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ABSTRACT 

Water distribution networks (WDNs) are critical infrastructure systems facing increasing 

challenges due to frequent failures, which have significant environmental, social, and economic 

consequences. The failure of water pipes and the subsequent breakdown of WDNs pose 

significant obstacles to the sustainability and functionality of these vital systems. To mitigate 

this challenge, it is crucial to gain a comprehensive understanding of the factors contributing 

to pipe failure and develop predictive models capable of forecasting the probability of failure 

(POF) of water pipes and their associated causes. Therefore, the primary aim of this study is to 

improve the current understanding of water pipe failure factors and develop predictive models 

to enhance the management of WDNs considering four objectives: 1) identify failure factors 

and failure modes of water pipes, 2) model, rank, and investigate the relationship between water 

pipe failure factors and failure modes, 3) develop and automate optimized models to predict 

the POF, probability of leak (POL), and probability of burst (POB) of water pipes, and 4) 

develop and automate an optimized model to predict the causes of water pipe failure (COF).  

To address these objectives, this study employs a rigorous multi-method approach, combining 

innovative techniques in data analysis and machine learning. A scientometric and systematic 

review identifies failure factors and modes, while Fault Tree Logic (FTL) establishes a 

structured framework for analyzing complex factor relationships. The application of Partial 

Least Squares Structural Equation Modeling (PLS-SEM) investigates the relationship between 

failure factors and modes using global expert survey data. For predictive modeling, the study 

introduces novel advanced machine learning techniques. A synergistic integration of Logistic 

Regression and Genetic Algorithm optimizes POF prediction. For POL and POB prediction, 

state-of-the-art deep learning algorithms (Deep Neural Networks, Convolutional Neural 

Networks, and TabNet) are enhanced through Bayesian Optimization, representing a 

pioneering approach in WDN management. The COF prediction model employs cutting-edge 
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ensemble learning algorithms (AdaBoost, Random Forest, XGBoost, LightGBM, and 

CatBoost), optimized using the Tree-structured Parzen Estimator (TPE) algorithm. This 

comprehensive methodological framework demonstrates the study's rigor and innovative 

approach to addressing complex WDN challenges. 

The systematic review identifies 30 failure factors, categorized into pipe-related, operation-

related, soil-related, and external-related factors, along with five distinct failure modes of water 

pipes. The PLS-SEM model reveals 19 critical failure factors and confirms the hypothesis that 

factors influencing water pipe failure significantly impact failure modes, as evidenced by p-

values less than 0.05 and a path coefficient (β) of 0.567. Using historical data from the Hong 

Kong (HK) WDN, the POF prediction model achieves remarkable accuracy, with an F1 score 

of 0.868 and an AUC of 0.944 The POL model achieves high accuracy (0.994) and F1 score 

(0.924), while the POB model shows similarly impressive results with accuracy of 0.999 and 

F1 score of 0.872. Both models exhibit strong performance in precision, recall, Matthews 

Correlation Coefficient (MCC), and Cohen's Kappa, indicating their robust predictive 

capabilities for leak and burst probabilities in WDNs. The COF model, optimized using TPE, 

shows significant improvements with macro F1 scores increasing by up to 13%. The optimized 

XGBoost model achieves the highest accuracy (0.82) and macro precision (0.65), while 

LightGBM excels in AUC (0.87) and computational efficiency. SHapley Additive exPlanations 

and feature importance analyses identify water type, material, age, and diameter as key 

predictive factors for water pipe failure causes. 

This research contributes both theoretically and practically to the field of WDNs, providing 

valuable insights for sustainable management alongside web-based applications for 

implementing the POF, POL, POB, and COF models developed in this study. By understanding 

the underlying failure factors, accurately predicting failure probabilities, and forecasting causes 

of water pipe failure, stakeholders and decision-makers can effectively allocate resources, 
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prioritize inspections, and implement preventive measures. Ultimately, this study contributes 

to the performance, reliability, and sustainability of WDNs, ensuring the consistent delivery of 

clean water to communities. 
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Chapter 1 

INTRODUCTION 
 

1.1. INTRODUCTION 
 

This chapter introduces the current study. The research background is discussed, followed by 

the research scope and problem statement. Subsequently, the research objectives and 

methodologies to fulfill them are expatiated. Finally, the significance of the study and the 

structure of the thesis are highlighted.  

1.2. BACKGROUND 
 

Water is an essential natural resource, which is transmitted from the sources to the point of 

consumption through different types of pipelines (L. Chen et al., 2021; Gurung et al., 2015). 

Despite the advancement in the material, manufacturing, and installation methods of these 

pipelines over time, water distribution networks (WDNs) still face the challenge of failure 

(Mahmoodian & Li, 2016; K. Pietrucha-Urbanik & Tchórzewska-Cieślak, 2017). Globally, 

water losses in most WDNs are more than 30%, which has a negative impact on the 

infrastructure's resilience and financial aspects (Prieto et al., 2015; Tariq et al., 2021). Similarly, 

a study conducted by Folkman (2018) showed that the failure rate of water pipes increased 

from 11.0 to 14.0 breaks per 100 miles per year in the USA and Canada within six years (2012 

-2018). In the UK, almost 22% of potable water is lost yearly due to the failure of the water 

pipe system (Farewell et al., 2012). In 2017, more than 2.2 billion m3 of water was lost in China 

(Liao et al., 2021). Furthermore, the failure rate in Australia was estimated to be 20 bursts per 
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100 km per year. In Hong Kong, it was reported that 4953 bursts occurred in private water 

pipes between 2009 – 2013 (Ombudsman, 2014). In South Korea, 52.5% of the water pipes 

will require rehabilitation by 2024, as indicated in a study by Seo et al. (2015). In the case of 

Colombia, a developing country, approximately 50% of water is lost due to water pipe failures 

(Giraldo-González & Rodríguez, 2020). Additionally, it was reported that about 780 million 

people have no access to potable water due to the lack of an appropriate water infrastructure 

system, including the failure of water pipes, and yearly, more than 3.41 million individuals die 

globally as a result of water-related diseases (Paradkar, 2012). These figures show that water 

pipe failure is a global issue that needs to be tackled. Therefore, it is not only important to 

provide water to humanity, but it is equally essential that the water is safe, clean, and consistent 

in terms of supply.  

In addition, the consequences of water pipe failure are numerous. Some of them are property 

loss, repair and remediation costs, deterioration of human health, damage to the environment, 

and customer dissatisfaction (Dawood et al., 2021; Fares & Zayed, 2010; Katarzyna Pietrucha-

Urbanik & Tchórzewska-Cieślak, 2020). Moreover, the failure of the WDN and its associated 

system affects global economic conditions. For instance, in 2006, although the original need to 

maintain and rehabilitate the WDNs in the US was $6 billion, only about $1.2 billion was spent 

because of the unavailability of funds (Paradkar, 2012). According to the American Water Work 

Association (AWWA), the USA needs to invest around $1 trillion in replacing and repairing 

the deteriorating components of their WDNs for the next few decades (Fan et al., 2022). In 

Australia, the estimated cost of repairing and maintaining WDNs is about AUD 1.4 billion 

(Weeraddana et al., 2020). 

Therefore, a WDN should be developed in such a way that several technical requirements, i.e., 

functionality, serviceability, and durability (Farshad, 2006), are achieved. To function 

optimally and sustainably, the material properties of components of a WDN in relation to 
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mechanical, thermal, and durability, which determine the serviceability state of the network, 

are highly important. Water pipe failure is a complex phenomenon that depends on various 

factors. Properly understanding these factors and developing predictive models are crucial to 

improving the status of WDNs.   

1.3. RESEARCH SCOPE AND PROBLEM STATEMENT 
 

Water Distribution Networks (WDNs) play a critical role in delivering both fresh and saltwater 

for various human needs, making them essential infrastructure systems. However, these 

networks often encounter frequent pipe failures, which significantly challenge their efficient 

operation and maintenance. Understanding the factors that contribute to water pipe failures is 

paramount for effective management and mitigation strategies. 

Various researchers have investigated these factors in the past (Barton et al., 2019; Fares & 

Zayed, 2010; Shaban et al., 2023). Some researchers have classified the factors into two: 

internal and external factors (Rajani & Kleiner, 2001; Rostum, 2000), while others have 

classified them into three: physical/pipe-intrinsic, environmental, and operational materials 

(Al-Barqawi & Zayed, 2008; Barton et al., 2019). However, scholarly literature lacks 

comprehensive investigations into the multitude of factors influencing water pipe failure, 

including their relative importance and intricate interrelationships. 

The study of water pipe failure is a complex and multifaceted subject, requiring a holistic 

approach that considers numerous variables. Each of these factors can significantly impact the 

structural integrity and longevity of water pipes within a distribution network. Despite their 

undeniable relevance, a comprehensive understanding of how these factors interact and 

contribute to pipe failures is still limited, creating a significant knowledge gap in the field. To 

effectively address the challenges associated with water pipe failures, it is essential to identify 

the comprehensive list of the influencing factors and comprehend the relative importance and 
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interrelationships among these contributing factors. By doing so, water utility managers, 

engineers, and policymakers can develop informed decision-making frameworks, implement 

targeted maintenance programs, and allocate resources more effectively.  

Furthermore, developing optimized predictive models is important to mitigate incessant water 

pipe failures. Studies have been conducted on establishing predictive models to forecast the 

number of failures and failure rates in a network (Konstantinou & Stoianov, 2020; Ogutu et al., 

2017; Yamijala et al., 2009). However, the existing literature lacks a fully optimized model to 

predict the probability of water pipe failure. Within the context of managing WDNs, accurately 

predicting the probability of pipe failure holds greater significance and practical implications 

compared to simply quantifying the number of failures or failure rates. Such a predictive model 

would enable water utility managers and decision-makers to move beyond reactive measures 

and adopt proactive strategies to prevent failures and optimize network performance. By having 

reliable estimates of failure probabilities, utility managers can make informed decisions 

regarding asset maintenance and replacement schedules. Instead of relying solely on age-based 

or reactive replacement approaches, they can prioritize replacements based on the predicted 

probabilities, focusing on pipes with higher risk levels. This approach maximizes the utilization 

of existing assets, prolongs their service life, and optimizes operational costs by avoiding 

premature replacements. 

Another dimension in the management of WDNs that has rarely been investigated is the 

establishment of predictive models to forecast the causes of water pipe failure. Predictive 

models for pipe failure causes allow for early detection and prevention of potential failures. By 

analyzing various influential factors, these models can identify patterns and indicators that 

precede failures. This early detection enables utilities to implement preventive measures, such 

as targeted inspections, maintenance, and rehabilitation, before the failures occur, reducing the 

likelihood of service disruptions and minimizing the associated costs. Predictive models can 
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enable improvements in the design and construction of WDNs. By identifying and predicting 

the causes of pipe failures, utilities can incorporate this knowledge into the design phase of 

new network infrastructure or expansion projects. This includes selecting appropriate pipe 

materials, considering environmental and soil conditions, and implementing construction 

techniques that mitigate the identified causes of failure. As a result, the network can be designed 

and built to withstand potential challenges, enhancing its durability and reducing the likelihood 

of failures in the future. 

1.4. RESEARCH OBJECTIVES 
 

In connection with the problem statement highlighted in the previous section and the limitations 

in the extant literature, the main aim of this study is to improve the current understanding of 

water pipe failure factors and develop predictive models to enhance the management of WDNs. 

To fulfill this goal, the specific objectives of this study are identified as follows: 

1. Identify comprehensive failure factors and failure modes of water pipes 

This objective will answer the following questions:  How many factors influence the failure of 

water pipes? What are these factors? What category does each factor belong to? What are the 

common water pipe failure modes? 

2. Model, rank, and investigate the relationship between water pipe failure factors and 

failure modes 

This objective will address the following research questions: What is the significance of each 

failure factor based on their categories? What is the interrelationship between the failure factors 

categories? What is the influence of the failure factors on water pipe failure modes? 

3. Develop and automate optimized models to predict the probability of failure, leaks, 

and bursts of water pipes 
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This research objective will answer the following questions: How to model the failure 

probability of water pipes?  How to model the probability of leak, burst, and no leak/burst? 

What are the most significant failure factors to include in the model? What is the contribution 

of each failure factor to the predictive model? 

4. Develop and automate an optimized model to predict the causes of water pipe failure 

This research objective will address the following questions: How to model the causes of water 

pipe failure? What are the most significant failure factors to include in the model? What is the 

contribution of each failure factor to the predictive model? 

1.5. RESEARCH METHODOLOGY 
 

In order to achieve the four objectives stated in the previous section, the following 

methodology is adopted (see Figure 1.1):  

1. A systematic literature review is conducted to identify a comprehensive list of failure 

factors influencing water pipe failure. Subsequently, water pipe failure modes are 

reviewed and discussed. The Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) is adopted as a protocol for conducting the review 

(Objective 1).  

2. An analytical model using the structural equation modeling (SEM) technique is 

developed to rank the failure factors, investigate the relationship between their 

categories, and examine the influence of the failure factors on water pipe failure modes. 

The identified factors and failure modes from objective one are used to design a 

questionnaire survey. The survey is distributed to academics and professionals in the 

field of WDN, and the data formed the basis of the SEM model (Objective 2).  

3. Logistic regression (LR) and Genetic Algorithm (GA) are fused together to develop an 

optimized model to predict the probability of failure (POF) of water pipes. The GA is 
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employed to optimize the LR model's hyperparameters and features (i.e., input factors). 

The contribution of each factor to the optimized predictive model is explained using 

the SHapley Additive exPlanations (SHAP) framework (Objective 3a). Subsequently, 

deep learning models are integrated with Bayesian Optimization (BO) algorithm to 

develop a model to predict the probability of leak, burst, and no leak/burst (Objective 

3b).  

4. Ensemble state-of-the-art algorithms such as extreme gradient boosting (XGBoost) are 

combined with Tree-Structured Parzen Estimator (TPE) to develop predictive models 

for forecasting the causes of water pipe failure (COF) (Objective 4).  

1.6. SIGNIFICANCE OF THE STUDY 
 

The findings of this study will provide valuable insights into the failure factors and failure 

modes of water pipes. By identifying comprehensive failure factors and categorizing them, this 

study will enhance the understanding of the underlying causes of pipe failure. The developed 

predictive models will enable WDN managers and professionals to assess the probability of 

failure, leak, burst, and potential causes, facilitating proactive maintenance and targeted 

interventions. This, in turn, will lead to improved decision-making processes, efficient resource 

allocation, and enhanced overall management of WDNs. 

1.7. STRUCTURE OF THE REPORT 
 

This thesis is structured into seven chapters. Chapter one introduces the research background, 

scope, problem statement, research objectives, a summary of the research methodology, and 

the significance of the study. Chapter two presents a comprehensive literature review of the 

research area, including previous studies relating to failure factors, failure modes, and 

predictive models for estimating the probability and causes of water pipe failure. Subsequently, 

chapter three discusses the research methodology adopted to fulfill the research objectives. 
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Chapter four presents the data collection for the study. Chapter five shows and discusses the 

research findings. Chapter six presents the automated applications developed to facilitate easy 

usage of the research output, while chapter seven gives a summary of the main findings, 

research limitations, and recommendations for future work.  

 

Figure 1. 1: Research objectives, methods, and outcomes 
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Chapter 2 

 

LITERATURE REVIEW1 

2.1. INTRODUCTION 

This chapter presents a comprehensive systematic review of previous research relating to the 

failure of water pipes in WDNs. The chapter starts by reviewing the factors influencing water 

pipe failure following a systematic approach. Subsequently, the common failure modes of 

water pipes are reviewed. After that, the different techniques that have been employed to predict 

the probability of failure of water pipes in the extant literature are reviewed. At the end of the 

chapter, the research gaps in the literature are highlighted.  

2.2. FACTORS INFLUENCING WATER PIPE FAILURE 

This section describes the literature retrieval process and methodology employed for 

conducting the systematic review. A scientometric analysis of previous studies is conducted. 

Subsequently, the factors influencing the failure of water pipes are systematically reviewed and 

 
1 1 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Shaban, I. A., & Zayed, T. (2023). "Development of sustainable water 

infrastructure: A proper understanding of water pipe failure". Journal of Cleaner 

Production, 398: 136653  https://doi.org/https://doi.org/10.1016/j.jclepro.2023    

Taiwo, R., Ben Seghier, M. E. A., & Zayed, T. (2023). "Towards sustainable water 

infrastructure: The state-of-the-art for modeling the failure probability of water pipes". 

Water Resources Research. e2022WR033256. https://doi.org/10.1029/2022WR033256   

Farh, H.M.H, Ben Seghier, M. E. A, Taiwo, R., & Zayed, T. (2023). "Analysis and Ranking of 

Corrosion Causes for Water Pipelines: A Critical Review." npj Clean Water, 6, 65 

https://doi.org/10.1038/s41545-023-00275-5  
 

https://doi.org/10.1016/j.aej.2023.11.047
https://doi.org/10.1016/j.asej.2024.102630
https://doi.org/https:/doi.org/10.1016/j.jclepro.2023
https://doi.org/10.1029/2022WR033256
https://doi.org/10.1038/s41545-023-00275-5
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categorized into four: pipe-related, operation-related, external-related, and soil-related factors 

based on the literature synthesis.  

2.2.1. Search strategy and framework 
 

2.2.1.1 Literature Retrieval Procedures 

The complete literature retrieval and selection process is presented in Figure 2.1. Firstly, a pilot 

search on the website of WoS was performed to validate the proposed topic. Afterward, to have 

comprehensive search results (Tawfik et al., 2019), higher content coverage with better 

availability of various scientometric data, and strict content indexing criteria & inclusion 

policies (Pranckutė, 2021), the WoS and Scopus databases were selected. Different search 

strings were used and improved upon until one was finally chosen. The results (i.e., articles) 

were filtered by subject areas, downloaded, and the duplicates were removed. 

The downloaded articles were further subjected to screening by reading their title and abstracts. 

This is an important step to discard non-relevant and out-of-scope papers. Subsequently, the 

full text of the articles was evaluated. Inclusion and exclusion criteria were set at this stage. 

These criteria are important to avoid personal biases (Tariq et al., 2021). The inclusion criteria 

for this study include research papers focusing on physical, environmental, or operational 

causes of water pipe failure or factors contributing to the failure of water pipes. Research 

studies from non-relevant areas, written in a language other than English, and papers with no 

full-text availability were excluded. As the search strings may not be absolutely perfect, the 

screened texts were subjected to forward and backward snowballing. The former refers to 

looking for papers that cite the paper being examined, while the latter refers to checking the 

reference list of the examined paper to find another relevant research paper(s). After the 

forward and backward snowballing, 105 articles were selected. The framework for the 

literature review is depicted in Figure 2.2.  
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Figure 2. 1: Complete procedures for literature retrieval for investigating failure factors of water pipes 
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Figure 2. 2: Framework of the literature review regarding factors influencing water pipe failure 

 

2.2.1.2. Scientometric analysis 

A scientometric analysis is an approach of objectively mapping a scientific domain with the 

help of bibliographical data to critically assess the evolution and development of the scientific 

domain through various indexes (Andriamamonjy et al., 2019; Olawumi & Chan, 2018; G. 

Wang et al., 2020).  VOSviewer was chosen for this study due to its unique features, including 

easiness in visualizing large maps with the zoom-in feature and well-labeled algorithms 

(Hussein & Zayed, 2021). The procedures employed for the analysis in this study are discussed 

in the subsequent section.  

2.2.1.3. Qualitative analysis 

The qualitative analysis involves a systematic discussion of the factors influencing water pipe 

failure. After retrieving the articles relevant to the study's objective (i.e., objective 1), each 
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article was read carefully to understand the causes of water pipe failure. For each article, data 

regarding the failure factors of water pipe failure, type of pipe material, techniques adopted for 

developing failure prediction models (where available), and failure modes were extracted and 

documented in an Excel sheet. Research gaps within the articles were identified and formed 

the basis for other objectives of the study. 

2.2.2. Scientometric review of factors influencing water pipe failure 
 

2.2.2.1. Publication Trends 

Figure 2.2 shows the number of publications made annually for the 105 retrieved articles. The 

publication years ranged from 1982 to 2022. First, a bar chart (Figure 2.3.) shows the number 

of publications per year. Second, Figure 2.4. represents the number of publications grouped by 

decade. From these analyses, it is noticed that the study on the causes of water pipe failure did 

not attract the attention of researchers until the 1980s, despite the availability and usage of 

water pipes since the 1900s (Clair & Sinha, 2014). Additionally, as one may observe from 

Figure 3b, studies on the causes of water pipe failure have gained momentum from one decade 

to another, as 2, 4, 12, and 66% of the papers were published in 1982-1990, 1991-2000, 2001-

2010, and 2011-2020, respectively. Although only 12% of the articles were published within 

2021-2022, there is the possibility that the number of articles will exceed that of the previous 

decade by 2030, based on the publication trend.  

2.2.2.4. Keyword cluster analysis 

Keywords play an important role in a research paper, as they show the paper's main focus, 

thereby giving potential readers an insight into what the paper entails (Rahman et al., 2020). 

Out of the 1106 keywords used in the 105 articles, only 122 of them met the VOSviewer criteria 

of occurring at least three times. 
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Figure 2. 3: Number of publications per year 

 

Figure 2. 4: Percentage of publications per decade 

 

The top 20 keywords are shown in Table 2.1. Moreover, some keywords with the same meaning 

but different wordings were noticed. These keywords were merged. For instance, keywords 

such as "pipeline failures" were replaced with "pipe failures." A .csv file containing the original 

keywords and the keywords that replaced them was later imported into the VOSviewer. This 

approach ensures that the appropriate node sizes for the relevant keywords are generated, which 

indicates the number of occurrences of each keyword. 
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From Figure 2.5., it is observed that "corrosion" has the biggest node size in terms of the 

keywords that depict the factors contributing to the failure of water pipes, which implies that 

corrosion is the most common focus of the retrieved articles. Additionally, "soils" could be 

deemed a causal factor of "corrosion" as they are clustered together. However, "soils" have a 

smaller node, which means that the soil as a cause of corrosion has not been fully studied. It 

can also be inferred that the most common type of pipe that has been studied is "cast iron pipe."  

 

Figure 2. 5: Co-occurrence of keywords network map 

 

According to Table 2.1, the keywords with the lowest occurrence and total strength link are 

"pipe material," "fracture," "bacteria," and "climate change," indicating a low level of research 

in these sub-domains of knowledge, as related to causes of water pipe failure.  
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Table 2. 1: Keyword occurrences 

Keyword Occurrences Total link 

strength 

Failure analysis 42 39 

Water distribution networks 30 26 

Corrosion 27 24 

Cast iron pipe 19 19 

Pipe failures 16 18 

Deterioration 14 15 

Iron 11 12 

Failure mechanism 9 11 

Potable water 8 11 

Soils 7 7 

Asset management 7 6 

Mechanical properties 6 6 

Cracks 5 5 

Failure rate 5 5 

Leakage 5 5 

Pipe material 5 4 

Environmental factors 5 4 

Fracture 4 4 

Bacteria 4 4 

Climate change 3 3 

 

2.2.2.3. Contributions of journals 

The contributions of the research outlets are discussed in this section. This is important to show 

the most productive research outlets in terms of the different considered criteria and can guide 

researchers in making decisions based on these criteria. Using the VOSviewer software, the 

minimum number of documents for a source was set to 1, while the minimum number of 

citations was set to 25. There is no limit on this threshold setting in scientometric analysis 

(Tariq et al., 2021). Out of the 49 sources, 14 met this threshold, as shown in Table 2.2.  

In terms of the number of citations, "Canadian Journal of Civil Engineering" is ranked as the 

most productive journal outlet, despite the fact that the outlet only published four articles used 

in this study compared to "Engineering Failure Analysis," which has 10 articles. The same trend 

is noticed in the total link strength, as presented in Table 2.2.  This means that the nature of 
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studies published by the "Canadian Journal of Civil Engineering" has the highest impact and 

significance in the domain, as they have received the highest recognition from researchers in 

terms of citations.  

Table 2. 2: Contribution of research outlets 

Name of research outlets 
No. of 

documents 
Citations 

Total link 

strength 

Canadian Journal of Civil Engineering 4 292 12 

Engineering Failure Analysis 10 284 8 

Journal of Water Supply: Research and Technology  3 256 6 

Advances in Water Resources 1 230 2 

European Journal of Operational Research 1 222 6 

Journal of Infrastructure Systems 2 215 6 

Journal of Pipeline Systems Engineering And 

Practice 
6 209 5 

Canadian Geotechnical Journal 1 197 6 

Journal of Materials In Civil Engineering 2 134 4 

Procedia Engineering 2 102 4 

Computer-Aided Civil And Infrastructure 

Engineering 
1 61 2 

Arabian Journal for Science and Engineering 1 41 0 

Journal of American Water Works Association 2 39 0 

Journal of Hydroinformatics 1 37 2 

 

2.2.2.4. Contributions of countries and organizations 

The contributions of countries and organizations in the domain of the factors influencing water 

pipe failure are discussed in this section. In terms of the number of publications and total link 

strengths, Canada is the most productive, with 24 documents and 38 link strengths (see Table 

2.3), followed by the United States of America and Australia; while the United Kingdom and 

Turkey are the least productive countries with 2 documents each. 

Consequently, the productivity of Canada in the research domain was also confirmed by the 

analysis of the organizations' contributions, as four organizations from Canada are among the 

top 5 organizations (see Table 2.4).  
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Table 2. 3: Productivity of countries 

Country No. of 

documents 

Citations Total link 

strength 

Canada 24 925 38 

United 

States 

20 239 17 

Australia 10 122 15 

China 8 104 11 

Poland 7 93 4 

United 

Kingdom 

2 88 4 

Turkey 2 54 6 

 

This implies that Canadian researchers and the government paid more attention to the failure 

of water pipes than other countries and that Canada has the highest potential for future 

collaboration with other countries in related research. Additionally, the enormous effort of 

Canada in this domain can be traced to annual financial loss estimated at one billion dollars, 

generated by water loss due to failed pipeline systems in Canada (Renzetti & Dupont, 2013).  

Table 2. 4: Organizations' contributions 

Organization Documents Citations Total Link 

Strength 

National Res. Council, Canada  3 323 9 

University of British Columbia, Canada 2 246 9 

University of Johannesburg, South Africa 1 175 0 

Concordia University, Montreal, Canada 1 102 5 

University of Toronto, Canada 1 96 2 

 

2.2.2.5. Science mapping of scholars 

Citation and co-citation analyses of researchers were conducted. These analyses indicate 

scholars that are actively working in the scientific domain: factors/causes of water pipe failure. 

The citation analysis indicates four clusters, typifying Rajani B., Sadiq R., and Kodikara J. as 

the most productive researchers in terms of the number of publications. In terms of citations, 

Rajani B., Sadiq R., and Tesfamariam are the most cited scholars, with 497, 389, and 260 
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citations, respectively (see Table 2.5). This analysis also indicates the existence of a strong 

relationship between the two top scholars – Rajani B. and Sadiq R. – as their nodes are close 

to each other, suggesting that they often collaborate. Thus, collaboration can increase the 

visibility of researchers' output.  

A co-citation analysis of the authors was also conducted. In this context, co-citation refers to 

two authors that are cited together by a third author (Surwase et al., 2011). Rajani B. has the 

highest total link strength, at 1645, which could indicate how often the researcher collaborates 

with other researchers. As shown in Table 2.6, other top scholars include Kleiner Y., Sadiq R., 

Tesfamariam S., and Kodikara J., with a total link strength of 1203, 1148, 952, and 634, 

respectively. These analyses will assist individuals or organizations seeking consultations on 

the causes of water pipe failure to identify the top researchers in the domain.  

Table 2. 5: Citation analysis of scholars 

Author Documents Citations Total link 

strength 

Rajani B. 4 497 29 

Sadiq R. 4 389 26 

Tesfamariam S. 3 260 21 

Francisque A. 2 224 17 

Seica M.V. 3 201 28 

 

Table 2. 6: Co-citation analysis of scholars 

Author Citations Total link strength 

Rajani, B. 273 1645 

Kleiner, Y. 188 1203 

Sadiq, R. 81 1148 

Tesfamariam, S 72 952 

Kodikara, J. 59 634 



20 
 

2.2.3. Systematic review of factors influencing water pipe failure 

As highlighted earlier, the factors influencing water pipe failure are grouped into four main 

classes: pipe-related, operation-related, external-related, and soil-related factors. This section 

provides a comprehensive discussion of these factors.  

2.2.3.1 Pipe-related factors 

(I) Pipe age 

Pipe age is a significant factor influencing water pipe failure, but its relationship with failure 

rates is complex and not always linear. While many studies show that older pipes generally 

have higher failure rates, some research indicates inverse relationships or no correlation 

(Ellison & Spencer, 2016; Fares & Zayed, 2010; Jun et al., 2020). For instance, it was noticed 

that the pipe failure rate increases as the pipe's age increases until they reach 50 –60 years. The 

pipes in this age bracket (50 –60 years) exhibited the highest failure rate. Even pipes that had 

been in service for 60–130 years had a significantly lower failure rate  (Hekmati et al., 2020). 

This suggests that age alone isn't determinative; other factors like material quality and 

installation techniques also play crucial roles. The general conclusion is that while pipes 

typically deteriorate over time, the impact of age on failure rates can vary depending on other 

contributing factors. 

(II) Pipe diameter 

Pipe diameter influences water pipe failure rates, with most studies indicating an inverse 

relationship between diameter and failure frequency (Bruaset & Sægrov, 2018; Hekmati et al., 

2020; Kutyłowska & Hotloś, 2013; Kutyłowska & Orłowska-Szostak, 2016; Katarzyna 

Pietrucha-Urbanik, 2015; Rajeev et al., 2014; Rezaei et al., 2015; Singh, 2011; Zywiec et al., 

2019). Larger diameter pipes (>300 mm) generally exhibit lower failure rates due to their 

thicker walls, which provide greater structural integrity and resistance to pressure fluctuations. 
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For instance, Rezaei et al. (2015) found that pipes with diameters over 600 mm have shown up 

to 87.5% fewer bursts compared to those 100 mm or less. However, some research suggests 

that very large pipes (e.g., 1050 mm) might have slightly lower safety factors than moderately 

large ones (e.g., 750 mm) due to increased hoop and axial stresses (D. Wilson et al., 2017). 

Despite this, the overall trend indicates that larger diameter pipes are less prone to failure than 

smaller ones. 

(III) Pipe length  

Pipe length has been shown to influence water pipe failure rates, though the relationship is not 

always straightforward. Several studies, including Vipulanandan et al. (2012) and Zamenian et 

al. (2017), have found a positive correlation between pipe length and failure rate, particularly 

for smaller diameter pipes. This is often attributed to the increased number of joints and service 

connections in longer pipes, which can be points of vulnerability. However, Andreou et al. 

(1987)  argued against a simple linear relationship, suggesting that localized factors like 

corrosion might have more impact on failure rates than overall length. 

(IV) Pipe wall thickness 

The failure of water pipe is impacted by its wall thickness, with thicker walls generally 

associated with lower failure frequencies (Bruaset & Sægrov, 2018; Gao, 2017; K. Liyanage 

& Dhar, 2018). Wilson et al. (2017) found that safety factors increase with wall thickness, 

independent of pipe diameter. For instance, a 1500 mm thick wall had a safety factor of 9.8, 

compared to 2.0 for a 500 mm wall. Chang et al. (2021) corroborated this, showing that thinner 

walls led to increased settlement and breakage. These findings indicate that thicker pipe walls 

provide better resistance to stresses, thereby reducing failure likelihood in WDNs. 
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(V) Pipe material and manufacturing flaw 

Pipe material is a critical factor that contributes to pipe failure, as highlighted by numerous 

studies (Almheiri et al., 2020; Fares & Zayed, 2010; García et al., 2018; Pouri & 

Heidarimozaffar, 2022; Rezaei et al., 2015; Zamenian et al., 2017). Cast iron (CI) pipes 

typically exhibit higher failure rates due to corrosion susceptibility, accounting for up to 40% 

of total failures in some networks (Folkman et al., 2012; Rezaei et al., 2015). While ductile 

iron (DI) and steel pipes offer improved strength, they still require protection against corrosion. 

Asbestos cement (AC) and concrete pipes provide good pressure resistance but are prone to 

degradation through lime leaching (Al-Adeeb & Matti, 1984). 

Plastic pipes, primarily polyethylene (PE) and polyvinyl chloride (PVC), generally 

demonstrate lower breakage rates due to their corrosion resistance, flexibility, and ability to 

absorb impact loads (Clair & Sinha, 2014; Rezaei et al., 2015). However, they can be 

vulnerable to degradation by certain organic substances and fatigue failure. Manufacturing 

flaws such as porosity, cold shuts, and inclusions can significantly reduce pipe strength across 

all materials. For example, Makar (2000) found that inclusions can lower CI pipe tensile 

strength from 130 to 33 MPa. When selecting pipe materials, it's crucial to consider local 

conditions, installation methods, and potential chemical interactions to minimize failure risks 

in water distribution networks. 

(VI) Protection efficiency and third-party damage 

Pipe lining and coating, introduced in the 1920s, have proven effective in reducing failures, 

with Lee (2011) finding that unlined cast iron pipes failed four times more frequently than lined 

ones. Other protective methods include cathodic protection and polyethylene wrapping 

(Kleiner et al., 2004; Rajani & Kleiner, 2003). Third-party damage, such as accidental damage 

during construction or careless handling during transportation, can also lead to pipe failures 

(Farshad, 2006). For plastic pipes, prolonged exposure to ultraviolet light can increase 
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brittleness and susceptibility to failure (Tran et al., 2021). These factors underscore the 

importance of proper protection, handling, and installation practices in minimizing water pipe 

failures.   

(VII) Buried depth 

Studies consistently show an inverse relationship between buried depth and breakage rate of 

water pipes (Jun et al., 2020; Trickey et al., 2016; Daniel Wilson et al., 2015). Shallower pipes 

experience higher soil pressures, leading to increased stress and failure risk. Trickey et al. 

(2016) found that reducing the burial depth of cast iron pipes from 2 m to 1.5 m increased the 

longitudinal bending moment by over 140%, resulting in circumferential fractures. Wilson et 

al. (2015) observed that pipes at 0.5 m depth failed nearly ten times more frequently than those 

at 1.5 m, even with identical diameters.  

2.2.3.2. Operation-related factors 

(I) Internal water pressure 

Numerous studies have established a direct relationship between pressure and breakage 

frequency (Grigg, 2017; Jiang et al., 2019; Kabir et al., 2015; Poojitha & Jothiprakash, 2022; 

Tang et al., 2019a). Pressure fluctuations create additional hoop stress, leading to longitudinal 

or circumferential failures (Rezaei et al., 2015). Ellison & Spencer (2016) found that high-

pressure asbestos cement pipes failed 2.5 times more often than low-pressure ones. However, 

the impact of pressure can vary depending on network design and local conditions. For 

instance, Martínez García et al. (2020) observed strong correlations between high pressure and 

failure rates in mountainous districts but weaker or negative correlations in non-mountainous 

areas, suggesting that other factors may dominate in certain regions. 
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(II) Water quality 

Water quality, encompassing aesthetical, microbiological, and physicochemical properties 

(Kabir et al., 2015; Lee, 2011), impacts both water potability and pipe failure rates. As part of 

water quality-relating factors, corrosive substances, water temperature, and velocity are 

discussed in this sub-section.  

Corrosive substances: Corrosive substances in water, such as chlorine, dissolved salts, and 

minerals, can degrade pipe materials and lead to failure (Rehan Sadiq, 2010). Kanakoudis 

(2004) observed that high iron concentrations in a Greek WDN caused water discoloration and 

accelerated pipe corrosion, ultimately resulting in pipe failures.  

Water temperature: Due to low viscosity, an increase in the temperature of water leads to an 

increase in its diffusivity, thereby activating the transfer of electrons, which can accelerate the 

corrosion process. The study by Jun et al. (2020) implies that an increase in the water 

temperature tends to increase the corrosivity of the water, negatively impacting the pipe.  

Water velocity: Water velocity impacts pipe failure rates, particularly in small-diameter pipes. 

Lower velocities in these pipes can lead to sediment accumulation and bacterial growth, 

increasing the likelihood of failure (Dao et al., 2021; Gao, 2017). Hence, the velocity of water 

should be properly controlled.  

(III) Water pH 

The pH of water has also been found to be a cause of water pipe failure (Arriba-Rodriguez et 

al., 2018). This sub-section discusses water acidity and alkalinity as they relate to water pipe 

failure.  

Water acidity: Acidic water (pH below 7) can be especially detrimental to pipe integrity (Shull, 

2021). Water with pH values between 6.5 and 9.5 has been referred to as safe drinking water 

(United Utilities Water Limited, 2019). Acidic and soft water attacks can leach calcium silicate 



25 
 

hydrate and lime from concrete and asbestos cement pipes, weakening their structure (Hu & 

Hubble, 2007). Zraick et al. (2019) observed higher corrosion rates (20-40 μm/year) in water 

pipes when pH values fell below 7.5. These findings highlight the importance of maintaining 

appropriate pH levels in water distribution systems to minimize internal corrosion and 

subsequent pipe failures.  

Water alkalinity: Jun et al. (2020) found a positive correlation between water alkalinity and 

pipe failure rates. Alkaline conditions can promote corrosion by facilitating dissolved oxygen 

reactions (Arriba-Rodriguez et al., 2018) and providing a favorable environment for sulfate-

reducing bacteria, which can lead to microbiologically influenced corrosion (MIC) (Doyle et 

al., 2003).  

(IV) Number of leaks 

The Leak-Before-Break (LBB) concept suggests that pipe leakage typically precedes 

catastrophic failure (IAEA, 1993; Wilkowski, 2000). Rathnayaka et al. (2017) confirmed this 

in laboratory tests on large-diameter cast iron pipes with simulated corrosion patches. Studies 

have shown that the frequency of pipe breakage increases with the number of leaks (Ma et al., 

2022; Pouri & Heidarimozaffar, 2022). Additionally, leaking pipes can erode surrounding soil, 

disturbing bedding conditions and potentially inducing excessive stress on pipe walls.  

(V) Water hammer 

Water hammer, caused by sudden changes in water flow velocity, creates pressure shockwaves 

in pipes that can result in leaks, cracks, bursts, and fitting separations. The severity depends on 

pipe characteristics and flow conditions (Roy & Pijush, 2014). In the USA and Canada, 25% 

of all the annual failures of water pipes are associated with water hammers (Leishear, 2019).  
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(VI) Installation and pump operation 

Poor installation practices and improper pump operation contribute significantly to water pipe 

failures. Installation issues include not following guidelines, inadequate support, and faulty 

joints, with 16% of PVC pipe failures attributed to joint defects (Burn et al., 2005). Improper 

pump operation, such as overloading, excessive pressure, using incorrectly sized pumps, and 

inadequate maintenance, can also damage pipes and lead to failures (Barton et al., 2019).  

(VII) Maintenance practices 

Another operation-driven problem in WDN is the lack of effective maintenance practices. 

Neglecting regular upkeep can lead to various issues, causing pipe failures. These include 

failing to replace worn components, ignoring water quality problems, insufficient pressure 

adjustments, lack of regular inspections, and poor repair procedures (Barton et al., 2019).  

2.2.3.3. External-related factors 

(I) Climate-related factors 

The link between climate-related factors such as temperature, frost, precipitation, and water 

pipe failure is discussed in this section. This includes discussion relating to the performance of 

water pipes in various seasons, especially the winter and summer seasons.  

Temperature: Temperature influences water pipe failure, with numerous studies establishing 

an inverse relationship between temperature and failure frequency(Makar et al., 2001; Tran et 

al., 2021; X. Wang et al., 2019; Zamenian et al., 2017). As temperatures drop, pipes contract, 

potentially leading to tensile stress and circumferential breaks if the pipe's strength is exceeded 

(Habibian, 1994).  A study in Norway found an 86% increase in failure rates when temperatures 

decreased from 23°C to -15°C (Bruaset & Sægrov, 2018).  

Winter seasons generally see higher failure rates due to increased earth loads from freezing and 

water expansion (García et al., 2018; Hekmati et al., 2020; Kutyłowska & Orłowska-Szostak, 
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2016). However, summer can also present challenges, with some UK regions reporting high 

breakage rates due to dried and shrinking soil (Gao, 2017). It's important to note that 

temperature alone isn't the sole indicator of pipe failure, as the relationship between 

temperature drops and breakage rates isn't strictly linear Habibian (1994). The accumulation of 

damage over time creates weak points in pipes, which can fail at varying temperature 

thresholds, leading to cyclical patterns of failure as temperatures fluctuate. 

Precipitation: The amount of precipitation in a season can directly affect the amount of 

moisture in the soil. High rainfall periods increase clay soil swelling, causing additional stress 

on pipes. Studies in Australia found the highest pipe failure rates during peak rainfall months 

(July-September), with similar correlations observed elsewhere (Hekmati et al., 2020; Rak et 

al., 2021).  

Frost action: When frost penetrates the soil or ground, it causes soil movement, which induces 

additional stress on water pipes (Tang et al., 2019a; Zywiec et al., 2019). As water freezes, its 

volume expansion is constrained by pipe walls, generating ice expansion pressure. The extent 

of damage depends on factors such as pipe stiffness, diameter-to-wall thickness ratio, water 

solidification rate, and pipe material characteristics. This process can lead to elastic-plastic 

deformation of pipes, with repeated freeze-thaw cycles potentially causing cumulative damage. 

However, some materials like Polypropylene Random Copolymer (PPR) plastic pipes can 

withstand these cycles without permanent damage, provided aging and fatigue factors remain 

constant (Zheng et al., 2020).  

(II) Biological and chemical-related causes 

Biological and chemical activities also influence the corrosion of water pipes. 

Microbiologically induced corrosion (MIC), lime leaching, and concentration of soluble salts 

or chemical substances as related to water pipe failure are explained in this section.  
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Microbiologically induced corrosion (MIC): It occurs predominantly with partial oxygen 

supply and is driven by sulphate-reducing bacteria (SRB ) Alkaline environments can promote 

MIC by facilitating anaerobic bacterial growth (Doyle et al., 2003; Seica et al., 2002). San et 

al. (2012) carried out an experimental study to examine the effects of two bacteria: Aeromonas 

salmonicida and Delftia acidovorans, on the corrosion of water pipes. The inoculation of these 

bacteria on the water pipe was observed to decrease the mass of the steel water pipe by 1.86 

and 2.01 ug, respectively, due to the formation of corrosion products on the pipe. In asbestos 

cement pipes, various bacteria types can form biofilms, reducing structural strength and 

promoting pitting corrosion (D. Wang & Cullimore, 2010).  

Lime leaching: Lime leaching is a process affecting asbestos cement (AC) and concrete water 

pipes. It involves the loss of free lime (portlandite) from the pipe material, which can be 

detected by pH changes. Portlandite protects calcium silicate hydrate, a key component for 

concrete strength. While carbonation can initially increase pipe strength by filling pores with 

calcium carbonate, continued leaching eventually degrades the pipe structure. Studies have 

shown that used AC pipes have significantly lower free lime content than new pipes, indicating 

ongoing leaching in buried pipes. Factors influencing this process include pipe permeability, 

water aggressiveness, and soil carbon dioxide levels. Autoclaved AC pipes generally show 

better chemical stability than water-cured pipes (Al-Adeeb & Matti, 1984; Gong et al., 2016). 

