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ABSTRACT 

This thesis presents a deep learning framework specifically designed to automatically 

measure the 3D spatial angles from computed tomography (CT) images for pre-surgical 

patients with adolescent idiopathic scoliosis (AIS). AIS is a common spinal disorder 

among adolescents, characterized as a complex three-dimensional deformity that 

includes lateral curvature and vertebral rotation. Severe cases require surgical treatment. 

Traditional scoliosis assessment is based on 2D radiographic Cobb angle measurements. 

However, due to the three-dimensional complexity of the spinal deformity, 2D 

assessment may not capture the true spinal deformity, leading to inaccurate surgical 

planning and prognosis. In addition, segmentation of vertebrae can be a challenging 

task due to the morphological variations of the deformed vertebrae and the proximity 

of adjacent anatomical structures, which complicates identification and characterization. 

The 3D spatial angle gives a more comprehensive view of spinal alignment by 

considering the curvature in three dimensions rather than just two. This method is useful 

for surgeons to make more accurate surgical planning and expected outcomes. This 

study firstly utilized a dataset of 116 scoliosis patients to perform spine segmentation 

using U-net and a new developed neural network nnformer++. In addition, a new spine 

curve fitting network called NURBS-Net was developed using non-uniform rational B-

spline curves (NURBS). The 3D spatial angle was then calculated by recognizing the 

maximum angular deviation between vertebrae along the curve. 

U-net and nnformer++ both have better performance in severe scoliosis spine 

segmentation compared to recent studies. The application of NURBS curves in spine 

curve fitting significantly outperforms traditional methods by providing finer control 

with fewer parameters, thereby minimizing the risk of overfitting and improving the 

reliability of the measurements. The 3D spatial angle predicted by the deep learning 

model correlated strongly with the traditional 2D Cobb annotated by the surgeon, with 

a Pearson correlation coefficient as high as 0.983. 
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In conclusion, this method not only validates the feasibility of accurate, automated 3D 

spatial angle measurements preoperatively in scoliosis patients, but also emphasizes its 

potential for medical imaging and surgical planning. By providing a detailed 3D view 

of the spinal deformity, this method is expected to significantly improve surgical 

accuracy and outcomes for patients with AIS. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Adolescent Idiopathic Scoliosis (AIS) is defined as a three-dimensional deformity of 

the spine with unknown etiology, and it accounts for 90% of idiopathic scoliosis cases 

in children[1]. According to the international consensus, curvature in the coronal plane 

larger than 10° is defined as AIS. The overall prevalence of AIS in the whole world is 

0.47%-0.52% [1].. Gender is an important factor in scoliosis. The incidence is higher 

in girls than boys, with a female-to-male ratio of 1.5:1[2] to 3:1[3] indicative of this 

discrepancy. AIS is not merely a musculoskeletal disease, but it can also result in back 

pain[4], shoulder imbalance[5], and even compromise cardiopulmonary function[6, 7] 

in severe deformity. Additionally, recent studies have increasingly focused on mental 

health[8, 9], due to the potential for AIS to induce psychological conditions such as 

depression and anxiety. 

The management of AIS mainly involves two approaches: non-surgical treatment, 

typically facilitated through orthotic bracing, and surgical intervention. These 

approaches largely hinge on the Cobb angle, as measured from the coronal 

radiograph[10]. However, the influence of curve rotation or positioning is 

comparatively minimal[11]. As a result, the evaluation and management of AIS have 

seen an increasing focus on a range of parameters derived from three-dimensional (3D) 

models. These parameters are critical in providing a more comprehensive 

understanding of the condition. For instance, the efficacy of treatment, particularly 

post-bracing, benefits from the consideration of parameters such as thoracic and lumbar 

Cobb angles, in addition to thoracic kyphosis (T1-T12) and lumbar lordosis (L1-S1) 

[12]. Furthermore, the Plane of Maximum Curvature (PMC) has been recognized as a 

particularly significant parameter in numerous aspects of AIS assessment[13, 14],  

classification[15], and treatment[16]. 
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With the accelerating progression of artificial intelligence technology, the utilization of 

deep learning in medical image processing has become increasingly widespread. The 

attainment of precise and satisfactory results in deep learning, particularly when 

employing the latest transformer methodologies, frequently necessitates the use of 

extensive datasets. However, securing a substantial volume of efficacious data for 

algorithmic training presents considerable challenges in specific medical scenarios, 

such as in cases involving AIS patients. Given the concerns related to radiation dosage, 

both 2D radiographs and 3D CTs scans are generally obtained exclusively from patients 

in the pre-surgical stage. However, surgical instances constitute only an insignificant 

proportion of AIS cases. Consequently, the restricted availability of large-scale datasets 

severely constrains the training of segmentation models. 

Traditional deep learning methods, such as UNet, generally segment images into 

patches, treating each patch as an independent instance for learning. However, this 

strategy results in the loss of spatial relationships among patches, hindering the 

Convolutional Neural Network (CNN) model's capacity to effectively capture 

dependencies between distant pixels. In contrast to CNN models, the Graph Neural 

Network (GNN) model [17-19] exhibits the ability to learn relationships between 

distant entities while substantially maintaining topographic information in graph data. 

In recent advancements, GNN has demonstrated its value in addressing the issue of 

sample insufficiency. The GNN extracts image features through a feature extraction 

network and subsequently represents them as nodes within a graph convolutional 

network. The transfer of information between nodes takes place through graph 

convolution operations, culminating in image segmentation predicated on the feature 

information resident in the nodes. 

This research[20] initially utilized GNN in small sample images and proposed the 

construction of a comprehensive graph network. Each node feature is associated with 

the corresponding class tag, after which the label information is propagated by updating 

the node feature through the attention mechanism of the graph network. This work laid 
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the foundation for the study of small-sample learning based on GNN. The research 

published in 2018[21] introduced a Transductive Propagation Network (TPN) method 

and applied transductive settings to this model. The labels in transductive graphs are 

propagated from the support set to the query set through the Laplacian matrix, 

subsequently measuring similarity. Another methodology established[22] a novel 

Edge-labeling Graph Neural Network (EGNN), constructed based on the similarity and 

dissimilarity between samples. It can dynamically update node and edge features in 

complex interactions. A series of attention mechanisms have been proposed to address 

overfitting or over-smoothing problems[23]. However, few studies have focused on 

how to reduce the depth and number of features in a neural network. Given the complex 

topological structures present in medical images, a large number of features and depth 

could lead to suboptimal segmentation results and increased time consumption. 

In severe instances, surgical intervention becomes imperative to address the spinal 

curvature[24]. The relevance of CA is extensively established, demonstrating its critical 

role in determining fusion strategies, predicting postoperative curve corrections[25], 

and evaluating spontaneous curve correction in specific patient cohorts[26]. 

Additionally, CA is instrumental in identifying factors that may contribute to 

postoperative complications[27] and in improving the precision of predictive models 

for surgical outcomes[6, 7]. It significantly influences spinal height correction, with 

substantial height gains observed following surgery [28-30], and impacts important 

surgical considerations such as the duration of the procedure, blood loss, and the 

necessity for blood transfusions[31-33]. Furthermore, CA is predictive of the 'adding-

on' phenomenon after surgery[34] and the success rates of selective thoracic fusions[35]. 

The magnitude of the preoperative CA is also associated with surgical challenges and 

risk assessments[36, 37], highlighting its extensive impact on scoliosis treatment and 

postoperative improvements, including enhancements in patient self-image[38]. 

Given the spine's intricate anatomy and the three-dimensional nature of the deformity, 

measuring CA using computed tomography (CT) scans can provide more detailed 
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information[11, 39]. While many studies and public databases have implemented 

vertebral segmentation using CT, advancements in CA measurement are seldom 

discussed. Previous studies on CT-based CA calculations have mainly focused on mild 

to moderate scoliosis cases[40-42]. Although CT imaging is typically acquired for 

presurgical assessment in severe cases to minimize unnecessary radiation exposure, the 

evaluation of spinal curves in this patient group remains underexplored. 

1.2 Study Objectives 

1) To develop a spine segmentation framework based on U-net and conduct 

segmentation training. 

2) To develop a transformer-based spine segmentation network and validation of 

public and in-house datasets. 

3) To engineer a rapid and resilient method on 3D spatial angle estimation. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Anatomy of spine and vertebra 

The spinal column holds a principal position within the entire skeletal system and acts 

as a support and protective mechanism for the internal organs. It is the primary structure 

for bearing weight, movement, absorbing shocks, and balancing the body. 

 

 

Figure 1 The articulated vertebral column in an adult – anterior, posterior and lateral 
views [43] 
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The spine consists of 33 vertebrae, forming a flexible pillar. In adults, there are five 

sacral vertebrae fused into the sacrum and four coccygeal vertebrae forming the coccyx, 

leaving only 24 vertebrae that can move: 7 in the neck (cervical), 12 in the chest 

(thoracic), and 5 in the lower back (lumbar). Except for the unique shapes of the first 

two cervical vertebrae, the remaining vertebrae share common features, including the 

vertebral body, vertebral appendages, pedicles, laminae, superior and inferior articular 

processes, transverse processes, and spinous processes. 

The size of the vertebrae increases gradually from top to bottom, with cervical vertebrae 

being small, and lumbar vertebrae being large and sturdy. The spinal column has four 

physiological curves: the cervical and lumbar vertebrae curve forward, and the thoracic 

and sacral vertebrae curve backward, with the junctions between the curves being most 

susceptible to fractures. From an anatomical function perspective, the spinal column 

can be divided into several basic parts:  
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Figure 2. The structure of typical cervical, thoracic and lumbar vertebrae[43] 

Vertebral Bodies and Intervertebral Discs: Shaped like short columns, the vertebral 

bodies mainly consist of spongy bone, with intervertebral discs between them. This 

section bears weight and acts like a pillar for the trunk. Intervertebral discs also function 

as shock absorbers. 
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Figure 3. A spinal motion segment[43] 

Neural Arch and Facet Joints: The neural arch is a curved structure formed by the fusion 

of the pedicles and laminae. It primarily protects the spinal cord. Facet joints increase 

the spine's stability and prevent dislocation. 

Spinous Processes and Transverse Processes: The spinous processes prevent the spine 

from overextending, while the transverse processes provide attachment points for 

muscles that stabilize the spine. 

Ligaments: There are three main ligaments that run the full length of the spine, 

especially the anterior longitudinal ligament, which is extremely strong and plays a vital 

role in preventing overextension of the spine. 

Vertebral Canal: This canal is created by the vertebral body and arch merging together 

and houses the spinal cord. The canal's dimensions change along the spine, being 

broader in the cervical area and more constricted in the thoracic region. 
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Intervertebral Foramen: Intervertebral Foramen: Spine nerves could go through the  

holes between adjacent vertebrae.  

Spinal Cord and Nerves: The spinal cord begins at the base of the skull and ends at the 

first lumbar vertebra, with a total of 31 pairs of spinal nerves. Fractures or dislocations 

below the second lumbar vertebra often result in injury to the cauda equina nerves, 

while above this level, spinal nerve injury may occur. 

Additionally, the spinal cord features two prominent regions of expansion: the cervical 

expansion (spanning from C3 to C7) and the lumbar expansion (stretching from T10 to 

L1), with the latter serving as a crucial hub for controlling bladder functions 

autonomously. 

Scoliosis Description: Scoliosis is identified by its distinct spinal anomalies, which 

include a lateral bend and a rotational displacement of the vertebrae. The etiological 

factors contributing to scoliosis are multifaceted, and can be systematically categorized 

into five primary classifications: congenital abnormalities, neuromuscular conditions, 

syndromic causes, idiopathic origins, and secondary-induced spinal curvature 

2.2 Adolescent Idiopathic Scoliosis 

Scoliosis is defined as a 3D spinal deformity, evidenced by both a lateral deviation and 

a rotational misalignment within the vertebrae. The underlying causes that contribute 

to scoliosis are complex, and they can be organized into three main categories: 

congenital, syndromic, and idiopathic types. Congenital scoliosis is attributed to 

malformation in the vertebrae, leading to the observed deformity. Syndromic scoliosis 

relates to disorders affecting the neuromuscular, skeletal, or connective tissue systems; 

this includes, but is not limited to, conditions such as neurofibromatosis. Idiopathic 

scoliosis, on the other hand, has no identifiable etiology. Notably, adolescent idiopathic 

scoliosis stands as the predominant form of spinal deformity encountered in clinical 

practice. 
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2.2.1 Prevalence 

Adolescent Idiopathic Scoliosis (AIS) is defined as a three-dimensional deformity of 

the spine with unknown etiology, and it accounts for 90% of idiopathic scoliosis cases 

in children[1]. The prevalence of AIS (Adolescent Idiopathic Scoliosis) exhibits certain 

variations across different regions, but a consistent pattern is that the incidence is higher 

among females than males, and the majority of cases are found to be mild at the time 

of detection[16, 44-51]. Furthermore, the prevalence of AIS is correlated with BMI 

(Body Mass Index), with a lower BMI being associated with a higher prevalence rate[52, 

53]. AIS has now become a serious disease threatening adolescents, a trend that is 

connected to the increasing pressures of academic studies.  

Study Country Childr
en 

female-to-
male ratio 

Age Prevale
nce 
combin
ed (%) 

Prevalence 
girls(%) 

Fu[44] China 79122 0.8291 10-16 2.4 3.12 

Hu[45] CHina 10731 0.9447 11-16 2 2.65 

Hurriyet[
47] 

Turky 16347 1.0367 10-15 2.3 3.1 

Penha[46
] 

Brazil 2562 1.4283 10-14 1.5 2.2 

Kamtsiuri
s[48] 

Germany 17641 0.9623 0-17 5.2 11–13 years:8.3 

14–17 
years:13.5 

Daruwall
a[50] 

Singapore 

 

11074
4 

1.1896 6–7 

11–12 

16–17 

1 6–7 years: 0.15 

11–12 years: 
1.67 
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16–17 years: 
3.12 

Suh[49] Korea 1,134,
890 

0.9415 10-14 3.26 4.65 

Thomas[5
1] 

America 1782 2.083 10-18 0.5225 0.7177 

Table 1. A survey of AIS prevalence and female-to-male ratio 

2.2.2 Symptoms and Progression 

Scoliosis that gets worse can lead to noticeable changes in the shape and look of the 

body[5]. These changes can include shifts in the chest wall, ribs that stick out, shoulders 

that are at different heights, and a twisted torso. People with AIS often have shoulders 

that don't line up, a waistline that appears uneven (with one hip sticking out more than 

the other), or a rib that is more noticeable. These changes are often first seen by family 

members. Complaints of back pain are sometimes the first symptom[4]. In addition to 

the impact on physical posture, the undeniable effect on cardiopulmonary function is 

evident in patients with severe AIS[6, 7]. Furthermore, due to the influences on 

appearance and pain, an increasing number of studies are now discovering the 

psychological issues, such as depression and anxiety, caused by this disease[8, 9]. 

Research into the disorder's evolution during growth phases has been documented[54, 

55]. Such investigations point out that factors like chronological age, sex, curvature size 

(as measured by the Cobb angle), the status of the first menstrual cycle in girls, and the 

Risser sign are vital in forecasting how the curve will develop while growing. The 

Risser sign points to the visual manifestation of the pelvis's iliac apophysis and serves 

as a tool for assessing skeletal maturity[56]. Six stages of Risser, ranging from naught 

to five, signify the transition of the apophysis from the front to the back of the iliac 

spine, culminating in its union with the iliac bone[57]. There exists a documented 

relationship between the progression of untreated AIS, the Risser sign, and the extent 
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of the curve. With regard to curvature spanning 20°-29° in an undeveloped youth 

exhibiting a Risser sign of either 0 or 1, progression was observed in 68% of cases.   

For angles of less than 19° in a fully grown young person with a Risser sign of 2 or 

higher, the progression rate was merely 1.6%. When dealing with minor curves of under 

19° in an undeveloped youth (Risser sign 0 or 1), and more pronounced curves (20°-

29°) in a developed child (Risser sign of 2 or above), the rate of progression was nearly 

identical, at approximately 22% and 23% correspondingly[58]. 

 

Figure 4. Illustration of the six Risser stages of skeletal age[57] 

One terrible aspect is that spinal curvature does not cease with the conclusion of 

adolescence. An examination of scoliosis's progression was conducted through a 

prospective series of cases, comprising 133 subjects[59]. They were tracked for an 

average duration of 40.5 years (with a range of 31-53 years), and it was found that 68% 

of the deformities in adolescent idiopathic scoliosis continued to develop beyond the 

stage of complete bone growth. Curves in the thoracic area that were greater than 50° 

developed at an average pace of 1° per year, while curves in the thoracolumbar section 

increased by 0.5° each year, and those in the lumbar region expanded by 0.24° annually. 

Curvatures in the thoracic region below 30° showed no change. 
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Back pain is more prevalent in adult spinal scoliosis. Previous studies [60, 61]indicate 

that the pain may be due to spinal imbalance (such as coronal or sagittal imbalance), 

facet joint pathology, muscle fatigue, or central or foraminal stenosis. Asymmetrical 

loading of the intervertebral discs and facet joints leads to dysfunction in one or more 

spinal segments, followed by segmental instability, whether in the sagittal plane (i.e., 

spinal slippage), or the more common coronal plane shift (i.e., lateral slippage), or 

three-dimensional rotational subluxation. Osteophytes form at the vertebral endplates 

and facet joints, and hypertrophy of the ligamentum flavum and joint capsules leads to 

central and/or lateral recess stenosis and subsequent nerve root pathology. In 

concavities, foraminal stenosis is common and may also result in nerve root pain. 

Increases in curve length are associated with more severe pain, as is the degree of 

degenerative changes at the curve apex. 

