𝐸𝑅𝑆 ≈
1

𝑁
∑ 𝐼𝑚

𝑁

𝑚=1

(6.5) 

𝐼𝑗,𝑚 = {
𝑆𝑅𝑗,𝑚

req
− 𝑆𝑅𝑗,𝑚

ava, 𝑆𝑅𝑗,𝑚
ava < 𝑆𝑅𝑗,𝑚

req

0, 𝑆𝑅𝑗,𝑚
ava ≥ 𝑆𝑅𝑗,𝑚

req (6.6) 

𝑆𝑅𝑗,𝑚
ava = 𝑆𝑅𝑗,𝑚

gen
+ 𝑆𝑅𝑗,𝑚

bui (6.7) 

6.4 Validation test arrangement 

6.4.1 Description of the power system  

The proposed strategy is tested on a power system modified from the existing Hong 

Kong power system. The supply side contains twenty combined cycles gas turbines 

(CCGT), eight open cycle gas turbines (OCGT), 1577 MW of nuclear power, and 4000 

MW of wind power. The response failure probability of each conventional generator 

is chosen as 0.1% (Herre et al. 2022) (Doherty and O’Malley 2005). The spinning 

reserve requirement of the power system is set as the capacity of the largest 

conventional generator (600 MW) plus a specific proportion of day-ahead renewable 

generation forecasts (Mallapragada et al. 2020). Such arrangements align with 

common practice in utility management. The day-ahead forecasts of electricity 

demand and wind power on the test day are shown in Figure 6.3.  Based on the day-

ahead forecasts, power grid operators determine the power system reserve requirement 

at each time interval of the next day, as well as the reserve commitment of buildings 

and conventional generators.  
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Figure 6.3 Day-ahead forecasts of electricity demand and wind power 

6.4.2 Description of reference buildings  

On the demand side, 150 large and high-rise commercial buildings are selected to 

participate in spinning reserve provision. The parameters of these buildings and the 

distribution of uncertainties have been introduced in Section 5.1.2. The planned indoor 

air temperature offset for each building during spinning reserve provision is set at 2 K. 

The buildings can provide spinning reserve during occupancy hours (8:00-20:00) 

while their HVAC systems are operating. The reserve commitment and activation 

prices of buildings are set at 3 €/MWh and 80 €/MWh. The controls of individual 

buildings are assumed to be independent, allowing them to respond to power grid 

request independently.  

6.4.3 Outline of the tested cases 

Three cases are tested to validate the performance of the proposed risk-averse reserve 

scheduling framework, as listed below. 

• Base case: Only conventional generators are used to provide spinning reserve. The 

energy flexibility of buildings is not used. 
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• Deterministic case: Both conventional generators and buildings are used to 

provide spinning reserve. Building energy flexibility is predicted without 

considering the impact of uncertainties, i.e., using the deterministic flexibility 

model presented in Chapter 5. 

• Risk-averse case: Both conventional generators and buildings are used to provide 

spinning reserve. Building energy flexibility is quantified while considering the 

impact of uncertainties. The best reserve schedule is determined using the 

proposed risk-averse scheduling framework. 

Both building energy flexibility models and reserve scheduling problems are 

programmed using Matlab on a computer with an eight-core Intel Core i7 CPU. The 

reserve scheduling horizon is 24 hours for the next day and the time interval is 1 hour. 

For comparison, the confidence threshold is set at 95% in the risk-averse case to 

properly balance the operation cost and risk of the power system. The impact of 

varying the confidence threshold setting is analyzed in Section 6.5.4.  

6.5 Performance evaluation of proposed framework 

This section presents the test results to evaluate the performance of the proposed risk-

averse reserve scheduling framework. The deterministic reserve scheduling model is 

programmed using Matlab on a computer with an eight-core Intel Core i7 CPU. The 

scheduling horizon is 24 hours for the next day and the time interval is 1 hour. For risk 

assessment, 10,000 samples are used to obtain a converged ERS. In contrast, more 

than 107 samples are required to obtain a converged EENS. This shows the higher 

computational efficiency of using ERS for risk assessment. 
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6.5.1 Power system risk of using building flexibility as spinning reserve  

A major concern when leveraging building energy flexibility to provide spinning 

reserve is its potential impact on power system reliability. Therefore, it is essential to 

consider the impact of uncertainties on building energy flexibility. The distribution of 

building energy flexibility for providing spinning reserve on the test day is shown in 

Figure 6.4. It can be seen that the flexibility capacity of buildings for providing 

spinning reserve is higher during midday hours due to the greater occupancy and 

cooling load, compared to the early morning and night time periods.  

  

Figure 6.4 Distribution of building energy flexibility for spinning reserve 

The power system operation risk is assessed by setting different confidence thresholds 

for building reserve commitment. The total expected reserve shortage (ERS) 

accumulated over the next 24 hours is used as the risk indicator. Figure 6.5 shows the 

impact of varying thresholds on the operation risk. The baseline risk level corresponds 

to that in the base case where only conventional generators are providing spinning 

reserve. When appropriate confidence thresholds are set for building reserve 

commitment, the total ERS is lower than the baseline level (13.95 MWh), indicating 

a lower power system operation risk.  
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Figure 6.5 Power system operation risk under different confidence thresholds for 

building reserve commitment 

Compared to the baseline risk level, procuring spinning reserve from buildings with 

confidence thresholds of 99.9% and 95% achieves a risk reduction of 9.51% and 

2.70%, respectively. When the confidence threshold is set even lower, i.e., at 85%, the 

total ERS is 14.30 MWh, which is higher than the baseline risk level (13.95 MWh). In 

summary, the power system operation risk is manageable and acceptable when using 

building energy flexibility as spinning reserve.  

6.5.2 Comparison with solely using conventional generators  

Figure 6.6 shows the scheduling of conventional generators in different cases. 

Compared to the base case, where only conventional generators are providing spinning 

reserve, fewer conventional generators are committed from 8:00 to 20:00 in the risk-

averse case due to the adoption of building energy flexibility. This leads to a lower 

power system operation cost because of the reduced part-load efficiency losses and 

lower start-up costs of conventional generators.  
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Figure 6.6 Scheduling of conventional generators in different cases 

Figure 6.7 compares the hourly ERS in these two cases. The adoption of building 

energy flexibility leads to a reduction in hourly ERS by up to 28% because the reserve 

committed by buildings is below the quantified flexibility capacity with a high 

confidence level of 99.99% at most time intervals. Using a large number of less 

reliable reserve providers (i.e., buildings) mitigates the operation risk of relying on a 

few conventional generators, even though conventional generators have much lower 

response failure probabilities than individual buildings. This also highlights the 

importance of considering response failures of conventional generators when 

assessing the risk of alternative reserve schedules.  