Chemical substances: High concentrations of sulphides and chlorides are primary corrosion 

causes for metallic pipes  (Rezaei et al., 2015; Vipulanandan et al., 2012). Concrete pipes are 

vulnerable to sulphate attacks, both conventional and thaumatic. While PVC and PE pipes resist 

electrochemical corrosion, they can degrade when exposed to aggressive chemicals like 

chlorine, which leaches out protective antioxidants (Mikdam et al., 2017). Soil composition 

also plays a role, with substances like pyrite accelerating corrosion processes (Pȩkala & 

Pietrucha-Urbanik, 2018).  
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(III) Location-based causes 

Traffic: Traffic load can cause the buried water pipes to shear or collapse due to the differential 

loading from passing vehicles (Farewell et al., 2012; H. Nguyen et al., 2022). Moerman et al. 

(2016) found higher failure rates at road crossing sections compared to bump sections, though 

pipe age and diameter were more influential factors. Mackey et al. (2014) noted that traffic 

loading can induce cyclic fatigue effects, contributing to pipe failure.  

Land use: Land use such as commercial, industrial, or residential use of land can link with pipe 

failure as some dynamic loads can be transmitted to the pipes from these structures. Andreou 

et al. (1987) identified commercial land use as a contributor to pipe failures. However, the 

relationship between land use and pipe failure is currently understudied, suggesting a need for 

further research. 

2.2.3.4. Soil-related factors 

Soil corrosivity, which entails soil resistivity, aeration, moisture content, pH, and soluble salts 

present in the soil, is arguably one of the most critical factors alongside bedding conditions that 

influence water pipe failure (Demissie et al., 2016). The complex and heterogeneous nature of 

soil makes corrosivity difficult to assess accurately (Pritchard et al., 2013). While the Ductile 

Iron Pipe Research Association (DIPRA) developed a 10-point scoring method to classify soil 

corrosivity, it has limitations in representing the true severity of corrosion (Ductile Iron Pipe 

Research Association, 2017; Najjaran et al., 2006a), Metallic pipes primarily experience two 

types of corrosion: graphitization (mainly in cast iron pipes) and corrosion pitting (in all 

metallic pipes). Corrosion occurs when two metallic components contact each other in a 

corrosive environment, leading to electron exchange and subsequent degradation of the metal 

with lower electric potential (Lee, 2011). 
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Soil resistivity: Generally, as seen in previous studies (Najjaran et al., 2006a; Pritchard et al., 

2013), corrosivity increases with a decrease in soil resistivity. Studies show that soil samples 

linked to iron-based pipe failures typically have resistivity values between 1000-3000 ohm-cm 

(Seica et al., 2002). Although resistivity is an important factor that determines soil corrosivity, 

it cannot be solely used as an absolute index for corrosion (Arriba-Rodriguez et al., 2018).  

Soil type: Clay soils pose problems due to shrink-swell behavior, increasing external loading 

and creating non-uniform support (Mackey et al., 2014). Soft organic soils are unsuitable for 

bedding due to high moisture retention and low bearing capacity (Pritchard et al., 2013). Sandy 

soils generally contribute less to pipe failure, with better drainage and higher resistivity (Doyle 

et al., 2003), though they may pose erosion risks in certain locations. 

Soil pH: Some studies have shown a correlation between water pipe failure and pH, while 

others have shown otherwise (Pritchard et al., 2013). Hou et al.'s (2016) experiment 

demonstrated higher corrosion rates in more acidic soil solutions. However, Rajani & Makar 

(2001) found no clear relationship between them. This suggests that while pH can influence 

pipe corrosion, it's not a standalone indicator of soil corrosivity. Other factors may dominate in 

different situations, emphasizing the need for comprehensive soil analysis when assessing 

corrosion risk in water distribution systems. 

Soil moisture content: Soil corrosivity increases with an increase in moisture until an optimum 

moisture content is reached, which then declines afterward (Murray & Moran, 1989). Noor & 

Al-Moubaraki (2014) found that corrosion rates in Saudi Arabian soils increased with moisture 

content up to 10%, then decreased. Another study reported a higher optimum range of 50-65% 

for maximum corrosion rates (Pritchard et al., 2013). These varying results suggest that the 

optimal moisture content for corrosion differs across locations, depending on other 

environmental factors. 
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Soil aeration: Soil aeration, the oxygen exchange between the atmosphere and soil, can 

influence water pipe corrosion. Differential oxygen concentrations create cells that contribute 

to corrosion (Wasim et al., 2018). Excavation can increase aeration (Arriba-Rodriguez et al., 

2018), while redox potential measures aeration levels, with low values indicating low oxygen 

(Fiedler et al., 2007). However, the direct relationship between soil aeration and pipe failure 

remains understudied, highlighting a need for further research.  

Bedding conditions and backfilling: Materials that have a low bearing capacity, such as 

organic soil, and a high potential for shrinking/swelling, and water content retaining capacity, 

such as clay, have been found inadequate for bedding materials (Hu & Hubble, 2007; Pritchard 

et al., 2013). In the study of Affolter et al. (2018), it was stated that a 12-year-old pipe failed 

due to its poor bedding condition and ageing. For example, replacing frozen native soil with 

granular backfill can significantly increase pipe deflection and moment. Proper selection of 

bedding and backfill materials, considering soil properties and compatibility, is essential for 

ensuring long-term water pipe performance and preventing failures in WDNs. 

2.3. WATER PIPE FAILURE MODES 

This section presents a review of the common failure modes of water pipes in the existing 

literature. The failure modes reported by the 105 articles are studied and discussed in this 

section. Failure mode describes the exact manner in which the pipe fails rather than the cause 

of its failure. This largely depends on the pipe material and its diameter (Makar, 2000; Rajeev 

et al., 2014). The most common forms of water pipe failure are discussed in this section. Table 

2.6 shows the schematic representation of the failure modes with their common causes and 

typical pipe material and sizes that exhibit the failure modes.  

Circumferential cracking: This occurs when the pipe fails at its circumference. The 

circumferential mode of failure occurs due to the development of bending moments on the 
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pipe, which may be attributed to external forces (Makar, 2000).  Inadequate bedding conditions, 

frost penetration, and backfill, which may be sources of external forces, play important roles 

in this particular mode of failure (Grigg, 2017; K. T. H. Liyanage & Dhar, 2017; Trickey et al., 

2016). 

This mode of failure is the most common mode in grey cast iron (CI) pipes (Makar, 2000). Due 

to the development of tensile hoop stress, CI pipes with large diameters usually have 

circumferential cracking as their failure mode. The axial stress developed in large-diameter 

pipes is usually significantly lower than the hoop stress (Daniel Wilson et al., 2017). The failure 

mode is also common in asbestos (AC) and metallic pipes with a diameter of less than 200 mm 

(Barton et al., 2019).  

Longitudinal Cracking: This is the failure mode that describes the failure of a pipe at its 

longest side. The failure mode occurs when a longitudinal crack appears on the pipe. This could 

result from compressive forces acting along the pipe or internal water pressure (Makar et al., 

2001). In addition, longitudinal cracking can occur on pipes due to traffic loads, causing the 

development of cross-sectional tension; radial tension caused by water pressure (Farewell et 

al., 2012); expansion due to frozen water, causing the development of cross-sectional loads; 

and ground loads, causing the development of cross-sectional loads (Mora-Rodríguez et al., 

2014).  

This failure mode is common in small and large-diameter CI pipes. For instance, the data 

presented in the study by Ji et al. (2020) showed longitudinal fracture as the prominent failure 

mode of small-diameter pipes. Longitudinal, circumferential, piece blown out, and fitting 

failures were responsible for 53, 21, 14, and 5% of the failures, respectively (Ji et al., 2020).  

On the other hand, out of four failure modes examined by Rajeev et al. (2014), the authors 

found that large-diameter pipes failed mostly via longitudinal cracking and bell splitting.  
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Bell Splitting: This is a failure mode that occurs when the pipe's bell (at the joint) splits due to 

differences in the coefficient of thermal expansivity of the pipe and the joint material (Makar 

et al., 2001; Makar, 2000). It should be noted that this mode of failure is also common in small-

diameter pipes and is different from longitudinal cracking in that its (bell-splitting) cracking 

ends just below the bell. The common joint material in metallic pipes, leadite, has a coefficient 

of thermal expansion that differs from that of metallic pipes. This difference could cause 

stresses in the pipe, which could contribute to the pipe's failure (Makar, 2000).  

Corrosion pitting: The localized form of corrosion that occurs on the inner surface of a water 

pipe, creating pits or small holes, is referred to as corrosion pitting (Rajeev et al., 2014). The 

formation of corrosion pits weakens the pipe and thus facilitates water loss (Rajani & 

Tesfamariam, 2005). Various factors, including poor water quality, the presence of corrosive 

substances such as high levels of chlorides and sulphates in water, and the presence of micro-

organisms such as fungi and bacteria, are responsible for corrosion pitting in water pipes (Sadiq 

et al., 2004).  

Pitting corrosion is a common type of failure mode in both large and small-diameter metallic 

pipes. A study conducted by Pȩkala & Pietrucha-Urbanik (2018) indicated that corrosion 

pitting, fitting failure, and mechanical damage accounted for 51%, 26%, and 6% of all the water 

pipe failures, respectively, in a network. 

Blown-out hole: This form of failure mode is the occurrence of a large hole or rupture on a 

water pipe due to the sudden release of pressure. The impact of the water pressure becomes 

more severe on the pipe, particularly when the pipe has been compromised by other faults such 

as corrosion pitting, mechanical damage, and manufacturing defects, among others (Ji et al., 

2020; Tang et al., 2019a). In the case of corrosion pitting, the localized corrosion weakens the 

pipe, and the pressure blows out the remaining thin pipe wall. In 2014, Rajeev et al. (2014) 
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found that a blown-out hole is the major failure mode in five Australian utilities. Previous 

studies, such as the ones conducted by Makar et al. (2001) & Makar (2000), also confirm this 

type of failure mode in water pipes.  This failure mode has been found to be dominant in CI 

and steel pipes (Rajeev et al., 2014).  

2.4. TECHNIQUES FOR PREDICTING THE PROBABILITY OF 

FAILURE OF WATER PIPES 
 

This section describes the literature retrieval process and methodology employed for 

conducting the systematic review. A scientometric analysis of previous studies is conducted. 

Subsequently, the techniques used for predicting the probability of failure in extant literature 

are systematically reviewed. Nvivo software is utilized for easy data synthesis during the 

systematic review. The framework for the review is shown in Figure 2.7.  

2.4.1. Search strategy and framework 

The framework for the review is shown in Figure 2.7. The research approach used for 

conducting the review is a hybrid of quantitative and qualitative methodologies. The 

scientometric analysis and systematic reviews represent the quantitative and qualitative 

methods, respectively. The hybrid methods are adopted to overcome the limitation associated 

with the "mono review method," such as bias in selecting research papers and a lack of holistic 

view of a research domain (Khodabandelu & Park, 2021; Pluye & Hong, 2014). As a result, 

the study involves three main stages, as shown in Figure 2.7. The first stage entails data 

acquisition, in which the processes adopted for retrieving the relevant literature for this study 

are illustrated in Figure 2.8. Firstly, the topic validation was conducted by carrying out a 

preliminary search through the "Scopus" and "Web of Science" databases to ascertain the 

necessity of this review. Subsequently, "Scopus" was selected for the literature retrieval since 

it is the largest academic database with recent publication coverage (Debrah et al., 2022).  
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Table 2. 6: Common failure modes of water pipes 

 

 

Failure modes Schematic Descriptions Common causes Typical pipe materials Typical pipe 

diameter 

References 

Circumferential 

cracking 

 

Failure of the 

pipe at its 

circumference 

• Inadequate 

bedding condition 

• Inappropriate 

backfilling 

• Frost penetration 

• Cast iron 

• Ductile iron 

• Steel 

• Asbestos cement 

• Copper 

It can occur in all 

pipe sizes but is 

common in pipes 

with <200 mm 

diameter 

 (Grigg, 2017; K. T. H. 

Liyanage & Dhar, 

2017; Rajeev et al., 

2014; Trickey et al., 

2016) 

Longitudinal 

cracking 

 

Failure of the 

pipe at its longer 

side 

• Traffic loads 

• Internal water 

pressure 

• Frost penetration 

• Cast iron 

• Polyvinyl chloride 

• Polyethylene 

• Asbestos cement 

It can occur in all 

pipe sizes but is 

common in pipes 

with >300 mm 

diameter 

 (Barton et al., 2019; 

Farewell et al., 2012; Ji 

et al., 2020; Mora-

Rodríguez et al., 2014) 

Bell splitting 

 

Splitting of the 

bell at the joint of 

the pipe 

• Temperature 

• Internal water 

pressure 

• Cast iron 

• Ductile Iron 

It can occur in all 

pipe sizes but is 

common in pipes 

with >300 mm 

diameter 

 (Makar et al., 2001; 

Makar, 2000) 

Corrosion 

pitting 

 

Loss of metal at a 

localised region 

on the pipe 

• Soil acidity 

• Bacteria 

• Soil resistivity 

• Water quality 

• Cast iron 

• Ductile iron 

• Steel 

It can occur in all 

pipe sizes but is 

common in pipes 

with <200 mm 

diameter 

(Grigg, 2017; Pȩkala & 

Pietrucha-Urbanik, 

2018; Rajeev et al., 

2014) 

Blown-out hole 

 

Creation of large 

hole(s) on the 

pipe 

• Corrosion 

• Internal water 

pressure 

• Cast iron 

• Ductile iron 

• Steel 

• Polyvinyl chloride 

• Polyethylene 

All pipe sizes (Ji et al., 2020; Makar 

et al., 2001; Makar, 

2000; Tang et al., 

2019a) 
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After defining the exclusion criteria, as shown in Figure 2.8, the search string returns 385 

documents. These documents were forwarded to the following step, where a preliminary 

evaluation of abstracts and snowballing were performed. Snowballing is the process of 

identifying additional papers to include in the review. The two types of snowballing were 

adopted: forward and backward snowballing. Forward snowballing involves searching for 

papers that cite the paper being examined, while backward snowballing involves checking the 

reference list of the examined paper to find other relevant research articles. This process 

ensures no related paper is omitted. The outcome of these processes produced 76 research 

papers (see Figure 2.8).  

The study's second stage involves a scientometric review to map and visualize the selected 

research papers, identifying publication trends, keyword analysis, and contributions from 

research outlets and institutions. The final stage is a systematic review to recognize the 

contributions of scientific literature and identify knowledge gaps in the field. The systematic 

review categorizes techniques for modeling the failure probability of water pipes into three 

groups: physical, statistical-based, and AI-based models. 

 

Figure 2. 7: Review framework for techniques used in predicting failure probability of water pipe 
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Figure 2. 8: Complete procedures for literature retrieval for investigating failure probability of water 

pipes 

2.4.2. Scientometric review of techniques used for failure probability of 

water pipes 
 

As previously stated, this review employs scientometric analysis to identify the trend in the 

annual publication, keyword analysis, and the contribution of research outlets and influential 

institutions in the domain of water pipe failure probability prediction. Although various tools 

are available for conducting a bibliometric analysis, VOSviewer was chosen for this research 
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because it is straightforward and produces strong bibliometric networks (Debrah et al., 2022). 

Moreover, VOSviewer is open-source software. 

2.4.2.1 Publication trends 

Figure 2.9 shows the annual publishing trends for scholarly literature in the domain of failure 

probability of water pipes. As per the articles included in this study, the publication year ranged 

from 1987 to 2022. It can be seen that only two articles were published before the year 2000. 

This either shows that minimal efforts were paid to this domain in the last century, or the 

problem was not significant as the pipes were not aged. This could be attributed to the limited 

robust technologies and tools for developing predictive models in this era (Aryai et al., 2022). 

Another reason may be the lack of sophisticated digital tools or platforms to showcase the 

conducted research in this era (i.e., before 2000). From 2000 to 2010, the overall number of 

publications was 17, whereas from 2011 to 2020, the total number of publications was 42. This 

implies that the field is emerging as the number of publications increases from one decade to 

another. Although only 15 articles have been published in 2021 and 2022, it is expected that 

the number will exceed that of the previous decade by the end of 2030. This is due to the fact 

that many utilities are taking proactive measures to construct prediction models for their WDNs 

(Weeraddana et al., 2020). Furthermore, the emergence of AI-based models may promote 

further growth in this domain's publishing. 

2.4.2.2. Keyword co-occurrence analysis 

Keyword co-occurrence analysis is an important aspect of bibliometric/scientometric analysis, 

as it gives insight into the links between research areas within a specific domain. Using 

VOSviewer, the "minimum number of occurrences" requirement was set to 5; 38 keywords 

satisfied this condition (Ness Van Eck & Waltman, 2010).  
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Figure 2. 9: Trends in research publications 

However, it was observed that some of these keywords express the same meaning; hence, they 

were merged using the "Thesaurus file function" of the software. For instance, the keywords 

"risks" and "risk" were merged. According to Figure 5, three clusters are observed from the 

mapping network. The red cluster is dominated by "probability of failure," whereas the blue 

and green clusters are dominated by "water distribution network" and "risk assessment," 

respectively. The proximity of each node to one another indicates the strength of their 

relationship. For example, because their nodes are adjacent, the strength between "probability 

of failure" and "reliability analysis" is significant (see Figure 2.10). Table 2.7 reports the top 

30 keyword occurrences and their respective total link strength. This evidences that the selected 

articles to be reviewed in this study are highly representative of the domain, where "probability 

of failure" and "water pipe" are the most occurred keywords in the list. According to the 

frequency of occurrences and total link strength, "physical models" are well-researched in the 

literature compared to "artificial intelligence" or "machine learning" models. Furthermore, it is 

also observed that "cast iron pipe" is the most investigated water pipe type. In this context, a 
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link refers to the co-occurrence of two keywords in a publication. The strength of the link is 

represented by a positive numerical value, with a higher value indicating a stronger association 

between the two keywords. As presented by the developers of VOSViewer, the formula for 

calculating the link strength can be found in Equation 6 in (Nees van Eck & Waltman, 2009).  

The total link strength denotes the number of publications in which the two keywords appear 

together.  

 

Figure 2. 10: Keyword co-occurrence network 

 

2.4.2.3. Journals' contributions 

Table 2.8 lists the top 10 research outlets as per the scope of this review. This sort of analysis 

is beneficial for readers who want to know where to source information related to a particular 

research focus. Furthermore, it can provide insights into how institutional and commercial 

libraries allocate journal subscription funds based on their research interests. 
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Table 2. 7: Keyword co-occurrence and total link strength 

Keyword Occurrences Total link 

strength 

Probability of failure 37 212 

Water distribution 

network 

29 165 

Water pipe 28 162 

Water supply 26 157 

Physical model 19 120 

Failure analysis 20 113 

Reliability analysis 16 105 

Risk assessment 16 104 

Decision making 13 90 

Water piping systems 13 87 

Pipeline 12 86 

Cast iron pipe 12 82 

Failure (mechanical) 12 81 

Monte carlo methods 11 78 

Corrosion 10 62 

Statistical analysis 10 54 

Asset management 8 53 

Maintenance 7 51 

Forecasting 8 50 

Iron 7 50 

Risk analysis 6 50 

Water management 6 49 

Sensitivity analysis 8 48 

Deterioration 8 43 

Weibull distribution 5 43 

Machine learning 6 42 

Decision support 

systems 

5 41 

Pipeline corrosion 6 40 

Risk 6 37 

Distribution system 6 35 

 

Using VOSviewer, the analysis type was set as "citation," and the unit of analysis was 

"sources." Even though there is no limit for the "minimum number of documents" and 

"minimum number of citations," these requirements were set to 2 and 25, respectively, for 

generating the optimal network after multiple attempts. Besides, this threshold limit was also 
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in agreement with past studies (Tariq et al., 2021). Table 2.8 shows that "Reliability engineering 

and system safety," and “Water research” are the most productive journal in terms of the 

number of citations, documents, and total link strength. The table also reveals that, despite the 

fact that "Journal of water supply: research and technology - aqua" and "Journal of 

infrastructure systems" have five and four articles published, the citations of “Journal of 

hydroinformatics” and "Journal of water resources planning and management" with 3 research 

papers are higher.  

Table 2. 8: Journals contributions 

Source Documents Citations Total link 

strength 

Reliability engineering and system safety 8 319 11 

Water research 5 303 12 

Journal of hydroinformatics 3 204 8 

Journal of water resources planning and 

management 

3 150 12 

Journal of water supply: research and 

technology - aqua 

5 124 3 

Water resources research 2 99 7 

Engineering failure analysis 3 47 1 

Journal of infrastructure systems 4 36 6 

Urban water journal 3 34 8 

Journal of pipeline systems engineering and 

practice 

2 31 2 

 

2.4.2.4. Influential institutions 

The co-authorship of organizations is another necessary sort of bibliometric analysis performed 

in this review in order to know the most collaborative institutions in the domain of water pipe 

failure probability predictions. This will also be helpful for individuals or organizations 

interested in researching the failure probability of water pipes to know who they can collaborate 

with effectively. The analysis type was set to "co-authorship," and the unit of analysis was set 

to "organizations." The "minimum number of documents" and the "minimum number of 

citations" were set to 1 and 25, respectively. 61 out of 149 institutions qualified for these 
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criteria, and the top 10 are presented in Table 2.9. According to the results, " Université Laval, 

Canada," "McGill University, Canada," "Eawag:Swiss federal institute of aquatic science and 

technology, Switzerland," and “University of British Columbia, Canada” are the most 

collaborative institutions, with each exhibiting a total link strength of 4. Furthermore, the 

results show that few institutions in Canada, Switzerland, Australia, and Spain have established 

some collaboration with other institutions. To achieve a high standard in combating the 

increasing failure rate of water pipes through the development of robust predictive models, 

institutions across the globe should collaborate with each other so they can benefit from diverse 

knowledge and experience, as this is currently lacking in the scholarly literature. 

Table 2. 9: Influential institutions 

Organization Documents Citations 
Total link 

strength 

Université Laval, Québec 

city, Canada 
1 132 4 

McGill university, 

Montreal, Canada 
1 35 4 

Eawag: Swiss federal 

institute of aquatic 

science and technology, 

Switzerland 

3 166 4 

University of British, 

Columbia, Kelowna, 

Canada 

1 32 4 

Monash university, 

Melbourne, Australia 
1 55 3 

Rmit University, 

Australia 
1 33 3 

Swinburne university of 

technology, Australia 
1 33 3 

Rajani Consultants inc, 

Ottawa, Canada 
1 33 3 

Southwest Petroleum 

University, China 
1 29 3 

Universidad politécnica 

de valencia, valencia, 

Spain 

1 32 2 
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2.4.3. Systematic review of techniques used for failure probability of water 

pipes 

The systematic review findings, which center on the adopted techniques for predicting the 

failure probability of water pipes, are presented. Figure 2.11 illustrates the proposed 

classification of the techniques, which involve physical, statistical, and AI-based models.  

 

Figure 2. 11: Prediction models for failure probability of water pipes 

2.4.3.1. Physical models 

Researchers in this domain have invested enormous efforts in modeling the failure probability 

by considering the pipes' physical failure mechanism. Table 2.10 gives a summary of the 

reviewed physical models, including the authors, the employed methodology, model accuracy 
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(if available), validation status, failure mode, the most important factors considered, the used 

data type, and the pipe material. It should be noted that the "most important factors considered" 

refer to the critical factors affecting the failure probability in each study (where applicable), 

which are determined from a sensitivity analysis, correlation analysis, or relative importance 

analysis.  

(I) Limit state equations based on structural reliability  

During the development of a physical model based on reliability theory, a limit state function 

(LSF) is defined by comparing the capacity of a pipe with the stress exerted on it. Equation 2.1 

states a typical LSF, where LSF violation will result in a pipe's failure. Thus, the probability of 

water pipe failure can be represented by Equation 2.2 (Mahmoodian & Li, 2018). It should be 

noted that the LSF can be defined based on different failure modes such as burst, leakage, 

longitudinal deflection, etc. (Davis et al., 2008; W. Wang et al., 2021). Furthermore, the LSF 

can be transformed into a factor of safety (FoS) to define the failure criteria of pipes (Sadiq et 

al., 2004).  An FoS of more than 1 indicates that the pipe is safe and has no failure, while an 

FOS of less than 1 shows that the pipe's capacity has been exceeded and, thus, is considered 

failed. In terms of quality-based assessment, a partial FoS is derived by comparing the load 

exerted on the pipe to its resistance.  

𝐺 (𝑆, 𝐿, 𝑇) = 𝐿(𝑇) − 𝑆(𝑇)                  (2.1)  

𝑃𝑓 = 𝑝 [ 𝐿(𝑇) − 𝑆(𝑇)  ≤ 0 ]                                                                                        (2.2) 

where LSF is represented by G (S, L,T), L denotes the capacity of a pipe, S represents the 

exerted stresses on the pipe, T refers to the time, p denotes the probability of LSF violation, 

and Pf denotes the failure probability. Therefore, if G(S,L,T)>0, the pipe is considered safe, 

while failed if G(S,L,T)≤0.  In most studies, the failure probability (i.e., Equation 2.2) is 

estimated using a structural reliability analysis technique such as simulation approaches (i.e., 
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Monte Carlo Simulation, MCS) or analytical approaches (i.e., First Order Reliability Method, 

FORM). However, MCS is the most adopted approach in scholarly literature due to its ability 

to deal with complex problems such as the failure of water pipes (Padmanabhan et al., 2006). 

Further details on MCS can be found in the study of Rubinstein & Kroese (Rubinstein & 

Kroese, 2008).  In this method, the variables formulating the LSF are randomly selected and 

employed to evaluate its outcome. If the LSF is violated, the pipe will fail; otherwise, no failure 

event will be recorded. This process requires a large simulation number (e.g., over 10,000 

simulations) (Punurai & Davis, 2017; Wilson et al., 2015) to estimate the failure probability by 

using Equation 2.3.  

Pf = 
𝑛

𝑁
           (2.3) 

where n is the number of times the LSF is violated, and N is the total number of simulations.  

As seen in Equation 1, the LSF comprises two components: resistance of the pipe to failure 

and exerted stresses on the pipe. The two components of LSF for previous studies are shown 

in Table 2.11.  

Mahmoodian & Aryai  (2017) investigated the failure probability of corroded steel water pipes. 

The non-linearity of corrosion was taken into consideration based on the  Power Law model 

(Romanoff, 1957)  using Equation 2.4.  

∆ = 𝑎𝑡𝑏                                                                                                                                                                 (2.4) 

where ∆ denotes the corrosion depth at a time "t," "a," and "b" could be determined from the 

analysis of the inspection data.  
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Table 2. 10: Summary of the physical models 

Authors Methodology Validated

? 

Failure mode Accuracy The most important 

factors considered 

Type of data Material type 

(Mazumder, Salman, 

Li, et al., 2021) 

 

Limit state equations 

+ MCS  

No Collapse - - Field data CI 

(W. Wang et al., 

2021) 

Limit state equations 

+ MCS  

No Leakage, Burst, 

Deflection, and Bending 

failure 

- - Field data CI 

(W. Li et al., 2021) 

 

Finite Element 

Analysis and MCS  

Yes Burst - Pipe thickness, Internal 

pressure, Traffic 

Literature-

based + Field 

data 

CI 

(Mady, 2021) Limit state approach + 

MCS  

No Collapse -  Field data Concrete 

(Aryai et al., 2020) 

 

Finite element 

modeling + copula 

method 

Yes Corrosion pit and 

collapse 

- Diameter, wall 

thickness 

Field data CI 

(Zhang et al., 2019) 

 

Limit state equations 

+ MCS  

No Corrosion pit, burst, and 

rupture 

- Radial corrosion rate, 

axial corrosion rate 

Literature-

based 

Steel 

(Mahmoodian & Li, 

2018) 

Limit state equations 

+ MCS  

No Corrosion pit - Wall thickness, 

corrosion depth 

Literature-

based + Field 

data 

CI 

(Phan et al., 2018) Limit state equations 

+ MCS + Weibull 

distribution 

No Corrosion pit and burst - Wall thickness, Loads, 

Corrosion size 

Literature-

based data 

- 

(Aryai & 

Mahmoodian, 2017) 

Limit state equations 

+ MCS  

Yes Leakage, circumferential 

cracking, ring deflection, 

wall rupture, and 

buckling 

15.6% 

(prediction 

error) 

Length Field data + 

Historical 

data 

CI 

(Mahmoodian & 

Aryai, 2017) 

Limit state equations 

+ MCS  

No Bending, wall thrust, ring 

deflection, longitudinal 

- Corrosion factors Field data Steel 
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deflection, leakage, and 

buckling 

(Punurai & Davis, 

2017) 

Limit state equations 

+ MCS  

No Burst and collapse - - Field data + 

Literature-

based data 

AC 

(Daniel Wilson et 

al., 2015) 

Factor of safety 

analysis + MCS  

No Corrosion pitting and 

collapse 

- Diameter, Buried depth  Field data + 

Literature-

based data 

CI 

(Qian et al., 2013) 

 

Limit state equations 

+ FITNET FFS 

Procedure + MCS  

Yes Collapse - Tensile strength, Crack 

depth, Internal pressure 

Literature-

based 

- 

(Jallouf et al., 2011) Factor of safety 

analysis + MCS  

No Burst 

 

 

- - Field data CI, Steel, PVC 

(Qian et al., 2011) FITNET FFS + Limit 

state equations +MCS  

No Burst - Depth of defect, Tensile 

strength, Wall thickness 

Field data + 

Literature-

based data 

- 

(Davis et al., 2008) Limit state equations 

+ MCS  

No Burst and collapse - - Field data AC 

(De-Silva et al., 

2006) 

Limit state equations 

+ FOSM 

No Corrosion pit - - Field data Steel 

(De Leon & Macías, 

2005) 

 

Limit state equations 

+ FOSM  

No Corrosion pit and burst - - Field data - 

(Davis et al., 2004) Limit state equations 

+ Survival function + 

MCS  

No Corrosion pit - - Field data CI 

(Sadiq et al., 2004) Factor of safety 

analysis + MCS  

No Corrosion pit and 

collapse 

- Corrosion depth Literature-

based + Field 

data 

CI 
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Table 2. 11: Components of limit state functions and driving factors 

Failure modes Resistance Stress Driving 

Factors 

Reference 

Longitudinal 

split 

𝜎
𝑓= 𝜎𝑜−120 

(𝐴𝑔𝑒 × 𝛿)
𝑏𝑜

 𝑊 = (𝑃𝑒 + 𝑃𝑠)(𝐷 + 𝑏𝑜 Corrosion (Davis et 

al., 2004) 

Pitting 𝑃𝑓

=  
2𝜎𝑢𝑡𝑠  × 𝑡 × 0.5

65
𝜎𝑦𝑠

(𝐷 − 𝑡)
 

× [
1 − 

𝑑(𝑇)
𝑡

1 −  
𝑑(𝑇)

𝑡
 × 𝑄−1 

 ]    

Pop Corrosion (Qian et 

al., 2011) 

Flexural failure 𝑀𝑛 =  
2𝐷𝑓𝐸∆𝑌𝑦𝑜𝑆𝑓1

𝐷𝑚
2  Fy Ground 

movement 

and external 

loadings 

(Gabriel, 

2011) 

Ring deflection 

failure 

∆𝑋

=  
𝐾 (𝐷𝐿𝑊𝑐 + 𝑃𝑠)𝐷𝑚

8𝐸𝐼
𝐷𝑚

3 + 0.061𝐸′
 

∆𝑋𝑐𝑟 = 0.05 𝐷𝑖 Soil 

compression 

(BS 9295, 

2010) 

Buckling failure 𝑃 =  
1

𝑆𝑓
 √(32𝑅𝑤𝐵′𝐸𝑠  

𝐸𝐼

𝐷𝑚
3 ) 𝑃𝑐𝑟 = 𝑅𝑤

𝑤𝑐

𝐷𝑚
+ 

𝑝𝑠

𝐷𝑚
 Elevated 

temperature 

(Moser & 

Folkman, 

2008) 

Circumferential 

failure 

𝜎𝑦 𝑝𝑓 =  
𝑃𝑜𝑝 × 𝐷

2𝑡𝑤
+ 𝜎𝑏 Internal 

pressure and 

bending 

stress 

(Phan et 

al., 2018) 

Leakage failure 𝑆𝑡𝑜𝑡𝑎𝑙  =  ∑𝜋𝑅𝑘
2 𝑆𝑙𝑖𝑚 Corrosion (Li et al., 

2017) 

Wall thrust 

failure 

𝑇𝑎 = 𝐹𝑦(𝑊𝑡 −  ∆)∅ 𝑇𝑐𝑟 = 1.3 (1.67𝑃𝑠𝐶𝐿 + 𝑃𝑊) 
𝐷𝑜

2
 Traffic, 

hydrostatic 

and soil 

loads 

(Gabriel, 

2011) 

Collapse 

pressure 

𝑝𝑡𝑜𝑡𝑎𝑙

=  
𝛾𝑤

1728
𝐻𝑤

+ 𝑅𝑤

𝑤𝑠

12𝐷𝑜
+

𝑤𝐿

144𝐷𝑜
 

𝑝𝑐𝑟

=  
1.2𝐶𝑛 (𝐸𝐼)0.33(∅𝑠𝐸′𝑘𝑣)0.67𝑅𝐻

𝑆𝑓𝑟𝑜
 

External and 

internal 

loads 

(W. Wang 

et al., 

2021) 

Bending failure 
𝜎𝑚 = 

(𝑤𝑠 + 𝑤𝐿)𝐿2

8𝜋[𝑑 − 𝑎(𝑡)]𝑟2
 

𝜎𝑓  External 

loadings 

(W. Wang 

et al., 

2021) 

 

In order to achieve a high level of prediction accuracy, 10,000 simulations were considered, as 

the sample size has a significant effect on the accuracy of MCS results. More importantly, six 

failure modes (i.e., limit states) were considered: buckling, ring deflection, longitudinal 
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deflection, flexural, wall thrust and burst. The flexural and wall thrust limit states were 

considered as a series system since the occurrence of any of the two limit states can cause 

failure. The other four states were considered as a parallel system since the occurrence of any 

of them could not cause the system to fail. Figure 2.12 shows the six modes of failure using the 

appropriate shapes in fault tree analysis to represent the top event (i.e., failure of water pipes), 

failure modes (i.e., basic events), and the logic gates. Further reviewed articles relating to the 

physical based models are presented in Appendix A.  

 

Figure 2. 12: Multiple failure modes 

 

(II) Advantages and limitations of physical models 

Physical models are based on interpretative equations; therefore, they facilitate a proper 

understanding of the water pipe failure mechanism. Furthermore, physical models are easy to 

develop, especially when the model parametrization is simple yet accurate. However, the data 

required to develop a physical model is costly to get. The data are mainly obtained through site 

inspection, which is technically difficult to conduct because of the pipes' locations. 

Furthermore, the collected data may not fully represent the absolute condition of the pipes, as 

only a segment of the pipe can be practically investigated. For instance, the corrosion depth 

can vary spatially along the pipe length, which may not be captured by the data collected. 
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Another limitation of physical models is their unsuitability for global applications. This is due 

to the difference in environmental conditions of various geographical locations.  

2.4.3.2. Statistical-based models 

The second category is statistical-based models. As the failure mechanism of the pipelines is 

of complex behavior, the development of statistical-based models does not require a proper 

understanding of such behavior. Unlike physical models, statistical-based models rely on 

historical data. This type of modeling is suitable for pipes with substantial historical failure 

data. The summary of the statistically based studies is presented in Table 2.12. Furthermore, in 

the case that more than one technique is used in a study, the one with the highest accuracy is 

reported in the Table. In order to choose an appropriate statistical method for fitting historical 

data to a model, the failure mode of the pipes in the network can be a deciding factor. For 

instance, the distribution of historical data associated with pipe failure due to corrosion pitting 

may be different from those associated with pipe deflection. Therefore, the statistical-based 

models are grouped into parametric and non-parametric models. The parametric models 

include Weibull distribution, Poisson distribution, Proportional hazard models, and Logistic 

regression. On the other hand, the non-parametric models include, Bayesian-based models, 

Hierarchical Beta Process (HBP) models, and other-statistical based models such as fuzzy 

analytical network process (FANP), preference ranking organization method for enrichment 

evaluation (PROMETHEE), among others. The details of these statistical-based models, as per 

the articles reviewed in this study, are presented in Appendix A.  

(I) Advantages and limitations of statistical-based models 

Since statistical-based models can be built on historical failure data of water pipes from 

installation until the out-of-service time, these models could be handy in modeling the entire 

life cycle of water pipes. Another benefit of this model category is that it is cost-effective. 

However, the prediction accuracy of statistical models depends on the historical data quantity 
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and quality. For instance, Bayesian models need to be updated continuously with the required 

data in order to sustain their prediction accuracy. Additionally, a limited number of variables, 

mostly due to a lack of data, are included in the development of statistical-based models, which 

can result in inappropriate predictions. Furthermore, statistical-based models require 

formulating some assumptions for model development, which may need some level of 

expertise in addition to their computational complexity.  

2.4.3.3. Artificial intelligence-based models  

In the past few decades, AI-based models have emerged as the way forward in modeling water 

pipe failure due to their robust predictive capacity. AI models are developed by simulating 

human intelligence on computer systems (Samoili et al., 2020). In this section, models relating 

to fuzzy and machine learning algorithms are reviewed and presented in Table 2.13. For 

instance, Fan et al. (2022) compared five machine learning algorithms (lightGBM, ANN, k-

NN, SVM, and LR) to classify water pipes as broken or intact. The models used 13 factors, 

including 11 continuous and 2 categorical variables, to predict pipe failure probability on a 0-

1 scale. Results showed that while most factors correlated with pipe failure, no single factor 

was dominant, supporting the complex nature of pipe failure mechanisms. The lightGBM 

algorithm performed best in terms of prediction accuracy and computational efficiency, 

followed by the ANN model. This study highlights the potential of machine learning in 

predicting water pipe failures and the importance of considering multiple factors in such 

predictions. Further reviewed articles relating to AI-based models are presented in appendix. 

(I) Advantages and limitations of ML-based models 

As an important benefit, many ML-based models (i.e., non-parametric) do not require pre-

assumptions on the distribution and form of pipe failure data.  Furthermore, ML-based models 

are able to handle heavy data sets effectively within a limited time.   
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Table 2. 12: Summary of statistically based studies 

Authors Methodology Validated? Evaluation 

metric 

The most important 

factors considered 

Type of data Material type 

(Al-Ali et al., 2020) 

 

Logistic regression No 0.74 

(Acc) 

Diameter, Material type Historical data Concrete, DI, PVC, 

FRP, and others 

(Konstantinou & 

Stoianov, 2020) 

Logistic regression and Linear 

Discriminant Analysis (LDA) 

Yes 0.81 (AUC) Pressure and Diameter Historical data AC, DI, and CI 

(Weeraddana et al., 

2020) 

Gaussian Process Regression + 

Bayesian model 

Yes 0.73 (AUC) - Historical data AC and PVC 

(Phan et al., 2019) Weibull distribution model No - - Historical data CI and DI 

(Tchórzewska-Cieślak 

et al., 2019) 

Bayesian model No - - Historical data - 

(Garcia et al., 2019) Clustering-based spatiotemporal 

analysis 

No - - Historical data CI 

(Ismaeel & Zayed, 

2018) 

FANP and PROMETHEE + 

Probability theory 

Yes 94.4 (VF) Wall thickness, Leaks Historical data + 

Expert's opinion 

- 

(Ward et al., 2017) Weibull distribution model Yes 96.0% (R2) - Historical data PE and others 

(Chik et al., 2017) Bayesian simple model Yes 0.75 (AUC) - Historical data CI 

(Luo et al., 2017) Hierarchical beta process Yes 0.798 (AUC) - Historical data - 

(Elsawah et al., 2016) Homogenous Poisson model No - - Historical data CI, Steel, PVC, DI 

(Shin et al., 2016) Bayesian Inference + Markov chain 

Monte Carlo method 

No - Diameter, Length Historical data Ductile cast iron 

(Vladeanu & Koo, 

2015) 

Weibull distribution model Yes 2.71% (PE) - Historical data AC, CI, DI, 

Concrete, and PVC 

(Lin et al., 2015) Hierarchical beta process Yes 0.827 (AUC) - Historical data - 

(Z. Li et al., 2013) Hierarchical beta process Yes 0.61 (AUC) - Historical data - 

(Singh & Adachi, 2012) Homogenous Poisson model No - - Historical data CI, DI, PVC, 

Concrete 

(Friedl et al., 2012) Logistic regression No - Pressure, Diameter Historical data CI, DI, AC, 

Concrete, PE, 

PVC, Steel 
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(Karamouz et al., 2012) Minimum Redundancy-Maximum 

Relevance + AHP 

No - Diameter, Soil pH, and 

Length 

Literature-based 

data 

- 

(Tchorzewska-Cieslak, 

2012) 

Weighting method No - - Historical data + 

Expert's opinion 

CI, PVC, PE, Steel 

(Kleiner & Rajani, 

2012) 

Bayesian model, Ordered list model 

and Logistic regression 

Yes  - Age, Length, Number of 

past failures 

Historical data CI, DI, AC 

(Scheidegger et al., 

2013) 

Weibull-exponential + Bayesian 

Inference 

Yes - Diameter and Material Historical data DI 

(Scholten et al., 2014) Weibull-exponential + Bayesian 

Inference 

Yes - Diameter and Material Historical data DI 

(Singh, 2011) Bayesian model No - - Historical data CI, DI, CC, AC, 

GI, PVC, and 

others 

(Debón et al., 2010) Proportional Hazard Model Yes 0.76 (AUC) - Historical data AC, CI, DI, and PE 

(Carrión et al., 2010) Proportional Hazard Model Yes - - Historical data CI, PE, and AC 

(Rogers & Grigg, 2007) Non-homogeneous Poisson 

distribution model 

No - - Historical data AC, CI, concrete, 

PVC, Steel, and 

other 

(Economou et al., 2007) Non-homogeneous Poisson 

distribution model + Bayesian 

model 

Yes 17.3% (PE) - Historical data AC 

(Vanrenterghem-Raven, 

2007) 

Proportional Hazard Model Yes 15% (PE) Age, Length, Diameter, 

Previous break 

Historical data Steel and Non-steel 

(Mailhot et al., 2000) Proportional Hazard Model No - Age Historical data - 

(Cooper et al., 2000) Logistic regression No - Diameter, Soil 

corrosivity, Traffic load  

Historical data CI 

(Lei & Sægrov, 1998) Weibull distribution model No - - Historical data CI, DI, Plastic, and 

others 

(Andreou et al., 1987) Proportional Hazard Model + 

Poisson model 

No - - Historical data CI, Steel, Concrete 

Acc : percentage of the pipes whose true conditions were predicted correctly 

AUC: the area under the curve, VF: validation factor, PE: percentage error 
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Table 2. 13: Summary of AI-based studies 

Authors Methodology Validated? Evaluation 

metric 

The most important factors 

considered 

Type of data Material type 

(Fan et.al., 2022) 

 

LightGBM, LR, SVM, 

ANN, k-NN 

Yes (0.81) AUC Interval to last break, cold 

days, hot days, pipe length, 

pipe age 

Historical data CI, DI, and others 

(T. Y.-J. Chen et al., 

2022) 

RF, Boosting trees, 

XGBoost 

Yes 0.899 (AUC) - Historical data CI, DI, PVC, and 

others 

(Rifaai et al., 2022) LR Yes 0.680 

(AUC) 

Years from past failure, length, 

number of past failure 

Historical data AC, CI, DI, PVC, 

and others 

(Raspati et al., 2022) RF Yes - Age, Length, Internal pressure, 

and Pipe material 

Historical data AC, CI, DI, GRP, 

PE, and PVC  

(Weeraddana et al., 

2021) 

Random survival forest  Yes 0.719 (AUC) - Historical data AC, CI, DI, PVC, 

PE 

(Jara-arriagada & 

Stoianov, 2021) 

LR Yes 0.814 

(AUC) 

Pressure Historical data AC, CI, PE 

(Giraldo-González & 

Rodríguez, 2020) 

GBT, SVM, ANN and 

Bayes 

Yes 0.998 (AUC) Previous failure, Length, 

Precipitation 

Historical data AC and PVC 

(Rahbaralam et al., 

2020) 

LR and XGBoost Yes 0.859 

(AUC) 

Age, Material, Length Historical data DI, PE, Steel 

(Kumar et al., 2018) Gradient Boosting 

Decision Trees 

Yes 0.62 (Precision) Previous failure, Age, 

Diameter 

Historical data CI, DI, and others 

(Konstantinou & 

Stoianov, 2020) 

Gradient boosting, ANN, 

RF 

Yes 1.0 (AUC) Age, Length, Internal pressure Historical data AC, DI, and CI 

(Al-Zahrani et al., 2016) Fuzzy-based  No - - Historical + Literature 

data 

AC, PVC, Steel 

(Salehi et al., 2021) Fuzzy-based No - - Historical data + 

Literature data 

CI, DI 
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Moreover, the introduction of automated machine learning tools such as TPOT, Orange, and 

RapidMiner, amongst others, has made ML applications easier and more accessible to 

individuals who are not experts in programming languages (Baharun et al., 2022; Demšar & 

Zupan, 2013; Randal et al., 2016). However, ML-based models are as good as the quality and 

quantity of the data used in developing them. Hence, low-quality and limited data will result in 

inaccurate predictions. Besides, ML models developed with limited data and an algorithm that 

optimizes its parameters may lead to overfitting (T. Y.-J. Chen et al., 2022). Hence, such a 

model cannot be generally applied to other historical failure data. Since ML-based models 

require a substantial amount of data, this implies that the models are most suitable for pipes 

that exhibit higher failure frequency. Additionally, some of the ML algorithms have zero to low 

interpretability, which might make it difficult to understand the relationship between the 

explanatory variables and the output of such models.  