2.2.3 Assessment 

The forward bend test is a widely accepted procedure to identify AIS, and it is 

frequently used in conjunction with instruments like a scoliometer or the technique 

known as Moiré topography. To carry out this test, the patient stands straight, and the 

examiner checks from behind to detect any noticeable curvature in the spine (Figure 

[62]). The patient then bends forward to make the spine level with the ground, allowing 

the arms to hang, palms touching, and knees pointing ahead. The examiner looks for 

any bump in the thoracic or lumbar region that may indicate scoliosis. 

This test is highly sensitive, detecting 92% to 100% of thoracic scoliosis cases in 

patients with a Cobb angle over 20 degrees[63]. However, it's less effective for spotting 

lumbar scoliosis. If a curve is suspected, a scoliometer is often used, and it helps decide 

whether or not to order an X-ray for a definitive diagnosis. The scoliometer measures 

the angle of trunk rotation, a value that can help estimate the exact Cobb angle, which 

is measured using radiography. 



14 

Figure 5. Forward bend test for scoliosis screening[62]. 

The specific points at which an X-ray is ordered vary, usually between 5 to 7 degrees 

of trunk rotation as measured by a scoliometer[64, 65]. This translation between 

scoliometer rotation and Cobb angle isn't precise. For example, in normal-weight 

patients, a 7-degree angle of trunk rotation corresponds roughly to a Cobb angle of 20 

degrees. The scoliometer is about 83% sensitive and 87% specific when using a cutoff 

of 7 degrees of trunk rotation for a Cobb angle greater than 10 degrees. When a 5-

degree threshold is used, sensitivity increases to 100%, but specificity falls to 47%[66]. 

This lower cutoff should be used in patients with a body mass index in the 85th 

percentile or higher[65]. 

X-ray test should be ordered for any adolescent with a noticeable curve observed during

a physical exam or if there is clear unevenness in the chest or lower back, especially in

those with a family history of scoliosis. This can also be vital for tracking the

development of scoliosis in patients who have already been diagnosed.
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Figure 6. Scoliometer[67] 

The Cobb angle measurement is a widely accepted method for diagnosing and assessing 

the severity of AIS[10]. This technique involves measuring the side-to-side curvature 

of the spine using X-ray images taken from the front or back[68]. Specifically, the 

measurement focuses on the two most slanted vertebrae at the top and bottom of the 

curve. By evaluating the Cobb angle, healthcare professionals can determine the degree 

of spinal curvature. It's essential to measure this angle accurately, as treatment decisions 

are based on specific established values[68]. Additionally, the Cobb angle helps in 

tracking how scoliosis changes over time. A change of more than 5° in repeated 

measurements is a sign that the curve is progressing[58].  
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Figure 7. Cobb angle measurement[69] 

2.2.4 Classification 

In 1983, Howard King and colleagues analyzed the data of 405 patients with scoliosis, 

classifying AIS into five types based on characteristics such as the position of the apical 

vertebra, the severity of the lateral curvature, and the flexibility of the spine, with the 

thoracic curve being the primary consideration[70]. 
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Figure 8. The King classification[70] 

Type I: Both the lumbar and thoracic curves extend beyond the center sacral vertical 

line (CSVL), and the lumbar curve's Cobb angle is larger, with its flexibility being 

worse than the thoracic curve (if the thoracic curve is greater than the lumbar curve in 

the standing position but the lateral curvature is more flexible towards the thoracic 

curve, it is also classified as Type I). 

Type II: Both the thoracic and lumbar curves extend beyond the CSVL, and the thoracic 

curve's Cobb angle is larger, with its flexibility being worse. 

Type III: A single thoracic curve, with its compensatory lumbar curve not extending 

beyond the CSVL. 

Type IV: This category features an extended thoracic curve where the center sacral 

vertical line bisects L5, and L4 is inclined towards the lengthy thoracic curvature. 

Type V: Structural double thoracic curve, with T1 tilting towards the concave side of 

the upper thoracic curve or the convex side of the lower thoracic curve. 

The proposal of this classification has milestone significance in the development 

history of spinal orthopedic surgery. However, with the growing preference for 
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segmental instrumentation methods supplanting the Harrington rods, this categorization 

methodology was found lacking in providing precise and dependable directives for the 

selection of suitable fusion levels[71-73]. Furthermore, numerous studies have 

indicated the existence of minimal consistency between different observers (inter-

observer) and the same observer over time (intra-observer) with regard to this 

categorization system[74, 75]. 

In 2001, Lenke[76] addressed the deficiencies found in King's classification, proposing 

a two-dimensional classification method that includes types of scoliosis (I to VI), 

lumbar curve modifiers (A, B, C), and sagittal thoracic curve modifiers (-, N, +). In 

recent years, the Lenke classification has become the standard method for classifying 

idiopathic scoliosis internationally. Based on the position of the primary lateral curve 

and the structural characteristics of the secondary lateral curve, the Lenke classification 

can be specifically divided into 6 types.  
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Figure 9. The Lenke clasification 

Type 1: Main thoracic curve; the thoracic curve is the primary curve, with proximal 

thoracic and thoracolumbar/lumbar being non-structural secondary curves. 
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Type 2: This type consists of a double thoracic curvature where the primary curve is in 

the thoracic region. The proximal thoracic curve is structurally secondary, whereas the 

thoracolumbar/lumbar curve is not structural. 

Type 3: Known as a double major curve, this classification features structural thoracic 

and thoracolumbar/lumbar curves. The proximal thoracic curve is non-structural. The 

thoracic curve is considered the principal lateral curve if its Cobb angle is equal to or 

exceeds that of the thoracolumbar/lumbar, or if the difference between them does not 

surpass 5 degrees. 

Type 4: Characterized by a triple major curve, this type includes structural curves in 

the proximal thoracic, thoracic, and thoracolumbar/lumbar regions. Both thoracic and 

thoracolumbar/lumbar curves may function as the primary lateral curves. 

Type 5: This type is defined by a thoracolumbar or lumbar curve, where the 

thoracolumbar/lumbar region forms the structural primary lateral curve, and both the 

proximal thoracic and thoracic curves are non-structural. 

Type 6: Thoracolumbar/lumbar and thoracic curve; thoracolumbar/thoracic is the 

primary lateral curve with at least a 5° greater angle than thoracic. Thoracic is a 

structural secondary curve, and proximal thoracic is a non-structural curve. 

Second Step: Based on the relationship between the center sacral vertical line (CSVL) 

and the position of the lumbar curve, the lumbar curve is further corrected into three 

types, A, B, and C. 

Type A: CSVL passes between the pedicles of lumbar vertebrae below the stable 

vertebra. If there is doubt whether CSVL passes between the bilateral pedicles, it is 

classified as Type B, and the deformity must coincide with the apex vertebra at or above 

the T11/T12 intervertebral space. 
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Type B: CSVL is located from the lateral edge of the concave side pedicle to the lumbar 

vertebrae or the edge of the intervertebral disc. If there is doubt whether CSVL touches 

the edge of the vertebrae or disc, it is classified as Type B. This type does not include 

thoracolumbar/lumbar curvature. 

Type C: CSVL is located outside the lumbar vertebrae or the edge of the intervertebral 

disc. The main lateral deformity may be located in the thoracic, lumbar, and/or 

thoracolumbar regions. If there is doubt about whether CSVL touches the edge of the 

vertebrae or disc, it is classified as Type B. Type C may include all deformities with 

the primary thoracic curvature and necessarily includes all thoracolumbar/lumbar 

curvatures. 

In the treatment of AIS, although the proportion requiring surgery is relatively low, 

comprehensive and accurate pre-operative planning is essential for optimal surgical 

outcomes. The standard surgical treatment for AIS includes vertebral fusion and 

internal fixation. It is crucial to choose an appropriate number of vertebrae to minimize 

surgical complications while maximizing deformity correction. Opting for the least 

number of vertebrae for fusion, while achieving adequate spinal correction, minimizes 

the loss of flexibility, especially in the lumbar region. The two AIS classification 

standards mentioned above are based on two-dimensional parameters for three-

dimensional deformity classification. An extensive body of literature has documented 

its limitations in surgical planning [77-80]. Associations exist between spinal 

deformations across three anatomical planes among subgroups of AIS patients, due to 

the influence of three-dimensional spinal alignment on posture balance and 

biomechanical functions.[81], some research has tried to use three-dimensional 

parameters for AIS classification to improve prognostic predictions for each subtype. 

Aiming to overcome the limitations of existing 2D approaches, the 3D classification of 

the spine has been introduced. Numerous three-dimensional parameters have been 

established to describe the mechanics and geometric features of spinal curves[81-87]. 

Duong et al.[88] and Stokes[89] proposed various three-dimensional classifications 
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using spinal 3D reconstruction models and the metrics derived from torsional 

components and axial rotation. Implementing these methods in clinical practice has 

been challenging due to their complexity, the need for advanced computational 

requirements, and the difficulty of visually assessing parameters. These methods have 

been restricted to scientific research in the AIS classification[90]. Duong and 

colleagues utilized fuzzy clustering techniques on all Lenke-type AIS patients to 

delineate 11 distinct subtypes[91]. Sangole and their team analyzed clinical variables 

from the primary thoracic AIS curve spinal deformity, pinpointing three unique axial 

rotation subgroups within thoracic AIS[6]. Kadoury and associates applied 

dimensionality reduction and clustering techniques to study Lenke 1-type AIS 

patients.[92]. Their results identified four subgroups within Lenke 1-type AIS with 

different sagittal curve features: (1) normal kyphosis/excessive lordosis, (2) mild 

kyphosis/normal lordosis, (3) mild kyphosis/excessive lordosis, and (4) excessive 

kyphosis. Saba et al. [93]categorized five sagittal plane types: normal, lower 

thoracolumbar kyphosis without proximal kyphosis, lower thoracolumbar kyphosis 

accompanied by proximal kyphosis, a flat sagittal plane lacking proximal kyphosis but 

featuring a high inflection point, and a flat sagittal plane exhibiting proximal kyphosis 

with a low inflection point. 

Although various 3D classification methodologies have been developed in the field, 

none have yet succeeded in supplanting the Lenke classification system as the gold 

standard. In this domain, there continues to be a pronounced need for more refined and 

accessible classification techniques. 

2.3 Image modality of AIS 

2.3.1 Radiology 

As a progressive condition, AIS disease managment demands ongoing clinical 

monitoring and periodic review of treatment, particularly in the adolescent growth 

phase. Patients at this developmental stage need regular imaging, often in the form of 
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annual or semiannual full spine radiography[94], to track the progression of the 

deformity. The imaging is still needed even after interventions such as bracing or 

surgical procedures. Radiography stands as the most readily available imaging 

technique, maintaining a pivotal role in AIS evaluation. It involves taking two-

dimensional pictures from two angles: anteroposterior (front to back) and lateral (side 

to side). This approach allows doctors to assess vital diagnostic factors related to spinal 

curvature, including the type of curve, coronal Cobb angle, rotation at the apex of the 

vertebrae, or balance within the coronal plane [95]. Additionally, it can display the 

severity of rib prominence.  

However, traditional X-rays have limitations, especially in evaluating the rotation of 

individual vertebrae and certain aspects of the pelvis. A significant drawback to this 

method is the harmful radiation it emits. Repeated exposure to this radiation carries 

risks of long-term health issues[96]. There is substantial evidence showing that 

excessive radiation during growing years can greatly increase the risk of cancer later in 

life, especially in children[97]. Past research reveals that depending on the treatment 

approach – whether surgical, bracing, or observational – AIS patients may undergo, on 

average, 12.2, 5.7, or 3.5 plain radiographs a year. This translates to annual radiation 

doses of 1400, 700, and 400 mrem respectively[98]. 

Modality Radiation 
Exposure 

Assessment of Rib 
Deformity 

Costs Principle Clinical Role 

Radiograph
y 

Low Planar evaluation 
of rib deformity 

Low Evaluation of scoliosis 
severity and progression 
during follow-up 

EOS Ultra-Low Deformity 
evaluation of the 
bone structures. 
Possibility for 3D 
reconstruction 

Low Evaluation of scoliosis 
severity and progression 
during follow-up 

CT High High accuracy of 
rib cage and 

High Sometimes used for 
visualizing complex 
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internal organ 
structures. 
Possibility for 3D 
reconstructions 
and automatic 
segmentation 

osseous abnormalities, 
for preoperative planning 
or as input for spinal 
navigation surgery. 

3D 
ultrasound 

None Visualization of 
spinal posterior 
elements. Only 
first dorsal part of 
rib deformity 
included 

Low Mostly used in research 
settings for screening for 
scoliosis and evaluation 
of scoliosis severity. 

MRI None Mainly used to 
assess soft tissue 
rather than bone 
structures 

High Evaluation for 
abnormalities of the 
spinal cord 

Table 2. A general overview of the modalities and their clinical parameters available 

for imaging of the chest in AIS [99] 

 
Figure 10. Overview of the most common imaging modalities in AIS[99] 
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2.3.2 EOS 

The EOS imaging system, originating from the ultra-sensitive X-ray detection 

technology awarded the 1992 Nobel Prize in Physics, is a type of X-ray device that 

operates with low radiation doses [100]. The EOS imaging system's average radiation 

dose ranges from 0.11~0.30 mGy, reducing the radiation dosage experienced by 

patients by 80%~90% compared to traditional X-ray images [101]. 

In 2012, Somoskeöy et al.[102] utilized the three-dimensional EOS imaging system to 

measure three-dimensional vertebral vector parameters of the coronal and sagittal 

surfaces of the scoliotic spine. They compared these measurements with the Cobb angle 

measured by the two-dimensional EOS imaging system. They suggested that the three-

dimensional vertebral vector parameters from the EOS imaging system could more 

effectively reflect the three-dimensional characteristics of spinal deformities and could 

guide the three-dimensional classification of these deformities. 

Currently, some researchers are attempting to use the EOS imaging system for the 

three-dimensional classification of spinal deformities. They compared this method with 

the traditional two-dimensional classification and proposed that the three-dimensional 

classification could guide treatment more accurately when the Cobb angle exceeds 

55°[103]. 

Chung et al.[104] used a spinal model to simulate 32 different degrees of curvature and 

measured the Cobb angle using computerized X-ray radiography, digital X-ray 

radiography, and EOS imaging technology. Their statistical analysis found the 

reliability, consistency, and compatibility of the three methods satisfactory, with the 

EOS imaging technology's measurements demonstrating strong predictive power. They 

suggested that the EOS imaging system's measurements play a crucial role in the 

treatment evaluation and progress monitoring of spinal deformities. 
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The EOS imaging system not only has a low radiation dosage but also provides full-

length, standing spine images that display the morphological changes of each vertebra. 

This helps avoid multi-plane deformity changes that may occur in the non-weight-

bearing supine position, reduces measurement errors caused by the supine position, and 

enables three-dimensional reconstruction of the skeletal system, including the pelvis. 

Some researchers have performed three-dimensional reconstruction of the full spine in 

the standing position using the EOS imaging system. They compared the measurements 

of thoracolumbar vertebral rotation degrees and pelvic parameters among different 

observers and concluded that the EOS imaging system exhibits excellent 

reproducibility and reliability[105]. Nevertheless, the study encompassed only patients 

presenting with mild to moderate severity, evidenced by an average Cobb angle of 18.2°. 

The system may not be suitable for the three-dimensional reconstruction of severe 

scoliosis due to the difficulty of identifying anatomical landmarks. 

Somoskeöy et al.[106] found that even for experienced professionals, it took an average 

of 20~30 minutes to complete the reconstruction of full-length standing spine images 

using the EOS imaging system. The process was even more time-consuming for 

patients with severe scoliosis. Moreover, compared with CT and MRI, the EOS imaging 

system does not provide soft tissue information. Besides, the equipment is expensive, 

hard to acquire, and inconvenient for population screening.  

2.3.3 Computed Tomography 

Owing to its ultra-high resolution and the ability to provide authentic three-dimensional 

skeletal deformity information, Computed Tomography (CT) has become an 

indispensable imaging modality in AIS surgery, encompassing the entire process from 

preoperative planning[107] and intraoperative navigation [108] to postoperative 

assessment[109, 110]. Moreover, to simulate spinal growth and the effects of brace 

treatment[111], finite element analysis must utilize CT data as the foundation for 

modeling. Additionally, due to the universality of CT devices, the current cost of chest 
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or lumbar CT in China is only 400 RMB, and it is generally covered by medical 

insurance, posing a relatively minor financial burden for patients. 

However, it is undeniable that CT has unavoidable shortcomings. The first is the 

positioning; commonly used radiography and EOS are performed in the standing 

posture, whereas CT is conducted in the supine or prone posture [112]. This difference 

in positioning leads to certain flaws in the measurement of spinal parameters. The 

second is radiation; AIS patients require X-ray photography for assessment and 

treatment guidance. While this is a necessary component, it raises the risk of cancer in 

pediatric patients due to radiation exposure. Children's body tissues are more sensitive 

to radiation effects compared to adult tissues, and since children have a longer expected 

lifespan, they are more likely to manifest adverse effects from radiation. Furthermore, 

during the insertion of pedicle screws and the process of segmental fusion, surgeons 

may employ different fluoroscopic techniques to determine the implantation position 

of the implant, which lead to more radiation dose. According to statistics from sources 

such as [113, 114], the estimated total radiation dose for AIS patients over a 2-year 

period is below the annual safety limit of 50 millisieverts proposed by the Nuclear 

Regulatory Commission and the Occupational Safety and Health Administration 

(OSHA).  

Hence, the enduring issue in the AIS field is how to reduce radiation exposure while 

maintaining resolution. 
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Figure 11. Estimated average radiation doses during dedicated periods in AIS 

management. Total average estimated cumulative dose 5572.74 mrem 

(55.72mSv)[113]. 