 

Figure 6.7 Hourly ERS in the base case and risk-averse case 
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The hourly ERS in the risk-averse case is slightly higher at 11:00, 14:00, and 15:00, 

because ERS is influenced by both buildings and conventional generators, while fewer 

conventional generators are committed at these time intervals in the risk-averse case. 

Despite this, a 2.70% reduction in the total accumulated ERS is achieved on the test 

day using the proposed risk-averse reserve scheduling framework.  

6.5.3 Comparison with using deterministic reserve scheduling  

Figure 6.8 shows the reserve committed by buildings in the deterministic case and 

risk-averse case, respectively. Both cases consider adopting building energy flexibility 

to provide spinning reserve. In the risk-averse case, buildings provide spinning reserve 

together with conventional generators at 10:00, 12:00-13:00, and 16:00-20:00. No 

spinning reserve is committed by buildings at other time intervals, while online 

conventional generators can fulfill the power system reserve requirement solely due 

to their required electricity power supply. 

 

Figure 6.8 Reserve committed by buildings in the risk-averse and deterministic cases  

It can be seen in Figure 6.8 that a lower amount of spinning reserve is committed by 

buildings in the risk-averse case. This is because a high confidence threshold (95%) is 

imposed for building reserve commitment, resulting in a smaller portion of building 

energy flexibility being qualified for spinning reserve. In contrast, the confidence level 
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of the reserve committed by buildings is significantly overestimated in the 

deterministic case. For instance, 197 MW of spinning reserve is committed by 

buildings at 12:00, which has a confidence level of 16.8%.  

As shown in Figure 6.9, significant hourly ERS occurs at 10:00, 12:00, and 18:00 in 

the deterministic case. In contrast, the hourly ERS is controlled at a relatively low 

level (below 0.6 MW) in the risk-averse case, where the impact of uncertainties on 

building energy flexibility is considered. The total accumulated ERS is reduced by 

59.9% on the test day due to the high confidence level of building reserve commitment, 

which effectively maintains power system reliability.  

 

Figure 6.9 Hourly ERS in the risk-averse and deterministic cases  

In the risk-averse case, more conventional generators are committed for spinning 

reserve at 10:00, 12:00, and 18:00, as shown in Fig. 6.6. This ensures that adequate 

spinning reserve is available even when a subset of buildings fails to provide their 

committed reserve capacity due to uncertainties. The conventional generators remain 

online from 13:00 to 15:00 to avoid high generator startup/shutdown costs, which 

leads to a lower amount of building reserve commitment at 13:00, as shown in Fig. 

6.8. 
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Table 6.1 shows the power system operation cost and risk in different cases. By 

adopting building flexibility as spinning reserve using the proposed risk-averse 

framework, a 0.28% reduction in power system operation cost is achieved compared 

to the base case, which uses conventional generators solely. It also achieves the lowest 

operational risk among these cases.  

Table 6.1 Power system operation cost and risk in different cases  

Case 
Operation 

cost (€) 

Total 

ERS (MWh) 

Reserve committed 

by buildings (MW) 

Cost 

saving (%) 

Base 3547,755 13.95 0 / 

Deterministic 3531,434 31.56 942.1 0.46% 

Risk-averse 3537,924 13.45 547.5 0.28% 

6.5.4 Effectiveness in balancing power system cost and risk  

In practical applications, power grid operators may wish to adjust the operation cost 

by slightly compromising power system reliability, given that spinning reserve is 

activated infrequently. In this section, the impact of varying confidence threshold 

settings is analyzed.  

As shown in Figure 6.10, the power system operation cost increases when the 

confidence threshold increases. This is because that a lower portion of building energy 

flexibility is qualified for spinning reserve, leading to a decrease in the reserve 

commitment from buildings. As shown in Figure 6.11, more conventional generators 

are committed to meet the power system spinning reserve requirement, resulting in a 

higher operation cost. On the other hand, increasing the confidence threshold results 

in a more reliable reserve provision from buildings, which lowers the ERS due to 

uncertain demand response from buildings. In summary, a proper trade-off between 

the operation cost and risk can be achieved by adjusting the confidence threshold 
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settings. Grid operators can select a proper alternative schedule based on their specific 

preferences for operation cost saving and risk management. 

 

 

Figure 6.10 Power system operation cost and risk under different confidence 

thresholds   

 
 

Figure 6.11 Reserve committed by buildings and the total number of online 

generators   

6.6 Advantages of proposed framework  

The proposed risk-averse reserve scheduling framework has several significant 

advantages and enhancements compared to existing reserve scheduling strategies 

presented in the literature.  

• Applicability. The proposed framework directly incorporates the uncertainty in 
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building energy flexibility into existing deterministic reserve scheduling model, 

avoiding the need for complex stochastic optimization (Wang et al. 2017). This 

makes it highly suitable for implementation in real-world engineering practices.  

• Interpretability. The framework provides quantified risk assessment of alternative 

reserve schedules, facilitating optimized decision-making for power grid operators. 

Compared to the uncertainty sets used by (Poorvaezi Roukerd, Abdollahi, and 

Rashidinejad 2020), the confidence threshold for building reserve commitment is 

easily understandable and acceptable for building users and load aggregators, 

which enhances market transparency. 

• Accuracy. Unlike existing studies that only consider the uncertainties in buildings, 

the proposed framework also accounts for the uncertain response of conventional 

generators, enabling a comprehensive and precise assessment of the impact of 

engaging building energy flexibility.  

• Generality. The decision-making process of the proposed framework is generic and 

adaptable to various application scenarios involving the uncertainty in demand 

response. For instance, to leverage updated intra-day forecasting information, the 

framework can be easily extended to an intra-day rescheduling scheme by adjusting 

the scheduling horizon to the upcoming few hours. 