2.5. EXISTING FAILURE INDICATORS 

Table 2.14 provides a summary of previous studies that have employed ML techniques to 

predict various failure indicators of water pipes. These studies span across different 

geographical locations and consider diverse pipe materials such as cast iron (CI), ductile iron 

(DI), asbestos cement (AC), polyvinyl chloride (PVC), polyethylene (PE), and others. The 

predicted outcomes range from condition index, wall thickness loss, remaining useful life, time 

to failure, to failure probability or rate. The performance metrics reported include accuracy, 

precision, recall, F1-score, area under the curve (AUC), mean absolute error (MAE), mean 

absolute percentage error (MAPE), root mean squared error (RMSE), and R-squared (R²) 

values. Various data splitting techniques, such as train-test split, k-fold cross-validation, and 

yearly forecasting, have been employed to evaluate the models’ performance. In cases where 

more than one model is developed in a study, the performance metrics of the best model are 
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presented in Table 2.14. This table highlights the extensive efforts made by researchers to 

leverage ML for the proactive management of WDNs.  

Based on the review, existing water pipe failure prediction models have focused on predicting 

the likelihood of failure events occurring, without distinguishing between failure types like 

leaks versus bursts (Rifaai et al., 2022; Robles-velasco et al., 2020). However, leaks and bursts 

have distinct failure mechanisms and driving factors. Leaks often result from corrosion-

induced holes and joints over time, while bursts are sudden ruptures mostly from excessive 

internal pressure (Pȩkala & Pietrucha-Urbanik, 2018).  Moreover, despite the significant 

advancements in modeling water pipe failures, there remains a scarcity of models that delve 

into the specific causes behind these failures. Current models predominantly focus on 

predicting the probability, timing, and rate of failure. A deeper understanding of the root causes 

via predictive modeling is essential for crafting precise intervention strategies and enhancing 

decisions regarding maintenance and replacement of water infrastructure. 
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Table 2. 14: Summary of previous studies predicting various outcomes as failure indicators of water pipes 

Technique Predicted 

outcome 

Study 

location 

Pipe material Performance metrics Data splitting Reference 

HBO-DL Condition 

index 

Hong Kong CI, AC, GI, GIL, PE, 

PVC 

MAE – 0.144 

RMSE – 0.193 

MAPE – 2.387% 

Training – 80% 

 

Testing – 20% 

(Mohammed Abdelkader 

et al., 2024) 

XGBoost, 

Random 

Forest, 

Logistic 

regression 

Failure 

probability 

United 

Kingdom 

AC, CI, PE, PVC, DI Recall – 0.526 

Precision – 0.389 

F1-score – 0.226 

5 folds (Cross 

validation) 

(Beig Zali et al., 2024) 

CatBoost, 

DT, RF, 

XGBoost, 

LightGBM 

Wall 

thickness 

loss 

Canada, 

USA 

CI, DI, Steel MAE – 3.013 

MAPE – 24.044 

R2 – 0.904 

Training – 80% 

 

Testing – 20% 

(Models et al., 2024) 

Logistic 

regression 

Failure 

probability 

Uganda Steel, UPVC Accuracy – 0.969 

AUC – 0.996 

Training – 60% 

 

Testing – 40% 

(Auma et al., 2023) 

RestNet, 

CNN 

Failure 

probability 

China CI, Steel, PE, PCCP Recall – 0.8571 

Precision – 0.0207  

AUC – 0.8703 

Training – 90% 

 

Testing – 10% 

(Liu et al., 2023) 

Probabilistic 

LSTM, 

ARIMAX 

Failure rate USA - MSE – 3.09 

UR – 3.19  

Training – 1985-

2012 data 

 

Testing – 2012-

2019 data 

(Fan et al., 2023) 

ANN, 

LightGBM, 

Failure 

probability 

USA CI, DI, and others AUC – 0.81 

Recall – 0.861 

Training – 80% 

 

Testing – 20% 

(Fan, Wang, Zhang, 

Xiong, et al., 2022) 
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LR, KNN, 

and SVC 

XGBoost, 

RF, BT 

Failure 

probability 

USA CI, DI, PVC, and others AUC = 0.8992 Training – 12 

years data 

 

Testing –3 years 

data 

(T. Y.-J. Chen et al., 2022) 

MARS, GEP, 

and M5 Tree 

Failure rate Iran AC, CI, PE R = 0.981 

RMSE = 0.544 

Training – 80% 

 

Testing – 20% 

(Amiri-Ardakani & 

Najafzadeh, 2021) 

WPHSM, 

RF, and RSF 

Remaining 

useful life 

Canada AC, CI, and DI C-Index = 0.925 Training – 80% 

 

Testing – 20% 

(Snider & McBean, 2021) 

ANN Time to 

failure 

Switzerland CI, DI, and PE R = 0.882 Training – 80% 

 

Testing – 20% 

(Kerwin et al., 2020) 

LR and SVR Failure 

probability 

Spain CE, PL, and ME AUC – 0.873 

Recall – 0.848 

Acc- 0.769 

Training – 5 

years data 

 

Testing – 

2 years data 

(Robles-velasco et al., 

2020) 

ANFIS and 

ANN 

Remaining 

useful life 

USA and 

Canada 

AC, CI, DI, and Steel MAE = 0.880 

MAPE = 5.431 

RAE= 0.007 

Training – 75% 

 

Testing – 25% 

(Tavakoli et al., 2020) 

ANN, RF, 

and XGBoost 

Time to 

failure 

North 

America 

AC, CI, DI, and PVC R – 0.85  

RMSE – 5.81 

Training – 80% 

 

Testing – 20% 

(Snider & McBean, 2018) 
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2.6. RESEARCH GAPS 

Despite the contribution of previous studies in relation to the failure of water pipes in WDNs, 

there are still some areas that are yet to be fully explored. Following the comprehensive review 

conducted in this study, four research gaps are identified and discussed as follows.  

1. One of the notable research gaps identified is the limited attention given to the critical 

factors that influence water pipe failure and their interrelationships. While previous 

studies have made efforts to rank a few select factors, there remains a dearth of 

comprehensive investigations into the crucial factors that play a significant role in water 

pipe failure. Identifying and understanding a comprehensive list of failure factors is 

essential for developing effective strategies to mitigate failures and improve the overall 

management of WDNs. By bridging this gap, valuable insights can be gained into the 

intricate dynamics of water pipe failure and pave the way for more informed decision-

making processes (Research objective 1). Furthermore, the impact of these failure 

factors on water pipe failure modes remains relatively unexplored within the existing 

literature. While some studies have examined the failure modes themselves, there is a 

lack of comprehensive research that delves into the intricate relationship between the 

failure factors and the resulting failure modes. Understanding how these factors 

contribute to specific failure modes is crucial for devising targeted preventive and 

maintenance strategies. By addressing this research gap, an improved understanding of 

the complex interactions between failure factors and failure modes can be gained, 

leading to more effective and efficient management of WDNs (Research objective 2). 

2. In relation to previous studies that have investigated the probability of water pipe 

failure, ML-based models have been understudied compared to physical and statistical-

based models. Therefore, it is important to explore the capabilities of ML to develop 

effective models for predicting the failure probability of water pipes. Furthermore, the 
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few previous ML-based models have some limitations: 1) there is a lack of systematic 

selection of hyperparameters for the ML models; 2) there is a lack of systematic 

selection of the best features (i.e., input variables) to include in the model development; 

3) limited studies have interpreted the contribution of each feature to the predictive 

model; 4) there is a lack of a model deployment via a web-application, which can 

enhance the decision-making process in WDN management (Research objective 3a to 

answer the question – How to model the failure probability of water pipes?) 

3. While some studies exist on the development of models to predict the probability of 

water pipe failure, the extant literature lacks studies investigating the specificity of the 

failure, such as developing models to predict the probability of leaks or bursts in a WDN 

(Research objective 3b to answer the question – How to model the probability of leak, 

burst, and no leak/burst?). Understanding the probability of leaks or bursts in a WDN 

is crucial for effective infrastructure management and maintenance. By accurately 

predicting these specific failure events, water utilities can proactively implement 

targeted measures to prevent and mitigate potential damages, reduce water loss, and 

ensure an uninterrupted water supply to consumers. However, the lack of models that 

specifically address the probability of leaks or bursts hinders understanding the 

underlying mechanisms and patterns associated with these specific failure events. 

4. Understanding the causes of water pipe failure is crucial for the effective management 

and maintenance of WDNs. While previous studies have made valuable contributions 

by identifying various factors that contribute to pipe failure, there is a need to go beyond 

mere identification and delve into the development of predictive models. Predictive 

models offer a powerful tool for assessing and managing the risks associated with water 

pipe failure. By analyzing historical data and incorporating relevant factors, these 

models can provide insights into the specific causes of failure and enable proactive 
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measures to be taken to mitigate risks. However, despite the importance of such models, 

their development remains a research gap in the current literature (Research objective 

4). 

2.7. SUMMARY 

This chapter presents a comprehensive review of previous studies relating to the failure of 

water pipes. Firstly, an extensive review of factors influencing water pipe failure is presented. 

A hybrid method of scientometric and systematic analysis is adopted for the literature review. 

The factors are categorized into pipe-related, operation-related, external-related, and soil-

related factors. Subsequently, the common failure modes in water pipes are presented. 

Furthermore, the techniques used for predicting the failure probability of water pipes are 

reviewed, which are divided into physical, statistical, and AI-based models. The existing failure 

indicators predicted in previous studies are also reviewed. Consequently, four research gaps 

are identified based on the literature review, which forms the basis for the remaining objectives 

of the study.  
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Chapter 3 

 

RESEARCH METHODOLOGY AND MODEL 

DEVELOPMENT2 

3.1. INTRODUCTION 

This chapter presents the methodologies adopted for this study. Firstly, it provides an overall 

framework that can be used to achieve the objectives of the research. Subsequently, the detailed 

methods and techniques employed to fulfill the objectives are explained alongside the novelty 

introduced by the study.  

3.2. OVERALL FRAMEWORK 

The overall research framework is depicted in Figure 3.1. The research study starts with a 

literature review to identify research gaps. Afterward, the research objectives are formulated 

based on the identified research gaps. As shown in Figure 3.1, this study entails four research 

objectives. Objective 1 deals with a scientometric and systematic review of failure factors and 

 
2 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Zayed, T. & Adey, B.T. "Explainable deep learning models for predicting water 

pipe failure." Journal of Environmental Management (IF = 8.7, Q1). (Under review – 

1st cycle) 

Taiwo, R., Zayed, T. & Adey, B.T. "Interpretable ensemble models for predicting causes of 
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failure modes of water pipes. The relevant literature are retrieved using Scopus and Web of 

Science databases. VOSviewer software is used for the scientometric review, while Nvivo 

software aids in the systematic review process. The detailed methodology adopted for the 

literature review has been explained in sections 2.2.1 and 2.4.1. While both scientometric and 

systematic reviews contribute to understanding water pipe failure, they serve distinct purposes 

in this research. The scientometric analysis provides a quantitative assessment of the research 

landscape through bibliometric indicators, publication patterns, and citation networks, helping 

identify research trends, influential authors, and emerging topics in the field. This approach 

offers a macro-level view of how knowledge of water pipe failure has evolved over time. In 

contrast, the systematic review follows a structured methodology to critically analyze and 

synthesize the actual content of the literature, focusing on identifying specific failure factors, 

modes, and their relationships. This micro-level analysis involves detailed examinations of 

methodologies, findings, and conclusions from individual studies to extract meaningful 

patterns and insights. The combination of these complementary approaches provides both 

breadth (scientometric) and depth (systematic) in understanding the current state of knowledge 

in water pipe failure research. 

In the second objective, the identified factors influencing water pipe failure and common 

failure modes in WDNs are used to design a questionnaire survey. The questionnaire is sent to 

experts working in the domain of WDN, both in the industry and academic institutions. SPSS 

and SmartPLS software are used to analyze the questionnaire data. Partial least square 

structural equation modeling (PLS-SEM) is employed to model, rank, and investigate the 

relationship between the failure factors and failure modes. Hypotheses are proposed and 

validated using statistical tests.  

The third objective entails two tasks. The first task is to develop an optimized model for 

predicting water pipe failure probability. The logistic regression (LR) algorithm is used as a 
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base model to develop the predictive model. Subsequently, the genetic algorithm (GA) is 

utilized to optimize the hyperparameters and select the best features for the LR model. In 

addition to the interpretability provided by the LR's coefficient, the SHapley Additive 

exPlanations (SHAP) framework is employed to explain the contribution of each feature to the 

model prediction. Furthermore, the best-optimized model is deployed in the form of a web 

application, which can assist water utility in the management of WDN. The second task deals 

with the development of models to predict the probability of a leak and burst of individual 

pipes in a network. Deep learning techniques such as deep neural network (DNN), convolution 

neural network (CNN) and TabNet are integrated with optimization techniques such as 

Bayesian Optimization (BO) to develop optimized models. Copeland algorithm is employed to 

select the best model. Consequently, the best model is deployed in the form of a web 

application.  

The fourth objective deals with the development of an optimized model to predict the causes 

of water pipe failure. Ensemble state-of-the-art algorithms such as XGBoost are employed to 

develop predictive models for forecasting the causes of water pipe failure. The hyperparameters 

of the models is carefully selected using an optimization algorithm.  

As the detailed methodology for objective two has been expounded in the literature review 

section, the adopted methodologies for the remaining three objectives are explained in detail 

in the subsequent sections. 

3.3. PLS-SEM MODEL DEVELOPMENT 

The adopted framework for this section of the study is depicted in Figure 3.2. The framework 

is divided into four phases. The first phase of the research dealt with the identification of the 

factors influencing water pipe failure, which were categorized into pipe-related, operation-

related, external-related, and soil-related factors. 
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Figure 3. 1: Overall research methodology framework 

Further, the failure modes were also identified herein. Following the literature survey (objective 

1 of the study), the second phase entails the development of a conceptual model. The 

conceptual model is created to comprehend the impact of various factors on water pipe failure. 

This conceptualization is based on the key findings from the literature review. 30 failure factors 
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are identified and organized into four related constructs - pipe-related, operation-related, 

external-related and soil-related. The failure modes construct represents the different ways that 

pipes can fail. Connections are drawn between the factor constructs and failure modes to 

hypothesize relationships. This conceptualization builds on previous studies that have 

examined subsets of these factors using methods like AHP. However, this study’s model offers 

a more comprehensive perspective by considering 30 factors across four constructs and their 

association with failure modes. The proposed conceptual model is illustrated in Figure 3.3. 

Thus, the hypothesis tested in this study states that "water pipe failure factors" possess a 

significant effect on "failure modes" because they could influence "failure modes." Statistical 

significance is determined through appropriate statistical tests, with the expectation that if the 

hypothesis holds true, these factors will demonstrate a measurable influence on specified 

failure modes. If the hypothesis is disproven, it will indicate that these "water pipe failure 

factors" do not have a relationship with the "failure modes." Subsequently, the questionnaire is 

designed and distributed to potential respondents. Data analysis utilizing partial least square 

structural equation modeling (PLS-SEM) represented the third stage. PLS-SEM is chosen as 

the analytical approach for this study due to its suitability for handling complex and interrelated 

constructs, which is inherent in the context of water pipe failure. Based on the analysis, the 

critical water pipe failure factors and failure modes were selected at stage four, and the 

hypothesis was validated. The details of the research methods are delineated in subsequent 

sections. 

SEM algorithm was adopted as an analytical technique for analyzing survey responses. The 

SEM technique was preferred over other methods as it gives direct and indirect relationships 

between variables and constructs (Adabre et al., 2021). The validation process in SEM involves 

a two-step approach. Firstly, Confirmatory Factor Analysis (CFA) is utilized to confirm the 

measurement model, which employs measured indicators to provide evidence of significant 
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constructs. Secondly, a structural model is created to evaluate research hypotheses using path 

analysis (Ali et al., 2023). It should be noted that SEM analysis can be carried out using two 

distinct approaches. These are covariance-based SEM (CB-SEM) and partial least square SEM 

(PLS-SEM). PLS-SEM was employed due to its advantages over CB-SEM.  

 

Figure 3. 2: Research framework for PLS-SEM model development 



69 
 

 

PRF1- Age, PRF2- Buried depth, PRF3- Diameter, PRF4- Length, PRF5- Material, PRF6- 

Protection efficiency, PRF7- Wall thickness, ERF1- Temperature, ERF2- Chemical substance, 

ERF3- Frost, ERF4- Land use, ERF5- Lime leaching, ERF6- Microbiologically induced 

corrosion, ERF7- Precipitation, ERF8- Traffic, SRF1- Bedding condition, SRF2- Soil moisture, 

SRF3- Soil pH, SRF4- Soil resistivity, SRF5- Soil type, SRF6- Soil aeration, ORF1- 

Installation and pump operation, ORF2- Internal pressure, ORF3- Maintenance practices, 

ORF4- Number of leaks, ORF5- Water acidity, ORF6- Water alkalinity, ORF7- Water hammer, 

ORF8- Water temperature, ORF9- Water velocity, FMD1- Bell splitting, FMD2- Blown-out 

hole, FMD3- Circumferential cracking, FMD4- Corrosion pitting, FMD5- Longitudinal 

cracking. 

Figure 3. 3: A conceptual model for understanding failure factors of water pipe 

These include the fact that 1) it has been found to account for experimental variance in a better 

manner; 2) it has been demonstrated to provide more accurate predictions; and 3) it offers a 

more robust statistical framework for evaluating multiple components (Hair et al., 2014, 2019).  

Prior to the SEM analysis, common method bias (CMB) was conducted to ensure the validity 

of the collected data. CMB can arise when respondents consistently exhibit similar response 

patterns, which may result in overestimating or underestimating the true relationships among 

the variables under study. Therefore, it is crucial to identify and address any potential common 

method bias to ensure the accuracy and dependability of the research findings. In this study, 

Harman's single-factor test was employed to examine the presence of CMB and its potential 
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impact on the results. SmartPLS version 4.0.9.1 and SPSS version 27 were used for all the 

computations conducted in this study. As highlighted earlier, the SEM model entails two main 

components: measurement and structural models, which are discussed in the subsequent 

sections. 

3.3.1. Measurement model 

A model that shows the association between the observable variables and the latent construct 

(such as pipe-related factors) is referred to as a measurement model. The observable variables 

could be defined as either formative or reflective. A confirmatory tetrad analysis (CTA) was 

conducted to ascertain this, and the analysis shows that the variables are reflective, as 80% of 

the p-values associated with the variables are statistically significant at 0.05 (Gudergan et al., 

2008). In PLS-SEM, the measurement model is tested and validated utilizing construct 

reliability, convergent validity, and discriminant validity. The construct reliability and 

convergent validity can be evaluated using four different methods, including a) outer loading, 

b) reliability of each indicator using Cronbach's alpha, c) composite reliability, and d) average 

variance extracted (AVE) (Hair et al., 2017; Hair et al., 2014).  

a) Outer loading: The outer loading method evaluates the strength of the relationship between 

the observed indicators and the latent construct they are intended to represent. This method 

assesses the extent to which the indicators measure the same construct and could provide a 

relative ranking for the indicators in the same construct. Table 3.1 reports different thresholds 

for various tests and their interpretations (Adabre et al., 2021; Ali et al., 2023). According to 

the table, an outer loading value of 0.5 is considered acceptable, indicating a reasonable level 

of association between the indicators and the construct. Conversely, an outer loading of 0.7 or 

higher is deemed highly satisfactory, indicating a strong and robust relationship between the 

indicators and the latent construct.  
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b) Cronbach's alpha (𝜶): This method evaluates the reliability of the indicators by measuring 

the internal consistency of the measurement items. Cronbach's alpha is a measure of how well 

the items within a construct are related to each other. According to Table 3.1, Cronbach's alpha 

of greater than 0.7 is deemed acceptable. The coefficient (𝜶) can be calculated using Equation 

3.1 

𝛼 =  
𝑁− 𝑐̅

1+(𝑁−1)− 𝑐̅ 
           3.1 

where the number of indicators is denoted by 𝑁 and 𝑐̅ represents the inter-correlation among 

the indicators. A low average value of 𝑐̅ typifies that the observable variables do not fit well in 

a construct, while a high average value shows that the variables measure the same construct 

satisfactorily (Hair et al., 2013).  

c) Composite reliability (𝝆𝒄): Composite reliability is a reliable measure that evaluates the 

consistency and reliability of indicators in measuring a specific construct. It takes into account 

both the variance and covariance of the indicators, providing a more comprehensive 

assessment. A composite reliability value of 0.7 or above is commonly regarded as acceptable 

(Mohandes et al., 2022). This value indicates that at least 70% of the variance in the observed 

indicators can be attributed to the underlying construct they are intended to measure. 

Specifically, according to Table 3.1, composite reliability values of 0.8 and 0.9 are considered 

to show satisfactory and perfect reliability, respectively. The coefficient (𝝆𝒄) can be calculated 

using Equation 3.2. 

ρc =  
(∑ 𝜆𝑖)

2

(∑ 𝜆𝑖)
2

+ ∑ 𝑣𝑎𝑟(𝜀𝑖)
                    3.2 

where the term (𝜆𝑖) represents the component loading of each indicator to a construct, and the 

variation is represented by the term 𝑣𝑎𝑟 (𝜀𝑖), which is defined in Equation 3.3.  

𝑣𝑎𝑟 (𝜀𝑖) = 1 −  𝜆𝑖                     3.3 
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d) Average variance extracted (AVE): AVE is another crucial metric of convergent validity 

that helps determine the proportion of variance in a construct that is explained by its indicators 

relative to the variance caused by measurement error. An AVE value of 0.5 or above is generally 

considered acceptable, indicating that its indicators are associated with at least 50% of the 

variance in the construct, and the measurement model is deemed to be reliable (Hair et al., 

2017). The AVE can be computed using Equation 3.4.  

𝐴𝑉𝐸 =  
∑ 𝜆𝑖

2

∑ 𝜆𝑖
2

+ ∑ 𝑣𝑎𝑟(𝜀𝑖)
                       3.4 

where ∑ 𝜆𝑖
2
 represents the sum of the squared factor loadings for the construct, and 

∑ 𝑣𝑎𝑟(𝜀𝑖) represents the sum of the unique variances for the construct's indicators. 

A measurement model's discriminant validity ensures that the measured constructs are distinct 

from each other and do not measure the same underlying construct. Discriminant validity is 

crucial in ensuring that the measurement model accurately represents the constructs being 

studied and does not cause any potential biases or confounding effects. In this study, the 

discriminant validity was evaluated using three methods: Heterotrait-monotrait (HTMT) ratio, 

Fornell-larcker criterion, and cross-loading, which are briefly highlighted below. 

a. Heterotrait-monotrait (HTMT) ratio: To assess the discriminant validity, this approach 

compares the correlations between items from different constructs (heterotrait correlations) 

with the correlations between items from the same construct (monotrait correlations) (Henseler 

et al., 2015). An HTMT ratio value of less than 0.9 is considered an acceptable discriminant 

validity threshold (Kline, 2016). The formula for estimating the HTMT ratio is presented in 

Equation 3.5. 

𝐻𝑇𝑀𝑇 = √ 
𝐻𝑇2

𝑀𝑇1 ×𝑀𝑇2
           3.5 

where HT represents the average correlation between the items measuring different constructs, 

MT1 and MT2 refer to the average correlations between items measuring the same construct. 



73 
 

b. Fornell-larcker criterion: In this method, the validity is established by comparing the 

square root of AVE for each construct with the correlations between the construct and other 

constructs in the model (Fornell & Larcker, 1981). To ensure validity, it is expected that the 

square root of AVE for each construct surpasses the correlation value between the construct 

and any other construct in the model (Alshurideh et al., 2020).  

c. Cross loading: This method scrutinizes the extent to which a specific indicator of a construct 

loads on its corresponding construct compared to other constructs (Hair et al., 2017). An 

indicator has satisfactory discriminant validity if it loads higher on its corresponding construct 

than on other constructs. 

3.3.2. Structural model 

The structural model examines the association between the latent constructs in the proposed 

theoretical framework. In essence, the four hypotheses developed in the conceptual framework 

will be tested and validated using the structural model. The strength of the relationship between 

the constructs is represented by the path coefficients. The path coefficients are validated using 

four methods. This includes a) a significance test using a t-test, b) a collinearity measure, c) 

explanatory power using R2, and d) predictive relevance using Q2. Bootstrap and blindfolding 

analyses were conducted for the t-test and Q2 test, respectively.  

a) Significance test using t-test: The t-test is utilized to determine if the path coefficients in 

the model are statistically significant. The significance level is usually set at 0.05 or 0.01, 

indicating the probability of obtaining the observed results by chance. A significant t-test 

indicates that the relationship between the two constructs is not due to chance and supports the 

hypotheses. A t-value greater than 1.96 indicates statistical significance at the 0.05 level, while 

a t-value greater than 2.58 indicates significance at the 0.01 level for a two-tailed test. (Hair et 

al., 2014).  
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b) Collinearity measure: Collinearity is a common problem in SEM, where high correlations 

exist between two or more independent variables (Adabre et al., 2021). This can lead to 

inaccurate parameter estimates and affect the model's overall validity. To assess collinearity, 

the Variance Inflation Factor (VIF) is used, and values greater than 3.5 indicate collinearity 

(Mohandes et al., 2022). 

c) Explanatory power using R2: R2 serves as a measure to gauge the extent to which the 

exogenous variables in a model account for the variance in the endogenous variable. Ranging 

from 0 to 1, R2 values offer insights into the model's explanatory prowess, with higher values 

indicative of a stronger explanatory power. Within the framework of SEM, R2 plays a crucial 

role in evaluating the goodness of fit and assessing the strength of relationships among 

constructs. While the acceptable threshold for R2 may vary depending on the specific context 

of the model, conventional interpretations consider R2 values of 0.02, 0.13, and 0.26 as 

representative of weak, moderate, and substantial relationships, respectively (Cohen, 1992).  

d) Predictive relevance using Q2: Q2 serves as a measure of the model's predictive capability 

and assesses its accuracy in predicting endogenous variables. It provides valuable insights into 

the model's predictive relevance. When the Q2 value exceeds zero, it signifies that the model 

possesses predictive power. In line with the findings of Hair et al. (2014), Q2 values of 0.02, 

0.15, and 0.35 are considered indicative of small, medium, and large predictive strengths, 

respectively. To estimate Q2, cross-validation is employed, where a subset of the data is used 

for model estimation, while the remaining data is reserved for model validation purposes. This 

methodology ensures robustness in evaluating the model's predictive performance. 

3.4. DEVELOPMENT OF PROBABILITY OF FAILURE MODEL 

This section explains in detail the methodologies adopted to develop probability of failure 

(POF) models. Figure 3.4 shows the research framework adopted in this section of the study in 

three main stages.  
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Table 3. 1: Threshold for various tests and their interpretations 

Tests Threshold Interpretation 

Outer loading 
> 0.5 Acceptable 

> 0.7 Highly satisfactory 

Cronbach's alpha (𝛼) > 0.7 Acceptable 

Composite reliability (𝜌𝑐) 

> 0.7 Acceptable 

> 0.8 Satisfactory 

> 0.9 Perfect 

Average variance extracted (AVE) > 0.5 Acceptable 

Heterotrait-monotrait (HTMT) ratio < 0.9 Acceptable 

Variance Inflation Factor (VIF) < or = to 3.5 Acceptable 

Path coefficient using t-value > 1.96 at 0.05 p-value Significant 

 > 2.58 at 0.01 p-value Significant 

R2 value 

> or = to 0.02 Weak 

> or = to 0.13 Moderate 

> or = to 0.26 Substantial 

Q2 value 

> or = to 0.02 Small 

> or = to 0.15 Medium 

> or = to 0.35 Large 

 

The first stage deals with data collection and pre-processing. The data was collected from Hong 

Kong's Water Supply Department (HK WSD) and supplemented with climatic and traffic data 

from the Hong Kong Observatory and Transportation Department, respectively. Subsequently, 

the data was pre-processed by normalizing and standardizing it and inputting the missing 

records. The second stage involves the ML predictive models, which were developed using 

logistic regression and genetic algorithms. Different performance metrics derived from the 

confusion matrix, such as the Area Under the Curve (AUC) values, were used to evaluate the 

models. Subsequently, coefficients of the best LR model and SHAP values were used to 

measure the independent variables' contribution to the model's outcome. Detailed explanations 

of these steps are provided in subsequent sections. All the computations for this task were 

performed in Python 3.7 environment. 

3.4.1. Predictive model using logistic regression 

Logistic regression (LR) is a classic statistical model that is used to solve binary classification 

problems using logit as the link function (Rifaai et al., 2022).  
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Figure 3. 4: Research framework for developing water pipes probability of failure models 

 

Equation 3.6 mathematically represents the LR model (Robles-velasco et al., 2020).  

𝑝𝑖 =
1

1+𝑒−𝑤𝑥𝑖
                    (3.6) 

where 𝑝𝑖 is the probability of a sample belonging to a class, i denotes each observation in the 

dataset (i = 1, 2, 3,…N), 𝑥𝑖 represents the vector of the independent variables, and their 

associated weights or coefficients are denoted by 𝑤. Equations 3.7-3.9 show that the response 

of the LR model is symmetrical.  

𝑃(𝑦 = 1 |𝑥 = 𝑥𝑖) = 𝑝𝑖; 𝑃(𝑦 = 0 |𝑥 = 𝑥𝑖) = 1 − 𝑝𝑖               (3.7) 
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1 − 𝑝𝑖 =  
𝑒−𝑤𝑥𝑖

1+ 𝑒−𝑤𝑥𝑖  
=  

1

1+ 𝑒𝑤𝑥𝑖
                       (3.8) 

𝑝𝑖(𝑥𝑖) = 1 − 𝑝𝑖(−𝑥𝑖)                   (3.9) 

Equation 3.10, which shows the probability of a response, 𝑦𝑖 = (0,1), is used to assign a low 

probability to observations with 𝑦𝑖 = 0 (i.e., pipelines with no failure) and a high probability 

to those observations having the characteristic of interest 𝑦𝑖 = 1.  

𝑃(𝑦𝑖) = 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖                (3.10) 

The coefficients (also known as weights) of LR models are usually estimated by maximizing 

the log-likelihood function. The likelihood function can be obtained using Equation 8.  

𝑙 = 𝑃(𝑦1,…,𝑦𝑁) =  ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖𝑁
𝑖=1                (3.11) 

Equation 3.12 is derived by converting the likelihood function to the log-likelihood function 

and introducing log(
𝑝𝑖

1−𝑝𝑖
) = 𝑤𝑥𝑖 to Equation 3.11. After the weight estimation of each 

independent variable, the probability of failure of new observations can be computed using 

Equation 1. The class of the new observations can be determined using Equation 3.13. It should 

be noted that 0.5 is usually adopted as the risk threshold of many assets (Robles-velasco et al., 

2020); however, it can be modified depending on the context of the problem.  

𝐿𝑜𝑔(𝑙) =  ∑ 𝑦𝑖𝑤𝑥𝑖 − log(1 + 𝑒𝑤𝑥𝑖)𝑁
𝑖=0                (3.12) 

𝑦𝑖 =  {
0   𝑖𝑓 𝑝𝑖  ≤ 0.5
1  𝑖𝑓 𝑝𝑖  > 0.5

                  (3.13) 

3.4.2. Parameter optimization using genetic algorithm 

GA is a biological evolutionary metaheuristic algorithm that works on the principle of natural 

selection and is capable of searching through the search space to provide an optimum solution 

to a problem. Due to its robustness, GA has been used to optimize various real-life models (Wu 
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et al., 2017; Liqian Yang et al., 2019). This research employs GA to optimize the 

hyperparameters of LR models and select the best features for predictions. Hence, the 

parameters that are optimized using GA are LR hyperparameters and features (i.e., input 

variables) of the model. GA is particularly useful when dealing with complex objective 

functions with multiple extrema. These functions can pose challenges for traditional 

optimization methods as they may converge to suboptimal solutions or get stuck in local 

optima. In contrast, the GA's population-based approach allows it to explore different regions 

of the search space simultaneously, increasing the chances of finding the optimal solution (Li 

Yang & Shami, 2020). 

Figure 3.5 shows the schematic representation of how GA works. The algorithm works on the 

principle that the fittest individuals (using the adaptation function) will survive in an 

environment and pass the survival traits to the next generations. The steps involved in GA are 

summarized below (Liqian Yang et al., 2019). 

Step 1 - Initialization of population: The first step is to randomly initialize a population of 𝑁 

individuals (i.e., chromosomes). Each chromosome is a potential solution to the problem of 

interest. The chromosome is denoted as a vector of the number of parameters to be estimated. 

For instance, if 𝑚 parameters are to be estimated, the 𝑖𝑡ℎ chromosome of the population can 

be defined by Equation 3.14. Consequently, Equation 3.15 represents the population of 𝑁 

chromosomes. The chromosomes are binary-coded, with 1 representing the presence of a 

parameter and 0 showing its absence. 

𝑋𝑖 = [𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖, … , 𝑥𝑝𝑖 … , 𝑥𝑚𝑖]
𝑇
                (3.14) 

𝑃𝑜𝑝 = [𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖, … 𝑋𝑁]                (3.15) 

where 𝑥𝑝𝑖 is the 𝑝𝑡ℎ parameter of the  𝑖𝑡ℎ solution, and 𝑃𝑜𝑝 refers to population.  
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Step 2 – Fitness function: The next step is to evaluate the fitness of each chromosome. The 

fitness value will determine if a chromosome will be selected for reproduction or not. 

Generally, chromosomes with high fitness values will be more competitive in the selection 

process for reproduction. In this study, accuracy and f1-score are used as fitness functions. 

More details about these functions are presented in Section 3.4.4.  

Step 3 – Reproduction: To produce new offspring from the existing chromosomes, three 

processes are involved: selection, crossover, and mutation (Raharjo et al., 2019). 

• Selection: This is the process of selecting the most competitive chromosomes for 

building a mating pool. This can be done using various strategies, including rank-

based, truncation, roulette wheel, and tournament selection. Tournament selection was 

used because it helps to avoid early GA convergence. Early GA convergence often 

produces poor solutions.  

• Crossover: At this stage, two parent chromosomes are randomly selected from the 

mating pool, and new offspring (i.e., chromosomes) are created by combining the genes 

of the two parent chromosomes with a crossover probability (𝑝𝑐). Two-point crossover 

has been selected for this purpose.  

• Mutation: The newly created chromosomes (i.e., offspring) are sent into a mutation 

operator. Mutation involves changing the gene of each chromosome such that each 

gene has a mutation probability (𝑝𝑚). There are various mutation operators such as 

random setting, inversion, scramble, swap, and bit-flip mutation. However, bit-flip 

mutation was selected as it best suits the case of this study (i.e., binary encoded GA), 

and its effectiveness has been demonstrated in previous studies (Wu et al., 2017). 

Subsequently, the new offspring are added to a new population. 
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Step 4 – Elitism strategy: This strategy was used in the GA experiments to ensure that the 

fittest chromosomes (known as elites) were not lost from one generation to another. This 

implies that the fittest chromosomes in a previous population were copied into the next 

generation without undergoing crossover or mutation, thereby replacing the worst or least fitted 

chromosomes. To avoid early GA convergence, the elites consist of a small portion of the 

population. Steps 2 to 4 are repeated iteratively until optimum fitness is achieved (see Figure 

3.5).  

Based on various simulations, the parameters selected for all GA experiments in this study are 

enlisted in Table 3.2. The functions of each parameter have been described above.  

Table 3. 2: Parameters of genetic algorithm 

Parameters Value 

Population size 500 

Fitness function Accuracy and f1-score 

Selection operator Tournament selection (three chromosomes 

participate in each tournament) 

Crossover operator Two-point crossover 

Mutation operator Bit flip mutation 

Crossover probability 0.8 

Mutation probability 0.1 

Number of iterations 3000 

Elitist strategy 0.02 

 

3.4.2.1. Optimization of logistic regression hyperparameters 

Hyperparameters of a machine learning model are parameters that control the learning 

efficiency and weights of such a model. They are preselected before the model is trained. 

Hence, it is important to effectively search through the hyperparameters' space and select the 

best ones that fit the data. The optimization process usually includes four elements: a search 

space, an optimization algorithm to find the optimum hyperparameter combinations, an 

estimator with its objective function, and an evaluation function for comparing the efficiency 

of various hyperparameter combinations.  
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Figure 3. 5: Schematic representation of the genetic algorithm 

 

In this research, GA was applied to optimize the hyperparameters of the LR models. The 

hyperparameters available in a typical LR model with their corresponding value range 

considered in this study are shown in Table 3.3. In this experiment, each chromosome in the 

genetic population has a value for the hyperparameters, which are randomly selected at 
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initialization. Figure 3.6 shows a typical chromosome for this experiment, which consists of 8 

genes (i.e., hyperparameters).  

Table 3. 3: Hyperparameters of the logistic regression model 

Hyperparameter Value 

Penalty [None, L1, L2, Elasticnet] 

Dual True or False 

C [1-500] 

Solver [lbfgs, newton-cg, liblinear, sag, saga] 

Maximum iteration [1-3000] 

L1 ratio [0-1] 

Fit intercept True or False 

Verbose [0-5] 

 

 

Figure 3. 6: A typical chromosome from experiment 1 

3.4.2.2. Optimization of logistic regression features  

Feature selection is an important aspect of ML modeling, as some features may be unnecessary 

and hence affect the performance of the model. Feature selection helps the model avoid 

overfitting, reduces computation time, and facilitates data visualization (Kotsiantis, 2014). The 

optimization process usually consists of two components: an optimization algorithm used to 

select the optimum subset of features and a performance criterion to identify the best features.  

In this experiment, we extend the first experiment by using GA to optimally select the features 

(i.e., independent variables) needed for the LR models. Table 3.4 shows the structure of a 

typical chromosome in this experiment, consisting of 20 genes. The 21 genes are a summation 

of the LR hyperparameters and the independent variables. This implies that the optimization 

becomes more complex than experiment one, which increases the computation time. Since GA 

is a stochastic process that gives different results at different runs (i.e., simulations), the 
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program was run several times to determine the best feature combinations based on the 

performance criteria.  

Table 3. 4: A typical chromosome in experiment 2 

Parameter Value 

Penalty L2 

Dual False 

C 5 

Solver liblinear 

Maximum iteration 2756 

L1 ratio 0 

Fit intercept False 

Verbose 0 

Feature 1 1 (feature accepted) 

Feature 2 0 (feature rejected) 

Feature… … 

Feature 13 1 (feature accepted) 

 

 

3.4.3. Feature importance using SHapley Additive exPlanations 

Compared to other ML algorithms, LR is often regarded as interpretable via its model 

coefficients. However, the interpretability is not direct, especially with the presence of 

multicollinearity, for non-statistical professionals in WDNs. Hence, SHapley Additive 

exPlanations (SHAP) is used in this study to explain the contribution of each independent 

variable to predictive models in a straightforward manner using clear visualizations (Lundberg 

& Lee, 2017).  

SHAP is an explanatory algorithm based on game theory, presenting the contribution of each 

feature (i.e., independent variable) to a model's output in an intuitive graphical manner. After a 

model is developed, SHapley values of 𝑛 features can be determined using Equation 3.16. In 

the context of game theory, the prediction is the game payout which is fairly distributed among 

the features (i.e., players). It should be noted that the SHAP value of a feature is relatively its 

contribution between the developed model [𝑓(𝑋)] and a baseline model, often set as 𝐸[𝑓(𝑋)], 
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where 𝐸 represents a subset, and 𝑋 refers to the explanatory variables. Further theoretical 

formulations of SHAP can be found in the paper authored by its originators (Lundberg & Lee, 

2017).  

∅𝑖 =  ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑚(𝑥𝑠∪  𝑖𝑆⊂𝐹 ) − 𝑚(𝑥𝑠)]             (3.16) 

where  

• 𝑖 = 1, 2, 3 … 𝑛, 

• the set that contains all the features is denoted by 𝐹, 

•  𝑆 represents a subset of 𝐹, and  

• 𝑚(. ) represents a trained model.  

The SHAP algorithm was implemented to complement the LR model's interpretability. The 

best model, in terms of the evaluation metrics, resulting from the first two experiments was 

interpreted using SHAP. Two tasks are involved in this experiment. The first task involves the 

determination of the marginal contribution of each feature to the model's output. The second 

task shows the direction of such contribution to the model's output to be either positive or 

negative.   

All the experiments performed in this section of the study were conducted by dividing the 

dataset into two, with 80% being used for training and 20% for validation. The three main 

experiments are listed as follows:  

• Optimization of logistic regression hyperparameters using genetic algorithm 

(experiment 1) 

• Optimization of logistic regression hyperparameters and feature selection using genetic 

algorithm (experiment 2) 

• Model interpretability using SHAP (experiment 3) 
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3.4.4. Evaluation metrics 

The output of the predictive models is a continuous number between 0 and 1, which denotes 

the failure probability of water pipes. As the dependent variable in the data set is binary-coded, 

a common approach to evaluating such models' output is establishing a class's threshold. A 

threshold value of 0.5 is chosen in this research. This implies that a pipe with a failure 

probability greater than 0.5 is predicted as a failed pipe. Based on the prediction and actual 

condition of the pipes (i.e., ground truth), a confusion matrix is established, as shown in Figure 

3.7. In the Figure, "True Failure" represents the pipes that were correctly predicted as failed, 

while "False Failure" represents the pipes that were incorrectly predicted as failed, whereas 

they are intact. Similarly, "True Intact" denotes the pipes that were correctly predicted as intact, 

while "False Intact" denotes the pipes that were wrongly predicted as intact, whereas they have 

experienced failure. The "True Failure," "True Intact," "False Failure," and "False Intact" are 

generally known as "True Positives," "True Negatives," "False Positives," and "False 

Negatives," respectively. Based on the confusion matrix, five metrics are derived and used as 

evaluation indices in this study, as given in Equations 3.16 to 3.19. Figure 3.7 presents a 

domain-specific adaptation of the confusion matrix for water pipe failure classification. Unlike 

generic confusion matrices, this visualization explicitly shows how pipe conditions are 

categorized into failure/intact states, with specific implications for water utility decision-

making. The customized matrix's structure can be related to practical consequences in WDN 

management - where false positives could lead to unnecessary maintenance costs, and false 

negatives could result in critical failures. This domain-specific interpretation is crucial for 

understanding the real-world implications of the model's predictions in water infrastructure 

management.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝐹+𝑇𝐼

𝑇𝐹+𝑇𝐼+𝐹𝐹+𝐹𝐼
                 (3.16) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝐹

𝑇𝐹+𝐹𝐹
                 (3.17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝐹

𝑇𝐹+𝐹𝐼
                 (3.18) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×  
1

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 

1

𝑅𝑒𝑐𝑎𝑙𝑙

               (3.19) 

where 𝑇𝐹, 𝑇𝐼, 𝐹𝐼, 𝑎𝑛𝑑 𝐹𝐹 denote "True Failure," "True Intact," "False Intact," and "False 

Failure." Accuracy measures the percentage of total correct predictions. This index might not 

be useful since equal importance is given to the two classes when the test data set is unbalanced, 

such as in the case of this study. Hence, recall, precision, and F1 score are useful in this case. 