2.3.4 MRI 

Magnetic Resonance Imaging (MRI), a non-ionizing imaging technique, has been 

employed to be a strong means in the research of AIS pathologies and morphological 

disparities.  

MRI have been harnessed to probe the disparities in neurological characteristics 

between AIS sufferers and healthy controls. Investigations by Shi et al.[115] discerned 

white matter attenuation in designated cerebral areas, while Wang et al. [116] 

pinpointed anomalies in cortical thickness. Besides, Lee et al. [117] detected 

asymmetry within the brainstem. Studies focusing on the cerebellum have revealed 

insights such as tonsillar ectopia in 7.3% of AIS cases by Cheng et al. [118] and a 48% 

incidence of cerebellar tonsillar descent in upright MRI by Lee et al. [119]. Subsequent 

studies emphasized cerebellar volume increase [120] and protracted SEP within AIS 

with cerebellar ectopia [121]. Supportive research for modifications in cerebral white 
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matter connectivity among AIS patients has also been noted [122], along with 

imbalances and structural discrepancies in the AIS patients' vestibular system [123]. 

Considering the radiological characteristics of MRI, research has been directed towards 

back muscles in AIS patients. A study employing T1 MRI examined texture 

characteristics within muscle to differentiate between flexible and rigid scoliotic curves 

[124]. Similarly, another study using intravoxel incoherent motion (IVIM) MR 

perfusion imaging found marked asymmetry in muscle perfusion in AIS patients post-

Roman chair exercise [125]. Further analysis of MRI data revealed greater asymmetry 

in the deep paraspinal muscles at the apex of the spinal curvature in AIS compared to 

healthy controls [126]. 

MRI has also been instrumental in assessing alterations in the vertebral body (VB) and 

intervertebral disc (IVD) in AIS [127]. Insights into vertebral wedging and its 

contribution to lateral deformations were gained, along with observations on the modest 

ratio of change in the lateral curve angle in comparison to VB. In painful AIS patients, 

MRI has proven to detect underlying pathologies more substantially (35.5%) compared 

to other imaging modalities [128]. 

MRI has also been employed in AIS morphological analysis, showing similar conus 

medullaris locations between AIS patients and healthy controls [129]. Additionally, a 

21% incidence rate of breast asymmetry has been found in AIS patients, irrespective of 

chest wall deformity [130]. 

2.3.5 Ultrasound 

Ultrasound, as the advantages of non-radiative, cost-effective, portable, and real-time 

imaging characteristics, has been applied in lots of research areas. Since the 1980s, 

ultrasound technology has been adopted for assessing spinal curvature, the coronal 

Cobb angle, and vertebral rotation[131, 132]. Subsequent research has confirmed the 

ability of three-dimensional ultrasound to guide orthopedic treatment for AIS by 
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examining the morphology of the posterior structures of the vertebrae [133, 134]. 

Additionally, its application has evolved to include the precise tracking and 

measurement of spinal curvature angles using ultrasound techniques[135]. One study 

[136] demonstrated specificity and sensitivity for detecting curve progression at 0.91 

and 0.83 respectively, indicating the effectiveness of this technique. Moreover, the 

correlation coefficient between ultrasound and radiographic methods in a different 

study [137] was between 0.78 and 0.84, which is within the clinically acceptable error 

margin of 5°. 

Building on these foundations, in 2016, Wang et al. [138] reported measurements of 

the rotational degrees of the apex vertebra in 16 patients. They utilized supine three-

dimensional ultrasound imaging and compared it with the Aaro-Dahlborn method 

employed in MRI. A statistical analysis revealed high intra- and inter-group reliability 

with no significant difference between the two methods, exhibiting high consistency. 

This evidences the efficacy of employing three-dimensional ultrasound for measuring 

vertebral rotation in AIS patients, though it also highlights that the magnitude of the 

Cobb angle may affect the accuracy of this method. 

The body of research confirming the reliability and efficacy of three-dimensional 

ultrasound for assessing spinal deformities is growing. The method has proven effective 

for measuring spinous angles, transverse angles, and laminar angles[139, 140]. 

Moreover, three-dimensional ultrasound can be used to guide orthopedic treatment by 

assessing the spinal curvature elasticity of AIS patients in the prone position[141], and 

displaying the coronal curvature change patterns during spinal flexion[142]. 

Building on these advances, Zheng et al. [143] introduced the Scolioscan system, which 

is composed of an ultrasonic scanner with a built-in linear probe, a frame, an 

electromagnetic tracker, and specialized software. This system operates by scanning a 

patient's back from the bottom to the top, while the tracker continuously monitors the 

probe's position. Subsequently, the acquired B-mode images, along with their spatial 
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data, are transformed into a three-dimensional view via the Volume Projection Imaging 

(VPI) technique[144]. This technique has already been commercialized. 

However, these ultrasound measurement techniques still have some challenges. The 

requirement for complex imaging equipment and software somewhat limits their 

clinical application. Ultrasound imaging is also prone to interference from internal 

metallic implants, body shape, and the degree of spinal deformity. Additionally, 

ultrasound can only scan from the back in an order from C7 to S1 or from L5 to C7. 

This heavy reliance on the posterior structures of the vertebrae could overlook the 

deformity features of the vertebrae. Finally, while ultrasound measurements include 

both supine and standing positions, the standing position, although it can reduce 

measurement errors, is less stable than the supine position. This necessitates a careful 

consideration of trade-offs when selecting between them. 

2.3.6 Summary 

Traditional imaging techniques for measuring spinal deformity, despite the radiation 

exposure, stand as the prevalent and standardized clinical methodologies. Emerging 

computer and AI-assisted approaches promise to augment the precision and efficiency 

of these measurements but remain nascent. Technologies such as the EOS imaging 

system, three-dimensional ultrasound, and MRI mitigate radiation risks, facilitating 

three-dimensional scoliotic deformity evaluation. However, their clinical application is 

limited by some challenges, including equipment accessibility, complex imaging 

systems, and the necessity for specialized technical operation. The future trajectory of 

measurement tool development should emphasize radiation safety, precision, reliability, 

technological simplicity, robust operability, cost-effectiveness, and adaptability for 

widespread screening and evaluation. The integration and synergistic application of 

different measurement methods, AI, and novel imaging technologies are likely to be 

instrumental in fulfilling these goals. 

2.4  Treatment of AIS 
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The therapeutic strategy for AIS is designed to correct, arrest, or minimize further 

distortion of the spine, and to counteract or minimize the effects of the condition. 

Individuals with a AIS diagnosis and curvature measurements below 7 degrees are 

generally placed under clinical observation, with check-ups every six months. If the 

curvature extends beyond 7 degrees, the use of radiography is usually advised. For those 

with a Risser grade from 0 to 2 and curves less than 25 degrees, observation is scheduled 

every three to six months. This continues until there is an increase of more than 5 

degrees between two consecutive follow-up or the curvature exceeds 25 degrees. 

Treatments are needed in this condition. Curvatures within the range of 25 to 40 degrees 

often lead to the usage of a brace, whereas curves exceeding 45 or 50 degrees typically 

require surgical intervention. During the phase when patients are nearing skeletal 

maturity (marked as Risser 3 or above), those with curves less than 25 degrees are 

monitored every six to nine months. After reaching skeletal maturity, patients should 

continue to be observed for at least one year (this corresponds to Risser 4 in girls and 

Risser 5 in boys). Following this period, patients with curves under 30 degrees can often 

be discharged from ongoing care, as these curves are unlikely to progress further. On 

the other hand, those with curves greater than 50 degrees may continue to change into 

adulthood, thus ongoing observation remains essential[145, 146]. 

2.4.1 Non-surgical treatments 

Bracing therapy is the most prevalent non-surgical treatment method. Within 

continuous follow-up care, bracing is typically recommended for patients who are 

skeletally immature, with curvature degrees ranging between 25 to 40 degrees, or when 

the curvature progression exceeds 5 degrees. The primary objective of bracing is to 

prevent further development of the curvature rather than to correct it. Bracing is 

unsuitable for patients who are skeletally mature or those presenting a Cobb angle 

exceeding 50 degrees. Patients undergoing brace treatment should be monitored 

approximately every six months. Bracing continues until the end of the growth spurt 

(roughly 2 or 4 years after the onset of menstruation in girls, and approximately 5 years 
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in boys). When the curvature does not surpass 5 degrees, the bracing is considered 

successful[146]. 

The Milwaukee brace[147], created in the 1940s, is a type of back brace designed to 

help fix problems in the middle and lower parts of the spine. It has a base that fits around 

the hips made of a strong plastic. The brace extends upwards with a front piece and two 

back pieces that connect to a neck ring at the top. This neck ring can have a special 

mold for the front of the neck and cushions for the back of the head, or a simpler, more 

comfortable neck ring. It also has special pads that can be adjusted to help correct the 

spine's shape. 

The Boston brace[148], developed in the 1970s at Harvard University, is a type of back 

brace designed like the TLSO brace. It's made from a tough plastic material for the hip 

area and has a softer plastic layer inside for comfort. This brace is shaped to fit the 

curve of the lower back. It can be used for most kinds of scoliosis (a condition where 

the spine curves sideways), but if the curve is in the upper back and is very pronounced, 

it's recommended to use the Milwaukee brace.  

The Dynamic Spine-Cor brace[149], developed between 1992 and 1993, uses a unique 

Adjustment Motion based on the type of spine curve. This specific movement is 

designed to work well, with the brace set up following guidelines from the Spine-

Support Helper software. For the best results and to help with muscle and nerve 

coordination, it's crucial that the brace supports and increases this adjustment 

movement over time.  

The Providence brace[150] came into use after discovering that precise, strong forces 

from a stiff mold could effectively straighten curves in the spine. This brace works well 

for treating both single and double (bifurcated) spine curvatures. Originally, the mold 

aimed to help doctors understand how flexible a patient's spine was while lying down. 

The brace measured forces directly and from different angles to gently guide the spine 
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towards or even beyond its central position. To do this, a cast of the patient's torso is 

made on the mold, targeting the spine with these corrective forces.  

Type of 

Brace 

Number of 

patients 

average 

initial curve 

Conclusion 

Milwaukee 1020 30-35 Immediate bracing for greater than 25° 

and Risser 0 prevents curve progression 

Boston 51 36-45 61% did not progress greater than 5° 

from onset of brace use to 

discontinuation 

Dynamic 

Spine-Cor 

brace 

249 24-40 Spine-Cor brace able to prevent 

progression of curve in 60% of patients 

Providence 102 27 61% to 79% success rate; the 

Providence brace is effective in curves 

less than 35° 

Table 3. Bracing studies using different brace types[151] 

The most challenge in orthotic therapy is compliance, particularly due to the stipulated 

duration of wear[152, 153]. However, in summers or for patients located in subtropical 

and tropical climates, the humid weather is not conducive to wearing orthoses. 

Moreover, long-term wear often leads to numerous skin-related issues. Furthermore, 

wearing brace can make adolescents feel different from their peers, thus intensifying 

their reluctance towards its usage. All these factors contribute to a reduced wearing 

duration and suboptimal orthotic outcomes.  
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To address this issue, previous studies have adopted various strategies to make these 

inherently "anti-humanity" products more acceptable and monitorable. Some 

researchers have incorporated temperature[154] or pressure[155] sensors into the brace 

to track the duration of wear. Besides, engaging patients during therapy, which includes 

collaborating on individualized designs and emotional support strategies, is essential to 

enhance brace comfort and improve compliance[156]. Others have employed 3D 

printing techniques[157, 158] to customize orthoses for patientse. However, based on 

clinical feedback, 3D printing is more costly (compared to low-temperature 

thermoplastics) due to material limitations. Furthermore, the fatigue resistance of these 

materials is relatively low. As brace requires daily donning and doffing, current 3D 

printing materials tend to fracture under frequent flexing.  

 
Figure 12. 3D printed Boston Brace[159] 

2.4.2 Surgical treatments 

Surgical intervention serves as a commendable treatment approach for severe AIS patients, 

addressing various issues stemming from spinal deformities. In the current domain, 

empowered by a myriad of techniques, surgeons ardently work towards minimizing post-

operative complications and enhancing efficacy. However, such complications are still 

inevitable. Given the relatively younger age of AIS patients at the time of surgery, it becomes 

imperative to judiciously evaluate the potential surgical complications against the persistent 

impact posed by the ailment itself. 
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2.5 Image analysis based on deep learning 

2.5.1 Radiography  

X-ray imaging constitutes the most accessible image modality for AIS diagnosis and 

follow-up, lots of Artificial intelligence (AI) methodologies have been applied on this 

imaging technique. The topic of automated Cobb angle measurement and vertebra 

detection are the most popular aspects based on anterior-posterior x-ray images.   

Convolutional neural network (CNNs)[160] were utilized to gauge the Cobb angle from 

anterior-posterior radiographs, enhance the precision of vertebrae detection within 

localized X-ray images through the use of CNNs, and to discern specific vertebrae 

(apex, superior, and inferior end) for the measurement of the Cobb Angle (CA). The 

accuracy rate was 93.6%, substantiated by an intraclass correlation coefficient 

exceeding 0.95. In a related study[161], CNNs was formulated specifically for the 

detection of vertebrae within the spine, the measurement of the Cobb angle, and the 

classification of curvature severity within X-ray images, achieving an accuracy rate of 

0.9 (90%). Unlike other research, the study referenced in[162] utilized CNNs not only 

to measure the Cobb angle but also expanded its analysis to evaluate different curves 

in the spine, specifically the proximal thoracic (PT), main thoracic (MT), and 

thoracolumbar/lumbar (TL/L) curves. However, the method showed limitations in 

analyzing data from patients with severe conditions, mainly because it relied heavily 

on the precise vertices of the vertebral boundaries for its calculations. The previously 

published deep learning models for Cobb angle measurement have rarely applied to 

severe AIS patient data[163]. In contrast, the research cited in[164] introduced an 

innovative method using deep learning that enables a more efficient and automatic 

measurement of the Cobb angle across a arrange of AIS severity, from mild to severe 

cases. 
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Figure 13. Result from the deep learning method, the most pronounced curve was 

characterized by a Cobb angle of 88° for the principal curve, with corresponding upper 

and lower curves measured at 30° and 49°, respectively[164]. 

Convolutional Neural Networks (CNNs) may exhibit susceptibility to variations in 

image textures, a phenomenon documented in[165]. This particular sensitivity may 

present limitations when applied to the diagnosis of complex spinal structure disorders 

such as scoliosis, where a consistent analysis of the global spinal structure is essential. 

In an effort to overcome these limitations, a novel methodology was established, 

outlined in[166]. This approach introduces a specialized deep-learning architecture 

known as MSE-Net, designed for the automatic evaluation and diagnosis of scoliosis 

through the comprehensive analysis of full spinal X-ray images. The MSE-Net 

methodology incorporates functionalities for precise anchor point detection, landmark 

identification, and a series of post-processing techniques to enhance the diagnostic 

accuracy. 

 

Figure 14. The predicted outcomes for two subjects from the testing set encompass 

significant data points such as UV (upper vertebrae), AV (apical vertebrae), and LV 

(lower vertebrae), along with CSVL and C7PL[166] 

Additionally, deep learning could also be used in prediction in AIS. This methodology 

[167] has culminated in the creation of a predictive model for assessing the risk of 

scoliosis progression in patients with AIS, utilizing a deep convolutional neural 
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network (DCNN). The integration of transfer learning, through the employment of a 

pretrained DCNN, has proven pivotal in augmenting the prediction accuracy of this 

model, achieving a statistical accuracy rate of 69%.  

Another study developed a comprehensive machine learning model to identify AIS 

curves at risk of progression by analyzing a large patient cohort[168]. The model, which 

includes patient demographics, vertebral morphology, and bone quality, demonstrated 

high accuracy, achieving an accuracy of 83.2%, sensitivity of 80.9%, specificity of 

83.6%, and an AUC of 0.84. A different research effort focused on predicting AIS 

progression through a two-stage transfer learning framework, showing notable 

accuracy with an accuracy of 82.1%, sensitivity of 80.8%, and specificity of 88.6%. 

The most significant morphological indicator being the apical vertebral rotation of the 

major curve[169].  

Besides, research[170] introduced a machine learning approach utilizing 3-D spine 

models from biplanar X-ray images, aiming for precise progression prediction through 

a novel embedding technique that optimizes class separation between progressing and 

non-progressing scoliosis. The technique demonstrated encouraging outcomes, 

achieving an 81% success rate in classifying progressive versus non-progressive 

patients and accurately predicting differences in main curve angulation to within 2.1°. 

2.5.2 EOS 

EOS can obtain X-ray images of the whole spine through the low radiation dose, and 

the supporting software can generate three-dimensional models of the whole spine. 

These advantages lead to the gradual increase of EOS-based image analysis, and AI-

based research hotspots mainly focus on feature extraction and disease classification. 

A stacked auto-encoder analysis technique[171] was used for the classification of spinal 

deformities from tailored 3D models of the spinal geometry. This method crystallized 

the 3D spinal models' complexity while preserving traditional attributes, with a 
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balanced dataset from EOS and conventional radiography, which is a good for scoliosis 

surgical planning. 

Research[172] involved the employment of Convolutional Neural Networks (CNNs) to 

orchestrate an automated quantification of axial vertebral rotation (AVR) in AIS 

patients, capitalizing on the Stokes method in alignment with EOS images. The 

aggregate accuracy of these automated assessments culminated at 81%, juxtaposed with 

manual techniques. However, this methodology was singularly applied to cases with 

milder conditions, demarcated by a Cobb angle not exceeding 45°. 