When implementing the proposed reserve scheduling in practice, the first step is to 

obtain a set of deterministic building flexibility capacities corresponding to different 

confidence thresholds for building energy flexibility. Power grid operators can then 

incorporate these deterministic building flexibility capacities in existing deterministic 

reserve scheduling model used in industry, and run the model to obtain alternative 

reserve schedules. Finally, power grid operators can assess the risk of these alternative 

schedules and select the best schedule based on their specific preference.   
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6.7 Summary 

This chapter presents a risk-averse day-ahead reserve scheduling framework for power 

systems engaging building energy flexibility. It also presents a novel risk indicator and 

risk assessment method for power systems using building flexibility. Validation tests 

are conducted on a power system modified from the Hong Kong power system. Based 

on the test results, the main conclusions are drawn as follows. 

• By using a larger number of less reliable reserve providers (buildings), the risk from 

solely relying on a few conventional generators can be mitigated. Compared to 

using conventional generators solely, both power system operation cost and risk 

can be reduced by procuring spinning reserve from buildings, when setting proper 

confidence thresholds for building reserve commitment. With a 95% confidence 

threshold, the operation cost and risk are reduced by 0.28% and 2.70%, respectively.  

• Using the proposed risk-averse reserve scheduling framework, the uncertainties in 

buildings are accommodated effectively. The power system operation risk is 

reduced by 57.4% compared to that of using deterministic reserve scheduling. 

• A proper trade-off between power system operation cost and risk can be achieved 

by using the proposed risk-averse framework. Increasing the confidence threshold 

leads to a higher operation cost but a lower operation risk. Grid operators can select 

a proper schedule according to their specific preferences for risk management.    
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CHAPTER 7 OPTIMAL RESERVE SCHEDULING OF 

POWER SYSTEMS ENGAGING BUILDING 

FLEXIBILITY CONSIDERING LOAD REBOUND  

This chapter presents an optimal day-ahead reserve scheduling strategy for power 

systems engaging building energy flexibility. The proposed strategy considers the load 

rebound effect after demand response, which has been widely overlooked in the 

literature. It considers the uncertainties in both renewable forecasts and generator 

failures, enabling more effective utilization of building energy flexibility. A two-stage 

robust optimization problem is formulated for optimal reserve scheduling.  

Section 7.1 presents the outline of the proposed strategy. Section 7.2 presents the 

mathematical formulation of the robust optimization problem, including the 

optimization objective and constraints. Section 7.3 presents the validation test 

arrangement. Section 7.4 presents the test results to evaluate the performance of the 

proposed strategy. Section 7.5 gives a summary of this chapter. 

7.1 Outline of the proposed strategy 

The proposed optimal day-ahead reserve scheduling strategy is formulated as a two-

stage robust optimization problem, as illustrated in Figure 7.1. The inputs include the 

day-ahead forecasts of power system electricity demand, renewable generation, and 

the maximum flexibility capacity of buildings for providing spinning reserve. The first 

stage represents the day-ahead unit commitment, where the on-off status of 

conventional generators and the reserve capacity committed by buildings over the next 

24 hours are determined. The decisions made in this stage cannot be changed and serve 
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as optimization constraints for the second stage. The second stage represents the real-

time dispatch stage, which optimizes the spinning reserve that is activated in uncertain 

real-time scenarios of renewable generation for power balancing.  

 

Figure 7.1 Outline of proposed reserve scheduling strategy    

To comprehensively consider the impact of building energy flexibility, the aggregated 

load rebound of buildings is incorporated into the real-time dispatch stage through 

power balance constraints. The load rebound is modeled as a function of the previous 

load reduction (i.e., the building energy flexibility that is activated in the previous time 

interval). Specifically, the coupling between the aggregated load rebound and load 

reduction is explicitly quantified based on building thermal dynamics, which is more 

realistic compared to the hypothetical values used in most previous studies (Paterakis 

et al. 2018).  

The robust optimization aims to minimize the total operation cost of the power system 

while ensuring the system power balance and operational security in the presence of 
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load rebound, uncertain renewable generation and unexpected generator failures. The 

optimization process iterates until it converges to the minimum total operation cost 

under the worst-case uncertainty scenario. The optimal day-ahead schedule of 

buildings and conventional generators will be output by the proposed strategy. 

7.2 Optimization objective 

The optimization objective is shown in Eq. (7.1). It is determined by the day-ahead 

commitment cost (CDA) and the real-time dispatch cost (CRT) under the worst-case 

realization of uncertainties (Bertsimas et al. 2013). Where x and y represent the 

variables to be optimized in the day-ahead and real-time stages, respectively. u 

represents the uncertainty parameters, e.g., the deviation of actual renewable 

generation from the day-ahead forecasted value. The max-min calculation is to 

determine the minimum real-time dispatch cost in the worst-case uncertainty scenario.  

min{ 𝐶DA(𝑥) + max𝑢∈𝑈 min 𝐶RT(𝑥, 𝑢, 𝑦)} (7.1) 

The day-ahead commitment cost (CDA) and real-time dispatch cost (CRT) are calculated 

using Eq. (7.2) and (7.3), respectively, according to the day-ahead commitment and 

real-time dispatch decisions of conventional generators and buildings.  

 𝐶DA =  𝐶gen,com + ∑ 𝑆𝑅𝑗
bui,com𝑟𝑐bui

𝑗

(7.2) 

 𝐶RT =  𝐶gen,RT + ∑ 𝑆𝑅𝑗
bui,act𝑟𝑎bui

𝑗

(7.3) 

Where j represents the time interval. Cgen,com and Cgen,RT are the day-ahead commitment 

and real-time dispatch cost of conventional generators. SRbui,com is the reserve capacity 

committed by buildings in the day-ahead stage. SRbui,act is the reserve activation of 
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buildings in the real-time stage. rcbui and rabui are the unit price of committing and 

activating building energy flexibility, respectively.  

A typical clustered unit commitment model is applied to simulate the operation of 

conventional generators, which has been elaborated in Chapter 4. The day-ahead 

commitment cost of conventional generators is determined using Eq. (7.4). Where i 

represents the generator cluster type. SC, MC and VC are the startup cost, operating 

cost at minimum power output, and output-dependent operating cost of generators. 

Nstart and Non are the number of generators being started and online, respectively. Pgen 

is the power output of generators. 