Precision measures the ratio of correctly predicted failed pipes to all pipes predicted to have 

failed. On the other hand, recall measures the ratio of correctly predicted failed pipes to all 

pipes that have truly failed. From a practical point of view, high recall and precision values are 

desired, as they show the utility managers that truly failed pipes are correctly predicted. 

However, a low precision value indicates that a higher proportion of the pipes have been 

wrongly predicted as failed pipes, which may lead the utility managers to replace intact pipes, 

thereby unnecessarily increasing the maintenance cost. Moreover, a low recall value implies 

that a higher portion of failed pipes is misclassified as intact, misinforming utility managers 

about their maintenance schedule.  

Furthermore, the F1 score finds the harmonic mean of precision and recall, producing 

information about the model's robustness (i.e., how many pipes are misclassified) and 

preciseness (i.e., how many pipes are classified correctly) (Tariq et al., 2022). Moreover, the 

Receiver Operating Curve (ROC) plots the True Positive Rate, TPR (i.e., recall), against the 

False Positive Rate, FPR (i.e., False Failure Rate) for different threshold values. Using the ROC 

curve, a model's performance in producing high TPR and low FPR is measured by the Area 

Under Curve (AUC). A perfect classifier will have an AUC of 1, while a classifier with an AUC 
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of 0.5 makes a random prediction. The five-evaluation metrics employed in this research have 

a value between 0 and 1. The closer the value to 1, the better the prediction.  

 
 

Figure 3. 7: Confusion matrix for classifying water pipe condition 

 

3.5. DEVELOPMENT OF PROBABILITY OF LEAK AND BURST 

MODEL 

The framework used to accomplish this objective is illustrated in Figure 3.8, which presents a 

comprehensive methodology for creating explainable deep learning (DL) algorithms for the 

probability of leak (POL) and probability of burst (POB) models. The framework is divided 

into five sequential steps, each contributing to creating a robust and interpretable predictive 

model. The first step is data preparation. This initial step involves the selection and processing 

of relevant data. The data is categorized into three types: pipe-related, environment-related, 

and operation-related. These datasets are then divided into a training (70% of the data) and a 

validation set (30%). Key pre-processing tasks such as data cleaning, outlier removal, 

imputation for missing values, normalization, and standardization are applied to ensure the data 

is suitable for training the DL models. Individual cleaning is performed on training and testing 
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datasets separately to prevent data leakage. The training and validation subset is subjected to a 

10-fold cross-validation procedure to optimize model generalizability. In this process, the data 

is split into ten folds, wherein one fold serves as the validation set while the remaining nine 

folds comprise the training set. In the second step, DL architectures such as DNN, CNN, and 

TabNet are considered. Bayesian optimization is used to tune the hyperparameters of these 

models. This process involves training surrogate models on a training dataset and using them 

to predict the performance of the DL models on a validation dataset. The optimization process 

iteratively proposes new points (sets of hyperparameters) to find the set that maximizes 

performance on the validation set. In the third stage, the models' performance is assessed using 

a set of evaluation metrics: Accuracy, Recall, Precision, F1 score, Matthews Correlation 

Coefficient (MCC), and Cohen's Kappa. These metrics provide a broad overview of the models' 

predictive capabilities and performance. Subsequently, the Copeland method, a pairwise 

comparison ranking algorithm, is utilized to rank the models. Each model's performance is 

compared against the others', with wins, losses, and Copeland scores (the difference between 

the number of wins and losses) being calculated. This score effectively ranks the models 

according to their predictive abilities. The final step focuses on providing explainability for the 

chosen deep learning model using SHAP. The analysis of marginal contributions allows for a 

better understanding of the model's decision-making process. Additionally, the distribution of 

SHAP values can be used to identify the impact of the features on the model to be either positive 

or negative. The detail of the proposed methodology is explained in subsequent sections. 

3.5.1. Predictive model using deep learning algorithms 
 

3.5.1.1. Deep Neural Network 

The Deep Neural Network (DNN) is a foundational model in the domain of DL algorithms.  
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Figure 3. 8: Framework for predicting probability of leak and burst 
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DNNs are characterized by their depth, which comprises multiple hidden layers between the 

input and output layers, enabling them to model complex and high-level abstractions in data 

(Jun et al., 2017). 

A standard DNN architecture is composed of an input layer 𝑋, multiple hidden layers 𝐻, and 

an output layer 𝑌. Each layer consists of units or neurons, and each neuron in one layer is 

connected to every neuron in the subsequent layer, forming a dense network. The input layer 

receives the feature vectors derived from the data, which are then processed through the hidden 

layers using a series of weighted summations and non-linear activation functions. 

The mathematical operations within a typical hidden layer 𝑙 can be represented as follows: 

𝑯(𝑙) =  𝜎 (𝑾(𝑙)𝑯(𝑙−1) + 𝒃(𝑙))               (3.20) 

where 𝐻(𝑙−1)  is the output of the previous layer or the input data for the first hidden layer, 

𝑊(𝑙) denotes the weight matrix, 𝑏(𝑙) is the bias vector, and  𝜎 represents the non-linear 

activation function, such as ReLU or sigmoid, applied element-wise. This process is iteratively 

conducted across all hidden layers. 

The output layer of DNN provides the final prediction, framed as a classification task where 

the objective is to predict the probability of leak and burst for water pipes. For such 

classification tasks, the output layer typically employs an activation function, which outputs a 

probability distribution across the classes, which is represented mathematically as: 

𝒀 =  𝜎 (𝑾(𝑜𝑢𝑡𝑝𝑢𝑡)𝑯(𝑙𝑎𝑠𝑡) + 𝒃(𝑜𝑢𝑡𝑝𝑢𝑡))              (3.21) 

Here, 𝑌 is the vector of probabilities that the pipe section falls into each of the possible 

outcome classes.  
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3.5.1.2. Convolution Neural Network 

The Convolutional Neural Network (CNN) architecture is specifically designed to process the 

multi-dimensional data associated with the characteristics of water pipes to predict their 

leakage/burst probabilities. The input layer is structured to receive pre-processed feature 

matrices representing the pipe-related, environment-related, and operation-related factors. The 

convolutional layers form the core of the CNN architecture. Multiple convolutional layers are 

employed to extract and learn features from the input data (Raziani & Azimbagirad, 2022; Tsai 

et al., 2022). The first convolutional layer applied a set of learnable filters (kernels) 𝑾(𝒍), where 

𝑙 represents the layer number. The convolution operation at each layer 𝑙 for a given input matrix 

𝑿(𝒍) is defined in Equation 3.22 

 𝑭(𝑙) =   𝑾(𝑙) ∗  𝑿(𝑙) + 𝒃(𝑙)                 (3.22) 

where 𝑭(𝑙)is the feature map obtained after applying the kernel 𝑾(𝑙) to the input  𝑿(𝑙) , and  𝒃(𝑙) 

represents the bias. 

After each convolution operation, an activation function is applied to introduce non-linearity, 

enabling the network to learn complex patterns. Following the convolutional layers, pooling 

layers are used to reduce the spatial size of the representation, decreasing the number of 

parameters and computations in the network. Max pooling is utilized, which can be defined 

using Equation 3.23.  

𝑷𝑖,𝑗
(𝑙)

=  𝑚𝑎𝑥𝑚,𝑛 ∈𝑀𝑖,𝑗
 𝑨𝑚,𝑛

(𝑙)
                (3.23) 

where 𝑃(𝑙) is the pooled feature map and 𝑀𝑖,𝑗 is the region in the activated feature map 𝐴(𝑙) 

over which the pooling operation is performed.  

The high-level reasoning in the network is performed by fully connected layers. The output 

from the final pooling layer is flattened and fed into a series of fully connected layers. The 
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operation at a fully connected layer 𝑙 with the input vector 𝒗(𝑙) is given in Equations 3.24 and 

3.25.  

𝑧(𝑙) =   𝑾(𝑙) 𝒗(𝑙) + 𝒃(𝑙)                 (3.24) 

𝑜(𝑙) =  𝜎 (𝑧(𝑙))                 (3.25) 

where 𝑧(𝑙) is the linear combination of weights 𝑾(𝑙), biases 𝒃(𝑙), and input  𝒗(𝑙) and 𝑜(𝑙) is the 

output after applying the activation function 𝜎. It should be noted that the final fully connected 

layer acted as the output layer, with a single neuron using the sigmoid activation function to 

predict the probability 𝑝 of pipe leakage or burst, given by Equation 3.26: 

𝑝 =  1

1+ 𝑒𝑧(𝑜𝑢𝑡𝑝𝑢𝑡)                  (3.26) 

where 𝑧𝑜𝑢𝑡𝑝𝑢𝑡 is the input to the output neuron 

3.5.1.3. TabNet 

TabNet is a novel DL architecture for tabular data that uses sequential attention to learn which 

features to focus on during the learning process (Arık & Pfister, 2021). Figure 3.9 gives a 

schematic representation of TabNet architecture, which uses an encoder composed of multiple 

steps to determine relevant features from the data and generates a feature representation (H. V. 

Nguyen & Byeon, 2023). This representation is then aggregated to assist in decision-making. 

The model's input, consisting of batch-sized data with D-dimensional features, undergoes batch 

normalization before being processed by the feature transformer. 

The feature transformer is structured with multiple gated linear unit (GLU) blocks. These GLU 

blocks, which include fully connected and batch normalization layers, are designed for robust 

learning, with some blocks being shared and others independent. To maintain stability and 

control variance, normalization is applied after each GLU block. The resulting transformed 

features are then fed into the attentive transformer. 
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The attentive transformer is composed of fully connected and batch normalization layers, 

followed by a prior scale and sparsemax layer. It uses the information from the prior step to 

calculate a mask layer for the current step, as shown in Equations 3.27 and 3.28: 

𝑃[𝑖] =  ∏ (𝛾 − 𝑀[𝑗])𝑖
𝑗                   (3.27) 

𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥 (𝑃[𝑖 − 1] ∗ ℎ𝑖(𝑎[𝑖 − 1]))              (3.28) 

where  𝑃[𝑖] represents the 'prior scale' at the i-th decision step, 𝛾 is the relaxation parameter, 

the mask from previous layers is represented by 𝑀[𝑗]  and ℎ𝑖(⋅) represents the trainable 

function of the fully connected and batch normalization layers. Sparsemax is used to ensure 

the sum of the mask coefficients is 1, contributing to sparse feature selection. 

To control the sparsity of the features, sparsity regularization 𝐿𝑠𝑝𝑎𝑟𝑠𝑒 is introduced in the form 

of entropy to the loss function, adding a small number ∈ for numerical stability, which is 

depicted in Equation 3.29.  

𝐿𝑠𝑝𝑎𝑟𝑠𝑒 =  ∑ ∑ ∑ 𝑀𝑏𝑗[𝑖] log(𝑀𝑏𝑗
𝐷
𝑗=1

𝐵
𝑏=1

𝑁𝑠𝑡𝑒𝑝𝑠

𝑖=1
[𝑖])+ ∈             (3.29) 

The feature transformer takes the masked features and outputs them for both the decision 

process and the next attentive transformer step, using Equation 3.30.  

[𝑑[𝑖], 𝑎[𝑖] = 𝑓𝑖(𝑀[𝑖] ∗ 𝑓)                (3.30) 

where [𝑑[𝑖]  is the decision step output, and 𝑎[𝑖] is the information for the subsequent step. 

Regarding the interpretability, TabNet computes the importance of each step through an 

aggregation of the output vector, which is converted into a scalar, reflecting the step's 

significance to the final outcome. Local feature importance for a sample is derived by summing 

the results across all steps, and global feature importance is calculated using an aggregate mask. 
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Figure 3. 9: Schematic representation of the TabNet architecture 

3.5.2. Hyperparameter optimization using Bayesian Optimization 

After building the DL models, their hyperparameters are optimized using Bayesian 

Optimization (BO), a strategy that enhances model performance by efficiently navigating the 

hyperparameter space. The hyperparameters and search space optimized for these models are 

presented in Table 3.5. BO seeks to identify the optimal set of parameters for a model. The 

approach aims to find the maximum value of an unknown objective function 𝜃(𝑝), at a given 

point p, within a defined search space Ω. The optimal sampling point can be represented by 

Equation 3.31 (Bello et al., 2023; Taiwo, Ben Seghier, et al., 2023a; Li Yang & Shami, 2020).  

𝑝+ =  argmax
𝑝∈Ω

𝜃(𝑝)                 (3.31) 

The BO process involves two key steps: 
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1. A surrogate probabilistic model is fitted to the objective function, often using a 

Gaussian Process (GP), which is then updated as new data points are sampled. This 

model is preferred for its flexibility, robustness, and analytic tractability. 

2. An acquisition function is constructed from the posterior distribution of the surrogate 

model to balance the search space exploration with the exploitation of known good 

regions. The Expected Improvement (EI) is a common choice for the acquisition 

function. The optimization process iterates, continually updating the surrogate model 

with new findings, until a predefined stopping criterion, typically the maximization of 

the acquisition function, is met. 

Table 3. 5: Details of the hyperparameter optimization 

Model Hyperparameter Type Range 

DNN Batch size Integer [8, 128] 

 Epochs Integer [2, 50] 

 Number of neurons Integer [8, 64] 

 Optimizer Categorical [Adam, SGD, 

Adagrad, RMSprop] 

 Learning rate Continuous [0.01, 1] 

CNN Batch size Integer [8, 128] 

 Epochs Integer [2, 50] 

 Number of neurons Integer [8, 64] 

 Optimizer Categorical [Adam, SGD, 

Adagrad, RMSprop] 

 Number of filters Integer [8, 128] 

 Kernel size Integer [2, 20] 

 Learning rate Continuous [0.01, 1] 

TabNet n_d Integer [8, 128] 

 n_a Integer [8, 128] 

 n_steps Integer [8, 128] 

 gamma Continous [1, 10] 

 lambda_sparse Continuous [0.01, 1] 

 Batch size Integer [8, 128] 

 Step size Continuous [0.01, 1] 
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3.5.3. Evaluation of the DL models 

The predictive algorithms generate a continuous score ranging from 0 to 1, reflecting the 

likelihood of a pipe experiencing a leak or burst. Given that the target variable within the dataset 

is dichotomous, it is standard practice to select a cutoff point for categorizing the outcomes  

(Robles-velasco et al., 2020; Taiwo et al., 2024a). In this study, pipes with predicted failure 

probabilities above 0.5 are classified by the model as failures, while those below 0.5 are 

classified as non-failures. A confusion matrix is constructed to compare the model's predictions 

against the actual conditions of the pipes, as depicted in Figure 3.10 (Mazumder, Salman, & 

Li, 2021; Robles-velasco et al., 2020). This matrix is then used to calculate six different 

performance metrics, which are detailed in Table 3.6. 

 

Figure 3. 10: Confusion matrix for classifying water pipe status 

 

3.5.4. Ranking of the DL models 

The Copeland method, a paired comparison approach, is employed to rank the performance of 

the DL models. This method involves comparing each model against every other in a series of 

head-to-head matchups. The process of evaluation is highlighted as follows (Furxhi et al., 

2019): 
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Table 3. 6: Evaluation metrics for the DL models 

Evaluation metric                                      Mathematical expression 

Accuracy 𝑇𝐿/𝐵 + 𝑇𝐼

𝑇𝐿/𝐵 + 𝑇𝐼 + 𝐹𝐿/𝐵 + 𝐹𝐼
 

Precision 𝑇𝐿/𝐵

(𝑇𝐿/𝐵 + 𝐹𝐿/𝐵) 
 

Recall 𝑇𝐿/𝐵

(𝑇𝐿/𝐵 + 𝐹𝐼) 
 

F1 score 
2 ∗

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

MCC (𝑇𝐿/𝐵 × 𝑇𝐼 − 𝐹𝐿/𝐵 × 𝐹𝐼)

√𝑇𝐿/𝐵 + 𝐹𝐿/𝐵)  × (𝑇𝐿/𝐵 + 𝐹𝐼) × (𝑇𝐼 + 𝐹𝐿/𝐵) × (𝑇𝐼 + 𝐹𝐼)
 

Cohen's Kappa 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

 

Expected accuracy

=  
((𝑇𝐿/𝐵 + 𝐹𝐼) × (𝑇𝐿/𝐵 + 𝐹𝐿/𝐵) + ((𝑇𝐼 + 𝐹𝐿/𝐵) + (𝑇𝐼 + 𝐹𝐼)

(𝑇𝐿/𝐵 + 𝑇𝐼 + 𝐹𝐿/𝐵 + 𝐹𝐼)2
 

 

 

1. Pairwise Comparisons: Each DL model is compared with every other model for each 

performance metric. In these comparisons, models are awarded points based on their 

performance relative to one another. 

2. Points Allocation: A model earns a point for each performance metric where it 

outperforms another model. For instance, if Model A has a higher precision than Model 

B in their comparison, Model A receives a point. 

3. Win/Loss Record: The outcome of each pairwise comparison is a win, loss, or tie for 

the models involved. A win is recorded for a model if it accrues more points than the 

other model in their comparison. Similarly, a loss is noted when a model earns fewer 

points than its competitor, while a tie is considered if both models accumulate an equal 

number of points. 

4. Copeland Score Calculation: The Copeland score for each model is calculated by 

subtracting the total number of losses from the total number of wins: 



98 
 

𝐶𝑜𝑝𝑒𝑙𝑎𝑛𝑑 𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑖𝑛𝑠 − 𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠𝑒𝑠             (3.32) 

5. Ranking of Models: Models are then ranked based on their Copeland scores, with the 

model boasting the highest score at the top rank, indicating it has the best performance 

across the evaluated metrics. 

After determining the most effective model using the Copeland ranking method, the SHAP 

framework is utilized to interpret the chosen model. This framework provides insights into how 

each feature contributes to the predictive outcome, offering a clear explanation of the model's 

decision-making process. A detailed explanation of the SHAP framework is provided in Section  

3.6. DEVELOPMENT OF CAUSES OF FAILURE PREDICTIVE 

MODEL 

As per the fourth objective of this study, this section explains the methodologies adopted to 

develop an optimized model for predicting the causes of the failure (COF) of water pipes. The 

proposed framework employed to achieve this objective is shown in Figure 3.11. This 

comprises five sequential phases, including data preparation, ML modelling, evaluation 

metrics, model ranking, and model explainability. The data preparation stage shows that the 

dataset comprises three categories: pipe-related, environment-related, and operation-related 

data. The data preparation phase involves several steps, including outlier removal, data 

imputation for handling missing values, and standardization of the data. The cleaned dataset is 

then split into training (80%) and testing (20%) subsets. The training data is further divided 

using 10-fold cross-validation to identify the optimal hyperparameters during model 

optimization. 

The next phase focuses on the optimization of various ML algorithms, including XGBoost, 

AdaBoost, Random Forest, LightGBM, and CatBoost, using the Tree-structured Parzen 

Estimator (TPE) technique. The TPE algorithm is employed to find the optimal set of 
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hyperparameters for each model. This optimization process follows an iterative approach, 

where a surrogate model is initially constructed using the training and validation datasets. 

Subsequently, the TPE algorithm selects new hyperparameter values based on an acquisition 

function, which guides the search towards promising regions of the hyperparameter space. The 

performance of the optimized models is evaluated using various metrics, including accuracy, 

macro precision, macro recall, macro F1 score, weighted precision, weighted recall, weighted 

F1 score, and average area under the curve (AUC). To systematically select the best-performing 

model, the Copeland algorithm is employed. This algorithm ranks the models based on their 

pairwise comparisons, considering factors such as Copeland points, wins, and losses. The 

ranking helps identify the top-performing model for predicting the causes of water pipe 

failures. The last phase deals with model interpretability. This is achieved through the use of 

SHapley Additive exPlanations (SHAP), a game-theoretic approach that provides insights into 

the marginal contribution of each feature to the model’s output. The SHAP analysis involves 

examining the distribution of SHAP values for each of the features to understand their impact 

on the predictive model. The specifics of the proposed methodology are described in the sub-

sequent sections. 

3.6.1. Predictive model using ensemble learning 

To develop accurate and robust predictive models for identifying the causes of water pipe 

failures, this study employs five state-of-the-art ensemble learning (EL) techniques: AdaBoost, 

Random Forest, XGBoost, LightGBM, and CatBoost. These ensemble models have 

demonstrated superior performance in various prediction tasks by combining multiple 

individual models, thereby reducing bias, variance, and overfitting issues (Hancock & 

Khoshgoftaar, 2020; Winkler et al., 2018). For the multi-class classification problem of 

predicting pipe failure causes, the one-vs-rest (OvR) approach was employed to build the 

classifiers.  
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Figure 3. 11: Framework for predicting causes of water pipe failure 
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In the OvR strategy, a separate binary classifier is trained for each class, discriminating that 

class from the combined rest of the classes. During prediction, the class with the highest 

confidence score from the respective binary classifier is assigned as the predicted class. 

3.6.1.1. AdaBoost 

AdaBoost, short for Adaptive Boosting, is an ensemble learning (EL) algorithm proposed by 

Freund and Schapire in 1997 (Freund & Schapire, 1997). It is a meta-algorithm that combines 

multiple weak learners (e.g., decision trees) into a strong classifier. AdaBoost operates in an 

iterative manner, training successive weak learners on instances that were misclassified by the 

previous learners, thereby focusing on the difficult-to-classify examples. The schematic 

representation of AdaBoost is shown in Figure 3.12.  

The AdaBoost algorithm works as follows: 

1. Initialize the weights for each observation 𝑤𝑖 =  
1

𝑁
  for 𝑖 = 1,2, . . . , 𝑁 where 𝑁 is the 

total number of observations. 

2. For each iteration 𝑚 = 1 𝑡𝑜 𝑀 (where 𝑀 is the number of weak learners):  

a. Train a weak learner 𝐺𝑚(𝑥) using the current weights 𝑤𝑖 on the training data.  

b. Calculate the weighted error rate of the weak learner:  

 𝑒𝑟𝑟𝑚 = ∑ 𝑤𝑖  ∏(𝑦𝑖  ≠ 𝐺𝑚(𝑥𝑖))𝑁
𝑖=1               (3.33)  

c. Compute the weight for the weak learner:  

𝛼𝑚 = log (
1−𝑒𝑟𝑟𝑚

𝑒𝑟𝑟𝑚
 )                       (3.34) 

d. Update the weights for each observation:  

𝑤𝑖 ← 𝑤𝑖 . exp(𝛼𝑚  .  ∏(𝑦𝑖  ≠ 𝐺𝑚(𝑥𝑖)))              (3.35) 

e. Normalize the weights for each observation:  

𝑤𝑖 ←  
𝑤𝑖

∑ 𝑤𝑗
𝑁
𝑗=1

                 (3.36)  



102 
 

3. The final model is a strong classifier that combines the weak learners through a 

weighted majority vote:  

𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝐺𝑚(𝑥)) 𝑀
𝑚=1                (3.37) 

 

Figure 3. 12: Schematic representation of AdaBoost algorithm 

3.6.1.2. Random Forest 

Random Forest (RF) is another EL algorithm that constructs multiple decision trees and 

combines their predictions through majority voting for classification tasks (Breiman, 2001). It 

is a bagging-based ensemble method, where each decision tree is trained on a different 

bootstrap sample of the original data, and a random subset of features is considered for splitting 

at each node (see Figure 3.13). This randomization process helps to reduce the variance and 

overfitting issues associated with individual decision trees. 

The Random Forest algorithm works as follows: 
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1. Draw 𝑛 bootstrap samples from the original data, each containing 𝑁 instances sampled 

with replacement. 

2. For each bootstrap sample 𝑖 (𝑖 = 1, 2, . . . , 𝑛):  

a. Grow an unpruned decision tree 𝑇𝑖 on the bootstrap sample, with the following 

modification: at each node, instead of considering all features, randomly select 𝑚 

features from the total 𝑀 features (𝑚 ≪ 𝑀). Choose the best feature from the 

𝑚 features to split the node.  

b. Repeat the process until the minimum node size is reached or the tree is fully grown. 

3. After constructing all 𝑛 trees, predictions for new instances are made by aggregating 

the predictions of individual trees: 

 �̂�(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶𝑖(𝑥)}𝑖=1
𝑛        (3.38) 

In the above equation, �̂�(𝑥) represents the predicted class for a new instance 𝑥. It should be 

stated that during training, each decision tree learns to discriminate between one class and the 

combined rest of the classes. During prediction, the class with the highest number of votes from 

the ensemble of trees is assigned as the predicted class. 

3.6.1.3. XGBoost 
Extreme Gradient Boosting (XGBoost) is a highly efficient and scalable implementation of the 

gradient boosting framework. It is an EL algorithm that sequentially builds weak decision tree 

models, with each successive model attempting to correct the errors made by the previous ones 

(T. Chen & Guestrin, 2016). XGBoost has gained widespread popularity due to its superior 

performance, parallelization capabilities, and ability to handle various data types, including 

sparse and complex data. Figure 3.14 gives a schematic representation of the algorithm.  
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Figure 3. 13: A visual diagram illustrating the Random Forest algorithm 

The XGBoost algorithm aims to minimize the following regularized objective function: 

ℒt  = ∑ ℓ[(𝐲𝐢, 𝒚�̂�)
(t−1) + ft(𝐱𝐢)] + 𝛺(ft)n

i=1        (3.39) 

where 𝑙 is a differentiable loss function (e.g., logistic loss for classification), 𝑦𝑖 and 𝑦�̂�
𝑡−1

are 

the true and predicted values for the 𝑖𝑡ℎ instance, respectively, 𝑓𝑡 is the new tree model to be 

added, and 𝛺(𝑓𝑡) is the regularization term that controls the complexity of the tree model. 

The regularization term 𝛺(ft) is defined as: 

 𝛺(ft) =  𝛾𝑇 + 0.5𝜆 ∑ 𝑤𝑗
2𝑇

𝑗=1         (3.40) 

where 𝑇 is the number of leaves in the tree, 𝑤𝑗 is the score associated with the 𝑗𝑡ℎ leaf, and 

𝛾 and 𝜆 are hyperparameters controlling the pruning and ridge regularization, respectively. 

The boosting process in XGBoost involves the following steps: 
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1. Initialize the predictions 𝑦�̂�
(0)

 with a constant value (the log-odds ratio is employed). 

2. For iterations 𝑡 = 1,2, . . . , 𝑇 ∶ 

a. Compute the residuals 𝑟𝑡𝑖 =  
𝜕𝑙(𝑦𝑖,𝑦�̂�

𝑡−1 ) 

𝜕𝑦�̂�
𝑡−1  for all instances 𝑖 = 1,2, . . . , 𝑛.  

b. Fit a decision tree model 𝑓𝑡(𝑥) to the residuals 𝑟𝑡𝑖 by minimizing the regularized 

objective function.  

c. Update the predictions: 𝑦�̂�
(𝑡) =  𝑦�̂�

(𝑡−1) +  𝜂 𝑓𝑡(𝑥𝑖) , where 𝜂 is the learning rate. 

During prediction, the class with the highest confidence score from the respective binary 

classifier is assigned as the predicted class. 

 

 

Figure 3. 14: A schematic representation of XGBoost 
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3.6.1.4. LightGBM 

Light Gradient Boosting Machine (LightGBM) is a gradient-boosting framework that uses tree-

based learning algorithms (Ke et al., 2017). While it shares similarities with XGBoost in the 

underlying gradient boosting principles, LightGBM introduces several novel techniques to 

improve computational efficiency, particularly for large-scale data.  

Gradient-based One-Side Sampling (GOSS) is utilized to decrease the number of data instances 

needed for gradient computations by sorting instances based on their gradient magnitudes and 

retaining a small portion with large gradients, while randomly sampling instances with smaller 

gradients to preserve the data distribution (C. Chen & Seo, 2023). Exclusive Feature Bundling 

(EFB) is another technique where mutually exclusive features, which are rarely non-zero at the 

same time, are combined into a single feature, thus reducing dimensionality without significant 

information loss, making it particularly effective for sparse datasets. Unlike traditional 

algorithms that grow trees level by level, LightGBM adopts a leaf-wise tree growth strategy 

(see Figure 3.15), selecting the leaf for splitting that minimizes loss, resulting in potentially 

deeper and more complex trees but often with improved accuracy and lower computational 

costs. Additionally, LightGBM employs histogram-based split finding, where histograms 

represent gradient statistics of features, allowing for quicker split finding and reduced memory 

usage compared to precise split finding methods. 

 

Figure 3. 15: Tree Growth by Levels (Left) and Tree Growth by Leaves (Right) 
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3.6.1.5. CatBoost 

Categorical boosting (CatBoost) is an open-source ML algorithm developed in 2017 

(Prokhorenkova et al., 2018). It is a gradient-boosting decision tree algorithm that constructs 

an ensemble of decision trees sequentially, with each tree aiming to correct the errors of its 

predecessors (see Figure 3.16). A standout feature of CatBoost is its advanced handling of 

categorical features through Ordered Target Encoding (OTE). This technique replaces 

categorical values with corresponding target statistics, reducing the risk of overfitting and 

effectively managing high-cardinality categorical features. 

The training process of CatBoost for multi-class classification involves: 

1. Loss Function: CatBoost supports multiple loss functions for multi-class classification, 

such as cross-entropy loss or multi-class logistic loss. For a dataset with 𝑁 instances 

and 𝐾 classes, the multi-class logistic loss is defined as: 

𝐿(𝑦, 𝑓) =  −
1

𝑁
 ∑ ∑ [𝐾

𝑘=1
𝑁
𝑖=1 𝑦𝑖𝑘 log(𝑝𝑖𝑘)]              (3.41) 

Where 𝑦𝑖𝑘 is an indicator variable (0 or 1) indicating whether instance 𝑖 belongs to class 𝑘, and 

𝑝𝑖𝑘 is the predicted probability of instance 𝑖 belonging to class 𝑘, obtained from the model’s 

output 𝑓(𝑥𝑖). 

2. Gradient Boosting: CatBoost iteratively builds an ensemble of decision trees by 

minimizing the loss function. At each iteration 𝑡, a new decision tree ℎ𝑡(𝑥) is added: 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂 × ℎ𝑡(𝑥)               (3.42) 

where 𝐹𝑡(𝑥) is the updated ensemble model, 𝜂  is the learning rate, and ℎ𝑡(𝑥) is the new 

decision tree trained to approximate the negative gradient of the loss function. 
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3. Ordered Target Encoding: This technique replaces categorical values with target 

statistics in a specific order to prevent data leakage and overfitting. 

4. Regularization: CatBoost includes L2 regularization, random subsampling of 

instances (bagging), and random subsampling of features (feature bagging) to prevent 

overfitting. 

5. Overfitting Detection: The algorithm uses a holdout set or out-of-fold instances to 

monitor and prevent overfitting during training. 

6. Multi-Class Prediction: After training, CatBoost makes multi-class predictions by 

applying the decision tree ensemble to new instances and computing the predicted 

probabilities for each class, with the highest probability determining the final 

prediction. 

3.6.2. Hyperparameter optimization using Tree-Structured Parzen 

Estimator 
Hyperparameter tuning is a crucial step in optimizing the performance of ML models. In this 

study, the Tree-Structured Parzen Estimator (TPE) approach, implemented in the Optuna 

library, is employed to optimize the EL algorithms (Akiba et al., 2019; Models et al., 2024). 

TPE is a sequential model-based optimization (SMBO) technique that has proven effective in 

finding optimal hyperparameter configurations for various machine learning algorithms. TPE 

is based on the idea of modeling the relationship between hyperparameter values and the 

associated objective function (i.e., weighted F1 score) using two probabilistic models: one for 

the promising hyperparameter configurations (𝑙(𝑥)) and another for the unpromising 

configurations (𝑔(𝑥)). These models are updated after each iteration of the optimization 

process based on the observed objective function values. 
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Figure 3. 16: A schematic representation of CatBoost algorithm 

The TPE algorithm proceeds as follows: 

1. Initialize the probabilistic models 𝑙(𝑥) and 𝑔(𝑥) with uniform priors. 

2. Draw a new set of hyperparameter values 𝑥′ from 𝑙(𝑥)/(𝑙(𝑥) + 𝑔(𝑥)), which favors 

sampling from the more promising regions of the hyperparameter space. 

3. Evaluate the objective function 𝑓(𝑥′) with the sampled hyperparameters 𝑥′. 

4. Update the probabilistic models 𝑙(𝑥) and 𝑔(𝑥) based on the observed objective function 

value 𝑓(𝑥′): 

• If 𝑓(𝑥′) is among the best observations so far, increase the density of 𝑙(𝑥) at 𝑥′. 
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• Otherwise, increase the density of g(x) at 𝑥′. 

5. Repeat steps 2-4 for a specified number of iterations or until convergence. 

The advantages of TPE include efficient exploration of the hyperparameter space, flexibility in 

handling various hyperparameter types, and the ability to parallelize the optimization process. 

The hyperparameters optimized and the search space are denoted in Table 3.7. 

Table 3. 7: Hyperparameters of EL algorithms 

Ensemble 

algorithms 

Hyperparameters Type Range 

AdaBoost Number of estimators Integer [1, 500] 

 Maximum depth Integer [1, 50] 

 Learning rate Float [0.1, 3] 

 Boosting algorithm Categorical [SAMME, 

SAMME.R] 

RF Maximum depth Integer [1, 50] 

 Minimum samples 

leaf 

Integer [2, 20] 

 Maximum features Categorical [auto, sqrt, 

log2] 

 Minimum samples 

split 

Integer [1, 50] 

 Number of estimators Integer [1, 500] 

XGBoost Learning rate Float [0.1, 3] 

 Number of estimators Integer [1, 500] 

 Maximum depth Integer [1, 50] 

 Subsample Float [0.1, 3] 

 Column sampling by 

tree 

Float [0.1, 1] 

LightGBM Learning rate Float [0.1, 3] 

 Maximum depth Integer [1, 50] 

 Number of estimators Integer [1, 500] 

 Subsample Float [0.01, 1] 

 Column sampling by 

tree 

Float [0.1, 1] 

CatBoost Learning rate Float [0.1, 3] 

 Subsample Float [0.1, 3] 

 Maximum depth Integer [1, 50] 

 Number of estimators Integer [1, 500] 

 Column sampling by 

level 

Float [0.1, 1] 
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3.6.3. Evaluation of the EL models 

To evaluate the performance of the developed models for predicting the causes of water pipe 

failures, various performance metrics were employed, derived from the confusion matrix for 

each multi-class classifier. The confusion matrix is a critical tool in assessing the performance 

of classification models, as it provides a detailed breakdown of the model’s predictions across 

different classes (Taiwo et al., 2024; Yussif et al., 2023). 

The confusion matrix for a multi-class classifier is a 𝐾 × 𝐾 matrix, where 𝐾 is the number of 

classes. In this study, 𝐾 is 4.  Each element 𝐶𝑀𝑖𝑗 in the matrix represents the number of 

instances of class 𝑖 that were predicted as class 𝑗. The diagonal elements 𝐶𝑀𝑖𝑖 represent the 

correctly classified instances for each class, while the off-diagonal elements represent 

misclassifications. 

The following metrics are calculated from the confusion matrix and used to evaluate the 

models’ performance: 

• Accuracy:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝐶𝑀𝑖𝑖

𝐾
𝑖=1

∑ ∑ 𝐶𝑀𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1

                 (3.43)  

• Macro Precision:  

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝐾
 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1               (3.44) 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =  
𝐶𝑀𝑘𝑘

∑ 𝐶𝑀𝑖𝑘
𝐾
𝑖=1

               (3.45)  

• Macro Recall:  

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝐾
 ∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1               (3.46) 

where 𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =  
𝐶𝑀𝑘𝑘

∑ 𝐶𝑀𝑘𝑗
𝐾
𝑖=1

                (3.47) 
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• Macro F1 Score:  

𝑀𝑎𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
            (3.48) 

• Weighted Precision:  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 ×𝐾

𝑘=1  ∑ 𝐶𝑀𝑘𝑗
𝐾
𝑗=1 )

∑ ∑ 𝐶𝑀𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1

            (3.49) 

• Weighted Recall:  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =   
∑ (𝑅𝑒𝑐𝑎𝑙𝑙𝑘 ×𝐾

𝑘=1  ∑ 𝐶𝑀𝑘𝑗
𝐾
𝑗=1 )

∑ ∑ 𝐶𝑀𝑖𝑗
𝐾
𝑗=1

𝐾
𝑖=1

             (3.50) 

• Weighted F1 Score:  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙
           (3.51) 

• Average Area Under the Curve (Avg AUC): The average of the area under the 

receiver operating characteristic (ROC) curve for each class, calculated as the mean of 

the individual AUC scores for each class. 

It should be noted that macro metrics, such as macro precision, recall, and F1 score, calculate 

the average of the respective metric for each class without considering class imbalance, treating 

each class equally. Weighted metrics, on the other hand, account for class imbalance by 

weighting the metric for each class by the number of actual instances in that class, providing a 

more representative measure of the model’s performance across all classes. Apart from these 8 

metrics, the training time for each model was also included in the performance evaluation.  

3.6.4. Model selection and interpretability 

Selecting the most efficient EL model for deployment is crucial for application success. To 

achieve this, the Copeland algorithm was utilized to conduct a pairwise comparison of the five 



113 
 

EL models under consideration. This comparison was based on eight evaluation metrics 

outlined in Section 3.6.3, along with considerations of training time, to determine the optimal 

model. The specifics of the Copeland algorithm, including its methodology and implementation 

details, are discussed in Section 3.5.4. Once the best model was identified, its decision-making 

process was interpreted using the SHAP framework. This framework provides an in-depth look 

at the contribution of each feature to the predictive outcomes, offering valuable insights into 

the internal workings of the model. Detailed information about the SHAP framework, including 

its theoretical underpinnings, is available in Section 3.4.3. This interpretability is essential for 

understanding the driving factors behind the model's predictions, thereby enhancing trust and 

transparency in its deployment. 

3.7. SUMMARY 

This chapter presents in detail the adopted methodologies to achieve the objectives of this 

research. Firstly, a scientometric and systematic review of the literature is conducted to identify 

water pipe failure factors and failure modes. The second objective is achieved using PLS-SEM 

algorithm to model, rank, and investigate the relationship between the failure factors and failure 

modes of water pipes. Different hypotheses are proposed and validated using statistical tests. 

The first task of the third objective is achieved by fussing logistic regression with genetic 

algorithms to develop an optimized model to predict the failure probability of water pipes. The 

contribution of each feature to the prediction is explained using the SHAP framework. The 

second task of the third objective is realized by fussing DL models with BO to build optimized 

models for predicting the probability of leaks and bursts. Subsequently, the fourth objective is 

achieved by utilizing EL algorithms to develop models to predict the causes of water pipe 

failure. These models are optimized using TPE.  
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Chapter 4 

DATA COLLECTION3 

4.1. INTRODUCTION 

This chapter describes the data collection and processing methodology employed in this study. 

Four distinct data sources were utilized to achieve the research objectives. A questionnaire 

survey was conducted among global water utility professionals to validate and rank the 

identified failure factors and investigate their relationships with failure modes, with the 

complete survey instrument provided in Appendix B. Historical water network data from the 

Hong Kong Water Distribution Network (HK WDN) containing operational records and pipe 

characteristics was collected for developing and validating failure prediction models (POF, 

POL, POB). Climate data from the Hong Kong Observatory encompassing temperature, 

rainfall, and humidity parameters was obtained to account for environmental factors in failure 

prediction. Traffic data from the Hong Kong Transportation Department was gathered to 

 
3 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Zayed, T. & Adey, B.T. "Explainable deep learning models for predicting water 

pipe failure." Journal of Environmental Management (IF = 8.7, Q1). (Under review – 

1st cycle) 

Taiwo, R., Zayed, T. & Adey, B.T. "Interpretable ensemble models for predicting causes of 

water pipe failure." Reliability Engineering and System Safety (IF = 8.1, Q1). (Under 

review – 1st cycle) 

Taiwo, R., Zayed, T. Elshaboury, N., & Abdelkader, E. M. "Promoting Sustainable Water 

Distribution Networks: Modeling of Water Pipe Failure Factors and Modes." Cleaner 

Engineering and Technology (IF = 5.3, Q1). (Under review – 2nd cycle) 

 

https://doi.org/10.1016/j.aej.2023.11.047
https://doi.org/10.1016/j.asej.2024.102630
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incorporate external loading effects. The integration of these diverse data sources enables 

comprehensive analysis of water pipe failure mechanisms while ensuring robust model 

development and validation. The detailed data collection for each of the objectives is explained 

in the following sections. 

4.2. DATA COLLECTION FOR PLS-SEM MODEL 
 

4.2.1. Questionnaire design 

A closed-ended questionnaire was developed and administered to fulfill the second objective 

of this study. The survey was developed using the Qualtrics platform, and it was distributed 

online to experts working in the domain of WDN. One advantage of a closed-ended 

questionnaire is that it allows for structured responses and is time-efficient (Adabre et al., 

2021). The questionnaire contains three sections. The first section collects the demographic 

details of the respondents. Moving on to the subsequent section, respondents are presented with 

a series of carefully curated failure factors that have been identified as potentially influential 

in the occurrence of water pipe failures. Using a 5-point Likert scale, participants are requested 

to rate the perceived influence of these factors on water pipes. The scale ranges from 1, 

indicating very low influence, to 5, denoting very high influence. By employing this structured 

rating system, the participants' subjective evaluations of the various failure factors can be 

gauged effectively, providing valuable insights into their perceived significance. In the final 

section of the questionnaire, participants are tasked with assessing the severity of different 

water pipe failure modes. This section aims to ascertain the participant's perception of the 

severity associated with these failure modes. Respondents are prompted to assign a rating on a 

scale of three, with 1 indicating low severity, 2 signifying moderate severity, and 3 denoting 

high severity. The questionnaire design is shown in Appendix B.  
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4.2.2. Sampling and survey respondents 

As there is no comprehensive list of professionals working on WDN, a random sampling 

approach was used to identify the potential respondents for the survey. A random sampling 

approach has the advantage of ensuring that every individual in the population has an equal 

chance of being selected (Olanrewaju et al., 2022). The sampling frame for this study consisted 

of professionals working in the WDN industry, including engineers, managers, and academics. 

To reach a wider pool of potential respondents, the survey was distributed through professional 

networks, industry associations, and academic-based media platforms. A total of 320 potential 

respondents were identified through the sampling approach. After excluding those who did not 

meet the inclusion criteria, such as those who were not directly involved in the management of 

WDN, a total of 210 respondents were invited to participate in the survey. Hitherto, out of the 

invited respondents, 160 completed the survey within 10 weeks, resulting in a response rate of 

76%. The high response rate may indicate that the survey was well-received and the 

participants found that understanding the relationship between water pipe failure factors is 

necessary and important.  