In Study[173], CNNs were harnessed to conduct an examination of 1830 patient cases 

via EOS imaging or radiographic techniques to deduce the Risser stage. With an 

attained accuracy of 78% in juxtaposition with evaluations conducted by medical 

professionals. Likewise, study[174] introduces a machine-learning technique for Risser 

sign skeletal maturity evaluation employing EOS radiographs, wherein 24 image 

features are harvested from designated regions of interest via a ResNet101-type CNN 

pre-trained from the ImageNet database. A support vector machine (SVM) algorithm 

was invoked for the ultimate classification, achieving accuracies of 84%, 78%, and 80% 

for iliac crests, humeral heads, and femoral heads, respectively.  
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Figure 15. Activation maps for one patient samples, wherein regions of interest, 

specifically the iliac crests, humeral heads, and femoral heads, exhibit pronounced 

activation. In addition to these primary regions, the activation maps also reveal 

enhanced activation in the cranial bones and rib cage[174]. 

In [175], an innovative model, designated as Spine TK, was used to autonomously 

generate the Cobb angle from anterior-posterior EOS radiographs. The methodology 

achieved a mean absolute angle measurement discrepancy of 1.16°. Finally, the 

research[176] introduces a bio-informed mechanistic deep learning model designed to 

predict the spinal morphology. By integrating clinical data obtained from EOS imaging 

with mechanistic attributes like the stress distribution on the growing surface of the 

vertebrae, extracted from a surrogate spinal model and coinciding with the bone growth 

model, a comprehensive analysis is formulated.  
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Figure 16. Bio-informed Mechanistic predictions (FFNNCR-BM) with ground truth 

from EOS at different age stages. Comparisons are made at 160 months (within the 

trained data range), 179 months, and 187 months (both outside the trained data range), 

using various 2D and 3D views, including detailed geometric reconstructions[176]. 

2.5.3 CT 

Computed Tomography (CT) imaging, due to the ability in the three-dimensional 

architecture of the skeletal system, has become an important imaging modality in the 

assessment of AIS, particularly in surgical interventions. Both preoperative and 

postoperative CT evaluations are necessary components of the therapeutic assessment. 

The AI-driven image analysis based on CT scans is mainly focus on the segmentation 
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of the spinal structure. The objective is to develop an expeditious, authentic, and 

universally applicable method of fully automatic segmentation. This may subsequently 

serve as the foundation for more intricate analyses, such as morphological measurement 

or finite element analysis.  

This study[41] employed a three-step approach using U-net for vertebral body (VB) 

and intervertebral disk (IVD) segmentation. The first generated a coarse probability 

map of spine location; the second detected VB centers; the third segmented the vertebral 

region for each VB center. The synthesized segmented areas resulted in a multi-label 

spine mask, with a DCS of 0.90 in a 160 non-scoliosis CT dataset. 

 

Figure 17. Example of the sagittal Cobb angle thoracic kyphosis (left) and lumbar 

lordosis (right) measurement from the method[41]. 

Nikolas et al. [177] implemented a convolutional neural network (CNN) architecture to 

segment the thoracic and lumbar vertebrae. Using an iterative instance-by-instance 

method across CT and MRI modalities, they recorded segmentation accuracies of 94.9 

± 2.1% for CT datasets and 94.4 ± 3.3% for MR datasets. 
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Figure 18. The magnitude of differences of the automatic segmentations from the 

ground truth segmentations 

A patch-based deep belief networks (PaDBN) model[178] applied an automatic feature 

selection process, combining unsupervised feature reduction and supervised fine-tuning. 

The model utilized CT image-derived regions of interest (ROIs) and a contrastive 

divergence algorithm for weight optimization, achieving an accuracy of 93.3%, 

sensitivity of 91.1%, and specificity of 93.4%. 

An innovative method referred to as "FU-Net"[179] combined traditional region-based 

level set with deep learning to accurately predict vertebral bone shapes, addressing the 

complexities of fractured cases. The method was evaluated on two distinct CT datasets, 
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achieving Dice scores of 96.4 ± 0.8% and 92.8 ± 1.9% in the CSI 2014 dataset, and 

95.2 ± 1.9% and 95.4 ± 2.1% in the CSI 2016 datasets. 

A 2D U-Net model[180] was evaluated on 41 cervical vertebrae CT scans. This study 

comprised 24 scans from healthy controls for training and 17 from diseased subjects 

for validation. The method achieved mean Dice similarity coefficient (DSC) values 

ranging from 88.67% to 96.23%, although the performance was found to be suboptimal 

with greater slice thickness. 

In a similar research[181], a multi-faceted approach was employed for cervical vertebra 

segmentation. This technique integrated PointNet++ on a much larger dataset, utilized 

an adaptive threshold filter to isolate cervical vertebra tissue from CT images, and 

applied PointNet++ to segment individual vertebrae, followed by a convergence 

segmentation technique to differentiate adjacent vertebrae edges, thereby enhancing the 

overall segmentation accuracy. 

A combination of CNN, K-means Clustering, and k-NN was deployed in[182] to offer 

the advantage of eliminating the need for individual vertebra-level annotations during 

training. This approach was validated on 12 CT scans, representing varied scoliosis 

severity, with multi-class DSCs recorded at 49.79 ± 24.90%, 77.76 ± 15.05%, and 83.48 

± 12.56% for severe, moderate, and mild scoliosis patients, respectively. 
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Figure 19. Binary spine segmentation 

A recent study[183] introduced a novel patch-based deep learning methodology. This 

method leverages a stacked sparse autoencoder (SSAE) to extract discriminative 

features from unlabeled data. Validated across three publicly available datasets, 2D 

image slices were utilized, and overlapped patches were extracted for model training. 

The proposed model captured high-level feature representations of pixel intensity, and 

a sigmoid layer was used to effectively differentiate between vertebrae and 

nonvertebrae patches. 

In summary, AI-based vertebra segmentation using CT has achieved a series of 

advancements at present. However, many existing methods are trained on non-AIS 

disease data or healthy individuals, with limited AIS patient data. The performance are 

not good within moderate to severe spinal scoliosis images. Among AIS patients, the 

complex topological structures of severe vertebra deformities and fusion still arise 

challenge in segmentation.  

2.5.4 MRI 

MRI is also playing an increasingly important role in AIS disease management due to 

its non-radiation characteristics. Although its advantage lies in soft tissue imaging, bone 

tissue segmentation based on it has also been involved in more and more studies. 

A approach [184] achieved optimal vertebra segmentation in polynomial time through 

task-specific CNNs, graph cut formulation, and star-convexity constraints. This method 

reached a Dice coefficient of 93.8 ± 2.6%. In contrast, an unsupervised deep learning 

pipeline [185] combined rule-based methods with voting mechanisms for vertebral 

segmentation. A method employing transfer learning [186] accomplished an accuracy 

of 98.6% for lumbar spine localization. A sophisticated architecture was introduced in 

study[187] that seamlessly integrated manifold regularization techniques, 

demonstrating robust performance in lumbar spinal indices estimation. 
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A fully convolutional network was developed[188] that localized and segmented 

intervertebral discs from multi-modality 3D MR images. Similarity, machine learning 

algorithms [189] for the segmentation of lumbar spinal canal areas and intervertebral 

discs, with results comparable to the ground truth from human experts. Novel networks 

such as DMML-Net [190] and CNNs [191] were employed for target organ salience 

and segmentation of lumbar neural foraminal stenosis. Similar deep learning 

methodologies [192] yielded accuracies of 86.2% for central stenosis detection and 85.2% 

for disc herniation detection. 

Expanding beyond these applications, AI-based methodologies have extended to spinal 

ailment treatment. Research into distinguishing between tuberculous and pyogenic 

spondylitis [193] achieved accuracy nearly consistent with radiology specialists.   

Artificial neural network models were utilized to predict cervical spondylotic 

myelopathy (CSM) diagnosis and severity [194]. An image-analysis pipeline developed 

for spinal cord and lesion segmentation [195] achieved a Dice coefficient of 0.93.   

Studies have also demonstrated the potential of CNNs in differentiating between spinal 

tumors such as schwannoma and meningioma [196]. 

Furthermore, the feasibility of using supervised machine learning for predicting 

radiographic progression in axial spondyloarthritis (axSpA) has been investigated [197].   

High-performing models, including GLM and SVM, achieved an average ROC AUC 

exceeding 0.78 and maintained a balanced accuracy greater than 65%. Another study 

[198] utilized machine learning to cluster axSpA patients, revealing distinct clinical 

characteristics and further emphasizing the burgeoning potential of AI methodologies 

in the field of spinal imaging and diagnosis. 

2.5.5 Ultrasound 

Compared to other imaging modalities, studies focusing on AI analysis based on 

ultrasound are less prevalent. However, considering the long-term follow-up 

characteristics required for AIS management, the adoption of non-radiative ultrasound 
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technology is likely to increase. Consequently, corresponding image analysis 

techniques will also become more extensive. 

Huang, Z. et al. [199] proposed an innovative RSN-U-net approach for efficient 

ultrasound spinal image segmentation, showcasing resilience against speckle and 

consistent occlusion disturbances. The study utilized the Total Variance (TV) loss 

technique to enhance the neural network's training, improving its resistance to noise, 

resulting in consistent and superior segmentation outcomes. 

The Advanced Segmentation Network (ASN) [200] effectively delineates vertebral 

features in ultrasonographic images amidst interference. By blending a modified U-Net 

design with efficient convolution and feature-recognizing gates, and linking encoder-

decoder units via multi-dimensional pathways, ASN has shown superior segmentation 

efficacy against comparable systems like U-Net. 

Researchers have introduced a novel AI-integrated model for spinal ultrasound image 

segmentation, termed UGBNet [201]. This model amalgamates spatial and channel-

specific insights through a specialized global guidance module, ensuring 

comprehensive capture of feature interdependencies and scale nuances. Its performance, 

benchmarked against established segmentation frameworks like UNet, indicated a 

significant improvement with a Dice score metric of 74.2%. 

2.6. Summaries 

This chapter has reviewed the recent advancements in the application of AI in spine 

imaging]. Improvements in modern computer power, along with the availability of 

various imaging techniques, all contributes to the disease managment. As is the case 

with many medical disciplines, the clinical applicability of AI in AIS research remains 

nascent. With a growing public cognizance and focus on this disease, it is anticipated 

that an increased number of patients will be identified at earlier stages of the disease in 

the future. Consequently, how AI can augment disease screening, longitudinal follow-



 49 

up, and enhance treatment efficacy constitutes a direction that necessitates more 

nuanced and in-depth research in the future. 
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CHAPTER 3 AUTOMATICALLY VERTEBRA SEGMENTATION 

BASED ON U-NET 

3.1 Introduction 

Ct-based spinal segmentation and 3D reconstruction play an important role in the 

diagnosis, follow-up and treatment of scoliosis. The previous segmentation methods 

were mostly carried out manually or semi-automatically (like level set[202] and atlas-

based[203]), but they were inefficient and less robust. With the development of deep 

learning technology, there are more and more applications in vertebral segmentation. 

Deep learning models are available for different image modalities such as MRI, 

ultrasound, OCT and CT. U-net, an optimized model of CNN, is widely used in medical 

image segmentation because of its simple model, fewer parameters and better effect. 

The U-Net framework identified within deep learning applications through its 

distinctive "encoder-decoder configuration," drawing upon comprehensive 

convolutional networks.The U-Net [41] [179] [180] architecture has emerged as a 

prominent tool for vertebral segmentation, offering high precision and versatility across 

diverse scenarios, including traumatic injuries and varying degrees of scoliosis. Other 

innovative contributions include patch-based deep belief networks[178], enhancements 

through PointNet++ integration[181], novel method by converting the 3D labeling 

problem into a 2D task[204], and hybrid approaches combining CNNs with clustering 

techniques[182]. Nevertheless, challenges persist, particularly in AIS datasets. The 

complex three-dimensional spinal distortion and apparent vertebral abnormalities in 

AIS cases pose significant obstacles. Achieving automatic spine segmentation in such 

a complex topology remains a daunting task. In this chapter, U-net model will be used 

to achieve the segmentation of the spine. 
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3.2 Methodology 

CNN 

Within the realm of image analysis using deep learning, Convolutional Neural 

Networks (CNNs) [205] have emerged as a leading approach. These networks are 

characterized by their multi-layered, stacked architecture. Each layer in a CNN can be 

regarded as a computational module, and by cascading these modules, a complete 

convolutional neural network is formed. This approach transforms different tasks into 

mathematical problems, meaning that the CNN has the ability in finding the appropriate 

mapping function from input to output. Specifically for medical image segmentation 

tasks, the objective of a CNN is to learn the nonlinear relationships between medical 

images and their segmentation outcomes, to identify different features within medical 

images. CNNs are capable of automatically extracting features from large datasets and 

are characterized by local connectivity and shared weights. Local connectivity refers to 

each hidden unit mapping to a subregion of the input image, known as the receptive 

field. Weight sharing means that one set of weights is shared across a subregion. In 

contrast, dense networks require assigning a unique weight to each unit, each connected 

to every neuron in the subsequent layer, which can be summarized as forming a fully 

connected network.    Due to the operation of linear activation functions in hidden 

layers, this results in a high number of parameters and computational costs. Therefore, 

compared to dense networks, CNNs reduce the demand for memory and parameters, 

enhancing the network efficiency. 

A convolutional neural network typically consists of the following five layers: the input 

layer, the convolutional (CONV) layer, the Rectified Linear Unit (ReLU) layer, the 

pooling layer, and the fully connected (FC) layer. 
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Figure 20. The network of CNN 

Input Layer 

The primary task of this layer is to preprocess the raw image data, which includes: 

Mean Subtraction: This involves centering each dimension of the input data around 

zero. The purpose is to bring the center of the samples back to the origin of the 

coordinate system. 

Normalization: This process scales the magnitude of the data to the same range. It 

reduces the interference caused by differences in the range of values across dimensions. 

For example, if there are two features, A ranging from 0 to 10 and B from 0 to 1,000, 

couldn’t use these features directly. A good practice is to normalize them, scaling both 

A and B to a range from 0 to 1. 

PCA/Whitening: PCA is used for dimensionality reduction; whitening normalizes the 

amplitude of the data along each feature axis. 

Convolutional Layer 

This crucial layer forms the core of the CNN, giving the "Convolutional Neural 

Network" its name. Its main purpose is to extract features from the input data, achieved 

by the convolutional kernels. The convolutional layer may include one or several 

kernels. Essentially, a kernel is a scanner of a specific window size that continually 

scans the input data for feature extraction. Typically, lower-level convolutional layers 

learn basic local features, such as textures and colors of the image; higher-level layers 
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can capture more abstract information, such as the positional information of the image. 

In summary, lower-level feature maps contain more detailed information, while higher-

level feature maps incorporate more global information. Figure shows the process of 

convolutional computation. 

The parameters representing the output image, subscript 'filter' for the convolutional 

kernel parameters, 'S' for stride, and 'P' for padding around the image edges. 

Stride controls how the filter convolves around the input content. The filter moves over 

the input content by shifting one unit at a time, where the distance moved is the stride. 

Stride settings typically ensure that the output dimensions are integers, not fractions.  

In the early layers of the network, aims to retain as much information from the original 

input as possible, thus extracting low-level features. For instance, if the same 

convolutional layer want to apply but also maintain the output dimensions as 32x32x3, 

zero padding of size 2 can apply. Zero padding adds zeros around the boundaries of the 

input content. Using two zeros for padding would result in a 36x36x3 input matrix. 

𝑂 = !"#$%&
'

+ 1                            （3.1） 

where O is the output size, W is the input size, K is the filter size, P is the padding, 

and S is the stride. 
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Figure 21. The process of convolutional computation 

In the convolutional layer, each neuron is connected to a data window with fixed 

weights, focusing on a single feature. Neurons act as filters in image processing, such 

as the Sobel filter used for edge detection. Each filter in the convolutional layer focuses 

on a specific image feature, such as vertical edges, horizontal edges, colors, textures, 

etc. Collectively, these neurons function as a comprehensive feature extractor for the 

entire image. 

Activation Layer 

Since the features extracted by CNNs are linear, they cannot address nonlinear 

problems. Activation functions enable nonlinear transformations, thereby enhancing 

the model's expressive capacity. Early CNNs predominantly used sigmoid-shaped 

activation functions (e.g., Sigmoid and Tanh), which map input values to a specific 

range; Sigmoid maps to (0,1) and Tanh maps to (-1,1).  

𝑓(𝑥) = !
!"#!"

                         (3.2) 

𝑓(𝑥) = #"$#!"

#""#!"
                        (3.2) 



 55 

 

Figure 22. Three active functions 

The images of the above three activation functions are shown in the figure. The issue 

with sigmoid-shaped activation functions in deeper networks is that their derivatives 

become very small, hindering the network's ability to update and converge the weights 

in the first layer. 

The Rectified Linear Unit (ReLU)[206] activation function sets all negative values to 

zero and is mathematically defined as: 

                       (3.3) 

where x is the input. ReLU operates with computational simplicity and efficiency, 

enabling rapid convergence. Unlike Sigmoid and other functions that involve 

exponential calculations, derivatives, and division during activation and error gradient 

backpropagation, ReLU has no saturation region and therefore does not suffer from the 

vanishing gradient problem. When Sigmoid approaches saturation, its transformation 

slows and its derivative tends toward zero, causing the gradient to vanish and affecting 

the training of deep networks. ReLU induces sparsity in the network by setting some 
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neuron outputs to zero, reducing interdependency among parameters and avoiding the 

overfitting problem. Due to these reasons, ReLU is widely used in CNNs. 