 𝐶gen,com = ∑ ∑(𝑆𝐶𝑖𝑁𝑖,𝑗
start + 𝑀𝐶𝑖𝑁𝑖,𝑗

on + 𝑉𝐶𝑖𝑃𝑖,𝑗
gen

𝑗𝑖

) (7.4) 

The real-time dispatch cost of conventional generators (Cgen,RT) is determined using 

Eq. (7.5), based on the measures taken to restore power balance. Where ΔPgen is the 

extra power output of online conventional generators for power balancing. Pem is the 

high-cost emergency actions, such as dispatching fast-start peaking generators or 

reducing interruptible loads, which are activated to ensure spinning reserve adequacy 

(Lavin et al. 2020) (Bertsimas et al. 2013). raem is the unit cost of using emergency 

actions to restore power balance. 

 𝐶gen,RT = ∑ ∑(∆𝑃𝑖,𝑗
gen

𝑉𝐶𝑖 + 𝑃𝑗
em𝑟𝑎em

𝑗

)

𝑖

(7.5) 

7.3 Optimization constraints 

A key challenge in formulating the optimization problem is the simultaneous presence 

of load rebound, renewable forecast uncertainties and unexpected generator failures. 
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In this study, uncertainties in renewable forecast and generator failures are considered 

separately in the real-time stage, because they are statistically uncorrelated (Xiong and 

Jirutitijaroen 2013). An adjustable uncertainty set is used to consider renewable 

forecast uncertainties, while the reserve for generator failures is enforced as security 

constraints under each renewable scenario. The separate formulation is also adopted 

in (Roos and Bolkesjø 2018) (Liu and Conejo 2024).  

The real-time dispatch after generator failures is not modeled to avoid an overly 

conservative reserve schedule. In practice, generator failure is a low-probability 

(below 0.4%) contingency event. Therefore, the primary concern is the pre-

contingency adequacy of reserve capacity for generator failures rather than the cost 

minimization of post-contingency operation (Chen et al. 2017). The power imbalance 

can be managed using fast-start generators once a generator failure occurs. More 

details can be found in (Trovato 2023).   

7.3.1 Constraints for renewable forecast uncertainties  

Adjustable uncertainty set 

To control the conservativeness level of the optimized reserve schedule (the solution 

of the robust optimization problem), a widely used adjustable uncertainty set U is 

adopted to constrain renewable forecast uncertainties (forecast deviations) (Bertsimas 

et al. 2013), as shown in Eq. (7.6).  

𝑈 = {

𝑢𝑗 ∈ (−𝑢𝑚𝑎𝑥,𝑗, 𝑢𝑚𝑎𝑥,𝑗)

1

24
∑ 𝑢𝑗/

𝑗

𝑢𝑚𝑎𝑥,𝑗 <= 𝜎
(7.6) 

Where umax,j represents the maximum deviation at each time step, which is usually 

chosen as a certain percentage of the day-ahead forecasts of renewable generation 
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(Roos and Bolkesjø 2018) (Chyong and Newbery 2022).  

An uncertainty budget, σ, is used to bound the total deviations of actual renewable 

generation from the forecasted value. A value of σ=0 indicates no uncertainty in 

renewable forecast. A larger value of σ corresponds to more renewable deviations and 

leads to a more conservative solution. A value of σ=1 indicates that the renewable 

deviation at each time interval reaches their respective maximum deviation. Power 

grid operators can choose a proper value of σ based on their specific risk preference 

and operational requirement.   

7.3.2 Constraints for load rebound  

Coupling between load rebound and previous load reduction 

After reserve activation (load reduction) of buildings, the indoor air temperature is 

higher than the baseline setting. To restore the indoor air temperature, the HVAC 

system needs to provide additional cooling to indoor space compared to that in the 

baseline scenario with normal cooling supply. The HVAC operating power will 

exceed the baseline level until the indoor air temperature resumes to the baseline 

setting, which is referred to as load rebound.  

Chapter 3 presents the analytical solutions for energy flexibility modelling of building 

HVAC systems, where the aggregated load reduction and load rebound of buildings 

are quantified using two analytical equations. 

The coupling between the aggregated load reduction (Pbui,act) and load rebound (Preb) 

of buildings can be explicitly represented by Eq. (7.7).  

𝑃𝑗+1
reb =

∑ 𝛽𝑘𝑘 (∆𝑡s, ∆𝑡r)∆𝑇𝑘
in,max

∑ 𝛼𝑘𝑘 (∆𝑡s)∆𝑇𝑘
in,max

𝑃𝑗
bui,act (7.7) 
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where, k represents the index of buildings. ΔTin,max is the maximum allowable indoor 

air temperature offset of a building. Δts and Δts are the durations of load reduction and 

load rebound periods, respectively.  

𝛼(∆𝑡s) =
(𝑟1−𝑟2)𝐶 in∆𝑇in

[𝑒𝑟1∆𝑡−𝑒𝑟2∆𝑡+𝐶 in𝑅out(𝑟1−𝑟2+𝑟2𝑒𝑟1∆𝑡−𝑟1𝑒𝑟2∆𝑡)]∙𝐶𝑂𝑃
  

𝛽(∆𝑡s, ∆𝑡r) =
[𝐶 in𝛼(∆𝑡s)∙𝑝(∆ts)∙𝑐∙COP 𝑎⁄ −ℎ](𝑒𝑟1∆𝑡r−𝑒𝑟2∆𝑡r) + 𝐶in𝑞(∆𝑡r)

[𝑒𝑟1∆𝑡r−𝑒𝑟2∆𝑡r+𝐶 in𝑅out(𝑟1−𝑟2−𝑞(∆𝑡r))]∙COP
  

𝑝(∆𝑡s) =
(1−𝑒𝑟1∆𝑡s)(

1

𝐶in
+𝑟2𝑅out)

(𝑟1−𝑟2)𝑟1
+

(1−𝑒𝑟2∆𝑡s)(
1

𝐶in
+𝑟1𝑅out)

(𝑟2−𝑟1)𝑟2

  

𝑞(∆𝑡r) = 𝑟1𝑒𝑟2∆𝑡r − 𝑟2𝑒𝑟1∆𝑡r, ℎ =
𝐶 in

𝐶m𝑅m
−

1

𝑅out
−

1

𝑅m
 

Power balance constraint considering load rebound 

The power balance constraint of the power system in real-time dispatch stage is shown 

in Eq. (7.8). Both renewable forecast deviation and load rebound are considered as 

sources of power imbalance. This ensures the power balance even in the presence of 

load rebound of buildings.  