The adequacy of the sample size in this study, consisting of 160 respondents, aligns with the 

recommended requirements for conducting an SEM analysis (Wolf et al., 2013). Ott & 

Longnecker (2016) and Wolf et al. (2013) emphasized that a minimum of 30 responses is 

necessary for SEM analysis, a criterion fulfilled by the sample size in this study. As a general 

guideline (Hair et al., 2017), the recommended sample size is typically estimated to be ten 

times greater than the maximum value derived from two criteria: 1) the highest number of 

connections between an observed variable and a latent construct, and 2) the highest number of 

connections between a latent construct and other latent constructs. In this study, the maximum 

number of connections between an observed variable and a latent construct is 9 (i.e., operation-

related factors). Additionally, there are six latent constructs, each potentially establishing a 
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maximum of five relationships with other constructs. Based on these criteria, the estimated 

required sample size would be 90 respondents. However, it is worth noting that the actual 

sample size used in this study was 160 respondents, surpassing the recommended threshold. 

This larger sample size ensures a more comprehensive exploration of the relationships between 

observed variables and latent constructs, enhancing the reliability and generalizability of the 

study findings. Therefore, the sample size of 160 respondents is deemed adequate for 

conducting the SEM analysis, demonstrating a rigorous approach to data collection and 

analysis in this study. 

4.2.3. Profile of the respondents 

Figure 4.1-4.5 elucidates the demographic characteristics of the respondents. It indicates that 

about half of the respondents were academics (51.3%), while the remaining half are working 

in the industry related to WDN as engineers (17.76%), government officials (13.82%), site 

supervisors (9.21%), consultant (5.26%), and manager (2.63%). Most respondents (42.48%) 

had 11-15 years of experience, 19.61% had 16-20 years of experience, and only 11.76% had 

less than 5 years of experience. Regarding their degree qualification, 37.25, 31.37, and 22.22% 

had Doctorate, Master, and Bachelor’s degrees, respectively. Further, the majority of the 

respondents (63.82%) had a major in Civil Engineering, while 11.84 and 9.21% had a 

background in Project Management and Environmental Engineering, respectively. As shown 

in Figure 4.5, the respondents were from different countries across the globe, with 29.45, 21.92, 

and 19.86% from Hong Kong, the USA, and Canada, respectively. Based on this demographic 

information, it can be concluded that the respondents had the necessary knowledge, experience, 

and qualifications to contribute to the objectives of this study. The diverse background of the 

respondents from different countries adds to the robustness and generalizability of the study's 

findings. 
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Figure 4. 1: Current position of the respondents 

 

Figure 4. 2: Experience of the respondents 
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Figure 4. 3: Degree of the respondents 

 

Figure 4. 4: Professional field of the respondents 

37.25

31.37

22.22

9.15

0.00 10.00 20.00 30.00 40.00

Doctorate

Master

Bachelor

Diploma

Percentage (%)

Degree

3.29

9.21

4.61

11.84

7.24

63.82

0.00 20.00 40.00 60.00 80.00

Others

Environmental Engineering

Production and Operation

Project Management

Mechanical Engineering

Civil Engineering

Percentage (%)

Professional field



120 
 

 

Figure 4. 5: Country of the respondents 
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Table 4. 1: Result of common method bias 

Extraction sums of squared 

loadings 

  

Total % of variance Cumulative % 

9.829 28.08 28.08 

 

4.3. DATA COLLECTION FOR THE POF MODEL 
 

4.3.1. Case study data 

The data used in this section of the study are collected from the Water Supply Department in 

Hong Kong, which is responsible for the management of Hong Kong's WDN. The WDN 

provides both fresh and saltwater to about 7.41 million individuals (Water Supplies 

Department, 2021). The HK WSD provided two GIS files. The first one consists of the network, 

while the second one shows the pipes that have experienced failure from 2010 to 2020. After 

matching the two files together, the data comprise 1,089,232 pipes, with only 51,568 of them 

as failed pipes. This means only 4.73% of the pipes have experienced failure in the past.  

The WDN is composed of over 8300 km of pipes, with approximately 80% of it carrying 

freshwater, and the others are responsible for saltwater. In order to have a comprehensive 

understanding of factors affecting the failure of water pipes, the data provided by the HK WSD 

was supplemented by data available from different open sources. One of the gaps in previous 

studies is the lack of data aggregation from different sources to produce robust models. This 

gap is filled by aggregating the WSD data with the climatic and traffic data provided by HK 

Observatory and Transportation Department. Although the supplementary data are available 

online, it requires enormous efforts to combine them together since they are available in 

different formats. After the data aggregation, the data consisted of 13 factors, divided into pipe-

related, environment-related, and operational-related factors. The pipe-related factors include 

pipe length, diameter, material, and age. The environment-related factors are soil corrosivity, 

road type, land use, temperature, precipitation, and annual average daily traffic (AADT), while 
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the operation-related factors include pressure and availability of cathodic protection. The 

description of the data used in developing the predictive models is presented in Table 4.2, 

together with statistics of the numerical data. As can be inferred from Table 4.2, the categorical 

factors take a value of 0 when the factor is not present in an observation and 1 otherwise.  

The network comprises different materials, including ductile iron (DI), cast iron (CI), plastic 

(Polyvinyl chloride and polyethylene pipes), steel, galvanized iron (lined and unlined), and 

asbestos cement (AC) pipes. Figure 3 shows the distribution of the pipes in relation to the water 

types in HK WDN. As shown in Figure 4, GI (26.43%), DI (25.6%), and plastic (23.06%) pipes 

dominate the freshwater pipes, while DI (39.36%), plastic (33.98%), and CI (10.53%) are 

mostly used to distribute saltwater to the consumers.  

4.3.2. Data pre-processing 

Data pre-processing is an essential step in ML model development. It is known that an ML 

model is as good as the data used in its development. Quality data has the potential to produce 

accurate predictive models. Hence, outlier detection, data imputation, normalization, and 

standardization were conducted to tackle the problem of data redundancy, noise, and 

heterogeneity. The pre-processing starts by detecting the outliers in the data. The detection was 

done using data visualizations (i.e., box plots and scatter plots) and descriptive statistics, and 

the outliers were eliminated. For instance, 99% of the pipes have an age between 0-70 years, 

and only 1% of the pipes have an age between 115-120 years. These few data instances are 

outliers, which were eliminated.  

Subsequently, the missing data for the numerical factors was filled using the mean value, while 

the mode was used to complete the categorical data.
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Table 4. 2: Description of the data used for model development 

Factor Source Description Mean Std Min Max 

Length HK WSD This shows how long the pipe is, and it is measured in meters. 8.04 20.25 1.00 200.00 

Diameter HK WSD This describes the outside diameter of the pipes, and it is 

measured in millimeters. 

132.47 171.11 20.00 3000.00 

Material HK WSD This describes the material type of each pipe. - - 0 1 

Age HK WSD This refers to the number of years since the installation 22.45 16.20 0 70 

Soil 

corrosivity 

HK WSD This typifies the aggressiveness of the soil, and it can be 

noncorrosive, moderately, or highly corrosive. 

- - 0 1 

Road type HK WSD This shows the type of road that is above the buried pipes, and 

it can be footway, carriageway, or other locations 

- - 0 1 

Land use HK WSD This describes the usage of land in the vicinity of the buried 

pipes, and it can either be urban or rural. 

- - 0 1 

Temperature HK OBV This refers to the mean temperature (oC) at various pipe 

locations 

24.26 6.95 2.50 30.5 

Precipitation HK OBV This is the accumulated amount of rainfall at various pipe 

locations, and it is measured in millimeters. 

10.36 3.33 2.34 13.1 

AADT HK TRD This describes the traffic above each buried pipe. 20337.97 24346.09 1.00 179400.00 

Pressure HK WSD This refers to the water pressure, and it is measured in bars 6.22 2.421 0.05 21.069 

Water type HK WSD This shows the type of water carried by the pipe, and it can 

either be fresh or saltwater 

- - 0 1 

CP HK WSD This describes if cathodic protection is applied to a pipe or not. - - 0 1 

 HK OBV refers to Hong Kong Observatory, and HK TRD refers to Hong Kong Transportation Department 
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Figure 4. 6: Material distribution by water types in Hong Kong WDN 
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accuracy and precision of such a model. As previously mentioned, the data is highly 

unbalanced, as about 5% of the data belongs to the failure class; hence, an under-sampling 

technique was adopted to rebalance the training data. This technique has been used in a 

previous related study (Robles-velasco et al., 2020).  

After the data-cleaning process described above, 871,802 pipes were found appropriate for the 

model development. Since classifiers are to be developed in this study and the numerical factors 

occur on different scales (i.e., value ranges), data scaling was conducted to unify the data. 

Without applying data scaling, the learning algorithm will be biased towards numerical factors 

with higher magnitude, hence, producing an inaccurate model. Therefore, data scaling is an 

important step in ML modeling, as it allows the learning algorithm to understand the data well 

at a fast rate.  

Two data scaling methods were adopted – normalization and standardization – based on their 

efficiency in previous studies (Almheiri et al., 2021; Robles-velasco et al., 2020), and their 

results were compared. The data were normalized and standardized using Equations 4.1 and 

4.2, respectively. Normalization ensures that the data lies within a certain range based on the 

maximum and minimum values of a feature. In our case, the data ranges between 0 and 1. On 

the other hand, standardization ensures that the standardized feature has a standard deviation 

of 1 and a mean of 0. It should be noted that only the numerical features were standardized. 

Standardizing the one-hot encoding features means that a distribution is assigned to them, 

which is inaccurate.  

𝑥𝑛𝑜𝑟𝑚 =  
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                    (4.1) 

𝑥𝑠𝑡𝑎𝑛𝑑 =  
𝑥𝑖−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
                    (4.2) 
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where 𝑥𝑖 , 𝑥𝑛𝑜𝑟𝑚 𝑎𝑛𝑑 𝑥𝑠𝑡𝑎𝑛𝑑  refer to the unscaled, normalized, and standardized value of a data 

instance and 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑥𝑠𝑡𝑑  represent the minimum, maximum, mean, and 

standard deviation of a feature.  

4.4. DATA COLLECTION FOR THE POL AND POB MODELS 

4.4.1. Case study data 

An updated data from HK WSD was collected, which shows the exact type of failure that each 

pipe has experienced in the past. The data provision from the WSD comprised two GIS files, 

one detailing the configuration of the water network and the other cataloging incidences of 

leaks and bursts across the network. Upon integration of these data, the resulting compilation 

included records for 1,089,232 pipes. Of these pipes, 37,767 were identified to have suffered 

from leaks, while bursts were noted in 1,552 cases. This indicates that leakages and bursts 

affected a mere 3.47% and 0.142% of the network, respectively. The WDN spans over 8,300 

kilometers and is the primary water supply infrastructure for a population exceeding 7.41 

million (Water Supplies Department HKSAR, 2021).  

Additional data were sourced from various open databases to form a more holistic view of the 

variables influencing pipe failures. This supplementary data encompasses climatic variables 

obtained from the HK Observatory and traffic information sourced from the HK Transport 

Department. Subsequent to the dataset aggregation, a total of 13 variables were identified and 

categorized into three groups: those pertaining to the pipes themselves, environmental 

conditions, and operational characteristics. The group of pipe-specific variables encompassed 

attributes such as length, diameter, material, and service age. Environmental variables included 

the corrosiveness of the soil, the type of roadway above, the surrounding land's utilization, 

meteorological factors such as temperature, precipitation, and humidity, and the annual average 

daily traffic (AADT) values. The operational variables consisted of the water pressure within 
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the pipes, water type, and whether CP was implemented or not. The dataset's descriptive 

statistics are presented in Table 4.3. A binary system was employed for categorical variables, 

assigning a '1' to denote the presence of a characteristic in a given data point and a '0' to signify 

its absence (i.e., one-hot encoding). 

Table 4. 3: Descriptive statistics of the data 

Factor Unit Mean Std Min Max 

Length Metre (m) 7.43 17.43 1.00 200.00 

Diameter Millimeters (mm) 131.21 167.44 20.00 3000.00 

Material AC, CI, DI, PE - - 0 1 

Age Years 24.17 20.29 0 70.00 

Soil 

corrosivity 

Non-corrosive, Mildly 

corrosive, Highly 

corrosive 

- - 0 1 

Road type Footway, Carriageway, 

Other locations 

- - 0 1 

Land use Urban, Rural. - - 0 1 

Temperature  oC 24.26 6.96 2.30 30.20 

Precipitation Millimeters (mm) 10.56 9.07 1.02 792.00 

Traffic AADT 11427.88 15970.03 1.00 179400.00 

Pressure Bars 6.24 2.42 0.53 24.60 

Water type Freshwater, Saltwater - - 0 1 

CP - - - 0 1 

 

4.4.2. Data pre-processing 

Pre-processing of data is a critical stage in the development of DL models, as the accuracy of 

predictions is greatly influenced by the quality of the input data. To address issues of 

redundancy, noise, and heterogeneity in the data, several pre-processing techniques were 

employed. Initial steps included identifying and removing outliers, utilizing methods such as 

box and scatter plots, and a thorough examination of descriptive statistics. For instance, pipe 
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data indicating an age of 115 years, which represented a scant proportion of less than 1%, were 

deemed outliers and thus removed. For the treatment of missing entries, numerical data points 

were substituted with the mean of their respective feature, while the most frequent values, or 

modes, were used for categorical data. The rationale behind these methods is to maintain the 

integrity of the dataset's distribution. In the scaling phase, both normalization and 

standardization procedures were executed, drawing on their demonstrated effectiveness in prior 

research (Almheiri et al., 2021; Robles-velasco et al., 2020). The mathematical expressions for 

these scaling methods are presented in Equations 4.1 and 4.2. 

4.5. DATA COLLECTION FOR THE COF MODEL 

4.5.1. Case study data 

The Water Supplies Department (WSD) provided updated data on the Hong Kong WDN, which 

includes over 1 million assets. Of these, 64,076 assets have documented records of failures, 

including detailed causes. The dataset from Hong Kong WSD incorporates intrinsic pipe data 

and operational data. To further enrich this dataset, climatic data from the Hong Kong 

Observatory and traffic data from the Hong Kong Transport Department were added. After 

integrating these diverse sources of data, the final dataset emerged with 13 input variables and 

1 output variable detailing the causes of water pipe failures. 

After data cleaning, the remaining number of data instances was 62,738. Table 4.4 presents the 

descriptive statistics of the dataset, including the mean, standard deviation, minimum, and 

maximum values for each variable. To better understand the dataset, the distribution of pipe 

materials and causes of water pipe failures were analyzed. Figure 4.7 illustrates the distribution 

of pipe materials for the failed pipes, while Figure 4.8 depicts the distribution of the causes of 

water pipe failures. Figure 2 shows lined galvanized iron (GIL) as the most prevalent pipe 

material, followed by galvanized iron (GI) and unplasticized Polyvinyl Chloride (UPVC). 
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Figure 3 reveals that corrosion was the leading cause of failures, highlighting its significance, 

followed by faulty workmanship and external loading. 

Table 4. 4: Descriptive statistics of the data 

Variable Unit Mean Standard 

deviation 

Minimum Maximum 

Length Metre (m) 23.25 25.33 1.00 200.00 

Diameter Millimeters (mm) 99.15 98.14 100 2200 

Age Years 30.23 21.45 0.00 99.00 

Material AC, CI, DI, GI, GIL, S, 

SS, PE, UPVC 

- - 0 1 

Soil 

corrosivity 

Highly corrosive, Mildly 

corrosive, Non corrosive 

- - 0 1 

Road type Footway, Carriageway, 

Other locations 

- - 0 1 

Water type Saltwater, Freshwater - - 0 1 

Pressure Bar 6.40 2.60 0.67 20.11 

Landuse Urban, Rural - - 0 1 

Traffic AADT 21935 23573 0.00 147930 

Temperature oC 22.95 4.99 3.00 30.80 

Relative 

humidity 

% 78.09 7.45 51.00 100.00 

Precipitation Millimeters (mm) 171.59 162.98 0.00 893.00 

 

 

Figure 4. 7: Material distribution for the failed pipes 
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Figure 4. 8: Distribution of water pipe failure causes 

 

4.5.2. Data pre-processing 

The input variables consisted of four pipe-related factors: length, diameter, age, and material. 

The environment-related factors included soil corrosivity, road type, land use, annual average 

daily traffic (AADT), temperature, relative humidity, and precipitation. The operational-related 

factors were water type and internal pressure. Data pre-processing was carried out to ensure 

data quality and suitability for modeling. This involved removing outliers and duplicate 

records, as well as imputing missing values using the mean for numerical variables and the 

mode for categorical variables. Based on the outcomes of the previous objectives of this study, 
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categorical data was pre-processed by creating dummy variables, while numerical data was 

standardized using Equation 4. 2. 

 

4.6. SUMMARY 

This chapter outlines the data collection methods utilized to develop models for objectives 2, 

3, and 4 of this study. To achieve the second objective, a questionnaire survey was conducted 

to gather data necessary for developing the PLS-SEM model. The chapter also describes the 

collection of data used to develop an optimized predictive model that estimates the likelihood 

of failure in water pipes, addressing the first task of the third objective. Additionally, updated 

data specifying the type of failure was collected to aid in the development of the Probability of 

Leak (POL) and Probability of Burst (POB) models, meeting the requirements of objective 3b. 

Lastly, recent data detailing the causes of water pipe failures in the Hong Kong Water 

Distribution Network (HK WDN) was gathered and utilized to develop the Causes of Failure 

(COF) model. 
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Chapter 5 
 

RESULTS AND DISCUSSION4 
 

5.1. INTRODUCTION 

This chapter provides the results of the research methodologies developed to fulfill the 

objectives of the current study. First, the results from the systematic review of water pipe failure 

factors and failure modes are presented. Subsequently, the results of the PLS-SEM model are 

highlighted and discussed. The implementation of the POF, POL, and POB models is discussed 

and elaborated. The results of the predictive models for causes of water pipe failure are also 

presented to fulfill the fourth objective of this study.  

 
4 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Zayed, T. & Adey, B.T. "Explainable deep learning models for predicting water 

pipe failure." Journal of Environmental Management (IF = 8.7, Q1). (Under review – 

1st cycle) 

Taiwo, R., Zayed, T. & Adey, B.T. "Interpretable ensemble models for predicting causes of 

water pipe failure." Reliability Engineering and System Safety (IF = 8.1, Q1). (Under 

review – 1st cycle) 

Taiwo, R., Zayed, T. Elshaboury, N., & Abdelkader, E. M. "Promoting Sustainable Water 

Distribution Networks: Modeling of Water Pipe Failure Factors and Modes." Cleaner 

Engineering and Technology (IF = 5.3, Q1). (Under review – 2nd cycle) 

 

https://doi.org/10.1016/j.aej.2023.11.047
https://doi.org/10.1016/j.asej.2024.102630
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5.2. RESULTS OF SYSTEMATIC REVIEW OF WATER PIPE 

FAILURE FACTORS AND FAILURE MODES 

A comprehensive literature review of water pipe failure factors and failure modes is conducted 

and presented in the second chapter of this thesis. 30 failure factors and five failure modes are 

identified. These factors and failure modes are presented in this section using fault tree logic 

(FTL).  

5.2.1. Fault-tree logic for mapping failure factors of water pipe 

This section presents a mapping model for the failure factors of water pipes. The model was 

developed using the FTL as it can show the link between the failure of a water pipe and its 

influencing factors. This model can be beneficial to infrastructure managers in focusing on 

measures or strategies that can be used to mitigate the occurrence of the basic causes of the 

system failure. As shown in Figure 5.1, the FTL diagram summarises the output of the 

systematic review presented in chapter two. The interpretation of the symbols used in the FTL 

diagram is shown in Table 5.1. It could be observed that the FTL diagram consists of several 

intermediate and basic events and one undeveloped event. Several benefits can be derived from 

the use of FTL in mapping the failure factors, as highlighted below:  

• Structured Approach: FTL provides a structured procedure for mapping and 

analyzing the failure factors in a complex water pipe system.  With the FTL model, all 

the relevant causes of water pipe failure are considered, and a systematic examination 

of the interdependencies between various failure factors can be established (Kim et al., 

2021). 

• Risk Identification: The use of FTL helps identify the likelihood of failure events and 

failure modes, allowing decision-makers to prioritize areas for improvement and 

allocate resources effectively. The results of the analysis can also be used to develop 
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risk management strategies, such as identifying critical components and taking 

measures to improve their reliability (Lindhe et al., 2009). 

• Improved Decision-Making: FTL can provide deeper insight into the behavior of a 

WDN and the factors that contribute to its failures. This improved understanding can 

help inform decisions related to system design, maintenance, and operation. 

The FTL diagram starts with the top event named "failure factors of water pipes," which is 

directly connected to four intermediate events — pipe-related, soil-related, external-related, 

and operation-related factors — by the "OR" gate, indicating that any of the intermediate events 

can cause the occurrence of the top event. For instance, "pipe diameter" — an element of a 

pipe-related intermediate event and "internal water pressure" — an element of an operation-

related event caused the failure of water pipes, as discussed by  Hekmati et al. (2020) and 

Robert et al. (2017), respectively. The first intermediate event – pipe-related factors – consists 

of another intermediate event named "Protection Efficiency" and 6 basic events that are 

connected to the intermediate event with the "OR" gate. The same case is applicable to the 

intermediate event of the operation-related factors. Moreover, the intermediate event of soil-

related causes is connected by the "OR" gate to five basic events and another intermediate event 

named "Resistivity". It should be known that the "Resistivity" event is connected by the "AND" 

gate to three basic events, typifying that these three events must occur simultaneously to 

produce the "Resistivity" event (Arriba-Rodriguez et al., 2018). Subsequently, the intermediate 

event of the external-related factors is connected by the "OR' gate to three intermediate events: 

climate-related, location-based, and biological and chemical-related factors, indicating that 

each of the events can cause water pipe failure. For example, "temperature" — an element of 

a climate-related event and "microbiologically induced corrosion" — an element of a biological 

and chemical-related event caused the failure of water pipes as indicated in the studies by 

Trickey et al. (2016) and San et al. (2012), respectively. Similarly, the intermediate events of 
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OR       

"climate-related factors" and "biological and chemical-related factors" are individually 

connected to three basic events by the "OR gate," while the event of the location-based factors 

is connected by the "OR gate" to a basic event — traffic — and an undeveloped event, land 

use. An undeveloped event is used for "land use" because very limited literature has suggested 

it to be a contributing factor to the failure of water pipes.  

Table 5. 1: FTL event symbols, logic gates, and interpretations 

Event symbols and logic gates Interpretation 

Basic event    

 

 

                                        

It represents a component of failure that 

cannot be developed further.  

 

Intermediate event 

 

It represents a fault event that is between 

basic and top events. It is developed through 

logic gates. 

 

 

Undeveloped event 

 

 

It represents an event that cannot be 

developed further due to minimal 

information available about it.  

OR gate 

 

 

 

It is used to show that the output event will 

occur if any of the inputs occur. 

AND gate 

 

 

 

It is used to show that the output event 

occurs only when all the inputs exist at the 

same time. 

 

5.2.2. Fault-tree logic for mapping failure modes of water pipe 

Figure 5.2 presents the FTL diagram for mapping the failure modes of water pipes. According 

to the diagram, the top event, "water pipe failure modes," is connected to five basic events – 

circumferential cracking, longitudinal cracking, bell splitting, corrosion pitting, and blown-out 

hole – by the "OR" gate, indicating that any of the basic events stand as an independent failure 

mode for water pipes.  

 

AND 
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I and P operation = Installation and pump operation; M practices = Maintenance practices; MIC = Microbiologically induced corrosion  

 

Figure 5. 1: Fault tree logic (FTL) diagram for failure factors of water pipe 
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Figure 5. 2: Fault tree logic diagram for water pipe failure modes 

 

5.3. RESULTS OF THE PLS-SEM MODEL 
 

5.3.1. Result of the measurement model 

As previously indicated, the measurement model was developed using the PLS-SEM algorithm 

in SmartPLS software. The results of the model were assessed and validated using construct 

and convergent validity and discriminant validity, which are presented in the subsequent 

sections. 

5.3.1.1 Construct reliability and convergent validity 

(I) Outer loading: Table 5.2 expounds on the result of the construct reliability and convergent 

validity. The initial measurement model contained some indicators with outer loadings below 

the 0.5 threshold. While the literature review suggests that these indicators may contribute to 

pipe failure, they were not as critical as the ones retained in the final model. Removing these 

less critical indicators enhances the overall model reliability by focusing on the most significant 

factors influencing pipe failures. Figure 5.3 demonstrates the final measurement model 

consisting of reliable indicators. The result indicates that 81% (18) of the reliable indicators 

had a factor loading of 0.7 and above, which is considered highly satisfactory (see Table 5.2). 
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The remaining three indicators exhibited a factor loading greater than 0.5, which is considered 

acceptable. By retaining only the most reliable indicators, the model ensures that it accurately 

captures the most influential factors, leading to more robust and trustworthy results. 

(II) Cronbach's alpha (𝜶): As previously indicated, the acceptable threshold for Cronbach's 

alpha is 0.7. Table 5.2 indicates that all the constructs have a Cronbach's alpha greater than 0.8, 

which is more than the required threshold. It should be noted some indicators were deleted 

even though they have an outer loading greater than 0.5 to ensure that all the constructs meet 

the validity requirement. 

(III) Composite reliability (𝝆𝒄): According to Table 3.1, a construct with a composite 

reliability value of 0.7, 0.8, and 0.9 is regarded as acceptable, satisfactory, and perfect. This 

assesses the internal consistency of measurements, providing a more accurate measure than 

traditional Cronbach's alpha by accounting for different indicator loadings. In this connection, 

all the constructs exhibited a composite reliability value greater than 0.8, indicating that the 

reliability of the measurement model is deemed satisfactory.  

(IV) Average variance extracted (AVE): Table 5.2 states that all the constructs exhibited an 

AVE value greater than the required threshold of 0.5. This implies that the construct accounts 

for more variance than measurement error, thereby indicating that the indicators are dependable 

and valid measures of the construct.  

The construct reliability and convergent validity findings establish that the analytical model is 

both convergent and consistent, providing evidence to support the notion that the indicators 

used in the model are reliable and valid measures of the constructs they represent. Additionally, 

the relationships between the constructs in the analytical model have been carefully analyzed, 

providing further evidence to support the theoretical relationships proposed in the study. 
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Table 5. 2: Result of the construct reliability and convergent validity 

Construct Code Outer loading Cronbach's 

alpha 

Composite 

reliability 

AVE 

Initial Modified 

Pipe-related 

factors 

PRF 1 0.755 0.780 0.812 0.828 0.572 

PRF2 0.546 deleted    

PRF3 0.776 0.832    

PRF4 0.766 0.809    

PRF5 0.708 0.707    

PRF6 0.247 deleted    

PRF7 0.687 0.643    

External-

related 

factors 

ERF1 0.846 0.905 0.800 0.841 0.634 

ERF2 0.466 deleted    

ERF3 0.795 0.816    

ERF4 0.361 deleted    

ERF5 0.430 deleted    

ERF6 0.645 0.584    

ERF7 0.774 0.851    

ERF8 0.159 deleted    

Soil-related 

factors 

SRF1 0.583 0.571 0.803 0.862 0.551 

SRF2 0.791 0.815    

SRF3 0.744 0.746    

SRF4 0.789 0.811    

SRF5 0.751 0.733    

SRF6 0.597 deleted    

Operational-

related 

factors 

ORF1 0.400 deleted 0.809 0.817 0.572 

ORF2 0.639 0.676    

ORF3 0.694 0.721    

ORF4 0.696 0.748    

ORF5 0.795 0.777    

ORF6 0.864 0.861    

ORF7 -0.024 deleted    

ORF8 0.548 deleted    

ORF9 0.578 deleted    

Failure 

modes 

FMD1 0.344 deleted 0.829 0.844 0.745 

FMD2 0.799 0.825    

FMD3 0.788 0.858    

FMD4 0.865 0.910    

FMD5 0.436 deleted    

 

5.3.1.2. Discriminant validity  

The discriminant validity of the model was assessed using three distinct and complementary 

approaches. The Heterotrait-Monotrait (HTMT) ratio evaluates the correlation between 
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constructs relative to the correlation within constructs, offering a more stringent assessment 

than traditional methods.  

 

Figure 5. 3: Final measurement model 

The Fornell-Larcker criterion compares the square root of AVE values with latent variable 

correlations, specifically examining whether a construct shares more variance with its 

indicators than with other constructs. Cross-loading analysis provides a detailed item-level 

assessment by examining if indicators load more strongly on their assigned constructs than on 

others, thereby confirming the uniqueness of each construct's measurement.  

(I) Heterotrait-monotrait (HTMT) ratio: As depicted in Table 5.3, the HTMT value for all 

the constructs typifies that the validity is confirmed as their values are less than 0.9 (Kline, 

2016). 

(II) Fornell-larcker criterion: In order to further confirm the discriminant validity, another 

assessment was conducted using the Fornell-larcker criterion. According to the result shown in 

Table 5.4, it is demonstrated that the diagonal values, which represent the correlations between 

the same constructs (i.e., values in bold in Table 5.4), are the highest among all the values in 
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the table. This implies that the constructs have a stronger correlation with themselves than with 

any other construct, implying satisfactory discriminant validity. Therefore, it can be concluded 

that the constructs are distinct and not measuring the same underlying concept (Adabre et al., 

2021; Chin, 1998). 

Table 5. 3: Heterotrait-monotrait (HTMT) ratio 

Constructs External-

related 

factors 

Failure 

modes 

Operation-

related factors 

Pipe-

related 

factors 

Soil-

related 

factors 

External-

related factors 

     

Failure modes 0.610     

Operation-

related factors 

0.886 0.694    

Pipe-related 

factors 

0.842 0.725 0.799   

Soil-related 

factors 

0.869 0.523 0.839 0.681  

 

Table 5. 4: Fornell-larcker criterion 

Constructs External-

related 

factors 

Failure 

modes 

Operation-

related factors 

Pipe-

related 

factors 

Soil-

related 

factors 

External-

related factors 

0.766     

Failure modes 0.574 0.814    

Operation-

related factors 

0.728 0.469 0.767   

Pipe-related 

factors 

0.741 0.595 0.726 0.736  

Soil-related 

factors 

0.732 0.400 0.693 0.680 0.722 

 

(III) Cross-loading: Finally, the discriminant validity of the measurement model is 

investigated using the cross-loadings of the observable variables. Table 5.5 explicates the result 

of the analysis. As per the result, the discriminant validity is confirmed as all the observable 

variables have the highest loadings in their respective construct  (Hair et al., 2017).  
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Table 5. 5: Cross loadings of the indicators 

Codes External-

related 

factors 

Failure 

modes 

Operation-

related factors 

Pipe-related 

factors 

Soil-related 

factors 

ERF1 0.934 0.525 0.776 0.780 0.648 

ERF3 0.823 0.314 0.624 0.523 0.617 

ERF6 0.565 0.232 0.454 0.365 0.548 

ERF7 0.840 0.543 0.559 0.682 0.632 

FMD2 0.496 0.837 0.499 0.622 0.376 

FMD3 0.327 0.843 0.345 0.438 0.255 

FMD4 0.456 0.910 0.487 0.532 0.418 

ORF2 0.470 0.330 0.681 0.613 0.445 

ORF3 0.464 0.323 0.734 0.472 0.468 

ORF4 0.494 0.521 0.760 0.619 0.504 

ORF5 0.544 0.298 0.755 0.399 0.536 

ORF6 0.708 0.420 0.850 0.539 0.711 

PRF1 0.488 0.434 0.578 0.788 0.455 

PRF3 0.746 0.613 0.582 0.823 0.658 

PRF4 0.715 0.597 0.489 0.819 0.548 

PRF5 0.393 0.363 0.515 0.723 0.400 

PRF7 0.428 0.214 0.518 0.628 0.569 

SRF1 0.320 -0.156 0.289 0.101 0.567 

SRF2 0.711 0.465 0.672 0.627 0.852 

SRF3 0.469 0.208 0.438 0.366 0.778 

SRF4 0.712 0.422 0.596 0.721 0.829 

SRF5 0.383 0.077 0.433 0.294 0.721 

 

5.3.2. Result of the structural model  
 

After confirming the reliability and validity of the measurement model, path analysis was 

conducted to test the study hypothesis through the structural model. The path coefficients 

indicate the strength of relationships between constructs, with values from 0.5-1.0 suggesting 

strong effects (Murari, 2015). The analysis showed water pipe failure factors have a strong 

influence (𝛽 = 0.567) on failure modes. This result provides quantitative evidence supporting 

the hypothesized relationship between these two constructs. 

(I) Significance test using t-test: To determine the significance of the path coefficients, a 

bootstrapping analysis was conducted using the t-test. The bootstrapping analysis, involving 

5000 subsamples, provides a non-parametric approach to assess the precision of PLS estimates 
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by examining the variability of the estimates across multiple resamples of the data. Table 5.6 

presents the direct relationships between the constructs for hypothesis testing. The analysis 

revealed that the tested hypothesis in this study was supported, as the t-value between the 

related constructs exceeded 2.58 at a significance level of 0.01 (Adabre et al., 2021; Hair et al., 

2014). Therefore, the results provide strong evidence in support of the proposed relationships 

between the constructs. 

 

 

Figure 5. 4: Structural model 

 

Table 5. 6: Direct relationship between the constructs for hypotheses testing and VIF 

Hypothesis Relationships 𝜷 values Standard deviation T statistics P values VIF 

HT1 Water pipe 

failure factors -

> Failure 

modes 

0.567 0.064 8.912 0.000 1.308 

 

(II) Collinearity measure: An assessment of the inner VIF was done to check the existence of 

multicollinearity. VIF specifically quantifies the severity of multicollinearity among predictor 
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variables, ensuring the independence of each factor's contribution. As shown in Table 5.6, it 

can be observed that the value of the VIF is less than the acceptable threshold (i.e., 3.5). This 

suggests that there was no issue of collinearity among the constructs, and the model's estimates 

of the path coefficient were not biased due to high correlations among the independent 

variables. Thus, the findings of the study can be considered reliable and valid. 

(III) Explanatory power using R2: Besides assessing the significance and collinearity of the 

constructs, the explanatory power of the model was evaluated using the coefficient of 

determination (R2). As depicted in Figure 5.4, the R2 values were 0.322 and 0.993, indicating 

that the model explained a significant portion of the variance in the dependent variable (Hair 

et al., 2017). Specifically, the result indicates that 32.2% of the failure modes variance is 

explained by the water pipe failure factors, which is deemed satisfactory and significant (Ali 

et al., 2023).  

(IV) Predictive relevance using Q2: Another important aspect of assessing the quality of a 

model is its predictive relevance. To evaluate this, the Q2 measure was used, which estimates 

the predictive ability of the model based on a cross-validation procedure (Hair et al., 2017). 

The Q2 values were calculated using the cross-validation method in the blindfolding protocol 

in SmartPLS software. The results presented in Table 5.7 indicate that all the constructs had 

positive Q2 values, ranging from 0.135 to 0.361, suggesting that the model has satisfactory 

predictive relevance (Adabre et al., 2021). Specifically, the Q2 value of 0.254 for the failure 

modes construct implies that the model can predict approximately 25.4% of the variance in the 

failure modes variable, which is considered acceptable (Hair et al., 2014). Therefore, the results 

provide evidence that the proposed model has both explanatory and predictive relevance, 

indicating its potential usefulness for understanding and predicting water pipe failure modes. 
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Table 5. 7: Result of predictive relevance of the model 

Constructs SSO SSE Q² (=1-

SSE/SSO) 

External-related factors 660.000 428.762 0.361 

Failure modes 490.000 373.569 0.254 

Operation-related factors 820.000 604.215 0.267 

Pipe-related factors 820.000 810.000 0.135 

Soil-related factors 820.000 653.766 0.202 

SSO – total sum of squares and SSE – sum of square errors 

(V) Assessing the effect size using f2: To determine the strength of the impact of the 

independent constructs on the dependent construct, effect size (f2) was used. This measure 

assesses the influence of one construct on another in terms of R2. The changes in R2 were 

evaluated to calculate the f2, which helped identify any substantial impact between the 

constructs. According to (Cohen, 2013), the effect size between two constructs is regarded as 

weak, moderate, and substantial if f2 ranges between 0.02 to 0.15, 0.15 to 0.35, and a value 

above 0.35, respectively.  Therefore, as per the f2 result shown in Table 5.8, it can be seen that 

a substantial impact exists between failure factors and failure modes.  

Table 5. 8: Result of the f2 test 

Hypothesis Relationships f2 

HT1 Water pipe failure factors -> Failure modes 0.474 

 

5.3.3. Importance-performance analysis (IPMA) 

As an addition to affirming the significance of the relationship between the constructs, it is 

crucial to investigate the importance and performance of these constructs on the target construct 

(i.e., failure modes). Hence, the importance-performance map analysis (IPMA) was carried out 

in SmartPLS. The result of the analysis is shown in Figure 5.5 and Table 5.9. According to the 

result, the construct of pipe-related factors has the highest performance and total effects (i.e., 

importance) on the failure modes, followed by operation-related factors and external-related 

factors. This analysis provides valuable insights into the relative importance of each construct 
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and can be used to guide decision-making and resource allocation efforts in the management 

of water pipe failure. 

Table 5. 9: Importance-performance map analysis result 

Constructs Performance Importance 

External-related factors 74.172 0.297 

Operation-related factors 78.886 0.305 

Pipe-related factors 83.661 0.879 

Soil-related factors 73.081 0.256 

 

 

 

Figure 5. 5: Importance-performance map analysis of the endogenous constructs on the target 

construct 

 

5.3.4. Discussion of critical water pipe failure factors and failure modes 

This section presents an integrated discussion of the results obtained from the measurement 

and structural models. The discussion is based on the significant indicators in each construct 

and confirmation of the hypotheses made in this study. 

5.2.4.1 Pipe-related factors construct 

Out of seven factors reviewed as pipe-related influencing factors for water pipe failure, five 

were found to be critical for water pipe failure. These factors, together with their corresponding 
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loadings, are PRF1 – "age" (0.780); PRF3 – "diameter" (0.832); PRF4 – "length" (0.809); PRF5 

– "material" (0.707); and PRF7 – "wall thickness" (0.643).  

 

Based on the loadings, pipe diameter was found to be the most critical pipe-related factor 

causing the failure of water pipes. This finding is in agreement with previous studies that have 

documented pipe diameter as an influential water pipe failure factor (Hekmati et al., 2020; 

Kutyłowska & Hotloś, 2013; Zywiec et al., 2019). Generally, an inverse relationship exists 

between pipe failure and diameter (Taiwo et al., 2023). That is, the higher the diameter, the 

lesser the pipe failure. As Hekmati et al. (2020) reported, a 600mm-diameter pipe experienced 

failure twice a year, whereas a pipe with a diameter of 150 mm failed 43 times during the same 

period. The thin wall thickness and higher pressure fluctuations exhibited by smaller-diameter 

pipes have been attributed to their higher failure rates (Bruaset & Sægrov, 2018; Ellison & 

Spencer, 2016).  

 

The result of the analysis demonstrated that pipe length is the second most critical factor 

contributing to water pipe failure. It has been illustrated that the likelihood of failure of water 

pipes increases as the length increases (Almheiri et al., 2020; Vipulanandan et al., 2012). 

(Zamenian et al., 2017) found that the failure rate of some pipes increased by 0.041 when the 

length increased by 1 km. This may be due to the fact that long pipes are subjected to more 

bending moments, which can cause them to buckle or break under excessive loads. The bending 

stress in a pipe is proportional to the pipe length, and as the length increases, the stress on the 

pipe also increases. This stress can lead to pipe deformation, cracking, and, ultimately, failure 

(Taiwo et al., 2023). Further, longer pipes have a higher number of joints and connections, 

which are potential weak points where leaks or bursts can occur. The more connections a pipe 

has, the higher the risk of failure due to corrosion, wear and tear, and other issues. 
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Pipe age is another critical factor affecting water pipe failure. Generally, pipe deterioration 

increases with age. According to the result reported by (Ellison & Spencer, 2016), pipes whose 

age ranged between 35-49 years had 10% less failure compared to pipes within the age bracket 

of 50-65 years. This can be explained by the fact that pipes undergo degradation as they become 

older. This degradation can be associated with corrosion, wear, tear, and fatigue (Fares & 

Zayed, 2010; Hekmati et al., 2020).  

 

The material of the pipe is another critical factor that could contribute to pipe failure. Common 

pipe materials used in WDN are asbestos (AC), cast iron (CI), ductile iron (DI), concrete, 

galvanized iron (GI), polyethylene (PE), polyvinyl chloride (PVC), and steel (Clair & Sinha, 

2014; Taiwo et al., 2023). Different pipe materials have different properties, such as strength, 

resistance to corrosion, and durability, which affect their susceptibility to failure (Fares & 

Zayed, 2010). For example, pipes made from cast iron are more susceptible to failure than pipes 

made from newer materials like DI or PVC. CI pipes are prone to corrosion, leading to pipe 

thinning, leaks, and eventual failure. On the other hand, DI pipes are more corrosion-resistant 

and have better mechanical properties, making them less susceptible to failure. 

 

Additionally, the wall thickness of the pipe has been recognized as a significant factor affecting 

pipe failure (Bruaset & Sægrov, 2018). Pipes with thin walls are more susceptible to cracks, 

leaks, and bursts due to excessive internal pressure and external loads. Thin-walled pipes also 

have lower resistance to corrosion, erosion, and wear, which can weaken the pipe structure and 

reduce its lifespan. Besides, thinner pipes are more susceptible to bending and buckling under 

external loads, such as soil movement, traffic loads, and temperature changes. These 

deformations can lead to structural damage, including cracks and ruptures, which can cause 

water loss and service disruptions.  
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5.2.4.2. Operation-related factors construct 

The analysis indicates that the operation-related factors construct has 5 significant factors. 

These factors in conjunction with their corresponding loadings are ORF2 – "internal pressure" 

(0.676); ORF3 – "maintenance practices" (0.721); ORF4 – "number of leaks" (0.748); ORF5 – 

"water acidity" (0.777); and ORF6 – "water alkalinity" (0.861).  

 

The result shows that internal pressure contributes significantly to water pipe failure. When 

water flows through a pipe, it exerts pressure on the inner walls of the pipe, and if the pipe is 

unable to withstand this pressure, it can lead to the failure of the pipe. The extant literature has 

established a linear relationship between internal pressure and pipe failure (Kabir et al., 2015; 

Poojitha & Jothiprakash, 2022; Rezaei et al., 2015). According to an experiment conducted by 

(Rathnayaka et al., 2017) on two exhumed pipes, the pipes exhibited small cracks and leakage 

upon applying 3.25 and 3.60 Mpa pressure on them. (Ellison & Spencer, 2016) found that pipes 

subjected to low and moderate pressures experienced about 2.5 and 1.8 times less failure 

compared to pipes subjected to high pressures.  

 

Additionally, both maintenance practices and the number of leaks have been found to influence 

pipe failure. Neglecting regular maintenance activities can accumulate debris, sediment, and 

other materials that can block the pipe or cause internal corrosion. This negligence will not 

only lead to leaks and bursts but also cause water quality issues (Barton et al., 2019). Small 

water pipe breaks can go undetected for a very long time if the WDN is not properly 

maintained, resulting in water loss and damage to the surrounding areas. Regular inspections 

and leak detection programs can help identify leaks early on and prevent pipe failure. Similarly, 

a linear relationship between the number of leaks and ultimate pipe failure has been established 

in the existing literature (Rathnayaka et al., 2017; Taiwo et al., 2023). The more leaks a pipe 

has, the more likely it is to fail due to the cumulative effect of the damage. Leaks facilitate 
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water loss, decreased water pressure, and water supply contamination. Furthermore, a leaking 

pipe can gradually cause erosion of the surrounding soil, which can negatively impact the 

bedding condition of the system (K. T. H. Liyanage & Dhar, 2017). This erosion process can 

lead to increased stress on the wall thickness of the pipe.  