Pooling Layer 

The pooling layer is a method for extracting core features from the input data, typically 

the feature maps generated by the convolutional layer following convolution operations. 

Positioned between successive convolutional layers, it not only compresses the original 

data, reducing its size, but also decreases the computational parameters of the network 

model, effectively lowering the risk of overfitting. The main characteristics of the 

pooling layer include: 

Feature Dimension Reduction: Pooling operations reduce the size of the feature maps. 

While an image contains abundant information with numerous features, some are 

useless for specific image tasks. Pooling can remove such redundant information and 

extract the most important features, thereby reducing computational complexity. 

Feature Extraction: Pooling operations extract the most significant features from local 

areas. These operations help in extracting features like texture, shape, and edges from 

the image, providing useful information for subsequent classification and segmentation 

tasks. 

Translation Invariance: Pooling provides translation invariance, meaning minor shifts 

or translations in input features do not significantly impact the output of the pooling 

operation, enhancing the model's generalization ability. 

Control Overfitting: Pooling can also control overfitting to some extent. By reducing 

the size of the feature maps, pooling decreases the number of parameters in the model 

and reduces its complexity, helping to prevent the model from overfitting the training 

data. 
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The most commonly used pooling methods are max pooling and average pooling. Max 

pooling preserves the most significant features by selecting the maximum value from 

the local area, while average pooling captures the overall characteristics by averaging 

the values within the local area. Max pooling is more frequently used in practical 

algorithms. 

 

 

Figure 23. the Max pooling and average pooling 

Fully Connected Layer 

In CNNs, convolution layers extract local features, the fully connected (FC) layer 

reassembles these local features through a weight matrix into a complete representation 

of the image. Since it utilizes all local features, it is termed "fully connected." The 

primary role of the fully connected layer is to transform the outputs from the 

convolution and pooling layers into final classification or regression outcomes. It 

introduces a fully connected operation at the network's last layer, converting the feature 

maps extracted from previous layers into class probabilities or numeric predictions.  
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Every neuron in an FC layer is connected to all neurons in the preceding layer, 

implementing what is known as a fully connected configuration. This is typically 

achieved using an Affine layer. After several convolutional and pooling layers in a 

CNN structure, one or more fully connected layers follow. Each neuron in an FC layer 

is fully connected with all neurons from the previous layer, synthesizing the features 

extracted before. Due to its fully connected nature, this layer usually has the most 

parameters. To enhance CNN performance, the activation function for each neuron in 

the fully connected layer is usually ReLU. 

The FC layer has the following characteristics: 

Feature Integration: In a CNN, earlier layers, including convolution and pooling 

layers, are responsible for extracting various features from the input data. The FC layer 

integrates these features, combining them into higher-level representations to enable 

the network to make more complex decisions and classifications. 

Classification Decisions: The fully connected layer is typically located at the top of 

the neural network, where it transmits the integrated features to an activation function 

that then generates scores or probabilities for each category. For classification tasks, a 

softmax function is often used to convert these scores into class probabilities, thus 

determining which category the input data belongs to. 

Parameter Learning: The fully connected layer contains a large number of learnable 

parameters, which are adjusted during training through backpropagation and gradient 

descent. This adjustment allows the network to adapt to training data and make accurate 

predictions. By learning appropriate weights and biases, the network can perform 

specific tasks and generalize. 

Nonlinear Modeling: The fully connected layer typically includes activation functions, 

such as ReLU, to introduce nonlinearity. This is a crucial factor in the powerful 
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representational capability of neural networks, allowing them to learn complex 

relationships in data. 

FCN 

Jonathan Long introduced the Fully Convolutional Network (FCN) in 2015[207], 

marking a foundational advancement in the use of deep neural networks for semantic 

segmentation. This model is distinctive because it replaces the FC layers of a CNN with 

transposed convolution layers (also known as deconvolution layers), enabling pixel-

wise predictions for images of any size. 

FCN typically consist of an encoder and a decoder. The encoder is composed of several 

convolutional layers, often adapted from classical CNN architectures (like VGG, 

ResNet) omitting their fully connected layers to efficiently extract abstract features and 

produce feature maps. The decoder then upsamples these compressed feature maps to 

restore them to their original output dimensions, achieving results for semantic 

segmentation. In this step, low-dimensional feature maps are mapped to a higher-

dimensional original space. This process is facilitated by a special type of convolutional 

layer known as the deconvolution layer, also referred to as a transposed convolutional 

layer. Different from traditional CNNs, as FCN can input images of any size and use 

transposed convolutions to restore feature dimensions. FCN are widely used because 

they: 1) employ 1x1 convolution layers, allowing the network to adapt to inputs of any 

size; 2) use transposed convolution layers to enlarge feature map dimensions, thereby 

containing sufficient spatial information for finer results; and 3) utilize skip connections 

to merge feature maps from different layers, smoothing information transfer. 

U-net 

U-net[208] is a typical model of FCN specifically designed for medical image 

application. It has been widely used in medical image computing. Its encoder shares a 

similar structure with the FCN-32s model, undergoing four pooling operations 
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involving five different feature dimensions. U-net's architecture is completely 

symmetrical. Utilizing five transposed convolution layers, it gradually expands the 

compressed features. Unlike traditional FCN, which combine shallow and deep features 

by “addition”, U-net uses “concatenation”.  

 

Figure 24. Different connection method 

Shallow feature maps tend to represent basic feature elements like points, lines, and 

edge contours, containing more spatial information. In contrast, deep feature maps are 

more inclined to convey semantic information of the image, containing less spatial but 

more semantic features. The U-shaped architecture of U-net allows for a fuller 

integration of shallow and deep features, enhancing data reusability and maximizing 

the extraction of boundaries in segmentation targets. Thus, U-net demonstrates 

excellent segmentation performance on small-sample grayscale datasets and remains a 

classic and effective model in medical image segmentation. 
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Figure 25. The architecture of U-net 

The U-net architecture, resembling the letter 'U', is named for its distinctive shape and 

comprises an encoder (feature extraction side) and a decoder (upsampling side), 

collectively referred to as the Encoder-Decoder structure. 

U-net Encoder - Contracting Path 

Feature Extraction and Resolution Reduction: The encoder consists of four blocks, 

each containing two 3x3 convolution operations with a ReLU activation and a 

downsampling step. The use of 3x3 convolution kernels aims to minimize network 

complexity while maintaining segmentation accuracy. 

Initial Operation: U-net begins by performing a mirror edge operation on images sized 

388x388 pixels. This operation extends the image by adding a mirrored border, which 

enhances the network's ability to handle edge information effectively. After this 

operation, the image size increases to 572x572 pixels. 
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Convolutions and Activation: The encoder repeats the sequence of two 3x3 

convolutions followed by ReLU activation. The ReLU function helps accelerate 

convergence and prevents gradient vanishing. 

Downsampling: A 2x2 max pooling operation reduces image resolution while 

preserving crucial information. However, some features may be lost during this pooling 

process. After four such downsampling steps, the feature map dimension increases from 

an initial 64 to 512, with the final feature map size reduced to 32x32 pixels. 

U-net Decoder - Expansive Path 

Image Detail Restoration and Precise Localization: The decoder also consists of four 

blocks, each including two 3x3 convolutions followed by ReLU activation and an 

upsampling step. 

Upsampling: This step is designed to decode and restore the downsampled abstract 

features back to the original image size. Each upsampling operation doubles the size of 

the feature maps while halving the number of channels, culminating in an output feature 

map of 388x388 pixels. 

Skip Connections: Skip connections are incorporated between the contracting and 

expansive paths. These connections involve cropping feature maps from the contracting 

path to the same size as those in the expansive path and then concatenating them. This 

process helps restore information lost during downsampling. 

U-net has widely used in medical image processing due to following five key features: 

• It employs extensive data augmentation techniques such as random rotations, flips, 

and scaling to solve the limited number of medical images, enhancing model 

generalizability and robustness.  
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• As a lightweight network with fewer parameters, U-net reduces the overfitting and 

allows for faster training.  

• It can efficiently utilize information from different modalities, accommodating 

multi-channel and multi-modal inputs like MRI images, which may include T1, T2, 

and FLAIR channels.  

• Additionally, U-net is particularly suited to medical imaging due to its ability to 

process complex structures with simple semantic information. Medical images, 

such as CT scans of the spine, brain MRIs, or OCT images of the retina, are less 

dense in information compared to everyday photos but require precise targeting.  

• U-net's skip connections combine low-resolution data (for identifying object 

categories) with high-resolution data (for precise segmentation), making it highly 

effective for these specialized imaging tasks. 

Subjects 

In this analysis, participants were chosen adhering to the specified entry criteria: 

identification of scoliosis; age bracket as defined: idiopathic scoliosis in adolescents: 

10-16 years, congenital scoliosis: 0-10 years, and degenerative scoliosis: 55-85 years; 

a coronal Cobb angle ranging from 10° to 85°; the patient both included CT and 

posteroanterior (PA) radiographs encompassing the full spinal. Criteria for non-

inclusion entailed any historical spinal surgical procedures or concurrent disorders that 

could affect the spinal contour. Table 1 introduced the data utilized for the training and 

testing processes. The whole data consisted of 106 individuals: 89 were in the training 

cohort, while 27 were in the testing cohort. A retrospective assessment of patient files 

from The First Affiliated Hospital of Shenzhen University was performed, targeting 

those who received spine fusion surgery or AIS patient who had more than 1 year of 

imaging follow-up record. during the period of 2016 to 2023. Ethical consent for this 
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inquiry was appropriately procured from the ethical oversight committee of the authors' 

institution, as substantiated by the authorization code 20220920004. 

Property Database 

Training Testing 

Patients   

No. of patients 89 27 

No. of patients with spinal 
fusion 

36 27 

Gender, male/female 30/59 4/23 

Age, mean ± SD (years) 32.4±24.5 17.3±5.8 

# with idiopathic scoliosis 54 27 

# with degenerative scoliosis 35 - 

Table 4. Summary of the data used in this study 

Image Acquisition 

All the participants in the study underwent pre-operative imaging in the prone position 

using a CT scanner (Siemens) configured with the following parameters: 120 kV, 212 

mAS, a slice interval of 5 mm, a pitch of 0.8, and a slice thickness of 1.5 mm. 

Image Pre-processing 

Data preprocessing is conducted to optimize the computational efficiency and accuracy 

of the analysis. The dataset is cropped exclusively within the non-zero regions to reduce 

computational load. Resampling is applied due to the presence of varying spacings 

within the dataset; it is automatically normalized to the median spacing of all the dataset 
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values. For the original data, third-order spline interpolation is utilized; for the mask, 

nearest-neighbor interpolation is employed. 

The UNet Cascade employs a specific resampling strategy when the median size is 

more than four times the maximum manageable size under the memory constraints 

(with a batch size of 2). In such cases, a cascading strategy is used to downsample the 

data (by multiples of two) until the requirements are satisfied. If the data resolution 

differs across the three axes, the axis with the highest resolution is downsampled first 

to equalize the resolutions, followed by a simultaneous downsampling of all three axes 

until they meet the specified criteria. The pixel values within the mask across the dataset 

are statistically analyzed for their Hounsfield Unit (HU) ranges. The HU values are 

clipped to the [0.05, 99.5] percentile range and subsequently normalized using the z-

score method. 

Spine Segmentation 

Manual Segmentation 

An expert in radiology meticulously outlined the spinal anatomy using the ITK-SNAP 

tool, a resource made available by the University of Pennsylvania and University of 

North Carolina at Chapel Hill. This detailed work was later verified by a second 

radiology specialist for accuracy. Considering the limited number of scans and the 

differences in their coverage, the entire spinal column was marked as one unit, rather 

than identifying each spine bone on its own. To make sure the space between the images 

was consistent, this study adjusted the size of all the original CT scans and the outlines 

to a fixed measurement of 0.90 by 0.35 by 0.35 millimeters. After resizing, randomly 

separated these images into two groups: one with 80 images for the main training part 

of our study and another with 10 images to check how well our methods worked. 

Processing image 
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In this analysis, participants were chosen adhering to the specified entry criteria: 

identification of scoliosis; age bracket as defined: idiopathic scoliosis in adolescents: 

Training the U-Net Architecture 

A training protocol utilizing the nnU-Net framework, accessible via its GitHub 

repository, was employed for the development of a 3D U-net model tailored for medical 

image analysis. The network processed image patches of dimensions 112 × 160 × 128 

pixels, with each training batch comprising two such patches. This setup involved the 

model undergoing a series of five downsampling stages, a methodology designed to 

incrementally reduce the spatial resolution while simultaneously expanding the 

representational capacity of the network. Each downsampling stage effectively doubled 

the number of convolutional channels, beginning from an initial count of 32, thereby 

enhancing the model's ability to capture complex features in the data. The activation 

function selected for this network was the ReLU, known for its efficacy in maintaining 

a healthy gradient flow during training phases. Optimization of the network was 

systematically carried out by minimizing key performance metrics, namely the dice 

coefficient and cross-entropy loss, employing a method of stochastic gradient descent 

with a learning rate set at 0.01. The comprehensive training phase was rigorously 

conducted over a span of 1,000 epochs, aiming to refine the model's accuracy and 

reliability in predicting medical imaging outcomes. 

3.3 Results 

The congruence between the ground truth segmentation delineated by radiologists and 

the spinal masks generated automatically was quantified using dice coefficients across 

both training and testing datasets. Within the training dataset, the model demonstrated 

exemplary performance metrics: the dice coefficient was recorded at 0.940 with a 

standard deviation of 0.002, the F1-score at 0.945 with a variability of 0.026, precision 

at 0.920 with a deviation of 0.047, and recall at 0.973 with a standard deviation of 0.014.  

In contrast, the testing dataset exhibited slightly reduced metrics with a dice coefficient 
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of 0.935 plus or minus 0.062, an F1-score of 0.877 with a standard deviation of 0.062, 

precision at 0.818 with a larger variability of 0.099, and recall at 0.954 with a standard 

deviation of 0.045. 

Visual assessments further corroborated the quantitative findings, confirming that the 

segmentation produced by the deep learning model closely aligned with the ground 

truth, as exemplified in the figure below. It is noteworthy that the automated method 

not only replicated but also enhanced the delineation of vertebral bodies, capturing both 

the superior and inferior extents more completely than the manual annotations, thus 

offering a refined accuracy that surpassed traditional manual segmentation methods. 

 

Figure 26. Segmentation result in Clinical Cases: Displayed are the segmentation 

outcomes from two distinctive cases within the study cohort. Figure (a) showcases a 

sample from the training set, whereas figure (b) presents a corresponding example from 

the validation set. Each image has been carefully trimmed to minimize the extensive 

non-relevant background, ensuring focused representation of the spinal region 

3.4 Discussion 

The effectiveness of this approach was validated through its application on preoperative 

CT images from 27 patients scheduled for spinal fusion surgery. The deep learning 
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algorithms used in this study demonstrated substantial accuracy in segmenting the spine, 

achieving dice coefficients of 0.940 in the training dataset and 0.935 in the testing 

dataset. These results significantly exceed those of previous methodologies, as cited in 

the literature[41, 177, 183], and show particular improvement in handling cases of 

moderate to severe spinal deformities [182]. This advancement underscores the 

potential of this automated method to enhance diagnostic accuracy and support surgical 

planning in orthopedic practice. 

3.5 Conclusion 

U-net is a classical model in medical image segmentation, renowned for its modest data 

requirements and rapid training capabilities. It has found widespread application in the 

field of medical imaging segmentation, particularly where labeled data is scarce. Many 

innovative algorithms based on the U-net architecture have also achieved favorable 

results. Considering that U-net is not an innovative model, as researchers in previous 

MICCAI vertebral segmentation studies have also employed U-net for vertebral 

segmentation, so did not validate it with a public dataset in this chapter. Instead, this 

chapter mainly focused on a model tailored for scoliosis using an in-house dataset. The 

architecture of the network did not change but the parameters were adjusted to meet a 

better segmentation result for the in-house dataset. However, U-net performs well in 

detail features, but is weak in the control of global information, so more promising 

advancements in deep learning are needed, especially with the rise of transformer 

models. The next chapter will explore vertebral segmentation using an improved 

transformer network. 
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CHAPTER 4 AUTOMATICALLY VERTEBRA SEGMENTATION 

BASED ON NNFORMER++ 

4.1 Introduction 

Based on architectures utilizing self-attention mechanisms, especially the Transformer, 

it has become the model of choice for natural language processing (NLP). Due to the 

Transformer's ability to effectively capture and utilize long-term dependencies between 

pixels or voxels, there has recently been a significant emergence of models and 

networks that combine CNNs and Transformers for medical image processing. Most 

results suggest that embedding Transformer-like structures in appropriate positions 

within a CNN can effectively enhance the network's performance. 

The evolution of vertebra segmentation techniques has shifted from traditional CNN 

architectures to more advanced transformer-based models, driven by the need for better 

handling of global contextual information and complex anatomical variability. For 

example, the LumVertCancNet[209] utilizes a hybrid approach, blending Swin 

Transformers with CNNs to enhance lumbar vertebra segmentation, achieving an 

impressive Dice similarity coefficient (DSC) of 96.29%, illustrating its superior 

accuracy in capturing intricate anatomical features. Similarly, the RUnT[210] model 

combines Residual U-Net with transformers, achieving notable DSCs of 88.4% on 

CTSpine1K and 81.5% on VerSe 20, which underscores its capability to improve 

vertebral edge feature detection through enhanced global and local context processing. 

The superiority of transformers over CNNs in vertebra segmentation is increasingly 

evident. For instance, EG-Trans3DUNet[211] employs a sophisticated edge detection 

combined with global information processing, reaching a Dice score of 86.82% on the 

challenging VerSe’20 dataset. This performance is indicative of the model's ability to 

effectively integrate detailed spatial relationships across the spine, a task at which 
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CNNs are less efficient due to their inherent limitations in processing long-range 

dependencies. 