𝑃𝑗
RE,dev + 𝑃𝑗

reb = ∆𝑃𝑗
gen

+ 𝑆𝑅𝑗
bui,act + 𝑃𝑗

em (7.8) 

where, PRE,dev is the renewable deviation from the forecasted value. Preb is the load 

rebound of buildings. ΔPgen is the extra power output of online conventional generators 

for power balancing. Pem is the high-cost emergency actions in power systems.  

7.3.3 Constraints for generator failures  

Security constraints are enforced in each renewable generation scenario to ensure that 

the power system has sufficient reserve capacity to handle unexpected generator 

failures after managing the renewable forecast deviation and load rebound (Liu and 

Conejo 2024). The constraints are shown in Eqs. (7.9)-(7.11). Eq. (7.9) indicates that 
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the spinning reserve committed for generator failures must be equal to or greater than 

the required amount. Eqs. (7.10) and (7.11) indicate that the total spinning reserve 

provision of buildings and conventional generators must not exceed their technical 

flexibility capacity for providing reserve, respectively. 

𝑆𝑅𝑗,𝑠
bui, GF + 𝑆𝑅𝑗,𝑠

gen, GF
≥ 𝑆𝑅𝑗

req,GF (7.9) 

𝑆𝑅𝑗,𝑠
bui, GF+𝑆𝑅𝑗,𝑠

act, bui ≤ 𝑆𝑅𝑗
com, bui (7.10) 

𝑆𝑅𝑗,𝑠
gen, GF

+∆𝑃𝑗,𝑠
gen

≤ 𝑆𝑅𝑗
gen (7.11) 

where, SRbui,GF and SRgen,GF are the spinning reserve committed by buildings and online 

generators for generator failures respectively. SRreq,GF is the reserve requirement for 

generator failures. SRgen
j is the allowable maximum increase in power output of online 

generators.  

7.3.4 Constraints for generator dispatch  

The operational constraints of conventional generators are described by Eqs. (7.12)-

(7.19). The number of online generators (Non) is constrained by Eq. (7.12). The 

constraints for generator startup and shutdown actions are shown in Eq. (7.13). The 

maximum and minimum power output constraints for each cluster are given by Eq. 

(7.14). The minimum up and down time constraints for each generator cluster are 

shown in Eqs. (7.15) and (7.16), respectively. The technical capacity of each cluster 

for providing spinning reserve is constrained by Eq. (7.17). The ramping up and down 

capacity of each cluster between two consecutive time intervals is constrained by Eqs. 

(7.18) and (7.19), respectively. More details can be found in Chapter 4. 

𝑁𝑖,𝑗
on ≤ 𝑁𝑖

install                                                              (7.12) 

𝑁𝑖,𝑗
on = 𝑁𝑖,𝑗−1

on + 𝑁𝑖,𝑗
start − 𝑁𝑖,𝑗

shut (7.13) 
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𝑁𝑖,𝑗
on𝑃𝑖

min ≤ P𝑖,𝑗 ≤ 𝑁𝑖,𝑗
on𝑃𝑖

max                                                 (7.14) 

𝑁𝑖,𝑗
on ≥ ∑ 𝑁𝑖,𝑗

start𝑗
𝑗=𝑗+1−𝑀𝑈𝑇𝑖

                                                        (7.15)  

𝑁𝑖
install − 𝑁𝑖,𝑗

on ≥ ∑ 𝑁𝑖,𝑗
shut𝑗

𝑡=𝑗+1−𝑀𝐷𝑇𝑖
(7.16)  

𝑆𝑅𝑖,𝑗
gen

≤ 𝑚𝑖𝑛(𝑁𝑖,𝑗
on𝑃𝑖

max − 𝑃𝑖,𝑗, 𝑁𝑖,𝑗
on𝑅𝑈𝑖

10min) (7.17) 

𝑃𝑖,𝑗+1
gen

− 𝑃𝑖,𝑗
gen

≤ 𝑁𝑖,𝑗
on𝑅𝑈𝑖 + 𝑁𝑖,𝑗+1

start 𝑃𝑖
min − 𝑁𝑖,𝑗

shut𝑃𝑖
min (7.18) 

𝑃𝑖,𝑗
gen

− 𝑃𝑖,𝑗+1
gen

≤ (𝑁𝑖,𝑗
on − 𝑁𝑖,𝑗

start + 𝑁𝑖,𝑗
shut)𝑅𝐷𝑖 − 𝑁𝑖,𝑗

start𝑃𝑖
min (7.19) 

7.4 Validation test arrangement 

7.4.1 Description of the power system  

The proposed strategy is tested on a power system modified from the existing Hong 

Kong power system. The supply side contains twenty combined cycles gas turbines 

(CCGT), eight open cycle gas turbines (OCGT), 1577 MW of nuclear power, and 4000 

MW of wind power. For simplicity, it is assumed that all CCGTs have a rated capacity 

of 350 MW. Two sources of uncertainties are considered, including renewable forecast 

uncertainties and unexpected generator failures. It is assumed that the electricity 

demand of the power system and the energy flexibility capacity of buildings can be 

forecasted accurately.  

A typical uncertainty set is used to describe renewable forecast uncertainties. The 

maximum deviation of actual renewable generation from the forecasted value is 

chosen as 10% of the forecasted value. For infrequent generator failures, the typical 

N-1 criterion of 350 MW is adopted as a security constraint, which ensures that the 

reserve committed for generator failures is sufficient. The cost of dispatching 

emergency actions is chosen as 2000 €/MWh (Bertsimas et al. 2013). The day-ahead 



98 

 

forecasts of electricity demand and wind power on the test day are shown in Figure 

7.2.   

 

Figure 7.2 Day-ahead forecasts of electricity demand and wind power     

7.4.2 Description of reference buildings  

On the demand side, 500 high-rise commercial buildings are engaged in spinning 

reserve provision. The building cluster is generated based on a prototype commercial 

building in Hong Kong, as detailed in Section 5.2.1.The baseline setting of indoor air 

temperature in each building is chosen as 24 ℃. When the reserve is activated, the 

indoor air temperature can be increased by up to 2 K from the baseline setting. The 

aggregated power demand and reserve capacity of these buildings are about 1600 MW 

and 500 MW, respectively. The unit cost of reserve commitment and activation of 

buildings are chosen as 3 €/MWh and 80 €/MWh respectively. The time duration of 

reserve provision is chosen as 1 hour based on the technical requirement of spinning 

reserve. The time duration of load rebound is also chosen as 1 hour. The above settings 

are in line with the typical settings in the literature (Paterakis et al. 2018) (Karangelos 

and Bouffard 2012). In practice, the duration of load rebound should be predefined by 

both power grid operators and building owners to avoid either a high load rebound for 

power grid or a slow temperature restoration for buildings. Note, load rebound 
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duration is chosen as a consensus setting for all buildings in this study to ensure 

fairness in thermal comfort sacrifice due to reserve provision.  