 

Water acidity and alkalinity are other operation-related critical factors affecting the failure of 

water pipes. When the pH level of water is low (i.e., acidic), the likelihood of corrosion is high. 

Acidic water may react with the metallic components of pipes, such as iron, zinc, and copper, 

leading to the formation of metal ions and the release of hydrogen gas (Jun et al., 2020). This 

process is known as chemical corrosion. It was demonstrated by (Zraick et al., 2019) that the 

failure rate of pipe increases as the corrosion rate increases. The corrosion of pipes due to water 

acidity potentially facilitates thinning of the pipe walls, which can eventually lead to leaks and 

pipe failure. The thinning of pipe walls also makes them more susceptible to external forces, 

such as soil movement, thereby causing further deterioration (Hu & Hubble, 2007). In the same 

vein, water with high alkalinity can cause scale formation inside pipes. Scale is a build-up of 

mineral deposits that adhere to the pipe's interior walls. This scale narrows the pipe's diameter, 

reducing the water flow and increasing the frictional loss of water (Arriba-Rodriguez et al., 

2018). This often results in a decrease in water pressure and an increase in the energy required 

to pump water through the system (Taiwo et al., 2023). 

5.2.4.3. External-related factors construct 

The initial conceptual model identifies eight external-related factors that contribute to pipe 

failure. However, only four of these factors were found to be critical for the failure of water 

pipes. The critical factors, along with their corresponding loadings, are as follows: ERF1 – 

"temperature" (0.905); ERF3 – "frost" (0.816); ERF6 – "microbiologically induced corrosion" 

(0.584); and ERF7 – "precipitation" (0.851).  
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According to the result, temperature was found as the most critical external-related factor 

influencing water pipe failure. This conforms with the extant literature investigating the impact 

of temperature on pipe failure (Tran et al., 2021; Zamenian et al., 2017). Extreme temperatures 

can cause the pipes' thermal expansion or contraction, resulting in stress and strain on the 

material, which ultimately causes the pipe to fail. For example, during cold winter months, 

when the temperature is low, water can freeze inside the pipes and expand, causing the pipes 

to rupture or burst. As per the finding by Bruaset & Sægrov (2018), a decrease in temperature 

from 23oC to -15oC brought about an 86% increment in pipe failures. Similarly, during hot 

summer, high temperatures can cause the pipes to expand, which puts excessive stress on the 

joints and results in failure (Gao, 2017). Moreover, temperature fluctuations may facilitate the 

expansion and contraction of the soil around the pipes, thereby leading to movement and 

displacement of the pipes. 

 

Frost is another significant factor that has been found to contribute to water pipe failure. When 

water freezes inside a pipe, it expands and creates additional stresses on the pipe walls. 

Subsequently, as the water thaws, the pressure is released and often causes pipe leakage. 

Similarly, if the pipe is not properly insulated or buried deep enough underground, it can be 

more susceptible to freezing and subsequent damage from frost. The surrounding soil may also 

be impacted by frost action. The soil can shift and settle upon freezing and thawing, leading to 

uneven ground conditions and affecting pipe stability (Zywiec et al., 2019).  

 

The finding also revealed that water pipe failure is exacerbated by microbiologically induced 

corrosion (MIC). MIC occurs in water pipes when certain bacteria, such as sulfate-reducing 

bacteria and acid-producing bacteria, form colonies on the interior surfaces of the pipes (Taiwo 

et al., 2023). These colonies produce organic and inorganic acids, hydrogen sulfide, and other 
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deleterious substances that can attack the metal surface of the pipes and cause corrosion. (San 

et al., 2012) found that the presence of two bacteria (i.e., Aeromonas salmonicida and Delftia 

acidovorans) contributed to a mass reduction of a steel pipe by 1.86 and 2.01 𝜇𝑔, respectively. 

The corrosion caused by MIC is often localized and leads to the formation of cracks and pits 

in the pipe walls, which facilitate the pipe burst and reduce water flow. To mitigate MIC, it is 

important to control the water chemistry and maintain a proper balance of disinfectants in the 

WDN.  

 

After temperature, precipitation is the second-ranked (i.e., in terms of the outer loading) critical 

factor that influences water pipe failure. Precipitation, such as rainfall or snow, can increase 

the likelihood of pipe failure in several ways. It increases the level of groundwater, causing the 

water table to rise. When this happens, it exerts additional pressure on buried pipes and causes 

them to shift or move, leading to damage or failure. Precipitation also affects the water quality 

and chemistry within the pipes, which results in corrosion or other forms of deterioration. For 

instance, acidic precipitation can cause corrosion in metal pipes, while excessive minerals or 

salts in the water can lead to scaling or mineral build-up in the pipes, reducing their 

effectiveness over time. As reported by (Hekmati et al., 2020), the winter season had the highest 

failure rate of water pipes among all seasons, attributed to the substantial rainfall during this 

time. 

5.2.4.4. Soil-related factors construct 

The conceptual model initially identified six soil-related factors that could contribute to water 

pipe failure. However, after analysis, five of these factors were deemed critical. These critical 

factors, along with their corresponding loadings, are as follows: SRF1 - "bedding condition" 

(0.571), SRF2 - "soil moisture" (0.815), SRF3 - "Soil pH" (0.746), SRF4 - "soil resistivity" 

(0.811), and SRF5 – "soil type" (0.733).  
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Bedding condition is one of the identified critical factors influencing pipe failure. The bedding 

condition refers to the quality of the material used to support and protect the buried pipes. When 

the pipes are installed, they are usually placed in trenches that are then backfilled with a 

bedding material such as sand, gravel, or crushed stone. The quality of these materials often 

has a significant impact on the lifespan of the pipes. Inadequacy of bedding materials has been 

found in soils with low bearing capacity, such as organic soil, and soils with a high potential 

for shrinking/swelling and retaining water content, such as clay (Pritchard et al., 2013). 

Furthermore, pipes with bedding materials that are not properly compacted can become 

susceptible to external loads and stresses. Poor bedding conditions can also lead to 

misalignment or uneven support, leading to stress concentrations and resulting in pipe failure. 

Soil moisture is another critical factor contributing to the failure of water pipes. This is in 

agreement with previous studies, as it has been found that corrosivity increases with increasing 

moisture content until it reaches an optimal level and then decreases (Noor & Al-Moubaraki, 

2014; Pritchard et al., 2013). This optimum level that is responsible for the highest corrosion 

rate in water pipes differs from one location to another, depending on the environmental 

conditions. For example, (Noor & Al-Moubaraki, 2014) found 10% as the optimum moisture 

content, while the finding of (Pritchard et al., 2013) indicated it to be between 50-65%.  

 

The measurement model’s results also indicate the criticality of soil pH. The pH of the soil is 

the measure of its acidity or alkalinity, with values below 7 indicating acidity and values above 

7 indicating alkalinity. This factor influences the activity of microorganisms that live in the soil 

and can promote the growth of certain bacteria influencing corrosive activities in water pipes. 

In acidic soils, the presence of organic acid, hydrogen, and sulphide ions increases the 

susceptibility of the pipe to corrosion. On the other hand, alkaline soils can lead to water pipe 

failure by stimulating the growth of certain organisms that cause corrosion. For example, 
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alkaline soils are favorable for the growth of sulphate-reducing bacteria (SRB), which produce 

hydrogen sulphide gas as a by-product of their metabolic activity (Hou et al., 2016). 

 

Soil resistivity and soil type are other significant factors causing water pipe failure. The soil's 

resistance to the flow of electric current is known as soil resistivity. High soil resistivity 

indicates that the soil is less conductive to electric current flow, resulting in a lower pipe 

corrosion rate. This is because the electrochemical reaction that causes corrosion requires a 

current to flow, and if the soil has high resistivity, the current flow will be reduced. On the other 

hand, when the soil resistivity is low, it means that the soil is more conductive and can facilitate 

the flow of electric current, leading to a higher corrosion rate (Najjaran et al., 2006; Taiwo et 

al., 2023). In the same vein, the type of soil in which a water pipe is buried can affect its 

durability and longevity. Different soil types have distinct properties that can impact the 

corrosion resistance of pipes. For instance, clay soil is associated with low permeability, which 

is a property that can promote soil corrosivity. Additionally, organic acid can be produced from 

clay soil with high levels of biological substances, which can corrode metal pipes (Doyle et al., 

2003; Pritchard et al., 2013). Furthermore, sandy soils have high permeability and may allow 

water to drain easily, reducing the build-up of water pressure around the pipe. However, this 

property and the lower moisture retention capacity of sandy soil, thereby leading to dry 

conditions facilitating the development of cracks in the soil (Doyle et al., 2003). Hence, 

understanding the properties of various soil types and their potential impact on pipes can assist 

in selecting appropriate materials and installation techniques to minimize the risk of failure. 

5.2.4.5. Failure modes construct 

The failure modes construct is an important aspect of the model as it shows how water pipe 

failure factors affect the failure modes. Based on the measurement model results, three out of 
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five identified failure modes were found to be critical modes of water pipe failure. These modes 

are blown-out (FMD2), circumferential cracking (FMD3), and corrosion splitting (FMD4). 

Blown-out refers to the sudden rupture or breakage of a water pipe due to excessive internal 

pressure. This mode of failure is commonly associated with pipes with weak or defective 

construction, such as those made of poor-quality materials, or pipes damaged during 

installation or operation activities (Tang et al., 2019b). In addition, poor maintenance practices, 

including inadequate monitoring and repair, can increase internal pressure and cause the pipe 

to fail catastrophically. Blown-out was found as the major failure mode in a WDN in Australia 

(Rajeev et al., 2014). The measurement model result showed that blown-out has a significant 

loading of 0.829, indicating its criticality in water pipe failure. 

 

Circumferential cracking occurs when a water pipe experiences a crack that runs around its 

circumference. This type of failure can result from several factors, including aging, fatigue, 

material defects, or external loads (Taiwo et al., 2023). Circumferential cracking can cause a 

reduction in the strength of the pipe and eventually lead to failure. This mode of failure is 

common in small-diameter pipes (Barton et al., 2019). The criticality of this failure mode is 

supported by its significant loading of 0.856. 

 

Corrosion pitting refers to the creation of pits on water pipes due to corrosion. Metallic pipes 

are most susceptible to this failure mode, as they are more prone to corrosion compared to other 

materials (Rajeev et al., 2014). Corrosion can be caused by a variety of factors, including the 

chemistry of the water and the soil in which the pipe is buried. Corrosion splitting is considered 

a critical failure mode of water pipes, as indicated by its high loading of 0.907. 

5.2.4.6. Hypothesis testing 

The result of the hypothesis that was tested in this study implied that the identified water pipe 

failure factors significantly influence the pipe's failure modes (𝑝 ≤ 0.05 𝑎𝑛𝑑 𝛽 = 0.567). In 
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other words, the pipe-related, operation-related, external-related, and soil-related factors were 

found to be associated with how the water pipe failed. For instance, if a pipe has experienced 

significant corrosion due to aggressive chemicals or soil conditions, it may be more prone to 

failure due to corrosion pitting (Rajeev et al., 2014). Similarly, if the pipe's diameter is too 

small or its wall thickness is too thin, it is more likely to experience blown-out failures (Tang 

et al., 2019b). 

5.4. RESULT OF THE POF MODEL 

This section presents and discusses the result of the experiments discussed in section 3.4. All 

the experiments were implemented using the Python environment. For experiments relating to 

hyperparameters and features optimization, "accuracy" and "f1 score" were used as fitness 

functions.  

5.4.1. Result and validation of optimizing logistic regression 

hyperparameters 

As stated in the model development section (Section 3.4), the data was divided into two parts, 

where 80% was used for training, and the remaining 20% was used for model validation. The 

results reported in this section are based on the model output using the validation dataset. As 

GA is a stochastic process, the model was run 20 times, and the mean of the results was adopted. 

The confusion matrix for experiment 1 is presented in Table 5.10 using the validation dataset, 

and the five evaluation metrics described previously are presented in Table 5.11. As seen in 

Table 5.11, the accuracy score of the model increased from 0.819 to 0.856 when the data was 

transformed using standardization. This shows that data transformation is important to improve 

the accuracy of the model. Data standardization with the f1 score as the fitness function 

produced the highest values for all the evaluation metrics except for recall, which is produced 

by data normalization using the f1 score. Overall, models that use an f1 score as the fitness 

function outperformed those that use accuracy as the fitness function. This implies that the f1 
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score is a suitable fitness function for optimizing the hyperparameters of the model developed 

in this experiment. Similarly, Figure 5.6 shows the ROC curves of the non-scaled data model 

and those whose data were transformed and used the f1 score as the fitness function for the 

optimization process. The AUC of the curves (see Table 5.11) are 0.849, 0.882, and 0.904 for 

non-scaled, normalized, and standardized data, respectively. To demonstrate the effectiveness 

of selecting the best hyperparameters in ML modeling, the data was fitted on LR using the 

default hyperparameters of a Python library. The values of all the evaluation metrics were lower 

than the ones achieved in experiment 1. The detailed results are provided in Appendix C.  

Table 5. 10: Confusion matrix of experiment 1 

 For non-scaled data using accuracy as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7523 FI = 2775 

True Intact FF = 1343 TI = 11204 

 For non-scaled data using f1 score as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7681 FI = 2617 

True Intact FF = 1251 TI = 11296 

 For normalized data using accuracy as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7882 FI = 2416 

True Intact FF = 1058 TI = 11489 

 For normalized data using f1 score as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7938 FI = 2360 

True Intact FF = 1005 TI = 11542 

 For standardized data using accuracy as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7933 FI = 2365 

True Intact FF = 954 TI = 11593 

 For standardized data using f1 score as the 

fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 7935 FI = 2363 

True Intact FF = 926 TI = 11621 
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Table 5. 11: Evaluation metrics of experiment 1 

Data 

transformation 

Accuracy Precision Recall F1 score AUC 

Non-scaled data 

(accuracy) 

0.819 0.848 0.730 0.785 0.830 

Non-scaled data 

(f1 score) 

0.830 0.859 0.745 0.798 0.849 

Normalized data 

(accuracy) 

0.847 0.881 0.765 0.819 0.867 

Normalized data 

(f1 score) 

0.852 0.887 0.771 0.825 0.882 

Standardized data 

(accuracy) 

0.854 0.892 0.770 0.827 0.874 

Standardized data 

(f1 score) 

0.856 0.895 0.770 0.828 0.904 

 

 

Figure 5. 6: The ROC curves in experiment 1 

5.4.2. Result and validation of optimizing logistic regression features 

This experiment is an extension of experiment 1 by adding a selection of the best features 

needed to develop the LR model. After running the model several times, it was discovered that 
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different combinations of factors were selected by the GA. Hence, ten simulations were carried 

out, and their results were recorded. The 7th simulation achieved the highest performance in 

terms of the evaluation metrics, and 5 out of the 8 factors selected in this simulation occur in 

the other 9 simulations. The selected features are presented in Figure 5.7. The confusion matrix 

of experiment 2 can be found in Appendix C (see Table C3), while the evaluation metrics are 

depicted in Table 5.12.  

It is noted that optimizing the hyperparameters and features using the f1 score as the fitness 

function produced the highest accuracy (0.889), precision (0.929), and AUC (0.944) using the 

validation dataset. However, the optimization using accuracy as the fitness function yielded the 

highest recall (0.816) and f1 score (0.868). This indicates that a modeler should explore these 

two fitness functions and determine the appropriate function for each evaluation metric. 

Although data standardization achieved the best results, the results are comparable with those 

of data normalization, especially for the AUC metric. This implies that both scaling methods 

should be applied to a dataset to determine the appropriate scaling method for each evaluation 

metric. The ROC curves of this experiment using f1 as the fitness function are plotted in Figure 

5.8. The AUC values for these curves are 0.936, 0.943, and 0.944 for non-scaled, standardized, 

and normalized data. For the model evaluation, 88.9% (accuracy) of the pipes' status is 

correctly predicted, and 92.9% (precision) of all the failed pipes is correctly predicted. This 

means that a very low percentage of the pipes (7.1%) may be wrongly replaced. Similarly, the 

recall achieves a value of 81.5%, typifying that only 18.5% of the failed pipes are misclassified. 

Overall, the model developed in this experiment can efficiently assist WSD managers in 

predicting the status of a pipe with a very low false alarm rate, thereby contributing to the 

sustainable management of WDNs.  
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Table 5. 12: Evaluation metrics of experiment 2 

Data 

transformation 

Accuracy Precision Recall F1 score AUC 

Non-scaled data 

(accuracy) 

0.876 0.904 0.810 0.854 0.934 

Non-scaled data 

(f1 score) 

0.877 0.906 0.812 0.856 0.936 

Normalized data 

(accuracy) 

0.883 0.917 0.814 0.863 0.933 

Normalized data 

(f1 score) 

0.887 0.926 0.814 0.866 0.943 

Standardized data 

(accuracy) 

0.888 0.928 0.816 0.868 0.945 

Standardized data 

(f1 score) 

0.889 0.929 0.815 0.868 0.944 

 

 

Feature 1 Age

Feature 2 Diameter

Feature 3 Length

Feature 4 Material

Feature 5 Precipitation

Feature 6 AADT

Feature 7 Soil corrosivity

Feature 8 Temperature

 

Figure 5. 7: The selected features in experiment 2 
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Figure 5. 8: The ROC curves in experiment 2 

5.4.3. Model interpretability results 

This section presents the coefficients of the model (the best model developed in experiment 2) 

and the results of the SHAP experiment. The coefficients of the LR model are shown in Table 

8. By imputing the coefficients in Equation 3.6, water utility managers can determine the 

probability of failure of each pipe. This shows the advantage of explainable algorithms such as 

LR over other ML algorithms, often called black boxes. However, a limitation of LR in terms 

of interpretability is the fact that it cannot handle multicollinearity between the independent 

variables (Vaulet et al., 2022). It should be noted that this limitation only affects LR's 

interpretability and not its predictive capability. Hence, Figure 5.9 shows the contribution of 

each feature to the prediction using the SHAP algorithm.  

Despite the limitation of LR's interpretability, the four most important features denoted by the 

magnitude of the LR's coefficients agree with the result of the SHAP experiment: age, 
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temperature, material_CI, and length (see Table 5.13). It is not surprising that pipe age 

contributes most to the model's prediction, as pipe failure probability increases as the age of 

the pipe increases. Additionally, older pipes tend to have a higher failure probability as the 

corrosion rate is a function of the pipe's age (Ji et al., 2020). Moreover, temperature high 

contribution to the failure prediction can be explained by the fact that a drop in the atmospheric 

temperature can facilitate the pipe's contraction, leading to stress development on the pipe and 

therefore contributing to its failure. Furthermore, CI material has the highest contribution to 

failure prediction compared to other materials in the network. This is due to the higher 

susceptibility of CI to corrosion, which thus increases its failure rate. This result agrees with 

the action taken by the HK WSD by discontinuing the usage of CI material for new pipe 

installation (Water Supplies Department HKSAR, 2021). Length ranks as the fourth important 

feature for failure prediction. This stems from the fact that the failure rate increases with pipe 

length as more pipe areas are exposed to environmental stress (Zamenian et al., 2017). On the 

order hand, AADT, soil corrosivity_none, and material_DI are the least important feature for 

the prediction. This shows that the differential loading resulting from the traffic has minimal 

effect on the structure of the pipes in HK WDN. Similarly, a lesser number of failed pipes are 

located in noncorrosive soil and manufactured with DI.  

Since SHAP values are determined for each sample in the dataset, the direction of the 

contribution of each feature on the model's output can be determined. Figure 5.10 shows the 

distribution of the SHAP values on the model's outcome. The gradient color depicts the feature 

value for each sample, which spreads from red (highest) to blue (lowest). For continuous 

features, the value can be represented by the whole spectrum, while dummy variables take only 

two colors (i.e., red and blue). It can be seen from Figure 5.10 that diameter is associated with 

a high feature value and negative SHAP value. This means that diameter is negatively 

correlated with the failure probability of water pipes. 
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Table 5. 13: Coefficients of the optimized LR model 

Feature Coefficients 

Length 0.874 

Age 0.857 

Temperature -0.731 

Material_CI -0.468 

Material_Steel 0.312 

Diameter -0.275 

Precipitation 0.156 

Material_AC 0.128 

Soil corrosivity_Moderate 0.085 

Material_Plastic 0.082 

Soil corrosivity_High 0.034 

Soil corrosivity_None 0.022 

Material_DI 0.008 

AADT -0.005 

 

 

Figure 5. 9: The contribution of each feature to the model's prediction 
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This suggests that pipes with larger diameter experience lesser failures compared to those with 

smaller diameters. This is supported by the coefficient of diameter in the model (-0.275) and 

extant literature  (Bruaset & Sægrov, 2018; Zywiec et al., 2019). Furthermore, length, 

precipitation, and among others have positive contributions to the failure probability of water 

pipes.  

 

Figure 5. 10: Distribution of SHAP values for each feature on the model's output 

5.5. RESULT OF THE POL AND POB MODELS 

This section presents and discusses the results of the base-DL models, optimized-DL models, 

selection of the best DL model, and its interpretability in relation to POL and POB models.  
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5.5.1. Result and validation of the base-DL models 

After training the DL models, their efficiency was evaluated using the validation dataset. Table 

5.14, which was generated using the confusion matrix (see Table D1), displays the performance 

of these base-DL models, highlighting differences among scaling methods and models. Given 

the dataset's highly imbalanced nature, where leaks are relatively rare compared to non-leak 

instances, accuracy alone is not a sufficient measure of model performance. This imbalance 

also contributes to the generally lower precision across all models, as the number of true 

positive predictions is small relative to the number of false positive predictions. When 

comparing the scaling methods, it's evident that both normalization and standardization 

improve the performance across all models compared to non-scaled data. This improvement is 

particularly notable in the precision metric, which is critical in imbalanced datasets. For 

example, the precision for the DNN model increases from 0.584 with non-scaled data to 0.640 

with normalized and 0.726 with standardized data, indicating that the likelihood of correctly 

identifying a leak has increased with proper scaling. Recall is robust across models, indicating 

a strong ability to identify actual leaks. The F1 score, which balances the precision and recall, 

is highest with the CNN model in standardized data and closely followed by CNN, 

underscoring its efficiency in managing the trade-off between identifying leaks and avoiding 

false alarms. MCC and Cohen's Kappa provide a more nuanced view of the models' 

performance by considering true negatives and the imbalance in the dataset. These metrics are 

particularly high with standardized data, reflecting a better true positive rate relative to the 

imbalance in the dataset. Similarly, Table 5.15 presents the evaluation metrics for the POB 

models (the confusion matrix is presented in Table D2). According to the table, recall values 

are high for all models, suggesting that the models are generally successful at identifying the 

majority of the actual burst events. In most cases, the performance of the model increases when 

the data is normalized or standardized. For instance, the F1 score of TabNet improved by 32.6% 
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when the data was normalized. Generally, the results show that CNN and TabNet outperformed 

DNN. 

Table 5. 14: Evaluation metrics for base-DL models for predicting probability of leak 

Data scaling Models Accuracy Precision Recall F1 

score 

MCC Cohen's 

Kappa 

Non-scaled DNN 0.974 0.584 0.861 0.696 0.696 0.682 
 

CNN 0.975 0.603 0.866 0.711 0.711 0.698 
 

TabNet 0.966 0.512 0.842 0.637 0.641 0.62 

Normalized DNN 0.978 0.640 0.882 0.742 0.741 0.731 
 

CNN 0.981 0.668 0.914 0.772 0.772 0.762 
 

TabNet 0.974 0.598 0.835 0.697 0.694 0.684 

Standardized DNN 0.985 0.726 0.915 0.809 0.807 0.801 
 

CNN 0.985 0.725 0.924 0.812 0.811 0.805 
 

TabNet 0.985 0.727 0.903 0.805 0.803 0.798 

 

Table 5. 15: Evaluation metrics for base-DL models for predicting probability of burst 

Data scaling Models Accuracy Precision Recall F1 score MCC Cohen's Kappa 

Non-scaled DNN 0.997 0.247 0.914 0.388 0.474 0.387  
CNN 0.997 0.268 0.924 0.415 0.496 0.414  
TabNet 0.997 0.270 0.937 0.419 0.502 0.418 

Normalized DNN 0.998 0.332 0.947 0.492 0.56 0.491  
CNN 0.998 0.366 0.950 0.529 0.589 0.528  
TabNet 0.998 0.393 0.950 0.556 0.61 0.555 

Standardized DNN 0.998 0.388 0.950 0.551 0.607 0.550  
CNN 0.998 0.433 0.963 0.597 0.645 0.597  
TabNet 0.999 0.395 0.967 0.561 0.618 0.561 

*number in bold represent the best result 

5.5.2. Result and validation of the optimized-DL models 

Table 5.16 presents the evaluation metrics for the optimized DL models using the validation 

dataset to predict the probability of leaks in water pipes (see Table D3 for the confusion matrix). 

Consistent with the base-DL models, the performance metrics of these optimized models 

demonstrate improvement with data normalization and standardization, reinforcing the 

significance of data scaling in DL applications. Markedly, the precision and recall of the 
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optimized DNN model showed increases of 12.7% and 8.4%, respectively, upon 

standardization. While normalization typically enhances model performance, the optimized 

TabNet model's slight decrease in precision and F1 score, suggesting its potential preferential 

alignment with non-scaled data. The standardized DNN and CNN models exhibit high F1 

scores and MCC values, indicative of a well-calibrated balance between precision and recall, 

alongside a robust alignment between predicted outcomes and actual occurrences. When 

contrasting the base and optimized DL models, the superior performance of the latter becomes 

apparent, underscoring the effectiveness of hyperparameter tuning. For instance, the non-scaled 

DNN model's precision, recall, and F1 score surged by 23.8%, 8.7%, and 21.0%, respectively, 

post-optimization.  

According to Table 5.17 (see Table D4 for the confusion matrix), which shows the evaluation 

metrics for the POB models, TabNet generally outperforms DNN and CNN in non-scaled and 

normalized datasets, particularly in precision and F1 scores. CNN shows a substantial increase 

in performance metrics with normalized and standardized data, indicating it may be sensitive 

to the scaling method applied. DNN shows less variation in performance across scaling 

methods but doesn't reach the precision value of CNN or TabNet with normalized data. A 

discerning examination of Tables 5.16 and 5.17 indicates that standardized data attained the 

highest performance for models predicting the POL, whereas normalized data showed optimal 

results for models predicting the POB. This distinction underscores the tailored impact of data 

scaling techniques on model efficacy, contingent on the specific predictive task at hand. Using 

the normalized data, Figure 5.11 and 5.12 visualizes the difference between the base and 

optimized DL models for the POL and POB models. 

5.5.3. Selection of the best DL-model  

The optimized models have shown high performance in predicting the probability of leaks and 

bursts. Yet, selecting the top-performing model necessitates a structured method since various 
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models show superiority in different evaluation metrics. For example, considering the POB in 

normalized datasets, the optimized TabNet surpasses its counterparts in precision, whereas the 

CNN stands out with the highest recall. Additionally, both CNN and TabNet share equivalent 

scores in terms of the F1 metric and Cohen's Kappa. Thus, employing a systematic evaluation 

approach that considers all metrics is crucial to ascertain the most effective model. Tables 5.18 

and 5.19 show the results of the Copeland algorithm for ranking the optimized POL and POB 

models.  

Table 5. 16: Evaluation metrics for optimized-DL models for predicting the probability of 

leak 

Data scaling Models Accuracy Precision Recall F1 

score 

MCC Cohen's 

Kappa 

Non-scaled DNN 0.988 0.767 0.936 0.843 0.841 0.837 
 

CNN 0.991 0.826 0.950 0.883 0.881 0.879 
 

TabNet 0.993 0.865 0.957 0.908 0.906 0.905 

Normalized DNN 0.990 0.796 0.954 0.868 0.867 0.863 
 

CNN 0.990 0.801 0.946 0.867 0.865 0.862 
 

TabNet 0.989 0.793 0.942 0.861 0.859 0.856 

Standardized DNN 0.994 0.865 0.969 0.914 0.913 0.911 
 

CNN 0.994 0.876 0.978 0.924 0.923 0.922 
 

TabNet 0.990 0.799 0.938 0.863 0.861 0.858 

 

Table 5. 17: Evaluation metrics for optimized-DL models for predicting the probability of 

burst 

Data scaling Models Accuracy Precision Recall F1 score MCC Cohen's 

Kappa 

Non-scaled DNN 0.999 0.586 0.973 0.732 0.755 0.731 
 

CNN 0.997 0.307 0.980 0.468 0.548 0.467 
 

TabNet 0.999 0.738 0.980 0.842 0.85 0.841 

Normalized DNN 0.999 0.733 0.977 0.838 0.846 0.837 
 

CNN 0.999 0.782 0.987 0.872 0.878 0.872 
 

TabNet 0.999 0.783 0.983 0.872 0.877 0.872 

Standardized DNN 0.999 0.608 0.983 0.751 0.773 0.751 

 CNN 0.999 0.743 0.980 0.845 0.853 0.845 
 

TabNet 0.999 0.697 0.987 0.817 0.829 0.817 
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Figure 5. 11: Comparison of base and optimized-DL models for probability of leak models 

 

 

Figure 5. 12: Comparison of base and optimized-DL models for probability of burst models 

 

Since data scaling has proved to improve the models' predictive capability, the comparison is 

made between normalized and standardized datasets. With normalized data, DNN performed 

the best with 2 wins, 0 losses, and a Copeland score of +2, giving it rank 1. For standardized 
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data, CNN emerged superior with 2 wins, 0 losses, and a score of +2, putting it in 1st place. 

Looking at the aggregate scores and ranks across both scaling methods, CNN performed the 

best overall with 14 Copeland points and a Copeland score of +2, securing it the top rank. DNN 

took 2nd place with an aggregate record of 10 Copeland points. TabNet came last with 0 wins, 

4 losses, and a score of -4. The superior performance of CNN in this context suggests its 

potential as a reliable choice for predicting the probability of leak for the WDN. 

Table 5.19 demonstrates consistency in model performance across both scaling methods. For 

the normalized data set, CNN takes the lead with the highest Copeland point, score, and rank, 

suggesting its better adaptability to normalized data, unlike DNN, which falls to the lowest 

rank. The standardized data set also sees CNN and TabNet performing well, but DNN lags 

behind. The aggregate scores across both data sets reveal CNN's superiority over others. The 

overall results highlight the importance of considering different data scaling methods when 

evaluating model performance. Each model's strengths and weaknesses become apparent under 

varying conditions, underscoring the necessity of choosing a model not only based on its 

overall accuracy but also on its adaptability to different data representations. 

Table 5. 18: Results of the Copeland algorithm for ranking the probability of leak models 

Data scaling Model Copeland 

Point 

Wins Losses Copeland 

Score 

Rank 

 Normalized DNN 9 2 0 2 1 

  CNN 3 1 1 0 2 

  TabNet -12 0 2 -2 3 

 Standardized DNN 1 1 1 0 2 

  CNN 11 2 0 2 1 

  TabNet -12 0 2 -2 3 

Aggregate DNN 10 3 1 2 2  
CNN 14 3 1 2 1  
TabNet 0 0 4 -4 3 
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Table 5. 19: Results of the Copeland algorithm for ranking the probability of burst models 

Data 

scaling 

Model Copeland 

Point 

Wins Losses Copeland 

Score 

Rank 

Normalized DNN -10 0 2 -2 3 

 
CNN 6 2 0 2 1  
TabNet 4 1 1 0 2 

Standardized DNN -8 0 2 -2 3 

 
CNN 6 2 0 2 1  
TabNet 2 1 1 0 2 

Aggregate DNN -18 0 4 -4 3  
CNN 12 4 0 4 1  
TabNet 6 2 2 0 2 

 

5.5.4. Interpretability of the best DL-model  

Following the selection result delineated in Section 5.5.3, the optimized CNN model utilizing 

standardized data for leak prediction and normalized data for burst prediction has been 

identified as the most performant. Figures 5.13 and 5.14 illustrate the feature importance as 

determined by SHAP values for models predicting the probability of leak and burst in water 

pipes, respectively. For the leak prediction model, 'Diameter', 'Material_Plastic', and 'Age' are 

identified as the leading features influencing the model's predictions. These attributes suggest 

that the model places significant emphasis on the physical properties and the material 

composition of the pipes, along with their operational lifespan. In contrast, the burst prediction 

model prioritizes 'Diameter' and 'Material_Plastic', similar to the leak model, but assigns 

greater importance to 'Corrosivity_Highly corrosive' conditions. This differentiation in feature 

importance highlights the distinct mechanisms and factors the model associates with the 

likelihood of burst incidents as opposed to leaks. 

Figures 5.15 and 5.16 elucidate the relationship between feature values and their SHAP values, 

which quantify the impact on the model's predictions. The color gradient in these figures, 

transitioning from red to blue, represents the spectrum of feature values across the dataset, with 
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red signifying higher values and blue indicating lower ones. For continuous variables, this 

gradient reflects a range of values, while for categorical variables, represented as dummy 

variables, the visualization simplifies to red and blue, denoting the presence or absence of the 

feature, respectively. According to these figures, it is observed that smaller diameters contribute 

positively to the model's prediction of an event (leak or burst), as indicated by positive SHAP 

values (Taiwo et al., 2023b). Conversely, greater ages are similarly associated with positive 

SHAP values, suggesting that the probability of an event increases with the age of the pipe. 

These insights are consistent with extant literature and intuitive expectations where narrower 

pipes may be more susceptible to blockages leading to leaks, and older pipes may be more 

prone to failure due to material degradation over time (Barton et al., 2019; Farh et al., 2023). 

Furthermore, the figures reveal that the presence of saltwater (denoted by 'Water_type_SW') 

and higher pressure levels are positively correlated with the likelihood of both leaks and bursts. 

This positive correlation implies that the model recognizes these conditions as risk factors, with 

saltwater potentially accelerating corrosion and high pressure increasing stress on the pipe 

system (Barton et al., 2019). The model's sensitivity to these variables underscores their 

importance in the predictive framework and potentially guides targeted maintenance efforts 

where these factors are prevalent. 

5.6. RESULT OF THE COF MODEL 

This section focuses on the results of the EL-models and their performance in terms of the base 

and optimized models. The process of selecting the most effective model among the EL-models 

is discussed, along with an examination of its interpretability.  

5.6.1. Result and validation of the base-EL models 

The performance of the base-EL models was evaluated on the validation dataset, which 

comprised 20% of the original data and was not used during the training process.  
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Figure 5. 13: SHAP feature importance for the probability of leak model 
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Figure 5. 14: SHAP feature importance for the probability of burst model 
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Figure 5. 15: Distribution of SHAP values for each feature for the probability of leak model 
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Figure 5. 16: Distribution of SHAP values for each feature for the probability of burst model 
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This approach ensures an unbiased assessment of the models’ predictive capabilities on unseen 

data. Table 5.20 presents the performance metrics obtained by these models. The individual 

class performance metrics are presented in Table E1, while their confusion matrices are denoted 

in Figures E1 (a-e).  

According to Table 5.20, LightGBM and AdaBoost achieved the highest accuracy of 0.78, 

followed by XGBoost and RF with an accuracy of 0.77, and CatBoost with an accuracy of 0.76. 

In terms of macro-averaged metrics, which treat all classes equally without considering class 

imbalance, LightGBM exhibited the best performance with a macro precision of 0.57, macro 

recall of 0.56, and macro F1 score of 0.56. This is closely followed by AdaBoost and XGBoost, 

with a macro F1 score of 0.55. With respect to weighted metrics, which account for class 

imbalance by weighting the respective metric for each class by the number of actual instances 

in that class, LightGBM again emerged as the top performer. It achieved the highest weighted 

precision, weighted recall, and weighted F1 score of 0.78. 

Regarding the average AUC, which represents the mean of the individual AUC scores for each 

class, both XGBoost and LightGBM performed equally well, with an average AUC of 0.84. It 

is noteworthy that LightGBM exhibited the fastest training time of 51.88 seconds, significantly 

outperforming the other models in terms of computational efficiency. The base LightGBM 

model demonstrated superior performance across most evaluation metrics, making it a 

promising candidate for predicting the causes of water pipe failures. However, it is essential to 

optimize these models further to potentially enhance their predictive capabilities.  

5.6.2. Result and validation of the optimized-EL models 

The performance of the optimized models was evaluated following hyperparameter tuning 

using the TPE algorithm using the validation dataset. Table 5.21 presents the performance 

metrics obtained by the optimized EL models on the testing dataset. The performance metrics 
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for each class are shown in Appendix E under Table E2, and their corresponding confusion 

matrices are depicted in Figures E2 (a-e).  

Table 5. 20: Performance metrics for the base models for predicting causes of water pipe 

failure 

Models Accuracy Macro 

Precision 

Macro 

Recall 

Macro 

F1 

score 

Weighted 

Precision 

Weighted 

Recall 

Weighted 

F1 score 

Avg 

AUC 

Training 

time (s) 

XGBoost 0.77 0.55 0.54 0.55 0.77 0.77 0.77 0.84 591.04 

AdaBoost 0.78 0.56 0.54 0.55 0.77 0.78 0.77 0.81 660.34 

LightGBM 0.78 0.57 0.56 0.56 0.78 0.78 0.78 0.84 51.88 

CatBoost 0.76 0.52 0.53 0.52 0.76 0.76 0.76 0.83 1077.89 

RF 0.77 0.55 0.53 0.53 0.77 0.77 0.77 0.83 767.95 

*the numbers in bold represent the best result 

 

The results demonstrate that hyperparameter optimization led to consistent improvements in 

model performance across all the evaluation metrics compared to the base models. Among the 

optimized models, XGBoost + TPE attained the highest accuracy of 0.82, macro precision of 

0.65, weighted precision of 0.80, weighted recall of 0.82, and weighted F1 score of 0.80. It also 

achieved one of the best macro recalls of 0.58, macro F1 scores of 0.61, and average AUCs of 

0.87. Compared to the base XGBoost model, optimization with TPE resulted in increases of 

6.1% in accuracy, 15.4% in macro precision, 6.9% in macro recall, 9.8% in macro F1 score, 

and 3.8% in weighted F1 score. 

LightGBM + TPE emerged as the model with one of the highest average AUC of 0.87 post-

optimization. It also attained the second-best accuracy of 0.81 and a weighted F1 score of 0.80. 

Optimization enhanced LightGBM’s performance considerably, increasing its accuracy by 

3.7%, macro precision by 9.5%, macro F1 score by 6.6%, and weighted F1 score by 2.5% 

compared to the base model. The other optimized models, AdaBoost + TPE, CatBoost + TPE 

and RF + TPE, also showed gains over their respective base versions across the evaluation 

metrics. For instance, RF + TPE achieved 4.9% higher accuracy, 12.7% higher macro precision, 

7.0% higher macro recall, and 3.8% higher weighted F1 score compared to the base RF model. 
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These results highlight the effectiveness of hyperparameter tuning in extracting the maximum 

potential from the models. Figures 5.17 and 5.18 visualize the differences between the base 

and optimized models, highlighting the effectiveness of TPE algorithm in finding near-optimal 

hyperparameter values to improve the models’ predictive capabilities. Figures 5.19 to 5.23 also 

show the AUC curves of each model, highlighting the difference between the optimized and 

base models across the four predicted classes.  

Table 5. 21: Performance metrics for the optimized models for predicting causes of water 

pipe failure 

Models Accuracy Macro 

Precision 

Macro 

Recall 

Macro 

F1 

score 

Weighted 

Precision 

Weighted 

Recall 

Weighted 

F1 score 

Avg 

AUC 

Training 

time (s) 

XGBoost + 

TPE 

0.82 0.65 0.58 0.61 0.80 0.82 0.80 0.87 8468.94 

AdaBoost + 

TPE 

0.79 0.58 0.54 0.56 0.77 0.79 0.78 0.82 73235.69 

LightGBM 

+ TPE 

0.81 0.63 0.57 0.60 0.79 0.81 0.80 0.87 985.16 

CatBoost + 

TPE 

0.81 0.63 0.58 0.60 0.79 0.81 0.80 0.87 9924.26 

RF + TPE 0.81 0.63 0.57 0.59 0.79 0.81 0.80 0.86 6694.57 

*the numbers in bold represent the best result 

 

 

Figure 5. 17: Comparison of the base and optimized models using accuracy, macro precision, 

macro recall, and macro F1 score 
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Figure 5. 18: Comparison of the base and optimized models using weighted precision, 

weighted recall, weighted F1 score, and average AUC 

 

 

Figure 5. 19: ROC Curves for XGBoost-based models 
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Figure 5. 20: ROC Curves for AdaBoost-based models 

 

Figure 5. 21: ROC Curves for LightGBM-based models 
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Figure 5. 22: ROC Curves for CatBoost-based models 

 

5.6.3. Selection of the best-EL model 

Model selection is an essential step in developing and deploying reliable predictive models. 

Relying solely on individual performance metrics may lead to biased or inconsistent 

conclusions, as different metrics often highlight varying aspects of a model’s performance. To 

overcome this, the Copeland algorithm was implemented on the result presented in Table 5.21 

Table 5.22 presents the results of the Copeland algorithm, which evaluates each model’s 

performance against every other model based on the 9 metrics. The algorithm assigns Copeland 

points to each model based on its relative performance in pairwise comparisons, with the model 

having the highest Copeland points being ranked as the best-performing model. 

As shown in Table 5.22, the optimized XGBoost model emerged as the top-ranked model, 

accumulating 26 Copeland points and achieving 4 wins without any losses.  
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Figure 5. 23: ROC Curves for RF-based models 

This indicates that the XGBoost model outperformed all other models in the pairwise 

comparisons, consistently demonstrating superior performance across the evaluated metrics. 

The LightGBM and CatBoost models secured the second and third ranks, respectively, with 

Copeland points of 7 and 5, and equal wins and losses. The RF model was ranked fourth, with 

-2 Copeland points and 1 win against 3 losses. Similarly, the AdaBoost model ranked last, with 

-36 Copeland points and no wins against 4 losses, suggesting its relative underperformance 

compared to the other models. 

This systematic ranking approach will allow water utilities to reliably select the best performing 

model, optimized XGBoost for this case, for model deployment, ensuring accurate prediction 

of water pipe failure causes and enabling informed decision-making processes for proactive 

maintenance and replacement strategies. 
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Table 5. 22: Result of the Copeland algorithm 

Models Copeland 

point 

Wins Losses Rank 

XGBoost + TPE 26 4 0 1 
AdaBoost + TPE -36 0 4 5 
LightGBM + 

TPE 
7 2 1 2 

CatBoost + TPE 5 2 1 3 
RF + TPE -2 1 3 4 

 

5.6.4. Interpretability of the best-EL model 

The interpretability of ML models is essential for practical applications, as it provides trust and 

actionable insights into the predictions. The SHAP framework was utilized to enhance the 

interpretability of the optimized XGBoost model. Figure 5.24 shows the mean SHAP values, 

representing the global feature importance averaged across all instances. Water type 

(saltwater), material (GIL), age, traffic, and diameter emerged as the five most important 

features affecting the prediction of causes of water pipe failure. The prominence of saltwater 

aligns with domain knowledge, as saltwater is more corrosive than freshwater and can 

accelerate pipe deterioration (Mohammed Abdelkader et al., 2024). GIL pipes are also 

susceptible to corrosion failures over time. The importance of pipe age is justified, as older 

pipes experience more wear and tear, increasing failure risk (Robles-velasco et al., 2020). 