Transformers have redefined the landscape of medical imaging by addressing the 

limitations of CNN architectures, particularly in applications requiring the integration 

of extensive spatial contexts, such as in spine imaging. Models like Spine-

Transformers[212] showcase this progression by adeptly managing arbitrary fields of 

view in spine CT scans, demonstrating the transformers' advantage in dynamically 

adapting to varied imaging scenarios. 

In an effort to better combine the advantages of CNNs and transformers, Zhou et al. 

[213] proposed a new imaging segmentation network, Not-aNother transFORMER 

(nnFormer). Compared to nnUnet, which were used in the previous chapter, nnFormer 

still achieved slight improvements in multi-organ segmentation tasks based on public 

data. Therefore, both a public dataset and an in-house dataset were used to evaluate the 

algorithm's performance. 

4.2 Methodology 

Brief methodology of nnFormer++  

nnFormer[213] is a sophisticated 3D transformer-based architecture tailored for 

volumetric medical image segmentation. Its design is a strategic response to the 

inadequacies of traditional CNNs in capturing long-range dependencies within medical 

images. By innovatively combining convolutional operations with transformer 

technology, nnFormer transcends the spatial limitations of CNNs, offering enhanced 

segmentation accuracy through a deeper contextual understanding of medical images.  

nnFormer++ enhances the nnFormer model by integrating interleaved conv-

transformer blocks with a nested U-Net framework. This combination allows the model 

to dynamically capture long-range relationships and fully leverage multi-scale semantic 

features in medical images. The model operates on 3D CT images by first splitting them 
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into multiple overlapping 3D image patches. These patches are then processed 

sequentially through the encoder, bottleneck, and decoder components of nnFormer++, 

transforming the feature maps into the final vertebral segmentation mask. 

 

Figure 27. Structure of nnFormer++ 

Architecture and Components 

Figure 26 illustrates a modified architecture of the nnFormer++ network tailored for 

processing spine CT scans, structured into Encoder, Bottleneck, and Decoder segments.  

In this architecture, input images first pass through an embedding layer in the Encoder, 

followed by a sequence of local self-attention layers interspersed with downsampling 

steps to condense the feature information. This process continues into the Bottleneck, 

which utilizes global self-attention layers and additional downsampling to intensify 

feature extraction at the deepest network level. Subsequently, the Decoder reconstructs 
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the spatial resolution through up-sampling and global self-attention layers to produce 

detailed spine masks. 

Distinctively, compared to nnformer, nnformer++ redesigned skip connections 

(illustrated in blue) that integrate convolutional layers to bridge the semantic gap 

between deep and shallow network features, ensuring a more effective feature 

translation across layers. Moreover, denser skip connections (shown in green) enhance 

the inter-layer information flow, improving the overall segmentation performance.  

This sophisticated framework leverages the strengths of self-attention mechanisms to 

handle complex spatial hierarchies in medical images, optimizing the accuracy and 

efficiency of spine segmentation tasks. 

Encoder: 

The encoder begins by transforming the input image into a format that the model can 

efficiently process. This is done using a convolutional layer that prepares the image by 

highlighting initial features like edges and textures.After this initial preparation, the 

encoder uses a mix of downsampling and transformer blocks to refine these features. 

Downsampling reduces the image size and helps the model to focus on important parts, 

while transformer blocks analyze these parts to understand broader patterns and 

relationships within the image. 

The encoder starts by converting the input image into a set of initial features. This is 

done through a convolutional layer: 

𝑋#%&#''#' = 𝐶𝑜𝑛𝑣(𝑋)                       (4.1) 

Where 𝑋 is the input image and 𝑋#%&#''#' represents the feature-rich version of the 

input. As the encoder processes these features, it alternates between reducing the image 

size (downsampling) and applying transformer blocks for detailed analysis: 

𝑋'()*+,%-.#' = 𝐷𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒3𝑋-/#04                 (4.2) 
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Here, 𝑋-/#0 is the output from the previous layer, and 𝑋'()*+,%-.#'is the reduced 

version to focus processing on essential features. 

The local volume-based multi-head self-attention(LV-MSA) is designed to capture 

fine-grained local spatial relationships within small sub-regions of the input volume. 

This mechanism focuses on understanding the intricate structures within a localized 

area of the medical image, which is crucial for identifying detailed anatomical features. 

The transformer blocks use a local self-attention mechanism to analyze small regions 

within the image: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 <12
#

3'$
=𝑉              (4.3) 

Where Q, K, and V are the query, key, and value components derived from the features, 

and dk is a scaling factor that helps stabilize the training. This formula helps normalize 

the influence of different features, focusing the model's attention based on the relevance 

of local features. 

Multi-head Mechanism 

Each 'head' in the multi-head attention looks at different representation subspaces at 

different positions. This diversification allows the model to capture various aspects of 

the local information: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑!, ℎ𝑒𝑎𝑑4, … , ℎ𝑒𝑎𝑑5𝑊()    (4.4) 

where each ℎ𝑒𝑎𝑑6 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛3𝑄𝑊6
1 , 𝐾𝑊6

2 , 𝑉𝑊6
74  and 𝑊( ,	 𝑊6

1 ,	 𝑊6
2 ,	 𝑊6

7 are 

parameter matrices that are learned during training.	

Bottleneck: 

At the core of nnFormer is the bottleneck, which uses a powerful mechanism called 

Global Volume-based Multi-head Self-attention. This part of the model looks at the 
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entire image at once to gather global information that helps distinguish between 

different regions of the image, such as different types of tissues in a medical scan. 

The bottleneck captures the global context using Global Volume-based Multi-head 

Self-attention(GV-MSA). Unlike LV-MSA, GV-MSA processes the entire input 

volume to capture high-level, global contextual relationships. This global perspective 

is vital for understanding the overall structure and spatial relationships between 

different anatomical parts across the entire image. Just like LV-MSA but applied to the 

whole volume, GV-MSA also uses the softmax-scaled dot-product attention, allowing 

the model to integrate information across the entire field of view: 

𝐺𝑉 −𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(12
#

3'$
+ 𝐵)𝑉          (4.5) 

Here, B represents a bias or a positional encoding that adds more context to the attention 

mechanism, helping to maintain spatial relationships in the global context. 

𝐺𝑉 −𝑀𝑆𝐴(𝑋) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑋, 𝑋)               (4.6) 

This function processes the entire volume of data to ensure that global relationships 

within the image are well-understood, improving segmentation accuracy. 

Decoder: 

The decoder reverses the process of the encoder. It starts with the condensed 

information from the bottleneck and gradually adds back details using upsampling. At 

the same time, it reconnects information from earlier in the encoder through a novel 

method called skip attention. This approach helps the decoder focus on important 

details by highlighting features that are crucial for accurate segmentation. 

In the decoder, the process of downsampling is reversed by upsampling, gradually 

restoring the image's original dimensions while integrating detailed features: 
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𝑋8-+,%-.#' = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒3𝑋-/#04                (4.7) 

Additionally, the skip attention mechanism selectively reintegrates features from the 

encoder using an attention-based method. Skip Attention is an innovative approach 

used in the skip connections of nnFormer, enhancing the traditional U-Net architecture 

by replacing simple concatenation or summation with a more selective attention-driven 

approach. Skip Attention uses the attention mechanism to selectively integrate features 

from the encoder directly into the decoder, based on their relevance to the segmentation 

task:  

𝑆𝑝𝑖𝑝 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(12
#

3'$
)𝑉           (4.8) 

In this setting, Q is derived from the decoder features aiming to query the corresponding 

K and V from the encoder features, ensuring that only the most relevant features are 

passed through the skip connections. 

Interleaved Convolution and Transformer Blocks: This setup allows nnFormer to 

efficiently handle detailed local information while also understanding the broader 

context, leading to more accurate segmentation. 

Local and Global Self-Attention: By focusing on small and large areas of the image, 

nnFormer can accurately recognize and outline various structures within the image, 

from small anomalies to larger organs. 

Skip Attention Mechanism: Unlike traditional methods that simply stitch together 

features from different layers, skip attention uses a more selective approach, focusing 

only on relevant features, which improves the accuracy of the final image segmentation. 

Subjects 

In this chapter, we validate the effectiveness of our algorithm using two datasets: a 

public dataset and an in-house dataset. The public dataset employed is the VerSe 
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dataset[214], a large-scale, multi-device, multi-center CT image dataset for spinal 

segmentation, encompassing 374 scans from 355 patients. This dataset aggregates data 

from the MICCAI 2019 and 2020 VerSe challenges, known as VerSe19 and VerSe20, 

respectively. Specifically, VerSe19 includes 160 scans from 141 patients, while 

VerSe20 involves 319 scans from 300 patients. However, both datasets include data 

from 86 patients in common, so the total number of unique patients in VerSe is not 

simply the sum of the two datasets. 

The VerSe dataset divides these 374 scans into 141 for training, 120 for validation, and 

113 for testing, with all scans and labels publicly available. Among the 26 spinal 

annotation categories, besides the typical C1-C7, T1-T12, and L1-L5 categories 

totaling 24, special attention is given to the rare T13 and L6 vertebrae. 

 

Figure 28. The best segmentation performance in scoliosis[214], 

The dataset includes some CT data of scoliosis, categorized under the 'Median Case'. 

However, the number of patients with scoliosis in the dataset is limited, with the 

following label information: 
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Label Anatomical 
structure 

Frequency of 
occurrence 

Proportion of 
occurrence 

Max 
Volume 

(cm3) 

Mini 

Volume 

(cm3) 

Mean 

Volume 
(cm3) 

1 C1 76 20.32% 25 7.82 14.24 

2 C2 76 20.32% 28.23 11.73 18.38 

3 C3 80 21.39% 20.66 8.26 12.98 

4 C4 81 21.66% 19.69 7.57 12.51 

5 C5 90 24.06% 19.61 8.01 13.08 

6 C6 98 26.2% 22.2 8.59 15 

7 C7 129 34.49% 26.97 10.19 17.34 

8 T1 180 48.13% 35.99 12.15 22.64 

9 T2 198 52.94% 36.18 13.23 22.61 

10 T3 182 48.66% 35.57 7.37 21.72 

11 T4 174 46.52% 39.59 12.75 22.34 

12 T5 165 44.12% 39.86 13.71 24.04 

13 T6 160 42.78% 43.19 15.04 26.11 

14 T7 166 44.39% 46.05 17.03 29.78 

15 T8 176 47.06% 49.81 17.72 32.2 

16 T9 215 57.49% 59.08 19.04 34.85 

17 T10 249268 66.58% 61.32 13.79 38.72 

18 T11 272 71.66% 66.97 22.54 41.98 

19 T12 298 72.73% 74.25 23.19 46.4 
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20 T13 6 1.6% 66.24 31.41 57.06 

21 L1 297 79.68% 82.81 28.54 51.46 

22 L2 295 79.41% 87.89 30.93 56.54 

23 L3 292 78.88% 99.59 27.32 62.5 

24 L4 276 78.07% 108.07 37.8 64.66 

25 L5 50 73.8% 106.12 38 63.76 

26 L6 297 13.37% 101.18 47.52 70.55 

27 saccrum 0 0% 0 0 0 

28 coccyx 0 0% 0 0 0 

Table 5. Label information in VerSe dataset 

In the MICCAI challenge, the performance of the top five algorithms is presented in 

the following table. 

 

Table 6. Label information in VerSe dataset 

The in-house dataset employed consists of the same spinal scoliosis patient data as 

discussed in the previous chapter. Compared to the public dataset, the in-house dataset 

includes scoliosis of varying severities. Detailed information about the data has already 

been introduced in the previous chapter and will not be reiterated here. 

Spine Segmentation 
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Manual Segmentation 

Training the nnFormer++ Architecture 

Patch Dimensions 

Patch Embedding: 

• The input images are divided into smaller patches, and each patch is projected into 

a higher-dimensional space. 

• Initial projection involves Conv3d layers with kernel sizes of (3, 3, 3) and strides 

of (2, 2, 2), followed by another Conv3d layer with kernel size (3, 3, 3) and stride 

(1, 1, 1). 

• This results in patches that are of reduced spatial dimensions but increased feature 

depth. 

Window Sizes 

Swin Transformer Blocks: 

• The Swin Transformer introduces the concept of window-based multi-head self-

attention (W-MSA) to limit the scope of self-attention to non-overlapping local 

windows. 

• The window size is crucial as it defines the region over which self-attention is 

calculated. In the training process: 

• Each ‘SwinTransformerBlock’ processes features within a window size that 

balances the computational efficiency and the ability to capture local context. 

Layer Details 
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‘LayerNorm’ and GELU Activation: 

• ‘LayerNorm’ is used to normalize the inputs across the features, improving 

stability and performance. 

• GELU (Gaussian Error Linear Unit) is used as the activation function, offering a 

smooth approximation which helps in the optimization process. 

Patch Merging: 

• After each stage of the Swin Transformer blocks, ‘PatchMerging’ layers are 

applied to reduce the spatial resolution and increase the feature dimension. 

• This merging process involves ‘Conv3d’ layers with a kernel size of (3, 3, 3) and 

stride of (2, 2, 2), followed by ‘LayerNorm’. 

Encoder-Decoder Structure 

Encoder: 

• Consists of multiple ‘BasicLayer’ modules that include a series of 

‘SwinTransformerBlock’ layers. 

• Each ‘BasicLayer’ downsamples the input feature map using ‘PatchMerging’. 

Decoder: 

Mirrors the encoder structure but includes ‘PatchExpanding’ layers to upsample the 

feature maps back to the original input resolution. 

‘BasicLayer_up’ modules contain ‘SwinTransformerBlock’ layers designed for 

upsampling. 

Upsampling 
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Patch Expanding: 

• ‘ConvTranspose3d’ layers are used in ‘Patch_Expanding’ to upsample the feature 

maps. The kernel sizes and strides are designed to match the dimensions back to 

the original input size. 

• ‘LayerNorm’ is applied after each upsampling step to ensure normalized feature 

distributions. 

Final Projection 

Final Patch Expanding: 

The final layers involve ‘ConvTranspose3d’ layers to project the upsampled feature 

maps into the desired output dimensions, ensuring that the segmentation maps are 

correctly sized and aligned with the original input images. 

Training Dynamics 

Epoch Details: 

• Training is conducted over many epochs, each involving forward and backward 

passes, weight updates, and performance evaluations. 

• Each epoch logs training loss, validation loss, and Dice coefficients to track 

progress and model performance. 

Learning Rate Scheduling: 

The learning rate starts at 0.01 and gradually decreases as training progresses. This 

helps in fine-tuning the model weights and achieving better convergence. 
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4.3 Results 

The Table 7 presents a comparative analysis of vertebra segmentation performance on 

the Verse19 dataset, focusing on two key metrics: the Dice Similarity Coefficient (DSC) 

and the 95th percentile Hausdorff Distance (HD95). These metrics are used to evaluate 

the accuracy and robustness of various segmentation methods. 

The DSC measures the overlap between the predicted segmentation and the ground 

truth, with higher values indicating better performance. In this comparison, our method 

achieved a DSC of 0.94, which is comparable to the top-performing methods such as 

Zhang et al. [215] with a DSC of 0.942 and Zhou et al. [213] with a DSC of 0.934.  

This indicates that our method has a high degree of overlap between the predicted 

segmentation and the actual anatomical structures. 

The HD95 metric assesses the distance between the predicted segmentation boundaries 

and the ground truth, where lower values denote better boundary precision. Our method 

achieved an HD95 of 1, which is the lowest among the compared methods. This 

signifies that our method provides the most precise boundary delineation, 

outperforming other methods like Zhou et al. [213], which had an HD95 of 1.36, and 

Zhang et al. [215], which recorded an HD95 of 6.24. 

These results highlight the effectiveness of our segmentation approach. The high DSC 

indicates that our method captures the overall shape and volume of the vertebrae 

accurately, while the low HD95 demonstrates superior boundary precision. Such 

precise segmentation is crucial in clinical settings, particularly for planning surgical 

interventions and evaluating treatment outcomes. By combining high overlap accuracy 

with precise boundary delineation, our method ensures reliable and clinically relevant 

segmentation results. 

Ref. authors Evaluated on public test data 

DSC HD95 
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Payer et al.[216] 0.910 6.35 

Tao et al.[217] 0.911 6.34 

Sekuboyina et al.[214] 0.930 6.39 

Zhang et al.[215] 0.942 6.24 

Zhou et al.[213] 0.934 1.36 

Our method 0.94 1 

Table 7. Result compared with other method in Verse 19 

Table 8 presents a comparative analysis of the segmentation performance of three 

models: U-Net, nnFormer, and nnFormer++ at epoch 330. The evaluation metrics used 

for comparison are the Average Global Foreground Dice and the 95th percentile 

Hausdorff Distance (HD95). The Average Global Foreground Dice measures the 

overlap between the predicted segmentation and the ground truth, with higher values 

indicating better performance. In this comparison, nnFormer++ achieved the highest 

Dice score of 0.946, indicating superior segmentation accuracy compared to U-Net 

(0.935) and nnFormer (0.912). This suggests that nnFormer++ is more effective in 

capturing and delineating the vertebral structures accurately. 

The HD95 metric evaluates the boundary accuracy by measuring the 95th percentile of 

the Hausdorff distance between the predicted segmentation boundaries and the ground 

truth. A lower HD95 value signifies better boundary precision. In this study, 

nnFormer++ obtained an HD95 of 9.87, which is lower than that of U-Net (10.15), but 

slightly higher than nnFormer (9.44). This indicates that while nnFormer has a slight 

edge in boundary precision, nnFormer++ still provides competitive performance, 

balancing both overall segmentation accuracy and boundary delineation. 