7.4.3 Outline of the tested strategies 

Three day-ahead reserve scheduling strategies are tested to validate the performance 

of the proposed optimal reserve scheduling strategy, as listed below. 

• Strategy 1: Only conventional generators are used for spinning reserve. The energy 

flexibility of buildings is not utilized. 

• Strategy 2: Both conventional generators and buildings are used for spinning 

reserve.  The load rebound effect is overlooked in reserve scheduling. 

• Proposed strategy: Both conventional generators and buildings are used for 

spinning reserve. The load rebound effect is considered in reserve scheduling. 

All reserve scheduling strategies are programmed using Matlab on a computer with an 

eight-core Intel Core i7 CPU. The reserve scheduling horizon is 24 hours for the next 

day and the time interval is 1 hour. The two-stage robust optimization problem is 

decomposed into a master problem and a subproblem, which are solved using the 

column and constraint generation algorithm.  

7.5 Performance evaluation of proposed strategy 

In this section, the performance of the proposed optimal reserve scheduling strategy is 

evaluated by conducting a comparison with two existing strategies. The budget of the 

renewable uncertainty set is chosen as 1 to align with the typical reserve requirement 

of power systems without incorporating building energy flexibility (Roos and 
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Bolkesjø 2018). The impact of varying the uncertainty budget on the performance of 

the proposed strategy is analyzed in Section 7.5.3. 

7.5.1 Reserve schedule given by the proposed strategy 

Figure 7.3 shows the spinning reserve committed by buildings and conventional 

generators using the proposed strategy. As shown in Figure 7.3 (a), most spinning 

reserve for generator failures is allocated to buildings during office hours (8:00 to 

20:00) when their energy flexibility is available. This type of spinning reserve has a 

very low probability of actual activation and typically requires the reserve providers 

to be on a standby state. Buildings are suitable for this type of reserve due to their 

much lower standby cost than that of conventional generators. On the other hand, 

conventional generators inherently have a certain amount of reserve capacity due to 

their power supply requirements at specific time intervals. It can be seen that no 

spinning reserve is committed by buildings at 20:00 when online generators solely can 

fulfill the system reserve requirement. Therefore, it is important to coordinate the 

scheduling of buildings and conventional generators for providing spinning reserve. 

  

(a) Buildings                                              (b) Conventional generators 

Figure 7.3 Reserve schedule given by the proposed strategy  
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Buildings are providing spinning reserve for renewable forecast uncertainties at 

specific time intervals, i.e., 13:00 and 15:00, although they have a large reserve 

capacity available at other time intervals. It is more cost-effective to commit 

conventional generators rather than buildings to provide this type of spinning reserve, 

which has a relatively high probability of activation. Notably, buildings mainly 

provide spinning reserve for generator failures rather than for renewable uncertainties. 

These findings have two significant implications. Firstly, it is essential to consider the 

reserve for generator failures when leveraging the flexibility of HVAC systems in 

buildings, which is often overlooked in the literature. Secondly, the cost of utilizing 

building flexibility should be considered in reserve scheduling to avoid the 

uneconomic dispatch of building energy flexibility. 

7.5.2 Comparison with existing strategies 

Figure 7.4 shows the optimal schedules of buildings and conventional generators 

obtained from different strategies. Compared to the strategy 1 using conventional 

generators solely, the proposed strategy utilizes building energy flexibility as an 

alternative spinning reserve resource, resulting in fewer conventional generators being 

committed online. The part-load efficiency losses and the startup costs of conventional 

generators are therefore reduced. Table 7.1 presents the total power system cost under 

different strategies. The proposed strategy achieves the lowest total power system 

operation cost among these strategies, with a cost saving of 2.29% compared to the 

strategy 1.  
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(a) Buildings                                        (b) Conventional generators 

Figure 7.4 Reserve schedules given by different strategies  

Table 7.1 Power system cost under different strategies  

Strategy 
Total 

cost (€) 

Day-ahead 

cost (€) 

Real-time 

cost (€) 

Emergency 

actions (MWh) 

Cost 

variation  

Strategy 1 2856,626 599,200 2257,426 0 / 

Strategy 2 3019,033 536,298 2482,735 101 +5. 69% 

Proposed 2791,250 538,745 2252,505 0 -2.29% 

 

The Strategy 2, which overlooks the load rebound in reserve scheduling, leads to a 

5.69% higher operation cost compared to the baseline strategy. Using the conventional 

strategy, buildings are committed to providing spinning reserve for renewable forecast 

uncertainties at 9:00, 10:00, 13:00, and 15:00. Load rebound events occur in 

subsequent time steps, as shown in Figure 7.5. To maintain an adequate reserve 

capacity for generator failures, expensive emergency actions such as dispatching fast-

start generators are required, resulting in a higher real-time operation cost. On the test 

day, the strategy 2 leads to total accumulated emergency actions of 116 MWh. This 

finding highlights the importance of considering load rebound effect in reserve 

scheduling.  
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Figure 7.5 Load rebound events using different strategies  

Using the proposed strategy, more conventional generators but fewer building energy 

flexibilities are committed to providing spinning reserve at 9:00 and 10:00, compared 

to the strategy 2, as seen from Figure 7.6. This is because the cost of extra power 

output of conventional generators for managing the load rebound outweighs the cost 

savings obtained from committing buildings for spinning reserve. By reducing 

building reserve commitment, the load rebound events at 10:00 and 11:00 are avoided, 

as shown in Figure 7.5.  