Higher traffic levels suggest that external loading from nearby vehicular movement can 

contribute to pipe failures. Larger diameter mains are typically placed under carriageways with 

heavy traffic, exposing them to additional dynamic loads. The influence of these five key 

features highlights the multifaceted nature of pipe failure mechanisms. It can also be observed 

from Figure 5.24 that class 2 (corrosion) contributes most to the feature importance of the 

variables. This is justified as corrosion is known to be a major cause of water pipe failures 

(Taiwo et al., 2023b). 
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Figure 5.25 depicts the inherent feature importance from the optimized XGBoost model, 

showing water type (saltwater), material (GIL), age, material (S), and diameter as the top 

features, while material (AC), relative humidity, precipitation, landuse (rural) and material (SS) 

as the least contributing factors. Comparing this with the SHAP feature importance in Figure 

16, there is a significant overlap - 4 of the top 5 features (water type, material GIL, age, 

diameter) and 3 of the bottom 5 features (material AC, landuse rural, material SS) are common. 

This substantial agreement between the two feature importance estimations provides robust 

confirmation of the most and least influential variables. The collective prominence of age, 

diameter, GIL material, and saltwater type implies that older, larger-diameter GIL pipes 

carrying saltwater are at the highest risk of failure. In contrast, AC pipes in rural areas with low 

humidity and precipitation are least likely to fail. These explanatory insights empower asset 

managers to focus inspection and maintenance efforts on vulnerable subsets of pipes based on 

critical features like age and material. 

Figure 5.26 displays the distribution of SHAP values across different features for class 2, 

providing insight into how each feature influences the model’s prediction of corrosion. The 

features are listed on the y-axis, and the SHAP values are shown on the x-axis. Each violin 

represents the distribution of SHAP values for a feature, with wider sections indicating a higher 

density of data points. A SHAP value of zero means the feature does not influence the prediction 

for that particular data point; positive values indicate an increased likelihood of the model 

predicting corrosion, while negative values suggest a decreased likelihood. The color transition 

in the figure from red to blue depicts the range of feature values within the data, where red 

highlights higher feature values and blue signifies lower ones. It can be discerned that smaller 

diameters, as represented by the blue shades, align with positive SHAP values. This association 

indicates that smaller pipe diameters are likely to have a greater influence on the model’s 
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prediction of corrosion, potentially due to factors such as increased water velocity or pressure 

that may exacerbate the corrosive effects on the pipe material (Farh et al., 2023). 

From the top of the plot, the ‘Diameter’, ‘Material_GIL’, ‘Pressure’, and 

‘Water_type_Saltwater’ features show a wider distribution towards the higher SHAP value 

range, signifying a strong positive impact on predicting corrosion. This suggests that pipe 

diameters, the use of GIL, higher pressure within the pipes, and exposure to saltwater are 

influential factors in the model’s decision-making process for corrosion. The presence of these 

conditions may be indicative of environments or operational states that are more conducive to 

corrosive processes, thus making them critical points of consideration for predictive 

maintenance and failure prevention strategies. 
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Figure 5. 24: Feature importance of the selected model using SHAP 
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Figure 5. 25: Inherent feature importance of the selected model 
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Figure 5. 26: Distribution of SHAP values for the selected model for Class 2 

 

5.7. SUMMARY 

This chapter presents the findings from the systematic review and the models developed within 

this study. The systematic review highlights 30 factors that influence water pipe failures and 

identifies 5 distinct failure modes. These factors and modes are depicted using FTL to enhance 

visualization and understanding. The chapter then details the results from the implementation 
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of the PLS-SEM model, covering both measurement and structural models. Additionally, the 

results of the IPMA are discussed to demonstrate the significance and effectiveness of the 

included constructs. Furthermore, the chapter presents and discusses the result of the predictive 

models for calculating the probability of failure of individual pipes in HK WDN. The results 

of the POL and POB models are also presented, including the outcome of the base and 

optimized DL models. The chapter also includes the results of the base and optimized EL 

models for predicting COF. The selection and interpretability of the best performing EL model 

are discussed. 
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Chapter 6 

AUTOMATED APPLICATIONS5  

6.1. INTRODUCTION 

This chapter details the development of four web-based applications designed to facilitate the 

straightforward implementation of the methodologies proposed in this study. The applications 

are specifically tailored for the POF, POL, POB, and COF models. These applications are 

developed using Python and its associated libraries for backend operations and HTML and CSS 

for frontend design, ensuring both functionality and user-friendly interfaces. This chapter 

discusses the development process of each application, illustrating the steps taken from initial 

design to final implementation. Additionally, the chapter provides an overview of the graphic 

user interface (GUI) for each model, showcasing how users can interact with the functionalities 

provided to efficiently apply the predictive models in real-world scenarios.  

 

 
 5 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Zayed, T. & Adey, B.T. "Explainable deep learning models for predicting water 

pipe failure." Journal of Environmental Management (IF = 8.7, Q1). (Under review – 

1st cycle) 

Taiwo, R., Zayed, T. & Adey, B.T. "Interpretable ensemble models for predicting causes of 

water pipe failure." Reliability Engineering and System Safety (IF = 8.1, Q1). (Under 

review – 1st cycle) 

Taiwo, R., Zayed, T. Elshaboury, N., & Abdelkader, E. M. "Promoting Sustainable Water 

Distribution Networks: Modeling of Water Pipe Failure Factors and Modes." Cleaner 

Engineering and Technology (IF = 5.3, Q1). (Under review – 2nd cycle) 

 

https://doi.org/10.1016/j.aej.2023.11.047
https://doi.org/10.1016/j.asej.2024.102630
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6.2. POF MODEL 

6.2.1. Deployment process of the POF model 

The deployment process of the POF model is detailed in this section, following the evaluation 

of the model's performance outlined in Section 5.4. From the results presented, the most 

effective model emerged from Experiment 2, where hyperparameters and input variables were 

optimized to enhance performance. This model, demonstrating superior accuracy and 

efficiency, was selected for deployment. 

The deployment began with the encapsulation of the ML model into a backend service. This 

service was developed using the Python Flask library, which is adept at handling both data 

processing and model inference tasks. This backend component is crucial as it processes input 

data and computes the model's predictions. To create a seamless user experience, a frontend 

interface was developed using HTML and CSS. This interface is designed to be intuitive, 

allowing users to easily interact with the model by inputting data and receiving predictions. 

The frontend connects to the backend, ensuring that data flows smoothly between the user 

interface and the processing service. 

The deployment infrastructure was streamlined by hosting the model on the Render Cloud 

server (Render, 2023). This cloud-based approach eliminates the need for a dedicated database 

on our premises, simplifying the management of user inference on the model. Testing was 

carried out to ensure the application's robustness, confirming its reliability across various user 

scenarios. This included handling simultaneous access from multiple users and accommodating 

variations in data input, thus guaranteeing consistent performance under diverse conditions. 

This systematic approach to deployment ensures that the POF model is not only effective in its 

predictive capabilities but also robust and user-friendly in practical application scenarios. 



193 
 

6.2.2. POF Model Inputs 

Figure 6.1 shows the Graphic User Interface (GUI) for the POF model inputs, which is designed 

for user-friendliness and efficient interaction. The screen of the GUI is structured to facilitate 

easy and accurate data entry, specifically tailored to gather necessary information for predicting 

water pipe failure probabilities. The GUI is divided into two main sections for data input: Pipe-

related factors and Environment-related factors. 

(I) Pipe-related Factors: 

Length (m): Users can enter the length of the pipe. 

Diameter (mm): Users can specify the pipe's diameter. 

Age (years): The age of the pipe can be entered directly. 

Material: A dropdown menu allows users to choose the material of the pipe, such as PE 

(Polyethylene). 

(II) Environment-related Factors: 

Temperature (°C): Users input the ambient temperature. 

Precipitation (mm): This field is for entering the amount of precipitation. 

Corrosivity: Users can select the level of corrosivity from options like 'Mildly corrosive'. 

Traffic (AADT): The average annual daily traffic can be entered, affecting the stress on the pipe. 

6.2.3. POF Model Output 

At the bottom of these input fields, a “Predict” button is placed (see Figure 6.2). When clicked, 

this button initiates the calculation, feeding the input data into the backend model to compute 

the probability of failure. 
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Figure 6. 1: GUI of POF Model Inputs 

The results are then displayed to the user, allowing them to understand the risk associated with 

the specified conditions. The layout is designed with clarity and simplicity in mind, ensuring 

that users of all technical levels can easily navigate and utilize the application without 

confusion. While Figure 6.2 doesn't show actual prediction results (i.e., values) due to data 

confidentiality, the output includes the pipe's failure probability and reliability, which sum to 

1, representing the complete spectrum of the pipe's condition. 
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Figure 6. 2: GUI of POF Model Output 

6.3. POL AND POB MODELS 

6.3.1. Deployment process of the POL and POB models 

After determining the optimized CNN as the most effective model based on the evaluations in 

Section 5.5.3, the next step was to deploy this model for predicting both POL and POB. The 

CNN model was configured to use standardized data for leak predictions and normalized data 

for burst predictions. 

To ensure a user-friendly and accessible deployment, the Streamlit framework was employed 

(Mhadbi, 2021). Streamlit allows for the development of interactive web applications with 

ease, providing a seamless platform for users to input data and receive predictions. The 

deployment process involved several key steps. First, the trained CNN model was integrated 

into the Streamlit application, ensuring efficient data flow from user input to model predictions. 

The application architecture was designed to handle user queries reliably, minimizing any 

potential downtime. 

Next, the web application was split into two separate pages, one dedicated to POL predictions 

and the other to POB predictions (see Figure 6.3). This separation enhanced the clarity and 

usability of the application, allowing users to focus on their specific prediction requirements 

without unnecessary clutter. 
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To make the application accessible to HK WSD, it was deployed to the Streamlit Cloud 

platform. This cloud deployment eliminated the need for users to run the application locally, 

providing a convenient web-based interface accessible from any device with an internet 

connection. Extensive testing was conducted to verify the application's performance, reliability, 

and responsiveness under various conditions. The deployment strategy prioritized high 

availability and a seamless user experience, ensuring that the application could handle multiple 

concurrent users without compromising prediction accuracy or speed. 

6.3.2. POL and POB Model Inputs 

The GUI for the POL and POB models’ inputs is carefully designed to ensure ease of use and 

effective interaction for both models (see Figures 6.3). This unified GUI facilitates user 

engagement and data input for both leak and burst predictions, providing a coherent experience 

across both applications. The interface offers two distinct methods for data input: individual 

prediction via the sidebar and batch prediction through file upload. 

For individual predictions, the GUI is structured with a sidebar dedicated to inputting a wide 

range of water pipe attributes and environmental factors. Users can input parameters such as 

the material type of the pipe, diameter, length, and additional environmental conditions 

including temperature, humidity, and precipitation. These inputs are essential as they directly 

influence the predictive outcomes of the models. Interactive elements like sliders and 

dropdown menus allow for precise and hassle-free entry of these variables. For batch 

predictions, the system provides a file upload functionality that enables users to process 

multiple pipe cases simultaneously. Users can upload their own dataset in either CSV or Excel 

format, containing the same parameters as the individual input method. The upload interface 

requires specific column naming conventions and data formats to ensure compatibility with the 

model. This batch processing capability is particularly valuable for utilities and organizations 
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that need to analyze multiple pipe segments efficiently. The system accommodates two options 

for batch processing: users can either utilize a provided test dataset or upload their own 

structured data file, making the tool adaptable to various organizational needs and data 

management practices. 

6.3.3. POL and POB Model Output 

Figures 6.4 and 6.5 show the GUI for POL and POB model output. At the upper part of the 

GUI is an informative display that not only enhances the interface aesthetically but also 

educates users about the deep learning processes involved in the leakage and burst predictions. 

This part includes detailed lists of the features used for model training, which are crucial for 

users to understand the variables impacting the model's predictions. Features such as pipe age, 

traffic levels, and soil corrosivity are among the inputs that help predict the likelihood of a leak 

or burst.  

The model output is presented in two distinct formats, corresponding to the two input methods 

available. For individual predictions, users can initiate the model's prediction by clicking the 

"Predict Probability of Leakage" or "Predict Probability of Burst" button, depending on the 

model being accessed. The results are displayed immediately at the lower part of the interface, 

providing instant feedback on the risk assessment based on the provided data. For batch 

predictions, the output is presented in a tabular format that includes all the input parameters 

alongside their corresponding predictions. Users can preview these results directly within the 

interface, where the original dataset is augmented with an additional column containing the 

model's predictions. To facilitate further analysis and record-keeping, the system provides a 

download option, allowing users to export the complete results as a CSV file. This feature is 

particularly valuable for organizations conducting large-scale assessments of their pipeline 

networks. 
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Figure 6. 3: GUI of POL Model Inputs (Left) and POB Model Inputs (Right) 
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It is important to note that the actual prediction results in Figures 6.4 and 6.5 are blurred due 

to the confidential nature of the network data. This measure ensures the protection of sensitive 

information while still allowing the functionality of the models and web applications to be 

demonstrated through the GUI. The same confidentiality measures are applied to the batch 

prediction outputs, maintaining data security while demonstrating the applications' capability 

to global stakeholders in WDN. This approach provides a comprehensive yet secure way to 

utilize the predictive capabilities of the models, whether for single pipe segments or extensive 

network analyses. 

6.4. COF MODEL 

6.4.1. Deployment process of the COF model 

The deployment process for the COF model followed a similar approach to that of the POL and 

POB models. The optimized ensemble learning model -XGBoost + TPE, identified as the best-

performing model in Section 5.6.3, was selected for deployment. This model excelled in 

predicting the COF based on various pipe attributes and environmental factors. 

The Streamlit framework was once again utilized to create an interactive web application for 

the COF model. The application was designed to provide users with a user-friendly interface 

for inputting pipe characteristics and obtaining real-time predictions of the most likely COF. 

The deployment process involved integrating the trained EL model into the Streamlit 

application, ensuring seamless data processing and prediction generation. The application 

architecture was optimized for performance, scalability, and reliability, allowing it to handle 

multiple user requests simultaneously. 
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Figure 6. 4: GUI of POL Model Output (a) – single prediction (b) batch prediction 
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Figure 6. 5: GUI of POB Model Output (a) – single prediction (b) batch prediction 

 

To enhance the user experience and maintain consistency with the POL and POB applications, 

the COF application was also deployed to the Streamlit Cloud. This cloud deployment provided 

easy access to the application through a web browser, eliminating the need for local installation 

or setup. Testing was conducted to validate the application's accuracy, responsiveness, and 
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stability under various usage scenarios. The deployment strategy aimed to deliver a high-

quality, reliable tool for water utilities to identify and prioritize potential failure causes, 

enabling proactive maintenance and risk mitigation strategies. 

6.4.2. COF Model Inputs 

Similar to the GUI of POL and POB model inputs, the GUI of the COF model inputs was 

designed with user-friendliness and clarity in mind. It has two distinct methods for data input. 

For individual predictions (see Figure 6.6), the interface consists of a sidebar with input fields 

for each relevant pipe attribute, such as age, length, diameter, pressure, traffic, soil type, and 

others. Users can easily select or enter the appropriate values for their specific pipe using 

dropdown menus, sliders, or text input fields. 

The interface also provides a batch prediction capability through its file upload functionality. 

Users can choose between utilizing a provided test dataset or uploading their own customized 

file in either CSV or Excel format. For user-uploaded files, the system requires specific column 

formatting and naming conventions to ensure proper data processing. This batch input feature 

is particularly beneficial for organizations needing to analyze multiple pipe segments 

simultaneously, streamlining the assessment process for larger datasets. Both input methods 

maintain consistent data requirements and validation checks, ensuring reliable model 

predictions regardless of the chosen input method. 

6.4.3. COF Model Output 

The GUI of the COF Model output includes clear labels and explanations for each attribute, 

ensuring that users understand the information used for the prediction. The output presentation 

varies based on the chosen input method. For individual predictions, users can initiate the 

prediction by clicking the "Predict the Cause of Failure" button, with results displayed 

immediately within the GUI as shown in Figure 6.7.  
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Figure 6. 6: GUI of COF Model Inputs 



206 
 

For batch predictions, the system generates a table that includes all input parameters alongside 

their corresponding predicted causes of failure. Users can preview these results directly in the 

interface and have the option to download the complete analysis as a CSV file. This feature 

facilitates efficient documentation and further analysis of multiple pipe segments 

simultaneously. The tabular output includes the original input parameters and adds a new 

column containing the predicted cause of failure for each pipe segment. 

It is important to note that Figure 6.7 does not show the predicted COF due to the confidential 

nature of the network data. Instead, it illustrates the functionality and design of the GUI for 

both individual and batch predictions, ensuring the confidentiality of sensitive information 

while demonstrating the capabilities of the COF model effectively. This dual-output approach 

provides a versatile solution for both targeted analyses of individual pipes and comprehensive 

assessments of larger pipeline networks. 

It should be noted that the development of separate web applications for POF, POL, POB, and 

COF prediction models was driven by their distinct operational requirements and input 

variables. While a unified interface might seem preferable, the technical architecture reflects 

the specialized nature of each prediction task. For instance, the POF model requires 8 optimized 

input variables, including pipe characteristics and environmental factors, while POL and POB 

models need 14 input variables, and the COF model requires 13 specific input parameters based 

on the optimization performed to achieve the best predictive capability. This separation 

enhances model accuracy and allows water utilities to utilize specific applications based on 

their immediate needs. 

These applications serve distinct purposes in the decision-making process, with POF 

application providing overall failure probability assessment, POL and POB applications 

offering detailed prediction of specific failure types, and COF application assisting in root 
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cause analysis. While operating independently, they form a comprehensive suite of tools for 

pipe failure management. The individual deployment approach enables water utilities to 

perform focused analyses on specific pipes, supporting targeted maintenance decisions. This 

granular analysis at the individual pipe level provides the foundation for network-wide strategic 

planning, as utilities can aggregate individual pipe assessments to develop broader maintenance 

strategies. 
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Figure 6. 7: GUI of COF Model Output (a) – single prediction (b) batch prediction 

6.5. SUMMARY 

This chapter presents the development and deployment of four web-based applications 

designed to facilitate the implementation of the predictive models proposed in this study.  

The POF application, built using the Python Flask framework for the backend and HTML and 

CSS for the frontend, provides a user-friendly interface to input pipe attributes and obtain 

predictions of the likelihood of pipe failure. The POL and POB applications, deployed 
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separately on the Streamlit Cloud, allow users to predict the probability of leaks and bursts, 

respectively. These applications leverage the optimized CNN model, which demonstrated 

superior performance in the evaluation phase. The COF application, also deployed on the 

Streamlit Cloud, enables users to identify the most likely causes of water pipe failures based 

on various pipe attributes and environmental factors. The application utilizes the best-

performing EL model identified in the study.  
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Chapter 7 
 

CONCLUSIONS AND FUTURE WORK6 
 

7.1. INTRODUCTION 

The primary aim of this research was to deepen the understanding of the various factors that 

contribute to water pipe failures, delineate the different failure modes, and develop predictive 

models to significantly improve the management of WDNs. Effective management of these 

networks entails a series of complex and critical tasks, demanding robust analytical strategies 

and innovative solutions. To methodically tackle these challenges, the study was designed 

 
6 This chapter is largely based upon: 

Taiwo, R., Zayed, T. & Ben Seghier, M. E. A. (2024). " Integrated intelligent models for 

predicting water pipe failure probability". Alexandria Engineering Journal, 86, 243-

257, https://doi.org/10.1016/j.aej.2023.11.047      

Taiwo, R., Yussif, A., Ben Seghier, M. E. A., & Zayed, T. (2024). "Explainable Ensemble 

Models for Predicting Wall Thickness Loss of Water Pipes". Ain Shams Engineering 

Journal, https://doi.org/10.1016/j.asej.2024.102630     

Taiwo, R., Shaban, I. A., & Zayed, T. (2023). "Development of sustainable water 

infrastructure: A proper understanding of water pipe failure". Journal of Cleaner 

Production, 398: 136653  https://doi.org/https://doi.org/10.1016/j.jclepro.2023    

Taiwo, R., Ben Seghier, M. E. A., & Zayed, T. (2023). "Towards sustainable water 

infrastructure: The state-of-the-art for modeling the failure probability of water pipes". 

Water Resources Research. e2022WR033256. https://doi.org/10.1029/2022WR033256   

Taiwo, R., Zayed, T. & Adey, B.T. "Explainable deep learning models for predicting water 

pipe failure." Journal of Environmental Management (IF = 8.7, Q1). (Under review – 

1st cycle) 

Taiwo, R., Zayed, T. & Adey, B.T. "Interpretable ensemble models for predicting causes of 

water pipe failure." Reliability Engineering and System Safety (IF = 8.1, Q1). (Under 

review – 1st cycle) 

Taiwo, R., Zayed, T. Elshaboury, N., & Abdelkader, E. M. "Promoting Sustainable Water 

Distribution Networks: Modeling of Water Pipe Failure Factors and Modes." Cleaner 

Engineering and Technology (IF = 5.3, Q1). (Under review – 2nd cycle) 
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https://doi.org/10.1016/j.asej.2024.102630
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around four key objectives that collectively outline the comprehensive scope of this research.  

The objectives are as follows: 

a) Identify comprehensive failure factors and failure modes of water pipes; 

b) Model, rank, and investigate the relationship between water pipe failure factors and 

failure modes; 

c) Develop and automate optimized models to predict the probability of failure, leaks, and 

bursts of water pipes; and 

d) Develop and automate an optimized model to predict the causes of water pipe failure. 

The preceding chapters have comprehensively detailed the methodology employed, the data 

used for model development and testing, the obtained results, and the automated applications 

developed to facilitate the implementation of the research findings. Hence, this concluding 

chapter summarizes the main findings, highlights the significance and contributions of the 

study, acknowledges the research limitations, and provides recommendations for future work. 

7.2. SUMMARY OF THE KEY FINDINGS 
 

Objective 1: Identify comprehensive failure factors and failure modes of water pipes 

As per this objective, a systematic review of previous studies in identifying the failure factors 

and failure modes of water pipes was conducted. Thirty failure factors were identified and were 

broadly classified into four: pipe-related, soil-related, external-related, and operation-related 

factors. The review also identified five failure modes. Apart from the systematic review, other 

methodologies employed to achieve this objective include scientometric analysis and fault tree 

logic.  

From the systematic review, it could be observed, from a general perspective, that a direct 

relationship exists between water pipe failure and pipe age, pipe length, soil moisture, frost, 
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traffic, precipitation, aggressive chemical substances, internal pressure, number of leaks, and 

water temperature. On the other hand, an inverse relationship seems to exist between water 

pipe failure and pipe diameter, wall thickness, efficient protection methods, buried depth, 

atmospheric temperature (seasonality), soil and water pH, and soil resistivity. In addition, the 

methods and materials used in manufacturing water pipes have witnessed advancement and 

improvement over time. A good example of this is the improvement in the way of 

manufacturing CI pipes. The introduction of the centrifugal method in casting makes the 

uniform wall thickness of CI achievable, coupled with an increase in the pipe's strength. A 

general way to conclude would probably be that each type of pipe has its advantages and 

limitations. For example, PVC pipe is more corrosion resistant than steel pipe, while steel pipe 

can withstand more external load than PVC pipe. It is worth mentioning that water pipes' failure 

mechanism is a complex one. Hence, the direct and inverse relationships mentioned above in 

relation to water pipe failure and its contributing factors may not be entirely applicable in some 

cases, as the level of dominance amongst the factors may differ in a system. 

Objective 2: Model, rank, and investigate the relationship between water pipe failure 

factors and failure modes 

Water pipe failure is a significant issue that affects both developed and developing countries 

across the globe. It leads to several negative impacts on the environment, economy, and social 

conditions of a nation. Hence, it is important to understand the critical factors influencing the 

pipe failure. In order to identify the criticality of these factors and failure modes, questionnaire 

data were collected and analyzed using the PLS-SEM algorithm.  

The algorithm consists of a measurement and structural model. The result of the measurement 

model identified pipe age, diameter, length, material, and wall thickness as the most critical 

pipe-related factors affecting water pipe failure. Similarly, internal pressure, maintenance 

practices, number of leaks, water acidity, and water alkalinity were found as the most critical 
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operation-related factors. Temperature, frost, microbiologically induced corrosion, and 

precipitation were identified as the most influential external-related factors, while bedding 

condition, soil moisture, soil pH, soil resistivity, and soil type were evidenced to be the most 

critical soil-related factors. In the same vein, blown-out, circumferential cracking, and 

corrosion splitting were identified as the critical failure modes. The results of the structural 

model provide confirmation of the hypothesis: factors influencing water pipe failure 

significantly impact failure modes. This is evidenced by p-values less than 0.05 and a path 

coefficient (β) of 0.567. Consequently, this study enhances the understanding of the intricate 

relationships between various factors that influence pipe failure and how these interactions 

determine failure modes. 

Objective 3 (first task): Develop and automate an optimized model to predict failure 

probability of water pipes 

To fulfil this objective, this study gathered data from three different sources: HK Water Supply 

Department, HK Observatory, and HK Transportation Department. The data were grouped into 

pipe-related, environment-related, and operation-related factors affecting the failure 

probability of the pipes. Subsequently, the data was pre-processed by outlier removal and 

imputation of missing data using the appropriate descriptive statistics. Afterward, the data was 

transformed via normalization and standardization. Two levels of optimization have been 

experimented. The first experiment used GA to optimize the hyperparameters of LR models, 

and their results outperformed the models without hyperparameter optimization. The second 

experiment selects the best hyperparameters and features using GA. The result outperforms 

that of the first experiment, which emphasizes the importance of feature selection. The best 

model achieved an accuracy, precision, recall, f1 score, and AUC of 0.889, 0.929, 0.815, 0.867, 

and 0.944, respectively. This implies that the optimized model can effectively predict the failure 

probability of water pipes with a very low false alarm rate. This would help the water utility 
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management make informed decisions about when and what pipes need to be repaired based 

on their probability of failure. Additionally, the result of the SHAP experiment shows that 

"age," "temperature," "cast iron material," and "length" contribute most to the prediction. This 

result also agrees with the interpretation of the LR coefficients and scholarly literature. 

Moreover, a web-based application has been developed as part of Experiment 2 to provide a 

user-friendly interface for the implemented model. This application has been delivered to HK 

Water Supply Management to enhance their decision-making processes in effectively 

managing their WDN. The web application serves as a valuable tool to assist in analyzing and 

interpreting the model's outputs, enabling the management team to make informed decisions 

and take appropriate actions to optimize the performance of their WDN. 

Objective 3 (second task): Develop and automate an optimized model to predict the 

probability of leak and burst in water pipes 

This task has leveraged deep learning (DL) architectures, specifically deep neural networks 

(DNN), convolutional neural networks (CNN), and TabNet, to develop predictive models for 

the likelihood of leaks and bursts in water pipes. The study enhanced these base DL models by 

optimizing their hyperparameters through Bayesian Optimization and then interpreting the 

optimal model with SHapley Additive exPlanations (SHAP). 

Data compiled from the Hong Kong Water Supply Department, the Hong Kong Observatory, 

and the Hong Kong Transportation Department were categorized into variables associated with 

pipe characteristics, environmental conditions, and operational factors. Data processing 

involved removing outliers and imputing missing values through established statistical 

methods, followed by data normalization and standardization. It was observed that 

transforming the data remarkably augmented the models' predictive power.  For example, in 

the context of leak prediction, the precision of the TabNet model increased from 0.512 to 0.598 
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with normalization and further to 0.727 following standardization. Additionally, the refinement 

of the models through optimization led to enhanced performance compared to the base-DL 

models. This is exemplified by the increase in recall for the DNN model in burst prediction, 

which improved from 0.914 to 0.947 with normalization and further to 0.950 after 

standardization.  

The Copeland algorithm identified the CNN as the most effective model for predicting the 

probability of leaks and bursts. For the POL, the optimal model demonstrated high performance 

metrics: an accuracy of 0.994, precision of 0.876, recall of 0.978, F1 score of 0.924, MCC of 

0.923, and Cohen’s Kappa of 0.922. Similarly, the optimal model for the POB achieved an 

accuracy of 0.999, precision of 0.782, recall of 0.987, F1 score of 0.872, MCC of 0.878, and 

Cohen’s Kappa of 0.872. The SHAP analysis highlighted the predominance of 'diameter' and 

'material composition, particularly plastic, in influencing model predictions. The insights 

gained from this investigation are invaluable for proactive management of WDNs. The 

predictive models developed can help utility companies mitigate pipe failures and bolster the 

reliability of their supply infrastructure. 

Utilities can implement targeted condition monitoring and preventive maintenance for pipes 

with high POF and POL predictions, like pressure management and water quality management, 

to reduce internal corrosion. The cost-effectiveness of these interventions can be evaluated by 

comparing the implementation costs against potential savings from prevented leaks and 

associated water losses. For pipes showing high POB probability, urgent rehabilitation or 

replacement may be warranted, given the severe consequences of bursts. The prioritization can 

be optimized by considering both the probability and potential impact of failure, allowing 

utilities to allocate their limited resources to highest-risk assets first. When the COF model 

indicates material degradation as the primary cause, utilities can develop material-specific 

intervention programs. For example, implementing corrosion protection for metallic pipes or 
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adjusting operational parameters for plastic pipes. The feasibility of different interventions can 

be assessed based on access constraints, service disruption, and available resources. This data-

driven approach enables utilities to move from reactive maintenance to proactive asset 

management, optimizing their maintenance budgets while improving service reliability. The 

cost-effectiveness of various strategies can be evaluated by analyzing historical maintenance 

costs against predicted failure probabilities.  

Objective 4: Develop and automate an optimized model to predict the causes of water 

pipe failure 

This objective aimed to develop accurate and interpretable ML models for predicting the causes 

of water pipe failures, systematically selecting the best-performing model, and generating 

meaningful explanations of the model predictions. The study employed five state-of-the-art EL 

algorithms: AdaBoost, Random Forest, XGBoost, LightGBM, and CatBoost. The TPE 

algorithm was utilized for hyperparameter optimization, significantly improving the 

performance of the base models. The Copeland algorithm was then applied to rank the 

optimized models, identifying the XGBoost model as the top performer. Finally, the SHAP 

framework was used to enhance the interpretability of the selected model. 

The results demonstrate that the optimized XGBoost model achieved the highest accuracy 

(0.82), macro precision (0.65), weighted precision (0.80), and weighted recall (082), among 

the evaluated models. LightGBM was found to have one of the highest values for macro recalls 

(0.58), weighted F1 scores (0.80), and AUCs (0.87). It was also found to be the most efficient 

in terms of computational cost (i.e., least training time). The utilization of the Copeland 

algorithm for systematic ranking facilitated the selection of the optimized XGBoost as the best-

performing model for deployment. The SHAP feature importance analysis and the inherent 

feature importance from the optimized XGBoost model provided deep insights into the critical 
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factors influencing the prediction of water pipe failure causes. Both analyses highlighted water 

type (specifically saltwater), material (GIL), age, and diameter as key determinants, 

demonstrating a significant overlap in their results. Specifically, the SHAP analysis identified 

traffic as another crucial factor, underscoring its role in affecting pipe integrity. Conversely, the 

XGBoost model pinpointed another material type, steel (S), as a significant predictor. This 

slight variance in the two analyses enriches our understanding, suggesting that both traffic 

conditions around the water pipes and the specific materials used for their construction are 

pivotal in predicting failures. This consistency in the results across different analytical methods 

confirms the reliability of these features as predictive indicators. The identification of these 

factors enables targeted interventions and more precise preventative measures, improving the 

management and maintenance strategies within water distribution networks. 

To clarify the model's capabilities and limitations, the optimized XGBoost model predicts the 

most probable cause of failure from a predefined set of failure causes based on the input 

features. While the model has been trained on historical data with known failure causes, its 

predictions are limited to identifying patterns similar to those in the training dataset. The term 

'automate' in this context refers to the implementation of the model in a web-based application 

that automatically processes user inputs and generates predictions without manual intervention. 

The model's optimization specifically involved tuning its hyperparameters using the TPE 

algorithm to maximize its performance. The model's reliability in predicting failure causes is 

evidenced by its consistent identification of key contributing factors (water type, material type, 

age, diameter, and traffic) through both SHAP analysis and inherent feature importance, which 

align with established engineering knowledge and previous studies in the field. 
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7.3. SIGNIFICANCE AND CONTRIBUTION OF THE RESEARCH 

This research makes theoretical, practical, and broader contributions to the field of WDN 

management by advancing the understanding of water pipe failure mechanisms and improving 

predictive modeling techniques. 

The following theoretical contributions are supported by the findings of this study: 

 

a) Comprehensive identification of failure factors and modes: This research has 

systematically identified and categorized a comprehensive set of failure factors and 

failure modes associated with water pipes. This comprehensive identification of failure 

factors and modes provides a solid foundation for understanding the complex nature of 

water pipe failures and serves as a valuable resource for researchers and practitioners 

in the field. 

b) Establishing the relationship between failure factors and modes: This study has 

developed and validated a conceptual model to establish the relationships between 

failure factors and modes. This contribution enhances the theoretical knowledge of 

water pipe failure mechanisms and enables a more holistic approach to addressing this 

complex problem. 

c) New application of advanced analytical techniques: The study has successfully applied 

state-of-the-art analytical techniques, such as Partial Least Square Structural Equation 

Modeling (PLS-SEM), deep learning architectures (DNN, CNN, and TabNet), and 

ensemble learning algorithms (AdaBoost, Random Forest, XGBoost, LightGBM, and 

CatBoost) to predict water pipe failures. The innovative use of these techniques in the 

context of water infrastructure management has expanded the theoretical boundaries 

and demonstrated their potential for addressing complex problems in this field. This 

contribution showcases the value of applying advanced analytical methods to tackle 
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real-world challenges and encourages further exploration of these techniques in related 

domains. 

d) Enhanced interpretability of predictive models: By employing advanced interpretation 

techniques, such as SHapley Additive exPlanations (SHAP) and inherent feature 

importance analysis, this research clarifies the relative influence of different factors on 

pipe failure predictions. The transparency of the model is achieved through SHAP 

analysis, which quantifies how each feature contributes to individual predictions, 

showing exactly how much factors like age, diameter, or pressure affect the predicted 

outcome. This transparent quantification allows utilities to understand why the model 

makes specific predictions - for example, showing that a high failure probability might 

be driven 60% by pipe age, 25% by pressure conditions, and 15% by soil characteristics 

(this is for illustration purposes). 

The practical contributions of this study are as follows: 

a) Identification of critical failure factors and modes: The research has identified the most 

critical factors influencing water pipe failures and critical failure modes. This practical 

knowledge empowers water utilities to focus their efforts on monitoring and mitigating 

these key factors, leading to more effective and targeted maintenance strategies. By 

prioritizing the most influential factors, water utilities can optimize their resource 

allocation and improve the overall reliability and resilience of their distribution 

networks. 

b) Development of enhanced predictive models: The research has developed optimized 

models for predicting the probability of failure, leaks, bursts, and causes of water pipe 

failures. These models serve as practical tools for water utilities to assess the condition 

of their infrastructure, prioritize maintenance and rehabilitation efforts, and optimize 

resource allocation. The models are implemented through a web-based interface where 
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utilities can input their latest network data and receive immediate predictions. This 

implementation enables utilities to maintain current assessments of their infrastructure 

as new data becomes available through routine inspections, maintenance activities, or 

operational monitoring. For instance, when utilities gather new condition assessment 

data or update their maintenance records, they can readily input this information to 

obtain updated failure predictions, supporting dynamic decision-making based on the 

most recent network information. This continuous update capability ensures that 

maintenance and rehabilitation decisions are based on current network conditions rather 

than outdated assessments. 

c) Creation of user-friendly web applications: The study has developed web-based 

applications that provide a user-friendly interface for the implemented prediction 

models. These applications allow utility managers to input their pipe data through a 

simple form interface and receive failure outcomes. The current implementation 

focuses on core functionality: data input, prediction generation, and basic result display. 

The applications make the complex prediction models accessible to users without 

requiring programming knowledge or direct interaction with the underlying algorithms. 

While the current version provides essential functionality, future enhancements could 

include more advanced visualization features, integration with GIS systems, and 

automated reporting capabilities. It is acknowledged that fuller integration into daily 

operations would require additional features and customization based on specific utility 

needs and workflows.  

d) Improved Risk Management: The prediction models support risk management by 

identifying pipes with high failure probabilities, enabling utilities to prioritize specific 

interventions. For example, when the model predicts high failure probability driven 

primarily by pressure factors, utilities can implement targeted pressure management in 
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that zone. Similarly, when predictions indicate clusters of high-risk pipes in areas with 

aggressive soil conditions, utilities can prioritize these zones for cathodic protection or 

protective coating applications. For pipes where age and material type are the primary 

risk factors, the predictions help justify pipe replacement or rehabilitation in capital 

planning. The model outputs can also guide the frequency and intensity of condition 

monitoring. Pipes with moderate risk levels might be scheduled for more frequent 

acoustic leak detection surveys, while those with the highest risk predictions might 

warrant continuous pressure monitoring. This risk-based approach helps utilities 

allocate their limited inspection and maintenance resources more effectively.  

The broader contributions of this research are highlighted below: 

a) Advancement of sustainable water infrastructure management: By deepening the 

understanding of water pipe failures and providing predictive tools, this research 

contributes to the broader goal of developing sustainable water infrastructure. The 

findings and models developed in this study can help water utilities enhance the 

reliability, resilience, and longevity of their distribution networks, ensuring the safe and 

efficient delivery of water to communities. This contribution aligns with the global 

efforts to achieve sustainable development and promotes the responsible management 

of vital water resources. 

b) Promotion of data-driven decision-making: The research demonstrates the value of 

data-driven approaches in addressing complex challenges in water infrastructure 

management. By leveraging advanced analytical techniques and integrating data from 

multiple sources, this study promotes a culture of evidence-based decision-making in 

the water sector, encouraging the adoption of similar approaches in other domains. This 

contribution has the potential to transform the way decisions are made across various 

industries, leading to more informed, efficient, and effective outcomes. 
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c) Contribution to the global sustainability agenda: The effective management of WDNs 

is crucial for achieving the United Nations' Sustainable Development Goals (SDGs), 

particularly SDG 6, which aims to ensure access to clean water and sanitation for all. 

This research contributes to the global sustainability agenda by providing tools and 

insights that can help water utilities worldwide improve their infrastructure 

management practices, ultimately contributing to the achievement of the SDGs. The 

findings and models developed in this study have the potential to be adapted and applied 

in different contexts, supporting the global efforts to ensure sustainable access to safe 

drinking water. 

7.4. RESEARCH LIMITATIONS 

While this research has made significant contributions to the understanding and prediction of 

water pipe failures, it is essential to acknowledge the limitations of the study. These limitations 

may serve as opportunities for future research and improvements in the field. 

a) Scope of Failure Factors and Failure Modes: While the research has systematically 

identified a broad range of failure factors and modes, the complexity of WDN means 

that not all possible influencing factors may have been captured in the literature 

reviewed. Unforeseen interactions or rare events that were not sufficiently represented 

in the literature could lead to unforeseen failures.  

b) Assumptions in modeling techniques: The research employed various modeling 

techniques, including PLS-SEM, deep learning architectures, and ensemble learning 

algorithms. These techniques involve certain assumptions and simplifications to 

represent the complex reality of water pipe failures. For example, the PLS-SEM model 

assumes that the relationships between variables are linear, which may oversimplify the 

actual complex and potentially nonlinear interactions involved. 
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c) Data Dependency: The study utilized global expert knowledge for the questionnaire 

survey. While core failure principles remain consistent, regional variations in 

infrastructure characteristics, operational practices, and environmental conditions may 

affect the relative importance of different factors. Future work could benefit from 

targeted local expert surveys to refine the findings' applicability to Hong Kong's 

specific context. The predictive models developed, and conclusions drawn are heavily 

reliant on the quality and extent of the data available from the Hong Kong Water Supply 

Department, the Hong Kong Observatory, and the Hong Kong Transportation 

Department. While comprehensive, these data sources may not fully represent 

conditions in other geographical locations or environments with different infrastructure 

dynamics. This could limit the models’ applicability in regions with vastly different 

climatic, geological, or operational characteristics. 

d) Model Specificity: The predictive models, particularly the deep learning and ensemble 

methods, were optimized and validated based on specific datasets. Although these 

models show high accuracy and reliability within the scope of the available data, their 

performance might vary when applied to data with different attributes or under different 

operational conditions. 

e) Technological Limitations: The advanced analytical techniques employed—such as 

deep learning algorithms, ensemble learning algorithms, and SHAP feature importance 

analysis—require substantial computational resources due to the complexity and size 

of the datasets used. These resource requirements might constrain the practical 

deployment of the models in settings with limited computational capabilities or in 

scenarios requiring rapid data processing. 
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7.5. RECOMMENDATIONS FOR FUTURE WORK 

This section outlines potential areas for improvement, aiming to build upon the foundation laid 

by this research. These recommendations are categorized into enhancements of the existing 

research and extensions to broaden its scope and applicability. 

Enhancement for the existing research: 

a) Incorporate additional failure factors: Future research could explore the inclusion of 

additional factors that may contribute to water pipe failures, such as the quality of 

installation workmanship, the presence of nearby underground utilities, and the impact 

of seismic activities. Incorporating these factors, subject to data availability, could 

enhance the predictive power of the models and provide a more comprehensive 

understanding of the failure mechanisms. 

b) Investigate alternative modeling techniques and non-linear relationships: While this 

study employed PLS-SEM, deep learning architectures, and ensemble learning 

algorithms, future research could explore advanced modeling techniques capable of 

capturing complex non-linear relationships between failure factors. This includes 

investigating non-linear structural equation modeling, advanced time-series analysis 

with non-linear components, survival analysis with time-varying coefficients, and 

sophisticated hybrid models that can handle both linear and non-linear interactions. 

Additionally, exploring deep learning architectures specifically designed for complex 

temporal and spatial dependencies could provide better insights into the intricate 

relationships between failure factors and modes. These advanced modeling approaches 

may lead to improved predictive performance and a deeper understanding of the 

complex failure factors in WDNs. 

c) Enhance model interpretability: Although this study employed techniques like SHAP 

and inherent feature importance analysis to interpret the predictive models, future 
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research could further enhance the interpretability of the models. This could involve 

developing more intuitive visualizations and automating the generation of human-

readable explanations. Enhancing model interpretability would facilitate better 

communication of the findings to stakeholders and support more informed decision-

making. 

d) Incorporate real-time data: Future research could explore the integration of real-time 

data, such as sensor readings or monitoring data, into the predictive models. 

Incorporating real-time data would enable the models to adapt to changing conditions 

and provide more timely predictions of impending failures. This could support 

proactive maintenance interventions and improve the overall reliability of the WDNs. 

e) Evaluate different management strategies: Future development could focus on utilizing 

the predictions from the web applications (POF, POL, POB, and COF) to evaluate 

different management strategies. By aggregating these model outputs across the pipe 

network, utilities can assess various maintenance scenarios, such as prioritizing repairs 

based on failure probabilities, optimizing rehabilitation schedules using predicted 

leakage risks, or developing targeted maintenance strategies based on predicted break 

patterns. This enhancement will transform the current pipe-level predictions into 

network-wide strategic planning tools. 

Extension for the existing research: 

a) Validate models in different contexts: Future research could validate the developed 

models using data from other regions or countries with different geographical, climatic, 

and infrastructural characteristics. This would help assess the generalizability of the 

findings and identify any context-specific factors that may influence water pipe failures. 