Figures 29 and 30 further illustrate the segmentation outcomes and validate the 

performance of the models. Figure 29 shows segmentation results for two cases from 

the study cohort, with (a) representing a training set sample and (b) a validation set 

sample.  These images demonstrate that the predictions closely align with the ground 
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truth annotations, highlighting the model's capability to accurately segment vertebral 

structures. Figure 30 displays the 3D mesh reconstructions of the spine from the testing 

dataset, showcasing the model's ability to generate precise and clinically relevant 3D 

representations of the spine. These visualizations confirm the effectiveness of 

nnFormer++ in producing accurate segmentation outcomes, which are essential for pre-

surgical planning and assessment. Overall, the nnFormer++ model demonstrates 

significant advancements in vertebral segmentation, offering improved accuracy and 

practical utility in clinical applications. 

 U-net 

(Epoch350) 

nnformer 

(Epoch350) 

nnformer++ 

(Epoch350) 

Average Global 
Foreground Dice 

0.935 0.912 0.946 

HD95 10.15 9.44 9.87 

Table 8. Result compared in U-net, nnformer and nnformer++ 

 

Figure 29. Segmentation result in in-house data: Displayed are the segmentation 

outcomes from two distinctive cases within the study cohort. Figure (a) showcases a 

sample from the training set, whereas figure (b) presents a corresponding example from 
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the validation set. Each image has been carefully trimmed to minimize the extensive 

non-relevant background, ensuring focused representation of the spinal region 

 

Figure 30. 3D mesh of spine in testing dataset 

4.4 Discussion 

Compared with nnformer and Unet, NNform ++ has a slight advantage in the 

segmentation performance based on in-house dataset. Table 8 shows that nnFormer++ 

achieves the highest Average Global Foreground Dice score of 0.946, outperforming 

U-Net (0.935) and nnFormer (0.912). Additionally, nnFormer++ has a lower HD95 

value of 9.87 compared to U-Net's 10.15, although it is slightly higher than nnFormer's 

9.44.  

Furthermore, Table 7 highlights the effectiveness of our method in comparison to other 

existing methods on the Verse19 dataset. Our method achieves a Dice score of 0.94 and 

an HD95 of 1.These results are superior to other methods, such as those by Sekuboyina 

et al. (0.930, 6.39) and Zhang et al. (0.942, 6.24), indicating that our model provides 

both high segmentation accuracy and precise boundary delineation. 
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Figures 29 and 30 further illustrate the robustness of nnFormer++ in practical 

applications. Figure 29 displays segmentation outcomes from both training and 

validation sets, showcasing the close alignment between predictions and ground truth 

annotations. Accurate segmentation is particularly important for scoliosis patients, as it 

directly impacts the measurement of the Cobb angle, a key metric in diagnosing and 

planning treatment for scoliosis[215]. The 3D mesh reconstructions in Figure 30 

provide a comprehensive view of the spine, confirming the model's ability to generate 

precise and clinically relevant 3D representations. These 3D models facilitate detailed 

examination and pre-surgical planning, ensuring better patient outcomes. 

The advancements brought by transformer-based methods in medical image 

segmentation are evident from the performance of nnFormer++. By leveraging the 

strengths of both UNet++ and transformer architectures, nnFormer++ captures long-

range dependencies and global contextual information, leading to more accurate and 

reliable segmentation results. Previous studies, such as those by Zhang et al. and Zhou 

et al., have demonstrated the efficacy of combining CNNs with transformers for 

enhanced segmentation performance[211, 218]. Moreover, transformer-based models 

like the Swin Transformer have shown superior performance in various segmentation 

tasks by effectively capturing hierarchical features[209, 213]. The superior results of 

nnFormer++ align with these findings, validating the model's robustness and 

applicability in clinical settings. 

4.5 Conclusion 

In conclusion, the nnFormer++ model demonstrates better performance in vertebral 

segmentation for severe scoliosis patients, achieving higher accuracy and better 

boundary delineation compared to the studies before both in public dataset and in-house 

dataset. The enhanced segmentation performance of nnFormer++ is crucial for accurate 

3D spatial angle measurement, facilitating improved diagnosis and treatment planning 

for scoliosis. The integration of transformer-based methodologies with CNN 
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architectures in nnFormer++ leverages the advantages of both approaches, capturing 

detailed anatomical features and ensuring precise segmentation outcomes.  
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CHAPTER 5 3D SPATIAL ANGLE MEASUREMENT 

5.1 Introduction 

In the preceding chapter, the segmentation of vertebral bodies was accomplished. On 

this basis, it is now necessary to undertake the fitting of conical curves. This step is 

crucial for further evaluating spinal scoliosis using three-dimensional curves. 

The evolution of curve fitting techniques has progressed from polynomial fitting to 

Bézier curves, and then to B-splines, culminating in Non-Uniform Rational B-Splines 

(NURBS). Bézier curves are limited in local editing capabilities, and with increasing 

order, managing the curve's shape becomes more complex. Furthermore, their order 

also limits the control's degrees of freedom. In contrast, B-splines provide enhanced 

control over the curves. B-Spline separates the control points from the order, removing 

their direct relationship and adding a knot vector. B-splines, unlike Bézier curves with 

only a single degree of freedom via control points, offer up to three degrees of freedom. 

Dr. Ken V. Versprille first extensively formulated Non-Uniform Rational B-Splines 

(NURBS) in 1975 in his doctoral thesis, "Computer-Aided Design Applications of the 

Rational B-Spline Approximation Form." Presently, NURBS curves are a prevalent 

method of curve representation in computer graphics. In contrast to B-splines, NURBS 

incorporates a weight factor w into its formula. NURBS are frequently utilized 

mathematical models in computer graphics to generate and depict curves and surfaces. 

They are characterized by the following primary features: 

1. Non-Uniformity (Highlighted Change): NURBS curves allow for non-uniform 

distribution of control points, facilitating detailed control in specific sections of the 

curve. 

2. Rationality (Highlighted Change): Based on rational Bézier curves, NURBS curves 

integrate a weight parameter, enhancing their flexibility to represent diverse curve 

shapes. 
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3. B-Spline Basis (Highlighted Change): NURBS employs spline functions as its base, 

offering robust local control - moving or adding control points impacts only the 

curve's specific areas. 

4. Variable Order (Highlighted Change): The order of NURBS curves can be adjusted, 

typically utilizing third or fifth-order curves for smoother curve continuity. 

NURBS curves' principal idea revolves around using control points and weights to 

establish a control polygon, which then creates smooth curves via spline basis functions. 

This technique merges the strengths of Bézier and spline curves, providing powerful 

representational capabilities. 

5.2 Methodology 

5.2.1 Brief methodology of NURBS  

Among parametric polynomial curves, the Bézier curve was the first to be defined using 

polynomial basis functions, specifically the Bernstein basis functions. The Bézier curve, 

influenced by its control vertices 𝑏9, can be defined as: 

𝐶(𝑢) = ∑ 𝑏9𝐵9,*(𝑡), 0 ≤ 𝑡 ≤ 1*
9;<                 (5.1) 

where 𝑏< = 𝑎<		 and 	𝑏9 = 𝑏9$! + 𝑎9 	(𝑗 = 1,2, … , 𝑛) for 𝑗 = 1,2, …𝑛 . Here, the 𝑏9 

are known as the control vertices, also referred to as Bézier points. The𝑎9 (for 𝑗 =

1,2, …𝑛) are the edge vectors of the control polygon. This representation facilitates 

interactive design, as slight adjustments to the control vertices can easily alter the 

curve's shape. 

To meet the significant demand for curve representation and design, researchers 

expanded on the Bézier technique by introducing B-splines, which better capture 

complex shapes. The B-spline curve equation is generally represented as: 
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𝐶(𝑢) = ∑ 𝑁!,#(𝑢)𝑃!$
!%&                         (5.2) 

Here 𝑃6，for 𝑖 ranging from 0 to n, are the control points of the B-spline curve. The 

𝑁6,-	functions are the basis functions of the B-spline curve, where the second subscript 

p indicates the degree of these basis functions. The B-spline basis functions are defined 

over a non-periodic and non-uniform canonical knot vector U, which can be represented 

as: 

𝑈 = *0, 0, … ,0,.//0//1
'()

𝑢'(),𝑢'(*, … , 𝑢$, 1,1, … ,1./0/1
'()

3 																																		(5.3) 

 

a b 

Figure 31. (a) displays a cubic B-spline curve and its control polygon, while (b) shows 

the basis functions for the B-spline curve. 

Following the Bézier and B-spline methods, the next significant development was Non-

Uniform Rational B-Splines (NURBS), which were needed for the representation of 

quadratic curves and surfaces. NURBS allows for the incorporation of both straight 

lines and free-form curves in a unified representation. It introduces a flexible and freely 

adjustable weight factor, adding a new dimension of control. NURBS curves consist of 

the core elements: knot vectors, weights, and control points, forming the backbone of 

their structure. 
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For representation in homogeneous coordinates 𝑃6, it is expressed as: 

𝑃6 = Y

𝑥6
𝑦6
𝑧6
1

\                           (5.4) 

Where 𝒘𝒏, represents the weight of the control point. When control points are defined 

in homogeneous coordinates 𝑃6) , they maintain their influence on the curve shape but 

allow for the introduction of rationality through weight factors. This process doesn’t 

alter the point position due to the properties of homogeneous coordinates. Each control 

point is then associated with a weight value 𝒘𝒏,, and its coordinates are multiplied by 

this weight to give a new representation in homogeneous coordinates: 

𝑃6) = ^

𝑤6𝑥6
𝑤6𝑦6
𝑤6𝑧6
𝑤6

_                          (5.5) 

This new representation does not change the location of 𝑃6  since multiplying by a 

nonzero scalar in homogeneous coordinates results in the same point. Substituting this 

into the B-spline equation, then get 𝐶)(𝑢) in homogeneous coordinates as follows: 

𝐶)(𝑢) = ∑ 𝑁6,-(𝑢)𝑃6) = ∑ 𝑁6,-(𝑢)*
6;<

*
6;< ^

𝑤6𝑥6
𝑤6𝑦6
𝑤6𝑧6
𝑤6

_ =

⎣
⎢
⎢
⎢
⎡
∑ 𝑁6,-(𝑢)*
6;< (𝑤6𝑥6)

∑ 𝑁6,-(𝑢)*
6;< (𝑤6𝑦6)

∑ 𝑁6,-(𝑢)*
6;< (𝑤6𝑧6)
∑ 𝑁6,-(𝑢)*
6;< 𝑤6 ⎦

⎥
⎥
⎥
⎤
 (5.6) 

𝐶)(𝑢) is the representation of the B-spline curve in homogeneous coordinates. By 

dividing 𝐶)(𝑢) by its fourth coordinate (the weight), the curve is transformed back 

into Cartesian coordinates. This leads to the final formula for the NURBS curve: 

𝐶(𝑢) =
1

∑ 𝑁6,-(𝑢)*
6;< 𝑤6

f 𝑁6,-(𝑢)
*

6;<
𝑤6𝑃6 																											(5.7) 

The key components for defining a NURBS curve are: 
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• Control points, 𝑃<, 𝑃!, 𝑃4, … , 𝑃*,		where n+1 is the number of control points. 

• Weights, 𝑤<, 𝑤!, 𝑤4, … , 𝑤*, , corresponding to each control point. 

• The knot vector 		𝑢<, 𝑢!, 𝑢4, … , 𝑢%, where m+1 is the number of knots. 

The control points and weights define the shape of the NURBS curve. 

Degree 

The degree of the curve is an essential factor in defining its smoothness and flexibility. 

A higher degree allows for smoother transitions within the curve, but it also requires 

more control points. In NURBS, the degree affects the local control over the curve. The 

degree, in conjunction with the knot vector, defines the continuity of the curve at the 

knots. A higher degree results in greater continuity and smoothness. 

Knots 

Knots in a NURBS curve affect how the basis functions define the curve's geometry. 

They influence the curve's partitioning and, consequently, its shape. 

The distribution of knots can create varying effects on the curve's behavior. A uniform 

knot vector results in a uniform influence across the entire curve, whereas a non-

uniform knot vector allows for non-uniform changes in the curve's shape, offering 

localized control. This distinction is crucial for applications where precise control is 

needed, as it allows for adjustments that are specific to a region of the curve. Knot 

vectors can start and end with a multiplicity equal to the degree plus one, to ensure that 

the curve passes through the first and last control points. 
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Figure 32. The illustration of knot 

Control Points 

Control points, positioned outside the curve, determine the shape of the curve and share 

the same concept as the control points in Bézier curves. However, unlike Bézier curves, 

the order of the B-spline polynomial can be independent of the number of control points. 

Control Point Weights 

The influence of control points on the curve or surface is determined by the weights 

assigned to them. A higher weight results in the curve or surface closely following the 

control point. Essentially, this alters the coefficients preceding the control point. 

Editing points, all positioned above the curve, have the same number as control points. 

Editing points are calculated by averaging the knot values. For example, for a 3rd-order 

curve with knot vector (0, 0, 0, 1, 2, 3, 3, 3), the editing point vector would be (0, 1/3, 

1, 2, 8/3, 3), potentially overlapping with the knots. 

Both editing points and control points can modify the curve's shape. However, moving 

an editing point affects the entire curve's shape, while moving a control point only alters 

a portion of the curve's shape. 
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Relationship between Control Points, Knots, and Order: In B-spline curves, the number 

of control points equals the number of internal knots (excluding the two endpoints) plus 

the order plus one. The relationship between n, m, and p (degree) satisfies m=n+p+1. 

 

Figure 33. 3rd-order curve with 6 points 

5.2.2 Optimization of Spinal Curve Reconstruction: From K-means Clustering to 

NURBS-net Prediction 

Post-processing of segmentation result 

The deep learning algorithm initially delineated the entire vertebral regions, 

encapsulating the vertebral body, transverse processes, and spinous processes. Owing 

to the pronounced structural variances present in scoliosis patients, the transverse and 

spinous processes might skew the accuracy of spinal curve estimation. To mitigate this 

issue, spoke kernel filtering was used to refine the segmentation. 

Spoke kernel filtering can be classified as a method within the domain of image 

processing and computer vision. This method is used to enhance the accuracy of 
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segmentations by selectively filtering out specific structures based on geometric 

considerations. Here’s a breakdown of the classification: 

1.  Image Segmentation: At its core, spoke kernel filtering is applied to segment 

images more precisely by identifying and removing unwanted elements that might 

otherwise skew the analysis. This places it firmly within image segmentation methods, 

which are fundamental to many medical imaging applications where accurate 

delineation of anatomical structures is crucial. 

2.  Morphological Operations: The technique could also be viewed as a form of 

advanced morphological operation. Morphological operations in image processing 

involve the manipulation of structures in an image, usually applied to binary images.  

This includes operations like dilation, erosion, opening, and closing, which help in 

removing noise, filling in gaps, and connecting disjoint elements. Spoke kernel filtering, 

while not a standard morphological operation, shares a similar goal of refining the 

image based on structural characteristics. 

3.  Geometric Transformations: The use of algorithms like the midpoint circle 

algorithm and the midpoint line algorithm suggests that spoke kernel filtering 

incorporates geometric transformations to create and manipulate shapes (circles and 

lines, respectively) within the image data. These transformations are crucial for 

accurately positioning the filtering kernel in relation to the anatomical structures of 

interest. 

4.  Filtering Techniques: Given that spoke kernel filtering involves the traversal of a 

kernel over an image to apply a specific filtering criterion (removing pixels that do not 

align with the spinal structure), it also falls under the category of filtering techniques.  

These are used widely in image processing to enhance image quality or extract 

meaningful information from an image based on predefined criteria. 
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5.  Computational Geometry: The description also suggests an element of 

computational geometry, which deals with algorithms and techniques to solve 

geometric problems in computing. The systematic exclusion of certain pixels based on 

their geometric alignment with the spine involves computational geometric problems 

in computing. The systematic exclusion of certain pixels based on their geometric 

alignment with the spine involves computational geometric principles. 

The spoke kernel filtering technique is adept at excluding both transverse and spinous 

processes and is instrumental in isolating adjacent vertebral regions that may appear 

conjoined due to severe scoliosis deformities. As depicted in Figure 1, the primary 

objective of the spoke kernel is the targeted removal of constricted regions akin to 

"bottlenecks." This method allows for a more precise separation of neighboring 

vertebrae as well as transverse and spinous processes. 

Kernel Design: The spoke kernel is designed as a circular mask, created using the 

midpoint circle algorithm. This involves plotting points that form a circle based on a 

defined midpoint. 

Line Generation: From this circular mask, line segments (spokes) are generated that 

radiate outward from the center to the circumference. These line segments are created 

using the midpoint line algorithm, which connects diametrically opposite points on the 

circle. 

Segmentation Refinement: During the filtering process, the kernel is systematically 

moved along the spine within the segmentation mask of each vertebral column.     

As it moves, it checks whether the ends of each line segment align with expected spinal 

structures. 

Exclusion of Non-spinal Elements: If the extremities of a line segment do not 

correspond to the spinal structure (i.e., they fall on the transverse or spinous processes), 

the pixels along this line segment are flagged for exclusion from the segmentation mask. 
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Cleanup: After a thorough scan, the identified non-spinal coordinates (pixels) are 

discarded, leading to a more accurate representation of the spinal anatomy, particularly 

by isolating adjacent vertebrae that may appear fused due to severe scoliosis deformities. 

The primary purpose of the spoke kernel filtering is to facilitate a more precise 

separation of the vertebral bodies by removing regions that do not contribute to the 

accurate depiction of the spinal curve. This method is particularly crucial in complex 

cases where conventional segmentation might fail due to the presence of structural 

abnormalities like those seen in scoliosis. 