On the other hand, more building energy flexibilities are committed at 14:00 and 16:00 

to balance the load rebound resulting from the load reduction at 13:00 and 15:00. This 

avoids the high startup cost of committing additional conventional generators to 

provide spinning reserve for managing load rebound. Consequently, the proposed 

strategy achieves a significantly lower real-time dispatch cost by proactively 

managing the load rebound, while it leads to a slightly higher day-ahead commitment 

cost due to its more robust day-ahead reserve schedule. On the test day, the proposed 

strategy reduces the total operation cost of the power system by 7.54% compared to 

the strategy 2 without considering load rebound. 
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7.5.3 Adjusting the robustness level of the optimal schedule 

The conservativeness level of the optimal schedule given by the proposed strategy can 

be controlled by adjusting the setting of the uncertainty budget. Fig. 7.6 shows the 

total reserve capacity and worst-case operation cost of the power system under 

different uncertainty budgets. As the uncertainty budget increases, more renewable 

deviations from the forecasted values are considered in the day-ahead reserve 

scheduling. Therefore, a larger reserve capacity is scheduled to cover renewable 

forecast uncertainties, which corresponds to a more robust reserve schedule. However, 

increasing the system reserve capacity also leads to a higher power system operation 

cost, because more conventional generators and/or building energy flexibility are 

committed. By adjusting the uncertainty budgets, power grid operators can achieve a 

proper trade-off between economy and robustness based on their preference. 

 

Figure 7.6 Power system operation cost and reserve capacity under different 

uncertainty budgets  

Fig. 7.7 shows the reserve commitment of buildings and conventional generators 

under different uncertainty budgets. When the uncertainty budget is low (e.g., 0 and 

0.2), buildings only provide spinning reserve for unexpected generator failures, since 

conventional generators can solely manage renewable forecast uncertainties. However, 
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as the uncertainty budget increases, it is cost-effective to utilize buildings to manage 

renewable forecast uncertainties, which can avoid the high cost of committing 

additional conventional generators. It can also be seen in Figure 7.7 that the total 

numbers of online conventional generators are the same under certain uncertainty 

budgets (e.g., 0.6 and 0.8). This can be attributed to the fact that each conventional 

generator has a large rated capacity, while the amount of reserve committed by 

buildings can be flexibly adjusted as needed, which provides a cost-effective 

complementation to conventional generators.  

 

Figure 7.7 Reserve commitment under different uncertainty budgets  

7.6 Summary 

This chapter presents an optimal day-ahead reserve scheduling strategy for power 

systems engaging building energy flexibility. The strategy considers the uncertainties 

in both renewable forecasts and generator failures, as well as the effect of load rebound 

after the demand response of buildings. A simple and effective representation of the 

coupling between aggregated load rebound and load reduction of buildings is 

developed, which enables the convenient incorporation of building flexibility into 

reserve scheduling. The effectiveness and advantages of the proposed strategy are 
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validated on the Hong Kong power system. Based on the test results, the main 

conclusions are drawn as follows. 

• The proposed optimal robust strategy achieves a 2.29% power system operation 

cost saving by incorporating the energy flexibility of buildings as spinning reserve, 

compared to using conventional generators solely.  

• The strategy without considering load rebound effect leads to a 116 MWh reserve 

shortage in real-time operation. The proposed strategy can effectively avoid the 

reserve shortage and achieve a reduced operation cost of 7.54% by managing load 

rebound proactively. 

• Using the proposed strategy, grid operators can achieve a proper trade-off between 

the economy and robustness of the power system. A larger uncertainty budget 

results in a more robust reserve schedule but a higher power system operation cost.   
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

This chapter presents the conclusions and future work of this thesis. Section 8.1 

presents a summary of the main contributions of this PhD study. Section 8.2 presents 

the main conclusions based on the study presented in this thesis. The recommendations 

for future work are presented in Section 8.3. 

8.1 Main contributions of this study 

This PhD study conducted a comprehensive and systematic study on using building 

energy flexibility as spinning reserve in the context of smart grids, including: (1) 

modeling and quantification of building energy flexibility; (2) impact assessment of 

using building energy flexibility for providing spinning reserve; (3) optimized reserve 

scheduling of power systems engaging building energy flexibility. The main 

contributions of this PhD study are summarized as follows: 

1. Analytical solutions for energy flexibility modelling and quantification of building 

air-conditioning systems are developed, considering the load reduction and 

subsequent load rebound of buildings at both individual and aggregated levels. The 

analytical solutions eliminate the need for time-consuming finite difference and 

iterative computations, facilitating the integration of building energy flexibility 

quantification in power grid scheduling and real-time dispatch. 

2. A comprehensive impact assessment of using building energy flexibility as 

spinning reserve is conducted. The assessment covers the operation of both power 

grids and buildings, using the Hong Kong power system in 2035 as a reference case. 

An integrated grid-buildings model is developed for impact assessment. A 
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systematic and quantitative comparison of using building energy flexibility for 

providing spinning reserve and load shifting is conducted. 

3. A probabilistic model is developed for real-time quantification of building energy 

flexibility. The model comprehensively considers major uncertainties involved in 

flexibility quantification, including uncertainties in model inputs, model bias, and 

building response failures, while capturing the diversity of individual buildings. 

The model is highly computationally efficient which facilitates the participation of 

building energy flexibility in grid service markets. 

4. A risk-averse day-ahead reserve scheduling framework is proposed for power 

systems engaging building energy flexibility. The framework can provide 

quantified power system operation cost and risk for identifying the best reserve 

schedule. A new risk indicator, namely expected reserve shortage, is proposed for 

accurate and computationally efficient risk assessment, considering the uncertain 

responses of both buildings and conventional generators. 

5. An optimal day-ahead reserve scheduling strategy is proposed for power systems 

engaging building energy flexibility. The strategy considers the load rebound effect, 

which maintains power system reliability. A two-stage robust optimization problem 

is formulated to incorporate load rebound effect in reserve scheduling, considering 

uncertainties in both renewable forecasts and generator failures. 

8.2 Conclusions 

Conclusions on analytical solutions of energy flexibility modelling of buildings  

o The analytical solutions consist of five straightforward equations derived from a 

second-order building thermodynamic model. The first two equations quantify 

the load reduction and the subsequent load rebound of individual buildings, 
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respectively, as functions of regulation durations and indoor air temperature 

offset. The next two equations allocate the aggregated load reduction and rebound 

tasks, respectively, among buildings. The fifth equation explicitly represents the 

coupling between the aggregated load reduction and load rebound of buildings. 

o The accuracy and correctness of analytical solutions are verified through 

numerical simulations under time-varying boundary conditions (e.g., outdoor 

temperature). The differences between the indoor air temperatures and aggregated 

energy flexibility of buildings computed by the analytical solutions and numerical 

solution methods are less than 0.0001 K and 0.01%, respectively. 

o The analytical solutions can accurately quantify the energy flexibility of buildings 

at both individual and aggregated levels with dramatically reduced computation 

time. The analytical solutions only take 0.000009 seconds for quantifying the load 

reduction and rebound of 5000 buildings, which is 980,000 times faster than the 

existing numerical solution method.  