Validating the models in diverse contexts would strengthen their robustness and 

applicability to a wider range of WDNs. 
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b) Investigate effective intervention strategies: While this study focused on predicting 

water pipe failures, future research could extend the work by investigating effective 

intervention strategies to prevent or mitigate failures. This could involve evaluating the 

impact of different rehabilitation techniques, materials, or management practices on 

reducing the risk of failures. Conducting cost-benefit analyses of various intervention 

strategies would support informed decision-making and optimize the allocation of 

resources for maintaining and improving WDNs. 

c) Develop decision support systems: Future research could aim to develop 

comprehensive decision support systems that integrate the predictive models, 

intervention strategies, and other relevant information. These systems could assist water 

utility managers in making data-driven decisions regarding maintenance planning, 

resource allocation, and infrastructure upgrades. Developing user-friendly interfaces 

and incorporating visualization tools would enhance the usability and adoption of these 

decision support systems in practice. 

d) Explore the impact of climate change: Future research could investigate the potential 

impact of climate change on water pipe failures. As climate patterns evolve, the 

frequency and severity of extreme weather events, such as droughts, floods, or 

temperature fluctuations, may affect the integrity and performance of WDNs. Studying 

the long-term effects of climate change on water pipe failures and developing adaptive 

strategies could help water utilities build resilience and prepare for future challenges. 

7.6. SUMMARY 

This chapter recaps the objectives of this research, followed by a summary of the key findings 

derived from the study. It then outlines the significant contributions and implications of the 

research. Additionally, the chapter acknowledges the limitations of the study. Based on these 

discussions, suggestions for potential future research directions are explained. 
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(I) Further literature on Limit state equations based on structural reliability  

As known in the limit state reliability theory, the results from the study (Mahmoodian & Aryai, 

2017) show that consideration of multiple limit states is essential in determining the failure 

probability of water pipes since different failure mechanisms contribute to overall pipe failure. 

For instance, the service life of a pipe was estimated to be 140 years when only the leakage 

limit was considered, whereas it was estimated to be 45 years when six limit states were 

considered (Mahmoodian & Aryai, 2017). This shows that consideration of only one limit state 

can lead to inappropriate service life estimation, which may facilitate wrong decision-making 

in relation to pipe management.   

While developing a risk index for water pipes located at Fairfield, California, USA, Mazumder 

et al. (2021) adopted a physical probabilistic approach to generate a fragility curve (i.e., the 

conditional probability of failure). MCS (10,000 samples) was used to deal with the uncertainty 

associated with stress calculation. Lognormal and normal distributions were used for the 

probabilistic analysis. The pipe capacity was estimated using the model of (Ji et al., 2017), 

while the equation proposed by Robert et al.  (2016) on exerted stress was adopted. The actual 

ages of the pipes in the network were assumed to range between 70 to 100 years. This may be 

inaccurate, as cast iron (CI) pipes have been used in the USA since the late 19th century. 

Similarly, the model does not consider any operation and environment-related factors apart 

from internal pressure and traffic loads, respectively. No sensitivity analysis was conducted on 

the input variables.  

The First/Second Order Reliability Methods (FORM/SORM) are two analytical reliability 

methods that use the linear and quadratic approximations of the LSF to calculate the reliability 

index, which is then converted to failure probability. The efficiency of these approaches is 

determined by the complexity of the LSF (e.g., more applicable to less expensive and linear 
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LSF) and the distribution of the random variables (e.g., FORM is applied when the variables 

follow a normal distribution) (Ben Seghier et al., 2020, 2022). Apart from FORM/SORM, First 

Order Second Moment Approximation (FOSM) is another approach that has been used to 

model the failure probability of water pipes.  De Leon & Macías  (2005) examined the effect 

of spatial correlation on the failure probability of corroded pipes using the FOSM method. 

Their results indicated that pipe segments adjacent to each other have a high correlation 

coefficient in terms of failure probability due to corrosion depths, while pipe segments far 

away, having two or more segments between them, had zero degree of correlation. However, 

the study assumes that failure occurs only due to internal pressure, serving as a limitation of 

the study.  A similar assumption was made in the study of De-Silva et al.  (2006).   

While other research studies focused on the failure probability of CI pipes, the study conducted 

by Davis et al.  (2008) focused on AC pipes. Unlike CI and other metallic pipes that undergo 

electrochemical corrosion, AC pipes' main degradation process is due to leaching corrosion as 

a result of contact with soft water. The uncertainty in the degradation mechanism of water pipes 

is complex and dynamic in nature. For example, the leaching rate in an AC pipe can differ 

across the pipe length due to changes in the water pH or other influencing factors. One way to 

handle this uncertainty is by defining the input parameters in the form of a probability 

distribution. This promotes better understanding and facilitates accurate failure prediction.  

Furthermore, it is essential to note that the spatial-temporal analysis of corroding pipes has 

received limited attention from researchers. Aryai & Mahmoodian (2017) used random field 

theory to determine the correlation length of corroded water pipes, which was used in the 

estimation of failure probability. The correlation length is the length at which a corroded 

surface can be said to exhibit uniform corrosion. That is, the lesser the correlation length, the 

more fluctuated the surface is in terms of corrosion. Although the prediction accuracy of their 

model is 84.4%, which is higher compared to other studies that do not consider the spatial 
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relationship of corroding pipes, the accuracy can be improved if the probability distribution of 

corrosion depth is not assumed to be constant over time. A similar investigation was conducted 

by Wang et al. (2021). Their research considered five failure modes: ring deflection failure, 

leakage failure, burst failure, collapse failure, and bending failure. They found that each of the 

failure modes exhibited a different probability of failure due to the differences in their failure 

mechanism and contributing factors causing the failure. Although five failure modes were 

considered in the study, the addition of other failure stress, such as thermal stress, can increase 

the robustness of the models.  

Moreover, the maximum stress a pipe is subjected to can be determined using finite element 

modeling (FEM) (Aryai et al., 2020; Li et al., 2021).  Li et al. (2021) developed 243 FEA 

models to forecast the failure probability based on failure pressure. The reason for developing 

a large amount of FEA models (i.e., 243) is to fit the stress distribution to an appropriate 

statistical model. The maximum stress of the 243 FEA models was fitted into four distributions: 

Weibull, lognormal, normal, and Gumbel distributions. Normal distribution was found most 

appropriate for the stress distribution and was employed for MCS. Sensitivity analysis was 

conducted, and thickness was found as the most sensitive parameter, followed by internal 

pressure and traffic. The study only focused on large-diameter pipes. Furthermore, only 

localized corrosion was considered in the development of the FEA models, while uniform 

corrosion was ignored.  

(II) Further literature on statistical-based models  

Parametric models 

Parametric models involve a finite number of parameters that describe the historical data under 

investigation. Parametric models make assumptions regarding the distribution of the data and 

the form (i.e., linear, exponential, etc.) of the relationship between the variables being studied. 
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This indicates that the shape of the model is fixed and determined by the chosen parameters. 

Parametric models are relatively easier to interpret since their parameters are known.  

Weibull distribution models 

Different researchers adopted the Weibull distribution model to predict the failure probability 

of water pipes (Vladeanu & Koo, 2015; Ward et al., 2017). Equation A.1 represents the failure 

probability 𝐹 (𝑡) of a pipe at time t using the Weibull distribution.  

𝐹 (𝑡) = 1 − 𝑒−(
𝑡−𝛾

𝜂
)

𝛽

                  (A.1) 

where 𝛽, 𝛾, and 𝜂 are the shape, scale, and location parameters. The parameters can be 

determined by conducting a regression analysis of the historical failure data.   

In the process of developing a risk model for water distribution networks, Phan et al. (2019) 

employed three-parameter Weibull distribution to model the probability of water pipe failure. 

The model showed that CI pipes exhibited a 100% probability of failing at 60 years, while that 

of DI pipes was at 90 years. Thus, CI pipes are more prone to failure. However, limited 

historical data was used to develop the model; hence, the model shows low accuracy. Vladeanu 

& Koo (2015) applied two-parameter Weibull distribution to achieve the same objective. The 

network comprises AC, CI, DI, PVC, and concrete pipes. Due to the unavailability of complete 

historical data, the authors assumed that the first breakage experienced by each of the pipes 

happened after 74 years of installation. This assumption may either underestimate or 

overestimate the network failure probability. Similarly, Ward et al. (2017) applied a 3-

parameter Weibull distribution and found that the distribution was suitable for incomplete 

historical data left-truncated. The model was applied to two case studies. The accuracy of their 

model was investigated by plotting the predicted failure count against the observed failure 

count. All the pipe materials had an R2 greater than 0.96. Although the main output of the model 
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is the failure probability of each pipe material, the failure count was used to identify the pipe 

age range that experiences the most failure.  

Poisson distribution models 

Historical failure data can also be fitted to a Poisson distribution to determine the failure 

probability of a system. Using the Poisson distribution, the probability of occurrence of an 

event within a specified interval is given by Equation A.2.  

𝑝 (𝜆, 𝑛) =  
𝑒−𝜆 × 𝜆𝑛

𝑛!
                  (A.2) 

where n is the number of event occurrences, and 𝜆 is the mean value (i.e., failure rate) at a 

specific interval. Therefore, the failure probability of a water pipe can be expressed by Equation 

A.3 (Singh & Adachi, 2012). Based on the failure rate (𝜆), Poisson distribution can either be 

homogenous or non-homogeneous.   

𝑃𝑓 = 1 −
𝑒−𝜆 × 𝜆0

0!
= 1 −  

1

𝑒−𝜆                                                                                                             (A.3) 

Homogenous Poisson distribution models 

A Poisson distribution model is classified as homogenous when it has a constant failure rate. 

In the process of developing a risk model for a municipality in Canada, Elsawah et al.  (2016) 

developed a homogenous Poisson model for predicting the failure probability of water pipes. 

The failure rate was determined based on historical failure data for the last five years. The 

results indicated that galvanized steel pipe exhibited the highest failure probability compared 

to other pipes, while the failure probability of PVC, CI, and DI are similar. No attempt to 

validate the model with other historical or field data was made; hence, the model's prediction 

accuracy may not be generalized. Furthermore, Singh & Adachi (2012) assumed homogenous 

Poisson distribution to fit the historical data of a water utility in Honolulu, USA. The annual 

failure rate from 1988 to 2008 was determined from the historical data and employed in the 



234 
 

development of the model. Concrete pipes were found to have the lowest average probability 

of failure, followed by DI pipes. As one would expect, CI has the highest average failure 

probability. It should be noted that the homogenous Poisson model may be inadequate for 

failure prediction, as the failure rate of water pipes is not always constant due to the complex 

mechanism of pipe deterioration.  

Non-homogeneous Poisson distribution models (NHPP) 

The failure rate varies with time in the non-homogenous Poisson distribution model (NHPP). 

Rogers & Grigg  (2007) employed NHPP in predicting the water pipe failure probability of a 

utility in the USA. However, the NHPP model requires a minimum of three break records for 

a pipe before it can be applied since the model is governed by the time-varying failure rate, 

which is an integral function (i.e., two break intervals are needed); else, the governing equation 

will be unsolvable. Economou et al.  (2007) modified the traditional NHPP model to deal with 

zero inflation in the historical data of a utility in New Zealand. Excess numbers of zero points 

characterize the historical failure data. The data comprised 532 AC pipes, where only 81 of 

them had exhibited one or more failures. Their model suggested allowing for zero inflation in 

failure prediction increases the predictive capacity of such a model. A major limitation of NHPP 

models is that they are memoryless, since the effect of previous failure is not taken into 

consideration while determining the subsequent failure rate.  

Proportional hazard models (PHM) 

While Cox originally developed the Proportional Hazard Model (PHM) for medical 

applications, it has been applied for pipe deterioration mechanisms; thus, it has been used to 

predict pipe failure probability (Debón et al., 2010; Mailhot et al., 2000). Generally, the PHM 

models are used in determining the hazard function of a system. From the hazard function, the 

reliability of such a system could be determined through its failure probability. The general 

form of the Cox proportional hazard model is represented by Equation A.4.  
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𝜆(𝑡, 𝑥1 … 𝑥𝑝) =  𝜆0(𝑡) × exp(𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝)                                                                                   (A.4) 

where 𝜆(𝑡, 𝑥1 … 𝑥𝑝) is the hazard function, 𝜆0(𝑡) is the baseline hazard function at time "t", 

which describes the hazard when no covariate is considered. The coefficient of the covariate, 

x, (i.e., explanatory variables) influencing the risk of a system is denoted by 𝛽. There are two 

approaches to developing PHM models: semi-parametric and parametric methods.  In the semi-

parametric approach, the baseline model is left undefined (non-parametric), which eliminates 

the bias of assuming the shape of the hazard function. However, an assumption about the beta 

parameter is made (parametric). This is the case for the Cox PHM model. On the other hand, 

an assumption about the hazard function and the beta parameter is made in the case of 

parametric PHM models such as Weibull and exponential PHM models. An interesting fact 

about PHM models is their ability to estimate the relative importance of explanatory variables 

on water pipe failure, for example, without knowing the form of the hazard function.  

The failure probability of water pipes in a medium-sized water utility company in Spain was 

modeled by Debón et al.  (2010)  using the Cox PHM. The pipes in the network have been 

installed since 1941; however, the failure data from 2000 onwards to the time of the model's 

development is only available. Due to this, 98% of the data used in the model development was 

left-censored.  Moreover, only the failure year is recorded in the limited data; hence, failure 

times are assumed. Based on the interpretation of their results, it could be inferred that the 

hazard rate of shorter pipes is lower compared to longer ones. This shows that a longer pipe 

has a higher failure probability. Similar trends have been noticed in pipes with higher pressure. 

However, an inverse relationship between pipe diameter and failure probability was reported. 

Although the AUC of the model is 0.76, the accuracy may increase if the data quality is 

improved. Furthermore, with the aim of identifying the most influencing factors on water pipe 

failure, Vanrenterghem-Raven (2007) employed Weibull and Cox PHM. Right censorship was 
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applied to the pipes since only 6.5% of the pipes had experienced at least one breakage. The 

Cox PHM was used to identify the most significant factors and their interdependencies, while 

Weibull PHM was used for failure prediction. The results indicated that pipe age, diameter, and 

previous break are the most significant factors. However, a main disadvantage of the PHM 

model is that the hazard ratio is constant and does not change over time. This is not true for 

water pipes, as the deterioration mechanism depends on various factors that are dynamic and 

time dependent. 

Logistic regression models 

Logistic regression (LR) is a regression form used to solve classification problems. In this type 

of modeling, the historical failure data is categorized into two, where a value of 1 is usually 

assigned to failed pipes and 0 to non-failed pipes. The probability of water pipe failure, for 

instance, using the logistic regression approach, can be represented by Equation A.5, and the 

value of z is explained by Equation A.6.  

𝑃𝑓 =  
1

1+𝑒−𝑧                               (A.5) 

and 𝑧 = 𝑏𝑜 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ 𝑏𝑝𝑋𝑃                                                                                                         (A.6) 

where 𝑏𝑜 is the intercept of the regression line, 𝑋1 to 𝑋𝑃 are the explanatory variables and 𝑏1 

to 𝑏𝑝 are their coefficients, respectively.  

Al-Ali et al. (2020) employed LR to analyze the failure of 8 different types of pipes. Out of the 

43 independent variables used for the predictive model, 16 variables were statistically 

significant and formed the basis of the regression equation. Although the prediction accuracy 

of the model is more than 70%, it can be improved if more comprehensive velocity data is used 

to develop the model, as only 20% of the velocity data was available, while an absolute value 

was assumed for the rest. Additionally, more explanatory variables such as temperature, 
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bedding factor, and water hammer, amongst others, could be added to make the model more 

robust.  

Furthermore, the logistic model of Cooper et al. (2000) used input parameters such as pipe 

diameter, soil corrosiveness, the proximity of pipes to each other, traffic load, and urban 

development year. It should be noted that pipe age was not used in the model, as it is absent in 

the historical data, contributing to the limitations of the model. Their results indicated that the 

"proximity of pipes to each other" is a significant variable in failure prediction. This shows that 

this parameter needs to be explored in further research, as many studies have not paid attention 

to it.  

Nonparametric models 

Nonparametric models are models whose parameters are infinite and not predefined before the 

development of the model. Unlike parametric models, no assumption is made regarding the 

distribution of the data or the functional form of the relationship between the variables. This 

makes nonparametric models to be more flexible than the parametric ones, but it also indicates 

that nonparametric models can be relatively difficult to interpret.  

Bayesian-based models 

The Bayesian-based model is a type of statistical model where the concept of probability is 

used to deal with uncertainty associated with both the inputs and output of the model. Bayesian 

models stand on the concept of Bayes’ theorem presented in Equation A.7.  

𝑃 (𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴) 

𝑃(𝐵)
                (A.7) 

where the probability of A occurring, given B, is denoted by 𝑃(𝐴|𝐵) while the probability of 

B occurring given A is denoted by 𝑃 (𝐵|𝐴). P(A) and P(B) are the probability of A and B 

occurring, which are referred to as the prior and marginal likelihood, respectively. Furthermore, 

𝑃 (𝐴|𝐵) is termed the posterior probability.  
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Singh (2011) leveraged Bayes’ theorem to determine the failure probability of seven pipe types 

based on various factors causing failures. The factors considered are break cause, pipe age, 

pipe diameter, and soil type. The first process was to determine the prior probability of pipe 

failure based on any of the considered factors given its pipe material. The second stage involved 

the calculation of posterior probability based on the result of the prior probability. The prior 

probability will allow the utility managers to know the dominant cause of water pipe failure, 

while the posterior probability will assist the utility managers in deciding the best choice of 

pipe material for a particular location. It should be noted that this method is suitable for 

determining the failure probability in the current year of assessment. An attempt to use the 

model for predicting future failure probability might give inaccurate results unless the database 

is updated; otherwise, various assumptions will need to be made. 

Chik et al. (2017) proposed a Bayesian simple model (BSM) involving four steps for estimating 

the failure probability. The steps include 1) grouping the pipes based on the number of failures 

until the year before the assessment year; 2) grouping the pipes based on the number of failures 

in the assessment year 3) counting the number of pipes in each group; and 4) estimating the 

failure probability of the pipes in each group based on the assumption that failure probability 

of water pipes follow Bernoulli distribution. The BSM model was compared with HBP and the 

Nonhomogeneous model, which showed comparable accuracy. However, their results found 

that the BSM model’s accuracy for long-term prediction depends on the availability of new 

data. For instance, if the available data used for training the model is up till 2020, the estimated 

probability of failure for the same group of pipes will be the same for 2021, 2022, and so on, 

unless new data is available to update the model. The grouping of pipes referred to in the study 

by (Chik et al., 2017) is a result of the unavailability of data relating to the network, which is a 

typical issue in many WDNs.  
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Three common characteristics of WDN data are right censoring, left truncation, and exclusion 

of replaced pipe data (Scheidegger et al., 2013). Right censored data are pipes that are yet to 

experience any failure since installation or last replacement. Data related to pipes that have 

been installed before failure records are systematically observed are referred to as left-truncated 

data. Hence, the number and time of failures of these pipes are unknown. The third 

characteristic refers to the absence of replaced pipe data, which may be because of deleting a 

replaced pipe record from the database or the pipe replacement was done before establishing a 

record database.  

Furthermore, Tchórzewska-Cieślak et al.  (2019) used the Bayesian model to determine water 

pipes' total and conditional failure probability based on the length of the pipe and the number 

of failures. Their investigation includes distribution and transmission pipes. It was found that 

the failure probability of the distribution water pipes was higher than transmission pipes.  

Shin et al. (2016) used a competing hazard model to estimate the failure probability of water 

pipes in a city in South Korea. The estimation was done using a Bayesian Inference based on 

Markov Chain Monte Carlo Method. They argued that it is important to investigate the effect 

of a competing event on a pipe’s failure. Hence, pipe failure due to a burst in the pipe’s body 

was defined as the main failure event (termed as B-burst), while a burst in the connection part 

of the pipe was defined as the competing event (termed as C-burst). The result of the pipe 

material tested (ductile cast iron) showed that the pipe exhibits a lower B-burst than C-burst.  

Furthermore, the failure probability of individual pipes belonging to a certain homogeneous 

group of pipes was investigated using the likelihood ratio obtained via Bayes’ theorem (Kleiner 

& Rajani, 2012). The pipes were grouped based on the previous number of failures. The results 

were compared with those obtained from a logistic regression model and an ordered list (a 
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heuristic-based technique) model. In terms of evaluation metrics, no model was superior to the 

other as the performance of each model was different for various datasets.  

Hierarchical Beta Process (HBP) models 

The hierarchical beta process (HBP) is a model that is capable of predicting the failure 

probability of water pipes by regrouping pipes with similar features. It usually consists of three 

phases, including the beta, the Bernoulli, and the hierarchical processes. The HPB model can 

be referred to as a non-parametric Bayesian model as the beta and Bernoulli processes can be 

employed as prior distribution for the hierarchical process. The beta and Bernoulli processes 

are conjugates of each other.  

Luo et al. (2017) analyzed pipe failure using two algorithms based on the Bayesian framework. 

The first algorithm employed the Infinite Gamma-Poisson Mixture Model, a representation of 

the Dirichlet process, to assign an index to pipe groups based on similar features. Afterward, 

the output of the first process was used as input for developing the HBP model. Prior to the 

development of the HBP model, the beta-Bernoulli process was generated to estimate the prior 

failure probability of each pipe group, which was subsequently regenerated and ranked using 

the HBP model. The prediction accuracy of the proposed model increased by more than 10% 

compared to the conventional HBP model that uses the knowledge of domain experts rather 

than the Infinite Gamma-Poisson Mixture Model for pipe grouping. However, the proposed 

model could be more realistic by considering factors related to the weather (e.g., temperature) 

and operation (e.g., internal pressure) of the network.  

Similarly, the model updating capability of the nonparametric Bayesian method was explored 

by Lin et al.  (2015)  for the failure probability prediction. Like the study of  Luo et al. (2017), 

two processes were involved in the development of the model. However, the first process used 

the Chinese restaurant process (CRP) for generating the group index. As CRP is employed as 

a representation of the Dirichlet process, it mimics the influx of customers (i.e., data points) 
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into a restaurant and getting assigned to different tables (i.e., clusters).  The second process of 

developing the HBP model follows the same methodology as that of the study by Luo et al. 

(2017). It should be noted that more influencing factors affecting the failure probability are 

considered in the study of Lin et al. (2015) compared to that of  Luo et al. (2017). These factors 

include soil expansiveness, soil map, soil geology, availability of coating, and distance to a 

traffic intersection.  Additionally, the model developed by Lin et al.  (2015) had higher 

prediction accuracy compared to that of Luo et al. (2017), probably because more influencing 

factors were considered in the former. 

Other statistical-related models 

In addition to the probability theory, Ismaeel & Zayed (2018)  employed multicriteria decision 

methods such as fuzzy analytical network process (FANP), preference ranking organization 

method for enrichment evaluation (PROMETHEE), multi-attribute utility theory (MAUT) for 

calculating performance indices for both water pipes and their associated accessories such as 

valves. The failure probability of each component was determined from the performance index 

(PI). The model was built on expert opinions, which was subsequently validated by applying it 

to a case study. On average, the model achieved a prediction accuracy of 94.4%,  using the 

validation factor proposed by Zayed & Halpin (2004). Similarly, Karamouz et al.  (2012) 

developed an algorithm to determine the vulnerability of water pipes. Their definition of 

vulnerability centers on the failure probability of water pipes. Out of six factors determined 

through the literature review, three influencing factors relating to water pipe failure were 

selected as the most representative factors by Minimum Redundancy-Maximum Relevance 

(MRMR) feature selection method, shown in Figure A1. Subsequently, Analytical Hierarchical 

Process (AHP) was used to give weights to these three factors. Finally, the probability of any 

pipe failing in a distribution network was estimated from the aggregation of the AHP results 

and the values of each factor determined from the MRMR. However, the developed model was 
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applied to a hypothetical case study, which raised a question on the real-world applicability of 

such a model in addition to the fact that the determination of weights for the factors is 

subjective.  

 

Figure A1: Specifications of a good predictor set. 

Moreover, Tchorzewska-Cieslak (2012) estimated the failure probability of water pipes by 

making some assumptions based on the failure rate (number of failures/km/year). They 

assumed low, medium, and large failure probability when the failure rate is less than 0.5, equals 

to 0.5, and greater than 1, respectively (i.e., weighting method). This assumption is subjective 

and may not be applicable to other WDNs. 

(III) Further literature on AI-based models  

Fuzzy based models 

Fuzzy-based models are used to tackle complexity, vagueness, and uncertainty in different 

systems. In the case of water pipes, the failure mechanism is complex and not properly 

understood since different factors interact ambiguously to cause pipe failure. Hence, fuzzy-

based models can be employed to solve this problem. In the fuzzy approach, a crisp, imprecise 

variable is fuzzified using defined membership functions. Afterward, a set of fuzzy rules is 
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applied to the fuzzified variable to modify it. Subsequently, the fuzzified variables are 

defuzzified to get an unbiased crisp variable.  

Al-Zahrani et al. (2016) developed a fuzzy-based model that uses 13 input factors relating to 

the structural integrity of the pipes, water quality, and operation of the network.  These factors 

were arranged in a hierarchy, and fuzzy membership functions were defined for each of the 

factors based on the characteristics of each factor obtained in the literature (AWWA, 2002; 

Sarbatly & Krishnaiah, 2007). Subsequently, AHP was employed to determine the relative 

weights of each fuzzy set. After aggregating the fuzzy sets and AHP, the fuzzy variables were 

defuzzified to determine the failure probability based on the historical data. Although this 

approach quickly estimates the failure probability, high precision may not be achieved as it was 

used as an approximate method. Moreover, it is not clear how the authors assumed some values 

for the weight of the fuzzy sets.  

In a related study, fuzzy rule-based, and fuzzy-synthetic evaluations were employed for 

prioritizing water pipes based on their risk index. The risk index is a multiplication of failure 

probability and consequences of water pipes. Similar to the approach employed by Al-Zahrani 

et al. (2016), the failure probability index for each water pipe was determined by aggregating 

the fuzzy sets with the weights of each factor obtained from the AHP analysis. Afterward, the 

risk indices were developed, and the most probable pipes to fail were visualized using the GIS 

map. The model did not capture critical influencing factors of water pipe failure, such as pipe 

diameter and internal pressure. The ability of fuzzy-based models to be built on imprecise, 

distorted, and vague data is a major advantage over other techniques. However, a major 

limitation is its reliance on expert knowledge to formulate fuzzy rules.  

Machine learning-based models 

Machine learning (ML) models can learn or recognize specific patterns from a set of data. ML-

based models make future predictions based on the learned patterns when new data are fed into 
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them. It should be noted that some statistical models such as Bayesian Network, Logistic 

Regression, Naïve Bayes, and so on are adapted as an ML technique to overcome the challenge 

of computational intensiveness and inability to handle high dimensional data of statistical 

models. Therefore, some statistical models that are used as an ML method appear in this 

section.  ML models can be broadly classified into supervised, unsupervised, and reinforcement 

learning models (Abdi, 2016). The input and output variables are clearly defined in supervised 

learning. In contrast, the machine is left to discover the input and output variables on its own 

from the data in the case of unsupervised learning. In reinforcement learning, the machine 

learns from its own experience by using a feedback approach. In this study, only supervised-

based models relating to the failure probability of water pipes are reviewed since no studies are 

found on the other two classes of ML. These models include artificial neural network (ANN), 

support vector machine (SVM), k-nearest neighbors (k-NN), gradient boosting-based tree 

(GBT), extreme gradient boosting (XGBoost), and random forest (RF). k-NN can be used as a 

supervised or unsupervised machine learning algorithm; however, it has been used as a 

supervised learning algorithm in the studies reviewed in this section.  It should be noted that 

these algorithms can be used to solve regression and classification problems (Abdelmageed et 

al., 2022). However, the reviewed studies have approached the failure probability of water 

pipes as a classification problem using historical data.  

Fan et al.  (2022) used five ML algorithms to classify each pipe in a network as either broken 

or intact. These ML algorithms are lightGBM, ANN, k-NN, SVM, and LR. The five models 

produced output for each pipe which ranged from 0 to 1, denoting the failure probability of a 

pipe. 13 factors were considered in the modeling, including 11 continuous variables, while the 

remaining two variables are categorical. While most of the considered factors are correlated 

with each other's and with the failure of water pipes, none of them was dominant. This 

strengthens the hypothesis that the failure of water pipes is a complex mechanism and does not 
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depend on a single factor. Based on the performance indicators such as prediction accuracy and 

computational efficiency, the lightGBM algorithm was selected as the best model, followed by 

the ANN model. An ML interpreter, Shapley Additive exPlanations (SHAP), was adopted to 

investigate the relative importance of each factor. "Interval to the last break," "Cold days," 

"Pipe length," "Hot days," and "Pipe age" were found as the topmost important factors for pipe 

failure prediction.  

Moreover, (Rifaai et al., 2022) employed LR to predict the failure probability and mean time 

to water pipe failure in a WDN in Austin, USA. The dataset included 244,830 pipes, which are 

made of AC, CI, DI, PVC, and others. Their model achieved an accuracy of 80%, AUC of 0.69, 

and Mathew Coefficient Correlation (MCC) of 0.53. However, the accuracy of the model could 

be improved by selecting the best hyperparameters that could fit the data well and performing 

feature (i.e., variable) selection prior to the modeling.  

In order to solve the problem of limited historical failure data experienced in some water 

utilities, Chen et al.  (2022) combined the historical data of six utilities to make failure 

probability predictions. Three algorithms were used: RF, GBT, and XGBoost. For each of the 

six utilities, four datasets were prepared. The first data set consists of half-historical data of a 

reference utility, while the second data set represents the full historical data of such utility. The 

third data set, which is a union of all the utilities’ historical data, was prepared in such a way 

that the pipe material distribution of each of the utilities matched one another. Meanwhile, the 

fourth dataset is a union of all the utilities’ historical data without considering their material 

distribution consistency. Their results indicated that using data from other utilities for failure 

probability prediction of a reference utility does not improve the prediction accuracy of such a 

model. Additionally, for the first and second datasets, the prediction accuracy of pipe failure is 

not associated with the quantity of the data but rather the quality of the explanatory variables. 

Overall, RF had the highest prediction accuracy. Similarly, although not absolutely enough, the 
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study of Raspati et al. (2022), which used RF for failure prediction, noted that an advantage of 

RF over other "black box" machine learning algorithms is its interpretability and simplicity. 

The interpretability here means RF models could be visualized, and the relationship between 

the explanatory variables with respect to the prediction could be seen. 

Furthermore, GBT, SVM, ANN, and Bayes were employed to predict the failure probability of 

water pipes (Giraldo-González & Rodríguez, 2020). The models incorporated 11 input 

variables. The performance of the algorithms was assessed using the prediction accuracy 

formula (Equation A.8), recall value on the confusion matrix, and AUC of receiver operating 

characteristic (ROC). It was observed that the accuracy metric does not give reliable 

performance evaluations since the data consists of non-failed pipes than failed ones (i.e., 

imbalanced data). Hence, the classifiers, especially ANN, were majorly able to predict non-

failed pipes correctly. Therefore, it is better to assess the performance of ML classifier-based 

models using the cofunction matrix and AUC. Overall, GBT and SVM achieved the best 

performance in terms of failure prediction. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                                                                                          (A.8) 

where TP (true positive) and TN (true negative) represent the number of correctly classified 

pipes as failed and non-failed, respectively. On the other hand, FP and FN represent the number 

of pipes that are wrongly classified as failed and none-failed, respectively.  
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APPENDIX B 
Questionnaire design for implementing objective two 
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Questionnaire Survey 

RELATIONSHIP BETWEEN FACTORS INFLUENCING WATER PIPES 

FAILURE 

Do you consent to participate in this survey? 

☐ Yes, I consent 

☐ No, I do not consent 

 

SECTION 1: DEMOGRAPHICS OF THE RESPONDENTS 

What is your current job role? 

☐ Academic 

☐ Consultant 

☐ Manager 

☐ Engineer 

☐ Site supervisor 

☐ Government official 

How many years of experience do you have in water infrastructure industry? 

☐ < 5 years 

☐ 5-10 years 

☐ 11-15 years 

☐ 16-20 years 

☐ > 20 years 

What is your highest academic qualification? 

☐ Diploma 

☐ Bachelor  

☐ Master  

☐ Doctorate  

What is your degree major? 
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☐ Civil Engineering 

☐ Mechanical Engineering 

☐ Project Management 

☐ Production and Operation  

☐ Environmental Engineering 

☐ Others 

Kindly state the country where you are currently employed 

SECTION 2: ASSESSMENT OF WATER PIPE FAILURE FACTORS 

Pipe-related factors influencing water pipe failure 

What is the degree to which the following factors affect water pipe failure? (1 - Very low 

influence, 2 - Low influence, 3 - Moderate influence, 4 - High influence, 5 - Very high 

influence) 

 

 

External-related factors influencing water pipe failure 

What is the degree to which the following factors affect water pipe failure? (1 - Very low 

influence, 2 - Low influence, 3 - Moderate influence, 4 - High influence, 5 - Very high 

influence) 

 

 Very low 

influence 

Low 

influence 

Moderate 

influence 

High 

influence 

Very high 

influence 

Pipe age ☐ ☐ ☐ ☐ ☐ 

Buried depth ☐ ☐ ☐ ☐ ☐ 

Pipe diameter ☐ ☐ ☐ ☐ ☐ 

Pipe length ☐ ☐ ☐ ☐ ☐ 

Pipe material ☐ ☐ ☐ ☐ ☐ 

Protection efficiency ☐ ☐ ☐ ☐ ☐ 

Pipe wall thickness ☐ ☐ ☐ ☐ ☐ 
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Soil-related factors influencing water pipe failure 

What is the degree to which the following factors affect water pipe failure? (1 - Very low 

influence, 2 - Low influence, 3 - Moderate influence, 4 - High influence, 5 - Very high 

influence) 

 

 

Operation-related factors influencing water pipe failure 

What is the degree to which the following factors affect water pipe failure? (1 - Very low 

influence, 2 - Low influence, 3 - Moderate influence, 4 - High influence, 5 - Very high 

influence) 

 

 Very low 

influence 

Low 

influence 

Moderate 

influence 

High 

influence 

Very high 

influence 

Temperature ☐ ☐ ☐ ☐ ☐ 

Chemical substance ☐ ☐ ☐ ☐ ☐ 

Frost ☐ ☐ ☐ ☐ ☐ 

Land use ☐ ☐ ☐ ☐ ☐ 

Lime leaching ☐ ☐ ☐ ☐ ☐ 

Microbiologically 

induced corrosion 
☐ ☐ ☐ ☐ ☐ 

Precipitation ☐ ☐ ☐ ☐ ☐ 

Traffic ☐ ☐ ☐ ☐ ☐ 

 Very low 

influence 

Low 

influence 

Moderate 

influence 

High 

influence 

Very high 

influence 

Bedding condition ☐ ☐ ☐ ☐ ☐ 

Soil moisture ☐ ☐ ☐ ☐ ☐ 

Soil pH ☐ ☐ ☐ ☐ ☐ 

Soil resistivity ☐ ☐ ☐ ☐ ☐ 

Soil type ☐ ☐ ☐ ☐ ☐ 

Soil aeration ☐ ☐ ☐ ☐ ☐ 
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SECTION 3: ASSESSMENT OF WATER PIPE FAILURE modes 

Failure modes in water pipes 

What is the degree of severity of the following failure modes in water pipes? (1 - Low severity, 

2- Moderate severity, 3- High severity) 

 Low severity Moderate severity High severity 

Circumferential 

cracking 
☐ ☐ ☐ 

Longitudinal 

cracking 
☐ ☐ ☐ 

Bell splitting ☐ ☐ ☐ 

Corrosion splitting ☐ ☐ ☐ 

Blown-out hole ☐ ☐ ☐ 

 

 

 

 

 

 

 

 

 

 Very low 

influence 

Low 

influence 

Moderate 

influence 

High 

influence 

Very high 

influence 

Installation and pump 

operation 
☐ ☐ ☐ ☐ ☐ 

Internal pressure ☐ ☐ ☐ ☐ ☐ 

Maintenance practices ☐ ☐ ☐ ☐ ☐ 

Number of leaks ☐ ☐ ☐ ☐ ☐ 

Water acidity ☐ ☐ ☐ ☐ ☐ 

Water alkalinity ☐ ☐ ☐ ☐ ☐ 

Water hammer ☐ ☐ ☐ ☐ ☐ 

Water temperature ☐ ☐ ☐ ☐ ☐ 

Water velocity ☐ ☐ ☐ ☐ ☐ 
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APPENDIX C 
Supplementary results of POF model 
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Experiment A was conducted to compare its result with that of Experiment 1. In Experiment 

A, the default hyperparameter for LR in a Python’s library was employed. Details of 

Experiment 1 can be found in section 3.4.2.  

Table C1: Confusion matrix of experiment A 

For non-scaled data 

 Predicted Failure Predicted Intact 

True Failure TF = 6567 FI = 3731 

True Intact FF = 2226 TI = 10321 

For normalized data  

 Predicted Failure Predicted Intact 

True Failure TF = 6897 FI = 3401 

True Intact FF = 1561 TI = 10986 

For standardized data  

 Predicted Failure Predicted Intact 

True Failure TF = 6972 FI = 3326 

True Intact FF = 1439 TI = 11108 

 

Table C2: Evaluation metrics of experiment A 

Data 

transformation 

Accuracy Precision Recall F1 score AUC 

Non-scaled data 0.739 0.746 0.637 0.687 0.832 

Normalized data 0.782 0.815 0.669 0.734 0.855 

Standardized 

data 

0.791 0.828 0.677 0.745 0.861 

 

Table C3 shows the confusion matrix of experiment 2 explained in section 4.7.  

Table C3: Confusion matrix of experiment 2 

For non-scaled data using accuracy as the fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 8349 FI = 1949 

True Intact FF = 883 TI = 11664 

For non-scaled data using f1 score as the fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 8367 FI = 1931 

True Intact FF = 862 TI = 11685 

For normalized data using accuracy as the fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 8392 FI = 1906 

True Intact FF = 758 TI = 11789 

For normalized data using f1 score as the fitness function 

 Predicted Failure Predicted Intact 
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True Failure TF = 8386 FI = 1912 

True Intact FF = 664 TI = 11883 

For standardized data using accuracy as the fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 8401 FI = 1897 

True Intact FF = 651 TI = 11896 

For standardized data using f1 score as the fitness function 

 Predicted Failure Predicted Intact 

True Failure TF = 8392 FI = 1906 

True Intact FF = 636 TI = 11911 
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APPENDIX D 
Supplementary results of POL and POB models 
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Tables D1 and D2 present the confusion matrix for the base-DL models for POL and POB, 

respectively, while Tables D3 and D4 show the confusion matrix for the optimized-DL 

models for POL and POB, respectively.  

Table D1: Confusion matrix of base-DL models for predicting probability of leak 

Data scaling Models TL/B TI FL/B FI 

Non-scaled DNN 8005 249582 5711 1297 
 

CNN 8054 249985 5308 1248 
 

TabNet 7830 247832 7461 1472 

Normalized DNN 8206 250670 4617 1096 
 

CNN 8498 251075 4218 804 
 

TabNet 7764 250082 5211 1538 

Standardized DNN 8508 252075 3218 794 
 

CNN 8593 252032 3261 709 
 

TabNet 8398 252140 32153 904 

 

Table D2: Confusion matrix of base-DL models for predicting probability of burst 

Data scaling Models TL/B TI FL/B FI 

Non-scaled DNN 275 254350 840 26  
CNN 278 254430 760 23  

TabNet 282 254426 764 19 

Normalized DNN 285 254617 573 16  
CNN 286 254695 495 15  

TabNet 286 254548 442 15 

Standardized DNN 286 254539 451 15  
CNN 290 254810 380 11  

TabNet 291 2544744 446 10 

 

Table D3: Confusion matrix of optimized-DL models for predicting probability of leak 

Data scaling Models TL/B TI FL/B FI 

Non-scaled DNN 8709 252644 2649 593  
CNN 8834 253426 1867 468  

TabNet 8898 253899 1394 404 

Normalized DNN 8876 253021 2272 426  
CNN 8799 253101 2192 503  

TabNet 8762 253005 2288 540 

Standardized DNN 9018 253886 1407 284  
CNN 9097 254011 1282 205  

TabNet 8725 253100 2193 577 
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Table D4: Confusion matrix of optimized-DL models for predicting probability of burst 

Data scaling Models TL/B TI FL/B FI 

Non-scaled DNN 293 254983 207 8 
 

CNN 295 254525 665 6 
 

TabNet 295 255085 105 6 

Normalized DNN 294 255083 107 7 
 

CNN 297 255107 83 4 
 

TabNet 296 255108 82 5 

Standardized DNN 296 254999 191 5 

 CNN 295 255088 102 6 
 

TabNet 297 255061 129 4 
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APPENDIX E 
Supplementary results of COF models 
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Table E1: Individual class performance metrics for the base models 

Models Class Precision Recall F1 score AUC 

XGBoost  C01 0.45 0.43 0.44 0.83 

 C02 0.90 0.91 0.90 0.89 

 C03 0.28 0.31 0.30 0.77 

 C04 0.57 0.52 0.55 0.87 

Adaboost C01 0.44 0.44 0.44 0.82 

 C02 0.89 0.91 0.90 0.88 

 C03 0.32 0.27 0.29 0.71 

 C04 0.58 0.53 0.55 0.86 

LightGBM C01 0.46 0.50 0.47 0.83 

 C02 0.90 0.91 0.90 0.89 

 C03 0.29 0.35 0.32 0.77 

 C04 0.62 0.50 0.56 0.87 

CatBoost C01 0.40 0.44 0.42 0.81 

 C02 0.90 0.90 0.90 0.89 

 C03 0.26 0.30 0.28 0.76 

 C04 0.54 0.46 0.49 0.89 

RF C01 0.42 0.45 0.43 0.82 

 C02 0.90 0.92 0.91 0.89 

 C03 0.26 0.34 0.29 0.76 

 C04 0.61 0.42 0.50 0.86 
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Figure E1(a): Confusion matrix for XGBoost model 
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Figure E1(b): Confusion matrix for Adaboost model 

 

Figure E1(c): Confusion matrix for LightGBM model 
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Figure E1(d): Confusion matrix for CatBoost model 

 

Figure E1(e): Confusion matrix for Random Forest model 
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Table E2: Individual class performance metrics for the optimized metrics 

Models Class Precision Recall F1 score AUC 

XGBoost + TPE C01 0.59 0.46 0.52 0.87 

 C02 0.88 0.95 0.91 0.91 

 C03 0.45 0.29 0.35 0.82 

 C04 0.68 0.63 0.65 0.90 

Adaboost + TPE  C01 0.48 0.42 0.45 0.81 

 C02 0.88 0.94 0.91 0.86 

 C03 0.38 0.26 0.31 0.73 

 C04 0.59 0.55 0.57 0.86 

LightGBM + TPE C01 0.56 0.46 0.50 0.86 

 C02 0.88 0.95 0.91 0.91 

 C03 0.41 0.30 0.35 0.82 

 C04 0.66 0.58 0.62 0.90 

CatBoost + TPE C01 0.56 0.46 0.51 0.87 

 C02 0.89 0.94 0.91 0.91 

 C03 0.41 0.29 0.34 0.81 

 C04 0.65 0.61 0.63 0.89 

RF + TPE C01 0.56 0.49 0.52 0.86 

 C02 0.89 0.95 0.92 0.91 

 C03 0.43 0.25 0.32 0.81 

 C04 0.66 0.61 0.64 0.89 
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Figure E2(a): Confusion matrix for XGB+TPE model 
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Figure E2(b): Confusion matrix for Adaboost + TPE model 

 

 

Figure E2(c): Confusion matrix for LightGBM + TPE model 
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Figure E2(d): Confusion matrix for CatBoost + TPE model 

 

Figure E2(e): Confusion matrix for RF + TPE model 
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