 

 

Figure 34the Spoke Kernel Filtering process. (A) At the core of this technique is the 

placement of the spoke kernel's center upon each pixel within the spinal segmentation 

area. (B) Diameters extend from this central point, and endpoints are scrutinized. 

Should both endpoints reside outside the vertebral region (indicated by red points), the 

intermediate pixels will be excised from the segmentation mask. Conversely, if any 

endpoint is within the spinal boundary, the connecting pixels will be maintained (shown 

by blue dashed lines).  

This filtration technique can be conceptualized as a specialized variant of the 

morphological opening operation, selectively excising narrow isthmuses that link 

expansive regions. It is important to note that while the boundary voxels might be 
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slightly reduced through spoke kernel filtering, the integrity of the vertebral shape is 

preserved, and contours are refined. The kernel's radius was initially set to 8mm, subject 

to manual adjustments to address variations in image scale. Post filtration, this approach 

ensures the elimination of diminutive, disconnected regions, employing a size threshold 

of 500 for removal. 

NURBS Fitting for Ground Truth Enhancement 

After the application of Spoke Kernel Filtering, the segmentation of vertebral domains 

became distinctly demarcated. To process each vertebral body, an enhanced K-means 

clustering algorithm was utilized to congregate voxels into clusters. The number of 

clusters was judiciously determined as 1/1000 of the total voxel count, allowing for a 

precise and manageable cluster size. Subsequently, a three-dimensional nonuniform 

rational B-spline (NURBS) fitting process was engaged. Here, cluster centroids 

provided the necessary data points for the application of the least squares fitting method. 

For this fitting process, cubic B-spline basis functions with a degree of three were 

utilized. This selection ensures a balance between curve flexibility and control. A 

provisional assignment of 8 control points was established to define the curve, creating 

an initial structure for the ground truth utilized in the subsequent deep learning 

framework. 

Refined Approach to Deep Learning-based Curve Fitting 

Post-segmentation, the NURBS-net was employed to infer the NURBS control points 

and knot vectors from the spinal segmentation results obtained before. The NURBS-

net, structured upon the robust framework of ResNet (refer to Figure 32 for architectural 

details), underwent an extensive training regime utilizing the same dataset as vertebra 

segmentation. During this phase, the spine segmentation and the “Ground-truth curve” 

were subjected to random affine transformations, a strategic move to diversify the 

training data and thereby enhance the robustness of the model. 
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One of the most important note in the curve fitting process is the loss function, 

meticulously crafted to compare the ground truth control points and knot vectors with 

those predicted by the model. The loss function is composed as follows: 

𝑙𝑜𝑠𝑠 =
h𝑐𝑡𝑟𝑙𝑝𝑡𝑠>? − 𝑐𝑡𝑟𝑙𝑝𝑡𝑠-/#'h@4

4

‖𝑐𝑡𝑟𝑙𝑝𝑡𝑠>?‖@44
+
h𝑘𝑛𝑜𝑡𝑠>? − 𝑘𝑛𝑜𝑡𝑠-/#'h@4

4

‖𝑘𝑛𝑜𝑡𝑠>?‖@44
										(5.8) 

Here, 'ctrlpts' and 'knots' represent the control points and knot vectors, while 'ctrlpts' 

and 'knots' denote the ground truth and predicted values, respectively. This equation 

ensures that the deviations in both the control points and knot vectors are normed by 

the ground truth's magnitude, emphasizing proportional accuracy. 

This evaluation strategy, characterized by a learning rate of 0.001, paved the way for a 

nuanced understanding over a span of 1000 epochs. To assess the precision between 

the ground truth and the model's predicted curves, the symmetric mean of minimum 

distances was employed, providing a symmetric assessment of spatial deviations 

between the curves.  

 

Figure 35. outlines the deep learning network specifically architected for spinal curve 

fitting. It employs ResNet as its backbone, processing spine segmentation as input and 

yielding control points and knots of NURBS curves as outputs. 
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5.2.3 Measurement of 3D spatial angle 

Utilizing the predicted NURBS control points and knot vectors, synthesized deep 

learning-based curves, henceforth termed "NURBS-curves," comprising 100 discrete 

points accompanied by their respective tangent vectors for each patient’s spinal 

curvature representation. To ensure accuracy, the pairwise angles between these tangent 

vectors were meticulously calculated over a central range—from the 5th to the 95th 

points—excluding the extremities of the curves. This consideration stems from the 

observation that the terminal points of the curves might be influenced by incomplete 

vertebral structures often encountered at the top and bottom ends in CT images, leading 

to potential distortions in angle measurement. 

To ascertain the most significant 3D angle within this range, a systematic traversal 

along the NURBS-curve was conducted. For every pair of points, denoted by p and q， 

the angle between their corresponding tangent vectors 𝑇-  and 𝑇A  was computed 

using the arccosine of their dot product, which mathematically is described by the 

formula: 

𝐴𝑛𝑔𝑙𝑒(𝑝, 𝑞) = arccos3𝑇- ∙ 𝑇A4.																																					(5.9) 

A 2D "angle matrix" was subsequently constructed, where the pixel intensity at the (i, 

j) position corresponded to the angle between the i-th and j-th curve points. To enhance 

the stability of the angle measurements, this matrix was then processed using a 

Gaussian smoothing filter. In this section, two types of 3D spatial angle were obtained: 

The predicted 3D Cobb angle (PRED-3D-Cobb angle): which is the maximum value in 

the smoothed angle map derived from the NURBS curve. 

The 2D mapping Cobb angle (MAP-2D-Cobb angle): which is the maximal angle 

formed by the tangent vectors along the projected 2D spinal curve. 
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Figure 36. Illustration of the PRED-3D-CA calculated method 

In-Depth Statistical Analysis 

The statistical analysis was conducted with precision using SPSS software (version 21, 

IBM, Chicago, IL, USA), where a threshold of 0.05 were used for determining 

statistical significance. The established benchmark for spinal curvature, known as the 

traditional 2D Cobb angle and annotated by surgeons from 2D radiographic images, is 

herein referred to as “XRAY-CA”. 

The Pearson correlation coefficient, a measure of linear correlation, was implemented 

to delve into the relationships between the deep learning-based angle measurements 
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(PRED-3D-CA and MAP-2D-CA) and the expert annotations classified under XRAY-

CA. This statistical method provided insights into how well the automated measures 

aligned with the conventional manual annotations performed by surgeons. 

Further, to gauge the precision and accuracy of the deep learning model, the mean 

absolute error (MAE) and standard deviation (SD) were calculated. The MAE served 

as a clear indicator of the average magnitude of errors between the XRAY-CA and our 

model’s outputs without considering their direction. The SD provided a snapshot of the 

variance in these differences, informing us of the consistency of our model. 

To complement these metrics, Bland-Altman plots were generated, offering a visual 

representation of the agreement between the XRAY-CA and the automated measures. 

These plots are particularly valuable as they visually articulate not just the average 

difference but also the range of agreement across the spectrum of measurements, 

allowing us to detect any patterns or biases. 

Through these comprehensive statistical evaluations, this section sought to establish a 

robust validation of the deep learning-based measurements, ensuring that they serve as 

reliable, objective, and reproducible methods in clinical settings for assessing spinal 

deformities. 

5.3 Results 

Efficacy of Spoke Kernel Filtering and Subsequent Curve Reconstruction 

The spoke kernel filtering technique proved to be highly effective in delineating 

vertebral bodies from surrounding anatomical structures, as visualized in Figure 3. For 

the majority of the patient cohort (88%), a spoke kernel with an 8 mm radius yielded 

optimal segmentation results. A subset of patients—7 with smaller spinal structures—

required a finer 6 mm radius for adequate separation, whereas 4 patients with more 

expansive anatomical features necessitated larger radii of 10 or 12 mm. This adaptive 
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approach, involving interactive determination of the kernel radius based on individual 

patient anatomy, ensured precision in the segmentation process. 

Upon successful segmentation, NURBS-net was employed to reconstruct the NURBS-

curves, which were then accurately positioned at the spinal region's center (shown in 

Figure 32) before. Comparative analysis between these reconstructed curves and the 

ground-truth data revealed an average discrepancy of 2.81±1.09 mm within the training 

set and a slightly greater divergence of 3.65±1.45 mm within the testing set. 

Visualization and Comparison of Curve Fitting Results 

Figures 33 provide visual summaries of the segmentation and post-processing outcomes 

and highlights the meticulous post-processing and fitting of NURBS-curves, 

contrasting morphology-based curves with the deep learning-derived reconstructions 

for clarity. 

 

Figure 37. Post-processing and curve fitting. (a) and (b) are post-processing results of 

two patients from the training dataset.  
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Figure 38. (a) The X-ray, (b) CT and (c) NURBS-curve of one patient from the testing dataset. 

Figure 35 presents a comprehensive visual set comprising an X-ray, CT, and the 

reconstructed NURBS-curve from a testing dataset patient, offering a holistic view of 

the diverse imaging modalities and the computational reconstruction process. 

Table 7 offers a comparative perspective, juxtaposing the traditional XRAY-CA 

measurements against the deep learning-derived PRED-3D-CA and MAP-2D-CA. 

Notably, the mean Cobb angle measured radiographically was 56.8°±12.8°, reflecting 

significant variability among patients. The computational techniques, however, 

demonstrated remarkable concordance with the radiographic measurements: PRED-

3D-CA at 55.7° ± 13.8° and MAP-2D-CA at 56.7° ± 13.8°, underpinning the reliability 

of the deep learning methods. 
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The correlation analysis reinforced these findings, with the Pearson Correlation 

Coefficient reaching 0.983 (p<0.05) for PRED-3D-CA and 0.934 (p<0.05) for MAP-

2D-CA when compared to XRAY-CA, signifying a high degree of alignment. 

Insights from Error Metrics and Agreement Analysis 

The Mean Absolute Error (MAE) further substantiated the models' accuracy, with 

PRED-3D-CA showing a lower MAE of 2.4 ± 2.6 degrees, signifying a tighter 

congruence with XRAY-CA, as opposed to MAP-2D-CA’s MAE of 4.1 ± 4.9 degrees. 

Figure 35 delineates the Bland-Altman plot, which elucidates the agreement between 

XRAY-CA and computational predictions. The plot for XRAY-CA versus PRED-3D-

CA showed a mean difference of 1.1 degrees, with the limits of agreement tightly bound 

between -4.0 and 6.2 degrees, denoting a substantial agreement. Conversely, XRAY-

CA versus MAP-2D-CA revealed a mean difference of 0.2 degrees, albeit with a wider 

agreement range from -9.5 to 9.8 degrees, suggesting greater variability in MAP-2D-

CA measurements. 

Data Category XRAY-CA PRED-3D-CA  MAP-2D-CA 

Mean Cobb (mean±SD) 56.8°±12.8° 55.7° ± 13.8° 56.7° ± 13.8° 

Pearson Correlation coefficient - 0.983 (p<0.05) 0.934 (p<0.05) 

MAE±SD - 2.4 ± 2.6 4.1 ± 4.9 

SD standard deviation, MAE Mean Absolute Error 

Table 9. Difference between XRAY-CA, PRED-3D-CA and MAP-2D-CA 
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Figure 39. The Bland–Altman plot assessing the difference of the Cobb angle 

measurements, i.e., PRED-3D-CA, MAP-2D-CA and XRAY-CA. 

5.4 Discussion 

This chapter presents an innovative automated methodology for evaluating the 3D 

spatial angle in patients with idiopathic scoliosis, leveraging CT imaging data. Based 

on the vertebra segmentation result, a subsequent deep learning model, NURBS-net 

were used for precise spinal curve fitting. Two variants of the 3D spatial angle were 

derived from the NURBS-curves, and the practicality of this method was validated 

through its application to preoperative CT scans of 27 patients scheduled for spinal 

fusion surgery. 

As a critical preparatory step, Spoke Kernel Filtering was introduced to refine 

segmentation outcomes for subsequent curve fitting, meticulously isolating the 

vertebral body from contiguous osseous structures. This filtering technique discerns 

between vertebral bodies and proximate anatomical features, such as the lamina and 

spinous process, by verifying the alignment of distant pixels with the vertebral 

segmentation. This ensures that the fitted NURBS curve closely mirrors the vertebral 

body's contour, minimizing the impact of adjacent spinal sections. 

NURBS curve fitting, informed by K-means clustering on the segmentation mask, 

simplifies the representation of spinal trajectories, generating smooth curves that absorb 
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minor segmentation deviations. This integration of morphological analysis with 

NURBS curve fitting constitutes a comprehensive protocol for spinal curve assessment, 

enabling efficient and streamlined calculations. 

Historically, 3D spatial angle estimations fall into two principal categories: “endplate-

based” and “curve-based” methods. Endplate-based approaches calculate the maximum 

angle across vertebral endplates from 3D segmentations, whereas curve-based 

techniques derive a spinal curve from vertebral segmentations. Our proposed method 

is categorized within the latter but differentiates itself by utilizing deep learning to 

determine control points and knots. This reduces the predicted points, mitigating the 

risk of overfitting that could occur with curve-based methods reliant on vertebral 

centroids. 

Despite its innovative contributions, this study is subject to several limitations. The 

validation was constrained to a modest cohort of internal samples rather than a broad, 

external dataset, predominantly due to the challenges in obtaining comprehensive CT 

and X-ray data for AIS patients. Inconsistencies in imaging perspectives between CT 

and X-ray led to a narrowed sample size, introducing potential biases. Moreover, the 

comparison of our 3D spatial angle results was limited to 2D X-ray-derived Cobb 

angles, acknowledging the inherent differences in patient positioning and imaging 

modalities between CT scans and 2D X-rays. While a MAP-2D-CA was derived to 

approximate the 2D X-ray measurement, it inherently remains a 3D assessment, 

warranting further validation against other 3D spatial angle methodologies. 

Lastly, the study did not differentiate among various scoliosis types or curve locations 

and omitted a subgroup analysis that could offer nuanced insights into the condition's 

heterogeneity. Future investigations could address these limitations by including larger, 

more diverse datasets and by comparing results across different scoliosis classifications. 
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5.5 Conclusion 

In the current study, this chapter introduced a computational technique to assess the 

three-dimensional Cobb angle from CT images for patients afflicted with severe 

scoliosis. Our results demonstrate that this innovative method can quantify the 3D 

spatial angle with a degree of accuracy that shows significant consistency when 

compared to the traditional X-Ray measurements, particularly in patients who are 

candidates for surgical intervention. The computational model not only aligns with the 

traditional two-dimensional assessments but provide a more comprehensive three-

dimensional spinal analysis.  

Future work will focus not only on expanding the in-house dataset to improve neural 

network performance but also on providing comprehensive spatial information, 

including the precise location and affected vertebral level of the maximum curvature, 

rather than just a single 3D spatial angle value, to enhance the clinical utility of the 

model. 
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CHAPTER 6 CONCLUSION 

This thesis delves into the complex application of advanced deep learning techniques 

for assessing AIS by measuring 3D spatial angles from CT images. The framework was 

developed to improve the accuracy of preoperative assessment and potentially improve 

surgical outcomes by visualizing the spinal deformity in greater detail, beyond the 

capabilities of traditional 2D measurements. 

Firstly, a classical neural network called U-net was used to do the vertebra segmentation 

in in-house dataset. Then developed nnformer++ with the combination of two most 

advanced networks in medical image segmentation - U-Net and Transformer - to 

initially segment the spinal structure based on both in-house dataset and public dataset. 

Subsequent spine curve fitting using a customized deep learning model, NURBS-net, 

generates a NURBS curve of the spine. Based on this curve, 3D spatial angles are 

accurately calculated at the maximum value in a smooth angle map, aiming to automate 

and refine what has traditionally been a labor-intensive and error-prone process. 

The efficacy of these models is demonstrated by their ability to effectively segment the 

spine, capturing vertebrae that are often difficult to accurately delineate. The 

introduction of spoke kernel filtering further enhances the differentiation and focusing 

of vertebral regions, improving the overall accuracy of the spine curve analysis. The 

Cobb angle measurements derived from the deep learning approach correlated strongly 

with the measurements labeled by the surgeon on the 2D radiographs, achieving a high 

Pearson's correlation coefficient, highlighting the accuracy and reliability of the model. 

Despite these advances, this study encountered some significant limitations.  

Foremost among these is the reliance on a limited internal dataset for validation rather 

than a larger and more diverse external dataset. This limitation stems primarily from 

the difficulty of obtaining comprehensive, publicly available datasets that include CT 

data and radiographs from patients with AIS. In addition, the study did not differentiate 

between various types of scoliosis and did not perform subgroup analyses, which may 
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be more revealing of the specific applicability and validity of 3D measurements in 

different scoliosis. 

In future work, it will be essential not only to expand the in-house dataset to further 

enhance the performance of the neural network but also to provide more comprehensive 

information for clinical treatment. The current study yields only a single 3D spatial 

angle value without indicating the precise location of the maximum curvature or 

identifying the specific vertebral level affected. However, such information would be 

more intuitive and valuable for clinical decision-making. Moving forward, the goal is 

to provide not only the maximum three-dimensional curvature but also its spatial 

location to assist clinicians in better understanding the condition. 

In summary, by combining deep learning models with traditional medical imaging 

techniques, this thesis demonstrates the potential to significantly improve the accuracy 

of scoliosis assessment. The transition from traditional 2D assessment to more 

comprehensive 3D analysis, facilitated by this research, promises better patient 

outcomes in the management of scoliosis. Further research is essential, which will 

require not only technological innovation but also collaboration in data sharing and 

method development. 
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