Conclusions on the impact of using building energy flexibility for spinning reserve 

o The commercial building sector in Hong Kong can contribute up to 520 MW of 

spinning reserve during cooling seasons, which meets up to 86.7% of the spinning 

reserve required to manage unexpected generator failures. Using building energy 

flexibility for spinning reserve can reduce the efficiency losses and startup costs 

of conventional generators and reduce renewable curtailment. 

o Adopting the flexibility of commercial buildings in Hong Kong for spinning 

reserve can reduce the annual operating cost of the power system by 0.60%-1.55% 

(5.7-16.9 M€), compared to using conventional generators solely. The cost saving 
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increases as renewable energy penetration increases, but decreases after the 

adoption of utility-scale energy storage. 

o The annual cost saving from using building flexibility for spinning reserve is up 

to 4.9 times that for load shifting, while the total accumulated amount of activated 

building flexibility for spinning reserve provision is only 2.4% of that for load 

shifting. Spinning reserve provision not only offers higher cost savings for the 

power system but also has much less interference with building operation 

compared to load shifting. Therefore, spinning reserve is proposed as a priority 

use of building energy flexibility in smart grids. 

Conclusions on the probabilistic model of building energy flexibility  

o The proposed probabilistic model can provide more robust quantification of 

building energy flexibility by considering the impact of uncertainties, compared 

to the deterministic flexibility quantification model. For a demand response 

duration of 1 hour, the flexibility capacity estimated by the deterministic model 

has a high probability of 52.5% of being overestimated. 

o The proposed model outperforms the existing probabilistic models in terms of 

both accuracy and computational efficiency. It can accurately quantify the 

aggregated flexibility of 150 buildings in 6.7 seconds, which is 535 times faster 

than the probabilistic model solved numerically. Furthermore, it is 8 times faster 

than the archetype-based model while offering significantly higher accuracy. 

o The aggregated flexibility of buildings has a very high success probability (e.g., 

99.99%) when the committed capacity is below a certain threshold (e.g., 160 MW 

for a 1-hour response duration). This reliability level is even higher than that of 
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conventional generators (i.e., 99.9%). Therefore, buildings can provide reliable 

grid services by properly setting their committed flexibility capacity 

o The scalability of the proposed probabilistic model is validated. The model only 

takes 140 seconds to quantify the aggregated flexibility of 2000 buildings, which 

can satisfy the real-time application requirements of grid scheduling and dispatch. 

Conclusions on the risk-averse reserve scheduling framework  

o By using a larger number of buildings as reserve providers, the risk from solely 

relying on a few conventional generators can be mitigated. Compared to using 

conventional generators solely, both power system operation cost and risk can be 

reduced when setting proper confidence thresholds for building spinning reserve 

commitment. With a 95% confidence threshold, the operation cost and risk are 

reduced by 0.28% and 2.70%, respectively.  

o Using the proposed risk-averse day-ahead reserve scheduling framework, the 

uncertainties in buildings are accommodated effectively. The power system 

operation risk is reduced by 57.4% compared to that using deterministic reserve 

scheduling. 

o A proper trade-off between power system operation cost and risk can be achieved 

by using the proposed risk-averse framework. Increasing confidence threshold 

leads to a higher operation cost but a lower operation risk. Grid operators can 

select a proper schedule according to their specific preference on risk management.   

Conclusions on the optimal reserve scheduling strategy considering load rebound 

o The proposed optimal day-ahead strategy achieves a 2.29% power system 

operation cost saving by incorporating the energy flexibility of buildings as 
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spinning reserve, compared to using conventional generators solely.  

o The conventional strategy without considering load rebound effect leads to 116 

MWh reserve shortage in real-time operation. The proposed strategy can 

effectively avoid the reserve shortage and achieve a reduced operation cost of 7.54% 

by managing load rebound proactively. 

o Using the proposed strategy, grid operators can achieve a proper trade-off between 

the economy and robustness of the power system. A larger uncertainty budget of 

renewable forecasts results in a more robust reserve schedule with increased 

reserve capacity but a higher power system operation cost.   

8.3 Recommendations for future work 

The major efforts of this PhD study have been devoted to modeling, impact assessment 

and scheduling of building energy flexibility for providing spinning reserve in power 

systems. In future studies, further efforts can be made on the following aspects to 

improve the quality of the research.  

o This study focuses on the energy flexibility potential of passive thermal mass 

storage of buildings, without detailed modelling of HVAC systems. Future work 

could incorporate component-level details of HVAC systems for more realistic 

flexibility quantification. A second-order building thermodynamic model is used 

for buildings in cooling-dominated regions in this study. The model overlooks the 

effect of humidity on building cooling load. Future work could consider humidity 

when determining the operating power of HVAC systems.   

o This study focuses on the technical energy flexibility capacity of buildings. In 

reality, actual flexibility provision depends on the incentives that building owners 
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can obtain. Characterizing the flexibility function of a building cluster under both 

uncertainties and incentives will be an interesting research direction. 

o The impact assessment in this study assumes that the entire commercial building 

sector participates in grid service provision. The actual cost saving greatly 

depends on the real-world participation rates of building users and needs further 

investigation. Moreover, this study focuses on the flexibility of building HVAC 

systems. Future work could consider other flexibility resources (e.g., electric 

vehicles) to provide a more comprehensive assessment of demand flexibility. 

o The reserve scheduling framework and optimization strategy are conducted in a 

centralized manner in this study. The information of buildings needs to be 

communicated and shared with grid operators. This may raise concerns regarding 

communication protocols and data privacy. Future work could consider using 

distributed optimization to address these concerns.  

o With a shorter predictive horizon, the forecast accuracy of renewable generation 

and building energy flexibility improves. Therefore, proper adjustment of the day-

ahead reserve schedules according to the updated intra-day forecasts is of great 

benefit and needs further exploration.
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